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Preface

The goal of VisHCI is to provide an Australian-based, international forum for the presentation and dis-
cussion of current trends and recent ideas and results from leading national and international scientists
to foster scholarly exchange and future collaborations in the human communication sciences. Thus, the
VisHCI workshop aims at bringing together researchers, practi- tioners and students from a number of
disciplines related to using vision and visual evidence in human-computer interaction (HCI).

Visual communication - such as hand and body gestures, facial expres- sions, auditory-visual speech,
sign language etc. - is a major communication channel for humans. This, together with the availability of
low-cost cam- era technology has led to an increased use of visual evidence in HCI. As a result, VisHCI has
had a good reception by both, the academic community and industry. Thanks to the generous support from
HCSNet, registration for VisHCI 2006 was free and a number of travel grants were provided for Australian-
based participants to help with the cost of travelling to Canberra. This was of particular importance to
encourage student submissions. From the total of these, 80% were student papers. This tendency is reflected
in the distribution of accepted papers.

The workshop had strong Recognition, Visual Speech, Hand, and Face recognition tracks with an overall
acceptance rate of 55%. On the pa- per awards, the NICTA Best Paper prize was awarded to Josep R.
Casas and Jordi Salvador for their paper entitled ”Image-Based Multi-view Scene Analysis using Conexels”.
The ANU RSISE Best Student Paper Award was shared by Hatice Gunes and Jason Saragih. The two
co-winning papers are on the topics of affective computing and facial feature tracking. This highlights the
fact that Visual HCI research is multi-disciplinary and both computer vision and HCI research have a
strong tradition in Australia.

It is worth noting that the accepted full papers are intended to abide to the Department of Education,
Science and Training (DEST) E1 classification for peer-reviewed conference publications. That is, full-
length papers under- went a blind, peer review process. Every submitted paper was reviewed by at least
two of the programme committee members. The decisions of accep- tance for each paper were taken based
upon scores provided by the reviewers on presentation, relevance, originality and technical correctness.

Roland Göcke,
Antonio Robles-Kelly,

Terry Caelli
Programme Chairs, VisHCI 2006

November, 2006
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Fast and Accurate Active Appearance Models

Iain Matthews

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
Email: iainm@cs.cmu.edu

Abstract

Active Appearance Models (AAMs) are generative,
non-rigid, parametric models of a particular visual
phenomena. They are most often applied to faces,
which are perhaps the most popular class of de-
formable objects in computer vision.

There are two elements to using AAMs: first, how
to create the model, and second: given a model, how
to fit it to a given image? This keynote will give an
overview of the standard methods of model construc-
tion, then go into detail on the fast, analytical fitting
solutions we have developed.

Keywords: Active Appearance Models, non-rigid face
tracking, gradient descent image alignment, 2D+3D
AAM.

1 Brief Overview of the Keynote

The computer vision community and industry have
made great progress on face detection and recogni-
tion. The current popular approaches are now mostly
based on single image analysis using sliding detec-
tion windows and boosted classifiers. They work
impressively well for frontal face images. However,
there are many more adjuvant application areas for
facial analysis if we are able to accurately locate and
describe faces in real-time through video sequences.
This allows analysis of what a face is ”doing”, rather
than just where it is and who it belongs to. This
is a more appealing and difficult problem and is the
motivation for our research.

The approach we use is based on Active Ap-
pearance Models (Cootes, Edwards & Taylor 2001)
(AAMs) but uses an efficient gradient descent fitting
algorithm (Matthews & Baker 2004). This approach
has led to several extensions to basic algorithm. For
example, the 2D+3D algorithm allows us to recover
3D head pose and 3D face shape but can still be fit in
real-time (Xiao, Baker, Matthews, & Kanade 2004).
We can extend this further to make good use of 3D
shape constraints across multiple, simultaneous im-
ages (Koterba, Baker, Matthews, Hu, Xiao, Cohn, &
Kanade 2005).

The same mathematical framework has also
proven useful for automated model construction
(Baker, Matthews & Schneider 2004), and robust
fitting under occlusion (Gross, Matthews & Baker
2006).

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at HCSNet Workshop on the Use of Vision in
HCI (VisHCI 2006), Canberra, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
56. R. Goecke, A. Robles-Kelly & T. Caelli, Eds. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

The keynote will give an overview of this recent
work as well as ongoing extensions and applications,
and the current limitations we encounter.
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Mental Health grant R01 MH51435.

References

Baker, S., Matthews, I., & Schneider, J. (Oct. 2004),
‘Automatic construction of active appearance
models as an image coding problem’, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 26, No. 10, pp. 1380–1384.

Cootes, T.F., Edwards, G.J., & Taylor, C.J.
(June 2001), ‘Active Appearance Models’, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 23, No. 6, pp. 681–685.

Gross, R., Matthews, I., & Baker, S. (June 2006), ‘Ac-
tive appearance models with occlusion’, Image
and Vision Computing, Vol. 24, No. 6, pp. 593–
604.

Koterba, S., Baker, S., Matthews, I., Hu, C., Xiao,
J., Cohn, J., & Kanade, T. (2005), ‘Multi-view
AAM fitting and camera calibration’, in Proc.
10th IEEE International Conference on Com-
puter Vision (ICCV2005), Beijing, China, Vol.
1, pp. 511–518.

Matthews, I., & Baker, S. (Nov. 2004), ‘Active ap-
pearance models revisited’, International Jour-
nal of Computer Vision, Vol. 60, No. 2, pp. 135–
164.

Xiao, J., Baker, S., Matthews, I., & Kanade, T.
(June 2004), ‘Real-time combined 2D+3D active
appearance models’, in Proc. 2004 IEEE Com-
puter Society Conference on Computer Vision
and Pattern Recognition (CVPR2004), Washing-
ton DC, USA, Vol. 2, pp. 535–542.

Proc. HCSNet Workshop on the Use of Vision in Human-Computer Interaction, (VisHCI 2006)

3



CRPIT Volume 56

4



Audio-Visual Speech Processing: Progress and Challenges

Gerasimos Potamianos

Human Language Technologies Department
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
Email: gpotam@us.ibm.com

Abstract

This keynote focuses on using visual channel infor-
mation to improve automatic speech processing for
human computer interaction. Two main issues are
discussed: the extraction and representation of visual
speech, as well as its fusion with traditional acous-
tic information. The talk mostly considers apply-
ing these techniques to automatic speech recognition,
however additional areas of interest are also men-
tioned, for example audio-visual speech detection, en-
hancement, and synthesis, as well as speaker recogni-
tion. The state-of-the-art and remaining challenges
in these areas are also discussed.

Keywords: Audio-Visual Speech Processing; Speech
Recognition; Speech Enhancement; Speaker Recogni-
tion; Speech Synthesis.

Brief Overview of the Keynote

Speech is viewed as an integral part of human-
computer interaction (HCI), conveying not only user
linguistic information, but also emotion, identity,
location, and computer feedback. However, al-
though great progress has been achieved over the
past decades, computer processing of speech still lags
significantly compared to human performance levels.
For example, automatic speech recognition (ASR)
lacks robustness to channel mismatch and noise; text-
to-speech (TTS) systems continue to lag in natural-
ness, expressiveness, and, somewhat less, in intel-
ligibility; and typical real-life interaction scenarios,
where emotion and non-acoustic cues are used to con-
vey a message, prove insurmountably challenging to
traditional computer systems that rely on the au-
dio signal alone. In contrast, humans easily master
complex communication tasks by utilizing additional
channels of information, most notably the visual sen-
sory channel.

Of central importance to human communication
is the visual information present in the face, with the
lower face playing an integral role in the production
of human speech and of its perception, both being
audio-visual in nature. This has motivated significant
research over the past quarter century on automatic
processing of visual speech and its integration with
audio for a number of speech processing applications
(Chen 2001). In particular, automatic recognition of
visual speech, also known as automatic speechread-
ing, and its fusion with audio-only systems, that gives

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at HCSNet Workshop on the Use of Vision in
HCI (VisHCI 2006), Canberra, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
56. R. Goecke, A. Robles-Kelly & T. Caelli, Eds. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

rise to audio-visual ASR, has attracted much of this
interest (Potamianos et al. 2003). In addition, the
need for improved naturalness, expressiveness, and
intelligibility of synthesized speech, has steered re-
search work towards augmenting TTS systems by syn-
thesized visual speech (Cosatto and Graf 2001). Fur-
ther, a number of recently proposed techniques utilize
visual-only or joint audio-visual signal processing for
speech enhancement, speech activity detection, and
source localization, identity recognition from face ap-
pearance or visual speech (Chibelushi et al. 2000),
and visual recognition and synthesis of human facial
emotional expressions. In all cases, the visual modal-
ity can significantly improve audio-only systems.

In order to automatically process and incorporate
the visual information into the above speech-based
HCI technologies, a number of steps are required that
are surprisingly similar across them. Central to all
technologies is the feature representation of visual
speech and its robust extraction. In addition, ap-
propriate integration of the audio and visual repre-
sentations is required, in order to ensure improved
performance of the bimodal systems over audio-only
baselines. In a number of technologies, this integra-
tion occurs by exploiting audio-visual signal correla-
tion, whereas in others, feature or decision (classifier)
fusion techniques are employed. These topics are dis-
cussed in detail in this talk, with emphasis on their
application to audio-visual ASR. The current state-
of-the-art in the area and what is viewed as the re-
maining challenges to be met are also presented.

Acknowledgements

A number of colleagues at IBM have contributed to the pre-
sented work: Stephen M. Chu, Jonathan Connell, Sabine
Deligne, Norman Haas, Jing Huang, Giridharan Iyengar,
Vit Libal, Etienne Marcheret, Chalapathy Neti, Hariett
Nock, Larry Sansone, Andrew W. Senior, and Roberto Sic-
coni. Furthermore, the following have collaborated with the
group through summer internships or postdoctoral fellowships:
Ashutosh Garg, Roland Goecke, Guillaume Gravier, Jintao
Jiang, Patrick Lucey, and Patricia Scanlon. Finally, collabora-
tion with Petar S. Aleksic and Aggelos K. Katsaggelos (North-
western U.) on the subject of this talk is also acknowledged.

References
Chen, T. (2001), “Audiovisual speech processing. Lip reading

and lip synchronization,” IEEE Signal Processing Mag.,
Vol. 18, No. 1, pp. 9–21.

Chibelushi, C.C., Deravi, F., & Mason, J.S.D. (2002), “A re-
view of speech-based bimodal recognition,” IEEE Trans.
Multimedia, Vol. 4, No. 1, pp. 23–37.

Cosatto, E. & Graf, H.P. (2000), “Photo-realistic talking-heads
from image samples,” IEEE Trans. Multimedia, Vol. 2,
No. 3, pp. 152–163.

Potamianos, G., Neti, C., Gravier, G., Garg, A., & Senior,
A.W. (2003), “Recent advances in the automatic recogni-
tion of audiovisual speech,” Proc. IEEE, Vol. 91, No. 9, pp.
1306–1326.

Proc. HCSNet Workshop on the Use of Vision in Human-Computer Interaction, (VisHCI 2006)

5



CRPIT Volume 56

6



Audio-Visual Technologies for Lecture and Meeting Analysis
inside Smart Rooms

Gerasimos Potamianos

Human Language Technologies Department
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
Email: gpotam@us.ibm.com

Abstract

Analysis of lecture meetings recorded inside smart
rooms has recently attracted much interest, being the
focus of international projects and technology evalu-
ations. In this keynote, we briefly overview one such
project, “Computers in the Human Interaction Loop”
(CHIL), with emphasis on the perceptual technology
components developed. In particular, we focus on
person tracking and speech processing technologies,
and present the developed IBM systems.

Keywords: Speech Processing; Speech Recognition;
Speaker Diarization, Speech Activity Detection; Vi-
sual Tracking; Face Detection; Meeting Data.

Brief Overview of the Keynote

Interactive lectures and meetings play significant role
in human collaborative activities in the workplace.
Not surprisingly, analysis of interaction in these do-
mains has attracted significant interest in the com-
munity, being the focus of a number of research ef-
forts and international projects, for example CHIL,
AMI, and the U.S. National Institute of Standards
and Technology (NIST) Smartspace effort. In these
projects, the interaction happens inside smart rooms
equipped with multiple audio and visual sensors.
Based on the resulting captured data, the goal is to
extract higher-level information in order to assist, for
example, in lecture meeting indexing, browsing, sum-
marization, and understanding. To achieve this, tech-
nology components need to be developed that address
basic questions about the “who”, “where”, “what”,
and “when” of the interaction.

Addressing these goals is the main aim of the
CHIL EU-funded project, run under the technical
coordination of the Interactive Systems Laborato-
ries at the University of Karlsruhe, Germany (CHIL
project website). In CHIL, computers are reduced to
“discreet” observers of human activity through the
use of far-field sensors, and are to provide lecture
meeting support services to the participants, based
on a common architecture that integrates perceptual
components. Central to this goal are people tracking
and speech processing technologies; in particular face
detection and three-dimensional (3D) person track-
ing, as well as automatic speech recognition (ASR)
or speech-to-text (STT), and its complementary tech-
nologies, speech activity detection (SAD) and speaker
diarization (SPKR). Significant research effort is be-

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at HCSNet Workshop on the Use of Vision in
HCI (VisHCI 2006), Canberra, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
56. R. Goecke, A. Robles-Kelly & T. Caelli, Eds. Reproduc-
tion for academic, not-for profit purposes permitted provided
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ing devoted to developing robust and efficient algo-
rithms to attack these problems. Noticeably, these
efforts have been rigorously evaluated in the past few
years through project-internal evaluation campaigns,
the NIST-sponsored Rich Transcription (RT) Meeting
Recognition Evaluation (RT06s evaluation website),
and the recent CLEAR (Classification of Events, Ac-
tivities, and Relationships) campaign (Stiefelhagen et
al. 2006).

In this talk, we present a summary of the IBM
efforts with respect to the CHIL project, with em-
phasis on the developed technologies to address face
detection, 3D tracking, SAD, SPKR, and STT for
the lecture meeting scenario, central to CHIL. Both
vision and speech tasks are particular challenging:
Speech-wise, due to the presence of multiple speak-
ers with often overlapping speech, a variety of in-
terfering acoustic events (chairs moving, door noise,
typing, computer noise, etc.), the strong accents of
most speakers and interacting audience members, a
high level of spontaneity, hesitations and disfluencies,
the technical seminar contents, the relatively small
amount of in-domain data, and the use of far-field
sensors (Huang et al. 2006); vision-wise, due to low-
resolution distant data, people occlusion, and lighting
variations (Potamianos and Zhang 2006). Neverthe-
less, the work reported here shows that addressing
these problems in real human interaction scenarios
such as CHIL lecture meetings is achievable.
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Vision in HCI: Embodiment, Multimodality and Information

Capacity

David Powers

Artificial Intelligence Lab, School of Informatics and Engineering, Flinders University
Adelaide, Australia

Email: david.powers@flinders.edu.au

Abstract

Almost all Human Computer Interfaces involve vi-
sion and Pedagogical research encourages the use of
multiple modalities including vision. The combina-
tion of visual and other modalities, as well as the
many submodalities of vision, has both advantages
and pitfalls. The work presented here connects psy-
chological research into human cognitive and percep-
tual processes and limitations, to evaluation and op-
timization of multimodal HCI.

Keywords: Multimodal interfaces, interface optimiza-
tion, information capacity.

1 Introduction

Why are educators encouraged to employ multimodal
teaching technologies? Why do we like to use Graph-
ical User Interfaces? Why do we need Vision in a Hu-
man Computer Interface? And how should we best
utilize the various modalities and submodalities?

Most HCI interfaces do involve vision - textual in-
terfaces involve vision both in terms of overt reading
but also in terms of orientation within a document or
screen. Speech recognition and speech synthesis have
their technical issues, but speech has fundamental dis-
advantages as a sole HCI mechanism versus text, and
for programming it is arguably worse - English is not a
good programming or representation language, which
is why we have designed mathematical and musical
notations as well as programming languages.

Similarly speech lacks the persistence and position
that text has in relation to other visual elements -
that is we can saccade back and forward within a
sentence (Huey 1908) or the text, or the program,
either consciously or unconsciously, and we retain a
2D or 3D eidetic impression of where we have seen
items. The formatting of a text or program, including
both left and right indentation, also has a huge impact
on how efficiently we can orient in a text and how
fast we can read it. Standard typesetting guidelines
have been developed over the centuries with a view
to optimizing reading speed and orientation.

Graphic User Interfaces add another dimension
but there has been a lack of Human Factors analy-
sis in making design decisions, and there is no reason
to think the designs we currently have are anything
like optimal. Nonetheless, good performance can be
achieved with suboptimal interfaces with sufficient
training, and a better interface which is demonstrably

Copyright c©2006, Australian Computer Society, Inc. This pa-
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more efficient or faster will not necessarily win wide-
spread acceptance given the familiarity and training
lock-in phenomenon of which the Qwerty vs Dvorak
keyboard is a case in point.

2 Case Studies - Vision Input

2.1 Speech Reading

The classic case of a visual user interface is the use of
lip-reading and its fusion with auditory information.
Lip reading is good for distinguishing some phonemes
that are hard to distinguish aurally, particularly in
the face of noise. We will discuss developments relat-
ing to finding and tracking facial features as well as
fusion of the visual and auditory information in such
a way as to guarantee no significant degradation over
either alone - viz. no catastrophic fusion (Lewis &
Powers 2002, Lewis & Powers 2004). In addition, our
research program deals with noise of different kinds,
of which lighting and reverb are special cases.

2.2 Situation Awareness

One of the factors that limits the utility of natural
language/speech interaction systems is the lack of
shared experience/embodiment. Vision is a major
part of this and can give the computer a broad view
of the world, as well as detail as appropriate.

Further extensions and enhancements in relation
to speech reading include the affective interpretation
of facial, eye and hand gestures and movements, and
the incorporate of muscular (surface EMG/sEMG),
ocular (EOG) and brain (EEG) signals. sEMG alone
can be used for reasonable lip reading of certain
sounds, and the other signals provide correlations
with a broader range of linguistic and non-linguistic
communication modes and mental states, and repre-
sent an integration of AVSR and BCI (Brain Com-
puter Interface). Again careful fusion is necessary to
incorporate this information.

3 Case Studies - Vision Output

3.1 Thinking Heads

The above input modalities are complemented by
speech synthesis, expression synthesis, dialogue gen-
eration and a shared interactive environment, being
part of a broad Thinking Head project funded un-
der the ARC/NHMRC Thinking Systems Special Re-
search Initiative.

The full picture is to be exemplified and evalu-
ated in two scenarios - a bill enquiry/complaint sce-
nario and a Second Language (L2) teaching/learning
situation. These situations afford opportunity to
evaluate appropriateness of computer response and

Proc. HCSNet Workshop on the Use of Vision in Human-Computer Interaction, (VisHCI 2006)

9



to characterize user response to different emo-
tional/gestural expressions, including eye gaze and
attention tracking. Both scenarios have the oppor-
tunity to be enhanced to take into account environ-
mental/situational circumstances/context. In the L2
situation common reference is an essential aspect of
the learning situation.

In this case we are not only talking about under-
standing real auditory and visual input for a Human
Head (HH), but modelling and mirroring/simulating
the same kind of output with a Thinking Head (TH).

3.2 Simulated Robots

The Robot World (RW) learning situation being im-
ported into the Thinking Head L2 scenario was origi-
nally designed for studying Machine Learning of Nat-
ural Language and Ontology (L0) and First Language
(L1) learning. This system avoids the problems of
dealing with real robots and real vision and audi-
tion by simulating scripted scenarios and learning or
teaching using these scripts.

Grammars, morphologies, ontologies and seman-
tics can all be learned in this L0RW context. The
Robot World has its limitations, and a system that
is totally simulated based on existing models fails to
convince after a point - after all, we are only learn-
ing the models we built in. In fact, currently we are
working with the CHILDES corpus and building our
scenarios around actual sentences and constructs used
in child-directed speech. Nonetheless, eventually the
robot learners need to see the real world.

3.3 Real Robots

Real robots are able to sense and interact with the
real world, and dealing with real robots introduces
considerable complexity that takes us away from the
human learning and human interface.

Our robotics research has included building a doll
that crawls and orients towards a voice, the original
version being blind, with a new and rather too heavy
head being designed with verging USB cameras and
head turning/panning capability. For the new head
we also developed an 8-microphone USB array that
could be oriented tetrahedrally on the head (ears,
mouth and crown) in noise-cancelling 180◦ pairs for
a TH-centred soundfield. The same array can also be
worn as a headset for an HH-centred soundfield.

We also use a garbage can on wheels style robot to
navigate our building and develop an ontology. Using
Wizard of Oz techniques using 802.11 WLAN tech-
nology, we have also used it as a building guide. This
has a variety of sensors including sonar, an omnidi-
rectional camera. We also use several USB webcams,
one of which is used to track our position very pre-
cisely. We are also developing a system to read the
room numbers (and eventually occupant names and
other information). At this stage that is being trained
with photos taken from 10 known positions and ori-
entations for each room number, but eventually the
image will be taken from the robot’s cameras.

3.4 Graphical User Interfaces

The flip side of vision in HCI is the GUI or Graphi-
cal User Interface. GUI design has largely neglected
human perceptual and cognitive limitations, cogni-
tive load and situation awareness. There has been
an implicit assumption that natural is better, and as
a corollary, that 3D is better. But this has not been
borne out empirically - the converse can be true. Bet-
ter performance can result from 2D displays in an
information retrieval/search context.

We have developed techniques to allow us to dis-
play up to 26 simultaneous dimensions in an IR GUI.
We are also experimenting with clustering and hyper-
space navigation models. But because you can do it
doesn’t mean you should do it or it is useful to do it.

We therefore have a research focus on understand-
ing the interplay of the linguistic/search dimensions
and the visual/graphical dimensions. There are same
basic questions about how many dimensions and how
many bits of information per dimension people choose
to deal with or are capable of dealing with. The work
in this area that Miller cited in his Magical Num-
ber Seven paper (Miller 1956a), as well as a variety
of follow on studies (Miller 1956b), demonstrates that
chunking and combination of dimensions can increase
the amount of information that can be conveyed to at
least 150 distinctions (7 to 8 bits).

In our work we are particularly interested in dis-
tinguishing between and controlling for the working
memory/cognitive load aspects versus the perceptual
aspects, as well as in specifying the optimum match-
ing of application attribute/information dimensions
and graphics/display dimensions (Pfitzner, Hobbs &
Powers 2003).

We are also evaluating the effectiveness of anima-
tion, both as an iconic display dimension and in re-
lation to continuity and situation awareness versus
change blindness.
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Abstract

This paper examines the use of facial muscle activity
(Surface Electromyogram) to recognise speech based
commands in English and German language without
any audio signals. The system is designed for ap-
plications based on speech control for Human Com-
puter Interaction (HCI).The paper presents an effec-
tive technique that uses the facial muscle activity of
the articulatory muscles and human factors for recog-
nition. The difference in the speed and style of speak-
ing varies between experiments, and this variation ap-
pears to be more pronounced when people are speak-
ing a foreign language. To overcome this difficulty,
the paper reports measuring the relative activity of
the articulatory muscles for recognition of unvoiced
vowels of English and German languages. In these in-
vestigations, three English vowels and three German
vowels were used as recognition variables. The mov-
ing root mean square (RMS) of surface electromyo-
gram (SEMG) of four facial muscles is used to seg-
ment the signal and to identify the start and end
of a silently spoken utterance. The relative muscle
activity is computed by integrating and normalising
the RMS values of the signals between the detected
start and end markers. The output vector of this is
classified using a back propagation neural network to
identify the voiceless speech. The data is also tested
using K means clustering technique to determine the
linearity of separation of the data. The experimental
results show that this technique gives high recognition
rate when used for each of the participants for both
of the languages. The investigations also show that
the system is easy to train for a new user . The visual
inspection of the plot of the experimental data sug-
gests the formation of clusters. The results suggest
that such a system is reliable for simple vowel based
commands for human computer interface when it is
trained for the user,who can speak one or more lan-
guages and for the people who have speech disability.

Keywords: Surface Electromyogram, Speech control,
HCI, ANN.

1 Introduction

Research and development of new human computer
interaction (HCI) techniques that enhance the flexi-
bility and reliability for the user are important. Re-
search on new methods of computer control has fo-
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cused on three human factors of body functions:
speech, bioelectrical activity and facial expressions.
The expression of emotions plays an important part
in human interaction. Most of the facial movements
result from either speech or the display of emotions;
each of these has its own complexity (Ursula 1998)

Speech operated systems have the advantage that
these provide the user with flexibility, and can be con-
sidered for any applications where natural language
may be used. Such systems utilise a natural ability
of the user. Such systems have the potential for mak-
ing computer control effortless and natural. Further,
due to the very dense information that can be coded
in speech, speech based human computer interaction
(HCI) can provide richness comparable to human to
human interaction.

In recent years, significant progress has been made
in advancing speech recognition technology, mak-
ing speech an effective modality in both telephony
and multimodal human-machine interaction. Speech
recognition systems have been built and deployed for
numerous applications. The technology is not only
improving at a steady pace, but is also becoming in-
creasingly usable and useful. However, speech recog-
nition technology has three major shortcomings; (i) it
is not suitable in noisy environments such as a vehi-
cle or a factory, (ii) it is not suitable for people with
speech impairment disability, such as people after a
stroke attack, and (iii) it is not suitable for giving
discrete commands when there may be other people
in the vicinity. This paper reports research to over-
come these shortcomings, with the intent to develop a
system that would identify the verbal command from
the user without the need for the user to speak the
command. The possible user of such systems would
be people with disability, workers in noisy environ-
ments, and members of the defence forces.

When we speak in noisy environments, or with
people with hearing loss, the lip and facial movements
often compensate the lack of quality audio. The iden-
tification of the speech with lip movement can be
achieved using visual sensing, or sensing of the move-
ment and shape using mechanical sensors (Manabe
2003) or by relating the movement and shape to the
muscle activity (Chan 2002, Kumar 2004). Each of
these techniques has strengths and limitations. The
video based technique is computationally expensive,
requires a camera monitoring the lips and fixed to
the user’s head, and is sensitive to lighting condi-
tions. The sensor based technique has the obvious
disadvantage that it requires the user to have sen-
sors fixed to the face, making the system not user
friendly. The muscle monitoring systems have limi-
tations of low reliability. This paper reports the use
of recording muscle activity of the facial muscles to
determine the unspoken command from the user.

Earlier work reported by the authors have demon-
strated the use of multi-channel surface electromyo-
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gram (SEMG) to identify the unspoken vowel based
on the normalized integral values of SEMG during the
utterance. The main common concern with such sys-
tems is the difficulty to work across people of different
backgrounds and the main challenge is the ability of
such a system to work for people of different native
languages. Earlier work by the authors had tested the
system for native Australian English speakers. This
paper compares the error in classification of the un-
spoken English and German vowels by a group of Ger-
man native speakers.

2 THEORY

The purpose of this research is to classify the surface
recordings of the facial muscle activity with speech.
For this analysis, the first step is to determine the
role of the facial muscles in the production of speech.
There are number of major speech production mod-
els that describe the mechanisms of speech produc-
tions. It is important to identify the anatomical de-
tails of speech production for analysing the shape of
the mouth and the muscle activity with speech.

2.1 Articulatory phonetics

Articulatory phonetics considers the anatomical de-
tail of the production speech sounds. This requires
the description of speech sounds in terms of the po-
sition of the vocal organs. For this purpose, it is
convenient to divide the speech sounds into vowels
and consonants. The consonants are relatively easy
to define in terms of the shape and position of the
vocal organs, but the vowels are less well defined and
this may be explained because the tongue typically
never touches another organ when making a vowel
(Thomas 1986). When considering the speech ar-
ticulation, the shapes of the mouth during speaking
vowels remain constant while during consonants the
shapes of the mouth changes. The vowel is stationary,
while the consonant is non-stationary.

2.2 Face movement related to speech

The face can communicate a variety of information in-
cluding subjective emotion, communitive intent, and
cognitive appraisal. The facial musculature is a three
dimensional assembly of small, pseudo-independently
controlled muscular lips performing a variety of com-
plex orfacial functions such as speech, mastication,
swallowing and mediation of motion (Lapatki 2003).
The parameterization used in speech is usually in
terms of phonemes. A phoneme is a particular po-
sition of the mouth during a sound emission, and
corresponds with specific sound properties. These
phonemes in turn control the lower level parameters
for the actual deformations. The required shape of
the mouth and lips for the utterance of the phonemes
is achieved by the controlled contraction of the fa-
cial muscles that is a result of the activity from the
nervous system (Thomas 1986).

Surface electromyogram (SEMG) is the non-
invasive recording of the muscle activity. It can be
recorded from the surface using electrodes that are
stuck to the skin and located close to the muscle
to be studied. SEMG is a gross indicator of the
muscle activity and is used to identify force of mus-
cle contraction, associated movement and posture
(Basmajian 1985) . Using an SEMG based system,
Chan et al (Chan 2002) demonstrated that the pres-
ence of speech information in facial myoelectric sig-
nals. Kumar et al (Kumar 2004) have demonstrated
the use of SEMG to identify the unspoken sounds
under controlled conditions. There are number of

challenges associated with the classification of mus-
cle activity with respect to the associated movement
and posture, such as the sensitivity of the location
of electrodes, inter user variations, sensitivity of the
system to variations in intrinsic factors such as skin
conductance, and to external factors such as tem-
perature, and electrode conditions. Veldhuizen et al
(Veldhuizen 2003) demonstrated the variation of fa-
cial EMG during a single day and has shown facial
SEMG activity decreased during the workday and in-
creased again in the evening.

One difficulty with speech identification using fa-
cial movement and shape is the temporal variation
when the user is speaking complex time varying
sounds. With the intra and inter subject variation in
the speed of speaking, and the length of each sound,
it is difficult to determine a suitable window, and
when the properties of the signal are time varying,
this makes identifying suitable features for classifica-
tion less robust.The other difficulties also arise from
the need for segmentation and the identification of the
start and end of movement if the movement is com-
plex. While each of these challenges are important,
as a first step, this paper has considered the use of
vowel based verbal commands only, where there is no
change in the sound producing apparatus, the mouth
cavity and the lips, and the nasal sounds can largely
be ignored. Such a system would have limited vocab-
ulary, and would not be very natural, but would be an
important step in the evolution. In such a system, us-
ing moving RMS threshold, the temporal location of
each activity can be identified. By having a station-
ary set of parameters defining the muscle activity for
each spoken event, this also makes the system have
very compact set of features, making it suitable for
real time classification.

2.3 Facial muscles for speech

When using facial SEMG to determine the shape of
the lips and the mouth, there is the issue of the choice
of the muscles and the corresponding location of the
electrodes. Face structure is more complex than the
limbs, with large number of muscles with overlaps. It
is thus difficult to identify the specific muscles that
are responsible for specific facial actions and shapes.
There is also the difficulty of cross talk due to the
overlap between the different muscles. This is made
more complex due to the temporal variation in the
activation and deactivation of the different muscles.
The use of integral of the RMS of SEMG is useful in
overcoming the issues of cross talk and the temporal
difference between the activation of the different mus-
cles that may be close to one set of electrodes. Due to
the unknown aspect of the muscle groups that are ac-
tivated to produce a sound, statistical distance based
cluster analysis and back-propagation neural network
has been used for classifying the integral of the RMS
of the SEMG recordings. It is impractical to consider
the entire facial muscles and record their electrical
activity. In this study, only four facial muscles have
been selected; The Zygomaticus Major arises from
the front surface of the zygomatic bone and merges
with the muscles at the corner of the mouth. The De-
pressor anguli oris originates from the mandible and
inserts skin at an angle of mouth and pulls corner
of mouth downward. The Masseter originates from
maxilla and zygomatic arch and inserts to ramus of
mandible to elevate and protrude, assists in side-to-
side movements mandible. The Mentalis originates
from the mandible and inserts into the skin of the
chin to elevate and protrude lower lip, pull skin into
a pout(Fridlund 1986). The location of these muscles
are shown in Figure 1.
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Figure 1: Topographical location of facial muscles
[Source: (Lapatki 2003)]

2.4 Features of SEMG

SEMG is a complex and non-stationary signal. The
strength of SEMG is a good measure of the strength
of contraction of the muscle, and can be related to
the movement and posture of the corresponding part
of the body. The most commonly used feature to
identify the strength of contraction of a muscle is the
root mean square (RMS). RMS of SEMG is related
to the number of active muscle fibres and the rate of
activation, and is a good measure of the strength of
the muscle activation, and thus the strength of the
force of muscle contraction.

The preliminary study by Chan et al. has demon-
strated the presence of speech information in facial
EMG (Chan 2002). The timing of the activation of
different groups of muscles is a central issue to identify
the movement and shape of the mouth and lips. The
issue regarding the use of SEMG to identify speech is
the large variability of SEMG activity pattern asso-
ciated with a phoneme of speech. A difference in the
amount of motor unit activity was observed in one
and the same muscle when different words like p, b
were spoken in the same context (Basmajian 1985).

The vowels correspond to stationary muscle activ-
ity, the muscle activity pre and post the vowel is non-
stationary. While it is relatively simple to identify
the start and the end of the muscle activity related
to the vowel, the muscle activity at the start and the
end may often be much larger than the activity dur-
ing the section when the mouth cavity shape is being
kept constant, corresponding to the vowel. To over-
come this issue, this research recommends the use of
the integration of the RMS of SEMG from the start
till the end of the utterance of the vowel. The tem-
poral location of the start and the end of the activity
is identifiable using moving window RMS.

Another shortcoming of the use of strength of
SEMG is that it is dependent on the absolute of the
magnitude of the recording, which can have large inter
experimental variation. To overcome this shortcom-
ing, this paper reports the use of ratios of the area
under the curve of SEMG from the different muscles.
By taking the ratio rather than the absolute value,
the difficulty due the variation of the magnitude of
SEMG between different experiments is overcome.

3 Methodology

Experiments were conducted to evaluate the perfor-
mance of the proposed speech recognition from facial
EMG for different languages, German and English.
The experiments were approved by the Human Ex-
periments Ethics Committee of the University. Con-
trolled experiments were conducted where the par-

Figure 2: Pronunciation of German vowels
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Figure 3: Raw SEMG signal recorded during different
experiments

ticipant was asked to speak while their SEMG was
recorded. The SEMG recordings were visually ob-
served, and all recordings with any artifacts -typically
due to loose electrodes or movement- were discarded.
During these recordings, the subjects spoke three se-
lected English vowels (/a/,/e/,/u/) and three selected
German vowels (/a/,/i/,/u/). Each vowel was spo-
ken separately such that there was a clear start and
end of its utterance. The experiment was repeated
ten times for each language. A suitable resting time
was given between each experiment. The participants
were asked to vary their speaking speed and style to
obtain a wide based training set. The pronunciation
of German vowels (Ager 2006) is shown in Figure 2.

3.1 EMG Recording and Processing

In previous investigation,three male volunteers speak-
ing English participated and in the present investiga-
tion, two male and one female volunteers participated
in the experiments. All the participants in this exper-
iment were native speakers of German with English as
their second language. Four-channel facial SEMG was
recorded using the recommended recording guidelines
(Fridlund 1986).

A four channel, portable, continuous record-
ing MEGAWIN instrument (from Mega Electron-
ics, Finland) was used for this purpose. Raw sig-
nal was recorded at a rate of 2000 samples/second.
Ag/AgCl electrodes (AMBU Blue sensors from
MEDICOTEST, Denmark) were mounted on appro-
priate locations close to the selected facial muscles,
which were the right side Zygomaticus Major, Mas-
seter & Mentalis and left side Depressor anguli oris.
The inter electrode distance was kept constant at 1cm
for all the channels and experiments. The record-
ings were visually observed, and all recordings with
any artifacts were discarded. Figure 3 shows the raw
SEMG signal recorded during different experiments
by changing the speed and style of utterance, plotted
as a function of time (sample number).

The first step in the analysis of the data required
identifying the temporal location of the muscle ac-
tivity. Moving root mean square (MRMS) of the
recorded signal with a threshold of 1 sigma of the
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Figure 4: RMS plot of the recorded EMG signals
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Figure 5: An example of the computation of the in-
tegral of RMS of SEMG

signal was applied for windowing and identifying the
start and the end of the active period (David 1997).
Window size of 20 samples corresponds to 10 msec
and was used as the size of the window for computing
the MRMS. The start and the end of the muscle activ-
ity were also confirmed visually. Figure 4 shows the
plot of RMS values of the different recorded EMG sig-
nals. The next step is to parameterise the SEMG for
classification of the data. To overcome the difference
between the speed of utterance during different exper-
iments, and difference between different experiments
in the absolute magnitude of the recordings, the data
was integrated and normalised. MRMS of the enve-
lope of SEMG between the start and the end of the
muscle activity was integrated for each of the chan-
nels. This provided a four long vector corresponding
to the overall activity of the four channels for each
vowel utterance. This data was normalised with re-
spect to channel 1 by computing a ratio of integrated
MRMS of each channel with respect to channel 1.
This ratio is indicative for the relative strength of
contraction of the different muscles and reduces the
impact of inter-experiment variations. The outcome
of this step was a vector of length three correspond-
ing to each utterance. Figure 5 is an example of the
computation of the integral of RMS of SEMG.

For computing the integral of RMS of SEMG,
Durand’s rule (Eric 2006) was used, because it pro-
duces approximations that are more accurate and a
straightforward family of numerical integration tech-
niques. A simplified block diagram of methodology
shown in Figure 6, explains the process of the analy-
sis.

3.2 Classification of SEMG Data

Parameterization of SEMG data results in a vector
with three measures for each utterance. The first step
in classfication of data was to determine if this data
was separable. After confirming this, the next step

Figure 6: A simplified block diagram of methodology

undertaken was to determine whether the data is lin-
early separable. To determine whether the data is
separable, supervised neural network approach was
used. The advantage of using such a neural network
is that neural networks can be applied without the
assumption for linear separation of the data. For this
purpose, the data from the ten experiments for each
participant was divided into two equal groups - train-
ing and test data. This was repeated for English and
German language separately. An over-sized neural
network was used to ensure identifying the separation
of the data.

The ANN consisted of two hidden layers with 20
nodes in both layers. Sigmoid function was used as
the threshold decision. ANN was trained with gradi-
ent descent algorithm using momentum with a learn-
ing rate of 0.05 to reduce likelihood of local minima.
Finally,the trained ANN was used to classify the test
data. This entire process was repeated for each of the
participants. The performance of these integral RMS
values was evaluated in this experiment by comparing
the accuracy in the classification during testing. The
accuracy was computed based on the percentage of
correctly classified data points to the total number of
data points in the class.

The next step in the classification of this data was
to test, whether the data was linearly separable. Tak-
ing advantage of the three dimension in the data,
three axis plot was produced. In this, data points
representing each vowel were given a specific colour
and distinct symbol for visual inspection. Figure 8
and Figure 9 show examples of such a plot, for each
of the investigated languages. The K-means cluster-
ing technique was performed to test the data for lin-
ear separability. To get an idea of how well-separated
the resulting clusters are, a silhouette plot was made
using the cluster indices output from k-means. The
silhouette plot in Figure 7 displays a measure of close-
ness of each point in one cluster is to points in the
neighbouring clusters. Unsupervised clustering does
not demonstrate linear separability of the data with
no temporal information and with a prior knowlwdge
of the targets against the inputs. Supervised back-
propagation neural network is the most convenient to
use as a classifier, the authors are aware that such
a classifier may in some cases be sub-optimum. The
advantage of ANN approach is that ANN is easy to
be trained by a user to configure the system for the
individual.

4 RESULTS AND OBSERVATIONS

The linear separation of normalised integral RMS val-
ues of different vowels was tested using three dimen-
sional plot and silhoutte plot.It is observable from
the 3-D plots in Figure 8 and Figure 9, that there
appears distinct clustering of the data based on the
vowel uttered for both languages. This is also verified
using k-means Silhouette plot (Figure 7), it is clear
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Figure 7: Silhouette plot of the normalised IRMS val-
ues (a) English Vowels (b) German Vowels

Table 1: Classification results for different partici-
pants uttering English vowels

Vowel Correctly Classified Vowels
Partcipant
1

Partcipant
2

Partcipant
3

/a/ 3(60%) 4(80%) 4(80%)
/e/ 4(80%) 4(80%) 4(80%)
/u/ 5(100%) 5(100%) 5(100%)

that most points have a large silhouette value, indi-
cating that the clusters are separated from each other
and it suggests that there exists linear separation of
the data. The average silhouette values for English
vowels and German vowels are 0.7634 and 0.8441 re-
spectively. This shows that the linear separation of
data is stronger in German vowels (native language of
the speaker) than English vowels (foreign language).

The results of testing the ANN on the test data
using weight matrix generated during training are
tabulated in Table 1 for English vowels and Table
2 for German vowels. These results indicate an over-
all average accuracy of 86%, where it is noted that
the overall classification of the integral RMS values
of the EMG signal yields better recognition rate of
vowels for 3 different participants, when it is trained
individually.

