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Preface

This volume contains the contributed papers presented at the 2006 Computing: The Australasian Theory
Symposium (CATS 2006), held in Hobart, Australia, 16-19 January, 2006. In addition, the volume also
includes an abstract of the keynote by Tetsuo Asano on Computational Geometric and Combinatorial
Approaches to Digital Halftoning.

CATS is the premier theoretical computer science conference in Australasia and it is an established part
of the Australasian Computer Science Week. This is the 12th CATS meeting and we thank the University of
Tasmania for hosting the meeting. Previous CATSs were held in Sydney (1994), Melbourne (1996), Sydney
(1997), Perth (1998), Auckland (1999), Canberra (2000), Gold Coast (2001), Monash (2002), Adelaide
(2003), Otago (2004) and Newcastle (2005).

The scientific program contains 17 papers chosen from 32 submissions. Each paper was reviewed by
at least three referees, and evaluated on the quality, originality and relevance to the symposium. The
challenging task of selecting the papers for presentation was performed by the members of our program
committee and external reviewers.

We would like to thank everyone involved in putting CATS 2006 together; especially the program
committee, those who submitted papers and the external reviewers.

We wish all the participants an interesting conference.

Joachim Gudmundsson
National ICT Australia Ltd

Barry Jay
University of Technology, Sydney

CATS 2006 Program Chairs
January, 2006
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Organising Committee

Welcome

On behalf of the Tasmanian Organising Committee of ACSW2006 I would like to welcome all the delegates
to the conferences of this busy and interesting week, in particular those coming from overseas.

The location of the various conferences and other events at the Wrest Point Hotel allows delegates to
move quickly from event to event, and to easily and comfortably gather in groups for those conversations
and interactions that are so important for the exchange of ideas and the promotion of cooperation, not to
mention social pleasure.

We trust you will have a thoroughly enjoyable time.

Professor Young Ju Choi
Chair, Organising Committee

January, 2006

General Chair

Professor Young Ju Choi, School of Computing, University of Tasmania, Australia

Organising Committee Members

Ms Nicole Clark
Dr Julian Dermoudy
Mr Tony Gray
Mr Neville Holmes
Mr Ian McMahon
Ms Julia Mollison
Professor Arthur Sale
Ms Soon-ja Yeom
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CORE - Computing Research and Education

CORE welcomes all delegates to ACSW2006 in Hobart.
ACSW, the Australasian Computer Science Week continues to grow with new conferences becoming

entrenched in the week. As the premier annual Computer Science event in Australia and New Zealand,
it provides an unparalleled opportunity for the wide community of Computer Science academics and re-
searchers to meet, network, promote IT research and be exposed to the latest research in other areas of
IT. The research presented at each conference is of the highest standard and essential for the growth and
future of our region, in an ever more competitive world.

CORE is expanding its awards. The Distinguished Service Award first offered in late 2004 will be offered
every second year and next at the 2007 Conference. Along with the Chris Wallace Research Award, we are
offering an annual teaching award for the first time.

CORE has continued to play a part in the Federation of Australian Scientific and Technological Societies
and by participating in events such as Science Meets Parliament, CORE is becoming recognised by the
wider community and will continue to do so. A major contribution from many members in 2005 was a
submission to the RQF Forum with some of our ideas appearing in the draft. CORE and members of the
Executive have also been interviewed as representatives of the Computer Science community for several
other Government and industry inquiries and initiatives.

Thank you all for your contributions in 2005 and we look forward to an exciting 2006.

Jenny Edwards
President, Computing Research and Education

January, 2006



ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2008. Communications Volume Number 30. Proposed Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.



Conference Acronyms

ACE. Australian/Australasian Conference on Computing Education.
ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture

Conference (ACAC).
ACSC. Australian/Australasian Computer Science Conference.
ACSW. Australian/Australasian Computer Science Week.
ADC. Australian/Australasian Database Conference.
APBC. Asia-Pacific Bioinformatics Conference.
APCCM. Asia-Pacific Conference on Conceptual Modelling.
AUIC. Australian/Australasian User Interface Conference.
CATS. Computing - The Australian/Australasian Theory Symposium.

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a

wider geographical area.
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We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date
overview of sponsors of ACSW 2006 and CATS 2006, please see http://www.comp.utas.edu.au/acsw06/.

University of Tasmania, Australia

Australian Computer Society

CORE - Computing Research and Education

Faculty of Information Technology

National ICT Australia Ltd
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Computational Geometric and Combinatorial Approaches to
Digital Halftoning

Tetsuo Asano

School of Information Science,
JAIST (Japan Advanced Institute of Science and Technology)

1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan

Digital halftoning is a technique to convert a
continuous-tone image into a binary image consisting
of black and white dots. It is an important technique
for printing machines and printers to output an image
with few intensity levels or colors which looks similar
to an input image. In this talk I will explain how com-
putational geometry and combinatorial optimization
can contribute to digital halftoning or what geomet-
ric and combinatorial problems are related to digital
halftoning (Aronov et al. 2004, Asano et al. 2004).

Conventional halftoning algorithms are classified
into two categories depending on resolution of print-
ing devices. In a low-resolution printer such as an
ink-jet printer individual dots are rather clearly sepa-
rated. On the other hand dots are too small in a high-
resolution printer such as off-set printer to make fine
control over their positions. Therefore, dots should
form clusters whose sizes are determined by their cor-
responding intensity levels. Such a halftoning algo-
rithm is called a cluster-dot halftoning.

This algorithm consists in partitioning the output
image plane into repetitive polygons called screen el-
ements, usually of the same shape such as rectangles
or parallelograms. Each screen element is then filled
in by dots according to the corresponding intensity
levels. Dots in a screen element is clustered around
some center point to form a rounded figure. Denot-
ing by k the area or the number of pixels of a screen
element, only k + 1 different intensity levels instead
of 2k levels are reproduced since the gray level in a
screen element is determined only by the number of
dots in the region. So, large screen element is re-
quired to have effective tone scale. On the contrary
the size of a screen element should be small for ef-
fective resolution. This suggests a serious tradeoff
between effective resolution and effective tone scale.
So, it is required to resolve it by introducing adaptive
mechanism to determine cluster sizes.

In most of the conventional cluster-dot halfton-
ing algorithms the output image plane is partitioned
into screen elements in a fixed manner independent
of given input images. A key idea of our algorithm
is to partition the output plane into screen elements
of various sizes to reflect spatial frequency distribu-
tion of an input image. This adaptive method is a
solution to balance effective resolution and effective
tone scale in the following sense. The two indices
are both important, but one is more important than
the other depending on spatial frequency distribution
of an input image. That is, resolution is more impor-
tant in a high-frequency part to have a sharp contour,

Copyright copyright 2006, Australian Computer Society, Inc.
This paper appeared at Computing: The Australasian The-
ory Symposium (CATS2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 51. Barry Jay and Joachim Gudmundsson, Eds. Repro-
duction for academic, not-for profit purposes permitted pro-
vided this text is included.

so that the sizes of screen elements should be kept
small. On the other hand, tone scale is more mean-
ingful in a low-frequency part with intensity levels
changing smoothly, and so larger sizes of screen ele-
ments are preferred. All these requirements suggest
the following geometric optimization problem. Given
a continuous-tone image A and a scaling factor to
define the size of an output image, we first compute
spatial frequency distribution by applying Laplacian
or Sobel differential operator. Then, each grid in the
output image plane is associated with a disc of radius
reflecting the Laplacian value at the corresponding
point. Now, we have a number of discs of various
radii. Then, the problem is to choose a set of discs
to cover the output plane in an optimal way. The
optimality criterion should reflect how large area is
covered by exactly one disc from the set, which im-
plies minimization of the area of unoccupied region
and intersection among chosen discs to make the re-
sulting screen elements rounded figures.

Optimization of a dither mask used in a so-called
Ordered Dither algorithm for halftoning is also an in-
teresting topic. The problem is how to arrange n2

integers from 0 to n2−1 as uniformly as possible over
an n × n matrix. Again we introduce a discrepancy-
based measure to evaluate the uniformity. The mea-
sure is based on the observation that if those integers
are uniformly distributed over a matrix then the av-
erage of elements in a rigid submatrix (or region) of a
fixed size must be the same wherever we take such a
submatrix. So, we define the discrepancy of a matrix
to be the largest difference of the average in such a
region with the average in the whole matrix.

Different schema to achieve low discrepancy for a
family of square regions are described. More con-
cretely, we prove that the discrepancy for a family of
2× 2 regions can be 0 if and only if the matrix size is
even. For families of larger regions there is a scheme
to achieve 0-discrepancy for regions of size k× k in a
matrix of size n×n if the integer k divides n. On the
other hand, the discrepancy cannot be 0 if the matrix
size n and region size k are relatively prime.

References

Aronov, B., Asano, T., Kikuchi, Y., Nandy, S. C.,
Sasahara, S. & Uno, T. (2004) ‘A Generalization
of Magic Squares with Applications to Digital
Halftoning’ in Proc. of 15th International Sym-
posium on Algorithms and Computation, ISAAC
2004, pp. 89-100. To appear in Theory of Com-
puting System.

Asano, T., Katoh, N., Tamaki, H. & Tokuyama,
T. (2004) ‘The structure and number of global
roundings of a graph’, Theoretical Computer Sci-
ence, 325(3):425-437.
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Geometric spanners with few edges and degree five

Michiel Smid

School of Computer Science
Carleton University

Ottawa, Ontario, Canada K1S 5B6
E-mail: michiel@scs.carleton.ca

Abstract

An O(n log n)–time algorithm is presented that, when
given a set S of n points in R

d and an integer k with
0 ≤ k ≤ n, computes a graph with vertex set S,
that contains at most n − 1 + k edges, has stretch
factor O(n/(k+1)), and whose degree is at most five.
This generalizes a recent result of Aronov et al., who
obtained this result for two-dimensional point sets.

Keywords: Computational geometry, spanners, mini-
mum spanning trees.

1 Introduction

Given a set S of n points in R
d and a real number

t ≥ 1, a graph G with vertex set S is called a t-spanner
for S, if for any two points p and q in S, there exists
a path in G between p and q whose length is at most
t times the Euclidean distance |pq| between p and q.
Here, the length of a path is defined to be the sum
of the Euclidean lengths of all edges on the path. A
path in G between p and q whose length is at most
t|pq| is called a t-spanner path. The stretch factor (or
dilation) of G is defined to be the smallest value of t
for which G is a t-spanner.

The problem of constructing a t-spanner for any
given point set has been studied intensively. Salowe
(1991) and Vaidya (1991) were the first to show that,
for any constant t > 1 and for any constant dimen-
sion d ≥ 2, a t-spanner with O(n) edges can be com-
puted in O(n log n) time, where the constant factors
in the Big-Oh bounds depend on the stretch factor t
and the dimension d. Since then, many more algo-
rithms have been discovered that compute spanners
with O(n) edges and that have other properties; see
the survey papers by Eppstein (2000), Gudmundsson
and Knauer (2006), and Smid (2000).

Das and Heffernan (1996) considered a dual ver-
sion of the spanner problem: Given a bound on the
number of edges, what is the smallest stretch factor
that can be obtained? They present an O(n log n)–
time algorithm that constructs, when given any set S
of n points in R

d and any real constant ε > 0, a graph
that contains at most (1 + ε)n edges, whose degree is

This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

Copyright 2006, Australian Computer Society, Inc. This paper
appeared at Computing: The Australasian Theory Symposium
(CATS2006), Hobart, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 51. Barry
Jay and Joachim Gudmundsson, Eds. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

at most three, and whose stretch factor is bounded
by a constant that only depends on ε and d. Das and
Heffernan left open the problem of determining the
smallest possible stretch factor when n + o(n) edges
are allowed.

Since any graph with a finite stretch factor is con-
nected, it must have at least n− 1 edges. Let S be a
set of n points in the plane that are regularly spaced
around a circle. Eppstein (2000) shows that every
connected graph with vertex set S and consisting of
n−1 edges (i.e., every spanning tree of S) has stretch
factor Ω(n). He also shows that, for any set S of n
points in R

d, the minimum spanning tree has stretch
factor O(n); in fact, the stretch factor can easily be
shown to be at most n− 1; see Lemma 2 below.

Aronov et al. (2005) generalize these results for
the case when the points are in R

2. They show that,
for any set S of n points in the plane and for any
integer k with 0 ≤ k ≤ n, in O(n log n) time, a graph
with vertex set S and consisting of n − 1 + k edges
can be computed, whose stretch factor is O(n/(k+1)).
They also show that there exists a set S of n points,
such that every connected graph with vertex set S
and consisting of n − 1 + k edges has stretch factor
Ω(n/(k + 1)).

The algorithm of Aronov et al. is based on proper-
ties of the minimum spanning tree and the Delaunay
triangulation. In particular, it uses the facts that,
for two-dimensional point sets, (i) these structures
can be computed in O(n log n) time, (ii) the stretch
factor of the Delaunay triangulation is bounded by
a constant, and (iii) the Delaunay triangulation is
a planar graph. As a result, their analysis is only
valid for two-dimensional point sets: First, in dimen-
sion d ≥ 3, it is unlikely that the minimum spanning
tree can be computed in O(n log n) time; see Erickson
(1995). Second, for d ≥ 3, no non-trivial upper bound
on the stretch factor of the Delaunay triangulation is
known. Finally, again for d ≥ 3, the Delaunay trian-
gulation is not a planar graph; in particular, it may
have Θ(n2) edges.

In this paper, we show that, by using a minimum
spanning tree of a bounded degree spanner for S (as
opposed to a minimum spanning tree of the point set
itself), the result of Aronov et al. is in fact valid for
any constant dimension d ≥ 2. Moreover, we show
that this result can be obtained by a graph having
degree five.

2 Properties of the minimum spanning tree
of a spanner

Let S be a set of n points in R
d, let t ≥ 1 be a real

number, and let G be an arbitrary t-spanner for S.
Let T be a minimum spanning tree of G. In this
section, we prove some properties of T that will lead
to our generalization of the result by Aronov et al.

Theory of Computing 2006 - Proc. Twelfth Computing: The Australasian Theory Symposium (CATS2006)
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These properties basically state that T has “approx-
imately” the same properties as an exact minimum
spanning tree of the point set S.

Lemma 1 Let p and q be two distinct points of S.
Then every edge on the path in T between p and q
has length at most t|pq|.

Proof. Let P be the path in T between p and q, and
let (x, y) be an arbitrary edge on P . We will prove
by contradiction that |xy| ≤ t|pq|. Hence, we assume
that |xy| > t|pq|.

Let Q be a t-spanner path in G between p and q.
Since the length of Q is at most t|pq|, every edge of
Q has length at most t|pq|. In particular, (x, y) is
not an edge of Q. We may assume without loss of
generality that x is between p and y on the path P .
Starting at x, follow the path P towards p, and let
x′ be the first vertex that is on Q. Similarly, starting
at y, follow the path P towards q, and let y′ be the
first vertex that is on Q. Let P ′ be the subpath of
P between the vertices x′ and y′, and let Q′ be the
subpath of Q between the vertices x′ and y′. Then,
P ′ and Q′ do not have any edge in common, and these
two subpaths form a simple cycle in G that contains
the edge (x, y).

Let G′ be the graph obtained from T , by adding
all edges of Q′ (that are not in T yet), and deleting
the edge (x, y). Then G′ is a connected subgraph of
G on the point set S, and, since the weight of Q′ is
less than the weight of (x, y), the weight of G′ is less
than the weight of T . This is a contradiction and,
thus, we have shown that |xy| ≤ t|pq|.

Lemma 2 The minimum spanning tree T of the t-
spanner G is a (t(n− 1))-spanner for S.

Proof. Let p and q be two distinct points of S, and let
P be the path in T between p and q. By Lemma 1,
each edge of P has length at most t|pq|. Since P
contains at most n−1 edges, it follows that the length
of P is at most t(n− 1)|pq|.

Lemma 3 Let m be an integer with 1 ≤ m ≤ n− 1,
and let T ′ and T ′′ be two vertex-disjoint subtrees of
T , each consisting of at most m vertices. Let p be a
vertex of T ′, let q be a vertex of T ′′, and let P be the
path in T between p and q. If x is a vertex of T ′ that
is on the subpath of P within T ′, and y is a vertex of
T ′′ that is on the subpath of P within T ′′, then

|xy| ≤ (2t(m− 1) + 1)|pq|.

Proof. Let P ′ be the subpath of P between p and
x. By Lemma 1, each edge of P ′ has length at most
t|pq|. Since P ′ contains at most m−1 edges, it follows
that this path has length at most t(m − 1)|pq|. On
the other hand, since P ′ is a path between p and
x, its length is at least |px|. Thus, we have |px| ≤
t(m − 1)|pq|. A symmetric argument can be used to
show that |qy| ≤ t(m− 1)|pq|. Therefore, we have

|xy| ≤ |xp|+ |pq|+ |qy|

≤ t(m− 1)|pq|+ |pq|+ t(m− 1)|pq|,

completing the proof of the lemma.

3 A graph with n + O(k) edges and stretch
factor O(n/k)

Let S be a set of n points in R
d, and let k be an integer

with 1 ≤ k ≤ n. Fix a constant t > 1, and let G be a

t-spanner for S whose degree is bounded by a constant
that only depends on the dimension d. Clearly, the
minimum spanning tree T of G has bounded degree
as well. Thus, T contains a centroid edge, i.e., an
edge whose removal from T yields two subtrees, each
consisting of at most αn vertices, for some constant
α < 1 that depends on the degree of T . In fact,
a centroid edge can be computed in O(n) time. By
repeatedly choosing a centroid edge in the currently
largest subtree, we can remove ` = O(k) edges from
T , and obtain vertex-disjoint subtrees T0, T1, . . . , T`,
each containing O(n/k) vertices. Observe that the
vertex sets of these subtrees form a partition of S.
Let X be the set of endpoints of the ` edges that are
removed from T . Then, the size of X is at most 2`,
which is O(k).

We define G′ to be the graph with vertex set S
that is the union of

1. the trees T0, T1, . . . , T`, and

2. a t-spanner G′′ for the set X , consisting of O(k)
edges.

We first observe that the number of edges of G′ is
bounded from above by n− 1 + O(k).

Lemma 4 The graph G′ has stretch factor O(n/k).

Proof. Let p and q be two distinct points of S. Let
i and j be the indices such that p is a vertex of the
subtree Ti and q is a vertex of the subtree Tj .

First assume that i = j. Let P be the path
in Ti between p and q. Then, P is a path in G′.
By Lemma 1, each edge on P has length at most
t|pq|. Since Ti contains O(n/k) vertices, the num-
ber of edges on P is O(n/k). Therefore, since t is a
constant, the length of P is O(n/k) · |pq|.

Now assume that i 6= j. Let P be the path in
T between p and q. Let (x, x′) be the edge of P for
which x is a vertex of Ti, but x′ is not a vertex of
Ti. Similarly, let (y, y′) be the edge of P for which y
is a vertex of Tj , but y′ is not a vertex of Tj . Then,
both (x, x′) and (y, y′) are edges of T that have been
removed when the subtrees were constructed. Hence,
x and y are both contained in X and, therefore, are
vertices of G′′. Let Pi be the path in Ti between p
and x, let Pxy be a t-spanner path in G′′ between x
and y, and let Pj be the path in Tj between y and q.
The concatenation Q of Pi, Pxy, and Pj is a path in
G′ between p and q.

Since both Pi and Pj are subpaths of P , it fol-
lows from Lemma 1 that each edge on Pi and Pj has
length at most t|pq|. Since Ti and Tj contain O(n/k)
vertices, it follows that the sum of the lengths of Pi

and Pj is O(n/k) · |pq|. The length of Pxy is at most
t|xy| which, by Lemma 3, is also O(n/k) · |pq|. Thus,
the length of Q is O(n/k) · |pq|.

We take for G the t-spanner of Das and Heffernan
(1996). This spanner can be computed in O(n log n)
time, and each vertex has degree at most three. Given
G, its minimum spanning tree T can be computed in
O(n log n) time. Since a centroid edge can be com-
puted in O(n) time, the subtrees T0, T1, . . . , T` can be
computed in O(n log n) time. Finally, we take for G′′

the t-spanner of Das and Heffernan. This spanner G′′

can be computed in O(k log k) = O(n log n) time, and
each vertex has degree at most three.

For these choices of G and G′′, the graph G′ has
stretch factor O(n/k), it contains n− 1+O(k) edges,
and it can be computed in O(n log n) time. We an-
alyze the degree of G′: Consider any vertex p of G′.
If p 6∈ X , then the degree of p in G′ is equal to the
degree of p in T , which is at most three. Assume that
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p ∈ X . The graph G′′ contains at most three edges
that are incident to p. Similarly, the tree T contains
at most three edges that are incident to p, but, since
p ∈ X , at least one of these three edges is not an edge
of G′. Therefore, the degree of p in G′ is at most five.
Thus, each vertex of G′ has degree at most five.

Let c be a constant such that the graph G′ contains
at most n− 1 + ck edges.

4 The main result

We are now ready to prove the main result of this
paper. Let S be a set of n points in R

d, and let k be
an integer with 0 ≤ k ≤ n. Consider the constant c
that was introduced above.

First assume that k < c. Let G be a t-spanner
for S, for some constant t, in which each vertex has
degree at most three, and let G′ be a minimum span-
ning tree of G. Then, G′ has n− 1 ≤ n− 1 + k edges,
degree at most three and, by Lemma 2, the stretch
factor of G′ is at most t(n−1), which is O(n/(k+1)).

If c ≤ k ≤ n, then we apply the results of Section 3
with k replaced by k/c. This gives a graph G′ with
at most n − 1 + k edges, degree at most five, and
strech factor O(n/(k +1)). Thus, we have proved the
following result:

Theorem 1 Let S be a set of n points in R
d, and let

k be an integer with 0 ≤ k ≤ n. In O(n log n) time, a
graph with vertex set S can be computed that has the
following properties:

1. The graph contains at most n− 1 + k edges.

2. The graph has stretch factor O(n/(k + 1)).

3. Each vertex of the graph has degree at most five.

Aronov et al. (2005) gave an example of a set S
of n points in the plane, such that every connected
graph with vertex set S and consisting of n − 1 + k
edges has stretch factor Ω(n/(k + 1)). Therefore, the
result in Theorem 1 is optimal. An interesting open
problem is whether the degree can be reduced.
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Abstract

We study the problem of orienting the edges of a
weighted graph such that the maximum weighted out-
degree of vertices is minimized. This problem, which
has applications in the guard arrangement for ex-
ample, can be shown to be NP-hard generally. In
this paper we first give optimal orientation algorithms
which run in polynomial time for the following special
cases: (i) the input is an unweighted graph, or more
generally, a graph with identically weighted edges,
and (ii) the input graph is a tree. Then, by using
those algorithms as sub-procedures, we provide a sim-
ple, combinatorial, min{wmax

wmin
, (2−ε)}-approximation

algorithm for the general case, where wmax and wmin
are the maximum and the minimum weights of edges,
respectively, and ε is some small positive real number
that depends on the input.

Keywords: graph orientation, min-max optimization,
NP-hardness, approximation algorithms.

1 Introduction

1.1 Brief History of Graph Orientation

Let G = (V, E, w) be a simple, undirected, weighted
graph with a vertex set V , an edge set E, and a pos-
itive integral weight function w : E → Z

+, where
each edge is a pair {u, v} of vertices u, v ∈ V . An
orientation Λ of the graph G is an assignment of di-
rection to each edge {u, v} ∈ E. The graph orienta-
tion is a well-studied area in the fields of graph theory
and combinatorial optimization, and has a long his-
tory. In 1939, Robbins stated a seminal result on
the relation between the orientation and the connec-
tivity: A graph has a strongly connected orientation
if and only if it is 2-edge-connected. Thereafter, a
variety of classes of questions have been introduced
and investigated in the literature, including the char-
acterization of oriented graphs satisfying the specified
connectivity, and the problem of finding orientations
with topological properties such as the tightness (an
orientation of G whose diameter is the same as the
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sympo-
sium (CATS2006), Hobart, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 51.
Barry Jay and Joachim Gudmundsson, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

∗Supported in part by Grants-in-Aid for Scientific Research
on Priority Areas 16092223, Young Scientists (B)’s 15700019,
15700021, and 17700022, and Scientific Research (B) 14380145
from the Japanese Ministry of Education, Science, Sports and Cul-
ture.

diameter of G is called tight), the degree constraint
and the acyclicity. For example, as a classical result,
Nash-Williams (1960) characterized graphs having k-
edge-connected orientations. Chung, Garey and Tar-
jan (1985) provided a linear-time algorithm for check-
ing whether a graph has a strongly connected orien-
tation and finding one if it does. In 1978 Chv́atal
and Thomassen introduced the following problem
called Oriented Diameter: Given a graph G, find a
strongly connected orientation of G with the min-
imum diameter. They proved that the problem is
NP-hard for general graphs. Then, Fomin, Mata-
mala and Rapaport (2004) showed that the problem
remains NP-hard even if the graph is restricted to
a subset of chordal graphs and gave approximability
and non-approximability results.

The orientation with the degree constraint is also
popular. Chrobak and Eppstein (1991) studied the
problem of orienting the edges of a planar graph such
that the outdegree of each vertex is bounded, and
proved that a 3-bounded outdegree orientation and a
5-bounded outdegree acyclic orientation can be surely
constructed in linear time for every planar graph. Re-
cently, Biedl, Chan, Ganjali, Hajiaghayi, and Wood
(2005) studied the problem of determining a bal-
anced acyclic orientation of unweighted graphs, where
balanced means that the difference between the (un-
weighted) indegree and outdegree of each vertex is
minimized, and proved that it is NP-hard and there
is a 13

8 -approximation algorithm. The NP-hardness
of Biedl et al.’s result is for graphs with maximum de-
gree six. Kára, Kratochv́ıl, and Wood (2005) closed
the gap, by proving the NP-hardness for graphs with
maximum degree four, and also showed that it re-
mains NP-hard for planar graphs with maximum de-
gree six, and so on. The orientation with the de-
gree constraint has several applications in the fields
of data structures and graph drawing as mentioned
in (Chrobak & Eppstein 1991, Biedl, Chan, Ganjali,
Hajiaghayi, & Wood 2005).

1.2 Our Problems and Results

In this paper we propose a new variant of the graph
orientation by considering a natural objective func-
tion, the Minimum Outdegree Orientation problem
(MOO):

MOO
Instance: A simple, weighted, undirected

graph G = (V, E, w).
Question: Find an orientation Λ of

G which minimizes the maximum
weighted outdegree of vertices.
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The MOO is originally motivated by the Capacitated
Guard Arrangement problem, which is one of the
Art Gallery problems (Chv́atal 1975, O’Rourke 1987):
The original Art Gallery problem for a polygon P is to
find a minimum set Q of points in P such that every
point of P is visible from some point in Q and to place
one guard on each point in Q, |Q| guards in total. If
P can be viewed as a graph (a set of line segments
such as a mesh) and the guards have to be placed only
on its vertices (or intersections of line segments), then
the Art Gallery problem can be straightforwardly for-
mulated by the Vertex Cover problem, i.e., a guard
placed on a vertex must watch (cover) all the edges
incident with the vertex and the goal is to minimize
the number of guards arranged. In the Capacitated
Guard Arrangement, guards are positioned on all ver-
tices but they can cover only the specified number of
edges, and its goal is to minimize the capacity of each
guard, which is represented by the MOO.

In this paper we show the following results:

− We prove that, unfortunately, the MOO is gen-
erally NP-hard.

− But, fortunately, we can obtain optimal orien-
tation algorithms which run in polynomial time
for the following special cases: (i) the input is
an unweighted graph, or more generally, a graph
with identically weighted edges, and (ii) the in-
put graph is a tree.

− Furthermore, by using those algorithms as sub-
procedures, we provide a simple, combinatorial,
min{wmax

wmin
, (2 − ε)}-approximation algorithm for

the general case, where wmax and wmin are the
maximum and the minimum weights of edges, re-
spectively, and ε is some small positive real num-
ber that depends on the input.

Note that Venkateswaran (2004) previously inves-
tigated the unweighted version of the MOO, for which
he also provided an O(|E|2) orientation algorithm. In
this paper, we show that the O(|E|2) bound can be
reduced.

1.3 Related Work

The difficulty of solving the MOO exactly and/or ap-
proximately can be closely related to the intractabil-
ity of the the minimum makespan scheduling, which
is a central problem in the scheduling area, and
well studied from the viewpoint of the approximabil-
ity. In the scheduling on unrelated parallel machines
(R||Cmax in the now-standard notation), given a set J
of jobs, a set M of machines, and the time pij ∈ Z

+

taken to process job j ∈ J on machine i ∈ M , its
goal is to find a job scheduling so as to minimize the
makespan, i.e., the maximum processing time of any
machine. Lenstra, Shmoys, and Tardos (1990) gave
a polynomial time 2-approximation algorithm that
is based on the LP-formulation for the general ver-
sion of R||Cmax and its 3

2 inapproximability result.
Schuurman and Woeginger (1999) stated that it is
even interesting to improve on the results of (Lenstra,
Shmoys, & Tardos 1990) in the so-called restricted
assignment variant of R||Cmax, in which the process-
ing time pij of job j on machine i is identically fixed
pj , but the job can only be processed on a subset
of the machines. In the MOO, the processing time
pj of job j corresponds to the weight w({u, v}) of
edge {u, v} and its assignable machines correspond
to two terminals u and v. Hence, an orientation of
{u, v} is regarded as a job assignment. Only for the
simpler problems of the restricted R||Cmax, an FP-
TAS (Horowitz & Sahni 1976) or a polynomial time

algorithm (Pinedo 2002) were provided, but there are
a lot of unknown questions for the general cases.

1.4 Organization

The rest of this paper is organized as follows. Sec-
tion 2 introduces some notations. Then we prove the
NP-hardness of the general MOO in Section 3. In
Section 4 we consider easy subclasses of the MOO and
provide two polynomial time algorithms for them. In
Section 5 we give a new combinatorial min{wmax

wmin
, (2−

ε)}-approximation algorithm for the general MOO
based on the polynomial time algorithms of Section 4.
Finally, we conclude in Section 6.

2 Preliminaries

Let G = (V, E, w) be a simple, undirected, weighted
graph, where V , E, and w denote a set of ver-
tices, a set of edges, and an integral weight function,
w : E → Z

+, respectively. Let wmax and wmin be
the maximum and the minimum weights of edges, re-
spectively. Throughout the paper, let |V | = n and
|E| = m for the input graph. By {u, v} for u, v ∈ V
we denote the undirected edge with ends in u and
v, and by (u, v) the directed arc, directed from u to-
ward v. Let d(v) represent a degree of a vertex v
and D(G) the maximum degree of a graph G. An
orientation Λ of the undirected graph G is an assign-
ment of direction to each edge {u, v} ∈ E, i.e., (u, v)
or (v, u). Equivalently, we can regard the orientation
Λ as a set of directed arcs such that Λ includes ex-
actly either one of (u, v) or (v, u) for each {u, v} ∈ E.
A directed path P of length k from a vertex v0 to a
vertex vk in a directed graph G = (V, A,w) is a set
{(vi−1, vi) | (vi−1, vi) ∈ A, i = 1, 2, . . . , k} of arcs,
which is also denoted by a sequence 〈v0, v1, . . . , vk〉
for simplicity. For the path P , the path of its reverse
order is denoted by P , i.e., P = 〈vk, vk−1, . . . , v0〉.

We say a vertex i dominates j if an arc (i, j) is in
orientation Λ, that we represent by i → j. δ+

Λ (v) and
δ−Λ (v) under an orientation Λ denote the total weights
of outgoing arcs and that of incoming arcs of a vertex
v in the weighted directed graph G(V, A,w), which we
call the weighted outdegree and the weighted indegree
of v, respectively. Let δ(v) = δ+

Λ (v) + δ−Λ (v). (Note
that δ(v) does not change depending on Λ.) Then the
cost of an orientation Λ for a graph G is defined to be
∆Λ(G) = maxv∈V {δ+

Λ (v)}.
By G[V ′] we denote the subgraph induced by

V ′ ⊆ V for G, simply represented by G[V ′] ⊆ G. Let
W (G) =

∑
{u,v}∈E w({u, v}) and `(G) = W (G)/|V |

be the total weight of edges and the average weighted
outdegrees of vertices in G, respectively. Also, as
for all the induced subgraphs H’s of G, let L(G) =
maxH⊆G{`(H)}∗.

Every orientation has the following trivial lower
bounds caused by the maximum weight of edges, and
by the average weighted outdegrees of vertices:

Proposition 1 For an undirected weighted graph G
and any orientation Λ, ∆Λ(G) ≥ wmax.

Proposition 2 For an undirected weighted graph G
and any orientation Λ, ∆Λ(G) ≥ d`(G)e.

Let OPT denote an optimal orientation. We say a
graph orientation algorithm is a σ-approximation al-
gorithm if ALG(G)/OPT (G) ≤ σ holds for any undi-
rected graph G, where ALG(G) is the objective value

∗Note that L(G) can be obtained by a polynomial time
algorithm(Gallo, Grigoriadis, & Tarjan 1989), though L(G) is in-
troduced only for the analysis here.
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of a solution obtained by the algorithm for G, and
OPT (G) is that of an optimal solution.

3 NP-Hardness

In this section we show the NP-hardness of the MOO
for the most general case. Let us consider the follow-
ing decision version of the MOO:

MOO(k)

Instance: A simple undirected graph G =
(V, E, w), and an integer k.

Question: Is there an orientation Λ such
that ∆Λ(G) ≤ k?

The proof of its NP-hardness is by a polynomial
time reduction from the Partition problem.

Partition
Instance: A set S = {s1, s2, . . . , sn} of n

positive integers.
Question: Is there a subset S′ ⊆ S such

that
∑

si∈S′ si =
∑

si∈S−S′ si?

Theorem 3 The MOO(k) is NP-complete.

Proof. Let us consider a restricted set of in-
stances of the Partition that satisfy the following two
conditions (1)

∑
si∈S si is even, and (2) for all i,

si <
∑

si∈S si/2. Even with these restrictions, the
Partition is still NP-hard because an instance which
does not satisfy either of these conditions can be triv-
ially solved in polynomial time.

From an instance S = {s1, s2, . . . , sn} of the Par-
tition, we construct a weighted undirected graph G =
(V, E, w). For example, if S = {1, 2, 4, 5, 6}, the con-
structed graph G is as shown in Figure 1. The de-
tailed construction is as follows: The vertex set V
of G is divided into three types of vertices: (i) Item
vertices v1, v2, . . . , vn associated with n items in S,
(ii) Subset vertices a and b, and (iii) Auxiliary ver-
tices u1, u2, and u3. The total number of vertices is
n+5. Let us define K =

∑
si∈S si/2. The edge set E

contains the following four types of edges: (i) n edges
{a, vi}’s with weight si, i.e., w({a, vi}) = si for all i’s,
(ii) n edges {b, vi}’s with weight si for all i’s, (iii) three
edges {u1, u2}, {u2, u3}, and {u3, u1} with weight K,
and (iv) n edges {u1, vi}’s with weight K − si for all
i’s. The total number of edges is 3n + 3. Finally, we
set k = K. This construction of G can be obviously
executed in polynomial time.

Since clearly the MOO(k) is in NP, we only show
in the next its NP-hardness: We prove that there is
S′ ⊆ S such that

∑
si∈S′ si = K if and only if there

is an orientation Λ of G such that ∆Λ(G) = K.

Lemma 4 If there exists a subset S′ ⊆ S such that∑
si∈S′ si = K, then there exists an orientation Λ of

G such that ∆Λ(G) = K.

Proof. Suppose that there exists a subset S′ ⊆ S
such that

∑
si∈S′ si = K. Consider the following ori-

entation Λ based on S′: (i) u1 → u2, u2 → u3, u3 →
u1, (ii) vi → u1 for all i’s. (iii) If si ∈ S′, vi → a and
b → vi; otherwise a → vi and vi → b, for all i’s.

(i) For the auxiliary vertices, one can verify that
δ+
Λ (u1) = δ+

Λ (u2) = δ+
Λ (u3) = K holds. (ii) As for

each item vertex vi, since vi → u1 and either of vi →
a or vi → b holds, δ+

Λ (vi) = (K − si) + si = K.
(iii) For each si ∈ S′, b → vi holds, and for each
si ∈ S − S′, vi → b also holds. Therefore δ+

Λ (b) =

∑
si∈S′ w(vi, b) =

∑
si∈S′ si = K. As for the vertex

a, we can show δ+
Λ (a) = K by a similar discussion. ¤

Lemma 5 If there does not exist a subset S′ ⊆ S
such that

∑
si∈S′ si = K, then there does not exist an

orientation Λ of G such that ∆Λ(G) ≤ K.

Proof. Suppose that there does not exist a subset
S′ ⊆ S such that

∑
si∈S′ si = K. We show that

∆Λ(G) > K for any orientation Λ in the following.
First of all, let us consider a special condition (C)

that either of b → vi and vi → a, or, a → vi and vi →
b holds for all the item vertices vi’s in the orientation
Λ. Note that the former condition corresponds to
the case that the item si ∈ S′ and the latter si ∈
S − S′. For any subset S′,

∑
si∈S′ si 6= K by the

above assumption, which means
∑

si∈S′ si > K or∑
si∈S−S′ si > K. Therefore under any orientation Λ

that satisfies the condition (C), δ+
Λ (a) > K or δ+

Λ (b) >
K, hence ∆Λ(G) > K.

Next, as the remaining cases, we consider orien-
tations that do not satisfy the special condition (C).
Those orientations are divided into the following two
cases, (i) there is an item vertex vj such that vj → a
and vj → b, and (ii) there is an item vertex vj such
that a → vj and b → vj .

Take a look at the case (i) that vj → a and vj → b
for some j in the orientation Λ. Since vj → a, vj → b,
w((vj , a)) = w((vj , b)) = sj and w((vj , u1)) = K−sj ,
one can see that δ+

Λ (vj) ≤ K holds if and only if u1 →
vj . Assuming u1 → vj , however, either of δ+

Λ (u1) ≥
2K−sj or max{δ+

Λ (u2), δ+
Λ (u3)} = 2K holds whatever

orientation of the subgraph G[{u1, u2, u3}] is selected.
Since sj < K, we conclude that ∆Λ(G) > K in this
case.

