
Conferences in Research and Practice in
Information Technology

Volume 53

Conceptual Modelling 2006

Australian Computer Science Communications, Volume 28, Number 6.

Conceptual Modelling 2006

Proceedings of the 3rd Asia-Pacific
Conference on Conceptual Modelling (APCCM2006),
Hobart, Tasmania, Australia, 16-19 January 2006

Markus Stumptner, Sven Hartmann and Yasushi Kiyoki,
Eds.

Volume 53 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Proceedings of the Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006),
Hobart, Tasmania, Australia, 16-19 January 2006

Conferences in Research and Practice in Information Technology, Volume 53.

Copyright c©2006, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:
Markus Stumptner
School of Computer and Information Science
University of South Australia
Mawson Lakes 5095
South Australia
Email: mst@cs.unisa.edu.au

Sven Hartmann
Deptartment of Information Systems
Massey University
Palmerston North
New Zealand
Email: s.hartmann@massey.ac.nz

Yasushi Kiyoki
Department of Environmental Information
Keio University
Tokyo
Japan
Email: kiyoki@mdbl.sfc.keio.ac.jp

Series Editor: John F. Roddick,
Conferences in Research and Practice in Information Technology
Flinders University,
PO Box 2100, Adelaide 5001
South Australia.
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 53.
ISSN 1445-1336.
ISBN 1-920-68235-X.

Printed, December 2005 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Third Asia-Pacific Conference on Conceptual Modelling
(APCCM2006), Hobart, Tasmania, Australia, 16-19 January 2006

Preface . vii

Programme Committee . ix

Organising Committee . x

CORE - Computing Research and Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xii

ACSW and APCCM 2006 Sponsors . xv

Keynote

Conceptual Requirements Modeling - a Contribution to XNP (eXtreme Non Programming) 3
Heinrich C. Mayr

Invited Papers

ServiceMosaic Project: Modeling, Analysis and Management of Web Services Interactions 7
Boualem Benatallah and Hamid Reza Motahari-Nezhad

Postmodern Prospects for Conceptual Modelling . 11
James Noble and Robert Biddle

Network Data Mining: Methods and Techniques for Discovering Deep Linkage between Attributes . . . 21
John Galloway and Simeon J. Simoff

Contributed Papers

The Formal Semantics of the TimeER Model . 35
Heidi Gregersen

A Conceptual Solution for Representing Time in Data Warehouse Dimensions . 45
Elzbieta Malinowski and Esteban Zimányi

Visualization of Music Impression in Facial Expression to Represent Emotion . 55
Takafumi Nakanishi and Takashi Kitagawa

Modelling Human Perception to Leverage the Reuse of Concepts across the Multi-sensory Design Space 65
Keith V. Nesbitt

Process Modelling: The Deontic Way . 75
Vineet Padmanabhan, Guido Governatori, Shazia Sadiq, Robert Colomb and Antonino Rotolo

Defining and Implementing Domains with Multiple Types using Mesodata Modelling Techniques 85
Sally Rice, John F. Roddick and Denise de Vries

On the Suitability of UML 2.0 Activity Diagrams for Business Process Modelling 95
Nick Russell, Wil M.P. van der Aalst, Arthur H.M. ter Hofstede and Petia Wohed

Component-Driven Engineering of Database Applications . 105
Klaus-Dieter Schewe and Bernhard Thalheim

Supporting Virtual Organisation Alliances with Relative Workflows . 115
Xiaohui Zhao, Chengfei Liu and Yun Yang

Author Index . 125

vi

Preface

This volume contains the papers presented at the Third Asia-Pacific Conference on Conceptual Modelling
(APCCM 2006) which was held in Hobart, Australia from January 16 to 19, 2006 as part of the Australasian
Computer Science Week (ACSW 2006). On behalf of the programme committee we commend these papers
to you and hope you find them useful.

The Asia-Pacific Conference on Conceptual Modelling series focuses on disseminating the results of in-
novative research in conceptual modelling and related areas, and provides an annual forum for experts from
all areas of computer science and information systems with a common interest in the subject. Embedding
APCCM into the Australasian Computer Science Week gives our conference participants the opportunity
to attend also other conferences, including the 17th Australasian Database Conference (ADC 2006).

The scope of APCCM 2006 includes areas such as:

– business, enterprise and process modelling
– concepts, concept theories and ontologies
– conceptual modelling for ...

• decision support and expert systems
• digital libraries, mobile information systems and web-based systems
• e-business, e-commerce and e-banking systems
• knowledge management systems
• semi-structured data and XML
• spatial, temporal and biological data
• user interfaces and user participation

– conceptual modelling quality
– conceptual models in management science
– design patterns and object-oriented design
– evolution and change in conceptual models
– implementations of information systems
– information and schema integration
– information customisation and user profiles
– information recognition and information modelling
– information retrieval, analysis, visualisation and prediction
– information systems design methodologies
– knowledge discovery, knowledge representation and knowledge management
– methods for developing, validating and communicating conceptual models
– philosophical, mathematical and linguistic foundations of conceptual models
– reuse, reverse engineering and reengineering
– the Semantic Web
– software engineering and tools for information systems development

Following a call for papers, which yielded a record 40 abstracts and 34 full paper submissions, there
was a rigorous refereeing process that saw all papers refereed by at least three international experts. The
nine papers judged best by the programme committee were accepted and are included in this volume.

In addition, the programme committee invited Heinrich Mayr to present the keynote lecture on Con-
ceptual Requirements Modeling - a Contribution to NP (eXtreme Non Programming), while three invited
speakers kindly agreed to give talks on their work: Boualem Benatallah on ServiceMosaic Project: Modeling,
Analysis and Management of Web Services Interactions, James Noble on Postmodern Prospects for Con-
ceptual Modelling , and Simeon Simoff on Network Data Mining: Methods and Techniques for Discovering
Deep Linkage between Attributes.

vii

We wish to thank all authors who submitted papers and all the conference participants for the fruitful
discussions. We are grateful to the members of the programme committee and the additional reviewers
for their timely expertise in carefully reviewing the papers, and to Markus Kirchberg for his willingness
to continue his excellent work as APCCM Publicity Chair. Finally, we wish to express our appreciation to
the local organisers at the University of Tasmania for the wonderful days in Hobart.

Markus Stumptner
(University of South Australia)

Sven Hartmann
(Massey University, New Zealand)

Yasushi Kiyoki
(Keio University, Japan)

APCCM 2006 Programme Chairs
January 2006

viii

Programme Committee

Chairs

Markus Stumptner, University of South Australia
Sven Hartmann, Massey University
Yasushi Kiyoki, Keio University

Members

Boualem Benatallah, University of New South Wales
Xing Chen, Kanagawa Institute of Technology
Gill Dobbie, University of Auckland
Cesar Gonzalez-Perez, University of Technology, Sydney
John Grundy, University of Auckland
Kathleen Hornsby, University of Maine
Yoshihide Hosokawa, Nagoya Institute of Technology
Sebastian Link, Massey University
Jixue Liu, University of South Australia
Mukesh Mohania, IBM India Research Lab
Maria Orlowska, University of Queensland
John Roddick, Flinders University, Adelaide
Michael Rosemann, Queensland University of Technology
Gunter Saake, University of Magdeburg
Michael Schrefl, University of Linz
Nigel Stanger, University of Otago
Bernhard Thalheim, University of Kiel
Naofumi Yoshida, Keio University
Jeffrey Xu Yu, Chinese University of Hong Kong
Kouji Zettsu, NICT, Japan
Yanchun Zhang, Victoria University
Jane Zhao, Massey University

Publicity Chair

Markus Kirchberg, Massey University

Additional Reviewers

Georg Grossmann, University of South Australia
Markus Kirchberg, Massey University
Hui Ma, Massey University
Jiangang Ma, Victoria University, Melbourne
Jun Shen, University of South Australia
Jing Wang, Massey University
Guandong Xu, Victoria University, Melbourne
Sergiy Zlatkin, Massey University

ix

Organising Committee

Welcome

On behalf of the Tasmanian Organising Committee of ACSW2006 I would like to welcome all the delegates
to the conferences of this busy and interesting week, in particular those coming from overseas.

The location of the various conferences and other events at the Wrest Point Hotel allows delegates to
move quickly from event to event, and to easily and comfortably gather in groups for those conversations
and interactions that are so important for the exchange of ideas and the promotion of cooperation, not to
mention social pleasure.

We trust you will have a thoroughly enjoyable time.

Professor Young Ju Choi
Chair, Organising Committee

January, 2006

General Chair

Professor Young Ju Choi, School of Computing, University of Tasmania, Australia

Organising Committee Members

Ms Nicole Clark
Dr Julian Dermoudy
Mr Tony Gray
Mr Neville Holmes
Mr Ian McMahon
Ms Julia Mollison
Professor Arthur Sale
Ms Soon-ja Yeom

x

CORE - Computing Research and Education

CORE welcomes all delegates to ACSW2006 in Hobart.
ACSW, the Australasian Computer Science Week continues to grow with new conferences becoming

entrenched in the week. As the premier annual Computer Science event in Australia and New Zealand,
it provides an unparalleled opportunity for the wide community of Computer Science academics and re-
searchers to meet, network, promote IT research and be exposed to the latest research in other areas of
IT. The research presented at each conference is of the highest standard and essential for the growth and
future of our region, in an ever more competitive world.

CORE is expanding its awards. The Distinguished Service Award first offered in late 2004 will be offered
every second year and next at the 2007 Conference. Along with the Chris Wallace Research Award, we are
offering an annual teaching award for the first time.

CORE has continued to play a part in the Federation of Australian Scientific and Technological Societies
and by participating in events such as Science Meets Parliament, CORE is becoming recognised by the
wider community and will continue to do so. A major contribution from many members in 2005 was a
submission to the RQF Forum with some of our ideas appearing in the draft. CORE and members of the
Executive have also been interviewed as representatives of the Computer Science community for several
other Government and industry inquiries and initiatives.

Thank you all for your contributions in 2005 and we look forward to an exciting 2006.

Jenny Edwards
President, Computing Research and Education

January, 2006

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2008. Communications Volume Number 30. Proposed Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Conference on Computing Education.
ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture

Conference (ACAC).
ACSC. Australian/Australasian Computer Science Conference.
ACSW. Australian/Australasian Computer Science Week.
ADC. Australian/Australasian Database Conference.
AISW. Australasian Information Security Workshop.
APBC. Asia-Pacific Bioinformatics Conference.
APCCM. Asia-Pacific Conference on Conceptual Modelling.
AUIC. Australian/Australasian User Interface Conference.
AusGrid. Australasian Workshop on Grid Computing and e-Research.
CATS. Computing - The Australian/Australasian Theory Symposium.

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a

wider geographical area.

xiii

xiv

ACSW and APCCM 2006 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date
overview of sponsors of ACSW 2006 and APCCM 2006, please see http://www.comp.utas.edu.au/acsw06/.

University of Tasmania, Australia

Australian Computer Society

CORE - Computing Research and Education

School of Computer and Information Science

Massey University, New Zealand

Keio University, Japan

xv

Keynote

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

1

CRPIT Volume 53

2

Copyright (c) 2006, Australian Computer Society, Inc. This paper appeared at the Third Asia-Pacific Conference on Conceptual
Modelling (APCCM2006), Hobart, Australia. Conferences in Research and Practice in Information Technology (CRPIT), Vol.
53. Markus Stumptner, Sven Hartmann, and Yasushi Kiyoki, Eds. Reproduction for academic, not-for profit purposes permitted
provided this text is included.

Conceptual Requirements Modeling – a Contribution to XNP (eXtreme Non
Programming)

Heinrich C. Mayr, IWAS - University of Klagenfurt, AUSTRIA

Despite numerous attempts, software and information system development suffers substantially from
lacks in quality and effectiveness. E.g., studies show that in spite of all existing sophisticated software
tools a high number of software and IS projects still fail to meet the “natural” requirements related to
such projects: to stay in budget, to be finished in time, and to fulfill the application’s and the users’
needs.

To overcome these problems, increasingly techniques and tools are proposed and developed that focus
or modeling instead of programming and that support the transformation of conceptual models /
schemas into running software. Thus, as a logical consequence, it is also worthwhile and appropriate to
investigate, to which extent the modeling process itself might be supported by automatic means. This is
an important issue since even today the majority of failing software projects does so because of
insufficiently elicited and/or validated business owner (stakeholder) requirements.

The talk outlines the actual state of the art in requirements modeling and presents the KCPM
(Klagenfurt Conceptual Predesign Model) approach to extract models from natural language
requirements specifications. This approach comes with a lean intermediate conceptual modeling
language that is specifically oriented at the end-user’s capability in abstracting from real world
observations and in understanding models of a complex reality. Specific linguistic categorization and
semantic interpretation mechanisms support the creation of KCPM Schemes. Heuristic mapping rules
are used by tools that transform KCPM schemes into traditional conceptual schemes like UML class
diagrams, state charts, activity diagrams and others.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

3

CRPIT Volume 53

4

Invited Papers

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

5

CRPIT Volume 53

6

ServiceMosaic Project: Modeling, Analysis and Management of Web Services
Interactions

Boualem Benatallah1, Hamid Reza Motahari-Nezhad1,2
 1 University of New South Wales (UNSW)

NSW 2052, Australia
2 National ACT of Australia (NICTA)

NSW 1430, Australia
{Boualem,hamidm}@cse.unsw.edu.au

Abstract
This paper provides an overview of ServiceMosaic, which
is a platform for model-driven analysis and management
of service interactions. In particular, in this paper, we
focus on business protocols modelling and analysis by
providing operators for compatibility and replaceability
checking of business protocols, and model-driven adapter
development for business protocols..

Keywords: Web Services, Business Protocols,
Compatibility, Replaceability, Adaptation.

1 Introduction
Application integration has been one of the main drivers
of software market into the new millennium. The main
benefits that Web services bring to integration are (i)
support for loosely coupled and decentralized interactions
and (ii) standardization at different levels such as
message format (XML), interface definition language
(WSDL), and transport mechanism (SOAP, typically over
HTTP) (Papazoglou and Georgakopoulos 2003, Alonso
et. Al 2004). Standardization helps reduce the costs of
application integration, which are to a large extent due to
the fact that different interacting entities have different
interfaces, speak different communication protocols, and
support different data formats and interaction models.

Although Web services provide abstractions to simplify
the integration at lower levels of the interaction stacks
(e.g., data syntax and communication protocols), where
many of the issues have already been identified or even
solved, they have not (yet) contributed to simplify
integration at higher abstraction levels (e.g., data/message
types and business-level interaction protocols). In this
paper, focus on integration issues at the business
protocols level. Generally stated, a business protocol
specifies the ordering constraints on the message
exchanges, which are allowed by the service in the
interactions with other services. We developed a model-
driven framework, called ServiceMosaic, for modeling,

Copyright (c) 2006, Australian Computer Society, Inc. This
paper appeared at the third Asia-Pacific Conference on
Conceptual Modelling (APCCM2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 53. Markus Stumptner, Sven
Hartmann, and Yasushi Kiyoki, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

analysis and management of Web service interactions.
We provide an overview of this work. We focus on
business protocols and refer to other papers for detailed
descriptions of the different concepts and techniques
developed in this project.

2 Analysis and Management of Web Service
Protocols

In (Benatallah, Casati, and Toumani, 2005), we have
developed a protocol algebra and protocol management
operators that are targeted at three main types of analysis,
which we believe to be essential to Web service analysis
and management: Compatibility (i.e., assessing if two
services can interoperate correctly), replaceability (i.e.,
verifying whether two different protocols can support the
same set of conversations), and consistency (i.e.,
verifying whether the implementation of a service can
support the declared protocol definition).

2.1 Modelling Business Protocols
Several languages exist for describing Web service
protocols (e.g., WS-BPEL, WSCI, WS-CDL)
(Papazoglou and Georgakopoulos 2003, Alonso et. al
2004). These languages are concerned more with
implementation aspects than specification of protocol
properties. They are not suitable for automating activities
such as protocol compatibility and compliance analysis.
Our framework features a simple, high level but
expressive enough model to represent features and
abstractions that are useful and needed in practice
(Benatallah, Casati, and Toumani, 2004). This model
builds upon the traditional state-machine formalism to
represent message choreography constraints and extends
it to cater for relevant protocol abstractions such as
temporal constraints or the implications and the effects of
service invocations from requester perspective.

We model a service business protocol (protocol for short)
as a non-deterministic finite state machine, where the
states represent the different phases that a service may go
through during its interaction with a requestor.
Transitions are triggered by messages sent by the
requestor to the provider or vice versa (hence, transitions
are labeled with either input or output messages). A
message corresponds to the invocation of a service
operation or to its reply. Each service may be
simultaneously involved in several message exchanges
(conversations) with different clients, and therefore can
be characterized by multiple concurrent instantiations of

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

7

the protocol state machine. The purpose of the protocol is
essentially to specify the set of conversations that are
supported by the service.

The proposed model caters also for the modeling of
transactional implications of operation invocations
(Benatallah, Casati, and Toumani, 2004). We distinguish
the following types of transitions of a protocol state
machine. Effect-less transitions have no effect from the
client's perspective. Compensatable transitions denote
transitions whose effect can be cancelled. Definite
transitions denote transitions whose transactional effects
are permanent. Resource-locking transitions lock certain
resources for the requester for a period of time. Temporal
proprieties can also be specified by tagging transitions
with a time interval, with the meaning that the transition
is fired as the interval expires, hence leading the state
machine to a new state from which previously invoked
operations are not enabled any more (Benatallah, Casati,
Ponge, and Toumani, 2005).

2.2 Compatibility Analysis
Compatibility analysis is concerned with verifying
whether two services can interoperate. It is necessary for
static and dynamic binding, and it also helps in evolution,
since it helps verifying that a modified client can still
interact as desired with a certain service. More precisely,
we identified in two classes of compatibility:

• Partial compatibility: A protocol Px is partially
compatible with another protocol Py if there are
some executions of Px that can interoperate with
Py, i.e., if there is at least one possible
conversation that can take place among a service
supporting Px and a service supporting Py.

• Full compatibility: a protocol Px is fully
compatible with another protocol Py if all the
executions of Px can interoperate with Py, i.e.,
any conversation that can be generated by Px is
understood by Py.

These notions of compatibility are very useful in the
context of Web services. For example, it does not make
sense to have interactions with services for which there is
no (partial or total) compatibility, as no meaningful
conversation can be carried on. Furthermore, if there is
only partial compatibility, the developer and the Web
service middleware need to be aware of this, as the
service will not be able to exploit its full capabilities
when interacting with the partially compatible ones.
When compatibility is partial, developers will likely want
to know which conversations are allowed and which are
not. We have developed an operator for compatibility
checking that takes two protocols as input and returns the
conversations that can take place between two services
supporting these protocols (Benatallah, Casati, and
Toumani, 2005).

2.3 Replaceability Analysis
Replaceability analysis helps identify if two protocols are
equivalent in terms of conversations that they can
support, both in general and when interacting with a

certain client. This can be for example used to determine
whether a new version of a service (protocol) can support
the same conversations as the previous one, or whether a
newly defined service can support the conversations
mandated by a given standard specification. We identified
several replaceability classes, which provide basic
building blocks for analyzing the commonalities and
differences between service protocols:

Protocol equivalence. Two business protocols Px and Py
are equivalent if they support the same set of
conversations. Any conversation that is legal (i.e., does
not result in errors) according to Px will also be legal
according to Py, and vice versa. This means that the two
protocols can be interchangeably used in any context and
the change is transparent to clients.

Protocol subsumption. A protocol Py is subsumed by
another protocol Px if Px supports at least all the
conversations that Py supports. Hence, protocol Px can be
transparently used instead of Py but the opposite is not
necessarily true.

Protocol equivalence and subsumption with respect to
a client protocol. It may be important to understand if a
service can be used to replace another one when
interacting with a certain client. This leads to a weaker
definition of replaceability: a protocol Px can replace
another protocol Py with respect to a client protocol Pc if
every legal conversation between Py and Pc is also a legal
conversation between Px and Pc. In this case, Px can
replace Py to interact with Pc.
As for compatibility, the above discussion emphasizes the
need for operators to analyze equivalence, subsumption,
and different notions of replaceability. There is also the
need for understanding, when two protocols are not
equivalent, which conversations can be handled by both
and which cannot. This leads to providing operators to
determine intersection and difference among protocols,
among others, to identify which conversations can and
cannot be supported when a service is used in place of
another (see (Benatallah, Casati, and Toumani, 2005) for
details).

3 Model-driven Adapter Development for
Web Service Protocols

When two services are not fully compatible or equivalent,
we may consider adapting them. We classify the need for
adaptation in Web services in two basic categories:
adaptation for compatibility and for replaceability. The
first category refers to wrapping a Web service so that it
can interact with another service. It is needed when two
services are functionality-wise compatible, but with
incompatible interfaces or protocol specifications. The
second category refers to modifying a Web service so that
it becomes compliant with (i.e., can be used to replace)
another service.
We take the view that although concrete adapter
specifications are application-specific, in many cases it is
possible to capture in a generic way the type of
differences among protocol and the way to resolve them

CRPIT Volume 53

8

into what we call mismatch patterns. Indeed, we have
analyzed interfaces and protocols to identify the most
typical differences and for these we have specified the
corresponding mismatch patterns (Benatallah, Casati,
Grigori, Motahari-Nezhad, and Toumani, 2005). This is
akin to detecting structural and semantic differences in
data mappings (Rahm and Bernstein, 2001). Each
mismatch pattern includes an adapter template to tackle
the mismatch, as well as a sample usage. The template
can be used both as guideline for developers and as input
to a tool that automatically generates the adapter code.

We distinguish between two types of mismatches:
operation-level mismatches and protocol-level
mismatches. Operation level mismatches characterize
heterogeneities related to operation definitions. Such
differences that occur when two services S and SR have
operations with the same functionality but differ in
operation name, number, order or type of input/output
parameters. Protocol level mismatches characterize
heterogeneities related to message choreography and
temporal/transaction properties. Examples include
differences that occur when two services expect a
message in different order, when one service sends
messages that the other does not accept, when one service
requires a single message to achieve certain functionality
while the other requires several, and so on. A
comprehensive discussion is provided in (Benatallah,
Casati, Grigori, Motahari-Nezhad, and Toumani, 2005).

4 Discussion
There has been substantial efforts and progress in the area
of Web services, most of which has been focused on
service description models and languages, standards, and
on automated service discovery and composition (Alonso,
et al. 2004). Recently, authors have published papers that
discuss similarity and compatibility at different levels of
abstractions of service specifications (Bordeaux et. al.
2004, Wombacher, et. al 2004, Dong, et. al. 2004). The
proposed approaches do not provide fine-grained analysis
operators. In addition, they do not consider message and
protocol heterogeneities. In terms of protocols
specification and analysis, existing approaches provide
models (e.g., based on pi-calculus or state machines) and
mechanisms (e.g., protocols compatibility and replace-
ability checking) to compare specifications for software
components (Yellin, Strom, 1997, Canal, et. al. 2003).
These efforts can be leveraged for Web service protocols,
but are not sufficient. In fact, service protocols require
richer description models than component interfaces, as
clients and services are typically autonomous and
therefore service descriptions are all that client
developers have to understand to know how the service
behaves. Our framework builds upon existing protocol
models and techniques to provide high level abstractions
and operators for service protocols analysis and
management. In addition, a component of the tool enables
automated code generation (BPEL skeletons) from
protocol models, therefore provides support for model-
driven and automated Web service development (Baina,
Benatallah, Casati, Toumani, 2004). This framework has
been implemented in a prototype platform, called

ServiceMosaic, as a CASE toolset for modelling,
analysing, and managing service models including
business protocols, orchestrations, and adapters. The
ServiceMosaic platform is developed using Java and
J2EE technologies in the Eclipse platform
(www.eclipse.org).
Our current work focus is on extending analysis and
management techniques for timed protocols (Benatallah,
Casati, Ponge, and Toumani, 2005), and we will next
concentrate on transactional aspects. We are also
investigating business protocol discovery techniques to
bring the benefits of protocols based interactions to
services that do not explicitly model business protocols,
or to interactions that involve groups of services. Finally,
we plan to explore techniques for cataloging and
analyzing previous adapters to improve the process of
developing new adapters.

Acknowledgment. The work presented here, which is a
part of ServiceMosaic project, is performed in
collaboration of Fabio Casati, Farouk Toumani, and
Julien Ponge.

5 References
Papazoglou, M.P. and Georgakopoulos, D. (2003): Special

Issue on Service-Oriented Computing, Communications of
ACM, (46)10, ACM Press.

Alonso, G., et al. (2004): Web Services: Concepts,
Architectures, and Applications. Springer Verlag.

Benatallah, B., Casati, F., Grigori, D., Motahari-Nezhad, H. R.,
and Toumani, F. (2005): Developing Adapters for Web
Services Integration, Proc. of CAiSE’05, Springer.

Benatallah, B., Casati, F., Ponge, J. and Toumani, F. (2005): On
Temporal Abstractions of Web Services Protocols, Proc. of
CAiSE Forum. Springer.

Benatallah, B., Casati, F., and Toumani, F. (2005):
Representing, Analysing and Managing Web Service
Protocols, Data and Knowledge Engineering Journal.

Benatallah, B., Casati, F., and Toumani, F. (2004): Web Service
Conversation Modeling: A Cornerstone for e-Business
Automation, IEEE Internet Computing, (8)1. IEEE Press.

Rahm, E., and Bernstein, P. A. (2001): On Matching Schemas
Automatically, VLDB Journal, 10 (4).

Yellin, D.M., and Strom, R.E. (1997): Protocol Specifications
and Component Adaptors, ACM TOPLAS, 19(2).

Baina, K., Benatallah, B., Casati, F., and Toumani, F. (2004):
Model-Driven Web Service Development, Proc. of CAiSE’04
Conference, Springer.

Canal, L., et. al. (2003): Adding Roles to CORBA Objects,
IEEE Transaction on Software Engineering, 29(3).

Bordeaux et al (2004): When are two Web Services
Compatible? VLDB TES Workshop Proceedings.

Wombacher, A., et. al (2004): Matchmaking for Business
Processes based on Choreographies. In proc. of EEE. Taipei,
Taiwan.

Dong, X., et. al. (2004): Similarity Search for Web Services.
VLDB Conference. Toronto, Canada.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

9

CRPIT Volume 53

10

Postmodern Prospects for Conceptual Modelling

James Noble Robert Biddle

Computer Science Human-Oriented Technology Lab
Victoria University of Wellington Carleton University

New Zealand Canada
kjx@mcs.vuw.ac.nz robert biddle@carleton.ca

Abstract

A number of recent developments in software engi-
neering — from agile methods to aspect-oriented pro-
gramming to design patterns to good enough software
— share a number of common attributes. These de-
velopments avoid a unifying theme or plan, focus on
negotiation between different concerns, and exhibit a
high level of context sensitivity. We argue that these
developments are evidence of a postmodern turn in
software engineering. In this paper, we survey a num-
ber of these developments and describe their potential
implications for the practice of conceptual modelling.

Keywords: Postmodernism, Conceptual Modelling

1 Introduction

A spectre is haunting software development — the
spectre of Postmodernism! A number of recent devel-
opments in software engineering — from agile meth-
ods to aspect-oriented programming to design pat-
terns to good enough software — share a number of
common attributes. These developments avoid a uni-
fying theme or plan, focus on negotiation between
different concerns, and exhibit a high level of context
sensitivity.

In this paper, we will argue that these develop-
ments are evidence of a postmodern turn in soft-
ware engineering. The notion that software develop-
ment could usefully be analysed as postmodern was
first identified by Hugh Robinson and his colleagues
around ten years ago (Robinson, Hall, Hovenden &
Rachel 1998). In their prophetic article Postmodern
Software Development they write:

We have seen that the development
methods of software have been grounded in
modernism and the Enlightenment, but that
this has led to conflicts and contradictions,
and a notion of ‘software crisis’ as the mod-
ernist metanarrative has broken down.

The views expressed here are that the
postmodern ethos can offer some emancipa-
tion to the process of software development.
In questioning the accepted rules and val-
ues and, crucially, not offering any others in
their place, software development has to be-
come a more locally negotiated phenomenon.
The rules you follow are the ones that are
suggested by the situation at hand.

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Third Asia-Pacific Conference on Conceptual
Modelling (APCCM2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology, Vol. 53.
Markus Stumptner, Sven Hartmann and Yasushi Kiyoki, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

Robinson’s article is primarily concerned with the
process of software development. More recently, in a
series of Notes on Postmodern Programming (Noble
& Biddle 2002, Biddle, Martin & Noble 2003, Noble
& Biddle 2004) we have considered more pragmatic
artifacts of software development, programming and
programming technology, including languages and de-
sign, and the construction of systems from existing
software.

In this paper, we draw on this work, plus some cru-
cial theories of the postmodern, to raise questions of
postmodernism for conceptual modelling. This paper
is in three parts: in the first part, we describe some
of the developments and classifications of postmod-
ernism as they have developed in other disciplines,
outside software development. Then, in the second
part, we will survey a number of developments within
software engineering and describe how they exhibit
postmodern features. Finally, we conclude by propos-
ing some potential prospects for conceptual modelling
faced with the spectre of this postmodern turn. Of ne-
cessity, this paper is a survey, rather than an in depth
treatment, and to avoid disappointment, be aware
that we aim to raise questions, rather than provide
answers.

2 Postmodernism

The first question that is generally raised when dis-
cussing postmodernism is simply: what does post-
modernism mean?1. If modern means “now” or “to-
day”, how can something happen that is after what
is now or what is today? Indeed, this is a good
question: one of the first postmodern theorists, Jean-
François Lyotard, describes postmodernism as “the
paradox of the future (post) anterior (modo)” — that
is, the postmodern is what comes after the future
(Lyotard 1992, Lyotard 1984, Wikipedia 2005).

While a love of paradox, in-jokes, and irrever-
ence is certainly a typically postmodern style, for the
purpose of pedagogy, in this paper we can adopt a
more prosaic (but equally unhelpful) definition, de-
rived from the Notes on Postmodern Programming
(Noble & Biddle 2002, Biddle et al. 2003, Noble &
Biddle 2004):

postmodernism applies modern means
to other ends

In the case of software development, computer sci-
ence, software engineering, then, postmodernism of-
ten means applying (or misapplying) the fruits of the
disciplines’ development over the last fifty years, but
applying them a way, or for a purpose, that their orig-
inal developers would oppose.

1The traditional answer to this question is that the margin of
this paper is insufficient to contain a definition (Noble & Biddle
2002).

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

11

In the remainder of this section, we will explore the
definition of postmodernism in general; proceeding to
considering postmodernisms in software development
in the next.

2.1 Incredulity towards Meta-Narratives

In the foreword to his seminal text The Postmodern
Condition, (Lyotard 1979, Lyotard 1984) the philoso-
pher Jean-François Lyotard characterised postmod-
ernism as “incredulity towards meta-narratives”. At
little more length, Lyotard writes:

Le recours aux grands récits est exclu;
on ne saurait donc recourir ni à la dialec-
tique de l’Esprit ni même à l’émancipation
de l’humanité comme validation du discours
scientifique postmoderne. Mais, on vient de
le voir, le “petit récit” reste la forme par ex-
cellence que prend l’invention imaginative,
et tout d’abord dans la science.

Recourse to grand narratives is forbid-
den; we cannot resort to the dialectical of
the Spirit nor even to the emancipation of
humanity for validation of postmodern sci-
entific discourse. But, as we have seen, the
“small narrative” is a form which superbly
allows imaginative invention, and most of all
in science.

In brief, what Lyotard means is that the sustain-
ing common myths of (Western) civilisation (Chris-
tianity, Marxism, Newtonian Physics, Progress) no
longer have the strength that they held prior to the
twentieth century. There is no longer one big story to
which all of society may subscribe. To present a brief
example, the Somme then Auschwitz illustrate that
progress, mechanisation, and industrialisation are not
themselves necessarily a universal good, the therefore
progress is not to be sought as an end in itself. Sim-
ilarly, the lack of churchgoing in most Western coun-
tries, the adoption by most Western Labour parties
of private-sector solutions to social problems, and the
vicissitudes of relativity (not to mention string the-
ory) illustrate that other grand narratives (Christian-
ity, Socialism, Newtonian Mechanics) are no longer
normative. More pragmatically, perhaps, the devel-
opments of software technologies and the communi-
cation technologies they undergird have resulted in
a world where almost everybody is just a phone call
away, or virtually present in our living-rooms via tele-
vision and the Internet. And as recent events continue
to show, there is no shared grand narrative by which
we may live.

We argue that computer science similarly has had
a grand metanarrative: a big story that we are care-
ful to teach first-year students and hold up as the
idea of the systems we design and build. In com-
puter science, the primarily goals are that software
must be correct and efficient — software engineers
often add in that the software must be maintainable
and usable. The first two introductory concepts of
the 2001 ACM Computing Curriculum are algorith-
mic computation (effectively correctness) and algo-
rithmic efficiency (The Joint Task Force on Comput-
ing Curricula 2001). As Martin Rinard has pithily
described, software that fails to meet these goals is
seen as evidence of a moral weakness on behalf of its
programmers (Rinard, Cadar & Nguyen 2005a).

We argue that software development now comes
under the postmodern condition: efficiency and cor-
rectness, the grand narratives of the discipline, are no
longer an effective or useful guide to practice.

2.2 Negotiation and Context Sensitivity

The death of meta-narratives raises a practical prob-
lem: without an overarching framework, how can one
make decisions? In computer science, if we should
not be aiming to build correct software, or efficient
software, then what should be doing? Indeed, this
is another major critique of postmodernism — that
without a metanarrative, all one is left with is uncrit-
ical relativism — that “anything goes”.

This is a caricature of Lyotard’s position, however.
The absence of a single, overriding grand narrative
does not mean that decisions may be taken without
reference to any external referent. Rather, in place
of a single privileged master narrative, we must con-
tend with many localised small narratives, and rec-
oncile them in making a decision. Thus, rather than
simply following a grand narrative — Marxist the-
ory, Christian ethics, or in software, a methodology
like Structured Design, Stepwise-Refinement, or the
Unified Method — we need to determine what small
narratives are “in play” at any particular time, and
then attempt to resolve the conflict between them.
To quote Lyotard (1984):

. . . the principle that any consensus on
the rules defining a game, and the “moves”
playable within it must be local, in other
words, agreed on by its present players and
subject to eventual cancellation.

In practical design or modelling activities, this
negotiation between many small narratives typically
manifests itself as sensitivity to the context of a
model, design, or decision. In architecture, for exam-
ple, a tenet of postmodern design is sensitivity to the
actual location, to the physical site where the building
will be constructed. This is in contrast to modern ar-
chitecture, where (modern) technology dominates all
other considerations, and so you build a large rectan-
gular concrete-steel-and-glass box wherever you hap-
pen to be (Jencks 1987).

In software design and engineering, for example,
postmodern development is more likely to be con-
cerned with existing software products, the values of
development and client organisations, the expertise
and experience of the development staff, rather than
seek to impose an overarching methodology.

2.3 Double Coding

Negotiation between many small stories, and then fit-
ting a design into a particular context (or contexts)
leads to one of the key characteristics of postmodern
designed artifacts — in software in as much as ar-
chitecture, product design, music, or other art forms.
This is that postmodern designs typically use double
coding (or multiple coding) to appeal to more than
one audience or meet more than one concern.

The easiest examples to see of this are in ar-
chitecture: rectangular concrete-and-steel-and-glass
boxes are notoriously uncongenial places in which to
work and live, not to mention being indistinguishable
from each other. Postmodern architects, then, us-
ing the same technologies as their modern forebears
to actually construct buildings, will add on decora-
tions, spires, domes, arcades, and other ornaments
both to distinguish builds from each other, and also
to humanise their buildings as homes or workplaces
(Jencks 1987).

We find similar multiple codings in software.
Contemporary desktop operating systems (Windows,
Linux, Macintosh) are good examples here: just as a
postmodern architect may paint a mural (or at least

CRPIT Volume 53

12

colour the building materials) on the side of a build-
ing, add a fancy three-dimnsional dome over the door-
way, and use contrasting materials for visual effect
on walls or floors, so personal computers and mo-
bile phones add fancy screen backgrounds, customised
sound effects and ringtones that does not change the
functionality of the underlying software but presum-
ably makes it more appealing to its users.

Double coding gives rise to another common
criticism of postmodernism — that postmodernism
prefers surface to depth, appearance to reality, lying
to truth, or cute cross references (Sanrio Company,
Ltd. & Sanrio, Inc 2005) to straightforward expla-
nation. And indeed, this criticism is valid to a point
(Waugh 1943): one (or more) of the codes are often
pastiches of existing or historical styles that are laid
over other foundations or applied to other purposes.

Some well-known examples of double-coding in
software are the Java programming language and the
latest Macintosh operating systems. Java was sold as
a successor to C++ — adopting much C++ syntax
and terminology. In terms of its underlying technol-
ogy, Java is effectively a Smalltalk system with types
on the bytecodes and an overcomplicated compiler —
and indeed, advanced Java programming techniques,
relying on garbage collection, finalisation, reflection,
dynamic code generation, and so on, are much more
closely related to Smalltalk practice than to C++
practice. Similarly, the current (and near future)
Macintosh laptops — X86 architecture, open source
Darwin kernel, KHTML-based web browser, etc —
is almost exactly the same as current Linux or BSD-
based systems apart from the details of the design
of the window system, and the supremely important
logo on the back of every screen.

Double coding and constant negotiation often give
rise to a sense of pervasive irony — parody, pastiche,
or knowingness is a characteristic of much postmod-
ern writing, architecture, and design. The Hacker’s
Dictionary contains many examples (Raymond &
Steele 1993); more recent ones include the pervasive
use of cartoons to illustrate computer science text-
books, a programming languages named after a cof-
fee shop, and digital rights management software that
rootkits your computer with illegally copied code.
This irony is now pervasive: we have operating sys-
tems called “Vista”, and positioned with skyscrapers:
but we also have operating systems with a fat penguin
as a logo, that promote stability as its main advan-
tage.

2.4 Reuse

Finally, where modernism sets itself against past de-
signs and past practice, postmodernism treats the
past as just another set of small narratives. Where
modern computer science chose to invent a discipline
from nothing, a postmodern approach can incorpo-
rate all the techniques and experiences from the sixty
years the discipline has existed — holding them as
contingent, to use as needed.

In some ways, this is evidence of the success of soft-
ware: we do have a history of successful techniques
that have been used to build successful systems. Fur-
thermore, in the last ten to fifteen years, we have
also constructed a range of successful software com-
ponents and subsystems that can be incorporated into
new systems. Especially in industrial practice, most
development involves existing systems — either for
so-called “maintenance” (most often adapting well-
functioning successful systems to incorporate new re-
quirements), or as larger-scale developments which
graft new functionality and technologies onto existing,
long-lived systems, or indeed in some cases replacing
systems wholesale.

This has a number of effects in practice. One is
that mastery of a programming language, modelling
notation, or algorithm or data structure implementa-
tions is not enough to equip a professional program-
mer: rather, programmers and designers also need
knowledge of existing systems — sensitivity to the
technical context of the development — and of avail-
able libraries, components, and frameworks that they
can combine into programs.

2.5 Postmodern Responses

In different disciplines and in different contexts, post-
modernism responds in different ways to forces de-
scribed above. Across these disciplines, however, we
can generally identify a number of stereotyped re-
sponses to postmodernity (or equally different types
of postmodernism, or different postmodernisms). The
architect and architectural critic Charles Jencks has
identified four kinds of architectural postmodernisms.
Based upon his classification (Jencks 1987), in this
section we outline what we consider the four key
software responses to postmodernism: neoclassicism,
eclecticism, antimodernism, hypermodernism.

2.5.1 Neoclassicism

Especially within architecture, the most common
postmodernism is a variety of neoclassicism — also
know as postmodern classicism. In postmodern archi-
tecture, neoclassicism adopts the standard construc-
tion techniques from modern architecture, but adds
features drawn from classical architecture to “human-
ise” the buildings, and to provide a consistent “skin”
over the building.

Much contemporary software and language design
is neoclassical — simply as a way to smuggle (post)
modern technologies into practice. Java or C] are two
good examples here: their syntax is carefully designed
to look like C or C++, yet their semantics are much
closer to Lisp or Smalltalk. This shift is obvious in
Apple’s Dylan language, where the first version used
Lisp-style S-expression syntax (Shalit 1992), while the
second version adopted something much close to C or
Pascal (Shalit, Moon & Starbuck 1996).

2.5.2 Eclecticism

The other main postmodern response is eclecticism
which throws together a number of different features
or components, resulting in a collage or melange of
textures or styles, with no apparent common thread.
IM Pei’s glass pyramid in front of the Louvre is
one example: Frank Gehry’s Stata Centre for MIT’s
CSAIL lab is another. This response, drawing heavily
on quotations or allusions, is common to postmodern
music and visual arts, as well as architecture.

A number of postmodern software systems and
languages exhibit eclectic postmodernism. The most
well-known is the Perl programming language. Perl’s
designer, Larry Wall, has explicitly described Perl is
the “first postmodern programming language” and
discussed how he explicitly and indiscriminately bor-
rowed features from many other programming lan-
guages (both “high culture” languages such as Pascal
and BCPL, and “low culture” languages such as BA-
SIC or TRAC) to produce Perl’s design. Still within
programming languages, two complementary exam-
ples are the recent text Higher-Order Perl (Dominus
2005) (with a back cover blurb promising to teach Perl
programmers “powerful programming methods — new
to most Perl programmers — that were previously the
domain of computer scientists”), and use of Haskell
to build DOM Components (Finne, Leijen, Meijer &
Jones 1999).

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

13

Our previous work, the Notes (Biddle et al. 2003),
is written in an eclectic form: this paper is neoclas-
sical (it at least looks like a scientific paper). The
advantage of eclecticism is that — by simply combin-
ing different ideas, components, or styles, it doesn’t
“paper over” significant difficulties or differences be-
tween them: a neoclassical approach, as in this paper,
can appear to tell a straightforward, consistent story
about something that is neither straightforward nor
consistent.

2.5.3 Antimodernism

The third postmodern response, which we call anti-
modernism, is less common in software development,
but is more common both in pedagogy and also com-
mercial analysis and modelling practices. This is an
essentially low-technology approach, and loosely par-
allels the “ecological” approach that Jencks identifies
in postmodern architecture (Jencks 1987).

An ironic icon for this approach could be Dijkstra,
in abandoning the typewriter or word processor and
hand-writing all his EWD letters2. In pedagogy, tech-
niques such as Computer Science Unplugged (Bell,
Fellows & Witten 1998) attempt to teach the basics of
computer science to schoolchildren or university stu-
dents without a computer, while Ronald Stamper has
advocated Informatics Without the Computer as an
approach to both systems analysis and an attempt to
broaden systems analysis techniques to be applicable
to non-computer systems (Stamper 2001). And com-
puter science seems full of curmudgeonly statements
of form “X is an improvement over all its successors”.

More practically, low-technology approaches have
been advocated as tools, especially for analysis or
modelling. Class-Responsibility-Cards (CRC Cards),
although originally proposed as a learning tool, are
accepted as an effective group-based analysis tool
(Beck & Cunningham 1989); Coplien has advocated
the use of a whiteboard rather than CASE tools (with
a separate “mercenary analyst” role to move infor-
mation into CASE tools if necessary) (Coplien &
Harrison 2004); the design patterns movement has
resisted automation or case tool support for patterns
(Coplien 1996).

Examples of antimodernism in systems design
seem to be rather harder to come by — presumably
because an antimodern approach would be to elim-
inate the computer system, and such decisions are
not often described in the literature of the discipline.
The “Wiki Way” is one successful example of anti-
modern design (Leuf & Cunningham 2001), allowing
users to create web sites by using minimal textual
markup within any web browser, rather than com-
plex integrated authoring environments.

2.5.4 Hypermodernism

The last response we will consider is the continuation,
or the exaggeration of modern design and aesthetics.
One way to think about this is that eclectic post-
modernism can coöpt any past or present style: one
of those it can coöpt is modernism. Then, in spite
of what we argue is the general failure of modern
master-narratives of software development, research
and development can still continue working directly
from modern premises.

The hypermodern response most practically man-
ifests itself as a kind of minimalism: building sys-
tems based on a single language or single architec-
ture, which may be correct, very powerful, and very

2Luca Cardelli provides a ironic, eclectic overlay on this re-
fusal, with a “handwritten” postscript printer font called “Dijk-
stra” (Cardelli 2005)

efficient, but because of a modernist rejection of ex-
isting practice, are unable to be directly adopted
or used widely. The extensible, customizable self-
documenting Lisp-based emacs editor is one such sys-
tem (Stallman 1981); in spite of all its power and el-
egance of design, it has never been widely adopted
outside a circle of cognoscenti.

The key difference between this extreme postmod-
ern response, and the modern grand narrative, is that,
say, while Wirth was developing Pascal could do so
with the idea that an independent, completely-Pascal-
oly system could well become widely used — as indeed
it did. Twenty years later, few people were willing to
install a new operating system, learn a novel user in-
terface paradigm, and then a new programming lan-
guage to use Oberon.

3 The Postmodern Turn

Having toured postmodernism, in this section we will
turn to software, and consider how some recent devel-
opments may be infected with postmodernism. This
selection is not intended to be complete or consis-
tent. We have certainly omitted many important
developments (Open Source (Raymond 2001), UML,
XML, various kinds of multiparadigm programming,
customisable methodologies), some of which are dis-
cussed elsewhere in the Notes.

3.1 Agile Methods

The first postmodern development we consider here is
the introduction of so-called Agile software develop-
ment methods. The most well-known (and arguably
most adopted) Agile methodology is Extreme Pro-
gramming (Beck 1999). The Agile software movement
has the advantage of a manifesto, show in Figure 1
(The Agile Alliance 2001):

In postmodern terms, traditional software devel-
opment projects stands under a grand narrative of
“progress”. Expert analysts “extract” or “mine” re-
quirements from clients in roughly same spirit oil and
coal are extracted or mined; once the experts have suf-
ficient knowledge of the terrain, they can the proceed
to manufacturing the software. Often this manufac-
turing is carried out in roughly the same techniques
as industrial production lines and the end of the pro-
cess, the final software is shipped to clients and the
process is over (Robinson et al. 1998).

Strange as it may seem, the idea of an Agile
systems development is that it does not make any
progress. Agile development treats all development as
maintenance programming, keeping an existing sys-
tem running, and evolving it through a series of iter-
ations, not as a greenfield development from nothing.
Ideally, at the end of any Agile iteration, a system
will suit its operational context (functional require-
ments) as well as its development context (principally
resources) allow: the system does not grow more com-
plete or more complex — or even necessarily larger
over time (especially as features and their support-
ing code may be removed once they are no longer
required).

In practice, of course, Agile developments do have
a model of progress — the number of user stories
or functions completed, the amount of “backlog”
in a Lean or Scrum development (Poppendieck &
Poppendieck 2003, Schwaber & Beedle 2001). But
this progress is temporal, limited, and local: as a
whole, the system and its developers exist in a steady,
stable state (Beck 1999).

Thus the key point of the agile manifesto — rather
than applying a manufacturing methodology, cus-
tomers and developers are seen as bringing their own

CRPIT Volume 53

14

Manifesto for Agile Software Development

We are uncovering better ways of developing software
by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Figure 1: Agile Manifesto

knowledge about their own spheres of expertise, (their
own little narratives) and they continually negotiate
changes to the extant working software to be com-
pleted in the next iteration. Even though tradi-
tional methodologies may build software iteratively,
the overall scope and cost of the construction effort
is generally estimated and then established in ad-
vance. In contrast, Agile developments prefer vari-
able scope contracts, perhaps with a fixed cost-per-
unit-time, during which the software will be main-
tained or evolved. To maintain this focus on the ac-
tual software and personal interaction with clients,
many Agile methodologies, in particular XP, down-
play or actively forbid any attempts to maintain soft-
ware models, plans, or analysis or design documents.
Perhaps whiteboards and notepaper may be permit-
ted, but they must be erased or disposed of at the end
of each working day. Ownership of domain knowledge
remains with the customer representatives; the struc-
ture of the software is only represented by its source
code.

In terms of our classification of postmodernisms
above, Agile methods at a large scale are anti-
modernism — eschewing complex modern estima-
tion and planning methods, analysis and design tools
and methodologies in favour of direct communion-
cation and (ephemeral) paper based aids similar to
CRC Cards. At small scales, Agile methods pro-
mote adoption of advanced code analysis and pro-
gramming tools, such as refactoring browsers, that
can automatically analyse and reshape code to in-
corporate new requirements, and unit testing regres-
sion to ensure these changes preserve the code’s be-
haviour: in this sense, they are neoclassical. On
the other hand, some Agile methods (again, particu-
larly XP) try to promote their own (hypermodernist)
grand narratives, advocating strict adherence to all
the practices to be considered “truly” practicing XP
(Portland Patterns Repository 2005). In our research
into actual Agile development teams (Martin, Biddle
& Noble 2004a, Martin, Biddle & Noble 2004b), how-
ever, we have found that most development teams in
practice take a rather more flexible approach, adopt-
ing those practices that are perceived to fit within
their development context, and ignoring those that
do not.

3.2 Aspect-Orientation: Software Develop-
ment without Knowledge

Traditional software development effectively enjoys a
unified ontology: software has single hierarchical pro-
gram structure, a tree (Dahl & Hoare 1972). De-
pending on the type of program, this may be based
either on a functional decomposition (as in struc-
tured programs); part-whole aggregation hierarchies
(common in entity-relationship modelling and non-

relational databases) or classification hierarchies (es-
pecially object-oriented modelling). We consider that
this structure represents a grand narrative: a program
is a single unitary artifact, a consistent encoding of
domain knowledge gained by a modeller and created
by a programmer.

Aspect-Oriented Software Development (AOSD,
also know as Advanced Separation of Concerns) is
based upon a fundamental critique of this struc-
ture for programs (Kiczales, Lamping, Mendhekar,
Maeda, Lopes, Loingtier & Irwin. 1997, Harrison &
Ossher 1993). AOSD points out that programs in
fact consist of multiple interlocking issues or concerns,
so that each individual single program element in a
traditional tree structure (say a class definition) will
tangle code related to a number of different concerns
(data storage, database access, user interfaces) while
any single concern will be distributed across many
different program elements. AOSD claims this tan-
gling and distribution causes a range of problems with
program comprehension, maintenance, and construc-
tion, and as a result, proposes that program struc-
tures should be multifaced and multilinked, rather
than tree shaped. Programming language constructs
need to be revised to support these new structure, so
that programs can break down programs’ structure
into many small components, each corresponding to
an individual concern, and then somehow combining
those parts back together into a functioning program.

In fact, AOSD’s critique is not new, harking back
to Fred Brooks’ description of the “intricately inter-
locking software elephant” (Brooks 1987). Neither
is its solution new: the phrase: “separation of con-
cerns” has a long history within computer science
(Dijkstra 1982, Parnas & Clements 1986). The differ-
ence in AOSD is that this decomposition is heterar-
chical, rather than hierarchical: a graph, rather than
a tree3. Each separate component or separate concern
plays the role of a small narrative in the program’s de-
sign: modelling or programming languages explicitly
have to embody strategies to negotiate between this
local narratives (such as composition rules in subject-
oriented programming, or aspect dominance in As-
pect/J).

This kind of cross-cutting, interlinked struc-
ture is common to many different postmodern cri-
tiques, including antimodernism architect Christo-
pher Alexander’s description that “A city is not
a tree” (Alexander 1965), or eclectic postmodern
philosophers Deleuze and Guattari’s notion of a rhi-
zome (Deleuze & Guattari 1987):

3Observant readers will realise that the implicit structure of
any program is a (multi)graph, and modern, structured languages
restrict only the explicit structure of a program to be a tree. AOSD
proponents argue this is precisely the point: the aim of AOSD is to
make explicit as much of the structure of the program as possible.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

15

The rhizome itself assumes very diverse
forms, from ramified surface extension in all
directions to concretion into bulbs and tu-
bers. When rats swarm over each other.
The rhizome includes the best and the worst:
potato and couchgrass, or the weed. Animal
and plant, couchgrass is crabgrass.

AOSD programs in current practice can be consid-
ered neoclassical, as typically they consists of “base”
programs in a modern programming language with a
tree topology, but with extra aspects being weaved
in to handle one or to extraordinary functions, such
as program tracing, monitoring, debugging, concur-
rent synchronisation, or security. More recent devel-
opments ranging from formal models (Aldrich 2005)
to modelling all interobject relationships as aspects
(Pearce & Noble 2006), lean more towards hypermod-
ernism, capturing as much of a programs’ implicitly
interwoven structure explicitly in aspects.

3.3 Design Patterns

Existing methodologies are also based on grand nar-
ratives of design, describing how to construct entire
programs by developing requirements top down into
a design then into consistent code. This is as true
for traditional structured methodologies (Yourdon
& Constantine 1979), object-oriented methodologies
(Wirfs-Brock, Wilkerson & Wiener 1990), or even
aspect-oriented methodologies (Clarke & Baniassad
2005). In that sense, methodologies embody an ethic
of what is “good” over whole programs, and so design
all of a program or system in the same way.

In contrast, design patterns (Gamma, Helm, John-
son & Vlissides 1994) are little local rules about what
is good in a design, or rather, that describe and eval-
uate a characteristic, reusable design in such a way
that programmers can apply this design to their pro-
grams when it is needed. The classic definition of a
pattern, “A solution to a problem in a context” both
encapsulates the specificity of a pattern (one solu-
tion to one problem) and also its context dependence
(Coplien 1996, Gamma et al. 1994). Because pat-
terns are small, specific, and contingent, they can be
adopted by programmers without changing their ex-
isting methodologies or work methods, as and when
required, irrespective of what other design discipline
has been adopted. Patterns may be employed sin-
gularly, or in combination with either each other, or
with other techniques or programming constructs or
techniques. As John Vlissides describes in his Pattern
Hatching (Vlissides 1998):

You will discover techniques for applying
certain patterns and not applying others, as
circumstances dictate.

In terms of the typology of postmodern responses
above, design patterns are generally an eclectic
postmodernism, as multiple patterns from multiple
sources may be used indiscriminately together in a
program — indeed, we consider this is a key reason
for the patterns movement’s success. Parts of the
patterns movement are antimodernist, in that, like
Agile development, they eschew automated support
(or indeed any kind of external analysis) of patterns
(Coplien 1996). Refactoring, which emerged from
the same milieu as patterns, is not antimodernist in
this way. On the other hand, also like some XP and
AOP proponents, those patterns proponents who fol-
low Christopher Alexander (the originator of design
patterns in Architecture (Alexander 1979, Alexander
1977)) are simultaneously hypermodernist and anti-
modernist, on one hand, insisting that all patterns

must be joined together in a grand, overarching pat-
tern language — another grand narrative — and on
the other, dismissing academic analysis or automated
support for program design

Patterns are also related to a number of other
programming techniques that have similar effects.
Refactorings (Opdyke & Johnson 1990, Fowler 1999)
are generally smaller than patterns, describing lo-
calised code changes that improve (or at least mod-
ify) the structure of a program. Analysis Patterns
(Fowler 1997) and Problem Frames (Jackson 2001)
are again descriptions of particular localised, partial
solutions but addressed earlier in the traditional soft-
ware lifecycle.

3.4 Good Enough Software

We discussed above that key parts of the Computer
Science grand narrative are the twin goals of correct-
ness and then efficiency: these are non-negotiable —
although correctness is more important. From this
perspective, the aim of developing only “good enough
software” — software that is neither correct nor effi-
cient — but is good enough for its context of use, is
also a postmodern approach.

Gabriel’s essay Lisp: Good News, Bad News, How
to Win Big (Gabriel 1991) includes an early elucida-
tion of this argument, arguing that a design that em-
phasised simplicity and sacrificed completeness would
have better survival characteristics than a design that
promoted correctness and completeness.

Agile approaches, such as XP, take this reasoning
further: accepting that all design qualities — correct-
ness, efficiency, completeness, consistency, simplicity,
development time, and cost — are independent vari-
ables in a development process (Beck 1999). A partic-
ular development project needs to negotiate between
all these small narratives of software characteristics to
fit the projects’ context, perhaps trading off quality
for price, for development time, for the project scope
(for a simple website development) or perhaps deliver-
ing correctness at any cost (for a life-critical system).
Rinard’s Acceptability-Oriented Computing (Rinard,
Cadar & Nguyen 2005b) goes one step further, ar-
guing that the programming and design techniques
programmers typically adopt to ensure programs’ cor-
rectness actually reduce the correctness and reliability
of the systems of which those programs are parts.

The concept of good enough software is an anti-
modernist response to development pressure: reject-
ing the modern claims that software should be correct
and efficient. The complementary contrary aim of de-
veloping perfect software through the use of formal
methods is the hypermodern antithesis to this. Per-
haps there is also a neoclassical synthesis, where tools
like Findbugs (Hovemeyer & Pugh 2004) or Spec]
(Barnett, Leino & Schulte 2004) employ sophisticated
formal analyses to catch potential errors, but do not
guarantee the correctness of the resulting program.

3.5 Scrap-Heap Programming

Steven Conner (Connor 2004) describes postmod-
ernism as

. . . that condition in which, for the first
time, and as a result of technologies which
allow the large-scale storage, access, and re-
production of records of the past, the past
appears to be included in the present.

Nowhere is this aspect of postmodernism more ex-
plicit that in software development. This is for two
reasons: first, digital technologies are the key enablers
of this large-scale storage, access, and reproduction;

CRPIT Volume 53

16

and second, that software itself is the content par ex-
cellence that can be stored and exchanged using these
technologies. In effect, everything is becoming soft-
ware.

This shift has a major impact on software develop-
ment. The context of a software development projects
now includes huge amounts of existing software, avail-
able via Google on the the web, provided by the open
source movement, purchased one way or another from
software vendors — and, often most pertinent — pre-
existing software within the client organisation which
the new software must extend, cooperate, or replace.
To self-plagiarise: “How do you write a program when
every program has already been written” (Noble &
Biddle 2004).

Our techniques for modelling and programming
must take account of this existing software — and
in particular, of the changes it makes to the struc-
ture of the software that we build. To return again to
our theme: once software is constructed mostly out of
other software, there is no longer any one grand nar-
rative, big story, of software structure: no longer any
one coherent software design. Rather, we build soft-
ware in a scrapheap (Noble & Biddle 2002, Moore &
Pryce 2005, Brucker-Cohen & Moriwaki 2005, Chan-
nel 4 2004). The end result is the “Programmer as
DJ” — (re)mixing existing systems, scavenging parts
of systems, buying or building discrete components
and then writing or generating amorphous glue that
binds these disparate parts together.

The modern grand narratives of program design
generally work from requirements to design to engi-
neering. This model holds good for both Agile and
non-Agile methodologies: in fact, Agile methodolo-
gies such as XP often have an even stronger focus
on this separation of labour: a customer provides re-
quirements while the programmer implements them
(Beck 1999). Much postmodern software engineer-
ing tends to work bottom up — not bottom up from
the requirements, but bottom up from the scrapheap.
Programmers begin with the components that they
have to hand, or can find on Google, or can scavenge;
then work out what they could build out of the com-
ponents; and only then negotiate with customers over
requirements.

Actual assembly of scrapheap software is often
not via programming in traditional programming lan-
guages, but rather via scripting languages, languages
that are good enough for the job. Traditional pro-
gramming languages are designed for writing whole
programs: scripting languages are designed for writ-
ing small parts of them: the interstitial filler between
the parts Google delivers from the scrapheap.

These little languages are low culture languages
— shell scripts, Perl, Ruby, Visual Basic — generally
ignored by academic computer scientists, software en-
gineers, or modellers. The languages are interpreted
and dynamically typed, good enough in that they are
concerned neither with correctness (offered by static
typing) or efficiency (compilation) — but are never-
theless powerful and efficient enough to write full ap-
plications, given that they make it very easy to con-
nect together other software. Where these languages
are discussed (Bently 1988), they are generally not
studied in their own right, but rather as implementa-
tion techniques to build a new customised language
for a particular problem. While building a new lan-
guage is a scrapheap technique, the most common
case is to simply use one or more of these languages
to glue existing components together.

Brian Foote has captured the Scrapheap dynamic
as the difference between a Big Ball of Mud (Foote &
Yoder 2000) and a Big Bucket of Glue (Foote 2005).
Foote describes LISP as a Big Ball of Mud — a very
flexible syntax, language, system, to which program-

mers can always add more Lisp code because it always
remains just a Big Ball of Mud. But the important
thing about a Big Bucket of Glue is not the glue: the
glue is what sticks together the stuff pulled from the
scrapheap. Two buckets of glue can be very differ-
ent, depending upon what scraps they contain. Pro-
grams are composites of multiple things, a conglom-
erate rather than a mixture, different parts, stuck to-
gether with glue that is different again from any of
the components: mud is undifferentiated.

So we have composed software, assembled soft-
ware, software bricolage, (Biddle et al. 2003) —
software made out of a range of parts of different
sizes, languages, platforms, and technologies. These
parts may not necessarily have been designed to be
encapsulated reusable components: they will have
(implicit) dependencies on architecture, standards,
other software that may only be partially understood.
Building programs out of existing software results in
radically heterogenous systems — because the parts
are not just simple “components” (Cox 1990) but may
be whole other applications, web services, entire com-
plex legacy interlinked computer systems accessed via
screen-scrapers, facades, or wrappers of various sorts.
The cost of merely understanding these software, let
along reengineering them to fit some overarching soft-
ware architecture, would be prohibitive.

Scrapheap programming is in some ways the
most obviously characteristic postmodern program-
ming style. In terms of the postmodernisms above,
Scrapheap programming is eclectic, highly context
sensitive, mixes high and low culture (using anything
that will do the job, from Haskell to Visual Basic) and
heavily double coded (facades, wrappers, user inter-
faces are ubiquitous to make scrapheap software seem
like something it is not).

4 Prospects for Postmodern Conceptual
Modelling

The rubric for the First Asia-Pacific Conference on
Conceptual Modelling (Hartmann & Roddick 2004)
states:

The actual amount, complexity and di-
versity of information are increasing day by
day. Information that has to be conceptu-
alised and efficiently organised in order to be
useful. Conceptual modelling is fundamen-
tal to the development of up-to-date infor-
mation and knowledge-based systems.

What, then, are the prospects for a postmodern
approach to conceptual modelling? First, it seems
that this rubric already accepts one of the tenets of
postmodernism — the increasing volume, complexity,
and diversity of information, and perhaps an increas-
ing anxiety to keep our systems always “up-to-date”
with a postmodernity that is always just after the fu-
ture we imagined when we first designed the systems.
Second, though, the statement stands on a modern as-
sertion of metanarrative: information has to be con-
ceptualised and efficiently organised, in order to be
useful. Arguably, Google provides a counterexample:
information can useful given only moderately efficient
access, without correctness (conceptualisation) or ef-
ficient organisation, and certainly without a grand
narrative to hold everything together.

Although, in postmodernity, there is likely no priv-
ileged “high ground” that conceptual modelling can
claim, this does not mean it has no place in postmod-
ern software development. Rather, conceptual mod-
elling can negotiate as a little narrative, along with
many other techniques for the “development of up-
to-date information and knowledge-based systems” —

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

17

with Visual Basic and category theory and Microsoft
Bob and abstract interpretation and CRC cards and
Haskell.

But, how could such negotiation work in prac-
tice? How do you practice conceptual modelling
for Visual Basic programs, or for an Agile method-
ology that explicitly rejects modelling and design?
Thankfully, the prospects for aspect-oriented concep-
tual modelling seem a little brighter, given concep-
tual modelling’s existing move from its straightfor-
ward entity-relationship heritage to encompass some
object-oriented techniques, and more recently to-
wards XML. How can conceptual modelling adapt to
projects where other narratives (cost or time to mar-
ket) outweight the traditional values of correctness
and efficiency? Ultimately, what utility is there in
conceptual modelling a system built piecemeal out of
junk found from a scrapheap via Google?

Perhaps it is more useful, as we have done to some
extent here, to consider how a particular technology
or technique responds to postmodernity, rather than
simply asking whether or not something is “postmod-
ern” (especially where “postmodern” is often meant
as a synonym for “bad”). If our analysis is correct,
then we are all working in postmodernity: an anti-
modern response — clinging heroically, desperately,
to one ideal imagined future where all information is
conceptualised and all databases are normalised —
is as much a postmodern response as gleefully claim-
ing eclectism removes the need (or responsibility) for
developers or modellers to make any value decisions.
Rather, the point is that every decision is now a lo-
cal negotiation between various contingent narratives.
So, as researchers, we can ask “how is this postmod-
ern?”, or “what aspects of this are postmodern?”, or
“what kind of postmodern response is this?”. How
is conceptual modelling sensitive to context? What
kind of double or multiple codings are in effect? How
can conceptual modelling, aware of its status as one
little narrative amongst many, contribute to the on-
going negotiation at the core of systems development
in the postmodern era?

References

Aldrich, J. (2005), Open modules: Modular reasoning
about advice, in ‘ECOOP Proceedings’.

Alexander, C. (1965), ‘A city is not a tree’, DESIGN
pp. 46–55.

Alexander, C. (1977), A Pattern Language, Oxford
University Press.

Alexander, C. (1979), The Timeless Way of Building,
Oxford University Press.

Barnett, M., Leino, K. R. M. & Schulte, W. (2004),
The Spec] programming system: An overview,
in G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet
& T. Muntean, eds, ‘Construction and Analysis
of Safe, Secure, and Interoperable Smart Devices
(CASSIS)’, Vol. 3362 of Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 49–69.

Beck, K. (1999), Extreme Programming Explained:
Embrace Change, Addison-Wesley.

Beck, K. & Cunningham, W. (1989), A laboratory for
teaching object oriented thinking, in ‘OOPSLA
Proceedings’.

Bell, T., Fellows, M. & Witten, I. (1998), Computer
Science Unplugged: The Original Activities
Book, Computer Science Unplugged, Morrisville,
NC. www.unplugged.canterbury.ac.nz.

Bently, J., ed. (1988), More Programming Pearls,
Addison-Wesley.

Biddle, R., Martin, A. & Noble, J. (2003), ‘No
name: Just notes on software reuse’, SigPlan No-
tices: Proceedings of the Oopsla Onward Track
38(2), 76–96.

Brooks, Jr., F. P. (1987), ‘No silver bullet: Essence
and accidents of software engineering’, IEEE
Computer 20(4).