The results indicate that this technique can be
used for the classification of vowels for the native and
foreign language, in this case, English and German.
This suggests that the system is able to identify the
differences between the styles of speaking of different
people at different times for different languages.
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Figure 8: 3-D plot of the normalised IRMS values of
English vowels
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Figure 9: 3-D plot of the normalised IRMS values of
German vowels

5 DISCUSSION

The results indicate that the proposed method that
uses activities of facial muscles for identifying silently
spoken vowels is technically feasible from the view
point of error in identification. The investigation re-
veals the suitability of the system for English and
German, and this suggests that the system is feasi-
ble when used for people speaking their own native
language as well as a foreign language. The results
also indicate that the system is not disturbed by the
variation in the speed of utterance. The recognition
accuracy is high, when it is trained and tested for a
dedicate user. Hence, such a system could be used
by any individual user as a reliable human computer
interface (HCI). This method has only been tested
for limited vowels. Vowels were the first to be con-
sidered because the muscle contraction during the ut-
terance of vowels remains stationary. The promising
results obtained in the experiment indicate that this
approach based on the facial muscles movement rep-
resents a suitable, reliable method for classifying vow-

Table 2: Classification results for different partici-
pants uttering German vowels

Vowel Correctly Classified Vowels
Partcipant
1

Partcipant
2

Partcipant
3

/a/ 4(80%) 4(80%) 4(80%)
/i/ 5(100%) 4(80%) 4(80%)
/u/ 5(100%) 5(100%) 5(100%)
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els of single user without regard to the speaking speed
and style in different times for different languages. It
should be pointed that this method at this stage is
not being designed to provide the flexibility of regu-
lar conversation language, but for a limited dictionary
only,which is appropiate for simple voice control sys-
tems. The results furthermore suggest that such a
system is suitable and reliable for simple commands
for human computer interface when it is trained for
the user. This method has to be enhanced for large
set of data with many subjects in future.

6 Conclusion

This paper describes a silent vowel based speech iden-
tification approach that is based on measuring the
facial muscle contraction using non-invasive SEMG.
The experiments indicate that the system is easy to
train for a new user and is suitable for two languages
- English and German. Application of this include
e.g.,removal of any disambiguity caused by the acous-
tic noise for human computer interface or computer
based speech control and analysis. The presented in-
vestigation focused on classifying English and Ger-
man vowels, because pronunciation of vowels results
in stationary muscle contraction as compared to con-
sonants.The normalised integral RMS values of the
facial EMG signals are used for analysis, and classifi-
cation of these values is performed by ANN. The re-
sults indicate that the system is reliable when trained
for the individual user. The system has been tested
with a very small set of phonemes, where the system
has been successful. A broad variety of applications
could benefit from this technology: One possible ap-
plication for such a system is for disabled user to give
simple commands to a machine which is a good and
typical application of HCI. Future possibilities include
applications for telephony, defence problems and im-
provement of speech-based computer control in noisy
environments.
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Abstract 
Multi-camera environments allow constructing volumetric 
models of the scene to improve the analysis performance 
of computer vision algorithms (e.g. disambiguating 
occlusion). When representing volumetric results of 
image-based multi-camera analysis, a direct approach is 
to scan the 3D space with regular voxels. Regular 
voxelization is good at high spatial resolutions for 
applications such as volume visualization and rendering 
of synthetic scenes generated by geometric models, or to 
represent data resulting from direct 3D data capture (e.g. 
MRI). However, regular voxelization shows a number of 
drawbacks for visual scene analysis, where direct 
measurements on 3D voxels are not usually available. In 
this case, voxel values are computed rather as a result of 
the analysis on �projected� image data.  

In this paper, we first provide some statistics to show how 
voxels project to �unbalanced� sets of image data in 
common multi-view analysis settings. Then, we propose a 
3D geometry for multi-view scene analysis providing a 
better balance in terms of the number of pixels used to 
analyse each elementary volumetric unit. The proposed 
geometry is non-regular in 3D space, but becomes regular 
once projected onto camera images, adapting the 
sampling to the images. The aim is to better exploit multi-
view image data by balancing its usage across multiple 
cameras instead of focusing in regular sampling of 3D 
space, from which we do not have direct measurements. 
An efficient recursive algorithm using the proposed 
geometry is outlined. Experimental results reflect better 
balance and higher accuracy for multi-view analysis than 
regular voxelization with equivalent restrictions.. 

Keywords:  Multi-view analysis, volume voxelization, 
epipolar geometry. 
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1 Introduction 

The ever decreasing cost of acquisition devices and 
computing capabilities are making multi-camera settings 
increasingly common for visual analysis in controlled 
environments. Multi-view image analysis exploits 
similarity and disparity in images provided by multiple 
cameras observing the scene. This offers promising 
advantages compared to single camera analysis: 

• Multi-view analysis algorithms benefit from 3D cues. 
Non-redundant information extracted from multiple 
cameras disambiguates occlusions and augments the 
available visual information with projections from 
otherwise occluded parts of the scene 

• Multi-view image analysis may also yield additional 
robustness by redundant detection across views. 
Object tracking, face detection, gesture analysis, etc. 
exploit correspondences in the available views by 
checking the consistency of the analysed primitives 
(colour, salient points�) in the various projections 
of the actual 3D scene.  

An implicit or explicit auxiliary 3D representation in the 
form of a volumetric model of the scene is often used as a 
reference for inter-camera registration in multi-view 
analysis when camera calibration is available. One 
usually resorts to an ordered scanning of the 3D space 
(Cheung 2000, Kutulakos 2000), where volumetric units 
(or voxels) are equally sized cubes sequentially analysed 
from their projections in the multiple cameras.   

At high resolutions, with the working 3D space 
sampled at regularly spaced intervals in its orthogonal 
axes, regular voxelization (Kaufman 1993) is adequate 
for volume visualization, modelling and rendering of 
synthetic scenes. Voxelization is also the natural support 
for data from direct 3D measurements in medical imaging 
(CT, MRI, ultrasound), biology, geosciences, industry, 
etc. However, regular voxelization has a number of 
drawbacks for multi-view scene analysis. This is mainly 
due to the fact that measurements on 3D voxels are not 
directly available in multi-camera settings. Voxel features 
are computed rather as a result of the analysis from their 
projections in multiple views; i.e. the analysis takes place 
on �projected� or �image� data. The actual measurements 
available are the data sets of pixels belonging to the voxel 
projections in each view.  

The problem arises from the fact that the sampling 
geometry generated by the regular scanning of the 3D 
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space is distorted by the camera projection. Once 
projected onto the camera images, the sampling geometry 
becomes irregular, and the amount of data (pixels) from 
each view available for the analysis of each volumetric 
unit (voxel) depends on its distance to the camera and on 
the intrinsic camera parameters. Furthermore, voxel sizes 
(3D sampling parameters) are not dependent of image 
resolution and have to be carefully chosen considering the 
worst case (e.g. projections of two adjacent voxels should 
not overlap on the same pixel in most of the views). A 
better approach is to oversample the voxel array so that it 
can be guaranteed that each 3D sample is drawn from at 
least a single pixel (Broadhurst 2001).  

Figure 1 illustrates this problem. The projections 
(splats) of one voxel in two different views have varying 
sizes for cameras located at different distances (this is the 
usual case for most voxels in the analysed scene). For 
those views where the splat size is reduced to a few 
pixels, image data will hardly contribute significant 
information to the voxel being analysed. Symmetrically, 
two equally sized voxels project in a different number of 
pixels on the same camera if they are located at different 
distances/orientations in 3D space.  

 

 
Figure 1 : Two projections of the same voxel, as seen by a 

close camera (top) and by a far one (bottom) 

One way to overcome the dispersion in the image data 
for voxel analysis is to assign varying weights to the 
different views when analysing each voxel (Broadhurst 
2001). This might result in a certain lack of �balance� in 
data sets representing each elementary 3D unit across 
multiple views. Alternative approaches introduce space 
discretization which does not rely on regular voxels (Erol 
2005) or use hybrid techniques combining volumetric and 
surface-based approaches (Boyer 2003).  

In this paper we follow such alternative approaches 
and change to an irregular scanning strategy to construct 
the auxiliary 3D model of the scene under analysis. The 
resulting geometry is based on the epipolar constraint 
(Zhang 1998) and is proposed with the aim to better adapt 
3D scene analysis to the available image data. It provides 
a better �balance� for the analysis of volumetric 
elementary units from projected data. In addition, the new 
geometry naturally derives 3D sampling parameters from 
the original resolution of image data.  

The following section analyses regular voxelization 
and provides statistical values showing the dispersion in 
the data used to analyse each voxel. Sections 3 and 4 
define the proposed scanning geometry and outline a 
recursive algorithm to scan 3D space. Section 5 analyses 
statistics of the new geometry and Section 6 compares 
results obtained for an analysis technique to regular 
voxelization. Finally, advantages of the proposed method 
are discussed along with conclusions and future work. 

2 Statistics of Voxel Projection Size for 
Regular Voxelization in Multi-view Analysis 

We have analysed the problem of the dispersion in the 
available image data used to represent each voxel in a 
particular, albeit common, multi-view analysis situation. 
In our experiments, a Smart Room is equipped with 5 
fully calibrated cameras. Four cameras are placed on the 
room corners and the fifth one is mounted on the ceiling, 
providing a zenithal view of the scene.  

A regular sampling geometry with 3 cm sided cubic 
voxels is defined in the 3D working space of 4x5x2 m3. 
We have computed the statistics of the projection size (in 
pixels) for all voxels in the working space. The histogram 
of the voxel projection size is shown in Figure 2 for one 
of the corner cameras (cam1). Table 1 outlines minimum, 
maximum, mean and dispersion values of the voxel 
projection size for all cameras. 
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Figure 2 : Histogram of voxel projection size onto camera 1 for 

all 3x3x3 cm3 voxels in a 4x5x2 m3 working space 

 
 Min 

projection 
size 

Max 
projection 

size 

Mean  
projection 

size 

Standard 
deviation in 

proj. size 
Cam1 4 1797 60 67 
Cam2 4 1864 58 65 
Cam3 4 1650 59 66 
Cam4 4 2155 60 69 
Cam5 2 296 40 22 

Table 1 : Statistics of voxel projection size (in pixels) for 3 cm 
sided voxels in a 4x5x2 m3 working space 

The statistics of the voxel projection size show 
considerable dispersion: standard deviation is of the same 
order as the mean value. This situation is not favourable 
for multi-view analysis algorithms when looking for 
matching visual features in different views or when 
checking the consistency of the analysis across multiple 
projections of the actual 3D scene. The analysis algorithm 
will be using quite different amounts of image data 
(number of pixels projected in each view) for the analysis 
of an individual voxel in 3D space. This is due to the 
dispersion in the projection size of the uniform 
elementary unit employed in this geometry. 

Regular voxelization of 3D space is, therefore, �non-
adapted� to image data for multi-view analysis. At least 
in settings as common as a smart room with 5 evenly 
distributed cameras, voxels project to �unbalanced� sets of 
image data in each camera, from which analysis 
algorithms have to work out feature matches and 
consistency checks. As mentioned before, one way of 
adapting the analysis to the available image data would 
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be to avoid giving the same importance to the data set 
(projection) in each view. When the analysis algorithm 
has to make a decision on that voxel (e.g. whether it is 
foreground or background; surface or interior; skin, 
clothing or object�) it will have to take into account the 
amount of pixels in each view informing the analysis 
decision. This strategy depends on the analysis itself and 
does not solve the lack of �balance� of the data sets 
representing each voxel in the different views. The 
dispersion in the projection data sets is due to an arbitrary 
3D scanning geometry chosen to support analysis data. 

3 Proposed 3D Scanning Geometry 

An alternative strategy is �image-based� scanning of the 
3D scene. Matusik introduced the concept of �image-
based� visual hulls (Matusik 2000, Matusik 2001) to 
render an observed scene in real time from a virtual 
camera�s point of view without constructing an explicit 
auxiliary volumetric representation. He claims that the 
advantage of performing geometric computations based 
on epipolar geometry in image space is the elimination of 
resampling and quantization artefacts in volumetric 
approaches. However, his paper focuses on visualization 
and rendering applications rather than visual analysis and 
does not consider the effects of image sampling. We 
follow Matusik�s concept of �image-based� processing, 
but focussing on analysis applications. In particular, we 
propose an image-based recursive scanning algorithm for 
multi-view analysis, and derive the corresponding 
geometry in 3D space. This provides a volumetric 
representation for image data functionally equivalent to 
regular voxelization as volumetric data support for the 
analysis algorithms. The 3D scanning procedure is better 
adapted to the image data than regular voxelization, 
minimizing the dispersion in the amount of data used for 
the analysis of each voxel in the different views.  

The motivation behind the proposed approach is that 
it does not make much sense to scan the 3D space (from 
which we do not have direct measurements) with a 
regular geometry while this results in a non-regular 
geometry once projected on the camera images. The 
actual data we have available in multi-view scene 
analysis applications are visual measurements (pixel data) 
from the camera images, and we better base the scene 
analysis geometry on the available data unless there is a 
clear benefit from not doing so. The proposed procedure 
changes the usual multi-view analysis paradigm adapting 
the analysis strategy to the available image data. Instead 
of scanning 3D space with arbitrary regular voxels �from 
which we do not have direct data�, the proposed scanning 
is natural and regular on the camera images, which are 
divided in a regular way, and the 3D equivalents of such 
divisions generate the volumetric geometry.  

In the next subsections we introduce the basic tools 
defining a 3D geometry adapted to the images. First, we 
define the quadrant as an image region. Then, the cone is 
obtained as back-projection of the quadrant. The conexel 
�elementary volumetric unit for the proposed geometry� 
is obtained by intersection of cones. Finally, we outline a 
recursive algorithm for 3D space scanning in multi-
camera settings based on this geometry, which has proven 
useful for multi-view analysis techniques. 

3.1 Image regions: quadrants 

To avoid dispersion in the amount of image data from the 
different views used in the analysis of a volumetric unit, 
we divide camera images in quadrants. Quadrants are 
defined as regular square shaped, non-overlapping 
regions in the projected images. 3D space scanning will 
be defined based in the geometry generated by the 
quadrants, instead of using the voxel-based geometry.  

The expected behaviour of the proposed approach is 
that the data sets in every image will be balanced when 
scanning a 3D space region: their projections will always 
lie inside the selected quadrants. Furthermore, the 
subdivision of the images in quadrants can be made 
recursive, and the scanning algorithm described at the end 
of this section exploits this possibility. 

3.2 Back-projection of quadrants in 3D: cones 

The cone is the 3D back-projection of a 2D quadrant, also 
known as the projective extrusion of the 2D silhouette 
(Matusik 2000). To obtain the 3D back-projection of a 
quadrant in an image, we compute the back-projected ray 
of the four corners of the quadrant (Garcia 2005). Then, 
we compute the inequations of four planes by combining 
the four ray equations, so that the pixels in the quadrant 
are the projection of the inner volume enclosed by the 
four planes. The Center Of Projection (COP) of the 
camera is the main vertex of the cone, which results in a 
pyramidal shape without a basis.  

An illustration of two such cones computed from their 
corresponding quadrants is shown in Figure 3 for the 
actual settings of cameras 1 and 2 in our smart room. 

3.3 Intersection of two or more cones: conexels 

The elementary volumetric unit in our scanning geometry 
is called conexel 1. We define the conexel as the 3D 
intersection of back projected cones. The cones defining a 
conexel are generated by a selected quadrant in each 
available view. The procedure to obtain a conexel is: 

1. Select a quadrant for every available camera image 
2. Compute back-projected cones for the selected 

quadrants (a set of 4 inequations define each cone) 
3. Obtain volumetric intersection of computed  cones 

Figure 4 presents a 3D view of a conexel obtained as 
the intersection of the two cones shown in Figure 3, 
corresponding to quadrants (2,1) and (1,1) selected from 
the views in cameras 1 and 2, respectively. Clearly, the 
geometry of the conexel is that of a polyhedral visual hull 
and its 3D computation is perhaps not so straightforward. 
We will see that the defined geometry will be implicitly 
used in the proposed scanning algorithm and, unless an 
explicit volumetric representation with conexels is 
required, multi-view scene analysis algorithms do not 
need to compute the 3D conexels. Anyway, computing 
and rendering a 2D �view-dependent� representation of a 
polyhedral hull can be done efficiently (Matusik 2001). 

                                                           
1 Named after �cone element� in analogy with pixel from 
�picture element� and �voxel� from �volume element� 
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Cone corresponding to 
highlighted quadrant in 
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Camera 1 position Camera 2 position 

 
Figure 3 : Two cones (bottom) computed as projective 

extrusions of the two camera quadrants (highlighted at top). 
Room floor (colored square) included as visual reference 

 

 

Camera 1 Camera 2 

 
Figure 4 : Conexel (bottom) obtained as the intersection of two 

cones (top). Room floor is again included as reference 

4 Scanning Method 

For multi-view scene analysis purposes, the projection of 
a conexel in every camera can be computed in a fast way, 
without having to calculate its actual 3D geometry and 
project it on every camera image. This is accomplished 
using epipolar geometry. 

In particular, we compute equations of the epipolar 
lines corresponding to the corners of each quadrant in the 
other views using fundamental matrices (Hartley 2000). 
The equations of the epipolar lines are converted to 
inequations (Ma 2003) so that we can define two image 
regions in the current view for every cone generated by 
the quadrant in another view: pixels lying inside the cone 
projection and pixels lying outside. The area limited by 
the inequations generated by all epipolar lines defines the 
projection of the intersection of the cones generated by 
the quadrants from the other views in the current view 
(see Figure 5). Pixels inside the quadrant in the current 
view for the working camera are checked and only those 
also lying inside the projections of all cones are selected 
as belonging to the projection of the conexel on the 
current camera image. 

 

Conexel projection on 
camera 1 

Conexel projection on 
camera 2  

Figure 5 : In general, the reprojection of a conexel (dark grey) 
does not completely cover the generating quadrants (light grey). 

The innermost epipolar lines (corresponding to the corners of 
the quadrant in the other view) are shown in red for each view 

Please note that, when projecting the conexel obtained 
as the intersection of cones onto the camera images, the 
projections do not completely cover the quadrants which 
generated the conexel, as shown in Figure 5. As a 
consequence, when using the proposed geometry with the 
conexel as elementary scanning volume, there will still be 
some dispersion in the amount of image data used for the 
analysis of the volumetric unit in 3D space. Anyway, the 
dispersion is expected to be smaller than with regular 
voxelization. In fact, the number of pixels of the 
projection of the conexel in each camera view will range 
from 1 to the total number of pixels in the quadrant, with 
a dispersion range usually much smaller than the 
dispersion range for regular voxelization computed in 
section 2. We will present statistics to assess this 
statement in a quantitative manner in the results section, 
proving that the proposed image-based 3D geometry is 
better adapted to the image data, and provides a better 
balance in the sets of image data (pixels) characterizing 
the volumetric elementary unit across the available views.  

4.1 Recursive scanning and the m-tree 

The proposed scanning method based on quadrants can be 
implemented in a recursive 3D space scanning algorithm, 
allowing progressive scene analysis approaches. By 
performing a quad-tree decomposition on the projected 
2D image data, each quadrant can be subdivided in four 
sub-quadrants. The algorithm proceeds by dividing the 
resulting quadrant in sub-quadrants until some analysis 
condition is met (e.g. until a foreground or colour 
consistency check yields true). For each division, the 
result will be a new set of conexels, always included in 
the previous one. This strategy can be used to selectively 
enhance the resolution of 3D analysis only in the regions 
where needed �such as objects contours� without using 
the highest resolution in homogeneous space regions, 
where it is not necessary to subdivide further. Therefore, 
a progressive space analysis algorithm based on the 
proposed procedure may start the analysis at rough 
resolution levels using large quadrants (conexels) and 
progressively refine the analysis by recursive subdivision 
to scan at higher resolution only those quadrants 
(conexels) where needed, depending on the analysis 
results at the previous resolution level.  

Figure 6 illustrates the recursive subdivision and its 
representation in an m-tree. The m-tree (Lu 1996) has 
been chosen to store the progressive analysis results of 
the recursive scanning algorithm. Its implementation 
includes a set of functions which allow moving up, down 
and sideways in the tree structure.  
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Figure 6 : Progressive scanning of 3D space by recursive 

subdivision of quadrants and its representation in an m-tree 

4.2 Algorithm allowing 3D recursive scanning 
for progressive multi-view analysis  

As the number of cameras may vary, the proposed 
algorithm will loop depending on the number of cameras. 
A vector is defined to store the current quadrant under 
analysis for every camera and a variable stores the current 
camera in use. The main recursive algorithm to scan 3D 
space based on the geometry defined by the conexels 
works through the following steps: 

1. Set the current camera view to zero (first camera) 
and the chosen quadrant vector to all zeros. 

2. If the currently selected camera index is larger or 
equal to zero go to the next step; otherwise, finish. 

3. For each camera with smaller index than the one 
currently selected, select one quadrant and obtain 
their cone projections onto the currently selected 
camera view. Also obtain cone projections for the 
current quadrant in the currently selected camera 
onto the camera views with smaller index. If any of 
the cameras does not have any pixel belonging to 
the conexel projection, it means that no conexel 
exists for the current set of quadrants. In that case 
jump to step 6; otherwise, go to the next step. 

4. If the currently selected camera is the last one 
available (meaning that a conexel exists for the 
current set of quadrants), count the number of 
pixels of the conexel projection on every camera 
and, if different from zero, go to next step. In any 
other case, select next camera and jump to step 2. 

5. At this step any visual analysis function can be 
implemented requiring a multi-view consistency 
check on the projected pixels corresponding to the 
obtained conexel in 3D. In case that the consistency 
check needs a higher resolution, jump to step 7; 
otherwise, store the results in the m-tree and go to 
the next step. 

6. If the current quadrant in the current camera is not 
the last one, increment it. Otherwise, set it to 0, 
decrement the currently selected camera index and 
repeat this step while the current camera is larger or 
equal than zero. Finally jump to step 2. 

7. Subdivide each quadrant in smaller quadrants in 
every view, go down in the m-tree, call recursively 
this procedure and go up in the m-tree again2. Then 
jump to step 6. 

                                                           
2 The available quadrants in every camera are stored in 
the m-tree 

5 Statistics of Conexel Projection Sizes for the 
Proposed Scanning Geometry 

As stated before, an improvement of analysis results is 
expected due to the fact that the presented scanning 
approach is more natural to image data. In particular, the 
proposed geometry minimizes the dispersion in the 
number of pixels used for the analysis of the elementary 
volumes when projected onto the different camera views.  

As the projections of the conexel onto the camera 
images do not completely cover the quadrants, the 
projection size of the elementary volumetric unit of the 
proposed geometry is not constant. We have compared 
the distribution of the conexel projection size in the same 
3D working space with those of regular voxelization 
shown in section 2. In order to compare the statistics of 
the two geometries, we note that the average projection 
size for 3 cm sided voxels is 60 pixels for camera 1 (see 
Table 1). This value is in between the projection sizes of 
6x6 pixels and 12x12 pixels quadrants. This is why we 
show the distribution for these two cases in Figure 7.  
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Figure 7 : Histogram of voxel projection size for 3 cm sided 
voxels (blue line, same as Figure 2), quadrants of 6x6 pixels 

(green) and quadrants of 12x12 pixels (red) 

The distribution of the conexel projection size has 
completely changed its shape compared with regular 
voxelization. The range of possible values is restricted to 
the maximum quadrant size3 and dispersion values are 
reduced with respect to the regular case, but standard 
deviation is still of the order of the mean value of the 
distribution. 

6 Experimental Results 

In this section we provide an objective validation proving 
that the proposed geometry is better adapted to image 
data in terms of sampling accuracy. This will serve as a 
proof of concept aiming to quantitatively evaluate the 
extent to which the geometry based on conexels improves 
analysis applications in multi-camera settings. Then, we 
illustrate the progressive capabilities of the proposed 
multi-view scanning algorithm in a real application. 

The analysis application chosen for the experiments is 
3D foreground segmentation or Shape-from-Silhouette 
(Landabaso 2005), which has been designed for 3D 
object tracking in the smart room. 

                                                           
3 Note: For these measures, we assume that the recursive 
algorithm goes always down to the highest resolution 
(either 6x6 or 12x12 pixels) for all quadrants in all views. 
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In Shape from Silhouette applications input data 
(camera views) are binary images obtained as foreground 
segmentation masks by a 2D foreground extraction 
algorithm (Stauffer 2000) from the original camera views. 
In experiments with real image data, inaccuracies of 2D 
foreground extraction4 might prevent an exact 
quantitative evaluation of the performance of the 
proposed geometry. This is why we have first chosen the 
projections of an ideal object (a sphere) in order to have 
the ground truth available for quantitative comparison. 

6.1 Proof of concept: synthetic sphere 

For this proof of concept, we have generated 5 simple 
synthetic scenes. A sphere with a diameter of 1 meter is 
placed at 5 different positions in the working space of the 
smart room. As ground truth, we generate the images for 
the camera views by projecting with the actual intrinsic 
and extrinsic parameters of every camera. An example of 
one of these input projections is illustrated in Figure 8. 

 

 
Figure 8 : Input projection for camera 2 for the first of the 5 

generated scenes with a simple synthesized sphere. We will take 
this as ground truth because, contrary to real foreground scenes, 

it does not show noise effects, misses or false detections 

We compare the presented image-based scanning 
approach for 3D foreground segmentation algorithm with 
regular voxelization as the competing method. As before, 
the criteria for comparing results is using a voxel side 
that, in average, has a projection size in pixels on camera 
images equal to the number of pixels of the smallest 
quadrant used in the reconstruction. The formula 
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allows computing an equivalent voxel side from the 
number of pixels we want the voxel to be projected to. 
We approximate the average voxel projection size in 
pixels by the projection size of the central voxel in the 
sphere, and compute the α in the formula for all the 
scenes and for every camera. Then, an average of α is 
computed for every scene along all the available cameras.  

                                                           
4 like misses or false detections, and the presence of noise 
appearing as isolated or grouped foreground pixels  

 Equivalent voxel side for quadrants of 
Synthetic sphere        

scene num. (average α) 3x3 pixels 6x6 pixels 12x12 pixels 

Scene 1 (α=8.256) 1.04 cm 2.088 cm 4.176 cm 

Scene 2 (α=8.222) 1.05 cm 2.092 cm 4.185 cm 

Scene 3 (α=8.160) 1.05 cm 2.100 cm 4.201 cm 

Scene 4 (α=8.226) 1.05 cm 2.100 cm 4.184 cm 

Scene 5 (α=7.104)  1.03 cm  2.251 cm 4.502 cm 

Voxel side size taken: 1 cm 2 cm 4 cm 

Table 2 : Equivalent voxel size side for various quadrant sizes 

For quadrants of 3x3 pixels, the equivalent voxel side 
in all scenes is around 1.1 cm. So, to be in the safe side, 
we take 1 cm as the equivalent voxel side. This is done 
similarly for quadrants of 6x6 and 12x12 pixels, as shown 
in Table 2, resulting in equivalent voxel sides of 2 cm and 
3 cm respectively, with a slight advantage in resolution 
for regular voxelization in all cases. After performing the 
analysis with both methods, the 3D foreground volume 
reconstructed is projected back to all cameras.  

To evaluate the distortion in the projected image 
introduced by the sampling 3D geometry with respect to 
the original ground truth, we define the following metric:  

( ) ( )( , )
( )

area rec gt area rec gtdist rec gt
area gt

∪ − ∩
=  

that is, the distance is computed as number pixel 
differences among reconstructed projection and ground-
truth divided by the number of pixels of ground-truth. 
This distance function is computed for every available 
projection of the sphere.  

In the case of 3x3 pixel quadrants, Table 3 and 
Table 4 list the distance to ground truth for all 5 scenes 
and 5 cameras for regular voxelization and image-adapted  
scanning. Results are given in %, with a multiplicative 
factor of 100 to render them more easily readable. 

 
 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average

Cam1 7.40 7.28 7.65 7.57 7.46 7.47 

Cam2 7.25 7.46 7.62 7.74 7.34 7.48 

Cam3 7.68 7.63 7.46 7.24 7.52 7.51 

Cam4 7.62 7.65 7.39 7.49 7.35 7.50 

Cam5 7.31 7.46 7.35 7.38 7.47 7.39 

Average 7.45 7.50 7.49 7.48 7.43 7.47 

Table 3 : Distance to ground-truth for regular voxelization 
with 1 cm sided voxels 

 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average

Cam1 2.03 2.55 3.12 2.91 2.56 2.63 

Cam2 2.51 1.95 3.13 2.98 2.83 2.68 

Cam3 3.29 2.97 1.89 2.37 2.76 2.66 

Cam4 2.74 3.19 2.50 2.01 2.81 2.65 

Cam5 2.36 2.37 2.66 2.74 2.52 2.53 

Average 2.59 2.61 2.66 2.60 2.70 2.63 

Table 4 : Distance to ground-truth for image-adapted scanning 
with 3x3 pixel quadrants 
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Image-adapted scanning provides more accurate 
reconstruction. The averaged pixel differences (or errors) 
are about 35% of those obtained for regular voxelization 
with quadrants of size 3x3 pixels.  

To illustrate those results, Figure 9 shows pixel 
differences between the ground-truth image and the 
projection from the reconstructed 3D object for the third 
scene projected on camera 2 obtained with regular 
voxelization. Figure 10 is the equivalent result with 
image-adapted scanning with conexels. Please note how 
the dispersion in the amount of data used for analysis in 
regular voxelization causes larger false volumes to 
appear. 

 

 
Figure 9 : Pixel differences between the reconstruction with 
regular voxelization and ground-truth for the third scene on 

camera 2 (voxel side 1 cm) 

 

 
Figure 10 : Pixel differences between the reconstruction with 

image-adapted scanning and ground-truth for the third scene on 
camera 2 (3x3 pixels quadrants)  

 
The cases of 6x6 and 12x12 pixel quadrants yield 

similar results. We have just provided the averaged 
metrics per scene for two pairs of equivalent cases in 
Table 5 and Table 6 for regular voxelization and image-
adapted scanning. Please observe that, at these lower 
resolutions, image-adapted scanning still provides more 
accurate reconstruction. Pixel differences are now about 
50% of regular voxelization. Figure 11 through Figure 14 
show pixel differences between ground-truth and 
projection of the reconstructed sphere for regular and 
image-adapted scanning for the cases of 2 cm and 4 cm 
sided voxels, and the equivalent cases of 6x6 pixels and 
12x12 pixels quadrants. 

 

All cameras  Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average
Regular with 
2 cm sided 
voxels 

13.23 13.13 13.12 13.11 13.03 13.12 

Image 
adapted with 
6x6 pixels 
quadrants 

6.31 6.68 6.31 6.47 6.86 6.53 

Table 5 : Distance to ground-truth for regular voxelization 
with 2 cm sided voxels and image-adapted scanning with 

(equivalent) 6x6 pixels quadrants 

 
All cameras  Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average
Regular with 
4 cm sided 
voxels 

24.21 24.22 24.12 24.18 24.03 24.15 

Image 
adapted with 
12x12 pixels 
quadrants 

14.34 14.43 13.17 13.98 14.66 14.11 

Table 6 : Distance to ground-truth for regular voxelization 
with 4 cm sided voxels and image-adapted scanning with 

(equivalent) 12x12 pixels quadrants 

 
 

 
Figure 11 : Pixel differences for the reconstruction with regular 

voxelization (voxel side 2 cm) 

 

 
Figure 12 : Pixel differences for the reconstruction with image-

adapted scanning (6x6 pixels quadrants) 
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Figure 13 : Pixel differences for the reconstruction with regular 

voxelization (voxel side 4 cm) 

 

 
Figure 14 : Pixel differences for the reconstruction with image-

adapted scanning (12x12 pixel quadrants) 

6.2 Real SfS application 

The proof of concept provided above for the 
reconstruction of a synthetic sphere from its silhouette 
projections has shown quantitative improvements for the 
image-based scanning method. We now show qualitative 
results for the proposed 3D scanning geometry with 
actual images from our smart room, in a real application 
of the Shape-from-Silhouette multi-view analysis 
algorithm. In addition, we illustrate the progressive 
performance of the multi-view scanning algorithm 
introduced in section 4.2 in 3D foreground segmentation 
for object tracking (Landabaso 2005). 

Figure 15 and Figure 16 show the re-projected masks 
obtained as result of �progressive� Shape-from-silhouette 
reconstruction by checking foreground consistency in 5 
cameras with increasing resolutions in quadrants sizes. 
Please note that we start at the lowest resolution with only 
4x3=12 quadrants of 192x192 pixels each. We apply the 
consistency check in all views for each conexel, as 
proposed in the Shape-from-Silhouette technique 
(Landabaso 2005), to see whether the given conexel is all 
background, all foreground or mixed. Only in the later 
case when the conexel is partly foreground and partly 
background, we continue the recursion at lower resolution 
by subdividing the quadrant to the next resolution step. 
As soon as a conexel is detected as uniform (either all 
foreground or all background), the progressive analysis 
stops. In these settings, most conexels are only 

background and this efficiently saves further consistency 
analysis for such �uniform� conexels. 

 Figure 17 shows the results of a different progression 
of the 3D scanning algorithm also for Shape-from-
silhouette reconstruction. In this case, we increase the 
number of cameras, starting from an initial reconstruction 
with 2 cameras and then adding the rest one by one. Of 
course, the two dimensions of progressive analysis 
(increasing resolution, increasing number of cameras) can 
be combined at will. The m-tree data structure has proven 
to be a valuable tool to store the data in progressive 
analysis strategies.  

7 Conclusions and Future Work 

We have presented an image-based multi-view analysis 
approach using a 3D space scanning geometry which is 
adapted to the images. Instead of exploring 3D space 
(from which we do not have direct measurements, but 
only projections) with regular geometry, the proposed 
scanning procedure defines a geometry based on image 
quadrants. The geometry builds on the concepts of image 
quadrant, its volumetric extrusion (the cone) and the 
intersection of two cones (the conexel). This strategy 
adapts the multi-view analysis to the available data 
(pixels in camera images), improving the accuracy of the 
analysis from the multiple views. Contrary to the 
arbitrary choice of a voxel size in regular voxelization, 
the sampling geometry in 3D is naturally derived from 
the resolution of the camera images. Furthermore, 
volumetric scanning can be progressively refined as the 
analysis proceeds. 

The results obtained show less dispersion in the data 
sets from the multiple views used to inform analysis 
decisions for each elementary volumetric unit. As a 
drawback, we must remark that dispersion in the amount 
of data used in analysis has not been completely 
cancelled, but it is more controlled than with regular 
voxelization techniques. The results also show increased 
spatial accuracy when compared with regular 
voxelization. This is the expected behaviour because of 
the balanced usage of the directly measured data. With 
the proposed geometry, we do not have to select a voxel 
size for the working space depending on the smallest 
splat in the projection of the elementary voxels. The size 
of the elementary volumetric unit is a consequence of the 
analysis of image-data (the smallest quadrant). 

Furthermore, a recursive algorithm based on the 
proposed 3D scanning geometry has been described. An 
interesting feature of the proposed algorithm is its 
capability for progressive analysis, either by adaptively 
increasing spatial resolution (subdividing quadrants from 
larger to smaller sizes when needed), or by adding new 
cameras to the analysis as their views are made available. 

The main directions for future improvements must 
focus in the study of the connectivity of neighbouring 
conexels, and in how to use connectivity to remove inner 
conexels from analysis results in case of need. Another 
line of study is the set of situations in which conexels are 
defined from a smaller number of cameras to deal with 
cases where a conexel is only visible in a subset of all the 
available cameras. 
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Figure 15 : Results of progressive Shape-from-silhouette 

reconstruction by checking foreground consistency in 5 cameras 
with increasing resolutions in quadrants sizes. From top to 

bottom: 192x192, 96x96, 48x48 and 24x24 pixels per quadrant 
(continued in Figure 16) 

 

 
 

 
 

 
 

 
Figure 16 : (continued from Figure 15) Results of progressive 
Shape-from-silhouette reconstruction by checking foreground 

consistency in 5 cameras with increasing resolutions in 
quadrants sizes. From top to bottom: 12x12, 6x6 and 3x3 pixels 

per quadrant. The last image is the original image with its 
original lens distortion (corrected in a pre-processing step).  
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Figure 17 : Results of progressive Shape-from-silhouette 

reconstruction with increasing number of cameras. From top to 
bottom: projection of the 3D reconstruction with 2, 3, 4 and 5 

cameras. Bottom image: original (noisy) 2D foreground. 
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Abstract

This paper is concerned with feature evaluation for
content-based image retrieval. Here we concentrate our at-
tention on the evaluation of image features amongst three
alternatives, namely the Harris corners, the maximally sta-
ble extremal regions and the scale invariant feature trans-
form. To evaluate these image features in a content-based
image retrieval setting, we have used the KD-tree algo-
rithm. We use the KD-tree algorithm to match those fea-
tures corresponding to the query image with those recov-
ered from the images in the data set under study. With the
matches at hand, we use a nearest neighbour approach to
threshold the Euclidean distances between pairs of cor-
responding features. In this way, the retrieval is such
that those features whose pairwise distances are small,
“vote” for a retrieval candidate in the data-set. This voting
scheme allows us to arrange the images in the data set in
order of relevance and permits the recovery of measures
of performance for each of the three alternatives. In our
experiments, we focus in the evaluation of the effects of
scaling and rotation in the retrieval performance.

1 Introduction

The contents-based retrieval in image databases is a daunt-
ing and often costly task. As in a traditional database, the
image must be described in order to be incorporated to the
database and form part of the index. The engine of the
database uses the index to quick-search the most probable
candidates and then, making use of a similarity measure,
retrieves the candidate images in order of relevance.

Image retrieval has been a long standing problem in
computer vision and pattern recognition and early sur-
veys can be tracked back to the mid-eighties (Tamura &
Yokoya 1984). Nonetheless, one of the first attempts to
cast the problem of retrieving images from a database as
a task based upon content was that introduced in (Sclaroff
& Pentland 1993). Here, Sclaroff and Pentland presented
a method in which the user is allowed to provide a search
model, such as a sketch or example image so as to per-
form a query whose output is a set of thumbnails ordered
by relevance. In their model, the concept of “relevance”
implies similarity, which is modeled as a continuous value
between zero and unity. This measure is often modeled as

∗National ICT Australia is funded by the Australian Governments Back-
ing Australia’s Ability initiative, in part through the Australian Research
Council.
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Figure 1: Diagram of our voting score recovery scheme.

a metric based on image features such as colours, corners,
edges, etc.

Following this trend, automatic image database sys-
tems use elementary features in the image to index and
retrieve the candidates from the database. For instance,
QBIC (Niblack et al. 1993) allows images to be retrieved
using shape, colour and texture. FourEyes (Picard 1995)
employs a high-level image feature processing scheme to
modify the structure of the database and the retrieval pa-
rameters. Photobook (Pentland, Picard & Sclaroff 1994) is
a collection of tools to search and organise image datasets.
SQUID (Shape Queries Using Image Databases) (Farzin
& Kittler 1996) uses a scale space representation of shape
so as to accomplish queries based upon contour similarity.

The main argument levelled against these systems con-
cerns their lack of robustness to rotation and occlusion.
Also, they often require a human expert to determine the
parameters of the search criteria. As a result, retrieval
methods vary greatly from one application to another and
currently available image database systems make use of
a hash or index to retrieve the images. Furthermore, the
results of the query operation and the performance of re-
trieval applications rely heavily on an appropriate selec-
tion of the image features used to characterise the images
under study.

As a result, recently, there has been an increasing in-
terest in the evaluation of image features and descrip-
tors computed from interest points on the image. For
instance, Caneiro and Jepson (Caneiro & Jepson 2002)
have used Receiver Operating Characteristics (ROC) to
compare test query descriptors against a library of refer-
ence computed from a separate dataset. Mikolajczyk and
Schmid (Mikolajczyk & Schmid 2005) have evaluated a
number of local descriptors in the context of matching
and recognition. Mikolajczyket al. (Mikolajczyk, Tuyte-
laars, Schmid, Zisserman, Matas, Schaffalitzky, Kadir &
Gool n.d.) have taken this analysis further and evaluated
local descriptors subject to affine transformations. In a se-
ries of related developments, Randen and Husoy (Randen
& Husoy 1999) and Varma and Zisserman (Varma &
Zisserman. 2003) have compared different local image de-
scriptors, also known as filters, for texture classification.
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Figure 2: Sample views for the objects in the Columbia University COIL database.

2 Image Feature Evaluation and Contents-based Im-
age Retrieval

In contrast with other studies elsewhere in the literature,
here we compare the performance of local descriptors for
purposes of contents-based image retrieval. Rather than
evaluating the capabilities of the image features to de-
scribe the scene subject to affine transformations, we fo-
cus on the adequacy of the local descriptors for contents-
based image retrieval and compare them using the same
evaluation criteria and experimental vehicle. To this end,
we have selected three alternatives which have previously
shown a good performance in such a context and evalu-
ate the retrieval rate under viewpoint rotation and image
scaling.

As mentioned earlier, in this paper we aim to evaluate
the adequacy for content-based image retrieval of three
feature recovery methods. These are the Harris corner
detector (Harris & Stephens 1988), the Maximally Sta-
ble Extremal Regions (MSERs) (Matas, Chum, Martin &
Pajdla 2002) and the Scale Invariant Feature Transform
(SIFT) (Lowe 2004). Thus, we have divided the section
into two parts. The first of these concerns an overview
of the local image descriptors used as alternatives for the
recognition process. The second of these introduces the
retrieval scheme used for purposes of the evaluation pre-
sented in this paper.

2.1 Retrieval Process

Having provided an overview of the image features to
be evaluated, we now present the image retrieval scheme
used throughout the paper for the purposes of evaluat-
ing the suitability of the local descriptors above for pur-
poses of content-based image retrieval. The diagramatic
representation of our retrieval scheme is shown in Fig-
ure 1. Our method recovers, at input, the features for
both, the images in the database and the query image.
With the image features at hand, we recover the corre-
spondences between features in both, the query and each
of the data images making use of the KD-tree algorithm
(Bentley 1975). These correspondences are an equiva-
lence relation which we use to recover a score that depicts
the similarity between the query and the data images. This
score is based upon the Euclidean distances between pairs
of corresponding features.