Let us proceed to the case (ii). Consider an
orientation Λ under which a → vj and b → vj

for exactly one vertex vj (and there exist no ver-
tices satisfying the condition of the case (i)). Let
Λ′ be an orientation that satisfies the condition (C)
in which orientation for edges except {b, vj} is the
same as Λ, and vj → b instead of b → vj in Λ.
K < max{δ+

Λ′(a), δ+
Λ′(b)} ≤ max{δ+

Λ (a), δ+
Λ (b)} holds

since the replacement of vj → b by b → vj only in-
creases the weighted outdegree of the vertex b. There-
fore, also in this case ∆Λ(G) > K. In the case that
more than one such vertex vj ’s exist, we can show
this lemma by a similar discussion. ¤

From the above two lemmas, the NP-hardness of
the MOO(k) is shown, that concludes Theorem 3. ¤

4 Optimal Algorithms for Special Cases

In this section we present two polynomial time algo-
rithms when an instance is (1) a weighted tree, and
(2) an unweighted graph, or more generally, a graph
such that all the weights of their edges are identical.
The basic ideas of those algorithms are simple but
they will play important roles in our approximation
algorithms for the most general case.

4.1 Trees

Recall that the maximum weighted outdegree of a
graph G under every orientation is at least the max-
imum weight wmax of their edges as mentioned in
Proposition 1. We can efficiently find an orientation
Λ such that ∆Λ(G) = wmax if G is a tree:
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Figure 1: Reduction from an instance S = {1, 2, 4, 5, 6} of the Partition problem.

Theorem 6 For trees, an optimal solution can be ob-
tained in O(n) time.

Proof. All we have to do is to orient all edges to-
ward a root chosen arbitrary, which can be obviously
achieved in linear time. (This linear time algorithm
will be refereed to as Convergence later.) ¤

4.2 Identical Weights

Here, in order to make our basic idea clear, we
give our elementary algorithm that is optimal if
all the weights of edges are identical. A similar
optimal algorithm has been independently shown
in (Venkateswaran 2004), but our proof of the op-
timality is much simpler. Note that now we consider
connected graphs as input, n − 1 ≤ m.

Theorem 7 (Venkateswaran 2004) If all the weights
of edges are identical, an optimal solution can be ob-
tained in O(m2) time.

Proof. We can consider the weight of the edges is
one without loss of generality, and hence the weighted
outdegree in this case is the same as the outdegree
of the unweighted graph. The following Reverse is
an algorithm to solve this case optimally, whose ba-
sic strategy is quite straightforward: Observe an un-
weighted graph and an orientation illustrated in Fig-
ure 2-(a). One can see that the outdegrees of the
four vertices u0, u1, u2 and u3 are (5, 3, 3, 1), re-
spectively, and the maximum outdegree is five. How-
ever, if we reverse the orientation of the directed path
〈u0, u1, u2, u3〉 as shown in Figure 2-(b), the outde-
grees become (4, 3, 3, 2) and the maximum outdegree
decreases to four without increasing the outdegrees of
intermediate vertices u1 and u2. Reverse repeatedly
finds such a directed path and reduces its maximum
outdegree by reversing its direction:

Algorithm Reverse:

Input: An unweighted graph G = (V, E).
Output: An arc set Λ which determines di-

rections of edges in E.
Step 0: Set Λ = ∅.
Step 1: Find arbitrary orientation of the

graph G and update Λ.
Step 2: Compute the (weighted) outdegree

δ+
Λ (v) for each vertex v. Let u be a ver-

tex having maximum outdegree among
all vertices (in case of ties, select one
vertex arbitrary).

Step 3: Find a directed path P =
〈u, v1, . . . , vk〉 of length k(k ≥ 1) that
satisfies

• δ+
Λ (vi) ≤ δ+

Λ (u) for 1 ≤ i ≤ k − 1,
and

• δ+
Λ (vk) ≤ δ+

Λ (u) − 2.
If such a path P exists, then set Λ =
Λ \ P ∪ P (i.e., orient the path P in
reverse order) and goto Step 2. Other-
wise output Λ and halt.

At first, we estimate the running time. Step 0
is done in O(1) time. Both of Steps 1 and 2 re-
quire O(m) time. Step 3 can be done with a
breadth first search and it also takes O(m) time.
Therefore, the number of iterations of Steps 2
and 3 determines the total amount of time. Con-
sider a subset of vertices M = {v | v ∈ V ,
δ+
Λ (v) is the maximum, or it is (the maximum −1)}.

(This set does not appear in the description of the
algorithm and does only for this analysis.)

In Step 3, a vertex u in M is selected as the start-
ing vertex of a directed path. The modification of the
orientation Λ in Step 3, (i) decreases the outdegree of
the vertex u by one and then u still belongs to M at
the next iteration, and (ii) increases the outdegree of
some vertex vk ∈ V −M and then vk may become to
be in M at the next iteration. Therefore, the outde-
gree of a vertex in M monotonically decreases after it
belongs to M . As mentioned before, the outdegrees of
intermediate vertices v1, . . . , vk−1 in the path remain
unchanged in Step 3.

From Proposition 2 and the above observation,
each vertex v can be the starting vertex of such paths
by the limited number of times d(v)−m/n, since now
we consider the weight of each edge is one. Summing
up d(v) − m/n over all the vertices gives an upper
bound on the number of iterations of Steps 2 and 3,
that is

∑
v∈V d(v) − m = 2m − m = m. Therefore,

since Steps 2 and 3 takes O(m) time, the total run-
ning time of the algorithm is O(m2) time.

The rest of the proof is to show optimality of the
algorithm. We begin with the following proposition.

Proposition 8 For a graph G(V, E, w) and its
induced subgraph G′(V ′, E′, w), ∆OPT (G) ≥
∆OPT ′(G′), where OPT and OPT ′ are optimal
solutions for G and G′, respectively.

Proof. Assume ∆OPT (G) < ∆OPT ′(G′). We can
obtain an orientation Λ for G′ from OPT by extract-
ing arcs connecting between two vertices in V ′. Since
G′ is a subgraph of G and δ+

OPT (v) ≤ ∆OPT (G) for
every vertex v ∈ V ′, δ+

Λ (v) ≤ ∆OPT (G) < ∆OPT ′(G′)
holds for every vertex v ∈ V ′. This contradicts that
OPT ′ is an optimal solution for G′. ¤

Let vp be the vertex having the maximum out-
degree p = δ+

Λ (vp) under an orientation Λ obtained
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Figure 2: (a) (δ+(u0), δ+(u1), δ+(u2), δ+(u3)) = (5, 3, 3, 1) and the maximum outdegree is five, but
(b) (δ+(u0), δ+(u1), δ+(u2), δ+(u3)) = (4, 3, 3, 2) and the maximum outdegree decreases to four.

by the algorithm. All the vertices reachable from vp
by following a directed path have the outdegree of at
least p − 1 from the halting criteria in Step 3. Let
the set of those vertices and vp be V ′ and consider an
induced subgraph G[V ′].

Lemma 9 ∆OPT (G[V ′]) = ∆Λ(G[V ′]) = p, that is,
∆Λ(G[V ′]) is optimal.

Proof. The number of edges in G[V ′] is at least p+
(p−1)(|V ′|−1) = (p−1)|V ′|+1. From Proposition 2,
∆OPT (G[V ′]) ≥ d((p − 1)|V ′| + 1)/|V ′|e = dp − 1 +
1/|V ′|e = p = ∆Λ(G[V ′]). ¤

We can define such a subgraph G[V ′] for each ver-
tex having the maximum outdegree of p under the
orientation Λ, and Lemma 9 holds for every such
subgraph. Since p is the maximum outdegree under
Λ and ∆OPT (G) ≥ ∆OPT (G[V ′]) = p for any such
G[V ′]’s from Proposition 8, the output Λ of the algo-
rithm is an optimal orientation for G. This ends the
proof of Theorem 7. ¤
A Faster Algorithm. Algorithm Reverse can find
an optimal orientation for unweighted graphs in poly-
nomial time, however, there might be a possibility
of improvements: In Step 3 of Reverse, the algo-
rithm finds just one simple directed path in O(m)
time and iterates that m times, but if we can find
several edge-disjoint directed paths at one blow, it
might reduce the number of iterations. To this end,
we consider the following network for a given ori-
entation Λ and a parameter k: Let A denote the
arc set of weighted directed graph G′ = (V, A) ob-
tained by applying the orientation Λ to the input
graph G = (V, E). For G′, we consider two subsets
V +

k = {v | δ+
Λ (v) > k} and V −

k = {v | δ+
Λ (v) < k}

of V . Note that V = V +
k ∪ V −

k ∪ {v | δ+
Λ (v) = k}.

Then the network Nk(Λ) we construct is defined as
Nk(Λ) = (Ṽ , Ẽ) = ({s}∪{t}∪V, A∪A+

k ∪A−
k ), where

A+
k =

⋃

v∈V +
k

{e+
(v,i) = (s, v) | i = k + 1, . . . , δ+

Λ (v)},

A−
k =

⋃

v∈V −
k

{e−(v,i) = (v, t) | i = δ+
Λ (v) + 1, . . . , k},

and the capacities cap(e) = 1 for ∀e ∈ Ẽ. See Fig-
ure 3. The above two sets of arcs may contain parallel
arcs for each vertex in V +

k and V −
k . The number of

vertices is |V | + 2 and that of arcs is at most 3|E| in
Nk(Λ) (although the exact number of arcs depends
on k and Λ).

Lemma 10 The size of the maximum flow for a net-
work Nk(Λ) is fk =

∑
u∈V +

k
(δ+

Λ (u)− k) if and only if
the answer of MOO(k) is “yes”. (The proof will be
given later.)

Since the network Nk is a unit capacity flow net-
work, this lemma says that the followings are equiv-
alent for an undirected graph G: (1) G under an ori-
entation includes fk edge-disjoint directed paths be-
tween V +

k and V −
k . (2) G has an orientation with the

maximum outdegree bounded by k. The maximum
flow problem for a unit capacity flow network can be
solved in O(|EN |3/2) time, where |EN | is the number
of edges of the flow network (Even & Tarjan 1975).
Note that this algorithm can work for networks with
parallel edges in the same upper bound. Since Nk has
at most 3m edges, we immediately obtain the follow-
ing theorem.

Theorem 11 The MOO(k) can be solved in O(m3/2)
time, if all the edge weights are identical. ¤

We can find the optimal k and an orientation by
doing the binary search of Theorem 11 as its engine.

Corollary 12 The MOO can be solved in O(m3/2 ·
log ∆OPT (G)) time, if all the edge weights are identi-
cal. ¤

Proof of Lemma 10. (Only-if part) Suppose that
the size of the maximum flow is fk. Since the net-
work Nk(Λ) has only edges with capacity one, there
exist fk edge-disjoint paths from s to t. Therefore,
by the construction of the network, each u ∈ V +

k has
(δ+

Λ (u) − k) directed paths to some vertices in V −
k ,

that are edge-disjoint to each other. By applying the
procedure of reversing in Step 3 of Reverse to those
paths in order, we can reduce the outdegree of the
vertex u to k. Since the outdegree of any v ∈ V −

k
does not exceed k by this operation, the maximum
outdegree of the resulting orientation is k.
(If part) In this case, if we apply the algorithm
Reverse to the input graph G with Λ as the initial
orientation instead of a random one, we can find an
orientation OPT such that ∆OPT (G) ≤ k.

Consider the collection of directed paths processed
in Step 3 of Reverse to obtain OPT , that are repre-
sented by P1, P2, . . . , Ph and supposed to be obtained
in this order. Here it is important to note that some
edge {u, v} may appear several times in those paths
but its directions differ; (u, v) may be included in
some paths though (v, u) is also in others. Also we
assume that the sequence P1, P2, . . . , Ph is minimal
in a sense that for 1 ≤ i ≤ h − 1, even after process-
ing Pi the maximum outdegree is still greater than
k but just after processing Ph the maximum outde-
gree decreases to k. Although Reverse may process
a sequence of paths that is not minimal, in such a
case it is sufficient to consider only its minimal sub-
set. Because of the optimality of Reverse, h = fk. In
the following, we show that the sequence of the paths
P1, P2, . . . , Ph can be transformed into a sequence of
paths in which every path is edge-disjoint to others.
Moreover the algorithm Reverse runs correctly for
the modified sequence.

After reversing Pi to Pi in Step 3, we suppose to
obtain an orientation Λi, i.e., at the beginning of the
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Figure 3: (a) Input graph G (b) An orientation Λ (c) The network N2(Λ)

i-th execution of Step 3, we have Λi−1 (Λ in case
i = 0) and update it to Λi in Step 3, and eventually
we obtain OPT = Λh.

We divide the sequence of paths P1, P2, . . . , Ph

into ∆Λ(G) − k (def= z) groups based on the de-
crease of the maximum outdegree of vertices, Ph0(=
P1), . . . , Ph1−1, Ph1 , . . . , Ph2−1, Ph2 , . . . Phz−1(= Ph)
such that ∆Λi

(G) = ∆Λi+1(G) for hj ≤ i ≤ hj+1 − 2
and ∆Λi−1(G) − 1 = ∆Λi

(G) for i = hj , where
0 ≤ j ≤ z − 1.

Let us consider the first group of the paths, Ph0
(= P1), . . ., Ph1−1. We show that even if they are not
edge-disjoint, we can transform them to edge-disjoint
ones. Suppose that they are not edge-disjoint. Let
2 ≤ q ≤ h1 − 1 be the (smallest) index of a path
such that P1, . . . , Pq−1 are edge-disjoint but Pr and
Pq are not for some 1 ≤ r ≤ q − 1. We focus on the
subsequence P1, . . . , Pq of paths.

Based on the rule of the grouping of the paths,
each path Pi in the first group starts from a vertex u
with δ+

Λi−1
(u) = ∆Λ(G). Therefore, each vertex can

be the starting vertex only once in the group, because,
otherwise its outdegree decreases by at least two that
contradicts the path starting from it is processed in
the first group.

Step 3 of Reverse only changes the outdegrees
of the first and the last vertices of a path. Espe-
cially, as for the last vertices, their outdegrees in-
crease but never reaches to ∆Λ(G), namely, such
vertices can not be a start vertex of such a path
in the first group of paths. Therefore, the another
sequence P1, . . . , Pr−1, Pr+1, . . . , Pq−1, Pr, Pq is also
valid in terms of that Reverse possibly runs follow-
ing this sequence and the result at the end is same
as that of the original sequence P1, . . . , Pq. Hence we
can assume that r = q − 1, namely, Pq−1 and Pq are
not edge-disjoint and it is the first occurrence in the
group, without loss of generality.

We assume that Pq−1 and Pq share only one
edge {x, y}. The case more than one edge are
shared among these can be discussed similarly and
is omitted. Let the two paths Pq−1 and Pq

be 〈uq−1, . . . , x, y, . . . , vq−1〉 and 〈uq, . . . , y, x, . . . , vq〉,
respectively. Note that the direction of the edge
{x, y} differs in those paths because of the revers-
ing procedure. See Figure 4. The vertices uq−1,
vq−1, uq, vq, x, and y are distinct from the obser-
vations that if two of them are identical, either one of
Pq−1 and Pq is not such a path processed in the first
group; for example, if vq−1 and uq are identical, then
δ+
Λq−1

(uq) = δ+
Λq−2

(uq)+1 < δ+
Λq−2

(uq−1) that implies
the path Pq is not processed in the first group.

From the rule for grouping the paths, it holds that

δ+
Λq−2

(uq−1) = δ+
Λq−2

(uq) = δ+
Λq−1

(uq). (1)

Then, since the path Pq−1 is reversed at the (q − 1)-
th execution of Step 3 of Reverse, the following also
holds

δ+
Λq−2

(uq−1) ≥ δ+
Λq−2

(vq−1) + 2. (2)

By reversing Pq−1 to Pq−1, we obtain (by an orienta-
tion Λq−1)

δ+
Λq−1

(uq−1) = δ+
Λq−2

(uq−1) − 1, (3)

δ+
Λq−1

(vq−1) = δ+
Λq−2

(vq−1) + 1, and (4)

δ+
Λq−1

(vq) = δ+
Λq−2

(vq). (5)

Also, the path Pq is reversed at the q-th iteration of
Step 3 of Reverse, that derives

δ+
Λq−1

(uq) ≥ δ+
Λq−1

(vq) + 2. (6)

Let us decompose the two paths Pq−1 and Pq to
the following three portions, respectively: Pq−1 =
(P (1)

q−1, P
(2)
q−1, P

(3)
q−1), where P

(1)
q−1 = 〈uq−1, . . . , x〉,

P
(2)
q−1 = 〈x, y〉, and P

(3)
q−1 = 〈y, . . . , vq−1〉, and Pq =

(P (1)
q , P

(2)
q , P

(3)
q ), where P

(1)
q = 〈uq, . . . , y〉, P

(2)
q =

〈y, x〉, and P
(3)
q = 〈x, . . . , vq〉.

Consider alternating paths P ′ = (P (1)
q−1, P

(3)
q ) =

〈uq−1, . . . , x, . . . vq〉 and P ′′ = (P (1)
q , P

(3)
q−1) =

〈uq, . . . , y, . . . vq−1〉. At the (q − 1)-th iteration of
Step 3 of Reverse, P ′ is also a candidate of a
path processed, because δ+

Λq−2
(uq−1) = δ+

Λq−1
(uq) ≥

δ+
Λq−1

(vq)+2 = δ+
Λq−2

(vq)+2 based on the above con-
ditions (1), (6), and (5).

Consider processing P1, . . . , Pq−2, P
′ in this order

instead of P1, . . . , Pq−2, Pq−1 in Step 3 of Reverse.
Let the resulting orientation be Λ′. We want to show
that the path P ′′ is also a candidate of path processed
at the q-th execution of Step 3 of Reverse, i.e., it
holds that δ+

Λ′(uq) ≥ δ+
Λ′(vq−1)+2. By reversing P ′ to

P ′ at the (q−1)-th execution of the step, the weighted
outdegrees of the vertices are

δ+
Λ′(uq−1) = δ+

Λq−2
(uq−1) − 1,

δ+
Λ′(vq) = δ+

Λq−2
(vq) + 1,

δ+
Λ′(vq−1) = δ+

Λq−2
(vq−1), and

δ+
Λ′(uq) = δ+

Λq−2
(uq).

From these and the above conditions (1) and (2),
it holds that δ+

Λ′(uq) = δ+
Λq−2

(uq) = δ+
Λq−2

(uq−1) ≥
δ+
Λq−2

(vq−1) + 2 = δ+
Λ′(vq−1) + 2. Therefore P ′′ is

an alternate candidate for the reverse operation at
the q-th iteration of Step 3 of Reverse, that is,
P1, . . . , Pq−2, P

′, P ′′ is also a valid sequence of paths
processed by Reverse. In addition to that the result-
ing orientation Λ′′ is the same as the original orienta-
tion Λq at the end of the sequence.

By the above procedure, although the set of paths
P1, . . . , Pq−2, P

′, P ′′ is not yet edge-disjoint, the num-
ber of shared edges decreased. Therefore, by repeat-
edly applying the above procedure, we can trans-
form the first (original) group of paths to disjoint one
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Figure 4: (a) A path Pq−1 (b) Reversing Pq−1 and the next candidate path Pq (c) The obtained orientation
Λq (d) Alternating paths P ′ and P ′′ instead of Pq−1 and Pq

without changing the temporal orientation(solution)
Λh1−1 at the end of the first group.

The above discussion can be applied to the case
across two groups, say, considering Ph1−1 and Ph1
with distinct four vertices uh1−1, vh1−1, uh1 , and vh1
at the ends of the paths. In such a case, similar to
the above condition (1), it holds that δ+

Λh1−2
(uh1−1) >

δ+
Λh1−2

(uh1) because of the grouping scheme for paths.
The other conditions in this case are similar to the
above (2) to (6). Then a similar discussion derives
δ+
Λh1−2

(uh1−1) ≥ δ+
Λh1−2

(vh1) + 2 and δ+
Λ′

h1
(uh1) ≥

δ+
Λ′

h1
(vh1−1) + 2, that makes us possibly construct

a pair of alternating paths similar to P ′ and P ′′ in
the above; one is from uh1−1 to vh1 and the other
is from uh1 to vh1−1. In this case, two of the ver-
tices uh1−1, vh1−1, uh1 , and vh1 may be identical, but
a similar discussion can be done.

As a result, if we apply the above procedure re-
peatedly, we can obtain an edge-disjoint sequence of
paths from the original sequence P1, . . . , Ph. Then,
the edge-disjoint sequence is possible to be produced
by an execution of Reverse for the input graph and
the initial orientation Λ. Reverse output an optimal
solution and now we consider the minimality of the
sequence and the number of such paths is equal to
fk(= h). Therefore, by construction of the network
Nk(Λ), there exist fk edge-disjoint paths from ver-
tices in V +

k to vertices in V −
k . That is, the size of the

maximum flow is equal to fk. ¤

5 Approximation Algorithms

In this section we present two approximation algo-
rithms for the general case of the MOO using the
algorithms presented in the previous section as sub-
procedures. One can notice that algorithm Reverse
can be applied to a general weighted graph if we ig-
nore its weights of edges. This simple idea achieves
the following approximation guarantee:

Theorem 13 Algorithm Reverse is a wmax/wmin-
approximation algorithm for general input graphs.

Proof. Let an input graph be G and an optimal
orientation for G be OPT . Consider two weighted
graphs Gmin and Gmax that are obtained by replac-
ing all the edge weights to wmin and wmax, respec-
tively. It is important to note that OPT is not always
optimal for Gmin or Gmax.

Suppose that algorithm Reverse outputs an ori-
entation Λ for the input graph G. Then, from the
optimality of Λ for both Gmin and Gmax,

∆Λ(Gmin) ≤ ∆OPT (Gmin) ≤
∆OPT (G) ≤ ∆Λ(G) ≤ ∆Λ(Gmax)

holds, and hence

∆Λ(G)
∆OPT (G)

≤ ∆Λ(Gmax)
∆Λ(Gmin)

.

The oriented graphs of Gmax and Gmin have the same
structure except for their edge weights, and therefore

∆Λ(G)
∆OPT (G)

≤ ∆Λ(Gmax)
∆Λ(Gmin)

=
wmax

wmin
.

¤
Since Reverse does not work well when wmax À

wmin and its performance is heavily dependent to the
edge weights of the input graph, we would like to de-
sign another approximation algorithm with a ‘stable’
worst case ratio. Indeed a quite simple strategy can
achieve an approximation ratio of 2: For ease of ex-
position, observe a weighted graph Ga illustrated in
Figure 5-(a), which consists of four vertices, v1, v2, v3,
and v4, and six edges whose weights are w({v1, v2}) =
1, w({v1, v3}) = 1, w({v1, v4}) = 1, w({v2, v3}) = 1,
w({v2, v4}) = 2, and w({v3, v4}) = 3. The average
weight of the edges is `(Ga) = 9/4, which is a triv-
ial lower bound of the MOO, as shown in Proposi-
tion 2. The outline of the 2-approximation algorithm
is as follows: (i) First we choose a vertex v whose
weighted degree δ(v) is at most 2`(Ga) = 9/2 since
such a vertex surely exists in Ga. In this case we
choose vertex v1. (ii) All the edges incident with v1
are oriented outwards from v1 to its neighbors, and v1
is removed from Ga. (iii) We recalculate the average
weight of the remaining graph Ga −{v1}, and iterate
those stages while edges not oriented are remaining.
As a result, we select v1, v2, and v3 in this order, and
the oriented graph is shown in Figure 5-(b).

The above simple procedure guarantees that the
maximum weighted outdegree is at most 2`(H) for
each induced subgraph H ⊆ Ga, which implies that
the approximation ratio is 2. Furthermore, from this
observation, we might reduce the approximation ratio
to 2−ε for some positive ε if it is possible to select at
least one vertex whose degree is less than twice the
average weights of induced subgraphs in each itera-
tion; however, it is impossible. There is an apparent
counterexample as illustrated in Figure 5-(c). Its av-
erage weight is 2 and the weighted degree of each
vertex is 4, double the former. In order to improve
the approximation ratio we require further ideas.

Throughout the following, by δG(u) we denote the
total weight of edges that connect to a vertex u in a
graph G. Here we provide our approximation algo-
rithm, ALGMOO, that can overcome the approximation
ratio of 2:

Algorithm ALGMOO:

Input: A weighted graph G = (V, E, w).
Output: An arc set Λ which determines di-

rections of edges in E.
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Figure 5: (a) Input graph Ga (b) Output graph oriented by a simple 2-approximation algorithm (c) Worst
case example

Step 0: Set G′ = G, Λ = ∅, and ` = `(G).
Step 1: Repeat the following while there

exists a vertex u in G′ such that
δG′(u) ≤ d2`e − 1,
− For each edge {u, v} for some v in

G′, add (u, v) to Λ. Then, remove
the vertex u and all edges incident
to u from G′.

Step 2: There are three cases:
(Case 2-1): No vertex is in G′, i.e., all

the vertices are removed in Step 1.
In this case, output Λ and halt.

(Case 2-2): For every vertex v in G′,
δG′(v) = d2`e. In this case, pro-
ceed to Step 3.

(Case 2-3): There is at least one ver-
tex v such that δG′(v) ≥ d2`e + 1.
In this case, update ` = `(G′) and
goto Step 1.

Step 3: Find a cycle 〈v0, v1, . . ., vk, v0〉
in G′. If such a cycle does not exist,
goto Step 4. Add (v0, v1), (v1, v2), . . .,
(vk−1, vk), (vk, v0) to Λ, and remove
edges {v0, v1}, {v1, v2}, . . ., {vk−1, vk},
{vk, v0} from G′ and repeat this step.

Step 4: (At the beginning of this step
G′ is a forest.) Apply algorithm
Convergence to each connected com-
ponent of G′. Let an orientation ob-
tained for G′ by Convergence be Λ′.
Output Λ ∪ Λ′ and halt.

Theorem 14 Algorithm ALGMOO runs in O(m2) time
and is a (2 − 1/dL(G)e)-approximation algorithm.

Proof. Running Time: Steps 0, 1, and 2 require
O(m) time, respectively. The number of iterations
of Steps 1 and 2 is at most O(n) because one ver-
tex is removed from the graph in single iteration or
the algorithm proceeds to Step 3. In Step 3, finding
a cycle is done by a breadth-first search which takes
O(m) time, and this step is repeated at most O(m)
times. In Step 4, we need O(n) time because algo-
rithm Convergence runs in O(c) time for a connected
component having c vertices, and the total number
of vertices in the forest is at most n. In summary,
O(nm) time for Steps 0 through 2, O(m2) time for
Step 3, and O(n) time for Step 4 are required respec-
tively, and hence the running time in total is O(m2).

Approximation Ratio: Let Gi be a graph at the
beginning of the i-th iteration of Steps 1 and 2, which
is represented in ALGMOO by G′, e.g., G1 = G. Suppose
that the number of iterations of Steps 1 and 2 is j (≥
1). At the i-th iteration (i ≥ 2) of Steps 1 and 2, for
every vertex u, δGi

(u) ≥ d2`(Gi−1)e, and some vertex
v has δGi

(v) ≥ d2`(Gi−1)e + 1. This means that, for

all i ≤ j − 1, d`(Gi)e ≤ d`(Gi+1)e. Then, since Gj is
a subgraph of the input graph G(= G1), from Propo-
sitions 2 and 8, ∆OPT (G) ≥ ∆OPTj

(Gj) ≥ d`(Gj)e,
where OPTj is an optimal solution for Gj .

The proof is based on the following lemma by
which we can conclude

∆Λ(G) = max
u∈V

{δ+
Λ (u)}

≤ d2`(Gj)e − 1
≤ 2d`(Gj)e − 1

≤ (2 − 1
d`(Gj)e

)d`(Gj)e

≤ (2 − 1
dL(G)e

)∆OPT (G)

that we would like to show.

Lemma 15 For every vertex u, δ+
Λ (u) ≤ d2`(Gj)e −

1, or Λ is optimal.

Proof. (Step 1) For 1 ≤ i ≤ j, a vertex u removed
from the graph at the i-th iteration of Steps 1 and 2
has δ+

Λ (u) ≤ d2`(Gi)e − 1 ≤ d2`(Gj)e − 1. (Note that
δ+
Λ (u) ≤ d2`(Gj)e − 1 does not imply that δG(u) ≤
d2`(G)e − 1.)

(Step 2) If the algorithm terminates (Case 2-
1), every vertex u satisfies the condition δ+

Λ (u) ≤
d2`(Gj)e − 1 based on the analysis of Step 1 above.

(Step 3) At the beginning of this step, for any edge
{u, v} in the original graph G that connect to a vertex
u in G′, neither of (u, v) nor (v, u) is in Λ, or (v, u) is
in Λ, i.e., “current” weighted outdegree of u is zero.
Also δG′(u) = d2`(Gj)e because of the condition in
(Case 2-2) of Step 2.

Consider a vertex vi that is contained in some cy-
cle 〈v0, . . . , vk, v0〉 whose orientation is determined in
Step 3. Since the orientation Λ contains (vi−1, vi)
(or (vk, v0) when i = 0), w({vi−1, vi}) ≥ wmin, and
δG′(vi) = d2`(Gj)e, it holds that δ+

Λ (vi) ≤ d2`(Gj)e−
wmin ≤ d2`(Gj)e − 1.

(Step 4 and the overall performance) There are
two cases on the vertex set V ′ of G′ at the beginning
of the Step 4: (i) All the vertices in V ′ are included
at least one cycle whose orientation is determined in
Step 3, and (ii) otherwise, i.e., some vertex x is not
included in such cycles.

In the case (i), every vertex u in V ′ has δ+
Λ (u) ≤

d2`(Gj)e − 1 based on the analysis of Step 3 without
regard to the orientation determined in Step 4. Then,
also from the analysis for Steps 1 through 3 in the
above, we can see that the weighted outdegree of all
the vertices in Gj under Λ is at most d2`(Gj)e − 1.

In the case (ii), If δ+
Λ (x) ≤ d2`(Gj)e − 1 for every

such vertex x, similar discussion as for the case (i)
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can be done and we can conclude that the weighted
outdegree of all the vertices in Gj under Λ is at most
d2`(Gj)e − 1.

Let us assume that δ+
Λ (x) = d2`(Gj)e. We observe

that x is a vertex in a tree and δG′(x) = d2`(Gj)e
at the beginning of Step 4. Based on algorithm
Convergence, x must be a leaf vertex in that tree
to have weighted outdegree d2`(Gj)e, because if x is
an internal vertex (including root), then at least one
edge {x, y} for some y is directed as (y, x) in Λ so
that δ+

Λ (x) ≤ d2`(Gj)e − w(y, x) ≤ d2`(Gj)e − wmin.
This implies that there is an edge {x, z} for some z
such that w({x, z}) = d2`(Gj)e. Therefore since such
an edge exists in the input graph, from Proposition 1,
∆OPT (G) ≥ wmax ≥ d2`(Gj)e = ∆Λ(G), that is, Λ is
optimal. ¤

This ends the proof of the theorem. ¤
The proof of Lemma 15 is for general input graphs.

If all the δG(v)’s are equal, (i.e., regular in a sense of
weights), a better ratio can be obtained.

Corollary 16 If all the δG(v)’s are equal for the in-
put graph, algorithm ALGMOO is a (2−wmin/dL(G)e)-
approximation algorithm.

Proof. The proof is very similar to that of
Lemma 15. If all the δG(v)’s are equal, the algorithm
skips Step 1 and the output (an orientation) of the
algorithm is determined in only Steps 3 and 4.

In the above proof of Theorem 14, we showed that
either of (1) for every vertex v processed in Steps 3
and 4, δ+

Λ (v) ≤ d2`(Gj)e −wmin, or (2) Λ is optimal.
Therefore,

∆Λ(G) = max
u∈V

{δ+
Λ (u)}

≤ d2`(Gj)e − wmin

≤ (2 − wmin

d`(Gj)e
)d`(Gj)e

≤ (2 − wmin

dL(G)e
)∆OPT (G).

¤
Remark. There is a tight example for algorithm
ALGMOO. That is, when run on the instance, ALGMOO
outputs an orientation whose maximum weighted out-
degree is at least (2 − 1/L(G))∆OPT (G).

Consider a weighted graph G with n vertices
v0, v1, . . . , vn−1 illustrated in Figure 6. Edges of G are
{vi, vi+1} with weight f for 1 ≤ i ≤ i − 2, {vn−1, v1}
with weight f , and {v0, vi} with weight 1 for 1 ≤ i ≤
n − 1. Here f has to meet a condition 2f +1 < n−1.
For this graph, `(G) = L(G) = (f + 1)(n− 1)/n that
derives L(G) < f + 1.

Since d2`(G)e − 1 ≥ 2f + 1, the algorithm first
determines directions of three edges, say, {v1, v2},
{v2, v3}, and {v0, v2} for a vertex v2 as (v2, v1),
(v2, v3), and (v2, v0). Therefore, in the final ori-
entation Λ obtained, δ+

Λ (v2) = 2f + 1 and hence
∆Λ(G) ≥ 2f + 1.

Consider an orientation Γ = {(vi, vi+1) | 1 ≤ i ≤
n − 2} ∪ {(vn−1, v1)} ∪ {(vi, v0) | 1 ≤ i ≤ n − 1}. We
can easily observe that ∆Γ(G) = f + 1. Therefore,

∆Λ(G)
∆OPT (G)

≥ ∆Λ(G)
∆Γ(G)

≥ 2 − 1
f + 1

> 2 − 1
L(G)

.

¤

6 Conclusion

In this paper we have studied a variant of the graph
orientation whose objective is to minimize the maxi-
mum weighted outdegree of vertices. We then proved
its NP-hardness, and presented an approximation al-
gorithm with an approximation guarantee of 2−ε but
ε depends on the average weights of an input graph.
One of the interesting, but challenging open problems
is to improve the approximation factor to 2− φ for φ
that does not depend on the input.
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Abstract

It is widely believed that low-level languages with
jumps must be difficult to reason about by being in-
herently non-modular. We have recently argued that
this in untrue and proposed a novel method for de-
veloping compositional natural semantics and Hoare
logics for low-level languages and demonstrated its vi-
ability on the example of a simple low-level language
with expressions (Saabas & Uustalu 2005). The cen-
tral idea is to use the implicit structure of finite dis-
joint unions present in low-level code as an (ambigu-
ous) phrase structure.

Here we apply our method to a stack-based lan-
guage and develop it further. We define a composi-
tional natural semantics and Hoare logic for this lan-
guage and go then on to show that, in addition to
Hoare logics, one can also derive compositional type
systems as weaker specification languages with the
same method. We describe type systems for stack-
error freedom and secure information flow.

Keywords: low-level languages, compositionality,
Hoare logics, type systems, dataflow analyses, cer-
tified code, compilation of proofs, typings from com-
pilation

1 Introduction

The advent of the paradigm of proof-carrying (or,
more generally, certified) code has generated signif-
icant interest in reasoning about low-level code. This
is because software is usually distributed in compiled
form for the sake of self-containedness, but also be-
cause certification of compiled code instead of source
programs eliminates the need for the software con-
sumer to trust a compiler. Low-level languages are
widely believed to be difficult to reason about as
inherently non-modular. The lack of modularity is
attributed to low-level code being flat (a set of la-
belled instructions with no explicit structure) and to
the presence of general jumps. If a language is non-
modular, it cannot have a compositional semantics or
logic or type system.

We have recently argued that the non-modularity
premise in untrue and proposed to exploit a very ba-
sic implicit structure present in low-level code as the
“phrase structure” for semantic descriptions and log-
ics of low-level languages (Saabas & Uustalu 2005).
The structure in question is given by finite unions of
pieces of code with non-overlapping support: a piece
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sium (CATS 2006), Hobart, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 51.
Barry Jay and Joachim Gudmundsson, Eds. Reproduction for
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of code is either a single instruction or a finite union
of non-overlapping pieces of code. Despite its banal-
ity and ambiguity (any piece of code can be parsed in
many ways), this structure is perfectly viable from the
point of metatheory and attractive from the point-of-
view of practical reasoning about programs: it sup-
ports the idea that properties of a large piece of code
should be provable from properties of its constituent
small pieces (which can be established by different
parties). An additional bonus of the method is that
it supports compiling high-level programs together
with proofs; in the compilation, the structure of a
high-level source program hints the optimal way to
structure its low-level equivalent.

In (Saabas & Uustalu 2005), we demonstrated this
method on the example of a simple low-level language
Goto with expressions. In this paper, we develop it
further and consider an operand-stack based language
Push. This language, although fairly similar on the
surface, is more demanding because of the possibility
of abnormal terminations due to stack errors (wrong
operand types, stack underflow), but it is also richer
in that, for Push, it makes sense to study not only
logics as calculi for correctness, but also type systems
as calculi for attesting weaker properties such as ba-
sic safety (stack-error freedom) or properties usually
established by dataflow analyses.

The technical contribution of the paper is as fol-
lows. We define a structured version SPush of Push
and equip it with a compositional natural seman-
tics discriminating between normal and abnormal ter-
minations and agreeing with the non-compositional
small-step semantics of Push. We also define an
error-free partial-correctness Hoare logic for SPush
and prove it to be sound and (relatively) complete
wrt. the natural semantics. For a compilation from
While to SPush, we show that it preserves While
proofs in a constructive sense (so that proof compi-
lation is possible) and reflects SPush proofs. Be-
yond the logic, we also describe two type systems
for SPush. The first system is a weakening of the
Hoare logic and attests stack-error freedom, which
we show sound and also complete wrt. an appropri-
ate abstracted natural semantics. We also show that
our compilation from While can be augmented to
accompany the SPush code delivered with a typing
derivation attesting that it is stack-error free. The
second type system is equivalent to a secure informa-
tion flow analysis.

The cornerstone technical ideas of the paper are:
(i) low-level languages can be handled in a composi-
tional way by exploiting an implicit phrase structure
that they do have anyway, (ii) natural semantics can
be made sensitive to abnormal terminations by intro-
ducing a special abnormal evaluation relation, (iii)
Hoare logics and type systems should be derived sys-
tematically from natural semantics descriptions, (iv)
the abstract interpretations that underlie dataflow
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analyses can be described as abstract natural seman-
tics and the analyses themselves as type systems. Not
all of these ideas are new, but we believe that the pa-
per combines them in a useful fashion.

The organization of the papers is the following.
In Section 2, we introduce the syntax of the language
Push and its non-compositional small-step semantics.
In Section 3, we describe the syntax and the com-
positional natural (big-step) semantics of the struc-
tured version SPush. In Section 4, we describe the
corresponding Hoare logic. In Sections 5 and 6, we
discuss the abstract natural semantics and the type
system for safe stack usage. In Section 7, we discuss
a compilation of While programs to SPush pieces
of code and the corresponding compilation of proofs
and type derivation generation. Section 8 discusses
the abstract natural semantics and type system for
secure information flow. Section 9 is a brief overview
of the related work while 10 concludes.

2 The language and its small-step semantics

As advertised, our object of study is a simple operand-
stack based low-level language, which we call Push.