Brucker-Cohen, J. & Moriwaki, K. (2005), ‘Scrap-
yard challenge workshop’, http://www.-
scrapyardchallenge.com/.

Cardelli, L. (2005), ‘Dijkstra postscript font’,
http://www.luca.demon.co.uk/Fonts.htm.

Channel 4 (2004), ‘Scrapheap challenge’, http://-
www.channel4.com/science/microsites/S/-
scrapheap/.

Clarke, S. & Baniassad, E. (2005), Aspect-Oriented
Analysis and Design: The Theme Approach,
Addison-Wesley.

Connor, S., ed. (2004), The Cambridge Companion to
Postmodernism, Cambridge University Press.

Coplien, J. O. (1996), Software Patterns, SIGS Man-
agement Briefings, SIGS Press.

Coplien, J. O. & Harrison, N. B. (2004), Organiza-
tional Patterns of Agile Software Development,
Prentice Hall PTR.

Cox, B. J. (1990), ‘Planning the software industrial
revolution’, IEEE Software .

Dahl, O.-J. & Hoare, C. A. R. (1972), Hierarchical
program structures, in O.-J. Dahl, E. W. Dijk-
stra & C. A. R. Hoare, eds, ‘Structured Program-
ming’, Academic Press.

Deleuze, G. & Guattari, F. (1987), A Thousand
Plateaus: Capitalism and Schizophrenia, Univer-
sity of Minnesota Press. Translated from the
French by Brian Massumi.

Dijkstra, E. W. (1982), On the role of scientific
thought, in ‘Selected Writings on Computing: A
Personal Perspective’, Springer-Verlag, pp. 60–
66.

Dominus, M. J. (2005), Higher-Order Perl, Elsevier
Science & Technology Books.

Finne, S., Leijen, D., Meijer, E. & Jones, S. P. (1999),
Calling hell from heaven and heaven from hell, in
‘Proceedings of the Fourth ACM SIGPLAN In-
ternational Conference on Functional Program-
ming (ICFP-99)’, ACM, pp. 114–125.

Foote, B. (2005), Big bucket of glue (breakthrough
idea), in ‘OOPSLA ’05: Companion to the 20th
annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications’, ACM Press, pp. 76–86.

Foote, B. & Yoder, J. (2000), Big ball of mud,
in N. Harrison, B. Foote & H. Rohnert, eds,
‘Pattern Languages of Program Design’, Vol. 4,
Addison-Wesley, chapter 29, pp. 653–692.

Fowler, M. (1997), Analysis Patterns, Addison-
Wesley.

Fowler, M. (1999), Refactoring: Improving the Design
of Existing Code, Addison-Wesley.

CRPIT Volume 53

18

Gabriel, R. P. (1991), ‘LISP: Good news, bad news,
how to win big’, AI Expert 6(6), 30–39.

Gamma, E., Helm, R., Johnson, R. E. & Vlissides, J.
(1994), Design Patterns, Addison-Wesley.

Harrison, W. & Ossher, H. (1993), Subject-oriented
programming (a critique of pure objects), in
‘OOPSLA Proceedings’, pp. 411–428.

Hartmann, S. & Roddick, J. (2004), ‘The
first asia-pacific conference on con-
ceptual modelling (call for papers)’,
http://apccm.massey.ac.nz/apccm04/.

Hovemeyer, D. & Pugh, W. (2004), Finding bugs is
easy, in ‘OOPSLA ’04: Companion to the 19th
annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and
applications’, ACM, pp. 132–136.

Jackson, M. (2001), Problem Frames: Analyzing
and Structuring Software Development Prob-
lems, Addison-Wesley.

Jencks, C. (1987), The Language of Post-Modern Ar-
chitecture, Academy Editions.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Lopes, C. V., Loingtier, J.-M. & Irwin.,
J. (1997), Aspect oriented programming, in
‘ECOOP Proceedings’.

Leuf, B. & Cunningham, W. (2001), The Wiki Way,
Addison-Wesley Publication Co.
http://wiki.org/

Lyotard, J.-F. (1979), La Condition postmoderne:
Rapport sur le savoir, Collection: “Critique.”,
Minuit, Paris.

Lyotard, J.-F. (1984), The Postmodern Condition: A
Report on Knowledge, Vol. 10 of Theory and His-
tory of Literature, University of Minnesota Press.
Translated from the French by Geoff Bennington
and Brian Massumi.

Lyotard, J.-F. (1992), From the postmodern condi-
tion, in A. Easthope & K. McGowan, eds, ‘A
Critical And Cultural Reader’, Allen & Unwin.

Martin, A., Biddle, R. & Noble, J. (2004a), When XP
met outsourcing, in J. Eckstein & H. Baumeis-
ter, eds, ‘Proceedings of the Fifth International
Conference on eXtreme Programming and Agile
Processes in Software Engineering’.

Martin, A., Biddle, R. & Noble, J. (2004b), The XP
customer role in practice: Three case studies, in
‘Proceedings of the Second Agile Development
Conference’.

Moore, I. & Pryce, N. (2005), ‘Scrapheap chal-
lenge: A workshop in post-modern program-
ming’, Workshop at OOPSLA 2005, San Diego.
http://postmodernprogramming.org/.

Noble, J. & Biddle, R. (2002), Notes on postmod-
ern programming, in R. Gabriel, ed., ‘Proceed-
ings of the Onward Track at Oopsla 02, the
ACM conference on Object-Oriented Program-
ming, Systems, Languages and Applications’,
http://www.dreamsongs.org/, Seattle, USA,
pp. 49–71.

Noble, J. & Biddle, R. (2004), Notes on notes on
postmodern programming: radio edit., in ‘OOP-
SLA Companion, proceedings of the Onward!
stream’, pp. 112–115.

Opdyke, W. F. & Johnson, R. J. (1990), Refactor-
ing: An Aid in Designing Application Frame-
works, in ‘Symposium on Object-Oriented Pro-
gramming Emphasizing Practical Applications’,
ACM-SIGPLAN, pp. 145–160.

Parnas, D. L. & Clements, P. C. (1986), ‘A ra-
tional design process: How and why to fake
it’, IEEE Transactions on Software Engineering
12(2), 251–257.

Pearce, D. & Noble, J. (2006), Relationship as-
pects, in ‘Aspect-Oriented Software Develop-
ment (AOSD)’.

Poppendieck, M. & Poppendieck, T. (2003),
Lean Software Development: An Agile Toolkit
for Software Development Managers, Addison-
Wesley.

Portland Patterns Repository (2005), ‘You Aren’t
Extreme — Portland Patterns Repository’,
http://c2.com/cgi/wiki?YouArentExtreme.
[Accessed November 2005].

Raymond, E. S. (2001), The Cathedral and the
Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary, O’Reilly & Asso-
ciates.

Raymond, E. & Steele, G. L. (1993), The New
Hacker’s Dictionary, second edn, MIT Press.

Rinard, M., Cadar, C. & Nguyen, H. H. (2005a), ‘Ex-
ploring the acceptability envelope’, Presentation
to the OOPSLA 2005 Onward! Stream.

Rinard, M., Cadar, C. & Nguyen, H. H. (2005b),
Exploring the acceptability envelope, in ‘OOP-
SLA Companion, proceedings of the Onward!
stream’.

Robinson, H., Hall, P., Hovenden, F. & Rachel, J.
(1998), ‘Postmodern software development’, The
Computer Journal 31, 363–375.

Sanrio Company, Ltd. & Sanrio, Inc (2005), ‘The
official Sanrio website. home of Hello Kitty’,
http://www.sanrio.com/.

Schwaber, K. & Beedle, M. (2001), Agile Software
Development with SCRUM, Prentice-Hall.

Shalit, A. (1992), Dylan: an object oriented dynamic
language, first edn, Apple Computer, Inc.

Shalit, A., Moon, D. & Starbuck, O. (1996), The
Dylan Reference Manual: The Definitive Guide
to the New Object-Oriented Dynamic Language,
first edn, Addison-Wesley.

Stallman, R. M. (1981), EMACS the extensible, cus-
tomizable self-documenting display editor, in
‘Proceedings of the ACM SIGPLAN SIGOA
symposium on Text manipulation’, pp. 147–156.

Stamper, R. (2001), Organisational semiotics: In-
formatics without the computer?, in K. Liu,
R. Clarke, P. B. Andersen & R. Stamper,
eds, ‘Information, organisation and technology:
Studies in organisational semiotics’, Kluwer Aca-
demic Publishers, pp. 115–171.

The Agile Alliance (2001), ‘The Agile manifesto’,
http://agilemanifesto.org/.

The Joint Task Force on Computing Curricula (2001),
‘Computing curriculum 2001’, Journal on Edu-
cation Resources in Computing 1(3es), 1.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

19

Vlissides, J., ed. (1998), Pattern Hatching: Design
Patterns Applied, Addison-Wesley.

Waugh, E. (1943), Scoop, Penguin Books.

Wikipedia (2005), ‘Postmodernism —
wikipedia, the free encyclopedia’,
http://en.wikipedia.org/. [Accessed Novem-
ber 2005].

Wirfs-Brock, R., Wilkerson, B. & Wiener, L. (1990),
Designing Object-Oriented Software, Prentice-
Hall.

Yourdon, E. & Constantine, L. L. (1979), Structured
Design: Fundamentals of a Discipline of Com-
puter Program and Systems Design, facsimile
edn, Prentice Hall.

CRPIT Volume 53

20

Network Data Mining: Methods and Techniques for Discovering Deep
Linkage between Attributes

John Galloway 1,2 and Simeon J. Simoff 3,4

1Complex Systems Research Centre, University of Technology Sydney
PO Box 123 Broadway NSW 2007 Australia

john.galloway@uts.edu.au
2 Chief Scientist, NetMap Analytics Pty Ltd,

52 Atchison Street, St Leonards NSW 2065 Australia
3Faculty of Information Technology, University of Technology Sydney

PO Box 123 Broadway NSW 2007 Australia
simeon@it.uts.edu.au

4Electronic Markets Group, Institute for Information and Communication Technologies, University of Technology Sydney - PO
Box 123 Broadway NSW 2007 Australia

http://research.it.uts.edu.au/emarkets

Abstract. Network Data Mining identifies emergent networks between myriads of individual data items and utilises
special algorithms that aid visualisation of ‘emergent’ patterns and trends in the linkage. It complements conventional
data mining methods, which assume the independence between the attributes and the independence between the
values of these attributes. These techniques typically flag, alert or alarm instances or events that could represent
anomalous behaviour or irregularities because of a match with pre-defined patterns or rules. They serve as ‘exception
detection’ methods where the rules or definitions of what might constitute an exception are able to be known and
specified ahead of time. Many problems are suited to this approach. Many problems however, especially those of a
more complex nature, are not well suited. The rules or definitions simply cannot be specified. For example, in the
analysis of transaction data there are no known suspicious transactions. This chapter presents a human-centred
network data mining methodology that addresses the issues of depicting implicit relationships between data attributes
and/or specific values of these attributes. A case study from the area of security illustrates the application of the
methodology and corresponding data mining techniques. The chapter argues that for many problems, a ‘discovery’
phase in the investigative process based on visualisation and human cognition is a logical precedent to, and
complement of, more automated ‘exception detection’ phases.

Introduction

The proliferation of data is both an opportunity and a challenge. It provides the details that businesses need to solve
problems and gain market advantage, that organisations need to improve their operations, that banks and financial
institutions need to fight fraud and that governments need to uncover criminal and terrorists activities. At the same time,
a large volume of data with different storage systems, multiple formats and all manner of internal complexity can often
hide more than it reveals. Data mining – “the process of secondary analysis of large databases aimed at finding
unsuspected relationships that are of interest or value to the database owners” (Klösgen and Zytkow 2002) (p. 637) –
emerged as an “eclectic discipline” (Klösgen and Zytkow 2002) that addresses these large volumes of data. Earlier data
mining technologies have been primarily focused on the analysis of structured data (Fayyad, Piatetsky-Shapiro and
Smyth 1996; Han and Kamber 2001; Hand, Mannila and Smyth 2001). Although the data mining researchers have
developed methods and techniques that support a variety of tasks, the main interest of analytics practitioners has been
focused on predictive modelling. The dominant scenario in predictive modelling is the “black box” approach, where we
have a collection of inputs and one or more outputs, and we try to build an algorithmic model that estimates the value of
the outputs as a function of the values of the inputs. There are several measures of model quality (Weiss and Zhang
2003), with the accuracy of predictions remaining as a key measure of model quality, rather than the theory that may
explain the phenomena.
 Fig. 1 illustrates the concepts in terms of a simple example of data about a group of college friends. The data
table includes the following columns: name of the student; colour of hair; height and weight; a record of whether the
student has been using lotion when exposed to sun; a record of whether the student gets sunburned when on the beach; a
record about the proximity of the living locations of the students; transaction reference numbers; and student address.
The double dotted line contours the portion of the data table which will be considered in the predictive modelling
approach. As the “Name” column contains unique identifiers, it will be ignored, and the data mining task will be to
develop a model of the student from this college with respect to the attributes “hair”, “height”, “weight”, “lotion” and
“on the beach”. In an unsupervised approach, the students will be clustered into groups and the analyst ends up with the
description of the different groups. In this case, the analyst is interested in predicting whether a new student will get
sunburned when visiting the beach. The attribute “on the beach” is selected as the “output” (or “target”) and the

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

21

attributes “hair” to “lotion” form the input vector. Given the values for the attributes “hair” to “lotion” for a new
student, the resultant classifier should be able to predict whether the student will get sunburned or not. The key measure
of the quality of the model is the accuracy of predictions, rather than the theory that may explain the phenomena
through the relations between the values of the attributes.

In practice, the focus on predictive accuracy in the “black box” approach (inherited from regression analysis and
automatic control systems) makes perfect sense. For example, the more accurate a classifier of tumours is based on the
characteristics of mammogram data, the better the aid it can provide to young practitioners (Antonie, Zaiane and Coman
2003). In business areas like marketing, such an approach makes sense (for example, determining which few books
Amazon should also offer to someone who searches for a particular book). Numerous examples from different areas of
human endeavour, including science and engineering, are presented in (Nong 2003).

The theory explaining the “black box”, i.e. how and why inputs are related to outputs, is often of secondary
importance to predictive accuracy. However, data mining applications in many areas, including businesses and security
(Nong 2003) require deeper understanding of the phenomena. Such complex phenomena can be modeled with
techniques from the area of complex systems analysis.

The network perspective with respect to a data set is illustrated in Fig. 1. The structural component of the data set
describes explicitly some relationships between the individual entities in the data (in our example in Fig. 1, the column
“Lives near” explicitly represents the relation of physical proximity between the areas where each student lives). Social
network analysis (Wasserman and Faust 1994; Scott 2000) deals with this type of data analysis.

Name Hair Height Weight Lotion On the beach Lives near Transaction ref # Address

Carmen blonde average light no sunburned Ricard, Karla 14065 24 Jones Av

Joan blonde tall average yes none Francesca 28501 163 Austin St

Francesca brown short average yes none Joan 18345 24 Jones Av

Jose blonde short average no sunburned Ricard, Karla 14065 285 Park Rd

Jose blonde short average no sunburned Ricard, Karla 28501 285 Park Rd

Ricard ginger average heavy no sunburned Carmen, Jose, Karla 26912 103 Potts St

Karla brown tall heavy no none Carmen, Jose, Ricard

Isabel brown average heavy no none Manu

Manu blonde short light yes none Isabel

The structural component

for social network analysis

The “classical” data mining table

“input” “output”

The network data mining

components

11995

26912

103 Potts St

24 Jones Av

Name Hair Height Weight Lotion On the beach Lives near Transaction ref # Address

Carmen blonde average light no sunburned Ricard, Karla 14065 24 Jones Av

Joan blonde tall average yes none Francesca 28501 163 Austin St

Francesca brown short average yes none Joan 18345 24 Jones Av

Jose blonde short average no sunburned Ricard, Karla 14065 285 Park Rd

Jose blonde short average no sunburned Ricard, Karla 28501 285 Park Rd

Ricard ginger average heavy no sunburned Carmen, Jose, Karla 26912 103 Potts St

Karla brown tall heavy no none Carmen, Jose, Ricard

Isabel brown average heavy no none Manu

Manu blonde short light yes none Isabel

The structural component

for social network analysis

The “classical” data mining table

“input” “output”

The network data mining

components

Name Hair Height Weight Lotion On the beach Lives near Transaction ref # Address

Carmen blonde average light no sunburned Ricard, Karla 14065 24 Jones Av

Joan blonde tall average yes none Francesca 28501 163 Austin St

Francesca brown short average yes none Joan 18345 24 Jones Av

Jose blonde short average no sunburned Ricard, Karla 14065 285 Park Rd

Jose blonde short average no sunburned Ricard, Karla 28501 285 Park Rd

Ricard ginger average heavy no sunburned Carmen, Jose, Karla 26912 103 Potts St

Karla brown tall heavy no none Carmen, Jose, Ricard

Isabel brown average heavy no none Manu

Manu blonde short light yes none Isabel

The structural component

for social network analysis

The “classical” data mining table

“input” “output”

The network data mining

components

11995

26912

103 Potts St

24 Jones Av

Fig. 1. Different views at a data collection: the “classical” data mining view, the social network analysis and the network data mining
view.

In addition to the explicitly coded relationships, there often are implicit relationships between the entities described
by the data set, especially in the realm of transactions data. Any attribute can come into play for establishing such
relations depending on the point of investigation. In our example in Fig. 1, the two attributes “Transaction reference #”
and “Address” have been used to look for possible links between the college students. The revealing of such implicit
relationships between entities and the discovery of ‘buried’ patterns in them is the focus of network data mining
methods.

These different perspectives infer different sets of models. Fig. 2 uses the simple example in Fig. 1 to illustrate these
differences. The classifier model in Fig. 2a is the well-known decision tree model (Dunham 2002). The tree shows a
generalisation of the concept “student that gets sunburned” described in terms of the four input attributes in the table in
Fig. 1, i.e. in terms of student height and weight, hair colour and whether they are in the habit of using lotion. The
knowledge that we have discovered from the sample is that brunettes do not get sunburned regardless of whether they
use lotion or not. The height and weight do not affect the result of whether you get sunburned or not. In some sense
these facts are equivalent to a statistical summary of the data. As the aim is to identify general trends, the analysis and
the model do not take in account the relationships between the entities described at the level of individual data points.

The structure of the relationships between the individual entities is revealed by the network models. The model in
Fig. 2b is a social network based on the values of two columns in Fig. 1: “Name” and “Lives near”. It reveals possible
relationships between Carmen, Ricard, Jose and Karla. Deeper analysis of these relationships may reveal why Carmen,
Jose and Ricard are the only ones to get sunburned (e.g. it may turn out that it was Ricard’s influence to go to the beach
at noon and stay there longer). On the other hand, it also reveals that there are two isolated groups of possible interest –
Joan and Francesca, and Manu and Isabel (none of them got sunburned).

CRPIT Volume 53

22

Hair Color

Lotion

blonde brown
ginger

Lotion Lotion

nonesunburned

no yes no yes no

sunburned none none

Hair Color

Lotion

blonde brown
ginger

Lotion Lotion

nonesunburned

no yes no yes no

sunburned none none

a. “Black-box” input-output generalization b. Structure of a network model

c. Implicit relations between the entities linked through the values of some of their attributes.
The links between students and the values of some attributes of interest (“Transaction
reference #” and “Address” from Fig. 1) can reveal the existence of implicit relations.

Fig. 2. Illustration of the differences between predictive models based on generalization of the relation between the input and output
attributes, and network models that take in account the relations between individual instances.

The model in Fig. 2c illustrates the implicit relations encoded through the transactions and street address. Note that

this view reveals a heterogeneous network of relations between values of attributes.
Network models, which include the topology of the network and the characteristics of its nodes, links, and clusters of

nodes and links, attempt to explain observed phenomena through the interactions of individual nodes or node clusters.
During recent years there has been an increasing interest in these types of models in a number of research communities
(see (Albert and Barabási 2002; Newman 2003) for extensive surveys of the research work on network models in
different areas). Historically, sociologists have been exploring the social networks between people in different social
settings. A typical social network analysis research scenario involves data collection through questionnaires or tables,
where individuals describe their interactions with other individuals in the same social setting (for example, a club,
school, organization, across organizations, etc.). Collected data is then used to infer a social network model in which
nodes represent individuals and edges represent the interactions between these individuals. Classical social network
analysis studies deal with relatively small data sets and look at the structure of individuals in the network, measured by
such indices as centrality (which individuals have most links, can reach many others, are in a position to exert most
influence, etc.) and connectivity (paths between individuals or clusters of individuals through the network). The body of
literature is well covered by the following complementary books (Wasserman and Faust 1994; Scott 2000).

Works looking at the discovery of network models beyond “classical” social network analysis, date back to the early
1990s (for example, the discovery of shared interests based on the history of email communications (Schwartz and
Wood 1993)). Recent years have witnessed the substantial input of physicists (Albert and Barabási 2002),
mathematicians (Newman 2003) and organizational scientists (Borgatti 2003) to network research, with the focus
shifting to large scale networks, their statistical properties and explanatory power, the discovery of such models and
their use in explaining different phenomena in complex systems. The areas include a wide spectrum of social,
biological, information, technological and other heterogeneous networks (see Table II in (Newman 2003) and Table I in
(Albert and Barabási 2002), and other works of interest, (Krebs 2005) and (Batagelj and Mrvar 2003). Recent
researches in the data mining community are looking at network models for predictive tasks (for example, predicting
links in the model (Liben-Nowell and Kleinberg 2003), or the spread of influence through a network model (Domingos
and Richardson 2001; Richardson and Domingos 2002; Kempe, Kleinberg and Tardos 2003). The interest towards link
analysis and corresponding network models has increased during recent years, evidenced by the number of workshops

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

23

devoted to these topics, with a major focus on algorithms that work on graphs (for example, for example, see the
presentations at recent workshops on link analysis at ACM KDD conference series1 and SIAM Data Mining
Conference2).

Such interest towards network models and new approaches to derive them has been driven largely by the availability
of computing power and communication networks make possible the collection and analysis of these large amounts of
data. Early social network research investigated networks of tens, at most hundreds of nodes. The networks that are
investigated in different studies in present days tend to include millions (and more) links and nodes. This change of
scale of the network models required change in the analytics approach (Newman 2003). Network Data Mining
addresses this challenge.

However, the above mentioned efforts do not look at approaching the integrated data set and the process of
facilitating discoveries from such data set. The network data mining approach is looking at this area. We define network
data mining as the process of discovering emergent network patterns and models in large and complex data sets. The
term denotes the methods and techniques in the following contexts:

- mining network models out of data sets
- mining network data (i.e. data generated by the interaction of the entities in a network, for example, in

communications networks that can be the network traffic data).
The original data may not necessarily have been collected with the idea of building network models. The network

patterns are derived from the integrated data set, which includes the interaction data and the descriptive attributes.
Further in the chapter we briefly discuss the “loss of detail” problem and the “independency of attributes” assumption in
knowledge discovery, present a human-centered knowledge discovery methodology that addresses these issues, and
present a case study that illustrates the solutions that network data mining approach offers.

An illustrative comparison between predictive and network data mining is presented in Table 1.

Table 1. Comparison between predictive and network data mining

 Predictive data mining Network data mining
Models and data Predictive models derived

from attributes data
Implicit network models derived
from attributes data

Primary function Prediction of outcomes Discovery of irregularities
Level Summarised data - often Detailed elemental data
Perspective Generalisation Digging the details of interlinkage
Assumptions a. Independence of attributes

b. Independence of records
a. Linkage between attributes
b. Linkage between records

Role of cognition Little or none Central and integral

The “loss of detail” problem in data mining

Data mining has been described as the art and science of teasing meaningful information and patterns out of large
quantities of data – turning ‘dusty’ data that organisations have already collected into valuable information,
operationally and strategically. Most data mining and analysis tools work by statistically summarising and
homogenising data (Fayyad et al. 1996; Nong 2003), observing the trends and then looking for exceptions to normal
behaviour. In addition, as pointed in (Fayyad 2003) “data mining algorithms are “knowledge-free”, meaning they are
brittle, and in real applications lack even the very basic “common sense reasoning” needed to recover even from simple
situations. This process results in a loss of detail which, for intelligence and detection work, can defeat the whole
purpose as it is often in the detail where the most valuable information is hidden. More generally, the identifying of
exceptions to the ‘norm’ requires a top down-approach in which a series of correct assumptions needs to be made about
what is normal and abnormal, and what will be applied to constitute a query. For many complex problems it can be
difficult to even start this process since it is impossible to be specific about normal behaviour and what could or should
constitute an exception.

The “independency of attributes” assumption in data mining

The “independency of attributes” assumption is accepted in some forms of data mining (for example, classifiers
building algorithms like Naïve Bayes (Dunham 2002)). Under this assumption, the distributions of the values of the
attributes are independent of each other. However, real-world data rarely satisfies the attribute value independence
assumption. In fact, some data mining techniques like association and correlation analysis (Han and Kamber 2001),
techniques that look at causality and the discovery causal networks (for example, Bayesian network models (Ramoni

1 http://www-2.cs.cmu.edu/~dunja/LinkKDD2004/
2 http://www-users.cs.umn.edu/~aleks/sdm04w/

CRPIT Volume 53

24

and Sebastiani 2003)), make exactly the opposite assumption. Moreover, there are situations where the assumption
sounds counterintuitive as well. For example, it is natural for the salary value to be correlated with the values of the age
in a sample.

The logic is clear: by missing detail or making the wrong assumptions or simply by being unable to define what is

normal, an organisation that relies solely upon predictive data mining may fail to discover critical information buried in
its data.

Network data mining – the methodology

When there are few leads and only an open-ended specification on how to proceed with an analysis, discovery is all
important. The discovery phase in the analysis process is too often overlooked or only implemented via exception based
detection methods that are constrained to domain knowledge already known. Increased needs for automated detection
have been accompanied by an increased reliance upon exception based forms of detection and rules based querying.
However, along with the proliferation of data and increasingly advanced concealment tactics employed by the parties
that want to avoid detection, there is a dilemma. We cannot write the rules ahead of time to specify a query or to write
an exception (e.g. for an outlier, a threshold, an alert or an alarm) if the nature of what constitutes an exception and
therefore the ability to specify relevant rules is unknown.

Network data mining is concerned with discovering relationships and patterns in linked data, i.e. the inter-
dependencies between data items at the lowest elemental level. These patterns can be revealing in and of themselves,
whereas statistically summarised data patterns are informative in different but complementary ways.

Similar to aspects of visual data mining (Wong 1999), network data mining integrates the exploration and pattern
spotting abilities of the human mind with the processing power of computers to form a powerful knowledge discovery
environment that is supposed to capitalise on the best of both worlds. This human-centred approach creates a powerful
solution. However, to realise its full value the discovery phase needs to be repeated at regular intervals so that new
irregularities that arise and variations on old patterns can be identified and fed into the exception detection phase.

The overall network data mining process is illustrated in Fig. 3. In network data mining, the data miner is in a role
similar to Donald Schön’s “reflective practitioner” (Schön 1983; Schön 1991), originally developed in the analysis of
design processes. In his later work (Schön, 1991), Schön has presented a number of examples of disciplines that fit a
process model with characteristics similar to the design process. What is relevant to our claim is Schön’s view that
designers put things together (in our case, the miner replaces the designer, and the things s/he puts together are the
visual pieces of information) and create new things (in our case the miner creates new chain of inquiries interacting with
the views) in a process involving large amount of variables (in our case these are the attributes and the linkages between
them). Almost anything a designer does, involves consequences that far exceed those expected. In network data mining
approach the inquiry techniques may lead to results that far exceed those expected and that in most cases may change
the line of the analysis of the data into an emerging path. Design process is a process which has no unique concrete
solution. In network data mining we operate with numerous network slices of the data set, assisting in revealing the
different aspects of the phenomena. Schön also states that he sees a designer as someone who changes an indefinite
situation into a definite one through a reflexive conversation with the material of the situation. By analogy, the network
data miner serves to change the complexity of the problem through the reflexive investigative iterations over the
integrated data set. The reflective step is a revision of the reference framework taken in the previous step in terms of
attributes selection, set of visual models and corresponding guiding techniques, and the set of validation techniques.

The main methodological steps and accompanying assumptions of network data mining (NDM) approach include:
Sources of data and modelling: NDM provides an opportunity to integrate data so as to obtain a single address space,

a common view, for disparately sourced data. Hence, a decision as to which sources are accessible and most relevant to
a problem is an initial consideration. Having arranged and decided the sources, the next question relates to modelling.
Which fields of data should serve as entities/nodes (and attributes on the entities) and which should serve as links (and
attributes on the links)3. Multiple data models can and often are created to address a particular problem.

Visualization: The entities and a myriad of linkages between them must be presented to screen in meaningful and
color coded ways so as to simplify and facilitate the discovery of underlying patterns of data items that are linked to
other items and on-linked to still other items. This is especially so with large volumes of data, e.g. many hundreds of
thousands or millions of links and entities which the user must be able to easily address and then readily make sense of
from an interpretative and analytical point of view.

3 A tool that interfaces to relational databases and any original sources of data (e.g. XML files) is basic to NDM, and is a capability

provided in the NetMap software suite which is a premier technology in this space and was used in this case presented later in this
chapter.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

25

Mapping
attributes

to visualisation

Source
data

Reselection

Visualisation
system

….

….

Visual
modelsGeneration of

visual models

Remapping

….

Model A

Model B

Analytical
techniques‘Train of thought’

analysis

Cognition and
sense making

Integrated
datasets

• Linkage patterns
• Associations
• Rule induction
• Emergent Groups
• Clustering
• Graph structures

Mapping
attributes

to visualisation

Source
data

Reselection

Visualisation
system

….

….

Visual
modelsGeneration of

visual models

Remapping

….

Model A

Model B

Analytical
techniques‘Train of thought’

analysis

Cognition and
sense making

Integrated
datasets

• Linkage patterns
• Associations
• Rule induction
• Emergent Groups
• Clustering
• Graph structures

Fig. 3. Network data mining as a human-centered knowledge discovery process.

The main methodological steps and accompanying assumptions of network data mining (NDM) approach include:
Sources of data and modelling: NDM provides an opportunity to integrate data so as to obtain a single address space,

a common view, for disparately sourced data. Hence, a decision as to which sources are accessible and most relevant to
a problem is an initial consideration. Having arranged and decided the sources, the next question relates to modelling.
Which fields of data should serve as entities/nodes (and attributes on the entities) and which should serve as links (and
attributes on the links)4. Multiple data models can and often are created to address a particular problem.

Visualization: The entities and a myriad of linkages between them must be presented to screen in meaningful and
color coded ways so as to simplify and facilitate the discovery of underlying patterns of data items that are linked to
other items and on-linked to still other items. This is especially so with large volumes of data, e.g. many hundreds of
thousands or millions of links and entities which the user must be able to easily address and then readily make sense of
from an interpretative and analytical point of view.

‘Train of thought’ analysis: Linkage between data items means that the discovery of patterns can be a process
whereby the analyst uses the reflective practitioner approach mentioned earlier. Explicit querying is less often the case;
rather the analyst may let the intuition guide him or her. For example, “Why are all those red links going over there?”,
“What are they attached to, and in turn what are they attached to?” Such ‘train of thought’ processes invariably lead the
analyst to discover patterns or trends that would not be possible via more explicit querying or exception based
approaches – for the specification for the queries is not known.

Cognition and sense-making: An integral assumption in NDM is that the computer in the analyst’s mind is more
powerful by orders of magnitude that the one on the desktop. Hence, intuition and cognition are integral, and need to be
harnessed in the analytical process especially at the discovery phase in those cases where there is only limited domain
knowledge as a guide to analysis and understanding.

Discovery: An emergent process, not prescriptive one. It is not possible to prescribe ahead of time all the query rules
and exception criteria that should apply to a problem, if domain knowledge is less than perfect. And of course in many
if not most cases it is, otherwise the problem would already have been solved. By taking an emergent or bottom up
approach to what the data are ‘saying’, patterns and linkages can be discovered in a way that is not too different from
‘good old fashioned’ policing, where curiosity and intuition have always been integral in the ability to discover the
facts, then qualifying them and solving the crime.

Finding patterns that can be re-discovered: Any linkage pattern observed on screen is simply that, an observation of
potential interest. In the context of retail NDM for example, any sales assistant with a high ratio of refunds to sales
(statistically flagged) might attract attention. In a case in point known to the authors, the perpetrators of a scam knew
about such exception criteria. As longer term employees “in the know”, they could easily duck under them. They had
taken it in turns to report levels of refunds always just under the limits no matter what the limits were varied to over an
extensive period. NDM was able to show collusive and periodic reporting linkages to supervisors – patterns discovered
through visualization and algorithms that facilitate the intuition. Such patterns are of particular interest, and in fact often
an objective of the network mining approach. They are termed scenarios and characterised as definable and re-usable
patterns. Their value is that they are patterns that have now become ‘known’. Hence they can be defined, stored in a
knowledge base, and applied at the front end of a process as, for example, in a predictive modelling environment. The
important methodological step is that the definitions need to be discovered in the first place before they can be further
applied.

Network data mining is complementary to statistical summarizing and exception detection data mining. Network
data mining is particularly useful in the discovery phase, of finding things previously unknown. Once discovered,
particular patterns and abnormal behaviors and exceptions are of course able to be better defined, and these scenarios

4 A tool that interfaces to relational databases and any original sources of data (e.g. XML files) is basic to NDM, and is a capability

provided in the NetMap software suite which is a premier technology in this space and was used in this case presented later in this
chapter.

CRPIT Volume 53

26

can then be saved and applied automatically across new volumes of data, including by the feeding of discovered
scenarios back into traditional data mining tools. The section below illustrates the network data mining approach using
a real-world case study

Example of network data mining approach in fraud detection

Many cases could be used to illustrate a network data mining approach and each case would be instructive of different
features. Nonetheless, this particular case is not atypical of the methods involved in knowledge discovery in network
data mining. The case is presented as a reflection on the steps that the analyst did. The presentation is structured along
the main methodological steps that we have identified in the previous section.

Sources of data and modelling: The case involved analysis of approximately twelve months of motor vehicle
insurance claims from one company. A small set of five thousand records were available as a pilot project from one
state of Australia. Note that all the information presented here has been de-identified.

The brief from the company was essentially open-ended and without specification. A concern was expressed that
there could be suspicious transactions and perhaps fraudulent activity but there were no known persons or transactions
of interest. The case was clearly in the realm of ‘discovery’.

Visualization: The study used the NetMap software from NetMap Analytics. The analyst first built a set of linkages
from the available fields. These were between persons, addresses, claim numbers, telephone numbers, and bank
accounts into which claims monies had been paid.

Initially the analyst only looked at three fields of data and the linkages identified between them, as shown in Fig. 4.
To start to make sense of the data overviewed in Fig. 4, the analyst then processed the data through an algorithm in
NetMap to produce the display of potential irregularities shown in Fig. 5 (also close-ups in Fig. 6).

Cognition and sense-making (and ‘Train of thought’ analysis): What appeared to be ‘regular’ patterns were
observed. These were seen to be small triangles of data comprised of a person, a claim number and an address, all fully
inter-linked. The explanation as to why the little triangles appeared to be ‘regular’ patterns in the data was simple after
the analyst had stopped to think about it: most people just had one claim and one address. In comparison, the ‘bumps’
looked as though they were ‘irregularities’. The ‘bumps’ comprised persons linked to multiple claims and/or addresses.
By taking the seemingly regular patterns out of the picture (the triangles), the analyst was quickly able to produce a
short list of potentially suspicious transactions and inter-related behaviours. That is, from a larger amount of data she
was able to quickly focus where to look in the myriad of linkages to drill down for more details.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

27

a. Overview of links between persons, addresses and
claim numbers

b. Close up at approximately 3 o’clock of
the linked data shown in Fig. 4a.

Fig. 4. An illustration of an initial macro view of linkages in the data with a subsequent step in digging deeper in the details

Fig. 5. Data from Fig. 4 processed to show certain patterns of irregularities (see detail in Fig. 6)

a. Overview of links between persons,
addresses and claim numbers

b. Overview of links between persons,
addresses and claim numbers

Fig. 6. Close up segments from approximately 4 o’clock in Fig. 5 showing what appeared to be regular patterns (the small triangles
of linkage) and also irregularities (the larger ‘bumps’)

Fig. 7. More detailed information underlying any ‘entity’ or ‘link’ was able to be accessed by clicking on that data element. The
analyst could then quickly qualify observed patterns.

Discovery (and ‘Train of thought’ analysis): Other and more interesting types of ‘irregular’ patterns in this case were
those seen to be extending across the middle of the main circle in Fig. 5. It was clear to the analyst that most of the data
items did not have links across the middle and, hence, these were ‘irregularities’ of some sort. They seemed to emanate
from about the 3 o’clock position in Fig. 5. Accordingly, the analyst zoomed into the display at about 3 o’clock and
selected one of the inter-linked data items for ‘step-link’ purposes. She selected Simons JL, but it could have been any
of these data items since several were linked to each other. The beginning of this step is shown below in Fig. 8.

CRPIT Volume 53

28

Fig. 8. The analyst chose one of these inter-linked data items to ‘step out’ from (Simons JL)

Finding patterns that can be re-discovered: Step-linking from a selected data item follows the network links out
through any number of degrees of separation. As shown in Fig. 9 and Fig. 10, the analyst stepped out from JL Simons to
‘infinity’ degrees of separation, the net effect being to bring to screen all of that party’s indirect linkage. Obviously, if
further sources of data could have been added (which is often done but additional sources were unavailable in this case)
richer indirect linkages would have most likely further assisted the inquiry. Also, although the analyst did not do so in
this case, destinations of data items may be specified and then stepped to from chosen source data items, thereby
determining whether certain parties are linked at all and if so who or what are the intermediaries.

Fig. 9. Step-linking from the selected entity to infinity degrees of separation

Fig. 10. Close up of portion of the data shown in Fig. 9.

The particular extract of linked data in Fig. 9 and Fig. 10 was then processed through an algorithm unique to NetMap
called emergent groups. The resulting pattern is shown in Fig. 11.

Discovery: From the extract of data in Fig. 11, four emergent groups were identified as shown in Fig. 12. An
emergent group comprises closely inter-related data items; they have more links within the group than outside to any
other group. Thus, they are defined ‘out of’ the data in a bottom-up way (‘what are the data telling us?’), rather than
prescriptively by rules or queries which in this case would have been impossible - there was simply no prior knowledge
about how to frame such rules or program any queries. The analyst was squarely in ‘discovery’ mode.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

29

Fig. 11. Emergent groups discovered within the extract of data shown in Fig. 9

Fig. 12. Close-up views of the emergent groups shown in Fig. 11

‘Train of thought’ analysis: The emergent group on the right in Fig. 12 comprised five people called Simons, three
claims and four addresses, all closely inter-related (relationships between id codes are shown in the satellite, and the id
codes plus full names are shown in an the arc on the main circle). They were linked across to another group at 11
o’clock comprised of more people called Simons and somebody called Wesson. That Wesson (initial A) was linked
down to the group at 5 o’clock to E Wesson via a common claim. That in turn took the analyst over to the address at 4
o’clock and then to an ‘A Verman’ at 9 o’clock.

This ‘train of thought’ analysis led the analyst to Verman. Her intuition indicated she wanted to look at Verman more
closely although she could not have been specific as to why. To cut a long story short, when Verman was investigated
and went to jail it was learned that he had originally had a ‘regular’ pattern (comprising one claim and one address – see
Fig. 6). He reckoned this was a good way to make money. So, he recruited the Simons and the Wessons as the active
parties in a scam of staged vehicle accidents while he tried to lie as low as he could. He was careless however, since he
had left a link to another address (the one at 4 o’clock in Fig. 11 – note, he must have been a witness or a passenger).
This link indirectly implicated him back into the activity that involved the Simons and Wessons.

Finding patterns that can be re-discovered: The analyst did not know this of course at the time, but could sense that
Verman was a few steps removed from the activity of the Simons and thought she would like to quickly qualify this
person. She firstly took Verman and stepped out to obtain all his indirect linkage (see Fig. 13).

Fig. 13. A potential suspect on the left (Verman) with all his indirect linkage to other data items

The analyst then sought to ‘enrich’ the linkage of Verman, i.e. to regard him as a potential case that she would like to
qualify on the spot if possible, by adding extra linkage (as shown in Fig. 14). In this case, she only had two extra fields
available: bank account information and telephone numbers. Nonetheless, she quickly discovered one extra and crucial
link that helped her to qualify Verman – one of his two telephone numbers was also linked to A Wesson (see Fig. 15).
That additional link provided the ‘tipping point’, the extra knowledge that gave her sufficient confidence to recommend
that Verman be investigated. This subsequently led to his arrest and conviction on fraud charges.

Fig. 14. Enrichment of the linkage in Fig. 13 by adding in extra fields of data.

It transpired that Verman had been the mastermind behind a claims scam totalling approximately $150,000. He could
not have been discovered by traditional data mining methods since no domain knowledge existed that could help define
any exception rules or serve as inputs to SQL queries. If red flags or alerts had been applied as the only investigative
approach, he would have escaped detection since he was essentially ‘regular’ and not unusual in anyway. The use of
detailed linkage and the easy ability to navigate and make sense of it made the difference.

CRPIT Volume 53

30

Fig. 15. Close up of portion of Fig. 14 showing the extra ‘tell tale’ link (arrowed: a telephone number in common). This extra
information led to an investigation and then the arrest and successful prosecution of Verman, the person shown on the left.

Conclusion

This chapter has described the concept of network data mining and presented a case study by way of illustrating its
real-world implementation and its distinction from more traditional approaches to data mining, and also its distinction
from social network analysis.

Network data mining focuses upon knowledge discovery. It involves a human-centred process which harnesses the
intuitive powers of the human intellect in conjunction with color-coded linkage patterns and unique algorithms to
facilitate the intuition, a process referred to as ‘train of thought’ analysis.

We can summarize the main steps in the knowledge discovery process (Fayyad et al. 1996) as follows:

1. Define scenarios in terms of query specifications and exception rules
2. Process the data
3. Interpret or initiate action

The discovery phase, which network data mining gives emphasis to, logically precedes and feeds into step 1. This
prior step we refer to as step 0:

0. Discover patterns and qualify them as scenarios.

Note also that discovery (step 0) and exception detection (step 1) are inter-related. Once patterns of interest have
been discovered then they can defined and this information incorporated in more conventional exception detection and
querying. However, many situations require that discovery takes place first. It then needs to be applied to the same sets
of data and new sets since endless variations and inventive ways of concealing nefarious activity and avoiding detection
are put into play that need to be discovered in order to keep ahead of the game.

We presented a case which illustrated the cornerstones of the network data mining approach. The party in the case
who was eventually convicted (Verman) would have escaped detection if a traditional data mining approach had been
used. He had only had one claim, no ‘red flag’ information was involved, and nothing particularly anomalous occurred
with respect to him. By all accounts he would have slipped under any exception detection processes.

Successful discovery did occur through the use of the network data mining methods outlined. Train of thought
analysis enabled a discovery to be made that would have been highly unlikely otherwise. Querying could have not have
been successful since there is no way that a relevant query could have been framed. Exception rules could not have been
specified since there was no information as to what could constitute an exception that would have discovered Verman.
He was essentially below the radar.

Masterminds concealing their behavior, tend to be as unobtrusive as possible. They also often know the rules and the
exceptions and know what they need to do if the rules and exceptions change so as to avoid being caught. Hence, any
discovery tool must go beyond programmatic and prescriptive exception based detection.

A complementary usage of traditional data mining could have in principle been used in this case as follows. Several
of the underlings recruited by Verman had the same family name, Simons. Hence, the name Simons appeared more
would have been the case in terms of its occurrence, say, in the telephone directory. Therefore, a rule could have been to
display all names occurring more often than expected in the telephone population. The result being that the name
Simons would be flagged. In a complementary approach, this flagging would be a helpful initial task. The next task
would be within an NDM linked data environment to ‘step out’ several steps from the Simons and so commence the
discovery process from that point.

This twin approach has been used to great effect. It essentially uses statistical approaches to flag where the detailed
linkage should be examined by discovery-oriented ‘train of thought’ analysis. In numerous cases we are aware of this
combined approach has leveraged the best of both network and non-network data mining.

References

Albert, R. and A.-L. Barabási (2002): "Statistical mechanics of complex networks." Reviews of Modern Physics
74(January 2002), 47-97.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

31

Antonie, M.-L., O. R. Zaiane, et al. (2003): Associative classifiers for medical images. Mining Multimedia and Complex
Data. O. R. Zaiane, S. J. Simoff and C. Djeraba. Heidelberg, Springer, 68-83.

Batagelj V. and A. Mrvar (2003): Pajek - Analysis and Visualization of Large Networks. In: Jnger M and Mutzel P, eds.
Graph Drawing Software. Berlin: Springer, 2003.

Borgatti, S. P. (2003): "The network paradigm in organizational research:
A review and typology." Journal of Management 29(6), 991-1013.
Domingos, P. and M. Richardson (2001): Mining the network value of customers. Proceedings of the Seventh

International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, ACM Press, 57-66.
Dunham, M. H. (2002): Data Mining: Introductory and Advanced Topics, Prentice Hall.
Fayyad, U. M. (2003): "Editorial." ACM SIGKDD Explorations 5(2), 1-3.
Fayyad, U. M., G. Piatetsky-Shapiro, et al. (1996): From data mining to knowledge discovery: An overview. Advances

in Knowledge Discovery and Data Mining. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy.
Cambridge, Massachusetts, AAAI Press/The MIT Press, 1-34.

Han, J. and M. Kamber (2001): Data Mining: Concepts and Techniques. San Francisco, CA, Morgan Kaufmann
Publishers.

Hand, D., H. Mannila, et al. (2001): Principles of Data Mining. Cambridge, Massachusetts, The MIT Press.
Kempe, D., J. Kleinberg, et al. (2003): Maximizing the spread of influence through a social network. Proceedings ACM

KDD2003, Washington, DC, ACM Press
Krebs, V. (2005): http://www.orgnet.com
Klösgen, W. and J. M. Zytkow, Eds. (2002). Handbook of Data Mining and Knowledge Discovery, Oxford University

Press.
Liben-Nowell, D. and J. Kleinberg (2003): The link prediction problem for social networks. Proceedings CIKM’03,

November 3–8, 2003, New Orleans, Louisiana, USA., ACM Press
Newman, M. E. J. (2003): "The structure and function of complex networks." SIAM Review 45, 167-256.
Nong, Y., Ed. (2003). The Handbook of Data Mining. Mahwah, New Jersey, Lawrence Erlbaum Associates.
Nong, Y. (2003): Mining computer and network security data. The Handbook of Data Mining. Y. Nong. Mahwah, New

Jersey, Lawrence Erlbaum Associates, 617-636.
Ramoni, M. F. and P. Sebastiani (2003): Bayesian methods for intelligent data analysis. Intelligent Data Analysis: An

Introduction. M. Berthold and D. J. Hand. New York, NY, Springer, 131-168.
Richardson, M. and P. Domingos (2002): Mining knowledge-sharing sites for viral marketing. Proceedings of the

Eighth International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, ACM Press,
61-70.

Schön, D. (1983): The Reflective Practitioner. New York, Basic Books.
Schön, D. (1991): Educating The Reflective Practitioner. San Francisco, Jossey Bass.
Schwartz, M. E. and D. C. M. Wood (1993): "Discovering shared interests using graph analysis." Communications of

ACM 36(8), 78-89.
Scott, J. (2000): Social Network Analysis: A Handbook. London, Sage Publications.
Scott, J. (2000): Social Network Analysis: A Handbook. London, Sage Publications.
Wasserman, S. and K. Faust (1994): Social Network Analysis: Methods and Applications. Cambridge, Cambridge

University Press.
Weiss, S. M. and T. Zhang (2003): Performance analysis and evaluation. The Handbook of Data Mining. Y. Nong.

Mahwah, New Jersey, Lawrence Erlbaum Associates.
Wong, P. C. (1999): "Visual Data Mining." IEEE Computer Graphics and Applications September/October, 1-3.

CRPIT Volume 53

32

Contributed Papers

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

33

CRPIT Volume 53

34

The Formal Semantics of the TimeER Model

Heidi Gregersen

Aarhus School of Business
Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark,

Email: hgr@asb.dk

Abstract

A wide range of database applications manage infor-
mation that varies over time. Many of the underlying
database schemas of these were designed using one of
the several versions of the Entity-Relationship (ER)
model. In the research community as well as in in-
dustry, it is common knowledge that the temporal
aspects of the mini-world are pervasive and impor-
tant, but are also difficult to capture using the ER
model. Not surprisingly, several enhancements to the
ER model have been proposed in an attempt to more
naturally and elegantly support the modeling of tem-
poral aspects of information. Common to most of the
existing temporally extended ER models is that the
semantics of the models are unclear. This problem
is addressed in this paper by developing a formal se-
mantics for the TimeER model based on denotational
semantics.

Keywords: Conceptual modeling, database design,
entity-relationship models, temporal databases, tem-
poral data models, temporal semantics.

1 Introduction

A wide range of prominent, existing database appli-
cations manage time-varying information. These in-
clude financial applications such as portfolio manage-
ment, accounting, and banking; record-keeping appli-
cations, including personnel, medical-record, and in-
ventory; and travel applications such as airline, train,
and hotel reservations and schedule management.

Frequently, existing temporal-database applica-
tions such as these employ the Entity-Relationship
(ER) model [2], in one of its different incarnations,
for database design. The model is easy to under-
stand and use, and an ER diagram provides a good
overview of a database design. The focus of the model
is on the structural aspects of the mini-world (we use
the term “mini-world” for the part of reality that the
database stores information about), as opposed to the
behavioral aspects. This focus matches the levels of
ambition for documentation adopted by many users.

In the research community as well as in indus-
try, it has been recognized that although temporal
aspects of mini-worlds are prevalent and important
for most applications, they are also difficult to cap-
ture elegantly using the ER model. The temporal
aspects have to be modeled explicitly in the ER di-
agrams, resulting in ER diagrams with entities and

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Third Asia-Pacific Conference on Concep-
tual Modelling (APCCM2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 53. Markus Stumptner, Sven Hartmann, and Yasushi
Kiyoki, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

attributes that model the temporal aspects and that
make otherwise intuitive and easy-to-comprehend di-
agrams difficult to understand. As a result, some
industrial users simply ignore all temporal aspects
in their ER diagrams and supplement the diagrams
with textual phrases such as “full temporal support,”
indicating that the temporal aspects of data should
somehow be captured. The result is that the ER dia-
grams do not document well the temporally extended
relational database schemas used by the application
programmers.

The research community’s response to the short-
comings of the regular ER model for the modeling
of temporal aspects has been to develop temporally
enhanced ER models, and a number of models have
been reported in the research literature. These tem-
poral ER models are developed in an attempt to pro-
vide modeling constructs that more naturally and el-
egantly enables the designer to capture temporal as-
pects, such as valid and transaction time, of informa-
tion. For a detailed description of some of the existing
models, see Gregersen and Jensen [10] where 11 mod-
els are examined [4, 6, 7, 15, 16, 17, 19, 20, 22, 23, 24].
For details on more recent models, see [1, 9, 11, 18].

The approaches taken to add built-in temporal
support into the ER model are quite different. The
temporal ER models generally either change the se-
mantics of the existing ER model constructs or in-
troduce new constructs to the model. One approach
is to devise new notational shorthands that replace
some of the patterns that occur frequently in ER dia-
grams when temporal aspects are being modeled. An-
other approach is to change the semantics of the ex-
isting ER model constructs, making them temporal.
In its extreme form, this approach does not result in
any new syntactical constructs—all the original con-
structs have simply become temporal.

A common characteristic of the existing temporal
ER models, except for the TimeER model, is that
few or no specific requirements to the models were
given by their designers. Rather than being system-
atically founded on an analysis of general concepts
and temporal aspects, their designs are often ad hoc.
For example, the design of one model is the result of
the need for the modeling of temporal aspects in a
specific application [7]. The definitions of the exist-
ing models also generally lack comprehensiveness and
precision and rely heavily on the reader’s intuition.
These conditions make it difficult to identify the ideas
behind the designs of the models and to understand
their semantics. Understanding the semantics of a
model is especially important for database designers
when they have to determine which model to choose
for a specific database design.

Most of the proposed models define the seman-
tics of the models in terms of the relational model
where the relations are augmented with time at-
tributes that record the specified temporal aspects

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

35

of entities, relationships, and attributes. The design-
ers of the model therefore redefine the conventional
algorithm that transform an ER diagram into a rela-
tional database schema. Another approach taken is
to convert the temporal construct of the temporal ER
model into conventional ER constructs [24] and then
reuse the conventional transformations algorithm and
define the semantics of their new constructs in terms
of the relational model. This approach is perfectly
fine if the newly designed temporal database is to be
implemented on a relational platform, but with other
platforms emerging, e.g, XML databases semantics
defined in terms of the relational model is not suffi-
cient.

In this paper we define a formal semantics for tem-
porally extended ER models, based on denotational
semantics. The semantics have been developed for
the TimeER model [11], but can be applied to other
temporally extended models. This is true due to the
fact that we first develop a textual representation, in
Backus Naur Form, of TimeER diagrams and then
determine the semantics based in the textual repre-
sentation. Diagrams produced by any of the other
existing models can be translated into the textual
representation of diagrams presented in this paper.
We have chosen to develop the formal semantics for
this particular model because the description of this
model is clear and easy to follow.

The paper is structured as follows. Section 2 pro-
vide a presentation of the TimeER model. Section 3
gives the formal semantics of the model. Section 4
concludes and identifies promising research directions.

2 The TimeER Model

In this section we provide a short introduktion to the
Time Extended ER (TimeER) model as it is defined
in a paper by Gregersen and Jensen [11]. Furthermore
an introduction to the running example of this paper
is given.

The TimeER model extends the EER model as
defined by Elmasri and Navathe [5] to provide built-
in support for capturing temporal aspects of enti-
ties, relationships, superclasses and subclasses, and
attributes. The design of the model is based on an on-
tology, which defines database objects, fundamental
aspects of time, and indicates which aspects of time
may be associated meaningfully with which database
objects. Next, the model is designed to satisfy addi-
tional, explicitly formulated design goals for tempo-
rally extended ER models.

Database Objects

First we present and explain the database objects
of the TimeER model. Anything that exists in the
mini-world and can be separated from other things
in the mini-world is an entity; hence, a data model
used for capturing a database representation of an
entity should provide means of conveniently model-
ing the existence and unique identification of entities.
The time during which an entity exists in the mini-
world, that is, the time during which it is of interest
to the mini-world we call the existence time of the en-
tity. Other models have a different view of existence
time [4, 6].

Beyond having an independent existence, an en-
tity is characterized by its properties, modeled by at-
tributes. At any given point in time, an entity has a
value for each of its attributes. The values of some at-
tribute remain unchanged over time while others vary,
that is, at different points in time, the values of an
attribute for an entity may be different. We assume

that it is meaningful for entities to have properties ex-
actly when they exist (i.e., when they are entities)—
it is meaningless for something that does not exist to
have properties.

A database represents sets of entities that are simi-
lar, that is, have the same structure, or put differently,
entities that have the same attributes. Entity types
define sets of entities with the same attributes, and
the entities of the same type is termed an entity set.

Entities may be interrelated via relationships.
Such relationships can be seen from two very different
points of view. We can either perceive relationships
among entities as attributes of the participating en-
tities, or we can perceive relationships as having ex-
istence in their own right. Both points of view have
merit.

A relationship type among some entity types de-
fines a set of relations among entities of these types.
Each relationship relates exactly one entity from each
of the entity types that the relationship type is defined
over. The set of relationships defined by a relation-
ship type is called a relationship set.

Another type of relationships exists, namely the
superclass/subclass relationships that classify entities
of a superclass into different subclasses, e.g., em-
ployees may be divided into secretaries, engineers,
and technicians. It is the same entities that oc-
cur in the subclasses and in the superclass; super-
class/subclass relationships represent inheritance hi-
erarchies rather than relate entities. For this reason,
superclass/subclass relationships cannot exist in their
own right, and nor can they be seen as attributes of
the involved entity types. The entities of the sub-
classes inherit all the properties of entities of the su-
perclass. It is not possible in subclasses to delete or
modify the inherited properties, but it is possible to
add new properties.

A data model should make it possible to conve-
niently and concisely capture all information about
the mini-world that is meaningful to capture and
is relevant for the application at hand. For exam-
ple, since entities exist during some periods of time,
it should be possible to capture this in the data
model. In turn, this implies that the database de-
signers should have the ability to indicate, using the
conceptual data model, whether or not they want to
register these periods of time for the entities.

2.1 The Temporal Aspects Supported

In this section we present and explain the temporal
aspects of data that the TimeER model supports.
In the database community, several types of tempo-
ral aspects of information have been discussed over
the years. The model supports four distinct types of
temporal aspects that are candidates for being given
built-in support in an ER model, namely valid time,
lifespan, transaction time, and user-defined time [12].

We use the term “fact” to denote any statement
that can be assigned a truth value, i.e., true or false.
The notion of valid time applies to facts: the valid
time of a fact is time when that fact is true in the mini-
world. Thus, any fact in the database may be associ-
ated with a valid time. However, the valid time may
or may not be captured explicitly in the database.

In ER models, unlike in the relational model, a
database is not structured as a collection of facts, but
rather as a set of entities and relationships with at-
tributes, with the database facts being implicit. Thus,
the valid times are associated only indirectly with
facts. As an example consider an Employee entity
“E1” with a Department attribute. A valid time of
June 1996 associated with the value “Shipping” does
not say that “Shipping” is valid during June 1996, but

CRPIT Volume 53

36

rather that the fact “E1 is in Shipping” is valid dur-
ing June 1996. Thus, when valid time is captured for
an attribute such as Department, the database will
record the varying Department values for the Em-
ployee entities. If it is not captured, the database
will (at any time) record only one department value
for each Employee entity.

The lifespan of an entity captures the existence
time of the entity [12]. If the concept of lifespan of
entities is supported, this means that the model has
built-in support for capturing the times when enti-
ties exist in the mini-world. The lifespan of an entity
e may be seen as the valid time of the related fact,
“e exists.” However, we choose to consider lifespans
as separate aspects since the recording of lifespans
of entities is important for many applications. If re-
lationships are regarded as having existence in their
own right, the concept of lifespan is also applicable to
relationships, with the same meaning as for entities.

The transaction time of a database fact is the time
when the fact is current in the database and may be
retrieved. As is the case for lifespans, the transaction
time of a fact F may be seen as the valid time of
a related fact, namely the fact, “F is current in the
database,” but we have also chosen to record trans-
action time as a separate aspect. Unlike valid time,
transaction time may be associated with any element
stored in a database, not only with facts. Thus, all
database elements have a transaction-time aspect.

Observe that all the above-mentioned temporal as-
pects have a duration.

User-defined time is supported when time-valued
attributes are available in the data model [21]. These
are then employed for giving temporal semantics—
not captured in the data model, but only exter-
nally, in the application code and by the database
designer—to the ER diagrams. For employee enti-
ties, such attributes could record birth dates, hiring
dates, etc.

We are now ready to present the graphical no-
tation of the model. Figure 1 presents a TimeER
diagram modeling a company database. The anno-
tations added to the modeling construct are used
to indicate which temporal aspects are to be cap-
tured. The annotations are LS, indicating lifespan
support, VT indicating valid-time support, TT indi-
cating transaction-time support, LT indicating lifes-
pan and transaction-time support, and BT indicates
valid- and transaction-time support.

Example 2.1 The TimeER diagram in Figure 1 is
a diagram modelling a company divided into differ-
ent departments. Each department has a number, a
name, some locations, and is responsible for a number
of projects. The company keeps track of when a de-
partment is inserted and deleted. It also keep track of
the various locations of a department. A department
keeps track of the profits it makes on its projects.
Because the company would like to be able to make
statistics on its profits, each department must record
the history of its profits over periods of time.

Each project has a manager who manages the
project and some employees who work for the project.
Each project has an ID and a budget. The company
registers the history of the budget of a project. Each
project is associated with a department that is re-
sponsible for the project. Each employee belongs to a
single department throughout his or her employment.
For each employee, the company registers the ID, the
name, the date of birth, and the salary. The company
also records the history of employments. The depart-
ments would like to keep records of the different em-
ployees’ salary histories. For reasons of accountabil-
ity, it is important to be able to trace previous records
of both profits and salaries.

Employees work on one project at a time, but em-
ployees may be reassigned to other projects, e.g., due
to the fact that a project may require employees with
special skills. Therefore, it is important to keep track
of who works for which project at any given point in
time and when they are suppose to be finished work-
ing on their current project. Some of the employees
are project managers. Once a manager is assigned to
a project, the manager will manage the project until
it is completed or otherwise terminated.

3 Formal Semantics of TimeER

This section defines the formal semantics of TimeER.
As a first step, we translate the graphical TimeER di-
agram into an equivalent textual representation which
can be seen as a databse schema. The semantics of a
TimeER diagram is then defined as the semantics of
the equivalent textual variant of the diagram.

In Section 3.1, we present the textual representa-
tion of the model and exemplify the transformation
of the graphical representation of a diagram into an
equivalent textual representation. We also present the
axiomatic conventions that define the notation used,
followed by definitions of the predefined atomic data
types supported by the TimeER model.

In section 3.2, we proceed to define the semantics
of the basic data types supported by TimeER, then
define the semantic domains of the timestamps data
types supported, followed by the semantics of the tex-
tual representation of the TimeER model. Part of the
running example is used to illustrate the main ideas
behind the semantics.

3.1 Textual TimeER Diagrams

The translation from TimeER diagrams to the equiv-
alent textual representations is straightforward; given
the TimeER diagram in Figure 1, we will transform
a part of this diagram in order to explain the trans-
formation.

Before we present the full syntax of the textual
representation of the TimeER model, we describe the
notation as well as conventions used in the abstract
syntax of the textual representation and in the defi-
nition of the semantics.

Axiomatic Conventions

We let SET denote the class of sets, FSET the class
of finite sets, FUN the class of total functions, and
REL the class of relations. The following inclusions
hold FSET ⊆ SET and FUN ⊆ REL ⊆ SET .

Next, assume that sets S, S1, . . . , Sn ∈ SET are
given. We let F (S) denote the restriction of the power
set 2S to finite sets, S∗ denote the set of finite lists
over S, S+ the set of non-empty finite lists over S, and
S×S1×· · ·×Sn denote the Cartesian product over the
sets S, S1, . . . , Sn. The set of finite multisets over S is
given by M(S). A multiset can be considered a finite
set S together with a counting function occ : S → N ,
giving for each element the number of occurrences in
the multiset. We let S1�S2 denote the disjoint union
of sets, that is, the result of S1 � S2 is {S1, S2}.

We write finite sets as {c1, c2, . . . , cn}, lists as
〈c1, c2, . . . , cn〉, elements of Cartesian products as
(c1, c2, . . . , cn), and multisets as {{c1, c2, . . . , cn}}. For
a set
{c1, c2, . . . , cn}, i �= j implies ci �= cj . This is
not necessarily true for multisets. Given multiset
{{c1, c2, . . . , cn}} with occ(c) = k, there are k indices
i1, . . . , ik ∈ {1, . . . , k} with cij = c for j ∈ {1, . . . , k}.
For any set, we use ⊥ to denote the undefined value
of the set.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

37

Belongs_to

ID

Name

Birth_date

Join_date

hours/week

Salary BT

Works_for
VT

Name

 for
Responsible

Number

Profit BT

Manages

Rank
App_date Type

Project

ID

Budget BT

Income

Expences

ManagerTrainee

d

Employee LT

(1,1)
(1,N)

(1,N)

(1,1)

(1,1)

(1,N)

Department TT

(1,1)

Location VT

(0,1)

[1,N]

Level

Figure 1: A TimeER Diagram Describing a Company Database

Predefined Data Types

A data signature describes the predefined data types,
operations, and predicates. We assume the data types
int , real , and string; adding additional data types is
straightforward. The data types int , real , and string
and the operations and predicates on these have the
usual semantics, and this interpretation is fixed, that
is, defined once and for all. This definition follows
the approach of Gogolla and Hohenstein and Khatri
et al. [8, 14].

Let the syntax of a data signature DS be given as
follows.

• the sets DATA, OPNS, PRED ∈ FSET

• a function input ∈ FUN such that input :
OPNS → DATA∗

• a function output ∈ FUN such that output :
OPNS → DATA

• a function args ∈ FUN such that args :
PRED → DATA+

If σ ∈ OPNS, input(σ) = 〈d1, . . . , dn〉, and
output(σ) = d, this is denoted as σ : 〈d1, . . . , dn〉 → d.
If π ∈ PRED with args(π) = 〈d1, . . . , dn〉, this is de-
noted as π : 〈d1, . . . , dn〉

Example 3.1 The predefined data types and some
operators and predicates working on the data types
are given below.

DATA ⊇{ int , real , string }

OPNS ⊇{ +i,−i, ∗i : int × int → int ,
+r ,−r , ∗r : real × real → real ,
/i : int × int → real ,
/r : real × real → real ,
↑i: int × int → int ,
↑r : real × int → real ,
squarei : int → int ,
squarer : real → real ,
absi : int → int ,
absr : real → real ,
trc, rnd : real → int ,
cat : string × string → string}

PRED ⊇{ <i, >i,≤i,≥i, �=i: int × int ,
<r , >r ,≤r ,≥r , �=r:real × real ,
<s, >s,≤s,≥s, �=s:string × string }

Example 3.2 As a precursor to giving the textual
representation of TimeER diagrams, we transform
the entity types Employee and Department, the rela-
tionship type Belongs to, and the constraints related
to these three modeling constructs into their textual
representations.