Being more formal, consider the query imageIQ
and the data imageID whose respective feature sets are
ΩQ = {ωQ(1), ωQ(2), . . . , ω( | Ω |)} and ΩD =
{ωD(1), ωD(2), . . . , ωD(| Ω |)}, whereωQ(i) andωD(i)
are theith feature vectors for the model and the data
images. If there is a match between the feature vec-
tors ωQ(i) andωD(j), their squared Euclidean distance
r(ωQ(i), ωD(j)) can be used to recover the score

β =
| Γ |

max{| ΩQ |, | ΩD |} (1)

whereΓ is the set of feature vectors recovered from the
data imageID whose pairwise distances with respect to

their matching query-image features are below a given
thresholdε, i.e. ωD(i) ∈ Γ ⇐⇒ r(ωQ(i), ωD(j)) ≤ ε.

As a result, ifβ = 1, the feature vectors recovered
from the query image are all sufficiently “close” to the
features in the data image. Furthermore, the number of
features for the query and data images must be equal, i.e.
| ΩQ |=| ΩD |. On the other hand, ifβ tends to zero, then
the number of feature vectors in the query image which
are far apart from those features in the data image to which
they have been matched is large. Hence,β is a normalised
“voting” score which can be viewed as a similarity mea-
sure between the query and the data image.

Furthermore,β captures the similarity between images
based upon their features. Thus, the retrieval is based upon
the image “contents”. To construct the feature vectors
ωQ(i) andωD(i) we have considered the nature of each
of the three alternatives evaluated here. Furthermore, by
construction, the feature vectors are a set of parameters
that describe the feature under study. For instance, recall
that the Harris Corner detector finds specific corners on
objects and features within a grey scaled image. It does
this by taking an image and convolving it with a Sobel
gradient filter to produce gradient maps, which are then
used to compute the locally averaged moment matrix. It
then combines the eigenvalues of the moment matrix to
compute a “corner strength”, of which maximum values
indicate the corner positions. Thus, in our experiments,
our feature vector corresponds to the x and y coordinates
on the image plane for the detected corners.

In the case of the MSERs, the algorithm operates on a
grey-scale image by finding the regions that are maximally
stable with respect to changes in pixel intensities. With the
MSERs at hand, we fit an ellipse to each of the recovered
regions making use of the algorithm of Fitzgibbon, Pilu
and Fisher (Fitzgibbon, Pilu & Fisher 1999), which fits
ellipses to the recovered MSERs so as to minimise the sum
of squared algebraic distances. Thus, for the MSERs, our
feature vector is a five-dimensional one comprised by the
centroid coordinates, orientation and major and minor axis
lengths of the ellipse fitted to each of the maximally stable
regions.

In contrast with the Harris corners and MSERs, where
the feature vector is based upon the geometric interpre-
tation of the aim of computation of the feature recov-
ery method, in the case of the SIFT, we make use of
the 128-element descriptor yield by the method of Lowe
(Lowe 2004). The SIFT recovers and characterises points
invariant to scaling making use of a four-stage cascading
filter approach which commences with a scale-space ex-
trema detection. This first step consists of a difference-
of-Gaussians, which is used to identify potential interest
points. Keypoint localisation is then used to eliminate pre-
viously calculated keypoints that, either have low contrast
or are not localised on an edge. After recovering keypoint
orientations, local gradient data is used to construct a de-
scriptor for each of the recovered keypoints.

3 Results

As mentioned earlier, our aim here is the evaluation of the
three feature descriptors above for purposes of contents-
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Figure 3: Retrieval results for the three alternatives of image feature vectors and four different values of the scaling factorϕ.

based image retrieval. Thus, in this section, we assess
the quality of the retrieval results using, as an experimen-
tal vehicle, the Columbia University COIL-20 and an in-
house acquired database of urban scenes. To evaluate the
effect of scaling on the image retrieval operation perfor-
mance, we have performed experiments with four image-
scalesϕ, which correspond to 25%, 50%, 75% and 100%
of the image size, i.e.ϕ = {0.25, 0.50, 0.75, 1}. For each
of the views, our feature set is comprised by the feature
vectors recovered by each of the three alternatives under
study.

3.1 Columbia University COIL-20 Database

The COIL-20 database contains 72 views for 20 objects
acquired by rotating the object under study about the ver-
tical axis. The scaling of the views and this rotation ac-
count for the affine transformations mentioned earlier. In
Figure 2, we show sample views for each of the objects in
the database.

For our feature-based image retrieval experiments, we
have removed 10 out of the 72 views for each object, i.e.
every other seven views. These views are our query im-
ages. The views in the database constitute our data set, i.e.

20×62 views. For each of our query views, we retrieve the
four images from the data set which amount to the highest
values of the voting scoreβ. Ideally, these scheme should
select the four “data” views indexed immediately before
and after the “query” view. In other words, the correct
retrieval results for the “query” view indexedi are those
views indexedi − 2, i − 1, i + 1 andi + 2. This scheme
allows us to use the number of correctly recovered views
as a measure of the accuracy of the matching algorithm
and, hence, lends itself naturally to the performance as-
sessment task in hand.

In Figure 3, we show, for each scale and image feature
alternative, i.e. Harris corners, MSERs and SIFT descrip-
tors, the mean retrieval rate as a function of object index.
We also indicate, using error bars, the standard error for
the ten query images per object. In the plots, we have
used the indexing provided in Figure 2.

3.2 Urban-scene Database

Having presented evaluation results on the COIL-20
database, we now turn our attention to a more challenging
setting. This is provided by a database of urban scenes.
This database contains 110 views for 10 scenes acquired
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Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Scene 6 Scene 7 Scene 8 Scene 9 Scene 10

Figure 4: Sample views for the scenes in our database.
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Figure 5: Retrieval results for the three alternatives of image feature vectors and four different values of the scaling factorϕ.

by rotating the camera about its vertical axis from0o to
66o degrees in steps of6o, i.e. 11 views per scene. This
viewpoint rotation, in conjunction with the scaling opera-
tions on the imagery, accounts for the affine transforma-
tions of the scene under study. In Figure 4, we show sam-
ple views for each of the scenes in the database.

For our feature-based image retrieval experiments, we

have followed an akin approach to that employed on the
COIL-20 database. At this point, it is worth noting that,
since our images a true-colour ones, we have converted
them into gray-scale. After performing this conversion as
a preprocessing step, we have removed 3 out of the 11
views for each object. This amounts to one every other
three views. We use the excised views as query images,
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whereas the remaining80 images in the database consti-
tutes our data set. As done previously, we retrieve the
four images from the data set which amount to the highest
values of the voting scoreβ for each of the query views.
Again, the correct retrieval results for the “query” images
are those immediately before and after the view of refer-
ence. This scheme, being consistent with the one used to
assess the performance of the image retrieval results on
the COIL database, not only permits the direct association
of the number of correctly recovered views to the accuracy
measures computed from our experiments, but allows a di-
rect comparison between the datasets used in both parts of
our quantitative study.

In Figure 5, we repeat the sequence in Figure 3 for
our urban-scene database. The plots show the mean and
standard deviation for the retrieval rates as a function of
object index and image-scaleϕ. In the plots, we have used
the indexing provided in Figure 4.

3.3 Discussion

From the plots, we can conclude that the best perfor-
mance, in terms of mean retrieval rate is given by the
Harris corners. This is regardless of the scaling factor
ϕ. Despite providing a margin of improvement in terms
of performance with respect to the alternatives, the stan-
dard error for the Harris corners is the largest, as it is the
variation in mean retrieval rate between scales. It is also
worth noting that the SIFT is scale invariant, as claimed in
(Lowe 2004). Thus, for the SIFT, the retrieval rate vari-
ation is small between scales, the retrieval rate itself is
the lowest of the three alternatives. This may be due to
the fact that the SIFT can be affected by viewpoint rota-
tions. Finally, the MSERs show a sensitivity to scale and
rotation which delivers a mean retrieval rate and standard
error which are half-way between the Harris corners and
the SIFT. This is in accordance with the stability assump-
tion on the regions recovered by the algorithm in (Matas
et al. 2002).

4 Conclusions

In this paper, we have presented an evaluation of three lo-
cal image descriptors for purposes of contents-based im-
age retrieval. In our experiments, we have accounted for
the effects of rotation and scaling transformations on the
retrieval rate and the standard error. Despite the evaluation
presented here is not exhaustive, our experimental setting
is quite general and can be easily extended to other de-
scriptors elsewhere in the literature. Furthermore, the KD-
Tree algorithm used here may be substituted with other re-
lational matching algorithms for purposes of further com-
parison and evaluation.
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Abstract 
A first step in developing and testing a robust affective 
multimodal system is to obtain or access data 
representing human multimodal expressive behaviour. 
Collected affect data has to be further annotated in order 
to become usable for the automated systems. Most of the 
existing studies of emotion or affect annotation are 
monomodal. Instead, in this paper, we explore how 
independent human observers annotate affect display 
from monomodal face data compared to bimodal face-
and-body data. To this aim we collected visual affect 
data by recording the face and face-and-body 
simultaneously. We then conducted a survey by asking 
human observers to view and label the face and face-and-
body recordings separately. The results obtained show 
that in general, viewing face-and-body simultaneously 
helps with resolving the ambiguity in annotating 
emotional behaviours.. 

Keywords:  Affective face-and-body display, bimodal 
affect annotation, expressivity evaluation. 

1 Introduction 
Affective computing aims to equip computing devices 
with the means to interpret and understand human 
emotions, moods, and possibly intentions without the 
user's conscious or intentional input of information—
similar to the way that humans rely on their senses to 
assess each other's state of mind. Building systems that 
detect, understand, and respond to human emotions 
could make user experiences more efficient and amiable, 
customize experiences and optimize computer-learning 
applications.  

Over the past 15 years, computer scientists have 
explored various methodologies to automate the process 
of emotion/affective state recognition. One major present 
limitation of affective computing is that most of the past 
research has focused on emotion recognition from one 
single sensorial source, or modality: the face (Pantic et 
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al., 2005). Relatively few works have focused on 
implementing emotion recognition systems using 
affective multimodal data (i.e. affective data from 
multiple channels/sensors/modalities). While it is true 
that the face is the main display of a human's affective 
state, other sources can improve the recognition 
accuracy. Emotion recognition via body movements and 
gestures has recently started attracting the attention of 
computer science and human-computer interaction (HCI) 
communities (Hudlicka, 2003). The interest is growing 
with works similar to these presented in (Balomenos et 
al., 2003), (Burgoon et al., 2005), (Gunes and Piccardi, 
2005), (Kapoor and Picard, 2005) and (Martin et al., 
2005).  

A first step in developing and testing a robust 
affective multimodal system is to obtain or access data 
representing human multimodal expressive behaviour. 
The creation or collection of such data requires a major 
effort in the definition of representative behaviours, the 
choice of expressive modalities, and the labelling of 
large amount of data. At present publicly-available 
databases exist mainly for single expressive modalities 
such as facial expressions, static and dynamic hand 
postures, and dynamic hand gestures (Gunes and 
Piccardi, 2006b). Only recently, a first bimodal affect 
database consisting of expressive face and face-and-
body display has been released (Gunes and Piccardi, 
2006a).  

Besides acquisition, another equally challenging 
procedure is their annotation. Multimodal data have to 
be annotated in order to become usable for the 
automated systems.  

Most of the experimental research that studied 
emotional behaviours or affective data collection 
focused only on single modalities, either facial 
expression or body movement. In other words, the 
amount of information separate channels carry for 
recognition of emotions has been researched separately 
(explained in detail in Related Work section). There also 
exist several studies that involve multimodal annotation 
specific to emotions. However, none of the studies 
dealing with multimodal annotation specific to emotion 
compared how independent human observers’ annotation 
is affected when they are exposed to a single modality 
versus multiple modalities occurring together. Therefore, 
in this paper, we conduct a study on whether seeing 
emotional displays from the face camera alone or from 
the face-and-body camera affects the independent 
observers’ annotations of emotion. Our investigation 
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focuses on evaluating monomodal versus bimodal posed 
affective data. Our aim is to use the annotations and 
results obtained from this study to train an automated 
system to support unassisted recognition of emotional 
states. However, creating, training and testing and 
affective multimodal system is not the focus of this 
paper. 

2 Related Work 

2.1 Emotion Research 

In general, when annotating affect data two major 
studies from emotion research are used: Ekman’s theory 
of emotion universality (Ekman, 2003) and Russell’s 
theory of arousal and valence (Russell, 1980).  

Ekman conducted various experiments on human 
judgement on still photographs of posed facial behaviour 
and concluded that seven basic emotions can be 
recognized universally, namely, neutral, happiness, 
sadness, surprise, fear, anger and disgust (Ekman, 2003). 
Several other emotions and many combinations of 
emotions have been studied but it remains unconfirmed 
whether they are universally distinguishable.  

Other emotion researchers took the dimensional 
approach and viewed affective states not independent of 
one another; rather, related to one another in a 
systematic manner (Russell, 1980). Russell argued that 
emotion is best characterized in terms of a small number 
of latent dimensions, rather than in a small number of 
discrete emotion categories. Russell proposed that each 
of the basic emotions is a bipolar entity as part of the 
same emotional continuum. The proposed polarities are 
arousal (relaxed vs. aroused) and valence (pleasant vs. 
unpleasant). The model is illustrated in Figure 1. 

 

 
Figure 1.  Illustration of Russell’s circumflex model. 

2.2 Affective multimodal data collection 
All of the publicly available facial expression or body 
gesture databases collected data by instructing the 
subjects on how to perform the desired actions (please 
see (Gunes and Piccardi, 2006b) for an extensive review 
of publicly available visual affect databases). 

2.3 Affective multimodal data annotation 
Hereby, we review studies that deal with human 
annotation of non-verbal emotional behaviour. This 
review is intended to be illustrative rather than 
exhaustive. We do not review studies on human labelling 
and recognition of emotions from face expressions, as 

they have been extensively reviewed by Ekman (Ekman, 
1982; Ekman, 2003).  

In (DeMeijer, 1991), the authors studied the 
attribution of aggression and grief to body movements. 
Three parameters in particular were investigated: sex of 
the mover, sex of the perceiver, and expressiveness of 
the movement. Videos of 96 different body movements 
from students of expressive dance were shown to 42 
adults. The results showed that the observers used seven 
dimensions for describing movements: trunk movement 
(stretching, bowing), arm movement (opening, closing), 
vertical direction (upward, downward), sagittal direction 
(forward, backward), force (strong-light), velocity (fast-
slow), directness (moving straight towards the end-
position versus following a lingering, s-shaped 
pathway). The results of this study revealed that form 
and motion are relevant factors when decoding emotions 
from body movement.  

In another study on bodily expression of emotion, 
Wallbott recorded acted body movements for basic 
emotions (Wallbott, 1998).  Twelve drama students were 
then asked to code body movement and posture 
performed by actors. The results revealed that the 
following factors appeared to be significant in the coding 
procedure: position of face-and-body, position of 
shoulders, position of head, position of arms, position of 
hands, movement quality (movement activity, spatial 
expansion, movement dynamics, energy, and power); 
body movements (jerky and active), body posture. 

In (Montepare et al., 1999), the authors conducted an 
experiment on the use of body movements and gestures 
as cues to emotions in younger and older adults. They 
first recorded actors doing various body movements. In 
order to draw the attention of the human observers to the 
expression of emotions via body cues, the authors 
electronically blurred the faces and did not record sound. 
In the first part of the experiments, the observers were 
asked to identify the emotions displayed by young adult 
actors.  In the second part of the experiment, the 
observers were asked to rate the actors’ displays using 
characteristics of movement quality (form, tempo, force, 
and direction) rated on a 7-point scale and verbal 
descriptors (smooth / jerky, stiff / loose, soft / hard, slow 
/ fast, expanded / contracted, and no action / a lot of 
action). Overall, observers evaluated age, gender and 
race; hand position; gait; variations in movement form, 
tempo, and direction; and movement quality from actors’ 
body movements. The ratings of both younger and older 
groups had high agreement when linking particular body 
cues to emotions.  

Coulson presented experimental results on attribution 
of six emotions (anger, disgust, fear, happiness, sadness 
and surprise) to static body postures by using computer-
generated figures (Coulson, 2004). He found out that in 
general, human recognition of emotion from posture is 
comparable to recognition from the voice, and some 
postures are recognized as well as facial expressions.  

All of the aforementioned studies focused on 
individual modalities such as facial expression or body 
movement; therefore, in this paper we focus on bimodal 
data. 

There exist several studies that involve multimodal 
annotation specific to emotions. The Belfast naturalistic 
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database contains emotional interviews annotated with 
continuous dimensions (Douglas-Cowie et al., 2003). In 
(Allwood et al., 2004) authors designed a coding scheme 
for the annotation of 3 videos of TV interviews. Facial 
displays, gestures, and speech were coded using the 
following parameters: form of the expression and of its 
semantic-pragmatic function (e.g. turn managing) and 
the relation between modalities: repetition, addition, 
substitution, contradiction. (Martin et al., 2005) also 
designed a coding scheme for annotating multimodal 
behaviours during real life mixed emotions. They first 
collected emotionally rich TV interviews. Then they 
focused on the annotation of emotion specific behaviours 
in speech, head and torso movements, facial expressions, 
gaze, and hand gestures. They grounded their coding 
scheme on the following parameters: the expressivity of 
movements, the number of annotations in each modality, 
their temporal features (duration, alternation, repetition, 
and structural descriptions of gestures), the directions of 
movements and the functional description of relevant 
gestures.  

The materials collected by (Martin et al., 2005) are 
useful multimodal data for research in affective 
multimodal HCI. However, as annotation in itself is 
challenging and ambiguous, we believe that the 
annotation should be done more systematically than just 
one observer. Moreover, the annotation in (Martin et al., 
2005) focused more on actions and expressions rather 
than emotions.  

Therefore, in this paper, we explore whether seeing 
emotional displays from the face camera alone or from 
the face-and-body camera affects the independent 
observers’ annotations of emotion. 

3 Study 
In this study we are seeking answers to the following 
research questions. 
• How do humans perceive emotions from face 

modality alone compared to the combination of face-
and-body modalities that occur simultaneously? 

• Does being exposed to the expressions from one 
sensor (face camera only) or from multiple sensors 
simultaneously (viewing face-and-body combined) 
affect the observers’ interpretations and therefore, 
labelling differ (monomodal vs. bimodal)? 

• Does the use of multiple modalities help simplify the 
human affect recognition or on the contrary makes it 
more complicated? Does it help with resolving 
ambiguity or the addition of another modality 
increases ambiguity?  

3.1 The data set 
The data set we used for this study consists of recordings 
of combined face and body expressions. According to 
five factors that were defined by Picard in (Picard et al., 
2001) as influencing the affective data collection, the 
data we collected are: posed, obtained in laboratory 
settings, with an emphasis on expression rather than 
feelings, openly recorded and obtained with an emotion 
purpose. This is consistent with the characteristics of 
most of the available face and body gesture databases 
(Gunes and Piccardi, 2006b). 

We recorded the video sequences simultaneously 
using two fixed cameras with a simple setup and uniform 
background. One camera was placed to specifically 
capture the face only and the second camera was placed 
in order to capture face-and-body movement from the 
waist above. Prior to recordings subjects were instructed 
to take a neutral position, facing the camera and looking 
straight to it with hands visible and placed on the table.  
The subjects were asked to perform face and body 
gestures simultaneously by looking at the facial camera 
constantly. The recordings were obtained by using a 
scenario approach that was also used in previous 
emotion research (e.g. Wallbott and Scherer, 1986). In 
this approach, subjects are provided with situation 
vignettes or short scenarios describing an emotion 
eliciting situation. They are instructed to imagine these 
situations and act out as if they were in such a situation. 
In our case the subjects were asked what they would do 
when “it was just announced that they won the biggest 
prize in lottery” or “the lecture is the most boring one 
and they can’t listen to it anymore” etc. In some cases 
the subjects came up with a variety of combinations of 
face and body gestures. As a result of the feedback and 
suggestions obtained from the subjects, the number and 
combination of face and body gestures performed by 
each subject varies slightly (see (Gunes and Piccardi, 
2006a) for details). Fig. 2 shows representative images 
obtained simultaneously by the body and face cameras. 

3.2 The annotation method 
Once the multimodal data are acquired, they need to be 
annotated and analysed to form the ground truth for 
machine understanding of the human affective multi 
modal behaviour. Annotation of the data in a 
bimodal/multi modal database is a very tiresome 
procedure overall as it requires extra effort and time to 
view and label the sequences with a consistent level of 
alertness and interest. Hence, obtaining the emotion- and 
quality-coding for all the visual data contained in 
bimodal databases is extremely tedious and very difficult 
to achieve.  

We obtained the annotation of our visual multimodal 
data (each face and body video separately) by asking 
human observers to view and label the videos. The 
purpose of this annotation was to obtain independent 
interpretations of the displayed face and body 
expressions; evaluate the performance (i.e. how well the 
subjects were displaying the affect they intended to 
communicate using their face and bodily gesture) by few 
human observers from different ethnic and/or cultural 
background. 

To this aim, we developed a survey for face and body 
videos separately, using the labelling schemes for 
emotion content and signs. We used two main labelling 
schemes in line with the psychological literature on 
descriptors of emotion: (a) verbal categorical labelling 
(perceptually determined, i.e. happiness) in accordance 
with Ekman’s theory of emotion universality (Ekman, 
2003) and (b) broad dimensional labelling: 
arousal/activation (arousal–sleep/ activated -deactivated) 
in accordance with Russell’s theory of arousal and 
valence (Russell, 1980). The participants were first 
shown the whole set of facial videos and only after 
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finishing with the face they were shown the 
corresponding body videos. For each video they were 
asked to choose one label only, from the list provided: 
sadness, puzzlement/thinking, uncertainty/”I don’t 
know”, boredom, neutral surprise, positive surprise, 
negative surprise, anxiety, anger, disgust, fear, 
happiness. 

For the face videos the procedure was as follows. We 
asked each participant to select labels for the numbered 
videos they were shown. When they had difficulty 
choosing a label they were encouraged to guess. 
Secondly, we asked each participant to choose a number 
between 1 and 10 as to how well the emotion is 
displayed (1 indicating “low” and 10 indicating “high” 
quality in the expressiveness). 

For the body videos the procedure was as follows. 
We asked each participant to select labels for the 
numbered videos they were shown. When they had 
difficulty choosing a label again they were encouraged 
to guess. Secondly, we asked each participant to choose 
a number between 1 and 10 as to (a)  how fast or slow 
the motion occurs in the display (i.e. movement speed): 
1 indicating “very slow” and 10 indicating “very fast”; 
(b) how the movement causes the body's occupation of 
space in the display (i.e. movement in space): 1 
indicating “very contracted/very less space coverage” 
and 10 indicating “very expanded/a lot of space 
coverage” during the movement; and (c) how 
powerful/energetic the movement displayed is (i.e. 
movement dynamics): 1 indicating “almost no action” 
and 10 indicating “a lot of action” in the movement. 

360 face and 360 face-and-body videos were 
annotated in this way and results analysed.  

3.3 Participants 
 

We chose videos from 15 subjects and divided them 
based on the subjects into three sub-sets to make the 
annotation procedure easier. Eventually, the first sub-set 
contained 124 face and 124 body videos from five 
subjects and was viewed and annotated by six observers: 
Bulgaria (1), Turkey (1), Mexico (1), Pakistan (1), 
Czech Republic (1), and Australia (1). The second sub-
set contained 120 face and 120 body videos from other 
five subjects and was viewed and annotated by six 
observers. Observers were from the following countries: 
Bulgaria (1), Turkey (1), Czech Republic (2), Slovakia 
(1), and China (1). The third sub-set contained 116 face 
and 116 body videos from other five subjects and was 
viewed and annotated by six observers: Bulgaria (1), 
Turkey (1), Czech Republic (2), Brazil (1), and China 
(1). 

3.4 Results 
For each video, all labelling provided by the six 
observers was analysed and the emotion category that 
received the highest vote as unique was used to finalize 
the true label of that particular video, thus, the ground 
truth. The display from certain subjects can be classified 
to a particular emotion category almost unambiguously 
(i.e. all six observers agree that the display is of one 
particular emotion category), which implies that these 
actors produced rather stereotyped movements 

irrespective of the emotion to be encoded. The 
classification results for other actors are observed to be 
more ambiguous (i.e. not all six observers agree that the 
display is of one particular emotion category). For face 
videos, “quality of expressiveness” was obtained by 
averaging the six quality votes provided by the 
observers. For body videos, results for “movement 
speed”, “movement in space”, and “movement 
dynamics”, were similarly obtained by averaging the six 
votes provided by the observers.  

According to the results obtained from both face and 
face-and-body video annotation:  
• 295 out of 360 videos were labelled using the same 

emotion label both for the face videos and for the face-
and-body videos. 65 videos were labelled differently. 

• 140 out of 360 videos have more agreement for the 
face-and-body video than the face video alone. 

• 125 out of 360 videos have same level of agreement 
for the face-and-body video and the face video alone. 

• 95 out of 360 videos have more agreement for the face 
video only than the face-and-body video. 

3.4.1 Results for Face Videos 
The details of the independent observer agreement 

for face videos are presented in Table 1.  
criterion # of videos for 

face 
# of videos for 
face-and-body 

Higher  than 3 votes 292 311 
Higher  than 4 votes 200 234 
Higher  than 5 votes 114 139 
Equal to 6 votes 84 118 

Table 1. The details of the independent observer 
agreement for face and face-and-body videos: number of 

videos complying with the criterion. 

The emotion categories that caused more cross-
confusion when labelling the face data are puzzlement 
and anxiety. This can be due to the fact that both 
emotions were expressed with similar facial displays 
(e.g. lip bite). Viewing face-and-body display together 
almost immediately helped the observers resolve their 
ambiguity. This in turn suggests that if physical displays 
for certain emotions are similar, and no specific, 
discriminative movement indicators exist, in 
independent observer labelling, these emotion displays 
are commonly found to be confused with one another. 

When expressivity of the face videos was analysed it 
was found that the videos that did not have high 
agreement in terms of emotion labelling not necessarily 
were rated low in terms of expressivity. In other words, 
an observer rated the expressivity of the face display 
assuming that the person was expressing the emotion 
s(he) thought was the true emotion displayed. 

3.4.2 Results for the Combined Face-and-
Body Videos 

The details of the independent observer agreement for 
face-and-body videos are presented in Table 1. Further 
results from the face-and-body video annotation are 
presented in Tables 2-4. 

According to the results presented in Table 1 we 
conclude that full agreement is achieved more frequently 
when face-and-body are viewed together (118 compared 
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to 84). The results provided in Table 2 and Table 3 
suggest that the emotion with lowest movement speed, 
least movement in space and least movement dynamics 
in space are sadness, followed by puzzlement, anxiety, 
and uncertainty.  
 

Emotion Average 
movement 
speed 

Average 
movement in 
space 

Average 
movement 
dynamics  

sadness 3.89 4.63 5.11 
puzzlement 4.23 4.55 4.96 
uncertainty 4.55 4.53 4.72 
boredom 4.56 4.80 5.25 
surprise 4.83 5.01 5.29 
anxiety 4.98 3.73 4.83 
anger 5.32 4.76 5.46 
disgust 5.41 4.62 5.61 
fear 6.05 4.85 6.21 
happiness 6.13 5.54 6.32 

Table 2. The details of the face-and-body survey: the 
average movement speed, average movement in space 

and average movement dynamics criteria for each 
emotion category. 

Order average 
movement 
speed 

average 
movement in 
space 

average 
movement 
dynamics 

1 happiness happiness happiness 
2 fear surprise fear 
3 disgust fear disgust 
4 anger boredom anger 
5 anxiety anger surprise 
6 surprise sadness boredom 
7 boredom disgust sadness 
8 uncertainty puzzlement puzzlement 
9 puzzlement uncertainty anxiety 
10 sadness anxiety uncertainty 

Table 3. The details of the face-and-body survey: 
Ranking of the emotion categories (in descending order) 

based on the average movement speed, average 
movement in space and average movement dynamics 

criteria. 

These emotion categories fall in the “low 
intensity/arousal” category in Russell’s circumflex 
model. The emotion with highest movement speed, 
largest movement in space and highest movement 
dynamics in space are happiness, followed by fear, 
surprise and disgust. These emotion categories fall in the 
“high intensity/arousal” category in Russell’s circumflex 
model (see Fig. 1) (Russell, 1980). 

According to the results compiled in Table 4, we can 
state that bimodal data helps with resolving ambiguity in 
most of the cases. The usefulness of the bimodal data for 
observer annotation is two-fold:  (a) resolving ambiguity 
and (b) re-labelling of the videos.  

 
(a) Resolving ambiguity that is present in affect 
annotation of the face data 

Of the 65 videos that were labelled differently, 
ambiguity was resolved for 27 videos using the face-
and-body data. This fact can be illustrated with the 
following examples: 
• A face video that obtained divided votes by the 

observers (3 boredom and 3 puzzlement) was later 
labelled as boredom with much more certainty (5 
votes) (video # S001-012). 

• A face video that obtained divided votes by the 
observers (3 puzzlement and 3 anxiety) was later 
labelled as anxiety by all 6 observers (video # S001-
040, see Fig. 2, left hand side). 

• A face video that obtained divided votes by the 
observers (1 anger, 1 puzzlement 2 sadness, 1 
ambiguity, 1 boredom), when viewed with face and 
body together, was labelled as anxiety by 5 observers 
(video # S002-010). 

• A face video that obtained divided votes by the 
observers (3 boredom and 3 sadness), when viewed 
with face and body together, was labelled as boredom 
by 4 observers (video # S002-011). 

• A face video that obtained divided votes by the 
observers (3 boredom and 3 sadness), when viewed 
with face and body together, was labelled as anxiety 
by all 6 observers (video # S010-039, see Fig. 2, right 
hand side). 

(b) Changing the label of the displayed emotion obtained 
from face data to another label  

Of the 65 videos that were labelled differently, 19 
videos were re-labelled with almost always higher 
agreement when face-and-body data was viewed. This 
fact can be illustrated with the following examples: 
• A face video that was labelled as negative surprise, 

when viewed as face and body together, was labelled 
as positive surprise (video # S001-007). 

• A face video that was labelled as puzzlement by the 
observers (4 votes out of 6), when viewed as face and 
body together, was labelled as anxiety by the all 6 
observers (video # S001-043). 

In one case (video # S013-018), the face-and-body 
data helps with decreasing the level of ambiguity, but is 
not sufficient to resolve it. However, in 18 cases (see 
Table 3) the body adds ambiguity to the annotation. 
According to the results presented in Table 4, the 
emotion categories that caused more confusion in the 
bimodal data are happiness and positive surprise (7 out 
of 18 cases). Happiness was expressed as extreme joy 
and some observers labelled this display as positive 
surprise, which in fact is not wrong.  

4 Discussion and Conclusions 
Our investigation focused on evaluating monomodal and 
bimodal posed affective data for the purpose of aiding 
multimodal affect recognition systems that are 
dependent on human affective state as their input for 
interaction. According to the results obtained we 
conclude that in general, bimodal face-and-body data 
helps with resolving ambiguity carried by the face data 
alone. This in turn suggests that an automatic 
multimodal affect recognizer should attempt to combine 
facial expression and body gestures for improved 
recognition results. 
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video # label for face video votes label for the combined 

face-and-body video 
votes changes & interpretation 

s001-07 negative surprise 4 positive surprise 5 label changed and higher level of agreement between observers 
s001-12 boredom- puzzlement 3—3 boredom 5 ambiguity resolved, label changed and higher level of agreement between 

observers 
s001-23 fear- negative surprise 3—3 fear 5 ambiguity resolved, label changed and higher level of agreement between 

observers 
s001-40 puzzlement- anxiety 3—3 anxiety 6 ambiguity resolved, label changed and full agreement between observers 
s001-42 puzzlement- anxiety 3—3 anxiety 6 ambiguity resolved, label changed and full agreement between observers 
s001-43 puzzlement 4 anxiety 6 label changed and full agreement between observers 
s001-44 puzzlement 3 anxiety 6 label changed and full agreement between observers 
s002-01 happiness- positive 

surprise 
3—3 happiness 4 ambiguity resolved, label changed and higher level of agreement between 

observers 
s002-10 sadness 2 anxiety 5 label changed and higher level of agreement between observers 
s002-11 boredom-sadness 3—3 boredom 4 ambiguity resolved, label changed and higher level of agreement between 

observers 
s003-01 negative surprise 2 happiness 3 label changed and higher level of agreement between observers 
s003-05 puzzlement 4 uncertainty-puzzlement 2—2 bimodal data causes ambiguity 
s003-08 boredom-puzzlement 2—2 boredom 4 ambiguity resolved, label changed and higher level of agreement between 

observers 
s003-11 boredom 3 boredom-anxiety 3—3 bimodal data causes ambiguity 
s004-19 puzzlement 3 anxiety 3 label changed 
s005-07 uncertainty 3 anger 3 label changed 
s005-14 puzzlement- anxiety-

uncertainty 
2—2—2 puzzlement 4 ambiguity resolved, label changed and higher level of agreement between 

observers 
s005-22 boredom-puzzlement 3—3 boredom 5 ambiguity resolved, label changed and higher level of agreement between 

observers 
s005-24 disgust 4 disgust-fear 3—3 bimodal data causes ambiguity 
s005-32 negative surprise 5 negative surprise-

neutral surprise 
3—3 bimodal data causes ambiguity 

s006-04 negative surprise-fear 3—3 negative surprise 3 label changed 
s006-27 uncertainty-

puzzlement 
3—3 puzzlement 4 ambiguity resolved, label changed and higher level of agreement between 

observers 
s006-29 sadness-boredom 2—2 sadness 3 ambiguity resolved, label changed and higher level of agreement between 

observers 
s006-32 puzzlement 3 uncertainty 3 label changed 
s008-02 neutral surprise 3 negative surprise-

neutral surprise 
3—3 bimodal data causes ambiguity 

s008-05 happiness 4 happiness-positive 
surprise 

3—3 bimodal data causes ambiguity 

s008-07 puzzlement 3 boredom 6 label changed and full agreement between observers 
s009-03 puzzlement 5 uncertainty 3 label changed 
s009-12 puzzlement-sadness 3—3 puzzlement 4 ambiguity resolved, label changed and higher level of agreement between 

observers 
s009-14 puzzled-anxiety 3—3 anxiety 4 ambiguity resolved, label changed and higher level of agreement between 

observers 
s010-02 happiness 5 happiness-positive 

surprise 
3—3 bimodal data causes ambiguity 

s010-21 puzzlement-anxiety 3—3 puzzlement 5 ambiguity resolved, label changed and higher level of agreement between 
observers 

s010-39 sadness-boredom 3—3 anxiety 6 ambiguity resolved, label changed and full agreement between observers 
s010-42 negative surprise 5 negative surprise-fear 2—2 bimodal data causes ambiguity 
s011-01 happiness 6 happiness-positive 

surprise 
3—3 bimodal data causes ambiguity 

s011-02 happiness 5 happiness-positive 
surprise 

3—3 bimodal data causes ambiguity 
s011-03 anger 3 negative surprise-anger 3—3 bimodal data causes ambiguity 
s011-13 puzzlement 4 uncertainty-puzzlement 2—2 bimodal data causes ambiguity 
s011-15 boredom 4 puzzlement 4 label changed 
s011-24 puzzlement 2 anxiety-boredom-

puzzlement 
2—2—2             bimodal data causes ambiguity 

s012-01 happiness 6 positive surprise-
happiness 

3—3 bimodal data causes ambiguity 

s012-05 neutral surprise 3 anger 4 label changed and higher agreement between observers 
s012-14 fear-negative surprise 3—3 fear 4 ambiguity resolved, label changed and higher level of agreement between 

observers 
s012-20 anxiety-puzzlement 2—2 puzzlement 3 ambiguity resolved, label changed and higher level of agreement between 

observers 
s013-01 happiness 5 positive surprise-

happiness 
3—3 bimodal data causes ambiguity 

s013-03 sadness 4 anger 5 label changed and higher agreement between observers 
s013-12 happiness-positive 

surprise 
3—3 positive surprise 4 ambiguity resolved, label changed and higher level of agreement between 

observers 
s013-15 fear-disgust 2—2 fear 5 ambiguity resolved, label changed and higher level of agreement between 

observers 
s013-18 anxiety-boredom-

uncertainty 
2—2—2 anxiety-boredom 3—3 higher level of agreement, however ambiguity between two labels still exists 

s014-01 happiness 5 happiness-positive 
surprise 

3—3 bimodal data causes ambiguity 

s014-02 puzzlement-
uncertainty 

3—3 uncertainty 4 ambiguity resolved, label changed and higher level of agreement between 
observers 

s014-03 anger-negative surprise 2—2 anger 4 ambiguity resolved, label changed and higher level of agreement between 
observers 

s014-06 sadness-negative 
surprise 

3—3 negative surprise 3 ambiguity resolved and label changed 

s014-07 sadness-anxiety 2—2 anxiety 3 ambiguity resolved, label changed and higher level of agreement between 
observers 

s015-09 anger-disgust 2—2 anger 3 ambiguity resolved, label changed and higher level of agreement between 
observers 

s015-12 uncertainty 3 puzzlement 3 label changed 
s015-14 puzzlement 3 boredom-uncertainty-

puzzlement 
2—2—2              bimodal data causes ambiguity 

s015-17 sadness-boredom 2—2 puzzlement 3 label changed and higher agreement between observers 
s015-19 puzzlement 3 boredom 3 label changed 
s015-22 happiness 4 positive surprise 5 label changed and higher agreement between observers 
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s015-28 sadness-boredom 3—3 boredom 5 ambiguity resolved, label changed and higher level of agreement between 
observers 

s016-03 neutral surprise 3 positive surprise 4 label changed and higher agreement between observers 
s016-04 neutral surprise 2 positive surprise 3 label changed and higher agreement between observers 
s016-05 anger 3 anger-positive surprise 2—2 bimodal data causes ambiguity 
s016-11 puzzlement 3 boredom 3 label changed 

Table 4. List of the videos that were labelled differently for face and face-and-body modalities and the details of the 
labelling results. 

label for face video label for the face-and-body video label for face video label for the face-and-body video 
puzzlement (3 votes), anxiety (3 votes) anxiety (6 votes) sadness (3 votes) – boredom (3 votes) anxiety (6 votes) 

    

Figure 2. Example videos that were annotated differently for face and face-and-body and labels obtained from the 
survey: video # s001-40 (left hand side) and video # s010-039 (right hand side); neutral frames (first rows), expressive 

frames (second rows). 

 
Overall, from the results obtained we can state that 

during annotation only in seldom cases do six observers 
fully agree on the emotion labelling. However, in general 
there is substantial agreement between the observers. 

Affective state annotation in itself faces three main 
challenges (a) the type of emotion encoded, (b) the 
specific ability of the encoder, and (c) specific, 
discriminative movement indicators for certain emotions 
versus indicators of the general intensity of the emotional 
experience (Wallbott, 1998). Moreover, for the 
annotation purposes it is almost impossible to use 
emotion words that are agreed upon by everybody. The 
problem of what different emotion words are used to refer 
to the same emotion display is not, of course, a problem 
that is unique to this; it is by itself a topic of research for 
emotion theorists and psychologists. It is a problem 
deriving from the vagueness of language, especially with 
respect to terms that refer to psychological states (Ortony 
and Turner, 1990).  

Furthermore, it is arguable that there may be 
differences in interpretation of the annotation scheme 
used to scale the expressivity of face and body. 
According to the results obtained we conclude that in 
general independent human observers tend to give 
average marks (i.e. 4 – 6 over a scale of 10) when rating 
speed, space usage and movement dynamics of the 
affective body movement. These results might be 
explained by the fact that there are some inherent 
difficulties in marking schemes in general (Blumhof and 
Stallibrass, 1994). These difficulties include: 
• tendency to mark the more immediate concepts; 

• tendency to mark towards the middle; 

• exposing the subjectivity of marking schemes by trying 
to decide on, and weight, criteria. For instance, a mark 
of seven might represent a high mark for one observer, 

whereas the same mark for another observer might 
represent a concept of just above average. 

One major finding of this study is the fact that 
bimodal data helps with resolving ambiguity in most of 
the cases (46 out of 65). However, in 18 cases (see Table 
4) the body adds ambiguity to the recognition. The 
strategy to follow in such cases could be to ask an 
additional group of observers to view and label the data. 

Our analysis suggests that affective information 
carried by the bimodal data is valuable and will aid an 
automatic multimodal affect recognizer achieve improved 
recognition results. 

The relative weight given to facial expression, speech, 
and body cues depend both on the judgment task (i.e. 
what is rated and labelled) and the conditions in which 
the behaviour occurred (i.e. how the subjects were 
simulated to produce the expression) (Ekman, 1982). 
Despite many findings in emotion behaviour research, 
there is no evidence in the actual human-to-human 
interaction on how people attend to the various 
communicative channels (speech, face, body etc.). 
Assuming that people judge these channels separately or 
the information conveyed by these channels is simply 
additive, is misleading (Sebe et al., 2005). As future 
work, a study exploring these factors can be conducted.  

In this study we recorded face and upper body using 
separate cameras, obtaining higher resolution for the face 
images and lower resolution for the upper body images. 
We did not analyse whether or not resolution poses a 
challenge for visual affect data interpretation and 
annotation. It is possible to further compare whether 
being exposed to face display with low resolution, face 
display with high resolution, and finally combined face-
and-body display affects the human attention and 
perception of affective video data.  