The building blocks of the syntax of Push are
labels ` ∈ Label, which are natural numbers, and
instructions instr ∈ Instr. We also assume hav-
ing a countable set of program variables (registers)
x ∈ Var. The instructions of the language are de-
fined by the grammar

instr ::= load x | store x | push n

| add | eq | ... | goto ` | gotoF `

A piece of code c ∈ Code is a finite set of labelled
instructions, i.e., a set of pairs of a label and an in-
struction: Code =df Pfin(Label× Instr). A piece of
code c is wellformed, if no label in it labels two differ-
ent instructions, i.e., if (`, instr), (`, instr′) ∈ c imply
instr = instr ′. The domain of a piece of code is the
set of labels in it: dom(c) =df {` | (`, instr) ∈ c}.

Semantic descriptions of imperative languages are
defined in terms of states. A state for Push consists
of a label `, stack ζ and store σ, which record the
pc value and the content of the operand stack and
the store at a moment: State =df Label× Stack×
Store. A stack is a list whose elements can be both
boolean or integer values: Stack =df (Z ∪ B)∗. (We
use the notation X∗ for lists over X, [] for the empty
list, x :: xs for the list with head x and tail xs and
xs ++ ys for the concatenation of xs and ys.) Vari-
ables can only be of integer type and must always be
defined: Store =df Var → Z.

If a language is low-level, its semantics is usually
described in an operational form that is small-step
(there is no non-trivial notion of big steps one could
talk of). The small-step semantics of Push is for-
mulated via a single-step reduction relation − `� ⊆
State×Code×State defined in Figure 1. The associ-
ated multi-step reduction relation �∗ is its reflexive-
transitive closure. It is immediate that � is deter-
ministic, there is always at most one step possible. A
state can be terminal (c ` (`, σ) 6�) for two reasons:
(i) we have ` /∈ dom(c), which signifies normal termi-
nation, or (ii) we have ` ∈ dom(c) but the rule for
the instruction at ` does not apply because of wrong
types or shortage of potential operands on the stack,
which signifies abnormal termination. (The possibil-
ity of abnormal terminations was not present in the
language Goto of (Saabas & Uustalu 2005).) The
obvious shortcoming of this semantics is that it is en-
tirely non-compositional (there is no phrase structure
to follow) and that all of the code must be known at
all times because of the jump instructions.

(`, store x) ∈ c n ∈ Z
c ` (`, n :: ζ, σ) � (`+ 1, ζ, σ[x 7→ n])

store

(`, load x) ∈ c
c ` (`, ζ, σ) � (`+ 1, σ(x) :: ζ, σ)

load

(`, push n) ∈ c
c ` (`, ζ, σ) � (`+ 1, n :: ζ, σ)

push

(`, add) ∈ c n0, n1 ∈ Z
c ` (`, n0 :: n1 :: ζ, σ) � (`+ 1, n0 + n1 :: ζ, σ)

add

(`, eq) ∈ c n0, n1 ∈ Z
c ` (`, n0 :: n1 :: ζ, σ) � (`+ 1, n0 = n1 :: ζ, σ)

eq

. . .

(`, goto m) ∈ c
c ` (`, ζ, σ) � (m, ζ, σ)

goto

(`, gotoF m) ∈ c
c ` (`, tt :: ζ, σ) � (`+ 1, ζ, σ)

gotoFtt

(`, gotoF m) ∈ c
c ` (`,ff :: ζ, σ) � (m, ζ, σ)

gotoFff

Figure 1: Single-step reduction rules of Push

3 Structured version and natural semantics

To overcome the non-compositionality problem of the
semantics described above, some structure needs to be
introduced into Push code. As was shown in (Saabas
& Uustalu 2005), a useful structure to use for defining
the semantics of a low-level language compositionally
is that of finite unions of non-overlapping pieces of
code. This is present in the code anyway, but it is
ambiguous (any set is a finite union of sets in many
ways) and implicit, so one has to choose and make
the choices explicit. Hence we define a corresponding
structured version of Push, which we call SPush.
Structured pieces of code sc ∈ SCode are defined by
the following grammar

sc ::= (`, instr) | 0 | sc0 ⊕ sc1

which stipulates that a piece of code is either a single
labelled instruction or a finite union of pieces of code.
We define the domain dom(sc) of a piece of code sc
to be the set of all labels in the code: dom(0) = ∅,
dom((`, instr)) = {l}, dom(sc0 ⊕ sc1) = dom(sc0) ∪
dom(sc1).

A piece of code is wellformed iff the labels of all
of its instructions are different: a single instruction
is always wellformed, 0 is wellformed and sc0 ⊕ sc1
is wellformed iff both sc0 and sc1 are wellformed and
dom(sc0)∩dom(sc1) = ∅. Note that contiguity is not
required for wellformedness, the domain of a piece of
code does not have to be an interval.

The compositional semantic description we give
for SPush is a (big-step) natural semantics. Since
there is the possibility of abnormal terminations and
we want to distinguish between non-terminations and
abnormal terminations, we define two evaluation re-
lations, �−� , �−�p ⊆ State×SCode×State, one
for normal, the other for abnormal terminating eval-
uations. Both relate possible initial states for eval-
uating a piece of code to the corresponding terminal
states. The two relations are defined (mutually induc-
tively) by the rules in Figure 2. Of course, alterna-
tively one could say that we have just one evaluation
relation but indexed by a doubleton for distinguishing
between the two flavors of termination.

The loadns and pushns rules should be self-
explanatory. Both store x and add can potentially
cause an error, therefore there are two rules for them,
for normal and abnormal evaluation.
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(`, ζ, σ) �(`, load x)� (`+ 1, σ(x) :: ζ, σ)
loadns

n ∈ Z
(`, n :: ζ, σ) �(`, store x)� (`+ 1, ζ, σ[x 7→ n])

storens
∀n ∈ Z, ζ′ ∈ (Z ∪ B)∗. ζ 6= n :: ζ′

(`, ζ, σ) �(`, store x)�p (`, ζ, σ)
storeab

ns

(`, ζ, σ) �(`, push n)� (`+ 1, n :: ζ, σ)
pushns

n0, n1 ∈ Z
(`, n0 :: n1 :: ζ, σ) �(`, add)� (`+ 1, n0 + n1 :: ζ, σ)

addns

∀n0, n1 ∈ Z, ζ′ ∈ (Z ∪ B)∗. ζ 6= n0 :: n1 :: ζ′

(`, ζ, σ) �(`, add)�p (`, ζ, σ)
addab

ns

. . .266664
(m, ζ, σ) �(`, goto m)� (`′, ζ′, σ′)

(`, ζ, σ) �(`, goto m)� (`′, ζ′, σ′)

(m, ζ, σ) �(`, goto m)�p (`′, ζ′, σ′)
(`, ζ, σ) �(`, goto m)�p (`′, ζ′, σ′)

377775 m 6= `

(`, ζ, σ) �(`, goto m)� (m, ζ, σ)
goto 6=ns

266666666666664

(`, tt :: ζ, σ) �(`, gotoF m)� (`+ 1, ζ, σ)

(m, ζ, σ) �(`, gotoF m)� (`′, ζ′, σ′)

(`,ff :: ζ, σ) �(`, gotoF m)� (`′, ζ′, σ′)

(m, ζ, σ) �(`, gotoF m)�p (`′, ζ′, σ′)
(`,ff :: ζ, σ) �(`, gotoF m)�p (`′, ζ′, σ′)

∀b ∈ B, ζ′ ∈ (Z ∪ B)∗. ζ 6= b :: ζ′

(`, ζ, σ) �(`, gotoF m)�p (`, ζ, σ)

377777777777775

m 6= `

(`, tt :: ζ, σ) �(`, gotoF m)� (`+ 1, ζ, σ)
gotoF 6=tt

ns

m 6= `

(`,ff :: ζ, σ) �(`, gotoF m)� (m, ζ, σ)
gotoF 6=ff

ns

m 6= ` ∀b ∈ B, ζ′ ∈ (Z ∪ B)∗. ζ 6= b :: ζ′

(`, ζ, σ) �(`, gotoF m)�p (`, ζ, σ)
gotoF 6=ab

ns

ffs ∈ {ff}∗

(`,ffs ++ tt :: ζ, σ) �(`, gotoF `)� (`+ 1, ζ, σ)
gotoF=

ns

ffs ∈ {ff}∗ ∀b ∈ B, ζ′ ∈ (Z ∪ B)∗. ζ 6= b :: ζ′

(`,ffs ++ ζ, σ) �(`, gotoF `)�p (`, ζ, σ)
gotoF=ab

ns

` ∈ dom(sci) (`, ζ, σ) �sci� (`′′, ζ′′, σ′′) (`′′, ζ′′, σ′′) �sc0 ⊕ sc1� (`′, ζ′, σ′)

(`, ζ, σ) �sc0 ⊕ sc1� (`′, ζ′, σ′)
⊕ns

` ∈ dom(sci) (`, ζ, σ) �sci�p (`′, ζ′, σ′)
(`, ζ, σ) �sc0 ⊕ sc1�p (`′, ζ′, σ′)

⊕abn
ns

` ∈ dom(sci) (`, ζ, σ) �sci� (`′′, ζ′′, σ′′) (`′′, ζ′′, σ′′) �sc0 ⊕ sc1�p (`′, ζ′, σ′)
(`, ζ, σ) �sc0 ⊕ sc1�p (`′, ζ′, σ′)

⊕abl
ns

` /∈ dom(sc)

(`, ζ, σ) �sc� (`, ζ, σ)
oodns

Figure 2: Natural semantics rules of SPush
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We have spelled out the rules for goto m and
gotoF m instructions in two different ways: a recur-
sive style (in square brackets) and a direct style. The
two styles are equivalent, but we comment only the
direct style. The recursive style could be seen as a
formal explanation of the direct style. The issue is
that, differently from other single-instruction pieces
of code, a goto or gotoF instruction can loop back on
itself. This happens when the labelling label and the
target label coincide.

The side condition in the goto6=
ns rule states that

a goto m instruction only terminates, if it does not
loop back on itself. The gotoF6=tt

ns rule should be
self-explanatory, however the gotoF m rules for the
case there is a ff on the top of the stack should be
explained. The complication here is that just like
goto m, gotoF m can loop back on itself. Unlike
goto m however, it cannot loop infinitely, since every
successful jump removes an element from the stack.
Instead it can either exit the loop at some point (when
it encounters a tt on top of the stack), or cause an er-
ror if it either encounters an integer on the stack or
the stack runs empty. Therefore, two rules (gotoF=

ns

and gotoF=ab
ns ) are needed for normal and abnormal

behavior of gotoF m for the case when it loops back
on itself. The rule gotoF6=ab

ns covers the case when
there is no boolean value at the top of the stack.

The rule ⊕ns says that, to evaluate the union sc0⊕
sc1 starting from some state such that the pc is in the
domain of sci, one first needs to evaluate sci, and then
evaluate the whole union again, but starting from the
new intermediate state reached. Finally, the oodns
rule is needed to reflect the case where the reduction
sequence is normally terminated because the pc has
landed outside the domain of the code.

It is fairly straightforward that the pc in the final
state of a normally terminating evaluation of a code
is outside its domain while the pc in the final state of
an abnormally terminating evaluation is inside. Eval-
uation is deterministic in the sense that any piece of
code terminates either normally or abnormally in a
definite state, if it terminates at all.

Every SPush piece of code can be mapped into
a Push piece of code using a forgetful function
U ∈ SCode → Code, defined by U((`, instr)) =df
{(`, instr)}, U(0) =df ∅, U(sc0 ⊕ sc1) =df U(sc0) ⊕
U(sc1). The compositional natural semantics of
SPush agrees with the non-compositional semantics
of Push in the following technical sense.
Theorem 1 (Preservation of evaluations by
U) (i) If (`, ζ, σ) �sc� (`′, ζ ′, σ′), then U(sc) `
(`, ζ, σ) �∗ (`′, ζ ′, σ′) 6� and `′ /∈ dom(sc). (ii)
If (`, ζ, σ) �sc�p (`′, ζ ′, σ′), then U(sc) ` (`, ζ, σ) �∗

(`′, ζ ′, σ′) 6� and `′ ∈ dom(sc).
Proof. By induction on the derivation of
(`, ζ, σ) �sc� (`′, ζ ′, σ′) or (`, ζ, σ) �sc�p (`′, ζ ′, σ′). 2

Theorem 2 (Reflection of stuck reduc-
tion sequences by U) (i) If U(sc) `
(`, ζ, σ) �∗ (`′, ζ ′, σ′) 6� and `′ /∈ dom(sc),
then (`, ζ, σ) �sc� (`′, ζ ′, σ′). (ii) If U(sc) `
(`, ζ, σ) �∗ (`′, ζ ′, σ′) 6� and `′ ∈ dom(sc), then
(`, ζ, σ) �sc�p (`′, ζ ′, σ′)
Proof. By induction on the structure of sc and sub-
ordinate induction on the length of the reduction se-
quence. 2

From these theorems it is immediate that the
SPush semantics of a structured version of a piece
of Push code cannot depend on the way it is struc-
tured: if U(sc) = U(sc′), then sc and sc′ have exactly
the same evaluations (although with different deriva-
tions).

4 Hoare logic

The compositional natural semantics of SPush is a
good basis for developing a compositional Hoare logic
of it. Just as evaluations relate an initial and a termi-
nal state, Hoare triples relate pre- and postconditions
about states. Since a state contains a pc value and
stack content, it must be possible to refer to these
in assertions. In our logic, we have special individ-
ual constants pc and st to refer to them. Using the
constant pc, we can make assertions about particular
program points by constraining the state to corre-
spond to a certain pc value. This allows us to make
assertions only about program points through which
the particular piece of code is entered or exited, thus
eliminating the need for global contexts of invariants
and making reasoning modular.

The logic we define is an error-free partial correct-
ness logic: for a Hoare triple to be derivable, the post-
condition must be satisfied by the terminal state of
any normal evaluation and abnormal evaluations from
the allowed initial states must be impossible. (We
would get a more expressive partial correctness logic
with triples with two postconditions, one for normal
terminations, the other for abnormal terminations;
in the case of a programming language with error-
handling constructs, that approach is the only reason-
able one, see, e.g., (Schröder & Mossakowski 2004).
Our logic corresponds to the case where the abnor-
mal postcondition is always ⊥, so there is no need
to ever spell it out. A different version where it is
always > would correspond to error-ignoring partial
correctness.)

The signature of the Hoare logic contains, as extra-
arithmetical and extra-list constants, special individ-
ual constants pc, st and the program variables Var,
to refer to the values of the program counter, stack
and program variables in a state. The assertions
P,Q ∈ Assn are formulae over that signature in an
ambient logical language containing the signature of
arithmetic and lists of integers and booleans. We
use the notation Q[x0, .., xn 7→ t0, .., tn] to denote
that every occurrence of xi in Q has been replaced
with ti. The derivable Hoare triples {} − {} ⊆
Assn × SCode × Assn are defined inductively by
the rules in Figure 3.

The extra disjunct pc 6= `∧Q in the rules for prim-
itive instructions is required because of the seman-
tic rule oodns: if we evaluate the instruction start-
ing from outside the domain of the instruction (i.e.
pc 6= `), we have immediately terminated and have
hence remained in the same state, therefore any asser-
tion holding before evaluating the instruction will also
hold after. The disjunct m = ` in the rule for goto m
accounts for the case when goto m loops back on it-
self. We have a similar case with the gotoF m rule,
but here the situation is more subtle. As explained in
Section 3, when gotoF m loops back on itself, it can
either exit normally to the next instruction (in case
there is some number of ffs on the stack, followed by a
tt), or raise an error. The disjunct m = `∧ .. accounts
for that case.

The rule for unions can be seen as mix of the while
and sequence rules of the Hoare logic of While: if,
evaluating either sc0 or sc1 starting from a state that
satisfies P and has the pc value in the domain of sc0
resp. sc1, we end in a state satisfying P , then, after
evaluating their union sc0⊕ sc1 starting from a state
satisfying P , we are guaranteed to be in a state sat-
isfying P . Furthermore, we know that we are then
outside the domains of both sc0 and sc1. The rule
of consequence is the same as in the standard Hoare
logic. Note that we have circumvented the inevitable
incompleteness of any axiomatization of logics con-
taining arithmetic by invoking semantic entailment
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instead of deducibility in the premises of the conseq
rule.

The Hoare logic is sound and complete.

Theorem 3 (Soundness of Hoare logic) If
{P} sc {Q} and (`, ζ, σ) |=α P , then (i) for any
(`′, ζ ′, σ′) such that (`, ζ, σ) �sc� (`′, ζ ′, σ′), we have
(`′, ζ ′, σ′) |=α Q, and (ii) there is no (`′, ζ ′, σ′) such
that (`, ζ, σ)�sc�p (`′, ζ ′, σ′).

Proof. By induction on the derivation of {P} sc {Q}.
2

To get completeness, we have to assume that the
underlying logical language is expressive. For any as-
sertion Q, we need an assertion wlp(sc, Q) that, se-
mantically, is its weakest precondition, i.e., for any
state (`, ζ, σ) and valuation α of free variables, we
have (`, ζ, σ) |= wlp(sc, Q) iff (`, ζ, σ) �sc� (`′, ζ ′, σ′)
implies (`′, ζ ′, σ′) |= Q for any (`′, ζ ′, σ′). The wlp
function is available for example when the underlying
logical language has a greatest fixedpoint operator.

Lemma 1 {wlp(sc, Q)} sc {Q}.

Proof. By induction on the structure of sc. 2

Theorem 4 (Completeness of Hoare logic) If,
for any (`, ζ, σ) and α such that (`, ζ, σ) |=α

P , it holds that (i) for any (`′, ζ ′, σ′) such
that (`, ζ, σ) �sc� (`′, ζ ′, σ′), we have (`′, ζ ′, σ′) |=α

Q, and (ii) there is no (`′, ζ ′, σ′) such that
(`, ζ, σ) �sc�p (`′, ζ ′, σ′), then {P} sc {Q}.

Proof. Immediate from the lemma using that any
precondition of an assertion entails its wlp. 2

5 Abstract natural semantics

We now proceed to defining an abstract natural se-
mantics for SPush that operates on type names as
abstract values instead of concrete values. This al-
lows us to later prove a type system for basic safety
sound and complete. While soundness of the type
system could also be shown wrt. the concrete natural
semantics, completeness cannot.

The abstract semantics is defined in terms of
abstract states, which are pairs of labels ` ∈
Label and abstract stack contents ψ ∈ AbsStack:
AbsState =df Label × AbsStack. Instead of
values, abstract stacks stack names of value types:
AbsStack =df {int,bool}∗. We do not have an ab-
stract store component in an abstract state. Since
variables can only be integers in a concrete store,
there is no interesting information to record. To re-
late a concrete state to an abstract state, we have
a function abs ∈ State → AbsState, defined by
abs(`, ζ, σ) =df (`, abs(ζ)) where abs ∈ Stack →
AbsStack replaces concrete values in a stack with the
names of their types: abs([]) =df [], abs(n :: ζ) =df
int :: abs(ζ) for n ∈ Z, and abs(b :: ζ) =df bool ::
abs(ζ) for b ∈ B.

The abstract semantics is a rather straightforward
rewrite of the concrete semantics to work on abstract
states, but it is important to notice that this makes
evaluation nondeterministic. Just like in the concrete
semantics, we need to distinguish between abnormal
and normal evaluations, so there are two evaluation
relations � − � , � − �p ⊆ AbsState × SCode ×
AbsState. The rules of the abstract natural seman-
tics are given in Figure 4. Mimicking those of the
concrete semantics from Figure 2, they should be self-
explanatory. As before, we have spelled out the rules

for goto and gotoF in two alternative styles, recur-
sive and direct. The nondeterminism stems from the
non-exclusive rules of gotoF.

Concrete evaluations are preserved by abstraction.

Theorem 5 (Preservation of evaluations by
abstraction) (i) If (`, ζ, σ) �sc� (`′, ζ ′, σ′), then
abs(`, ζ, σ) �sc� abs(`′, ζ ′, σ′).
(ii) If (`, ζ, σ)�sc�p (`′, ζ ′, σ′), then
abs(`, ζ, σ) �sc�p abs(`′, ζ ′, σ′).

6 Type system from the Hoare logic

With the abstract semantics defined, we are now
ready to show that the Hoare logic we have formulated
for SPush can be weakened into a type system for es-
tablishing basic code safety—the absence of operand
type and stack underflow errors in an Push program.
The abstract semantics allows us to prove the type
system not only sound, but also complete.

Instead of relating assertions as Hoare triples do,
typings relate state types. The intuitive meaning of
a typing is analogous to that of a Hoare triple: it
says that if the given piece of code is run from an
initial state in the given pretype, then if it termi-
nates normally, the final state is in the posttype, and,
moreover, it cannot terminate abnormally. Contrarily
to assertions, state types are designed to record only
that state information that is necessary for guaran-
teeing error-freedom.

The building blocks for state types are value types
τ ∈ ValType and stack types Ψ ∈ StackType, de-
fined by the grammars

τ ::= ⊥ | int | bool |?
Ψ ::= ⊥ | [] | τ :: Ψ | ∗

(note the overloading of the ⊥ sign). A state type
Π ∈ StateType is a finite set of labelled stack types,
i.e., pairs of a label and a stack type: StateType =df
Pfin(Label × StackType). A state type Π is well-
formed iff no label ` in it labels more than one stack
type, i.e., (`,Ψ) ∈ Π and (`,Ψ′) ∈ Π imply Ψ = Ψ′.
The domain dom(Π) of a state type is the set of labels
appearing in it, i.e., dom(Π) =df {` | (`,Ψ) ∈ Π}.

We will use the notation Π�L for the restriction
of a state type Π to a domain L ⊆ Label, i.e.,
Π�L =df {(`,Ψ) | (`,Ψ) ∈ Π, ` ∈ L}, and write L
for the complement of L, i.e., L =df Label\L.

The meanings of value, stack and state types
are set-theoretic, they denote sets of abstract val-
ues, abstract stacks and abstract states. The se-
mantic functions L− M ∈ ValType → P({int,bool}),
L− M ∈ StackType → P(AbsStack), L− M ∈
StateType → P(AbsState) are defined as follows:

L⊥ M =df ∅
L int M =df {int}

L bool M =df {bool}
L ? M =df {int,bool}
L⊥ M =df ∅
L [] M =df {[]}

L τ :: Ψ M =df {δ :: ψ | δ ∈ L τ M, ψ ∈ LΨ M}
L ∗ M =df {int,bool}∗

L Π M =df {(`, ψ) | (`,Ψ) ∈ Π, ψ ∈ L Ψ M}

On each of the three categories of types, we de-
fine a subtyping relation by the rules in Figure 5.
These are relations ≤ ⊆ ValType × ValType,
≤ ⊆ StackType × StackType, ≤ ⊆ StateType ×
StateType.
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{(pc = ` ∧Q[pc, st 7→ `+ 1, x :: st ]) ∨ (pc 6= ` ∧Q)} (`, load x) {Q}
loadhoa

{(pc = ` ∧ ∃z ∈ Z, w ∈ (Z ∪ B)∗. st = z :: w ∧Q[pc, st , x 7→ `+ 1, w, z]) ∨ (pc 6= ` ∧Q)} (`, store x) {Q}
storehoa

{(pc = ` ∧Q[pc, st 7→ `+ 1, n :: st ]) ∨ (pc 6= ` ∧Q)} (`, push n) {Q}
pushhoa


(pc = ` ∧ ∃z0, z1 ∈ Z, w ∈ (Z ∪ B)∗. st = z0 :: z1 :: w ∧Q[pc, st 7→ `+ 1, z0 + z1 :: w])

∨ (pc 6= ` ∧Q)

ff
(`, add)

˘
Q

¯ addhoa

. . .
(pc = ` ∧ ((m 6= ` ∧Q[pc 7→ m]) ∨m = `))

∨ (pc 6= ` ∧Q)

ff
(`, goto m)

˘
Q

¯ gotohoa

8><>:
(pc = ` ∧((m 6= ` ∧((∃w ∈ (Z ∪ B)∗. st = tt :: w ∧Q[pc, st 7→ `+ 1, w])

∨(∃w ∈ (Z ∪ B)∗. st = ff :: w ∧Q[pc, st 7→ m,w])))
∨(m = ` ∧ ∃ffs ∈ {ff}∗, w ∈ (Z ∪ B)∗.st = ffs ++ tt :: w ∧Q[pc, st 7→ `+ 1, w])))

∨ (pc 6= ` ∧Q)

9>=>; (`, gotoF m)
˘
Q

¯ gotoFhoa

{P}0 {P}
0hoa

{pc ∈ dom(sc0) ∧ P} sc0 {P} {pc ∈ dom(sc1) ∧ P} sc1 {P}
{P} sc0 ⊕ sc1 {pc /∈ dom(sc0) ∧ pc /∈ dom(sc1) ∧ P}

⊕hoa

P |= P ′ {P ′} sc {Q′} Q′ |= Q

{P} sc {Q}
conseqhoa

Figure 3: Hoare rules of SPush

(`, ψ) �(`, load x)� (`+ 1, int :: ψ)
loadans

(`, int :: ψ) �(`, store x)� (`+ 1, ψ)
storeans

∀ψ′ ∈ {int, bool}∗. ψ 6= int :: ψ′

(`, ψ) �(`, store x)�p (`, ψ)
storeab

ans

(`, ψ) �(`, push n)� (`+ 1, int :: ψ)
pushans

(`, int :: int :: ψ) �(`, add)� (`+ 1, int :: ψ)
addans

∀ψ′ ∈ {int, bool}∗. ψ 6= int :: int :: ψ′

(`, ψ) �(`, add)�p (`, ψ)
addab

ans

. . .266664
(m,ψ) �(`, goto m)� (`′, ψ′)

(`, ψ) �(`, goto m)� (`′, ψ′)

(m,ψ) �(`, goto m)�p (`′, ψ′)
(`, ψ) �(`, goto m)�p (`′, ψ′)

377775 m 6= `

(`, ψ) �(`, goto m)� (m,ψ)
goto 6=ans

266666666666664

(`, bool :: ψ) �(`, gotoF m)� (`+ 1, ψ)

(m,ψ) �(`, gotoF m)� (`′, ψ′)

(`, bool :: ψ) �(`, gotoF m)� (`′, ψ′)

(m,ψ) �(`, gotoF m)�p (`′, ψ′)
(`, bool :: ψ) �(`, gotoF m)�p (`′, ψ′)

∀ψ′ ∈ {int, bool}∗. ψ 6= bool :: ψ′

(`, ψ) �(`, gotoF m)�p (`, ψ)

377777777777775

m 6= `

(`, bool :: ψ) �(`, gotoF m)� (`+ 1, ψ)
gotoF 6=tt

ans

m 6= `

(`, bool :: ψ) �(`, gotoF m)� (m,ψ)
gotoF 6=ff

ans

m 6= ` ∀ψ′ ∈ {int, bool}∗. ψ 6= bool :: ψ′

(`, ψ) �(`, gotoF m)�p (`, ψ)
gotoF 6=ab

ans

bools ∈ {bool}∗

(`, bools ++ bool :: ψ) �(`, gotoF `)� (`+ 1, ψ)
gotoF=

ans

bools ∈ {bool}∗ ∀ψ′ ∈ {int, bool}∗. ψ 6= bool :: ψ′

(`, bools ++ψ) �(`, gotoF `)�p (`, ψ)
gotoF=ab

ans

` ∈ dom(sci) (`, ψ) �sci� (`′′, ψ′′) (`′′, ψ′′) �sc0 ⊕ sc1� (`′, ψ′)

(`, ψ) �sc0 ⊕ sc1� (`′, ψ′)
⊕ans

` ∈ dom(sci) (`, ψ) �sci�p (`′, ψ′)
(`, ψ) �sc0 ⊕ sc1�p (`′, ψ′)

⊕abn
ans

` ∈ dom(sci) (`, ψ) �sci� (`′′, ψ′′) (`′′, ψ′′) �sc0 ⊕ sc1�p (`′, ψ′)
(`, ψ) �sc0 ⊕ sc1�p (`′, ψ′)

⊕abl
ans

` /∈ dom(sc)

(`, ψ) �sc� (`, ψ)
oodans

Figure 4: Abstract natural semantics rules of SPush
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τ ≤ τ ⊥ ≤ τ τ ≤ ?

Ψ ≤ Ψ

Ψ ≤ Ψ′′ Ψ′′ ≤ Ψ′

Ψ ≤ Ψ′ ⊥ :: Ψ ≤ ⊥ τ :: ⊥ ≤ ⊥ ⊥ ≤ Ψ Ψ ≤ ∗
τ ≤ τ ′ Ψ ≤ Ψ′

τ :: Ψ ≤ τ ′ :: Ψ′

∀`,Ψ. (`,Ψ) ∈ Π ⊃ Ψ = ⊥ ∨ ∃Ψ′. (`,Ψ′) ∈ Π′ ∧Ψ ≤ Ψ′

Π ≤ Π′

Figure 5: Subtyping rules of SPush

The subtyping relations thus introduced are sound
and complete for the intended interpretation of sub-
typing as set inclusion.

Theorem 6 (Soundness and completeness of
subtyping) (i) τ ≤ τ ′ iff L τ M ⊆ L τ ′ M. (ii) Ψ ≤ Ψ′ iff
LΨ M ⊆ L Ψ′ M. (iii) Π ≤ Π′ iff LΠ M ⊆ LΠ′ M.

Very pleasantly, the ranges P({int,bool}), {LΨ M |
Ψ ∈ StackType}, {L Π M | Π ∈ StateType} of
each of the three type interpretation functions are
ω-complete lower semilattices with inclusion as the
underlying partial order: set-theoretic binary inter-
sections and intersections of nonincreasing ω-chains
do not take us out of the range. (Note that the anal-
ogous statement about unions is not true, e.g., the
set L [] M ∪ L int :: [] M) has no type denotation. Note
also that there are nonincreasing ω-chains that do not
stabilize in a finite number of steps, e.g., ∗, int :: ∗,
int :: int :: ∗, . . . , but all such chains have ⊥ as their
glb.) Because of the soundness and completeness of
subtyping, we can reflect this at the syntactic level:
we can define a syntatic binary glb operator ∧ on
types and a syntactic glb operator

∧
on deductively

nonincreasing ω-sequences of types that are glb oper-
ators deductively (‘deductively’ meaning ‘in the sense
of the subtyping relation’).

The typing relation − : −→ ⊆ StateType ×
SCode × StateType is defined by the rules in Fig-
ure 6. The typing rules for instructions are pre-
sented in a “weakest pretype” style, where the pre-
type is obtained by applying appropriate substitu-
tions in the given posttype. For example the rule
loadts for (`, load x) states that if stack type τ :: Ψ
(where τ is int or ?) or ∗ is required at label ` + 1,
then the suitable stack types for label ` are Ψ and ∗,
respectively. Any other posttype at label ` + 1 does
not have a suitable pretype. At first sight, it might
seem that wellformedness can be lost in the pretype
by taking the union. This is in fact not the case: there
is at most one stack type associated with label ` + 1
in Π, hence both sets have at most one element and
one of them must be empty. The rest of the non-jump
instruction rules are defined in similar fashion.

The jump rules might need some explanation. The
goto=

ts rule allows to derive pretype ∗ for label `: since
the instruction does not terminate, any posttype will
be satisfied by any pretype at label `. The gotoF 6=

ts
rule combines two posttypes; since gotoF can branch,
both posttypes must be satisfied at the entry, mean-
ing that the pretype is the intersection of the post-
types. No pretype at ` can guarantee any posttype in
the case of (`, gotoF `), since such instruction could
always terminate abnormally. The consequence rule
could also be called subsumption, given that we are
speaking about a type system: that is what it is really.

The type system is sound and complete wrt. the
abstract natural semantics in the sense of error-free
partial correctness.

Theorem 7 (Soundness of typing) If sc : Π −→
Π′ and (`, ψ) ∈ L Π M, then (i) for any (`′, ψ′) such
that (`, ψ)�sc� (`′, ψ′), we have (`′, ψ′) ∈ L Π′ M, and
(ii) there is no (`′, ψ′) such that (`, ψ)�sc�p (`′, ψ′).

Proof. By induction on the derivation of sc : Π −→
Π′, using that subtyping is sound. 2

From the preservation of evaluations by abstrac-
tion, it is immediate that therewith we also have
soundness wrt. the concrete natural semantics.

Corollary 1 If sc : Π −→ Π′ and
abs(`, ζ, σ) ∈ L Π M, then (i) for any (`′, ζ ′, σ′)
such that (`, ζ, σ)�sc� (`′, ζ ′, σ′), we have
abs(`′, ζ ′, σ′) ∈ L Π′ M, and (ii) there is no (`′, ζ ′, σ′)
such that (`, ζ, σ)�sc�p (`′, ζ ′, σ′).

To prove completeness, we introduce a syntactic
pretype function wpt ∈ SCode × StateType →
StateType. The definition is given in Figure 7. The
ω-sequence glb in the clause for ⊕ is welldefined be-
cause the operator S is monotone, making the se-
quence a nonincreasing chain. As S is also continu-
ous, the glb is the greatest fixedpoint of S.

The following lemmata show that the wpt of a
state type is semantically larger than any pretype and
deductively (i.e., in the sense of typing) a pretype.

Lemma 2 If (i) for any (`′, ψ′) such that
(`, ψ) �sc� (`′, ψ′), we have (`′, ψ′) ∈ L Π′ M, and
(ii) there is no (`′, ψ′) such that (`, ψ) �sc�p (`′, ψ′),
then (`, ψ) ∈ L wpt(sc,Π′) M.

Lemma 3 sc : wpt(sc,Π′) −→ Π′.

Proof. By induction on the structure of sc. 2

Theorem 8 (Completeness of typing) If, for any
(`, ψ) ∈ L Π M, it holds that (i) for any (`′, ψ′) such that
(`, ψ) �sc� (`′, ψ′), we have (`′, ψ′) ∈ LΠ′ M, and (ii)
there is no (`′, ψ′) such that (`, ψ) �sc�p (`′, ψ′), then
sc : Π −→ Π′.

Proof. From the two lemmata, using that subtyping
is complete. 2

It is fairly obvious that state types can be trans-
lated to assertions. We can define concretization
functions conc ∈ ValType → P(Z ∪ B), conc ∈
StackType → P(Stack), conc ∈ StateType →
Assn, taking us from the language of the type system
to the language of the logic, by

conc(⊥) =df ∅
conc(int) =df Z

conc(bool) =df B
conc(?) =df Z ∪ B
conc(⊥) =df ∅
conc([]) =df {[]}

conc(τ :: Ψ) =df {z :: w | z ∈ conc(τ), w ∈ conc(Ψ)}
conc(∗) =df (Z ∪ B)∗
conc(Π) =df∨

{pc = ` ∧ st ∈ conc(Ψ) | (`,Ψ) ∈ Π}

Concretization preserves and reflects derivable
subtypings/entailments.
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(`, load x) : {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π} ∪Π�{`} −→ Π
loadts

(`, store x) : {(`, int :: Ψ) | (`+ 1,Ψ) ∈ Π} ∪Π�{`} −→ Π
storets

(`, push n) : {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π} ∪Π�{`} −→ Π
pushts

(`, add) : {(`, int :: int :: Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ} ∪ {(`, int :: int :: ∗) | (`+ 1, ∗) ∈ Π} ∪Π�{`} −→ Π
addts

. . .

m 6= `

(`, goto m) : {(`,Ψ) | (m,Ψ) ∈ Π} ∪Π�{`} −→ Π
goto6=ts (`, goto `) : {(`, ∗)} ∪Π�{`} −→ Π

goto=
ts

m 6= `

(`, gotoF m) : {(`, bool :: (Ψ ∧Ψ′)) | (`+ 1,Ψ), (m,Ψ′) ∈ Π} ∪Π�{`} −→ Π
gotoF 6=ts (`, gotoF `) : Π�{`} −→ Π

gotoF=
ts

0 : Π −→ Π
0ts

sc0 : Π�dom(sc0) −→ Π sc1 : Π�dom(sc1) −→ Π

sc0 ⊕ sc1 : Π −→ Π�
dom(sc0)∪dom(sc1)

⊕ts

Π′
0 ≤ Π0 sc : Π0 −→ Π1 Π1 ≤ Π′

1

sc : Π′
0 −→ Π′

1

conseqts

Figure 6: Typing rules of SPush

wpt((`, load x),Π′) =df {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π′, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π′} ∪Π′�{`}

wpt((`, store x),Π′) =df {(`, int :: Ψ) | (`+ 1,Ψ) ∈ Π′} ∪Π′�{`}

wpt((`, push n),Π′) =df {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π′, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π′} ∪Π′�{`}

wpt((`, add),Π′) =df {(`, int :: int :: Ψ) | (`+ 1, τ :: Ψ) ∈ Π′, int ≤ τ} ∪ {(`, int :: int :: ∗) | (`+ 1, ∗) ∈ Π′} ∪Π′�{`}

wpt((`, goto m),Π′) =df

(
{(`,Ψ) | (m,Ψ) ∈ Π′} ∪Π′�{`} if m 6= `

{(`, ∗)} ∪Π′�{`} if m = `

wpt((`, gotoF m),Π′) =df

(
{(`, bool :: (Ψ ∧Ψ′)) | (`+ 1,Ψ), (m,Ψ′) ∈ Π′} ∪Π′�{`} if m 6= `

Π′�{`} if m = `

wpt(0,Π′) =df Π′

wpt(sc0 ⊕ sc1,Π
′) =df

^
i<ω

Πi where

Π0 =df {(`, ∗) | ` ∈ dom(sc0 ⊕ sc1) ∪ dom(Π′)}
Πi+1 =df S(Πi)
S(Π) =df wpt(sc0,Π)�dom(sc0) ∪ wpt(sc1,Π)�dom(sc1) ∪Π′�

dom(sc0⊕sc1)

Figure 7: Weakest pretype calculus
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Theorem 9 (Preservation of subtypings and
reflection of entailments by concretization) (i)
τ ≤ τ ′ iff conc(τ) |= conc(τ ′). (ii) Ψ ≤ Ψ′ iff
conc(Ψ) |= conc(Ψ′). (iii) Π ≤ Π′ iff conc(Π) |=
conc(Π′).

Preservation holds also of typing.

Theorem 10 (Preservation of typings by
concretization) If sc : Π −→ Π′, then
{conc(Π)} sc {conc(Π′)}.

We do not get reflection of Hoare triples by con-
cretization, however. Consider, for example, the code
sc =df (0, push tt)⊕ ((1, gotoF 3)⊕ (2, push 17)). We
have conc((0, [])) = pc = 0 ∧ st = [], conc((3, [int])) =
pc = 3∧∃z ∈ Z. st = [z] and can derive {pc = 0∧st =
[]} sc {pc = 3∧∃z ∈ Z. st = [z]}, while we cannot de-
rive sc : {(0, [])} −→ {(3, [int])}. The type system
does not discover that the false branch will never be
taken. The best posttype we can get for {(0, [])} is
{(3, ∗)}.