For the entity type Employee, it is specified that
both the lifespan and the transaction time of the in-
stances must be captured. In the diagram in Fig-
ure 1, the data types of the timestamps are implicit;
in the textual representation they are specified ex-
plicitly. The data type is temporal elements, and the
granularity of the timestamps is hour for both tempo-
ral aspects to be captured. This results in the textual
description below. Words in boldface are keywords.
Entity Type Employee with (LS , temporal element , hour),

(TT , temporal element , hour)

We now have to add the attributes of the en-
tity type Employee. It has the attributes ID, Name,
Birth date, and Salary. The only attribute where the
temporal aspect is captured is Salary, and the time
dimensions captured are valid time and transaction
time. For all attributes, we have to specify the data
type of the attribute values. For the temporal at-
tributes, as for temporal entity types, the data type
and the granularity of the timestamps capturing the
temporal aspects are implicit in the diagrams, but
have to be specified explicitly in the textual represen-
tation of the temporal attributes. The attributes of
the Employee entity type are given next.
Attribute ID is of type int ;
Attribute Name is of type string ;
Attribute Bith date is of type string ;
Attribute Sal is of type real with

(VT , temporal element , day), (TT , temporal element , day);

The translation of the other modeling constructs
follow the same procedure and the textual representa-
tions of entity type Department and relationship type
Belongs to are as follows.
Entity Type Department with

(TT , temporal element , day) has
Attribute Number is of type int;
Attribute Name is of type string ;
Attribute Location is Multivalued of type string
with (VT , temporal element , day);
Attribute Profit is of type real with

(VT , temporal element ,month),
(TT , temporal element ,month);

Relationship Type Belongs to has
Attribute Join date is of type string;

involves Employee; Department ;

We now add key constraints to the entity types
and snapshot participation constrains to the relation-
ship type. ID is the key of Employee and Number
is the key of Department; the snapshot participation
constraint on Employee is (1,1), and the snapshot par-
ticipation constraint on Department is (1,N). This
gives us the following textual representation of the
constraints.
ID is key of Employee ;
Number is key of Department ;
participation of Employee in Belongs to is (1,1);
participation of Department in Belongs to is (1,N);

CRPIT Volume 53

38

The full syntax of the textual representation of the
TimeER model is given in Appendix A.

3.2 Semantics of TimeER

We are now able to define the semantics of the
TimeER model. First, we define the semantics of the
predefined data types and define the model of time
used in the semantics. Next, we explain the ideas be-
hind the semantics, followed be the full semantics of
the TimeER model.

The semantics of a data signature DS is given by
three functions.

A function D[[DATA]] ∈ FUN such that
D[[DATA]] : DATA → SET and ⊥∈ D[[DATA]](d)
for every d ∈ DATA. The membership of ⊥∈
D[[DATA]](d) is required because it is necessary to
have an undefined value as a result of an incorrect
application of a function.

A function D[[OPNS]] ∈ FUN such that
D[[OPNS]] : OPNS → FUN and σ : d1 × · · · ×
dn → d implies D[[OPNS]](σ) : D[[DATA]](d1) × · · · ×
D[[DATA]](dn) → D[[DATA]](d) for every d ∈ DATA.

A function D[[PRED]] ∈ FUN such that
D[[PRED]] : PRED → REL and π : d1 × · · · ×
dn implies D[[PRED]](π) ⊆ D[[DATA]](d1) × · · · ×
D[[DATA]](dn) for every d ∈ DATA.

Example 3.3 The semantics of the predefined data
types in Example 3.1 and some of the associated op-
erations are defined as follows.

D[[DATA]](int) = Z ∪ {⊥}
D[[DATA]](real) = R ∪ {⊥}
D[[DATA]](string) = A∗ ∪ {⊥}
D[[OPNS]](+i) : D[[DATA]](int) ×D[[DATA]](int) →

D[[DATA]](int)

=

j
(i1, i2) → i1 + i2 if i1, i2 ∈ Z
⊥ otherwise

D[[OPNS]](squarer) : D[[DATA]](real) → D[[DATA]](real)

=

j
r → r ∗ r if r ∈ R
⊥ otherwise

The Time Model

We assume that the real time line is bounded in both
ends, so that time begins at the “Big Bang” and ends
at the “Big Crunch.” A point t on the real time line is
called an instant. The real time line is represented in
the database by a so-called baseline clock [3]. In ac-
cord with the general consensus in the database com-
munity that a discrete model of time is adequate, the
base-line clock, and thus our time domains, is dis-
crete. Our time domains are then ordered, finite sets
of elements isomorphic to finite subsets of the nat-
ural numbers. The elements are termed chronons.
This may be seen as dividing the real time line into
indivisible equal-size segments (the chronons). Real-
world time instants are represented in the model by
the chronons during which they occur. We will use
c, possibly indexed, to denote chronons. The size of
a chronon, called the granularity of the chronon, can
be specified explicitly.

We introduce a domain for each combination of the
temporal aspects and granularities supported. These
domains are given by Dg

dim. The different valid-time
domains are given as Dg

V T = {cv
1, c

v
2 , . . . , c

v
k}. The

domain of all valid times is given as DV T = ∪gD
g
V T .

The transaction-time domains are given as Dg
TT =

{ct
1, c

t
2, . . . , c

t
now}∪{UC} where UC (”until changed”)

is a special transaction-time marker. The domain of
all transaction times is then DTT = ∪gD

g
TT . The dif-

ferent lifespan domains are given as

Dg
LS = {cl

1, c
l
2, . . . , c

l
now}, and the domain of all lifes-

pan times is given as DLS = ∪gD
g
LS. Some chronons

are expected to be in the future and some are ex-
pected to be in the past. The chronon cnow denotes
the chronon representing the current time.

A time interval is defined as the time between two
instants, a starting instant and a terminating instant.
A time interval is thus represented by the sequence of
consecutive chronons where each chronon represents
the instants that occurred during the chronon. We
may represent a sequence of chronons by the starting
and the ending chronon. We define intervals [ci, cj]g
where ci is the starting chronon, cj is the terminat-
ing chronon, and the size of the chronon is g. We
let [ci, cj]

g
vt, [ci, cj]

g
tt, [ci, cj]

g
ls denote intervals over the

valid-time, transaction-time, and lifespan domains,
respectively.

We also define temporal elements over time do-
mains. A temporal element is a union of intervals
and is represented by Ig = [ci, cj]g ∪ · · · ∪ [cl, ck]g.
Since our time domains are discrete and finite, we
can define a temporal element as an element of the
set 2Dg

dim . We let Ig
vt, I

g
tt, I

g
ls denote temporal ele-

ments over the valid-time, transaction-time, and the
lifespan domains, respectively.

Semantics of Example 3.2

In order to better understand the ideas behind the se-
mantics of TimeER, we will explain in detail the se-
mantics of the entity type Employee, the relationship
type Belongs to, the key constraint on Employee, and
the snapshot participation constraint of Employee in
Belongs to.

An entity type in a TimeER diagram defines an
entity set. The attributes of an entity characterize
the entity, and each attribute of an entity has a value
domain. The association between a set of attributes
X = {A1, A2, . . . , An} and the set of value domains
D is given by a function dom : X → D. An en-
tity together with its attributes can be regarded as a
tuple. A tuple t over a set of attributes X is actu-
ally a function that associates each attribute Ai ∈ X
with a value from the value domain dom(Ai). For at-
tribute A, we denote this value t[A] . The TimeER
model uses surrogates to identify the entities, and
therefore extend the entity type with a surrogate at-
tribute. We use surrogates to identify entities due to
the fact that user defined identifiers can be specified
as time-varying.

The semantics of the entity type Employee
is therefore a set of functions (tuples), termed
Employee . The domain of each function t is the set
of attribute names connected to the entity type and
the surrogate attribute, s. The value domain of the
attributes connected to the entity type Employee is
determined by the semantics of the attribute decla-
rations, while the value domain of the surrogate at-
tribute is the set DEmployee

S of surrogate values as-
signed to Employee . The mathematical description
of the above is presented next.
E[[Entity Type Employee . . .]] = {t | t ∈ FUN∧
dom(t) = {s, ID ,Name, Birth date, Sal} ∧ t[s] ∈ DEmployee

S ∧
t[ID] ∈ A[[Attribute ID is A′

D]]∧
t[Name] ∈ A[[Attribute Name is A′

D]]∧
t[Bith date] ∈ A[[Attribute Bith date is A′

D]]∧
t[Sal] ∈ A[[Attribute Sal is A′

D]]∧
∀ti, tj , i �= j ⇒ ti[s] �= tj [s]}

In the above description, we have not yet deter-
mined the value domains of the attributes. The at-
tribute ID is specified as non-temporal with data type
int . This means that we do not want to capture the
changes of this attribute over time. The semantics is
therefore modeled as a constant belonging to the set

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

39

of integers, i.e., the value domain of this attribute is
the set of integers, including the undefined value.

A[[Attribute ID is of type int]] = D[[DATA]](int) = Z ∪ {⊥}

The Birth date of an employee never changes, so
this attribute is also described as non-temporal, but
here we use the data type string. The value is there-
fore modeled as a constant sentence defined over some
alphabet, i.e., the value domain is some alphabet,
again including the undefined value.
A[[Attribute Bith date is of type string]] =

D[[DATA]](string) = A∗ ∪ {⊥}

We will not explain in detail the semantics of the
attribute Name, but proceed to the attribute Sal .
This attribute is a temporal attribute with data type
real , that is, we want to record how the values of this
attribute change over time. This means that the value
domain of this attribute must be a function from some
time domain to a value domain. The temporal aspects
to be captured for this attribute are valid time and
transaction time.
A[[Attribute Sal is of type real with
(VT , temporal element , day),(TT , temporal element , day)]] =
T [[(VT , temporal element , day)]]×

T [[(TT , temporal element , day)]] → D[[DATA]](real) =

Dday
V T × Dday

TT → R∗ ∪ {⊥}

The resulting, full semantics of the entity type
Employee is presented next.

E[[Entity Type Employee . . .]] = {t | t ∈ FUN ∧ dom(t) =

{s, ID ,Name ,Bith date ,Sal} ∧ t[s] ∈ DEmployee
S ∧ t[ID] ∈ Z

∪{⊥} ∧ t[Name] ∈ A∗ ∪ {⊥} ∧ t[Bith date] ∈ A∗ ∪ {⊥}∧
t[Sal] ∈ Dday

V T × Dday
TT → R ∪ {⊥}}

The key constraint of an entity set is a set of pred-
icates the entity set has to satisfy. In the textual rep-
resentation, all constraints are separate constructs, so
we first have to check if the entity type mentioned in
the constraint construct exists at all by calling the
auxillaty predicate inSch(Employee , ScD). The pred-
icate is explained in detail on page 7. We also have to
check that the set of attributes mentioned in the con-
straint really are attributes of the entity type. Next,
we define the predicate that ensures that the values of
the key attributes are unique for the entity set. The
key constraint on Employee is described next.

C[[ID is key of Employee]] = inSch(Employee , ScD)∧
ID ∈ attOf (Entity Type Employee has AD)∧
∀ti, tj ∈ E[[Entity Type Employee has AD]]
(ti[ID] = tj [ID] ⇒ ti[s] = tj [s])

A relationship type in a TimeER diagram defines
a relationship set. Its semantics is therefore a set of
relationships. The relationship type Belongs to de-
scribes relationships among entities from the entity
types Employee and Department. We use the surro-
gates of the participating entities to identify which
entities participate in which relationship(s). As for
entities, we can regard each relationship in a set of
relationships as an element of a Cartesian product
over a set of attributes. The attributes of a relation-
ship are the attributes of the relationship type and a
surrogate attribute for each participating entity type.
To identify the participating entity types, we use the
auxiliary function parOf (IS) that takes an involve-
ment specification as input and returns a set (or if the
relationship type involves the same entity type more
than once, a multiset) of entity type names. The se-
mantics of the relationship type Belongs to is given
next.

R[[Relationship Type Belongs to has AD involves IS]] =
{t | t ∈ FUN ∧ dom(t) =

S
Ei∈parOf (IS) sEi

∪ {Join date}V
Ei∈parOf (IS) t[sEi

] ∈ I[[Ei]] ∧ t[Join date] ∈
A[[Attribute Join date is A′

D]]} = {t | t ∈ FUN ∧ dom(t) =
{sEmployee, sDepartment, Join date}∧
t[sEmployee] ∈ DEmployee

S ∧ t[sDepartment] ∈ DDepartment
S ∧

t[Join date] ∈ A∗ ∪ {⊥}}

Snapshot participation constraints are like key
constraints and define predicates that relationship
sets have to satisfy. Again, since the participation
constraints are separate constructs in the textual rep-
resentation, we have to ensure that the entity type
and the relationship type mentioned in each con-
straint exist. To count the number of relationships,
an entity participate in, we use the auxiliary function
cnt(e,E ,R[[RD]]) that takes an entity, an entity type,
and a relationship set as input and returns the num-
ber of relations in the relationship set, the entity e
participates in.
C[[Snapshot participation of Employee in

Belongs to is (1, 1)]] =
inSch(Employee, ScD) ∧ inSch(Belongs to, ScD)∧
Employee ∈ parOf (Relationship Type Belongs to has

AD involves IS) ∧ ∀ej ∈ DEmployee
S

(min ≤ cnt(ej ,Employee ,
R[[Relationship Type Belongs to has AD involves IS]])
≤ max)

The full semantics of the TimeER model follow.
First, we define the semantic domains. Second, we de-
fine the auxiliary functions to be used in the semantic
functions. Finally, we define the semantic functions.

Semantic Domains

DS — The set of surrogates
DE

S ⊆ DS – Surrogates assigned to E ∈ [[E TYPE]]
DR

S ⊆ DS – Surrogates assigned to R ∈ [[R TYPE]]
DLS = (∪gDg

LS) ∪ {⊥} – The lifespan domains
DV T = (∪gDg

V T) ∪ {⊥} – The valid time domains
DTT = (∪gDg

TT) ∪ {⊥} – The transaction time domains
D[[DATA]] – The set of basic domains

Auxiliary Functions

The function attOf takes as input an entity type dec-
larations and returns the list of attributes names of
the entity type.

attOf (Entity Type E has AD) =
attOf (Entity Type E with TS has AD) =
attOf (Subclass E1 of E2 has AD) =
attOf (Subclass E1 of E2 with TS has AD) =
attOf (AD)

attOf (AD1 ; AD2) = attOf (AD1) ∪ attOf (AD2)
attOf (Attribute A is A′

D) = A

The function parAtt takes the name of an entity
type as argument and returns the names of attributes
of the entity type and its ancestor(s), if the entity type
is declared as a subclass.

parAtt(E) =

8>>><
>>>:

attOf (Entity Type E . . .)
if Entity Type E . . . ∈ ED

attOf (Subclass E1 of E2 . . .) ∪ parAtt(E2)
if Subclass E1 of E2 . . . ∈ ED

⊥ otherwise

The function parOf takes a relationship type dec-
laration as argument and returns the entity types that
participate in the relationship type.

CRPIT Volume 53

40

parOf (Relationship Type R has AD involves IS) =
parOf (Relationship Type R with TS has AD involves IS)
= parOf (IS)

parOf (IS1 ; IS2) = parOf (IS1) ∪ parOf (IS2)
parOf (E) = {{E}}
parOf (E(identifies)) = {{E}}

The function tempSpec takes either a relationship
type declarations or an entity type declaration as ar-
gument. If the declaration is non-temporal, it returns
the empty set; and if the declaration is temporal, the
specification of the required temporal support is re-
turned.
tempSpec(R) =8>>>>><
>>>>>:

TS

if Relationship Type R with TS has AD

involves IS ∈ RD

∅
if Relationship Type R has AD involves IS ∈ RD

⊥ otherwise
tempSpec(E) =8>>>>>>>>>><
>>>>>>>>>>:

TS

if Entity Type E with TS has AD ∈ ED

∅
if Entity Type E has AD ∈ ED

TS × tempSpec(E2)
if Subclass E1 of E2 with TS has AD ∈ ED

∅ × tempSpec(E2)
if Subclass E1 of has AD ∈ ED

⊥ otherwise

The function ownerOf takes as arguments the
name of a weak entity type and an identifying rela-
tionship type declaration and returns the list of entity
type names of the owners of the weak entity type.
ownerOf (E,Relationship Type R with TS

has AD involves IS) =
ownerOf (E,Relationship Type R has AD involves IS) =j

parOf (IS) − E if E(identifies) ∈ IS

∅ otherwise

The predicate inSch takes as arguments either an
entity type name or a relationship type name, as well
as a schema declaration. The predicate returns true
if the entity type or the relationship type is declared
in the schema and is false otherwise.
inSch(E, ScD) = inSch(E, ED ; RD ; ICD) = inSch(E, ED) =8<
:

true if Entity Type E with TS has AD ∈ ED

true if Entity Type E has AD ∈ ED

false otherwise

inSch(R, ScD) = inSch(R, ED; RD ; ICC) = inSch(R, RD) =8>>>>><
>>>>>:

true
if Relationship Type R with TS has AD

involves IS ∈ RD

true
if Relationship Type R has AD involves IS ∈ RD

false otherwise

The function cnt takes an entity, an entity type,
and a relationship set as inputs and returns the num-
ber of relations in the relationship set, the entity e
participates in.

cnt(e, E, {t1, . . . , tn}) =8<
:

0 if n = 0
cnt(e, E, {t1, . . . , tn−1}) if n ≥ 1 ∧ tn[sE] �= e
cnt(e, E, {t1, . . . , tn−1}) + 1 if n ≥ 1 ∧ tn[sE] = e

Semantic Functions

In what follows we describe the semantic functions.
First we present the signature of the semantic func-
tions and then the semantic function are defined.

I : E TYPE → DE
S

T : T SPEC → DV T ∪ DTT ∪ DLS

A : ATT × DATA× T SPEC → D[[DATA]] ∪ F (2D[[DATA]])∪
(T [[TS]] → D[[DATA]]) ∪ (T [[TS]] → F (2D[[DATA]]))

E : E TYPE × T SPEC × A DECL → DE
S ×A[[AD]]∪

(DE
S × T [[TS]]) ×A[[AD]]

R : R TYPE × I SPEC × T SPEC × A DECL →
(DR

S × I[[IS]] × T [[TS]]) ×A[[AD]] ∪ (I[[IS]] × T [[TS]])×
A[[AD]] ∪ I[[IS]] ×A[[AD]]

C : ICD → PRED
S : ScD → S[[ScD]]

The purpose of the semantic function I is to de-
termine the surrogate sets of the entity types that are
involved in a specific relationship type.

I[[IS1
; IS2

]] = I[[IS1
]] × I[[IS2

]]

I[[E]] =

j
DE

S if E ∈ E TY PE
⊥ otherwise

The semantic function T is defined in order to de-
termine the time domains of the specified temporal
support for a given entity type, relationship type, or
attribute.

T [[with TS1
; TS2

]] = T [[TS1
]] × T [[TS2

]]

T [[(dim, instant , g)]] = Dg
dim

T [[(dim, temporal element , g)]] = 2D
g
dim

The semantic function A is a function that given a
specific attribute specification as input it returns the
value domain of the specified attribute.

A[[AD1
; AD2

]] = A[[AD1
]] ×A[[AD2

]]

A[[Attribute A is A′
D]] = A[[A′

D]]

A[[of type d]] = D[[DATA]](d)

A[[of type d with TS]] = T [[TS]] → D[[DATA]](d)

A[[composite(AD)]] = A[[AD]]

A[[composite(AD) with TS]] = T [[TS]] → A[[AD]]

A[[Multivalued of type d]] = F (2[[DATA]](d))

A[[Multivalued of type d with TS]] =
T [[TS]] → F (2[[DATA]](d))

The semantic function E identifies the set of func-
tions (tuples) that are defined through the definition
of entity types. Each entity type defines a unique set
of tuples and these sets are stored separately in the
database. This can observed by the fact the function
E applied to a composition of entity type definitions
returns the disjoint union of the function applied to
each of the components of the composition. The func-
tion E is applicable to all types of entity types.
E[[ED1

;ED2
]] = E[[ED1

]] � E[[ED2
]]

E[[Entity Type E has AD]] = {t | t ∈ FUN∧
dom(t) = {s, attOf (AD)} ∧ t[s] ∈ I[[E]]V

Ai∈attOf (AD) t[Ai] ∈ A[[Attribute Ai is A′
D]]∧

∀cl ∈ DLS ∀ct ∈ DTT (∀ti, tj , i �= j ⇒ ti[s] �= tj [s])}
E[[Entity Type E with TS has AD]] = {t | t ∈ FUN∧

dom(t) = {s, attOf (AD)} ∧ t[s] ∈ (T [[TS]] → I[[E]])V
Ai∈attOf (AD) t[Ai] ∈ A[[Attribute Ai is A′

D]]∧
∀cl ∈ DLS ∀ct ∈ DTT (∀ti, tj , i �= j ⇒ ti[s] �= tj [s])}

E[[Weak Entity Type E has AD]] = {t | t ∈ FUN∧
dom(t) = {

S
Ei∈ownerOf (E,RD) sEi

, attOf (AD)}V
Ei∈ownerOf (E,RD) t[sEi

] ∈ I[[Ei]]V
Ai∈attOf (AD) t[Ai] ∈ A[[Attribute Ai is A′

D]]}
E[[Weak Entity Type E with TS has AD]] =
{t | t ∈ FUN ∧ dom(t) =
{

S
Ei∈ownerOf (E,RD) sEi

, attOf (AD)}V
Ei∈ownerOf (E,RD) t[sEi

] ∈ T [[TS]] → I[[Ei]]V
Ai∈attOf (AD) t[Ai] ∈ A[[Attribute Ai is A′

D]]}

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

41

E[[Subclass E1 of E2 has AD]] = {t | t ∈ FUN∧
dom(t) = {sE2 , parAtt(E2), attOf (AD)}∧
t[sE2] ∈ T [[tempSpec(E2)]] → DE2

SV
Ai∈parAtt(E2) t[Ai] ∈ A[[Attribute Ai is A′

D]]V
Ai∈attOf (AD) t[Ai] ∈ A[[Attribute Ai is A′

D]]}
E[[Subclass E1 of E2 with TS has AD]] =
{t | t ∈ FUN ∧ dom(t) = {sE2 , parAtt(E2), attOf (AD)}
∧ t[sE2] ∈ T [[tempSpec(E2)]] × T [[TS]] → DE2

SV
Ai∈parAtt(E2) t[Ai] ∈ A[[Attribute Ai is A′

D]]V
Ai∈attOf (AD) t[Ai] ∈ A[[Attribute Ai is A′

D]]}

The semantic function R determines the tuples
defined through the definition of relationship types.
As for entity types, relationship types defines a
unique set of tuples that are stored separately in the
database. The function is applicable not applicable to
super-/sub class relationships as these relationships
are being handled though the application of the se-
mantic function E on subclass entity types.
R[[RD1

; RD2
]] = [[RD1

]] � [[RD2
]]

R[[Relationship Type R has AD involves IS]] =
{t | t ∈ FUN ∧ dom(t) =
{

S
Ei∈parOf (IS) sEi

, attOf (AD)}V
Ei∈parOf (IS) t[sEi

] ∈ I[[Ei]]V
Ai∈attOf (AD) t[Ai] ∈ A[[Attribute Ai is A′

D]]}
R[[Relationship Type R with TS has AD involves IS]] =8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

{t | t ∈ FUN ∧ dom(t) =
{

S
Ei∈parOf (IS) sEi

, attOf (AD)}V
Ei∈parOf (IS) t[sEi

] ∈ T [[TS]] → I[[Ei]]V
Ai∈attOf (AD) t[Ai] ∈ A[[Attribute Ai is A′

D]]}
if T [[TS]] �∈ Dg

LS
{t | t ∈ FUN ∧ dom(t) =
{sR,

S
Ei∈parOf (IS) sEi

, attOf (AD)}∧
t[sR] ∈ T [[TS]] → DR

SV
Ei∈parOf (IS) t[sEi

] ∈ T [[TS]] → I[[Ei]]V
Ai∈attOf (AD) t[Ai] ∈ A[[Attribute Ai is A′

D]]}
otherwise

The primary purpose of the semantic function C
is to ensure that the designed database is valid. The
general design of the functions is first to ensure that
the constructs mentioned in the constraint is in the
schema definition and then to define the predicate
that the objects involved in the constraint has to sat-
isfy. The result of the application of the set of con-
straint functions is a set of predicates that the defined
database has to satisfy.
C[[ICD1

; ICD2
]] = C[[ICD1

]] ∧ C[[ICD2
]]

C[[B is key of E]] = inSch(E, ScD)∧
((B ⊆ attOf (Entity Type E has AD)∧

∀ti, tj ∈ E[[Entity Type E has AD]]
(ti[B] = tj [B] ⇒ ti[s] = tj [s]))∨

(B ⊆ attOf (Entity Type E with TS has AD)∧
∀ti, tj ∈ E[[Entity Type E with TS has AD]]
(T [[TS]] → ti[B] = T [[TS]] → tj [B] ⇒ T [[TS]] →
ti[s] = T [[TS]] → tj [s])))

C[[B is partial key of E]] = inSch(E, ScD)∧
((B ⊆ attOf (Weak Entity Type E has AD)∧

∀ti, tj ∈ E[[Weak Entity Type E has AD]]
(
S

El∈ownerOf (E) ti[sEl
] =

S
El∈ownerOf (E) tj [sEl

]∧
ti[B] = tj [B] ⇒ ti = tj))∨

(B ⊆ attOf (Weak Entity Type E with TS has AD)∧
∀ti, tj ∈ E[[Weak Entity Type E with TS has AD]]
(T [[TS]] →

S
El∈ownerOf (E) ti[sEl

] =

T [[TS]] →
S

El∈ownerOf (E) tj [sEl
]∧

T [[TS]] → ti[B] = T [[TS]] → tj [B] ⇒
T [[TS]] → ti = T [[TS]] → tj)))

C[[Participation of IS with respect to E is dis, tot]] =
inSch(E)

V
Ei∈IS

inSch(Ei) ∧ ∀cl ∈ DLS ∀ct ∈ DTT

(∀t ∈
S

Ei∈IS
E[[Subclass Ei of E . . .]]∃t′ ∈ E[[. . .E . . .]]

(t[sEi
] = t′[sE])∧

∀t ∈ E[[. . .E . . .]]∃t′ ∈
E[[Subclass Ei of E . . .]](t[sE] = t′[sEi

])∧
∀Ei, Ej ∈ IS

�t1 ∈ E[[Subclass Ei of E . . .]]t2 ∈
E[[Subclass Ej of E . . .]](i �= j ∧ t1[sEi

] = t2[sEj
]))

C[[Participation of IS with respect to E is dis, par]] =
inSch(E)

V
Ei∈IS

inSch(Ei) ∧ ∀cl ∈ DLS ∀ct ∈ DTT

(∀t ∈
S

Ei∈IS
E[[Subclass Ei of E . . .]]∃t′ ∈ E[[. . .E . . .]]

(t[sEi
] = t′[sE])∧

∀Ei, Ej ∈ IS�t1 ∈ E[[Subclass Ei of E . . .]]
t2 ∈ E[[Subclass Ej of E . . .]](i �= j ∧ t1[sEi

] = t2[sEj
]))

C[[Participation of IS with respect to E is over, tot]] =
inSch(E)

V
Ei∈IS

inSch(Ei) ∧ ∀cl ∈ DLS ∀ct ∈ DTT

(∀t ∈
S

Ei∈IS
E[[Subclass Ei of E . . .]]∃t′ ∈ E[[. . .E . . .]]

(t[sEi
] = t′[sE])∧

∀t ∈ E[[. . .E . . .]]∃t′ ∈ E[[Subclass Ei of E . . .]]
(t[sE] = t′[sEi

]))

C[[Participation of IS with respect to E is over, par]] =
inSch(E)

V
Ei∈IS

inSch(Ei) ∧ ∀cl ∈ DLS ∀ct ∈ DTT

(∀t ∈
S

Ei∈IS
E[[Subclass Ei of E . . .]]∃t′ ∈ E[[. . .E . . .]]

(t[sEi
] = t′[sE]))

C[[Lifespan participation of E in R is [min,max]]] =

inSch(E, ScD) ∧ inSch(R, ScD)∧
E ∈ (parOf (Relationship Type R with TS

has AD involves IS)∧
∀ej ∈ DE

S (min ≤
cnt(ej , E,R[[Relationship Type R with TS

has AD involves IS]]) ≤ max))
C[[Snapshot participation of E in R is (min, max)]] =
inSch(E, ScD) ∧ inSch(R, ScD)∧

(E ∈ parOf (Relationship Type R with TS

has AD involves IS)∨
E ∈ parOf (Relationship Type R
has AD involves IS))∧

(∀ej ∈ DE
S (min ≤

cnt(ej , E,R[[Relationship Type R
has AD involves IS]]) ≤ max))∨

(∀c ∈ T [[tempSpec(R)]] ∀ej ∈ DE
S (min ≤

cnt(ej , E,R[[Relationship Type R
with TS has AD involves IS]]) ≤ max))

The last of the semantic functions S defines ex-
actly what a TimeER diagram consists of. It also
defines the different parts that define the objects of
the underlying database and the predicates that en-
sures that the database is valid and consistent. The
three different parts are: Entity type definitions, re-
lationship type definitions, and integrity constraint
definitions.

S[[ScD]] = S[[ED ; RD ; ICD]]
S[[ED ; RD ; ICD]] = E[[ED]] �R[[RD]] � C[[ICD]]

4 Conclusions and Research Directions

Temporal aspects are prevalent in most real-world
database applications, but they are also difficult to
capture elegantly using the ER model. As a result
several temporally extended ER models have been
presented by the database community. We have stud-
ied several of these models, and have found that the
semantics of these models are either not defined or
defined in terms of the relational model.

In this paper we present the formal semantics of a
temporally extended ER model, the TimeER model.
The TimeER model systematically extends the EER
model [5] with new, enhanced modeling constructs
with implicit temporal support. The semantics is
based on denotational semantic and can therefore be
useful for all database designers not only those that
implement their database on a relational platform.
The semantics can easily be applied to the other ex-
isting temporally extended models.

CRPIT Volume 53

42

With respect to further work within this area
one could extend the semantics presented in this pa-
per to the TimeERplus model [9] which extends the
TimeER model. The extension includes graphical no-
tation for describing more temporal aspects of data,
including the update and observation patterns for
temporal attributes [13] and schema changes. The
extent to which this is feasible is still unclear.

References

[1] S. Bergamaschi and C. Sartori. Chrono: A Con-
ceptual Design Framework for Temporal Enti-
ties. In T. W. Ling, S. Ram, and M-L. Lee,
editors, Conceptual Modeling - ER ’98, 17th In-
ternational Conference on Conceptual Modeling,
Singapore, November 16-19, 1998, Proceedings,
volume 1507 of Lecture Notes in Computer Sci-
ence, pages 35–50. Springer, 1998.

[2] P. P-S. Chen. The Entity-Relationship Model –
Toward a Unified View of Data. Transaction on
Database Systems, 1(1):9–36, March 1976.

[3] C. E. Dyreson and R. T. Snodgrass. The Base-
line Clock. In The TSQL2 Temporal Query Lan-
guage, chapter 5, pages 77–96. Kluwer Academic
Publishers, 1995.

[4] R. Elmasri, I. El-Assal, and V. Kouramajian.
Semantics of Temporal Data in an Extended
ER Model. In 9th International Conference
on the Entity-Relationship Approach, pages 239–
254, Lausanne, Switzerland, October 1990.

[5] R. Elmasri and S. B. Navathe. Fundamentals
of Database Systems. The Benjamin/Cummings
Publishing Company, INC, 2. edition, 1994.
ISBN 0-8053-1753-8.

[6] R. Elmasri and G. T. J. Wuu. A Temporal Model
and Query Language for ER Databases. In Pro-
ceedings of the Sixth International Conference on
Data Engineering, pages 76–83, 1990.

[7] S. Ferg. Modeling the Time Dimension in an
Entity-Relationship Diagram. In 4th Interna-
tional Conference on the Entity-Relationship Ap-
proach, pages 280–286, Silver Spring, MD, 1985.
Computer Society Press.

[8] M. Gogolla and U. Hohenstein. Towards a Se-
mantic View of an Extended Entity-Relationship
Model. ACM Transaction on Database Systems,
16(3):369–416, September 1991.

[9] H. Gregersen. TimeERplus: A Temporal EER
Model Supporting Schema Changes. In BNCOD,
volume 3567 of Lecture Notes in Computer Sci-
ence, pages 41–59. Springer, 2005.

[10] H. Gregersen and C. S. Jensen. Temporal
Entity-Relationship Models—a Survey. IEEE
Transactions on Knowledge an Data Engineer-
ing, 11(3):464–497, May 1999.

[11] H. Gregersen and C. S. Jensen. Conceptual
Modeling of Time-varying Information. In Pro-
ceedings of International Conference on Comput-
ing, Communications and Control Technologies,
pages 248–255, August 2004.

[12] C. S. Jensen and C. E. Dyreson[editors]. The
Consensus Glossary of Temporal Database Con-
cepts - February 1998 Version. In Temporal
Databases: Research and Practice, volume 1399
of Lecture Notes in Computer Science, pages
367–405. Springer-Verlag, 1998.

[13] C. S. Jensen and R. T. Snodgrass. Temporally
Enhanced Database Design. In M. P. Papa-
zoglou, S. Spaccapietra, and Z. Tari, editors, Ad-
vances in Object-Oriented Data Modeling, chap-
ter 7, pages 163–193. MIT Press, 2000.

[14] V. Khatri, S. Ram, and R. T. Snodgrass.
Augmenting a Conceptual Model with Geospa-
tiotemporal Annotations. IEEE Transactions on
Knowledge and Data Engineering, 16(11):1324–
1338, 2004.

[15] M. R. Klopprogge. TERM: An Approach to
Include the Time Dimension in the Entity-
Relationship Model. In Proceedings of the Second
International Conference on the Entity Relation-
ship Approach, pages 477–512, Washington, DC,
October 1981.

[16] P. Kraft and J. O. Sørensen. Translation
of a High-Level Temporal Model into Lower
Level Models. In H. S.Kunii, S. Jajodia, and
A. Sølvberg, editors, Conceptual Modeling - ER
2001, volume 2224 of Lecture Notes in Computer
Science, pages 383–396. Springer, 2001.

[17] V. S. Lai, J-P. Kuilboer, and J. L. Guynes. Tem-
poral Databases: Model Design and Commer-
cialization Prospects. DATA BASE, 25(3):6–18,
1994.

[18] J. Y. Lee and R. Elmasri. An EER-Based Con-
ceptual Model and Query Language for Time-
Series Data. In T. W. Ling, S. Ram, and M-L.
Lee, editors, Conceptual Modeling - ER ’98, 17th
International Conference on Conceptual Model-
ing, Singapore, November 16-19, 1998, Proceed-
ings, volume 1507 of Lecture Notes in Computer
Science, pages 21–34. Springer, 1998.

[19] P. McBrien, A. H. Seltveit, and B. Wangler. An
Entity-Relationship Model Extended to describe
Historical information. In International Confer-
ence on Information Systems and Management
of Data, pages 244–260, Bangalore, India, July
1992.

[20] A. Narasimhalu. A Data Model for Object-
Oriented Databases with Temporal Attributes
and Relationships. Technical report, National
University of Singapore, 1988.

[21] R. Snodgrass and I. Ahn. A Taxonomy of Time
in Databases. In Proceedings of ACM-SIGMOD
1985 International Conference on Management
of Data, pages 236–246, Austin, TX, May 1985.

[22] B. Tauzovich. Toward Temporal Extensions to
the Entity-Relationship Model. In The 10th In-
ternational Conference on the Entity Relation-
ship Approach, pages 163–179, San Mateo, Cali-
fornia, October 1991.

[23] C. I. Theodoulidis, P. Loucopoulos, and B. Wan-
gler. A Conceptual Modelling Formalism for
Temporal Database Applications. Information
Systems, 16(4):401–416, 1991.

[24] E. Zimanyi, C. Parent, S. Spaccapietra, and
A. Pirotte. TERC+: A Temporal Conceptual
Model. In Proc. Int. Symp. on Digital Media In-
formation Base, November 1997.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

43

A The Textual Representation of TimeER

Meta variables

ScD ∈ Schemadecls
ED ∈ Enttypedecls
RD ∈ Reltypedecls
AD ∈ Attributedecls
ICD ∈ ICdecls
E ∈ E TYPE
R ∈ R TYPE
A ∈ ATT
B ∈ 2ATT

TS ∈ T SPEC
IS ∈ I SPEC
d ∈ DATA
max, min ∈ Integer contants
dim ∈ {LS, V T, TT}
ts ∈ {instant, temporal element}
g ∈ {sec, min, hour, day, week,month, year}
p1, p2 ∈ {dis, over, tot, par}

In the above defined meta variables we have intro-
duced some abbreviations. These appear in the last
line where disjoint is abbreviated to dis, overlapping
to over, total to tot, and partiel to par.

Abstract Syntax

ScD ::=ED; RD; ICD

ED ::= ED1 ; ED2
| Entity Type E has AD

| Entity Type E with TS has AD

| Weak Entity Type E has AD

| Weak Entity Type E with TS has AD

| Subclass E1 of E2 has AD

| Subclass E1 of E2 with TS has AD

RD ::= RD1 ; RD2
| Relationship Type R has AD involves IS

| Relationship Type R with TS has AD

involves IS

ICD ::=ICD1 ; ICD2
| B is primary key of E
| B is partial key of E
| Snapshot participation of E in R is
(min, max)

| Lifespan participation of E in R is
[min, max]

| Participation of IS with respect to
E is p1, p2

AD ::= AD1 ; AD2
| Attribute A is A′

D
A′

D ::= of type d
| of type d with TS

| composite(AD)
| composite(AD) with TS

| Multivalued of type d
| Multivalued of type d with TS

TS ::= TS1 ; TS2
| (dim, ts, g)

IS ::= IS1 ; IS2
| E
| E(identifies)

dim ::= LS | V T | TT
ts ::= instant | temporal element
g ::= sec | min | hour | day | week | month | year
d ::= int | real | string
p1 ::= dis | over
p2 ::= tot | par

CRPIT Volume 53

44

A Conceptual Solution for Representing Time in Data Warehouse
Dimensions∗

Elzbieta Malinowski† Esteban Zimányi

Department of Computer & Network Engineering
Université Libre de Bruxelles,

50 av. F.D.Roosevelt, 1050 Brussels, Belgium,
E-mail: emalinow,ezimanyi@ulb.ac.be

Abstract

Data Warehouses (DWs) use an omnipresent time
dimension for keeping track of changes in measure
values. However, this dimension cannot be used to
model changes in other dimensions. On the other
hand, Temporal Databases (TDBs) have been suc-
cessfully used for modelling time-varying information.
Bringing together these two research areas, leading
to Temporal Data Warehouses (TDWs), provides the
necessary solutions for managing time-varying data
in dimensions. In this paper, we introduce temporal
extensions for the MultiDimER model, a conceptual
multidimensional model. In our model we allow the
inclusion of valid and transaction time, which are ob-
tained from source systems, in addition to the data
warehouse loading time. Our model allows a concep-
tual representation of time-varying levels, attributes,
and hierarchies. For the latter, we discuss different
cases depending on whether the changes in levels af-
fect the relationships between them.

Keywords: Data warehouses, conceptual modelling,
temporal data warehouse design, time-varying levels,
time-varying hierarchies.

1 Introduction

Decision-making users increasingly rely on Data
Warehouses (DWs) to access historical data for sup-
porting the strategic decisions of organizations. A
DW is “a collection of subject-oriented, integrated,
non-volatile, and time-variant data to support man-
agement’s decisions” (Inmon 2002). Subject orien-
tation means that the development of DWs is done
according to the analytical necessities of managers on
different levels of the decision-making process. In-
tegration represents the complex effort to join data
from different operational and external systems. Non-
volatility ensures data durability and time-variation
indicates the possibility to keep different values of the
same information according to its changes in time.
Therefore, the last two features indicate that DWs
should allow changes to data without overwriting val-
ues of already existing data.

The structure of a DW is based on a multidimen-
sional view of data usually represented at a logical
level using a star or snowflake schema, consisting of
fact and dimension tables (Figure 1).

∗The work of E. Malinowski was funded by a scholarship of the
Cooperation Department of the Université Libre de Bruxelles.

†Currently on leave from the Universidad de Costa Rica.
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Third Asia-Pacific Conference on Conceptual
Modelling (APCCM2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology, Vol. 53.
Markus Stumptner, Sven Hartmann, and Yasushi Kiyoki, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

A fact table (e.g., Sales facts in Figure 1) repre-
sents the subject orientation and the focus of analy-
sis, e.g., analysis of sales. It usually contains numeric
data called measures (e.g., Quantity or Sales in Fig-
ure 1) representing analysis needs in quantified form.
Dimensions (e.g., Product, Time, and Store in Fig-
ure 1) are used for exploring the measures from dif-
ferent analysis perspectives. They usually contain hi-
erarchies, such as Product–Category–Department in
Figure 1. Further, a dimension may also have descrip-
tive attributes, e.g., Store number or Manager’s name
in the Store dimension.

��������	
��

����	
��

������	
��

��������

�����

����

�����������

������	����

����
��

����

�����

���
�����	���

���
�����	���

������

����������� ����

���

������
��

��������� ��

����������

�������������

!������"������

���������

�����#�#�������

���������

����������

������#�#�������

����������

��������$�����������

����������� ����

�����

��������

���������
��

����

������#����

��#��������	
��

����������� ����

��#�������

��#��������
��

����

������#����

����������� ����

�������

��������
��

����������� ��

������������

������#����

��%�

������ ���������

������ �������������

���������	
��

����������� ����

Figure 1: A snowflake schema for a Sales Data Ware-
house.

On-Line Analytical Processing (OLAP) systems
allow decision-making users to dynamically manip-
ulate the data contained in a DW. OLAP systems
use a structure called a cube which is also based on
dimensions, measures, and hierarchies. Hierarchies
allow both detailed and generalized view of data us-
ing the roll-up and drill-down operations. Further,
the slice and dice operations allow to select a portion
of the data based on specified values in one or several
dimensions.

Current DW and OLAP models include an om-
nipresent time dimension that, as the other dimen-
sions, is used for grouping purposes (the roll-up oper-
ation) or in a predicate role (the slice and dice opera-
tions). For example, if the measure Sales in Figure 1 is
represented on a monthly basis, selecting some quar-
ter in the Time dimension will aggregate all monthly
measures corresponding to that quarter.

Nevertheless, even though the time dimension
additionally serves as a time-varying indicator for
measures, e.g., total sales in March 2005, it can-
not be used for representing the time when changes

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

45

in other dimensions have occurred (Eder, Koncilia
& Morzy 2002). Therefore, usual multidimensional
models are not symmetric in the way of representing
changes for measures and dimensions: while they al-
low to track changes in measure values, they are not
able to represent changes in dimension data and the
time when these changes have occurred, e.g., when a
product has changed its ingredients. Consequently,
the features of “time-variant” and “non-volatility”
only apply for measures leaving to applications the
representation of changes occurring in dimensions.

To represent these changes, several implemen-
tation solutions were proposed for relational data-
bases for the so-called slowly-changing dimensions
(Kimball, Ross & Merz 2002). However, some of
them do not preserve the entire history of data. An-
other solution allows to reflect changes to data but
requires significant programming effort for managing
and querying time-varying dimension data. Further,
these solutions do not consider research related to
managing time-varying information in temporal data-
bases.

Temporal databases (TDBs) have been investi-
gated over the last decades, e.g., (Elmasri & Wuu
1990, Snodgrass 1995). They provide structures and
mechanisms for representing and managing informa-
tion that vary over time. Two different temporal
types1 are usually considered: valid time (VT) and
transaction time (TT) that allow to represent, respec-
tively, when the data is true in the modelled reality
and when it is current in the database. If both tempo-
ral types are used, they define bitemporal time (BT).
Further, in some applications, changes in time can
be defined for an object as a whole, i.e., recording
lifespan (LS) or existence time of a database object.

These temporal types are used for representing ei-
ther events, i.e., something that happens at a par-
ticular time point, or states, i.e., something that has
extent over time. For the former an instant is used,
i.e., a time point on an underlying time axis. A
state is represented by an interval or period indi-
cating the time between two instants using either a
non-anchored (e.g., two weeks) or an anchored length
of time (e.g., [02/11/2004,05/01/2005]), respectively.
Sets of instants and sets of intervals can also be used
for representing events and states.

Temporal Data Warehouses (TDWs) join the re-
search achievements of Temporal Databases and Data
Warehouses in order to manage time-varying mul-
tidimensional data. TDWs raise many issues in-
cluding consistent aggregation in presence of time-
varying data, temporal queries of multidimensional
data, storage methods, temporal view materializa-
tion, etc. Nevertheless, very little attention from the
research community has been drawn to conceptual
modelling for TDWs and to the analysis of which tem-
poral support should be included in TDWs consider-
ing that TBDs and DWs are semantically different:

• DW data is integrated from existing source sys-
tems. TDB data is inserted by users since it rep-
resents operational or transactional databases.
Therefore, different temporal support may exist
according to the types of source systems that in-
tegrate data into a TDW.

• DWs support the decision-making process, while
TDBs reflect data changes in the reality (VT)
and in the database content (TT). To expand the
analysis spectrum for decision-making users dif-
ferent temporal types should also be considered
in TDWs.

1Usually called time dimensions; however, we use the term “di-
mension” in the multidimensional context.

• DW data is neither modified nor deleted2. In
contrast, in TDBs users change data directly usu-
ally recording the time of these changes as TT.
Thus, the TT generated in a TDW plays a dif-
ferent role from the TT used in a TDB.

• DWs are designed according to analysis needs of
decision-making users mostly based on a multidi-
mensional view of data with clearly distinguished
measures and dimensions. The last two play dif-
ferent roles: measures are aggregated while di-
mensions are used to explore measures accord-
ing to different criteria. On the other hand,
TDB design is concerned with transactional or
operational applications where all data is han-
dled in a similar manner. Therefore, the analysis
of temporal support for multidimensional models
should consider different aspects present in man-
aging time-varying measures and dimensions.

• Typically DW data reflects measure changes
leaving to application programming the represen-
tation of changes in dimension data. TDBs al-
low to express and manage changes for any data.
The inclusion of the temporal support for DW
data based on TDB research offers the solution
for representing and managing in a similar way
time-varying dimensions and measures.

Regarding temporal support in TDWs, most works
include VT while some of them mention the possibil-
ity to have TT or BT support. However, they usually
consider TT as the time when the fact is current in a
DW, whereas in our model TT as well as VT are in-
corporated from source systems, if they exist and are
required for analysis purposes. Further, in addition
to TT and VT, we propose the inclusion of data ware-
house loading time (DWLT) indicating since when the
data has been current in TDWs.

On the other hand, even though some proposals
formally describe the temporal support for a multidi-
mensional model, to our knowledge none of them offer
a graphical representation that can be used for com-
munication between users and designers during the
design phase of a TDW. Including temporal types in
the conceptual model allows to include temporal se-
mantics as an integral part of TDWs.

In this paper we introduce temporal extensions
for the MultiDimER model (Malinowski & Zimányi
2005). Due to space limitations, we only refer to levels
and hierarchies. Section 2 briefly recalls the main fea-
tures of the MultiDimER model. Section 3 presents
the temporal types included in the model. Section 4
describes our proposal for representing time-varying
levels while Section 5 refers to changes occurring in
levels as well as in relationships between them. Sec-
tion 6 introduces a metamodel for a temporal dimen-
sion. In Section 7 we present a brief description of
the transformation of the temporally extended Multi-
DimER model into the ER model. Finally, the related
works are presented in Section 8 and conclusions are
given in Section 9.

2 Overview of the MultiDimER model

It has been acknowledged for several decades that
conceptual models are the best vehicle for commu-
nicating with users during the design process. We
proposed the MultiDimER model (Malinowski &
Zimányi 2004), a conceptual model based on ER con-
structs that allows to include different kinds of hier-
archies. Figure 2 represents graphical notations used
in our model.

2We ignore modifications due to errors during data loading and
deletion for purging DW data.

CRPIT Volume 53

46

���������	
��

�����������	
���

��
�������

��

�����

	�

�����

�����

�����

��

���������	
��

�����������	
���

��
�������

���������	
��

�����������	
���

��
�������

��

����

������������

����

����
��������	
���

��

Figure 2: Notations of our multidimensional model:
a) one-level dimension, b) analysis criterion, c) hier-
archy, d) cardinalities, and e) fact relationship.

We briefly recall the definition of the MultiDimER
model3. We define a schema as a finite set of di-
mensions and fact relationships. A dimension is an
abstract concept for grouping data that shares a com-
mon semantic meaning within the domain being mod-
elled. It represents either a level, or one or more hier-
archies. Levels correspond to entity types (Figure 2
a). Every instance of a level is called a member.

Hierarchies are required for establishing meaning-
ful paths for roll-up and drill-down operations. They
express different structures according to the criteria
used for analysis (Figure 2 b), e.g., geographical lo-
cation or organizational structure. A hierarchy con-
tains several related levels (Figure 2 c). Cardinalities
(Figure 2 d) indicate the minimum and the maximum
numbers of members in one level that can be related
to a member in another level. Given two consecutive
levels of a hierarchy, the higher level is called parent
and the lower level is called child. A level of a hierar-
chy that does not have a child level is called leaf; the
last level, i.e., the one does not have a parent level
is called root. The root represents the most general
view of data.

Levels contain one or several key attributes (rep-
resented in bold and italic in Figure 2) and may also
have other descriptive attributes. A key attribute of a
parent level defines how child members are grouped.
A key attribute in a leaf level or in a level forming a
dimension without hierarchy indicates the granularity
of measures in the associated fact relationship.

A fact relationship (Figure 2 e) represents an n-
ary relationship between leaf levels. It may con-
tain attributes commonly called measures. The latter
usually represent numerical data meaningful for leaf
members that are aggregated while traversing a hi-
erarchy. Since the roles of a fact relationship always
have (0,N) cardinality, we omit such cardinalities to
simplify the model.

3 Temporal types for TDW

Most works in TDWs, e.g., (Abelló & Mart́ın 2003,
Koncilia 2003) include valid time for representing
when the data is valid in the modeled reality. This
temporal type is also important for TDW appli-
cations since it allows to aggregate measures cor-

3The formal semantics of the MultiDimER model based on
denotational specification is described in (Malinowski & Zimányi
2005).

rectly as demonstrated in several works, e.g., (Eder
et al. 2002).

Further, the usual practice for TDWs is to ignore
TT coming from source systems, e.g., (Bliujute, Slate-
nis, Slivinskas & Jensen 1998, Body, Miquel, Bédard
& Tchounikine 2003, Mendelzon & Vaisman 2000).
However, in this way traceability applications, e.g.,
for fraud detection cannot be implemented. Other
approaches, e.g., (Abelló & Mart́ın 2003) transform
TT from source systems to represent VT in the TDW.
This is semantically incorrect because data may be in-
cluded in databases after their period of validity has
expired, e.g., client’s previous address.

Moreover, some works, e.g., (Koncilia 2003), con-
sider TT generated in a TDW in the same way as TT
is used in TDBs, i.e., it allows to know when data was
inserted, modified, or deleted from databases. Nev-
ertheless, TDW data is neither modified nor deleted.
Thus, TT in TDWs represents indeed the time when
data was loaded into a TDW. This time is called in
our model data warehouse loading time (DWLT).

DWLT can differ from TT or VT of source sys-
tems due to the delay between the time when the
changes occurred in source systems and the time when
these changes are integrated into a TDW. DWLT
is important especially in active DWs (Bruckner &
Tjoa 2002) and in creating TDWs from non-temporal
sources (Yang & Widom 1998). It also may help to
better understand decisions made in the past and ad-
just loading frequencies if necessary. For example,
based on a growing tendency of product sales during
weeks 10, 11 and 12 (Figure 3), it was decided to buy
more products. However, only in the next DW load,
occurred eight weeks later, a new situation has been
revealed: a sudden decrease of sales. Thus, an addi-
tional analysis can be performed to understand the
causes of these changes in sales behaviour. Further,
the decision of more frequent loads may be taken.

���

����
�

��

��	
��

���

�����
���

���
�

���

��

�
�

�

���

���

����
�

��

��

���

��

��

��

��

Figure 3: An example of the usefulness of having
DWLT.

In some applications not only the validity of mem-
ber attributes but also the member existence in the
modelled reality is important, i.e., its lifespan (LS).
The inclusion of LS allows to perform different analy-
sis, e.g., discovering how sales change after the exclu-
sion of some products.

Since current DWs do not offer different temporal
types, users may have difficulties in expressing their
needs for some kinds of applications, e.g., for fraud
detection when TT from a source system is required.
Our MultiDimER model meets users’ expectations in
modelling multidimensional data that vary over time
allowing VT, TT, or bitemporal time (BT) coming
from source systems and DWLT generated by a TDW.
Further, if the source systems include LSs for data
representing level members, this temporal type may
also be included in a TDW.

In the modelling process, application requirements
determine the type of temporal support (none, VT,

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

47

TT, BT, DWLT) that needs to be captured in
each element of a TDW (attributes, levels, hierar-
chies, and/or measures). Obviously that depends on
whether or not the different data sources of the TDW
provide temporal support. These sources may also
contain user-defined time attributes playing the role
of VT. Therefore, based on the classification of source
systems given by Jarke et al. (2003) and additionally
considering TDBs as another kind of a source system
similar to Abelló and Mart́ın (2003), in the following
we discuss the temporal support that can be obtained
from source systems while building TDWs.

• Snapshot: the access to the data in source sys-
tems is done through dump of data. To find the
changes, the current data is compared with the
previous snapshot(s). The time when the snap-
shot is realized does not determine neither TT
nor VT. However, VT may be included as a user-
defined attribute.

• Queryable: source systems offer a query inter-
face. The detection of changes is done by peri-
odic polling of the data in source systems and by
comparing them with the previous version. They
may be considered as snapshot systems with the
difference of having direct access to data, thus
they may contain VT as a user-defined attribute.

• Logged: all actions are registered. The periodic
polling of data is required for discovering what
kinds of changes to which data are applied. The
log files contain TT that may be retrieved. Sim-
ilar to the previous systems, VT may be present.

• Specific: each data is a particular case. There
is not a general method for data extraction and
detection of data changes. These systems can be
considered as logged systems if either delta files
or timestamps for attributes are available; oth-
erwise, they may be treated as snapshot sources.
Therefore, they may include TT and/or VT.

• Callback or internal actions: source systems pro-
vide triggers, active capabilities, or programming
environment so they are able to automatically de-
tect changes of interest and notify those changes
to the interested parties, i.e., to a TDW. They
offer TT and may include VT.

• Replicated: the detection of changes is done by
analysing the messages sent by the replication
system. This may happen manually, periodically,
or using specific criteria. Depending on the fea-
tures of the change monitor, this kind of systems
may offer TT and VT.

• Bitemporal: TDBs include the information that
allow to know when the objects are valid in
reality and when they are current in a DB.
Since bitemporal aspect is already represented
in source systems, TT and VT are available.

In the following for simplifying the discussion we
will refer to VT; the inclusion of TT is straightforward
even though it is less used for dimensional data.

4 Time-varying levels

Changes in a level can occur either for attribute val-
ues (e.g., a product changes its ingredients) or for a
member as a whole (e.g., inserting or deleting a prod-
uct). For the former, we use attribute timestamping
since it better represents reality keeping changes only
for the specified attributes. For the latter, to indicate

the time when a member exists in the modelled real-
ity, i.e., its lifespan, we use the LS symbol next to the
level name. A level that includes temporal attributes
and/or a lifespan support is called a temporal level.

Not all levels or their attributes need to repre-
sent changes in time. The MultiDimER model allows
to choose which historical data users want to keep
by including the symbols of corresponding temporal
types for attributes and/or for a level. Notice that
the changes to a level member as whole can be rep-
resented in the model independently of the fact that
the level has temporal attributes.

Figure 4 a) shows an example of an Employee level
that includes temporal attributes Position and Ti-
tle. We group time-varying attributes firstly, to en-
sure that both kinds of attributes (temporal and non-
temporal) can be clearly represented and secondly, to
include a smaller number of symbols. For indicating
the specific temporal types we use the abbreviations
VT, TT, BT, and DWLT.

��������

���������	

�	
��
����

����
����

�	
��
���

���
���

���	�	��

�	���
��

��

��

��������

���������	

�	
��
����

����
����

�	
��
���

���
���

���	�	��

�	���
��

��

Figure 4: Representation of a) time-varying at-
tributes and b) level lifespan.

The lifespan support for level members (Figure 4
b) indicates that each member includes the LS to-
gether with one value per attribute for non-temporal
attributes and history of changes for temporal at-
tributes. For example in Figure 4 b) every employee
includes the LS together with one value per non-
temporal attribute (e.g., Address) and the history of
values for Position and Title.

Existing temporal models impose constraints for
timestamped attributes and their corresponding ob-
ject (entity) types, e.g., the VT of attribute values
must be within the LS of the object (entity). Our
model does not force it. In this way, different situa-
tions can be modelled, e.g., a product that does not
belong to a store inventory (it is not included in the
master file), but it is on sales for defining its accep-
tance level. For this product, the VT of temporal
attributes may not be within the product LS. On the
other hand, temporal integrity constraints may be ex-
plicitly defined, if required, using a calculus that in-
cludes Allen’s operators (Allen 1984).

Further, the LS as well as VT used for attributes
can be combined with TT or DWLT. In this way, users
can obtain the information when the level member or
the specific attributes values is current in a source or
in a TDW, respectively.

5 Time-varying hierarchies

The MultiDimER model allows to represent hierar-
chies that contain several related levels. Given two
consecutive levels in a hierarchy, the levels, the re-
lationship between them or both the levels and the
relationship between them may be temporal. We ex-
amine next these different situations.

CRPIT Volume 53

48

5.1 Temporal levels and non-temporal rela-
tionships between them

Temporal levels can be associated with non-temporal
relationships. Temporality in levels requires to keep
changes for attributes or for lifespan of members. On
the other hand, non-temporal relationships indicate
that either these relationships never change or if they
do, only the last modification is kept. An example is
given in Figure 5.

��������

��������	
���

	�
���
����

��

��
����

����������

�������

���
���	
�����

������������

	�
���
����

����

	�
�������������

	�
�����������������

��
��

��

��

����������
��������

����

�������� ����������

������ ��������� ������

Figure 5: Time-varying levels forming a hierarchy: a)
model and b) example of changes.

Nevertheless, if level members change the key at-
tributes used for traversing from one level to another
during the roll-up and drill-down operations, incor-
rect analysis scenario or dangling references may oc-
cur. For example, suppose in Figure 5 a) that the
Product and Category levels include VTs for key at-
tributes. Product A belongs to category C, but this
category is divided in two new categories called C1
and C2, leaving category C invalid from now on. If
the relationship product A – category C1 replaces a
previous version of product A – category C, the analy-
sis previous to this change will be incorrect, i.e., the
measure will be aggregated to a new category C1 that
did not exist prior to that change. If the relationship
is not modified, references to the invalid version of
category C will be made for the sales occurring after
the categories have split.

To avoid an incorrect management of hierarchies
as described above, we allow temporal levels with
non-temporal relationships between them only for
those levels that do not keep their LS and/or do not
include VT for their key attributes. For example in
Figure 5 a) the only changes allowed are those that
do not affect relationships between members of these
levels, e.g., a product changes its distributor but it
belongs to the same category. Figure 5 b) illustrates
which changes are allowed.

Notice that DWLT can always be included for lev-
els or attributes since this temporal type only refers
to the time when TDW members or attribute values
are available for analysis purposes and this time does
not affect their validity.

5.2 Temporal levels and temporal relation-
ships between them

Temporal levels may include lifespan support and/or
time-varying key attributes. This temporal support
ensures to keep all changes occurring to level members
and/or attribute values. However, these changes may
affect the relationships with members of child and/or
parent levels. For example, the geographical distrib-
ution in Europe during the last 20 years has changed

since some countries cease to exist, are merged, or
split (Eder et al. 2002). As a consequence, in hi-
erarchies representing this geographical distribution,
reassignment of states or provinces to new countries
may be required.

Therefore, in the case when levels include LS sup-
port and/or VT for key attributes, to avoid incorrect
management of hierarchies as described in the pre-
vious section, relationships between temporal levels
must also be temporal. This restriction in the Multi-
DimER model as in most TDB models helps to avoid
dangling references, i.e., linking to non-existing ob-
jects.

The MultiDimER model allows to include VT, TT,
BT, and/or DWLT for representing time-varying re-
lationships between levels. We do not include LS for
these relationships since these relationships do not ex-
ist without their participating levels.

��

�����

����������

�������	�
����	

����������

���������	����������

��

��

��

��������������

�	
��	�������

�������������

�	������	����

�������
������

�	
������
�	

��

��

��	��

��
���������

��	���
���

��	����������

��
�������
���

 ���

��

��

��

�����������!��	���

����

��	��� �����������"

�#�
���#�
��

������$

������$

�#�
��

Figure 6: Time-varying levels and time-varying rela-
tionship between them: a) model and b) example of
changes.

In the example of Figure 6 a) all levels are tem-
poral. They include LS for dimension levels and VT
for some attributes. Further, the relationships be-
tween levels are also temporal. Suppose that the sales
company is in an active development and changes to
Sales districts may occur to improve the organiza-
tional structure. These changes may affect the rela-
tionship with members of the Store and State levels
(Figure 6 b).

Further, the constraint for relationships between
levels forming a hierarchy is more restrictive than
the one usually used for relationships between tem-
poral objects. In TDBs the valid time of a relation-
ship instance must be included in the intersection of
the valid times of participating objects. In multidi-
mensional hierarchies it is further required that every
valid child (respectively parent) member must be as-
sociated with at least one valid parent (respectively
child) member in order to ensure correctness of the
roll-up and drill-down operations. Validity can refer
to the LS of a level as well as to the VT of key at-
tributes leading to the following constraints:

1. Every time point included in the LS of a level
must be included in the LS of some member of

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

49

the next level, i.e., a valid child member must
have a valid parent member and vice versa. If
this condition is not fulfilled, structural changes
to hierarchies could occur, e.g., forcing some level
members to skip the current parent level4.

2. Every time point included in the VT of a key at-
tribute (i.e., used for aggregation purposes) of a
child (respectively parent) member must be in-
cluded in the VT of some key attribute of a par-
ent (respectively child) member.

5.3 Non-temporal levels and temporal rela-
tionships between them

Non-temporal levels can be linked with temporal re-
lationships if the values of the level members do not
change but the changes to relationship between lev-
els are kept. Some examples of this changing re-
lationships, called transitions (Zimányi, Parent &
Spaccapietra 1997) include evolution and extension.
The former occurs when a child member ceases to
be related to one parent member and is assigned to
another one, e.g., a section is assigned to a new di-
vision (Figure 7 a). The latter takes place when a
child member belongs to the original parent member
and additionally a new relationship with a different
parent member is included, e.g., the old section is as-
signed to the new division, leaving it also as a part of
the old division (Figure 7 b).

��

��

��������	

���

��������	 ��
�������

��������� ������

��
�������

��
������� ��
�������

���������

��������	

��������	 ��
�������

��������� ������

��
�������

��
������� ��
�������

���������

���

Figure 7: Time-varying relationships between non-
temporal levels: a) evolution and b) extension.

To represent temporal support allowing changes
in relationships between non-temporal levels we
place the corresponding symbol, e.g., VT, on the
link between hierarchy levels. To ensure consistency
during roll-up and drill-down operations, level mem-
bers cannot be modified as explained in the previous
sections.

5.4 Conditions for including a temporal sup-
port in hierarchies

Based on the explanations given in the previous sec-
tions, in this section we will summarize the condi-
tions for including temporal support in multidimen-
sional hierarchies. Further, we also include cases not
seen until now when either temporal or non-temporal

4We do not consider structural changes to hierarchies since they
require schema versioning that is out of the scope of this paper.

relationships exist between a temporal and a non-
temporal levels.

1. Temporal levels and non-temporal relationships
between them: temporal features can only be ap-
plied for attributes that do not participate in the
roll-up and drill-down operations.

2. Temporal levels and temporal relationships be-
tween them: levels, attributes, and links indicat-
ing the relationship between levels can be tem-
poral.

3. Non-temporal levels and temporal relationships
between them: no modifications to level mem-
bers are allowed.

4. Non-temporal levels and non-temporal relation-
ships between them: changes to dimension data
cannot be kept. This is the current situation
where implementation “tricks” must be used to
represent changes to level members and/or to re-
lationships between them.

5. One temporal and one non-temporal level and
temporal relationships between them: similar to
Case 3, thus non-temporal level members cannot
be modified.

6. One temporal and one non-temporal level and
non-temporal relationships between them: simi-
lar to Case 1, thus temporal level members only
can have temporal types for non-key attributes.

5.5 Snapshot and lifespan cardinalities

Cardinalities in a non-temporal model indicate the
number of members of one level that can be related
to member(s) of another level. In our model, this
cardinality may be interpreted in two possible ways:
the snapshot cardinality and the lifespan cardinality.
The former is considered for every time instant while
the latter over its lifespan.

The lifespan cardinality may be different from the
snapshot cardinality because of the changes in hier-
archies, both in levels and in relationships between
them. Thus, when these temporal changes must be
kept, both lifespan and snapshot cardinalities may be
considered.

In the MultiDimER model the snapshot cardinal-
ity is by default equal to the lifespan cardinality; how-
ever, if these cardinalities are different, a dotted line
with the LC symbol is inserted and it indicates the
lifespan cardinality as shown in Figure 8.

Further, the constraint imposed on the cardinali-
ties requires the minimum value as well as the max-
imum value of the lifespan cardinalities to be equal
or greater than minimum and maximum values of the
snapshot cardinalities, respectively.

��������

���������	

���������	
��

���
�
�	

������
���
�����

����
�	

���
	�������

�����
��
�	

���
�
��

������
���
�����

��

��

��

Figure 8: Snapshot and lifespan cardinalities between
hierarchy levels.

In the example in Figure 8, the employee snapshot
and lifespan cardinalities for the hierarchy Works are
many-to-many indicating that an employee can work
in more than one section at the same time instant

CRPIT Volume 53

50

and over his lifespan. On the other hand, the snap-
shot cardinality for the hierarchy Affiliated is one-to-
many, and the lifespan cardinality is many-to-many
indicating that in every time instant an employee can
be affiliated only to one section, but over his lifespan
he can be affiliated to many sections.

6 Metamodel of a temporally-extended di-
mension in the MultiDimER model

We give next a metamodel for a dimension of the
temporally-extended MultiDimER model - a concep-
tual model used to represent dimensions, hierarchies,
and levels with attributes, which may change over
time.