The experiment presented in this paper can further be 
extended by data obtained in natural and realistic settings. 
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As confirmed by many researchers in the field, directed 
affective face and body action tasks differ in appearance 
and timing from spontaneously occurring behaviour 
(Cohn et al., 2004). Deliberate face or body behaviour is 
mediated by separate motor pathways and differences 
between spontaneous and deliberate actions may be 
significant. However, collecting spontaneous multimodal 
affect data is a very challenging task involving ethical 
and privacy concerns together with technical difficulties 
(high resolution, illumination, multiple sensors, 
consistency, repeatability etc.). The research field of 
multimodal affective HCI is relatively new and future 
efforts have to follow (Pantic et al., 2005). 
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Abstract

The accurate alignment of faces is essential to al-
most all automatic tasks involving face analysis. A
common paradigm employed for this task is to ex-
haustively evaluate a face template/classifier across
a discrete set of alignments (typically translation and
scale). This strategy, provided the template/classifier
has been trained appropriately, can give one a reli-
able but “rough” estimate of where the face is actu-
ally located. However, this estimate is often too poor
to be of use in most face analysis applications (e.g.
face recognition, audio-visual speech recognition, ex-
pression recognition, etc.). In this paper we present
an approach that is able to refine this initial rough
alignment using a gradient descent approach, so as to
gain adequate alignment. Specifically, we propose an
efficient algorithm which we refer to as the sequen-
tial algorithm, which is able to obtain a good balance
between alignment accuracy and computational effi-
ciency. Experiments are conducted on frontal and
non-frontal faces.

Keywords: Face Alignment, Gradient Descent Object
Alignment, Inverse Compositional Algorithm.

1 Introduction

Discriminative classifiers have been used with great
success in the area of object detection. Most of these
approaches, however, have concentrated on simply
training a classifier with positive (i.e., aligned) and
negative (i.e., not aligned) example images of the ob-
ject. This classifier is then used to detect an object
in a given image by exhaustively searching through
all possible translations and scales. The now pop-
ular work (Viola & Jones 2001) of Viola and Jones
is a prime example of this type of approach to object
alignment. Such approaches are useful for obtaining a
rough estimate of where the object is in an image, but
struggle when one requires an alignment with more
degrees of freedom than just translation and scale;
such as an affine warp.

Another option after applying an exhaustive face
detector is to exhaustively search for descriptors
within the object that are largely invariant to affine
variations. Typically in frontal face detection the eye
region has been used in this capacity to great effect.
Notable examples of these type of approaches have
been (Moghaddam & Pentland 1997, Everingham &
Zisserman 2006, Rurainsky & Eisert 2004, Wang &

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at HCSNet Workshop on the Use of Vision in
HCI (VisHCI 2006), Canberra, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
56. R. Goecke, A. Robles-Kelly & T. Caelli, Eds. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

Ji 2005, Lowe 1999). A criticism of this approach,
however, is that the availability of these invariant de-
scriptors is not always assured and is very specific to
the object being aligned. For example, faces undergo-
ing view-point change often change appearance dra-
matically requiring the selection of different descrip-
tors. The selection of these affine invariant descrip-
tors is often based on heuristics, and it is still largely
an open question how these descriptors change across
view-point.

Gradient descent methods for object alignment,
such as the Lucas-Kanade (LK) (Lucas & Kanade
1981) and the Inverse-Compositional (IC) (Baker &
Matthews 2001) algorithms, provide a natural solu-
tion to these dilemmas for two reasons. First, they
attempt to find a gradient descent solution to the
optimal object alignment without having to resort
to an impractical exhaustive search. Second, they
also provide the desirable property of treating all ob-
jects in a unified way, thus not requiring any heuristi-
cally chosen affine invariant descriptors to be selected
(e.g., eye detectors). A problem, however, is that
gradient descent approaches have poor generalization
properties when they have to deal with previously
unseen intra-class object variation (Gross, Baker &
Matthews 2005). A prime example of this problem is
when one is trying to align a previously unseen face
given one has a rough idea of where the face is lo-
cated. A graphical depiction of this task can be seen
in Figure 1. Unfortunately, discriminative learning
methods cannot be as freely applied with gradient de-
scent approaches as with exhaustive methods. Since
gradient descent methods are inherently iterative one
cannot treat misaligned images as just negative ex-
amples. Such images may be part of the solution tra-
jectory. Inhibiting these images may actually stop the
algorithm progressing towards the correct alignment.

The problem of dealing with appearance variation
in gradient descent object alignment is not new. Most
notably, Black and Jepson addressed the problem for
the case of general appearance variation (Black &
Jepson 1998). Similarly, Hager and Belhumer con-
ducted work for the more specific case of illumina-
tion variation (Hager & Belhumeur 1998). In re-
cent work (Baker, Gross & Matthews 2003), Baker et
al. presented a unifying framework in which much of
this previous work could be subsumed. Additionally,
Baker et al. proposed two broad strategies for dealing
with appearance variation when performing gradient
descent object alignment, specifically the simultane-
ous and project-out algorithms. The simultaneous al-
gorithm is able to give good alignment accuracy, but
is computationally slow due to the large matrix inver-
sions that must be performed at each iteration. Con-
versely, the project-out algorithm is computationally
fast, due to simplifying assumptions, but suffers from
poorer alignment1 performance.

1We would like to note that the project-out algorithm has been
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Figure 1: This figure depicts the task we want to
undertake in this paper, where we have a rough ap-
proximation to where an object is (for our work in
this paper the object will be a face), and we want to
improve this alignment through a gradient descent fit.
Faces naturally contain appearance variation, so we
need to generalize from an offline ensemble of aligned
face images so as to align to previously unseen sub-
jects.

In this paper we propose a new algorithm that is
able to give good alignment accuracy with reasonable
computationally efficiency. We refer to this approach
as the sequential algorithm. The task we use through-
out this paper to evaluate these approaches is face
alignment, where we want to be able to accurately
align, using an affine warp, a subject independent
template to all faces; even if that face has not been
previously seen offline. Experiments are conducted on
frontal and non-frontal faces, demonstrating large im-
provements in alignment over canonical approaches.

2 The Inverse Compositional Algorithm

The Lucas-Kanade (LK) algorithm (Lucas & Kanade
1981) has become a common tool in computer vision
for the task of image alignment. The inverse com-
positional (IC) image alignment algorithm (Baker &
Matthews 2001), developed by Baker and Matthews,
is a more efficient formulation of the LK algorithm. In
the IC formulation many computationally costly com-
ponents of the algorithm can be pre-computed from
the template, unlike the LK algorithm. The IC algo-
rithm is essentially the minimization of the following
with respect to ∆p,

||y(p) − t(0) − J(t(0))∆p||2 (1)

where y(p) is the vectorized form of the im-
age Y (W(x,p)), and t(0) is the vectorized image
of T (W(x,0)) which is an approximation to the
aligned image Y (W(x,p∗)). An alignment func-
tionW(x,p) is employed to map an image position x
to a new position x′ based on the warp parameters p,
where p∗ is the correct alignment we are attempting
to estimate. Since the warp W(x,p) is non-linear we
must approximate it using the linear matrix,

shown (Baker et al. 2003) to perform very well in situations where
the appearance variation has been previously seen offline, and that
the rank of this variation is small. In this paper we are investigating
the more general case where the appearance variation has not been
seen previously, and the rank of this variation is quite large.

J(t) = [∇T (W([0, 0]T ,0))
∂W

∂p
, . . . ,

∇T (W([N − 1,M − 1]T ,0))
∂W

∂p
]T (2)

where the image T is an N ×M image. For ease of
notation t was used in Equation 2, rather than t(0)

because the (0) represents the identity warpW(x,0);
this convention will be used throughout the rest of
this paper. One can see the approximation being used
in Equation 2 is a first order Taylors series approxi-
mation to the warp.

It is easy to show that the solution to Equation 1
is,

∆p = (J(t)T J(t))−1J(t)T (y(p) − t) (3)

Due to the linear approximation in Equation 2 this
solution is not explicit so we must iterate until we get
convergence. This form of optimization is commonly
referred to as Gauss-Newton optimization. The warp
parameter p corresponds to the current estimate of
the set of warp parameters needed to bring the two
images into alignment, and ∆p is the warp update
that will improve the alignment. One can then update
the warp estimate as follows:

W(x;p)←W(x;p) ◦W(x;∆p)−1 (4)

from which we then obtain our new y(p); this en-
tire process is iterated until we obtain convergence
for p. The compositional update is required, as op-
posed to a simple additive update, because we are
solving for the incremental warp update W(x;∆p)
not the parameter update ∆p. This allows us to
pre-compute our Jacobian in Equation 2 at W(x;0),
rather than at each iteration fromW(x;p); leading to
sizeable computational savings. Please refer to (Baker
& Matthews 2001) for more details.

2.1 The Simultaneous Algorithm

An immediate problem one can see with the IC al-
gorithm denoted in Equation 1 is that we make the
big assumption that the image T (W(x,0)) is a good
approximation to Y (W(x,p∗)). Obviously, if the ob-
ject being aligned has considerable intra-class appear-
ance variation (e.g., faces), then this assumption can
cause problems. To remedy this situation Baker et al.
instead proposed the simultaneous algorithm (Baker
et al. 2003) which attempts to minimize the following
with respect to ∆q,

||y(p) − z− Z∆q||2 (5)

where ∆q = [∆pT ,∆λ
T ]T denotes a simultaneous

updates in warp ∆p and appearance ∆λ. We define,

z = t +

m∑

i=1

λprev

i ai (6)

Z∆λ = [a1, . . . ,am] (7)

and,

Z∆p = J(t) +
m∑

i=1

λprev

i J(ai) (8)

where ai refers to the ith appearance eigenvector, es-
timated through PCA from an offline ensemble of pre-
viously aligned objects (see Figure 1), λ

prev is the ap-
pearance from the previous iteration, and t denotes
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the mean appearance of the offline ensemble. In an
analogous result to Equation 3 the solution to Equa-
tion 5 is,

∆q = (ZT Z)−1ZT (y(p) − z) (9)

where Z = [Z∆λ,Z∆p]. The current warp p is
updated by ∆p according to the inverse composi-
tional update in Equation 4 and the current appear-
ance λ = [λ1, . . . , λm]T is updated by,

λ = λ
prev + ∆λ (10)

A problem with the simultaneous solution however, is
that z, Z and therefore (ZT Z)−1 must be re-estimated
at each iteration which slows down the algorithm dra-
matically. A simple speedup, which Baker et al. refer
to as the project-out algorithm (Baker et al. 2003),
can be found by assuming2 that λ

prev = 0 at each it-
eration which ensures z and Z remain constant. In
reality since the appearance is not updated at each
iteration then ∆λ does not need to be found explic-
itly.

2.2 The Sequential Algorithm

Although effective, the simultaneous and project-out
algorithms suffer some drawbacks due to the simpli-
fying assumptions made in Equations 5-9. The true
solution should be to try to solve ∆p and λ simulta-
neously from,

||y(p) − t− J(t)∆p−
m∑

i=1

λi(ai − J(ai)∆p)||2 (11)

Unfortunately, one cannot solve this explicitly
for ∆p and λ so Baker et al. make the assumption
that λ = ∆λ + λ

previous where ∆λ is the appearance
update and λ

previous is the appearance from the previ-
ous iteration. Based on this assumption Baker et al.
make the approximation,

m∑

i=1

λiJ(ai) ≈

m∑

i=1

λprev

i J(ai) (12)

Thus allowing Equation 11 to be solved simultane-
ously for ∆p and ∆λ instead of for ∆p and λ. In
this paper we propose a new approach that abandons
the approximation in Equation 12 and attempts to
solve Equation 11 directly but not simultaneously.
We refer to this new approach as the sequential al-
gorithm. We can pose this algorithm as minimizing
with respect to q the following,

||y(p) − zq − Zqq||
2 (13)

where q ∈ {∆p,λ} as we are attempting to solve
for ∆p and λ sequentially. Both ∆p and λ can be
solved in a similar fashion to Equations 3 and 9 where,

q = (ZT
qZq)−1ZT

q (y(p) − zq) (14)

First, we attempt to solve for ∆p given that we
know λ which we initially guess to be λ = 0,

z∆p = t +

m∑

i=1

λiai (15)

2Please note that the project-out algorithm mentioned here is a
slight variation upon the one seen in (Baker et al. 2003), as we are
solving for ∆p and ∆λ simultaneously rather than sequentially.
Empirically however, we have found the performance of these two
variants to be identical. Please refer to Appendix A for more de-
tails.

Z∆p = J(t) +
m∑

i=1

λiJ(ai) (16)

Given that we have an estimate for ∆p, from Equa-
tion 14, we then obtain a new estimate of y(p) by ap-
plying the inverse compositional warp in Equation 4.
We can next solve for λ given our new estimate of ∆p
where,

zλ = t (17)

and,

Zλ = [a1, . . . ,am] (18)

The algorithm is iterated until p and λ reach conver-
gence. As mentioned previously, the algorithm first
solves for ∆p then solves for λ. The sequential al-
gorithm offers substantial computational savings over
the simultaneous algorithm. First, it factorizes the in-
version of (ZT Z) in Equation 9 into (ZT

∆pZ∆p)−1 and

(ZT
λ
Zλ)−1. Second, since Zλ contains only eigenvec-

tors then (ZT
λ
Zλ)−1 = I thus making this inversion

pointless, again adding considerably to the computa-
tional savings over the simultaneous algorithm. Fi-
nally, the number of image warps per iteration re-
mains exactly the same as the simultaneous algo-
rithm.

One could argue that their may be some benefit in
first estimating λ then estimating ∆p, in that if the
current estimate p is close to the true alignment p∗

then estimating λ first will allow one to then gain a
much more accurate ∆p. However, we contend this
argument is very dependent on the assumption that
your current p is close to p∗. Empirically we found
the more cautious view that p may be some distance
away from p∗ to give more robust results.

3 Frontal-Face Experiments

For our experiments with frontal faces we ran face
alignment experiments on the FRGC 1.0 database
that corresponded to the training portion of Exper-
iment 1 (Phillips, Flynn, Scruggs, Bowyer, Chang,
Hoffman, Marques, Jaesik & Worek 2005). Of the 152
images in this set 76 were used for learning the mean
template and appearance variation (i.e. eigenvectors)
and the other 76 were used for evaluation. All the
images had three hand annotated fiducial points cen-
tered on the eyes and nose for ground truth.

3.1 Synthetic Alignment Noise

For our first lot of experiments an initial alignment er-
ror was introduced by adding random Gaussian noise
to all three points so the total point error (TPE) was
equal to: (a) 10 pixels and (b) 20 pixels. The TPE
is defined as the total distance, in pixels, the current
warp’s points are from the ground-truth. The TPE
is always taken with reference to the template, which
was chosen to be of size 80× 80 pixels. A comparison
between the IC algorithms with: (i) no appearance
variation (i.e., just the mean template), (ii) project-
out, (iii) simultaneous and (iv) sequential, can be seen
in Figures 2 and 3.

Figure 2 depicts the ideal scenario where all facial
appearance variation has been observed offline pre-
viously. Figure 3 depicts the “real world” scenario
where the facial appearance variation has not been
observed previously. One can see in both figures that
the simultaneous and sequential algorithms perform
best in all cases. Interestingly, one can see in Fig-
ure 2, for the case where the appearance variation
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Figure 2: This figure depicts a comparison between IC algorithms when the appearance variation has been seen
previously offline. Specifically we compare cases for: (i) no appearance variation (i.e. just the mean template),
(ii) project-out, (iii) simultaneous and (iv) sequential. Results indicate that the simultaneous and sequential
algorithms converge to almost perfect alignment. Our proposed sequential algorithm however, has considerably
less computational load than the simultaneous algorithm.
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Figure 3: This figure depicts a comparison between IC algorithms when the appearance variation has not
been seen previously offline. Specifically we compare cases for: (i) no appearance variation (i.e. just the
mean template), (ii) project-out, (iii) simultaneous and (iv) sequential. Results indicate that although both the
simultaneous and sequential algorithms obtain the best alignment, performance is still poor when compared
to the results seen in Figure 2 for the scenario when the appearance variation has been seen previously offline.

was seen offline, the final alignment error is almost
zero. The biggest contrasts in performance between
Figures 2 and 3 can be seen for the project-out al-
gorithm. When the appearance variation has been
previously observed, the final alignment error is rea-
sonable. However, for the “unseen” scenario, where
the appearance variation has not been observed, the
final alignment error diverges. This poor result can be
attributed to the assumptions made in the project-out
algorithm; namely that the appearance λ

prev at each
iteration is always zero.

A major result from the experiments carried out
in Figures 2 and 3 is the approximately equivalent
performance of the sequential and simultaneous al-
gorithms. This result is initially perplexing, as one
would expect in most cases a simultaneous iterative
solution to be more accurate, since we are solving for
appearance and warp at the same time, than a se-
quential one. This result is consistent for when the
initial alignment error is small (TPE = 10)and large
(TPE = 20), as well as for the scenarios where the
appearance variation was and was not observed re-
spectively.

3.2 Viola-Jones Noise

In our next lot of experiments we decided to employ
an exhaustive search face detector as an initializer,
to get an indication of the advantages of our pro-
posed system. The exhaustive search face detector we
employed in our experiments was the publicly avail-

able implementation of the Viola-Jones face detec-
tor (Viola & Jones 2001) from the OpenCV library.
The face detector outputs a bounding box defined
by [x, y, s], where [x, y] defines the center of the box
and s defines its scale. To gain a good “rough” es-
timate of where the fiducial points of the face are,
based on this bounding box, a projection matrix is
learnt that maps from this bounding box to the es-
timated fiducial face points. This projection matrix
is learnt through least-squares optimization from an
ensemble of offline aligned face images (see Figure 1).

Figure 4 depicts the distribution, in TPE, of the
initial Viola-Jones and also the final distribution af-
ter we post-process these coordinates with our gradi-
ent descent method. One can clearly see that our
method successfully reduces the mean TPE of the
Viola-Jones detector. An example of some of these
improved alignments can be seen in Figure 5.

4 Non-Frontal Face Experiments

Experiments were performed on a subset of
the FERET database (Phillips, Moon, Rizvi &
Rauss 2000), specifically images stemming from
the ba, bb, bc, bd, be, bf, bg, bh, and bi subsets;
which approximately refer to rotation’s about the
vertical axis of 0o, +60o, +40o, +25o, +15o, −15o,
−25o, −40o, −60o respectively. The database con-
tains 200 subjects in total, which were randomly di-
vided into offline training and online testing sets both
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Figure 5: This figure contains examples images for: (a) Viola-Jones alignment, (b) gradient descent alignment,
and (c) ground truth alignment. As one can see from these images, our algorithm performs a good job in
estimating the correct alignment across a number of different view points.
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Figure 4: This figure depicts the distribution, in total
point error (TPE), of the Viola-Jones face detector
alignment and our proposed gradient descent align-
ment. One can see clearly that our approach both
decreases the mean and variance of the TPE produced
by the Viola-Jones detector alone.

containing 100 subjects. In a similar fashion to the
frontal face experiments templates for all poses were
chosen to be of size 80× 80 pixels.

In Figure 6 one can see results in terms of the av-
erage TPE across a number of different poses. We
compare the TPE obtained from the Viola-Jones face
detector and our gradient descent method. One can
see in all cases our gradient descent method improves
the average TPE. Although not perfect, our gradient
descent refiner is able to substantially improve face
alignment from multiple view-points. Examples of
aligned images, from all poses, can be seen in Figure 5
for: (a) the Viola-Jones alignment, (b) our gradient
descent alignment, and (c) the ground truth align-
ment.

5 Conclusion and Future Work

We presented a novel and effective approach to face
refinement, on frontal and non-frontal faces, based on
a gradient descent image alignment paradigm with
appearance variation. Our approach is able to over-
come some of the inherent computational difficulties
associated with exhaustive search type object detec-
tors when one wants to align an object with more
degrees of freedom than just translation and scale.
It is also a viable alternative to approaches that rely
on affine invariant descriptors (e.g., the eyes) within
the object, especially when the location and nature of
these descriptors are unclear for the object (e.g., non-
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Figure 6: This figure depicts performance in terms of
average total point error (TPE) for Viola-Jones align-
ment and our own gradient descent method across
many view-points. One can see that our technique
improves the average TPE across all poses.

frontal faces). In this work we proposed an efficient
extension to current algorithms in literature, which
we refer to as the sequential algorithm. This approach
was able to empirically deliver approximately the ac-
curacy of the simultaneous algorithm with much less
computational cost; making it of viable use in many
real-time face processing applications that require hu-
man and computer interaction. As a proof of concept
we were able to demonstrate how effectively our ap-
proach performs in conjunction with a Viola-Jones
face detector on frontal and non-frontal faces. We
want to extend our current work to deal with more
alignment points and more complicated warps (e.g.,
piece-wise affine) involving faces across pose.
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Appendix

A Variants on Project-Out

In Section 2.1 we present a variant on the project-
out algorithm (Baker et al. 2003) first proposed by
Baker et al. We proposed in our variant that the
formulation of the project-out algorithm can simply
be interpreted as the normal simultaneous algorithm,
with the exception that we assume λ

prev is equal to
zero at each iteration. This assumption leads to large
computational savings as there is no longer any need
for costly matrix inversions at each iteration. This
interpretation however, differs slightly to the origi-
nal formulation of the project-out algorithm. The
difference between our formulation and the original
project-out algorithm lies in how we minimize,

||y(p) − t− J(t)∆p−
m∑

i=1

∆λiai||
2 (19)

with respect to ∆p and ∆λ. In Baker et al.’s ap-
proach they decompose this problem further into the
linear subspace span(ai) spanned by the collection of
vectors ai and its orthogonal complement span(ai)

⊥.
Baker et al.’s approach is now, with respect to ∆p
and ∆λ, attempting to minimize,

||y(p) − t−

m∑

i=1

∆λiai||
2
span(ai)

+

||y(p) − t− J(t)∆p||2span(ai)⊥
(20)

where ||.||L denotes the Euclidean L2 norm of a vector
projected into the linear subspace L. Essentially this
approach forces the optimization of ∆p and ∆λ into
two disjoint spaces. One can see that the first term
is always exactly zero because the term

∑m

i=1 ∆λiai

can represent any vector in span(ai). As a result the
simultaneous minimum over both ∆p and ∆λ can
be found sequentially by minimizing the second term
with respect to ∆p alone, and then treating the opti-
mal values of ∆p as a constant to minimize the first
term with respect to ∆λ.

The variant we employed in Section 2.1 actually
solves Equation 19 simultaneously for ∆p and ∆λ
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rather than sequentially. Both approaches are ex-
tremely fast as nearly all steps can be pre-computed
and they require no matrix inversion except in pre-
computation. There is a slight computational advan-
tage in Baker et al.’s original formulation as the final
update matrix, which one multiplies the error image
by, has a rank equal to the dimensionality of just the
warp space; whereas our formulation employs an up-
date matrix whose rank is equal to the dimensional-
ity of the warp and appearance space. Empirically
we found both approaches obtained identical perfor-
mance when the initial alignment error is small (see
Figure 7(a)), but there is some slight advantage in
our approach when the initial alignment error is large
(see Figure 7(b)); although in both cases performance
did diverge. The experiments in Figure 7 were carried
out on the frontal faces of the FRGC dataset.
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Abstract

One of the major drawbacks of the Active Appear-
ance Model (AAM) is that it requires a training set
of pseudo-dense correspondences. Most methods for
automatic correspondence finding involve a groupwise
model building process which optimises over all im-
ages in the training sequence simultaneously. In this
work, we pose the problem of correspondence finding
as an adaptive template tracking process. We inves-
tigate the utility of this approach on an audio-visual
(AV) speech database and show that it can give rea-
sonable results.

Keywords: AAM, automatic model building.

1 Introduction

Active appearance models (AAM) are a powerful class
of generative parametric models for non-rigid visual
objects which couple a compact representation with
an efficient alignment method. Since its advent by
Edwards et al. in (Edwards, Taylor & Cootes 1998)
and their preliminary extension (Cootes, Edwards,
Taylor, Burkhardt & Neuman 1998), the method has
found applications in many image modelling, align-
ment and tracking problems, for example (Lehn-
Schiøler, Hansen & Larsen 2005) (Stegmann &
Larsson 2003) (Mittrapiyanuruk, DeSouza & Kak
2005).

The main drawback of AAM is that it requires
pseudo-dense annotations for every training image to
build its statistical models of shape and texture. Each
of these images may require hundreds of correspond-
ing points. Manual annotation for large databases,
therefore, are tedious and error prone. The process
is especially difficult for objects which exhibit only a
small number of corner like features (i.e. the human
face contains mostly edges). A process which auto-
mates the annotation process is, hence, highly desir-
able and may encourage a more widespread utilisation
of the AAM.

In this paper, we discuss the automatic annota-
tions (finding physically corresponding points across
images) of audio-visual (AV) speech databases which
consist of sequences of talking heads. As a test case,
we investigate its utility on the AVOZES (Goecke
& Millar 2004) database. This scenario for auto-
matic annotations is more constrained than the gen-
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eral problem as the changes in shape and texture be-
tween consecutive frames in a sequence is relatively
small. Nonetheless, we show that this problem is still
a challenging one, mainly due to the high dimension-
ality of the problem which makes it difficult to opti-
mise and avoid spurious local minima.

We approach the automatic annotation process
through a tracking perspective, where the annota-
tions in a reference image are propagated through the
sequence by virtue of an adaptive template. We be-
gin with an overview of related work in Section 2.
The problem of image based correspondences is dis-
cussed in Section 3. An outline of our approach to
the automatic annotations of image sequences is then
presented in Section 4. In Section 5, we describe
the results of applying this approach to the AVOZES
database. Section 6 concludes with discussions of the
results and future directions.

2 Related Work

There has been significant research over the years to
automatically find semi-dense correspondences across
images of the same class for building AAMs. These
methods can be broadly categorised into either fea-
ture or image based approaches.

Feature based methods (Chui, Win, Schultz, Dun-
can & Rangarajan 2003) (Walker, Cootes, & Taylor
1999) (Hill & Taylor 1996) find correspondences be-
tween salient features in the image by examining the
local structure of the features. The advantage of
this method is that feature comparisons and calcu-
lations are relatively cheap. The downside however
is twofold. Firstly, there may be insufficient salient
features in the object to build a good appearance
model. Secondly, as the feature comparisons gener-
ally consider only local image structure, the global
image structure for which the AAM is then modelled
is ignored, and hence, the model may be suboptimal.

Image based methods (Cootes, Marsland, Twin-
ing, Smith & Taylor 2004) (Baker, Matthews &
Schneider 2004) (Jebara 2003) usually find dense im-
age correspondences by finding a nonlinear warping
function which minimises some type of error measure
between the intensities of the images. The main ad-
vantage of these methods is that the global structure
of the image is taken into account, better mimick-
ing the AAM for which the correspondences will be
used later. The main drawback of this approach is
that to accurately represent the shape variations of
the visual object, the warping function will generally
need to be parametrised using a large number of pa-
rameters (generally as set of landmark points). This
results in a very large optimisation problem which is
slow to optimise and prone to terminating in local
minima.
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3 Image Based Correspondence

The heart of image based methods for correspon-
dence consists of finding a warping function between
a set of images such that every location in one image
is warped to the same physically meaningful (corre-
sponding) location in all other images. However, as
there is no true sense of the physical correspondence
of un-annotated images, the quality of a set of warp-
ing functions is usually quantified by some measure
of model compactness built from the warped images.
Examples of these measures include MDL (Cootes,
Twining, Petrovic, Schestowitz & Taylor 2005), speci-
ficity/generalisation (Schestowitz, Twining, Petrovic,
Cootes, Crum & Taylor 2006) and minimum volume
PCA (Jebara 2003).

Apart from the measure of quality there is a large
amount of variation of image based correspondence
methods at the implementation level. These varia-
tions include, but are not limited to, model and warp
parametrisation, model fitting methods and the land-
mark selection process. In this section, we describe
the choices we made on these factors for the experi-
ments presented in Section 5. In most cases, we follow
the convention of most AAM implementations.

3.1 Linear Appearance Models

Active appearance models assume the visual phe-
nomenon being modelled takes the form of a degener-
ate Gaussian distribution, where the shape and tex-
ture can be modelled by a compact set of linear modes
of variation. The texture is generated as follows:

t(x) = t̄(x) +

mt∑

k=1

qktk(x), (1)

where t(x) is the generated model texture at pixel
location x, t̄(x) is the mean texture at that location,
tk(x) is the kth mode of texture variation and qk is the
magnitude of variation in that direction. Similarly, a
novel instance of the model’s shape can be generated
using:

s = s̄ +

ms∑

k=1

pksk, (2)

where s = [x1; . . . ;xn] is the shape vector of concate-
nated landmark locations, s̄ is the mean shape, sk is
the kth mode of shape variation and pk is the magni-
tude of variation in that direction.

These models are usually obtained by applying
PCA to a set of annotated images, retaining only
the mt and ms largest modes of variation in shape
and texture respectively. The resulting model is a
compact representation of a high dimensional visual
object by a small set of parameters.

Although these separate models of variation
(called independent appearance models) have shown
to adequately represent the variations exhibited by
many visual objects, they fail to take into account
the correlations between shape and texture. In some
cases, where there is a strong correlation between
shape and texture, failing to take these correlations
into account may result in a model capable of gen-
erating unrealistic instances of the object class. Fur-
thermore, the resulting model may not be as compact
as it could be, if these correlations are considered in
the model building process. An example of this is a
person-specific AAM. In these cases, it is beneficial
to perform a second level of PCA, this time on the
concatenation of the shape and texture parameters:

a =

[
Wsp

q

]
, (3)

where Ws is a weighting matrix which normalises the
difference in units between shape and texture. A com-
mon choice for this matrix is an isotropic diagonal
matrix representing the ratio between the total vari-
ations of shape and texture in the training set. By
applying PCA to a set of these training vectors, a
combined appearance model is obtained, for which
novel instances can be generated as follows:

a =

ma∑

i

ckak, (4)

where ak is the kth mode of combined appearance
variation and ck is the magnitude of variation in that
direction. The combined appearance model can be
used to generate novel instances of shape and texture
directly as follows:

s = s̄ + Qsa (5)

t = t̄ + Qta, (6)

where

Qs = SW−1
s As (7)

Qt = TAt (8)

A =

[
As

At

]
(9)

and

S = [s1, . . . , sms
]

T = [t1, . . . , tmt
]

A = [a1, . . . , ama
]

are matrices of concatenated modes of variations of
shape, texture and appearance, respectively. For vi-
sual objects exhibiting strong correlations between
shape and texture, the resulting combined appear-
ance model is usually more compact than the indepen-
dent appearance model, exhibiting a smaller number
of modes of variation.

3.2 Model Quality

The quality of a model is usually quantified by some
measure of compactness. In our work, we follow the
method in (Jebara 2003) which estimates compact-
ness of Gaussian distributed models through an ap-
proximation of the volume of the variations of the
model. The approximation used here is the determi-
nant of the model’s covariance matrix, which is equiv-
alent to the sum of the eigenvalues of the model:

Q =

m∑

i

λi (10)

In the AAM, variations in pixel values in the im-
age frame are generated from variations in both shape
and texture, each of which is modelled by a Gaussian
distribution. Therefore, a measure of compactness
of an appearance model must take into account the
compactness of both models which may disagree with
each other. For example, for the same database, a
model which exhibits a compact shape distribution
may result in a non-compact texture as it needs to
accommodate pixel intensity variations which are not
accounted for by the shape. On the other hand, if the
texture is evaluated in a reference frame (as opposed
to the image frame as is done in an MDL formula-
tion (Cootes et al. 2005)), the shape may be chosen
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such that the texture is compact at the cost of a non-
compact shape distribution. In (Jebara 2003), only
the texture compactness is used as a measure of qual-
ity, which may result in a non-compact shape distri-
bution which in turn may result in a model which
can generate implausible shapes. Although it is easy
to have a single measure of model quality through a
weighting of the compactness of shape and texture,
this weighting is usually chosen heuristically based
on the intuition of good results from manual analy-
sis of example models. In this work, we investigate
the trends of the shape and texture compactness mea-
sures for different settings of the training parameters.

As a final note, in our implementation the sum in
Equation (10) is performed over all non-zero eigen-
values of the system rather than only the most sig-
nificant ones. This is because we want to measure
the model quality by considering the total amount of
variation in the training set. Since the total variation
may differ depending on the implementation details,
common methods used in PCA such as retaining only
a certain percentage of the total variation may not
give a discriminative measure as different amounts of
variations may be discarded as noise.

3.3 Landmarks and the Warping Function

The shape of an AAM is defined through a set of land-
marks which in turn parametrise the warping function
used to project the texture from the image to the ref-
erence frame.

3.3.1 Landmark Selection Scheme

The choice of these landmarks is crucial to the com-
pactness of the model. As a rule of thumb, for a given
number of landmark points, the set which, under the
warping function, accounts for the most amount of
shape variation within the object class should be cho-
sen. This way, the variation exhibited in the tex-
ture model accredited to shape variation is minimised.
However, in the problem of automatic model building,
parts of the object which exhibit the most variation
in shape are not known a-priori. Therefore, a choice
must be made regarding the contribution of each lo-
cation in the image to the variation in texture due to
unaccounted variations in shape.

In general, locations with high texture contribute
more to the variation in texture due to unaccounted
shape variations than do flat regions. Therefore, we
propose using a sequential selective process where
landmarks are chosen iteratively based on their
saliency, measured by the cornerness of that point in a
reference image. This method was adopted in (Cootes
et al. 2005), where it was demonstrated that using
landmarks on strong edges, and ignoring flat regions,
gave the best performance as it allowed more control
over the boundary regions in the image. Our method
differs however in the way the landmarks are cho-
sen. In their approach, the landmarks are initialised
on an equally spaced grid, then moved to the closest
strong edge. In our work, we sequentially select the
most salient pixel location, then zero-out a small re-
gion around that point in the saliency image. This
process guarantees that the most salient locations are
selected, but prevents trivial landmarks (i.e. those
which are too close to represent adequate shape vari-
ations) from being selected.

Apart from these salient landmarks, we also add
a fixed number of border landmarks, equally spaced
around the image border, such that the whole image
is encoded into the texture model. As the domain of
the texture of an AAM is usually defined within the
convex hull of the reference shape only, adding these
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Figure 1: Piecewise-affine warping. Top row: pseudo-
dense landmark triangulation. Bottom: I2 warped
onto I1 using piecewise affine warp defined by trian-
gulation.

border landmarks allow the background to be incor-
porated into the model’s texture which may allow a
more accurate model building process as the bound-
ary between the object and the background can give
strong cues for model fitting.

3.3.2 Warping Functions

The most common warping function used for AAMs
is the piecewise affine warp. This type of warp utilises
a triangulation of landmarks in the reference image,
where pixels within the domain of each triangle are
warped using an affine function. Although there are
many other warping function which can be used, such
as thin-plate splines or B-Splines, the piecewise affine
warp is simple and efficient. Furthermore, it allows
the inverse of the warp to be computed efficiently,
which is beneficial in an image generation process
where the texture in the reference frame is projected
onto the image frame.

Although the piecewise affine warp has the disad-
vantage that it is discontinuous at the boundaries of
the triangles, we find that a sufficiently dense set of
landmarks chosen according to the scheme described
in Section 3.3.1 usually results in a triangulation
where the edges in the image correspond to edges of
the triangles, minimising the effect of this discontinu-
ity. An example of a pseudo-dense landmark selection
with its triangulation and warping process is shown
in Figure 1.

3.4 Alignment

Regardless of the model building process used, au-
tomatic AAM construction generally involves a non-
rigid registration to align the model to an image. The
alignment process essentially finds the model param-
eters which best describe the image. This process
usually involves minimising some measure of fitness
between the model and the image which contains a
data term and a smoothness term:

C = Cd + ηCs, (11)

where Cd is the data term, Cs is the smoothness term
and η is a regularisation parameter which trades off
the contribution of the data and smoothness terms to
the total cost.
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3.4.1 The Data Term

The data term is usually defined as a function of the
difference between the model’s texture and the image
texture warped back to the reference frame:

Cd =
∑

x∈Ω

ρ (E(x); σ) (12)

E(x) = t(x;q) − I(W(x;p)), (13)

where Ω is the domain over which the model’s tex-
ture is defined (i.e. the convex hull of the landmark
points), t(x;q) is the model’s texture, I(W(x;p)) is
the image texture warped back to the reference frame,
and ρ is some type of function over the residuals,
parametrised by σ.

A common function used in AAM alignment is the
L2-norm (Baker & Matthews 2002), in which case, the
data term takes the least squares form. However, in
some cases it may be beneficial to use a robust error
function to minimise the effects outliers in the data.
This is particularly important in model building as
regions which are not yet accounted for by the texture
model may deteriorate the estimate of the shape in
other parts of the image, leading to a non-compact
model. For the experiments presented in Section 5,
we use the Geman-McClure function:

ρ(r; σ) =
r2

σ2 + r2
, (14)

which has been used extensively for optical flow es-
timation (Black & Anandan 1993) (Blake, Isard &
Reynard 1994).

The choice of the scale parameter σ for robust er-
ror functions is always problematic as it depends on
the distribution of the residuals. One approach is to
use the assumption that the corresponding error func-
tions model the underlying distribution of residuals,
and find σ which best fits that distribution. However,
this usually leads to a complex non-linear estimation
process. Therefore, in our work, we assume a con-
taminated Gaussian distribution for the residuals. In
this framework, the estimate of σ can be derived from
the median value of the absolute residuals:

σ = 1.4826 med (E(x)) (15)

which has been claimed to have excellent resis-
tance towards outliers, tolerating almost 50% of
them (Sawhney & Ayer 1996).

3.4.2 The Smoothness Term

In automatic model building the landmarks should
be allowed to move freely to minimise the data term.
However, as the AAM’s shape consists of a pseudo-
dense set of landmarks, the dimensionality of the op-
timisation process is very large, which if not con-
strained is likely to get trapped in spurious local min-
ima. These minima usually correspond to implausible
shapes. As such, a smoothness term is required to en-
courage the model to deform smoothly.

The form of the smoothness constraint is depen-
dent on the visual object being modelled. The most
common of which is to penalise the magnitude of
the deformation of every landmark from a reference
shape, as was adopted in (Baker et al. 2004). The
problem with this approach is that it does not take
into account the spatial relationship between the de-
formation of landmarks. In this work, we penalise
only the difference between the deformation of land-
marks, similar to the smoothness constraint in vari-
ational optical flow estimation (Brox, Bruhn, Papen-
berg & Weickert 2004). The differences are weighted

by a smooth function of the landmark distances in a
predefined shape:

Cs =

n∑

i,j

kij‖d(i, j)‖2, (16)

where

kij =
exp

(
−‖x̂i−x̂j‖

2

2σ2
s

)

∑n

j exp
(
−‖x̂i−x̂j‖2

2σ2
s

) (17)

is a smoothing factor and

d(i, j) = [W(xi;p)− x̂i]− [W(xj ;p)− x̂j ] (18)

is the difference between landmark displacements,
with x̂k = W(xk ;p0) being the location of the kth

landmark in the predefined shape, parametrised by
p0. In most works utilising a smoothness measure,
the predefined shape is always set to the reference
shape (i.e. p0 = 0). The problem with this is that
it assumes the deformations are isotropic for all land-
marks. This type of smoothing does not fit the notion
of a linear shape class which is modelled by a degen-
erate Gaussian. In contrast, we set the predefined
shape as the initial shape in the alignment process.
Smoothing the deformations in an isotropic manner
starting from this shape better suits the form of the
shape model as it does not over constrain the over-
all highly anisotropic shape deformations whilst still
encouraging the landmarks to deform smoothly.

3.4.3 Optimisation

To optimise the cost function in Equation (11) we
adopt the Gauss-Newton method which is commonly
used for image alignment. To allow the use of the
robust error function in the Gauss-Newton optimisa-
tion procedure, the data term must be reformulated.
Since it contains no squared term, the derivation of
the parameter update requires a second order Taylor
expansion, akin to the Newton algorithm. Therefore,
following (Baker, Gross & Matthews 2003), we re-
place the data term in Equation (12) with:

Cd =
∑

x∈Ω

%
(
E(x)2; σ

)
(19)

and the reformulated robust error function:

%(r; σ) =
r

σ2 + r
(20)

This requires only that the error function is symmet-
ric, which is satisfied by the Geman McClure function.

With this reformulation, the Gauss-Newton Hes-
sian of the data term is given by:

Hd =
∑

x∈Ω

%′(E(x)2)Jd(x)T Jd(x) (21)

where %′(E(x)2) is the derivative of the reformulated
robust error function and

Jd(x) =

[
−∇I(W(x;p))

∂W(x;p)

∂p
,
∂t(x;q)

∂q

]
(22)

is the Jacobian of the data term. It should be
noted here that since we allow the landmark points
to move freely, the warping function W is directly
parametrised by the location of the landmarks (i.e.
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p = [x1; . . . ;xn]). Therefore, the distance measure in
Equation (18) is equivalent to:

d(i, j) = (xi − x̂i)− (xj − x̂j) (23)

This is in contrast to the usual AAM formulation
where the warp is parametrised by the magnitudes
of the modes of shape variation.

The Gauss-Newton Hessian of the smoothness
term is given by:

Hs =

n∑

i,j

kij

[
Jx(i, j)T Jx(i, j) + Jy(i, j)T Jy(i, j)

]

(24)
where the 2kth entry of the x smoothness term’s Ja-
cobian Jx(i, j) is given by:

Jx(i, j)2k =






1 if k = i
−1 if k = j
0 otherwise

, (25)

and similarly for the (2k + 1)th entry of Jy . For Jx,
entries at the (2k + 1)th locations are all zero, and
similarly for the 2kth locations of Jy. This simple
form, which affords a fast calculation of the Hessian
and gradient, is a result of optimising directly over
the landmark locations.

The parameter updates of the Gauss-Newton op-
timisation of Equation (11) then takes the following
form:

[
∆p
∆q

]
= −

[
Hd + η

[
Hs 0
0 0

]]−1 [
gd + η

[
gs

0

]]

(26)
where

gd =
∑

x∈Ω

%′(E(x)2)Jd(x)T E(x) (27)

gs =

n∑

i,j

kij

[
Jx(i, j)T dx(i, j) + Jy(i, j)T dy(i, j)

]

(28)

are the gradients of the data and smoothness term
respectively.