We finish the discussion of the type system by re-
marking that introducing the value type ? and the
stack type ∗ was not inevitable. But a version with-
out these constructs would only type pieces of code
for which the operand stack has a definite depth and
value type content for every label through which its
evaluations may pass. More generally, there is a de-
sign issue here. We could, for example, introduce
additional stack types int∗, bool∗ for stacks of un-
specified length, consisting of integers or booleans
only. Yet another design choice would be to de-
fine StackType =df Pfin(AbsStack) instead. Un-
der this discipline, some pieces of code with finitely
unbalanced stack usage would receive more precise
types, e.g., for the code

0 gotoF 3
1 push 17
2 goto 5
3 push tt
4 push ff

and pretype {(0, [bool])}, the best posttype we can
get in our type system is {(5, ? :: ∗)}, but the alterna-
tive posttype {(5, {[int], [bool,bool]})} is clearly more
informative. On the other hand, a piece of code with
infinite variation such as

0 load x
1 geq0
2 gotoF 8
3 push 17
4 load x
5 dec
6 store x
7 goto 0

and the pretype {(0, [])} have {(8, ∗)} as the strongest
posttype in our type system but no posttype under
the alternative approach.

7 Compilation

We shall now define a compilation function from
While programs to SPush pieces of code.

The compilation function is standard except that
it produces structured code (we have chosen struc-
tures that are the most convenient for us) and is
compositional. The compilation rules are given in
Figure 8. The compilation relation for expressions
−↘− ⊆ Label×(AExp∪BExp)×SCode×Label
relates a label and a While expression to a piece of

code and another label. The relation for statements
−↘− ⊆ Label×Stm×SCode×Label is similar.
The idea is that the domain of a compiled expression
or statement will be a left-closed, right-open interval.
(It may be an empty interval, which does not even
contain its beginning-point.) The first label is the
beginning-point of the interval and the second is the
corresponding end-point.

Compilation is total and deterministic, i.e., a func-
tion, and produces a piece of code whose support is
exactly the desired interval.

Lemma 4 (Totality and determinacy of com-
pilation) (i) For any `, e, there exist sc, `′ such that
e `↘`′ sc. If e `↘`0 sc0 and e `↘`1 sc1, then sc0 = sc1

and `0 = `1. (ii) For any `, s, there exist sc, `′

such that s `↘`′ sc. If s `↘`0 sc0 and s `↘`1 sc1, then
sc0 = sc1 and `0 = `1.

Lemma 5 (Domain of compiled code) (i) If
e `↘`′ sc, then dom(sc) = [`, `′). (ii) If s `↘`′ sc,
then dom(sc) = [`, `′).

That compilation does not alter the meaning of an
expression or statement is demonstrated by the facts
that While evaluations are preserved and SPush
evaluations are reflected by it. We must however
take into account the fact a compiled While expres-
sion or statement is intended to be entered from its
beginning-point.

Theorem 11 (Preservation of evaluations) (i)
If e `↘`′ sc, then (`, ζ, σ) �sc� (`′, JeKσ :: ζ, σ). (ii) If
s `↘`′ sc and σ �s�σ′, then (`, ζ, σ) �sc� (`′, ζ, σ′).

Proof. By induction on the structure of e or the
derivation of σ �s�σ′. 2

Theorem 12 (Reflection of evaluations) (i) If
e `↘`′ sc and (`, ζ, σ) �sc� (`′′, ζ ′, σ′), then `′′ = `′,
ζ ′ = JeKσ :: ζ and σ′ = σ. (ii) If s `↘`′ sc and
(`, ζ, σ) �sc� (`′′, ζ ′, σ′), then `′′ = `′, ζ ′ = ζ and
σ �s�σ′.

Proof. By induction on the structure of sc
and subordinate induction on the derivation of
(`, ζ, σ) �sc� (`′′, ζ ′, σ′). 2

It is easy to show that compilation preserves deriv-
able While Hoare triples (in a suitable format that
takes into account that a While statement proof as-
sumes entry from the beginning-point and guarantees
exit to the end-point). But one can also give a con-
structive proof: a proof by defining a compositional
translation of While program proofs to SPush pro-
gram proofs, i.e., a proof compilation function.

Theorem 13 (Preservation of derivable Hoare
triples) (i) If e `↘`′ sc and P is a While assertion,
then {pc = `∧st = ζ∧P} sc {pc = `′∧st = e :: ζ∧P}.
(ii) If s `↘`′ sc and {P} s {Q}, then {pc = ` ∧ st =
ζ ∧ P} sc {pc = `′ ∧ st = ζ ∧Q}.

Proof. [Non-constructive proof] Straightforward
from soundness of the Hoare logic of While, reflec-
tion of evaluations by compilation and completeness
of the Hoare logic of SPush. 2

Proof. [Constructive proof: Preservation Hoare
triple derivations] By induction on the structure of
e or the derivation of {P} s {Q}. 2

Reflection of derivable SPush Hoare triples by
compilation can also be shown. As with preservation,
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proving reflection non-constructively is a straightfor-
ward matter, but again there is also a constructive
proof. Given a While program, we can “decompile”
the correctness proof of its compiled form (a SPush
piece of code) into a correctness proof of the While
program. For the constructive proof, we have to use
the fact that proofs of SPush programs admit a cer-
tain normal form.

Theorem 14 (Reflection of derivable Hoare
triples) (i) If e `↘`′ sc and {P} sc {Q}, then
P [pc, st 7→ `, ζ] |= Q[pc, st 7→ `′, e :: ζ].
(ii) If s `↘`′ sc and {P} sc {Q}, then {P [pc, st 7→
`, ζ]} s {Q[pc, st 7→ `′, ζ]}.

Proof. [Non-constructive proof] From soundness of
the Hoare logic of SPush, preservation of evaluations
by compilation and completeness of the Hoare logic
of While. 2

Proof. [Constructive proof: Reflection of Hoare
triple derivations] By induction on the structure of sc,
using the fact that any Hoare logic derivation can be
normalized to a form where proper inferences come in
strict alternation with consequence inferences. (Nor-
malization is trivial: a sequence of several consecu-
tive consequence inferences can be compressed into
one and a missing consequence inference can be ex-
panded into a trivial consequence inference.) 2

For the type system of SPush, we can prove
the following analogous results. The first of them
means that we can strengthen our compilation func-
tion to accompany the SPush code it produces from
a While-program with a typing derivation.

Theorem 15 (Typing from compilation) (i) If
a `↘`′ sc, then sc : {(`, ψ)} −→ {(`′, int :: ψ)}. If
b `↘`′ sc, then sc : {(`, ψ)} −→ {(`′,bool :: ψ)}. (ii)
If s `↘`′ sc, then sc : {(`, ψ)} −→ {(`′, ψ)}.

Theorem 16 (Possible typings) (i) If a `↘`′ sc
and sc : {(`, ψ)} −→ Π, then {(`′, int :: ψ)} ≤ Π.
If b `↘`′ sc and sc : {(`, ψ)} −→ Π, then {(`′,bool ::
ψ)} ≤ Π. (ii) If s `↘`′ sc and sc : {(`, ψ)} −→ Π,
then {(`′, ψ)} ≤ Π.

8 Abstract natural semantics and type sys-
tem for secure information flow

Besides stack-error freedom, it is possible to devise
systems to present dataflow analyses. Here we sketch
an abstract natural semantics and type system for se-
cure information flow analysis. For space reasons, this
description is very Spartan, but it should make sense
to anyone familiar with secure information flow anal-
yses for high-level imperative languages à la Denning
& Denning (1977).

Central for both the abstract natural semantics
and type system for secure information flow is a
distributive lattice (D,≤,∧,∨,L,H) of security lev-
els for information flowing in the program (stack
positions, variables and the pc). Abstract states
are quadruples of a label ` ∈ Label, a security
level d ∈ D for the current pc value, and an ab-
stract stack and an abstract store: AbsState =df
Label × D × AbsStack × AbsStore. An abstract
stack ψ ∈ AbsStack is a list over D corresponding to
the security levels of the stack positions in the imagin-
able concrete state, an abstract store Σ ∈ AbsStore
similarly records the security levels of the variables
in the imaginable concrete state: AbsStack =df D∗,
AbsStore =df Var → D.

The abstract semantics is sensitive to stack un-
derflow, but ignores the possibility in the concrete
semantics of operand type errors (confuses them with
normal terminations). An important concept in the
semantics is the notion of a single-exit piece of code:
this is a piece of code sc for which one can single
out a label `∗ such that every target label (succes-
sor label or jump target, depending on the kind of
the instruction) of any labelled instruction in sc is
in dom(sc) ∪ {`∗}; we call `∗ the exit-point of sc.
Single-exit unions are analogous to single-exit com-
pound blocks in control-flow diagrams; compare these
to if- or while-statements of While, which are single-
exit as all While statements but special in that their
control-flow diagrams enclose inner branchings. The
rules of the semantics are presented in Figure 9. Be-
cause of the single-exit union rule, this abstract se-
mantics is not neutral wrt. the structure imposed on
an unstructured Push piece of code: depending on
how small or large the smallest single-exit union en-
closing a branching instruction gotoF is in the struc-
ture imposed on a code, a given initial security state
can take us to a more or less optimistic terminal se-
curity state.

In the type system, the state types Π ∈
StateType are quadruples of a label, security level
(for the pc), stack type and abstract store (there
is no difference between an abstract store and a
store type!): StateType =df Pfin(Label × D ×
StackType × AbsStore) where no label may oc-
cur twice in a wellformed statetype. Stack types
Ψ ∈ StackType are defined by the grammar

Ψ ::= ⊥ | [] | d :: Ψ | ∗

Stack types have a set-theoretic meaning defined as
follows:

L⊥ M =df ∅
L [] M =df {[]}

L d :: Ψ M =df {d′ :: ψ | d′ ≤ d, ψ ∈ L Ψ M}
L ∗ M =df D∗

The type system is derived from the abstract nat-
ural semantics—the typing rules are in the weakest
pretype style—and attests stack-underflow-error free
information flow security. The type system may type
pieces of code that can terminate abnormally due to
wrong operand types. The subtyping rules are in Fig-
ure 10 while the typing rules appear in Figure 11.
(ψ ∨ d denotes the list resulting from joining d to ev-
ery element of ψ;

∨
ds denotes the join of all elements

of ds;
∧

Ψ denotes the meet of all elements of Ψ.)

9 Related work

In the young days of Hoare logic, quite some atten-
tion was paid to general and restricted jumps in high-
level languages. Hoare’s original logic (1969) was for
While and characteristic to the various proposals
that were made thereafter is that they deal with ex-
tensions of While or a similar language. The log-
ics of Clint & Hoare (1972), Kowaltowski (1977) and
de Bruin (1981) use conditional Hoare triples (so the
proof system is a natural deduction system) to be able
to make and use assumptions about label invariants.
In the solution of Arbib & Alagić (1979), Hoare triples
have multiple postconditions, reflecting the fact that
statements involving gotos are multiple-exit.

Logics for low-level languages without phrase
structure have only become a topic of active research
with the advent of PCC, with Java bytecode and
.NET CIL being the main motivators. (There is
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n `↘`+1 (`, push n) x `↘`+1 (`, load x)

a0
`↘`′′ sc0 a1

`′′↘`′ sc1

a0 + a1
`↘`′+1 (sc0 ⊕ sc1)⊕ add

b0 `↘`′′ sc0 b1 `′′↘`′ sc1

b0 = b1 `↘`′+1 (sc0 ⊕ sc1)⊕ eq

a `↘`′ sc

x := a `↘`′+1 (sc ⊕ store x) skip `↘` 0

s0 `↘`′′ sc0 s1 `′′↘`′ sc1

s0; s1 `↘`′ sc0 ⊕ sc1

b `↘`′′ scb st
`′′+1↘`′′′ sct sf

`′′′+1↘`′ scf

if b then st else sf
`↘`′ (scb ⊕ (`′′, gotoF `′′′ + 1))⊕ ((sct ⊕ (`′′′, goto `′))⊕ scf )

b `↘`′′ scb s `′′+1↘`′ sc

while b do s `↘`′+1 (scb ⊕ (`′′, gotoF `′ + 1))⊕ (sc ⊕ (`′, goto `))

Figure 8: Rules of compilation from While to SPush

(`, d, ψ,Σ) �(`, load x)� (`+ 1, d,Σ(x) ∨ d :: ψ,Σ)
loadans

(`, d, d′ :: ψ,Σ) �(`, store x)� (`+ 1, d, ψ,Σ[x 7→ d′ ∨ d])
storeans

∀d ∈ D, ψ′ ∈ D∗. ψ 6= d :: ψ′

(`, d, ψ,Σ) �(`, store x)�p (`, d, ψ,Σ)
storeab

ans

(`, d, ψ,Σ) �(`, push n)� (`+ 1, d, d :: ψ,Σ)
pushans

(`, d, d0 :: d1 :: ψ,Σ) �(`, add)� (`+ 1, d, d0 ∨ d1 ∨ d :: ψ,Σ)
addans

∀d0, d1 ∈ D, ψ′ ∈ D∗. ψ 6= d0 :: d1 :: ψ′

(`, d, ψ,Σ) �(`, add)�p (`, d, ψ,Σ)
addab

ans

m 6= `

(`, d, ψ,Σ) �(`, goto m)� (m, d, ψ,Σ)
goto 6=ans

m 6= `

(`, d, d′ :: ψ,Σ) �(`, gotoF m)� (`+ 1, d ∨ d′, ψ ∨ (d ∨ d′),Σ)
gotoF 6=tt

ans

m 6= `

(`, d, d′ :: ψ,Σ) �(`, gotoF m)� (m, d ∨ d′, ψ ∨ (d ∨ d′),Σ)
gotoF 6=ff

ans

m 6= l ∀d ∈ D, ψ′ ∈ D∗. ψ 6= d :: ψ′

(`, d, ψ,Σ) �(`, gotoF m)�p (`, d, ψ,Σ)
gotoF 6=ab

ans

ds ∈ D∗

(`, d, ds ++ d′ :: ψ,Σ) �(`, gotoF `)� (`+ 1, d, ψ ∨ (d ∨
W

ds ∨ d′),Σ)
gotoF=

ans
ds ∈ D∗

(`, d, ds,Σ) �(`, gotoF `)�p (`+ 1, d, [],Σ)
gotoF=ab

ans

` ∈ dom(sci) (`, d, ψ,Σ) �sci� (`′′, d′′, ψ′′,Σ′′) (`′′, d′′, ψ′′,Σ′′) �sc0 ⊕ sc1� (`′, d′, ψ′,Σ′) sc0 ⊕ sc1 multiple-exit

(`, d, ψ,Σ) �sc0 ⊕ sc1� (`′, d′, ψ′,Σ′)
⊕ans

` ∈ dom(sci) (`, d, ψ,Σ) �sci� (`′′, d′′, ψ′′,Σ′′) (`′′, d′′, ψ′′,Σ′′) �sc0 ⊕ sc1� (`′, d′, ψ′,Σ′) sc0 ⊕ sc1 single-exit

(`, d, ψ,Σ) �sc0 ⊕ sc1� (`′, d, ψ′,Σ′)
⊕ans

` ∈ dom(sci) (`, d, ψ,Σ) �sci�p (`′′, d, ψ′′,Σ′′)

(`, d, ψ,Σ) �sc0 ⊕ sc1�p (`′, d′, ψ′,Σ′)
⊕abn

ans

` ∈ dom(sci) (`, d, ψ,Σ) �sci� (`′′, d, ψ′′,Σ′′) (`′′, d′′, ψ′′,Σ′′) �sc0 ⊕ sc1�p (`′, d′, ψ′,Σ′)

(`, d, ψ,Σ) �sc0 ⊕ sc1�p (`′, d′, ψ′,Σ′)
⊕ans

` /∈ dom(sc)

(`, d, ψ,Σ) �sc� (`, d, ψ,Σ)
oodans

Figure 9: Abstract natural semantics rules of SPush for secure information flow

Ψ ≤ Ψ

Ψ ≤ Ψ′′ Ψ′′ ≤ Ψ′

Ψ ≤ Ψ′ τ :: ⊥ ≤ ⊥ ⊥ ≤ Ψ Ψ ≤ ∗
τ ≤ τ ′ Ψ ≤ Ψ′

τ :: Ψ ≤ τ ′ :: Ψ′

∀x.Σ(x) ≤ Σ′(x)

Σ ≤ Σ′

∀`, d,Ψ,Σ. (`, d,Ψ,Σ) ∈ Π ⊃ Ψ = ⊥ ∨ ∃Ψ′. (`, d′,Ψ′,Σ′) ∈ Π′ ∧ d ≤ d′ ∧Ψ ≤ Ψ′ ∧ Σ ≤ Σ′

Π ≤ Π′

Figure 10: Subtyping rules of SPush for secure information flow
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(`, load x) : {(`, d′ ∧ d,Ψ,Σ[x 7→ d′ ∧ Σ(x)]) | (`+ 1, d, d′ :: Ψ,Σ) ∈ Π} ∪ {(`, d, ∗,Σ) | (`+ 1, d, ∗,Σ) ∈ Π} ∪Π�{`} −→ Π
loadts

(`, store x) : {(`,Σ(x) ∧ d,Σ(x) :: Ψ,Σ) | (`+ 1, d,Ψ,Σ) ∈ Π} ∪Π�{`} −→ Π
storets

(`, push n) : {(`, d′ ∧ d,Ψ,Σ) | (`+ 1, d, d′ :: Ψ,Σ) ∈ Π} ∪ {(`, d, ∗,Σ) | (`+ 1, d, ∗,Σ) ∈ Π} ∪Π�{`} −→ Π
pushts

(`, add) : {(`, d′ ∧ d, d′ :: d′ :: Ψ,Σ) | (`+ 1, d, d′ :: Ψ,Σ) ∈ Π} ∪ {(`, d,H :: H :: ∗,Σ) | (`+ 1, d, ∗,Σ) ∈ Π} ∪Π�{`} −→ Π
addts

. . .

m 6= `

(`, goto m) : {(`, d,Ψ,Σ) | (m, d,Ψ,Σ) ∈ Π} ∪Π�{`} −→ Π
goto 6=ts (`, goto `) : {(`,H, ∗, constH)} ∪Π�{`} −→ Π

goto=
ts

m 6= `

(`, gotoF m) : {(`, d0, d0 :: (Ψ ∧Ψ′),Σ ∧ Σ′) | (`+ 1, d,Ψ,Σ), (m, d′,Ψ′,Σ′) ∈ Π} ∪Π�{`} −→ Π

where d0 = d ∧
V

Ψ ∧ d′ ∧
V

Ψ′

gotoF 6=ts

(`, gotoF `) : Π�{`} −→ Π
gotoF=

ts

0 : Π −→ Π
0ts

sc0 : Π�dom(sc0) −→ Π sc1 : Π�dom(sc1) −→ Π sc0 ⊕ sc1 multiple-exit

sc0 ⊕ sc1 : Π −→ Π�
dom(sc0⊕sc1)

⊕ts

sc0 : Π�dom(sc0) −→ Π sc1 : Π�dom(sc1) −→ Π sc0 ⊕ sc1 single-exit with `∗ the exit-point
Π′ ≤ Π ∀(`′, d′,Ψ′,Σ′) ∈ Π′�dom(sc0⊕sc1). d

′ ≤ d∗

sc0 ⊕ sc1 : Π′ −→ {(`∗, d∗,Ψ,Σ) | (`∗, d,Ψ,Σ) ∈ Π} ∪Π�
dom(sc0⊕sc1)∪`∗

⊕ts

Π′
0 ≤ Π0 sc : Π0 −→ Π1 Π1 ≤ Π′

1

sc : Π′
0 −→ Π′

1

conseqts

Figure 11: Typing rules of SPush for secure information flow

one very notable exception though: Floyd’s logic of
control-flow graphs (1967).) The logic of Quigley
(2003) for Java bytecode is based on decompilation,
so it applies to pieces of code in the image of a fixed
compiler. Benton’s (2004) logic for a Push-like stack-
based language involves global contexts of label in-
variants as de Bruin’s logic. Bannwart & Müller’s
(2005) logic extends it to a subset of Java bytecode,
with both an operand stack and a call stack, leaving
out exceptions.

The work of Huisman & Jacobs (2000) describes
a Hoare logic for Java, incl. exceptions. Schröder
& Mossakowski (2003) and Schröder & Mossakowski
(2004) discuss a systematic method for designing
Hoare logics for languages with monadic side-effects,
in particular, exceptions.

The present paper builds upon our recent work
(Saabas & Uustalu 2005), where a compositional nat-
ural semantics and Hoare logic based on the im-
plicit finite unions structure are introduced for a sim-
ple low-level language Goto with expressions. The
same structure is used by Tan & Appel (2005) and
Tan (2005), who study the same language. But in-
stead of introducing a natural semantics for the struc-
tured version of the language, they proceed from a
small-step ideology. As a result, they arrive at a
continuation-style Hoare logic explainable by Appel
& McAllester’s ‘indexed model’ (2001), with a rather
convoluted interpretation of Hoare triples involving
explicit fixedpoint approximations. Apparently un-
aware of Tan & Appel’s work, Benton (2005) defines
a similar logic for a stack-based language with a typ-
ing component ensuring that the stack is used safely.

Presenting program analyses especially for func-
tional languages in terms of type systems is a popu-
lar topic. Naik & Palsberg (2005) have related model
checking and type systems for While. A different
general method to produce type systems for While
equivalent to dataflow analyses is described in the
work of Laud et al. (2005). As for low-level languages,
Morrisett et al. (1999) imposed a memory-safety type
system on an assembly language and Morrisett et al.
(2003) extended it for a stack-based language. Stata

& Abadi (1999) were the first to describe the Java
bytecode verifier as a type system. All such systems
are again non-compositional and make use of global
contexts of label invariants (where an invariant is as-
sociated to every instruction or every basic block of
the global piece of code), except for the type system
component in Benton’s (2005) logic.

A static analysis for secure information flow was
first described by Denning & Denning (1977). They
worked with a While-like language, but also pro-
posed a way to handle languages with goto instruc-
tions. Kobayashi & Kirane (2002) and Barthe & Rezk
(2005) use the same idea of control dependence re-
gions in type systems equivalent to secure information
flow analyses for sequential Java bytecode.

10 Conclusions and future work

We have shown that our original idea of structuring
low-level languages with finite unions to obtain com-
positional natural semantics and Hoare logics (Saabas
& Uustalu 2005) applies to stack-based languages just
as well as to languages with store only. The possi-
bility of abnormal terminations can be handled well,
and the semantics and logics obtained are neat and
enjoy every desirable metatheoretic property. More-
over, in the richer setting of a stack-based language,
it is meaningful to consider abstracted semantics and
type systems too. Notably, one can obtain a type sys-
tem to attest safe stack usage, but also produce type
systems for other purposes. We have demonstrated
this on the example of a type system equivalent to a
secure information flow analysis.

We plan to apply the method also to a lan-
guage with both an operand stack and call stack, cf.
(Benton 2005). We will also validate the practicality
of our approach in realistic code and proof / type-
derivation presentation (certified code formats). For
proof compilation and generation of type derivations
the approach seems just ideal and we intend to im-
plement a proof compiler / type derivation generator.

On the theoretical side, we intend to carry out a
detailed comparison of our natural-semantics based
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direct approach to the continuation-style approach of
Tan & Appel (2005) and Benton (2005) that relies on
Appel & McAllester’s (2001) ‘indexed model’.
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Abstract

In this paper, we study the formalization of one-pass
call-by-value CPS compilation using higher-order ab-
stract syntax. In particular, we verify mechanically
that the source program and the CPS-transformed
program have the same observable behavior. A key
advantage of this approach is that it avoids any ad-
ministrative redexes thereby simplifying the proofs
about CPS-translations. The CPS translation to-
gether with its correctness proof is implemented and
mechanically verified in the logical framework Twelf.

Keywords: Program transformation, correctness
proofs, higher-order abstract syntax, logical frame-
work

1 Introduction

Compilation is a program transformation from a
source to a target language, each with a well-defined
syntax and semantics. The problem is then to prove
that the source and target program have the same
observable behavior at execution time. Establishing
the correctness of a compiler has been important from
the beginning of compiler studies. However this is of-
ten found difficult since the semantics of a realistic
programming language is often difficult to formalize
and the execution models of source and target lan-
guages are often very different. Further more a (mi-
nor) change to the compiler (e.g. implementation of
a new optimization strategy) which is likely to occur
during the development cycle of a compiler, may re-
quire a renewed effort to reconstruct the correctness
proof of the compiler. Mechanical verification can in-
crease the confidence in the correctness proof, since
they are often tedious and it is easy to make mistakes,
especially if a language still evolves.

Continuation-passing style (CPS) is a program no-
tation that makes every aspect of control flow and
data flow explicit (Appel 1992). The original work
of CPS study due to Plotkin goes back to the mid-
70’s (Plotkin 1975). In his work, he provided the
first formalization of the CPS transformation which
is first-order. However, this gives rise to annoying
administrative redexes which are solely due to the
CPS transformation and not corresponding to an ac-
tual reduction step in the original program (Danvy
& Filinski 1992, Danvy 1991). These redexes are an-
noying because they interfere both with proving the
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correctness and properties of a CPS transformation
(Plotkin 1975, Danvy & Nielsenand 2001) and with
using it in a compiler (Guy L. Steele 1978).

Different studies of different versions of CPS trans-
formations have been done since Plotkin’s original
work. To simplify the correctness proof of CPS trans-
formation, and to simplify the reasoning of prov-
ing properties (CPS transformations preserve types)
of CPS-transformed programs, O. Danvy and L. R.
Nielsen presented a new first-order one-pass CPS
transformation, which is compositional (Danvy &
Nielsen 2002). They later presented a higher-order
colon translation (Danvy & Nielsenand 2001), which
links higher-order CPS transformation with Plotkin’s
original proof technique. They extended Plotkin’s
original first-order colon translation to a higher-order
version in order to prove the correctness of the higher-
order CPS transformation. However, they still need
a colon translation to handle administrative redexes.
Olivier Danvy, Belmina Dzafic and Frank Pfenning
showed their approach of formalizing a higher-order
CPS transformation using logical relations in order
to prove a syntactic property of the CPS program
(Danvy, Dzafic & Pfenning 1999). They proved the
proper occurrence of the formal parameters of the
continuations. They formalized their proofs in Elf,
but they did not show how to formalize the correct-
ness proof of the CPS transformation. Hongwei Xi
and Carsten Schürmann showed that typing deriva-
tions can be CPS-transformed, so that we can lift the
CPS transformation from the level of expressions to
the level of type derivations (Xi & Schürmann 2001).
They studied a call-by-value CPS transformation for
a core subset of the DML language. They proved they
can lift the CPS transformation from the level of ex-
pressions to the level of type derivations, and they
formalized the languages and transformation in LF.
However, they did not prove nor verify the correctness
of their CPS transformation for DML types. Yasuhiko
Minamide and Koji Okuma have verified several ver-
sions of CPS transformation in the Isabelle/HOL the-
orem prover (Minamide & Okuma 2003). Since they
chose to use first-order abstract syntax with variable
names for their formalization, they had the problems
of bound variables renaming and they needed to im-
plement their own “substitution” programs.

None of the related work discussed above showed
how to use higher-order abstract syntax to formalize
and verify CPS translation, which is our goal here.
In this paper, we presents a higher-order setting of
CPS transformation as a rewriting system that di-
rectly produces a CPS program without administra-
tive redexes. We also show how to formalize CPS
translation using higher-order abstract syntax and
verify its correctness proof using logical framework.
This approach has several advantages compared to
the ones above: 1) No administrative redexes. 2)
Proof is a structural induction proof. 3) The formal-
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ization does not have the problems of fresh variables
and α-equivalence.

The rest of this paper is organized as follows.
Section 2 introduces the direct-style source language
and the continuation-passing style target language we
consider in our CPS translation and their operational
semantics. The one-pass higher-order CPS transfor-
mation is presented at the end of this section. Sec-
tion 3 shows how we prove the correctness of our
CPS transformation by proving the “Soundness” and
“Completeness” theorems. In Section 4, we present
the formalization of the CPS translation and the cor-
rectness proof using higher-order abstract syntax in a
logical framework. Section 5 concludes.

2 Languages and CPS Transformation

2.1 Operational semantics for Mini-ML

We will consider a fragment of a functional language
as our source language. It serves as the jumping-off
point for much of the studies of programming lan-
guage concepts. In our CPS translation, we con-
sider the Mini-ML expressions as the direct-style pro-
grams. We only consider a small subset of the lan-
guage in this paper, the syntax of the Mini-ML lan-
guage is defined as follows:

Expressions e ::= zero | (succ e)
| (case e1 of zero ⇒ e2 | succ x ⇒ e3)
| pair(e1, e2) | fst e | snd e
| app(e1, e2) | lam x. e
| vl(v)

Values v ::= x | zero∗ | succ∗ v | pair∗(v1 , v2) | lam∗ x. e

Most of these constructs should be familiar from
functional programming languages such as ML: zero
stands for zero, (succ e) stands for the successor of
e. A case expression chooses a branch based on
whether the value of the first argument is zero or
non-zero. Abstraction, lam x. e, forms functional ex-
pressions. Note that only value variables exist. The
term vl(v) represents a coercion of a Mini-ML value
to a Mini-ML expression. We again distinguish val-
ues from expressions since this will later simplify the
formalization of the CPS translation.

vl(v) ↪→ v
ev vl

zero ↪→ zero∗
ev z e ↪→ v

succ e ↪→ succ∗ v
ev s

e1 ↪→ z e2 ↪→ v

(case e1 of z ⇒ e2 | succ x ⇒ e3) ↪→ v
ev case z

e1 ↪→ succ∗ v′1 [v′1/x]e3 ↪→ v

(case e1 of zero ⇒ e2 | succ x ⇒ e3) ↪→ v
ev case s

e1 ↪→ v1 e2 ↪→ v2

pair(e1, e2) ↪→ pair∗(v1, v2)
ev pair

e ↪→ pair∗(v1, v2)

fst e ↪→ v1
ev fst

e ↪→ pair∗(v1, v2)

snd e ↪→ v2
ev snd

lam x. e ↪→ lam∗ x. e
ev lam

e1 ↪→ lam∗ x. e′ e2 ↪→ v2 [v2/x]e′ ↪→ v

app(e1, e2) ↪→ v
ev app

Figure 1: The Mini-ML big-step evaluation seman-
tics.

Evaluation rules of the Mini-ML expressions are
shown in Figure 1. They are given via a big-step

operational semantics and are described by the judg-
ment e ↪→ v meaning the expression e evaluates to
a value v. For example, to evaluate an application
app(e1, e2), we need to evaluate e1 to some value
lam

∗ x. e′, e2 to some value v2, and [v2/x]e′ to the
final value of the application. Note, the order of eval-
uation of these premises is left unspecified. The other
rules are straightforward.

We will refer to the Mini-ML language as direct
style to distinguish it from the continuation-passing
style (CPS) calculus introduced below.

2.2 The continuation-passing style language

In this section, we define the target language of
the CPS compilation, which describes programs in
continuation-passing style.

CPS terms satisfy three properties (Plotkin 1975):

• Indifference: Evaluation order independent.

• Simulation: CPS encodes the evaluation order.

• Translation equational correspondence between
direct-style and CPS-style.

The syntax of the CPS language we use to represent
the continuation-passing style programs is defined as
follows:

Expressions E ::= App(V1, V2, k) | Fst(V, k) | Snd(V, k)
| (Case V of Zero ⇒ E2 | (Succ x) ⇒ E3)
| vl(V )

Values V ::= x | Zero | Succ V | Pair(V1 , V2) | Lam (x, k).E

Continuations k ::= λx.E

Evaluation contexts are modeled via CPS continu-
ations. A CPS continuation is represented as a meta-
level function λx.E which essentially describes a CPS
expression which has a hole x, that can only be filled
by a CPS value. The initial or empty evaluation con-
text is represented by λx.vl(V ). Substitution into a
hole is modeled via meta-level application ((λx.E) V )
which beta-reduces to [V/x]E. An important prop-
erty of CPS continuations is that they are in fact lin-
ear functions, i.e. the hole x in the CPS expression E
occurs only once (Appel 1992, Danvy et al. 1999). We
will not prove this property but it will be maintained
as part of the invariants in this description.

The CPS expressions keep track of its evaluation
context in which they will be executed using an ex-
tra parameter k. In the definition above, we separate
cleanly CPS values from CPS expressions and vl(V )
denotes the coercion of a CPS value to a CPS expres-
sion. Note that the arguments to CPS expressions
must be CPS values and cannot be arbitrary subex-
pressions.

Figure 2 shows the operational semantics of the
CPS language. The single-step reductions for the
CPS expressions are defined first. The multi-step re-
duction relation 7−→∗ is the reflexive, transitive clo-
sure of single-step reduction 7−→. Deductions of the
judgment E 7−→∗ E′ have a very simple form: They
all consist of a sequence of single steps terminated
by an application of the reflexivity rule. We will fol-
low standard practice and use a linear notation for
sequences of steps:

E1 7−→ E2 7−→ E3 7−→ . . . 7−→ En

Similarly, we will mix multi-step and single-step
transitions in sequences with the obvious meaning.
Using the rules above we can reduce CPS expressions
to CPS values (in the form of vl(V )). There are two
important properties of this multi-reduction system.
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The CPS language single-step reductions

(Case Zero of Zero ⇒ E2 | Succ x ⇒ E3) 7−→ E2

red case z

(Case (Succ V ) of Zero ⇒ E2 | Succ x ⇒ E3) 7−→ [V/x]E3

red case s

Fst(Pair(V1, V2), k) 7−→ (k V1)
red fst

Snd(Pair(V1, V2), k) 7−→ (k V2)
red snd

App((Lam (x, k′
). E), V, k) 7−→ [V/x][k/k′

]E
red app

The CPS language multi-step reductions

E 7−→
∗ E

red reflexive

E 7−→ E1 E1 7−→
∗ E2

E 7−→
∗ E2

red transitive

Figure 2: The CPS language operational semantics.

Theorem 1 (Uniqueness).
If E 7−→∗ vl(V1) and E 7−→∗ vl(V2), then V1 = V2.

Proof. Proof by structural induction on the reduction
rules.

Theorem 2 (Termination).
For every CPS expression E there is some CPS value
V such that E 7−→∗ vl(V ).

Proof. Note that no variable can be bound in more
than one place within a continuation expression, and
no variable can be mentioned outside its syntactic
scope. So we can observe that each reduction step
reduces the size of the term and that size is a termi-
nation measure because the usual order on the natural
numbers is well founded.

2.3 The one-pass CPS transformation

In this section, we define two CPS-translations, one
for Mini-ML values and one for Mini-ML expres-
sions. The translations are mutual recursive. While
the CPS-translation for values is essentially closed
and independent of the CPS continuations, the CPS-
translation for expressions must take into account the
current evaluation state, which is captured by the
CPS continuations. We are also very explicit about
free variables which will all be bound in a context Γ,
which is defined as follows:

Γ ::= . | Γ, x | Γ, k

The context Γ can be either empty or contain
Mini-ML and CPS variables as well as continuation
variable k.

The CPS transformation we present here is sim-
ilar to an optimized version of CPS transformation
by Danvy and Nielsen (Danvy & Nielsen 2002). The
transformation operates in one pass and is both com-
positional and higher-order. Because it operates in
one pass, it directly yields compact CPS programs
that are comparable to what one would write by hand.
Because it is compositional, it allows proofs by struc-
tural induction. Because it is higher-order, we avoid
administrative redexes which in turn simplifies the
proof about CPS-translation. We give the translation
as an inference system, which may be slightly unusual
but emphasizes the behavior of the CPS translation.

For the purpose of our formalization, Figure 3 ex-
presses the one-pass CPS transformation as inference
rules. It uses two judgments. A Mini-ML value v is

transformed into a CPS value V whenever the judg-
ment

Γ ` v
v
∼ V

is satisfied. Given a (higher-order) continuation k,
a Mini-ML expression e is transformed into a CPS
expression E whenever the judgment

Γ ` (e, k)
e
∼ E

is satisfied.
These judgments can be interpreted operationally

by assuming that v, e and k are given and V and E
are to be constructed by building a CPS-translation
derivation in a bottom-up fashion. Since the vari-
ables in the Mini-ML languages and the CPS language
can only contain values, we say that a Mini-ML vari-
able x is CPS-transformed into a CPS variable x, by

Γ ` x
v
∼ x, if x is in the context Γ. All the free

variables are captured by the context Γ during the
CPS-translation. The context Γ can actually contains
both Mini-ML and CPS variables (one can think of
that Γ contains implicit CPS-translation from Mini-
ML variables to CPS variables). The free variables
bound in Γ may occur in e, k or E. Note that in
order to translate lam

∗ x. e we need to recursively
translate the function body e.

Transforming a Mini-ML expression into its corre-
sponding CPS expression needs to represent continu-
ation contexts as λ-abstractions. A Mini-ML expres-
sion e is transformed with a continuation context k,
it ranges over meta-level functions, which map CPS
values to CPS expressions. The result of transforming
an expression e into CPS expression E in an empty
context is given by

Γ ` (e, (λx.vl(x)))
e
∼ E

.

3 Correctness of the one-pass CPS transfor-
mation

Plotkin proved three properties of the CPS trans-
formation: Indifference, Simulation, and Translation
(Plotkin 1975). We prove the Simulation property
here, since it formalizes the correctness of the call-by-
value CPS transformation.

To prove correctness, we need to show the corre-
spondence between the high-level language and the
low-level abstract machine. In other words, we can
translate programs written in the high-level language
into programs which run on the abstract machine.
Moreover, the source program will have the same ob-
servable behavior as the target program. The proof is
constructive and constitutes a program which trans-
lates derivations in the source language into deriva-
tions of the target language and vice versa.

Theorem 3 (Correctness).
Soundness:
If Γ ` (e, (λx.vl(x)))

e
∼ E′ and E′ 7−→∗ vl(V ) then

e ↪→ v and Γ ` v
v
∼ V .

Completeness:

If e ↪→ v and Γ ` (e, λx.vl(x))
e
∼ E′ then Γ ` v

v
∼ V ′

and E′ 7−→∗ vl(V ′).