��������	
��

�����	�����������

�
����
��

�	
��	
������	
��

�����	�����������

�
�	�	���

����

�

��	�
��
�	���
�

�
�	�� ���

����

����

�

����

��������	
��

���!"��������	��

�� ��

����

���� ����

��
�# ��	���

�
����

��������	
��

���	
$"��

������������"��	
�

���%�����	��

������������"��	
�

���!"��������	��

�����	��

&��

!��	�#����	����
��

������
�
��

!���
��
'��
��

�����
��
��

��	
 �#����	
$"��

(#���
)
�#

��������

*
�����������
�#���	#����
��

*������������
�#���	#����
��

*
�����������	������	#����
��

*������������	������	#����
��

*
����
)�������
�#���	#����
��

*�����
)�������
�#���	#����
��

*
����
)�������	������	#����
��

*�����
)�������	������	#����
��

���!"��������	��

�� ���	���

�
��� ���

&���������
�

����

Figure 9: Metamodel of a dimension.

As shown in Figure 9, a dimension is comprised of
either a level, or one or more hierarchies. A hierar-
chy contains several related levels. These levels are
associated through child-parent relationship. Levels
include attributes, some of which are key attributes
used for aggregation purposes.

We define a temporal level as a level for which the
application needs to keep its time-varying characteris-
tics. This is captured by including different temporal
types for attributes and/or for a level, i.e., the Tem-
Sup attribute in Figure 9. We allow VT, TT, or BT
coming from source systems (if available) and DWLT
generated by DBMS of a TDW. Notice, that VT for
a level is represented by its LS.

Further, the relationship between levels may also
be temporal independently of whether the levels are
temporal or not. This is indicated in Figure 9 by
the attribute called TempSup for the Connects rela-
tionship between child and parent levels. The model
allows to include VT, TT, BT, and/or DWLT for this
relationship.

Additionally, the relationship between two levels
is characterized by cardinalities, which indicate the
minimum and the maximum number of members in
one level that can be related to a member in another
level. We distinguish the snapshot cardinality and
lifespan cardinality. The former is the cardinality in
a instant of time whereas the latter represents this
cardinality over members lifespan.

A dimension is temporal if it has at least one tem-
poral hierarchy. A hierarchy is temporal if it has at

least one temporal level or one temporal relationship
between levels. Since temporal hierarchies (respec-
tively dimensions) can combine temporal and non-
temporal levels (respectively hierarchies), we call a hi-
erarchy (respectively dimension) fully temporal when
all its levels and relationships between them (respec-
tively hierarchies) are temporal. It is called partly
temporal when it contains at least one non-temporal
level or one non-temporal relationship between levels
(respectively one non-temporal hierarchy).

7 Transformations to the ER model

The MultiDimER model can be implemented by map-
ping its specifications into those of operational data
models. We already proposed the mapping into re-
lational (Malinowski & Zimányi 2005) and object-
relational (Malinowski & Zimányi 2006) data models.
Further, another two-phase approach may be adopted
where a MultiDimER schema is transformed into a
conventional ER schema and afterwards, into a logi-
cal schema.

In this section, we briefly describe and give ex-
amples of mapping the temporally-extended Multi-
DimER model into the ER model. The ER model is
a widely-used and platform-independent conceptual
model. In addition, well-known rules for transforma-
tion of ER model into relational model exist, e.g.,
(Elmasri & Navathe 2003).

The MultiDimER model is mainly based on the
ER constructs with their usual semantics, i.e., en-
tity types, attributes, relationship types. Some ad-
ditional semantics is provided for different kinds of
hierarchies (Malinowski & Zimányi 2004) that is be-
yond the scope of this paper.

In the MultiDimER model a level corresponds to
an entity type in the ER model. Non-temporal at-
tributes are represented as monovalued attributes.
The temporal support in the MultiDimER model is
added in an implicit manner (Gregersen & Jensen
1998), i.e., the timestamp attributes used for captur-
ing a temporal aspect are hidden using instead pic-
tograms. Therefore, the transformation of the time-
related data into classical non-temporal structures
of the ER model requires additional attributes for
timestamps.

The different temporal types can be represented
in the ER model as follows: (1) a simple composite
attribute for a period (Figure 10 a), (2) a multivalued
composite attribute for a set of periods (Figure 10 b),
(2) a monovalued attribute for an instant (Figure 10
c), and (3) a multivalued attribute for a set of instants
(Figure 10 d). Notice that a set of periods or instants
are used when the attribute has the same value in
different periods or instants of time.

��

��

�� ��

�� ��

��

��

��

�� ��

��

Figure 10: Different representations of VT in the ER
model.

Figure 11 shows an Employee level and its corre-
sponding ER diagram. The mapping of each temporal
attribute requires a multivalued composite attribute;

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

51

it includes an attribute for which the temporal type
is attached (Name for Position and Title attributes in
Figure 11 b) and an additional attribute for a tem-
poral type. The latter is represented in Figure 11 b)
using a set of periods indicating that an employee can
have the same position or title in different periods of
time.

��������

���������	

�	�
������

�	���
�� ��
������

�

��

����

�� ��

����

��
	�	�� �	���

�� ��

�� ��

��

��������

���������	

�	�
������

��
������

�	���
��

�

��

��
	�	��

�	���
��

��

��

��� ���

��

Figure 11: A level with temporal attributes: a) the
MultiDimER model and b) corresponding ER model.

Further, as explained before, the MultiDimER
model can represent temporal changes to a level mem-
ber as whole. This is expressed using the LS symbol
next to the level name (Figure 11 a). This tempo-
ral support is mapped into the ER model using an
additional multivalued composite attribute contain-
ing the begin (LSB) and the ending (LSE) instants
of the lifespan (Figure 11 b). We used a temporal
element, i.e., a set of periods since this allows to rep-
resent discontinuous lifespan, e.g., a professor leaving
for sabbatical during some period of time.

Relationships linking the levels of a hierarchy in
the MultiDimER model are usual binary relationships
in the ER model. Since this relationship in our model
can be temporal, the corresponding binary relation-
ship in the ER model should include an attribute (or
several depending on the applied temporal support)
in a similar way as was explained for time-varying
attributes of a level. For example, the mapping of
a temporal relationship between Store and Sales dis-
trict levels for the example in Figure 6 is shown in
Figure 125.

In this case, the snapshot and lifespan cardinalities
are the same, i.e., many-to-one. If these cardinalities
are different, the highest cardinalities is mapped to
the ER model; according to the previously specified
constraint in Section 5.5, the lifespan cardinality will
be mapped.

As can be seen in Figure 11 and 12, the Multi-
DimER model provides better conceptual representa-
tion of time-varying attributes, levels, and relation-
ships. It contains less elements, it clearly allows to
distinguish which data changes should be kept, and it

5For simplicity we do not present level attributes in the figure.

��������	�
� ������
��	
��	
� �

�� ��

��

Figure 12: ER representation of temporal relation-
ships between levels in the MultiDimER model.

leaves outside of user’s concerns some more technical
aspects such as multivalued or composite attributes.

8 Related work

The necessity to manage time-varying data has been
acknowledged for several decades, e.g., (Snodgrass
1995). However, no such consensus has been reached
for representing time-varying multidimensional data
considering the particularities of DW semantics.

Works related to TDWs raise many issues, e.g., the
inclusion of temporal types in TDWs, e.g., (Abelló
& Mart́ın 2003, Bruckner & Tjoa 2002), temporal
querying of multidimensional data, e.g., (Mendelzon
& Vaisman 2003, Pedersen, Jensen & Dyreson. 2001),
correct aggregation in presence of data and structural
changes, e.g., (Eder et al. 2002, Hurtado, Mendel-
zon & Vaisman 1999, Mendelzon & Vaisman 2003),
temporal view materialization from non-temporal
sources, e.g., (Yang & Widom 1998), evolution of a
multidimensional structure, e.g., (Body et al. 2003,
Eder et al. 2002, Mendelzon & Vaisman 2003), or
implementation considerations for a temporal star
schema, e.g., (Bliujute et al. 1998).

In the following we refer to works that (1) pro-
pose different temporal types for TDWs and (2) offer
conceptual models for TDWs.

The inclusion of different temporal types in TDWs
is briefly mentioned in several works. Most of them
consider VT (Body et al. 2003, Bliujute et al. 1998,
Eder et al. 2002, Mendelzon & Vaisman 2003, Ra-
vat & Teste 2000, Yang & Widom 1998); some of
them mention that it is easy to incorporate TT with-
out giving a deeper analysis (Mendelzon & Vaisman
2003, Pedersen et al. 2001). Other authors con-
sider TT generating it either in a TDW (Abelló &
Mart́ın 2003, Koncilia 2003) or of in a given source
system (Bruckner & Tjoa 2002)6.

A more extensive analysis of temporal types for
TDWs is given by Abelló and Maŕın (2003). They
discuss the inclusion of TT and VT in TDWs taking
into account different types of sources that integrate
data in a TDW. VT is calculated based on TT of ei-
ther a DW or a source. The exception is made for
sources based on TDBs, considering only one tempo-
ral type, e.g., VT and converting another one, e.g.,
TT into a user-defined attribute. However, Abelló
and Maŕın (2003) do not consider possible existence of
user-defined time attributes in source systems, which
may serve for establishing VT in TDWs. Also, TT
from source systems is ignored or transformed for rep-
resenting VT in TDWs. We do not consider TT as
a possible approximation of VT, since data can be
included and be current in DBs after its validity has
expired, e.g., courses taught five years ago.

Therefore, even though most works include VT
and some mention the possibility to have TT or ex-
plicitly present BT support, they usually considered
TT as time where a fact is current in DW, whereas
in our model TT as well as VT are incorporated from

6It is called revelation time in (Bruckner & Tjoa 2002).

CRPIT Volume 53

52

source systems. Further, only Bruckner and Tjoa
(2002) discuss the inclusion of VT, TT, and DWLT
for active data warehouses, however, they do not of-
fer a conceptual model for a TDW that includes these
temporal types.

Several works are dedicated to conceptual mod-
elling of TDWs. Body et al. (2003) define a con-
ceptual TDW model that allows a member to have
several valid member versions for a given time (when
VT overlaps). Further, they include a temporal rela-
tionship that establishes an explicit link between two
member versions and represents the roll-up function.
Since a dimension is a set of member versions and
a set of temporal relationships between these mem-
bers, a temporal dimension is considered as a directed
graph where nodes are member versions and arcs are
relationships.

Eder et al. (2002) propose a temporal multidi-
mensional model called COMET; it allows to repre-
sent changes at the schema and instance levels. The
model includes VT for members and for relationships
between members forming hierarchies. They include
a list of constraints to ensure the integrity of their
model. Further, in order to reduce incorrect OLAP
results due to the dimension changes, their model
includes transformation functions given by the user.
The COMET model was extended by Koncilia (2003)
including TT of a TDW.

Mendelzon and Vaisman (2003) propose a tempo-
ral multidimensional model that reuses results from
the TDB community. They formally define temporal
dimension schema and instances as well as a temporal
fact table, which are used for defining temporal mul-
tidimensional database. Using VT they build a TO-
LAP query language that allows the user to choose
the way data should be aggregated.

Further, Pedersen et al. (2001) extend the basic
multidimensional model by temporal support. Their
model allows the inclusion of VT as well as TT. These
temporal types can be used to express changes in di-
mension members including their representation, in
hierarchy links, and in fact-dimension relationships.

On the other hand, Ravat and Teste (2000) de-
fine a DW model using object-oriented approach; it
allows to integrate temporal and archive data. Tem-
poral data are used for storing the detailed data evo-
lution while archive data store the summarized data
evolutions.

In general, these models formally describe the tem-
poral support for multidimensional models, allowing
to express changes in dimension members, hierarchy
links, and in fact relationships. However, none of
them offer a graphical representation based on a mul-
tidimensional view of temporal data that can be used
for communication between users and designers. Fur-
ther, they do not consider different aspects as pro-
posed in this work, e.g., a hierarchy that may have
temporal and non-temporal levels linked with either
temporal or non-temporal relationships.

9 Conclusions

Bringing together two research areas, Data Ware-
houses (DWs) and Temporal Databases (TDBs), al-
lows to combine the achievements of each of them
leading to the emerging field of Temporal Data Ware-
houses (TDWs). Nevertheless, neither DWs nor
TDBs have a well-accepted conceptual model that can
be used for capturing users’ requirements.

In this paper, we proposed a temporal extension of
the MultiDimER model for representing time-varying
levels and hierarchies. This model allows to represent
both temporal and time-invariant levels and hierar-
chies. In this way, users and designers are able to

choose and express in a unambiguous way which ele-
ments they want to be time invariant and for which
data they want to express changes occurred in time,
as recommended by Gregersen and Jensen (1998).

We included in the model valid and transaction
time coming from source systems and the data ware-
house loading time generated by a TDW. In this way,
users can traverse hierarchies knowing when data is
valid in the modelled reality, expand the analysis to
traceability applications, and know since when data
has been available in a TDW. Further, having lifespan
for level members allows to know how the exclusion
or inclusion of different members may affect measure
values.

However, the inclusion of different temporal types
depends on users’ requirements and also on their
availability in source systems. Taking into account
different kinds of source systems, we discussed which
temporal support they can offer.

Next, we proposed to extend the MultiDimER
model adding time-varying attributes and lifespan
of a level. We also discussed three different cases
for time-varying hierarchies: (1) temporal levels with
non-temporal relationships between them, (2) tem-
poral relationships between temporal levels, and (3)
temporal relationships between non-temporal levels.
In the first case, we did not allow the modification for
key attributes participating in the roll-up and drill-
down operations. For the second case we established
constraints ensuring that every valid child (respec-
tively parent) member is related to its valid parent
(respectively child) member. In this way, changes to
members as well as the relationship between them
are considered avoiding dangling references. For the
third case we imposed the restriction that level mem-
bers cannot be modified. Further, we included in the
model the snapshot and lifespan cardinalities indicat-
ing the number of members of one level that can be
related to members of another level in every time in-
stant and over its lifespan, respectively.

Finally, we presented the metamodel of dimensions
where levels as well as relationships between them
may vary over time. We finished describing the trans-
formation of the constructs of the MultiDimER model
into the ER model.

Proposing the inclusion of temporal types in a con-
ceptual model allows to include temporal semantics
as an integral part of TDWs. Afterwards, logical
and physical models can be derived from such a con-
ceptual representation. Further, these logical models
can be obtained using a direct mapping of the Multi-
DimER constructs (Malinowski & Zimányi 2005, Ma-
linowski & Zimányi 2006) or using a two-phase ap-
proach: first to the well-known ER model and then
to a chosen logical representation.

This work belongs to a larger project aiming at
developing a methodology for conceptual design of
spatio-temporal data warehouses.

References

Abelló, A. & Mart́ın, C. (2003), A bitemporal stor-
age structure for a corporate data warehouse, in
‘Proc. of the 5th Int. Conf. on Enterprise Infor-
mation Systems’, pp. 177–183.

Allen, J. (1984), ‘Towards a general theory of action
and time’, Artificial Intelligence 23(2), 123–154.

Bliujute, R., Slatenis, S., Slivinskas, G. & Jensen, C.
(1998), Systematic change mangement in dimen-
sional data warehousing, Technical report, Time
Center, TR-23.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

53

Body, M., Miquel, M., Bédard, Y. & Tchounikine, A.
(2003), Handling evolution in multidimensional
structures, in ‘Proc. of the 19th Int. Conf. on
Data Engineering’, pp. 581–592.

Bruckner, R. & Tjoa, A. (2002), ‘Capturing delays
and valid times in data warehouses – towards
timely consistent analyses’, Journal of Intelligent
Information Systems 19(2), 169–190.

Eder, J., Koncilia, C. & Morzy, T. (2002), The
COMET metamodel for temporal data ware-
houses, in ‘Proc. of the 14th Int. Conf. on
Advanced Information Systems Engineering’,
pp. 83–99.

Elmasri, R. & Navathe, S. (2003), Fundamentals of
Database Systems, fourth edn, Adison-Wesley.

Elmasri, R. & Wuu, G. (1990), A temporal model and
query language for ER databases, in ‘Proc. of the
6th Int. Conf. on Data Engineering’, pp. 76–83.

Gregersen, H. & Jensen, C. (1998), Conceptual mod-
eling of time-varying information, Technical re-
port, Time Center, TR-35.

Hurtado, C., Mendelzon, A. & Vaisman, A. (1999),
Maintaining data cubes under dimension up-
dates, in ‘Proc. of the 15th Int. Conf. on Data
Engineering’, pp. 346–355.

Inmon, W. (2002), Building the Data Warehouse,
John Wiley & Sons.

Jarke, M., Lenzerini, M., Y.Vassiluiou & Vassiliadis,
P., eds (2003), Fundamentals of Data Ware-
house, Springer.

Kimball, R., Ross, M. & Merz, R. (2002), The Data
Warehouse Toolkit: The Complete Guide to Di-
mensional Modeling, John Wiley & Sons.

Koncilia, C. (2003), A bi-temporal data warehouse
model, in ‘Proc. of Short Papers of the 15th Int.
Conf. on Advanced Information Systems Engi-
neering’, pp. 77–80.

Malinowski, E. & Zimányi, E. (2004), OLAP hierar-
chies: A conceptual perspective, in ‘Proc. of the
16th Int. Conf. on Advanced Information Sys-
tems Engineering’, pp. 477–491.

Malinowski, E. & Zimányi, E. (2005), Hierarchies in a
multidimensional model: from conceptual mod-
eling to logical representation. Accepted for pub-
lication in Data & Knowledge Engineering.

Malinowski, E. & Zimányi, E. (2006), Object-
relational representation of a conceptual model
for temporal data warehouses. Submitted to
publication.

Mart́ın, C. & Abelló, A. (2003), A temporal study of
data sources to load a corporate data warehouse,
in ‘Proc. of the 5th Int. Conf. on Data Warehous-
ing and Knowledge Discovery’, pp. 109–118.

Mendelzon, A. & Vaisman, A. (2000), Temporal
queries in OLAP, in ‘Proc. of the 26th Very
Large Database Conference’, pp. 243–253.

Mendelzon, A. & Vaisman, A. (2003), Time in mul-
tidimensional databases, in M. Rafanelli, ed.,
‘Multidimensional Databases: Problems and So-
lutions’, Idea Group Publishing, pp. 166–199.

Pedersen, T., Jensen, C. & Dyreson., C. (2001),
‘A foundation for capturing and querying com-
plex multidimensional data’, Information Sys-
tems 26(5), 383–423.

Ravat, F. & Teste, O. (2000), A temporal object-
oriented data warehouse model, in ‘Proc. of the
11th Int. Conf. on Database and Expert Sys-
tems’, pp. 583–592.

Snodgrass, R., ed. (1995), The TSQL2 Temporal
Query Language, Kluwer Academic Publishers.

Yang, J. & Widom, J. (1998), Mantaining temporal
views over non-temporal information source for
data warehousing, in ‘Proc. of the 6th Int. Conf.
on Extending Database Technology’, pp. 389–
403.

Zimányi, E., Parent, C. & Spaccapietra, S. (1997),
TERC+: a temporal conceptual model, in ‘Proc.
of the Int. Symp. on Digital Media Information’.

CRPIT Volume 53

54

Visualization of Music Impression in Facial Expression
to Represent Emotion

Takafumi Nakanishi Takashi Kitagawa

Graduate School of Systems and Information Engineering
University of Tsukuba,

Tsukuba, Ibaraki 305-8573, Japan
Email: takafumi@mma.cs.tsukuba.ac.jp

takashi@cs.tsukuba.ac.jp

Abstract

In this paper, we propose a visualization method
of music impression in facial expression to represent
emotion. We apply facial expression to represent the
complicated and mixed emotions. This method can
generate facial expression corresponding to impres-
sions of music data by measurement of relationship
between each basic emotion for facial expression and
impressions extracted from music data. The feature
of this method is a realization of an integration be-
tween music data and the facial expression that con-
vey various emotions effectively. One of the important
issues is a realization of communication media corre-
sponding to human Kansei with less difficulty for a
user. Facial expression can express complicated emo-
tions with which various emotions are mixed. Assum-
ing that an integration between existing mediadata
and facial expression is possible, visualization corre-
sponding to human Kansei with less difficulty realized
for a user.

Keywords: Mediadata, Facial Expression, Music
Data, Impression, Kansei.

1 Introduction

A large amount of information resources have been
distributed in wide area networks. In this envi-
ronment, a current interface, for example, computer
keystrokes, is difficult of computer manipulation for
human being. One of the important issues is a realiza-
tion of communication media corresponding to human
Kansei with less difficulty for a user. The concept
of “Kansei” includes several meanings on sensitive
recognition, such as “impression,” “human senses,”
“feelings,” “sensitivity,” “psychological reaction” and
“physiological reaction.”

Generally, it is important to understand each other
emotion correctly in our communication. In particu-
lar, facial expression is important as media which con-
vey various emotions effectively. The facial expression
is one of nonverbal behaviors. The facial expression
can express complicated emotions with which various
emotions are mixed which cannot be expressed with
words.

The researches which realize composition and
recognition of the facial expression are done ac-
tively. In these researches, Facial Action Coding
System (FACS)(Ekman & Friesen 1978, Ekman &
Friesen 1987) is used strictly and most widely. FACS

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Third Asia-Pacific Conference on Conceptual
Modelling (APCCM2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology, Vol. 53.
Markus Stumptner, Sven Hartmann and Yasushi Kiyoki, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

describes facial expression with the combination of
some Action Units (AU’s). AU’s are the minimum
units of facial expression operations which are visually
discernible. These research results have shown the
combination of AU’s for expressing 6 basic emotions,
which are “happiness”, “surprise”, “fear”, “anger”,
“disgust”, and “sadness”. The combination of these
basic emotions can express complicated facial expres-
sion.

There are the followings as previous researches
on construction of facial expression, research
which mounts AU and creates the picture of
expression(Choi, Harashima, & Takebe 1990), re-
search of facial imitation by 3D face robot
agent(Hara, & Kobayashi 1996), etc. These re-
searches realize a construction of facial expression
which is close to an actual expression.

In this paper, we propose a visualization method
of music impression in facial expression to represent
emotion. We apply facial expression to represent the
complicated and mixed emotions. This method can
generate facial expression corresponding to impres-
sions of music data by measurement of relationship
between each basic emotion for facial expression and
impressions extracted from music data.

We have already proposed a semantic associative
search method based on a mathematical model of
meaning(Kitagawa & Kiyoki 1993, Kiyoki, Kitagawa
& Hayama 1994). This model is applied to extract
semantically related words by giving context words.
This model can measure the relation between each
word, mediadata, and so on.

In addition, we have already proposed a
media-lexicon transformation operator for music
data(Kitagawa & Kiyoki 2001, Kitagawa, Nakanishi
& Kiyoki 2004). This operator can extract meta-
data which represents the impression of music data
as weighted words.

This proposal method can generate facial ex-
pression corresponding to impression of music data
utilizing the mathematical model of meaning and
the media-lexicon transformation operator for music
data. The feature of this method is a realization of an
integration between existing mediadata, that is mu-
sic data, and nonverbal behaviors that convey various
emotions effectively, that is facial expression. Namely,
the purpose of this method is different from the con-
ventional methods.

The system using facial expression can express im-
pressions of mediadata more appropriately compared
with the system only using the information such as
words. The facial expression can express complicated
emotions. Assuming that complicated emotion can be
expressed, human and the system can share mutual
emotion and the interface corresponding to human
Kansei can be realized.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

55

f1 f2 · · · fn
d1 →
d2 → M...
dm →

Figure 1: Representation of metadata items by ma-
trix M

2 Mathematical Model of Meaning

The mathematical model of meaning(Kitagawa &
Kiyoki 1993, Kiyoki, Kitagawa & Hayama 1994) pro-
vides semantic functions for computing specific mean-
ings of words which are used for retrieving mediadata
unambiguously and dynamically. The main feature of
this model is that the semantic associative search is
performed in the orthogonal semantic space. For de-
tails, see references (Kitagawa & Kiyoki 1993, Kiyoki,
Kitagawa & Hayama 1994).

The mathematical model of meaning consists of:

1. Creation of a metadata space MDS
Create an orthonormal space for mapping the
mediadata represented by vectors (hereafter,
this space is referred to as the metadata space
MDS). The specific procedure is shown below.
When m data items for space creation are given,
each data item is characterized by n features
(f1, f2, · · · , fn). For given di(i = 1, · · · ,m), the
data matrix M (Figure 1) is defined as the m×n
matrix whose i-th row is di. Then, each column
of the matrix is normalized by the 2-norm in or-
der to create the matrix M .

(a) The correlation matrix MT M of M is com-
puted, where MT represents the transpose
of M .

(b) The eigenvalue decomposition of MT M is
computed.

MT M = Q




λ1

. . .
λν

0.·0


 QT ,

(1)

0 ≤ ν ≤ n.

The orthogonal matrix Q is defined by

Q = (q1,q2, · · · ,qn) (2)

where qi’s are the normalized eigenvectors
of MT M . We call the eigenvectors “se-
mantic elements” hereafter. Here, all the
eigenvalues are real and all the eigenvectors
are mutually orthogonal because the matrix
MT M is symmetric.

(c) Defining the metadata space MDS

MDS := span(q1,q2, · · · ,qν). (3)

which is a linear space generated by lin-
ear combinations of {q1, · · · ,qν}. We note
that {q1, · · · ,qν} is an orthonormal basis of
MDS.

2. Representation of mediadata in n-dimensional
vectors
Each mediadata is represented in the n-
dimensional vector whose elements correspond to

Color
(RGB)
Sound

(Wave Form)
Music
(MIDI)
Picture�� ��

Shape,Color �� ��

Specified
Word Set
Prescribed by
an Expert

Psychology
Computer Science
Color Image Scale
Art Critics
Phonetics
Music Theory

Arbitrary
Word Set
Issued by a user

Impression
Object
Action

Any word
Difined in
A Dictionary�
Longman DCE �

Media-Lexicon
Transformation
Operator

Mathematical
Model of
Meaning

Digital
Representation of

Mediadata

Any Word(s) in a
Dictionary

Figure 2: A framework of media-lexicon transforma-
tion operator.

n features. The specific procedure is shown be-
low.
A metadata for mediadata P is represented in t
weighted impression words o1,o2, · · · ,ot. These
impression words are extracted from media-
lexicon transformation operator shown in section
3.

P = {o1,o2, · · · ,ot}. (4)

Each impression word is defined as an n dimen-
sional vector by using the same features as the
features of the data matrix M .

oi = (fi1, fi2, · · · , fin) (5)

The weighted impression words o1,o2, · · · ,ot are
composed to form the mediadata vector, which
is represented as an n dimensional vector. The
Kansei operator shown in subsection 6 of section
4.2 realizes this composition. The mediadata is
represented as mediadata vector which is n di-
mensional vector by using same features as the
features of the data matrix M .

3. Mapping a mediadata vector into the metadata
space MDS
A mediadata vector which is represented in n-
dimensional vectors is mapped into the metadata
space MDS by computing the Fourier expansion
for a mediadata vector and semantic elements.

4. Semantic associative search
A set of all the projections from the meta-
data space MDS to the invariant subspaces
(eigenspaces) is defined. Each subspace repre-
sents a phase of meaning and it corresponds to
a context. A subspace of the metadata space
MDS is selected according to the context. An
association of a mediadata is measured in the se-
lected subspace.

3 Media-lexicon Transformation Operator

In this section, we introduce a media-lexicon trans-
formation operator ML(Kitagawa & Kiyoki 2001).

3.1 A Framework of Media-lexicon Transfor-
mation Operator

In Figure 2, we show a framework of the media-
lexicon transformation operator ML(Kitagawa &
Kiyoki 2001).
ML is an operator which represents a relation be-

tween mediadata and some group of word sets given

CRPIT Volume 53

56

by a research work by an expert of a specific disci-
plinary area. The operator ML is defined as
ML(Md) : Md 7→ Ws
where, Md is an expression of mediadata and Ws

is a specific set of words or a collection of word sets
usually with weights. The mediadata Md is a spe-
cific expression of the mediadata usually in a digital
format. The word set Ws is selected by an expert to
express impression of the specific media.

By this operator ML, we can search or retrieve
the mediadata by arbitrary words issued as a query,
using the mathematical model of meaning(Kitagawa
& Kiyoki 1993, Kiyoki, Kitagawa & Hayama 1994)
which relates any given words to certain word groups
dependent on the given context.

3.2 Media-lexicon Transformation Operator
for Music Data

Media-lexicon transformation operator for music
data(Kitagawa & Kiyoki 2001, Kitagawa, Nakanishi
& Kiyoki 2004) extracts some impression words from
music data. This operator extracts impression words
of a song from elements (musical elements) that de-
termine the form or structure of the song such as
harmony, melody, and so on. The fundamental psy-
chological research that examined correlation rela-
tionships between impressions and musical elements
was conducted by Hevner(Hevner 1935, Hevner 1936,
Hevner 1937, Umemoto.ed. 1966). This operator uses
the correlation relationships indicated by Hevner to
calculate correlations between these sets of musical
elements and impression words.

3.2.1 Research of Hevner

In Hevner’s research(Hevner 1935, Hevner 1936,
Hevner 1937, Umemoto.ed. 1966), key, tempo, pitch,
rhythm, harmony, and melody were given as musi-
cal elements. Hevner examined the correlation re-
lationships between these 6 musical elements and 8
categories of impression words (Figure 3). Each cate-
gory of impression words was created by collecting to-
gether impression words that had similarities to other
words in that category. The 8 categories of impression
words were further arranged in a circle so that cate-
gories were adjacent to other categories to which they
had similarities. Hevner experimentally obtained cor-
relation relationships between musical elements and
impressions represented by categories of impression
words.

3.2.2 An Implementation Method of Media-
lexicon Transformation Operator for
Music Data

This section shows an implementation method of
media-lexicon transformation operator for music
data. For details, see references (Kitagawa & Kiyoki
2001, Kitagawa, Nakanishi & Kiyoki 2004).

This operator consists of three steps:

Step 1 : Composition of Transformation Matrix T .
Transformation Matrix T shown in Figure 4 is
composed by the correlation between musical el-
ements and each impression which are given by
Hevner.

Step 2 : Extraction of musical element vector s.
A musical element analysis data consisting of
data for the structure and form of the song is
extracted from a Standard MIDI File (SMF)
as digitized music data. We form a musical
element vector s which consists of music ele-
ments key, tempo, pitch, rhythm, harmony and

c1
awe-inspiring
dignified
lofty
sacred
serious
sober
solemn
spiritual

c2
dark
depressing
doleful
frustrated
gloomy
heavy
melancholy
mournful
pathetic
sad
tragic

c3
dreamy
longing
plaintive
sentimental
tender
yearning
yielding

c4
calm
leisurely
lyrical
quiet
satisfying
serene
soothing
tranquil

c5
delicate
fanciful
graceful
humorous
light
playful
quaint
sprightly
whimsical

c6
bright
cheerful
gay
happy
joyous
merry

c7
agitated
dramatic
exciting
exhilirated
impetuous
passionate
restless
sensational
soaring
triumphant

c8
emphatic
exalting
majestic
martial
ponderous
robust
vigorous

Figure 3: Hevner’s 8 categories of impression words.

key’ tempo’ pitch’ rhythm’ harmony’ melody’

c1 4 -14 -10 18 3 4
c2 -12 -12 -19 3 -7 0
c3 -20 -16 6 -9 4 0
c4 3 -20 8 -2 10 3
c5 21 6 16 8 12 -3
c6 24 20 6 -10 16 0
c7 0 21 -9 2 -14 -7
c8 0 6 -13 10 -8 -8

Figure 4: Transformation Matrix T indicating the re-
lationships between impression word categories and
musical elements.

melody generated from the musical element anal-
ysis data.
The vector is represented as follows.

s = (key, tempo, pitch, rhythm,

harmony, melody)t. (6)

Step 3 :Extraction of impression words
Transformation Matrix T transforms musical el-
ement vector s to the weights v (music category
vector) of the 8 categories of impression words.

v = T s (7)

A music category vector v is an 8 dimensional
real valued vector.

v = (vc1 , vc2 , · · · , vc8)
t. (8)

The impression words in the same category are
equally weighted by the corresponding weights of
the category given by v.

This is metadata due to weighted impression word
categories, which is output by the media-lexicon
transformation operator for music data. We can pro-
duce a set of weighted impression words from a music
media data given in the form of MIDI.

3.3 Construction of Operator to Generate
Facial Expression

A set of construction operators to generate facial
expression for each fundamental feeling (basic emo-
tion) such as happiness，surprise，fear，anger，dis-
gust，sadness is based on Facial Action Coding

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

57

Table 1: A part of Action Unit.

AU Description

1 Inner Brow Raiser

2 Outer Brow Raiser

4 Brow Lower

5 Upper Lid Raiser

6 Cheek Raiser

7 Lid Tighter

9 Nose Wrinkler

10 Upper Lip Raiser

12 Lip Corner Puller

15 Lip Corner Depressor

17 Chin Raiser

20 Lip stretcher

23 Lip Tighter

24 Lip Pressor

25 Lips part

26 Jaw Drop

27 Mouth Stretch

System(FACS)(P.Ekman et.al 1978, Ekman & Friesen
1987).

3.3.1 Facial Action Coding System

Facial Action Coding System (FACS) by research of
P. Ekman and W.V. Friesen can be used for show-
ing a motion of a face based on dissection analysis of
action of a face. In an objective facial expression con-
sultation system, this is one of the methods currently
used strictly and most widely.

P. Ekman and W.V. Friesen have shown how the
appearance of a face changes with expansion and con-
traction of the each part of a face. And, they have
clarified the method of determining how each emotion
relates to each part of a face.

FACS describes facial expression with the combi-
nation of some Action Units (AU’s). AU’s are the
minimum units of facial expression operations which
are visually discernible. Table 1 shows a part of ex-
planation of AU identifiers and their operations.

Moreover, the research results(P.Ekman et.al
1978, Ekman & Friesen 1987) have shown some com-
bination of AU’s for expressing each basic emotion.
Figure 5 shows typical combination. The numbers
in each face in Figure 5 express the identifiers of
AU’s, and the face in the back expresses the ex-
pressionless face with which feeling is not expressed.
These facial expression are constructed using “Face
Tool”(FaceTool).

The basic emotions are further arranged in a cir-
cle so that emotions are adjacent to other emotions
to which they have similarities. The combination of
these basic emotions can express a complicated facial
expression.

3.3.2 An Implementation Method for Con-
struction of Facial Expression

This section shows an implementation method for
construction of facial expression. This operator con-
sists of three steps:

Step 1 : Composition of Transformation Matrix F .
Transformation Matrix F is composed by the
correlations between each basic emotion and
Action Units (AU’s) which are the minimum
units of facial expression. The correlations are

happiness

surprise

fear

anger

disgust

sadness

6

4

12

1
4

15

9

1615
17

10

5

7

22 2317

12
45

25 26 27
20

12
5

26 27

Figure 5: Relations between basic emotions and AU

presented in (P.Ekman et.al 1978, Ekman &
Friesen 1987) and shown in Figure 5.

Step 2 : Composition of a basic emotion vector w.
We form a basic emotion vector w which has the
weights of the basic emotion, and the vector is
defined as

w = (w1, w2, · · · , w6)T . (9)

Step 3 :Construction of facial expression
Transformation Matrix F transforms a basic
emotion vector w to the weights u of the AU’s.

u = Fw (10)

It is possible to construct an expression corre-
sponding to each basic emotion by reflecting the
weights u. We can construct facial expression from
basic emotions.

4 Visualization of Music Impression in Facial
Expression to Represent Emotion

This section shows a visualization method of music
impression in facial expression to represent emotion.
This method can measure the relationship between
each impression of music data and face expression. In
section 4.1, we represent an associative heterogeneous
mediadata search method. In section 4.2, we propose
a visualization method of music impression in facial
expression to represent emotion.

4.1 An Associative Heterogeneous Media-
data Search Method

An associative heterogeneous mediadata search
method is shown in Figure 6.

The media-lexicon transformation operator is ap-
plied to extract impression words from each media-
data. The mathematical model of meaning(Kitagawa
& Kiyoki 1993, Kiyoki, Kitagawa & Hayama 1994)
is applied to extract semantically related each word.
Therefore this model can measure the relation of
each word extracted from media-lexicon transforma-
tion operator for each mediadata. By these functions,

CRPIT Volume 53

58

Media-lexicon
Transformation

Operator

Music Media
Database

Media-lexicon
Transformation

Operator

Image Media
Database

Media-lexicon
Transformation

Operator

Facial Expression
Database

Semantic Associative Search Function
by the Mathematical Model of Meaning

Figure 6: A fundamental framework for an associative
heterogeneous mediadata search method.

Facial expression

Construction operator
to generate

facial expression

Music data

Kansei
Operator

Media-lexicon
Transformation

Operator for music data

Mathematical
Model
of Meaning

Kansei
Operator

Normalize
a music
category

vector

Normalize
a basic

emotion
vector

Figure 7: The process of a visualization method of
music impression in facial expression to represent
emotion.

this method can measure the relationship between
each impression of heterogeneous mediadata.

By realization of this method, an integration ap-
propriately corresponding to the impression between
heterogeneous mediadata on meta-level are realized
easily. This method can generate new information
by the integration appropriately corresponding to
the impression between heterogeneous mediadata on
meta-level. This method realizes to bridge over het-
erogeneous mediadata which exist independently as
different database resources.

4.2 An Visualization Method of Music Im-
pression in Facial Expression to Repre-
sent Emotion

In this section, we show a visualization method of mu-
sic impression in facial expression to represent emo-
tion. This method can composite facial expression
corresponding to impressions of a music data.

Facial expression is one of nonverbal behaviors.
The facial expression is important as media which
convey various emotion effectively. Assuming that
an integration between existing mediadata and facial
expression is realized, the interface corresponding to
human Kansei is realized.

The process of this method is shown Figure 7.
This method consists of following operations.

1. Mathematical model of meaning
The Mathematical model of meaning can mea-
sure the semantic relation between each word.
This function measures correlations between 6
basic emotion words and 8 impression word cate-
gories with weights from the media-lexicon trans-
formation operator for music data.
This model has shown in section 2.

2. Media-lexicon transformation operator for music
data
The media-lexicon transformation operator for
music data can extract the weighted impression
word categories corresponding to the impression
of the music data.
This function has shown in section 3.2.

3. Normalize a music category vector
Impression word categories corresponding to the
music data and their weights are output by the
media-lexicon transformation operator. How-
ever, these weights generally have not been nor-
malized.
The following formulas fN are applied in this pa-
per.

fN (vc1 , vc2 , · · · , vc8) : (v′c1
, v′c2

, · · · , v′c8
)

7→ (
vc1

max1
,

vc2

max2
, · · · , vc8

max8
). (11)

max1,max2, · · · ,max8 denote the maximum
weight values of each words category. Details
are presented in reference (Kitagawa, Nakanishi
& Kiyoki 2004).

4. Construction operator to generate facial expres-
sion
The construction operator to generate facial ex-
pression can construct facial expression from the
basic emotion vector which is correlation values
measured in the mathematical model of meaning.
This function has shown in section 3.3.

5. Normalize a basic emotion vector
The basic emotion vector which consists of 6 cor-
relations of basic emotions for construction of fa-
cial expression is extracted by measurement of
the relation between basic emotion words and im-
pression words of music data in the mathematical
model of a meaning. However, the basic emotion
vector generally has not been normalized. The
following formulas are applied in this paper.
The basic emotion vector fev which consists of 6
non-normalization correlations extracted by the
mathematical model of meaning is defined as

fev = (b1, b2, · · · , b6)T . (12)

This vector is normalized as follows:

fev′ = (b′1, b
′
2, · · · , b′6)T . (13)

b′i =
bi∑6

j=1 bj

.

It is shown in reference (Ekman & Friesen 1987)
that a complicated facial expression can be con-
structed with the combination of 6 basic emo-
tions. Each AU is independent anatomically.
These formulas are normalization to the value
showing the rate which each basic emotion com-
bine.
Moreover, there is a risk that the small amount
of features may generally be impurities which
worsen results. The feature of facial expression
is more clarified by removing these values. These
are shown as follows, using the removed value as
wi.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

59

wi =
{

b′i (b′i ≥ ε)
0 (b′i < ε)

ε =

∑6
j=1 b′j
6

. (14)

Thus the normalized basic emotion vector is con-
stituted.

w = (w1, w2, · · · , w6)T . (15)

These formulas are not always determined in this
normalization method, because there is a limit in
finding suitable normalization formulas in an ex-
periment. These formulas as the normalization
method are open to discussion. These normaliza-
tion formulas need verification by the specialist.
This verification is a future work.

6. Kansei operator
The Kansei operator(Kitagawa, Nakanishi &

Kiyoki 2004) is used to adjust the expression
with the interpretation of human sensitivity com-
puted by the logarithmic function based on Fech-
ner’s law(Ohyama et al. ed. 1994). This function
and a semantic associative search method make
it possible to realize semantic search according
to the human Kansei for multimedia data.
When impression word weights are composed
for each feature, Kansei operator positions the
sum total of each of the features as the stimu-
lus strength and uses Fechner’s law to obtain the
sensation magnitude corresponding to that stim-
ulus as the composed weight.

(a) Fechner’s law
E.H. Weber has shown that human beings
perceive the ratio of the difference in the
magnitudes of objects rather than perceives
the difference between the magnitudes of
objects by the discrimination experiment of
weights. Fechner named this fact, which
Weber had discovered, Weber’s law.
Fechner supposed that Weber’s law is gen-
erally applied and leads to

dγ = k
dβ

β
, (16)

where k : proportionality constant; β :
magnitude of a stimulus(hereafter stimulus
strength); γ : sensation magnitude; dβ, dγ
: infinitesimal increases in the stimulus
strength and sensation magnitude.
By the integration of (16),

γ = k(log β − log b), (17)

where log b is the integration constant.
Therefore, γ is as follows:

γ = k log
β

b
. (18)

The sensation magnitude is proportional to
the logarithm of the stimulus strength. This
is called the Fechner’s law.

(b) Construction of the Kansei operator
Each feature assigned to each impression
word can be viewed as a stimulus in that
feature. Obtaining the sum totals of each
feature can be thought of as obtaining the
stimulus strength in each feature possessed
by the mediadata Therefore, the sum to-
tal of each feature in each impression word
can be assigned the meaning of the stimulus
strength of that feature.
Kansei operator g is shown as follows;

y = (y1, y2, · · · , yn)T ,

g(y) := (γ1, γ2, · · · , γn)T , and

γj =

{
k logα |yj |+ 1 (yj > 0)

0 (yj = 0)
−(k logα |yj |+ 1) (yj < 0)

(19)

where k and α are the parameters which
can be set up as sensational volumes. These
parameters are taken as k = 1, α = 6 in the
case of music data (Kitagawa, Nakanishi &
Kiyoki 2004), and k = 10, α = 18 in the case
of facial expression by our pilot studies.

5 Experiments

To verify the effectiveness of this method, we built
an experimental system based on this method, and
performed verification experiments.

5.1 Experimental environment

To create metadata spaceMDS, we used the English-
English dictionary Longman Dictionary of Contem-
porary English(Sumners et al. ed. 1987). This dic-
tionary uses only approximately 2,000 basic words to
explain approximately 56,000 headwords. We created
the data matrix M in subsection 1 of section 2 by
treating basic words as features and setting the ele-
ment corresponding to a basic word to “1” when the
basic word explaining a headword had been used for
an affirmative meaning, setting it to “-1” when the
basic word had been used for a negative meaning,
setting it to “0” when the basic word was not used,
and setting it to “1” when the headword itself was a
basic word. In this way, we generated the metadata
space MDS, which is an orthonormal space of ap-
proximately 2000 dimensions. This space can express
22000 different phases of the meaning.

The facial expression construction part in this
experiment system is realized by utilizing “Face
Tool”(FaceTool).

5.2 Experimental Method

We verify output results which are the generated fa-
cial expression by the some music data in this exper-
imental system.

We use 4 well-known pieces which have rather
apparent impression to anyone in MIDI format for
some input data in this system. These pieces are
“Clap your hands”, “Brahms 3rd Symphony”, “Song
of four seasons”, and “Silent night holy night”. The
well-approved impressions of the pieces are as follows:
“Clap your hands”, which goes like clap your hands
if you are happy, has impression of merry, happy,
and joy. “Brahms 3rd Symphony” has impression
of heavy. “Song of four seasons”, which goes like
one who loves spring has pure heart, has impression
of tender, sad and sentimental. “Silent night holy

CRPIT Volume 53

60

�

�

� �

� �

���

��� � � 	
���� �
� ��� � � 	 � � � ��� � �
�� ��� � 	 � � ��� ��� � �
���� � ��
��

�
�� ����� 	
��

Figure 8: The result of subject investigation about
impression of “Clap your hands”.

�

�

� �

� �

� �

� � � � � � 	

�
 �
 �
 �
 	�� 	 �
 � � � 	
�� �
 � �
 ��
 � � � 	

 ��� �
� �
 ��	
 � � �

Figure 9: The result of subject investigation about
impression of “Brahms 3rd Symphony”.

night” has impression of holy and solemn. This ex-
periment system inputs these music data, and 4 fa-
cial expressions corresponding to those impressions
are extracted in this experiment. We conduct hear-
ing investigations about impressions of these facial
expressions and impressions of these music data.

5.3 Experiment Results

First, hearing investigation was conducted about im-
pressions of these music data. Subjects of 21 adult
men and women are asked to select the appropri-
ate impression corresponding to music data in 6
items. The items are “happiness”, “surprise”, “fear”,
“anger”, “disgust”, and “sadness”. These items are
the same as basic emotions for facial expression.

The results of these investigations about each im-
pression about “Clap your hands”, “Brahms 3rd Sym-
phony”, “Song of four seasons”, and “Silent night holy
night” are shown in Figure 8, 9, 10, and 11.

In case of “Clap your hands” shown in Figure 8,
all subjects have answered “happiness”. This result
corresponds to the impression of this music that we
assumed.

In case of “Brahms 3rd Symphony” shown in Fig-
ure 9, more than 40% subjects have answered “fear”.
However other subjects have answered “surprise”,
“anger”, “disgust”, and “sadness”. We assumed the
impression of this music to be heavy. The impres-
sion of “heavy” is close on sadness, angry, and fear in
meaning. Thus this result corresponds to the impres-
sion that we assumed.

�

�

� �

� �

� �

� � � � � � 	

�
 �
 �
 �
 	 � 	 �
 � � � 	
�� �
 � �
 ��
 � � � 	

���� �
� �
 ��	
 � � �

Figure 10: The result of subject investigation about
impression of “Song of four seasons”.

�

�

� �

� �

� �

� � � � � � 	

�
 �
 �
 �
 	�� 	 �
 � � � 	
�� �
 � �
 ��
 � � � 	

 ��� �
� �
 ��	
 � � �

Figure 11: The result of subject investigation about
impression of “Silent night holy night”.

Table 2: The result extracted from “Clap your
hands”.

C6 59.019306
C5 37.261279
C7 13.467024
C8 -6.346211
C4 -11.518259
C3 -17.185234
C1 -25.459551
C2 -34.546004

In case of “ Song of four seasons” shown in Figure
10, more than 90% subjects have answered “sadness”.
This result corresponds to the impression of this mu-
sic that we assumed.

In case of “Silent night holy night” shown in Fig-
ure 11, more than 60% subjects have answered “hap-
piness”, and about 30% subjects have answered “sad-
ness”. This result never corresponds to the impres-
sion of this music that we assumed.

The results extracted by the media-lexicon trans-
formation operator for music shown in section 3.2
from 4 MIDI data are shown in the Table 2, 3, 4,
and 5.

In case of “Clap your hands” shown in Table 2,
weight of the impression word category of C6 express-
ing “happy” is the largest. This result corresponds to
the subject investigation.

In case of “Brahms 3rd Symphony” shown in Ta-
ble 3, weights of the impression word categories of
C2 and C3 expressing “sad”, “heavy”, and “longing”
are large. The impression of “heavy” is close on sad-
ness, angry, and fear in meaning. This result almost
corresponds to the subject investigation.

In case of “ Song of four seasons” shown in Ta-
ble 4, weights of the impression word categories of C2
and C3 expressing “sad”, “heavy”, and “longing” are
large. This result corresponds to the subject investi-
gation.

In case of “Silent night holy night” shown in Ta-
ble 5, weight of the impression word category of C1
expressing “serious” is the largest. However, weight
of the impression word category of C6 expressing
“happy” is also large. This song has not only serious
but also happy. The impression word category of C2

Table 3: The result extracted from “ Brahms 3rd
Symphony ”.

C2 21.727009
C3 14.127015
C7 6.552777
C8 -4.168117
C4 -8.970285
C6 -18.778780
C5 -19.791271
C1 -19.205445

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

61

Table 4: The result extracted from “ Song of four
seasons”.

C3 17.863154
C2 14.470195
C4 1.070744
C7 -2.208193
C8 -7.584915
C5 -9.435428
C6 -9.925302
C1 -17.619686

Table 5: The result extracted from “ Silent night holy
night”.

C1 21.469676
C6 11.058502
C5 9.959276
C4 6.508946
C8 5.181874
C7 -6.144448
C2 -9.816415
C3 -12.011969

expressing “sadness” which about 30% subjects have
answered has negative weights. This result never cor-
responds to the subject investigation. We find that it
is difficult for such song to decide impression.

The results of measurement of correlations be-
tween 6 basic emotion words and 8 impression word
categories with weights utilizing the mathematical
model of meaning are shown in the Table 6, 7, 8,
and 9.

In case of “Clap your hands” shown in Table 6,
correlation of “happiness” is the largest in 6 basic
emotion words. “Happiness” is close to “C6” seman-
tically. In case of “Brahms 3rd Symphony” shown in
Table 7, correlation of “sadness” is the largest in 6
basic emotion words. “Sadness” is close to “C2” or
“C3” semantically. In case of “ Song of four seasons”
shown in Table 8, correlation of “sadness” is also the
largest in 6 basic emotion words. In case of “Silent
night holy night” shown in Table 9, correlations of
“happiness”, “surprise” and “anger” are large in 6 ba-
sic emotion words. “C1” is close to “anger” and “sur-
prise” in the mathematical model of meaning utilizing
the space constructed by Longman Dictionary of Con-
temporary English(Sumners et al. ed. 1987). “C1” is
closer to “C8” expressing “emphatic” than “C4” ex-
pressing “calm” in Hevner’s work. Actually, “anger”
and “surprise” are emphatic expressions. These re-
sults are appropriately measured by the mathemati-
cal model of meaning.

Finally, the experimetal results which facial ex-
pression are constructed are shown in Figure 12, 13,
14, and 15.

In the case of Figure 12, “happiness” as facial ex-
pressions are automatically created. In the case of
Figure 13, facial expression which mixed “sadness”
and “fear” is automatically created. In the case of
Figure 14, “sadness” as facial expressions are auto-
matically created. In the case of Figure 15, facial

Table 6: The result of measurement correlations
(“Clap your hands”).

happiness 0.153885
anger 0.134517

surprise 0.131953
fear 0.127711

disgust 0.105515
sadness 0.077445

Table 7: The result of measurement correlations
(“Brahms 3rd Symphony”).

sadness 0.340237
anger 0.177366
fear 0.173911

surprise 0.143764
disgust 0.123588

happiness 0.097354

Table 8: The result of measurement correlations
(“Song of four seasons”).

sadness 0.326680
anger 0.214740
fear 0.204385

disgust 0.190738
surprise 0.183363

happiness 0.139167

expression which mixed “happiness” and “surprise”
are automatically created.

Moreover, the results by subjects of 21 adult men
and women are shown Figure 16, 17, 18, and 19.
These results show whether the output result corre-
sponds to the impression of input pieces. All subjects
are asked to select the most appropriate item from
“Exaggerated”, “Correct”, “Almost Correct”, “Com-
fortable”, “Slightly Different”, and “Totally Differ-
ent”.

In the case of “Clap your hands” shown in Figure
16, the more than 90% subjects have answered “Cor-
rect”, “Almost Correct” and “Comfortable.” This re-
sult is shown that this facial expression corresponds
to impressions of this song.

In the case of “Brahms 3rd Symphony” shown
in Figure 17, the more than 70% subjects have an-
swered “Correct”, “Almost Correct” and “Comfort-
able.” This result is shown that this facial expression
corresponds to impressions of this song.

In the case of “Song of four seasons” shown in
Figure 18, the more than 80% subjects have an-
swered “Correct”, “Almost Correct” and “Comfort-
able.” This result is shown that this facial expression
corresponds to impressions of this song.

In the case of “Silent night holy night” shown in
Figure 18, the more than 70% subjects have answered
“Exaggerated”, “Slightly Different” and “Totally Dif-
ferent”.

The media-lexicon transformation operator for
music extracts not only “C1” expressing “serious”
but also “C6” expressing “happy” from “ Silent night
holy night”. Hereby, facial expression which mixed
“happiness” and “surprise” are automatically cre-
ated. These results are appropriate for the experi-
mental system. In contrast, “Silent night holy night”
has the more than 60% subjects who have answered
“happiness” like “Clap your hands”. However, the
impression of “Silent night holy night” is holy and
solemn unlike “Clap your hands” certainly. In the
case of this song, it is thought that the impression
of other elements such as lyrics, a title and so on

Table 9: The result of measurement correlations
(“Silent night holy night”).

happiness 0.228688
surprise 0.185209
disgust 0.178705
anger 0.176306
fear 0.175334

sadness 0.114702

CRPIT Volume 53

62

Figure 12: The result (“Clap your hands”).

Figure 13: The result (“Brahms 3rd Symphony”).

is large. Assuming that a media-lexicon transforma-
tion operator for other elements is realized, clearer
impression words will be extracted and appropriate
facial expression will be constructed. A realization of
the media-lexicon transformation operator for other
elements is our future work.

As shown in those results, we have clarified that
our method constructs various facial expressions from
arbitrary music data.

6 Conclusion

In this paper, we proposed a visualization method
of music impression in facial expression to represent
emotion. We clarified the effectiveness of this method
by showing several experiment results.

This method realizes an integration correspond-
ing to the impression between existing mediadata and
nonverbal behaviors that convey various emotions ef-
fectively. The interface corresponding to human Kan-
sei with less difficulty for a user is realized by this
method which realize a integration appropriately cor-

Figure 14: The result (“Song of four seasons”).

Figure 15: The result (“Silent night holy night”).

�

�

� �

� �

� �

� � � � � � 	 �
 � �
��� 	 	 � �
���� ��� �

��� 	 	 � �

��� ��� � 	
 � � � ��� � � � �
 � �
� � � � � 	 � �

 !�
 � � � �
"#� � � � 	 � �

$!� %
� � � &�� 	 � � �

Figure 16: The result of subject investigation about
“Clap your hands”.

responding to the impression between existing medi-
adata and facial expression.

We believe that this method which realizes an inte-
gration appropriately corresponding to the impression
between existing mediadata and facial expression can
be used for a realization of the interface corresponding
to human Kansei with less difficulty for a user.

As our future work, we will realize a learning mech-
anism according to individual variation. We will also
consider analytical evaluation and verification by the
specialist for facial studies. Furthermore, we will ap-
ply this method to various type of existing mediadata
and nonverbal behaviors.

Acknowledgment

We really appreciate Prof. Yasushi Kiyoki, Faculty of
Environmental Information, Keio University, for his
substantial supports to enhance the presentation of
the paper.

References

Ekman,P. & Friesen,W.V. (1978), Facial Action Cod-
ing System, Consulting Psychologist Press.

�

�

� �

� �

� �

� � � � � � 	 �
 � �
��� 	 	 � �
���� ��� �

��� 	 	 � �

��� ��� � 	
 � � � ��� � � � �
 � �
� � � � � 	 � �

 !�
 � � � �
"#� � � � 	 � �

$!� %
� � � &�� 	 � � �

Figure 17: The result of subject investigation about
“Brahms 3rd Symphony”.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

63

�

�

� �

� �

� �

� � � � � � 	 �
 � �
��� 	 	 � �
���� ��� �

��� 	 	 � �

��� ��� � 	
 � � � ��� � � � �
 � �
� � � � � 	 � �

 !�
 � � � �
"#� � � � 	 � �

$!� %
� � � &�� 	 � � �

Figure 18: The result of subject investigation about
“Song of four seasons”.

�

�

� �

� �

� �

� � � � � � 	 �
 � �
��� 	 	 � �
���� ��� �

��� 	 	 � �

��� ��� � 	
 � � � ��� � � � �
 � �
� � � � � 	 � �

 !�
 � � � �
"#� � � � 	 � �

$!� %
� � � &�� 	 � � �

Figure 19: The result of subject investigation about
“Silent night holy night”.

Ekman,P. & Friesen,W.V., Kudo,T.(translator and
editor) (1987), A guide to expression analysis-The
meaning hidden in expression is explored, Sisin-
Shobou Press.

Choi,CS., Harashima,H. & Takebe,T. (1990), 3-
dimensional facial model-based description and.
synthesis of facial expressions, The Transac-
tions of the Institute of Electronics, Information
and Communication Engineers, Vol.J73-A, No.7,
pp.1270-1280.

Hara,F. & Kobayashi,H. (1996), Real-time fa-
cial interaction between human and 3D face
agent, Proc.5th IEEE International Workshop
on Robot and Human Communication (RO-
MAN’96), pp.401–409.

Kitagawa,T. & Kiyoki,Y. (1993), The mathematical
model of meaning and its application to multi-
database systems, Proceedings of 3rd IEEE Inter-
national Workshop on Research Issues on Data
Engineering: Interoperability in Multidatabase
Systems, pp.130–135.

Kiyoki,Y., Kitagawa,T. & Hayama,T. (1994), A
metadatabase system for semantic image search
by a mathematical model of meaning, ACM SIG-
MOD Record, vol. 23, no. 4, pp.34–41.

Kitagawa,T. & Kiyoki,Y. (2001), Fundamental frame-
work for media data retrieval system using media
lexico transformation operator, Information Mod-
elling and Knowledge Bases, vol.12, pp. 316–326.

Kitagawa,T., Nakanishi,T. & Kiyoki,Y. (2004), An
Implemantation Method of Automatic Metadata
Extraction Method for Music Data and its Appli-
cation to a Semantic Associative Search, Systems
and Conputers in Japan, Vol.35, No.6, pp59-78.

Hevner,K. (1935), Expression in music: A discussion
of experimental studies and theories, Psychologi-
cal Review, Vol. 42, pp. 186–204.

Hevner,K. (1936), Experimental studies of the ele-
ments of expression im music, American Journal
of Psychology, Vol. 48, pp. 246–268.

Hevner,K. (1937), ‘The affective value of pitch and
tempo in music, American Journal of Psychology,
Vol. 49, pp. 621–630.

Umemoto,T.(editor). (1966), Music Psychology,
Seishin-Shobo Press.

FaceTool
http://www.hc.t.u-tokyo.ac.jp/project/face/

Oyama,T., Imai,S. & Wake,T.(editors) (1994), New
edition, Handbook of sensory and perceptive psy-
chology, Seishinshobou Press.

Sumners,D. et al. (1987), Longman dictionary of con-
temporary English, longman.

CRPIT Volume 53

64

Modelling Human Perception to Leverage the Reuse of Concepts
across the Multi-sensory Design Space

Keith V. Nesbitt
School of Information Technology

Charles Sturt University
Panorama Av, Bathurst, NSW
knesbitt@csu.edu.au

Abstract
Information Visualisation is an emerging discipline that
concerns the design of interactive computer systems that
provide the user with a visual model of abstract data.
Information Visualisation implies a mapping from the
data attributes to the units of visual perception.
Information Sonification is an embryonic field that uses
sound rather than imagery to present abstract data.
Information Sonification, implies a mapping from the data
attributes to the units of auditory perception. In both these
fields the need to describe appropriate mappings between
the data and the units of perception has led to models or
taxonomies that describe the available design space.
While these models of the visual design space and the
auditory design space may be appropriate for people
working in a single sensory domain, these models based
purely on sensory attributes are very disjoint. However,
for designers who wish to consider a multi-sensory
solution to information display, these disjoint models of
the different sensory domains make it difficult to compare
and contrast the possible mapping choices.

This paper describes existing conceptual models of the
visual and auditory design space and then proposes a
different conceptual modelling of the multi-sensory
design space. This new model describes the units of
perception but is not based on sensory attributes, but
typical information metaphors. Throughout the paper all
discussions are illustrated using the UML modelling
notation which is a standard notation used to document
the design of software systems..

Keywords: Perception, Modelling, Multi-sensory

1 Introduction

The idea of mining large abstract data sets for useful
patterns is an attractive proposition, especially at a time
when most companies are growing larger and larger
stocks of data. The most traditional notion of data mining

.Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Third Asia-Pacific Conference on
Conceptual Modelling (APCCM2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 53. Markus Stumptner, Sven
Hartmann, and Yasushi Kiyoki, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

is an automated process, which involves running rule-
finding algorithms across the data to automatically detect
patterns. However, there is also a growing interest in the
idea of developing tools that support human pattern
recognition within large data sets. Such human perceptual
tools present the data to the user’s senses (vision, hearing,
touch) in a way that the user can search for useful
patterns.

It might be expected that Human Perceptual Tools are
particularly useful where; unpredictable exceptions may
occur in the data; heuristics are required to filter subtle
variations; the target is unknown or cannot be precisely
formalised by rules and; the problem requires intuitive
knowledge that is hard to formalise, such as, past
experience.

During the 1990s, the accent for Human Perceptual Tools
was on designing visual displays of data. This approach is
sometimes called visual data mining (Soukup 2002),
although the more general term is information
visualisation (Card, Mackinlay et. al. 1999). A number of
example applications have been described and the field is
beginning to develop a more theoretical basis (Card,
Mackinlay et. al. 1999).

By contrast the use of other senses, such as, hearing and
haptics (touch) to display abstract data are fairly
embryonic. The term information sonification is used to
describe auditory models of abstract data and despite a
number of validated uses of sound for finding patterns in
abstract data (Kramer, G. 1994) the field can probably be
best described as immature.

Haptic displays are still relatively uncommon although
some novel applications have been developed, for
example, the use of haptic displays for investigating
patterns within force fields (Brooks, Ouh-Young et al.
1990) and fluid flow models (Nesbitt, Gallimore et al
2001).

Regardless of the particular sensory modality, the
designer of a human perceptual tool can describe the
design as a mapping between the data and the some
characteristics of the model. A common approach is to
map the data to the display artefacts that can be perceived
by the user. Assuming there are no shortcomings in the
display itself, the possible range of artefacts can be
described as the fundamental elements or units of human
perception. For example colour and shape are two of the
visual perceptual units available to a designer. If the

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

65

display shows stock market data then price might be
mapped to colour and the trade volume to shape.

Good designers must understand the range of possibilities
and therefore one of first steps in formalising the design
process is to categorise the design space. Some rigorous
attempts to categorise visual artefacts (Bertin 1981, Card
and Mackinlay 1997) have resulted in descriptions of the
visual design space (figure 2). Within the auditory design
space some common methodologies, such as earcons
(Blattner, D. Sumikawa, et al 1989) and auditory icons
(Gaver 1986) have developed. There is also some
agreement about the perceived characteristics of sound
(Kramer, G. 1994) which can be used for sonification,
although perceptual qualities, such as, timbre have proved
difficult to synthesize in a controlled way.

Multi -sensory

Design Space

Spatial

Design

Space

Direct

Design

Space

Temporal

Design

Space

Visual

Design

Space

Auditory

Design

Space

Haptic

Design

Space

Multi -sensory

Design Space

A typical modelling of of the multi -

sensory design space is along sensory

boundaries. However, this can lead to

disjoint models, making it difficult to

compare and contrast designs

developed for the different modalities.

An alternative modelling of of the multi -

sensory design space considers typical

design approaches (metaphors). This

results in a model that is independent of

sensory modality.

Figure 1: High-level divisions of the design space

One problem with these existing descriptions of the visual
and auditory design space is that they do not enable the
reuse of concepts across the different senses. Of course
these models were never intended for multi-sensory
display and so it is not surprising that there is a lack of
reusable concepts which can be used to classify the multi-
sensory design space.

Rather then use sensory divisions to model the perceptual
design space, the approach taken in this work is to base
the model on general information design strategies or
metaphors. This will lead to a conceptual model that is
not specific to any single sense, and allows the designer
to reuse concepts across sensory domains.

2 Previous Models of the Design Space

The size of the multi-sensory design space and the
complex nature of human perception has led to
fragmented expertise as researchers tend to narrow the
scope of their work and focus on designing displays for a
single sense. Therefore, a very natural division of the
design space along sensory modalities occurs (figure 1).
While divisions along sensory boundaries has proved
useful to narrow scope by segmenting the research into
haptic, visual and auditory display it has also meant that a
language common to all senses has not been developed.

The fact that models are disjoint is not surprising as
conceptual models of the design space for each sense
have developed independently of each other and without

regard for how models from the other sensory domains
might be related. For example, models of the visual
design space (figure 2) and auditory design space (figure
3, 4) have little in the way of shared concepts to connect
them. For example a key concept in the visual design
space is "marks" which does not generalise well to
auditory display (Card and Mackinlay, 1997). While
"space" is very important in visual design, it is rarely
discussed as an auditory design strategy.

Visual
Structure

modifies
Temporal
Encoding

MarkSpatial
Substrate

Graphical
Property

1

* *

*

Visual structures are composed

of a spatial substrate and marks .

These marks may have a number

of graphical properties . Temporal

encoding implies that the spatial

substrate , marks or graphical

properties may vary over time.

Surface

Point Line Area Volume

uses

Enclosure

Marks

Connection

uses

The types of marks used in visual structures are

points , lines and areas. Surfaces and volumes

typically describe marks in 3D displays.

Connection and enclosure are basic strategies to

display information that use these marks

Graphical
Properties

Spatial
Substrate

based on

Temporal
Encoding

modifies

Size Orientation

Spatial
Encoding

Object
Encoding

Colour
Gray
Scale

Texture Shape

Retinal
Encoding

Position
(X,Y,Z,T)

Flicker Movement

Graphical

properties include a

broad range of

visual perceptual

units, such as,

colour , texture , size,

orientation and

movement .

Figure 2: A model of the visual design space as
proposed by Card and Mackinlay (1997) and
incorporating the graphical properties described by
Bertin (1981)

CRPIT Volume 53

66

For researchers only interested in a single modality of
display these models may well serve their needs.
However, designers of multi-sensory displays must try
and reconcile these disparate models and without a
common language it is difficult to move between sensory
domains. It is also difficult to acquire knowledge in a new
sensory domain by building on previous experience with
a different sensory domain. For example, experts in
visualisation will find it difficult to transfer that
knowledge to the sonification or haptic domain.