The optimisation process can usually be sped-
up by using the inverse compositional formula-
tion (Matthews & Baker 2003). By reversing the roles
of the model and the image in the data term, the
gradients of the data term can be precomputed and
hence a large proportion of computation needs to be
done only once. The extensions of the inverse compo-
sitional image alignment (ICIA) algorithm to robust
error norms was proposed in (Baker et al. 2003). With
this formulation, the Hessian of the data term cannot
be precomputed, despite the fixed gradients, as the
derivative of the robust error terms cannot be precom-
puted. Although an efficient approximation has been
derived by assuming spatial coherence of the outliers,
this implementation is not particularly effective for
automatic model building from databases as the im-
ages are generally occlusion free, with outliers stem-
ming mainly from misalignment, image noise, changes
in texture not yet accounted for by the texture model,
and interlacing effects. The presence of the smooth-
ness term means that the Hessian needs to be up-
dated and inverted at every iteration which is the
most costly part of the optimisation when there is
a large number of landmark points. Furthermore, for
the methods described in Section 4, the model is up-
dated after every image, requiring the gradients to
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Figure 2: Initialising points in lower levels of the
Gaussian pyramid. Top row: Warps at higher pyra-
mid level. Bottom: Landmarks at current pyramid
level.

be recomputed. Due to these factors, we predict that
using the ICIA formulation will not give dramatic im-
provements in efficiency and hence it was not incor-
porated into our implementation.

3.4.4 Gaussian Pyramid

Despite the use of the smoothing term, the optimi-
sation process may still converge to a local minimum
due to the high dimensionality of the problem. This
problem can be partially alleviated by optimising on
a Gaussian-pyramid.

There are issues however with regards to how
the shape is parametrised between the levels of the
pyramid. A pseudo-dense correspondence at the
lowest level of the pyramid may result in an over
parametrised model at the highest level of the pyra-
mid, which results both in a slow alignment process
as well as the higher likelihood of getting stuck in lo-
cal minima. Instead, in this work we build a separate
model for each level. Starting at the highest pyramid
level, a set of landmarks is chosen as described in Sec-
tion 3.3.1. With this, an automatic model building
process described in Section 4 is performed. Moving
down the pyramid, a new set of landmarks is chosen
from the reference image.

The propagation of these landmarks to other im-
ages is illustrated in Figure 2. First the landmarks
are downscaled to the previous pyramid level (bot-
tom to top left in Figure 2). Then the landmarks are
warped using the found correspondence for that level
(top row), and finally up-scaled back to the current
pyramid level (top to bottom right).

With the smoothness term described in Sec-
tion 3.4.2, the use of the Gaussian pyramid allows
a stiff regularisation parameter η to be used as the
movements of points at every level will be relatively
small. This in turn allows the optimisation process
to better avoid local minima.

4 Incremental Model Building

Most approaches to automatic model building can be
classed as groupwise, where a model is iteratively re-
fined from an initial estimate by first fitting it to each
image, followed by a reconstruction of a new model
from the fitted images. One of the drawbacks of this
approach is that it does not take into account the se-
quential nature of images in video. As such, its initial
estimate of the model may be far from the optimum,
which may cause the algorithm to converge slowly or
get stuck in local minima.

By assuming that the appearance of the visual ob-
jects varies slowly between consecutive frames in a
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sequence, the model building process can be posed as
a tracking problem. Although the complexity of the
warping function is much higher than most tracking
problems, which generally solve only for a similarity
or affine transform, the same mechanisms apply. We
start with an initial template, without loss of gen-
erality taken as the first image in the sequence, and
propagate the landmark positions to the other images
in the sequence through a consecutive alignment pro-
cess. Unlike typical tracking problems however, due
to the high dimensionality of the parameter space,
the alignment process must generally utilise gradient
based approaches as non-gradient methods such as a
particle-filters will be too computationally expensive
to evaluate.

One of the main difficulties associated with tem-
plate tracking is due to the changes in the object’s
texture throughout the sequence. Although this prob-
lem can be partially alleviated by using a robust error
function, as the sequence progresses the object’s tex-
ture may undergo significant changes such that treat-
ing them as outliers may lead to misalignment. One
solution to this problem is to update the template
using the texture from the previous frame. However,
simply replacing the texture with the most recent im-
age makes the algorithm prone to drifting. In this
work, we investigate the utility of two adaptable tem-
plate approaches for automatic model building from
image sequences.

4.1 Method 1: Grounded Templates

There are a number of approaches to the tem-
plate update problem which reduce the drifting phe-
nomenon, for example (Matthews, Ishikawa & Baker
2004) (Zhong, Jain & Dubuisson-Jolly 2000) (Loy,
Goecke, Rougeaux & Zelinsky 2000). In this work
we follow the approach of (Loy et al. 2000), where
the new template is defined as a weighted combina-
tion of the initial template and the texture from the
most recent image:

Tt(x) = αT0(x) + (1− α)Tt−1(x) (29)

The parameter α ∈ (0 . . . 1) is a grounding factor
which reduces the drifting effect whislt allowing the
template to adapt to the current object’s texture.

As the template is updated once before the align-
ment process in the next image, the optimisation pro-
cess needs only be done over the landmark locations.
Therefore, the Jacobian of the data term in Equa-
tion (22) for this method is simply:

Jd(x) = −∇I(W(x;p))
∂W(x;p)

∂p
(30)

and the Gauss-Newton update in Equation (26) is
now given by:

∆p = − [Hd + ηHs]
−1

[gd + ηgs] (31)

The output of the template matching algorithm is a
set of corresponding annotations in every image in
the sequence, from which an appearance model can
be built in the usual manner.

4.2 Method 2: Incremental Texture Learning

One of the weaknesses of the template update ap-
proach is that it takes into account only the initial and
most recently encountered textures. As such it makes
no use of the knowledge of the variations in texture
which have been encountered earlier in the sequence.
One possibility to incorporate this information is to

perform an incremental model building process as the
object is tracked throughout the sequence.

For this algorithm we utilise incremental PCA (Li
2004) to update the model, rather than the template,
after matching to every new image. Starting with the
template of the first image, we match it to the next
image using the approach described in Section 4.1.
Some of the variations captured as outliers may in
fact be intrinsic variations of the object rather than
just image noise. The texture of the newly aligned im-
age is then used as a new data instance for the linear
model, for which incremental PCA is used to integrate
it into the model. The amnesic factor (a weighting be-
tween the current model and the new data instance)
is set to n

1+n
, where n is the number of samples used

to build the current model, so that every sample inte-
grated into the model is given the same importance.
See (Li 2004) for details.

Once the model exhibits some linear modes of vari-
ation apart from the mean, matching to the next im-
age should be done by simultaneously updating the
landmark locations and the texture parameters q us-
ing the update equations described in Section 3.4.3.
This way, images which exhibit texture variations pre-
viously encountered in the sequence will be matched
better than using a fixed template. Again, the data
term is formulated using the robust error function to
account for texture variations not yet encountered in
the sequence.

5 Experiments

5.1 The AVOZES Database

AVOZES (Goecke & Millar 2004), the Audio-Video
Australian English Speech data corpus, is a database
of 20 speakers uttering a variety of phrases which was
designed for research on the statistical relationship
of audio and video speech parameters with an audio-
video automatic speech recognition task in mind. Al-
though sparse annotations for the vital mouth points,
such as lip corners, are available, these points are
chosen manually and represent only a heuristic in-
tuition about their usefulness for automatic speech
recognition. A more elaborate set of cues may be
useful for audio-video speech recognition which may
not be directly obvious. AAMs, which encode both a
pseudo-dense set of landmark points as well as texture
variations, provide a rich set of features to a speech
recognition system which may allow better recogni-
tion rates to be achieved. An intensive study of the
application of AAMs in this domain can be found
in (Neti, Potaminos, Luettin, Matthews, Glotin &
Vergyri 2001).

In our experiments we used the continuous speech
sequences for each of the speakers exclusively. The
continuous speech part of AVOZES consists of three
sequences, each with a different phrase. The length
of all sequences range from 90 to 150 frames. As
the video files in the database consist of a stereo pair,
warped to half the height, we used only part of the se-
quence pertaining to the left camera, which we scaled
to the true ratio.

For each of the speakers, we performed both of
the image based correspondence methods described in
Section 4 on all three sequences together. Since there
may be large differences between the start and end
of different sequences of the different phrases, we find
the image which is most similar in the later two se-
quences to an image in the first sequence. After track-
ing through the first sequence the model is tracked in
the other sequence starting from the most similar im-
age found previously, initialising the shape estimate
to the corresponding image in the first sequence. The
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Figure 3: Shape and texture model compactness for
every speaker in AVOZES. The models were built
from correspondences found using the grounded tem-
plate method with three settings of the regularisation
parameter η = {1, 10, 100}.

tracking process in these other sequences is performed
forwards and backwards until the beginning and end
of the sequences respectivley. From the resulting cor-
respondences, the compactness of the shape and tex-
ture models are calculated as described in Section 3.2.
The experiments were repeated for a number of set-
tings of the smoothing parameter η.

5.2 Results

In Figure 3 and 4, histograms of the shape and tex-
ture model compactness of each of the speakers in
the AVOZES database built from correspondences ob-
tained using the methods described in Section 4.1 are
shown for three different settings of the regularisation
parameter η. Comparing the two methods, the shape
compactness differs little between them. The main
difference lies in the texture compactness, where the
incremental texture learning method generates mod-
els which are around twice as compact for most speak-
ers compared to the grounded template method. As
discussed in Section 4.2, this result is expected as
the incremental texture learning retains memory of
previously encountered texture variations. Also, as
the alignment process may contain errors which may
accumulate throughout the sequence, this approach
is more constrained to valid texture instances rather
than just the first and most recently encountered tex-
ture, which may be erroneous.

Studying each method independently, as expected
the compactness of the shape model improves as η is
increased. Perhaps somewhat more surprisingly, the
texture model’s compactness is effected little by the
different settings of the regularisation parameter. We
attribute this to the fact that the texture model is
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Figure 4: Shape and texture model compactness for
every speaker in AVOZES. The models were built
from correspondences found using the incremental
texture learning method with three settings of the
regularisation parameter η = {1, 10, 100}.

evaluated in a reference frame. The effect of this is
that for groups of landmarks which correspond to flat
parts of the image, their movements contribute little
to the change in the texture when projected onto the
reference frame. As such, shapes with significantly
different landmark locations in these flat regions may
result in very similar texture. An example of this is
shown in Figure 5. Landmarks in flat regions are more
likely to be perturbed by image noise and hence, for
the same texture compactness, the model with better
shape compactness is generally a better model.

From the correspondences in each image, found
using the incremental texture learning method with
η = 100, we built a combined appearance model (see
Section 3.1) using every 10th image in the sequences.
The mean and first mode of variation on all speak-
ers are shown in Figure 7 and 8. Although the cor-
respondences appear to be of high quality in most
speakers, observed through the crispness of the im-
ages, there are a few for which the tracking method
seemed to have failed to obtain the correct corre-
spondences across the sequences. In particular, the
f7 and m5 speakers are particularly poor, where the
first mode of variation seems to entail the presence
or disappearance of visual artefacts. Referring to the
texture compactness histograms in Figure 3 and 4 it
can be seen that these two speakers exhibit the least
compact model out of the database by a significant
margin.

It is clear that in these cases, the tracking pro-
cess used to find the correspondences failed signifi-
cantly in parts of the image, resulting in the texture
model needing to account for variations due to mis-
alignment rather than intrinsic texture variations of
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Figure 5: Two shapes with significant landmark
differences in flat regions exhibiting similar texture
when projected to the reference frame. Top: Shape
difference. Middle: Shapes of two images. Bottom:
Texture projections onto the reference image.

the speaker. On closer inspection, we found that these
two speakers exhibited significant motion towards the
camera during some parts of the sequences. Example
images from these sequences are shown in Figure 6.
As such, significant parts of the background are oc-
cluded when the speakers are close to the camera, but
reappear when they are further from it. Because the
background exhibits some strong texture and colour
variations (see the white strip behind the speaker’s
heads), the disappearance/emergence of these areas
perturb the alignment process significantly, despite
using a robust error function.

As models of the other speakers, which exhibit rel-
atively small amounts of head movement, were able to
be built compactly, we suspect that databases which
exhibit a uniform background to not exhibit this prob-
lem. However, in cases where this is not practical,
one solution would be to initialise the feature points
within the face region exclusively, either using a man-
ual crop in the first image or using some type of skin
colour detector. It should be noted however, that the
accuracy of the alignment around the peripheral of
the face using this approach may be inferior to that
which encodes background.

As a final note, although the methods tested
here have shown to give reasonably compact mod-
els when no significant visual artifacts disappear or
emerge throughout the sequence, because the corre-
spondences are obtained in a pairwise manner the
model quality may be improved through a groupwise
method. In fact, the methods discussed in this work
can be used as a good initialisation for groupwise
methods which will encourage faster convergence and
help avoid local minima.

Figure 6: Images from the f7 and m5 speakers which
illustrate the large differences in scale affecting con-
tent in the images.

6 Conclusion

In this work, we have investigated the utility of
adaptive tracking methods for automatically build-
ing pseudo-dense correspondences across a sequence
of a deformable object, with an AV database as a test
case. We compared two methods, the grounded tem-
plate and incremental texture learning method, mea-
suring their performance through a shape and texture
compactness measure as well as a qualitative analysis
of the resulting linear models of variation.

Through extensive experiments we have shown
that this approach can be used to build highly com-
pact models of a linearly deforming object which in-
cludes the background in the image. We also found
that if the background exhibits significant texture,
despite being static, movements of the object which
causes these textured regions to be occluded or new
textured regions to appear later in the sequence, sig-
nificantly degrades the performance of this method.
However, we suspect that this is a problem exhib-
ited by most image based correspondence methods
which utilise diffeomorphic warps and do not explic-
itly model the disappearance or emergence of visual
artifacts.

Future work on extending this method might in-
volve investigations into efficiency gains of using the
inverse compositional formulation, evaluating align-
ment error in the image rather than reference frame,
and extensions to incremental shape model learn-
ing. Although the methods investigated in this paper
and their possible extensions allow significant savings
on human intervention, requiring only one manual
markup per speaker, for large databases containing
thousands of sequences this approach may be infeasi-
ble. The much more difficult problem of finding corre-
spondences across sequences of different instances of
the same object class (different speakers in AVOZES,
for example) remains an open problem.
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speakers in AVOZES, varied between ± three stan-
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Figure 8: The first mode of variation of the male
speakers in AVOZES, varied between ± three stan-
dard deviations.
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Abstract

In this paper we use optical flow to initialise step sizes
in a stochastic optimisation setting for hand tracking.
One can appreciate that most complex hand gestures
result in different segments of the hand moving at dif-
ferent speeds. We show that by reflecting this motion
difference in our step size initialisation process, the
tracking performance can be improved. Significant
improvement to tracking accuracy has been observed
for gripping motions of the hand.

Keywords: Hand tracking, SMD, Step size initialisa-
tion.

1 Introduction

Research into the tracking of articulated structures,
such as the human body or the hand, has tradition-
ally been spurred on by interests from the movie an-
imation industry and the sports analysis community.
However, with the advent of faster and cheaper com-
puters, the prospect of an inexpensive motion capture
system is becoming a realistic possibility for the aver-
age consumer. Consequently this type of technology
has direct applications to the field of human computer
interaction (HCI) as a new medium with which users
can interact with computers, such as through natural
gestural movements. Sign language recognition for
example is an aspect of HCI where hand tracking is
applicable to (Holden et al. 2005).

Approaches to the tracking of articulated struc-
tures are wide and varied. Some use monocular im-
ages whilst others employ multiple views. Tracking
in monocular images tends to be more difficult due to
ambiguities arising from using just one camera view.
Appearance-based approaches are often used (Holden
& Owens 2003) although model based approaches
have also been employed (Sminchisescu 2002).

Tracking with multiple views generally uses a
model based approach since 3D information can be
readily extracted. Techniques used include model
fitting to volume reconstruction data obtained from
multiple views (Kehl et al. 2005), silhouette fitting
from multiple views (Carranza et al. 2003) and even
3D motion field reconstruction (Theobalt 2004).

∗National ICT Australia Limited is funded by the Australian
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Technology and the Arts and the Australian Research Coun-
cil through Backing Australia’s Ability and the ICT Centre of
Excellence Program
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There are many challenges in tracking articulated
structures. Fast limb movements, and self occlusion
due to overlapping limbs can be problematic. An-
other issue is how to robustly optimise over a kine-
matic chain of joints. Difficulty arises when multiple
joints along the kinematic chain can produce simi-
lar limb movements creating ambiguity. A commonly
employed method to solve this is hierarchical tracking
whereby each segment or a subset of segments from
the articulated body is optimised separately, starting
from the base joint (Carranza et al. 2003) (Kehl et
al. 2005).

As opposed to tracking subsets of the hand one at
a time which can be slow, our tracking system opti-
mises the hand model parameters all at once. How-
ever, as shown later, doing this directly is prone to
instability for harder motions such as a hand grip.
This paper proposes a simple method of using optical
flow information to initialise the starting step sizes
for our optimisation algorithm. Applying this helps
the system track gripping motions better while still
allowing the hand parameters to be optimised all at
once.

The paper is structured as follows; section 2 de-
scribes the tracking system with particular reference
to the chosen hand model, cost function and the
stochastic optimisation algorithm SMD (Schraudolph
1999). Section 3 addresses the method of incorporat-
ing optical flow information into step size initialisa-
tion. Results and discussion are presented in section
4 and 5 respectively. A conclusion is given in section
6.

2 Tracking System

A pair of calibrated SONY XCD-X710CR firewire
cameras is used to acquire images of a human hand.
The calibrated cameras are orientated in a convergent
setup around the hand. Video sequences are captured
at a resolution of 640x480 pixels and at 30 frames per
second. For simplicity, a black background is used for
silhouette extraction via background subtraction.

The actual tracking follows a model based ap-
proach in a stochastic optimisation framework.
Points are sampled from the surface of the hand model
and projected onto the image planes. Stratified sam-
pling is used to ensure that the sample set contains
points from each of the articulated segments in the
hand model. The brightness constancy assumption
between the pair of images and the silhouette infor-
mation in each image define a cost function. Given
that the projection of a 3D sample point lands on a
pixel for each camera image plane, the cost for that
particular sample point can be evaluated. The cost
function itself will be mentioned later albeit briefly.
A more detailed description of this will be reported
elsewhere.

Each cost evaluation produces gradients that are
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then backpropagated into the parameter space of the
hand model. Given the gradients in the parameter
space, the stochastic meta-descent algorithm (SMD)
is used to minimise the cost. This paper will be
concentrating on the step size initialisation aspect of
SMD.

2.1 Hand Model

A realistic articulated hand model is used in the track-
ing system. The model’s skeletal structure has 26 de-
grees of freedom (DOF) consisting of 16 joints (see
figure 1). The base joint of the hand has 6 DOFs.
Each digit of the hand has 4 DOFs; 2 DOFs in the
MCP joints to account for the spread and bending of
fingers, and 1 DOF in the PIP and DIP joint for bend-
ing. Similarly the thumb has 2 DOFs at the CMC
joint, 1 DOF each for MCP and IP. Euler angles are
used to parameterise the rotations for all joints.

Figure 1: Hand model showing the 16 joint locations.

The skin of the hand is modeled by a detailed mesh
containing approximately 9000 vertices. Linear skin
blending is used to bind the skin onto the skeleton
and allows for realistic deformation near joint regions
(Lewis et al. 2000).

2.2 Cost Function

Let w be the set of hand parameters ie. the Euler
angles at each joint and 3 DOFs for the translation
at the palm joint. The overall cost function E(w)
is evaluated by first taking N sample points from the
hand model and projecting them onto the two camera
image planes.

Let p1,i and p2,i be the pixel coordinates where
the ith sample point of the hand model has been pro-
jected onto for camera 1 and camera 2 respectively.
Assigned to each pixel coordinate pj,i is a bright-
ness value I(pj,i) and a silhouette cost value SI(pj,i).
These are used to describe the overall cost function.
Note that p2,i and p1,i depend on the set of hand pa-
rameters w. Hence by the chain rule, both I and SI
are dependent on w.

E(w) comprises of two parts, a silhouette cost
function Es(w) and a cost function using the bright-
ness constancy assumption Ebc(w), each of which is
computed as a sum of contributions from individual
sample points, Es(w)i and Ebc(w)i respectively. Let
α be a scaling factor for Es(w). Then the overall cost
function E(w) we wish to minimise is

E(w) = argmin
w

1
N

N∑

i

(αEs(w)i + Ebc(w)i) (1)

2.2.1 Silhouette

Silhouette information is used as a global constraint
on the region which the projected hand model can
occupy for each of the camera views.

As mentioned, the silhouette of the hand is ob-
tained via background subtraction. A generalised dis-
tance transform is performed over the silhouette im-
age that assigns to each pixel a value SI based on the
pixel’s proximity to the hand silhouette. The silhou-
ette cost function is just SI of the pixel where the
sample point on the hand is projected onto summed
over M = 2 camera views,

Es(w)i =
M=2∑

j

SI(pj,i). (2)

2.2.2 Brightness Constancy Assumption

The brightness constancy assumption is used for local
fine tuning by resolving pose ambiguities in silhouette
information.

Let I1,i and I2,i be the brightness intensity at p1,i
and p2,i. Then the brightness constancy cost function
is given as,

Ebc(w)i =
1
2
||I1,i − I2,i||2. (3)

2.3 Optimisation Algorithm

The tracking system uses stochastic meta descent
(SMD) as its optimisation algorithm (Schraudolph
1999). SMD is a stochastic gradient descent algo-
rithm with a clever step size adaptation scheme. SMD
excels as an optimisation algorithm for noisy cost
functions by compromising between the robustness
of first order steepest gradient descent with the fast
convergence rate of second order gradient descent al-
gorithms.

Our cost function exhibits sampling noise since
only a finite set of points on the hand model is used
to evaluate the cost function. Therefore the cost
obtained is only an approximation of the true cost.
There is also discretisation noise introduced by the
evaluation of image gradients (computed using So-
bel filters) and measurement noise from the camera.
SMD has mechanisms to deal with these effects by
taking into account the past history of step sizes in
order to dampen erratic changes in the cost.

The following is a brief summary of SMD. Let wt
be the vector of hand parameters at time t. In addi-
tion, let gt be the gradient of the cost function with
respect to the hand parameters, and pt be the vector
of step sizes. Firstly, the step size pt is updated by a
meta step size scalar µ and an auxiliary vector vt in
the following way:

pt+1 = pt ·max(
1
2

,1 + µvt · gt), (4)

where · denotes the Hadamard (component-wise)
product.

Then the update of the hand parameters wt+1 is
given as

wt+1 = wt − pt+1 · gt. (5)
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The auxiliary vector vt can be thought of as an
exponential average of the past history of step sizes
and also incorporates the curvature information of the
cost function through the Hessian matrix Ht. Let
0 ≤ λ < 1 be the decay factor for the exponential
averaging. Then vt is updated by

vt+1 = λvt + pt+1 · (gt − λHtvt). (6)
Note that the hessian itself need not be calcu-

lated directly since it is only the hessian vector prod-
uct Htvt that is required. There are faster meth-
ods available for calculating hessian vector products
(Schraudolph 2001).

Typically for the starting frame of a video sequence
at iteration t = 0, w0 is determined by manually fit-
ting the hand model onto the hand images. v0 is
initialised to 0 and p0 is set to a uniform step size.
The same procedure follows for the next video frame
except w0 is carried over from the last frame. This
paper focuses on the effects of setting p0 using optical
flow.

2.3.1 Imposing Constraints

Constraints on the hand parameters are handled in
SMD by mapping any outlying parameters back onto
the feasible region (Bray et al. 2005):

wc
t+1 = constrain(wt+1) (7)

This change must be somehow reflected in vt+1 and
consequently the next step size evaluation pt+2. This
is done by calculating the hypothetical constrained
gradient gc

t given by

gc
t =

wt −wc
t+1

pt+1
, (8)

and using this constrained gradient in the vt update
(6). In effect, this modification completely replaces
the iteration step that moves wt+1 out of bounds with
one that moves wt+1 onto the bound.

3 Step Size Initialisation

The articulated motion of a hand can be difficult
to track. Part of the difficulty lies in the relatively
high dimensionality of the parameter space. A typical
problem arises when multiple joints can each induce
the same effect. For example, a bending movement
at the tip of a finger can be the result of z-rotations
of any joint along the kinematic chain. Tracking ac-
curacy then becomes an issue of how to best balance
the contributions from all possibly affecting joints.

Favoring certain joints to rotate more than the rest
can be achieved by varying the step size. Intuitively,
increasing the step size for a given parameter causes a
larger parameter change in the parameter update, and
conversely decreasing the step size inhibits parameter
change. As mentioned, SMD already has an auto-
mated step size adaptation process that takes care of
finding optimal step sizes over the length of iterations
for a given video frame. What the results of this pa-
per suggest is that it is helpful to initialise SMD with
appropriate starting step sizes.

The rationale for using optical flow as a cue for
step size initialisation is straightforward; many ar-
ticulated movements of the hand such as gripping in-
volve various segments moving at different speeds (see
figure 2). A joint associated to a segment that is not
moving as fast as the rest should have a reduced step
size. By observing the optical flow in the scene, one
can determine which parts of the hand are moving
more than others and adjust the initial set of step
sizes accordingly.

3.1 Optical Flow

Optical flow is used as an approximate observation of
the movement at various segments of the hand and is
calculated by applying the Horn & Schunk algorithm
(Horn & Schunck 1981).

In this algorithm, optical flow is calculated by the
minimisation of two constraint terms. One is known
as the optical flow constraint equation ec, and the
other is the smoothness constraint term es. Let u and
v be the x and y components of the optical flow in
the image. In addition, let Ex, Ey, Et be the change in
brightness with respect to x, y and time t respectively.
Then,

ec =
∫ ∫

(Exu + Eyv + Et)2dxdy, (9)

and

es =
∫ ∫

(
∂u

∂x
)2 +(

∂u

∂y
)2 +(

∂v

∂x
)2 +(

∂v

∂y
)2dxdy. (10)

Let λopt be a scaling factor. The total error eopt
being minimised over u and v to determine optical
flow is

eopt = es + λoptec (11)

Figure 2: Differing amounts of optical flow under a
gripping hand motion.

3.2 Step Size Initialisation Method

Step size initialisation requires the optical flow for
each segment of the hand to be calculated. The hand
model is divided into 16 (1 for the palm and 3 for
each digit) segments, where each segment contains a
joint. To obtain an estimate of the optical flow of a
particular segment, Q sample points belonging to the
segment are projected onto the camera image plane.
Let |oi| be the magnitude of the optical flow vector o
at the pixel where the ith sample point is projected
onto. Then the optical flow Ok of a joint segment k
is taken as:

Ok =
1
Q

Q∑

i

|oi|. (12)

If the optical flow for a given segment k is below
the noise threshold Tn > 0, then the joint is consid-
ered to be stationary and the step sizes for the param-
eters of that joint are decreased. Let s be the default
value that each parameter step size is initially set to
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Figure 3: Gripping movement over 15 frames. (top) uniform step size (bottom) using optical flow for step size
initialisation.

and let pk be the step size vector of all the parame-
ters that control joint k. In addition, let 0 < β < 1
be a scaling factor. Then,

pk =
{

s, Ok > Tn
βs, otherwise (13)

The next stage in step size adjustment is compar-
ing the optical flow in the palm with each digit. If the
optical flow ratio between a digit (the optical flow of
a digit is taken as the average of the optical flow of
the 3 segments belonging to the digit) and the palm
is higher than a certain threshold Tf > 1, then it is
likely that the digit is going into a bending or flexing
motion. Therefore one would increase the step sizes
of all the parameters controlling the digit. Otherwise
one would decrease the step sizes as the perceived
movement of the digit is likely to be due to rotations
and translations of the base joint in the palm.

Let pd be the step size vector of all the parameters
that control digit d. In addition let Od and Op be
the optical flow of digit d and the palm respectively.
Then,

pd =
{

pd
Od

Tf
, Od

max(Op,Tn) > Tf

βpd, otherwise
(14)

4 Results

All experiments have been performed over a set of
short video sequences under different forms of hand
movements: gripping, spinning and translating move-
ments. Each video sequence is first processed by the
tracking system with a uniform step size initialisation.
The initial hand pose for the first frame is estimated
by eye. The α scaling factor for the silhouette cost
function is set to 3.5. The SMD parameters µ and λ
are set to 0.1 and 0.7 respectively. Each frame has
been allowed to be optimised over a maximum of 100
SMD iterations. Approximately 150 sample points
are used per iteration. Repeated testings are then
used to determine an optimal step size value that is
applied to all p0 entries in SMD. p0 is found to be
optimal between 0.2 - 0.4.

Keeping the same settings except for p0, the same
set of experiments are repeated with step size initial-
isation using optical flow. The default step size s is
set to 0.5 and the decrease scaling factor β is set to
0.6. Tn and Tf are set to 0.12 and 4.6 respectively.

A scaling factor λopt = 0.001 has been used for the
computation of optical flow.

The effect of using optical flow for step size initial-
isation is most apparent for the gripping motion while
there is no improvement to hand movements due to
rotations or translations of the palm joint alone.

In the case of the gripping motion (see figure
3), it appears that without step size initialisation
the tracker has difficulty determining the required
amount of movement for each joint to follow through
the motion. Errors accumulated over the frames cause
the tracker to lose the pose altogether in the final
frame. Whereas using optical flow for step size ini-
tialisation allows the tracker to follow the gripping
motion better.

As expected for the spinning case (see figure 4),
step size initialisation using optical flow does not help
in resolving ambiguities due to severe self occlusion.

The effect on translating motion (see figure 5) is
generally not significant, though there is worse perfor-
mance at the tips of the thumb and the little finger.
This is likely due to the step size for those joints being
set too high.

5 Future Improvements

There is ample room for further refinements to the
step size initialisation scheme. One can perhaps take
into account the direction of optical flow. For ex-
ample, when rotating around the x-axis for the palm
joint (rotating around the x-axis causes the hand to
spin in figure 4), opposing sides of the palm have op-
posing flow directions. Similarly, a change in depth
along the camera view will induce components of op-
posing flow directions in each hand segment. These
patterns can be best learnt in an ICA (independent
component analysis) framework. In addition, step
sizes along each hand digit can be refined properly
by taking into account the kinematics of the linked
joints of the digit. At present, we are working on cre-
ating rendered camera images of the hand by simulat-
ing hand movements in OpenGL to provide a ground
truth assessment of the tracking accuracy.

6 Conclusion

The notion of utilising the motion of segments of the
hand as additional information for step size initiali-
sation has been proposed here. Optical flow has been
used as an observation of this movement seen on the
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Figure 4: Spinning movement over 15 frames. (top) uniform step size (bottom) using optical flow for step size
initialisation.

Figure 5: Translating movement over 15 frames. (top) uniform step size (bottom) using optical flow for step
size initialisation.

camera image planes. Step sizes of parameters as-
sociated to a particular skeletal joint are altered by
comparing the relative motion of different segments
of the hand model. Despite the simplicity of the cur-
rent approach to step size initialisation, using optical
flow information has proved to be highly efficient in
improving tracking performance for gripping motions.
Future improvements are planned to refine these step
size adjustments in a more vigorous manner.
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Abstract

Aiming at the use of hand gestures for human-
computer interaction, this paper presents an ap-
proach to identify hand gestures using muscle activity
separated from electromyogram (EMG) using inde-
pendent component analysis. While there are a num-
ber of previous reported works where EMG has been
used to identify movement, the limitation of the ear-
lier works is that the systems are suitable for gross
actions, and when there is one prime-mover muscle
involved. This paper reports overcoming the difficulty
by using independent component analysis to separate
muscle activity from different muscles and classified
using backpropogation neural networks.The paper re-
ports experimental results where the system was ac-
curately able to identify the hand gesture using this
technique for all the experiments (100%). The system
has been shown not to be sensitive to electrode po-
sition as the experiments were repeated on different
days. The advantage of such a system is that it is easy
to train by a lay user, and can easily be implemented
in real time after the initial training.

Keywords: Independent Component Analysis (ICA),
Surface Electromyography (SEMG), Root Mean
Square (RMS).

1 Introduction

In recent years, hand gesture recognition has be-
come a very active research theme because of its po-
tential use in human- Computer interaction (HCI).
Identification of hand gesture has numerous hu-
man computer interface (HCI) applications related
to controlling machines and computers. Some of the
commonly employed modalities include vision based
systems (Schlenzig, Hunter & Jain 1997, Rehg &
Kanade 1994), mechanical sensors (Pavlovic, Sharma
& Huang 1997), and the use of electromyogram, an in-
dicator of muscle activity (Cheron, Draye, Bourgeios
& Libert 1996, Koike & Kawato 1996). Surface Elec-
tromyogram has an advantage of being easy to record,
and is non-invasive.

Surface Electromyogram (SEMG) is a result of the
spatial and temporal integration of the motor unit
action potential (MUAP) originating from different
motor units. It can be recorded non-invasively and
used for dynamic measurement of muscular function.
It is typically the only in vivo functional examination

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at HCSNet Workshop on the Use of Vision in
HCI (VisHCI 2006), Canberra, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
56. R. Goecke, A. Robles-Kelly & T. Caelli, Eds. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

of muscle activity used in the clinical environment.
The analysis of EMG can be broadly categorised into
two;

• Gross and global parameters.

• Decomposition of EMG into MUAP.

Hand movement is a result of complex combination
of multiple muscles. While Djuwari et al. (Djuwari,
Kumar, Polus & Raghupathy 2003) have reported
success in the use of multiple channels SEMG record-
ing for the purpose, but the system is sensitive to the
location of the electrodes and suitable for five dis-
crete movements only. The cross-talk that exists due
to multiple overlapping muscles in the forearm makes
the system sensitive to the inter-subject variability
and this problem is more significant when the muscle
activation is relatively weak.To identify the movement
and gesture of the hand more precisely, it is important
to identify the muscle activity of each of the muscles
responsible for the action. Similarity in the spectrum
and other properties of the activity from the differ-
ent muscles makes the separation of these difficult.
There is a need to separate the muscle activity origi-
nating from different muscles. With little or no prior
information of the muscle activity from the different
muscles, this is a blind source separation (BSS) task.

Independent component analysis (ICA) is an iter-
ative BSS technique that has been found to be very
successful in audio and biosignal applications. ICA
has been proposed for unsupervised cross talk removal
from SEMG recordings of the muscles of the hand
(Greco, Costantino, Morabito & Versaci 2003). Re-
search that isolates MUAP originating from different
muscles and motor units has been reported in 2004
(Nakamura, Yoshida, Kotani, Akazawa & Moritani
2004). A denoising method using ICA and high-pass
filter banks has been used to suppress the interfer-
ence of electrocardiogram (ECG) in EMG recorded
from trunk muscles (Yong, Li, Xie, Pang, Yuzhen &
Luk 2005). Muscle activity originating from different
muscles can be considered to be independent, and this
gives an argument to the use of ICA for separation of
muscle activity originating from the different muscles.
This paper proposes the use of ICA for separation of
muscle activity from the different muscles in the fore-
arm to identify the hand action.

ICA is an iterative technique where the only model
of the signals is the independence, and the distribu-
tion. The outcome of ICA is that the signals are
separated without there being any information of the
order of the sources. While this difficulty is gener-
ally not consequential for audio signals, this would be
of concern while working with muscle activity. The
spatial location of the active muscle activity is the
determining factor of the hand gesture. To overcome
this difficulty, one approach that has been reported is
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the use of prior knowledge of the anatomy. The ad-
vantage of this approach is the model based approach
that provides a well defined muscle activity pattern.
The difficulty with this approach is the need for well
defined location of the electrodes.

2 Hand gesture identification for HCI

In our daily lives we interact with other people and
objects to perform a variety of actions that are im-
portant to us. Computers and computerised ma-
chines have become a new element of our society.
They increasingly influence many aspects of our lives.
Human-computer interaction is an area concerned
with the design, and implementation of interactive
computing systems for human use and with the study
of major phenomena surrounding them.

The use of hand gesture provides an attractive al-
ternative to cumbersome interface devices for human
computer interaction applications. Human hand ges-
tures are a mean of non verbal interactions among
people. They range from simple actions of point-
ing at objects and moving them around to the more
complex ones that express our feelings or allow us
to communicate with others. The HCI interpretation
of gestures requires dynamic and or/static configura-
tions. Of the human hand, arm and sometimes, body
be measurable by the machine. Hand gestures are a
new mode for HCI. Visual interpretation of hand/arm
movements carries a tremendous advantage over other
techniques that require the use of mechanical trans-
ducers. It is not obstructive. Numerous approaches
have been applied to the problem of visual interpre-
tation of gestures for HCI. Many of those approaches
have been chosen and implemented so that they fo-
cus on one particular aspect of gestures: Hand track-
ing, pose classification, or hand posture interpreta-
tions (Schlenzig, Hunter & Jain 1997, Rehg & Kanade
1994).

Recently a number of approaches based on hand
gesture identification have been proposed for human
computer interaction. Wheeler et. al. demonstrated
that neuroelectric joy sticks and key boards can be
used for HCI (Wheeler & Jorgensen 2003). Trejo et.
al. (Trejo et. al. 2003)developed a technique for multi
modal neuroelctric interface. The most recent work
includes the investigation of eleven normally limbed
subjects (eight males and four females) for six distinct
limb motions: wrist flexion, wrist extension, supina-
tion, pronation, hand open, and hand close. Each
subject underwent four 60-s sessions, producing con-
tinuous contractions (Chan & Englehart 2005).

A number of efficient solutions to gesture input in
HCI exist, such as:

• Restrict the recognition situation.

• Use of input devices (e.g. data glove).

• Restrict the object information.

• Restrict the set of gestures.

In traditional HCI, most attempts have used some
device, such as an instrumented glove, for incorporat-
ing gestures into the interface. If the goal is natural
interaction in everyday situations this might not be
acceptable. Vision based approach to hand-centered
HCI has been proposed in recent years. However, a
number of applications of hand gesture recognition for
HCI exist, using Computer vision technique. Mostly
they require restricted backgrounds and camera posi-
tions, and a small set of gestures, performed with one
hand (Pavlovic, Sharma & Huang 1997).

In this report we propose Hand gesture identi-
fication which uses the prior knowledge of muscle

anatomy. This is a model based approach that pro-
vides a well defined muscle activity pattern.

3 Surface Electromyogram

SEMG is a non-invasive recording of the muscle activ-
ity and finds application in sports training, rehabili-
tation, machine and computer control, occupational
health and safety, and for identifying posture dis-
orders. There is a near linear relationship between
RMS of SEMG and the finger flexion-extension - sug-
gesting the use of SEMG for bio-control for anthro-
pomorphic tele-operators and Virtual Reality enter-
tainment (Gupta & Reddy 1996). There is useful in-
formation of the posture from the muscle activity of
the lumbar muscles. SEMG amplitude and frequency
have been investigated as indicators of localized mus-
cular fatigue. Amplitude and spectral information
of EMG have also been exploited to estimate force
of muscle contraction and torque (Moritani & Muro
1987).These applications require automated analysis
and classification of SEMG.

SEMG may be affected by various factors such as:

• The muscle anatomy (number of active motor
units, size of the motor units, the spatial dis-
tribution of motor units).

• Muscle physiology (trained or untrained, disor-
der, fatigue).

• Nerve factors (disorder, neuromuscular junc-
tion).

• Contraction (level of contraction, speed of
contraction,isometric/non-isometric, force gener-
ated).

• Artefacts (crosstalk between muscle, ECG inter-
ference).

• Recording apparatus factors (recording-method,
noise, electrode’s properties, recording sites).

The anatomical/ physiological processes such as
properties and dimensions of tissues, and force and
duration of contraction of the muscle are known to
influence the signal. SEMG is also influenced by onset
of muscle fatigue, and contraction of other muscles in
the close vicinity. Each of the factors can be used as a
criterion to categorise the input signal.One property
of the SEMG is that the signal originating from one
muscle can generally be considered to be independent
of other bioelectric signals such as electrocardiogram
(ECG), electro-oculargram (EOG), and signals from
neighbouring muscles. This opens an opportunity of
the use of independent component analysis (ICA) for
this application.

4 Basic Principles of Independent Compo-
nent Analysis (ICA)

It is often required to separate the original signals
from the mixture of signals, when there is little infor-
mation available of the original signals and there is an
overlap of the signals in time and frequency domain.
Even if there is no or limited information available of
the original signals or the mixing matrix, it is possi-
ble to separate the original signals using independent
component analysis (ICA) under certain conditions.
ICA is an iterative technique that estimates the statis-
tically independent source signals from a given set of
their linear combinations. The process involves deter-
mining the mixing matrix. The independent sources
could be audio signals such as speech, voice, music,
or signals such as bioelectric signals.
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Independent Component Analysis is a technique
for extracting statistically independent variables from
a mixture of them.ICA searches for a linear transfor-
mation to express a set of random variables as lin-
ear combinations of statistically independent source
variables (Comon 2001). The criterion involves the
minimization of the mutual information expressed
as a function of high order cumulants. ICA sepa-
rates signals from different sources into distinct com-
ponents. The technique is based on unsupervised
learning rules where reduction of mutual information
and increase in Gaussianity are the cost functions.
Given a set of multidimensional observations, which
are a result of linear mixing of unknown independent
sources through an unknown mixing source, ICA can
be employed to separate the signals from the different
sources. The independent sources may be sources for
audio signals such as speech, voice, music, or signals
such as bioelectric signals. If the mixing process is
assumed to be linear, it can be expressed as

x = As (1)
where x = (x1, x2, ..., xn) is the recordings, s =

(s1, s2, ..., sn) the original signals and A is the n x n
mixing matrix of real numbers. This mixing matrix
and each of the original signals are unknown. To sep-
arate the recordings to the original signals, an ICA
algorithm performs a search of the un-mixing matrix
W by which observations can be linearly translated
to form Independent output components so that

s = Wx (2)
For this purpose, ICA relies strongly on the sta-

tistical independence of the sources s. This technique
iteratively estimates the un-mixing matrix using the
maximisation of independence of the sources as the
cost function (Hyvarinen, Karhunen & Oja 2001).