The theorem shows that the source program
(Mini-ML program) and the target program (CPS-
transformed program) will result in the same value.
We will prove the correctness of our CPS-translation
by proving the soundness and completeness of the
translation.
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CPS-translation for Mini-ML values

x ∈ Γ

Γ ` x
v
∼ x

cps var
Γ ` zero∗

v
∼ Zero

cps zero
∗

Γ ` v
v
∼ V

Γ ` (succ∗ v)
v
∼ (Succ V )

cps succ
∗

Γ ` v1

v
∼ V1 Γ ` v2

v
∼ V2

Γ ` pair∗(v1, v2)
v
∼ Pair(V1, V2)

cps pair
∗

Γ, x, k′ ` (e, k′)
e
∼ E′ where x and k′ are fresh

Γ ` (lam∗ x. e)
v
∼ Lam (x, k′). E′

cps lam
∗

CPS-translation for Mini-ML expressions

Γ ` v
v
∼ V

Γ ` (vl(v), k)
e
∼ (k V )

cps vl

Γ ` (zero, k)
e
∼ (k Zero)

cps zero

Γ ` (e, (λx.k (Succ x)))
e
∼ E′

Γ ` ((succ e), k)
e
∼ E′

cps succ

Γ ` (e2, k)
e
∼ E2

Γ, x ` (e3, k)
e
∼ E3

Γ ` (e1, (λx1.Case x1of z⇒ E2 | (Succ x)⇒ E3))
e
∼ E′

Γ ` ((case e1of zero⇒ e2 | (succ x)⇒ e3), k)
e
∼ E′

cps case

Γ, x1 ` (e2, (λx2.k (Pair(x1, x2))))
e
∼ E2

Γ ` (e1, (λx1.E2))
e
∼ E′

Γ ` (pair(e1, e2), k)
e
∼ E′

cps pair

Γ ` (e, (λx1.Fst(x1, k)))
e
∼ E′

Γ ` (fst e, k)
e
∼ E′

cps fst
Γ ` (e, (λx2.Snd(x2, k)))

e
∼ E′

Γ ` (snd e, k)
e
∼ E′

cps snd

Γ, x, k′ ` (e, k′)
e
∼ E′ where x and k′ are fresh

Γ ` (lam x. e, k)
e
∼ (k (Lam (x, k′). E′))

cps lam

Γ, x1 ` (e2, (λx2.App(x1, x2, k)))
e
∼ E2

Γ ` (e1, (λx1. E2))
e
∼ E′

Γ ` (app(e1, e2), k)
e
∼ E′

cps app

Figure 3: The one-pass CPS transformation formulated as inference rules.
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To show that the abstract machine works cor-
rectly, we prove that all reduction sequences can be
translated into evaluation derivations. To be more
precise, we need to show that for all reduction se-
quences on the abstract machine starting with the
empty context which evaluate some expression E

(Γ ` (e, (λx.vl(x)))
e
∼ E) to some CPS value V in

multiple steps, there exists an evaluation in the Mini-
ML operational semantics s.t. expression e evaluates

to value v and Γ ` v
v
∼ V .

This guarantees that the translation is sound.
However, we will not be able to prove this statement
directly, since the evaluation context k will change,
which will prevent the application of the induction
hypothesis in the proof. Therefore we will prove the
following generalized statement: if we start in an
arbitrary evaluation context k, with the state Γ `

(e, k)
e
∼ E and a reduction sequence E 7−→∗ vl(W )

then there exists an intermediate state (k V ) such

that e ↪→ v in the Mini-ML semantics and Γ ` v
v
∼ V

and (k V ) 7−→∗ vl(W ). The lemma states that a com-
plete computation with an appropriate initial state
can be translated into an evaluation followed by an-
other complete computation. This proof follows sim-
ilar proofs about the correctness of compilers which
are discussed in more detail in (Pfenning 2001).

3.1 Substitution lemmas

Before we proceed to prove this soundness lemma,
we will first show that CPS-translation is preserved
across substitution. This is an important property
needed in the proof for the Soundness and Complete-
ness lemmas.

Lemma 1 (Substitution lemma).

1. For all Mini−ML value v and v′. If Γ ` v′
v
∼

V ′ and Γ, x, Γ′ ` v
v
∼ V then Γ, Γ′ ` [v′/x]v

v
∼

[V ′/x]V .

2. For all Mini−ML expressions e and values v′. If

Γ ` v′
v
∼ V ′ and

Γ, x, Γ′ ` (e, k)
e
∼ E then Γ, Γ′ `

([v′/x]e, [V ′/x]k)
e
∼ [V ′/x]E.

Proof. By mutual induction on v and e. We only
show a few cases in the proof in detail; the remaining
ones follow the same pattern.

Case: v = x

Γ, x,Γ′ ` x
v
∼ V By ass.

V = x By cps var

Γ ` v′
v
∼ V ′ By ass.

Γ, Γ′ ` [v′/x]x
v
∼ [V ′/x]x By subst. def.

Case: v = zero
∗

Γ, x,Γ′ ` zero∗
v
∼ V By ass.

V = Zero By cps zero∗

Γ ` v′
v
∼ V ′ By ass.

Γ, Γ′ ` [v′/x]zero∗
v
∼ [V ′/x]Zero By subst. def.

Case: v = pair
∗(v1, v2)

Γ, x,Γ′ ` pair∗(v1, v2)
v
∼ V By ass.

V = Pair(V1, V2),

Γ, x,Γ′ ` v1
v
∼ V1 and Γ, x,Γ′ ` v2

v
∼ V2 By cps pair∗

Γ ` v′
v
∼ V ′ By ass.

Γ, Γ′ ` [v′/x]v1
v
∼ [V ′/x]V1 and

Γ, Γ′ ` [v′/x]v2
v
∼ [V ′/x]V2 By I.H.

Γ, Γ′ ` pair∗([v′/x]v1, [v′/x]v2)
v
∼ Pair([V ′/x]V1, [V ′/x]V2)

By cps pair∗

Γ,Γ′ ` [v′/x]pair∗(v1 , v2)
v
∼ [V ′/x]Pair(V1, V2)

By subst. def.

Case: v = lam
∗ y. e (where y 6= x)

Γ, x,Γ′ ` lam∗ y. e
v
∼ V By ass.

V = Lam (y, k′). E′ and

Γ, y, k′, x,Γ′ ` (e, k′)
e
∼ E′ By cps lam∗

Γ ` v′
v
∼ V ′ By ass.

Γ, y, k′,Γ′ ` ([v′/x]e, k′)
e
∼ [V ′/x]E′

By I.H. on subst. lemma 2

Γ,Γ′ ` lam∗ y. [v′/x]e
v
∼ Lam (y, k′). [V ′/x]E′ By cps lam∗

Γ,Γ′ ` [v′/x]lam∗ y. e
v
∼ [V ′/x]Lam (y, k′). E′ By subst. def.

Case: e = vl(v)

Γ, x,Γ′ ` (vl(v), k)
e
∼ E By ass.

E = (k V ) and Γ, x,Γ′ ` v
v
∼ V By cps vl

Γ ` v′
v
∼ V ′ By ass.

Γ,Γ′ ` [v′/x]v
v
∼ [V ′/x]V By I.H. on subst. lemma 1

Γ,Γ′ ` (vl([v′/x]v), [V ′/x]k)
e
∼ ([V ′x]k [V ′/x]V ) By cps vl

Γ,Γ′ ` ([v/x]vl(v′), [V ′/x]k)
e
∼ [V ′/x](k V ) By subst. def.

Case: e = zero

Γ, x,Γ′ ` (zero, k)
e
∼ E By ass.

E = (k Zero) By cps zero

Γ ` v′
v
∼ V ′ By ass.

Γ,Γ′ ` ([v′/x]zero, [V ′/x]k)
e
∼ ([V ′/x]k Zero)

By subst. def. and cps zero

Γ,Γ′ ` ([v′/x]zero, [V ′/x]k)
e
∼ [V ′/x](k Zero) By subst. def.

Case: e = pair(e1, e2)

Γ, x,Γ′ ` (pair(e1, e2), k)
e
∼ E′ By ass.

Γ, x1, x,Γ′ ` (e2, (λx2.k (Pair(x1, x2))))
e
∼ E2 and

Γ, x,Γ′ ` (e1, (λx1.E2))
e
∼ E′ By cps pair

Γ ` v′
v
∼ V ′ By ass.

Γ, x1, Γ′ ` ([v′/x]e2, [V ′/x](λx2.k (Pair(x1, x2))))
e
∼ [V ′/x]E2

By I.H.

Γ, x1, Γ′ ` ([v′/x]e2, (λx2.[V ′/x]k (Pair(x1, x2))))
e
∼ [V ′/x]E2

By subst. def.

Γ,Γ′ ` ([v′/x]e1, [V ′/x](λx1.E2))
e
∼ [V ′/x]E′ By I.H.

Γ,Γ′ ` ([v′/x]e1, (λx1.[V ′/x]E2))
e
∼ [V ′/x]E′ By subst. def.

Γ,Γ′ ` (pair([v′/x]e1, [v′/x]e2), k)
e
∼ [V ′/x]E′ By cps pair

Γ,Γ′ ` ([v′/x]pair(e1, e2), k)
e
∼ [V ′/x]E′ By subst. def.

Case: e = app(e1, e2)

Γ, x,Γ′ ` (app(e1, e2), k)
e
∼ E′ By ass.

Γ, x1, x,Γ′ ` (e2, (λx2.App(x1, x2, k)))
e
∼ E2 and

Γ, x,Γ′ ` (e1, (λx1. E2))
e
∼ E′ By cps app

Γ ` v′
v
∼ V ′ By ass.

Γ, x1, Γ′ ` ([v′/x]e2, [V ′/x](λx2.App(x1, x2, k)))
e
∼ [V ′/x]E2

By I.H.

Γ, x1, Γ′ ` ([v′/x]e2, (λx2.App(x1, x2, [V ′/x]k)))
e
∼ [V ′/x]E2

By subst. def.

Γ,Γ′ ` ([v′/x]e1, [V ′/x](λx1. E2))
e
∼ [V ′/x]E′ By I.H.

Γ,Γ′ ` ([v′/x]e1, (λx1. [V ′/x]E2))
e
∼ [V ′/x]E′ By subst. def.

Γ,Γ′ ` (app([v′/x]e1, [v′/x]e2), [V ′/x]k)
e
∼ [V ′/x]E′

By cps app

Γ,Γ′ ` ([v′/x]app(e1, e2), [V ′/x]k)
e
∼ [V ′/x]E′ By subst. def.

3.2 Soundness

Lemma 2 (Soundness).

If C : Γ ` (e, k)
e
∼ E and S : E 7−→∗ vl(W ) then

there exist derivations D : e ↪→ v, C ′ : Γ ` v
v
∼ V and

a rest computation S ′ : (k V ) 7−→∗ vl(W ), where S ′

is a subsequence of S.
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Proof. By structural induction on the derivation C :

Γ ` (e, k)
e
∼ E and the CPS-reductions S :

E 7−→∗ vl(W ). We can apply the induction hypoth-
esis if either the CPS-translation is applied to a sub-

derivation of C : Γ ` (e, k)
e
∼ E or we have a shorter

sequence of CPS-reductions S ′ where S ′ < S. We
show most cases in the proof in detail; the remaining
ones follow the same pattern. Throughout the proof

we consider CPS expressions modulo
β
=.

Case: C =

C2

Γ, x1 ` (e2, (λx2.k (Pair(x1, x2))))
e
∼ E2

C1

Γ ` (e1, (λx1.E2))
e
∼ E′

Γ ` (pair(e1, e2), k)
e
∼ E′

cps pair

S : E′ 7−→∗ vl(W ) By ass.
D1 : e1 ↪→ v1,

C′
1 : Γ ` v1

v
∼ V1, and

S′
1 : ((λx1.E2) V1)

| {z }

β
=[V1/x1]E2

7−→∗ vl(W ) By I.H. on C1

Γ ` ([v1/x1]e2, (λx2.[V1/x1]k (Pair(x1, x2))))
e
∼ [V1/x1]E2

By the Substitution lemma

Γ ` (e2, (λx2.k (Pair(V1, x2))))
e
∼ [V1/x1]E2

x1 occurs only once in the continuation
S′

1 : [V1/x1]E2 7−→∗ vl(W ) By previous lines
D2 : e2 ↪→ v2,

C′
2 : Γ ` v2

v
∼ V2, and

S′
2 : ((λx2.k (Pair(V1, x2))) V2)

| {z }

β
=(k Pair(V1, V2))

7−→∗ vl(W ) By I.H. (S ′
1 < S)

D : pair(e1, e2) ↪→ pair∗(v1, v2) By ev pair

C′ : Γ ` pair∗(v1, v2)
v
∼ Pair(V1, V2) By cps pair∗

S′ : (k Pair(V1, V2)) 7−→∗ vl(W ) By S′
2

Case: C =

C1

Γ ` (e, (λx1.Fst(x1, k)))
e
∼ E′

Γ ` (fst e, k)
e
∼ E′

cps fst

S : E′ 7−→∗ vl(W ) By ass.
D1 : e ↪→ v,

C′
1 : Γ ` v

v
∼ V , and

S′
1 : ((λx1.Fst(x1, k)) V )

| {z }

β
=Fst(V, k)

7−→∗ vl(W ) By I.H. on C1

V = Pair(V1, V2) and
S1 : Fst(Pair(V1, V2), k) 7−→ (k V1) 7−→∗ vl(W )

| {z }

S′

By red fst

v = pair∗(v1 , v2), Γ ` v1
v
∼ V1, and Γ ` v2

v
∼ V2

By inversion on cps pair∗

D1 : e ↪→ pair∗(v1, v2) By previous lines
D : fst e ↪→ v1 By ev fst
S′ : (k V1) 7−→∗ vl(w) By previous lines

Case: C =

C1

Γ, x, k′ ` (e, k′)
e
∼ E′ where x and k′ are fresh

Γ ` (lam x. e, k)
e
∼ (k (Lam (x, k′). E′))

cps lam

S : (k (Lam (x, k′). E′) 7−→∗ vl(W ) By ass.
D : lam x. e ↪→ lam∗ x. e By ev lam

C′ : Γ ` lam∗ x. e
v
∼ Lam (x, k′). E′ By C1 and cps lam∗

S′ : (k (Lam (x, k′). E′) 7−→∗ vl(W ) By ass.

Case: C =

C2

Γ, x1 ` (e2, (λx2.App(x1, x2, k)))
e
∼ E2

C1

Γ ` (e1, (λx1. E2))
e
∼ E′

Γ ` (app(e1, e2), k)
e
∼ E′

cps app

S : E′ 7−→∗ vl(W ) By ass.
D1 : e1 ↪→ v1,

C′
1 : Γ ` v1

v
∼ V1, and

S′
1 : ((λx1. E2) V1)

| {z }

β
=[V1/x1]E2

7−→∗ vl(W ) By I.H. on C1

Γ ` ([v1/x1]e2, (λx2.[V1/x1]App(x1, x2, k)))
e
∼ [V1/x1]E2

By the Substitution lemma

Γ ` (e2, (λx2.App(V1, x2, k)))
e
∼ [V1/x1]E2

x1 occurs only once in the continuation
S′

1 : [V1/x1]E2 7−→∗ vl(W ) By previous lines
D2 : e2 ↪→ v2,

C′
2 : Γ ` v2

v
∼ V2, and

S′
2 : ((λx2.App(V1, x2, k)) V2)

| {z }

β
=App(V1, V2, k)

7−→∗ vl(W ) By I.H. (S ′
1 < S)

V1 = Lam (x, k′). E (for some E) and
S2 : App((Lam (x, k′). E), V2, k) 7−→ [V2/x][k/k′]E 7−→∗ vl(W )

| {z }

S3

By red app

v1 = lam∗ x. e and Γ, x, k′ ` (e, k′)
e
∼ E
By inversion on cps lam∗

Γ ` ([v2/x]e, k)
e
∼ [V2/x][k/k′]E By the Substitution lemma

S3 : [V2/x][k/k′]E 7−→∗ vl(W ) By previous lines

D3 : [v2/x]e ↪→ v, C′ : Γ ` v
v
∼ V (for some V ), and

S′ : (k V ) 7−→∗ vl(W ) By I.H. (S3 < S)
D : app(e1, e2) ↪→ v By ev app

It is important to realize that this lemma can-
not be (automatically) proven only by applying struc-
tural induction on the length of reduction sequences
S : E 7−→∗ vl(W ) nor purely on the CPS-translation

C : Γ ` (e, k)
e
∼ E. Clearly the CPS-reduction

sequence is not decreasing in several cases. For the
CPS-translation, the difficulty is to establish that we
apply the CPS-translation always to a smaller ex-
pression. However this is non-trivial and relies essen-
tially on the property that every variable in the CPS-
continuation occurs only once, i.e. CPS-continuations
as linear. An important observation is that we do
not necessarily need linearity to justify the sound-
ness proof, since in the cases where we cannot di-
rectly establish that the CPS-translation is applied
to a smaller term, the CPS-reduction sequence is de-
creasing.

Theorem 4 (Soundness).

If C : Γ ` (e, λx.vl(x))
e
∼ E, and S : E 7−→∗ vl(V )

then D : e ↪→ v, and C′ : Γ ` v
v
∼ V .

Proof. By assumption we know that C : Γ `

(e, λx.vl(x))
e
∼ E and S : E 7−→∗ vl(V ). By the pre-

vious lemma, we know that D : e ↪→ v, C ′ : Γ ` v
v
∼ V

and S ′ : (λx.vl(x)) V︸ ︷︷ ︸
β
=vl(V )

7−→∗ vl(V ).

3.3 Completeness

In this section, we prove the completeness of our CPS-
translation. Similar to the soundness theorem, which
we cannot prove directly, we will need to first prove
the “Completeness” lemma. In order to prove the
Completeness lemma, a utility lemma needs to be
proven first.
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Lemma 3 (Totality lemma).

1. For any Mini−ML value v, there exists some

CPS value V such that Γ ` v
v
∼ V is derivable.

2. For any Mini−ML expression e and continuation
k, there exists some CPS expression E such that

Γ ` (e, k)
e
∼ E is derivable.

Proof. Proof by structural induction on the
Mini−ML value v and Mini−ML expression e.
For each Mini−ML value v and Mini−ML expression
e, we have a corresponding CPS translation inference
rule, which transforms the Mini−ML value v or
Mini−ML expression e into their corresponding CPS
value V or CPS expression E.

The totality lemma states that for any well-formed
value v in the direct-style source program (the Mini-
ML program), we can always CPS-transform it into
a well-formed CPS value v by a CPS translation

Γ ` v
v
∼ V . Similar meaning as for the Mini-ML

expressions. Note, that in order to prove the totality
lemma for the case of Mini-ML value lam

∗ x. e, we
need to use the totality lemma of Mini-ML expression
for the body e.

Lemma 4 (Completeness).

If D : e ↪→ v and C′ : Γ ` v
v
∼ V , and S ′ : (k V ) 7−→∗

vl(W ) and C : Γ ` (e, k)
e
∼ E then S : E 7−→∗ vl(W )

is derivable.

Proof. By structural induction on the derivation D :
e ↪→ v. We only show a few cases in the proof in
detail; the remaining ones follow the same pattern.

Case: D =

D1
e1 ↪→ v1

D2
e2 ↪→ v2

pair(e1, e2) ↪→ pair∗(v1, v2)
ev pair

C′ : Γ ` pair∗(v1, v2)
v
∼ V By ass.

V = Pair(V1, V2) and Γ ` v1
v
∼ V1, Γ ` v2

v
∼ V2 By cps pair∗

C : Γ ` (pair(e1, e2), k)
e
∼ E′ By ass.

C2 : Γ, x1 ` (e2, (λx2.k (Pair(x1, x2))))
e
∼ E2, and

C1 : Γ ` (e1, (λx1.E2))
e
∼ E′ By inversion on cps pair

S′ : (k Pair(V1, V2) 7−→∗ vl(W ) By ass.
S′

2 : ((λx2 .k (Pair(V1, x2))) V2) 7−→∗ vl(W ) By β-reduction

C3 : Γ ` ([v1/x1]e2, (λx2.[V1/x1]k (Pair(x1, x2))))
e
∼ [V1/x1]E2

By the Substitution lemma

C3 : Γ ` (e2, (λx2.k (Pair(V1, x2))))
e
∼ [V1/x1]E2

x1 occurs only once in the continuation
S3 : [V1/x1]E2 7−→∗ vl(W ) By I.H.
S′

1 : ((λx1 .E2) V1) 7−→∗ vl(W ) By previous lines
S : E′ 7−→∗ vl(W ) By I.H.

Case: D =

lam x. e ↪→ lam∗ x. e
ev lam

C′ : Γ ` lam∗ x. e
v
∼ V By ass.

V = Lam (x, k′). E′ (for some E′) By cps lam∗

S′ : (k (Lam (x, k′). E′)) 7−→∗ vl(W ) By ass.

C : Γ ` (lam x. e, k)
e
∼ E By ass.

E = (k (Lam (x, k′). E′)) By cps lam
S : (k (Lam (x, k′). E′)) 7−→∗ vl(W ) By ass.

Case: D =

D1

e1 ↪→ lam∗ x. e′
D2

e2 ↪→ v′2

D3

[v′2/x]e′ ↪→ v

app(e1, e2) ↪→ v
ev app

C′ : Γ ` v
v
∼ V , S′ : (k V ) 7−→∗ vl(W ) and

C : Γ ` (app(e1, e2), k)
e
∼ E′ By ass.

C′
1 : Γ ` lam∗ x. e′

v
∼ Lam (x, k′). E (for some E), and

Γ, x, k′ ` (e′, k′)
e
∼ E By the Totality lemma

C′
2 : Γ ` v′2

v
∼ V ′

2 (for some V ′
2) By the Totality lemma

C3 : Γ ` ([v′2/x]e′, k)
e
∼ [V2/x][k/k′]E

By the Substitution lemma
S3 : [V2/x][k/k′]E 7−→∗ vl(W ) By I.H.
S′

3 : App((Lam (x, k′). E), V2, k) 7−→ [V2/x][k/k′]E
By red app

S′
2 : ((λx2.App((Lam (x, k′). E), x2, k)) V2) 7−→∗ vl(W )

By β-reduction

C2 : Γ, x1 ` (e2, (λx2.App(x1, x2, k)))
e
∼ E2,

C1 : Γ ` (e1, (λx1.E2))
e
∼ E′ By inversion on cps app

C3 : Γ ` (e2, (λx2.[Lam (x, k′). E/x1]App(x1, x2, k)))
e
∼ E′

2
and E′

2 = [(Lam (x, k′). E)/x1]E2 By the Substitution lemma

C3 : Γ ` (e2, (λx2.App((Lam (x, k′). E), x2, k)))
e
∼ E′

2
x1 occurs only once in the continuation

S2 : [(Lam (x, k′). E)/x1]E2 7−→∗ vl(W ) By I.H.
S′

1 : ((λx1.E2) (Lam (x, k′). E)) 7−→∗ vl(W ) By previous lines
S : E′ 7−→∗ vl(W ) By I.H.

Theorem 5 (Completeness).

If D : e ↪→ v, and C′ : Γ ` v
v
∼ V , and C : Γ `

(e, λx.vl(x))
e
∼ E then S : E 7−→∗ vl(V ).

Proof. By assumption we know that D : e ↪→ v, and

C′ : Γ ` v
v
∼ V , and C : Γ ` (e, λx.vl(x))

e
∼ E, and we

also know that S ′ : (λx.vl(x)) V︸ ︷︷ ︸
β
=vl(V )

7−→∗ vl(V ). By the

previous lemma, we know that S : E 7−→∗ vl(V ).

By proving the soundness and completeness of our
CPS translation, we can show the correctness of our
CPS transformation. We will present the formaliza-
tion of our CPS translation and proofs in the next
section.

4 Formalization in a meta-logical framework

From the previous section, one may have the feel-
ing that, as transformations become more and more
sophisticated, their hand-written correctness proofs
become less and less readable and reliable. Thus, it
is desirable to formalize and verify the correctness
of program transformations such as CPS transforma-
tion automatically with theorem provers (Minamide
& Okuma 2003) or other deductive systems.

We formalize our CPS translation in the meta-
logical framework Twelf (Pfenning & Schürmann
1999, Pfenning & Schürmann 2002). It is a framework
used for the specification, implementation, and meta-
theory of deductive systems from the theory of pro-
gramming languages and logics. The encoding style
in Twelf is very intuitive and simple from a logic pro-
gramming point of view, thus it is easier to under-
stand. The formalization task consists of four stages:

1. The representation of the abstract syntax of the
Mini-ML and CPS language.

2. The representation of the Mini-ML big-step op-
erational semantics and the small-step reduction
semantics of the CPS language.

3. The representation of the CPS transformation
inference rules between the Mini-ML and CPS
language.
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4. The representation of meta-theory of the lan-
guage (for example, the correctness proof of CPS
transformation).

4.1 Formalization of the languages

Twelf employs the representation methodology and
underlying type theory of the LF logical framework.
The first task in the formalization of a language in a
logical framework is the representation of its expres-
sions. We base the representation on abstract (rather
than concrete) syntax in order to expose the essen-
tial structure of the object language so we can con-
centrate on semantics and meta-theory, rather than
details of lexical analysis and parsing. Expressions
are represented as LF objects using the technique of
higher-order abstract syntax whereby variables of an
object language are mapped to variables in the meta-
language. This means that common operations such
as renaming of bound variables or capture-avoiding
substitution are directly supported by the framework,
so that we get bound variables for free, and do not
need to implement any new capture-avoiding substi-
tution for each object language.

The meta-language of LF is the λΠ-calculus. It is a
three-level hierarchical calculus for objects, families
and kinds. Families are classified by kinds and ob-
jects are classified by types that is families of kind
type (Pfenning 2001). So for each (abstract) syntac-
tic category of the object language we introduce a
new type constant in the meta-language via a decla-
ration of the form a:type. Thus, in order to represent
CPS language expressions and values we declare a
type cexp and cval in the meta-language (the repre-
sentation of the Mini-ML language is similar).

cexp : type.
cval : type.

We intend that every LF object M of type cexp
represents a CPS language expression and vice versa.
The zero constant Zero is now represented by an LF
constant Z declared in the meta-language to be of
type cval.

Z : cval.

The successor Succ is a value constructor. It is
represented by a constant of functional type that
maps CPS values to CPS values so that, for exam-
ple, Succ Zero has type cval.

Succ : cval -> cval.

As discussed in Section 2 a continuation k is a
function that takes in a CPS value and returns a
CPS expression. So a continuation k has the type of
cval → cexp. Recall the application CPS expression
App(V1, V2, k), it has the type cexp.

App : cval -> cval -> (cval -> cexp) -> cexp.

Other constructs are defined in the same pattern.
The definition of the abstract syntax of the CPS lan-
guage is encoded in Twelf as follows:

cexp : type. %name cexp CE.
cval : type. %name cval CV.

%% CPS expressions
app+ : cval -> cval -> (cval -> cexp) -> cexp.
fst+ : cval -> (cval -> cexp) -> cexp.
snd+ : cval -> (cval -> cexp) -> cexp.
case+ : cval -> cexp -> (cval -> cexp) -> cexp.
vl+ : cval -> cexp.

% CPS values
z+ : cval.
s+ : cval -> cval.
pair+ : cval -> cval -> cval.
lam+ : (cval -> (cval -> cexp) -> cexp) -> cval.

We annotate the CPS language terms with the
symbol “+”, in order to distinguish them from the
terms of the Mini-ML language.

4.2 Formalization of the operational seman-
tics

For semantic specification, LF uses the judgments-
as-types representation technique. This means that a
derivation is coded as an object whose type represents
the judgment it establishes. Checking the correctness
of a derivation is thereby reduced to type-checking
its representation in the logical framework (which is
efficiently decidable) (Pfenning & Schürmann 1999,
Pfenning & Schürmann 2002).

In the big-step operational semantics of Mini-ML,
the evaluation judgment: e ↪→ v is defined in Twelf
as the eval judgment.

eval : exp -> value -> type.

The eval predicate is very like a function, which takes
in a Mini-ML expression and returns the value of eval-
uating this expression.

The following shows the Twelf encoding of the in-
ference rules for eval of pairs and functions. The other
cases follow the same pattern. Throughout the for-
malization in Twelf we reverse the function arrows
writing A2 ← A1, instead of A1 → A2 following logic
programming notation. A more detailed discussion of
this encoding style is given in (Pfenning 2001).

% Pairs
ev_pair : eval (pair E1 E2) (pair* V1 V2)

<- eval E1 V1
<- eval E2 V2.

ev_fst : eval (fst E) V1
<- eval E (pair* V1 V2).

ev_snd : eval (snd E) V2
<- eval E (pair* V1 V2).

% Functions
ev_lam : eval (lam E) (lam* E).
ev_app : eval (app E1 E2) V

<- eval E1 (lam* E1’)
<- eval E2 V2
<- eval (E1’ V2) V.

The term (E1’ V2) formalizes substitution by β-
reduction. The expression E1’ is of function type
(λx.(E1’x)), and we pass V2 into the body of the
function (V2 substitutes the occurrence of variable x
in E1’).

The single-step and multi-step reduction relations
between two CPS expressions are formalized by two
predicates in Twelf.

=> : cexp -> cexp -> type.
=>* : cexp -> cexp -> type.

All the reduction inference rules are expressed by:

%infix none 6 =>.
%infix none 5 =>*.
stop : E =>* E. % reflexivity
<< : E =>* E’ % transitivity

<- E => E1
<- E1 =>* E’.

cred_case+_z : (case+ z+ E2 E3) => E2.
cred_case+_s : (case+ (s+ V1’) E2 E3) => (E3 V1’).
cred_fst+ : (fst+ (pair+ V1 V2) K) => (K V1).
cred_snd+ : (snd+ (pair+ V1 V2) K) => (K V2).
cred_app+ : (app+ (lam+ E1’) V2 K) => (E1’ V2 K).

The predicates => and =>* are set as infix oper-
ators. The reflexivity rule is indicated as a stopped
state.

4.3 Formalization of CPS transformation

The CPS transformation is formulated by two judg-

ments: Γ ` v
v
∼ V and Γ ` (e, k)

e
∼ E. We can inter-

pret these two judgments by assuming that v, e and k
are given as inputs and V , E are to be constructed as

CRPIT Volume 51

48



outputs. The two judgments are formalized in Twelf
by two predicates: cpsExp and cpsValue. The Twelf
definitions of these two judgments follow the same as
their type definitions:

cpsValue : value -> cval -> type.
cpsExp : exp -> (cval -> cexp) -> cexp -> type.

The CPS transformation rules for Mini-ML values are
expressed by:

cpsV_z* : cpsValue z* z+.
cpsV_s* : cpsValue (s* V) (s+ V+)

<- cpsValue V V+.
cpsV_pair*: cpsValue (pair* V1 V2) (pair+ V1+ V2+)

<- cpsValue V1 V1+
<- cpsValue V2 V2+.

cpsV_lam* : cpsValue (lam* E) (lam+ E’)
<- ({x:value} {x’:cval}

cpsValue x x’
-> {k:cval -> cexp}

cpsExp (E x) k (E’ x’ k)).

In the case of CPS transformation for lam
∗, we

implicitly create a new continuation k, which we use it
to transform the function body E to its corresponding
CPS expression, by plugging in a value into E. The
term {x:value} means that for all x that is of type
value. The big-brackets { } in Twelf has the similar
meaning to the universal quantifier (∀) in first-order
logic.

The following shows some cases of the formaliza-
tion of CPS transformation rules for Mini-ML expres-
sions in Twelf. The other cases follow the same pat-
tern.

cps_pair: cpsExp (pair E1 E2) K E’
<- ({x1’:cval}
cpsExp E2 ([x2’:cval] K (pair+ x1’ x2’))

(E2’ x1’))
<- cpsExp E1 E2’ E’.

cps_lam: cpsExp (lam E) K (K (lam+ E’))
<- ({x:value} {x’:cval}

cpsValue x x’
-> {k:cval -> cexp}

cpsExp (E x) k (E’ x’ k)).

cps_app: cpsExp (app E1 E2) K E’
<- ({x1:cval}

cpsExp E2 ([x2:cval] app+ x1 x2 K) (E2’ x1))
<- cpsExp E1 ([x1:cval] E2’ x1) E’.

The term [x:cval] is equal to λx, where x is of
type cval. The predicate cpsExp can be viewed as a
function, where its inputs are a Mini-ML expression
e and a continuation (K), and its output is a CPS
expression (of type cexp).

4.4 Formalization of the correctness proof

In Twelf we can express the meta-theory of deductive
systems using higher-level judgments (Pfenning &
Schürmann 1999). A higher-level judgment describes
a relation between derivations inherent in a (con-
structive) meta-theoretic proof. So we can execute
a meta-theoretic proof using the operational seman-
tics for LF. Twelf checks the proof by type-checking
the judgments. However, type-checking a higher-level
judgment does not by itself guarantee that it correctly
implements a proof.

Recall the Soundness lemma in Section 2. It is
represented in Twelf as follows:

cpsd : cpsExp E K M
-> M =>* (vl+ W)
-> {V:value}eval E V
-> {V+:cval}cpsValue V V+
-> (K V+) =>* (vl+ W)
-> type.

%name cpsd CS.
%mode cpsd +C +S -V -D -V+ -C’ -S’.

The mode declaration:

%mode cpsd +C +S -V -D -V+ -C’-S’.

specifies the inputs and outputs of the predicate cpsd.
The “+” mode indicates inputs and the “-” mode indi-
cates outputs. This follows exactly the statements of
the lemma, where all the assumptions are indicated as
inputs whereas the conclusions are indicated as out-
puts. The mode checker verifies that all inputs are
known when the predicate is called and all output ar-
guments are known after successful execution of the
predicate (Pfenning & Schürmann 2002). The pred-
icate cpsd is defined just like what the Soundness
lemma is stated. The inputs of the predicate assume

that C : Γ ` (e, k)
e
∼ E and S : E 7−→∗ vl(W ) exist,

and the outputs are to be D : e ↪→ v, C ′ : Γ ` v
v
∼ V

and S ′ : (k V ) 7−→∗ vl(W ).
The following shows the formalization of the

Soundness lemma proof for the cases of pair, lam

and app. The other cases follow the same pattern.

% Pairs
cpsd_pair: cpsd (cps_pair ES1 ES2) C

(pair* V1 V2) (ev_pair D2 D1)
(pair+ V1+ V2+) (cpsV_pair* T2 T1) C2

<- cpsd ES1 C V1 D1 V1+ T1 C1
<- cpsd (ES2 V1+) C1 V2 D2 V2+ T2 C2.

% Functions
cpsd_lam: cpsd (cps_lam Es’) C1 (lam* E) ev_lam

(lam+ E’) (cpsV_lam* Es’) C1.
cpsd_app: cpsd (cps_app ES1 ES2) C

V (ev_app D3 D2 D1) V+ T3 C3
<- cpsd ES1 C

(lam* E) D1 (lam+ E’) (cpsV_lam* Es3) C1
<- cpsd (ES2 (lam+ E’)) C1

V2 D2 V2+ T2 (C2 << cred_app)
<- cpsd (Es3 V2 V2+ T2 K) C2 V D3 V+ T3 C3.

To check the Twelf program actually constitutes
a proof, meta-theoretic properties such as coverage
and termination need to be established. Termina-
tion guarantees that the input of each recursive call
(induction hypothesis) is smaller than the input of
the original call (induction conclusion) (Pientka 2001,
Pientka & Pfenning 2000). For termination checking
the program needs to be well-moded. As discussed in
Section 3, we specify that the predicate cpsd should
terminate in the arguments S and C by

%terminates {S C} (cpsd C S V D V+ C’ S’).

Atomic, lexicographic subterm ordering is indi-
cated by {S C}. For reduction checking we specify
an explicit order relation between input and output
elements. In the Soundness lemma proof, we declare

%reduces S’ <= S (cpsd C S V D V+ C’ S’).

to verify that S′ is a rest computation of S.
Coverage says that the execution will always make

progress. In order to correctly coverage check the
proof, we need to give correct specification of relation
cpsd’s mode, and the specification of the applicable
world. Worlds in Twelf work very much like modes.
When specifying a world for a relation, it does two
things. First, it specifies the appropriate world for
that relation; and second, it checks that the entire
computation rooted at that relation (ie, that relation,
and every other one it calls) is well-worlded (Harper
& Crary 2005, Pfenning & Schürmann 2002). The
world declaration is defined for cpsd as follows:

%worlds () (cpsd C S V D V+ C’ S’).

this is actually a special case of regular world dec-
laration, which declares that the type families in
cpsd C S V D V+ C’ S’ do not introduce any new
parameters or hypotheses. After specifying the mode
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and world declaration, we can then activate the cov-
erage checker by specifying the coverage declaration:

%covers cpsd +C +S -V -D -V’ -C’ -S’.

The coverage checker only checks for “input” cov-
erage, that is if all the possible cases for a given col-
lection of input arguments are covered (Schürmann
& Pfenning 2003). In order to check “output” cov-
erage (the output arguments to the subgoal cover all
the possible values that may be returned in these po-
sitions) (Pfenning & Schürmann 2002), we need to
specify the “totality” checker as well:

%total {S C} (cpsd C S V D V+ C’ S’).

The Soundness theorem is expressed by:

sound: cpsExp E ([x:cval] vl+ x) E+
-> {V+:cval}E+ =>* vl+(V+)
-> {V:value}eval E V
-> cpsValue V V+
-> type.

%mode sound +C +V+ +S -V -D -T.

The proof is simple, since it is the corollary of the
Soundness lemma.

sound_cps: sound C V+ S V D T
<- cpsd C S V D V+ T stop.

The stop state indicates the reflexivity rule in the
CPS expression reductions. In the CPS language
small-step reduction semantics, we define that the
CPS expression vl(V ) cannot be reduced. However,
in the formalization of the proof, we say that vl(V )
can be reduced in one step to itself as the reduction
stops.

The formalizations of the proofs for the Complete-
ness lemma and theorem follow the same pattern as
the Soundness ones, except we need to formalize the
Totality lemma.

tcps: {E}{K}cpsExp E K E’ -> type.
%mode tcps +E +K -D.

tcpsv: {V}cpsValue V V+ -> type.
%mode tcpsv +V -D’.

The predicate tcpsv says that for any Mini-ML
value V, there exists a derivation D’, where V can be
CPS transformed into a CPS value V+. The predi-
cate tcps represents the same meaning for Mini-ML
expressions.

The following shows two cases in the formalization
of the proof for the Totality lemma, the other cases
follow the same pattern.

tcps_pair: tcps (pair E1 E2) K (cps_pair D1 D2)
<- tcps E1 K D1
<- {x1’:cval}
tcps E2 ([x2’:cval] K (pair+ x1’ x2’))

(D2 x1’).

tcpsv_lam*: tcpsv (lam* E) (cpsV_lam* D’)
<- ({x:value}{x’:cval}{u:cpsValue x x’}

{k:cval -> cexp}
tcps (E x) k (D’ x x’ u k)).

The Twelf code of the CPS translation (including
all the formalization of the four stages) can be found
at http://www.cs.mcgill.ca/~ytian8/CPS/.