Lack of a common framework also makes direct
comparisons between haptic, visual and auditory displays
difficult. A simple example of this is when different types
of data are used on the displays. This can bias the user’s
performance to the display which displays the data most
relevant to the tasks being measured. Even where the
same data is displayed, a comparison between a well-
designed visual display and poorly-designed auditory
display is not particularly useful. It would be nice to have
a more common description of display mappings, so that
designers could better compare display performance
across the senses and, if required, interchange appropriate
mappings between the senses.

Pitch Loudness

Everyday
Properties

Musical
Properties

Timbre

EnvelopeArticulationBrightnessHarmonic
Content

Auditory
Properties

Register
related to

Auditory properties are usually

described in one of two ways.

Musical properties are closely

related to the physical properties of

sounds. For example, pitch is the

perceived property related to signal

frequency and loudness is the

perceived property related to

amplitude (Kramer, 1994)

Figure 3: Descriptions of the auditory design space are
usually based on musical properties (Kramer 1994)

ConfigurationMaterial

Type

Interaction

Force

Restoring
Force

Density Damping Homogeneity

Resonating
Cavities

Size

Shape

Support

Everyday properties described the

way we interpret sounds in terms of

the events that created the sounds

(Gaver 1993)

Everyday
Properties

Musical
Properties

Auditory
Properties

Figure 4: An alternative model of the auditory design
space focuses on the way we interpret sounds in terms
of the events that caused them (Gaver 1993) Gaver
refers to this as everyday listening.

3 An Alternative Model of the Design Space
The MS-Taxonomy is an alternative model of the
perceptual design space that divides the design space by
abstracting the typical types of metaphors that have been
used to design mappings between data attributes and
sensory properties. The metaphors form three main
classes, Spatial Metaphors, Direct Metaphors and
Temporal Metaphors. These classes are general for all
senses. The division of the design space by senses is not
lost but rather forms a second, weaker division of the
design space (figure 5). In software engineering terms the
traditional model of the multi-sensory design space uses
the concepts of visual, auditory and haptic for the most
general base classes (figure 6). The MS-Taxonomy
however uses Spatial Metaphors, Direct Metaphors and
Temporal Metaphors as the most general base classes.

Spatial Metaphors relate to the scale of objects in space,
the location of objects in space and the structure of
objects in space. The key aspect of spatial metaphors is
that they involve some perception of properties that
depend on space. For example, Spatial Metaphors
concern the way pictures, sounds and forces are organised
in space and can be described for the visual, auditory and
haptic senses. Spatial metaphors involve the perception of
a quality (space) that is not associated with any particular
sense. Although different classes of spatial metaphors
(visual, auditory and haptic) can be described, the
concepts that define a spatial metaphor are general and
therefore independent of the senses. It is simply the way
that each sense perceives these spatial qualities that may
vary.

Temporal Metaphors are concerned with how we
perceive changes to pictures, sounds and forces over time.
The emphasis is on displaying information by using the
fluctuations that occur over time. Because there may be
differences in the way we perceive temporal patterns
using each sense, Temporal Metaphors can be considered
not only generally but also for each of the senses.
Temporal metaphors, like Spatial Metaphors, involve the
perception of a quality (time) that is not associated with
any particular sense. Though the three different classes of
temporal metaphors (visual, auditory and haptic) are
described, the concepts that define a temporal metaphor
are general and therefore independent of the senses.

Direct metaphors are concerned with direct mappings
between sensory properties and some abstract
information. The key aspect of Direct Metaphors is that
they involve some perception of properties that depend
directly on the sensory receptors involved. For example,
sensory properties such as a colour for vision, pitch. for
hearing or surface hardness for the haptic sense. Once
again, a class of Direct Metaphors can be defined for
each sense. Unlike Spatial and Temporal Metaphors,
Direct Metaphors are highly specific for each modality.
Each sense perceives distinct sensory properties that are
independent of space and time and directly related to the
sensory receptors involved. These sensory properties can
be used to display data and such mappings are described
as Direct Metaphors. At a low level the concepts of
Direct Metaphors are specific to each sense, however, the
more general concept of a Direct Metaphor applies across

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

67

all senses. Thus, designers may compare or exchange a
direct property of one sense with a direct property of
another sense.

Spatial
Metaphors

Direct
Metaphors
Temporal
Metaphors

Multi-sensory design space

Figure 5. Dividing the multi-sensory design space
using the types of metaphors that commonly occur in
information displays removes the accent on sensory

modalities, allowing reuse of concepts between senses.

Spatial
Metaphors

Temporal
Metaphors

Direct
Metaphors

Task Domain
Metaphors

Spatial
Visual

Metaphors

Spatial
Auditory

Metaphors

Spatial
Haptic

Metaphors

Temporal
Visual

Metaphors

Temporal
Auditory

Metaphors

Temporal
Haptic

Metaphors

Visual
Display

Auditory
Display

Haptic
Display

Direct
Visual

Metaphors

Direct
Auditory

Metaphors

Direct
Haptic

Metaphors

Sensory Display
Modes

 Figure 6. While the accent in the model is on the types
of information metaphors, the senses provide a second

level of division. In software engineering terms this
could also be described as multiple inheritance.

Despite their generality, the abstract general classes of
Spatial Metaphors, Direct Metaphors and Temporal
Metaphors are useful concepts for designers. For
example, we know that the cortex for both visual and
haptic processing are arranged in a spatial configuration,
while the auditory cortex is arranged according to pitch
(Goldstein 1989) This provides a physiological basis for
suggesting that both haptic and visual displays will be
better suited to Spatial Metaphors that auditory displays.
On the other hand, the auditory sense has been shown to
be adept at detecting short-term patterns in sound
(Kramer 1994), suggesting that auditory display may be
superior for Temporal Metaphors.

The MS-Taxonomy at this level is general but detail is
not sacrificed. At the lower levels the taxonomy is
comprehensive, allowing display mappings to be
described to the level of a single perceptual concept or

unit. The more detailed levels of the MS-Taxonomy are
described in the following sections.

Using the MS-Taxonomy therefore allows the designer to
work with concepts that are suitable for both overview
and detail. These two levels of work have previously been
described as fundamental modes of operation in related
fields such as software design (Humphrey 2000). That is,
sometimes a designer is worried about the "big picture"
and at other times they are immersed in the detail of the
design task.

4 Modelling Spatial Metaphors

In the real world a great deal of useful information is
dependent on the perception of space. For example,
driving a car requires an understanding of the relative
location of other vehicles. Parking the car requires a
comparison of the size of the car with the size of the
parking space. Navigating the car requires an
understanding of the interconnections and layout of
roadways. Real world information is often interpreted in
terms of spatial concepts like position, size and structure.
Abstract information can also be interpreted in terms of
these spatial concepts.

The general concepts that describe spatial metaphors
(figure 7) are independent of each sense. It is simply the
different ability of each sense to perceive space that needs
to be considered. Because the concepts abstract across the
senses it is possible for spatial metaphors to be directly
compared between senses. For example, the ability of the
visual sense to judge the position of objects in space can
be compared with the ability to locate a sound in space or
use the haptic sense to judge position.. This sensory
independence also enables concepts to be reused between
senses. For example, a spatial visual metaphor, such as a
scatterplot, can be directly transferred to a spatial haptic
metaphor to create a haptic scatterplot. On the haptic
scatterplot a user would feel rather than see the position
of points.

Spatial
Structure

has

Spatial
Metaphor

Spatial
Property

Display
Space

defined in terms of

Figure 7. UML diagram showing the high-level

components of spatial metaphors.

The design space for spatial metaphors can be described
using the following general concepts: the display space
(figure 8); spatial structure (figure 9) and; spatial
properties (figure 10).

CRPIT Volume 53

68

The display space is the region where the data is
presented. All spatial metaphors have as their basis an
underlying display space that is used to arrange the
display elements. For example, the scatterplot defines a
2D orthogonal display space by mapping data attributes
to the x and y axis. Points are then interpreted in terms of
this display space. In the real world, space is perceived as
constant, however in an abstract world the properties that
define the space can also be designed. For example, one
axis of the scatterplot could be defined as a logarithmic
space. This would change the way the user interprets the
relationships between point positions.

1D
Space

2D
Space

3D
Space

Distorted
Space

Subdivided
Space

Orthogonal
Space

Display Space

continuous: yes, no

metric: yes, no

type: quantitative, ordinal, nominal

Figure 8 The types of display space

Spatial
Structure

Local Spatial
Structure

Global Spatial
Structure

MapModelGrid

Isoline IsoSurface

Axis Mesh

IrregularRegular

Global Spatial
Artefact

ContainmentConnection Grouping

Local Spatial
Artefact

Flag Tick

Line Solid ShapeGlyph PointSurface
in 3D

Area

Field

Figure 9. The types of spatial structure.

Spatial
Property

Scale OrientationPosition

Length
(x)

Width
(y)

Depth
(z)

VolumeArea

Slope Angle Curvature

Figure 10. The types of spatial properties.

There are a number of strategies for designing the display
space when presenting information and these include
using orthogonal spaces (1D, 2D, 3D), distorted spaces
and subdivided spaces.

In the MS-Taxonomy, the objects that occupy the display
space are described as spatial structures. For example in
the scatterplot, the points are spatial structures. Spatial
structures also describe the arrangement of entities within
the display space. For example, a group of points in the
scatterplot can be considered a more global spatial
structure. The MS-Taxonomy distinguishes two levels of
organisation for presenting information and these are
global spatial structures and local spatial structures.

Spatial structures may have spatial properties. The spatial
properties used for presenting information include
position, scale and orientation. Spatial properties describe
qualities that are interpreted in terms of the display space.
For example, in the scatterplot the position of points is
used to convey information. This information is
interpreted in terms of the abstract space defined by the x
and y axis.

There are some points to note about spatial properties.
Firstly these spatial concepts applied to the auditory sense
are not as intuitive as the application of the same concepts
to the visual or haptic sense. There are also a much
greater number of examples of spatial metaphors to be
found in the field of visualisation. This is not surprising
as hearing is predominantly temporal and is more adept at
identifying temporal relationships than spatial
relationships (Friedes 1974). By contrast both visual and
haptic perception are strongly base around interpreting
space. This interpretation is supported by a distribution of
cortical neurones that are organised according to the way
they respond to stimuli in space (Granlund et al. 2001).
Cortical auditory neurones are organised in a tonotopic
way, that is, they are grouped according to how they
respond to pitch (Granlund et al. 2001).

5 Modelling Direct Metaphors

In the real world a great deal of useful information is
perceived directly from the properties of sights, sounds
and surfaces. For example, an object may have a
particular hardness or surface texture. Objects in the real
world may also be recognised on the basis of visual
properties such as colour or lighting or interpreted on the
basis of auditory properties like pitch and timbre.
Abstract information can also be interpreted in terms of
these direct properties.

An important distinction between spatial metaphors and
direct metaphors is that direct metaphors are interpreted
independently from the perception of space. While the
concepts of spatial metaphors apply generally for each
sense this is not true for direct metaphors. There is very
little intersection, for example; between the low level
concepts of direct visual metaphors and the low level
concepts of direct auditory metaphors. This is not
surprising as direct metaphors relate to the properties that
the individual sensory organs can detect.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

69

Direct metaphors (figure 11) are concerned with direct
mappings between the properties perceived between each
sense and some abstract information. Direct metaphors
consider the design concepts of spatial structure and
direct properties.

Spatial structures are a component of spatial metaphors
that can be used to convey information. These structures
can be encoded with additional information by using a
directly perceived property of any sense. For example,
colour can be used with a visual display or hardness with
a haptic display.

Spatial
Metaphors

Spatial
Property

Display
Space defined in terms of

Direct
Metaphor

Spatial
Structure

has Direct
Property

has

Figure 11. The general concepts that describe Direct
Metaphors. These concepts are very specific to the
properties of the world that each sense perceives.

The key component of direct metaphors is the direct
property used to convey the information. In terms of
design, the effectiveness of a direct metaphor is
independent of the display space and the spatial structure.
However, in some cases there needs to be consideration
for the size of the spatial structure. For example, very
small areas of colour may not be visible to the user, or a
haptic surface may be too small for the user to feel.

The ability to accurately interpret direct properties varies
between senses and properties. In general, the perception
of all direct properties is of insufficient accuracy to allow
accurate judgement of quantitative values (Sekuler and
Blake 1990). This suggests that direct properties should
only be used to encode ordinal or nominal categories of
data. Because direct properties such as colour, pitch or
hardness are continuous they can be mapped to
continuous data. However, it should not be assumed that
a user is capable of interpreting exact data values
represented as direct properties.

The MS-Taxonomy distinguishes between direct visual
and direct auditory metaphors. At a low-level of the
hierarchy, the concepts do not abstract across the senses.
This makes it difficult for direct metaphors to be directly
compared between senses. For example, it makes little
sense to compare the ability of the visual and auditory
sense at judging the pitch of sounds. However, for the
designer the higher level concept of a direct property is
still relevant as it applies across all senses. Therefore at a
conceptual level the designer can consider substituting
one direct property with another. For example, the direct

visual property of colour could be substituted with the
direct haptic property of hardness for representing
categories of data.

Many of the concepts used to describe direct properties
are familiar to display designers as they overlap with
existing sensory-based models of the design space. Much
previous work has been done in the area of direct visual
properties and to a lesser extent direct auditory properties.
Because haptic display is a relatively new area and
involves a complex range of sensations, describing the
concepts that make up direct haptic properties is difficult.
Arguably the MS-Taxonomy needs some discussion and
refinement centred around the low level concepts that
make up direct haptic metaphors.

Direct visual metaphors use direct mappings from the
attributes of data to the perceived properties of sight.
These properties include colour hue, colour saturation and
visual texture (figure 12).

Using direct visual properties to represent information
has been well studied. Bertin described the basic
properties of visual objects as retinal properties (Bertin
1981). Bertin's retinal properties include the scale and
orientation of objects. These concepts are dependent on
the visual space and so are included in the MS-taxonomy
as visual spatial metaphors. However, Bertin's other
retinal properties are all concepts within direct visual
properties. They are:

• colour - hue

• colour - saturation

• colour - intensity (grey scale, value)

• visual texture

• direct visual shape.

ColorVisual
Texture

Direct Visual
Shape

LusterOpacity

Colour
Hue

Colour Intensity
(Grey Scale)

Colour
Saturation

...

Direct Visual
Property

Figure 12. Direct Visual Properties

Direct auditory metaphors use direct mappings from the
attributes of data to the perceived properties of sound. As
mentioned, the use of direct auditory properties for
representing abstract data is an embryionic field of study.
Indeed many of the perceived properties of sound are not
well understood (Kramer 1994) and the direct auditory
properties are less generally agreed on than the visual

CRPIT Volume 53

70

properties. However, the most commonly used properties
of sound are:

• loudness

• pitch

• timbre.

These direct auditory properties (figure 13) have also
been referred to as musical properties (Gaver 1994). The
direct auditory properties are not independent or
orthogonal. For example, the pitch of the sound affects
the perceived loudness of the sound (Sekuler and Blake
1990). Furthermore, both pitch and loudness are not
equally prominent to the listener (Bly 1994).

Alternative ways for defining sound properties have been
developed. In particular musical listening contrasts with
the concept of everyday listening where sound properties
are interpreted in terms of the objects and events that
generate the sounds (Gaver 1994). For example, the
sound from a stick hitting an empty can provide
information about the objects involved and the forces
used to create the sound. This approach is arguably more
intuitive for the user, but more difficult for the designer.

The MS-Taxonomy uses musical properties to define the
design space of direct auditory metaphors. These musical
properties, which are interpreted by directly listening to
the qualities of the sound itself, are intuitive and simple
concepts for the designer to use. Furthermore the
mappings between properties and data are simple to
describe.

Sound Synthesis
Property

EnvelopeArticulationBrightnessHarmonic
Content

Direct Auditory
Property

Register
related to

Musical
Property

TimbreLoudnessPitch

Roughness

Everyday
Property

Figure 13. Direct Auditory Properties

Direct haptic metaphors use direct mappings from the
attributes of data to the perceived properties of the haptic
sense. These properties include surface texture, force and
compliance. Figure 14 shows the different types of direct
haptic properties that are principally associated with the
tactile sense. Figure 15 shows the different types of direct
haptic properties that are principally associated with the
kinaesthetic and force sense. Some of the direct haptic
properties, such as compliance and friction, require the
combined perception of tactile, kinaesthetic and force
stimuli. As previously noted, defining the concepts that
make up direct haptic properties is somewhat rudimentary

and probably requires further consideration. The MS-
Taxonomy currently uses the following direct haptic
properties:

• force

• surface texture

• direct haptic shape

• compliance

• viscosity

• friction

• inertia

• weight

• vibration

• flutter.

Tactile
Property

Direct Haptic
Shape

Surface
Texture

RigidityRoughness Stiffness

Kinaesthetic
and Force
Property

Slip Hardness

Flutter Compliance

Direct Haptic
Property

Figure 14. Direct haptic properties associated with

tactile stimuli

Viscosity InertiaFriction Vibration

Dynamic
Friction

Static
Friction

Weight Force

Tactile
Property

Kinaesthetic
and Force
Property

Direct Haptic
Property

Figure 15. Direct haptic properties associated with

kinaesthetic and force stimuli.

Direct metaphors map data directly to a sensory property.
Although accuracy varies between direct properties, in

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

71

general, it is not possible for users to make accurate
judgements about sensory properties (Sekuler and Blake
1990). Many direct properties are continuous and ordered
and can be used for displaying quantitative data.
However, it cannot be assumed that a user will make an
accurate judgement of the value of a property. Therefore,
it is more appropriate to use ordered properties for
displaying ordinal data. The exceptions are those direct
properties that have no ordering (colour, timbre, direct
haptic shape) and these are better suited for displaying
nominal data.

6 Modelling Temporal Metaphors

In the real world a great deal of useful information is
dependent on the perception of time. For example, a
pedestrian crossing a busy road is required to interpret the
amount of time between vehicles. The rate and frequency
of traffic may also impact on the pedestrian's decision of
when to cross. Temporal concepts like duration, rate and
frequency can also be used to encode abstract
information.

Temporal metaphors relate to the way we perceive
changes to pictures, sounds and haptic stimuli over time.
The emphasis is on interpreting information from the
changes in the display and how they occur over time.
Temporal metaphors are also closely related to both
spatial and direct metaphors. For example it is changes
that occur to a particular spatial metaphor or direct
metaphor that displays the information. (Figure 16)

Spatial
Metaphor

Spatial
Property

Display
Space

Direct
Metaphor

Spatial
Structure

has Direct
Property

has

Temporal
Metaphor

Event

affects

Display
Time

occur in

Figure 16. Temporal metaphors are dependent on the

perception of time and are characterised by events
that modify spatial and direct properties.

Of course all the senses require some amount of time to
interpret a stimulus. This is very fast for vision, while
with hearing and haptics most stimuli are more prolonged
events with some temporal structure. For example, a
sound stimulus is perceived by interpreting changes that
occur in air pressure over time. Even a single sound
event, such as a bottle breaking, contains a complex
temporal pattern that is perceived over a short period of
time. However, with temporal metaphors the focus is on
how changes that occur in events are used to represent
abstract information. That is, the focus for the designer is
how temporal changes and patterns can be used to convey

information. Designing temporal metaphors is analogous
in many ways to the design of music.

Temporal
Metaphor

Rhythm
temporal
pattern

of events

Rate

speed of
events

Variation

deviations
in events

Spatial
Property

Spatial
Structure

Spatial
Metaphor

Display
Space

Direct
Metaphor

Direct
Property

affects

Duration

length of
event

Event Time
time at which
event occurs

Temporal
Structure

Event
occur at a
specific time

Temporal
Artefact
non-data

events

Figure 17. Temporal metaphors are often composed
of a number of events that have temporal structure.

The MS-Taxonomy distinguishes between temporal
visual, temporal auditory and temporal haptic metaphors.
However the general concepts that describe temporal
metaphors are independent of sensory modality (figure
16). It is simply the ability of each sense to perceive
changes over time that need to be considered. Because the
concepts abstract across the senses it is possible for
temporal metaphors to be directly compared between
senses. For example, the ability of the visual sense to
identify a visual alarm event can be compared with the
ability of hearing to identify a sound alarm or touch to
identify a haptic alarm.

The design space for temporal metaphors can be
described using the following general concepts:

• the display time (figure 16)

• an event (figure 16, 17, 18)

• the temporal structure (figure 17).

Temporal metaphors are composed of events that occur
within the display time. The display time provides the
temporal reference for the data events that are displayed.
This is analogous to the way tempo is used in music to
provide a background measure of time. The display time
is not usually considered as part of the design space, but
simply assumed to be constant. However, it is possible to
consider the display time during the display design. For
example, changing the display time could speed up or
slow down the rate at which data is displayed.

Events have two main properties, the event time and the
duration of the event. Both the event time and event
duration are interpreted in relation to the display time.
These events affect changes to the visual or auditory or
display. It is these changes and the timing and duration of
these changes that are interpreted by the user as
information. An event can affect a change to the display
space, a spatial property, the spatial structure or a direct
property in the display. This allows events to be
categorised by reusing many of the concepts described for

CRPIT Volume 53

72

spatial metaphors and direct metaphors. The MS-
Taxonomy defines the following types of event (figure
18):

• a display space event

• a movement event

• a transition event

• an alarm event.

Display space events cause a change to the perceived
display space. For example, a distortion event can change
the metric at a location in the display space. A navigation
event can affect a change in the user's position in the
display space and is usually associated with user
interaction.

Movement events are related to changes in spatial
properties of structures and can be characterised by
properties such as direction, velocity and acceleration.
Distinct types of movement events include; translation
events, rotation events and scale events. Translation
events involve a change to the spatial property of
position. Rotation events involve a change to the spatial
property of orientation. Scale events cause a change to the
spatial property of scale.

The other types of events are transition events and alarm
events. Transition events cause a slow change to either
spatial structures or direct properties. By contrast alarm
events cause a very sudden change to either spatial
structures or direct properties.

A user may interpret information based on a single event.
For example, a visible object changing position may be
interpreted in terms of the old position and the new
position, as well as the speed of movement. However,
information may also be interpreted based on patterns that
occur in a sequence of events. This is described as
temporal structure. Types of temporal structure include
the rate of events, the rhythm of events and the variations
between events.

The concepts of temporal metaphors are very intuitive
when described for the auditory sense. This is not
surprising as hearing is usually identified as a temporal
sense (Friedes 1974). Indeed many of the concepts
described in temporal auditory metaphors have been
developed within the field of music. While these concepts
are generally well described in the domain of music they
are less commonly associated with information displays
for the other senses.

Temporal auditory metaphors provide some advantages
over visual temporal metaphors. Sound has been
identified as a useful way for monitoring real time data as
audio fades nicely into the background but users are
alerted when it changes (Cohen 1994). Kramer makes
many other observations about sound (Kramer 1994).
Other objects do not occlude sounds. Therefore, an object
associated with the sound does not have to be in the field
of view for the user to be aware of it. Sounds act as good
alarms and can help orientate the user’s vision to a region
of interest. Auditory signals can often be compressed in
time without loose of detail. Because of the high temporal

resolution of the auditory sense, events can still be
distinguished.

Many haptic perceptions also require an integration of
both spatial and temporal properties and it is expected
that many temporal auditory metaphors can be directly
transferred to the haptic domain.

Spatial
Property

Spatial
Structure

Spatial
Metaphor

Display
Space

Distortion
Event

Direct
Metaphor

Direct
Property

changes

part of

slow
change
in

sudden
change
in

Movement
Event

Display Space
Event

Alarm
Event

Transition
Event

Navigation
Event

changes
user’s
position in

Event

Figure 18. The different types of events used to

categorise Temporal Metaphors.

Spatial
Property

Spatial
Structure

Spatial
Metaphor

OrientationPosition

Rotation
Event

Translation
Event

Display
Space

changes changes

has

Acceleration

Direction

Velocity

changes within

Event

Movement
Event

Display Space
Event

Alarm
Event

Transition
Event

Scale
Event

Scale

changes

Figure 19. Movement events may have properties of

direction, velocity and acceleration. Movement events
are defined in terms of the spatial properties of

position and orientation

7 Discussion

This paper has described a conceptual model of the multi-
sensory, perceptual design space called the MS-
Taxonomy. This model has been designed to maximise
the reuse of concepts across sensory boundaries. The
taxonomy has been derived using a typical software
engineering approach that focuses on modelling domain
concepts and describing aggregation and inheritance
relationships (Blaha et. al. 2005). This technique
originally came from the realm of semantic modelling in
the field of artificial intelligence, where aggregation
relationships are more simply described as "has-a" and
inheritance relationships as "is-a" (Sowa 1991).

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

73

Multiple levels of abstraction are used and at the higher
levels of abstraction the same terminology can be used
for describing the haptic, visual and auditory design
space. The key difference to this conceptual model of the
perceptual design space is that the abstractions are not
based on sensory modalities but rather on temporal,
spatial and direct metaphors that are common across all
senses.

In software engineering terms the MS-Taxonomy allows
a designer to consider reuse of designs at both an abstract
architectural level and also a more detailed component
level. These reusable patterns can be discussed
independently of the sensory modality used in the
display. This allows for the same design pattern to be
implemented and directly compared between senses.

Of course whether the MS-Taxonomy provides designers
with a best division of the multi-sensory design space is
arguable. However, the structure has proved useful for
structuring both a design process and a set of guidelines
that assist and guide designers of multi-sensory displays
(Nesbitt 2003).

This conceptual model is not intended to invalidate other
models of the visual and auditory design space. However,
what it does demonstrate is the very different modelling
outcomes that can result, even in the same domain, when
the aims and context of the modellers are different.

8 References

Bertin, J. (1981) “Graphics and Graphic Information
Processing”. Readings in Information
Visualization:Using Vision to Think. S. K. Card, J. D.
Mackinlay and B. Shneiderman. San Francisco, USA,
Morgan Kaufmann, pp. 62-65.

Blaha, M., Rumbaugh, J., (2005), Object-Oriented
Modeling and Design with UML. Pearson Education
Inc, New Jersey.

Blattner, M.M., Sumikawa, D. et al. (1989) “Earcons and
Icons: Their Structure and Common Design
Principles.” Human Computer Interaction 4(1). pp. 11-
14.

Bly, S., (1994), “Multivariate Data Mappings”. Auditory
Display: Sonification, Audification and Auditory
Interfaces. G. Kramer, Addison-Wesley Publishing
Company. XVIII: 405-416.

Brooks, F. P., Ouh-Young, J. M. et al. (1990) “Project
GROPE– Haptic Displays for Scientific Visualization.”
Computer Graphics 24(4): 177-185.

Card, S.K. and Mackinlay, J.D. (1997) “The Structure of
the Information Visualisation Design Space”.
Proceedings of IEEE Symposium on Information
Visualization, Phoenix, Arizona, USA, IEEE Computer
Society.

Card, S. K., J. D. Mackinlay, et al., Eds. (1999)
Information Visualization. Readings in Information
Visualization. San Francisco, California, Morgan
Kaufmann Publishers, Inc.

Cohen, J. (1994), “Monitoring Background Activities”.
Auditory Display:Sonification, Audification and
Auditory Interfaces. G. Kramer, Addison-Wesley
Publishing Company. XVIII: 499-534.

Friedes, D. (1974) “Human Information Processing and
Sensory Modality: Cross-Modal functions, Information
Complexity, Memory and Deficit.” Psychological
Bulletin 81(5): 284-310.

Gaver, W.W. (1986) “Auditory Icons: using sound in
computer Interfaces.” Human Computer Interaction 2:
167-177.

Gaver, W. W. (1993). “What in the world do we hear? An
ecological approach to auditory source perception.”
Ecological Psychology 5(1): 1-29.

Gaver, W. W. (1994) "Using and Creating Auditory
Icons". Auditory Display:Sonification, Audification
and Auditory Interfaces. G. Kramer, Addison-Wesley
Publishing Company. XVIII: 417-446.

Goldstein, E. B. (1989). Sensation and Perception,
Brooks/Cole Publishing Company.

Granlund, A., D. Lafreniere, et al. (2001). "A pattern-
supported approach to the user interface design
process". 9th International Conference on Human
Computer Interaction, New Orleans, USA.

Humphrey, W.S. (2000). “A Discipline for Software
Engineering”. Boston, Addison Wesley.

Kramer, G. (1994) An Introduction to Auditory Display.
Auditory Display:Sonification, Audification and
Auditory Interfaces. G. Kramer, Addison-Wesley
Publishing Company.

Nesbitt, K. V., Gallimore, R. et al. (2001) “Using Force
Feedback for Multi-sensory Display”. 2nd Australasian
User Interface Conference AUIC 2001, Gold Coast,
Queensland, Australia, IEEE Computer Society.

Nesbitt, K. (2003), “Designing Multi-Sensory Displays
for Abstract Data”. Ph.D. Thesis, Information
Technology, Science. Sydney, University of Sydney.

Sekuler R. and Blake R., (1990), “Perception”. McGraw-
Hill Publishing Company. New York, USA.

Soukup, T. (2002) Visual data mining: techniques and
tools for data visualization and mining. New York,
John Wiley & Sons.

Sowa, John F., ed. (1991) Principles of Semantic
Networks: Explorations in the Representation of
Knowledge, Morgan Kaufmann Publishers, San Mateo,
CA, 1991.

CRPIT Volume 53

74

Process Modelling: The Deontic Way

Vineet Padmanabhan1, Guido Governatori1, Shazia Sadiq1, Robert Colomb1 & Antonino Rotolo 2

1 School of Information Technology & Electrical Engineering
The University of Queensland, Queensland, Australia
Email:[vnair,guido,shazia,colomb]@itee.uq.edu.au
2 CIRSFID, University of Bologna, Bologna, Italy

Email: rotolo@cirsfid.unibo.it

Abstract

Current enterprise systems rely heavily on the modelling
and enactment of business processes. One of the key cri-
teria for a business process is to represent not just the
behaviours of the participants but also how the contrac-
tual relationships among them evolve over the course of
an interaction. In this paper we provide a framework in
which one can define policies/ business rules using de-
ontic assignments to represent the contractual relation-
ships. To achieve this end we use a combination of de-
ontic/normative concepts likeproclamation, directed obli-
gation and direct action to account for a deontic theory
of commitment which in turn can be used to model busi-
ness processes in their organisational settings. In this way
we view a business process as asocial interaction process
for the purpose of doing business. Further, we show how
to extend thei∗ framework, a well known organisational
modelling technique, so as to accommodate our notion of
deontic dependency.

Keywords:Business, Enterprise and Process modelling.

1 Introduction

One of the issues which was heavily debated dur-
ing the panel discussions of AAMAS-04 (Singh 2004)
was with regard to considering business process mod-
elling/management as a killer application for agents. It
was decided that in-order to make progress in this direc-
tion it was inevitable to characterise problems within busi-
ness process modelling/management where agents can ap-
ply. In this paper we make such a move whereby we con-
sider an agent to represent a real world business partner
with its own local business rules and configurations. The
collaboration between the different partners is made pos-
sible throughnormative co-ordination, i.e., the idea that
agents can achieve flexible co-ordination by conferring
normative positions like duties, permissions and powers
to other agents. In this way we can view the partners
involved in a business scenario as multiple agents who
might collaborate by creatingcommitmentsusing norma-
tive concepts such as obligation, proclamation and so on
but at the same time retain their autonomy. This in a
way is similar to how a Multi-Agent System (MAS) is de-
fined using abstractions like team and commitments from
the perspective of organisations and societies (Conte &
Dellarocas 2001, Pitt 2005).

The definition of a business process we adopt in this
paper is more general in the sense that we consider a
business process as a special kind ofsocial interaction
process. A social interaction processis a temporally

Copyright c©2006, Australian Computer Society, Inc. This paper
appeared at Third Asia-Pacific Conference on Conceptual Modelling
(APCCM2006), Hobart, Australia. Conferences in Research and Prac-
tice in Information Technology, Vol. 53. Markus Stumptner, Sven Hart-
mann and Yasushi Kiyoki, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

ordered, coherent set of events and actions, involving
one or more communication acts that may create com-
mitments, perceieved and performed by agents, and fol-
lowing a set of rules, or protocol, that is governed by
norms, and that specifies the type of the interaction pro-
cess(Wagner 2003).

Based on the above definition of a business process, we
develop a logical framework based on multi-modal logic
to capture the normative positions among agents in an or-
ganisational setting. We do not take into account any tem-
poral considerations in this work as it remains part of fu-
ture work. Also commitment is not taken as a primitive
but is rather defined in terms of directed obligations, i.e.,
an agent’s obligation towards another agent. For exam-
ple, the obligation to pay for delivered goods is directed,
so to say from the buyer to the seller in a business situ-
ation like trade where different agents likebuyer, seller,
transport company, customs officesetc. exist. The rea-
sons for not adopting commitments as a primitive is that
(1) we want to show that deontic logic can be used to
capture an agentsobligation to another and (2) thereby
show that the argument made in (Singh, Chopra, Desai &
Mallya 2004) which states thatcommitments fare better
than traditional deontic logic because deontic logic dis-
regards an agents obligation to another agentis not true.
Two other important concepts we use in our framework
are that ofproclamationanddirect action. Proclamation
is seen as a particular type of speech-act (communication
act) that helps the agents to create normative positions in-
volving other agents. It is similar to the role speech acts
play in language-actionapproaches to work-flow manage-
ment as given in (Goldkuhl 1996). Proclamation is used
to cover all those speech acts by which an agent makes
a statement expressing a certain proposition with the aim
of making the proposition true. In other words, different
types of speech acts likedirectives(permitting, requesting,
forbidding etc.),Commissives(agreeing, offering, promis-
ing etc.),Constatives(announcing, disagreeing, informing
etc.) etc. are considered as instances of just one speech
act like proclamation. The advantage of this approach is
that one need to worry only about the specific semantics
corresponding to theproclamationoperator rather than for
each type of speech act. On the other hand direct action is
concerned with relationships between agents and states of
affairs they want to realise/bring about. We discuss more
about these in the coming sections.

Let us put together the different concepts explained
above with the help of a an example. Consider the work-
flow in Figure 1. depicting a simple scenario of managing
after sales service.

This process is assumed to execute in a technology
which represents a shared space between various business
partners and stake-holders of the overall business process.
The 4 actors (roles) within the scenario are that ofCus-
tomer, Retailer, ManufacturerandTechnician. In such a
set up it is natural to think of commitments as being made
from one actor to another to achieve some goal and these
commitments could be in the form of obligations. For ex-

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

75

Figure 1: After sales service work-flow

ample,Send work request to technicianandContact Cus-
tomerare two activities which may be allocated to either
the retailer or the manufacturer depending on the partic-
ular instance. Sending request to technician may involve
an internal activity of first finding the most appropriate
technician. For instance, the retailer/manufacturer is nor-
mally obligedto issue several RFQs (Request For Quote)
to several technicians and choose from among them. The
reason is that the retailer/manufacturer wants to get the
best quote. The technicians areobliged to respond to an
RFQ because it represents a potential business that he/she
needs. Hence we can say that a particular techniciant un-
dertakes an obligation towards the retailer/manufacturer to
perform job j while the retailer/manufacturer undertakes
towards the technician the obligation of paying the price
p. Such obligations are calleddirectedobligations and
we explain more about their logical properties in section
2. In this way we can define commitments in terms of di-
rected obligations from one party to another. In general,
if we have two actors (roles) representing adebtor and
the other acreditor in a particular exchange relationship
it is natural to think of a commitment as a directed obli-
gation from the debtor to the creditor regarding a partic-
ular condition that in effect the debtor promises tobring
about. It is also the case that the different actors could
have reciprocal obligations whereby they can make effec-
tive contractual relationships/joint commitments between
them. We show how a combination of notions related to
obligation, proclamationandactionaccounts for a deon-
tic theory of commitment which in turn can be used to
model business processes in their organisational settings.
Not only does such a model enable to describe and analyse
commitments that exist between the actors of a problem
domain but also helps to achieve coherent behaviour in in-
teraction processes. We achieve this by defining various
operations that can be performed to create and manipulate
commitments that would help the different actors involved
to create various normative relations needed to co-ordinate

their behaviours for the overall success of a business pro-
cess. In this way, similar to (Taveter & Wagner 2001a),
we view a business process as a social interaction process
for the purpose of doing business.

Our deontic approach to process mod-
elling/management is based on works like (Barbuceanu,
Gray & Mankovski 1999, Taveter & Wagner 2001a, Yu
& Mylopoulos 1993, Yu & Mylopoulos 1994) where it
is often argued that organisations are made up of social
actors who have goals and interests which they pursue
through a network of relationships with other actors1.
Hence aricher model of business process should include
not only how work products (entities) progress from
process step to process step (activities) but also how
the actors performing these steps relate to each other
intentionally, i.e., in terms of concepts such as goal,
belief, commitment etc.. Such process models conveys
a deeper understanding of a business process by focus
sing on the intentional dependencies among actors which
is extremely important for modelling business processes
between enterprises that consists of the steps of analysis
and design. Following this paradigm, in this work,
we develop a formal representation based on a deontic
approach to capture the normative dependencies between
the different actors in a business process scenario. The
formal representation allows us to achieve coherent
behaviour in the interaction process where the rules of
engagement are dynamically and frequently changing.

The paper is structured as follows. In section 2 we
outline the various ingredients of our logical framework
needed to represent the different aspects involved in a so-
cial interaction process (business process). In section 3
we propose our theory of commitment based on a combi-
nation of proclamation, obligation and direct action. The
next section (section 4) demonstrates an example scenario
in which we show our working model. Section 5 shows
some general rules of engagement between different ac-
tors in an organisational setting. Section 6 makes a com-
parison of our model with that ofi∗ and extends the later to
accomodate normative dependency. Section 7 talks about
related as well as future work.

2 Institutional Agency

As mentioned in the previous section business processes
exist in social organisational settings wherein interaction
between agents takes place in a social context. Hence
normative concepts are essential for understanding and
controlling coherent interaction between agents and other
systems. For this paper we take as background the
well-known Kanger-Lindahl-P̈orn (Kanger 1972, Lindahl
1977, P̈orn 1977) logical theory to account for agency and
organised interaction (see (Elgesem 1997)). Our start-
ing point is to take advantage of some recent contri-
butions (Santos, Jones & Carmo 1997, Jones & Sergot
1996, Pitt 2005), which have enriched this framework
with some substantial refinements. As we have alluded
to, the notion of agency is described in a multi-modal
logical setting. Despite some well-known limitations
(see (Elgesem 1997, Royakkers 2000)), such an approach
is very general since actions are simply taken to be rela-
tionships between agents and states of affairs, and very
flexible since it allows for the easy combination of ac-
tions and concepts like powers, obligations, beliefs, etc. It
also permits to provide a simple conceptual analysis of the
structure of organisations of agents. As recently pointed
out regarding the design of computerised multi-agent sys-
tems, such a multi-modal logic “[is] a means of supplying
an intermediate level of description, falling somewhere
between [. . .] ordinary-language account of what a sys-
tem [. . .] is supposed to be able to do and [. . .] the level
of implementation” (Pitt 2005).

1We use the term agent/actor interchangeably.

CRPIT Volume 53

76

2.1 The Logical Framework

We first provide the basic ingredients that make up a the-
ory of institutional agency and later show how a notion of
commitments can be captured by combining these basic
ingredients. We start with the idea of personal and direct
action to realise a state of affairs, formalised by the modal
operatorE: ExA means that the agentx brings it about
thatA. For example, suppose thatA represents a situation
in Figure(1) wherea particular technician, t1, can do the
maintenance job on a specific date. Then it could be that
the retailerr brings it about thatA by sending a request to
the techniciant1. Different axiomatisations have been pro-
vided forE but almost all include the following schemas.

ExA→ A (1)

(1) is recognised as valid by almost all theories of agency.
It is nothing but the usual axiom T of modal logic, and it
expresses the successfulness of actions that is behind the
common reading of “bring about” concept. We reformu-
late this axiom asEXA→ A to represent a set of agents
X. E{x} = Ex when the set of agents is a singleton.ExA
can have the formExsendGoods(p), (whereA is an ac-
tion predicate denoting a specific action), meaning agent
x sends the goodsp. Here agentx executes by itself the
actionA. Most of the examples in this paper interpretsA
as an action predicate. It should be noted that this gen-
eral approach to the treatment of action does not take into
consideration state change and temporal dimension and is
focused only on the agent concerned and the states of af-
fairs that result from his/her actions. It is not a drawback
as far as this work is concerned because when specifying
rules/policies for normative co-ordination in an organisa-
tional setting where multiple actors are involved, it may be
that only the end result together with which actors brings
it about is important.

One other axiom advanced in (Santos et al. 1997) –
and adopted here– to characterise specifically the action
operatorE is

ExEyA→¬ExA (2)

which corresponds to the idea that the brings-it-about op-
erator expresses actions performed directly and person-
ally. Compared toExA which pertains toindividual agent
positionsExEyA denotes interpersonal control positions
and it is this ability to iterate action operators that could
be seen as a benefit for having a general theory of ac-
tion. From a process point of view the above axiom states
a principle of rationality for modelling co-ordination be-
tween different actors in a process model. For instance,
such an axiom can be used to show that an actorx dele-
gates an actory to bring about a condition. It is counterin-
tuitive that the same agent brings it about thatA and brings
it about that somebody else achievesA.

2.2 Obligation

Our logical framework incorporates obligations. We useO
as a directed deontic operator indexed by a set of agents to
represent obligation. We writeOxE{y}A to mean that agent
y has towards agentx the obligation of realisingA. As in
the case ofE we need to sketch a suitable axiomatisation
for O. We cannot use Standard Deontic Logic (SDL) for
this purpose as it has been shown in (Royakkers 2000) that
SDL is not adequate for combining deontic and action op-
erators. The reason is that SDL supports the following
implications which is not acceptable from a process mod-
elling view point

OyExA→OyA (3)

OzExEyA→OzEyA (4)

For instance, letx be a retailer,y a customer andA
is the conditionsendGoods. Then the retailers obliga-
tion towards the customer to bring about the condition

sendGoodsshould not entail thatsendGoodsis in general
obligatory. Similarly in the case of the second implication
suppose that we have a scenario where in addition to the
retailer and customer a manufacturerz is also involved and
A is the conditionbuyProduct. Now the retailers obliga-
tion towards the manufacturer to bring about the condition
that the customer buys a particular product does not entail
that the customer has a personal obligation to the manu-
facturer to buy that product. To avoid the above problems
we only consider the following axioms for a logic of obli-
gation

(OxA∧OxB)→Ox(A∧B) (5)
OxA→¬Ox¬A (6)

2.3 Proclamation

The link between speech acts theory and normative po-
sitions has been under investigation for some time now
(cf. (Jones 1990, Castelfranchi, Dignum, Catholijn &
Treur 2000, Singh 1999, Colombetti 2000)). (Gelati, Ro-
tolo, Sartor & Governatori 2004) defines proclamation as
a special type of speech act (communication act) dealing
with all those acts by which a subject makes a statement
expressing a certain proposition and this statement has the
function of making this proposition true. In this way it
can be seen as asee-to-it-thatmodality indirectly repre-
senting a speech act and can be formalised by the modal
operatorproc. As for E, proc will be indexed by sets of
agents and thereforeprocXA means that the members of
x jointly proclaim A. As before whenX has only one
elementx, procXA means thatA is proclaimed person-
ally by x. Its logic is characterised by some very mini-
mal properties: it is closed under logical equivalence, i.e.,
A≡ B→ procA≡ procBand includes at least the axiom

(procxA∧procxB)≡ procx(A∧B). (7)

Of course,proc is not necessarily successful. Whether it
is successful or not, within an organisational settings, de-
pends on whethers makes it effective by means of appro-
priatecounts-asrules. We talk more about the counts-as
rule in the next section.

Since we define commitments in terms of directed obli-
gation and commitments typically arise from certain com-
munication acts, we can useproc to model a communica-
tion act through which a particular agent conveys his/her
obligation towards another. For example in the scenario
depicted in Figure1procr(OtE{r}A), conveys a commu-
nication act made by the retailer (r) meaning that the re-
tailer is obligated towards the technician (t) to bring about
a certain condition, for instance to pay a specific amount
of money. This proclamation byr could be seen asr ’s
attempt to commit itself towardst. In a similar manner
to model a communication act expressing a joint commit-
ment between two parties involved we can useproc{x,y}.
We discuss more about joint commitments in the coming
sections. Also, as we have observed, proclamations are
not necessarily effective in the sense that when an agentx
proclaims thatA, x brings it about thatA is dependent on
the concerned organisation. In the next section we show
how we can achieve this result.

2.4 Thecounts-asRule

In the previous sections we described the main ingredients
needed to develop a theory of institutional agency. The
intuition behind such an exercise was to show how agent-
oriented approaches to normative agency can be used in
the domain of process modelling/management. But we
need some more material to complete the picture. We need
a way to express that certain facts hold in the context of an
institution. For instance, it is normal in a norm-governed
institution that designated agents are empowered to create

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

77

institutional facts2 by performing certain types of actions.
Hence each organisation needs rules about which agents
are empowered to assign rights, or to alter existing rights.
Such power assignment rules can often be represented us-
ing a counts-asstructure to denote the context in which
they operate. In a business process scenario this is impor-
tant as the context denotes a group that contains the partic-
ipating agents usually in different roles thereby enabling
the user to specify those rules thatcount aseffective in a
particular context. We represent this contextual structure
using a conditional connective,⇒s, to express thecounts
as connection in an institutions. It should be noted that
this conditional connective is used just as a symbol of rep-
resentation and has got nothing to do with the formalism
developed in Jones and Sergot (Jones & Sergot 1996). The
intuition behind the above definition of the counts-as link
is that we want to capture the idea that counts-as rules may
specify when an institutional act (e.g., a contract made by
personx in the name of persony) has the same effects of
another institutional act (e.g., a contract made byy).

Another nice feature of the counts-as rule is in its abil-
ity to express various forms ofnormative delegationwhen
combined withproc. Sinceproc is not successful, its ef-
fectiveness is provided by the institution assuming rules
such as

procxA⇒s ExA. (8)

Such a combination can be used to capture two forms of
delegation such as

procy(procxA)⇒s Ey(procxA) (9)

procy(ExA)⇒s Ey(ExA) (10)

where the proclamation or the action ofy count as the
proclamation or the action of somebody else. (9) conveys
the meaning that wheny proclaims thatx proclaims thatA,
this counts asy making so thatx proclaims thatA (herex is
the principal andy is the representative). For example,De-
termine Warranty typein Figure(1) is an automated activ-
ity which interprets the conditions of the after sales service
agreement and appropriately routes the subsequent activ-
ities to the correct process role (retailer or manufacturer).
There can be a condition in the agreement which states
that if the purchase is made in the last 12 months, then the
warranty will be covered by the manufacturer. However,
the retailer provides extended warranty services, and if the
problem is reported in the second or third year of the pur-
chase, then the retailer will provide the maintenance ser-
vice. Consider a particular situation in our scenario where
the retailerr represents the manufacturerm with respect
to informing the customerc that if the purchase is made
in the last 12 months then the warranty will be covered by
the manufacturer. This could be seen as a proclamation
from the manufacturer denoting a business policy he/she
follows to do business. We can formally define this policy
as

procm(OcEm(coverWarranty(1styear))) (11)

where(OcEm(coverWarranty(1styear))) is the content of
the manufacturer’s proclamation denoting his/her obliga-
tion to the customer to cover warranty for the first year.
Hence (9) can be reformulated as

procr(procm(OcEm(coverWarranty(1styear))))⇒s

Er(procm(OcEm(coverWarranty(1styear)))) (12)

Therefore as far asc is concerned with the reading thatr ’s
proclamation aboutm’s business policy thatc’s warranty
will be covered bym for the first 12 months counts asr ’s
making so thatm proclaims the policy.

2For a distinction betweensocial factsand institutional factsrefer (Taveter &
Wagner 2001a).

Let us see how such rules of delegation gets used
in our scenario. Suppose that (12) is a business rule3

representing certain conditions of the after sales service
agreement. OnceCreate Customer Request, Figure(1), is
performed by the customer using the designated service
available through the portal it is up-toDetermine War-
ranty Typeto interpret conditions of the after sales ser-
vice agreement and route subsequent activities accord-
ingly. We will see how the conditions/constraints in
rules like (12) gets interpreted/reasoned about. From
Er(procm(OcEm(coverWarranty(1styear)))) (the conse-
quent of (12)) and (1) we get

(procm(OcEm(coverWarranty(1styear))). (13)

Similarly from (13) and (8) we get

Em(OcEm(coverWarranty(1styear))) (14)

Again by applying (1) to (14) we get

OcEm(coverWarranty(1styear)) (15)

conveying that the manufacturer is obliged to the customer
to cover warranty for the first year and accordinglyDe-
termine Warranty Typewill route further activities to the
manufacturer if the customer request states that his/her
purchase was done in the last 12 months. More complex
constraints can be easily added to such rules as we show
later in this paper. Also, our choice of the consequent part
of (12) was arbitrary as we would get the same result with
the antecedent too.

A representation like (10) is necessary when the repre-
sentative substitutes a principal which would not be able
to perform directly the activity delegated to the represen-
tative. Also when applied to action descriptions, formulas
like

ExA⇒s ExB (16)
ExA⇒s EyB (17)

represent respectivelyx’s institutional power to produceB
whenA is realised andx’s power to perform an action as
if something else were made byy (see (Jones & Sergot
1996)).

The last notion we have to deal with is that ofDeclar-
ative power. The concept of declarative power is common
in many normative systems and consists in the capacity
of the power-holder of creating institutional facts, simply
by “proclaiming” them. But as pointed out earlier, procla-
mations are not necessarily effective and when an institu-
tion provides for the effectiveness of a proclamation we
say that the subject of the proclamation has a declarative
power. The following definition holds

DeclPow{x}A =de f proc{x}A⇒ E{x}A (18)

conveying the meaning that an agentx has the declarative
power of producingA means that ifx proclaims thatA
thenx producesA. In a similar manner to show that every
couple of actors has the power of establishing any obliga-
tion between them simply by proclaiming it we have the
following representation

DeclPow{x,y}(OyE{x}A) (19)

3 Commitments via Proclamation, Obligation and
Direct Action

In the previous sections we outlined various constructs
needed for a theory of normative agency. In this section

3Business rules are statements that express (certain parts of) a business policy,
defining business terms, and defining or constraining the operations of an enter-
prise (Taveter & Wagner 2001a).

CRPIT Volume 53

78

we show how combining these different concepts we can
arrive at a notion of commitment which is needed to ef-
fectively form a contract between two participating enti-
ties in a business scenario. In (Singh 1999, Yolum &
Singh 2004) commitment is treated as first-class abstract
objects where a base level commitment is represented as a
four-place relation,C(x,y,G, p), denoting a commitment
from x towardy to bring about a conditionp in the context
of G. Herex is the agent who is committed (debtor) andy
is the agent who receives the commitment (creditor). We
could express this in our formalisation by a two step pro-
cess without taking commitment as a primitive as follows,

OyE{x}p (20)

with the reading thatx is obliged to y to bring it about p.
In order to show the commitment aspect we combineproc
with the directed deontic operators above to give us

proc{x}(OyE{x}p) (21)

Here, the proclamation isx’s attempt to commit itself to-
wardsy and thereby makesx responsibleto y for satis-
fying p. For a stronger version of commitment we need
to provide (21) with some additional support. It has been
pointed out in (Gelati et al. 2004) that proclamations are
not necessarily effective in the sense that when an agentx
proclaims thatp, x brings it about thatp only if the insti-
tution provides for this result. But this is not a problem in
our set up as we can give a rule like

proc{x}p⇒SCM E{x}p (22)

which conveys the meaning that in the context of Supply
Chain Management (SCM)x’s proclamation ofp counts
asx brings it aboutp. For example, letx denote asupplier,
y acustomerandp denote a condition likesendGoods(p).
Then from (21) and (22) we get the reading that, in the
context of an SCM, the supplier’s proclamation regarding
his/her obligation towards the customer to bring about the
act of sending goods counts as the supplier bringing about
the act. In other words the supplier’s proclamation regard-
ing his/her commitment towards the customer counts as
the supplier realising those commitments. Hence the sup-
plier’s commitment towards the customer to send goods
results in sending the goods. This formalisation also goes
well with the commonsensical view that commitments to
other agents represent commitments to oneself to bring it
about. In a business process scenario like SCM, (21) and
(22) could be seen aspoliciesthat govern the commitment
operations among different stakeholders and are part of the
contractual relationships existing between them. They are
considered as policies as they differ from the local busi-
ness rules and configurations that make up a particular
partner in a business scenario. In a similar manner (23)
showsx’s attempt tocommand yand (24) conveysx’s at-
tempt tofree itself from an obligation towardsy.

proc{x}(OxE{y}p) (23)

proc{x}(¬OyE{x}p) (24)

3.1 Commitments Through Reciprocal Obligations

In the previous section we saw how a proclamation by
a single agent, where a combination of directed obliga-
tion and action is involved, could account for base-level
commitments of the typeC(x,y,G, p). But as pointed out
in (Gelati et al. 2004) there could bemulti-lateral pro-
claims within an institution where a set of agents is in-
volved in a proclamation with reciprocal obligations as the
content of the proclamation. We use such proclamations
to substitute the conditional commitments as proposed
in (Singh 1999). A conditional commitmentCC(x,y, p,q)

denotes that if the conditionp is satisfied,x will be com-
mitted to bring about conditionq. In other words con-
ditional commitments are useful when an agent wants to
commit only if a certain condition holds or only if the
other party is also willing to make a commitment. In our
case this condition is achieved through a notion of mu-
tual obligation. It is also the case that such proclamations
can be used to denote meta-commitments which in turn
are rules that govern the commitment operations as was
pointed out in (Singh 1999). Reciprocal obligations are
used as the content of such proclamations through which
we capture the meta-commitment idea. Actually, in a busi-
ness process scenario like SCM such joint proclamations
carry more sense. For instance, in an exchange relation-
ship between a supplier (x) and a customer (y), we can
define a commitment between the two parties through a
joint proclamation by combining (21) and (23) as follows;

proc{x,y}(OyE{x}(sendGoods(p))∧
OxE{y}(sendMoney(q))) (25)

The proclamation made in (25) shows the joint commit-
ment betweenx andy by takingx’s obligation towardsy to
send goodsp andy’s obligation towardsx to send money
q. In other words, there should exist reciprocal obligations
betweenx andy to create such mutual commitments. Else-
where (Gelati et al. 2004) the termcontract is given for
such commitments. It is also the case that a joint procla-
mation like (25) boils down to two further committing acts
of offerandacceptwherex’s offer toy is based on recipro-
cal obligations betweenx andy andy accepts this. For in-
stance ifx’s offer toy is based on the reciprocal obligation
betweenx andy thatx sendGoods(p) andy sendMoney(q)
andy accepts to it then this counts as making the commit-
ment. Formally,

offer{x},{y}(sendGoods(p),sendMoney(q))∧
accept{x},{y}(sendGoods(p),sendMoney(q))⇒SCM

proc{x,{y}(OyE{x}sendGoods(p)∧
OxE{y}sendMoney(q)) (26)

In this way we restrict commitments to the creation of re-
ciprocal obligations. Now as noted in (Gelati et al. 2004)
it is possible to defineofferandacceptwhich are basically
committing acts in terms of non committing acts likepro-
posalandagree. For instance

proposal{x},{y}(sendGoods(p),sendMoney(q)) =de f

procx(OyE{x}sendGoods(p)∧
OxE{y}sendMoney(q)) (27)

conveysx’s declaration whereby he/she proposes not only
to have an obligation towardsy to do sendGoods(p) but
also to commandy to do sendMoney(q) (i.e., (21) and
(23)). In similar lines we can show thaty agreewith x
whenx has already made a proclamation in which a spe-
cific contractual content is proposed fory to bring about
andy makes a proclamation to commit itself towardsx to
bring about this content.

agree{y},{x}(sendGoods(p),sendMoney(q)) =

proposal{x},{y}(sendGoods(p),sendMoney(q))∧
proc{y}(OxE{y}sendMoney(q)) (28)

From the above discussion we can say that anoffer takes
place in a business process scenario like SCM when the

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

79

following condition is satisfied;

offer{x},{y}(sendGoods(p),sendMoney(q)) =

proposal{x},{y}(sendGoods(p),sendMoney(q))∧
{agree{y},{x},(sendGoods(p),sendMoney(q))⇒SCM

proc{x,y}(OyE{x}sendGoods(p)∧
OxE{y}sendMoney(q))} (29)

The main idea of (29) is to show how the contractual rela-
tionships among the participants (in this case its between
the supplier and customer) in a business process scenario
like SCM evolve over the course of an interaction. For in-
stance,x’s proposal toy of a specific contractual content
and y’s acceptance of it would create the respective di-
rected obligations between them which in turn leads them
to form mutual obligations and thereby arrive at a joint
commitment. In other words (29) can be seen as a business
policy stating that an offer is made between two stake-
holders when there is a proposal and agreement between
the two wherein there is mutual commitment regarding a
specific contractual content. Such business rules help in
outlining the guidelines and restrictions with respect to
states and processes in an organisation. They are declara-
tive statements describingwhathas to be done rather than
how to do it. In a similar mannery’s acceptance with re-
gard to a contractual relationship could be given as

accept{y},{x}(sendGoods(p),sendMoney(q)) =

offer{x},{y}(sendGoods(p),sendMoney(q))∧
proc{y}(OxE{y}sendMoney(q)) (30)

indicatingy’s agreement with the contractual content. In
this manner, by applying a small set of operations like pro-
posal, accept etc. on the combination of directed obliga-
tion and action we can represent various contractual re-
lationships of interest in a business scenario. Table 3.1
shows that all the operations defined in (Singh 1999) can
be captured in our formalism and some of them in a more
intuitive manner. Except forAssignall the other opera-
tions have a direct reading. The idea of assign is to show
that the holderx of the recursive declarative power can ex-
ercise his/her power in two ways. The first conjunct shows
x’s command overy so thaty is obliged to realiseA. The
second conjunct enablesx to transfer to another agentz the
same declarative powerx possesses i.e., Assign transfers a
commitment to another creditor within the same context,
and can be performed by the present creditor because it is
authorised.

4 Bringing them all together

Now we will show how the formal representation devel-
oped above can be used to capture the normative depen-
dencies involved in a scenario like the after sales process
model as shown in Figure 1. Consider the part where the
retailer/manufacturer sends notification to the technician.
As noted earlier this may involve an internal activity like
finding the most appropriate technician which in turn de-
pends on certain agreements reached between a particular
technician and the retailer/manufacturer. Let us capture
this scenario using our framework. It should be noted that
in this paper we are interested in thecommitted depen-
dencybetween the actors i.e., in a committed dependency
the dependee will try its best to perform the task because
of the fact that the depender would be hurt significantly if
the dependency fails4. Since in our framework we have

4In anopen dependencyif the dependency fails the depender would be affected
to some extent whereas acritical dependencyindicates that some goal of the de-
pender could not be achieved if the dependency fails. For an overview of this
classification refer to (Yu & Mylopoulos 1993).

a stronger version of committed dependency in the form
of reciprocal obligations (joint commitments) we always
haveOyE{x}(X)∧OxE{y}(Y) denoting the content of the
commitment as was given in (25). In the case of our af-
ter sales service scenario which includes the retailer and a
technician we could state this condition precisely as

OrE{t}performed(j)∧OtE{R}paid(p) (31)

with the reading that the techniciant undertakes toward
the retailerr, the obligation to perform the jobj, while
the retailerr undertakes towards the techniciant, the obli-
gation of paying the pricep. Further, a call for pro-
posal (of making a commitment having contentX) by
retailer r from any techniciant ∈ T can be represented
as proposal{r},{t}(X). In a similar manneroffer{t},{r}(X)
conveys techniciant ’s offer to retailerr with respect to a
commitment having contentX andaccept{r},{t}(X) means
that the retailerr accepts to a commitment having content
X with techniciant.

Suppose that the retailer issues a proposal the terms
of which states the reciprocal obligations of both parties
involved. For instance, the retailers proposal could be that
the technician has an obligation to repair aLG washing
machine (j)and the retailer has the obligation to pay 60
Dollars (p) for it. This could be represented as

proposalTr (E{t}performed(j),Er paid(p)) (32)

From (3.1) we can arrive at the conclusion that (32)
refers to the retailers proclamation of a specific proposal.
Though this inference is not of much use for this work it
is useful when we think about message passing as a kind
of speech act. The consequence of (32) is that those tech-
nicians who are capable of repairing LG washing machine
can make offers. Suppose that one of the technicians re-
turns an offer which is in the form of a counter-proposal.

offer{t},{r}(E{t}performed(j), paid(p′)) (33)

wherep′ = 50 Dollars. Assume that this is the best offer
the retailer has received and therefore he/she accepts it.
Now the acceptance by the retailer implies his/her agree-
ment because by (29) anoffer happens when a proposal
and agreement is already in place. The acceptance byr
could be given as

accept{r},{t}(E{t}performed(t),E{r}paid(p′)) (34)

Using (33) and (34) along with (3.1) gives us

(proc{r,t}(OrE{t}performed(t)∧OtE{r}paid(p′))) (35)

which shows that the parties have made a joint commit-
ment within the context ofAfter Sales Service Processing
(ASSP) scenario. Also because of (7), (35) implies

proc{r,t}(OrE{t}performed(t))∧proc{r,t}(OtE{r}paid(p′)))
(36)

By applying the rules provided earlier which shows the ef-
fectiveness of a proclamation we can derive from (36) the
conclusion thatt is obliged to do the job andr is obliged
to pay for it. Formally this is given as follows

(OrE{t}performed(t)∧OtE{r}paid(p′)) (37)

The above example tells us that agent’s behaviour within
organisations are governed by social rules that impose
obligations over the agents actions. Therefore coordina-
tion in organisations and societies cannot be accounted
for without considering the social laws of the organisa-
tions and the way they constrain behaviours of individ-
ual agents. Hence as a first step to make this view prac-
tically usable in applications it is important to represent
and reason about the obliged behaviours within agents as
we have shown above. This in turn would help to explain
co-ordination among agents as negotiation about obliged
behaviours.

CRPIT Volume 53

80

Operation Meaning Representation
Create Instatantiates a commitment proc{x}(OyE{x}A)
Cancel Revokes the commitment proc{x}(¬OyE{x}A)
Release Eliminates the Commitment proc{x}(¬OxE{y}A)∧ proc{x}(¬Ox¬E{y}A)
Delegate Shifts the role ofx (debtor) to another proc{x}(procyA)⇒s Ex(procyA)

agent within the same context procx(EyA)⇒s Ex(EyA)
Assign Transfers a commitment to another RecDecPow{x}(OxE{y}A) =

creditor within the same context DeclPow{x}(OxE{y}A)∧
DeclPow{x}(RecDeclPow{z}(OxE{y}A)

Table 1: Operations on commitments

5 Rules for Deontic Dependency

In this section we provide some general rules that takes
care of the deontic constraints to be satisfied between ac-
tors. These rules in turn regulates the agent behaviour in
an organisational set up. A rule stating the deontic con-
straints that need to be satisfied to make a proposal be-
tween a debtor(x) and creditor(y) can be stated as fol-
lows;

IF isDebtor(x)
AND isCreditor(y)

AND (OyE{x}sendGoods(p))
AND (OxE{y}sendMoney(q))

THEN proposal{x},{y}

In a scenario like in (1), we can use the above rule to
represent the constraints related to a proposal of a con-
tract issued by the Retailer. For instance, the retailers
proposal could be that the technician has an obligation
to repairLG washingmachine(q) and the retailer has the
obligation to pay 60 Dollars(p) for it which could be given
in the following way;

IF isRetailer(r)
AND isTechnician(t)

AND (OrE{t}per f ormed(q))
AND (OtE{r}paid(p))

THEN proposal{r},{t}

Similarly, we can give a rule stating the constraints to be
satisfied so that anagreementcould be reached between
retailerr and techniciant regarding a specific contractual
content as follows;

IF proposal{r},{t}(per f ormed(q), paid(p))
AND proc{t}(OrE{t}per f ormed(q))

THEN agree{t},{r}(per f ormed(q), paid(p))

i.e., in order for the retailer and the technician to come
up with an agreement, initially, there should be a proposal
from the retailer to the technician regarding a specific con-
tractual content and the technician makes a proclamation
through which he obliges himself to bring about the spe-
cific content. It is also possible that the technicaint can
come up with a betteroffer for the retailer by quoting a
different pricep′ for the job to be performed. A rule for
an offer could be given as follows;

IF proposal{t},{r}(OrE{t}per f ormed(q))
AND (OtE{r}paid(p′))

AND agree{r},{t}(per f ormed(q), paid(p′)i)
THEN o f f er{t},{r}

6 Accommodating Deontic Dependencies ini∗

In the previous sections we developed a framework that
provides a normative description of a (business) process

Soft goal Dependency

Resoursce Dependency

P
rom

ptly
S

ubm
itted

R
ep

or
t

M
ai

nt
en

an
ce

S

ub
m

it

ReportSubmitted Promptly

MaintenancePerform

Maintenance
Submit Report

Perform
Maintenance

Customer
Send Note To

nician
Tech

type
Warranty
Determine

facturer
Manu−

Customer

 Retailer −

R
eport

Actor

Goal Dependency

Task Dependency

Figure 2: SD-model for theAfter Sales Service Scenario
in Figure 1:

in their organisational settings. In this section we show a
dependency diagram similar toi∗ in which we can acco-
modate normative dependency. Thei∗ Framework (Yu &
Mylopoulos 1994, Yu & Mylopoulos 1993), (pronounced
i-star and stands fordistributed intentionality), is an or-
ganisational modelling technique used by many groups
around the world in their research on early requirements
engineering, business process design, software develop-
ment methodologies and many more. Thei∗ approach
enables to describe, model and reason about the goals
of systems (business and socio-technical) that involve
many different actors and for choosing system architec-
tures that best meet these goals. By explicitly modelling
and analysing strategic relationships among multiple ac-
tors the approach incorporates rudimentary social analysis
into a system analysis and design framework. The frame-
work is based on theSD (Strategic Dependency) model
and theSR (Strategic Rationale) model wherein the actors
are related to each otherintentionally. Actors depend on
each other for goals to be achieved, tasks to be performed
and resources to be furnished. Whereas SD-model is used
to represent a particular design for a business process the
SR-model describes the reasoning that actors have about
the different possible ways of organising work, i.e, differ-
ent configurations of SD networks. Since our main aim
is to account for a notion of deontic dependency in thei∗
framework we restrict ourselves to the SD-model.