The success of ICA to estimate independent
sources is dependent on the fulfillment of the follow-
ing conditions.

• The sources must be statistically independent.

• The sources must have non Gaussian distribu-
tions. However, ICA can still estimate the
sources with small degree of non-Gaussianity

• The number of available mixtures N must be at
least the same as the number of the independent
components M .

• The mixtures must be (can be assumed as) linear
combination of the independent sources.

• There should be no (little) noise and delay in the
recordings.

ICA also suffers from the following unavoidable
ambiguities.

• The order of the independent components can-
not be determined (it may change each time the
estimation starts)

• The exact amplitude and sign of the independent
components cannot be determined.

There are several estimation algorithms for the
ICA technique. FastICA algorithm is based on ne-
gentropy (negative entropy) and has been developed
and proposed by the team at the Helsinki Univer-
sity of Technology (FastICA 2005). This algorithm
uses negentropy as a measure of non-Gaussianity of
the signals and uses fixed point iteration scheme. It
is faster than conventional gradient descent scheme.
This paper reports the use of FastICA for analysis.

4.1 ICA for SEMG applications

A number of researchers have reported the use of
ICA for separating the desired SEMG from the arte-
facts and from SEMG from other muscles. While de-
tails differ, the basic technique is that different chan-
nels of SEMG recordings are the input of ICA al-
gorithm. ICA has also been used by Heido et al.
(Nakamura, Yoshida, Kotani, Akazawa & Moritani
2004) to decompose the SEMG recordings in terms of
the MUAPs. In their paper, they have acknowledged
the drawbacks and the necessary conditions required
for the success of the ICA, but have not demonstrated
how the suitability of their experimental data for ICA
application. With the help of 8 channel recordings,
the SEMG signal has been decomposed into MUAPs
that may have originated from large number of mo-
tor units. This could make the number of sources to
be more than the number of recordings, making it
unsuitable for standard ICA.

The fundamental principle of ICA is to determine
the un-mixing matrix and use that to separate the
mixture into the independent components. The in-
dependent components are computed from the lin-
ear combination of the recorded data. The success
of ICA to separate the independent components from
the mixture depends on the properties of the record-
ings.

4.2 Statistical Properties of SEMG Record-
ings

ICA uses the Gaussianity of the signals as a cost
function to generate the un-mixing matrix and hence
signals that have Gaussian distribution are unsuit-
able for ICA applications (Hyvarinen, Karhunen &
Oja 2001). Mathematical manipulation demonstrates
that all matrices will transform this kind of mixtures
to another Gaussian data. However, a small devia-
tion of density function from Gaussian may make it
suitable as it will provide some possible maximization
points on the ICA optimization landscape, making
Gaussianity based cost function suitable for iteration.
If one of the sources has density far from Gaussian,
ICA will easily detect this source because it will have
a higher measure of non Gaussianity and the maxima
point on the optimization landscape will be higher. If
more than one of the independent sources has non-
Gaussian distribution, those with higher magnitude
will have the highest maxima point in the optimiza-
tion landscape. Given a few signals with distinctive
density and significant magnitude difference, the den-
sities of their linear combinations will tend to follow
the ones with higher amplitude. Since ICA uses den-
sity estimation of a signal, the Components with dom-
inant density will be found easier.

Signals such as SEMG have probability densities
that are close to Gaussian while artefacts such as
ECG and motion artefacts have non Gaussian dis-
tributions. From the above, it can be suggested that
ICA may suitably isolate some of the above signals,
while its efficacy for separating the others maybe
questionable. It is difficult to identify the quality of
separation of EMG from one muscle and the neigh-
bouring muscles, making it difficult to confirm or
negate the above. This paper reports the use of ICA
to separate EMG from different muscles. As the sig-
nal properties of EMG are close to Gaussian, and
there is no information available of the original signal,
the only measure of quality possible is to determine
the accuracy of the system to identify the hand ges-
ture correctly.

Proc. HCSNet Workshop on the Use of Vision in Human-Computer Interaction, (VisHCI 2006)

69



Figure 1: Placement of Electrodes

5 Methodology

5.1 Experimental Procedure

RMIT University ethics committee granted approval
to conduct experiments on human subjects and ac-
quire Surface EMG using surface electrodes. For
the data acquisition a proprietary SEMG acquisi-
tion system by Delsys (Boston, MA, USA) was used.
Four electrode channels were placed over four differ-
ent muscles as indicated in the table 1 and figure 1.
Each channel is a set of two differential electrodes
with a fixed inter-electrode distance of 10mm and a
gain of 1000 which is shown in figure 2. Before placing
the electrodes subject’s skin was prepared by lightly
abrading with skin exfoliator to remove dead skin that
helps in reducing the skin impedance to less than 60
Kilo Ohm. Skin was also cleaned with 70% v/v alco-
hol swab to remove any oil or dust on the skin surface.

Channel Muscle Function

1
Brachioradialis Flexion of

forearm

2
Flexor Carpi Abduction and
Radialis (FCR) flexion of wrist

3
Flexor Carpi Adduction and
Ulnaris(FCU) flexion of wrist

4
Flexor Digitorum Finger flexion while
Superficialis (FDS) avoiding wrist flexion

Table 1: Placement of the Electrodes over the skin of
the forearm

ICA is suitable when the numbers of recordings
are same as or greater than the number of sources.
This paper reports using 4 channels of EMG recorded
during hand actions that required not greater than
4 independent muscles. This ensures that the un-
mixing matrix is a square matrix of size of 4 x 4.

The experiments were repeated on two different
days. Subject was asked to keep the forearm rest-
ing on the table with elbow at an angle of 90 degree
in a comfortable position. Three hand actions were
performed and repeated 12 times at each instance.
Each time raw signal sampled at 1024 samples/second
was recorded. A suitable resting time was given be-

tween each experiment. There was no external load.
The actions were complex to determine the ability of
the system when similar muscles are active simulta-
neously and are listed below:

• Wrist flexion (without flexing the fingers).

• Finger flexion (ring finger and the middle finger
together without any wrist flexion).

• Finger and wrist flexion together but normal
along centre line.

While Brachioradialis is an elbow flexor, a very
little activity may be recorded in this muscle while
finger and/or wrist flexion. FCU and FCR are the
two wrist flexors. FDS performs the flexion of the
middle finger and the ring finger.

The hand actions and gestures represented low
level of muscle activity. The hand actions were se-
lected based on small variations between the mus-
cle activities of the different digitas muscles situated
in the forearm. The recordings were separated us-
ing ICA to separate activity originating from different
muscles and used to classify against the hand actions.

5.2 Analysis

The aim of this experiment was to test the use of ICA
for separation of the EMG signals for the purpose of
identifying hand gestures and actions.

For each hand movement we recorded 12 repeti-
tions, lasting approximately 2.5 seconds each. The
sampling rate was 1024 samples per second, this gives
approximately 2500 samples. For the first set of
experiments recorded signals x were analysed using
matlab software package. There were four channel
(recordings) electrodes and four active muscles asso-
ciated with the hand gesture, this formed 4X4 mixing
matrix. For each set of experiments the EMG data
was analyzed using fast ICA matlab package which
has been developed and proposed by the team at the
Helsinki University of Technology (FastICA 2005).
The mixing matrix A was computed for the first set
of data only. This was kept constant throughout the
experiment.

x = As (3)
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Figure 2: Electrodes. (source: www.delsys.com)

where x is the recorded data, A is the mixing ma-
trix and s is the sources. The independent sources
of motor unit action potentials that mix to make the
EMG recordings were computed using the following.

s = Bx (4)

where B is the inverse of the mixing matrix A.
This process was repeated for each of the three hand
gesture experiments. Four sources were obtained for
each experiment. After separating the four sources
sa,sb,sc and sd each are also 2500 samples long. Root
Mean Squares (RMS) was computed for each sepa-
rated sources using the following formula

sRMS =

√√√√ 1
N

N∑

i=1

s2
i (5)

Where s is the source and N is the number of
samples (N = 2500). This resulted in one number
representing the muscle activity for each channel for
each hand action. Hence we obtained four RMS val-
ues every time

The examples of one set of RMS values obtained
during wrist flexion experiment are shown in the table
2 below.

Source RMS(Root Mean Square)values
Source1(s1) 1.2214
Source2(s2) 1.1205
Source3(s3) 1.1846
Source4(s4) 1.2104

Table 2: Example of one set of experiment results
showing the RMS (Root Mean Square) values during
the wrist flexion action

RMS of muscle activity of each source represents
the muscle activity of that muscle and is indicative of
the force of contraction generated by each muscle. A
combination of the activity from each of these muscles
is responsible for the muscle activity (gesture) and has
been used to identify the hand gesture. While ICA
has the order ambiguity shortcoming, but by using a
constant un-mixing matrix (B)for each of the experi-
ments, the data classification can be achieved against
the movement.

The above process was repeated for all three dif-
ferent hand actions. The outcome of this was 12 set of
examples, each example pertaining to three actions.
These 12 sets of examples were used to train a back-
propogation neural network with 4 inputs and 3 out-
puts (The 4 RMS (Root Mean Square) values of the
muscles were the input and the 3 RMS (Root Mean
Square) values were the output). In the first part of

the experiment, RMS values of 3 recordings for sub-
ject were used to train the ANN classifier with back
propagation learning algorithm. In the second part of
the experiment, the neural network was trained using
the data from the subject and tested similarly. The
architecture of the ANN consisted of two hidden lay-
ers and the 20 nodes for the two hidden layers were
optimized iteratively during the training of the ANN.
Sigmoid function was the threshold function and the
type of training algorithm for the ANN was gradient
descent and adaptive learning with momentum with
a learning rate of 0.05 to reduce chances of local min-
ima. In the testing section, the trained ANNs were
used to classify the RMS values of recordings that
were not used in the training of the ANN to test the
performance of the proposed approach. The ability
of the network to correctly classify the inputs against
known hand actions were used to determine the effi-
cacy of the technique.

6 Results and observations

Backpropogation neural network with 3 inputs and
4 outputs are conducted for three types of hand ges-
tures. The result of the use of these normalized values
to train the ANN using data from individual subjects
showed easy convergence. The results of testing the
ANN to correctly classify the test data based on the
weight matrix generated using the training data is
tabulated in table 3. five set of experiments. The
accuracy was computed based on the percentage of
correct classified data points to the total number of
data points. The classification accuracy was 100% for
all the experiments.

Action Performed Action identified for experiments

Wrist flexion 100% 100% 100% 100% 100%

Finger flexion 100% 100% 100% 100% 100%

Finger flexion & 100% 100% 100% 100% 100%
Wrist flexion

Table 3: Neural network testing results

7 Discussions and Conclusion

A new approach that combines semi-blind ICA along
with neural networks was used to separate and iden-
tify hand gestures. The results demonstrate that the
technique can be effectively used to identify hand ges-
tures based on surface EMG when the level of activity
is very small. The authors would like to mention that
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this is early stage of the work, and work needs to be
done to identify inter-day variations. It is also impor-
tant to test the technique for different actions, and
for a large group of people. Further, there is need to
automate the semi-blind operation.
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Abstract

This paper proposes a new approach to shape classi-
�cation that is well suited to the speci�c challenges of
vision-based hand posture recognition in a multi-user
tabletop collaboration scenario. We use a representa-
tion of the 2-D hand silhouette where in-plane rota-
tion and mirror symmetry appear as particular cases
of permutations, and then show how to take advan-
tage of this pattern to develop an e�cient version of
the permutation invariant SVM. Invariance to these
transformations is very important because the users
stand around the table, and a video camera captures
the scene from the top. We also report experimen-
tal results that compare this approach favorably over
common classi�cation approaches, under the stated
requirements.

Keywords: tabletop interaction, vision-based gesture
recognition, support vector machines

1 Introduction

Tabletop displays have been a subject of considerable
interest by the Human Computer Interaction com-
munity over the last �fteen years, as they present a
natural medium for computer-assisted local collabo-
ration between people. Computer Vision could be an
important sensing technology for these systems, once
it gets more stable: many users already have web-
cams which are cheap, easily deployable, and could
be used to capture hand gestures at high frequen-
cies. Also, LCD and Plasma displays are becoming
larger and more economic, and cameras can adapt
seamlessly to capture di�erent screen areas. Table-
top systems present, however, very characteristic re-
quirements to a gesture recognition software: full ro-
tation invariance, because the users are around the ta-
ble, and mirror symmetry invariance, to equally rec-
ognize left and right hand gestures. It should also
be computationally cheap enough to cope with cap-
turing multiple users' gestures simultaneously in real
time and still allow the computer to run its appli-
cations. To understand these requirements consider
the setups of the applications �Room Planner� (Wu
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& Balakrishnan 2003), and �CollabDraw� (Morris &
Winograd 2006), illustrated in �gure 1. These and
other recent multi-user applications rely on newly
developed multi touch sensitive tables, as Diamond
Touch (Dietz & Leigh 2003), and use video projectors
to provide the image. Although these sensors make a
robust and dependable interface they're not without
limitations, namely they're very expensive and can
only directly capture information about the shape of
the pressing areas of the hand against the table.

The focus of this paper is a mid-level vision prob-
lem: shape classi�cation. We present a simple adap-
tation of a recent machine learning algorithm, the
permutation invariant Support Vector Machine, or pi-
SVM, (Shivaswamy & Jebara 2006), that combined
with a properly coded representation of the silhouette
of the hand, turns out to be an approach well suited to
the speci�c problems of hand posture recognition in
vision-based tabletop interfaces. In particular, it only
distinguishes hand postures which di�er intrinsically
in shape, ignoring what we consider nuisance param-
eters: in-plane rotation and mirror symmetry. The
approach doesn't require manual annotation of land-
marks, although it requires labeled training data. The
general idea of the pi-SVM is to, during training time,
to transform the data in a way that both minimizes
the radius of the hypersphere enclosing the points,
and maximizes the margin between the points of the
di�erent classes, so that the nuisances get optimized
away. Then, at test time, the transformation that
best discriminates a pattern is �rst applied, followed
by classi�cation using a SVM. We show that in the
desired tabletop setup, the nuisance parameters, to
which the classi�cation should be invariant, come up
as restricted kinds of permutations, that can be han-
dled by a less ambitious version of the pi-SVM. One
that is also much more e�cient than the original.

We assume there's some segmentation process that
provides us with a closed contour of the hands. In our
case we have been using skin color detection, which
albeit improper for general situations, in the particu-
lar scenario where we're controlling the image in the
LCD display it's a feasible solution.

The structure of this paper is as follows: we dis-
cuss related work in section 2, then the feature used
is introduced in section 3, and customizations of the
permutation invariant SVM are proposed in Section
4. Experimental results are shown, and discussed in
section 5 and �nally conclusions are presented in sec-
tion 6.

2 Related Work

Most vision-based interfaces over a table have relied
solely on �ngertip tracking. For example, Letessier
& Bérard (2004) matched a circular template to bi-
narized images in order to detect �ngertips indepen-
dently of the orientation of the hand. Baraldi, Bimbo,
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(a) Room Planner

(b) CollabDraw

Figure 1: Examples of multi-user tabletop interaction
setups.

Landucci & Valli (2006) used the same method, and
built a simple rule-based classi�er that can discrimi-
nate between three postures, based on the number of
stretched �ngers. Sato, Kobayashi & Koike (2000) use
an infrared camera tuned to the human temperature
to segment the forearm, and then uses the principal
axe of the resulting blob to guide a normalized cor-
relation search for the �ngertips. This simplicity is a
result of pragmatic thinking, as ambitious approaches
from more traditional vision-based gesture recogni-
tion research don't work reliably and fast enough. A
good review of these can be found in work by Derpanis
(2004), which divides existing approaches as model-
based, appearance-based and feature-based.

The types of invariances we seek have been mostly
tackled using feature-based approaches, by pursuing
representations of the features that directly incorpo-
rate them. A popular feature is the boundary of sil-
houettes, which has no internal holes or markings,
making it easily representable in 1-D, parameterized
by arc length. This kind of feature is incorporated in
the MPEG-7 standard, and there's a large pool of so-
lutions developed. There are representations of this
feature that present some kinds of invariances, like
Fourier Descriptors with respect to rotation. A more
�exible feature is the Shape Context (Belongie, Malik
& Puzicha 2002), which can represent a shape with
inner markings, making it possible to use directly the
output of edge extractors. The authors describe a
way to achieve rotation invariance using this feature,
but point out that it relies on contour tangents, which
are highly sensitive to noise. Other �exible approach
is the use of local invariant features that represent
shape key points, as the SIFT feature (Lowe 2004),
which can be directly calculated from the output of a
low level interest point detector. The problem of this
approach, as pointed out by Belongie et al. is that it
sacri�ces the shape information available in smooth
portions of object contour, and that some objects -
e.g. circles - don't even have any key points.

There's also work done on incorporating in-
variances directly into classi�cation algorithms.
Scholkopf & Smola (2002) identify three di�erent ap-
proaches in the context of kernel methods: generat-
ing virtual support vectors, constructing invariance
kernels and jittering support vectors. The �rst con-

sists in generating virtual examples from the support
vectors - informally speaking, the examples that are
most di�cult to classify - and then retraining using
the new data. The virtual examples result from the
application of transformations which we know a pri-
ori that shouldn't change the label of the example -
the invariances. Invariance kernels work by directly
regularizing the hyperplane in a way that trades o�
margin for parallelism to the directions of invariance.
Finally, jittering support vectors works by transform-
ing the example vectors in a way that the euclidean
distances between them in feature space are minimal.

The problem with invariance kernels is that they
can only be applied to smooth transformations. The
virtual examples approach can become slow during
classi�cation time because of the increase in support
vectors, and jittering can generate kernels that aren't
positive de�nite, and so, the algorithms may not con-
verge. A recently proposed method consists in clean-
ing up and reconstructing the data before training the
classi�er. This is the subject of the works by Bi &
Zhang (2004) and Shivaswamy & Jebara (2006), with
the latter resulting in the permutation invariant SVM.
In order to make this paper more self-contained we in-
troduce this algorithm in the next section, following
the original presentation from Shivaswamy & Jebara
(2006), while adding some additional comments from
our analysis.

2.1 Permutation Invariant SVMs

The permutation invariant SVM is a binary classi�ca-
tion algorithm, motivated by an important result in
statistical learning theory (Vapnik 1995), which states
that the expectation of the classi�cation error prob-
ability is bounded by the ratio of the squared radius
of the minimum hypersphere that encloses the data,
to the square of the margin that separates the data
points from both classes. This suggests a strategy to
reduce the in�uence of unknown nuisance parameters
in the data, by transforming the data along the de-
sired invariances, and selecting the transformations
that make the di�erent classes most well separated,
while being enclosed in a hypersphere with small ra-
dius.

In Shivaswamy & Jebara (2006) the targeted in-
variance was general permutation of the feature vec-
tor elements, and to this end the authors proposed
calculating the radius and center of the minimal
hypersphere enclosing the data, the maximal mar-
gin of the optimal separating hyperplane, and then,
for each input sample, setting up a matrix of costs
that indicates how favorable each di�erent permu-
tation is. The best permutation for each sample is
then chosen by solving a Linear Assignment Problem
(Papadimitriou 1982), or LAP, which can be done
e�ciently using the Kuhn-Munkres algorithm, also
known as the Hungarian algorithm. After transform-
ing all samples, the radius and center of the mini-
mal hypersphere and the margin of the new optimal
hyperplane are calculated again, and the rest of the
process is repeated. After a number of iterations, the
classi�er corresponding to the optimal hyperplane of
the transformed data is stored, in order to be used
during test time. The training algorithm is described
in Algorithm 1.

Computing the hyperplanes and hyperspheres can
be done by solving the following optimization prob-
lems, present in most textbooks about kernel methods
(Scholkopf & Smola 2002, Shawe-Taylor & Cristianini
2004). Let w be the vector of parameters of the
hyperplane that separates two classes of data sam-
ples xi, with labels yi, and ξi be slack variables for
accounting noise, or non-separability of the classes.
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Then the maximal margin hyperplane can be esti-
mated from the solution of the following quadratically
constrained quadratic program formulation:

min
w,b,ξ

1
2
||w||2 + C

n∑
i=1

ξi (1)

subject to

yiw′xi + b ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ n (2)

Similarly, the centroid and radius of the smallest
hypersphere enclosing the data points can be esti-
mated from:

min
c,R,ξ

R2 + C
n∑

i=1

ξi (3)

subject to

||c− xi||2 ≤ R2 + ξi, ξi ≥ 0 ∀1 ≤ i ≤ n (4)

In both cases the parameter C controls how ac-
ceptable it is for the margin and hypersphere radius
to be violated, in order to account for noise. Large C
corresponds to a hard margin and to the hypersphere
containing all points.

For clarity's sake we believe it's useful to discuss
the less obvious step of Algorithm 1: step 3. The idea
is to �nd the permutation matrix that best transforms
the feature vector, both in terms of how close it gets
to the center of the hypersphere and to how far away
it gets from the separating hyperplane. Consider the
�rst term of the sum: if w is �xed, the dot product
w′x is proportional to the distance of x to the hy-
perplane, and that's what we want to maximize, by
an appropriate choice of the permutation matrix A.
If that was the only thing to optimize, the algorithm
would proceed to �nd A by solving the maximization
version of the LAP. Let x′ = [x1x2] and w′ = [w1w2].
Then the reward matrix is:

wx′ =
[

w1x1 w1x2
w2x1 w2x2

]
The LAP, with this reward matrix, amounts to

�nding the one to one assignment of elements of w
to elements of x such that the their sum is maximal.
This x e�ectively maximizes w′x.

Conversely the aim of the second term is to mini-
mize the dot product c′x. This corresponds to �nd-
ing the permuted x which is closest to c. For this
to be true, x should be normalized to �xed length,
and have positive elements ( so that the minimal an-
gle with c corresponds to a minimal distance, because
c′x = ||c|| ||x||cosα ).

Finally, the λ parameter determines the trade o�
between optimizing the margin and the radius of the
data enclosing hypersphere.

During test time, in order to predict the label of
a test datum, the algorithm solves again the LAP
problem for two di�erent reward functions, λwx′ −
cx′ and −λwx′−cx′, getting in general two di�erent
permutations as solutions. The label corresponding
to the largest absolute reward is then selected.

3 The Feature

The silhouette (S) of a segmented hand region, like
the one depicted in 2, is a �nite set of Ni points on
the image, that de�ne the basic shape of the hand
(�gure 3):

Algorithm 1 Algorithmic description of the original
Permutation Invariant SVM
Input: Training data set - (xi, yi)n

i=1, Maximum It-
erations - max, Parameter - λ
Output: Hyperplane - (w, b) and Centroid - c
0. Set j ← 1
1. Solve (3) from (xi, yi)n

i=1 to �nd centroid cj and
the radius R.
2. Solve (1) from (xi, yi)n

i=1 to �nd (wj , bj) and mar-
gin M .
3. Solve Kuhn-Munkres Algorithm with reward ma-
trix λyiw

jx′i − cjx′i for each i, let the permutation

matrix obtained be A
ij

.
4. If j = max return (wj , bj , cj) else j ← j + 1

(a) A posture. (b) Result of the segmentation.

Figure 2: Contour extraction using color segmenta-
tion.

S = {sk = (xk, yk), k = 1, . . . , Ni} (5)

We assume that the silhouette S has the following
properties:

• S is closed, i.e. s1 is next to sNi
.

• S has a depth of one single point (it's one dimen-
sional).

• S is de�ned by accounting points in the clockwise
direction.

The starting point of the de�nition of the represen-
tation, that we shall call a signature, is the calculation
of the polar coordinates of each point sk belonging to
the contour of the segmented blob. The polar coordi-
nates are de�ned in such a way that the origin of the
coordinate system is the centroid C = (cx, cy)T of the
segmented region R, de�ned as:

cx =
∑

x

∑
y

f(x,y)x∑
x

∑
y

f(x,y)
, and cy =

∑
x

∑
y

f(x,y)y∑
x

∑
y

f(x,y)

with f(x, y)
{

1 if x, y ∈ R
0 otherwise

(6)
Given the silhouette S = (s1, s2, . . . , sNi)

T from
the segmented hand on frame i we can compute the
coordinates ρk, that corresponds to the Euclidean dis-
tance of each point to the centroid of the segmented
hand blob, and θk, the angle:

ρk = ||sk − C|| =
√

(xk − cx)2 + (yk − cy)2 (7)

θk = arctan
(yk − cy)
(xk − cx)

, with k = 1..Ni (8)

Having the polar coordinates, we split the silhou-
ette S into r radial segments of equal size, and for
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Figure 3: The silhouette's signature is de�ned by
dividing the contour in �xed radial segments. The
largest magnitude point in every segment is chosen.
The center of the coordinate system is the centroid of
the hand's blob.

each one we select the largest magnitude ρ′k whose
corresponding θk belongs to the angle interval that
de�nes the segment. This way the signature has a
�xed length of r elements. This signature is intrinsi-
cally invariant to translation of the hand in the im-
age frame, since the silhouette is de�ned in relation
to a coordinate system with its origin at the centroid
of the hand's blob. The same is not true for scale:
di�erent distances from the camera to the hand will
imply di�erent silhouette amplitudes. A simple so-
lution is very e�ective nonetheless: we normalize the
ρ′k coordinates in order to have them in the range
0 ≤ ρ′k ≤ 1. This is accomplished by dividing each ρ′k
by ρ′max = max(ρ′k), with k = 1..r.

In this way we get the �nal signature

signature(S) = [
ρ′1

ρ′max

...
ρ′r

ρ′max

]′ (9)

This representation just lacks invariances to in-
plane rotation and to mirror symmetry. Fortunately,
these complex transformations in the image, translate
to very simple transformations of the signature vec-
tor. Namely rotation in the plane perpendicular to
the line that passes through the center of the camera
sensor is mapped to a permutation Pr of the signature
vector, up to orientation errors ( due to the sampling
from the silhouette ) of π

r radians. Mirror symmetry
in that same plane is mapped to a permutation Ps.

In particular a rotation by an angle of 2π
r corre-

sponds to the cyclic permutation:

Pr =



0 1 0 · · · 0
... 0 1

. . .
...

...
... 0

. . . 0

0
...

...
. . . 1

1 0 0 · · · 0

 (10)

Rotations by 2nπ
r map to Pn

r . For example, let
k = [k1 ... km]′ be a signature vector. Then Pn

r k =
[kn ... km k1 ... kn−1].

The mirror symmetry across the line that passes
through the centroid and the point whose magnitude
is the �rst element of the signature vector is given by
Psk, with

Ps =


1 0 . . . . . . 0
0 . . . . . . 0 1
... . . . 0 1 0
... . .

.
. .

.
. .

. ...
0 1 0 . . . 0

 (11)

In this case Psk = [k1 km km−1 ... k2].

4 The Classi�er

As the kinds of invariance we desire are mapped to
two speci�c permutations of the feature vector, our
problem gets easier than the general Linear Assign-
ment Problem. In fact, we go from m! di�erent pos-
sible assignments in the general permutation case, to
just m ·2, with m corresponding to the rotations, and
the 2 to the mirror symmetry. The most e�cient way
to solve the LAP problem under this constraints is the
evaluation of all hypothesis, which is O(n), while the
Kuhn-Munkres algorithm is O(n3).The only change
required to algorithm 1 is then step 3: we should in-
stead evaluate all the m · 2 valid transformations of
a signature, and choose the resulting permutation for
which the reward λyiw

jx′i + cjx′i, under an appro-
priate norm, is largest. The resulting situation can
be better understood by seeing it as having a ma-
trix of transportation prizes, from N factories to N
warehouses, with the constraint that once you assign
one factory to a warehouse, only two scenarios remain
possible, and in both all the assignments are uniquely
determined. For example, consider the following re-
ward matrix:

R =

 1 3 2 1
6 2 5 2
0 1 1 3
2 4 2 1

 (12)

The LAP problem refers to �nding the set of four
rij elements, with no i and no j repeated, whose sum
is maximal. This sum can be seen as an l1 norm.
The solution in this case is [r21 r42 r13r34] with total
reward 15. Using our restrictions on the possible as-
signments, the solution would be [r21 r12 r43 r34] with
total reward 14.

In order to illustrate the e�ect of the algorithm
on the input signatures, and the meaning of di�erent
values of λ, it's useful to observe �gure 4. In (a)
3 patterns from 7 di�erent classes are initially with
di�erent rotations and mirror symmetries. In (b) are
the same patterns after being transformed with a high
λ, and in (c) with low λ. The SVM was trained in
a one-vs-all scheme, with the one being the class of
the patterns in the �rst row. The e�ect of high λ
was to �encourage� a higher margin between the �rst
class and all the others, and that is easily visible: the
postures in the �rst class are oriented in a di�erent
direction than the others. In (c) they are all aligned,
they're enclosed by a smaller hypersphere.

5 Experimental Results

Due to the inexistence ( to the best of our knowl-
edge ) of specialized image databases , we collected
ourselves 50 samples from 7 di�erent postures, with
di�erent scales, orientations and mirror symmetries.
The samples represent hand gestures of 5 di�erent
adult male users, whose hand silhouettes were sam-
pled to 80 points, after a skin color segmentation pro-
cess. The postures considered are depicted in �gure
5.

In order to evaluate the performance of the per-
mutation invariant SVM on the data, we used it with
a linear kernel, and compared against a normal SVM
with a radial basis kernel applied on a regular feature
vector, and on another feature vector which employed
a popular heuristic to provide some invariance to ro-
tation: selecting as the �rst value of the signature the
one with largest magnitude and permuting cyclically
the other elements of the signature accordingly. Us-
ing an SVM with this feature can, loosely speaking, be
interpreted as an approximation to the permutation
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Figure 4: The e�ect of λ in the resulting patterns. In
a) are the input patterns. In b) they are permuted
after training a SVM for the class in the �rst row
against the others, with high λ. In c) after training
with low λ.
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Figure 5: Prede�ned set of postures.

σ SVM SVM+heuristic pi-SVM( λ = 0.001)
0.005 62% 94% 95%
0.007 56% 83% 94%
0.01 46% 47% 70%

Table 1: Percentage of correct classi�cations with
gaussian noise, with zero mean and standard devi-
ation σ.

d SVM SVM+heuristic pi-SVM( λ = 0.001)
0.005 62% 86% 95%
0.01 56% 78% 88%
0.05 60% 68% 79%

Table 2: Percentage of correct classi�cations with salt
& pepper noise ( changes a d fraction of the signature
points to magnitude 0 or 1 ).

invariant SVM with the restriction to permutations
that rotate the feature, when solving the constrained
LAP problem using the l∞ norm. A C value of 2 was
used in all experiments, so that we could focus on fac-
tors more directly connected to the algorithm under
scrutiny.

We chose the number of iterations of the algo-
rithm to be 4, because we observed that usually it
was enough for convergence. The number of samples
used in training was 10 from each class; the rest was
used for testing. In order to to test the robustness of
the di�erent solutions we applied two kinds of noise,
gaussian and salt and pepper ( also known as on-o�
), and averaged the results over 5 sessions. In general
terms, gaussian noise changes all the components of
the feature vector by small amounts, while salt and
pepper turns a few components to zero or one. The
results are shown in tables 1 and 2, and the aspect of
noisy examples is shown in �gure 6.

Finally, we also tried di�erent norms for solving
the LAP problem - table 3. The measure of quality
used in all experiments was the percentage of correct
classi�cations in the test set.

5.1 Discussion of the Results

One curious observation was that for large λ the per-
mutation invariant SVM performed very poorly. This
was only veri�ed in the multi-class scenario. Prelim-
inary tests on two class discrimination didn't show
this phenomenon, quite the opposite. This may be
explained by a poor �t of the one-versus-all way of
combining binary classi�ers, which we employed.

For small λ the method performed better than the
other solutions, specially when the data was noisy. In
these cases it greatly outperformed the other meth-
ods.

We used a permutation invariant SVM with a lin-
ear kernel, and we think that using a kernel that cre-
ates a non-linear decision function can improve the
performance of the method - especially if we can't
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Figure 6: An example of the posture �two� is depicted
on the left. In the center it's the same example, but
with gaussian noise with mean 0 and standard devi-
ation 0.005. On the right it's with salt and pepper
noise, with 10 % of the components changed.
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λ pi-SVM(l1) pi-SVM(l2) pi-SVM( l∞)

0.001 95% 99% 93%
0.1 90% 96% 88%
10 60% 74% 63%

Table 3: The e�ect of λ and the norm employed in
solving the constrained LAP on the percentage of cor-
rect classi�cations.

solve the problem of transforming the data to have
large margin - but this improvement comes with a
performance price.

Of the norms employed in solving the constrained
LAP problem, the one that behaved the best was the
l2 norm.

6 Conclusion

We presented a specialization of the permutation in-
variant SVM for classi�cation of silhouette signature
features. While the features used are too limited for
general shape classi�cation, because they are di�-
cult to extract from images and cannot represent rich
shapes - in particular those having important internal
traits - they make a good �t for posture recognition
over tabletops:

- They're cheap to compute, which is important in
an input device ( the mouse doesn't steal many cpu
cycles ).

- Certain interesting invariances appear as simple
permutations of the feature vector, and this enables
the use of the permutation invariant SVM e�ciently.

- In tabletops powered by LCD displays, we can
control the hand's background so that it is more easily
segmentable.

The proposed method was shown to produce bet-
ter results than other approaches, namely simple
SVM classi�cation with and without some common
heuristics, using our data set of hand postures from
�ve individuals. We have yet to evaluate the ro-
bustness of the approach to hand morphologies that
are not in the database, like from children, but our
preliminary results with synthetic noise looked quite
promising.

Something that the proposed method apparently
precludes is linear dimensionality reduction of the fea-
ture vectors ( for example with PCA ). The problem
is that it's not possible to explore permutations of
the features in a reduced linear space. We would
have to transform the features back to the original
space, perform the permutations and then transform
the features back to the reduced dimensionality space.
Maybe using nonlinear methods would work, like ker-
nel PCA or spectral methods, but that would come
with performance penalties.

Future work includes exploring di�erent
paradigms for combining the binary classi�ers.
One versus the rest doesn't appear to work well with
the permutations of the data. A possibility is to
experiment using the multi-class SVM(Weston 1999).
We're also considering ways to extend the silhouette
feature to include information about the internal
traits of the shape.
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Abstract

Visual information from a speaker’s mouth region is
known to improve automatic speech recognition ro-
bustness, especially in the presence of acoustic noise.
To date, the vast majority of work in this field has
viewed these visual features in a holistic manner,
which may not take into account the various changes
that occur within articulation (process of changing
the shape of the vocal tract using the articulators, i.e
lips and jaw). Motivated by the work being conducted
in fields of audio-visual automatic speech recognition
(AVASR) and face recognition using articulatory fea-
tures (AFs) and patches respectively, we present a
proof of concept paper which represents the mouth
region as a ensemble of image patches. Our exper-
iments show that by dealing with the mouth region
in this manner, we are able to extract more speech
information from the visual domain. For the task of
visual-only speaker-independent isolated digit recog-
nition, we were able to improve the relative word error
rate by more than 23% on the CUAVE audio-visual
corpus.

Keywords: Visual Speech Recognition (VSR),
Patches, Articulatory Features (AFs).

1 Introduction

Over the past twenty years, considerable research
activity has concentrated on utilizing visual speech
extracted from a speaker’s face in conjunction with
the acoustic signal, in order to improve robust-
ness of automatic speech recognition (ASR) systems
(Potamianos, Neti, Gravier, Garg & Senior 2003).
Critical to the performance of the resulting audio-
visual ASR (AVASR) system is the choice of visual
features that contain sufficient information about the
uttered speech (Potamianos & Scanlon 2005). Even
though the visual features used over this time have
shown to improve robustness to the overall AVASR
system in extreme noisy conditions, the visual-only
speech recognition (VSR) performance in these sys-
tems do lag by over a order of magnitude to its
acoustic counterpart in clean conditions (Potamianos
et al. 2003). This fact, clearly highlights the lack

This research was supported by the Australian Research Coun-
cil Grant No: LP0562101

Copyright c©2006, Australian Computer Society, Inc. This pa-
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search and Practice in Information Technology (CRPIT), Vol.
56. R. Goecke, A. Robles-Kelly & T. Caelli, Eds. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

"Holistic"

"Patches"
Approach

Input Image Frame

Figure 1: Following the extraction of the ROI, we
propose to extract and model the ROI as an ensemble
of image “patches” instead of the “holistic” approach
which is currently being used in AVASR literature.

of speech classification power current visual features
possess to extract speech information to the level of
its acoustic counterpart. It may be the case that the
visual modality does not hold as much information as
the acoustic modality, however, this has not yet been
quantified which motivates this research.

In AVASR literature, there have been numerous
different methods of extracting visual features from
the mouth region of interest (ROI) (see Section 2).
However, all of these techniques modelled the ROI in
a holistic, single stream manner. A potential prob-
lem which may arise from this approach is that these
features may not take into account all of the vari-
ous changes that occur within the mouth region dur-
ing articulation (process of changing the shape of the
vocal tract using the articulators, i.e lips and jaw)
(Fant 1960). In contrast to the majority of work be-
ing conducted in the field of VSR, Saenko et al. has
recently proposed the use of multiple streams of hid-
den articulatory features (AFs) to model the visual
domain (Saenko, Darrel & Glass 2004). In this work,
each sound is described by a unique combination of
various articulator states, such as “lip-opened”, “lip-
rounded”, “presence of teeth” etc.

Multi-stream approaches have also been used to
good effect in the field of face recognition. Techniques
that decompose the face into an ensemble of salient
patches have reported superior face recognition per-
formance with respect to approaches that treat the
face as a whole (Brunelli & Poggio 1993, Moghad-
dam & Pentland 1997, Martinez 2002, Kanade &
Yamada 2003). The idea behind breaking the face
into patches is that it is easier to take into account
changes in appearance due to the faces complicated
three-dimensional shape, in comparison to treating it
holistically (Lucey & Chen 2006).

Heavily motivated by the work being conducted
with patches in face recognition and AFs in AVASR,
we present a novel approach to VSR by breaking the
ROI into a series of image patches (see Figure 1).
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Figure 2: Block diagram of visual feature extraction process.

(a) (b)
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Figure 3: An example ROI from a speaker uttering
the phoneme /th/ in the digit “three”. (a) original
image, (b) mean-removed image, (c) reconstructed
“holistic” image showing just the mouth somewhat
opened, and (d) reconstructed “patch-based” image,
displaying the presence of teeth and lip protrusion.

It is hoped by modelling each patch separately, we
can take advantage of the local information contained
within each patch, and also monitor any dynamic
changes that occur during articulation.

By approaching visual speech in this manner, we
hope to extract more speech information which will
hopefully in turn increase the overall performance
of VSR. A benefit of the following approach is that
we are able to avoid the curse of dimensionality
(Chatfield & Collins 1991) by alleviating the restric-
tion of the number of visual features able to be used.
This is our main motivation behind this work and is
described and discussed in some detail in Section 2.

Following that, Section 3 describes the baseline
VSR system, namely ROI detection and tracking,
and the holistic visual feature extraction technique
and modelling details. Section 4 describes the Patch-
based VSR system. Section 5 presents our experimen-
tal results, and, finally Section 6 concludes the paper
with a summary and a few remarks.

2 Motivation for Patch-Based Approach

Visual speech features can be categorized into two
types, namely: area, and contour based represen-
tations. Area-based representations are concerned
with transforming the whole region of interest (ROI)
mouth pixel intensity image into a meaningful low-
dimensional feature vector. Such transforms used
for this approach include principal component anal-
ysis (PCA) (Bregler & Konig 1994), discrete cosine
transform (DCT) (Heckmann, Kroschel, Savariaux
& Berthommier 2002), linear discriminant analysis
(Belhumeur, Hespanha & Kriegman 1997) or a com-
bination of DCT and LDA (Potamianos et al. 2003).
Contour based representations, are concerned with
parametrically atomising the mouth, based on a priori
knowledge of the components of the mouth (i.e. outer
and inner labial contour, tongue, teeth, etc.) (Wark
& Sridharan 1998). An Active Appearance Model
(AAM) (Cootes, Edwards & Taylor 1998), combines

(a) (b)

(c) (d)

Figure 4: An example ROI from a speaker uttering
the phoneme /uh/ in the digit “two”. (a) original
image, (b) mean-removed image, (c) reconstructed
“holistic” image showing just lip openness informa-
tion, and (d) reconstructed “patch-based” image, dis-
playing the presence of lip roundness and protrusion.

both the area and contour parameters together into
a single feature vector. None of these above ap-
proaches have shown themselves to be clearly superior
to each another, but due to its ability to be com-
puted quickly, most researchers have preferred to use
the area-based representation, as highlighted by the
review conducted by Potamianos et al. (2003).

For area-based features, the current state-of-the-
art consists of a hierarchical process. It is based on
the hierarchical LDA (or HiLDA) process devised by
Potamianos et al. (2003) and is shown in Figure 2.
Firstly, the mouth ROI is extracted and features ex-
tracted using the two-dimensional DCT. The top M
energy features are then selected to give a compact
representation of the ROI. This resulting vector is
called the static feature. This static feature vector is
then concatenated with ±J adjacent frames and then
LDA is used to project it down to N features giving
the resultant dynamic feature vector ot (See Section
3.2 for full description).