5 Conclusions and Future Work

People from the research community of the pro-
gramming languages are now interested in a ques-
tion (Aydemir, Bohannon, Fairbairn, Foster, Pierce,
Sewell, Vytiniotis, Washburn, Weirich & Zdancewic
2005): How close are we to a world where pro-
gramming language papers are routinely supported

by machine-checked metatheory proofs, where full-
scale language definitions are expressed in machine-
processed mathematics, and where language imple-
mentations are directly tested against those defini-
tions? This paper is intend to be a guide to a formal
development of CPS compilation techniques as well
as a case study of the question above.

We have considered a typical example from veri-
fying the correctness of abstract machines (Hannan
& Pfenning 1992). To prove correctness, we need to
show the correspondence between the high-level lan-
guage and the low-level abstract machine. In other
words, we can translate programs written in the high-
level language into programs which run on the ab-
stract machine. Moreover, the source program always
has the same observable behavior as the target pro-
gram. The proof is constructive and constitutes a
program which translates derivations in the source
language into derivations of the target language and
vice versa. We consider Mini-ML as the source lan-
guage, and the terms in continuation-passing style as
the low-level target language.

We have presented a higher-order setting of CPS
transformation, which operates in one-pass and di-
rectly produces compact CPS programs without ad-
ministrative redexes (Danvy 1991, Danvy & Nielsen
2002, Danvy & Nielsenand 2001). This higher-order
CPS transformation also simplified the process of
proving the correctness of CPS transformation, as we
do not need to use colon-translation to handle those
administrative redexes. We have encoded the CPS
translation and the correctness proofs in the meta-
logical framework Twelf using higher-order abstract
syntax. We have mechanically verified the correct-
ness of our CPS transformation and also other prop-
erties like “termination” of our CPS transformation
and “uniqueness” of the CPS expression reductions.

This paper has showed a lot of benefits of us-
ing meta-logical approach of formalizing metatheory
proofs of programming languages and program com-
pilations. People have also demonstrated that us-
ing meta-logical approach enables relatively rapid de-
velopment of foundational certified code (Crary &
Sarkar 2003). We are interested in exploring the
power of using meta-logical approach of formalizing
and verifying theory foundations of programming lan-
guages in the future.
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Xi, H. & Schürmann, C. (2001), ‘CPS Transform
for Dependent ML (abstract)’, Logic Journal of
IGPL 9(5), 739–754.

Theory of Computing 2006 - Proc. Twelfth Computing: The Australasian Theory Symposium (CATS2006)

51



CRPIT Volume 51

52



Formalising the L4 microkernel API

Rafal Kolanski Gerwin Klein

National ICT Australia Ltd. (NICTA)
Locked Bag 6016

The University of New South Wales
Sydney NSW 1466

Australia
Email: {rafal.kolanski|gerwin.klein}@nicta.com.au

Abstract

This paper gives an overview of a pilot project on
the specification and verification of the L4 high-
performance microkernel. Of the three aspects ex-
amined in the project, we describe one in more de-
tail: the formalisation of the kernel’s Application Pro-
gramming Interface using the B Method. We con-
clude that machine-supported formal verification of
software is at a turning point; that it is now feasible,
and desirable, to formally verify production-quality
operating systems.

Keywords: B Method, Operating System Specifica-
tion, Software Verification

1 Introduction

The operating system (OS) kernel is defined to be the
part of the OS that runs in the privileged mode of the
hardware and thus is able to bypass hardware protec-
tion mechanisms. A microkernel is a kernel designed
to be minimal in code size and concepts.

L4 is a second generation microkernel [14]. It pro-
vides the traditional advantages of the microkernel
approach to system structure, namely improved re-
liability and flexibility, while overcoming the perfor-
mance limitations of the previous generation of mi-
crokernels. With implementation sizes in the order of
10,000 lines of C++ and assembler code it is an order
of magnitude smaller than Mach and two orders of
magnitude smaller than Linux.

The correctness and reliability of any nontrivial
system clearly critically depends on the operating sys-
tem and its kernel. In terms of security, the OS is part
of the trusted computing base, that is, the hardware
and software necessary for the enforcement of a sys-
tem’s security policy. It has been repeatedly demon-
strated that current operating systems fail at correct-
ness, reliability, and security. Microkernels address
the problem by applying the principles of minimal-
ity and least privilege to OS architecture. To gain
confidence in the overall system, it is therefore highly
desirable to formally verify the correctness of this de-
sign and its implementation.
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Figure 1: Overview

The L4 kernel is of a size which makes formali-
sation and verification feasible. Compared to other
OS kernels, L4 is very small; compared to the size of
other verification efforts, 10,000 lines of code is still
considered a very large and complex system. Our
methodology for solving this verification problem is
shown in figure 1. It is a classic refinement strategy.
We start out from an abstract model of the kernel
that is phrased in terms of user concepts as they are
explained in the L4 reference manual [13]. This is the
level at which most of the safety and security the-
orems will be shown. We then formally refine this
abstract model in multiple property preserving steps
towards the implementation of L4. The last step con-
sists of verifying that the C++ and assembler source
code of the kernel correctly implements the most con-
crete refinement level. At the end of this process,
we will have shown that the kernel source code satis-
fies the safety and security properties we have proved
about the abstract model.

We conducted a pilot project to judge the feasibil-
ity of this verification task. The project investigated
three main aspects: a formalisation of the kernel’s
Application Programming Interface (API) using the
B Method (the first horizontal formalisation layer in
figure 1), a full refinement proof for a non-trivial sub-
system of the kernel using Isabelle/HOL (the vertical
slice in figure 1), and a literature survey on formalis-
ing safety and security properties on the design level
(the right-hand side of figure 1).

In this paper we give an overview of the first of
these aspects: the API formalisation using the B
Method, depicted as abstract model in figure 1. The
L4 API provides three basic abstractions: threads,
synchronous inter process communication (IPC), and
virtual memory management (VMM). Our formal-
isation covers threads and IPC in detail and con-
tains the basic structure for VMM. The latter has
been formalised in depth in the vertical slice part of
the project and is already described in earlier pub-
lications [20, 10]. Our formalisation is based on re-
lease version 0.3 of the L4Ka::Pistachio implementa-
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tion [12].
We chose the B Method [1], because there existed

a significant amount of experience with this approach
among our student population and we wanted to com-
pare at least two different formalisms before embark-
ing on the full verification task. The B Method is
a formal development methodology based on set the-
ory with first-order logic. It allows progress from an
initial high-level specification all the way to imple-
mentation via formal refinement. In this part of the
project we have not done any formal refinement, but
used the B Method and tool for formalisation only.
The B Toolkit [2] allows for animation of the top-level
specification which makes validating the specification
more convenient. In this mode, the user becomes the
implementation of all non-deterministic or undefined
aspects.

After reviewing related work in section 2 and in-
troducing B concepts and notation in section 3, we
describe our formalisation of the L4 API in section
4. Section 5 gives pointers to further work and con-
cludes.

2 Related Work

Earlier work on operating system kernel formalisation
and verification includes PSOS [15] and UCLA Secure
Unix [22]. The focus of this work was on capability-
based security kernels, allowing security policies such
as multi-level security to be enforced. These efforts
were hampered by the lack of mechanisation and ap-
propriate tools available at the time and so while the
designs were formalised, the full verification proofs
were not practical. Later work, such as KIT [3],
describes verification of properties such as process
isolation to source or object level but with kernels
providing far simpler and less general abstractions
than modern microkernels. There exists some work
in the literature on the modelling of microkernels at
the abstract level with varying degrees of complete-
ness. Bevier and Smith [4] specify legal Mach states
and describe Mach system calls using temporal logic.
Shapiro and Weber [18] give an operational seman-
tics for EROS and prove a confinement security pol-
icy. A number of case studies [6, 5, 21] in the lit-
erature describe the IPC and scheduling subsystems
of microkernels in PROMELA and verify the formal
descriptions with the SPIN model checker. These ab-
stractions were not necessarily sound, having been
manually constructed from the implementations, and
so while useful for discovering concurrency bugs do
not provide guarantees of correctness.

The VFiasco project, working with the Fiasco im-
plementation of L4, has published exploratory work
on the issues involved in C++ verification at the
source level [9]. The VeriSoft project [8] is attempting
to verify a whole system stack, including hardware,
compiler, applications, and a simplified microkernel
called VAMOS that is inspired by, but not very close
to L4. While the simplifications are appropriate for
the goals of VeriSoft, it is doubtful that the VAMOS
kernel will show the necessary performance to be rel-
evant for industrial use.

Spivey uses Z, a predecessor formalism of B, to
specify a simple kernel for a safety-critical X-ray diag-
nostic machine [19]. In abstracting the kernel from its
implementation and documenting it for future reim-
plementations (possibly on different architectures), he
finds a flaw in the system that could potentially have
caused the X-ray machine to inflict damage.

The more academic approach of using formal de-
sign and specfication in the kernel development pro-
cess up front and then proceeding with the imple-
mentation is utilised to good effect by Fowler and

Wellings [7] for an Ada95 runtime support system in
a hard real-time environment. From the verification
perspective, this approach is more efficient than the
post-hoc formalisation that is commonly found and
which we are presenting here. The drawback is that
while this process ensures a correct kernel, it is hard
to get the runtime performance that separates prac-
tical microkernels from impractical ones.

In fact, we propose to do post-hoc formalisation
of the existing L4 microkernel whose architecture has
proven to deliver the required performance, but for
the verification task itself we reserve the freedom to
change details in the code base that make the verifi-
cation process easier.

3 Notation

At the top specification level, the B Method uses ma-
chines, which represent finite state automata. Refine-
ments further refine these, and implementations are
the most concrete in the chain. Since our formalisa-
tion is entirely contained at the top level, we will only
describe machine notation. A machine consists of the
following sections:

DEFINITIONS They are purely syntactic transla-
tions. Any single-letter token counts as a so-
called joker and can represent any set of tokens,
similar to #define in C and C++. One defi-
nition cannot use another one within the same
machine.

VARIABLES A comma separated list of variables.

SETS Enumerations and abstract sets.

CONSTANTS Declares constant sets, members of
sets, or functions (which are also represented as
sets).

PROPERTIES Restrictions on sets and constants.

INVARIANT The invariants of the machine, used
to define variable types, properties, and relation-
ships.

INITIALISATION Initial values for variables.

OPERATIONS The state transitions of the ma-
chine. At the abstract machine level, only par-
allel composition is allowed, i.e. all statements
in the operation (including invoking other oper-
ations) occur at the same time; the operation
itself is instantaneous. An operation may only
invoke operations in other machines, and only
when permitted by inter-machine relationships.
Operations can have preconditions.

The relationship between machines is restricted.
A machine may INCLUDE (read-access to everything
plus invoking operations), or SEE (read-access only
to sets and constants) other machines. Write-access
is only permitted through operations. If machine X
includes Y, it can select which of B’s operations are
visible when another machine includes X with PRO-
MOTES.

Since there is only one name space in B, we use
naming conventions to avoid collisions. We use pre-
fixes for all enumerations and a ‘d’ prefix for most
definitions, as well as long classifying names such as
thread ipc waiting timeout.

Robinson provides a good reference to B syntax
[17]. We define a few core notational concepts here
and explain other non-standard notation as it occurs.

B supplies built-in sets such as the natural num-
bers, NAT and NAT1 (N − {0}). The library also
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provides machines defining sets such as INTEGER
and BOOL = {FALSE, TRUE}.

Two frequently used operations are the relational
image and domain restriction. The relational image
of set S under relation r is defined as:

r [ S ] = { y | ∃x · x ∈ S ∧ x 7→ y ∈ r }

If r is a function, this means all y such that r(x) =
y. The pair (x, y) is denoted x 7→ y.

For a relation r and set S, the domain restriction
operator (B) is defined as follows:
r B S = {x 7→ y | x 7→ y ∈ r ∧ y ∈ S }

The predefined functions dom and ran return the
domain and range of relations and functions; card is
the the cardinality of a set.

4 The Formalisation

This section describes the formalisation of the L4 mi-
crokernel API. As far as possible, we will introduce
the kernel concepts together with their formal coun-
terparts. The goals of the formalisation were the fol-
lowing.

Learning Animation of the model to improve and
accelerate understanding of L4 internals for new
users and developers.

Documentation L4 is continually developed and
improved for efficiency. Boiling down the sys-
tem to its essentials in the form of an abstract
model will help to document and clarify the ini-
tial intentions and underlying basic mechanisms.

Experimentation The current version of the L4
API lacks an efficient communication restriction
for information flow and also is vulnerable to
denial of service attacks on kernel memory re-
sources. One of the follow-up projects to this
formalisation is revising the L4 API to fix these
shortcomings. It is one of the goals of the formal-
isation presented here to serve as an experiment
in kernel modelling to find out which methods
work well.

The API is the boundary between user space and
kernel space. When building a model, the question is
Whose viewpoint do we model?

From the perspective of a thread running in the
system, kernel operations are system calls. They re-
turn values and they return them immediatly.

From the kernel’s perspective, however, internal
state changes are visible. For instance, the kernel
might pick out the parameters from the thread’s reg-
isters and memory, then pass them to an internal op-
eration which implements the required functionality.
The operation does not have to return immediately.
The kernel can freeze the thread, change its state, put
it on a waiting queue and so forth. The system call
also does not simply return a value internally, but in-
stead copies return values into the thread’s registers
and memory.

To document the kernel behaviour in detail, we
chose the second viewpoint. It allows, for example,
modelling of thread state transitions in a natural way.
Taking the inside view does not mean that we are
exposing implementation details of the API — the
formalisation remains at the conceptual level of a ref-
erence manual. The API for instance already implies
that the kernel manages thread control states and the
formalisation describes how these states are affected
by operations. The formalisation does not describe
which data structures are used to implement thread
states in the kernel.

Context MachinesWeakSysCall

IpcBase

IpcCore

Thread

AddressSpace

API

Figure 2: Inclusion diagram for the B development.

Figure 2 shows the module structure of the for-
malisation. Microkernels strive for the minimal set of
functionality that is sufficient to build an OS. This
means that the L4 kernel is effectively a single mod-
ule in which everything is intertwined. We were able
to separate out B modules for each of the major sub-
systems (address spaces, threads, IPC), but as figure
2 shows, they still depend on each other.

In the formalisation, we have placed all types and
constants in separate context machines. There is one
such context machine for each machine containing op-
erations. In this presentation, we summarise these
under the label ContextMachines and describe them
in section 4.1. The rest of the presentation follows
figure 2 bottom up. In section 4.2 we describe the
address space stub (this subsystem has already been
formalised separately), in section 4.3 the concept of
threads and in section 4.4 the inter process commu-
nication subsystem. We leave out the description of
WeakSysCall which collects these together into the L4
API functions, but does not contain any precondition
checking yet. Section 4.5 describes the final inter-
face available to the user. Due to space constraints,
our description does not cover all of the formalisation
at the same level of detail. The full formalisation is
available elsewhere [11].

4.1 Context Machines

This section defines the basic types and constants
used in the rest of the formalisation.

In addition to type information, all systems man-
age a finite set of resources. By defining abstract sets
of things (such as thread numbers) and restricting
their cardinality, we implicitly define an upper limit
on the number of such things in the system.

In L4, a structure called the Kernel Information
Page (KIP) contains all the constant values in the
system (how many interrupts, first id of a user thread,
etc.) The context machines serve a similar purpose.

We start off with the three main limiting aspects
of the kernel: the number of threads in the sys-
tem (kMaxThreads), the number of address spaces in
the system (kMaxAddressSpaces), and the number of
threads in an address space (kMaxThreadsPerSpace).
These three constants have the following properties:

PROPERTIES

kMaxThreads ∈ N1 ∧
3 ≤ kMaxThreads ∧
kMaxThreadsPerSpace ∈ N1 ∧
kMaxAddressSpaces ∈ N1 ∧
3 ≤ kMaxAddressSpaces

Each thread must have an address space; an ad-
dress space can only be created by also creating a
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thread [13, section 2.4]. There are three address
spaces initially in the system: the sigma0 space, the
root server space and the kernel space. The minimum
number of address spaces is therefore 3, and the same
goes for threads. Hence, the maxima must be at least
3, too.

In order to talk about address spaces within the
model, we define the abstract set of all possible ad-
dress spaces and restrict them to the maximum num-
ber of address spaces in the system:

SETS

ADDRESS SPACE

PROPERTIES

card ( ADDRESS SPACE ) =

kMaxAddressSpaces ∧
kRootServerSpace ∈ ADDRESS SPACE ∧
kSigma0Space ∈ ADDRESS SPACE ∧
kKernelSpace ∈ ADDRESS SPACE ∧
kRootServerSpace 6= kSigma0Space ∧
kSigma0Space 6= kKernelSpace ∧
kRootServerSpace 6= kKernelSpace

In the above, we define three new constants. Their
function is to reserve three arbitrary members of AD-
DRESS SPACE for the three core address spaces
mentioned before: kSigma0Space, kRootServerSpace,
and kKernelSpace.

These address spaces have special status in L4,
they are privileged:

DEFINITIONS

dIsPrivilegedSpace ( s ) b=
s ∈ { kSigma0Space , kRootServerSpace ,

kKernelSpace }

The following constants describe the control states
that threads can experience in L4:

tsAborted the thread exists, but has not been ini-
tialised

tsRunning the thread has been initialised and if
scheduled, can run

tsPolling thread is waiting on an IPC send to an-
other thread

tsWaitingTimeout thread is waiting for incoming
IPCs from one or more threads, with a finite
time-out

tsWaitingForever as above, but the time-out is in-
finite

Figure 3 presents an overview of the possible tran-
sitions between these states. We show a complete
diagram below in figure 4, section 4.4.3.

These states differ from the ones in the L4 imple-
mentation in following ways:

• Multiprocessing-related states are missing since
our model is too abstract to demonstrate effects
of multiple-CPU interaction;

• The halted state is missing. According to discus-
sions with the L4 developers, this state is better
modelled by a flag. As defined in [13, section
2.3], halting a thread prevents it from execut-
ing in user mode, while ongoing IPC is not af-
fected. This means that it simply prevents the
thread from being scheduled. Furthermore, the
ExchangeRegisters system call needs to re-
sume halted threads, creating the need for an-
other (saved) thread state. This preserves func-
tionality, but makes for a simpler model;

Figure 3: A simplified diagram of possible thread
state transitions.

• The aborted state has a slightly different mean-
ing than in the L4 implementation. In L4, all
kernel thread control blocks are preallocated and
their initial state is aborted. When a thread
gets created inactive, the state remains aborted.
The actual existence of a thread is defined as
the thread having been assigned to an address
space. Deleting a thread involves deleting this
assignment. In our model, the non-existence of
a thread is marked by its absence from the set of
existing threads, so the threads do not have any
actual state. Once the thread is created inactive,
the two viewpoints merge.

We now come to the IPC related constants:

DEFINITIONS

canSend ( t ) b=
thread state ( t ) ∈ { tsRunning , tsPolling } ;

canReceive ( t ) b=
thread state ( t ) ∈ { tsWaitingTimeout ,

tsWaitingForever }

To send an IPC, a thread must either be running
(it invokes the IPC) or polling (the kernel invokes the
IPC on behalf of the thread). To receive one, it must
be waiting.

The set TCB represents all possible threads creat-
able in the system. We have chosen this name due to
its similarity to the pre allocated Kernel Thread Con-
trol Blocks in the system. The constants kSigma0 and
kRootServer reserve two distinct members of TCB for
sigma0 and the root server threads, respectively.

Additionally, the constant kIntThreads reserves a
subset of TCB for interrupt threads as follows:

kIntThreads ⊂ TCB ∧
kIntThreads 6= {} ∧
card ( kIntThreads ) ≤ kMaxThreadsPerSpace ∧
kSigma0 6∈ kIntThreads ∧
kRootServer 6∈ kIntThreads

The constant kIntThreads is a proper subset of
TCB, of which kRootServer and kSigma0 are not
members. Since interrupt threads go in the kernel
address space, there must not be more than kMax-
ThreadsPerSpace of them. There must be at least
one interrupt thread in the system.

The set EXREGS FLAGS defines the various op-
tions that can be passed into the ExchangeRegis-
ters system call [13, section 2.3]: ex h represents h,
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ex R represents R and so on for all the flags: hpu-
fisSRH. We explain the meaning of these flags below
when we introduce the corresponding operations.

Now that the thread context is defined, we can
model thread identifiers, the user’s view of threads.
We are leaving out local thread identifiers and thread
versions, as they both are mainly a performance opti-
misation and do not extend the behaviour of the ker-
nel. They can be added as a separate concept during
refinement later. Thus, the set GLOBAL TNO rep-
resents all possible global thread identifiers. The con-
stants kAnyGNo and kNilGNo represent anythread
and nilthread respectively. There must be enough
thread numbers for all threads plus two for the
aforementioned constants, making the set cardinality
kMaxThreads + 2. We omit the obvious definition
in B.

The last set of constants concerns time-outs. Since
the actual values of time-outs are irrelevant at this
level of abstraction, we only define three predicates:

isNoTimeout requests an action be taken (or it will
fail) immediately

isFiniteTimeout means that the thread will wait or
poll for some time until timed out by the kernel,
or cancelled by another thread

isInfiniteTimeout indicates that unless the opera-
tion is cancelled, the wait will go on indefinitely

We leave out the enumeration of error messages.
It suffices to know that there is a set ERROR listing
all of them. Also, dIpcFailures lists the failures dur-
ing IPC that are beyond the deterministic control of
the abstract model. If IPC fails non-deterministically,
one of these will occur.

4.2 Address Spaces

Once the context is set up, the first important aspect
of L4, on which all other aspects are based, is address
spaces. Since this model does not go into the details
of memory management, it suffices to model which
spaces are used by the system and which of those
have been initialised. The model mainly consists
of three operations CreateAddressSpace, InitialiseAd-
dressSpace, and DeleteAddressSpace, which we de-
scribe below.

The AddressSpaces machine SEES the context
machines described above, importing their abstract
sets and constants and introduces two new variables:

spaces representing the address spaces that have
been created, and

initialised spaces representing the address spaces
that are created and initialised

Their relationship is defined as follows:

INVARIANT

spaces ⊆ ADDRESS SPACE ∧
initialised spaces ⊆ spaces

There cannot be more address spaces created in
the system than the system can hold, nor can more be
initialised than have been created. Being initialised
implies being created.

Every variable in B must be initialised in a man-
ner that establishes the invariant. In the con-
text machines three address spaces were reserved:
kSigma0Space, kRootServerSpace, and kKernelSpace.
These are the spaces created and initialised by the
root task on start up:

INITIALISATION

spaces := { kSigma0Space,

kRootServerSpace, kKernelSpace } ‖
initialised spaces := { kSigma0Space,

kRootServerSpace, kKernelSpace }

The operator ‖ denotes parallel composition.
Next, we define the three operations that modify

the state (variables) of this machine in the OPERA-
TIONS clause. Since the operations are designed in
such a way that satisfying their preconditions guar-
antees success, they do not return any values for error
reporting.

The three operations are creating an address
space, initialising it, and deleting it. Once an address
space is initialised it cannot be uninitialised.

CreateAddressSpace ( space ) b=
PRE space ∈ ADDRESS SPACE − spaces

THEN

spaces := spaces ∪ { space }
END

To guarantee the success of this operation, the
address space identifier passed in must be one of
those not yet created. This becomes the precondition.
Once the precondition is satisfied, the new identifier
is added to the set of created address spaces. In the
user visible L4 API there do no exist any real address
space identifiers. Address spaces are referred to im-
plicitly by the ID of any thread running in the address
space. More than one thread ID can refer to the same
address space. Internally, address spaces are identi-
fied by just pointers to address space structures which
is what the space identifiers in this formalisation cor-
respond to.

Initialisation is easy as well. If the space identifier
is one of those already created, the operation succeeds
and adds the identifier to the set of initialised address
spaces:

InitialiseAddressSpace ( space ) b=
PRE space ∈ spaces THEN

initialised spaces := initialised spaces ∪ { space }
END

The final operation is deletion of an address
space. To satisfy the invariant, it suffices that any
member of ADDRESS SPACE be passed in. For
the operation to make sense, however, invoking it
should only have meaning for an existing address
space. Additionally, L4 does not allow deletion of
privileged threads [12, SYS THREAD CONTROL in
thread.cc], which means it does also not allow deletion
of priviledged address spaces.

DeleteAddressSpace ( space ) b=
PRE space ∈ spaces ∧

¬ ( dIsPrivilegedSpace ( space ) )

THEN

spaces := spaces − { space } ‖
initialised spaces :=

initialised spaces − { space }
END

As address space identifiers are not visible on the
user level, address spaces are deleted implicityly when
the last thread running in an address space is deleted.
That means DeleteAddressSpace (as the other opera-
tions in this machine) are not visible at the API top
level, but rather provide functionality for the rest of
the formalisation.
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4.3 Threads

Thread functionality is divided into three machines:

Thread contains all aspects of threads not directly
related to IPC (such as state, pagers, schedulers,
etc.)

IpcCore contains the place holder for an operation
copying one thread’s virtual registers onto an-
other

IpcBase contains IPC-related aspects of threads,
such as which thread is waiting on another.

This section describes the Thread machine. Due
to the kernel being extremely intertwined, the lay-
ered approach imposed by B caused a more complex
structure than what would be expected from a greatly
simplified specification.

We abstract away from the concept of processors
and a currently running thread. One can look at it as
a magical machine on which each thread has its own
processor to execute on. That means, from a thread’s
perspective, suspension from execution is essentially
transparent in our model.

The machine INCLUDES all the functionality
in AddressSpace, and PROMOTES the InitialiseAd-
dressSpace operation so that higher-level machines
can call it whenever an address space needs to be
created.

4.3.1 Variables

In the invariant, we proceed to define the meaning of
the machine and its variables. We begin with threads
and their subsets:

threads ⊆ TCB ∧
halted threads ⊆ threads ∧
active threads ⊆ threads ∧
kSigma0 ∈ active threads ∧
kRootServer ∈ active threads ∧
kIntThreads ⊆ active threads

Where threads are the threads that have been cre-
ated, active threads are those that have been acti-
vated. The privileged threads are implicitly initialised
when the kernel starts and cannot be uninitialised.
Halted threads may not enter user mode. Interrupt
threads have been assigned different halting semantics
by the L4 kernel designers. See thread state below.

All threads in L4 are uniquely identified by their
thread numbers, with two arbitrarily reserved to rep-
resent any thread and no thread respectively:

thread gno ∈ threads � GLOBAL TNO ∧
kAnyGNo 6∈ ran ( thread gno ) ∧
kNilGNo 6∈ ran ( thread gno )

We define a total injective function mapping threads
to thread numbers, but excluding reserved numbers
from its range. Note that in B, instead of a type
declaration, we say that a function is a member of
the set of all functions meeting given constraints.

Next we define the relationship between the exist-
ing threads and address spaces:

thread space ∈ threads →→ spaces ∧
thread space ( kSigma0 ) = kSigma0Space ∧
thread space ( kRootServer ) = kRootServerSpace ∧
thread space [ active threads ] ⊆ initialised spaces ∧
thread space [ kIntThreads ] = { kKernelSpace } ∧
thread space −1 [ { kKernelSpace } ] = kIntThreads

In L4, a created thread must have an address
space. In fact, the address space pointer in the TCB
is what defines whether a thread exists or not. Fur-
thermore, there are no explicit address space identi-
fiers; one specifies a thread in the address space in-
stead. Hence, address spaces cannot be empty and
thread space is total as well as surjective (denoted
→→). For a thread to be active it must reside in an
initialised address space.

Interrupt threads are only an abstraction of the
underlying hardware interrupts, and cannot actually
run or have an implementation. The kernel space is
therefore allocated to them.

Each thread has two other threads associated with
it. These are the thread’s scheduler and pager. The
former is permitted to change the thread’s scheduling-
related properties, while the latter is invoked if the
thread causes a page fault.

Let us look at the scheduler first:

thread scheduler ∈ threads − kIntThreads → TCB ∧
thread scheduler ( kSigma0 ) = kRootServer ∧
thread scheduler ( kRootServer ) = kRootServer

Interrupt threads, naturally, cannot be scheduled.
Since L4 does not keep track of schedulers, the range
of thread scheduler is not the set of existing threads,
but can in fact be any TCB. The root server is tra-
ditionally the scheduler for sigma0 and itself. We be-
lieve that this situation should be maintained at all
times, since otherwise the privileged threads could
lose control of the system. The L4 source code does
not, at this time, contain checks for this.

In L4, the process of page faults is resolved via
IPC, i.e. a faulting thread needs a target to ‘send’ to
(it is the kernel, however, which really performs the
action on the thread’s behalf). This target is known
as the thread’s pager :

thread pager ∈ threads 7→ TCB ∧
kSigma0 6∈ dom ( thread pager ) ∧
∀ kk . ( kk ∈ kIntThreads ∧ kk 6∈ halted threads ⇒

thread pager ( kk ) = kk ) ∧
∀ kk . ( kk ∈ kIntThreads ∧ kk ∈ halted threads ⇒

thread pager ( kk ) 6= kk )

The function is partial ( 7→) since sigma0, being
the initial system pager, does not have another pager
to fall back on. Additionally, until the thread is ac-
tivated, the pager field in its TCB is meaningless
(in fact, setting a valid pager constitutes activation).
Similar to thread scheduler the range of thread pager
cannot be enforced, since the thread’s pager may have
been deleted and is not necessarily valid. Interrupts
are enabled by setting the corresponding interrupt
thread’s halted flag and setting its pager to something
other than itself. When disabled, the thread’s pager
must be the thread itself.

All threads in the system must be in one of the
known states:

thread state ∈ threads → THREAD STATE ∧
active threads ∩ thread state −1 [ { tsAborted } ] ⊆

kIntThreads ∧
tsRunning 6∈ thread state [ kIntThreads ] ∧

The aborted state and a thread being active are
mutually exclusive, with the exception of interrupt
threads, which do not achieve a running state under
any circumstances. Since they participate in IPC,
they can assume waiting and polling states, but once
IPC is resolved they return to aborted. A proba-
ble reason for this is efficiency: since the scheduler
only looks for running threads to execute, it will au-
tomatically overlook interrupt threads, at the price
of making the interrupts-as-threads abstraction less

CRPIT Volume 51

58



complete. See figure 3 for a diagram of possible state
transitions.

Finally, to make the specification simpler to read,
we have a variable threads in space keeping a separate
count of how many threads are in each address space.
Its range is 0 . . . kMaxThreadsPerSpace.

4.3.2 Initialisation

We begin initialisation by creating sigma0, the root
server and the interrupt threads. They are created
active:

threads := { kSigma0 , kRootServer } ∪ kIntThreads ‖
active threads := { kSigma0 , kRootServer }

∪ kIntThreads

They will be in the address spaces kSigma0Space,
kRootServerSpace and kKernelSpace respectively:

thread space := { kSigma0 7→ kSigma0Space ,

kRootServer 7→ kRootServerSpace }
∪ kIntThreads × { kKernelSpace }

Note that the Cartesian product of kIntThreads
and the singleton set {kKernelSpace} is a function
mapping all the interrupt threads to that space.

L4 initialises interrupt threads on first activation
transparently to the user. Therefore it is not possible
to tell whether an inactive interrupt thread has been
initialised. In light of this, all interrupt threads in our
model start as existing, but disabled:

halted threads := {}

Since interrupt threads start out disabled, they are
by definition (see section 4.3.1) their own pagers. Ad-
ditionally, sigma0 is the root server’s pager:

thread pager := { kRootServer 7→ kSigma0 } ∪
id ( kIntThreads )

where id is the identity relation.
The root server starts up as the scheduler for

sigma0 and for itself [12, thread.cc]:

thread scheduler := { kSigma0 7→ kRootServer ,

kRootServer 7→ kRootServer }

The root server and sigma0 start with a running
state, while interrupt threads start out as aborted :

thread state := { kSigma0 7→ tsRunning ,

kRootServer 7→ tsRunning } ∪
kIntThreads × { tsAborted }

Finally, we set the thread counters in the respec-
tive address spaces:

threads in space := { kSigma0Space 7→ 1 ,

kRootServerSpace 7→ 1 ,

kKernelSpace 7→ card ( kIntThreads ) }

4.3.3 Operations

As the Thread machine contains the core function-
ality in the formalisation, we will describe its opera-
tions in some detail. The machine corresponds to the
ThreadControl subsystem of L4. The key opera-
tions at this level are CreateThread, ActivateThread,
and DeleteThread.

To create a thread we need a free TCB, a thread
number, an address space and a scheduler:

CreateThread (tcb, global tno, space, scheduler)

CreateThread creates inactive threads. In order to
succeed, the thread must not already exist, the sup-
plied thread number must not be reserved or used for
any existing thread. The address space the thread is
to be created in, does not need to exist, but it cannot
be the kernel space (which is reserved for interrupts):

PRE

tcb ∈ TCB − threads

global tno ∈ GLOBAL TNO ∧
global tno 6∈ ran ( thread gno ) ∧
global tno 6= kNilGNo ∧
global tno 6= kAnyGNo ∧ space ∈ ADDRESS SPACE ∧
space 6= kKernelSpace

Additionally, when no address space is supplied
during thread creation, L4 creates a new address
space for the new thread. At the level of the thread
machine, we model this with the CreateAddressSpace
operation if the space passed in does not exist. If it
does exist, the total number of threads in it must not
exceed the limit once this thread is added:

space ∈ spaces ⇒
threads in space ( space ) < kMaxThreadsPerSpace

Since an inactive thread is being created, no re-
striction is placed on scheduler. If these conditions
are satisfied, the operation is guaranteed to succeed.
In order to actually create the thread, we either cre-
ate a new address space with the thread in it, or add
one to the address space, and simultaneously set all
properties for the new thread:

IF space 6∈ spaces THEN

CreateAddressSpace ( space ) ‖
threads in space ( space ) := 1

ELSE

threads in space ( space ) := threads in space ( space ) + 1

END ‖
threads := threads ∪ { tcb } ‖
thread gno ( tcb ) := global tno ‖
thread space ( tcb ) := space ‖
thread scheduler ( tcb ) := scheduler

In the description of the following operations, triv-
ial typing preconditions (such as tcb ∈ TCB) will be
omitted. This is an area where we would have found
a type system like in Isabelle/HOL useful where type
inference takes care of such trivial conditions auto-
matically.

In order for a thread to be able to do anything
in the system, it must first be activated. This can
be done as part of creation, or as an ActivateThread
operation on an inactive thread:

ActivateThread(tcb, space, pager, scheduler)

In order for the operation to succeed exactly when
activation in L4 succeeds, tcb must be an existing but
inactive thread and pager must exist and be running
when the thread starts executing [13, section 2.4]:

PRE

pager ∈ threads ∧
scheduler ∈ active threads

L4 allows to migrate threads into new address
spaces on activation. If this occurs, we must make
sure that the thread fits into the new space:

space ∈ initialised spaces ∧
( space 6= thread space ( tcb ) ⇒

threads in space ( space ) < kMaxThreadsPerSpace )

The operation itself updates the pager and the
scheduler, adds tcb to active threads, sets its state
to tsWaitingForever, and migrates the thread if nec-
essary. In L4, a thread will begin waiting for an
IPC from its pager straight after activation. This
is why its state begins as waiting forever. The IPC
component will be initialised in the operation Acti-
vateThread2 in section 4.4.3 below. The migration is
performed as follows:
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IF space 6= thread space ( tcb ) THEN

thread space ( tcb ) := space ‖
threads in space := threads in space <+

{ space 7→ threads in space ( space ) + 1 ,

thread space ( tcb ) 7→
threads in space ( thread space ( tcb ) ) − 1 }

END

The thread counters for the two address spaces
(current and target) are updated using right overrid-
ing (denoted <+ ). Its definition is:

r1 <+ r2 = r2 ∪ ( dom(r2) −C r1 )

The definition uses another of B’s operators, do-
main subtraction (−C), defined as:

S −C r = {x 7→ y | x 7→ y ∈ r ∧ x /∈ S }

We define CreateActiveThread as a merger of Cre-
ateThread and ActivateThread. The only difference is
that migrating the thread is not possible as it does not
exist yet. Note that a higher-level operation cannot
combine the those two operations due to B’s restric-
tions.

The operation DeleteThread, given an existing
thread tcb, removes it from the set of known, active
and halted threads provided the tcb is not in one of
the privileged address spaces. We also remove it from
all thread-related functions in the machine:

DeleteThread(tcb)

thread space := { tcb } −C thread space ‖
thread state := { tcb } −C thread state ‖
thread pager := { tcb } −C thread pager ‖
thread scheduler := { tcb } −C thread scheduler ‖
thread gno := { tcb } −C thread gno

Furthermore, if the thread is the only one left in
the address space, we delete the address space, oth-
erwise we decrement the thread counter.

IF tcb = thread space −1 [ { thread space ( tcb ) } ]

THEN

DeleteAddressSpace ( thread space ( tcb ) ) ‖
threads in space :=

{ thread space ( tcb ) } −C threads in space

ELSE

threads in space ( thread space ( tcb ) ) :=

threads in space ( thread space ( tcb ) ) − 1

END

Apart from creating, deleting and activating, the
ThreadControl API section in L4 contains a num-
ber of further operations on threads which we explain
below.

Modifying the thread’s scheduler is one of them.
The SetScheduler operation is trivial, assuming only
that the thread and the scheduler exist, and updating
the thread’s scheduler. We omit its definition in B
here.

We also omit the Migrate operation. It performs
the same task as the migration in ActivateThread.

As our description of the formalisation progresses
it becomes obvious that there is much statements du-
plication. Indeed, the next operation in the machine
is MigrateAndSetScheduler which demonstrates the
problem again. As mentioned before, this is a restric-
tion of the B system. Writing Migrate and SetSched-
uler does not mean a higher-level machine can com-
bine them to get MigrateAndSetScheduler. If they
are to be combined, statements must be duplicated.
We believe this to be a shortcoming of the B Method
as used by the B Toolkit [2]. One solution to this
is to defer any specific actions to refined machines,
then use sequential composition in the refinements.

The problem with this is that the resulting top-level
machines cannot be meaningfully animated, making
validation of the formal model more difficult.

We next define the SetState operation, taking tcb
and state, with the restrictions that tcb is active, not
an interrupt thread (since they have different state
semantics) and state cannot be tsAborted (transition
to an aborted state would imply thread deactivation,
which L4 does not provide):

SetState (tcb, state) b=
PRE state ∈ THREAD STATE ∧

state 6= tsAborted ∧
tcb ∈ active threads ∧
tcb 6∈ kIntThreads

THEN

thread state ( tcb ) := state

END

To implement the ExchangeRegisters [13, sec-
tion 2.3] system call, we need to specify its semantics
with respect to the variables in the Thread machine.
Its parameters are as follows:

tcb the thread to act on

control a subset of EXREGS FLAGS, representing
the set of actions the operation is to take (see
section 4.1)

pager the pager to set the thread’s pager to, if indi-
cated by control

unwait should the target thread be woken; this is to
correctly set the thread state if a machine includ-
ing this one, such as IpcBase, uses its equivalent
of ExchangeRegisters to cancel waiting or polling
IPC states (see section 4.4.3).