Figure (2) shows a Strategic Dependency model for the
after sales service work-flow in Figure (1). As can be seen
from the figure the SD model consists of a set of nodes
and links. Each node represents an actor, and each link

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

81

Deontic Dependency

Maintenance
Perform

Manufac
turer

 Retailer

Customer

Perform Maintenance

Customer
Send Note to

to Technician
Send Request

Tech−
nician

Send Request to Technician

Retailer Happy

Determine
Warranty
type

Actor

Goal Dependency

Task Dependency

Soft goal Dependency

Resoursce Dependency

Figure 3: SD-model with Deontic Dependencies for the
After Sales Service Scenarioin Figure 1:

between two actors indicates that one actor depends on
the other for something in order that the former may attain
some goal. Four types of dependencies are distinguished
in an SD-model between adepender(the depending ac-
tor) and adependee(actor who is depended upon). The
object around which the dependency relationship centres
is called thedependum. In agoal-dependencya depender
depends on the dependee to bring about a certain state in
the world wherein the dependee is free to choosehow to
accomplish the goal. For instance, in Figure (1), theRe-
tailer/manufacturerdepends on theTechnicianin-order to
perform maintenance. The retailer/manufacturer is only
concerned about the outcome ofperform maintenanceand
doesn’t care how the technician achieves the goal. An-
other goal dependency in Figure (1) is that ofsubmit main-
tenance reportbetween the retailer/manufacturer and the
technician. Similarly, in atask-dependency, though a de-
pender depends on the dependee to carry out an activity
(the dependum), the activity specification constrains the
choices of the dependee onhow the task is to be per-
formed. As an example of task dependency, theManu-
facturer depends on theRetailer to send notification to
the customer regarding the warranty. This is so because
theManufacturerwants to have the warranty determined
(limited/extended) according to the well defined instruc-
tions outlined by it. In aresource dependency, the de-
pender depends on the dependee for the availability of an
entity (physical or informational). The dependency be-
tween theRetailer and theCustomerto determine war-
ranty type is a resource dependency where the dependum
is a piece of information related to the date on which the
customer purchased the particular product. In asoftgoal
dependencya depender depends on the dependee to bring
about a condition in the world wherein the criteria is not
precisely defined as in the case of hardgoal dependency.
The dependee has a number of ways for achieving the goal
and the depender indicates which combination of choices
would sufficiently meet the desired subgoal. Its usually
considered that a softgoal issatisficedrather than satis-
fied. In Figure (1)promptly submitted reportis a soft-
goal dependency between the retailer/manufacturer and
the technician. We will add one more dependency, de-
ontic dependency, to this list as shown in Figure (3) so
that the logical framework provided in the previous sec-
tions can be used to represent and reason about such de-
pendencies. It should be noted that we avoided some re-
lations in Figure (3) which is already explained in Figure
(1) so as not to have the figures cluttered.Send Request

to Technicianis a deontic dependency between the re-
tailer/manufacturer and technician because as mentioned
earlier the retailer/manufacturer has the right to choose the
most appropriate technician based on certain agreements
they have reached as a result of mutual obligation. The de-
pendum, i.e., the activity of sending work request cannot
be reduced to any other dependency as it involves obliged
behaviours.

Now we will show how to capture the intentional de-
pendencies of the SD-model using our framework devel-
oped in the previous sections. In the SD-model the ex-
ternal actor relationships as outlined above are charac-
terised in terms of more basic intentional concepts like
belief, goal, ability and commitment. We represent the
intentional dependencies as meta-commitments by us-
ing the notion of reciprocal obligation as follows; Let
us consider a commitment,c = C(x,y,G, p), as given
in (Singh 1999) whereinc is base-level ifp does not re-
fer to any other commitment andc is a meta-commitment
if p refers to a base-level commitment. In the case of
i∗ framework, for a goal dependency, the conditionp
is an assertionachieve(g) representing the goalg to be
achieved by an agent. For a task dependency on task
t, p is done(t) and for a resource dependency on re-
sourcer, p is avail(r). In our model we can represent
these dependencies in terms of reciprocal obligation of
the depender towards the dependee to satisfy the condi-
tion p. For instance, in our model, in the case of multi-
lateral proclamations (for example (25), the conditionp
(which is the content of the proclamation) is always de-
fined in terms of directed obligations i.e. the satisfac-
tion of conditionp is based on reciprocal obligation be-
tween the depender and the dependee. This means the
commitments arrived at by such proclamations are not at
base-level but are meta-commitments sincep involves the
obligations of both parties involved which in turn leads
to a joint-commitment. Hence in a way we can say that
in our model we represent an intentional dependency as
a meta-commitment/reciprocal obligation of the depen-
der towards the dependee to create commitments to sat-
isfy condition p. To give an example, suppose thatPer-
form Maintenancein Figure(2) is a goal-dependency of
the retailer on the technician. Then this dependency can
be represented as a reciprocal obligation of the technician
towards the retailer through which the technician has an
obligation towards the retailer to create a directed obliga-
tion (upon receiving a request for repair) to achieve the
goal Perform Maintenance. In a similar manner we can
capture the other dependencies in terms of reciprocal obli-
gations.

7 Conclusions and Future Work

We showed how a combination of notions related toobli-
gation, proclamationanddirect actionaccounts for a de-
ontic theory of commitment which in turn can be used to
model business processes in their organisational settings.
We first outlined a logical framework, which is based on
a multi-modal logic, to represent the various deontic con-
cepts. A peculiar feature of our logical framework is in
the use ofproclamationas a unique speech act that can
model all other speech acts that characterise an organi-
sation. For instance, in most other approaches, what we
modelled as proclamation is represented through differ-
ent types of speech acts (commissives, permissives, agree-
ments, etc.) where each one is characterised by its own
specific semantics. We considered these differences as in-
stances of just one speech act since as far as we are con-
cerned the differences only pertain to the content which
is proclaimed. Then we went on to demonstrate how a
combination of obligation, proclamation and direct action
can account for at-least two types of normative delega-
tion. The most crucial part of this work was developed
next, where it was shown how to achieve normative co-

CRPIT Volume 53

82

ordination by imposing social constraints/rules in the form
of mutual obligations among the agents/actors. One con-
sequence of this approach is that it allows agents to talk
to each other based on their sets of obliged behaviours
and thereby have a clean approach to negotiation. An-
other consequence is that by stating them as deontic con-
straints the co-ordination among agents can be seen as an
exchange of deontic constraints. Further, we formalised
the various operations that can be performed on commit-
ments based on the new framework. Finally, we compared
our model with thei∗ framework to show that the various
dependency relationships can be explained in terms of our
work.

An organisational model like ours can be used to cap-
ture, support and enforce social patterns of behaviour of
business processes operating in open environments. Open
societies need mechanisms to systematise, defend and rec-
ommend right and wrong behaviour which in turn can
inspire trust into the agents/process that will join them.
In our model we make use of obligation, commitment
etc. as norms to describe such expected behaviour. Also
our model is rich enough to cover wide range of con-
texts for agent interaction. From a workflow point of
view, recent works (Russel, van der Aalst, ter Hofst-
ede & Edmond 2005) show that there has been a shift
of perspective fromWorkflow Control PatternsandWork-
flow Data Patternsto that ofWorkflow Resource Patterns
where modelling of resources (human/non human) and
their interaction is of prime importance. We believe that
our framework can contribute much to support modelling
in the organisational context in which a process operates.

Though we do not address any computational issues
in this paper, work is in progress to develop a computa-
tional framework based on the logical intuitions we have
described here. A computation model based on Defeasible
logic has already been proposed in this regard. Defeasible
logic has been developed by Nute (Nute 1987) with a par-
ticular concern about computational efficiency and devel-
oped over the years by (Maher & Governatori 1999, An-
toniou, Billington, Governatori & Maher 2000). The
reason being ease of implementation (Maher, Rock, An-
toniou, Billignton & Miller 2001), flexibility (Antoniou
et al. 2000) (it has a constructively defined and easy to use
proof theory which allows us to capture a number of dif-
ferent intuitions of non-monotonicity) and it is efficient: it
is possible to compute the complete set of consequences
of a given theory in linear time (Maher 2001). Having
such an inference mechanism allows an agent to deduce
the logical consequences of given obligations as well as
helps in resolving conflicts among obligations (two im-
portant directions in which our work could be extended).
At the moment, we have provided two extensions of stan-
dard Defeasible Logic. The first incorporates the no-
tions of “counts as” and agency, as described in this pa-
per (Governatori & Rotolo 2003, Governatori, Rotolo &
Sadiq 2004). The second combines agency, BDI concepts
and obligations (Governatori & Rotolo 2004). Our future
work will be devoted to developing a unique framework
which is able to deal with the cognitive component (BDI
concepts), agency, and normative notions (“counts as” and
deontic operators).

Before closing down we want to mention some related
works that is of importance to this document. (Gelati
et al. 2004) is the starting point for this work. But the ma-
jor difference is in our use of reciprocal obligations to cap-
ture the commitment aspect involved in agents. Also, we
address our work from a process modelling point of view
whereas (Gelati et al. 2004) is concerned with legal rea-
soning. The same reason applies to (Tan & Thoen 1998).
Two other closely related works are (Taveter & Wagner
2001a, Taveter & Wagner 2001b). In those works too the
concept of mutual obligation is absent as well as they do
not use deontic logic to represent the different normative
concepts. (Yolum & Singh 2004, Singh 1999) provided
some insights to our approach. They represent commit-

ments as first class abstract objects using a four place rela-
tion whereas we show how commitments arise as a result
of the obliged behaviours between the different agents.
(Yu & Mylopoulos 1994) and (Yu & Mylopoulos 1993)
had a major influence on our work and as was shown in the
discussion section our framework can accomodate the var-
ious dependency relationships outlined there. The advan-
tages of having a fifth dependency in the formdeontic de-
pendencyis worth investigating. (Barbuceanu et al. 1999)
uses obligation, permissions and interdictions (OPIs) to
reason about the behaviour of social agents. OPIs are
modelled by reducing deontic logic to a particular type of
dynamic logic and then constraint satisfaction techniques
are used to infer consequences and solve conflicts among
obligations and interdictions. We believe that this is a
good approach for future work though it will not be pos-
sible to account for many normative relations that are de-
fined in a deontic logical setting by reducing it to some
type of dynamic logic. (Dignum, V́azquez-Salceda &
Dignum 2004) is another work similar to ours written from
a software engineering perspective.

Acknowledgements

This work was supported by the Australia Research Coun-
cil under Discovery Project No. DP0558854 on “A Formal
Approach to Resource Allocation in Web Service Oriented
Composition in Open Marketplaces”.

References

Antoniou, G., Billington, D., Governatori, G. & Ma-
her, M. J. (2000), A flexible framework for defeasi-
ble logics,in ‘Proc. American National Conference
on Artificial Intelligence (AAAI-2000)’, AAAI/MIT
Press, Menlo Park, CA, pp. 401–405.

Barbuceanu, M., Gray, T. & Mankovski, S. (1999), ‘Role
of obligations in multiagent coordination’,Applied
Artificial Intelligence13(1-2), 11–38.

Castelfranchi, C., Dignum, F., Catholijn, M. & Treur,
J. (2000), Deliberative normative agents: Principles
and architecture,in ‘Proceedings of ATAL 1999’,
Springer, Berlin, pp. 364–378.

Colombetti, M. (2000), A commitment-based approach to
agent speech acts and conversations,in M. Greaves,
F. Dignum, J. Bradshaw & B. Chaibdraa, eds,
‘Proceedings of the Fourth International Confer-
ence on Autonomous Agents, Workshop on Agent
Languages and Conversation Policies’, Barcelona,
pp. 21–29.

Conte, R. & Dellarocas, C. (2001),Social Order in
Multiagent Systems, Kluwer Academic Publishers,
Boston.

Dignum, V., Vázquez-Salceda, J. & Dignum, F. (2004),
Omni: Introducing social structure, norms and on-
tologies into agent organisations.,in ‘PROMAS’,
Vol. 3346, Springer, pp. 181–198.

Elgesem, D. (1997), ‘The modal logic of agency’,Nordic
Journal of Philosophical Logic2, 1–48.

Gelati, J., Rotolo, A., Sartor, G. & Governatori, G. (2004),
‘Normative autonomy and normative co-ordination:
Declarative power, representation and mandate’,Ar-
tificial Intelligence and Law12, 53–81.

Goldkuhl, G. (1996), Generic business frameworks and
action modelling,in ‘Proceedings of the First Inter-
national Workshop on Communication Modelling’,
Electronic workshops In Computing.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

83

Governatori, G. & Rotolo, A. (2003), A defeasible logic of
institutional agency,in ‘Proceedings of the Fifth In-
ternational Workshop on Nonmonotonic Reasoning,
Action, and Change (NRAC’03)’, pp. 97–104.

Governatori, G. & Rotolo, A. (2004), Defeasible logic:
Agency, intention and obligation,in ‘7th Interna-
tional Workshop on Deontic Logic in Computer Sci-
ence, DEON 2004’, Springer, pp. 114–128.

Governatori, G., Rotolo, A. & Sadiq, S. (2004), A model
of dynamic resource allocation in workflow sys-
tems, in ‘Fifteenth Australasian Database Confer-
ence (ADC2004)’, Australian Computer Science As-
sociation, pp. 197–206.

Jones, A. (1990), Towards a formal theory of communica-
tion and speech acts,in P. Cohen & M. Pollack, eds,
‘Intentions in Communication’, MIT Press, Cam-
bridge, Mass.

Jones, A. & Sergot, M. (1996), ‘A formal characterisation
of institutionalised power’,Journal of IGPL3, 427–
443.

Kanger, S. (1972), ‘Law and logic’,Theoria38, 105–32.

Lindahl, L. (1977),Position of change: A Study in law and
logic, Reidel, Dordrecht.

Maher, M. (2001), ‘Propositional defeasible logic has lin-
ear complexity’,Theory and Practice of Logic Pro-
gramming1(6), 601–711.

Maher, M. J. & Governatori, G. (1999), A semantic de-
composition of defeasible logic,in ‘Proceedings of
the 16th National Conference on Artificial Intelli-
gence (AAAI-99’, AAAI Press, pp. 299–305.

Maher, M. J., Rock, A., Antoniou, G., Billignton, D. &
Miller, T. (2001), ‘Efficient defeasible reasoning sys-
tems’,International Journal of Artificial Intelligence
Tools10(4), 483–501.

Nute, D. (1987), Defeasible logic,in ‘Handbook of Logic
in Artificial Intelligence and Logic Programming’,
Vol. 3, Oxford University Press, pp. 353–395.

Pitt, J. (2005),Normative Specifications in Multi-Agent
Systems, John Wiley & Sons.

Pörn, I. (1977),Action Theory and Social Science: Some
Formal Models, Reidel, Dordrecht.

Royakkers, L. (2000), Combining deontic and action log-
ics for collective agency,in J. Breuker et al., ed.,
‘Legal Knowledge and Information Systems (Jurix)’,
IOS Press, Amsterdam.

Russel, N., van der Aalst, W. M. P., ter Hofstede, A. H. M.
& Edmond, D. (2005), Workflow resource patterns:
Identification, representation and tool support.,in
‘CAiSE’, Vol. 3520, Springer, pp. 216–232.

Santos, F., Jones, A. & Carmo, J. (1997), Action con-
cepts for describing organised interaction,in ‘Thirti-
eth Annual Hawaii International Conference on Sys-
tem Sciences’, IEEE Computer Society Press, Los
Alamitos.

Singh, M. P. (1999), ‘An ontology for commitments in
multi-agent systems: Towards a unification of nor-
mative concepts’,Artificial Intelligence and Law
7, 97–113.

Singh, M. P. (2004), Business process management: A
killer app for agents,in ‘Proc. Autonomous Agents
and Multi-Agent Systems (AAMAS-2004)’, IEEE.

Singh, M. P., Chopra, A. K., Desai, N. & Mallya, A. U.
(2004), Protocols for processes: Programming in the
large for open systems (extended abstract),in ‘OOP-
SLA Companion’, Vol. 39, pp. 120–123.

Tan, Y.-H. & Thoen, W. (1998), Modelling directed
obligations and permissions in trade contracts,in
‘HICSS (5)’, pp. 166–175.

Taveter, K. & Wagner, G. (2001a), Agent-oriented enter-
prise modelling based on business rules.,in ‘ER’,
Vol. 2224 of Lecture Notes in computer Science,
Springer, pp. 527–540.

Taveter, K. & Wagner, G. (2001b), A multi-perspective
methodology for modelling inter-enterprise business
processes.,in ‘ER (Workshops))’, Vol. 2465 ofLec-
ture Notes in computer Science, Springer, pp. 403–
416.

Wagner, G. (2003), ‘The agent-object-relationship meta-
model: towards a unified view of state and behav-
ior.’, Inf. Syst.28(5), 475–504.

Yolum, P. & Singh, M. P. (2004), ‘Reasoning about
commitments in the event calculus: An approach
for specifying and executing protocols’,Annals of
Mathematics and Artificial Intelligence. Special is-
sue on computational Logic in Multi-Agent Systems.
42(4), 227–253.

Yu, E. S. K. & Mylopoulos, J. (1993), An actor depen-
dency model of organizational work: with applica-
tion to business process reengineering.,in ‘COOCS’,
ACM, pp. 258–268.

Yu, E. S. K. & Mylopoulos, J. (1994), From E-R to A-R
- modelling strategic actor relationships for business
process reengineering.,in ‘ER’, Vol. 881 of Lecture
Notes in Computer Science, Springer, pp. 548–565.

CRPIT Volume 53

84

Defining and Implementing Domains with Multiple Types using
Mesodata Modelling Techniques

Sally Rice1,2, John F. Roddick1 and Denise de Vries1

1School of Informatics and Engineering
Flinders University of South Australia

PO Box 2100, Adelaide, South Australia 5001
{sallyr,roddick,Denise.deVries}@infoeng.flinders.edu.au

2 School of Computer and Information Science
University of South Australia

Mawson Lakes, South Australia 5095
sally.rice@unisa.edu.au

Abstract

The integration of data from different sources often
leads to the adoption of schemata that entail a loss of
information in respect of one or more of the data sets
being combined. The coercion of data to conform to
the type of the unified attribute is one of the major
reasons for this information loss. We argue that for
maximal information retention it would be useful to
be able to define attributes over domains capable of
accommodating multiple types, that is, domains that
potentially allow an attribute to take its values from
more than one base type.

Mesodata is a concept that provides an intermedi-
ate conceptual layer between the definition of a rela-
tional structure and that of attribute definition to aid
the specification of complex domain structures within
the database. Mesodata modelling techniques involve
the use of data types and operations for common data
structures defined in the mesodata layer to facilitate
accurate modelling of complex data domains, so that
any commonality between similar domains used for
different purposes can be exploited.

This paper shows how the mesodata concept can
be extended to facilitate the creation of domains de-
fined over multiple base types, and also allow the
same set of base values to be used for domains with
different semantics. Using an example domain con-
taining values representing three different types of
incomplete knowledge about the data item (coarse
granularity, vague terms, or intervals) we show how
operations and data structures for types already ex-
isting within the mesodata can simplify the task of
developing a new intelligent domain.

Keywords: Mesodata, intelligent domains, multiply-
typed domains, incomplete information, vagueness,
coarse granularity, intervals, relational model, hier-
archical domains, data integration.

1 Introduction

Integrating multiple sources of data is of vital impor-
tance to many enterprises. Within a single organiza-
tion such integration can lead to better strategic plan-
ning and decision making. Integration across multiple
organizations leads to more efficiency and quality of

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Third Asia-Pacific Conference on Conceptual
Modelling (APCCM2006), Hobart, Tasmania, Australia. Con-
ferences in Research and Practice in Information Technology,
Vol. 53. Sven Hartmann, Markus Stumptner and Yasushi
Kiyoki, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

service due to better utilization of information and
elimination of redundancy (Zeng 1999).

Integration of sources with different conceptual
schemas is not a trivial process. The need to com-
bine attributes defined on different types often leads
to loss of information. For example, consider some-
thing as simple as a numerical attribute recorded in
one source using integers and in another as fixed point
values with two decimal places. These representations
could be combined by converting the latter into inte-
gers, which clearly involves a loss of accuracy in the
decimal data. But perhaps the most likely solution
when combining these values is to convert the integers
to numbers with two decimal places. This may not
appear to involve any information loss, but reporting
a value like 24 as 24.00 gives it the appearance of an
accuracy that it does not have: in fact, we have lost
information about the accuracy of the value. A much
better solution is to allow the attribute to take values
from both types. This concept we call multiply-typed
domains.

A problem with the former SQL standard (com-
monly known as SQL-2) is its lack of built-in support
for the creation of user-defined complex data types.
By this we do not mean merely the ability to create
simple domains using the CREATE DOMAIN command
as it is defined in the SQL standard (see e.g. (Melton
& Simon 2002)), but the ability to create domains
with complex structure and semantics. This has led
to commercial relational database management sys-
tems (RDBMS) adding this facility in an ad hoc way
as a response to user demands, as, for example, Or-
acle has done with its extensive CREATE TYPE facility
(Lorentz & Gregoire 2003). These extensions can be
an awkward fit with the concepts of the relational
model. Mesodata provides a method for users to im-
plement domains of arbitrary complexity that fits well
with the relational model, and there is no reason why
the new features offered in SQL:1999, such as the abil-
ity to create complex user-defined types, can’t be used
in the implementation of these domains.

The concept of mesodata – a middle layer of do-
main definition sitting between the metadata and the
data – allows the separation of the definition of the
structure from the semantics of a domain. Commonly
used data structures (such as lists, graphs and trees)
and operations for the manipulation of these data
structures are defined in the mesodata layer. These
mesodata types can then be used to build specific at-
tribute domains: a mesodata type is used to define the
structural aspects of the domain, and the domain is
then built by populating it with values, and by imple-
menting any additional semantics through additional
operations which can utilise the structural operations

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

85

of the mesodata type.
In the past, the incorporation of additional se-

mantics in attribute domains has generally been ac-
complished by extending data models such as the
relational model for particular types of data. This
type of extension includes developments such as tem-
poral databases (Snodgrass 1995), spatial databases
(Schneider 1997, Egenhofer & Franzosa 1991) and
probabilistic databases (Dey & Sarkar 1996). The ad-
vantages that the mesodata approach has over the de-
velopment of a special-purpose extended data model
for each case include making it easier to combine sep-
arate extensions into a single data model (as has been
necessary for the development of spatio-temporal
databases, for example (Abraham & Roddick 1999)),
and the ability for reuse of the same data structures
with different semantics. We believe that the poten-
tial for reuse facilitates the creation of intelligent do-
mains.

Earlier papers on the mesodata concept have ar-
gued for the incorporation of mesodata in Database
Management Systems, and have shown how domain
evolution can be facilitated using mesodata (de Vries,
Rice & Roddick 2004, de Vries & Roddick 2004). This
paper further defines the mesodata concept by dis-
cussing how attributes can be defined over multiply-
typed domains – domains capable of accommodating
multiple types – and showing how the same set of
base values can be used for domains with different
semantics. We illustrate multiply-typed domains us-
ing an example with three types, two whose base val-
ues form hierarchies semantically, and one whose base
values are numeric intervals. The example we present
is of an attribute defined over a multiply-typed do-
main within a single relation. However, the methods
discussed are relevant to the definition of a common
schema to be used across different data sources.

The rest of this paper is organised in the following
way. Section 2 presents a conceptual model for meso-
data and some examples of basic mesodata types,
Section 3 introduces multiply-typed domains through
an example involving incomplete data, Section 4 dis-
cusses how we used these mesodata types to imple-
ment this domain as an exemplar of the use of meso-
data techniques, and Section 5 provides a conclusion
to this paper.

We have tried to be consistent in our use of the
terms domain and type in this paper. In our usage
we intend type to refer to the format of the data, and
domain to the broader concept of allowable values.
However sometimes we are constrained to use one or
the other due to things outside of our control, such as
SQL syntax.

2 Mesodata

Mesodata is a concept that facilitates the implemen-
tation of structurally and semantically-rich domains
(intelligent domains). Key features include a special
mesodata layer within which structural aspects are
defined for common structures such as graphs and
trees, and the ability to accommodate domain vari-
ability by mapping between different representations
(for example, between names and three-byte RGB
values for colours). An intelligent domain is built
by matching a mesodata type with a base type and
a source relation to hold the specific structural infor-
mation for the domain. The base type could form
a simple domain (such as INTEGER or CHAR(12)),
or it could in turn be a domain based on a meso-
data type, so we can define graphs of trees, for ex-
ample. The important difference between mesodata
techniques and object-oriented concepts, is that the
former introduces the idea of storing complex domain

values in the database. Object-oriented databases are
concerned with complex attribute values.

This section describes a data model for mesodata.
We first give a conceptual model and show how it can
be incorporated into a relational database, then we
present two mesodata types used in the development
of our example intelligent domain.

2.1 Conceptual model

Figure 1 shows an entity-relationship model for meso-
data, using UML notation as in e.g. (Connolly &
Begg 2005).

Domain represents a multiply-typed domain for
an Attribute. It is composed of one or more Types.
Type is completely specialised into either a Simple
type (such as INTEGER or CHAR(12)) or a Complex
type (one built using mesodata types).

A Complex type is described by a Mesodata type,
which has a structure SRstructure and a set of Op-
erations. Structural details of the Complex type are
stored in its source relation SourceRel, and its base
values have a Domain. For example, for a graph
whose nodes were strings of length 12, the graph’s
structure would be described in its source relation,
and the base domain of its nodes would be CHAR(12).
Note that the base Domain can itself be Complex
(to accommodate graphs of lists, for example), and
a SourceRel may be used for more than one Complex
type.

A Mapping shows how to convert a value from one
Type of a multiply-typed domain to another. Each
Mapping has a type MapType which can use a func-
tion or a lookup table (or a combination of the two)
to convert the values.

The implementation of this conceptual model can
be separated into four parts:

1. The entities Mesodata, SRstructure and Oper-
ations describing the mesodata types form the
layer between the metadata and the data de-
scribed earlier.

2. The entities Domain, Type, Mapping and Map-
Type are implemented as tables belonging to a
super-user (such as SYS in Oracle), which are pro-
tected from direct manipulation by the user.

3. User tables are created as normal, except that at-
tributes with multiply-typed domains must spec-
ify their data type as well as their value.

4. There are some hidden tables automatically cre-
ated when the complex types are defined, i.e. the
source relations and look up tables for mappings.
These tables should also not be directly manip-
ulable by the user.

2.2 SQL extensions for multiply-typed do-
mains

For illustrative purposes, we offer the following ex-
tensions to the syntax of SQL data definition com-
mands. This consists of extensions to CREATE DOMAIN
and CREATE TABLE, and a new command CREATE
MAPPING.

To allow the same mapping to be used to map
more than one type without redefinition, the defini-
tion of a mapping is divided into two parts:

• associating a mapping name with a look-up table
and/or a mapping function, and

• associating a mapping name with a FROM type
and a TO type.

CRPIT Volume 53

86

Mesodata

SRstructure

Operations

Type

SourceRel

Attribute1

1

*

1

1

1

1

1

isStoredIn

describes

hasSetOf

hasStructure

hasDomain
Domain

SimpleComplex

1

hasBaseDomain hasType

Mapping

1

1
toType

fromType

MapType

hasType

1

LookUp

Function

{mandatory, or}
*

1..*

*

*

1..*

1..*

1..*

1..*

Figure 1: Conceptual model for mesodata

The CREATE MAPPING command associates a map-
ping name with a look-up table and/or a mapping
function.

CREATE MAPPING mapping_name
[LOOKUP mapping_rel]
[FUNCTION function_name]

A MAPPING clause has been added to the extended
CREATE DOMAIN command originally defined in (de
Vries, Rice & Roddick 2004) to accommodate meso-
data types. The MAPPING clause defines mappings
from the base values associated with a particular
CREATE DOMAIN command to another type. Because
a type may be mapped in more than one way, there
may be more than one MAPPING clause. The to type
can be either a simple or a complex type.

CREATE DOMAIN dom
AS mesodatatype
OF basedom
(RETURNS returndom)
OVER sourcerel {(attribute {,attribute})}
{MAPPING mapping_name TO to_type}
[EXCLUSIVE | NONEXCLUSIVE]

And finally, we create the multiply-typed domain
by allowing a domain for an attribute in CREATE
TABLE1 command to be a set of possible types.

[attribute_domain | (type {, type})]

2.3 Hierarchy and interval mesodata types

For our example, we use hierarchy and interval types
defined in the mesodata layer. We use the term hier-
archy for the mesodata type rather than tree because
we do not restrict nodes to having a single parent.
We used the term lattice to describe our hierarchies
in earlier work (Rice & Roddick 2000), but because

1The choice we have made of extending the CREATE DOMAIN com-
mand then allowing an attribute to take values from more than
one of these domains is possibly unfortunate, as it implies that an
attribute can be drawn from different domains, rather than that a
domain can be formed from values of different types.

they can include overlapping nodes, it is possible for
two nodes not to have a unique least upper bound,
so the term lattice is not general enough. Our struc-
tures are not as general as a DAG (directed acyclic
graph), because they do have a defined top node (>)
and bottom node (⊥). The directedness of our hier-
archy is also different from that of a DAG: you can
traverse its edges in both directions, but there is a
semantic difference between going towards ⊥ (more
specific) and towards > (more general).

The source relation for domains based on
interval has the schema (DESCRIP, START,
FINISH) with key DESCRIP. It is used to associate
the end-points of the interval with the stored string
used to represent it in the attribute, and is required
when the RDBMS does not have a base interval
type. START and FINISH can have any numeric or
date/time type: the underlying logic is the same
whether the intervals are numeric or temporal.
Operations defined on intervals include the Allen
relations (Allen 1983):
• equals(i1, i2)

• before(i1, i2) / after(i2, i1)

• starts(i1, i2) / startedBy(i2, i1)

• during(i1, i2) / contains(i2, i1)

• finishes(i1, i2) / finishedBy(i2, i1)

• meets(i1, i2) / metBy(i2, i1)

• overlaps(i1, i2) / overlappedBy(i2, i1)
In addition, we use startOf(i1) and finishOf(i1) to
retrieve the end-points of interval i1.

The source relation for domains based on
hierarchy describes the structure of the hierarchy:
it has the schema (CHILD, PARENT) which has a key
consisting of both attributes because a CHILD can
have more than one PARENT. Required operations in-
clude predicates childOf , parentOf , descendentOf ,
ancestorOf and inFamily, and set-valued functions
allDescendents, allAncestors and family. Let SR
be the source relation, then we define:

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

87

• childOf(x, y) is true if (x, y) ∈ SR.

• parentOf(x, y) is true if (y, x) ∈ SR.

• descendentOf(x, y) is true if childOf(x, y) ∨
(∃(z) ∧ childOf(x, z) ∧ descendentOf(z, y)).

• ancestorOf(x, y) is true if parentOf(x, y) ∨
(∃(z) ∧ parentOf(x, z) ∧ ancestorOf(z, y)).

• inFamily(x, y) is true if x = y ∨
descendentOf(x, y) ∨ ancestorOf(x, y).

• allDescendents(x) is the set
{y|descendentOf(x, y)}.

• allAncestors(x) is the set {y|ancestorOf(x, y)}.

• family(x) is the set {y|inFamily(x, y)}.

These operations are part of the mesodata type and
do not need to be coded by the user.

3 Multiply-typed domains

As an example of a multiply-typed domain, we in-
troduce a data model for incomplete data where that
incompleteness can be of three different base types
(i.e. values with variable granularity, values that are
vague, or where an interval is used to represent a
single value). The same queries can be posed over
attribute values of any of these types: the differ-
ence between them lies in the data structures used
for each type and the corresponding operations used
to answer the queries. Our data model uses a third
truth value unknown and hierarchical domains to
cope with the partial knowledge. In other work (Rice
& Roddick 2000) we discuss an earlier version of this
data model.

In this section we give an overview of this intel-
ligent domain through an example based on archae-
ological data. In addition to the multiple types, we
show how attributes with different semantics can use
the same base values. This requires an implementa-
tion that allows the same stored domain values to be
used with multiple semantics.

3.1 The example domain

We use in our example two relations KILNS shown
in Table 1 and POTS shown in Table 2 containing
information about pots and pottery kilns in Roman
Britain (Swan 1984). The date values given for the
attributes inOperation in KILNS and dateCreated
in POTS are expressed in three different forms: us-
ing the names of Emperors, as an interval of years, or
using vague terms such as mid I (i.e. in the middle
of the first century). They reflect the terms used by
the archaeologists who conducted the initial research
over a period of nearly 200 years. All three forms use
values which explicitly or implicitly define a range of
values, but the semantics of the domain for each at-
tribute are different – whereas inOperation defines
the interval during which the kiln is believed to have
been in operation, dateCreated uses the same values
to represent not an interval, but an unknown point of
time somewhere in that interval. The sorts of ques-
tions that archaeologists would like to answer about
the pottery industry using these data include:

• What kilns were operating during the reign of
Nero?

• Were the Hardingstone 1 and Binsted 15 kilns
operating concurrently?

• Which kilns could have manufactured this pot?

To answer questions like these for the data shown,
it is necessary to be able to map between the dif-
ferent representations used, which could be done by
translating all dates into numerical intervals on data
entry. However, this can lead to loss of information:
if Claudian is translated into [41, 54], it loses the his-
torical context of the original estimate, and if early
I is changed to, say, [1, 30] the vagueness inherent in
the original form disappears.

3.2 Hierarchical Domains

By hierarchical domains we mean domains where
there is a hierarchical structure between (at least two
of) the elements of the domain. The examples D1 =
{Claudio-Neronian, pre-Flavian, Flavian, Claudian,
Neronian}, D2 = {[50,100], [30,60], [70,100], [50,60]}
and D3 = {early–mid I, mid–late I, early I, mid I,
late I} whose structures are shown in Figure 2 demon-
strate this. Connections between nodes in the hierar-
chy represent a containment relationship – the lower
of two connected nodes is (at least partially) con-
tained within the upper node. We call the upper node
of two connected nodes the concept and the lower
node the element, following the usage introduced in
(Roddick 1994). Any node in a hierarchy with both
a child and a parent can be either a concept or an
element, depending on which connection is being con-
sidered. An unlabelled top node > is shown for each
hierarchy, which by definition completely contains ev-
ery node in the hierarchy. Nodes further down the
hierarchy are more specific. For simplicity, the bot-
tom node of the hierarchy ⊥ (which represents the
empty set φ) is not shown. In the domains shown in
Figure 2, the node mid I demonstrates the multiple-
parent structure, because it belongs to (is contained
in) both early-mid I and mid-late I.

There are three kinds of containment relationships
shown in Figure 2 by the labels N , O and S. N is
the ‘normal’ containment relationship where the ele-
ment (lower node) is completely contained within the
larger concept (upper node), O is the overlapping re-
lationship where each node overlaps the other, and S
is the relationship between two synonyms. For exam-
ple, pre-Flavian and Claudio-Neronian are synonyms,
and early-mid I and mid-late I are overlapping. The
hierarchical structure has been retained in the pres-
ence of O and S containments by choosing one of the
pair of concepts involved to be lower in the hierarchy
than the other.2 In both cases the choice is arbitrary,
because each of the connected nodes contains the
other, either partially (O containment) or completely
(S containment). Although N , O and S containments
can apply to sets in general, the domain elements in
Figure 2 are all intervals, even if the bounds of the
interval are not obvious (hierarchy (a)), or not pre-
cisely known (hierarchy (c)). Of course, the contain-
ment relationship between two numerically-expressed
intervals such as [50, 60] and [50, 100] can be worked
out directly from their end-points, without recourse
to stored hierarchical information.

3.3 Queries

The development of a new type of intelligent do-
main usually entails extensions to query languages.
In our example, we introduce some new syntax to
SQL to cope with queries involving the attributes
dateCreated and inOperation. For inOperation

2Note that the O containments shown are an extension of the
usual meaning of hierarchy. It is perhaps better to describe O and
S links as sibling links rather than parent-child ones. Contain-
ment relationships were added to this data model to reduce the
complexity of algorithms for querying this data.

CRPIT Volume 53

88

(a) variable granularity (b) bounding intervals (c) vagueness

pre-Flavian
Flavian

Claudian Neronian

Claudio-Neronian

S

N

N N

N
[50,100]

[70,100]

[30,60]

[50,60]

N
O

N
N

N

N

mid I late I

mid-late I

early-mid I
O

N

N

N

N

N

early I

N

Figure 2: Domains showing connection types

Table 1: Relation KILNS

kiln easting northing inOperation

Dates of varying granularity

Hardingstone 1 476 257 pre-Flavian
Colchester 15 599 226 Claudio-Neronian
Chichester 486 105 Claudian
Stoke-on-Trent 387 343 Neronian
Biddlesden 464 240 Flavian

Dates as numerical intervals

Oxford 5 455 206 [50, 100]
Binsted 15 477 141 [30, 60]
Hendon 1 517 194 [50, 60]
Dorchester 2 458 194 [70, 100]

Dates using vague terms

Colchester 11 599 226 early–mid I
Little Houghton 5 481 260 mid–late I
Harrold 493 255 mid I
Kettering 1 489 278 late I

this syntax is based on Allen’s logic for temporal in-
tervals (Allen 1983). For example

inOperation CONTAINS ’Claudian’

The different semantics of dateCreated mean that
conditions involving it are not comparing two inter-
vals, however, but comparing a point somewhere in
an interval with another interval. The Allen opera-
tions, as modified in (Vilain 1982) to compare a point
with an interval, can be used here, but they need to
be adapted to deal with uncertainty in the value of
the point. Consider the condition

dateCreated DURING ’Claudian’

applied to a relation consisting of pots 1, 2 and 3 (see
Table 2). This is true for pot 2, false for pot 3, and
unknown for pot 1 (since Claudio-Neronian represents
an interval that includes some dates that are Claudian
and some that are not). On the other hand, there is
no uncertainty about the condition

dateCreated DURING ’Claudio-Neronian’

which is false for pot 3, and true for the other pots.
In hierarchies that only have N and S containment
relationships, the condition dateCreated DURING v
is true for all pots with a date that is a descendent of
v in the hierarchy, but is unknown for all pots with a
date that is an ancestor of v that is not synonymous

with v where unknown is a third truth value between
true and false that indicates there is insufficient in-
formation to decide whether a condition evaluates to
true or false. Truth tables for the operators ∧ (and),
∨ (or) and ¬ (not) are shown in Table 3.. The situ-
ation is more complex in hierarchies which include O
containments: the truth value of the condition is also
unknown for all descendents of v in the hierarchy to
which there is no path that does not include an O
containment.

In order to accommodate the unknown truth
value, we introduce the keyword MAYBE as shown in
these queries.

SELECT * FROM pots
WHERE dateCreated DURING ’Claudian’;

SELECT * FROM pots
WHERE MAYBE dateCreated DURING ’Claudian’;

SELECT * FROM pots
WHERE MAYBE dateCreated

NOT DURING ’Claudian’;

MAYBE indicates we want to retrieve kilns for which
the query condition is true or unknown. To answer
these queries, we need to return all kilns where the
condition dateCreated DURING ’Claudian’ is true,
true ∨ unknown, and unknown ∨ false respectively.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

89

Table 2: Relation POTS

potID description easting northing dateCreated

Dates of varying granularity

1 Belgic grey ware cooking pot 599 226 Claudio-Neronian
2 poppy-head beaker 486 105 Claudian
3 ring-necked flagon 464 240 Flavian

Dates as numerical intervals

4 Clapham shelly ware bowl 517 194 [50, 60]
5 large storage jar 458 194 [70, 100]

Dates using vague terms

6 narrow-mouthed bowl 493 255 mid I
7 lid-seated jar and lid 489 278 late I

Table 3: 3-valued logic truth tables

C ¬C Ca ∨ Cb t u f Ca ∧ Cb t u f

t f t t t t t t u f

u u u t u u u u u f

f t f t u f f f f f

4 Implementing the domains

We have shown that, while the attributes
inOperation and dateCreated both use the
three domain hierarchies shown in Figure 2, their
semantics differ. Different semantics for the same
domain values can be accommodated by defining two
domains on the same source relation, each with their
own set of operations.

In this section, we develop different mesodata
types for each of the three types of data for both
these semantics, then create multiply-typed domains
for each attribute using the mesodata types. It is
a multi-layered approach, that allows re-use of the
stored domain values.

The mesodata types we use in our example are:

interval: The interval type described above.

typedHierarchy: The hierarchy type described
above extended to include an attribute specify-
ing the containment relationship for each edge in
the hierarchy.

pointInterval: The interval type where the inter-
val is used to represent an unknown point some-
where within the interval.

pointTypedHierarchy: The typedHierarchy type
where the nodes of the hierarchy represent points
within an interval similar to the pointInterval
type.

4.1 The extended mesodata types

First let us consider the source relations for the three
hierarchies. The intervals shown in part (b) of Fig-
ure 2 can use the source relation schema described
for the interval mesodata type in the previous sec-
tion. For the other two hierarchies, we extend the
schema for the source relation for hierarchy meso-
data type to include the containment relationship

between CHILD and PARENT to be (CHILD, PARENT,
CONTAINMENT).

Now consider the attribute inOperation. As dis-
cussed above, the attribute values are intervals, and
query conditions use the Allen operations. For the in-
terval hierarchy these need no adaptation (apart from
perhaps interpreting DURING to also include EQUALS,
STARTS and FINISHES). For the other two hierarchies
though, these operations must be redefined using the
structure of the hierarchy and the containment rela-
tionships of its edges. For example, consider the query
condition inOperation DURING d. For the hierarchi-
cal domains, we can work out whether the query con-
dition is true or false for a value v using these defi-
nitions:
• SYNONYMS(d, v) = true if v is a synonym of d

• N PATH(d, v) = true if there is a normal path
from d to v

• FULLDESCENDENT(d, v) = DESCENDENTOF(d, v) ∧
N PATH(d, v)

• DURING(d, v) = SYNONYMS(d, v) ∨
FULLDESCENDENT(d, v)

By a normal path we mean a path that does not con-
tain an O containment.

The attribute dateCreated, however, represents a
point located somewhere within the value used for the
attribute, and query conditions use operations com-
paring a point with an interval, the keyword MAYBE,
and three-valued logic as discussed earlier. For ex-
ample, consider the query condition dateCreated
DURING d. For the interval hierarchy we can use these
definitions to determine the truth value of this condi-
tion for a value v:
• true = EQUALS(d, v) ∨ CONTAINS(d, v) ∨
STARTS(d, v) ∨ FINISHES(d, v)

• unknown = DURING(d, v) ∨ OVERLAPS(d, v) ∨
OVERLAPPEDBY(d, v) ∨ STARTEDBY(d, v) ∨
FINISHEDBY(d, v)

CRPIT Volume 53

90

Table 4: Source relations

Source Relation intervalsrel
desc start finish

[50,60] 50 60
[70,100] 70 100
[30,60] 30 60
[50,100] 50 100

Source Relation emperorsrel
child parent containment

Claudian Claudio-Neronian N
Neronian Claudio-Neronian N
Claudio-Neronian pre-Flavian S

Source Relation vaguerel
child parent containment

early I early-mid I N
mid I early-mid I N
mid I mid-late I N
late I mid-late I N
early-mid I mid-late I O

• false = BEFORE(d, v)∨AFTER(d, v)∨MEETS(d, v)∨
METBY(d, v)

For the other two hierarchies, once again we need to
consider domain structure and containments. We can
determine the truth value of the condition for value v
using these definitions:

• true = SYNONYMS(d, v) ∨ FULLDESCENDENT(d, v)

• unknown = INFAMILY(d, v)∧¬(SYNONYMS(d, v)∨
FULLDESCENDENT(d, v))

• false = ¬INFAMILY(d, v)

The operations not defined in this section are defined
for the base mesodata types in Section 2. The differ-
ence in capitalisation is not meant to be significant.

4.2 Creating Mappings, Domains and Tables

To define the mappings between the source relations,
we use the CREATE MAPPING command described ear-
lier with a lookup table and a mapping function whose
purposes are discussed below. The mappings required
for our example are from Emperor names to intervals,
and from vague terms to intervals.

CREATE MAPPING emperorMap
LOOKUP emperorIntervals
FUNCTION emperorToIntervals

CREATE MAPPING vagueMap
LOOKUP vagueIntervals
FUNCTION vagueToInterval

To create the domains for inOperation and
dateCreated, we use the CREATE DOMAIN command
described earlier. The AS clause defines the meso-
data type to be used, the OF clause defines the base
data type for the nodes in the hierarchy, and the OVER
clause specifies the source relation to use.

CREATE DOMAIN inOpInterval
AS interval OF CHAR(10)
OVER intervalsrel

CREATE DOMAIN dateCrInterval
AS pointInterval OF CHAR(10)
OVER intervalsrel

CREATE DOMAIN inOpEmperor
AS typedHierarchy OF CHAR(16)
OVER emperorsrel
MAPPING emperorMap TO inOpInterval

CREATE DOMAIN dateCrEmperor
AS pointTypedHierarchy OF CHAR(16)
OVER emperorsrel
MAPPING emperorMap TO dateCrInterval

CREATE DOMAIN inOpVague
AS typedHierarchy OF CHAR(12)
OVER vaguerel
MAPPING vagueMap TO inOpInterval

CREATE DOMAIN dateCrVague
AS pointTypedHierarchy OF CHAR(12)
OVER vaguerel
MAPPING vagueMap TO dateCrInterval

We now use these domains to create tables KILNS
and POTS. The syntax used for the domains of
inOperation and dateCreated shows that values
from each of the three domains listed can be used
for that attribute.

CREATE TABLE kilns (
kiln CHAR(20) PRIMARY KEY,
easting INTEGER,
northing INTEGER,
inOperation (inOpInterval,

inOpEmperor,
inOpVague))

CREATE TABLE pots (
potID INTEGER PRIMARY KEY,
description CHAR(30),
easting INTEGER,
northing INTEGER,
dateCreated (dateCrInterval,

dateCrEmperor,
dateCrVague))

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

91

Table 5: Mapping between Hierarchies and Intervals

Mapping Emperors to Intervals
emperor start finish

Claudian 41 54
Neronian 54 68
Flavian 68 96
Claudio-Neronian startOf(Claudian) finishOf(Neronian)
pre-Flavian startOf(Claudio-Neronian) finishOf(Claudio-Neronian)

Mapping Vague Terms to Intervals
vagueTerm start finish startMin finishMax

early I 1 33 1 startOf(mid I)
mid I 34 66 finishOf(early I) startOf(late I)
late I 67 100 finishOf(mid I) 100
early-mid I startOf(early I) finishOf(mid I)
mid-late I startOf(mid I) finishOf(late I)

The source relations describing the hierarchical
structure of the domains are shown in Table 4. It is
not necessary to include any edges connecting nodes
to >, as these always have N containment.

Table 5 shows how to map the two hierarchical
structures to intervals. This means providing start
and finish values for the Emperor’s reigns and the
vague terms. In the case of the vague terms, mini-
mum and maximum values have been given as well
as default start and finish values to allow the default
values to be varied if desired, but only in such a way
that the relationships between the terms remain con-
sistent. Wherever possible, startOf and finishOf oper-
ations are included in the table to reduce redundancy.
The lookup table and mapping function defined in
the CREATE MAPPING command are used to implement
this mapping. The lookup table contains the numer-
ical values in Table 5, and the mapping function is
used to calculate the values using the startOf and
finishOf operations.

4.3 Discussion of the Implementation

The implementation described in this paper com-
prises four distinct tasks:

Implementing the basic mesodata types.
The mesodata approach is new, and the only
mesodata types implemented previously are
graph, weighted graph, and circular list, so the
hierarchy and interval mesodata types must be
implemented. This task would not normally be
part of the development of a database using a
mesodata type.

Implementing the adapted mesodata types.
The typedHierarchy, pointInterval and point-
TypedHierarchy implementations are based on
those of interval and hierarchy. Once created,
these are reusable mesodata types like any other,
but the creation of a new intelligent domain may
require adaptations of existing mesodata types
like these.

Implementing the intelligent domain. This
task involves the implementation of the mapping
functions and different semantics for the query
operations for the attributes inOperation and
dateCreated.

Implementing the database This task incorpo-
rates the creation and population of the specific
domains, mappings and relations.

These tasks are shown in decreasing order of likeli-
hood of being required for a particular application.

The non-standard SQL syntax is handled by wrap-
pers which perform any required mesodata operations
and convert the various data definition and manipula-
tion commands to standard SQL, as mesodata is still
at the proof-of-concept stage.

In concept, a mesodata-style implementation of an
intelligent domain is three-layered. The implemented
algorithms are built using the operations defined for
the mesodata types used in the domain, which in turn
use the operations for the DBMS’s base data types. In
comparison, a direct implementation is two-layered:
its special-purpose data structures and algorithms are
built directly on top of the base data type, possibly
enhancing its efficiency at the expense of re-use. As
an experiment, our example domain is being imple-
mented using both methods to see how they differ in
ease of implementation, and efficiency of operation.

For illustrative purposes, consider the mesodata
implementation of the query3

SELECT * FROM KILNS
WHERE inOperation DURING ’pre-Flavian’

for the inOpEmperor part of the multiply-typed
inOperation domain. This requires identification
of the tuples in the KILNS table with a value
for inOperation which lies entirely within the pre-
Flavian era. The algorithm CALC DURING returns
the set DV during of domain values which satisfy
this condition (in our example these are ’Claudian’,
’Claudio-Neronian’ and ’pre-Flavian’) using as
input d (’pre-Flavian’, the domain value being
matched) and DV all (the set of inOpEmperor do-
main values used in KILNS). CALC DURING uses the
SYNONYMS and FULLDESCENDENT operations described
in Section 4.1.

Algorithm CALC DURING(d, DV all)

BEGIN
Initialise DV during to φ
3It will be necessary to introduce syntax to determine which of

the multiple types the value ’pre-Flavian’ belongs to, especially
where there is more than one possible as is the case with our ex-
ample.

CRPIT Volume 53

92

FOR (each v ∈ DV all)
IF SYNONYMS(d, v) ∨ FULLDESCENDENT(d, v)

Add v to DV during
ENDIF

ENDFOR
END

5 Conclusion and Further Research

Data integration often leads to compromise in the
adoption of schemas that do not fit the data very well,
in order to incorporate data from different sources
into a single global schema. At the attribute level,
this problem can be addressed by allowing attribute
domains to accommodate multiple types. We have
shown in this paper that the concept of mesodata
can be used to define such domains.

We believe that the mesodata modelling method-
ology provides a handy tool for developing novel in-
telligent domains of all types. In particular, the abil-
ity to separate the domain values and structure from
the semantics of attributes defined using the domain
proved very useful for this data model, by providing a
paradigm for thinking about the modelling process as
well as enabling the reuse of the same set of complex
values for attributes with different semantics.

Implementation of these ideas is already underway.
The MySQL RDBMS (MySQL 2003) is being used
for this purpose. We are implementing the same data
model both with and without using mesodata tech-
niques. Analysis of these algorithms so far shows no
significant theoretical difference in complexity. Com-
parisons are being undertaken to determine whether
there is a difference in practice.

6 Acknowledgements

The authors would like to thank the anonymous re-
viewers for their very helpful comments on our paper.

References

Abraham, T. & Roddick, J. F. (1999), ‘Survey
of spatio-temporal databases’, GeoInformatica
3(1), 61–99.

Allen, J. (1983), ‘Maintaining knowledge about tem-
poral intervals’, Communications of the ACM
26(11, November 1983), 832843.

Connolly, T. & Begg, C. (2005), Database Systems:
A Practical Approach to Design, Implementation
and Management, 4th Edition, Addison Wesley.

de Vries, D., Rice, S. & Roddick, J. F. (2004), In
support of mesodata in database management
systems, in ‘DEXA 2004’, Springer, Zaragoza,
Spain.

de Vries, D. & Roddick, J. F. (2004), Facilitating
database attribute domain evolution using meso-
data, in F. Grandi, ed., ‘Third International
Workshop on Evolution and Change in Data
Management (ECDM2004)’, Lecture Notes in
Computer Science, Springer, Shanghai.

Dey, D. & Sarkar, S. (1996), ‘A probabilistic rela-
tional model and algebra’, ACM Transactions on
Database Systems 21(3), 339369.

Egenhofer, M. J. & Franzosa, R. D. (1991), ‘Point-
set topological spatial relations’, International
Journal for Geographical Information Systems
5(2), 161–174.

Lorentz, D. & Gregoire, J. (2003), Oracle Database
SQL Reference 10g Release 1 (10.1), Oracle Cor-
poration.

Melton, J. & Simon, A. R. (2002), SQL:1999 – Under-
standing Relational Language Components, Mor-
gan Kaufmann Publishers.

MySQL (2003), ‘SQL open source software’.

Rice, S. & Roddick, J. F. (2000), Lattice-structured
domains, imperfect data and inductive queries,
in M. Ibrahim, J. Kung & N. Revell, eds, ‘11th
International Conference on Database and Ex-
pert Systems Applications, DEXA 2000’, Lec-
ture Notes in Computer Science, Springer, Lon-
don, pp. 664–674.

Roddick, J. (1994), A Model for Temporal Induc-
tive Inference and Schema Evolution in Rela-
tional Database Systems, Doctor of philosophy,
La Trobe University.

Schneider, M. (1997), Spatial Data Types for Database
Systems, Vol. 1288 of Lecture Notes in Computer
Science, Springer.

Snodgrass, R. T. (1995), The TSQL2 Temporal Query
Language, Kluwer Academic Publishers.

Swan, V. G. (1984), The pottery kilns of Roman
Britain, Royal Commission for Historical Monu-
ments.

Vilain, M. B. (1982), A system for reasoning about
time, in ‘National Conference on Artificial Intel-
ligence’, Pittsburg, PA, pp. 197–201.

Zeng, J. (1999), Research and practical experiences
in the use of multiple data sources for enterprise-
level planning and decision making: A literature
review, Technical report, Center for Technology
in Government, University at Albany / SUNY.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

93

CRPIT Volume 53

94

On the Suitability of UML 2.0 Activity Diagrams for Business
Process Modelling∗

Nick Russell1 Wil M.P. van der Aalst2,1 Arthur H.M. ter Hofstede1

Petia Wohed3

1School of Information Systems, Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia

{n.russell, a.terhofstede}@qut.edu.au
2Department of Technology Management, Eindhoven University of Technology

GPO Box 513, NL5600 MB Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

3Department of Computer and Systems Sciences, Stockholm University/KTH
Forum 100, 164 40 Kista, Sweden

petia@dsv.su.se

Abstract

UML is posited as the “swiss army knife” for sys-
tems modelling and design activities. It embodies a
number of modelling formalisms that have broad ap-
plicability in capturing both the static and dynamic
aspects of software systems. One area of UML that
has received particular attention is that of Activity
Diagrams (ADs), which provide a high-level means
of modelling dynamic system behaviour. In this pa-
per we examine the suitability of UML 2.0 Activity
Diagrams for business process modelling, using the
Workflow Patterns as an evaluation framework. The
Workflow Patterns are a collection of patterns devel-
oped for assessing control-flow, data and resource ca-
pabilities in the area of Process Aware Information
Systems (PAIS). In doing so, we provide a compre-
hensive evaluation of the capabilities of UML 2.0 ADs,
and their strengths and weaknesses when utilised for
business process modelling.

1 Introduction

The Unified Modeling Language (UML) is increas-
ingly being seen as the de-facto standard for soft-
ware modelling and design. The most recent ver-
sion (2.0) (OMG 2004) includes 13 distinct modelling
notations ranging from high-level use case diagrams,
which depict the interactions and relationships be-
tween (human) actors and major business functions,
through to low-level object diagrams which capture
instances of individual data objects, their constituent
data elements and values, and their relationships with
other data objects.

The various modelling notations essentially divide
into three main groups:

• Behaviour diagrams, which describe the overall
functionality of the software at a relatively high
level of abstraction;

• Interaction diagrams, which further augment the
behaviour diagrams and present a more detailed

∗This work is funded in part by ARC Discovery Project
DP0451092.
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Third Asia-Pacific Conference on Conceptual
Modelling (APCCM2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology, Vol. 53.
Markus Stumptner, Sven Hartmann and Yasushi Kiyoki, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

description of system functionality in terms of
object interactions; and

• Structure diagrams, which capture the underly-
ing static structure of a software system at var-
ious levels from individual objects to overall ap-
plication packages.

At its heart, UML is an object-oriented set of no-
tations and is particularly effective for capturing de-
tailed design models of software systems in a form
which is suitable for translation into some form of en-
actment technology (usually program code) either by
suitably qualified developers or in a semi-automated
manner via CASE technology. However, the breadth
of UML ensures that it also has potential applica-
bility in a number of other scenarios such as business
process modelling although in such a distinct domain,
some notations (e.g. the class of behaviour diagrams)
are likely to be more useful than others.

Over the past decade, the economics of software
usage have begun to change, and it is increasingly
common for new systems to be based on modifications
of widely distributed software products rather than
being custom software developments. There is also a
broader view being taken as to the scope in which a
system operates and the recognition that true cost-
benefits can only occur when software processes are
aligned with organisational processes. These notions
have been reinforced by the advent of organisation-
wide software packages such as Enterprise Resource
Planning (ERP), Customer Relationship Manage-
ment (CRM) and Workflow Management (WFM) sys-
tems which bind together multiple operational groups
within an organisation in a set of integrated business
processes.

As a consequence of this shift, there is an in-
creased interest in software process modelling in an
organisational context – generally termed business
process modelling or enterprise modelling, depend-
ing on whether the focus of the modelling is on the
business process or the overall organisation. Sev-
eral modelling techniques have been proposed as an
all-encompassing standard for this role, however no
one formalism is predominant in this area (Mendling,
Neumann & Nüttgens 2005). One of the major rea-
sons cited for this (zur Muehlen & Rosemann 2004)
is the wide disparity in the needs and viewpoints of
various modellers and designers.

In this paper, we investigate the suitability of Ac-
tivity Diagrams for business process modelling. This
notation is the most detailed form of process mod-
elling within UML. However, its applicability to the

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

95

business process modelling domain in a general sense
is not immediately evident and merits more detailed
examination in order to determine what advantages
it offers and what its shortcomings are.

We base this evaluation on the Workflow Pat-
terns1, a taxonomy of generic, recurring constructs
originally devised to evaluate workflow systems, and
more recently used to successfully evaluate workflow
standards, business process languages and process-
aware information systems in general (Dumas & ter
Hofstede 2001, White 2004, Wohed, Perjons, Dumas
& ter Hofstede 2003). In accordance with Jablon-
ski and Bussler’s original classification (Jablonski &
Bussler 1996), these patterns span the control-flow,
data and resource perspectives of PAIS. Our choice
of this evaluation framework is based on the fact that
it is 1) widely used, 2) well accepted, 3) comprehensi-
ble to the IT practitioner, 4) at a sufficiently detailed
level of abstraction to provide a comprehensive ba-
sis for assessing their capabilities of business process
modelling languages and 5) the most complete and
powerful framework for this form of assessment cur-
rently in existence.

The main contributions of this paper are as fol-
lows:

• It is the first multi-perspective evaluation of the
expressive capabilities of UML 2.0 ADs;

• It provides an assessment of the overall suitabil-
ity of UML 2.0 ADs for business process mod-
elling; and

• It identifies several areas of potential improve-
ments to UML 2.0 ADs to further strengthen
their use for this purpose.

This paper focuses on the the new version of
UML Activity Diagrams (ADs) 2.0 (OMG 2004),
which differ considerably from their precursor UML
1.4 ADs.2 Previous evaluations (cf. (Dumas & ter
Hofstede 2001, Opdahl & Henderson-Sellers 2002))
have analysed the expressive power of UML 1.4
ADs. There has also been a review of the capabil-
ities of the control-flow perspective of UML 2.0 ADs
(White 2004), however the limited focus of this in-
vestigation has restricted its usefulness as a means of
assessing their overall suitability for general modelling
purposes.

The remainder of this paper proceeds as follows:
Sections 2 and 3 provide an overview of business
process modelling languages and UML 2.0 ADs re-
spectively. Sections 4, 5 and 6 present evaluations
of the control-flow, data and resource perspectives of
UML 2.0 ADs. Section 7 reviews the suitability of
UML 2.0 ADs for business process modelling in light
of the findings in the preceding sections. It also offers
some recommendations for further improving their ca-
pabilities in this area.

2 Business Process Modelling Languages

Business process modelling is essentially a conver-
gence of two related modelling domains: process mod-
elling (cf. (Curtis, Kellner & Over 1992, Rolland 1997,
Rolland 1998)) which seeks to provide “an abstract
representation of a process architecture, design, or de-
finition” ((Humphrey & Feiler 1992), p.33) and enter-
prise modelling or business modelling which focuses
on documenting an organisation from a holistic stand-
point, capturing details of its overall purpose and

1See www.workflowpatterns.com for comprehensive details.
2The semantics of UML 2.0 ADs are based on token flow instead

of statecharts as in UML 1.4.

goals in addition to more concrete details such as or-
ganisational structure and significant business activ-
ities (cf. (Vernadat 1996, Bubenko, Persson & Stirna
2001, Eriksson & Penker 2000, Marshall 1999)).

Whilst there is significant overlap between them,
they are generally viewed as having distinct motiva-
tions (Jablonski & Bussler 1996), and this is best ex-
emplified by the formalisms used for modelling in the
two areas. Process models are usually based on a sin-
gle technique, such as Data Flow Diagrams (DFDs),
Event-driven Process Chains (EPCs), UML Activity
Diagrams or Petri-Nets, which is used to capture the
details of the process in question. In contrast, en-
terprise modelling generally requires a range of mod-
elling techniques to be used in conjunction with each
other in order to capture the required domain infor-
mation. This tends to favour the use of integrated
suites of modelling techniques such as ARIS (Scheer
2000), UML (Eriksson & Penker 2000, Marshall 1999)
and EKD (Bubenko et al. 2001) which possess a
sufficiently broad range of integrated modelling for-
malisms.

Business process modelling essentially seeks to
provide a detailed description of a business process
in an organisational context. There are a range of
potential modelling languages that can be used for
this purpose and Kueng et. al. (Kueng, Kawalek &
Bichler 1996) have proposed a taxonomy of business
process modelling techniques which classifies them
into four groups:

• Activity-oriented approaches - focusing on the de-
finition of business processes as a sequence of ac-
tivities;

• Object-oriented approaches - leveraging the more
comprehensive modelling constructs of object-
orientation to capture business processes;

• Role-oriented approaches - modelling business
processes based on the specific organisational
roles and responsibilities involved; and

• Speech-act approaches - viewing business proc-
esses in the context of the speech-act language
action paradigm.

Other considerations for the selection of an appro-
priate business process modelling language to use in a
particular scenario include the kind of process being
modelled and the purpose for which the modelling is
being undertaken. Rolland (1998) classifies processes
into three kinds: strategic – which investigate alter-
native ways of achieving a required outcome and pro-
duce a plan for doing so; tactical – which focus on the
tactics for achieving the plan; and implementation –
which describe how the plan will be achieved. Sim-
ilarly, individual process models may be developed
with one of three possible aims: descriptive – which
describe what actually happens during a process; pre-
scriptive – which define how a process might or should
be performed; and explanatory – which detail the ra-
tionale for a process and link it to the requirements
it must fulfill.

3 UML 2.0 Activity Diagrams

In UML Activity Diagrams the fundamental unit
of behaviour specification is the Action. “An ac-
tion takes a set of inputs and converts them to a
set of outputs, though either or both sets may be
empty” ((OMG 2004), p.229). Actions may also mod-
ify the state of the system. The language provides a
very detailed action taxonomy, identifying more than
40 different action types in detail. A comprehensive

2

CRPIT Volume 53

96

discussion of them is beyond the scope of this paper
and in Figure 1a we only present the action types that
we have found to be most relevant to our evaluations.
These are the generic Action concept, Accept Event,
Send Signal, and Call Behavior Action constructs.

a) Actions
 b) Control Nodes

Action/Activity
 AcceptEvent

SendSignal
CallBehaviorAction
 Fork
 Join
Merge

...

InitialNode
 ActivityFinal
 FlowFinal

Decision

[cond1]

[cond n]

...
 ...
 ...

Figure 1: The main constructs in UML 2.0 ADs

In order to represent the overall behaviour of a sys-
tem, the concept of the Activity is used. Activities are
composed of actions and/or other activities and they
define dependencies between their elements. Graph-
ically, they are composed of nodes and edges. The
edges connect the nodes in sequential order. Nodes
represent either Actions, Activities, Data Objects, or
control nodes. The various types of control nodes are
shown in Figure 1b.

4 The Control-Flow Perspective in UML 2.0
ADs

In this section we examine the control-flow perspec-
tive of UML 2.0 ADs and their ability to represent
a series of twenty common control-flow modelling re-
quirements that occur when defining process mod-
els. These requirements are described in terms of the
Workflow Control Patterns (van der Aalst, ter Hof-
stede, Kiepuszewski & Barros 2003). The material
in this section summarises the findings in (Wohed,
van der Aalst, Dumas, ter Hofstede & Russell 2005)
thus providing the basis for a comprehensive evalua-
tion of UML 2.0 ADs from multiple perspectives.

4.1 Basic control patterns

Basic control-flow patterns define elementary aspects
of process control. These are analogous to the defini-
tions of elementary control-flow concepts laid down by
the Workflow Management Coalition (WFMC 1999).
There are five of these patterns:

• WCP1: Sequence – the ability to depict a se-
quence of activities;

• WCP2: Parallel split – the ability to capture a
split in a single thread of control into multiple
threads of control which can execute in parallel;

• WCP3: Synchronisation – the ability to cap-
ture a convergence of multiple parallel subproc-
esses/activities into a single thread of control
thus synchronising multiple threads;

• WCP4: Exclusive choice – the ability to repre-
sent a decision point in a workflow process where
one of several branches is chosen; and

• WCP5: Simple merge – the ability to depict a
point in the workflow process where two or more
alternative branches come together without syn-
chronisation.