In literature, some researchers use only the top 20-
30 DCT or PCA (very similar performance to DCT)
coefficients for their static feature (Gowdy, Subra-
manya, Bartels & Bilmes 2004, Heckmann et al. 2002,
Liang, Liu, Zhao, Pi & Nefian 2002). Potamianos
et al. (2003) use the top 100 features, then use
LDA to project it down to 30 features. As dynamic
features provide the most information about speech
(Goldschen, Garcia & Petajan 1994), it is necessary
to keep the number of static features low, as comput-
ing the LDA matrix for high input features in com-
putationally prohibitive (hence the reason why 20-30
static features are used). However, it is our contention
that limiting the number of static features to around
this number limits the amount of available speech
stemming from the visual modality. This contention
is backed up by the work conducted by Potamianos
and Scanlon (Potamianos & Scanlon 2005), as they
proposed another way of overcoming the dimensional-
ity problem of the static feature vector. In this work,
they made use of the laterally symmetric nature of
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Figure 5: Comparison of the various approaches to
visual speech recognition. (a) Shows the holistic ap-
proach currently being used in VSR. (b) Shows the
multi-stream approach using articulatory features.
(c) Shows our patch-based approach, which differs as
each patch is treated independently from the initial
ROI detection and tracking module.

a speaker’s lips by removing the odd frequency dis-
crete cosine transform (DCT) components from the
selected visual feature vector. By removing redun-
dancies in the frequency domain, they reported some
improvement in visual speech classification.

However, in an effort to get away from conven-
tional holistic techniques and inspired by the work
conducted in face recognition with patches, we sought
motivation from the following examples shown in Fig-
ures 3 and 4. In VSR systems like our baseline one
(see Section 3), initially the mean ROI image is sub-
tracted to remove speaker dependencies (Figure 3b
and 4b). Due to dimensionality restrictions, only the
top 30 DCT coefficients are then extracted from each
frame. Upon reconstruction of these images using the
30 top DCT coefficients, it can be seen that not much
mouth information is visible (Figure 3c and 4c). Only
maybe the mouth being open, and some coarse shape
information is retained. However, when you view the
original mean-removed images, it can be seen that
other important visible articulatory information in-
formation such as the presence of teeth (Figure 3b)
or lip roundness and protrusion (Figure 4b) is omit-
ted. However, if we break the ROI images into patch
quadrants, and use the top 30 DCT coefficients per
patch, we are able to gain a closer representation of
the original ROI, obviously due to the four-fold in-
crease in features (Figure 3d and 4d). In Figure 3d,
teeth information is present, along with lip protru-
sion and mouth opening information. In Figure 4d
not only is it visible that the mouth is open, lip pro-
trusion and roundness information can be seen.

Obviously by using more features, we are able to
see more detail in the images. However, this exam-
ple shows the benefit of using patches, as each patch
can be modelled separately, hence overcoming the di-
mensionality restriction enforced on the static feature
vector by the holistic single-stream topology. This ap-
proach is similar to Saenko et al. (2004), where they
used multiple streams of hidden articulatory features
(AFs) to model the visual domain. However, this
approach requires additional complexity to the over-
all VSR framework, where each of these articulatory
states (such as “lip-opened”) require extra classifi-
cation (via a Support Vector Machine) prior to the

Get next

frame
Locate

face
Locate &

track eyes
Locate &

track lips

every 20
frames

every 10
frames

every
frame

Figure 6: Overview of lip tracking system.

sound classification. The differences between all 3
approaches are shown in Figure 5.

In this paper, we show by representing the ROI
as an ensemble of independent patches, we are able
to obtain more visible speech information from the
static features, in turn improving the overall vi-
sual speech recognition performance. This is shown
through the improvement in performance for the task
of speaker-independent isolated digit recognition on
the CUAVE database (Patterson, Gurbuz, Tufekci &
Gowdy 2002).

3 Baseline Visual Speech Recognition Sys-
tem

We now proceed to briefly components of our base-
line VSR system. There exist three main components,
which are over-viewed in the next three subsections:
(a) visual front-end; (b) visual feature extraction; and
(c) the visual modelling step. This baseline VSR sys-
tem will be compared our patch-based system in Sec-
tion 4.

3.1 Visual Front-End

Before the visual speech features can be extracted, the
ROI has to be detected and tracked. In an AVASR
system, this is performed by the visual front-end. For
AVASR to be effective, it is essential that the visual
front-end be highly accurate, otherwise these errors
will cascade throughout the system and have a large
effect on the ability of the final AVASR system to
reliably recognize speech. This is known as the front-
end effect.

In this study, the visual front-end consisted of
three stages; face location, eye location and lip lo-
cation. As shown in Figure 6, each stage was used to
help form a search region for the next stage.

3.1.1 Face Location

Before face location was performed on the videos, 10
manually selected skin points for each speaker are
used to form thresholds for the red, green and blue
(r, g, b) values in colour-space for skin segmentation.
The thresholds for each colour-space were calculated
from the skin points as

µc − σc ≤ pc ≤ µc + σc, (1)

Where c ∈ {r, g, b}, µc and σc are the mean and stan-
dard deviation of the 10 points in colour-space c, and
pc is the value of the pixel being thresholded in colour-
space c.

Once the thresholds were calculated, they were
used for skin segmentation of the video to generate
a bounding box of the face region within the frames
every 20 frames, and this face location was remem-
bered in the intermediate frames.
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Figure 7: Calculating lip search region from eye loca-
tions.

3.1.2 Eye Location and Tracking

When transformed into Y CbCr space, the eye re-
gion of face images exhibit a high concentration of
blue-chrominance, and a low concentration of red-
chrominance. Therefore eye detection can be done in
the Cr −Cb space with reasonable results. However,
eyebrows often appear as false positives and can de-
grade results. To remove the influence of eyebrows the
Cr−Cb image can be shifted vertically and subtracted
from the original Cr − Cb image. This will cancel
the eyebrow minima by subtracting the eye minima,
whereas the eye minima will be subtracted by the
high values in the skin region and receive a large neg-
ative value suitable for thresholding (Butler, McCool,
McKay, Lowther, Chandran & Sridharan 2003).

To locate the eyes from the face region from the
previous stage, the top half of the face region was
designated as the eye search-area, which was then
searched using the shifted Cr − Cb algorithm for
the eye locations. The possible eye candidates were
searched for two points that were not too large, too
close horizontally, and not too distant vertically. Fi-
nally the two candidates which had the largest hor-
izontal distance were chosen to be the eye locations.
This process was performed every 10 frames, and
the locations were remembered in the intermediate
frames.

3.1.3 Lip Location and Tracking

Once the eye locations have been found, they are used
to calculate a lip search region, as shown in Figure 7.
The lip search region is then rotation-normalised, con-
verted to R/G colour-space, and thresholded. The
lip candidates from the thresholding are examined to
remove unlikely lip locations (eg. too small, wrong
shape). A search-window of 125 × 75 pixels is then
scanned over the lip candidate image to find the win-
dows with the highest concentration of lip candidate
regions. The final lip ROI is chosen as the lowest,
most central of these windows. Once the ROI was
correctly located, the detected ROI was converted to
grayscale and downsampled to 60 × 36 pixels for the
experiments.

3.2 Visual Feature Extraction

The visual feature extraction process is given in Fig-
ure 2. Following the ROI extraction, the mean ROI
over the utterance is removed. For purposes of nota-
tion the mouth ROI image matrix I(x, y) is also ex-
pressed as the vectorised column vector y = vec(I).
So the mean removed mouth sub-image y∗ is cal-

culated from a given temporal mouth sub-image se-
quence Y = {y1, . . . , yT } such that,

y∗t = yt − ȳ, where ȳ =
1
T

T∑
t=1

yt (2)

This approach is very similar to cepstral mean sub-
traction used on acoustic cepstral features to improve
recognition performance by providing some invariance
to unwanted variations such as speaker dependencies.
It is also similar to the feature mean normalisation of
Potamianos et al. (2003), however in our approach
we remove the redundant “DC” component in the
image domain, instead of in the feature domain. A
two-dimensional, separable, discrete cosine transform
(DCT) is then applied to the resulting mean-removed
image, with the M = 30 top DCT coefficients ac-
cording to the zig-zag pattern retained, resulting in
a “static” visual feature vector. Subsequently, to in-
corporate dynamic speech information, 21 neighbor-
ing such features over ±J = 10 adjacent frames were
concatenated, and were projected via an inter -frame
LDA cascade to N = 60 dimensional “dynamic” vi-
sual feature vector.

3.3 The Speech Recognition System

In our experiments, we will be comparing two VSR
systems: this baseline system, and our patched-based
system (see Section 4). Both systems were designed
to recognize isolated digits. As we are fusing multi-
ple streams of data together, we saw isolated speech
recognition as an ideal way to test our patch-based
concept as it is easily implemented by calculating the
likelihoods for the visual observations for a given word
model. The continuous speech recognition paradigm
is a much more complicated task as the number of
possible hypothesis of word sequences becomes very
large, and the number of best hypothesis obtained for
each stream might not necessarily be the same. Our
future work will concentrate on the continuous speech
scenario, through the implementation of a Dynamic
Bayesian Network (DBN) (Gowdy et al. 2004), which
provides a framework to combine multiple streams to-
gether effectively.

In these experiments, each of the digits were mod-
elled using 9 states and 18 Gaussians per state us-
ing HTK (Young, Everman, Hain, Kershaw, Moore,
Odell, Ollason, Povey, Valtchev & Woodland 2002).
These models were bootstrapped from the timed
labelled transcriptions provided with the database.
This topology was used as experimental and heuristic
evidence showed that this was the optimal configura-
tion.

4 Patch-Based Visual Speech Recognition
System

The patch-based VSR system is very similar to that
of the holistic baseline system, which was described in
the previous section. The overall system is depicted
in Figure 8. As it can be seen from the figure, this
system is very basic. Essentially it is the baseline
system being split into four parallel streams. The
intended reason for this simple structure was to show
that this configuration could be implemented easily.
Also, by only breaking the ROI only into quadrants
patches (no overlapping), we wanted to illustrate the
benefit of treating parts of the ROI locally instead of
as a whole.

As can be seen in Figure 8, the patch-based system
uses the same visual front-end as the baseline system.
Once the ROI has been detected and tracked, each
grayscale 60 × 36 ROI image is broken up into 30 ×
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Figure 8: Block diagram of visual feature extraction process using the patch-based representation.
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Figure 9: Once the mouth ROI has been detected
and tracked, each ROI is broken up into quadrants
and labelled.

18 quadrants (labelled as per Figure 9). Each one
of these patches are then independently and visual
features are extracted and modelled as per the process
described in Section 3.2 and 3.3 respectively.

As mentioned previously, as a proof of concept
we just conducted these experiments for the task of
speaker-independent isolated digit recognition. As
this was the case, fusion of the patches was performed
via the weighted sum rule. Hence, let each spoken
word be represented by a multiple visual speech ob-
servations O, defined as

O = O1,O2, . . . ,OR (3)

where Or refers to the sequence of visual speech
observations with regard to patch r. The isolated
digit recognition can then be regarded as that of com-
puting

arg
10

max
i=1

{
R∑

r=1

βrP (ωi|Or)} (4)

where ωi is the i’th digit and βr refers to the as-
signed patch weight. Also it is worth noting that∑R

r βr = 1, where 0 > βr > 1.

5 Experimental Results

We now proceed to report a number of experimental
results on the performance of the developed patch-
based VSR system. The experiments were conducted
on the CUAVE database.

5.1 The CUAVE Audio-Visual Corpus

For this work, we compared the speaker-independent
visual-only isolated speech recognition performances
on our baseline and patch-based systems. Train-
ing and evaluation visual speech was taken from the
Clemson University, CUAVE, audio-visual database

(Patterson et al. 2002). The CUAVE database was
selected as it is presently the only common audio-
visual database which is available for all universities
to use. This is important for benchmarking and com-
parison purposes. The CUAVE database consists of
two major sections, one of individual speakers and one
of speakers pairs. For this study, only the station-
ary connected-digit string section of the individual
speakers were used. The stationary connected-digit
string section of the database consisted of each of the
36 individual speakers uttering the connected digits
“zero” to “nine” a total of 5 times each. The 36 in-
dividual speakers were divided arbitrarily into a set
of 28 training speakers and 8 different test talkers for
a completely speaker-independent grouping. As the
database is so small, we used 10 different permuta-
tions of this configuration to see the effect of having
different speakers in the training/testing set.

5.2 Isolated Digit Recognition Results

Generally, an accurate measure of how much speech
information is contained within the visual features is
indicative of how well it performs in the task it is
being used for, which in this case is isolated digit
VSR. We first performed this on the static visual fea-
tures for the holistic (H), patch-based (P), fused holis-
tic and patch-based features (F), patches concate-
nated (PC), and patches and holistic concatenated
(FC). The first experiment was conducted using the
same amount of features as the holistic system (i.e.
M = 30 for H, P, F, PC and FC). For P, 8 features
were used for P1 and P2 and 7 features for P3 and
P4, and each patch was weighted equally. For F,
6 features where used for each patch quadrant and
the holistic patch. For this configuration, the holis-
tic approach was weighted 50% and each patch was
weighted 12.5%. The PC and FC experiments were
conducted to see the effect of modelling each patch
independently instead of in a single stream.

The second experiment was conducted using the
same method, however, the same amount of features
were used for the patched-based system (i.e. M = 120
for H, P, F, PC and FC). For P, 30 features were used
for P1 − P4. For F, 24 features were used for each
patch quadrant and the holistic patch. The experi-
ments were carried out in this way so that we could
evaluate how much speech information there is for
the same amount of features. The results are given in
Table 1.

As can be seen in Table 1, using the same amount
of features, the patch-based system outperforms the
holistic system using both 30 and 120 features. And
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Exp H P F PC FC
1 57.10 44.72 44.27 66.25 55.16
2 58.69 45.38 44.80 63.73 56.17

Table 1: Isolated WERs of the static features for the:
(H) holistic or baseline system, (P) patch-based sys-
tem, (F) fused holistic and patch-based system, (PC)
patches concatenated, (FC) holistic and patches con-
catenated. For experiment 1, M = 30 and for exper-
iment 2, M =120.

Exp H P F
1 30.10 25.95 22.92
2 - 28.22 23.68

Table 2: Isolated WERs of the dynamic features con-
catenating ±10 frames then using LDA to yield 60
features from the static features given in Table 1.

when the holistic and patch-based system were fused
together more improvement was gained. It is some-
what interesting to note that the better performance
was gained in experiment 1, and not 2, with the
fused holistic and patch-based system achieving the
best performance with a word-error-rate (WER) of
44.27% compared to 57.10% for the holistic system.
This goes against our initial hypothesis regarding di-
mensionality, as lower number of features actually
obtained around the same or marginally more static
speech information. However, it may be the case that
the top 30 features contain most of the speech infor-
mation, whilst the remaining features contain mostly
unique speaker information. Another interesting re-
sult is that modelling each patch independently seems
to achieve better results than concatenating the fea-
tures and modelling them as one (PC, FC). This may
suggest that representation of features is the key to
VSR, and not just the sheer number of features used.
However, it must be noted that these results may not
be significant due to the small size of the database
and further investigation is need before any claims
can be made about performance.

To gauge the overall performance of the systems
using the full system (i.e incorporating the dynamic
features); the holistic, patch-based, and fused holistic
and patch-based system were compared. The results
are given in Table 2. As can be seen from these re-
sults, the fused system was again was the best per-
formed following the trend of the previous experi-
ments. For experiment 1, the WER of 22.92% was
much better than the holistic one of 30.10%, giving a
23.9% relative improvement. Again these results look
very promising, but further investigation really needs
to be done before determining whether these results
are significant or not. It is also worth noting that no
holistic result for experiment 2 could be gain as the
dimensionality for the LDA matrix was too large to
be computed.

6 Summary and Conclusion

In this paper, we presented a novel patch-based ap-
proach to the task of VSR which showed improvement
over holistic approaches. Our results show that our
concept of breaking up the mouth ROI into patches,
instead of just one whole, could extract more speech
information from the visual domain. We understand
that a major limitation of our experiments was the
small size of our training and testing database. How-

ever, we believe that the results give an indication
that this patch-base approach is worth pursuing on
an larger database, as well as on the more compli-
cated task of continuous speech recognition. Our fu-
ture work will concentrate on the continuous speech
recognition scenario, through the implementation of
a Dynamic Bayesian Network (DBN), which provides
a framework to combine multiple streams together
effectively. We believe the DBN framework is a far
more prudent way to go rather than using feature fu-
sion as this approach really is not practical as it does
not allow us to weight the various patches and may
cause catastrophic fusion. Another task we will be
undertaking in the future will be investigating which
patches in the ROI (or even the face) are most per-
tinent for visual speech (such as corner of mouths,
mouth center, cheeks etc), so as to further enhance
VSR.
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Abstract

This paper examines audio-visual speaker veri�cation
using a novel adaptation of fused hidden Markov mod-
els, in comparison to output fusion of individual clas-
si�ers in the audio and video modalities. A com-
parison of both hidden Markov model (HMM) and
Gaussian mixture model (GMM) classi�ers in both
modalities under output fusion shows that the choice
of audio classi�er is more important than video. Al-
though temporal information allows a HMM to out-
perform a GMM individually in video, this temporal
information does not carry through to output fusion
with an audio classi�er, where the di�erence between
the two video classi�ers is minor. An adaptation of
fused hidden Markov models, designed to be more ro-
bust to within-speaker variation, is used to show that
the temporal relationship between video observations
and audio states can be harnessed to reduce errors in
audio-visual speaker veri�cation when compared to
output fusion.

Keywords: audio-visual speaker recognition
(AVSPR), fused hidden Markov model (FHMM)

1 Introduction

The aim of audio-visual speaker recognition (AVSPR)
is to make use of complementary information be-
tween the acoustic and visual domains to improve the
performance of traditional acoustic speaker recogni-
tion. Most current approaches to AVSPR either com-
bine the output of individual hidden Markov models
(HMMs) in each modality (late fusion), or use a single
HMM to classify both modalities (early fusion). Be-
cause the scores are combined at the whole-utterance
level, late fusion cannot take true advantage of the
temporal dependencies between the two modalities.
While early fusion has the advantage that it can take
advantage of these dependencies, it often su�ers from
problems with noise, and has di�culties in modeling
the asynchronicity of audio-visual speech (Chibelushi,
Deravi & Mason 2002). The problems with perform-
ing AVSPR with early or late fusion have led to
the development of middle-fusion methods, or mod-

This research was supported by a grant from the Australian
Research Council (ARC) Linkage Project LP0562101.

Copyright c©2006, Australian Computer Society, Inc. This pa-
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56. R. Goecke, A. Robles-Kelly & T. Caelli, Eds. Reproduc-
tion for academic, not-for pro�t purposes permitted provided
this text is included.

els that accept two streams of input and combine the
streams within the model to produce a single score.

Most existing approaches to middle-fusion use cou-
pled HMMs (Ne�an, Liang, Fu & Liu 2003), which
combine two single-stream HMMs by linking the de-
pendencies of their hidden states. However, due to
the small number of hidden states in each modal-
ity, these dependencies are often not strong enough
to capture the true relationship between the two
streams (Brand 1999). Fused HMMs (FHMMs) were
developed (Pan, Levinson, Huang & Liang 2004) by
attempting to design a model that maximises the mu-
tual information between the two modalities within a
multi-stream HMM. Pan et al. (2004) found that the
optimal multi-stream HMM design would result from
linking the hidden states of one HMM to the obser-
vations of the other, rather than linking the hidden
states together, as in a coupled HMM.

In this paper, we �rst introduce a novel adaptation
of Pan et al's FHMMs, designed to be more robust to
within-speaker variation. A comparison of a number
of di�erent audio-visual output-fusion con�gurations
is performed to obtain an insight into the temporal in-
formation available in both audio and video, individ-
ually and combined for the purposes of speaker veri�-
cation. Finally we examine the ability of our FHMM
model to take better advantage of the temporal de-
pendencies between the modalities than is possible
with output fusion alone.

2 Fused Hidden Markov Models

2.1 Theory

Consider two tightly coupled time series OA ={
oA

0 ,oA
1 , . . . ,oA

T−1

}
and OV =

{
oV

0 ,oV
1 , . . . ,oV

T−1

}
,

corresponding to audio and video observations re-
spectively. Assume that OA and OV can be
modeled by two HMMs with hidden states Ux ={
ux

0 , ux
1 , . . . , ux

T−1

}
, where x is A or V , respectively.

In the FHMM framework, an optimal solution for
p

(
OA;OV

)
according to the maximum entropy prin-

ciple (Pan, Liang & Huang 2001) is given by

p̃
(
OA;OV

)
= p

(
OA

)
p

(
OV

) p (w,v)
p (w) p (v)

(1)

where w = gA

(
OA

)
, and v = gV

(
OV

)
are transfor-

mations designed such that p (w,v) is easier to cal-
culate than p

(
OA,OV

)
, but still re�ects the statis-

tical dependence between the two streams. The �nal
term in (1) can therefore be viewed as a correlation
weighting, which will be high if w and v are related,
and low if they are mostly independent. Pan et al.
(2001) also showed that the minimum distance be-
tween p̃

(
OA;OV

)
and the ground truth p

(
OA,OV

)
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is established when the mutual information between
w and v is maximised:

(ŵ, v̂) = arg max
(w,v)∈θ

I (w,v) (2)

In their audio-visual FHMM paper, Pan et al.
(2004) chose w and v empirically from the following
set (θ):

w = ÛA, v = OV (3)

w = ÛA, v = ÛV (4)

w = OA, v = ÛV (5)

where Ûx is an estimate of the optimal state sequence
of HMM x for outputOx. By invoking (2) over the set
θ and invoking the following inequality in information
theory

I (x, f (y)) ≤ I (x, y) (6)

And that estimated hidden state sequences can be
viewed as a function of the output (Ûx = fx (Ox)),
Pan et al. (2004) concluded that

I
(
ÛA, ÛV

)
= I

(
ÛA, fV

(
OV

))
≤ I

(
ÛA,OV

)
(7)

I
(
ÛA, ÛV

)
= I

(
fA

(
OA

)
, ÛV

)
≤ I

(
OA, ÛV

)
(8)

Therefore the transforms (3) and (5) produce bet-
ter estimates of p̃

(
OA;OV

)
than (4). By invoking (3)

in p
(
OA;OV

)
:

pA

(
OA;OV

)
= p

(
OA

)
p

(
OV

) p
(
ÛA,OV

)
p

(
ÛA

)
p (OV )

= p
(
OA

)
p

(
OV

∣∣ ÛA
)

(9)

where p
(
OA

)
can be obtained from the regular au-

dio HMM and p
(
OV

∣∣ ÛA
)
is the likelihood of getting

the video output sequence given the estimated audio
HMM state sequence which produced OA. This equa-
tion represents the audio-biased FHMM as the main
decoding process is the audio HMM.

Similarly, invoking (5) to arrive at the video-biased
FHMM gives:

pV

(
OA;OV

)
= p

(
OV

)
p

(
OA

∣∣ ÛV
)

(10)

The choice of the audio- or video-biased FHMM
should be chosen upon which individual HMM can
more reliably estimate the hidden state sequence for
a particular application. Alternatively, both versions
can be use concurrently and combined using output
fusion, as in Pan et al. (2004).

2.2 Continuous FHMMs

In the original implementation of FHMMs (Pan et al.
2004), the subordinate modality features were treated
as discrete symbols through vector-quantisation code-
books to simplify the calculation of the coupling pa-
rameters. However this simpli�cation caused prob-
lems with within-speaker session variability, espe-
cially when the video was the subordinate modal-
ity. While audio-biased FHMMs (A-FHMMs) worked
well in experiments on the CUAVE database (Dean,

(a) Fused HMM

Figure 1: State diagram representation of a FHMM.
(Compare to a regular HMM in �gure 2.)

1 2 3 4 5 6 7 8 9 10 11 12
1 Eval Test Eval Test Eval Test
2 Eval Test Eval Test Test Eval
3 Eval Test Test Eval Test Eval
4 Test Eval Test Eval Test Eval

Configuration

Se
ss

io
n

Train

Train

Train
Train

Train

Train
Train
Train

Train
Train

Train

Train

Table 1: XM2VTS dataset con�gurations used in
these experiments

Wark & Sridharan 2006), the change in codebook val-
ues caused by a change in session outweighed that
due to a change in speaker, rendering the discrete
FHMM worse than the underlying HMM when used
in a multi-session database like XM2VTS.

To allow the FHMM structure to more robustly
model the subordinate modality, we proposed model-
ing the relationship between the dominant states and
the subordinate observations using an extra GMM
within each of the dominant states. Therefore our
continuous FHMM (as opposed to Pan et al's discrete
FHMM) can be viewed as a regular HMM with two
GMM-based output probability distributions instead
of one in a normal HMM, as shown in Figure 1.

3 Experimental Setup

3.1 Training and Testing Datasets

For this experiment, training, testing and evaluation
data were extracted from the digit-video sections of
the XM2VTS database (Messer, Matas, Kittler, Luet-
tin & Maitre 1999). The training and testing con-
�gurations used for these experiments was based on
the XM2VTSDB protocol (Luettin & Maitre 1998),
but adapted to allow more tests than provided by the
protocol. Each of the 295 speakers in the database
has four separate sessions of video where the speaker
speaks two sequences of two sentences of ten digits.
In each of the con�gurations, two sessions were used
for training, one for evaluation and one for testing,
allowing for 12 con�gurations in total, as shown in
Table 1. By comparison, the XM2VTSDB protocol
only allows for the �rst con�guration.

These experiments were performed as veri�cation
experiments, where the speaker would attempt to en-
ter the system by claiming the identity of a particular
client. To perform this task, the speakers were split
into two groups: clients, who claimed their own iden-
tity; and imposters, who claimed the identity of one
of the clients.

As per the XM2VTSDB protocol, 200 speakers
were designated clients, and 95 were used as impos-
tors. For each client testing sequence (2 per session),
20 sequences were chosen at random from the impos-
tor set allowing for a total of 400 (200×2) client tests
and 8000 (200×2×20) impostor tests for each con�g-
uration. Over all 12 con�gurations, 4800 client tests
and 96000 impostor tests are performed.
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(a) Regular HMM

Figure 2: Regular HMM. The output probability of
each state is implemented as a GMM.

3.2 Feature Extraction

Mel frequency cepstral coe�cients (MFCCs) were
used to represent the acoustic features in these ex-
periments because of their general application to both
speech and speaker recognition. Each feature vector
consisted of the �rst 12 MFCCs, normalised energy
coe�cient, and the �rst and second time derivatives
of those 13 features to result in a 43 dimensional fea-
ture vector. These features were calculated every 10
milliseconds using 25 millisecond Hamming-windowed
speech signals.

Visual features were extracted from a manually
tracked lip region-of-interest (ROI) from 25 fps (40
milliseconds / frame) video data. Manual tracking of
the locations of the eyes and lips were performed ev-
ery 50 frames, and the remainder of the frames were
interpolated from the manual tracking. The eye lo-
cations were used to normalise the rotation of the
lips. A rectangular region-of-interest, 120 pixels wide
and 80 pixels tall, centered around the lips was ex-
tracted from each frame in the video. Each ROI was
then reduced to 20% of its original size (24×16 pix-
els) and converted to grayscale. Finally the ROI was
reduced to 20 dimensions using discrete cosine trans-
formation (DCT) (Heckmann, Kroschel, Savariaux &
Berthommier 2002). First and second time deriva-
tives of these features were added to form a 60 di-
mensional feature vector.

4 Audio-Visual Speaker Veri�cation using
Output Fusion

4.1 Training

Two classi�er-types were used for each modality,
for a total of four output-fusion experiments. The
two classi�ers used were Gaussian mixture models
(GMMs), which are good at modeling static, or time-
independent, variables, and HMMs, which are better
at modeling temporal variables. This can observed by
examining a standard HMM design: HMMs are com-
monly implemented as a chain of GMMs, as shown in
Figure 2, where the HMM controls the likelihood of
moving between states, and the GMM-states control
the likelihood of outputting certain features when in
a emitting state. Conversely, a GMM can be viewed
as HMM with only one emitting state.

Both HMM and GMM speaker-dependent mod-
els were generated by adapting background models
to each individual speaker. The background models
were generated using the training sequences for each
con�guration over both clients and impostors. These
models were then adapted to each individual client
speaker's training sequences using maximum a poste-
rior (MAP) adaptation (Lee & Gauvain 1993).

GMM models were trained over all training se-
quences, whereas HMM models were trained for each
word. Empirical experiments were performed on

Model Mixtures States
Audio HMM 9 7
Audio GMM 256 -
Video HMM 16 7
Video GMM 8 -

Table 2: Best performing topologies for each classi�er.

a single con�guration to determine the best topol-
ogy, shown in Table 2. HMM training was per-
formed using the HTK toolkit (Young, Evermann,
Kershaw, Moore, Odell, Ollason, Povey, Valtchev &
Woodland 2002), and GMM training with internally
developed utilities.

4.2 Testing

For each of the four client models trained in the previ-
ous section, two client sequences and 40 impostor se-
quences were veri�ed using that model for each con�g-
uration. Scores obtained from the client models were
normalised for length and environment by subtracting
the background-model score for the same sequence.

In addition to the individual models, the four pos-
sible output-fusion combinations of audio and video
classi�ers were also examined, as listed below:

• Audio HMM + Video HMM

• Audio HMM + Video GMM

• Audio GMM + Video HMM

• Audio GMM + Video GMM

Given that the parameters of the score-distribution
vary considerably between classi�ers, the evaluation
session of each con�guration is used to get an esti-
mation of each classi�er's score distribution, which is
used to normalise the scores.

Zi (si) =
si − µ̂i

σ̂i
(11)

Where si is the score from classi�er i and µ̂i and
σ̂i are the estimated mean and standard deviations of
classi�er i's score distribution. Therefore the output-
fusion score for each combination is calculated as

sF =
Za (sa) + Zv (sv)

2
(12)

Where a is the audio classi�er and v is the video
classi�er.

4.3 Results

Detection error trade-o� (DET) plots showing the
performance of both the individual classi�ers and the
four output-fusion combinations for speaker veri�ca-
tion are shown in Figure 3.

From a comparison of the HMM and GMM per-
formance for each modality, it can be clearly seen
that there is temporal information in both the audio
and video features. Whilst the audio GMM performs
nearly as well as the audio HMM, it is only through
using a much higher number of mixtures (256 vs 9).
However, in the video we found that the GMM per-
formance could not be made to match the HMM's,
regardless of the number of mixtures used.

However, the clear improvement of using a video
HMM over a video GMM does not appear to trans-
late over to output fusion. The main di�erences in
output fusion appears to be related to the audio clas-
si�er chosen and not the video. The video HMM does
appear to improve output fusion slightly in areas of
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Figure 3: Detection error trade-o� (DET) plots for output-fusion speaker veri�cation.

low false alarm, but it does not provide a major im-
provement that the di�erence of the two classi�ers
in video alone might indicate. So, while the video
HMM clearly takes advantage of temporal video in-
formation when compared to the video GMM, this
temporal information provides little bene�t in out-
put fusion where a static GMM would work almost
as well. It is also clear that output fusion cannot take
advantage of temporal dependencies between the two
modalities, as the only information fused together is
the classi�er's scores over an entire utterance.

5 Audio-Visual Speaker Veri�cation using
FHMMs

5.1 Training

The training of a biased FHMM is a three-step pro-
cess:

1. The dominant individual HMM is trained inde-
pendently

2. The best hidden state sequence of the trained
HMM is found for each training observation us-
ing the Viterbi process (Young et al. 2002)

3. The relationship between the hidden state se-
quences and the subordinate observations are
modeled

For these experiments, both audio- and video-biased
FHMMs were examined, so the underlying HMMs
trained in Step 1 were the audio HMM and the ideo
HMM as trained in Section 4.1, respectively.

The relationship between the hidden state se-
quences and the subordinate observations is con-

tained in p
(
Os| Ûd

)
where d represents the domi-

nant modality, and s the subordinate. This is ba-
sically de�ned as the likelihood of getting a subordi-
nate observation when in a particular dominant state.
Once the estimated hidden state sequence, Ûd, for the
training data was determined in Step 2, the subordi-
nate training observations were segmented based on
the word and state boundaries. Each speaker's GMM
(trained in Section 4.1) was then adapted for each
word and state within their training sequences to form

the FHMM's subordinate GMMs. The background
GMM was also adapted to each word and state and
added to the background HMM to form the back-
ground FHMM. The optimal number of mixtures for
the subordinate GMMs was found empirically to be
the same as that for individual GMM classi�ers, that
being 256 for the audio and 8 for the video.

The training sequence was performed twice, once
with audio as the dominant modality, and once with
video dominant to form the audio- and video-biased
FHMMs respectively.

5.2 Testing

Generalising (9) and (10) we can see that:

pd

(
Od,Os

)
= p

(
Od

)
p

(
Os| Ûd

)
(13)

Where d represents the dominant modality, and s the
subordinate. As p

(
Od

)
=

∑
Ud p

(
Od,Ud

)
, and the

aim of the decoding process is to �nd the optimal
Ud by maximising the likelihood, we �nd the optimal
state sequence is given by:

Ûd = arg max
Ud

p
(
Od,Ud

)
p

(
Os|Ud

)
(14)

This can be viewed a special type of HMM that
has two observation-emission probability-density-
functions for each state, one being the continu-
ous dominant-observation-emission GMM of the reg-
ular HMM, and the second being the continuous
subordinate-observation-emission GMM trained in
Section 5.1. As these scores are combined within each
state, and each state still provides a single probabil-
ity within the Viterbi process, the decoding process
is otherwise una�ected.

Before the scores for each modality are combined
within the state, they are normalised for each modal-
ity based on the evaluation data set, similar to the
normalisation performed for output fusion in Sec-
tion 4.2, but on a frame-by-frame basis rather than
over an entire sequence. Because we found the di�er-
ence in frame-scores between modalities is more sig-
ni�cant that the di�erence in scores between speak-
ers, the background dominant HMM and subordi-
nate GMM individual models were evaluated for each
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frame over the evaluation sequences for each con�gu-
ration to come up with an estimate of each classi�er's
score distribution which was then used to normalise
the GMM scores within each FHMM state using (12).
The features evaluated for each modality's score is
determined by the frame-rate of the dominant HMM,
with the subordinate features chosen being the closest
in time to the dominant features.

In addition to using models adapted to a spe-
ci�c word-state for the subordinate modality, mod-
els adapted to all states of a particular word, and
just using the global speaker GMM in this role was
considered. These three choices will be referred to as
word-state GMMs, word GMMs and global GMMs for
the remainder of this paper. By examining the di�er-
ence in performance between these subordinate mod-
els in the FHMM structure, we can make some con-
clusions about the temporal dependencies captured
by the FHMMs.

Finally, scores obtained from the client FHMM
models were normalised for length and environment
by subtracting the background-model FHMM score
for the same sequence.

5.3 Comparison with Output Fusion

It can be seen that using the global speaker GMM
should be functionally equivalent to a output fusion of
the GMM and the underlying HMM. This is because
at a base level the output HMM likelihood can be
mathematically de�ned as:

p (O) =
∏

t

ph (ot|ut) (15)

Where ph (ot|ut) is the likelihood of the HMM out-
putting observation ot whilst in state ut at time t.
Fusing the output of this HMM with a single GMM's
output (pg (ot)) results in:

p
(
Od,Os

)
=

∏
t

ph

(
od

t |ud
t

)
×

∏
t

pg (os
t ) (16)

=
∏

t

[
ph

(
od

t |ud
t

)
pg (os

t )
]

(17)

This is equivalent to multiplying the regular HMM
and global subordinate GMM within the Viterbi pro-
cess of the FHMM, assuming that the addition of the
pg term does not a�ect the best path chosen through
the lattice, and therefore the value of ut above. But,
as the pg term does not depend upon the value of ut,
every path in the lattice should be a�ected equally,
and therefore the best path should remain the same.

However, there are other di�erences of implemen-
tation between the global subordinate-GMM FHMM
and the output fusion presented above that make
them slightly di�erent for the purposes of these ex-
periments. For the two products in (16) above to be
combined to form (17), they must be multiplying over
the same range of t-values, which is not the case here
due to the di�erent frame rates of each modality. Ad-
ditionally, the normalisation performed in the FHMM
nodes and also in the output fusion occur at di�er-
ent levels, introducing di�erences. Nevertheless, these
factors could be easily controlled for, allowing out-
put fusion to work as well as the global-subordinate-
GMM-based FHMM model.

In a similar manner to this, the word and word-
state subordinate-GMM-based FHMM models could
be viewed as almost equivalent to HMM-GMM output
fusion, provided that the sequence is �rst segmented
into words or word-states, respectively, using the un-
derlying HMM, and the correct subordinate GMM is

chosen for each segment. This is e�ectively what the
FHMM model is doing with the signi�cant di�erence
being that the score-fusion occurs within the Viterbi
process, so that the boundaries of the words or word-
states have the possibility of moving based upon the
subordinate observations. It is not clear at this stage
how much this is in e�ect, and this will be covered in
a future paper in more detail.

5.4 Results

DET plots showing the performance of our audio- and
video-biased FHMM structures are shown in Figure 4.
By comparing to the output fusion of the audio and
video HMM, shown in both plots, it can be seen that
the audio-biased structure is clearly more powerful
than the video-biased version.

For the video-biased FHMMs, the word and word-
state subordinate models fare considerably worse
than the global subordinate model. As the global-
subordinate-model can be replicated with output fu-
sion, as discussed in the previous section, there is
therefore little need of video-biased FHMMs in this
situation. However, for audio-biased FHMMs there
does appear to be a small bene�t in using the word-
state, or word FHMM over the global FHMM, par-
ticularly around the equal-error-rate region.

The main reason for the di�erence in performance
between the two FHMM con�gurations is the abil-
ity of the dominant HMM to reliably estimate its
underlying state sequence. The performance of the
audio-biased FHMM shows that the audio HMM can
reliably segment the sequences into sections of simi-
lar video appearance, but the video HMM does not
appear able to locate segments of similar audio activ-
ity. Although the performance increase in this case is
not large, the improved performance of the word-state
FHMM over the global FHMM does appear to show
that it is taking advantage of a temporal relationship
between the audio states and video features.

6 Conclusion and Future Research

In this paper we have examined output fusion using
both HMM and GMM classi�ers in both the audio
and video modalities and found that although tem-
poral video information is clearly useful for lip-based
speaker recognition using video HMMs, under output
fusion most of this information appears to be lost.
The performance of output fusion appears to based
mostly on the audio-classi�er chosen, with the HMM
performing better, and the choice of video classi�er
appears to only have a minor e�ect.

In an attempt to take greater advantage of the
temporal video information in fusion with the audio,
we adapted Pan et al.'s (2004) FHMMs to improve
the robustness of the subordinate models to within-
speaker variations, particularly on data recorded over
multiple sessions. We found that our continuous
FHMM model took advantage of the temporal re-
lationship between the video observations and audio
states to improve performance over the best perform-
ing output fusion in an audio-biased con�guration.
However, we found that the video-biased con�gura-
tion showed no useful relationship between audio ob-
servations and video states.

In the audio-biased FHMM structure, a large por-
tion of the video subordinate-GMMs are used to
recognise primarily static features, such as lip or skin
colour, which do not change throughout the sequence.
As this type of information cannot form a tempo-
ral relationship with audio states, its e�ect on the
subordinate-GMMs may be swamping the more dy-
namic information available in the movement of the
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Figure 4: Detection error trade-o� (DET) plots for FHMM speaker veri�cation. (Note that the scale has
changed from Figure 3.)

lips that could provide an improvement in the FHMM
structure. A more e�cient FHMM structure may be
able to be realised by using more dynamic video fea-
tures, and then performing output-fusion with a sim-
ple classi�er using the static features so that the static
information is not lost completely. Methods such as
mean-image removal, optical �ow or contour-based
lip representations should provide better features to
model the dynamic nature of visual speech.

Additionally, FHMMs should prove quite useful in
other areas relating to audio-visual speech, such as
speech recognition, or speaker detection.
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Abstract

This paper describes a voiceless speech recognition
technique that utilizes dynamic visual features to rep-
resent the facial movements during phonation. The
dynamic features extracted from the mouth video are
used to classify utterances without using the acous-
tic data. The audio signals of consonants are more
confusing than vowels and the facial movements in-
volved in pronunciation of consonants are more dis-
cernible. Thus, this paper focuses on identifying con-
sonants using visual information. This paper adopts
a visual speech model that categorizes utterances into
sequences of smallest visually distinguishable units
known as visemes. The viseme model used is based on
the viseme model of Moving Picture Experts Group
4 (MPEG-4) standard. The facial movements are
segmented from the video data using motion history
images (MHI). MHI is a spatio-temporal template
(grayscale image) generated from the video data using
accumulative image subtraction technique. The pro-
posed approach combines discrete stationary wavelet
transform (SWT) and Zernike moments to extract ro-
tation invariant features from the MHI. A feedforward
multilayer perceptron (MLP) neural network is used
to classify the features based on the patterns of visible
facial movements. The preliminary experimental re-
sults indicate that the proposed technique is suitable
for recognition of English consonants.

Keywords: visual speech recognition, wavelet trans-
form, feedforward neural network.

1 Introduction

Speech recognition has been an important research
subject that spans across multiple disciplines such as
human-computer interaction(HCI), signal processing,
linguistic and machine learning. Enormous research
efforts are put into developing intelligent machines
that are capable of comprehending utterances. Such
speech-based devices are useful as they provide the
flexibility for users to control computers using human
speech.