Since there is also no specification of user-level reg-
isters saved in the kernel, IP, SP and FLAGS are not
passed in. The semantics of ExchangeRegisters means
a thread can only invoke it on another thread in its
address space. Since no thread can be in the reserved
kernel address space, interrupt threads are excluded.
The operation sets the pager (if ex p ∈ control), halts
the thread (if ex H ∈ control, resumes if not) and
resets any waiting states (unwait = TRUE)

ThreadExchangeRegisters(tcb, control, pager, unwait) b=
PRE tcb ∈ threads ∧ control ⊆ EXREGS FLAGS ∧

pager ∈ TCB ∧ tcb 6∈ kIntThreads ∧ unwait ∈ BOOL

THEN

IF ex p ∈ control THEN

thread pager ( tcb ) := pager

END ‖
IF ex h ∈ control THEN

IF ex H ∈ control THEN

halted threads := halted threads − { tcb }
ELSE

halted threads := halted threads ∪ { tcb }
END

END ‖
IF unwait = TRUE THEN

IF tcb ∈ active threads THEN

thread state ( tcb ) := tsRunning

ELSE

thread state ( tcb ) := tsAborted

END

END

END

There are two special operations for interrupt
threads: ActivateInterrupt and DeactivateInterrupt.
In L4, activating an interrupt thread means setting it
to halted and setting its pager to a value other than
itself:
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ActivateInterrupt(tcb, handler) b=
PRE tcb ∈ kIntThreads ∧ handler ∈ TCB ∧

handler 6= tcb

THEN

halted threads := halted threads ∪ { tcb } ‖
thread pager ( tcb ) := handler

END

To deactivate an interrupt thread, we perform the
opposite: the pager is set to itself and the halted flag is
reset. The definition is analogous to ActivateInterrupt
and we omit it here.

We will now describe helper-operations enabling
IPC-related state transitions. The IPC state transi-
tions themselves are the subject of the next section.
The first operation is Unwait, which reverts a wait-
ing or polling (waiting to send) thread to its normal
state. For normal threads this is running ; for inactive
and interrupt threads it is aborted.

UnWait(tcb) b=
PRE tcb ∈ threads THEN

SELECT

tcb ∈ active threads ∧ tcb 6∈ kIntThreads

THEN

thread state ( tcb ) := tsRunning

WHEN

tcb ∈ active threads ∧ tcb ∈ kIntThreads

THEN

thread state ( tcb ) := tsAborted

ELSE

thread state ( tcb ) := tsAborted

END

END

A SELECT statement non-deterministically se-
lects one of the cases whose condition is true and eval-
uates the statement contained in the THEN clause.
If no condition is true, the ELSE clause is evaluated.

When a running thread attempts to send an IPC
to another thread, one of three things happens:

• the other thread is not waiting: the running
thread polls — SetState is used

• the other thread is waiting, no receive phase is
included: the IPC occurs, the remote thread is
woken with UnWait

• as above, but a non-trivial receive phase is in-
cluded: the IPC occurs, the remote thread is
woken, but the current thread starts waiting —
WakeUpAndWait is used

The WakeUpAndWait operation takes a running
thread, a waiting thread and a the wait state the send-
ing thread is to assume. Both threads must be active,
the first must be running (isRunning tests for equality
with tsRunning), the second must be waiting (tsWait-
ingForever or tsWaitingTimeout):

WakeUpAndWait(running tcb, waiting tcb, wait state) b=
PRE running tcb ∈ active threads ∧

waiting tcb ∈ active threads ∧
isWaiting ( wait state ) ∧
isRunning ( thread state ( running tcb ) ) ∧
isWaiting ( thread state ( waiting tcb ) )

THEN

IF waiting tcb ∈ kIntThreads THEN

thread state := thread state <+

{ running tcb 7→ wait state ,

waiting tcb 7→ tsAborted }
ELSE

thread state := thread state <+

{ running tcb 7→ wait state ,

waiting tcb 7→ tsRunning }
END

END

Threads are not the only cause of IPC happening.
When an IPC cannot be resolved immediately, the
situation may arise that two threads, one polling on
the second and the second waiting on the first, might
be inside the system. It is then up to the scheduler to
cause the IPC to happen. When it does, both threads
need to be woken up and resume running. This is also
true if the IPC fails. To handle this case, we use the
DualWakeUp operation, which simply takes a polling
and waiting thread and essentially performs an Un-
wait on each. We omit the obvious formal definition.

4.4 Inter Process Communication

This section describes the machines IpcCore and
IpcBase which cover the IPC-related operations in
L4.

Inter process communication is the core compo-
nent of L4. Nearly all aspects of the system are ab-
stracted by IPC when possible, including donation
and leasing of memory to other processes. IPC is
synchronous; for a successful transfer to occur, the
sender must be sending or polling while the receiver
is waiting (or running, if the sender is polling). What
is more, the receiver must be waiting for the sender for
this to work. The special thread identifiers anythread
and anylocalthread also declare who a thread is willing
to receive from. When the sender tries sending an IPC
but the receiver is not ready or currently willing to
receive, it goes into a polling state and is placed in the
receiver’s incoming queue. There is only one polling
state, regardless of the timeout. Polling may include
an additional receive phase, which means that should
the send succeed, the kernel immediately places it into
a waiting state with the receive phase parameters.

At first glance, the IpcCore machine does not seem
very useful, as it has no state and contains only a
single place-holder operation PerformIpc, which does
nothing. This is because the IpcCore operation rep-
resents the transfer of information contained in Mes-
sage Registers (MRs) from the sending to the receiv-
ing thread, but MRs do not exist in the specification.
They could be added in a later refinement step.

We decided to leave out MRs at this level of the
specification, because they contain too much imple-
mentation detail. When an IPC is performed, MRs
do not merely get transferred, but can also contain in-
formation on memory maps and grants which would
have duplicated the efforts of the VM subsystem part
of the verification pilot project.

The machine contains a useful definition canIPC
representing whether a thread can invoke the IPC sys-
tem call (for interrupt threads, this means whether
the kernel can perform the IPC on behalf of the
thread): the thread must be active, running and not
halted (except for interrupt threads, which must be
halted to be enabled):

canIPC (t) b=
t ∈ active threads ∧
( t ∈ kIntThreads ⇒ t ∈ halted threads ) ∧
( t 6∈ kIntThreads ⇒ thread state ( t ) = tsRunning ∧

t 6∈ halted threads )

The IpcBase machine is the basis for all state tran-
sitions during IPC. It INCLUDES IpcCore and so
builds on all machines described so far. It does not
promote any operations. The IPC operations are non-
deterministic, i.e. there are situations which might
cause them to fail which are not explicitly contained
in this specification. This means that the first pos-
sibility of failure is in this machine. The operations
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in the previous machines always succeeded given the
preconditions. In L4, the error condition is stored in
the Error Thread Control Register, which means we
have to specify some form of this TCR in the IpcBase
machine.

Unfortunately, B’s inability to perform two oper-
ations from the same machine in parallel means that
the promoted operation cannot clear the Error TCR
themselves. As a work-around we introduce new lo-
cal versions of these operations, which only add that
error functionality and shadow all operations which
might normally just be promoted.

4.4.1 Variables

The IpcBase machine uses information on which
thread is waiting/polling for which other thread to
check when to allow the IPC to occur, and handles
invoking the proper state-transition operations from
the Thread machine.

In L4, threads which are in a waiting state must
be waiting for a specific thread number, or anythread.
They cannot wait for nilthread. If a thread wants to
make sure the waiting operation times out, it should
wait for itself [13, section 5.6]:

thread ipc waiting for ∈
active threads 7→ GLOBAL TNO ∧

kNilGNo 6∈ ran ( thread ipc waiting for )

Only active threads may participate in IPC, but
they may wait for any thread number. The reference
manual states that if the partner does not exist, the
IPC operation will fail. However, the thread might
exist when IPC is invoked, but be deleted before IPC
completes, so thread ipc waiting for cannot have ac-
tive threads, or even threads as its permitted range.

We not only need to know that a thread is waiting,
but also for how long it is waiting. We therefore define
the thread ipc waiting timeout function. Its range is
identical to the one of thread ipc waiting for, but it
specifies the timeout for waiting threads:

thread ipc waiting timeout ∈
active threads 7→ TIMEOUT ∧

eZeroTimeout 6∈ ran ( thread ipc waiting timeout ) ∧
dom ( thread ipc waiting timeout ) =

dom ( thread ipc waiting for ) ∧
dom ( thread ipc waiting timeout ) =

thread state −1 [ { tsWaitingTimeout ,

tsWaitingForever } ]

All the threads in the domain must either be
waiting with a timeout, or waiting forever. No
thread with a waiting state may be absent, and no
thread in the function’s domain may have a differ-
ent state. Since the domain is the same as that for
thread ipc waiting for, the constraint applies there as
well. Zero-timeout is not permitted, since those calls
are resolved immediately without forcing the thread
to wait.

Similar to the two functions above, we define
polling semantics for threads:

thread ipc polling on ∈ active threads 7→ threads ∧
thread ipc polling timeout ∈

active threads 7→ TIMEOUT ∧
dom ( thread ipc polling timeout ) =

thread state −1 [ { tsPolling } ] ∧
eZeroTimeout 6∈ ran ( thread ipc polling timeout) ∧
dom ( thread ipc polling on ) ⊆

dom ( thread ipc polling timeout )

In L4, each thread keeps track of which thread it is
polling on (if any), as well as keeping a list of threads

which are polling on it. The deletion of a thread which
another thread is polling on is not well defined (nei-
ther in manual nor source code). In our formalisation,
we only remove the target thread from the range of
thread ipc polling on and let the IPC time out. For
this reason, there can be some threads in a polling
state which are not actually polling for any thread.
All polling threads must have a timeout, even if the
thread they are polling on was deleted, otherwise they
will never return to running.

The convenience function thread incoming, given
a thread, yields the threads that are polling on
it. It represents each thread’s incoming IPC buffer
and is just the relational inverse of all threads on
thread ipc polling on:
∀ tt . ( tt ∈ active threads ⇒ thread incoming ( tt ) =

thread ipc polling on −1 [ { tt } ] )

For some operations, we need the thread numbers
(IDs) of incoming threads. Again, to simplify the
formalisation we define thread incoming gnos as:
∀ tt . ( tt ∈ active threads ⇒

thread incoming gnos ( tt ) =

thread gno [ thread incoming ( tt ) ] )

In addition to the above, when the send phase of
an IPC succeeds, the receive phase is invoked. If no
receive was requested, the thread goes directly back
to running. Otherwise the receive is performed, which
means if no candidates are available, the thread must
wait. We store a timeout for each polling thread.
The thread recv waiting functions only differ from the
thread ipc waiting functions in that not all polling
threads will have a receive phase, and no waiting
thread may have a future receive phase:
dom ( thread recv waiting for ) ⊆

dom ( thread ipc polling timeout ) ∧
dom ( thread recv waiting timeout ) ∩

dom ( thread ipc waiting timeout ) = {}

The variable thread error represents the concept
of each thread having some error condition which re-
sulted from a previous operation:
thread error ∈ active threads → ERROR

For inactive threads (which cannot execute), the
mapping has no meaning and so does not exist.
Note that thread error is not the same as the Er-
ror TCR [13], since ERROR contains eNoError, a
condition to signify success. L4 would put the suc-
cess/failure result into a register instead.

4.4.2 Initialisation

We now describe, how the variables defined in the
section before are initialised. Initially, no thread is
waiting for any other thread or engaged in IPC in
any way, meaning that all the thread ipc * variables
as well as the thread recv * variables are initialised to
empty sets.

Since the interrupt threads, sigma0 and the root
server exist on start up, we want their incoming sets
to be present, but empty:
thread incoming :∈
{ kSigma0 , kRootServer } ∪ kIntThreads → { {} } ‖

thread incoming gnos :∈
{ kSigma0 , kRootServer } ∪ kIntThreads → { {} }

Any function mapping those threads to the the
empty set (there is only one) will satisfy that require-
ment (:∈ denotes the choice operator).

As for the error condition, all existing threads (the
same ones as above) start out with the eNoError con-
dition:
thread error := { kSigma0 7→ eNoError ,

kRootServer 7→ eNoError } ∪
kIntThreads × { eNoError }
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4.4.3 Operations

The new variables introduced in this machine, to-
gether with the invariant of the included machines
produce a new, larger invariant. Promotion of some
operations causes the local invariant to be violated as
the operations in lower machines know nothing about
it. Operations which introduce handling of IpcBase’s
variables to operations from Thread or AddressSpace
have 2 appended to their name.

The first of these is ActivateThread2, which sets
up the local variables when the thread is activated,
and invokes the original ActivateThread. Their pre-
conditions and parameters are the same, except that
we now need to specify who a freshly activated thread
must wait for an IPC from. In L4, that is its pager.
Since it cannot run until the message is received, it
will wait forever:

ActivateThread2(tcb, space, pager, scheduler) b=
PRE tcb ∈ threads ∧ tcb 6∈ active threads ∧

tcb 6= pager ∧
thread space ( tcb ) ∈ initialised spaces ∧
pager ∈ active threads ∧
scheduler ∈ active threads ∧
space ∈ initialised spaces ∧
( space 6= thread space ( tcb ) ⇒
threads in space ( space ) < kMaxThreadsPerSpace )

THEN

ActivateThread ( tcb , space , pager , scheduler ) ‖
thread ipc waiting timeout ( tcb ) :=

eInfiniteTimeout ‖
thread ipc waiting for ( tcb ) := thread gno ( pager ) ‖
thread error ( tcb ) := eNoError ‖
thread incoming ( tcb ) :=

thread ipc polling on −1 [ { tcb } ] ‖
thread incoming gnos ( tcb ) :=

thread gno [ thread ipc polling on −1 [ { tcb } ] ]

END

We need to set the thread’s error condition to
some value and since no error has occurred, that is
eNoError. Additionally, some threads may already
be polling for this thread ID, so the thread incoming
and thread incoming gnos functions are updated ap-
propriately.

The CreateActiveThread2 operation is augmented
analogously and we omit its definition here.

Next we add necessary statements to DeleteThread
which clean up the affected variables in this machine.
The preconditions and parameters do not change.
Apart from the obvious domain subtraction of {tcb}
from thread ipc waiting *, thread ipc polling timeout,
thread recv * and thread error, we need to remove
the thread from both the range and domain of
thread ipc polling on:

thread ipc polling on :=

{ tcb } −C thread ipc polling on −B { tcb }

The application of the domain subtraction (−C,
precedence is left-to-right) removes all mappings de-
noting that this thread is polling on another one
(there is only one). Then, the application of range
subtraction (−B) removes all mappings denoting that
another thread is polling on this one. Those threads
that were polling on the one being deleted are now
stranded until their IPCs time out. Range subtrac-
tion is defined canonically:

r −B S = {x 7→ y | x 7→ y ∈ r ∧ y /∈ S }

This resolves the situation of who is polling on
whom. The thread still needs to be removed from the
incoming sets of other threads:

thread incoming :=

{ aa , bb |
aa ∈ dom ( thread incoming ) − { tcb } ∧
bb = thread incoming ( aa ) − { tcb } }

We do the removal via a set comprehension which
keeps only other threads’ incoming sets, but also re-
moves the deleted thread from them. We apply the
same technique to modify thread incoming gnos.

Operations from previous machines that com-
plete successfully need to clear the error attribute
of the thread they are operating on. Hence, we ex-
tended these operations with that functionality at the
IpcBase machine level. Their preconditions are al-
most the same as their Thread counterparts’, and the
operation body invokes them directly. The only dif-
ference is that they take an extra parameter (itcb)
that says which thread’s error attribute should be
cleared. We omit the B definition of these machines.
They are: InitialiseAddressSpace2, CreateThread2,
SetScheduler2, Migrate2, MigrateAndSetScheduler2,
ActivateInterrupt2 and DeactivateInterrupt2.

We now cover the operations directly related to
IPC. In all operations, the invoking thread is checked
with the canIpc definition of the IpcCore machine.

The first of the operations enabling IPC is Just-
Wait. It is invoked when a thread requests an IPC
operation consisting of a receive phase only, but no
thread in its incoming sets is available to receive from,
thus causing the receiver thread to wait. Given the
three parameters tcb (the thread wishing to receive),
timeout and fromSpecifier (who it is willing to receive
from), the preconditions are as follows: the thread
canIpc; timeout is either finite or infinite, but not
zero (instant time-out); fromSpecifier is not nilthread
and is either anythread or a known thread. Also,
the we exclude all conditions which would cause an
immediate IPC reception to occur: if fromSpecifier
is anythread, the requester must not have incoming
threads; for other specifiers, they must not be in the
incoming thread numbers. The work done by the op-
eration is minimal. It updates thread ipc waiting for
and its time-out equivalent to indicate the thread is
waiting and who it is waiting for. It also uses Set-
State to set the thread’s state to tsWaitingForever or
tsWaitingTimeout depending on the value of timeout.

JustWait(tcb, timeout, fromSpecifier) b=
PRE canIPC ( tcb ) ∧ timeout ∈ TIMEOUT ∧
¬ ( isNoTimeout ( timeout ) ) ∧
fromSpecifier ∈ GLOBAL TNO ∧
fromSpecifier 6= kNilGNo ∧
fromSpecifier ∈

thread gno [ threads ] ∪ { kAnyGNo } ∧
( fromSpecifier = kAnyGNo ⇒

thread incoming ( tcb ) = {} ) ∧
( fromSpecifier 6= kAnyGNo ⇒
fromSpecifier 6∈ thread incoming gnos ( tcb ) )

THEN

thread ipc waiting for ( tcb ) := fromSpecifier ‖
thread ipc waiting timeout ( tcb ) := timeout ‖
IF isInfinite ( timeout ) THEN

SetState ( tcb , tsWaitingForever )

ELSE

SetState ( tcb , tsWaitingTimeout )

END

END

We have covered threads that want to receive, but
cannot. The SetUpReceivePhaseAndPoll operation
handles the case of when the operation wants to send
but cannot (either the remote thread is not waiting,
or it is not waiting for the sending thread). The op-
eration takes tcb from and tcb to (sending and target
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threads), poll timeout, recv timeout (time-out for the
future receive phase) and a fromSpecifier (who the
thread is willing to receive from in the receive phase,
or nilthread if there is no receive phase).

As in JustWait, tcb from must be able to perform
IPC. The target must be an existing thread. While
the poll time-out must not be zero, the receive time-
out is only restricted if fromSpecifier is not nilthread.
The actual fromSpecifier must be a thread number of
an existing thread.

SetUpReceivePhaseAndPoll(tcb from, tcb to, poll timeout,

recv timeout, fromSpecifier) b=
PRE canIPC ( tcb from ) ∧ tcb to ∈ threads ∧

( tcb to ∈ dom ( thread ipc waiting for ) ⇒
thread ipc waiting for ( tcb to ) 6=

thread gno ( tcb from ) ∧
thread ipc waiting for ( tcb to ) 6= kAnyGNo ) ∧

fromSpecifier ∈ GLOBAL TNO ∧
poll timeout ∈ TIMEOUT ∧
¬ ( isNoTimeout ( poll timeout ) ) ∧
recv timeout ∈ TIMEOUT ∧
( fromSpecifier 6= kNilGNo ⇒
¬ ( isNoTimeout ( recv timeout ) ) ) ∧

fromSpecifier ∈ thread gno [ threads ] ∪
{ kAnyGNo , kNilGNo }

THEN

thread ipc polling on ( tcb from ) := tcb to ‖
thread ipc polling timeout ( tcb from ) := poll timeout ‖
thread incoming ( tcb to ) :=

thread incoming ( tcb to ) ∪ { tcb from } ‖
thread incoming gnos ( tcb to ) :=

thread incoming gnos ( tcb to ) ∪
{ thread gno ( tcb from ) } ‖

SetState ( tcb from , tsPolling ) ‖
IF fromSpecifier 6= kNilGNo THEN

thread recv waiting for ( tcb from ) :=

fromSpecifier ‖
thread recv waiting timeout ( tcb from ) :=

recv timeout

END

END

To verify that the operation happens in the afore-
mentioned circumstances, if the target thread is in
a waiting state, then it must not be waiting for
anythread (since this one will fulfil the criterion) and
it must not be waiting for from tcb’s number:

( tcb to ∈ dom ( thread ipc waiting for ) ⇒
thread ipc waiting for ( tcb to ) 6=

thread gno ( tcb from ) ∧
thread ipc waiting for ( tcb to ) 6= kAnyGNo )

Once that is established, the operation can pro-
ceed successfully by updating thread ipc polling * to
reflect the thread’s polling information, and also
adds from tcb and its thread number to the incom-
ing sets of tcb to. If fromSpecifier is not nilthread,
thread recv * is updated with the future waiting in-
formation.

Having covered the cases where IPC cannot hap-
pen, let us look at the simplest case of IPC occurring:
the thread requests an IPC with only a receive phase,
and a suitable thread is in its incoming set. Like
JustWait, JustReceive takes two parameters (whose
meaning is the same): itcb and fromSpecifier.

JustReceive(itcb, fromSpecifier)

It does not need a time-out as the operation will go
ahead immediately. The value of fromSpecifier must
not be nilthread, and must either be anythread (in
which case the incoming set must not be empty) or a

thread number already in the incoming set. The oper-
ation may then go ahead. However, it might not suc-
ceed due to aspects beyond the control of the current
model (such as the operation being aborted halfway
by another thread). We model this failure by non-
determinism.

canIPC ( itcb ) ∧ fromSpecifier ∈ GLOBAL TNO ∧
fromSpecifier 6= kNilGNo ∧
( fromSpecifier 6= kAnyGNo ⇒

fromSpecifier ∈ thread incoming gnos ( itcb ) ) ∧
( fromSpecifier = kAnyGNo ⇒

thread incoming ( itcb ) 6= {} )

The polling thread which is allowed to send is cho-
sen non-deterministically (since sets have no implicit
ordering):

ANY tcb from

WHERE tcb from ∈ thread incoming ( itcb ) ∧
( fromSpecifier 6= kAnyGNo ⇒
thread gno ( tcb from ) ∈

thread incoming gnos ( itcb ) )

In other words, choose any of the threads in the
incoming set, with the extra constraint that if from-
Specifier is not anythread, that thread’s number must
be in the set of incoming thread numbers for the re-
ceiving thread. The preconditions guarantee that a
thread that satisfies this constraint actually exists.

Regardless of the IPC succeeding or failing, the
sending thread will no longer be polling at the end of
the operation:

thread ipc polling on :=

{ tcb from } −C thread ipc polling on ‖
thread ipc polling timeout :=

{ tcb from } −C thread ipc polling timeout

thread incoming ( itcb ) :=

thread incoming ( itcb ) − { tcb from } ‖
thread incoming gnos ( itcb ) :=

thread incoming gnos ( itcb ) −
{ thread gno ( tcb from ) }

Since it will no longer be polling, the future set-
tings for its receive phase will no longer be applicable.
If the IPC succeeds, they will be used to set up the
new receive phase for the thread. If IPC fails, they
will be discarded:

thread recv waiting timeout := { tcb from } −C
thread recv waiting timeout ‖

thread recv waiting for := { tcb from } −C
thread recv waiting for

We now reach the point where IPC either succeeds
or fails. This is performed using the non-deterministic
CHOICE path1 OR path2 END construct. During
animation, the user is asked to choose the path.

On the IPC success path, the IPC transfer is
performed and the error fields for both threads are
cleared:

PerformIPC ( tcb from , itcb ) ‖
thread error := thread error <+

{ itcb 7→ eNoError , tcb from 7→ eNoError }

Then, if the sender had a receive phase waiting, it
is set up (using identical statements to those in Just-
Wait). The receiving thread’s state does not change.
It was either running or an activated interrupt thread,
and remains so. If the sender does not have a receive
phase waiting, its waiting state is cancelled using Un-
Wait.

The IPC failure path consists of cancelling the
sender’s waiting state with UnWait and picking an
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error non-deterministically among the possible unpre-
dictable IPC errors (see section 4.1) and assigned as
an error indicator for both threads.

WakeDestThenWait covers the opposite direction
to JustReceive: a thread wishes to send and the sec-
ond thread is waiting, the IPC occurs immediately,
the destination thread is woken up, while the source
thread starts waiting if a receive phase was specified.

WakeDestThenWait(tcb from, tcb to, recv timeout,

fromSpecifier)

The precondition combines aspects of the previous
IPC operations: the destination must be waiting for
either the source’s thread number or anythread ; from-
Specifier must be that of an existing thread, nilthread
or anythread ; a non-nilthread fromSpecifier indicates
a receive phase for the source and so recv timeout
must not be zero; there is no polling timeout, since
the operation goes ahead immediately.

This time there are no common items between the
success and failure paths.

The success path begins as for JustReceive by per-
forming the IPC transfer and clearing the error in-
dicators for both threads. If tcb from (the source
thread) did not request a receive phase, the opera-
tion can be quickly finished by domain subtraction
of tcb to from thread ipc waiting * and using Un-
Wait to cancel its waiting state. If it did request
a receive phase, then the situation is more compli-
cated. The destination still has to be removed from
thread ipc waiting *, but now the source thread must
also be inserted. The first half of the IF statement
is presented below, for when the time-out is infinite.
The second half is analogous, but the timeout is finite
and so the state will be tsWaitingTimeout :

thread ipc waiting for :=

{ tcb to } −C thread ipc waiting for ∪
{ tcb from 7→ fromSpecifier } ‖

IF isInfinite ( recv timeout ) THEN

thread ipc waiting timeout :=

{ tcb to } −C thread ipc waiting timeout ∪
{ tcb from 7→ eInfiniteTimeout } ‖

WakeUpAndWait ( tcb from , tcb to ,

tsWaitingForever)

ELSE . . .

WakeUpAndWait is used to wake up tcb to, and
make tcb from wait with one of the time-outs.

We leave out the formal definition of the fail-
ure path here. It just removes the destination from
thread ipc waiting *, picks an error, sets it as the er-
ror attribute for both threads, and uses UnWait on
the destination thread.

The ResolveIPC operation covers the situation
where one thread1 is polling on thread2, while the lat-
ter is waiting for the former. Since neither of them is
executing, the kernel will perform the IPC. We omit
the formal definition of ResolveIPC(tcb from, tcb to).
It is a combination of JustReceive and WakeDest-
ThenWait. The main difference is the precondition.
It requires that both threads are active, the sender
is polling and the receiver is waiting, the sender is
polling on the receiver and the receiver either accepts
anythread or the receiver’s thread number.

When the kernel finds a thread that has been
polling for longer than its time-out value, a time-
out occurs. Since the model abstracts from exact
values for time-outs, we let the time-out occur non-
deterministically. The TimeoutPoll operation picks
any thread which is polling with a non-infinite time-
out and times it out. If such a thread does not exist,
it does nothing. Of course, non-determinism is not
random, it just states that the decision algorithm is

not specified at this level. During animation, the user
is asked to be that algorithm. The TimeoutPoll oper-
ation removes the thread from the state variables and
sets its error attribute to eSendTimeout. The Time-
outWait operation is the equivalent of TimeoutPoll,
but times out a thread which is waiting with a finite
time-out.

TimeoutPoll b=
BEGIN

IF thread ipc polling timeout B
{ eFiniteTimeout } = {}
THEN

skip

ELSE

ANY tcb

WHERE

tcb ∈ dom ( thread ipc polling timeout B
{ eFiniteTimeout } )

THEN

UnWait ( tcb ) ‖
thread ipc polling on :=

{ tcb } −C thread ipc polling on ‖
thread ipc polling timeout :=

{ tcb } −C thread ipc polling timeout ‖
thread incoming (

thread ipc polling on ( tcb ) ) :=

thread incoming (

thread ipc polling on ( tcb ) ) − { tcb } ‖
thread incoming gnos (

thread ipc polling on ( tcb ) ) :=

thread incoming gnos (

thread ipc polling on ( tcb ) ) −
{ thread gno ( tcb ) } ‖

thread recv waiting timeout :=

{ tcb } −C thread recv waiting timeout ‖
thread recv waiting for :=

{ tcb } −C thread recv waiting for ‖
thread error ( tcb ) := eSendTimeout

END

END

END

The IpcBase machine also provides an operation
SetError as a way for operations in higher-level ma-
chines to set the error attribute for an active thread.
This is used for example, to signal that a thread lacks
necessary privileges to perform an operation.

When we described the ExchangeRegisters
functionality in section 4.3.3, we only covered the
functionality pertaining directly to threads and their
control state. As the reference manual [13, section
2.3] states, ExchangeRegisters can be used to can-
cel or abort ongoing IPCs. Now that the IPC state
transitions are available, we can model the IPC func-
tionality in ExchangeRegisters. IpcBaseExchang-
eRegisters takes one fewer parameter than ThreadEx-
changeRegisters. It is the one that decides whether a
waiting/polling thread is to be woken up. The pre-
conditions, with the exception of the unwait flag are
identical.

IpcBaseExchangeRegisters(tcb, control, pager) b=
PRE tcb ∈ threads ∧ control ⊆ EXREGS FLAGS ∧

pager ∈ TCB ∧ tcb 6∈ kIntThreads

THEN

IF

ex S ∈ control ∧
tcb ∈ dom ( thread ipc polling on )

THEN

ThreadExchangeRegisters(tcb, control, pager,

TRUE) ‖
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thread ipc polling on :=

{ tcb } −C thread ipc polling on ‖
thread ipc polling timeout :=

{ tcb } −C thread ipc polling timeout ‖
thread incoming (

thread ipc polling on ( tcb ) ) :=

thread incoming (

thread ipc polling on ( tcb ) ) − { tcb } ‖
thread incoming gnos (

thread ipc polling on ( tcb ) ) :=

thread incoming gnos (

thread ipc polling on ( tcb ) ) −
{ thread gno ( tcb ) } ‖

thread recv waiting timeout :=

{ tcb } −C thread recv waiting timeout ‖
thread recv waiting for :=

{ tcb } −C thread recv waiting for ‖
ANY err WHERE

err ∈ { eSendCancelled , eAborted }
THEN

thread error ( tcb ) := err

END

ELSIF

ex R ∈ control ∧
tcb ∈ dom ( thread ipc waiting for )

THEN

ThreadExchangeRegisters(tcb, control, pager,

TRUE) ‖
thread ipc waiting for :=

{ tcb } −C thread ipc waiting for ‖
thread ipc waiting timeout :=

{ tcb } −C thread ipc waiting timeout ‖
ANY err WHERE

err ∈ { eRecvCancelled , eAborted }
THEN

thread error ( tcb ) := err

END

ELSE

ThreadExchangeRegisters (tcb, control, pager,

FALSE) ‖
thread error ( tcb ) := eNoError

END

END

The functionality at the IPC level consists of the
following bits in control : if S = 1, a currently ongo-
ing send IPC operation will be aborted, while an IPC
send operation waiting to happen will be cancelled ; if
R = 1, likewise, but for receiving IPC. In the current
model, bits are not used. Instead, the bits are repre-
sented by set membership of ex S and ex R in control.
If neither are present, the operation invokes Thread-
ExchangeRegisters with unwait set to FALSE (do not
change the state) and clears the error attribute.

If ex S is present, the operation is removed from
the state variables to do with polling, as well as from
the incoming set of the thread it is polling on. Par-
allel composition means it is impossible to determine
whether the IPC operation was cancelled or aborted,
so a non-deterministic choice is made and becomes
the value of the thread’s error attribute. ThreadEx-
changeRegisters is invoked with the unwait flag equal
to TRUE, forcing the function to be awakened.

If ex S is present, events proceed as above, except
the thread is removed from state variables related to
waiting.

This concludes the operations of IpcBase. Having
defined all the core functionality present in the model,
we can now show an accurate view of state transitions
in figure 4.

Figure 4: Possible state transitions in the model and
operations which cause them.

4.5 API

This is the topmost machine in the specification. It
INCLUDES WeakSysCall and all context machines.

Operations in API are either direct equivalents of
L4 system calls, or operations representing system in-
ternals for use in animation. Their only real task at
this level is to provide precondition support to lower-
level operations (such as those in WeakSyscall) and
pick which of these operations to invoke. They are
very simple, if sometimes long, and are better exam-
ined directly.

It is worth noting that the top-level system-call op-
erations still have preconditions: the invoking thread
must be active and running, otherwise the system
scheduler is fundamentally broken.

To give the reader an idea of what such an opera-
tion looks like, we present the final version of Exchan-
geRegisters. It augments the IpcBaseExchangeReg-
isters operation with the error-checking necessary
to make it succeed, as well as non-deterministically
modelling the system call components not within the
scope of the formalisation:

ExchangeRegisters ( itcb , tcb , control , sp , ip , flags ,

pager , handle ) b=
PRE itcb ∈ active threads ∧

thread state ( itcb ) = tsRunning ∧
tcb ∈ TCB ∧ control ⊆ EXREGS FLAGS ∧
sp ∈ N ∧ ip ∈ N ∧
pager ∈ TCB ∧ flags ∈ N ∧ handle ∈ N

THEN

SELECT tcb 6∈ threads THEN

SetError ( itcb , eInvalidThread )

WHEN tcb ∈ threads ∧
thread space ( tcb ) 6= thread space ( itcb )

THEN

SetError ( itcb , eInvalidThread )

ELSE

CHOICE

IpcBaseExchangeRegisters ( tcb , control , pager )

OR

ANY error

WHERE error ∈ { eOutOfMemory ,

eInvalidUtcbLocation }
THEN

SetError ( itcb , error )

END

END

END

END
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As mentioned before, the two remaining non-trivial
assumptions are that the invoking thread itcb must
be active and running (otherwise it cannot perform
a system call). Via the non-deterministic SELECT
statement with exclusive conditions, we enforce the
preconditions of IpcBaseExchangeRegisters: the tar-
get thread tcb must exist and be in the caller’s address
space. If the preconditions are met the operation will
succeed, but this is not necessarily true of the sys-
tem call [13, section 2.3]: we may be out of memory
or point to a bad memory location. Since the virtual
memory subsystem is outside the scope of this formal-
isation, we model these failures via non-deterministic
choice. The instruction and stack pointers, due to no
knowledge of memory layout, are ignored; so is the
user-defined handle, since it has no effect on actions
performed by the kernel.

5 Conclusion

In this paper we have described our formalisation
of the L4 high-performance microkernel in the B
method. The main work on the formalisation was
done as the honours thesis project of the first au-
thor which equates to an investment of roughly 5 per-
son months. The final formalisation extends to about
2000 lines of B specification.

The goals of the formalisation effort were reached.
The model is animatable and can be used as a learning
tool. During the project it became apparent that in
spite of detailed, good quality documentation, there
were a number of ambiguities in the description of the
L4 API and even inconsistent expectations towards
its behaviour. Using code inspection and discussions
with L4 developers those could be resolved, made pre-
cise and documented in the model. We are confident
that the formalisation provides a good basis for the
planned revision of the L4 API that involves formal
modelling from the start.

The level of detail that was achieved during the
available time frame suggests that formal specifica-
tion of real-world operating system kernels is entirely
feasible, a good opportunity for documentation, and
a good starting point for verification of the system.

The context of this work is a pilot project on ex-
actly that: the verification of the L4 microkernel. In
other work [20] we have demonstrated the feasibility
of this as well. With an investment of about 1.5 per-
son years we were able to specify a significant part of
the L4 virtual memory subsystem and fully verify it
down to C code, integrated into the kernel, running
on real hardware.

Despite the good results and progress we achieved
using the B method, we found that a number of re-
strictions were hindering our work. They are not
directly a fault of the B method itself, but more
of an incompatibility with our goals. The require-
ment for animation for instance, precluded some more
convenient formalisation mechanisms. Furthermore,
the B method is geared towards refinement proofs
in multiple steps with code generation at the end.
We do agree in principle with this technique, but
although the code generation step from B to the C
programming language seems appropriate for appli-
cation code, it bridges too large a gap to effectively
control performance critical sections in operating sys-
tems code.

We therefore decided to use the other formalism
that was successfully applied in the pilot project, Is-
abelle/HOL [16], for the future, full verification. The
main concepts of the B formalisation — a state based
description of the L4 API functions will stay the same,
only the notation will be different (higher order logic
instead of set theory).

In fact, we are not performing a translation from
B to Isabelle/HOL, but we are first developing a new
version of the L4 API that introduces efficient and
flexible security mechanisms. As most of the API
will stay unchanged, the hope is that the experience
gained in this formalisation will significantly speed
up the formal specification process. Moreover, the
formal specification this time is integrated with the
API design from the start.

We estimate that the full verification of L4 will
take about 20 person years, including verification tool
development. This effort must be seen in relation to
the cost of developing the kernel in the first place, and
the potential benefits of verification. The present ker-
nel was written by a three-person team over a period
of 8–12 months, with significant improvements since.
Furthermore, for most of the developers it was the
third in a series of similar kernels they had written,
which meant that when starting they had a consid-
erable amount of experience. A realistic estimate of
the cost of developing a high-performance implemen-
tation of L4 is probably at least 5–10 person years.

Under those circumstances, we argue that the full
verification of L4 is highly desirable and provides a
good return of investment. The kernel is the lowest
and most critical part of any software stack, and any
assurances on system behaviour are built on sand as
long as the kernel is not shown to behave as expected.
Furthermore, formal verification puts pressure on ker-
nel designers to simplify their systems, which has ob-
vious benefits for maintainability and robustness even
when not yet formally verified.
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Abstract

Some combinatorial generation problems can be bro-
ken into subproblems for which loopless algorithms
already exist. We discuss means by which loop-
less algorithms can be fused to produce a new loop-
less algorithm that solves the original problem. We
demonstrate this method with two new loopless algo-
rithms, MIXPAR and MULTPERM. MIXPAR gen-
erates well-formed parenthesis strings containing two
different types of parentheses. MULTPERM gener-
ates multiset permutations in linear space using only
arrays; it is simpler and more efficient than the recent
algorithm of Korsh and LaFollette (2004).

1 Introduction

The generation of combinatorial objects, such as
combinations, permutations and parenthesis strings,
is a well studied area, covered by Nijenhuis and
Wilf (1975), Reingold, Nievergelt and Deo (1977),
Wilf (1989) and Savage (1997).