All five of these patterns can be captured by UML
2.0 ADs. The specific representation of each of these
patterns is illustrated in Figure 2.

WCP1: Sequence

B

C

A

WCP2: Parallel split

B

C

A

WCP3: Synchronisation

B

C

A

WCP5: Simple merge

A

B

C

[Guard1]

[Guard2]

WCP4: Exclusive choice

Figure 2: Basic control patterns in UML 2.0 ADs

4.2 Advanced branching & synchronisation
patterns

This class of patterns corresponds to advanced bran-
ching and synchronisation scenarios that often do not
have direct realisations in PAIS but are relatively
common in real-life business processes. There are four
of these patterns:

• WCP6: Multiple choice – the ability to represent
a divergence of the thread of control into several
parallel branches on a selective basis;

• WCP7: Synchronising merge – the ability to de-
pict the synchronised convergence of two or more
alternative branches;

• WCP8: Multiple merge – the ability to represent
the unsynchronised convergence of two or more
distinct branches. If more than one branch is
active, the activity following the merge is started
for every activation of every incoming branch;
and

• WCP9: Discriminator – the ability to depict
the convergence of two or more branches such
that the first activation of an incoming branch
results in the subsequent activity being triggered
and subsequent activations of remaining incom-
ing branches are ignored.

The multiple choice, multiple merge and discrim-
inator patterns can be captured directly in UML 2.0
ADs and they are illustrated in Figure 3. The syn-
chronising merge pattern cannot be directly modelled.

WCP6: Multiple choice

B

C

A

A

B

C

WCP8: Multiple merge WCP9: Discriminator

D

B

C

A

[Guard1]

[Guard2]

Figure 3: Advanced branching & synchronisation pat-
terns in UML 2.0 ADs

4.3 Structural patterns

Structural patterns identify whether the modelling
formalism has any restrictions in regard to the way
in which processes can be structured (particularly in
terms of the type of loops supported and whether a
single terminating node is necessary). There are two
of these patterns:

• WCP10: Arbitrary cycles – the ability to repre-
sent loops in a process that have multiple entry
or exit points; and

• WCP11: Implicit termination – the ability to
depict the notion that a given subprocess should
be terminated when there are no remaining ac-
tivities to be completed (i.e. no explicit unique
termination node is needed).

3

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

97

Both of these patterns are directly supported in
UML 2.0 ADs.

4.4 Multiple instance patterns

This class of patterns relates to situations where there
can be more than one instance of an activity active at
the same time for the same process instance. There
are four of these patterns:

• WCP12: MI without synchronisation – the abil-
ity to initiate multiple instances of an activity
within a given process instance;

• WCP13: MI with a priori design time knowl-
edge – the ability to initiate multiple instances
of an activity within a given process instance.
The number of instances is known at design time.
Once all instances have completed, a subsequent
activity is initiated;

• WCP14: MI with a priori runtime knowledge –
the ability to initiate multiple instances of an ac-
tivity within a given process instance. The num-
ber of instances varies but is known at runtime
before the instances must be created. Once all
instances have completed, a subsequent activity
is initiated; and

• WCP15: MI without a priori runtime knowledge
– the ability to initiate multiple instances of an
activity within a given process instance. The
number of instances varies but is not known at
design time or at runtime before the instances
must be created. Once all instances have com-
pleted, a subsequent activity is initiated. New in-
stances can be created even while other instances
are executing or have already completed.

The first three of these patterns can be captured
in UML 2,0 ADs as illustrated in Figure 4. The MI
without a priori runtime knowledge pattern is not di-
rectly supported in UML 2.0 ADs.

WCP12: MI without Synchronisation WCP13: MI with a Priori Designtime Knowledge

WCP14: MI with a Priori Runtime Knowledge

Build

Component

[no more

components

to be built]

Install

Component

[more components

to be built]

Specify

Specify

Trip

Trip

Route

Route

Print

Print

Itinerary

Itinerary

Book

Hotel

Book

Book

Book

Book

Flight

Flight

Flight

Flight

1

3

2

Figure 4: Multiple instance patterns in UML 2.0 ADs

4.5 State-based patterns

This class of patterns characterise scenarios in a
process where subsequent execution is determined by
the state of the process instance. There are three such
patterns:

• WCP16: Deferred choice – the ability to depict
a divergence point in a process where one of sev-
eral possible branches should be activated. The
actual decision on which branch is activated is
made by the environment and is deferred to the
latest possible moment;

• WCP17: Interleaved parallel routing – the ability
to depict a set of activities that can be executed
in arbitrary order; and

• WCP18: Milestone – the ability to depict that
a specified activity cannot be commenced until
some nominated state is reached which has not
expired yet.

Owing to the absence of the notion of state, only
the deferred choice pattern can be captured in UML
2.0 ADs. This is illustrated in Figure 5.

A

Signal 1

Signal 2
 C

B

WCP16: Deferred choice

Figure 5: Deferred choice pattern in UML 2.0 ADs

4.6 Cancellation patterns

Cancellation patterns characterise the ability of the
modelling formalism to represent the potential termi-
nation of activities and process instances in certain
(specified) circumstances. There are two such pat-
terns:

• WCP19: Cancel activity – the ability to depict
that an enabled activity should be disabled in
some nominated circumstance; and

• WCP20: Cancel case – the ability to represent
the cancellation of an entire process instance (i.e.
all activities relating to the process instance) in
some nominated circumstance.

Both of these patterns can be captured in UML 2.0
ADs. The first is illustrated in Figure 6, the second
is captured via the ActivityFinalNode construct.

WCP19: Cancel Activity

A

Cancel

A

Figure 6: Cancel activity pattern in UML 2.0 ADs

5 The Data Perspective in UML 2.0 ADs

Extensions (Russell, ter Hofstede, Edmond & van der
Aalst 2005) to the Workflow Patterns Initiative have
focused on identifying and defining generic constructs
that occur in the data perspective of PAIS. In total
forty data patterns have been delineated in four dis-
tinct groups – data visibility, data interaction, data
transfer and data-based routing. In this section, an
analysis of UML 2.0 ADs is presented using the data
patterns described in (Russell, ter Hofstede, Edmond
& van der Aalst 2005).

5.1 Data visibility patterns

Data visibility patterns seek to characterise the vari-
ous ways in which data elements can be defined and
utilised within the context of a process. In general,
this is determined by the main construct to which the
data element is bound as it implies a particular scope
in which the data element is visible and capable of
being utilised. There are eight patterns which relate
to data visibility:

• WDP1: Task data – data elements defined and
accessible in the context of individual execution
instances of a task or activity;

4

CRPIT Volume 53

98

Nr Pattern 2.0 Nr Pattern 2.0
Basic Control Multiple Instance

1 Sequence + 12 MI without Synchronization +
2 Parallel Split + 13 MI with a priori Design Time Knowledge +
3 Synchronisation + 14 MI with a priori Runtime Knowledge +
4 Exclusive Choice + 15 MI without a priori Runtime Knowledge –
5 Simple Merge + State-based

Adv. Branching & Synchronisation 16 Deferred Choice +
6 Multiple Choice + 17 Interleaved Parallel Routing –
7 Synchronising Merge – 18 Milestone –
8 Multiple Merge + Cancellation
9 Discriminator + 19 Cancel Activity +

Structural 20 Cancel Case +
10 Arbitrary Cycles +
11 Implicit Termination +

Table 1: Support for Control-Flow Patterns in UML 2.0 ADs

• WDP2: Block data – data elements defined by
block tasks (i.e. tasks which can be described
in terms of a corresponding decomposition) and
accessible to the block task and all correspond-
ing components within the associated decompo-
sition;

• WDP3: Scope data – data elements bound to a
subset of the tasks in a process instance;

• WDP4: Multiple instance data – data elements
specific to a single execution instance of a task
(where the task is able to be executed multiple
times);

• WDP5: Case data – data elements specific to a
process instance which are accessible to all com-
ponents of the process instance during execution;

• WDP6: Folder data – data elements bound to
a subset of the tasks in a process definition but
accessible to all task instances regardless of the
case to which they correspond;

• WDP7: Workflow data – data elements accessi-
ble to all components in all cases; and

• WDP8: Environment data – data elements de-
fined in the operational environment which can
be accessed by process elements.

In the case of UML 2.0 ADs, there is support for
several of these patterns. The smallest operational
unit in the context of these diagrams is the action.
This corresponds to the notion of a process element
or task and although the notion of task data is not
directly supported, there is indirect support in the sit-
uation where a local action language is utilised which
provides action-specific variables (see (OMG 2004),
p.338-9).

Activities serve as the main grouping mechanism
in UML 2.0 ADs and they have similar characteris-
tics to the block construct in process definitions. The
block data pattern is directly supported through pa-
rameters to activities (see (OMG 2004), p.363) which
are accessible to all activity components. The concept
of attributes (see (OMG 2004), p.341-7) is also pro-
vided which allows data elements to be defined which
are scoped to a specific activity.

Scope data is not supported. The ActivityGroup
construct (see (OMG 2004), p.359) seems to offer
something analogous however the semantics of the
construct are not defined.

Multiple instance data is directly supported and
there are three situations where multiple instances of
a given task may arise:

1. Where a task is specifically designated as having
multiple instances in the process model – this fa-
cility seems to be provided by the ExpansionKind
construct (see (OMG 2004), p.394) where the
parallel option is chosen forcing parallel execu-
tion;

2. Where a task can be triggered multiple times e.g.
it is part of a loop. This situation is allowable in
UML 2.0 ADs (see (OMG 2004), p.345); and

3. Where two tasks share the same decomposition.
This is also supported in UML 2.0 ADs as each
activity decomposition is distinct and has a dif-
ferent set of tokens supplied to it at initiation
(see (OMG 2004), p.360-1).

Case and folder data are not supported as there does
not appear to be the notion of distinct execution in-
stances in UML 2.0 ADs, rather all instances of a
process model execute in the same context and are
differentiated by distinct sets of control and object
tokens flowing through the diagram. Workflow data
is directly supported through data objects or Object-
Nodes (see (OMG 2004), p.422) which are potentially
accessible to all of the components in a UML 2.0 ADs.
There does not appear to be the ability within UML
2.0 ADs to refer to data outside of the context of
the diagram, and hence environment data is not sup-
ported.

5.2 Data interaction patterns

Data interaction patterns deal with the various ways
in which data elements can be passed between com-
ponents within a process instance and also with the
operating environment (e.g. data transfer between a
component of a process and an application, data store
or interface that is external to the process). They ex-
amine how the characteristics of the individual com-
ponents can influence the manner in which the traf-
ficking of data elements occurs.

There are six internal data interaction patterns:

• WDP9: Data elements flowing between task in-
stances;

• WDP10: Data elements flowing to a block ;

• WDP11: Data elements flowing from a block ;

• WDP12: Data elements flowing to a multiple in-
stance task instance;

• WDP13: Data elements flowing from a multiple
instance task instance; and

5

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

99

• WDP14: Data elements flowing between process
instances or cases.

Data interaction between tasks is directly supported
in UML 2.0 ADs by the ObjectNode construct (see
(OMG 2004), p.422) which is the standard means of
communicating data elements between activities.

Data interaction between block tasks and their de-
compositions has a similar analogy in UML 2.0 ADs
in the form of data passing to and from activities.
The standard means of doing this is via parameters
(see (OMG 2004), p.363). Both the data interac-
tion block task to sub-workflow and data interac-
tion sub-workflow to block task patterns (WDP10 and
WDP11) are directly supported.

Data interaction to and from multiple instance
tasks has a direct analogy in UML 2.0 ADs in the
ExpansionRegion construct (see (OMG 2004), p.395)
which allows nominated regions of a process model to
be executed multiple times in parallel (providing the
ExpansionKind mode is set to parallel). Data pass-
ing into and out of the ExpansionRegion occurs using
ExpansionNodes which provide the ability to map dis-
tinct sections of the input data set to specific execu-
tion instances and similarly completing instances can
map their output to a specific section of the output
data set. Hence the data interaction to and from mul-
tiple instance task patterns (WDP12 and WDP13)
are directly supported.

There is no notion of distinct execution cases in
UML 2.0 ADs, hence the data interaction – case to
case pattern (WDP14) is not supported.

There are 12 external data interaction patterns,
characterised by three dimensions:

• The type of process element – task, case or com-
plete process – that is interacting with the envi-
ronment;

• Whether the interaction is push or pull-based;
and

• Whether the interaction is initiated by the proc-
ess component or the environment.

Difficulties arise when examining UML 2.0 ADs in
the context of this class of patterns as the UML ap-
proach assumes that an Activity Diagram represents
the complete universe of discourse and does not pro-
vide the ability to reference or interact with elements
that are external to it.

5.3 Data transfer patterns

Data transfer patterns focus on the way in which data
elements are actually transferred between one process
element and another. They aim to capture the various
mechanisms by which data elements can be passed
across the interface of a process element. There are
seven distinct patterns in this category:

• WDP27: Data transfer by value – incoming –
incoming data elements passed by value;

• WDP28: Data transfer by value – outgoing – out-
going data elements passed by value;

• WDP29: Data transfer – copy in/copy out –
where a process element synchronises data ele-
ments with an external data source at commence-
ment and completion;

• WDP30: Data transfer by reference – without
lock – data elements are communicated between
components via a reference to a data element in
some mutually accessible location. No concur-
rency restrictions are implied;

• WDP31: Data transfer by reference – with lock
– similar to WDP30 except that concurrency re-
strictions are implied with the receiving compo-
nent receiving the privilege of read-only or dedi-
cated access to the data element;

• WDP32: Data transformation – input – where
a transformation function is applied to a data
element prior to it being passed to a subsequent
component; and

• WDP33: Data transformation – output – where
a transformation function is applied to a data
element prior to it being passed from a previous
component.

In the context of UML 2.0 ADs, only three of these
patterns are supported: WDP31: data transfer by
reference – with lock - is the standard means of pass-
ing data elements into an activity as parameters. As
UML 2.0 ADs adopt a token-oriented approach to
data passing, these parameters – which typically re-
late to objects – are effectively consumed at activity
commencement and only become visible and acces-
sible to other activities once the specific activity to
which they were passed has completed and returned
them; WDP32: data transformation - input – can be
achieved through the ObjectFlow transformation be-
haviour (see (OMG 2004), p.418) which allows trans-
formation functions to be applied to data tokens as
they are passed along connecting edges between ac-
tivities; and WDP33: data transformation - output –
as for pattern WDP32.

5.4 Data-based routing patterns

Data-based routing patterns capture the various ways
in which data elements can interact with other per-
spectives and influence the overall execution of the
process. There are seven (relatively self-explanatory)
patterns in this category:

• WDP34: Task precondition – data existence;

• WDP35: Task precondition – data value;

• WDP36: Task postcondition – data existence;

• WDP37: Task postcondition – data value;

• WDP38: Event-based task trigger ;

• WDP39: Data-based task trigger ; and

• WDP40: Data-based routing.

The majority of these patterns are supported in UML
2.0 ADs. Both action and activity constructs in-
clude local preconditions and postconditions based
on logical expressions (which may include data ele-
ments) framed in OCL (see (OMG 2004), p.336 and
p.346). As a consequence, all of the task pre and
postcondition patterns (WDP34 - WDP37) are di-
rectly supported. The AcceptEventAction construct
(see (OMG 2004), p.334) provides direct support for
the event-based task triggering pattern. Similarly,
there is direct support for data-based routing via
the DecisionNode construct and guard conditions on
ActivityEdges (see (OMG 2004), p.387 and p.351).
The lack of support for persistent state management
within UML 2.0 ADs means that the data-based task
trigger pattern cannot be captured.

6

CRPIT Volume 53

100

Nr Pattern Nr Pattern
Data Visibility Data Interaction (Ext.) (cont.)

1 Task Data +/– 21 Env. to Case – Push-Oriented –
2 Block Data + 22 Case to Env. – Pull-Oriented –
3 Scope Data – 23 Workflow to Env. – Push-Orient. –
4 Multiple Instance Data + 24 Env. to Workflow – Pull-Orient. –
5 Case Data – 25 Env. to Workflow – Push-Orient. –
6 Folder Data – 26 Workflow to Env. – Pull-Orient. –
7 Workflow Data + Data Transfer
8 Environment Data – 27 by Value – Incoming –

Data Interaction (Internal) 28 by Value – Outgoing –
9 between Tasks + 29 Copy In/Copy Out –
10 Block Task to Sub-workflow Decomp. + 30 by Reference – Unlocked –
11 Sub-workflow Decomp. to Block Task + 31 by Reference – Locked +
12 to Multiple Instance Task + 32 Data Transformation – Input +
13 from Multiple Instance Task + 33 Data Transformation – Output +
14 Case to Case – Data-based Routing

Data Interaction (External) 34 Task Precondition – Data Exist. +
15 Task to Env. – Push-Oriented – 35 Task Precondition – Data Val. +
16 Env. to Task – Pull-Oriented – 36 Task Postcondition – Data Exist. +
17 Env. to Task – Push-Oriented – 37 Task Postcondition – Data Val. +
18 Task to Env. – Pull-Oriented – 38 Event-based Task Trigger +
19 Case to Env. – Push-Oriented – 39 Data-based Task Trigger –
20 Env. to Case – Pull-Oriented – 40 Data-based Routing +

Table 2: Support for Data Routing Patterns in UML 2.0 ADs

6 The Resource Perspective in UML 2.0 ADs

Recent work (Russell, van der Aalst, ter Hofstede
& Edmond. 2005) has focused on the resource per-
spective and the manner in which work is distrib-
uted amongst and managed by the resources asso-
ciated with a business process. Our investigations
have indicated that these patterns are relevant to
all forms of PAIS including modelling languages such
as XPDL and business process enactment languages
such as BPEL4WS. In this section, we examine the
resource perspective of UML 2.0 ADs and their ex-
pressive power in regard to work distribution.

Forty three workflow resource patterns have been
identified in seven distinct groups:
• Creation patterns – which correspond to restric-

tions on the manner in which specific work items
can be advertised, allocated and executed by re-
sources;

• Push patterns – which describe situations where
a PAIS proactively offers or allocates work to re-
sources;

• Pull patterns – which characterise scenarios in
which resources initiate the identification of work
that they are able to undertake and commit to
its execution;

• Detour patterns – which describe deviations from
the normal sequence of state transitions associ-
ated with a business process either at the insti-
gation of a resource or the PAIS;

• Auto-start patterns – which relate to situations
where the execution of work is triggered by spe-
cific events or state transitions in the business
process;

• Visibility patterns – which describe the ability of
resources to view the status of work within the
PAIS; and

• Multiple resource patterns – which describe sce-
narios where there is a many-to-many relation-
ship between specific work items and the re-
sources undertaking those work items.

In UML 2.0 ADs, the association of a particular
action or set of actions with a specific resource is illus-
trated through the use of the ActivityPartition con-
struct (see (OMG 2004), p.367). This may take many
forms although the “swimlanes” notation is proba-
bly the most widely adopted means of presentation,
where each lane indicates the resource that will be re-
sponsible for executing a specific subset (i.e. a parti-
tion) of the actions within an activity. Each partition
has a name that corresponds to a specific resource or
a group of resources to which the contained actions
should be allocated at run-time. Partitions may be
specified in four distinct ways: Classifier, Instance,
Part, and Attribute and Value. The first two of these
schemes (i.e. Classifier and Instance) are relevant in
the context of resource allocation.

The direct allocation pattern (WRP1) is directly
supported in UML 2.0 ADs as the ability to base a
partition on a specific instance allows the actions to
be associated with a single specified resource. There
is no direct notion of roles within UML 2.0 ADs, al-
though where a partition is based on a classifier, it
is possible that the contained actions are allocated to
multiple objects corresponding to the classifier (i.e.
multiple resources). This is analogous to the notion
of group allocation within a traditional workflow sys-
tem. It is up to the individual resources to determine
whether one or all of them will execute the assigned
actions (see (OMG 2004), p.368-70). Consequently
the requirements of the role-based allocation pattern
(WRP2) are fully met and the pattern is directly sup-
ported. It is not necessary that actions within an ac-
tivity belong to a partition and have a corresponding
resource association, therefore the automatic execu-
tion pattern (WRP11) is also directly supported.

None of the other Creation Patterns are supported
within UML 2.0 ADs. In the main, this is a conse-
quence of the restrictive manner in which partitions
are specified and the lack of support for relationships
between distinct partitions. The attribute and value
partition specifier seems to offer a means of imple-
menting the deferred allocation pattern (WRP3) by
delaying the need to identify a potential resource until
run-time, however it is not possible to specify alter-

7

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

101

nate (i.e. parallel) courses of action based on different
values of an attribute and even if it were, the neces-
sity to enumerate a distinct course of action for each
value (i.e. each potential resource) would make this
approach unwieldy. Lack of an integrated authorisa-
tion framework, organisational model or access to an
execution history also rules out any form of support
for the authorisation (WRP4), organisational alloca-
tion (WRP9) and history-based allocation (WRP8)
patterns respectively.

The execution semantics of a UML 2.0 AD are
based on Petri Net token flow, hence actions become
“live” once they receive a control-flow token. The
resource associated with a given partition can have
multiple actions executing (possibly in different parti-
tions) at the same time. There is no notion of schedul-
ing work execution or of resources selecting the work
(i.e. the actions) they wish to undertake, hence there
is minimal support for the Push, Auto-start or Mul-
tiple Resource patterns within UML 2.0 ADs. The
following patterns from these classes are directly sup-
ported:
• WRP14: Distribution by allocation - single re-

source – the resource(s) associated with a given
partition is immediately allocated an action once
it is triggered;

• WRP19: Distribution on enablement – all ac-
tions in a partition are associated with the re-
source responsible for the partition when they
are triggered;

• WRP36: Commencement on creation – an ac-
tion is assumed to be live as soon as it receives a
control-flow token;

• WRP39: Chained execution – once an action is
completed, subsequent actions receive a control-
flow token and are triggered immediately; and

• WRP42: Simultaneous execution – there are no
constraints on how many partitions a given re-
source can be specified for or how many instances
of these can be active at any one time.

None of the Pull, Detour or Visibility patterns are
supported.

7 Conclusions

The pattern evaluations described in this paper indi-
cate that whilst UML 2.0 ADs have merit as a nota-
tion for business process modelling, they are not suit-
able for all aspects of this type of modelling. They
offer comprehensive support for the control-flow and
data perspectives allowing the majority of the con-
structs encountered when analysing these perspec-
tives to be directly captured. However, their suitabil-
ity for modelling resource-related or organisational as-
pects of business processes is extremely limited. It
is interesting to note that they are not able to cap-
ture many of the natural constructs encountered in
business processes such as cases and the notion of in-
teraction with the operational environment in which
the process functions. These are limitations that they
share with most other business process modelling for-
malisms and reflect the overwhelming emphasis that
has been placed on the control-flow and data perspec-
tives in contemporary modelling notations.

The level of support observed for control-flow pat-
terns (see Table 1 for a complete summary3) illus-
trates that there is relatively broad support for cap-
turing the various types of control-flow constructs

3A “+” in the table indicates direct support for the pattern
(i.e. there is a construct in the language that directly supports the
pattern).

that may arise in actual business processes. In terms
of addressing the patterns that are not directly sup-
ported, we would like to make the following recom-
mendations:

• Given the difficulties in capturing state-based
patterns, most notably the interleaved parallel
routing pattern and the milestone pattern, it may
be worthwhile providing direct support for the
notion of the place as it exists in Petri nets.
Petri net places capture the notion of “waiting
state” in a much less restrictive way than the
AcceptEventAction construct does;

• UML 2.0 ADs currently do not support the cre-
ation of new instances of an activity while other
instances of that activity are already running.
This could be resolved through extensions to the
ExpansionRegion construct to allow further in-
stances to be dynamically created after the ac-
tivity has started; and

• Given the lack of support for the synchronising
merge, a concept similar to the OR-join could be
added to UML 2.0 ADs.

The data patterns evaluation is summarised in Ta-
ble 2. This shows that the data perspective is also
well supported. Furthermore, the following remarks
can be made:

• There is no notion of cases or distinct process
instances in UML 2.0 ADs, hence all data is
effectively block-scoped by default and paral-
lel threads of execution occur in the same data
space. This could lead to some problematic sit-
uations when modelling highly data intensive
and/or highly concurrent processes;

• The use of “tokens” as the fundamental under-
pinning for control and data flow introduces some
subtle variations that do not exist in other PAIS
(except those based on Petri-nets) – in particular
data elements are truly consumed (and cease to
exist) when they are passed to an activity for the
duration of the activity. This also makes it diffi-
cult to actually share a data element/object be-
tween concurrent activities. On the other hand,
it minimises concurrency problems;

• The token approach provides an effective basis
for internal data interaction (and hence all pat-
terns are “+”). In particular, multiple instance
data handling seems to be supported for all three
multiple instance situations: designated multiple
instance tasks, multiply triggered tasks (loops)
and block tasks with a common decomposition;
and

• There does not seem to be any ability to model
things “outside of the model” i.e. in the external
environment. Hence there is no real ability to
support external data interaction patterns. This
may be addressed by using UML ADs in con-
junction with other diagrams such as UML in-
teraction, overview and sequence diagrams, but
this requires that the relationships between these
diagrams be carefully established.

The resource patterns evaluation is summarised in Ta-
ble 3. As discussed, it indicates that the support in
UML 2.0 ADs for the modelling of work distribution
directives is relatively minimal. This reinforces the
fact that UML 2.0 ADs tend to be control-flow and
data-centric and mainly aim to capture simple static
routing directives associated with actions. They do
not provide a means of representing the subtleties as-
sociated with selective work allocation across a range

8

CRPIT Volume 53

102

Nr Pattern Nr Pattern
Creation Patterns Pull Patterns (cont.)

1 Direct Allocation + 24 System-Determ. Wk Queue Cont. –
2 Role-Based Allocation + 25 Resource-Determ. Wk Queue Cont. –
3 Deferred Allocation – 26 Selection Autonomy –
4 Authorisation – Detour Patterns
5 Separation of Duties – 27 Delegation –
6 Case Handling – 28 Escalation –
7 Retain Familiar – 29 Deallocation –
8 Capability-Based Allocation – 30 Stateful Reallocation –
9 History-Based Allocation – 31 Stateless Reallocation –
10 Organisational Allocation – 32 Suspension/Resumption –
11 Automatic Execution + 33 Skip –

Push Patterns 34 Redo –
12 Distrib. by Offer - Single Resource – 35 Pre-Do –
13 Distrib. by Offer - Multiple Resources – Auto-Start Patterns
14 Distrib. by Allocation - Single Resource + 36 Commencement on Creation +
15 Random Allocation – 37 Creation on Allocation –
16 Round Robin Allocation – 38 Piled Execution –
17 Shortest Queue – 39 Chained Execution +
18 Early Distribution – Visibility Patterns
19 Distribution on Enablement + 40 Conf. Unalloc. Work Item Visibility –
20 Late Distribution – 41 Conf. Alloc. Work Item Visibility –

Pull Patterns Multiple Resource Patterns
21 Resource-Init. Allocation – 42 Simultaneous Execution +
22 Resource-Init. Exec. - Alloc. Wk Items – 43 Additional Resource –
23 Resource-Init. Exec. - Offer. Wk Items –

Table 3: Support for Resource Patterns in UML 2.0 ADs

of possible resources and the management of those
work items at run-time. In particular, there is no real
support for modelling any form of work distribution
other than direct allocation or role-based allocation.
There is no opportunity to utilise data resources (ei-
ther within the model or externally from the environ-
ment) thus any opportunity for modelling organisa-
tional, history-based or capability-based allocation is
obviated. Similarly, there is no support for specifying
any form of work distribution algorithm or employing
varying styles of work distribution (e.g. push vs pull,
offer vs allocation).

Other observations arising from the resource pat-
terns analysis include:

• The fact that the partitions can result in actions
being simultaneously allocated to more than one
resource can lead to difficulties where a means
of providing role-based work allocation to a sin-
gle resource is required. It is important to note
that the resolution of this situation must be ad-
dressed as part of the implementation of the ac-
tions within the Activity Diagram; and

• The ability to use OCL statements in the specifi-
cation of partitions (and also for specifying rela-
tionships between partitions) would enhance the
capability of UML 2.0 ADs to capture possible
resource allocations, both in terms of precision
and the range of work allocation strategies that
could be represented.

References

Bubenko, J., Persson, A. & Stirna, J. (2001), EKD
user guide, Technical report, Royal Institute of
Technology (KTH) and Stockholm University,
Stockholm, Sweden.

Curtis, B., Kellner, M. & Over, J. (1992),
‘Process modelling’, Communications of the
ACM 35(9), 75–90.

Dumas, M. & ter Hofstede, A. (2001), UML activity
diagrams as a workflow specification language,
in M. Gogolla & C. Kobryn, eds, ‘Proceedings
of the Fourth International Conference on the
Unified Modeling Language (UML 2001)’, LNCS
2185, Springer, Toronto, Canada, pp. 76–90.

Eriksson, H. & Penker, M. (2000), Business Modeling
with UML, OMG Press, New York.

Humphrey, W. & Feiler, P. H. (1992), Software
process development and enactment : Concepts
and definitions, Technical Report SEI-92-TR-4,
SEI Institute, Pittsburgh, USA.

Jablonski, S. & Bussler, C. (1996), Workflow Manage-
ment: Modeling Concepts, Architecture and Im-
plementation, Thomson Computer Press, Lon-
don, UK.

Kueng, P., Kawalek, P. & Bichler, P. (1996),
How to compose an object-oriented business
process model?, in S. Brinkkemper, K. Lyyti-
nen & R. Welke, eds, ‘Proceedings of the IFIP
WG8.1/WG8.2 Working Conference’, Atlanta,
GA, USA.

Marshall, C. (1999), Enterprise Modeling with UML,
Addison Wesley, Reading.

Mendling, J., Neumann, G. & Nüttgens, M. (2005),
A comparison of XML interchange formats for
business process modelling, in L. Fischer, ed.,
‘Workflow Handbook 2005’, Workflow Manage-
ment Coalition, Lighthouse Point, Florida, USA,
pp. 185–198.

OMG (2004), UML 2.0 superstructure specifica-
tion, Technical report. http://www.omg.org/
cgi-bin/doc?ptc/2004-10-02.

Opdahl, A. & Henderson-Sellers, B. (2002), ‘Onto-
logical evaluation of the UML using the Bunge-
Wand-Weber model’, Software and System Mod-
eling 1(1), 43–67.

9

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

103

http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

Rolland, C. (1997), A primer for method engineering,
in ‘Proceedings of the INFormatique des ORgan-
isations et Systèmes d’Information et de Décision
(INFORSID’97)’, Toulouse, France.

Rolland, C. (1998), A comprehensive view of process
engineering, in B. Pernici & C. Thanos, eds,
‘Proceedings of the 10th International Confer-
ence on Advanced Information Systems Engi-
neering (CAiSE’98)’, Vol. 1413 of Lecture Notes
in Computer Science, Springer, Pisa, Italy.

Russell, N., ter Hofstede, A., Edmond, D. & van der
Aalst, W. (2005), Workflow data patterns: Iden-
tification, representation and tool support, in
‘Proceedings of the 25th International Con-
ference on Conceptual Modeling (ER’2005)’,
Springer, Klagenfurt, Austria.

Russell, N., van der Aalst, W., ter Hofstede, A. & Ed-
mond., D. (2005), Workflow resource patterns:
Identification, representation and tool support.,
in O. Pastor & J. Falcao é Cunha, eds, ‘Pro-
ceedings of the 17th Conference on Advanced
Information Systems Engineering (CAiSE’05)’,
Vol. 3520 of Lecture Notes in Computer Science,
Springer, Porto, Portugal, pp. 216–232.

Scheer, A.-W. (2000), ARIS - Business Process Mod-
elling, Springer, Berlin, Germany.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B.
& Barros, A. (2003), ‘Workflow patterns’, Dis-
tributed and Parallel Databases 14(3), 5–51.

Vernadat, F. (1996), Enterprise Modeling and Inte-
gration, Chapman and Hall, London.

WFMC (1999), Workflow management coali-
tion terminology and glossary, document
status - issue 3.0, Technical Report WFMC-
TC-1011, Workflow Management Coalition.
http://www.wfmc.org/standards/docs/
TC-1011 term glossary v3.pdf.

White, S. (2004), Process modeling notations and
workflow patterns, in L. Fischer, ed., ‘Workflow
Handbook 2004’, Future Strategies Inc., Light-
house Point, FL, USA., pp. 265–294.

Wohed, P., Perjons, E., Dumas, M. & ter Hofstede, A.
(2003), Pattern based analysis of EAI languages
- the case of the business modeling language, in
O. Camp & M. Piattini, eds, ‘Proceedings of the
5th International Conference on Enterprise In-
formation Systems (ICEIS 2003)’, Vol. 3, Escola
Superior de Tecnologia do Instituto Politecnico
de Setubal, Angers, France, pp. 174–184.

Wohed, P., van der Aalst, W., Dumas, M., ter Hof-
stede, A. & Russell, N. (2005), Pattern-based
analysis of UML activity diagrams, in ‘Proceed-
ings of the 25th International Conference on
Conceptual Modeling (ER’2005)’, Springer, Kla-
genfurt, Austria.

zur Muehlen, M. & Rosemann, M. (2004), Multi-
paradigm process management, in J. Grund-
spenkis & M. Kirikova, eds, ‘Proceedings of
the Fifth Workshop on Business Process Mod-
eling, Development, and Support (BPMDS
’04), held in conjunction with the Conference
on Advanced Information Systems Engineering
(CAiSE) 2004’, Vol. 2, Faculty of Computer Sci-
ence and Information Technology, Riga Techni-
cal University, Riga, Latvia, pp. 169–175.

10

CRPIT Volume 53

104

http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

Component-Driven Engineering of Database Applications

Klaus-Dieter Schewe1 Bernhard Thalheim2

1Massey University, Department of Information Systems & Information Science Research Centre
Private Bag 11 222, Palmerston North, New Zealand, email: k.d.schewe@massey.ac.nz

2Christian Albrechts University Kiel, Department of Computer Science and Applied Mathematics
Olshausenstr. 40, 24098 Kiel, Germany, email: thalheim@is.informatik.uni-kiel.de

Abstract

Though it is commonly agreed that the design of large
database schemata requires group effort, database de-
sign from component subschemata has not been in-
vestigated thoroughly. In this paper we investigate
snowflake-like subschemata of database schemata
expressed in the Higher-order Entity-Relationship
Model (HERM). These subschemata are almost hi-
erarchical in the sense that they may contain cycles
in the schema, but not in the instances. We show
that each HERM schema can be decomposed into
such subschemata using a small set of composition
constructors. We then describe how the composition
of components can be seen as a database design primi-
tive leading to component-driven database design and
re-design pragmatics.

1 Introduction

While design and manufacturing from components is
standard in civil, electrical and mechanical engineer-
ing, it is still in an embryonal state in software en-
gineering (Arsanjani 2002). In general, omponent-
based engineering means the decomposition of a task,
the isolated realisation of the tasks each resulting in a
component of the complete system, the composition
or “assembly” of the components based on standard-
ised principles.

In program design the design from components
has made some progress (Barroca, Hall & Hall 2000,
Crnkovic, Hnich, Jonson & Kiziltan 2002) based on
clear input/output interfaces. A similar approach
has been followed in the emerging area of web ser-
vices (Hamadi & Benatallah 2003). For database
applications, however, design from component sub-
schemata has not been investigated thoroughly. The
few existing approaches such as (Akoka & Comyn-
Wattiau 1994, Bancilhon & Spyratos 1981, Hay 1995,
Jaeschke, Oberweis & Stucky 1994, Rauh & Stickel
1992, Teorey, Wei, Bolton & Koenig 1989) concen-
trate mainly on the integration of schemata, whereas
according to (Thalheim 2000a) the design of database
application has to consider also interfaces and dy-
namic behaviour. Thus, the problem we face in
component-based engineering of database applica-
tions is deeper, as we have to take care of complex
structures, constraints, views and operations.

In this paper we develop an approach to this
problem extending and formalising previous work in
(Thalheim 2002, Thalheim 2005). We start with a

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Third Asia-Pacific Conference on Concep-
tual Modelling (APCCM2006), University of Tasmania, Ho-
bart, Australia. Conferences in Research and Practice in Infor-
mation Technology, Vol. 53. Markus Stumptner, Sven Hart-
mann, and Yasushi Kiyoki, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

rather informal discussion in Section 2 on the ra-
tionale behind the desire to develop database appli-
cations from components. In particular, we discuss
problems arising with large schemata, schema pat-
terns observed in practical applications, and the spec-
trum of different understandings of the term “compo-
nent”.

Then we investigate components in the higher-
oreder Entity-Relationship model (HERM)
(Thalheim 2000a), because the ER-approach is
widely used in practice and easy to use, while HERM
does not share the deficiencies of some ER-variants
such as lack of formal foundations, constraint theory,
retrieval and update languages, etc. We present a
brief overview of HERM in Section 3 as much as this
is necessary for our purposes. We are confident that
our approach can be generalised to data models with
cyclic references, e.g. sophisticated object models
(Schewe & Thalheim 1993) or XML (Abiteboul,
Buneman & Suciu 2000).

From various application projects we observe that
HERM schemata tend to have larger parts that have
the form of star and snowflake schemata, i.e. rather
simple schemata centered around a central database
type. Such schemata are well known from the area
of data warehousing and on-line analytical processing
(OLAP) systems. In particular, these subschemata
are (almost) hierarchical and correspond to certain
tasks within the application. Therefore, we take such
subschemata in a generalised form as the basis for
components. In particular, we do not request that
cycles are completely absent, but that cycles may oc-
cur in the schema, but not in the instance, which
can be expressed by simple path constraints. This
is similar to γ-acyclicity in databases (Hegner 1988).
Furthermore, we extend these subschemata with the
necessary “plugs” that are used to amalgamate them
in a way that behaviour defined for a component car-
ries over to behaviour on the amalgam. We develop
the formal basics of this theory of components in Sec-
tion 4. In particular, the “plugs” will be formalised
by (updatable) views and operations on these views.

On this basis we develop a composition theory
in Section 5, which basically consists of a collec-
tion of composition operations. These generalise in-
put/output behaviour for program modules. We then
show that each HERM schemata is in fact the com-
position of its maximal snowflake components.

This decomposition theorem is central, as it shows
that design from snowflake components can always
be achieved. However, we need not only such a
theoretical statement, but also pragmatic guidelines
for compnent-driven design, which will consist of
pragmatics of setting up (not necessarily maximal)
snowflake components as in (Feyer & Thalheim 2002),
the process of amalgamation, and the assessment
of the resulting interface (Vestenicky, Lewerenz &
Feyer 2000). In particular, we prefer components with

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

105

minimal overlap. This pragmatic approach to the de-
sign will be addressed in Section 6.

2 Rationale for Component-Driven Applica-
tion Development

Large database schemata can be drastically simplified
if techniques of modular modeling such as design by
units (Thalheim 2000a) are used. Modular modeling
is an abstraction technique based on principles of hid-
ing and encapsulation. Design by units allows to con-
sider parts of the schema in a separate fashion. The
parts are connected via types which function similar
to bridges.

Data warehousing and user views are often based
on snowflake or star schemata. The intuition behind
such schemata is often hidden.

Codesign (Thalheim 2000a) of database applica-
tions aims in consistent development of all facets of
database applications: structuring of the database by
schema types and static integrity constraints, behav-
ior modeling by specification of functionality and dy-
namic integrity constraints and interactivity model-
ing by assigning views to activities of actors in the cor-
responding dialogue steps. Codesign, thus, is based
on the specification of the the database schema, func-
tions, views and dialogue steps. At the same time,
various abstraction layers are separated such as the
conceptual layer, requirements acquisition layer and
implementation layer.

Codesign is a rather complex procedure. If, how-
ever, a component-based approach is used it becomes
rather simpler. First, a skeleton of components is
developed. This skeleton can be refined during evo-
lution of the schema. Then, each component is de-
veloped step by step. If this component is associated
to another component then its development must be
associated with the development of the other compo-
nent as long as their common elements are concerned.

Therefore, structuring in codesign may be based
on two constructs:

Components: Components are the main building
blocks. They are used for structuring of the
main data. The association among components
is based on ‘connector’ types (called hinge or
bridge types) that enable in associating the com-
ponents in a variable fashion.

Skeleton-based construction: Components are
assembled together by application of connec-
tor types. These connector types are usually
relationship types.

The term component has been around for a long
time. Component-based software has become a “buz-
zword” since about ten years beyond classical pro-
gramming paradigms such as structured program-
ming, user-defined data types, functional program-
ming, object-orientation, logic programming, active
objects and agents, distributed systems and concur-
rency, and middleware and coordination. Various
component technologies have been developed since
then:

• Source-level language extensions: CORBA, Jav-
aBeans;

• Binary-level object models: OLE, COM, COM+,
DCOM, .NET;

• Compound documents: OLE, OpenDoc, Black-
Box;

• All-promising design tools: UML, Rational Rose.

A component is considered to be a software imple-
mentation that can be autonomously executed, im-
plements one or more interfaces, has a system-wide
identity, has instances with their own identity, bun-
dles data and procedures and hides the details of the
implementation that are irrelevant to the outside.

The components usually used are considered to
be small programs. In reality, a component is a ba-
sic unit which can be separated. Therefore, the size
might be larger than usually considered in COM+
programming.

Object-orientation has led to a better culture in
software projects. It has led to a number of concep-
tions that are widely used in database applications
such as object identifier, rich type systems, active ob-
jects, triggers, and polymorphism. At the same time
limitations of these concepts have been investigated,
e.g., pitfalls of identifiability (Beeri & Thalheim 1999)
or rule triggering (Schewe & Thalheim 1998).

Object-orientation has led to a large number of
pitfalls (Webster 1995) which substantially reduced
its usefullness. Object-orientation is not well-suited
for component-based development and hinders it
(Nierstrasz & Meijler 1995). Object-oriented source
code exposes the class hierarchy and not the interac-
tion among objects. Therefore objects are wired in-
stead of plugged together. The association of objects
is distributed among the objects. Object-orientation
is domain-driven and leads to designs based on do-
main objects instead of available components and
standard architectures. Rich object interfaces are
used instead of plug-compatible interfaces. Further-
more, compositional abstractions such as synchro-
nization policies, coordination abstractions, wrappers
and mixins (Ancona & Zucca 1998) cannot be natu-
rally handled as objects.

2.1 Problems with Large Schemata

Monographs and database course books usually base
explanations on small or ‘toy’ examples. Reality is,
however, completely different. Database schemata
tend to be large, unsurveyable, incomprehensible and
partially inconsistent due to application, the database
development life cycle and due to the number of team
members involved at different time intervals. Thus,
consistent management of the database schema might
become a nightmare and may lead to legacy prob-
lems. The size of the schemata may be very large.
Comparing and surveying the database schemata
brought to our knowledge we observed a high simi-
larity within the solutions. Thus, we have system-
atized the schemata in (Thalheim 2000b). There is
a considerable effort for handling large schemata. In
(Moody 2001) most of the methods proposed so far
have been generalized to map abstractions . Large
schemata must be represented in a way that im-
proves understanding and supports documentation
and maintenance. Psychological studies have shown
that limitations of the short-term memory result in
limited capacities for processing and surveying infor-
mation. The seven-plus/minus-two paradigm applies
to database modeling as well. (Maier 1996) reported
that enterprise data models consist in the mean of 536
entity types. (Moody 2001) observed therefore that
the size of such models may be the reason for the
poor understanding of ER modeling in practice. He
discovered further that diagrams quickly become un-
readable once the number of entity and relationship
types exceeds about twenty.

It is a common observation that large database
schemata are error-prone, difficult to maintain and to
extend and not-surveyable. Moreover, development
of retrieval and operation facilities requires highest
professional skills in abstraction, memorization and

CRPIT Volume 53

106

�������1

?

6
PPPPPPPi

PPPPPPPq

�������)

ScrewBasic

�����

HHHHH

�����

HHHHH ScrewOtherData

�����

HHHHH

�����

HHHHHScrewManufacturing

�����

HHHHH

�����

HHHHH ScrewMaterial

�����

HHHHH

�����

HHHHH ScrewAddOn

�����

HHHHH

�����

HHHHH ScrewHead

�����

HHHHH

�����

HHHHH ScrewSupplier

Figure 1: HERM Representation of the Star Type Screw

programming. Such schemata reach sizes of more
than 1000 attribute, entity and relationship types.
Since they are not comprehensible any change to the
schema is performed by extending the schema and
thus making it even more complex. Database de-
signers and programmers are not able to capture the
schema. Systems such as SAP R/3 are highly repet-
itive and redundant. For this reason, performance
decreases due to bad schema design.

Application schemata could be simpler only to a
certain extent if software engineering approaches are
applied. The repetition and redundancy in schemata
is also caused by

• different usage of similar types of the schema,

• minor and small differences of the types structure
in application views and

• semantic differences of variants of types.

Therefore, we need approaches which allow to rea-
son on repeating structures inside schemata, on se-
mantic differences and differences in usage of objects.

Large schemata also suffer from the deficiency of
variation detection: The same or similar content is
often repeated in a schema without noticing it. The
Lufthansa cargo database schema contains, for in-
stance, several sub-schemata which store very sim-
ilar information on the transport log and account-
ing: air transport of goods, ground transport through
cooperating companies and ground transport on the
airports. These three kinds of transport have been
modeled and implemented by three differently located
teams. The similarity of the schemata has not been
detected by the teams and caused a number of redun-
dancy and inconsistency problems.

2.2 Observations Made In Practice

Psychologists claim that humans are able to perceive
5±2 concepts at the same time. Humans are better in
recognizing connected or associated concepts. Thus,
it seems that schemata similar to a star are easier to
perceive and to understand.

Star typing has been used already for a long time
outside the database community. Let us consider the
example in Figure 1. It shows a part of the standard-
ized description of screws using in mechanical engi-
neering. Each screw is characterized by basic data.
Additionally, properties on the manufacturer, suppli-
ers, material, form such as head etc. may be added.

Thus, a star type is characterized by a kernel en-
tity type used for storing basic data, by a number
of subtypes of the entity type which are used for ad-
ditional properties. These additional properties are
clustered according to their occurrence for the things
under consideration.

This observation has been taken into account by
the OLAP community. (Kimball 1996) claims that
ER modeling is completely wrong and that database
modeling should be based on star and snowflakes in
the sense OLAP people are using it. This claim is
far too strict. A typical star schema is displayed in
Figure 2. This star schema can be obtained via the
following view definition (Thalheim 2000a).

In the same fashion the snowflake schema, dis-
played partially without attributes in Figure 3, can
be generated on a schema used for representing the
information structure on purchases.

It has been shown in (Lewerenz, Schewe &
Thalheim 1999) that instead of that views on ER
schemata are used. The main problem of the OLAP
approach is the high imposed redundancy due to miss-
ing basic data and due to extensive maintenance of
views. The observations, however, leading to such
claims are made by practioneers. They observed that
often star or snowflake schemata are used in practical
database operating. Combining their observation and
(Lewerenz et al. 1999), we find that star and snowflake
schemata are often required and can be supported by
database views in traditional way.

If the number of views imposed by such require-
ments is becoming too high then the conceptual
schema may cause maintenance problems. Instead of
that we propose to “sternify” the conceptual schema.
We usually have several alternatives for representa-
tion of an application by conceptual schemata. In
this paper we develop a theory of star and snowflake
sub-schemata within the conceptual schema which al-
lows easy and computationally simple construction of
the corresponding view.

Star structuring and snowflake structuring is be-
coming popular in the XML community. Modeling
with optional parts is a typical approach used for
XML structures. The cohesion of elements must be
expressed through constraints. Star structuring al-
lows to express cohesion of elements by developing a
subtype that contains the coexisting elements.

Main hierarchies considered in database modeling
are the specialization and generalization hierarchies
which are usually coupled by each other. Other exam-

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

107

Category CID

Name(First,Surname)

Address(Addr1,Addr2,Addr3,Town,State,Zip)

PID Category

Description

Region Phone SID

Name Town State

Quantity Amount

Purchase-Time

Customer

Time

Shop

����
HHHH

����
HHHH

�

6

?

-Purchase

Product

Figure 2: Star Schema on Purchases

ples of hierarchies are the taxonomy, the part-of and
the is-part-of hierarchy. Ontologies are often based
on hierarchies. Classifications are typical examples of
orthogonal hierarchies.

The hierarchical ER model(Silverston, Inmon &
Graziano 1997) allows to draw subtypes of entity
types as rectangles inside the entity type. A sim-
ilar representation is star representation. The star
sub-schema representation has the advantage that hi-
erarchies of arbitrary depth can be drawn.

3 Enhanced Database Schemata

The major extensions of HERM compared with the
flat ER model concern nested attribute structures,
higher-order relationship types and clusters, a so-
phisticated language of integrity constraints, oper-
ations, dialogues and their embedding in develop-
ment methods. In this section we describe HERM
(Thalheim 2000a) in a nutshell.

3.1 Static Schemata

In the following let A denote some set of simple at-
tributes . Each simple attribute A ∈ A is associated
with a base type dom(A), which is some fixed count-
able set of values. The values themselves are of no
particular interest.

In HERM it is permitted to define nested at-
tributes. For this take a set L of labels with the only
restriction that labels must be different from simple
attributes, i.e. L∩A = ∅. A nested attribute is either
a simple attribute, the null attribute ⊥, a tuple at-
tribute X(A1, . . . , An) with pairwise different nested
attributes Ai and a label X ∈ L, a list attribute X [A]
with a nested attribute A and a label X ∈ L or a set
attribute X{A} with A ∈ NA and X ∈ L. Let NA
denote the set of all nested attributes.

We extend dom to nested attributes in the stan-
dard way, i.e. a tuple attribute will be associated with
a tuple type, a set attribute with a set type, and the
null attribute with dom(⊥) = 1l, where 1l is the trivial
domain with only one value. That is, HERM uses a
type system t = b | t1 × · · · × tn | {t} | [t] consisting
of base types, record types, set types and list types.

On nested attributes we have a partial order ≥
defined as the smallest partial order on NA with
A ≥ ⊥ for all A ∈ NA, X{A} ≥ X{A′} ⇔ A ≥ A′,
X [A] ≥ X [A′] ⇔ A ≥ A′, and X(A1, . . . , An) ≥
X(A′

1, . . . , A
′
m) ⇔

∧

1≤i≤m

Ai ≥ A′
i.

A generalized subset of a set F ⊆ NA of nested
attributes is a set G ⊆ NA of nested attributes such
that for each A′ ∈ G there is some A ∈ F with A ≥
A′. It is easy to see that X ≥ X ′ gives rise to a
canonical projection πX

X′ : dom(X) → dom(X ′).
Let us now define the entity and relationship types

and clusters in HERM. A level-k-type R consists of
a set comp(R) = {r1 : R1, . . . , rn : Rn} of labelled
components with pairwise different labels ri, a set
attr(R) = {A1, . . . , Am} of nested attributes and a
key key(R). Each component Ri is a type (or clus-
ter) of a level at most k−1, but at least one of the Ri

must have level k− 1. For the key we have key(R) =
comp ′(R)∪attr ′(R) with comp ′(R) ⊆ comp(R) and a
generalized subset attr ′(R) of the set of attributes. A
level-k-cluster has the form R = (r1 : R1)⊕· · ·⊕ (rn :
Rn) with pairwise different labels ri and database
types Ri of a level at most k, but at least one of
the Ri must have level k.

The labels ri used in components are called roles .
Roles can be omitted in case the components are pair-
wise different. A level-0-type E – here the definition
implies comp(E) = ∅ – is usually called an entity type,
a level-k-type R with k > 0 is called a relationship
type.

A HERM schema is a finite set S of database types
and clusters together with a set Σ of integrity con-
straints defined on S. We write (S,Σ) for a schema,
or simply S, if Σ = ∅. We look at constraints in the
next subsection.

In order to define the semantics of
HERM schemata we associate with each
type R ∈ S a representing nested attribute
XR = R(XR1

, . . . , XRn
, A1, . . . , Am) as well as a key

attribute KR = R(KRi1
, . . . ,KRi`

, A′
1, . . . , A

′
m) for

key(R) = {ri1 : Ri1 , . . . , ri`
: Ri`

, A′
1, . . . , A

′
m}. With

a cluster we associate XR = (r1 : XR1
) ⊕ · · · ⊕ (rn :

XRn
) and KR = (r1 : KR1

) ⊕ · · · ⊕ (rn : KRn
), using

an additional union-type constructor ⊕. Obviously,
we habe XR ≥ KR in all cases.

An instance of a HERM schema (S,Σ) is a fam-
ily {db(R)}R∈S of finite sets db(R) with elements of
type XR subject to the obvious key and referential
integrity constraints and the explicit constraints in
Σ. Note that a whole instance is itself a value of
type DB{(d1 : R1) ⊕ · · · ⊕ (dk : Rk)} (for S =
{R1, . . . , Rk}). According to this, we may use a rather
relaxed notion of subschema: a HERM schema that
defines a subattribute of the attribute associate with
the whole schema, i.e. we can omit types, or at-
tributes or replace attributes by subattributes.

CRPIT Volume 53

108

Customer

Time

Shop
���

HHH
���HHH

�

6

?

-Purchase

Product

���
HHH
���HHH

� -PInC Category
���

HHH
���HHH

� -POfPProduction

���
HHH
���HHH

� -Of
Customer
Category

���
HHH
���HHH

� -SInReg Region

���
HHH
���HHH

�

?

-During Promotion
Period

���
HHH
���HHH

� -In
Selling

Period

Figure 3: Snowflake Schema on Purchases

3.2 Constraints

Constraints on a HERM schema S are expressed as
formulae in a typed higher-order logic. The types are
those defined by the type system above including the
union types. Then for each type t we assume a set Vt

of variables. In particular, we can use the names of
the database types and clusters in the schema as vari-
ables: R is considered a variable of type {dom(XR)}.

Using such variables we may define terms and for-
mulae as follows:

• Each variable of type t is also a term of type t.

• If τ is a term of type t and t ≥ t′ holds, then
πt

t′(τ) is a term of type t′.

• If τ1, . . . , τn are terms of type t1, . . . , tn, re-
spectively, then (τ1, . . . , τn) is a term of type
t1 × · · · × tn.

• If ϕ is a formula and x a variable of type t, then
Ix.ϕ is a term of type t.

• If τ is a term of type {t} or [t] and % is a term of
type t, then % ∈ τ is a formula.

• If τ and % are terms of the same type t, then
% = τ is a formula.

• If ϕ and ψ are formulae and x is a variable, then
ϕ ∧ ψ, ¬ϕ and ∃x.ϕ are formulae.

The interpretation of these formulae is standard.
We should only remark that Ix.ϕ denotes the unique
value for x satisfying ϕ. This gives a powerful instru-
ment to introduce a lot more terms and formulae as
shortcuts.

If S is a HERM schema, then a constraint on S is a
formula ϕ with free variables only among S. Hence, a
constraint on S can be evaluated in an instance of S,
which we already exploited in the previous subsection.

3.3 Behaviour

In order to add dynamics to HERM schemata, we de-
fine operations. In general, an operation is defined by
an input schema I , an output schema O and a body.
The body works on a working schema W with both I
and O as subschemata. It defines a transformation of
instances of I into instances of W using an expression
of the extended HERM algebra. An operation that
preserves the instance of I , i.e. does not change it, is
a query.

The HERM algebra uses operations for all types
of the type system including structural recursion on
sets and lists (Tannen, Buneman & Wong 1992) plus
a generalised join-operation. In (Schewe 2001) it was
shown that this covers all complex value algebras that
have been defined so far. The extension of the HERM
algebra consists of assignments X := exp, where X

is a variable and exp an expression of the same type
t, such that exp can be evaluated on instances of W ,
sequencing of such assignments, and iteration while
change do 〈sequence〉.

If the input schema I consists of a single database
type R, we obtain operations on R. Adding opera-
tions on all R ∈ S and operations with input schema
S we obtain a dynamic HERM schema. However, our
major interest is on extended views.

A view V on a HERM schema S is defined by a
query qV , i.e. by an operation with input schema
S, output schema SV and an operation body that
preserves instances of S. We extend each such view
V with a set OV of operations defined on the input
schema SV . We write (V,OV) to denote such an
extended view. A behavioural schema for a HERM
schema S consists a set of extended views (V,OV) on
S.

Operations in OV may preserve the input, i.e. the
instance of SV . Such operations are retrieval oper-
ations. The other operations are update operations.
An update operation oV must translate into an opera-
tion o on the database schema S, i.e. there must exist
an operation on S with qV ◦ o = oV ◦ qV . This opera-
tion o must be generic in the sense that it commutes
with all database automorphisms.

A view (V,OV) with at least one update opera-
tion in OV is called an input view. A view with only
retrieval operations in OV is called an output view.

The motivation behind this terminology is the fol-
lowing. The operations on a view define the (lo-
cal) behaviour of the database. If we want to con-
struct a database schema plus a behavioural schema
by means of components, we must be able to inte-
grate not only the structures, which is easy by re-
questing that the overlap defines a view, but also the
behavioural schemata. That is, if a user executes an
update-operation on some view V , this will lead to a
change of the database instance for the schema SV . If
this view is also a view on another database schema,
the update affects the other database schema. Thus,
we can only expect to integrate the behaviour in a
consistent way, if an output view on one schema is
plugged into an input view on the other one. In other
words, the views function in the same way as com-
munication channels. We will exploit this idea in our
definition of components in the next section.

4 Almost Hierarchical Components

In this section we develop the basics of our theory
of components starting from (generalised) snowflake
schemata. We will then define schema components
formally, and characterise the compatibility of com-
ponents, i.e. when two components can be integrated.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

109

4.1 Snowflake Schemata

If S is a HERM schema, we say that R1, R2 ∈ S
are connected iff R1 is a component of R2 or vice
versa. In this way we obtain a symmetric, irreflexive
binary relation ∼ on S. A subschema S ′ of S is a
strictly hierarchical subschema or snowflake schema
with center type R ∈ S ′ iff it forms a rooted tree
with respect to ∼ and root R.

If the depth of the tree is one, we obtain the
special case of a star schema. For these we distin-
guish specialisation schemata, in which the center
type is a component of the other types, generaliza-
tion schemata, in which the center type is a cluster
and the other types are components of it, and asso-
ciation schemata, in which case the center type is a
relationship type and the other types are among its
components.

Strictly hierarchical subschemata are not common.
However, most schemata in practice have larger sub-
schemata that are almost hierarchical, i.e. types other
than the center type may still be connected, but these
connections are governed by constraints that guaran-
tee that the induced cycle does not cause harm. We
say that a subschema S ′ is almost hierarchical iff it
has a center type R0 ∈ S ′ such that for all paths
p, p′ from R0 to any other type Rk ∈ S ′ one of the
following conditions holds:

• Either p and p′ lead to entirely different en-
tries of the database, i.e. the exclusion de-
pendency p[R0, Rk] || p′[R0, Rk] is implied by the
constraints Σ on S;

• or p and p′ are completely identical, i.e. the pair-
ing inclusion constraints p[R0, Rk] ⊆ p′[R0, Rk]
and p[R0, Rk] ⊇ p′[R0, Rk] are implied by the
constraints Σ on S.

The exclusion constraints allow us to rename the
non-identical types to obtain the tree required for
snowflake schemata, because in this case, the paths
carry different meanings. Similarly, the pairing in-
clusion constraints allow us to cut the last associa-
tion in the second path and to obtain an equivalent
schema this way or to introduce a mirror type R′

k for
the second path in order to obtain the tree required
for snowflake schemata. In this case, the paths carry
identical meaning.

However, we do not have to execute these schema
manipulation operations. It is sufficient to know that
it is in principal possible to transform an almost hi-
erarchical subschema into a strictly hierarchical sub-
schema without loss of semantics. Therefore, from
now on we call almost hierarchical subschemata also
snowflake schemata.

4.2 Components

Using the idea from theend of the previous section
we can now formally define the notion of component.
A component

�
of a HERM schema (S,Σ) is a sub-

schema (S ′,Σ′) together with a set � of input-views
(VI ,OVI

) and a set � of output-views (VO ,OVO
). We

write
�

= (S ′,Σ′, � , �). If (S ′,Σ′) is a snowflake sub-
schema, we call the component

�
a snowflake compo-

nent.
We now have to formalise our idea of channel in-

dicated in the previous section in order to obtain a
condition for the compatibility of components. For
this assume two components

�
i = (S ′

i ,Σ
′
i, � i, � i)

(i = 1, 2). If we integrate the structures (and con-
straints) of both components, we obtain a new sub-
schema (S ′,Σ′) such that both S ′

i become views over

S ′ via defining queries qi, i.e. we have induced trans-
formation qi : inst(S ′,Σ′) → inst(S ′

i ,Σ
′
i) (i = 1, 2).

Now let us consider a common view (V,OV), i.e.
we have induced transformations qV i : inst(S ′

i ,Σ
′
i) →

inst(SV). Hence qV i ◦ qi induces a defining query on
(S ′,Σ′) for this view.

Consider an operation oV ∈ OV . If it is a re-
trieval operation, there is no problem. However, if
it is an update operation for S ′

1, we have a trans-
formation oV : inst(SV) → inst(SV) that translates
into a database transformation o1 : inst(S ′

1,Σ
′
1) →

inst(S ′
1,Σ

′
1) such that qV 1 ◦o1 = oV ◦qV 1 holds. If oV

is only a retrieval operation for S ′
2, the operation o1 is

alrady the translation of oV for the integrated schema
(S ′,Σ′). If oV is also an update operation for S ′

2, we
obtain a translation o2 : inst(S ′

2,Σ
′
2) → inst(S ′

2,Σ
′
2)

with qV 2 ◦ o2 = oV ◦ qV 2 in the same way. Then
o1 ⊕ o2 : inst(S ′,Σ′) → inst(S ′,Σ′) defines the trans-
lation on the integrated schema.

Operations on views define the local behaviour for
each component. As we have seen this translates into
behaviour on integrated components, if we can ei-
ther identify views or if views of one components have
nothing in common with views on the other compo-
nent. This outlines a necessary condition that has to
be satisfied by composition operations.

5 Composition of Components

So far we defined the notion of component focusing on
structure, constraints and behaviour. We showed that
we have to be able to identify views on components
that are needed for defining the behaviour. This gives
the guideline for defining composition operations as
the backbone of a composition theory, which we will
outline in this section.

5.1 Composition Operations

In the following we define unary and binary opera-
tions on components. For this let

�
= (S ′,Σ′, � , �)

and
�

i = (S ′
i ,Σ

′
i, � i, � i) (i = 1, 2) be components.

Unification of channels: The component
ζV2:=V1

(
�
) is obtained from

�
by unifying

the views V1 and V2 and using only the names
of V1. In order to be applicable this operation
requires compatible views in terms of the view
schemata and operations. Operations in OV1

are preserved, whereas operation in OV2
may be

added to the new view (after renaming).

Permutation of channels: The component
τV1,V2

(
�
) is obtained from

�
by interchang-

ing the views V1 and V2. In order to be
applicable this operation requires compatible
views in terms of the view schemata and
operations.

Renaming of channels: The component δ � , � ′(
�
)

is obtained from
�

by replacing the views in �
by those in � ′. In order to be applicable this
operation requires a mapping % : � → � ′ that
maps each view in � to a compatible view in � ′

in terms of the view schemata and operations.
Furthermore, the new views in � ′ must not have
name conflicts with

�
.

Introduction of additional channels: The com-
ponent ι � (

�
) is obtained from

�
by adding views

in � to those in � and � . In order to be appli-
cable this operation requires the new views in
� must not have name conflicts with

�
nor any

interference with the existing views.

CRPIT Volume 53

110

Parallel composition with feedback: The com-
ponent

�
1 ⊗

�
2 = (S ′,Σ′, � , �) is obtained from�

1 and
�

2 in the following way:

• The schema (S ′,Σ′) is the union of the
schemata (S ′

1,Σ
′
1) and (S ′

2,Σ
′
2).

• The input views are � = (� 1 ∪ � 2) − (� 1 ∪
� 2).

• The output views are � = (� 1∪ � 2)−(� 1∪
� 2).

• The views in � = (� 1∩ � 2)∪(� 1∪ � 2) define
internal view cooperation.

In order to be applicable this operation requires
that the two initial components do not not have
name conflicts, i.e. views are either common to
both schemata or completely isolated. Note that
we do not request the views to be completely in-
tegrated. Instead of this we let the views that
couple the behaviour of the two components co-
operate with each other.

According to (Thalheim 2000a) view cooperation
– as used in the definition of parallel composition with
feedback – is a perfect alternative to view integration.
Equivalently, we may transform the schema of

�
1⊗

�
2

into an integrated schema thereby dispensing with the
internal view cooperation.

5.2 Amalgams

In the previous subsection we described how to com-
pose components to obtain larger integrated compo-
nents. We left it open, whether we really integrate
components or prefer them to cooperate. The lat-
ter one emphasises the independence of local compo-
nents, whereas the former one emphasise the global
aspects. This choice is reflected in the notion of an
amalgam.

An amalgam A is defined by a set {
�

1, . . . ,
�

n}
of components, a composition prescription, i.e. an
algebraic expression amg(

�
1, . . . ,

�
n) built from the

composition operation above and the components
�

i

(i = 1, . . . , n), and a set � of views defined on
amg(

�
1, . . . ,

�
n).

The set � contains the input and output views re-
sulting from the composition of

�
1, . . . ,

�
n according

to the composition prescription. We classify these
views into two sets � int and � ext. � int contains
views that are internal to the amalgam, i.e. they will
never be used in a compsition with further compo-
nents. That is, these views isolate the local behaviour
of the component amg(

�
1, . . . ,

�
n). � ext contains

views that are external to the amalgam, i.e. they can
be identified with views on other components, thus
reflect global behaviour. We call � ext the hide of the
amalgam A and denote it by hd(A).

Speaking pragmatically, amalgams are what we
expect to obtain from designing a well-defined part of
a database application system. So, if a development
project is decomposed into tasks, each task should
result in an amalgam, and the composition of all the
amalgams gives the complete system.

Therefore, if we are given an amalgam A, then the
integrated schema (S,Σ) resulting from the composi-
tion expression together with the hide hd(A) define
a behaviour-extended HERM schema, which we call
the amalgamation of A.