However, the performance of the current speech
recognition systems are still far behind as compare
to human’s cognitive ability in perceiving and un-
derstanding speech(Lippmann 1997). The main dif-
ficulty of the conventional speech recognition tech-
niques based on audio signals is that such sys-
tems are sensitive to signal strength, ambient noise

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at HCSNet Workshop on the Use of Vision in
HCI (VisHCI 2006), Canberra, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
56. R. Goecke, A. Robles-Kelly & T. Caelli, Eds. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

and acoustic conditions. To overcome this limi-
tation, the non acoustic speech modalities can be
used to complement the audio signals. There are a
number of options available such as visual(Goecke
& Millar 2003, Potamianos, Neti, Huang, Connell,
Chu, Libal, Marcheret, Haas & Jiang 2004), record-
ing of vocal cords movements through electroglotto-
graph(EGG) (Dikshit & R.W.Schubert 1995), me-
chanical sensing of facial movement and movement of
palate, recording of facial muscle activity (Arjunan,
Kumar, Yau & Weghorn 2006), facial plethysmo-
gram and measuring the intra-oral pressure(Soquet,
Saerens & Lecuit 1999). Vision-based speech recog-
nition techniques are least intrusive and non invasive
and this paper reports on such a technique for HCI
application.

In our normal communication, the visual modal-
ity of speech is often incorporated into audio speech
recognition (ASR) systems because the visual speech
signals are invariant to acoustic noise and style
of speech. Such systems that combine the au-
dio and visual modalities to identify utterances are
known as audio-visual speech recognition (AVSR) sys-
tems. AVSR systems can enhance the performance of
the conventional ASR system especially under noisy
condition(Chen 2001). Research where these AVSR
systems are being made more robust, and able to
recognize complex speech patterns of multiple speak-
ers are being reported(Potamianos et al. 2004, Liang,
Liu, Zhao, Pi & Nefian 2002). While AVSR systems
are useful for applications such as for telephony in
noisy environment, these are not suitable for people
with speech impairment that have difficulty in pro-
ducing speech sounds. AVSR systems are also not
useful in situations where it is essential to maintain
silence. Thus, the need for a voiceless, visual-only
communication system arises. Such a system is also
commonly known as lipreading or visual speech recog-
nition or speechreading system.

Speechreading systems use the visual information
extracted from the image sequence of the mouth to
identify utterances. The visual speech information
refers to the movement of the speech articulators such
as the lips, facial muscles, tongue, teeth and jaw of the
speaker. The complex range of reproducible sounds
produced by people is a clear demonstration of the
dexterity of the human mouth and lips- the key speech
articulators. The possible advantages of such voice-
less systems are (i) not sensitive to audio noise and
change in acoustic conditions (ii) does not require the
user to make a sound and (iii) suitable for users with
speech impairment.

The visual cues contain far less classification power
for speech compared to audio data and hence it is to
be expected that speechreading systems would have
only a small vocabulary. Such systems are also known
to be user dependent, and hence it is important for
such a system to be easy to train for a new user. And
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because there is no audio cue, it is highly desirable
that the system provide the user with active feedback
to avoid any error in communication.

The main limitation with current speechreading
systems is that these systems adopts a ’one size fits
all’ approach. Due to the large variation in the way
people speak English, especially if we transgress the
national and cultural boundaries, these have very
high error rate, with error of the order of 90% for
large vocabulary systems(Potamianos, Neti, Gravier
& Senior 2003, Hazen 2006) and error rates in the
range of 55% to 90% for small vocabulary system
(Matthews, Cootes, Cox, Harvey & Bangham 1998),
which demonstrates the inability of these systems to
be used as voiceless, speech-controlled human com-
puter interfaces.

What is required is a speaker-dependent system
that is easy to train for individual users,with low com-
putational complexity and can provide active feed-
back to the user. The system needs to be robust un-
der changing conditions such as angle and distance of
the camera, and insensitive to factors such as differ-
ent skin color, texture and rapidity of speech of the
speaker.

To achieve the above mentioned goals, this paper
proposes a system where the camera is attached in
place of the microphone to the commonly available
head-sets. The advantage of this is that using this,
it is no longer required to identify the region of in-
terest, reducing the computation required. The video
processing proposed is the use of accumulative im-
age subtraction technique to directly segment the fa-
cial movements of the speaker. The proposed tech-
nique uses dynamic visual speech features based on
the movements of the lower face region such as move-
ments of the mouth, jaw and facial muscles. The
proposed motion segmentation approach is based on
the use of motion history images (MHI) where the
video data is multiply with a ramp function and tem-
porally integrated with greater weight to the recent
movements. The resultant MHI is a 2-D grayscale
image which is suitable for representing short dura-
tion complex movements of the lower face. Section 2
discusses on related work in the field of speechread-
ing and Section 3 describes our proposed approach.
Section 4 presents the methodology and Section 5 re-
ports on the results of the initial experiments. Sec-
tion 6 presents the discussion and findings based on
the experimental results and Section 7 discusses the
recommendations for possible future work.

2 Related Work

Numerous speechreading techniques are reported in
the literature and comprehensive reviews on speech
recognition research can be found in (Potamianos
et al. 2003, Chen 2001, Stork & Hennecke 1996).
Visual features used in speechreading systems can
be divided into two main categories - shape-based
and intensity-based. The shape-based features rely
on the geometric shape of the mouth and lips and
can be represented by a small number of parame-
ters. The first speechreading system was proposed
by Petajan(Petajan 1984) using shape-based features
such as height, width and area of the mouth derived
from the binary mouth images. Shape based features
based on 3D coordinates of feature points (lip corners
and midpoints of upper and lower lip) are extracted
from stereo images in (Goecke & Millar 2003). Lip
contours extracted using deformable template tech-
niques such as active shape models(ASM) are used as
visual speech features in (Matthews et al. 1998, Perez,
Frangi, Solano & Lukas 2005). ASM obtains the lip
information by fitting a statistical shape model of the

lip to the video frames. While such top-down, model-
based approaches are less sensitive to the view angle
of the camera and image noise, they rely only on the
shape of the lip contours and do not contain infor-
mation of other speech articulators. An extension
to the ASM technique is active appearance model
(AAM) that combines the shape model with a sta-
tistical model of the grey levels in the mouth region.
The performance of AAM is demonstrated to out-
perform ASM in lip tracking(Matthews et al. 1998).
However, both AAM and ASM techniques are sensi-
tive to tracking error and modelling error.

Intensity-based features are derived directly from
the pixel intensity values of the image around the
mouth area (Liang et al. 2002, Potamianos et al. 2004,
Hazen 2006, Saenko, Darrell & Glass 2004). Such fea-
tures are extracted using bottom-up approach. The
advantage of intensity-based systems is that accurate
tracking and modelling of the lips are not required as
opposed to model-based systems. The training of the
statistical model of the lips is also not necessary for
intensity-based approach thereby reducing the com-
putational complexity of the systems. Intensity-based
features are capable of representing visual informa-
tion within the mouth cavity and also surrounding
face region that are not represented in the high-level,
shaped-based features and lip contours(Potamianos
et al. 2004). Nonetheless, the intensity-based features
have much higher dimensionality if taking directly
all the pixels from the mouth images. Dimension-
ality reduction or feature extraction techniques such
as Principal Component Analysis (PCA) and Inde-
pendent Component Analysis (ICA) can be applied
on the images to reduce the dimension of such fea-
tures. The intensity-based features are demonstrated
to yield better performance than shape-based fea-
tures extracted using ASM and AAM algorithms in
(Matthews et al. 1998). Similarly, intensity-based fea-
tures using Discrete Cosine Transform (DCT) is also
shown to outperform model-based features obtained
using ASM algorithm in (Perez et al. 2005). This pa-
per reports on the use of intensity-based features ex-
tracted from the MHI to represent facial movements
for consonants recognition.

3 Theory

3.1 Visual Speech Model - Viseme Model

Human speech is organized as sequences of basic unit
of speech sounds known as phoneme. Phonemes can
be further dichotomized into vowels and consonants.
The audio signals of consonants are less distinguish-
able than vowels (Chen 2001). Hence, the visual
speech information is crucial in differentiating the
consonants, especially in conditions where the acous-
tic signal strength is low or contaminated by noise.
This paper focuses on the recognition of consonants
due to the fact that consonants are easier to ”see”
and harder to ”hear” than vowels (Kaplan, Bally &
Garretson 1999). The pronunciation of vowels are
produced with an open vocal tract whereas the pro-
duction of consonants involve constrictions at certain
part of the vocal tract by the speech articulators.
Hence, the facial movements involved in pronuncia-
tion of consonants are more discernible than vowels.
To represent the different facial movements when ut-
tering consonants, a visual speech model is required.

This paper uses visemes to model visual speech.
The motivation of using viseme as the recognition
unit is because visemes can be concatenated to form
words and sentences, thus providing the flexibility for
the proposed visual speech recognition system to be
extended into a large vocabulary system. The to-
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tal number of visemes is much less than phonemes
because speech is only partially visible(Hazen 2006).
While the video of the speaker’s face shows the move-
ment of the lips and jaw, the movements of other ar-
ticulators such as tongue and vocal cords are often
not visible. Hence, each viseme can correspond to
more than one phoneme, resulting in a many-to-one
mapping of phonemes-to-visemes.

Various viseme models had been proposed for
AVSR applications (Hazen, Saenko, La & Glass 2004,
Potamianos et al. 2004, Gordan, Kotropoulos & Pitas
2002). There is no definite consensus about how the
sets of visemes in English is constituted(Hazen 2006).
The number of visemes for English varies depend-
ing on factors such as the geographical location, cul-
ture, education background and age of the speaker.
The geographic differences in English is most obvi-
ous where the sets of phonemes and visemes changes
for different countries and even for areas within the
same country. It is difficult to determine an opti-
mal and universal viseme set that is suitable for all
users. This paper adopts the viseme model estab-
lished for facial animation applications by an interna-
tional audiovisual object-based video representation
standard known as MPEG-4. The motivation of us-
ing this model is because this enable the proposed
system to be coupled with any MPEG-4 supported fa-
cial animation systems to form an interactive speech
recognition and synthesis human computer interface.
Based on the MPEG-4 viseme model, there is nine
visemes associated with all English consonants. This
paper adopts this nine visemes to represent the differ-
ent facial movements when pronouncing consonants.
The consonants chosen for experiments for each of the
nine visemes are highlighted in bold fonts in Table 1.

Viseme Number Phonemes Example words
1 /p/,/b/,/m/ put, bed, me
2 /f/,/v/ far, voice
3 /th/,/dh/ think, that
4 /t/,/d/ tick, door
5 /k/,/g/ kick, gate
6 /sh/, /j/, /ch/ she, join, chair
7 /s/,/z/ sick, zeal
8 /n/,/l/ new, less
9 /r/ rest

Table 1: Viseme model of the MPEG-4 standard for
English consonants.

3.2 Segmentation of the Facial Movements

In the proposed approach, the dynamic visual speech
features which comprise of the facial movements of
the speaker are segmented from the video data us-
ing a view-based approach named motion history im-
ages (MHI)(Bobick & Davis 2001). MHI is a spatial-
temporal template that shows where and when move-
ment of speech articulators (lips, teeth, jaw ,facial
muscles and tongue) occurs in the image sequence.
MHI is generated using difference of frames (DOF)
from the video of the speaker. Accumulative im-
age subtraction is applied on the image sequence by
subtracting the intensity values between successive
frames to generate the difference of frames (DOFs).
The delimiters for the start and stop of the motion
are manually inserted into the image sequence of ev-
ery articulation. The MHI of the video of the lips
would have pixels corresponding to the more recent
mouth movement brighter with larger intensity val-
ues. The intensity value of the MHI at pixel location

(x, y) of time t (or the tth frame) is defined by

MHIt = max
N−1⋃
t=1

B(x, y, t)× t (1)

N is the total number of frames used to capture the
mouth motion. B(x, y, t) is the binarisation of the
DOF using the threshold a and B(x, y, t) is given by

B(x, y, t) =
{

1 if Diff(x, y, t) ≥ a,
0 otherwise (2)

a is the predetermined threshold for binarisation of
the DOF represented as Diff(x, y, t). The value for
the fixed threshold, a is optimized through experi-
mentation. The DOF of the tth frame is defined as

Diff(x, y, t) = |I(x, y, t)− I(x, y, t− 1)| (3)

I(x, y, t) represents the intensity value of pixel loca-
tion with coordinate (x, y) at the tth frame of the
image sequence. In Eq. (1), the binarised version of
the DOF is multiplied with a linear ramp of time to
implicitly encode the timing information of the mo-
tion into the MHI(Kumar & Kumar 2005). By com-
puting the MHI values for all the pixels coordinates
(x, y) of the image sequence using Eq. (1) will pro-
duce a scalar-valued grayscale image (MHI) where the
brightness of the pixels indicates the recency of mo-
tion in the image sequence. The proposed motion seg-
mentation approach is computationally simple and is
suitable for real time implementation. Figure 1 shows
examples of 3 MHIs generated from the video of the
speaker and Figure 2 illustrates the 9 MHIs that form
the viseme model of MPEG-4 for English consonants
used in the experiments.

The motivation of using MHI in visual speech
recognition is the ability of MHI to remove static el-
ements from the sequence of images and preserve the
short duration facial movements. MHI is also invari-
ant to the skin color of the speakers due to the DOF
and image subtraction process involved in the gener-
ation of MHI.

3.2.1 Variation in Speed of Speech

The speed of phonation of the speaker might varies for
each pronunciation of a phone. Hence, the speed of
the mouth movements when the speaker is pronounc-
ing a consonant might be different for each video
recording. The variation in the speed of utterance re-
sults in the variation of the overall duration and there
maybe variation in the microphases of the utterances.
The details of such variations are difficult to model
due to the large inter-subject and inter-experiment
variations. This paper suggests a model to approxi-
mate such variations by normalizing the overall dura-
tion of the utterance. This is achieved by normalizing
the intensity values of the MHI to in between 0 and
1 to minimize the difference in MHIs produced from
video data of different rapidity of speech.

3.2.2 Issues Related to the Segmentation of
the Facial Movements

MHI is a view sensitive motion representation tech-
nique. Therefore the MHI generated from the se-
quence of images is dependent on factors such as:

1. position of the speaker’s mouth normal to the
camera optical axis

2. orientation of the speaker’s face with respect to
the video camera
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Figure 1: Examples of MHI generated from video of a speaker uttering three different consonants.

Figure 2: MHI of the 9 consonants from the MPEG-4 viseme model

3. distance of the speaker’s mouth from the camera
(which changes the scale/size of the mouth in the
video data)

4. small variation of the mouth movement of the
speaker while uttering the same consonant

This paper proposes the use of approximate im-
age of discrete stationary wavelet transform (SWT)
to obtain a time-frequency representation of the MHI
that is insensitive to small variations of the mouth
and lip movement. The proposed technique adopts
Zernike moments as the region-based features to rep-
resent the SWT approximate image of the MHI to
further reduce the dimension of the data. Zernike
moments are chosen because they can be normalized
to achieve rotation invariance.

3.2.3 Discrete Stationary Wavelet Transform

This paper proposes the use of discrete stationary
wavelet transform (SWT) to obtain a transform rep-
resentation of the MHI that is insensitive to small
variations of the mouth and lip movement. While the
classical discrete wavelet transform (DWT) is suitable
for this, DWT results in translation variance(Mallat

1998) where a small shift of the image in the space
domain will yield very different wavelet coefficients.
The translation sensitivity of DWT is caused by the
aliasing effect that occurs due to the downsampling of
the image along rows and columns(Simoncelli, Free-
man, Adelson & Heeger 1992). SWT restores the
translation invariance of the signal by omitting the
downsampling process of DWT, and results in redun-
dancies.

2-D SWT at level 1 is applied on the MHI to pro-
duce a spatial-frequency representation of the MHI.
The 2-D SWT is implemented by applying 1-D SWT
along the rows of the image followed by 1-D SWT
along the columns of the image. SWT decomposition
of the MHI generates four images, namely approxi-
mation (LL), horizontal detail coefficients (LH), ver-
tical detail coefficients (HL) and diagonal detail coef-
ficients (HH) through iterative filtering using low pass
and high pass filters. The approximate image is the
smoothed version of the MHI and carries the high-
est amount of information content among the four
images. LH, HL and HH sub images show the fluc-
tuations of the pixel intensity values in the horizon-
tal, vertical and diagonal directions respectively. The
image moments features are computed from the ap-
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Figure 3: The square-to-circular transformation of the SWT approximation of MHI

proximate sub image.
Haar wavelet has been selected due to its spatial

compactness and localization property. Another ad-
vantage is the low mathematical complexity of this
wavelet. Compact features have to be extracted from
the approximation (LL) to further reduce the size of
the data. Since the gray levels of MHI are the tem-
poral descriptors of motion occurring in the image se-
quence, thus it is intuitive to use global region-based
feature descriptors to represent the approximation of
the MHI. The proposed technique adopts Zernike mo-
ments as the region-based features to represent the
SWT approximate image of the MHI.

3.3 Visual Speech Features - Zernike Mo-
ments

Zernike moments are image moments commonly used
in recognition of image patterns(Khontazad & Hong
1990, Teague 1980). Zernike moments have been
demonstrated to outperformed other image moments
such as geometric moments, Legendre moments and
complex moments in terms of sensitivity to image
noise, information redundancy and capability for im-
age representation(Teh & Chin 1988). The proposed
technique uses Zernike moments as visual speech fea-
tures to represent the SWT approximate image of the
MHI.

Zernike moments are computed by projecting the
image function f(x, y) onto the orthogonal Zernike
polynomial Vnl of order n with repetition l is defined
within a unit circle (i.e.: x2 + y2 ≤ 1) as follows:

Vnl(ρ, θ) = Rnl(ρ)e−ĵlθ; ĵ =
√−1 (4)

where Rnl is the real-valued radial polynomial
The main advantage of Zernike moments is the

simple rotational property of the features(Khontazad
& Hong 1990). Zernike moments are also independent
features due to the orthogonality of the Zernike poly-
nomial Vnl(Teh & Chin 1988). |l| ≤ n and (n− |l|) is
even. Zernike moments Znl of order n and repetition
l is given by

Znl =
[
n + 1

π

] ∫ 2π

0

∫ ∞

0

[Vnl(ρ, θ)] f∗(ρ, θ)dρdθ (5)

f(ρ, θ) is the intensity distribution of the approximate
image of MHI mapped to a unit circle of radius ρ and
angle θ where x = ρcosθ and y = ρsinθ.

For the Zernike moments to be orthogonal, the
approximate image of the MHI is scaled to be within
a unit circle centered at the origin. The unit circle
is bounded by the square approximate image of the
MHI. The center of the image is taken as the origin
and the pixel coordinates are mapped to the range of
the unit circle i.e.: x2 + y2 ≤ 1. Figure 3 shows the
square-to-circular transformation performed for the
computation of the Zernike moments that transform
the square image function (f(x, y)) in terms of the x-
y axes to a circular image function(f(ρ, θ)) in terms
of the i-j axes.

To illustrate the rotational characteristics of
Zernike moments, consider β as the angle of rotation
of the image. The resulting rotated Zernike moment
Z ′nl is

Z ′nl = Znle
−ilβ (6)

Znl is the Zernike moment of the original image. Eq.
(6) demonstrates that rotation of an image results in
a phase shift on the Zernike moments(Teague 1980).
The absolute value of Zernike moments are rotation
invariant(Khontazad & Hong 1990) as shown in the
equation below

|Z ′nl| = |Znl| (7)

This paper uses the absolute value of the Zernike mo-
ments, |Z ′nl| as the rotation invariant features of the
SWT of MHI. By including higher order moments,
more information of the MHI can be represented by
the Zernike moments features. However, this inher-
ently increases the size of the features and makes it
prone to noise. An optimum number of Zernike mo-
ments need to be selected to trade-off between the
dimensionality of the feature vectors and the amount
of information represented by the features. 49 Zernike
moments that comprise of 0th order moments up to
12th order moments have been used as features to
represent the approximate image of the MHI for each
consonant. Table 2 lists the 49 Zernike moments used
in the experiments.
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Order Moments No. of Moments
0 Z00 1
1 Z11 1
2 Z20Z22 2
3 Z31Z33 2
4 Z40Z42Z44 3
5 Z51Z53Z55 3
6 Z60Z62Z64Z66 4
7 Z71Z73Z75Z77 4
8 Z80Z82Z84Z86Z88 5
9 Z91Z93Z95Z97Z99 5
10 Z10,0Z10,2Z10,4Z10,6Z10,8Z10,10 6
11 Z11,1Z11,3Z11,5Z11,7Z11,9Z1,11 6
12 Z12,0Z12,2Z12,4Z12,6Z12,8Z12,10Z12,12 7

Table 2: List of the 49 Zernike Moments and Their Corresponding Number of Features From Order Zero to
Order Twelve

3.4 Classification Using Feedforward Neural
Network

There are a number of possible classifiers that maybe
suitable for such a system. The selection of the ap-
propriate classifier would require statistical analysis
of the data that would also identify the features that
are irrelevant. Supervised neural network approach
lends itself for identifying the separability of data even
when the statistical properties and the types of sepa-
rability (linear or nonlinear) is not known and without
even requiring the estimating of the kernel. While it
may be suboptimum, it is an easy tool to implement
as a first step.

This paper presents the use of artificial neural
network (ANN) to classify Zernike moments features
into one of the class of consonants. ANN has been
selected because it can solve complicated problems
where the description for the data is not easy to com-
pute. The other advantage of the use of ANN is its
fault tolerance and high computation rate due to the
massive parallelism of its structure(Kulkarni 1994).
The functionality of the ANN to be less dependent
on the underlying distribution of the classes as op-
posed to other classifiers such as Bayesian classifier
and Hidden Markov Models(HMM) is yet another ad-
vantage for using ANN in this application(Stork &
Hennecke 1996).

A supervised feed-forward multilayer perceptron
(MLP) ANN classifier with back propagation(BP)
learning algorithm is integrated in the visual speech
recognition system described in this paper. The ANN
is provided with a number of training vectors for
each class during the training phase. MLP ANN
was selected due to its ability to work with com-
plex data compared with a single layer network. Due
to the multilayer construction, such a network can
be used to approximate any continuous functional
mapping(Bishop 1995). This paper proposes the use
of a three-layer network with BP learning algorithm
to classify the visual speech features. The advantage
of using BP learning algorithm is that the inputs are
augmented with hidden context units to give feed-
back to the hidden layer and extract features of the
data from the training events(Haung 2001). Trained
ANNs have very fast classification speed(Freeman &
Skapura 1991) thus making them an appropriate clas-
sifier choice for real time visual speech recognition ap-
plications. Figure 4 shows the overall block diagram
of the proposed technique.

4 Experiments

Experiments were conducted to evaluate the perfor-
mance of the proposed visual speech recognition tech-
niques in classifying English consonants. The exper-
iments were approved by the Human Experiments
Ethics Committee of the university. Nine consonants
that form the viseme model of English consonants
according to the MPEG-4 standard are tested in the
experiment. The nine consonants tested (/m/, /v/,
/th/, /t/, /g/, /ch/, /s/, /n/ and /r/) were high-
lighted in bold in Table 1.

4.1 Video Recording and Processing

Video data was recorded from one speaker using an
inexpensive web camera in a typical office environ-
ment. This was done towards having an inexpensive
and practical voiceless communication system using
low resolution video recordings. The video camera
focused on the mouth region of the speaker and the
camera was kept stationary throughout the experi-
ment. The following factors were kept the same dur-
ing the recording of the videos : window size and view
angle of the camera, background and illumination. 20
video data of size 240 x 240 was recorded for each of
the nine consonants. Thus, a total of 180 video data
was created. The video data was stored as true color
(.AVI) files and every AVI file had a duration of two
seconds to ensure that the speaker had sufficient time
to utter each of the consonant. The frame rate of
the AVI files was 30 frames per second. One MHI
was generated from each of the AVI file. An example
of MHI for each of the nine consonants are shown in
Figure 3.

4.2 Features Extraction

SWT at level-1 using Haar wavelet was applied on the
MHIs and the approximate image (LL) was used for
analysis. Zernike moments are computed from circu-
lar region of interest while the MHI is a square im-
age. Hence, square-to-circular transformation of the
SWT approximate image of the MHI had been done
to compute the orthogonal Zernike moments features.
49 Zernike moments that comprise of 0th order mo-
ments up to 12th order moments have been used as
features to represent the SWT approximate image of
the MHI for each consonants.

4.3 Classification

The next step of the experiments was to classify the
features using artificial neural network(ANN), which

CRPIT Volume 56

98



Figure 4: Block diagram of the proposed visual speech recognition approach.

Viseme Recognition Rate
/m/ 100%
/v/ 87%
/th/ 65%
/t/ 74%
/g/ 85%
/ch/ 91%
/s/ 93%
/n/ 74%
/r/ 93%

Table 3: Mean Classification Accuracies for 9
Visemes(Consonants).

can learns patterns of features with nonlinear sepa-
ration. The Zernike moments features were fed to
ANN to classify the features into one of the conso-
nants. Multilayer perceptron (MLP) ANN with back-
propagation (BP) learning algorithm was employed in
the proposed system. The architecture of the ANN
consisted of two hidden layers. The size of the in-
put layer of the ANN was chosen to be same as the
size of the features which was 49 nodes. The size
of the output layer of the ANN was 9 which corre-
sponded to the number of visemes (classes) available.
The total numbers of hidden nodes was 140 which
was determined iteratively through experimentation.
Sigmoid function was the threshold function and the
type of training algorithm for the ANN was gradient
descent and adaptive learning with momentum with
a learning rate of 0.05 to reduce chances of local min-
ima. In the experiments, Zernike moments features
of 10 MHIs of each consonants were used to train the
ANN. The remaining 10 MHIs (that were not used
in training the ANN) were presented to the ANN to
test the ability of the trained ANN in recognizing the
nine consonants. The statistical mean and variance
of the classification accuracies of the data are deter-
mined by repeating the experiments 10 times. For
each repetition of the experiment, the 10 test samples
for each consonants were selected randomly with dif-
ferent combinations (permutations) to train the ANN
and the remaining 10 MHIs were used as test samples.

5 Results and Observations

The experiments have tested the robustness of the use
of MHI features to identify the human speech visemes
with a feedforward neural network as the classifier.
The ANN used was trained for an individual subject.
The mean recognition accuracies of the ANN for the
10 repetitions of the experiments are tabulated in Ta-
ble 3. From this table, it is observed that the mean
success rate for identifying the viseme based conso-
nants is 84.7% with a standard deviation of 2.8%.

6 Discussion

The results indicate that the proposed technique
based on dynamic visual speech information (facial
movements) is suitable for consonants recognition.
The results indicate that the different patterns of fa-
cial movements can be used to classify the 9 visemes
of English consonants based on the MPEG-4 viseme
model.

The good results demonstrate the ability of ANN
to learn the patterns of the facial movement features.
From the results, it is observed that a small number
of samples are sufficient to suitably train the ANN
based system, indicating the sufficient compactness
of each class of the data.

One of the possible reason for the misclassifications
of the test samples by the ANN can be attributed
to the inability of vision-based technique to capture
the occluded articulators movements. Example, the
movement of the tongue within the mouth cavity is
not visible (occluded by the teeth) in the video data
during the pronunciation of /n/. Thus, the resul-
tant MHI of /n/ does not contain information on the
tongue movement.

While the error rates of the experiments are much
lower than the 90% error reported by (Potamianos
et al. 2003, Hazen 2006), the authors would like to
point out that it is not appropriate to compare our
results with other related work as this system has
only been tested using a small vocabulary consisting
of discrete phones of a single speaker. Other work has
used a much larger vocabulary of continuous speech
database of multiple speakers. Our system has been
designed for specific applications such as control of
machines using simple commands consisting of dis-
crete utterances while other systems were developed
for recognition of continuous speech. Nevertheless the
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85% accuracies of our system is encouraging.
The authors suggest that one reason for the high

accuracies of this system is that it is not only based
on lip movement, but is based on the movement of the
mouth, jaw and facial muscles. While lips are impor-
tant articulators of speech, other parts of the mouth
are also important, and this approach is closer to the
accepted model of human visual speech perception.

The results demonstrate that a computationally
inexpensive system which can easily be developed on
a DSP chip can be used for such an application.

7 Conclusion

This paper reports on a voiceless speech recognition
technique using video of the speaker’s mouth that is
computationally inexpensive and suitable for HCI ap-
plications. The proposed technique recognizes En-
glish consonants based on the dynamic speech in-
formation - facial movements of the speaker during
phonation.

This paper adopts the MPEG-4 viseme model as
the visual speech model to represent all the English
consonants. An error rate of approximately 15%
is obtained in classifying the consonants using this
model. The misclassifications of the features can
be attributed to the occlusion of speech articulators.
Thus , non visible movements during the production
of the consonants (such as movements of the tongue
and vocal cords) are not represented in the visual
speech features.

The results of our experiments suggest that the
proposed technique is suitable in recognizing conso-
nants using the information of the facial movements.
The proposed system is easy to train for individual
users and is designed for speaker-dependent speech-
controlled applications. For future work, the authors
intend to design a more suitable visual speech model
for the consonants that accounts for the nonvisible
articulators movements. Also, the authors intend to
compare the performance of ANN with other clas-
sifiers such as Support Vector Machines (SVM) and
Hidden Markov Models (HMM) to determine the op-
timum classifier for our application. Such a system
could be used to drive computerized machinery in
noisy environments. The system may also be used
for helping disabled people to use a computer and for
voice-less communication.
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Abstract 
This paper presents results of a master thesis at the 
Fraunhofer Institute for Computer Graphics Rostock 
(IGD-R) at the department for Human-Centered 
Interaction. Using an emotion recognition sensor system, 
an e-learning system was enhanced with affective 
abilities. By taking certain actions, the user is supported 
to handle negative emotions, which should enable a better 
learning as well as a greater satisfaction. The affective 
communication and actions are encapsulated by an 
Affective Component, which was implemented as a 
prototype and evaluated at a first glance. 

Keywords:  HCI, Affective Computing, E-Learning 

1 Introduction 

Despite the ongoing development in technology over the 
past decades, computers still do not consider emotions of 
their users, even though many studies (e.g. Reeves & 
Nass 1996) showed how important they are for human-
computer interaction. With the focus on innovative and 
user centred interaction technologies, the interplay 
between emotions and computers, widely known as 
affective computing (Picard 1997), plays an important 
role at the department for Human-Centered Interaction. 

Traditional e-learning systems focus on the learning 
target only, whereas human expert tutors also concentrate 
on the emotional component of learning (Lepper & 
Chabay 1988). This seems to be a good model for e-
learning, as negative emotions like boredom or angriness 
reduce cognitive effort and in consequence hinder the 
achievement of learning goals. 

2 Emotion detection 

Emotion detection represents the first step in building 
affective applications. One way of detecting emotions is 
to analyse physiological data to deduce emotional states. 
The emotion recognition sensor system (EREC), 
developed at the IGD-R, consists of a sensor glove, a 
chest belt and a data collection unit (Figure 1).  
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Integrated in the glove are sensors for e.g. skin 
resistance and skin conductivity. Evaluated and enhanced 
sensor data are wirelessly transmitted and made available 
to a PC (Peter et. al. 2005). EREC is used for emotion 
detection by the Affective Component. 

Figure 1: Emotion Recognition Sensor System (EREC) 

3 Negative emotions and target emotions 

The Affective Component is based on Russell's 
circumplex model of emotions (Russell 1980), a 
dimensional approach for classifying emotions. It 
assumes the existence of the dimensions valence and 
arousal utilized to describe different emotions. Instead of 
single emotions, only regions of the valence-arousal-
space were taken into account. Thus, a concrete 
classification of emotions could be avoided. 

Figure 2: Russell’s circumplex model with regions 

For learning, two negative regions in the valence-
arousal-space can be defined that should be avoided. By 
negative valence and positive arousal region I is 
described, which stands for emotions like frustration and 
angriness. Emotions like boredom and sleepiness are 
represented by region II, located in an emotion-space 
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characterized by negative valence and negative arousal. 
The target emotional region, specified by a slight positive 
valence and neutral arousal, provides a maximum of 
efficiency and productivity in learning (Kaiser 2006). 
Besides, the user will feel more comfortable during the 
learning process. 

4 Affective measures and procedure 

A catalogue of affective measures describes actions to 
support the user in handling negative emotions. Besides a 
distinction of measures for both regions, measures are 
application-independent or application-dependent. 
Examples for application-independent measures used by 
the Affective Component are motivational statements, the 
possibility to express displeasure, the suggestion of short 
break or even a way to treat the computer with hammer, 
flamethrower and chain saw to reduce stress (Figure 3). 

Application-dependent measures, bound to the given 
e-learning system or at least to the application domain, 
are a change of lesson, another way of presenting the 
subject (e.g. an animation instead of pure text) or the start 
of a questionnaire to check the learners learn progress. 

With a technology for detecting different emotions 
and well-defined regions of negative and target emotions, 
it is still open what the affective procedure looks like. If 
negative emotions from one region are dominating for a 
certain time, an affective measure depending on the 
region is selected and suggested. If the user accepts, the 
chosen action is executed. Hopefully, his emotional state 
will be improved thereafter. For the pilot study, an 
intermediate step was needed. The correct detection of 
emotions was verified by asking the user, to ensure the 
initiation of a correct measure. However, it might be 
better to leave this out for final application.  

Figure 3: Measure to relieve stress and aggression 
(StressRelief 2006) 

5 Pilot study and preliminary results 

The implemented Affective Component was tested with a 
pilot study. SmartBLU (SmartBLU 2006), a learning 
management system, was used as underlying e-learning 
system. Three questions should be clarified. Are users 
more pleased when using the affective version of 
smartBLU? Is a greater success in learning achievable? 
Do users of the affective version of smartBLU stay less at 
region I and region II and stay longer at the target 
emotional region? The first two questions were proofed 

by using questionnaires regarding satisfaction and factual 
knowledge respectively. Question three was checked by 
implementing the Affective Monitor, which logs the 
residence time at the different regions, the emotional 
states and the status of the Affective Component. 

First findings show a tendency towards the expected 
results. Especially the success in learning of the affective 
testing group was slightly better than of the control group. 
However, results regarding the other questions were 
ambiguous. Possible causes may be measuring in-
accuracies, the limited test duration and finally the 
limited number of test participants. 

6 Conclusion and future work 

The presented approach should only be considered as a 
first attempt of building an Affective Component making 
an e-learning system affective. Next steps are intended 
for further improvement. The selection of a certain 
measure, done coincidentally at the moment, could be 
based on information about the user. An affective user 
model is needed, which allows to arrange the single 
measures according to priority. 

Furthermore, the affective procedure needs to be 
adapted individually. Based on experiences with the user, 
the moment of the initiation of measures, the minimum 
time between different measures or even the possibility to 
suggest an alternative measure in case of a rejection by 
the user could be defined more precisely. Finally, more 
extensive studies are needed for a final evaluation.  
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Abstract 
Automatic person identity verification based on 
biometrics is a challenging problem, and has received 
much attention during recent years due to its many 
applications in on-line transaction processing, law 
enforcement, and security applications. However, most 
identity verification systems are primarily based on voice 
biometrics, and hence are more vulnerable to acoustic 
noise and channel distortions, in addition to train/test 
mismatch conditions.  In this paper, we show how we can 
use video information to improve the performance of 
identity verification systems. The approach based on  
multimodal fusion of  voice and face information from 
speaking face video allows robust identity verification 
performance. In addition, depending on  the type of 
features and fusion technique used, it is also possible to 
perform liveness checks, allowing  the system to detect 
fraudulent attacks on the system. 

Keywords:  identity verification, multimodal fusion, face-
voice. 

1 Introduction 

Information about a person’s identity is multimodal. Yet, 
most biometric based person identity verification systems 
limit themselves to only a single modality, such as 
person’s voice. A good example of a system that 
combines multiple information sources is the human 
being, e.g. it has been shown that simultaneously seeing 
and listening a person talking greatly increases 
intelligibility. The audio-visual speech recognition 
approaches have exploited this fact and improved the 
performance of speech recognition systems (Potamianos 
et al. 2003, Chelubishi et. al. 2003). 

However, person identity verification systems have 
been mostly based on the voice modality, and though they  
achieve high performance when the audio signal-to-noise 
ratio (SNR) is high, the performance degrades quickly as 
the test SNR decreases or train/test mismatch increases 
(Ben Yacoub et al. 1999). 

To combat the limitations of unimodal audio based  
identity verification approaches, multimodal approaches 
based on combining video information with acoustic  

 
______________________________ 

Copyright © 2006, Australian Computer Society, Inc. 
This paper appeared at the HCSNet Workshop on the Use 
of Vision in HCI (VisHCI 2006), Canberra, Australia. 
Conferences in Research and Practice in Information 
Technology (CRPIT), Vol. 56. R. Goecke, A. Robles-
Kelly & T. Caelli, Eds. Reproduction for academic, not-
for profit purposes permitted provided this text is 
included. 

information, similar to speech recognition approaches can 
be used, and improvement in both robustness and overall 
performance can be achieved. In addition, based on the 
type of features extracted from several modes/sections of 
the video, such as the face, the voice and the mouth 
region, and the type of multimodal fusion technique used, 
it is also possible to   verify ‘liveness’, which allows the 
system to thwart fraudulent attacks on the system, such as 
replay of client-specific information, including pre-
recorded audio or video or still/ animated photo  of the 
face. 

The audio, face, and mouth modalities contain non-
redundant, complementary information about person 
identity (Dieckmann et. al. 1997). However, in order to 
exploit this, several issues need to be addressed, such as 
how to account for the reliabilities of the modalities, what 
type of features need to be extracted,  and at what level to 
carry out the fusion. Only a few studies have investigated 
the combination of audio, face, and temporal mouth 
information for the purpose of person identity verification 
(Dieckmann et al. 1997, Yemez et al 2003). The issue of 
liveness verification has hardly been addressed in most 
identity verification studies, except some recent studies  
in (Chetty & Wagner 2004, Bredin & Cholet 2006). The 
majority of studies were unimodal using either the audio 
or static face modalities (Reynolds et al 1995, Rabiner 
1989) 

In this paper, we show how we can use video 
information from speaking faces to increase the identity 
verification performance. The results of  two different 
types of experiments, the first type for identity 
verification, and the second for liveness verification, with 
three different speaking face corpora, 
VidTIMIT(Sanderson et al. 2005) AVOZES (Goecke 
2004), and UCBN, shows a significant improvement in 
performance in terms of performance measures such as 
DET curves and EER rates, when video information was 
fused with audio information.  

 

 

 
 

Figure 1: Faces from VidTIMIT, UCBN and and 
AVOZES corpus  

Figure 1, shows sample faces from VidTIMIT, UCBN 
and AVOZES corpus. The three  types of  corpora 
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represent very different types of speaking face data, 
VidTIMIT with original audio recorded in a noisy 
environment and clean visual environment, UCBN with 
clean audio and visual environments, but complex visual 
backgrounds, and AVOZES with stereo face data for 
better 3D face modeling. 

2 Multimodal fusion 
 
Techniques for combining different information 

sources can be broadly grouped into feature fusion and 
late-fusion techniques. Late-fusion techniques combine 
information after mapping from the feature space to the 
opinion/decision space using either a classifier or an 
expert. With late fusion it is possible to combine opinions 
from different experts, even if their outputs are not 
commensurate (different range values). In feature fusion, 
information is combined before any use of classifier or 
expert. Feature fusion has been widely for instance in lip-
reading where visual and speech features are combined to 
increase intelligibility. Feature fusion techniques are 
more appropriate when the information sources are 
closely synchronized, such as visual speech information 
from mouth region of a speaking face.  By using late 
fusion for such tasks,  many of the correlation properties 
of the joint audio-video data are lost. For these reasons, 
we have used features fusion to combine the features 
from voice and mouth region before the classification 
stage for liveness  verification experiments.  

3 Experiments 
 
For identity verification experiments, for face and 

voice modality, we separately formulate the problem as a 
basic hypothesis test, where for voice mode, given a 
speech segment S, a decision whether it was spoken by 
person Pi has to be made. The optimum test is given by 
the log-likelihood ratio: 

)1(
/(

/(log)(
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=
BM
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PSpPLLR  

where p(S/Pi) and p(S/PBM) are the conditional probability 
density functions using the models of person Pi and 
background BM respectively, which are often modeled 
using Gaussian Mixture Models. The features used for 
modeling the speakers were MFCC acoustic and delta 
acoustic features(12+8) and PCA face features(20) after 
appropriate normalization and pre-processing.  More 
details about features used and modeling of speakers can 
be found in (Chetty & Wagner 2004). After the speaker 
recognition process a confidence value LLR(Pi)a is 
available which can be fused with the face confidence 
value LLR(Pi)v. In Figure 2, a scatter plot showing face 
and voice confidences in the likelihood space is shown. It 
can be seen that true and false candidates(impostors) are 
better classified in the two-dimensional space. 

Our experiments show that the fusing video with 
audio information increases the average identity 
verification performance by about 50% compared to 
audio only approach to person recognition, shown in 1st 
row of Table 1. 

 

 
Figure 2: Scatter plot showing face and voice 

confidences in the likelihood space.  

For  liveness verification experiments, we built a lip-
voice fusion vector by  feature fusion of acoustic MFCC 
features (8) with PCA features from lip-region(3) and lip 
width/mouth height ratio(1)  for building the speaker 
models. In the training phase, a 10-mixture Gaussian 
mixture model of each client’s lip-voice fusion vector 
was built. In the test phase, clients’ live test recordings 
were evaluated against a client’s model λ by determining 
the log-likelihoods (log p(X|λ)) of the time sequences X 
of lip-voice feature vectors. The protocol was extended 
for replay attack tests, by synthesizing a number of “fake” 
recordings by combining the sequence of audio feature 
vectors from each test utterance with ONE lip feature 
vector chosen from the sequence of lip feature vectors. 
The performance in terms of average EERs(Equal Error 
Rates) for three corpora achieved with separate audio, lip 
and lip-voice fusion vectors  are shown in 2nd row of 
Table 1. 

 

Experiments Audio 
Only(EER) 

Video 
Only(EER) 

Audio+Video 
EER 

Identity 
Verification 

7.1% 5.54 % 3.6 % 

Liveness 
Verification 

6.86% 4.68% 3.39% 

Figure 1: Identity and liveness verification performance 
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