5.3 Example

The approach has been applied in the Cottbus-
Interactive project that delivers video on demand,
tv/radio on demand, internet on profile, electronic

program guides on profile. The customers use TV
extended by interactive set-top-boxes that provide
cable channel services, interaction facilities, and in-
ternet services. The later are based on web content
that is collected on the basis of the usage statistics of
Cottbus-Interactive users. The platform is financed
through billing customers of some forms of web con-
tent and through generation of anonymous web usage
profiles. So, we developed amalgams for management
of person information, for management of billing, for
acquisition of usage records of customers, for utiliza-
tion of web content, and for elicitation of marketing
statistics.

CB-

Interactive

Content

Statistics

Harness

Marketing

Statistics

Logging

Harness

Person

Record

Accounting

Harness

Billing

Figure 4: The Architecture of the Cottbus-Interactive
Project

The amalgams use a number of interfaces as il-
lustrated in Figure 4. The Person amalgam provides
two interfaces for abstract identification of customers
and correspondingly for identification of customers,
accounting and posting. The Record amalgam has
two aggregation interfaces, one for providing summa-
rized utilization records and another one for usage
categorization. These four interfaces are read-only
interfaces. Additionally the last amalgam provides a
read-write interface for collection of records such as
logs. The Web content amalgam provides an identi-
fication interface and a categorization interface. The
Marketing statistics amalgam has beside a number of
read-only interfaces a read-write interface that allows
to insert new statistics.

5.4 Decomposition Theorem

We started our motivation with the observation that
larger parts of HERM schemata almost look like
snowflake schemata. Now that we formalised what
“almost” means in this case, we formally want to ver-
ify this observation. For this we take a HERM schema
(S,Σ) extended by a behavioural schema, i.e. a set V
of extended views (V,OV) on S. We write (S,Σ,V)
for this behaviour-extended schema.

Theorem 5.1 Each behaviour-extended HERM
schema (S,Σ,V) is the amalgamation of its maximal
snowflake components.

Proof (sketch): Take all the maximal snowflake
subschemata (S1,Σ1), . . . , (Sk,Σk) of (S,Σ). Then
for each i = 1, . . . , k consider the views in (V,OV) ∈ V
that are defined on (Si,Σi), i.e. the defining query
qV only requires input from this subschema. This

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

111

defines sets of views V1, . . . ,Vk. By separating these
views into input and output views we obtain maximal
snowflake components

�
i = (Si,Σi, � i, � i).

As (S,Σ) is the integration of the sub-
schemata (Si,Σi), it can be represented by a
composition expression amg(

�
1, . . . ,

�
k). So we

get the desired composition prescription, and
A = ({

�
1, . . . ,

�
k}, amg(

�
1, . . . ,

�
k),V) is the desired

amalgam. The hide hd(A) of this amalgam is the set
of views in V that do not belong to one of the view
sets V1, . . . ,Vk. ut

6 Component-Based Design

The decomposition theorem in the previous section
shows that component-driven design is always possi-
ble. This gives a theoretical underpinning for method-
ological considerations. However, for practical pur-
poses the theorem is of minor value. It guarantees the
decomposition into maximal snowflake components,
whereas pragmatically we would prefer to have com-
ponents with minimal overlap – which implies max-
imal autonomy – and bound to tasks in the appli-
cation. Therefore, we develop now a pragmatic ap-
proach to component-driven design consisting of four
phases:

1. We start from behaviour-extended schemata for
certain tasks of the application, as they may arise
from cutting up a development project and then
working independently. These schemata may not
be snowflake components. However, by the de-
composition theorem they can be represented as
amalgams. Then the definition of views that con-
nect these components defines an amalgam for
the whole application.

2. Each component resulting from step one can be
decomposed into snowflake components by the
decomposition theorem. So we need algorithms
for detecting components and checking, whether
they are almost hierarchical or not. Together
with phase one this amounts to an amalgam with
a larger number of components, but these com-
ponents are now snowflakes.

3. In the third phase we consider the overlap be-
tween components aiming at minimising them as
much as possible. The result will still be an amal-
gam with snowflake components, but these com-
ponents do not overlap excessively any more.

4. Finally, we reconsider the components resulting
from phase three and recombine some of them,
if this the result is still a snowflake component
and the application considers the initial compo-
nents as belonging together to one task of the
application.

In the sequel we develop these phases in more de-
tail. Of course the connection to application tasks
can only be decided in an application context. How-
ever, we can look for the technical issues involved
in these phases. These are the detection of compo-
nents, the transformation of behaviour-extended sub-
schemata into amalgams, and the minimisation of
overlap between components.

We start with a HERM schema (S,Σ), from which
we first derive a graph � with S as its vertex set and
the edges defined by the connection relation ∼. How-
ever, if R′ ∈ S occurs more than once as a component
of R ∈ S, we get multiple edges in � . Using well-
known algorithms we choose a spanning tree for this
graph � . This defines a colouring of the edges in � :
green edges occur in the spanning tree and red edges
are the remaining ones.

Next consider path exclusion and path pairing in-
clusion dependencies derived from Σ. Let Σp be the
set of these dependencies. For each cycle in � that
is composed out of two paths, one containing only
green, the other one containing only red edges, check
whether it is subject to a constraint in Σp. If this is
not the case, the two vertices connected by the “red”
path cannot belong to a snowflake subschema. In
this way, we partition S into subschemata S1, . . . ,Sm

such that each Si defines a connected subgraph of
� , in which all vertices are pairwise comnnected by
a “green” path. Let Σi be the projection of Σ onto
the subschema Si. Then the subschemata (Si,Σi)
(i = 1, . . . ,m) are snowflake subschemata.

Of course, this approach to discovering snowflake
subschemata depends on the choice of the spanning
tree. If a chosen spanning tree does not produce a
satisfactory set of snowflake subschemata, we may
have to repeat the procedure with a different span-
ning. This increases complexity, but we gain a more
suitable decomposition.

Furthermore, it is not necessary to choose maximal
subschemata (Si,Σi). We may still decide to decom-
pose some of the Si with or without overlap. This,
however, is again a pragmatic decision.

Once we have discovered snowflake subschemata,
we have to turn them into components to make up
the component set of an amalgam. This basically
consists of taking those views V of the global be-
havioural schema with a defining query defined on
the subschema Si to (Si,Σi). The classification into
input and output views then defines components

�
i =

(Si,Σi, � i, � i). All the remaining views become part
of the amalgam hide.

The remaining step is to discover the composition
prescription that will turn

�
1, . . . ,

�
m into S. As we

decomposed S using a spanning tree in the associated
graph � , this amounts to rearranging operations that
are not defined on one component

�
i.

Finally, for the minimisation of component over-
lap we can assume that the HERM schema (S,Σ)
is the amalgamation of an amalgam A with com-
ponents

�
i = (Si,Σi, � i, � i) (i = 1, . . . ,m). Con-

sider two of these components, say
�

1 and
�

2 with-
out loss of generality. We may adopt the approach in
(Klettke 1999).

7 Component-Based Abstraction

Proponents of the information framework, e.g.,
(Evernden 1994), have already claimed that concep-
tual models should be considered to be low-level or
tactical models. At the enterprise level, a high level
view of data needs to be established that stategically
guides the development and deployment of the in-
formation system. The ‘ballpark view’ concentrates
on an architectural understanding of the application.
Component-based design may be considered to be
the first perspective solution to strategic information
frameworks. It introduces a new physical architecture
or a new IS architecture paradigm and easily adopts
new paradigms such as web services.

Component-based design uses the idea of high level
schema conceptions as a way of thinking about the ap-
plication. Business users do not have to look beyond
to the underlying detailed schema but rather focus
understanding on the types of things that make up
the application solution. Component-based abstrac-
tion is based on the previously discussed component
model, amalgamization, high-level presentation of ar-
chitectures, and mappings to conceptual schemata.

The solution displayed in Figure 4 shows that
component-based development supports reverse en-
gineering and re-engineering of applications. Re-

CRPIT Volume 53

112

engineering is considered to be the examination and
alteration of an information system to reconstitute
it in a new form and the subsequent implementa-
tion of the new form. This process encompasses a
combination of sub-processes such as reverse engi-
neering, forward engineering, analysis, synthesis, mi-
gration, rephrasing etc. Reverse engineering based
on component abstraction raises the level of abstrac-
tion of a schema through e.g decompilation, sub-
schema extraction, architecture recovery, documenta-
tion generation, and visualization. Refactoring based
on component-based abstraction improves the IS de-
sign by restructuring it such that it becomes easier
to understand while preserving its structuring and
functionality. Migration transform the schema to an-
other one at the same level of abstraction based on
conversion or translation. Rephrasing transforms a
database schema into a different one based on nor-
malization and optimization. Component-based ab-
straction is an invasive solution. The challenge is de-
composing the monolithic plain schema of the usually
fully structured legacy system to the richly hierarchic
and structured component architecture.

The Cottbus-interactive project solution uses five
high level conceptions: content, person, record,
billing, and statistics. These components can be un-
derstood as highly generic business concepts that de-
fine the scope of the application being designed. They
combine internal hierarchies (Bekke 1992). Hierar-
chies used are of classification, meta-data, and inter-
nal association. For instance, a person may be classi-
fied as ‘ndividual’ or ‘customer’, for statistics as ‘sin-
gle’ and ‘married’. The meta-data hierarchy is used
for addition of properties of the kernel objects such as
context of use, descriptors, time restrictions, utiliza-
tion or copyright issues. Internal associations within a
component support detailing of relationships among
types of a component. The components are associ-
ated in a variety of different relationships. We use
harnesses for their combination. Similar to receptors
and ligands, we use views for associating components.

Component-based abstraction achieves four tar-
gets that could not be solved in classical information
systems engineering:

IS unterstanding: High level abstraction based on
components provide information for maintenance
or redevelopment support teams, e.g., dependen-
cies between components, harnesses, etc.

IS quality assurance: components are developed
with higher initial efforts and thus enforce design
standards or perform “bad smells” detection for
types used.

IS transformation and optimization:
Component-based design supports defect
detection and fixing, performance optimizations
(e.g bad type elimination), and design structure
improvements. The IS schema is transform to a
modern architecture while keeping the core IS
structuring and functionality.

Integration of different IS: The integration may
be based on information portals, schemata as-
similation, replication, based on shared compo-
nents, on exchange services such as SOA or based
on distributed components.

8 Conclusion

In this paper we presented a HERM-based theory of
component-driven database application design. The
simple guideline of our work is that components are
structurally simple, which can be represented by a

slight generalisation of snowflake schemata. Further-
more, components isolate “local” behaviour, which
can be expressed by operations on views.

Our composition theory consists of composition
operations that take care of the integration of struc-
ture, constraints and behaviour. We demonstrated
that each schema results from the composition of
snowflake components. Reversing this theoretical re-
sult we presented a pragmatics-driven approach to
design components with minimal overlap.

Our next steps will be to generalise the approach
from HERM to other data models, in particular those
that permit cyclic references. Furthermore, we aim
at extending and refining the pragmatics side of our
approach.

References

Abiteboul, S., Buneman, P. & Suciu, D. (2000), Data
on the Web: From Relations to Semistructured
Data and XML, Morgan Kaufmann Publishers.

Akoka, J. & Comyn-Wattiau, I. (1994), A framework
for automatic clustering of semantic models,
in Elmasri, Kouramajian & Thalheim (1994),
pp. 438–450.

Ancona, D. & Zucca, E. (1998), ‘A theory of
mixin modules: Basic and derived operators’,
Mathematical Structures in Computer Science
8(4), 401–446.

Arsanjani, A. (2002), ‘Developing and integrating
enterprise components and services’, CACM
45(10), 30–34.

Bancilhon, F. & Spyratos, N. (1981), Independent
components of databases, in ‘Very Large Data
Bases, 7th Int. Conf.’, IEEE Press, Cannes,
France, pp. 398–408.

Barroca, L., Hall, J. & Hall, P. (2000), Software archi-
tectures - Advances and applications, Springer,
Berlin.

Beeri, C. & Thalheim, B. (1999), Identification as
a primitive of database models, in T. Polle,
T. Ripke & K.-D. Schewe, eds, ‘Proc. Funda-
mentals of Information Systems, 7th Int. Work-
shop on Foundations of Models and Languages
for Data and Objects - FoMLaDO’98’, Kluwer,
London, Timmel, Ostfriesland, pp. 19–36.

Bekke, J. H. T. (1992), Semantic data modelling,
Prentice-Hall, London.

Crnkovic, I., Hnich, B., Jonson, T. & Kiziltan, Z.
(2002), ‘Specification, implementation and de-
ployment of components’, CACM 45(10), 35–40.

Elmasri, R., Kouramajian, V. & Thalheim, B.,
eds (1994), Proc. 12th Int. ER Conf., Entity-
Relationship Approach - ER’93, LNCS 823,
Springer, Berlin, Arlington, USA, Dec. 15 - 17,
1993.

Evernden, R. (1994), ‘The information framework’,
IBM Systems Journal 35(1), 37–68.

Feyer, T. & Thalheim, B. (2002), Many-dimensional
schema modeling, in Y. Manolopoulos &
P. Návrat, eds, ‘ADBIS’, Vol. 2435 of LNCS,
Springer, pp. 305–318.

Hamadi, R. & Benatallah, B. (2003), A petri net-
based model for web service composition, in
‘ADC’, pp. 191–200.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

113

Hay, D. C. (1995), Data model pattern: Conventions
of thought, Dorset House, New York.

Hegner, S. J. (1988), Decomposition of relational
schemata into components defined by both pro-
jection and restriction, in ‘Proc. 7th ACM
SIGACT-SIGMOS-SIGART Symp. on Princi-
ples of Database Systems - PODS’88’, ACM
Press, New York, Austin, Texas, pp. 174–183.

Jaeschke, P., Oberweis, A. & Stucky, W. (1994),
Extending ER model clustering by relationship
clustering, in Elmasri et al. (1994), pp. 451–462.

Kimball, R. (1996), The data warehouse toolkit, John
Wiley & Sons, New York.

Klettke, M. (1999), Reuse of database design
decisions, in P. P. Chen, D. W. Embley,
J. Kouloumdjian, S. W. Liddle & J. F. Roddick,
eds, ‘Advances in Conceptual Modeling – Pro-
ceedings of the ER 1999 Workshops’, LNCS
1727, Springer, Berlin, pp. 213–224.

Lewerenz, J., Schewe, K.-D. & Thalheim, B. (1999),
Modeling data warehouses and olap applica-
tions by means of dialogue objects, LNCS 1728,
Springer, Berlin, Paris, France, Nov. 15-18, 1999,
pp. 354–368.

Maier, R. (1996), Benefits and quality of data model-
ing - results of an empirical analysis, LNCS 1157,
Springer, Berlin, Cottbus, Germany, Oct. 7 - 10,
1996, pp. 245–260.

Moody, D. L. (2001), Dealing with complexity: A
practical method for representing large entity-
relationship models, PhD thesis, Dept. of Infor-
mation Systems, University of Melbourne.

Nierstrasz, O. & Meijler, T. D. (1995), ‘Research di-
rections in software composition’, ACM Comput-
ing Surveys 27(2), 262–264.

Rauh, O. & Stickel, E. (1992), Entity tree clustering -
a method for simplifying er designs, LNCS 645,
Springer, Berlin, Karlsruhe, Germany, Oct. 7 -
9, 1992, pp. 62–78.

Schewe, K.-D. (2001), On the unification of query al-
gebras and their extension to rational tree struc-
tures, in M. Orlowska & J. Roddick, eds, ‘Proc.
Australasian Database Conference 2001’, Aus-
tralian Computer Society, pp. 52–59.

Schewe, K.-D. & Thalheim, B. (1993), ‘Fundamen-
tal concepts of object oriented databases’, Acta
Cybernetica 11(4), 49–84.

Schewe, K.-D. & Thalheim, B. (1998), ‘Limitations of
rule triggering systems for integrity maintenance
in the context of transition specification’, Acta
Cybernetica 13, 277–304.

Silverston, L., Inmon, W. H. & Graziano, K. (1997),
The data model resource book, John Wiley &
Sons, New York.

Tannen, V., Buneman, P. & Wong, L. (1992), Nat-
urally embedded query languages, in ‘ICDT’,
pp. 140–154.

Teorey, T. J., Wei, G., Bolton, D. L. & Koenig, J. A.
(1989), ‘ER model clustering as an aid for user
communication and documentation in database
design’, CACM 32(8), 975–987.

Thalheim, B. (2000a), Entity-Relationship Modeling:
Foundations of Database Technology, Springer-
Verlag.

Thalheim, B. (2000b), The person, organization,
product, production, ordering, delivery, invoice,
accounting, budgeting and human resources
pattern in database design, Technical Report
Preprint I-07-2000, Brandenburg University of
Technology at Cottbus, Institute of Computer
Science. See also: http://www.is.informatik.uni-
kiel.de/∼thalheim/slides.htm.

Thalheim, B. (2002), Component construction of
database schemes, in ‘ER’, pp. 20–34.

Thalheim, B. (2005), ‘Component development and
construction for database design’, Data Knowl.
Eng. 54(1), 77–95.

Vestenicky, V., Lewerenz, J. & Feyer, T. (2000), Mod-
eling the modification component of an infor-
mation service, in ‘Proc. of Challenges, ADBIS-
DASFAA 2000, Prague’, pp. 195–204.

Webster, B. F. (1995), Pitfalls of object-oriented de-
velopment: a guide for the wary and entusiastic,
M&T books, New York.

CRPIT Volume 53

114

Supporting Virtual Organisation Alliances with Relative Workflows

Xiaohui Zhao, Chengfei Liu and Yun Yang
Faculty of Information and Communication Technologies

Swinburne University of Technology
Melbourne, VIC 3122, Australia

{xzhao, cliu, yyang}@it.swin.edu.au

Abstract
Driven by the fast changing service demand-and-supply
requirements, virtual organisation alliances are created to
adapt highly dynamic B2B collaborations. However, the
temporary partnership and low trustiness between
collaborating organisations raise challenges to effectively
manage collaborative business processes. This paper
presents an approach on the basis of a service oriented
relative workflow model to support virtual organisation
alliances. This approach takes an organisation centred
design method and deploys a visibility mechanism to
provide a finer granularity of authority control at
contracting and collaboration design phases. The open
contracting and inter-organisational collaboration design
in a virtual organisation alliance are particularly addressed
and discussed in this paper..

Keywords: business process modelling, service oriented
computing, virtual organisation alliance.

1 Introduction
Recent years witnessed the trend of global business
collaboration which urgently requires organisations to
dynamically form virtual organisation alliances. A virtual
organisation alliance seamlessly integrates the business
processes of different organisations to adapt the
continuously changing business conditions and to stay
competitive in the global market (Osterle, Fleisch and Alt
2001, van der Aalst and van Hee 2004, zur Muehlen 2004).

Different from the large-scale organisations centred virtual
enterprises, a virtual organisation alliance is mainly
constructed from small-to-medium sized organisations,
which join a virtual community to share each other’s
business services. The collaborations in such a virtual
organisation alliance are always motivated by prompt
business service demand-and-supply requirements, such
as service outsourcing or business service
complementation. The collaborations are rather temporary
and dynamic ones. Therefore, a pre-fixed
inter-organisational workflow process design mechanism
may work very awkwardly in such scenarios. In a virtual
organisation alliance, each member organisation needs to

Copyright © 2006, Australian Computer Society, Inc. This paper
appeared at the Third Asia-Pacific Conference on Conceptual
Modelling (APCCM2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology (CRPIT), Vol.
53. Markus Stumptner, Sven Hartmann, and Yasushi Kiyoki, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

publish and update its business services that can be
provided or outsourced. Then, other member organisations
can choose partner organisations and create corresponding
collaborations to best fit its requirements or profit benefits.

Two characteristics, i.e. the dynamic structure and the
collaboration openness, distinguish the virtual
organisation alliance from traditional federated
organisations. And these two characteristics also raise
challenges to manage the collaborative business processes
for virtual organisation alliances, especially at contracting
and collaboration design phases. The temporary and
dynamic cooperation relationship requires high flexibility
in describing and implementing collaboration processes
between member organisations. Furthermore, the dynamic
and temporary partnership in turn results in the lack of
trustiness between member organisations in
loose-coupling business collaborations, and therefore
complicates the authority control (Schulz and Orlowska
2004, Quirchmayr et al. 2002).

Many approaches (Grefen et al. 2001, Kajko-Mattsson
2003, Berfield et al. 2002) attempt to precisely architect a
virtual organisation alliance with diagrams at process level,
resource level, function level, organisation level, and so
forth. But these complex models fail in the flexibility and
adaptability towards the characteristics of dynamics and
openness. Some approaches implicitly assume or
explicitly model (Besembel, Hennet and Chacon 2002)
business development functions in the virtual organisation
alliances, which are often referred to as “broker”,
“business architect”, “integrator”, “project manager”
(Katzy and Lon 2003) or similar names . These approaches
always adopt an absolute view of collaborations, which
presents the same picture of the structure and relationships
to every member organisation in a virtual organisation
alliance, and therefore neglect the aspects of authority
control and privacy respect.

Aiming to solve these problems, this paper extends our
previously proposed relative workflow model into the
service oriented computing environment to well support
the collaboration behaviours of dynamic virtual
organisation alliances. This model treats each participating
organisation as an autonomous entity, and empowers the
organisation to design inter-organisational workflow
processes from its own perspective. With regard to the
authority control, this organisation oriented mechanism
enables the visibility differentiation for different partner
organisations in the open collaborating environment of a
virtual organisation alliance. In the proposed approach,
contracts are not only used to define and regulate business
service collaborations, but also to assist developing the
visibility constraints for the business process integration.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

115

Business
Service 11

IT Service 11

IT Service 1n1

...

Process
layer

IT Service
layer

Member organisation 1 Member organisation m

Business
Service 12

Business
Service 1n1

Business
Service mnm

Business
Service m2

Business
Service m1

new Service

 interacting

outsourcing

IT Service m1

IT Service mnm
... ...

Figure 1: Virtual organisation alliance architecture

The rest of this paper is organised as follows: Section 2
first presents the relation between business services and IT
services, and then briefly reviews the proposed relative
workflow model with an extension towards service
oriented computing. Section 3 discusses how to support
business collaborations in the environment of a virtual
organisation alliance with the relative workflow model,
especially at the phases of contracting and collaboration
design. In section 4, an application example is used to
demonstrate how to practically apply the relative
workflow approach to accommodate dynamic
collaborations in a virtual organisation alliance.
Conclusion remarks are given in Section 5.

2 Service Oriented Relative Workflow Model

2.1 Business Services and IT Services
Basically, B2B collaborations are motivated by service
demand-and-supply requirements, at a high level. And the
implementation of collaborations is supported by some
fine-grained IT services at a low level. A virtual
organisation alliance is established to quickly capture
emerging market opportunities and enact business service
collaborations at a high level, by the means of utilising and
coordinating the functions provided by low-level IT
services.

Technically, business services stand for the business
related procedures or work that can benefit others. In most
cases, such business services are coarse-grained. For
example, products manufacturing service, after-sales
service etc. of a manufacturing company can be viewed as
its business services.

The notion of IT services comes from Service Oriented
Computing (SOC), which is emerging as a new computing
diagram for distributed computing and business
integration. An IT service denotes an Internet-accessible
service (Papazoglou and Georgakopoulos 2003, Leymann,
Roller and Schmidt 2002). As building blocks of modern

enterprise application architecture, IT services provide a
good support on interoperability and flexibility. In this
field, some leading companies and organisations, such as
IBM, Microsoft and OASIS, have contributed a lot in
defining specifications and developing architectures for
service oriented computing. Now, Web services are
widely considered to be the most popular IT service
technology, which uses Web Service Description
Language - WSDL (W3C 2001) and Business Process
Execution Language for Web Services - BPEL4WS
(Andrews et al. 2003) to describe the service interfaces and
interaction routines, respectively.

Figure 1 illustrates the architecture of a dynamical virtual
organisation alliance, where the collaborations between
member organisations are represented in forms of business
service interactions, business service outsourcing and
business service composition at the top layer. The business
services are supported by a single or multiple business
processes, which streamline related handling procedures
and regulate the usage of involved resources and staff at
the intermediate layer, i.e. the process layer. At the bottom
layer, i.e. the IT service layer, IT services are invoked
through specific operations by the workflow processes at
the process layer. The workflow processes streamline the
related workflow tasks, and embed the orchestration and
choreography of IT service invocations to fulfil a
particular business goal. In the service oriented computing
architecture shown in Figure 1, workflows and IT services
together build up the fundamental infrastructure to support
high-level business services.

2.2 Extension of Relative Workflow Model
Basically, traditional workflow modelling approaches
assume that there exists a third-party designer or a leading
organisation of the collaborating organisations can see
certain level of details of all participating organisations.
Unfortunately, the predominant view of a third-party
designer or a leading organisation seriously violates the
privacy protection of participating organisations in a

CRPIT Volume 53

116

loosely-coupled virtual organisation alliance. As such, the
visibility between participating organisations may be
relative, rather than absolute as adopted in the public view
approach. Besides, the pre-fixed business collaboration in
the public view approach can hardly meet the continuously
evolving partnerships between member organisations.

To solve these problems, we proposed the relative
workflow model (Zhao, Liu and Yang 2005) to define and
enact inter-organisational workflows from a relative view
rather than an absolute view. In this section, we extend the
relative workflow model into the service oriented
computing environment, by adding two definitions, IT
service and business service. To hide private information
during business collaborations, a participating
organisation is allowed to wrap its local workflow
processes into a series of perceivable workflow processes
for different partner organisations, according to the
visibility constraints defined in corresponding perceptions.
And a relative workflow process is generated by linking an
organisation’s local workflow processes with perceivable
workflow processes of its partner organisations. Different
from traditional inter-organisational workflow solutions,
relative workflows restrict an organisation’s interaction
within the scope of its local workflow processes and
perceivable workflow processes of partner organisations,
so as to prevent excessive information disclosures. By
creating a relative workflow process for each partner
organisation, a macro business collaboration process can
be distributed into several interactions among
neighbouring organisations, where each participating
organisation acts as an autonomous entity with the total
control of its local workflow processes. In this model, IT
services work as building blocks to provide the basic
supporting functions. And the orchestration and
choreography of IT services is embedded in workflow
processes.

Some key definitions are given below.

Definition 1 (IT Service) An IT service is a discrete unit
of application logic that exposes message-based interfaces
suitable for being accessed across a network. An IT service
s is defined as a set of operations {op1, op2, …, opn}. Each
operation represents a message-based interface of an IT
service. The message used by an operation op can be
represented as a message description, m×{ in, out },
where m denotes the name of the message.

Definition 2 (Business Service) A business service bs of
an organisation g represents a unit used for business
collaborations. A business service is supported by a proper
workflow process, which utilises necessary IT services to
fulfil a particular business goal. This supporting workflow
process may be a composite process, which consists of
multiple collaborating local workflow processes.

Definition 3 (Local Workflow Process) A local
workflow process lp is defined as a directed acyclic graph
(T, R), where T is the set of nodes representing the set of
tasks, and R ⊆T×T is the set of arcs representing the

execution sequence. Here, a task t ∈T may invoke one or
more operations of IT services.

Definition 4 (Organisation) An organisation g owns a set
of local workflow processes {lp1, lp2, … , lpn} to support a
set of business services. An individual local workflow
process lpi

 of g is denoted as g.lpi.

During the collaboration, the organisation applies
visibility control to protect the critical or private business
information of some workflow tasks from entirely
exposing to external organisations. Table 1 lists the three
basic visibility values defined for business interaction and
workflow tracking.

Visibility
value

Explanation

Invisible A task is said invisible to an external
organisation, if it is hidden from that
organisation.

Trackable A task is said trackable to an external
organisation, if that organisation is
allowed to trace the execution status of
the task.

Contactable A task is said contactable to an external
organisation, if the task is trackable to
that organisation and the task is also
allowed to send/receive messages
to/from that organisation for the purpose
of business interaction.

Table 1: Visibility values

Definition 5 (Visibility Constraint) A visibility
constraint vc is defined as a tuple (t, v), where t denotes a
workflow task and v∈{ Invisible, Trackable ,
Contactable }. A set of visibility constraints VC defined
on a workflow process lp is represented as a set {vc:(t, v) |
∀t (t∈lp.T)}.

Definition 6 (Perception) A perception defines the
information related to an inter-organisational interaction
of a local workflow process. Once a business service
oriented contract is assigned, the corresponding perception
can be derived from the contract. The details about the
derivation will be discussed later. A perception of an

organisation g

lpg
gp .0

1

0’s local workflow process lp from another
organisation g1 is defined as (VC, MD, f), where

 - VC is a set of visibility constraints defined on g0.lp.

 - MD ⊆ M × { in, out }, is a set of the message
descriptions that contains the messages and the passing
directions. M is the set of message names used to represent
inter-organisational business activities.
 - f: MD → g0.lpg1.T is the mapping from MD to g0.lpg1.T,
and g0.lpg1 is the perceivable workflow process of g0.lp
from g1.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

117

Relative Workflow
Process

hashashas

Perceivable
Wf Process

Local Wf
Process

Message
Link Set

Perception

compose
match

1 1 1

[1, n] [1,n] [1, n]

1 1

Visibility
Constraint

hashas

Message
Description

[1, n]

[1, n]

[1, n]

1

1

[1, n]

11

Relative Workflow
Process

has has has

Perceivable
Wf Process

Local Wf
Process

Message
Link Set

Perception

compose

111

[1, n][1,n][1, n]

1

Visibility
Constraint

has has

Message
Description

[1, n][1, n]
1

[1, n]

11

[1, n]

1
Workflow

Task

Relation

connecthas
1

2

[0, n]

[1, n]

IT Service

invoke Operation

has

1

1

[1, n]

[0, n]
1

describe
1 1

g1 g2

Business
Service

be
supported

by

is
supported

by

11 1

[1, n]

Figure 2: Extended relative workflow model

Definition 7 (Relative Workflow Process) A relative
workflow process g1.rp perceivable from an organisation
g1 is defined as a directed acyclic graph (T, R), where

T is the set of the tasks perceivable from g1, which is a
union of the following two parts:
 - , the union of the task sets of all gT..1

k

k
lpg∪ 1.lpk.

 - , the union of the task sets of all

perceivable workflow processes of g

T..
1

j
giji

lpg∪∪

i.lpj from g1.
R is the set of arcs perceivable from g1, which is a union of
the following three parts:
 - , the union of the arc sets of all gR..1

k

k
lpg∪ 1.lpk.

 - , the union of the arc sets of all perceivable

workflow processes of g

R..
1

j
giji

lpg∪∪

i.lpj from g1.
L, the set of messaging links between local workflow
processes and perceivable workflow processes, defined on

()TTTT 11 11

kj
gi

j
gi

k

kji
lpglpglpglpg ×∪×UUU .

The relative workflow model extended with business and
IT services is shown in Figure 2. Given the definitions and
discussion above, an organisation, say g1, may first
establish a business service by conjoining one or more
local workflow processes to coordinate related IT services.
Once this business service is involved in the collaboration
with another organisation, say g2, a perceptions can be
generated to regulate the visibility control on each
involved local workflow processes. Afterwards, g1 can
wrap its local workflow process into an authority safe
perceivable workflow process for g2, according to the
visibility constraints defined in the perception. Finally, at
the site of g2, a relative workflow process will be
assembled from related local workflow processes and
perceivable workflow processes from g1. Besides, a
business service can also be supported by a pre-existing
relative workflow process. Correspondingly, this business
service may drive the IT services of multiple organisations
to work for itself.

3 Supporting Virtual Organisation Alliances
The business collaboration within a virtual organisation
alliance can be represented as four phases, viz. contracting,
collaboration design, collaboration execution and
collaboration termination. This paper focuses on the first
two phases, i.e. how to organise business contracting and
design inter-organisational business collaborations with
the proposed service oriented relative workflow model in
the virtual organisation alliance environment.

3.1 Why Relative Workflows Can Support
Virtual Organisation Alliances

3.1.1 Support at Contracting Phase
Normally, B2B collaboration originates from contracting,
where two or more parties come to an agreement to
cooperate for a common objective, and this agreement is
regulated by a legal document of contract (Gimpel et al.
2003). (Griffe et al. 1998) have modelled a contract as four
major parts of Who, What, How and Legal clauses. The
How part defines the execution details for the obligations:
when and which services are to be delivered? What is the
deadline? Which clause will apply when a party falls
behind its obligation? These details together describe the
necessary business interactions for the collaboration.

Since a virtual organisation alliance enables the
collaborations with a broad range of potential partners,
each member organisation is empowered to quickly
assemble the resources and expertise to capture emerging
opportunities. To keep these options open, the partnerships
between organisations are not static, but rather
continuously evolve to stay competitive on the market.
Correspondingly, this open partnership requires an open
contracting mechanism, where an organisation posts the
business services that it can offer and it may request to all
potential co-operators in the virtual organisation alliance.
Thereafter, some organisations with special interests may
respond by referring to the business services. Finally, the
involved organisations can come to negotiate the details of
the contract for the collaboration. We call the organisation

CRPIT Volume 53

118

that issues the contract is a host organisation, and the
responding organisations are partner organisations.

Different from the traditional closed contracting process,
this open contracting process has following features.

• Low trustiness.

Since the contract may be established between parties with
no prior partnerships, high trustiness can hardly be granted.
The low trustiness requires authority control to prevent
potential privacy disclosure during collaborations. As for
this issue, the visibility constraint based visibility control
mechanism of our relative workflow model is dedicated to
guarantee the finer granularity of workflow visibility
between cooperating organisations. With these visibility
constraints, participating organisations can intentionally
choose which tasks to be hidden or revealed to partner
organisations according to the level of trustiness and the
necessary interactions for collaborations.

• Uni-directional contracting.

Different from the normal contracting process which has
defined concrete parties at the starting time, the open
contracting process only involves a single party at the
beginning, i.e. the host organisation. The uni-directional
contracting process can be well supported by the process
of posting business services in the context of the service
oriented relative workflow model. Once a business service
is prepared by deploying underlying supporting workflow
processes, it will be published to all other member
organisations to seek potential business collaborations.
This service posting process also originates from one
organisation, i.e. the host organisation, and propagates to
all other organisations.

• Agile collaboration.

Because the involved organisations share a
loosely-coupled relationship, the collaboration is dynamic
with the low coordination, interdependence, short duration
and few transactions. The agile collaboration requires the
flexibility of collaboration structure and behaviours. Our
relative workflow model supports a kind of “off-the-shelf”
collaboration formation scheme, which empowers each
organisation itself to choose partner organisations and
define relative workflow processes from its own local
workflow processes and the perceivable workflow process
provided by other organisations. In this scheme, each
participating organisation acts as an autonomous entity
and it can change its partners or redefine its collaborations
dynamically, to grasp the fast changing market
opportunities.

3.1.2 Support at Collaboration Design Phase
Once a contract is signed by involved parties, participating
organisations may come to the next phase, i.e.
collaboration design, where each participating
organisation designs and coordinates the business
collaborations amongst partner organisations by linking
related business processes.

At this stage, each member organisation may participate in
multiple collaborations with different groups of partner

organisations at the same time. Furthermore, each
participating organisations may choose and combine some
collaborations into a comprehensive collaboration
according to its own preference and management. Hence,
different participating organisations may own different
forms of business collaborations at the whole picture level.
For this reason, the collaboration should be treated from
the individual perspective of each participating
organisation rather than a public perspective. Upon this
point, our relative workflow model adapts the various
views from different organisations by designing and
maintaining inter-organisational workflow processes from
a relative perspective. In consequence, it can better tolerate
complicated partnership among participating
organisations inside a virtual organisation alliance.

From the above discussion, we can see that our relative
workflow model provides a good support to B2B
collaborations at contracting and collaboration design
phases in the environment of a virtual organisation alliance.
The relative perspective of defining and managing
inter-organisational workflows features our approach from
conventional ones, and the visibility control mechanism
and dynamic definition scheme also enhance the authority
control and collaboration flexibility. Consequently,
relative workflows can particularly serve
inter-organisational business collaborations in an open,
loosely-coupled and low-trustiness application
environment, such as a virtual organisation alliance.

3.2 How Relative Workflows Support Virtual
Organisation Alliances with

In the context of relative workflows, inter-organisational
business collaborations are initially composed at business
service level. At the phase of contracting, organisations
first publish their service demand-and-supply
requirements. By means of auctions, bidding or free
selections, a partner organisation may be determined by
the host organisation. And once the contract is negotiated
and signed by all the involved parties, the partnership is
then confirmed.

Prior to the collaboration design phase, the involved
organisations need to set up corresponding perceptions for
the authority control in collaborations. For each workflow
process related to the contracted business services, a
proper perception will be generated according to the
signed contract. These perceptions will be used for
generating the corresponding perceivable workflow
processes. The derivation from business service oriented
contracts to workflow process oriented perceptions shall
follow a Minimal Disclosure Principle.

Minimal Disclosure Principle: An organisation should
keep the disclosure of process details as minimal as
possible, relatively to its partnership with different
organisations.

The derivation may involve recognising necessary
inter-organisational messages, setting up visibility
constraints for workflow tasks etc. As mentioned in
Section 3.1, a contract c defines the necessary business
interactions to fulfil the collaboration. And these business
interactions are supported by the invocations through

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

119

operations of IT services belonging to cooperating
organisations. Algorithm 1 gives the detailed steps on
generating a perception p for a local workflow process lp
of the host organisation g0 in the collaboration with the
partner organisation g1, according to the business
interactions defined in c.
Algorithm 1. Generating perceptions

Input:
c a contract signed by organisation g0 and g1
g0 the host organisation
g1 the partner organisation
lp an involved local workflow process of g0

Output:
p the generated perception on g0’s lp from g1

Step 1 Set all tasks invisible.

p.VC = ∅; p.MD = ∅; p.f = ∅;
for each task t ∈ lp

p.VC = p.VC ∪{(t, invisible)};
end for

Step 2 Set contactable tasks.

for each business interaction bi defined in contract c
 for each operation op invoked by each task t ∈ lp
 if op provides necessary functions for business

interaction bi then
 if ∃(t, invisible)∈ p.VC then
 p.VC = p.VC - {(t, invisible)};
 p.VC = p.VC ∪{(t, contactable)};
 end if
 mdSet = {the message descriptions to be used by t to

support bi via op}
 for each message md ∈ mdSet

 p.MD = p.MD∪{ md };
 (md → t) → p.f ;
 end for
 end if
 end for

end for

Step 3 Set trackable tasks.

for each business interaction bi defined in contract c
 for each task t ∈ lp
 if bi has status dependency with t then
 if ∃ (t, invisible) ∈ p.VC then
 p.VC = p.VC - {(t, invisible)};
 p.VC = p.VC ∪{(t, trackable)};
 end if
 end if
 end for
end for

Figure 3 illustrates how the open contracting process goes
with the underlying perception generation process inside a
member organisation.

As Figure 3 shows, an organisation first posts its service
demand-and-supply requirements to its virtual
organisation alliance. Then another organisation may
respond and come to negotiate about the intended
collaboration. When a contract is finalised to confirm the
collaboration, the visibility filter will generate perceptions
and distribute them to involved local workflow processes.
Afterwards, the participating organisations come to the
collaboration design phase, where a relative workflow

process will be generated to conduct the business
collaboration. This relative workflow process integrates
the host organisation’s local workflow processes and the
perceivable workflow processes of partner organisations.
The generation of such a relative workflow process
involves two operations, i.e. composing tasks and
assembling relative workflow processes.

Business
Service

Business
Service

...
Publish open

contracts

Workflow
Process

Workflow
Process

Member Organisation

Visibility
Filter

Finalise
contracting

perception

perception

IT Services

perception

...

Other
organisations

Figure 3: Open relationship contracting

The purpose of composing tasks is to hide private tasks of
local workflow processes. We choose to merge invisible
tasks with contactable or trackable tasks into composed
tasks, if not violating the structural validity; otherwise,
those invisible tasks are combined into a dummy task. For
example, according to the perception defined from the
partner organisation, a local workflow process of the host
organisation after this step becomes an authority safe
perceivable workflow process. The algorithm for
composing tasks is given in Algorithm 2.
For the simplicity of discussion, we only consider
composing one local workflow process lp of the
organisation g0 from another organisation g1. Furthermore,
we conduct a pre-processing on all split/join structures of
lp such that for all those branches consisting of only
invisible tasks, a dummy task is created to delegate these
branches.

Algorithm 2. Composing tasks

Input:
 lp g0.lp, the organisation g0’s local workflow process

lp before composition.
 p lpg

gp .0

1
, the perception of g0’s lp from g1.

Output:
 lp′ g0.lpg1, the perceivable workflow process

composed from lp for g1, according to . lpg
gp .0

1

Step 1 Connect invisible tasks.
lp′ = lp;
VT = { all the visible tasks of lp, defined in p};
while (∃t, t′∈ (lp′.T–VT)) ((t, t′)∈lp′.R)∧seq(t)∧seq(t′))
// seq(t)=(indegree(t)=1∧outdegree(t)=1)
{ t°=t+t′;
 lp′.T = lp′.T∪{t°}-{ t, t′};
 lp′.R = lp′.R -{(t, t′)};
 replace t, t′ in lp′.R with t° ;
}

Step 2 Downward composition with incoming interaction

CRPIT Volume 53

120

tasks.
while ((∃t∈VT (p′.f -1(t)=(m, in)∧outdegree(t)

=1)∧(∃t′∈(lp′.T-VT))((t, t′)∈lp′.R∧indegree(t′)=1))
{ t°=t+t′;

VT = VT∪{t°}-{t};
lp′.T = lp′.T∪{t°}-{t′, t};
lp′.R = lp′.R -{(t, t′)};
replace t, t′ in lp′.R with t° ;

}
Step 3 Upward composition with outgoing interaction

tasks.
while ((∃t∈VT (p′.f -1(t)=(m, out)∧indegree(t)

=1)∧(∃t′∈(lp′.T-VT))((t′,t)∈lp′.R∧outdegree(t′)=1))
{ t°=t+t′;

VT= VT∪{t°}-{t};
lp′.T = lp′.T∪{t°}-{t′, t};
lp′.R = lp′.R -{(t′, t)};
replace t, t′ in lp′.R with t° ;

}

In the operation of assembling relative workflow
processes, an organisation may assemble its relative
workflow processes from local workflow processes and
the perceivable workflow processes of partner
organisations, together with the messaging links. The
messaging links are obtained by matching the message
descriptions defined in perceptions of the host
organisation and the partner organisation. Once this
relative workflow process is generated, the
inter-organisational business service collaboration
becomes formally prepared for collaboration execution
phase. The corresponding assembling algorithm is given
below.

Algorithm 3. Assembling relative workflow processes

Input:
 lp' g0.lpg1, the perceivable workflow process

composed from g0’s local workflow process lp.
 p lpg

gp .0
1

, the perception of g0’s lp from g1

 ps { , … , }, the set of perceptions

defined on g

1
1
0

.lpg
gp

11
1
0

. nlpg
gp

1’s perceivable workflow processes
from g0

Output:
L the set of generated messaging links.

Step Generating messaging links to bind workflow
processes.

L = ∅;
for each t ∈lp′.T
 if ∃md(p.f-(md)= t) then {
 md1=p.f -1(t);
 for each p°∈ps
 for each md2∈p°.MD
 if md1 matches md2 then
 L = L ∪{(t, p°.f(md2), md1)};

/* the messaging links are obtained by matching messaging
descriptions. */

}

4 Application Example
Australian toolmaking firms are relatively small and
specialised, operating with minimal business
infrastructure in an attempt to control overhead costs. This
specialisation restricts access to additional customers or
larger projects. In response to this increasing dilemma,
toolmakers need to become effective in engaging and
servicing a more geographically disperse clientele, and
complementary toolmakers need to pool their resources.
Technology-enabled collaboration can assist with dealing
with this industry deficiency. In this section, we attempt to
apply our relative workflow approach to support
collaboration behaviours of a virtual organisation alliance
for these toolmaking firms.

Desig-
ner

Proto-
typer

Manu-
facturer

Market-
ing

Tool
Product

Figure 4: Toolmaking VOA

As Figure 4 shows, a virtual organisation alliance
consisting of toolmaking firms may connect designers,
manufacturers, prototypers and marketing companies
together to collaboratively work for customer products.

With this background, we narrow our focus on a scenario
where exist diverse business collaborations between four
member organisations, viz. organisation A, B, C and D.
Figure 5 illustrates three business collaboration scenarios
between the four member organisations. For simplicity,
we only give key tasks of the involved workflow
processes.

In the scenario of collective production shown in Figure 5,
organisation A’s production process uses organisation B’s
production service, which is supported by organisation B’s
production process. Organisations A and B produce
different kinds of parts, respectively, and finally assemble
and package them into unitised tools at the site of
organisation A. This collaboration is motivated by the
production capability requirement, and reflects the
synergy for small-to-medium sized organisations.

In the scenario of design outsourcing, organisation A
outsources its prototyping task to organisation C, for the
efficiency of time and cost, given organisation C provides
stronger prototyping services. This collaboration involves
the interaction between organisation A’s design process
and organisation C’s prototyping process.

The scenario of bulk ordering shows the economic of scale,
since the organisations with orders for the same parts or
parts from the same supplier batch their orders together for
a more economical price. This collaboration lies between
organisation A’s ordering process and organisation D’s
ordering process.

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

121

Start

End

Assembling

Start

End

CNC
Simulating

Feature
setting

Surface
Treatment
Designing

Prototyping
Outsourcing

Shape
Designing

Customer
Feedback

Start

End

Order
Auditing

Arrange for
Bulk Ordering

Bulk Ordering
Negotiation

Arrival
Check

Collect
Orders

Wrapping

Ordering

Start

End

Heat
Treatment

CNC
Machining

Surface
Treatment

Parts
Transferring

Rough
Machining

Finish
Machining

Surface
Treatment

Contour
Machining

Start

End

Assembling

CNC
Machining

Surface
Treatment

Start

End

Order
Auditing

Arrange for
Bulk Ordering

Bulk Ordering
Negotiation

Collect
Orders

Ordering
Parts

Transferring

Job
Receiving

Job
Outsourcing

Job
Receiving

Assembling

Wrapping

Collective Production Design Outsourcing Bulk Ordering

Org A:
Production Process

Org B:
Production Process

Org A:
Design Process

Org C:
Prototyping process

Org A:
Ordering Process

Org D:
Ordering Process

(CNC - Computer Numerical Control)
Figure 5: Business collaborations

Now, we start from the bulk ordering collaboration to
demonstrate how our relative workflow approach supports
a virtual organisation alliance. In the scenario of the bulk
ordering collaboration, when organisation A collects
orders from its production department(s), it will consider
whether to seek a bulk ordering with potential co-buyers.
If needed, it will publish a request for bulk ordering of
listed parts or materials, to all other member organisations
in this alliance. Suppose that organisation D has the same
things to buy, and organisation D responds to organisation
A to further negotiate the details about the amount for bulk
ordering and the expected price, etc. Finally, a contract
will be signed to regulate the agreement on bulk ordering,
and the two organisations can conjoin their orders. This
contract is motivated by seeking an economical price, and
the collaboration is supported by the business services of
parts ordering of the two organisations, with the
underlying supporting workflow processes be organisation
A’s ordering process and organisation D’s ordering
process, respectively.

Since this collaboration mainly focuses the bulk ordering
negotiation, some tasks of ordering processes may be set
invisible for the collaborating organisation, if these tasks
do not directly participate in the bulk ordering negotiation.
According to the algorithm mentioned in the previous
section, the corresponding perception on organisation A’s
ordering process from the view of organisation D, i.e.

, may have the following visibility
constraints.

ocessorderingA
Dp Pr.

VC1 = { (‘Collect Orders’, Invisible), (‘Order Auditing’,
Invisible), (‘Arrange for Bulk Ordering’, Invisible),
(‘Bulk Ordering Negotiation’, Contactable), (‘Ordering’
Contactable), (‘Arrival Check’, Invisible) }.

These visibility constraints prohibit organisation D’s
cognition on private tasks, such as “Collect Orders”,
“Order Auditing” and “Arrange for Bulk Ordering”. These
tasks only handle internal procedures, and do not
participate in the bulk ordering collaboration. Therefore,
such prohibition does not affect the negotiation with
organisation D.

Order
Auditing

Arrange for
Bulk Ordering

Bulk Ordering
Negotiation

Collect
Orders

Ordering

Start

End

Order
Auditing

Arrange for
Bulk Ordering

Bulk Ordering
Negotiation

Arrival
Check

Collect
Orders

Ordering

Order Handling
Service

Publishing
Service

Communicating
Service

eOrdering
Service

Inventory
Management

Service

<Perceivable wf. process><Local wf. process>
Org A’s ordering

process
Org D’s ordering

process

Figure 6: Relative workflow process for bulk ordering

collaboration

Similarly, the perception on organisation D’s ordering
process from the view of organisation A, i.e.

CRPIT Volume 53

122

ocessorderingD
Ap Pr. , may have the following visibility

constraints.

VC2 = { (‘Collect Orders’, Invisible), (‘Order Auditing’,
Invisible), (‘Arrange for Bulk Ordering’, Invisible),
(‘Bulk Ordering Negotiation’, Contactable), (‘Ordering’
Contactable) }.

Now, we can generate the relative workflow process for
this bulk ordering collaboration from the perspective of
organisation A, according to the visibility constraints
defined in perception . Figure 6 shows the
generated relative workflow process.

ocessorderingD
Ap Pr.

Start

CNC
Simulating

Feature
setting

Surface
Treatment
Designing

Prototyping
Outsourcing

Shape
Designing

Customer
Feedback

Assembling

CNC
Machining

Surface
Treatment

Parts
Transferring

Job
Receiving

Collective
Production

Design
Outsourcing

Bulk
Ordering

Order
Auditing

Arrange for
Bulk Ordering

Bulk Ordering
Negotiation

Arrival
Check

Collect
Orders

Ordering

Bulk Ordering
Negotiation

Ordering

End

Assembling

Wrapping

Heat
Treatment

CNC
Machining

Surface
Treatment

Job
Outsourcing

Parts
Transferring

Rough
Machining

Finish
Machining

Surface
Treatment

Contour
Machining

Job
Receiving

Assembling

Wrapping

Order
Auditing

Arrange for
Bulk Ordering

Collect
Orders

Figure 7: Final relative workflow process

The shadowed tasks of the perceivable workflow process
shown in Figure 6 denote the invisible tasks to
organisation A, and the white tasks are either trackable or
contactable ones. The ovals on the left denote the IT
services invoked by organisation A’s production process,
and the small blank rectangles denote the operations of IT
services. Since the two organisations collaborate at
process level, and the IT services of organisation D may
not be perceivable from organisation A. Therefore, only
organisation A’s related IT services are given in Figure 6.

Following this way, organisation A may also sign contracts
with organisations B and C, for the collective production
and design outsourcing. Therefore, organisation A is
simultaneously participating in the three collaborations
with organisations B, C and D, respectively. And these
three collaborations together support organisation A’s
whole process of tools manufacturing. A composite
relative workflow integrating all the three collaborations
can be generated at the site of organisation A, to represent
organisation A’s comprehensive manufacturing business
collaboration.

Figure 7 gives the composite relative workflow process
from the perspective of organisation A. This relative
workflow process combines organisation A’s three local
workflow processes, i.e. engineering process, ordering
process and production process. In addition, this relative
workflow process includes three other workflow processes
of its partner organisations, i.e. organisation C’s
prototyping process, organisation D’s ordering process
and organisation B’s production process, in their
perceivable forms. For the simplicity, related IT services
are not given in Figure 7.

Assembling

Wrapping

Start

End

Heat
Treatment

CNC
Machining

Surface
Treatment

Parts
Transferring

Rough
Machining

Finish
Machining

Surface
Treatment

Contour
Machining

Job
Outsourcing

Job
Receiving

Assembling

Wrapping

<Perceivable wf. process> <Local wf. process>
Org B’s production

process
Org A’s prodcution

process

Figure 8: Relative workflow process from org B’s view

From the perspective of another participating organisation,
say organisation B, it may own a different collaboration
picture. Since organisation B does not participate in the
collaborations of bulk ordering or design outsourcing with
organisation A, organisation B therefore has no authorities

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

123

to perceive those two collaborations. This means that
organisation B may even not know the existence of these
two collaborations. The relative workflow generated from
the perspective of organisation B is given in Figure 8.

From the relative workflow processes shown in Figure 7
and Figure 8, we can see that different organisations hold
different views towards collaborations. This reflects our
relativity characteristics.

With this proposed approach, each organisation is in
charge of choosing partners by issuing and signing proper
contracts. In addition, each organisation is responsible for
defining the collaboration structure and behaviours to
fulfil its own business planning and objective. Each
organisation acts as an autonomous entity, and can change
its partners or redefine its collaborations dynamically, to
grasp the fast changing market opportunities. The
visibility control mechanism prevents the private
information disclosure at the task level or at the process
level. Participating organisations are now able to control
the granularity of partner organisations’ cognition on its
business processes during collaborations.

5 Conclusion
This paper has presented an approach to support B2B
collaborations in virtual organisation alliances. With this
approach, the inter-organisational collaborations
motivated by service demand-and-supply requirements
can be interpreted into relative workflow processes that in
turn coordinate related IT services at technical level.
Different from conventional approaches, our approach
adopts a set of visibility control mechanism to restrict the
cognition of collaborating organisations on each other’s
business processes, and therefore is free of privacy
disclosure and authority violation. In addition, the
organisation oriented design scheme empowers
organisations to dynamically choose partner organisations
and customise collaboration structures.

6 References
Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein,

J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S.,
Trickovic, I. and Weerawarana, S. (2003): Business
Process Execution Language for Web Services
(BPEL4WS) 1.1,
http://www.ibm.com/developerworks/library/ws-bpel.

Berfield, A., Chrysanthis, P. K., Tsamardinos, I., Pollack,
M. E. and Banerjee, S. (2002): A Scheme for Integrating
e-services in Establishing Virtual Enterprises,
Proceedings of Twelfth International Workshop on
Research Issues in Data Engineering: Engineering
E-Commerce/E-Business Systems, 134-142.

Besembel, I., Hennet, J. C. and Chacon, E. (2002):
Coordination by Hierarchical Negotiation within an
Enterprise Network, Proceedings of 8th International
Conference on Concurrent Enterprising, Rome, Italy,
507-516.

Gimpel, H., Ludwig, H., Dan, A. and Kearney, R. (2003):
PANDA: Specifying Policies for Automated
Negotiations of Service Contracts, International

Conference on Service-Oriented Computing, Trento,
Italy, 287-302.

Grefen, P. W. P. J., Aberer, K., Ludwig, H. and Hoffner, Y.
(2001): CrossFlow: Cross-Organizational Workflow
Management for Service Outsourcing in Dynamic
Virtual Enterprises. IEEE Data Engineering Bulletin, 24:
52-57.

Griffe, F., Boger, M., Weinreich, H., Lamersdorf, W. and
Merz, M. (1998): Electronic Contracting with
COSMOS - How to Establish, Negotiate and Execute
Electronic Contracts on the Internet, 2nd Int. Enterprise
Distributed Object Computing Workshop, 46-55.

Kajko-Mattsson, M. (2003): Infrastructures of virtual IT
enterprises, Proceedings of International Conference on
Software Maintenance, 199-208.

Katzy, B. and Lon, H. (2003): Virtual Enterprise Research
State of the Art and Ways Forward, Proceedings of 9th
International Conference on Concurrent Enterprising,
Helsinki, Finland.

Leymann, F., Roller, D. and Schmidt, M. T. (2002): Web
Services and Business Process Management. IBM
Systems Journal, 41: 198-211.

Osterle, H., Fleisch, E. and Alt, R. (2001): Business
Networking - Shaping Collaboration between
Enterprises, Springer Verlag.

Papazoglou, M. P. and Georgakopoulos, D. (2003):
Special issue on service oriented computing.
Communications of the ACM, 10: 24-28.

Quirchmayr, G., Milosevic, Z., Tagg, R., Cole, J. B. and
Kulkarni, S. (2002): Establishment of Virtual Enterprise
Contracts, Proceedings of 13th International
Conference Database and Expert Systems Applications,
236-248.

Schulz, K. and Orlowska, M. (2004): Facilitating
Cross-organisational Workflows with a Workflow View
Approach. Data & Knowledge Engineering, 51:
109-147.

van der Aalst, W. M. P. and van Hee, K. M. (2004):
Workflow Management: Models, Methods, and Systems,
Cambridge, MA, MIT Press.

W3C (2001): Web Services Description Language
(WSDL) 1.1. http://www.w3c.org/TR/wsdl.

Zhao, X., Liu, C. and Yang, Y. (2005): An Organisational
Perspective of Inter-Organisational Workflows,
International Conference on Business Process
Management, 17-31.

zur Muehlen, M. (2004): Workflow-based Process
Controlling: Foundation, Design, and Application of
Workflow-driven Process Information Systems, Berlin,
Logos Verlag.

CRPIT Volume 53

124

http://www.ibm.com/developerworks/library/ws-bpel
http://www.w3c.org/TR/wsdl

Author Index

Benatallah, Boualem, 7
Biddle, Robert, 11

Colomb, Robert, 75

de Vries, Denise, 85

Galloway, John, 21
Governatori, Guido, 75
Gregersen, Heidi, 35

Hartmann, Sven, iii

Kitagawa, Takashi, 55
Kiyoki, Yasushi, iii

Liu, Chengfei, 115

Malinowski, Elzbieta, 45
Mayr, Heinrich C., 3
Motahari-Nezhad, Hamid Reza, 7

Nakanishi, Takafumi, 55
Nesbitt, Keith V., 65
Noble, James, 11

Padmanabhan, Vineet, 75

Rice, Sally, 85
Roddick, John F., 85
Rotolo, Antonino, 75
Russell, Nick, 95

Sadiq, Shazia, 75
Schewe, Klaus-Dieter, 105
Simoff, Simeon J., 21
Stumptner, Markus, iii

ter Hofstede, Arthur H.M., 95
Thalheim, Bernhard, 105

van der Aalst, Wil M.P., 95

Wohed, Petia, 95

Yang, Yun, 115

Zhao, Xiaohui, 115
Zimányi, Esteban, 45

Conceptual Modelling 2006 - Proc. Third Asia-Pacific Conference on Conceptual Modelling (APCCM2006)

125

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 41 - Theory of Computing 2005
Edited by Mike Atkinson, University of Otago, New
Zealand and Frank Dehne, Griffith University, Aus-
tralia. January, 2005. 1-920-68223-6.

Contains the papers presented at the Eleventh Computing: The Australasian Theory Sympo-
sium (CATS2005), Newcastle, NSW, Australia, January/February 2005.

Volume 42 - Computing Education 2005
Edited by Alison L. Young, UNITEC, New Zealand
and Denise Tolhurst, University of New South Wales,
Australia. January, 2005. 1-920-68224-4.

Contains the papers presented at the Seventh Australasian Computing Education Conference
(ACE2005), Newcastle, NSW, Australia, January/February 2005.

Volume 43 - Conceptual Modelling 2005
Edited by Sven Hartmann, Massey University, New
Zealand and Markus Stumptner, University of South
Australia. January, 2005. 1-920-68225-2.

Contains the papers presented at the Second Asia-Pacific Conference on Conceptual Modelling
(APCCM2005), Newcastle, NSW, Australia, January/February 2005.

Volume 44 - ACSW Frontiers 2005
Edited by Rajkumar Buyya, University of Mel-
bourne, Paul Coddington, University of Ade-
laide, Paul Montague, Motorola Australia Software
Centre, Rei Safavi-Naini, University of Wollon-
gong, Nicholas Sheppard, University of Wollongong
and Andrew Wendelborn, University of Adelaide.
January, 2005. 1-920-68226-0.

Contains the papers presented at the Australasian Workshop on Grid Computing and e-
Research (AusGrid 2005) and the Third Australasian Information Security Workshop (AISW
2005), Newcastle, NSW, Australia, January/February 2005.

Volume 45 - Information Visualisation 2005
Edited by Seok-Hee Hong NICTA, Australia.
January, 2005. 1-920-68227-9.

Contains the papers presented at the Asia-Pacific Symposium on Information Visualisation,
APVis.au, Sydney, Australia, January 2005.

Volume 46 - ICT in Education
Edited by Graham Low University of New South
Wales, Australia. October, 2005. 1-920-68228-7.

Contains selected refereed papers presented at the South East Asia Regional Computer Con-
federation (SEARCC) 2005: ICT Building Bridges Conference, Sydney, Australia, September
2005.

Volume 47 - Safety Critical Systems and Software 2004
Edited by Tony Cant, University of Queensland.
March, 2005. 1-920-68229-5.

Contains all papers presented at the Ninth Australian Workshop on Safety-Related Pro-
grammable Systems, (SCS2004), Brisbane, Australia, October 2004.

Volume 48 - Computer Science 2006
Edited by Vladimir Estivill-Castro, Griffith Uni-
versity and Gillian Dobbie, University of Auckland,
New Zealand. January, 2006. 1-920-68230-9.

Contains the papers presented at the Twenty-Ninth Australasian Computer Science Conference
(ACSC2006), Hobart, Tasmania, Australia, January 2006.

Volume 49 - Database Technologies 2006
Edited by Gillian Dobbie, University of Auckland,
New Zealand and James Bailey, University of Mel-
bourne. January, 2006. 1-920-68231-7.

Contains the papers presented at the Seventeenth Australasian Database Conference
(ADC2006), Hobart, Tasmania, Australia, January 2006.

Volume 50 - User Interfaces 2006
Edited by Wayne Piekarski, University of South
Australia. January, 2006. 1-920-68232-5.

Contains the papers presented at the Seventh Australasian User Interface Conference
(AUIC2006), Hobart, Tasmania, Australia, January 2006.

Volume 51 - Theory of Computing 2006
Edited by Barry Jay UTS, Australia and Joachim
Gudmundsson, NICTA, Australia. January, 2006.
1-920-68233-3.

Contains the papers presented at the Twelfth Computing: The Australasian Theory Symposium
(CATS2006), Hobart, Tasmania, Australia, January 2006.

Volume 52 - Computing Education 2006
Edited by Denise Tolhurst, University of New South
Wales, Australia and Samuel Mann, Otago Poly-
technic, Otago, New Zealand. January, 2006. 1-920-
68234-1.

Contains the papers presented at the Eighth Australasian Computing Education Conference
(ACE2006), Hobart, Tasmania, Australia, January 2006.

Volume 53 - Conceptual Modelling 2006
Edited by Markus Stumptner, University of South
Australia, Sven Hartmann, Massey University, New
Zealand and Yasushi KiyokiKeio University, Japan.
January, 2006. 1-920-68235-X.

Contains the papers presented at the Third Asia-Pacific Conference on Conceptual Modelling
(APCCM2006), Hobart, Tasmania, Australia, January 2006.

Volume 54 - ACSW Frontiers 2006
Edited by Rajkumar Buyya, University of Mel-
bourne, Tianchi Ma, University of Melbourne,
Rei Safavi-Naini, University of Wollongong, Chris
Steketee, University of South Australia and Willy
Susilo, University of Wollongong. January, 2006. 1-
920-68236-8.

Contains the papers presented at the Fourth Australasian Workshop on Grid Computing and
e-Research (AusGrid 2006) and the Fourth Australasian Information Security Workshop (AISW
2006), Hobart, Tasmania, Australia, January 2006.

Volume 55 - Safety Critical Systems and Software 2005
Edited by Tony Cant, University of Queensland.
Late 2005. 1-920-68237-6.

Contains all papers presented at the 10th Australian Workshop on Safety Related Pro-
grammable Systems, August 2005, Sydney, Australia.

Volume 56 - Visual Information Processing 2005
Edited by Hong Yan, City University of Hong Kong,
Jesse Jin, University of Newcastle, Australia, Zhi-
qiang Liu, City University of Hong Kong and Daniel
Yeung, Hong Kong Polytechnic University. Late 2005.
1-920-68238-4.

Contains papers from the Asia-Pacific Workshop on Visual Information Processing (VIP2005),
Hong Kong, December 2005.

Volume 57 - Multimodal User Interaction 2005
Edited by Fang Chen and Julien Epps National
ICT Australia. December, 2005. 1-920-68239-2.

Contains the proceedings of the Multimodal User Interaction Workshop 2005, NICTA-HCSNet,
Sydney, Australia, 13-14 September 2005.

Volume 58 - Advances in Ontologies 2005
Edited by Thomas Meyer, National ICT Australia,
Sydney and Mehmet Orgun Macquarie University.
December, 2005. 1-920-68240-6.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2005), Sydney, Aus-
tralia, 6 December 2005.

CRPIT Volume 53

126

	Headers.pdf
	K01Mayr.pdf
	K02aaaheaders.pdf
	K02Benatallah.pdf
	K02ZZZ copy.pdf
	K03Noble.pdf
	K04Simoff.pdf
	P01aaaheaders.pdf
	P01Gregersen.pdf
	P02Malinowski.pdf
	P03Nakanishi.pdf
	P04Nesbitt.pdf
	P05Padmanabhan.pdf
	Introduction
	Institutional Agency
	The Logical Framework
	Obligation
	Proclamation
	The counts-as Rule

	Commitments via Proclamation, Obligation and Direct Action
	Commitments Through Reciprocal Obligations

	Bringing them all together
	Rules for Deontic Dependency
	Accommodating Deontic Dependencies in i
	Conclusions and Future Work

	P06Rice.pdf
	P06ZZZ.pdf
	P07Russell.pdf
	Introduction
	Business Process Modelling Languages
	UML 2.0 Activity Diagrams
	The Control-Flow Perspective in UML 2.0 ADs
	Basic control patterns
	Advanced branching & synchronisation patterns
	Structural patterns
	Multiple instance patterns
	State-based patterns
	Cancellation patterns

	The Data Perspective in UML 2.0 ADs
	Data visibility patterns
	Data interaction patterns
	Data transfer patterns
	Data-based routing patterns

	The Resource Perspective in UML 2.0 ADs
	Conclusions

	P08Schewe.pdf
	P09Zhao.pdf
	Introduction
	Service Oriented Relative Workflow Model
	Business Services and IT Services
	Extension of Relative Workflow Model

	Supporting Virtual Organisation Alliances
	Why Relative Workflows Can Support Virtual Organisation Alli
	Support at Contracting Phase
	Support at Collaboration Design Phase

	How Relative Workflows Support Virtual Organisation Alliance

	Application Example
	Conclusion
	References

	Trailers.pdf