Loopless algorithms for combinatorial generation
were introduced by Ehrlich (1973). These algorithms
generate each combinatorial object from its prede-
cessor using no more than a constant number of in-
structions, thus they are ‘loop-free’. It follows that it
should be possible to combine loopless algorithms in
such a way that the resulting algorithm still satisfies
this property. If a combinatorial generation problem
can be broken down into subproblems for which loop-
less algorithms already exist, then combining those
algorithms might lead to a loopless algorithm for the
original problem.

This idea is not new, for example Korsh and Lip-
schutz (1997) and Korsh and LaFollette (2004) give
loopless algorithms for multiset permutations that
combine existing loopless algorithms for element se-
lection and combination movement. We believe, how-
ever, that combining loopless algorithms has not been
discussed in general before. We refer to the combin-
ing of algorithms as fusing because this does not limit
us to any particular structures or patterns.

We introduce general program structures for fused
loopless algorithms and discuss implementation issues
in Section 2. We then cover Williamson’s (1985) algo-
rithm for variations in Gray code order in Section 3,
as it is the basis for many of the subsequent algo-
rithms we discuss. We use fusing to produce MIX-
PAR, an algorithm for generating mixed parenthesis
strings, which comprise parentheses of different types,

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sympo-
sium (CATS2006), Hobart, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 51.
Barry Jay and Joachim Gudmundsson, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

in Section 4. A second new algorithm, MULTPERM,
is presented in Section 5, and experimentally evalu-
ated against the algorithm recently published by Ko-
rsh and LaFollette. Finally, we draw some conclusions
in Section 6.

2 Fusing Loopless Algorithms

A generalised a loopless algorithm is shown in Fig-
ure 1(a). Function init initialises the algorithm and
generates the first object, next generates each suc-
cessive object, while last returns whether this current
object is the final one in the sequence. Functions next
and last run in O(1) time, while init is allowed O(n)
time. ‘Loopless’ may seem a misnomer, since a con-
trol loop is required, but it is the generation of each
object that is loop-free.

Two loopless algorithms can be nested so that a
complete cycle of the inner algorithm runs during
each iteration of the outer algorithm, as shown in Fig-
ure 1(b). Functions next 1 and isnext 1 belong to the
inner algorithm, while next 2 and isnext 2 belong to
the outer. Because the initial and final states of a
loopless algorithm differ, a new function, reinit 1, is
required to reinitialise the inner algorithm before it
begins a new cycle. There are two ways an algorithm
can be reinitialised: refreshing means to reset an al-

1. init
2. while not last do
3. next

(a) Single loopless algorithm

1. init
2. while not last 2 do
3. while not last 1 do
4. next 1
5. reinit 1
6. next 2

(b) Two loopless algorithms, nested

1. init
2. while not last 2 do
3. if not last 1 then
4. next 1
5. else
6. reinit 1
7. next 2

(c) Two loopless algorithms, un-nested

Figure 1: Program structures for loopless algorithms.
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Algorithm 1 Williamson’s (1985) loopless algo-
rithm for variations in Gray code order.

/* Initialise */
1. procedure init Wil
2. read n
3. for i = 1 to n do read r[i]
4. for i = 1 to n do v[i] = 1
5. for i = 1 to n do d[i] = 1
6. for i = 0 to n do e[i] = i
7. j = n;

/* Generate */
8. procedure next Wil
9. e[n] = n

10. add d[j] to v[j]
11. if v[j] is either 1 or r[j] then
12. e[j] = e[j − 1]
13. e[j − 1] = j − 1
14. d[j] = −d[j]
15. j = e[n]

/* Main */
16. init Wil
17. print v
18. while j is not 0 do
19. next Wil
20. print v

gorithm to its initial state; reversing means to alter
the algorithm so it will run from its final state back to
its initial state over a cycle. Since reinitialisation oc-
curs between objects, reinit is only allowed O(1) time.
Although these nested loopless algorithms contain an
extra while loop, successive objects are still generated
in no more than a constant number of instructions.

For greater clarity, the nested structure can be
modified into an un-nested structure by replacing the
second while loop with an if-then-else statement, as
shown in Figure 1(c). This un-nested configuration
executes the functions in the same order as the nested
configuration, but now a single loop-free algorithm
that generates exactly one object per iteration can
be isolated within the program. The new algorithms
that we develop in Sections 4 and 5 adhere to this
un-nested structure.

Although reinit 1 is limited to O(1) time, there are
a couple of tricks for fitting O(n)-time reinitialisation
into this framework. For example, the final state of
an algorithm might include some array a1...n that has
O(n) points of difference from its initial state. Sup-
posing the algorithm is irreversible, then it requires
O(n) time to reinitialise. One option, available if the
algorithm finishes with different ai at different stages
during its cycle, is to reinitialise each ai as soon as it
becomes obsolete, during iterations of next 1. In this
way, O(n) reinitialising steps can be executed in O(1)
time per object, a technique we call time-stealing. In
the best case, this algorithm would give cues as to
exactly when each ai becomes obsolete; in the worst,
a for-loop would be simulated, using a counter vari-
able and an arbitrary start cue. We use this time-
stealing technique to iteratively re-initialise array s in
algorithm MULTPERM in Section 5. A second op-
tion is less elegant and much less efficient, although
it seems universally applicable: maintain two sepa-
rate versions of the troublesome arrays or variables.
Then, in any given cycle of the inner algorithm, one
version can be used while the other is reinitialised as
per time-stealing.

v1...3 e0...3 j
1. 1 1 1 0 1 2 3 3
2. 1 1 2 0 1 2 3 3
3. 1 1 3 0 1 2 2 2
4. 1 2 3 0 1 2 3 3
5. 1 2 2 0 1 2 3 3
6. 1 2 1 0 1 2 2 2
7. 1 3 1 0 1 1 3 3
8. 1 3 2 0 1 1 3 3
9. 1 3 3 0 1 2 1 1

v1...3 e0...3 j
10. 2 3 3 0 0 2 3 3
11. 2 3 2 0 0 2 3 3
12. 2 3 1 0 0 2 2 2
13. 2 2 1 0 0 2 3 3
14. 2 2 2 0 0 2 3 3
15. 2 2 3 0 0 2 2 2
16. 2 1 3 0 1 0 3 3
17. 2 1 2 0 1 0 3 3
18. 2 1 1 0 1 2 0 0

Figure 2: Output for Williamson’s algorithm for in-
puts n = 3, r = {2, 3, 3}. Each v[i] varies between
1 and r[i] inclusive. Underlines indicate when v[j]
becomes extremal, and the corresponding conveying
from e[j−1] to e[j] and resetting of e[j−1]. Note that
j changes at the end of each iteration, so the value
of j used to generate any v and e is on the preceding
line.

3 Williamson’s Algorithm

We include a discussion of Williamson’s (1985, p.112)
loopless algorithm for generating variations in Gray
code order because its recursion-simulation technique
is used by three out of the four subsequent algorithms
in this paper. The algorithm generates elements of
the product space S = S1 × S2 × . . . × Sn, with
Si = 0, 1, . . . , ri − 1 for i = 1, 2, . . . , n. Williamson’s
algorithm is shown in Algorithm 1.

The variables in Williamson’s algorithm are: v1...n,
the current variation; j, the current position in v to
change; d1...n, the current increment (1 or -1) for each
position in v; and e0...n, which determines the order
in which positions in v should be selected as values
for j. Values for n and all r[i] are read from the user.
The remaining variables are initialised as follows: all
vi are set to 0; all di are set to 1; all ei are set to i; and
j is set to n. Array e is used to looplessly simulate
a recursive tree traversal. Though this technique is
well known and comprises only a few lines of code, it
is nontrivial and rarely explained.

When ei is set to i, we say that ei is reset, since
i was the initialised value of ei. When vj becomes
extremal, the value at ej−1 is passed along one place
to ej , then ej−1 is reset. Referring to the coding
tree in Figure 2, this can be seen when v = {1, 3, 3},
for example. Because v3 has become a last child, e3
inherits the value 1 from e2, while e2 is reset to 2.

A similar pass-reset pattern occurs between en and
variable j. At the end of every iteration of next the
value at en is passed along to variable j; at the start of
the next iteration, en is reset. Referring again to Fig-
ure 2, the resetting of e3 is visible when v = {1, 1, 3},
{1, 2, 1}, and so on. It happens on every line, of
course, but can only be seen when e3 was not already
3 and was not subsequently changed.

In effect, e can be thought of as a conveyor belt
that passes information along towards variable j. It is
helpful to picture variable j as positioned immediately
after en, since information flows along array e and into
j. Whenever information is passed along, the source
of that information is reset.

Any value i can only enter the array by resetting
ei. When ei inherits a value from ei−1, that value
instead of i will be carried towards variable j. That
means that vi will be skipped over on the next oc-
casion that would have otherwise been its turn to be
changed.

When vi is skipped, and one of its ancestors is
changed, vi becomes a first child, so it should not be
skipped again. Thus, as soon the value of ei is passed
on, ei is reset. This means the subsequent value to
be passed from ei will be i again, making vi available
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par mix mixpar
...

( ( ) ( ) ) ( ( ( ( ( ) ( ) )

( ( [ ( ( ) [ ] )

( [ [ ( [ ] [ ] )

( [ ( ( [ ] ( ) )

[ [ ( [ [ ] ( ) ]

[ [ [ [ [ ] [ ] ]

[ ( [ [ ( ) [ ] ]

[ ( ( [ ( ) ( ) ]

( ( ( ) ) ) ...

(a) Par-outside-mix (par-mix)

mix par mixpar
...

( [ [ ( ) ( ) ( ) ( ) [ ] [ ]

( ) ( ( ) ) ( ) [ [ ] ]

( ( ) ( ) ) ( [ ] [ ] )

( ( ( ) ) ) ( [ [ ] ] )

( ( ) ) ( ) ( [ ] ) [ ]

( [ ( ...

(b) Mix-outside-par (mix-par)

Figure 3: Sample outputs for mixpar algorithms with
opposite nesting configurations.

for change. Note that if the value of ei was already
i before it was passed along then resetting ei has no
effect.

Both of our new algorithms, MIXPAR and MULT-
PERM, in Sections 4 and 5 respectively, use the
Williamson’s variables j, d and e to select elements
for change. MIXPAR uses a second set, labelled jj,
dd and ee, since both of its component algorithms
follow the Williamson model.

4 Mixed Parenthesis Strings

The first combinatorial generation problem we ap-
ply our fusing framework to is in the area of paren-
thesis strings. A well-formed parenthesis string, or
par for short, can be derived from the grammar
P → ε | (P) | PP . A par has n pairs, and so its
size is 2n.

We introduce a new combinatorial object: mixed
parenthesis strings, or mixpars for short, which com-
prise parentheses of different types. In this paper we
limit the number of types to two, but it is trivial to
extend the ideas beyond binary. The grammar for
a mixpar is a modification of that for a par, in this
case M → ε | (M) | [M] | MM . Thus, a mixpar
is well-formed if its parentheses are arranged as per
an ordinary par, and if both parentheses in each pair
share the same type. For example, ( ) [ ] and ( [

] ) are a valid mixpars, while ( ] [ ) and ( [ ) ]

are not.
A mixpar can be thought of as a par with a cer-

tain mix of types. For example, the mixpar ( ) [ ]

can be described as the par ( ) ( ) with the mix (

[. Note that with only two types, a mix corresponds
to a binary string. It follows that generating all mix-
pars for some n is a matter of generating either all
mixes for each par or all pars for each mix. Thus,
an algorithm for generating mixpars nests algorithms
for generating pars and mixes in some way. Because
loopless algorithms for pars and binary strings exist,
we hypothesized that a loopless algorithm for gener-
ating mixpars could be fused from these. This fusion
is carried out within the framework discussed in Sec-
tion 2.

par mix mixpar
...

( ( ) ( ) ) ( ( ( ( ( ) ( ) )

...

[ ( ( [ ( ) ( ) ]

( ( ( ) ) ) ( ( ( ( ( ( ) ) )

...

[ ( ( [ ( ( ) ) ]

( ( ) ) ( ) ( ( ( ( ( ) ) ( )

...

(a) Refreshing.

par mix mixpar
...

( ( ) ( ) ) ( ( ( ( ( ) ( ) )

...

[ ( ( [ ( ) ( ) ]

( ( ( ) ) ) [ ( ( [ ( ( ) ) ]

...

( ( ( ( ( ( ) ) )

( ( ) ) ( ) ( ( ( ( ( ) ) ( )

...

(b) Reversing.

Figure 4: Sample outputs for mixpar algorithms re-
freshing and reversing the inner mix algorithm respec-
tively.

The way in which the two algorithms are nested
affects the modifications required to make each algo-
rithm operate directly on mixpars. Figure 3 shows
output for mixpar algorithms with the two possi-
ble nesting configurations, par-outside-mix and mix-
outside-par. (The par algorithm used is that of Xiang
and Ushijima (2001), which is the one we ultimately
chose and will discuss later; the mix algorithm is sim-
ply a Gray code generator.) From Figure 3(a) it can
be seen that each iteration of the mix algorithm must
change the type of one pair in the mixpar. Figure 3(b)
shows that each iteration of the par algorithm must
change the places or types of two to four parenthe-
ses. The mix-par configuration seemed to require
more difficult modification to its inner algorithm, so
we opted for the par-mix arrangement.

The method of reinitialising the inner algorithm
also has an impact on the difficulty of fusing the al-
gorithms. Recalling Section 2, inner algorithms can
be reinitialised by either refreshing or reversing. Fig-
ure 4 shows output for mixpar algorithms that refresh
and reverse their inner algorithms respectively. From
Figure 4(a) it can be seen that refreshing the mix al-
gorithm means that all parentheses are round when-
ever it is the par algorithm’s turn to operate. (This
takes advantage of the fact that the last object in a
Gray code has only one point of difference to the first
object.) Figure 4(b) shows that reversing the mix al-
gorithm means the par algorithm will frequently have
to cope with one pair of an alternate type. Again, we
opted for the simpler option, that of refreshing rather
than reversing the mix algorithm.

In order to change the types of pairs, the positions
of the parentheses in each pair must be known. Let
li be the position of the ith left parenthesis, and let
ri be the position of the partner of the ith left paren-
thesis (that is, not simply the ith right parenthesis as
counted from the start). For example, for the mixpar
( ( ( ) ) ), l2 = 2 and r2 = 5.

Although we do not know of a loopless par algo-
rithm that correctly maintains all li and ri, Xiang and
Ushijima’s (2001) algorithm does correctly maintain
all li. We now present a method for finding all ri in
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Algorithm 2 Xiang and Ushijima’s (2001) loop-
less algorithm for parenthesis strings.

/* Initialise */
1. procedure init XU
2. read n;
3. for i = 1 to 2n by 2 do
4. set par [i] to ‘(’, par [i + 1] to ‘)’
5. for i = 1 to n do l[i] = 2i − 1
6. for i = 1 to n do d[i] = 1
7. for i = 0 to n do e[i] = i
8. j = n

/* Generate */
9. procedure next XU

10. e[n] = n
11. i = l[j]
12. if d[j] is 1 then
13. if l[j] is 2j − 1 then
14. l[j] = l[j − 1] + 1
15. else
16. add 1 to l[j]
17. else
18. if l[j] is l[j − 1] + 1 then
19. l[j] = 2j − 1
20. else
21. subtract 1 from l[j]
22. swap par [i] and par [l[j]]
23. if l[j] ≥ 2j − 2 then
24. d[j] = −d[j]
25. e[j] = e[j − 1]
26. e[j − 1] = j − 1
27. j = e[n]

/* Main */
28. init XU
29. print par
30. while j is not 1 do
31. next XU
32. print par

constant time per object. The entire mixpar cannot
be scanned after every iteration of the par algorithm,
as that would require O(n) time, so the solution is to
use the time-stealing technique mentioned in Sect. 2,
finding each ri in O(1) time during iterations of the
mix algorithm.

We say a parenthesis pair is empty if no pairs are
nested inside it. Recalling the grammar for a par, the
nth pair must be empty, since no subsequent pairs
exist. Thus:

rn = ln + 1 (1)

It follows that the (n − 1)th pair must be empty or
nested around the nth pair. Our algorithm is based on
the idea that, if we start from the nth pair and work
backwards to the first, each pair must be either empty
or nested around some substring comprising pairs we
have already encountered. Thus, information about
substrings must be stored. Let sli be the position
after the longest well-formed substring beginning at
li. For example, for the mixpar ( ( ( ) ) ), l2 =
2 and sl2 = s2 = 6. Because we cannot know all
si immediately, our algorithm initialises array s1...2n

such that all si = i. Equation (1) is the base step
of our induction. We now show how each successive
sli and ri can be found in constant time by working
backwards from i = n.

If there is no jth left parenthesis immediately af-
ter ri, then the substring beginning at li ends at ri,
and sri+1 will not have changed since initialisation.

par l

1. ( ) ( ) ( ) ( ) 1 3 5 7
2. ( ) ( ) ( ( ) ) 1 3 5 6
3. ( ) ( ( ) ( ) ) 1 3 4 6
4. ( ) ( ( ( ) ) ) 1 3 4 5
5. ( ) ( ( ) ) ( ) 1 3 4 7
6. ( ( ) ( ) ) ( ) 1 2 4 7
7. ( ( ) ( ( ) ) ) 1 2 4 5
8. ( ( ) ( ) ( ) ) 1 2 4 6
9. ( ( ( ) ) ( ) ) 1 2 3 6

10. ( ( ( ) ( ) ) ) 1 2 3 5
11. ( ( ( ( ) ) ) ) 1 2 3 4
12. ( ( ( ) ) ) ( ) 1 2 3 7
13. ( ( ) ) ( ) ( ) 1 2 5 7
14. ( ( ) ) ( ( ) ) 1 2 5 6

Figure 5: Xiang and Ushijima’s algorithm output for
n = 4.

On the other hand, if ri is adjacent to some lj , then
the substrings beginning at li and lj end in the same
position, and because we are working backwards from
the nth pair, slj will already have been set correctly.
Thus, we derive an unconditional equation for sli in-
dependent of j:

sli =

{

ri + 1 = sri+1 iff ri + 1 6= lj
slj = sri+1 iff ri + 1 = lj

= sri+1

(2)

Similarly for ri, if the (i + 1)th left parenthesis is
not immediately after li, then ri must be, and sli+1
will not have changed since initialisation. Conversely,
if the ith and (i + 1)th left parentheses are adjacent,
then ri must be immediately after the substring start-
ing at li+1. Because we are working backwards from
the nth pair, sli+1

will already have been set correctly.
Thus, we derive an unconditional equation for ri:

ri =

{

li + 1 = sli+1 iff li + 1 6= li+1
sli+1

= sli+1 iff li + 1 = li+1

= sli+1

(3)

Thus, using (1), (2) and (3), right parentheses
from nth to first can be found in O(1) time each,
during iterations of the first half of the Gray cycle.
As we finish with each ri during the second half of
the Gray cycle, we reset each sli .

We now cover Xiang and Ushijima’s par algorithm.
In addition to correctly maintaining all li, it a very
efficient loopless par algorithm in terms of time and
space. It is also very simple, which helped keep our
final MIXPAR algorithm simple. Xiang and Ushi-
jima’s algorithm is shown in Algorithm 2 (note that
we have renamed their array for the positions of the
left parentheses from p to l for consistency with our
right-finding approach). Its element-selection mecha-
nism is familiar from Williamson’s algorithm in Sec-
tion 3, although its element-change code is a little
more complex.

Xiang and Ushijima’s algorithm introduces several
new variables. As mentioned, the number of paren-
thesis pairs is n, which is read from the user. The par
is stored in par1...2n, while the left parentheses posi-
tions are stored in l1...n. These are initialised to ( )

( ) . . . ( ) and 1,3,. . . ,2n − 1 respectively. Finally,
i and c are temporary variables used to facilitate an
array swap, storing an integer and character respec-
tively. Variables j, d1...n and e0...n are inherited from
Williamson’s algorithm, and relate to the left paren-
theses; initialisations remain the same.

It works in the same way as their combinations
algorithm from the same paper; both are variations
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Algorithm 3 MIXPAR, a new, loopless algorithm
for mixed parenthesis strings

/* Initialise */
1. procedure init Mix
2. init XU /* From Alg. 2 */
3. for i = 1 to n do dd[i] = 1
4. for i = 0 to n do ee[i] = i
5. for i = 1 to 2n do s[i] = i
6. jj = n
7. t = n

/* Find right parenthesis */
8. procedure find
9. if dd[1] is 1 then

10. r[jj] = s[l[jj] + 1]
11. if jj is not 1 then
12. s[l[jj]] = s[r[jj] + 1]
13. subtract 1 from t
14. else
15. s[l[jj]] = l[jj]
16. add 1 to t

/* Generate by Gray */
17. procedure next Gray
18. ee[n] = n
19. if jj is t then find
20. change par [l[jj]] and par [r[jj]] from

round to square or vice versa
21. ee[jj] = ee[jj − 1]
22. ee[jj − 1] = jj − 1
23. dd[jj] = −dd[jj]
24. jj = ee[n]

/* Re-initialise Gray */
25. procedure reinit Gray
26. change par [l[1]] and par [r[1]] to round
27. dd[1] = 1
28. jj = n
29. t = n

/* Main */
30. init Mix
31. print par
32. while j is not 1 or jj is not 0 do
33. if jj is not 0 then
34. next Gray
35. else
36. reinit Gray
37. next XU /* From Alg. 2 */
38. print par

on Williamson’s algorithm in which no two elements
in the same object can have the same value. Xiang
and Ushijima noted that parentheses maintain a rel-
ative order, that is l1 < l2 < . . . < ln, and that
well-formedness dictates how far to the right each left
parenthesis can travel, that is li ≤ 2i−1 for 1 ≤ i ≤ n.
At any time, these principles determine the upper and
lower bounds for left parenthesis travel.

Xiang and Ushijima extended Williamson’s algo-
rithm to have four patterns of change: O+, O+′, O−

and O−′. The regular positive direction, O+, causes a
parenthesis to move steadily right between its current
bounds. The prime positive direction, O+′, causes a
parenthesis to jump from its lower bound to its upper
bound, then move steadily left through all remaining
values. The negative directions have the opposite ef-
fects. These jumps in the prime directions allow the
algorithm to avoid clashes (different elements sharing

1. ( ) ( ) ( ) 25. ( ( ( ) ) )

2. ( ) ( ) [ ] 26. ( ( [ ] ) )

3. ( ) [ ] [ ] 27. ( [ [ ] ] )

4. ( ) [ ] ( ) 28. ( [ ( ) ] )

5. [ ] [ ] ( ) 29. [ [ ( ) ] ]

6. [ ] [ ] [ ] 30. [ [ [ ] ] ]

7. [ ] ( ) [ ] 31. [ ( [ ] ) ]

8. [ ] ( ) ( ) 32. [ ( ( ) ) ]

9. ( ) ( ( ) ) 33. ( ( ) ) ( )

10. ( ) ( [ ] ) 34. ( ( ) ) [ ]

11. ( ) [ [ ] ] 35. ( [ ] ) [ ]

12. ( ) [ ( ) ] 36. ( [ ] ) ( )

13. [ ] [ ( ) ] 37. [ [ ] ] ( )

14. [ ] [ [ ] ] 38. [ [ ] ] [ ]

15. [ ] ( [ ] ) 39. [ ( ) ] [ ]

16. [ ] ( ( ) ) 40. [ ( ) ] ( )

17. ( ( ) ( ) )

18. ( ( ) [ ] )

19. ( [ ] [ ] )

20. ( [ ] ( ) )

21. [ [ ] ( ) ]

22. [ [ ] [ ] ]

23. [ ( ) [ ] ]

24. [ ( ) ( ) ]

Figure 6: MIXPAR algorithm output for n = 3. Line-
breaks have been inserted to highlight when the par
is changed by the outer algorithm.

the same value) while generating all combinations of
left parenthesis positions.

Output for Xiang and Ushijima’s algorithm for
n = 4 is shown in Figure 5. All li begin maximally,
and increment or decrement in a pattern similar, at
first glance, to that of Williamson’s algorithm. Closer
examination of lines 2–5, however, reveals the effect
of a prime direction jump. On line 2, l4 is minimal, so
in Williamson’s algorithm you would expect it to re-
verse direction next time it moved. But on line 3, the
change to l3 means that l4 is no longer minimal. On
line 4, a prime jump is employed so that l4 can take
the newly available minimum value before ascending
as per usual to the maximum on line 5.

Algorithm MIXPAR, our new mixed parenthesis
strings algorithm, is given in Algorithm 3. A com-
plete C++ program is given in Appendix A. It’s main
statements (lines 30–38) reveal that it fits exactly into
the un-nested structure outlined in Section 2. The
initialisation and next methods belonging to Xiang
and Ushijima’s algorithm are able to be incorporated
verbatim.

Most of the variables in MIXPAR are inherited
from its constituent algorithms. From Xiang and
Ushijima’s algorithm come the variables n, par1...2n,
l1...n, j, d1...n, e0...n, i and c. From Williamson’s al-
gorithm, to run our mix (Gray code) algorithm, come
the variables jj, dd1...n and ee0...n. All initialisations
are as previously described.

Three new variables are introduced. Finding right
parentheses requires arrays r1...n and s1...2n, of which
r is not initialised and the initialisation of s has al-
ready been covered. Finally, to keep track of which
right parenthesis is due to be found during the first
half of the Gray cycle, and which value of s is due to
be refreshed during the second half, we use variable
t; initially t = n.

A sample output of MIXPAR for n = 3 is shown
in Figure 6. The output is displayed in columns sep-
arated by newlines, where each column begins with
a par generated by Xiang and Ushijima’s algorithm.
The remaining lines in each column show complete
Gray code cycles of mixes for that column’s par.
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Algorithm 4 Chase’s (1989) loopless algorithm
for combinations by O(1)-distance transpositions.

/* Initialise */
1. procedure init Chase
2. read n and r
3. for i = 1 to n do comb[i] = i
4. comb[i] = 2r − 1
5. z = n + 1
6. Set b to 1 if r is even, else 2

/* Next */
7. procedure next Chase
8. if z is 1 then
9. if inc(1) then

10. if adj (1) then
11. if inc(2) then move(1, 1, 2)
12. else move(2, −1, 2)
13. else move(1, 1, 1)
14. else move(1, −1, 1)
15. else
16. if inc(z − 1) then
17. if z > 2 and inc(z − 2) then
18. move(z − 2, 1, 2)
19. else move(z − 1, 1, 1)
20. else
21. if not adj (z) then
22. if inc(z) then move(z, 1, 1)
23. else move(z, −1, 1)
24. else
25. if inc(z + 1) then
26. move(z, 1, 2)
27. else move(z + 1, −1, 2)

/* Move comb elements */
28. procedure move(p, d, s)
29. x = comb[p]
30. y = x + s × d
31. comb[p] = x + d
32. comb[p + d(s − 1)] = y
33. if comb[z] is z then
34. add s to z
35. if comb[z] is z then add s to z
36. else if comb[z − 1] is not z − 1 then
37. subtract s from z

/* Returns comb[i] increasing? */
38. function inc(i)
39. return comb[i + 1] is odd

/* Returns comb[i] and [i+1] adjacent? */
40. function inc(i)
41. return comb[i] + 1 is comb[i + 1]

/* Main */
42. init Chase
43. print comb
44. while comb[n − b] is not minimal or

comb[n − b + 1] is not maximal do
45. next Chase
46. print comb

5 Multiset Permutations

The second combinatorial generation problem we ap-
ply our fusing framework to is that of multiset per-
mutations. A multiset, or set with repetitions, has
k distinct elements, which we assume without loss of
generality to be the integers [1, k]. Each distinct el-

comb bit vector z case

1. 1 2 3 4 1 1 1 1 0 0 5 6
2. 1 2 3 5 1 1 1 0 1 0 4 5
3. 1 3 4 5 1 0 1 1 1 0 2 6
4. 2 3 4 5 0 1 1 1 1 0 1 2
5. 1 2 4 5 1 1 0 1 1 0 3 9
6. 1 2 5 6 1 1 0 0 1 1 3 6
7. 1 3 5 6 1 0 1 0 1 1 2 6
8. 2 3 5 6 0 1 1 0 1 1 1 1
9. 3 4 5 6 0 0 1 1 1 1 1 4

10. 2 4 5 6 0 1 0 1 1 1 1 4
11. 1 4 5 6 1 0 0 1 1 1 2 10
13. 2 3 4 6 0 1 1 1 0 1 1 2
14. 1 2 4 6 1 1 0 1 0 1 3 8
15. 1 2 3 6 1 1 1 0 0 1 4

Figure 7: Chase’s algorithm output for n = 4, r = 6.
The case column identifies which of the ten move calls
is used to generate each object.

ement i has a multiplicity mi, which is the number
of times it appears in the multiset. The size n of the
multiset is the sum of all multiplicities. For example,
the multiset {1, 1, 1, 2, 2, 3} has k = 3, m = {3, 2, 1}
and n = 6. Indistinguishable elements are called sim-
ilar.

Our approach to generating multiset permutations
is based on the Johnson (1963) and Trotter (1962)
algorithms for set permutations, which work by iter-
atively moving single elements through subpermuta-
tions. We reasoned that a modified algorithm could
iteratively move groups of similar elements through
subpermutations, thereby generating multiset permu-
tations, and that this grouped element movement
could be achieved using a combinations algorithm.
A similar approach was taken by Korsh and LaFol-
lette (2004) to develop the first linear-space loopless
multiset permutations algorithm using only arrays.
We subsequently draw attention to several important
design differences that led us to choose a more ad-
vantageous combinations algorithm than Korsh and
LaFollette, and ultimately develop a simpler and more
efficient algorithm. Other multiset permutations al-
gorithms based on combining algorithms include Ko-
rsh and Lipschutz (1997) and Vajnowszki (2003).

A recursive algorithm for multiset permutations is
as follows. Let perm be a multiset permutation of
n integers. Let subpi be a subpermutation of perm
comprising all elements greater than i. Initially perm
is the lexicographically least permutation. If k = 1
then perm is the only permutation. Otherwise, the
1s are placed among subp1 in all remaining distinct
ways such that the relative order of elements of subp1
is maintained, and subp1 is contiguous in the final
permutation. This generates all permutations con-
taining subp1. If there is another subp1 of perm, it
is generated recursively, and the next perm becomes
this next subp1 bounded by the 1s. The 1s are now
placed among this next subp1 in all remaining dis-
tinct ways, subject to the same conditions as before.
This generates all permutations containing this next
subp1. This process of moving 1s through subp1s con-
tinues until they have appeared in all distinct ways in
the last subp1. When the k integers are distinct this
algorithm mimics the Johnson-Trotter.

The recursive algorithm we describe is similar to
that described by Korsh and LaFollette, with one im-
portant difference: when the similar elements finish
moving through a subpermutation, Korsh and LaFol-
lette require that they all be at one end (left or right)
of the subpermutation; we require only that the sub-
permutation be contiguous, meaning the similar ele-
ments may finish distributed across both ends. This
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Algorithm 5 MULTPERM, a new multiset per-
mutations algorithm.

/* Initialise */
1. procedure init Mul
2. read k
3. for i = 1 to k do read m[i]
4. set n to the sum of all m
5. for i = 1 to k do
6. set o[i] to the sum of m[1] to [i − 1]
7. for i = 1 to k do
8. set r[i] to the sum of m[i] to [k]
9. for i = 1 to k do

10. for j = 1 to m[i] do
11. perm [j + o[i]] = i
12. for i = 1 to k do d[i] = 1
13. for i = 1 to k do e[i] = i
14. for i = 1 to k do
15. for j = 1 to m[i] do comb[i][j] = j
16. comb[i][m[i] + 1] = 2r[i] + 1
17. z[i] = m[i] + 1
18. for i = 1 to k − 1 do
19. a[i] = i + 1
20. set b[i] to 1 if m[i] is 1 or r[i] is even,

else 2
21. j = 1

22. /* Generate */
23. procedure next Mul
24. e[1] = 1
25. determine x and y as per Chase, but

using comb[j] and z[j]
26. perm[x + o[j]] = perm[y + o[j]]
27. perm[y + o[j]] = j
28. if a[j] < k then
29. o[a[j]] = o[a[j]] − b[j] × d[j]
30. add 1 to a[j]
31. if (comb[j][m[j] − b[j]] is minimal

and comb[j][m[j] − b[j] + 1] is maximal)
or comb[j][m[j] − b[j]] is minimal then

32. e[j] = e[j + 1]
33. e[j + 1] = j + 1
34. d[j] = −d[j]
35. a[j] = j + 1
36. j = e[1]

37. /* Main */
38. init Mul
39. print perm
40. while j is not k do
41. next Mul
42. print perm

more relaxed requirement meant we had more com-
binations algorithms to choose from than Korsh and
LaFollette. Besides requiring that the 0s (in terms of
bit vector notation) finish as a contiguous substring,
we also required, as per our recursive algorithm, that
the relative order of 0s be maintained, and that the
algorithm be reversible in O(1) time. We preferred
that the algorithm’s transpositions be limited to O(1)
distance, as this would avoid significant extra book-
keeping.

The combinations algorithm we chose was that
of Chase (1989), shown in Algorithm 4. We regret
that a full explanation of Chase’s algorithm is out-
side the scope of this paper, but we hope that our
overview will satisfy the reader’s curiousity enough
to accept Chase’s algorithm as component for use in
our MULTPERM algorithm.

1. 1 1 2 2 3 11. 2 3 2 1 1 21. 1 1 3 2 2
2. 1 2 1 2 3 12. 2 3 1 2 1 22. 1 3 1 2 2
3. 2 1 1 2 3 13. 2 1 3 2 1 23. 3 1 1 2 2
4. 2 2 1 1 3 14. 1 2 3 2 1 24. 3 2 1 1 2
5. 2 1 2 1 3 15. 1 2 3 1 2 25. 3 1 2 1 2
6. 1 2 2 1 3 16. 2 1 3 1 2 26. 1 3 2 1 2
7. 1 2 2 3 1 17. 2 3 1 1 2 27. 1 3 2 2 1
8. 2 1 2 3 1 18. 2 1 1 3 2 28. 3 1 2 2 1
9. 2 2 1 3 1 19. 1 2 1 3 2 29. 3 2 1 2 1

10. 2 2 3 1 1 20. 1 1 2 3 2 30. 3 2 2 1 1

Figure 8: MULTPERM output for k = 3, m = 2, 2, 1.

We have altered the algorithm so that all decision
making is clear (optimised shortcuts have been re-
placed with assumed original conditional statements)
and so that the algorithm can run both forwards and
backwards. Its 1- or 2-apart transpositions means the
relative order 0s is easily maintained. It is easily re-
versible, requiring only the inversion of one boolean
function. It starts with 1s all-left (1n0k) and finishes
in one of two easily recognisable arrangements: one-
right (1n−10k−n1) iff n = 1 or k is even; or two-right
(1n−20k−n11) iff n > 1 and k is odd. Another benefit
is that it uses very few variables.

The variables in Chase’s algorithm are:
comb1..n+1, the current combination; z, the po-
sition in comb of the first non-minimal element, that
is the lowest i such that combi > i; and x and y, the
values exiting and entering comb respectively. Values
for n and r are read from the user. All combi are set
to i, except combn+1 which is initialised to 2r + 1.
Variable z is set to n + 1.

The functions in Chase’s algorithm are: adj (i),
which returns whether combi and combi+1 are ad-
jacent, that is whether combi + 1 = combi+1; and
inc(i), which returns whether combi is increasing
or not, which is equivalent to combi+1 mod 2. In
Chase’s algorithm, each position’s direction is deter-
mined by the next position’s parity; inverting func-
tion inc makes the algorithm run in reverse.

The many nested if-then-else statements evaluate
directions and adjacencies of certain elements within
one or two positions of combz, the first non-minimal
element. These classify the current state of comb and
z into one of ten cases, which determine which trans-
position to make. We have isolated this transposi-
tion in procedure move, whose parameters are the
position, direction and span (distance) of the trans-
position. Output for Chase’s algorithm is shown in
Figure 7.

To fuse a loopless multiset permutations algo-
rithm from Williamson’s and Chase’s algorithms re-
quired surprisingly few modifications. Each of the k
groups of similar elements moves as a combination
through its subpermutation, requiring its own Chase
data. Thus, Chase’s variable z and array comb1...n

were extended by one dimension each to z1...k and
comb1...k,1...mi

respectively. Each combi is of length
mi. An extra terminating condition was added, since
Chase’s algorithm would now be running backwards
as well as forwards. Williamson’s algorithm was al-
tered to start with j = 1 instead of n, and its second
(incrementing/decrementing) step was replaced with
the modified Chase’s algorithm. Thus Williamson’s
algorithm selects the similar elements j to move, and
Chase’s algorithm moves them among subpj in com-
bination fashion, using combj and zj .

Algorithm MULTPERM, our new multiset permu-
tations algorithm, is given in Algorithm 5; a complete
C++ program is given in Appendix B. The appendix
was written to match the style of Korsh and LaFol-
lette’s algorithm, for a more accurate comparison.
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Uniform
KL04 MULTPERM

Permutations 168,168,000 168,168,000
Mean Time (s) 31.3 21.5

Varied
KL04 MULTPERM

Permutations 75,675,600 75,675,600
Mean Time (s) 14.2 9.4

Table 1: Results from experimental evaluation show-
ing that MULTPERM runs 31–34% faster than
KL04. Evaluation was over two multisets with
many million permutations; multiplicities were uni-
form {3, 3, 3, 3, 3} and varied {2, 3, 5, 2, 3} respec-
tively. Both algorithms generated the expected num-
bers of permutations.

To translate the relative transpositions of elements
in Chase combinations to absolute transpositions in
the multiset permutation, perm1...n, required several
new variables: o1...k, the absolute offsets for each com-
bination; a1...k, which keeps track of the offsets that
have been updated for the current j’s Chase cycle;
and b1...k, the number (one or two) of elements that
finish right for each combination. For any selected
group of similar elements j, each complete Chase cy-
cle displaces subsequent subpermutations by bj (re-
verse cycle) or −bj (forward cycle) positions. Thus
all oi for i > j must be updated during the Chase
cycle for j. This is achieved using the time-stealing
method mentioned in Section 2, in which what would
be a for-loop is distributed over subsequent calls to
function next. In this case, over several calls to next,
aj counts from j + 1 to k − 1, and each oaj

is in-
cremented or decremented by bj . To recognise when
forward Chase cycles are complete, that is when com-
binations are one-right or two-right, array r1...k stores
the maximum value that may appear in each of the
combinations.

Reversing Chase’s algorithm requires no re-
initialisation. We have tied function inc to
Williamson’s array d, so changing the sign of dj in-
verts inc, reversing the algorithm.

MULTPERM runs in constant time per object and
requires linear space. Referring to Algorithm 5, lines
24, 31–35, and 36 correspond to the first, third and
fourth steps of Williamson’s algorithm respectively.
Line 25 is where Chase’s algorithm is used, while lines
26–30 translate Chase’s transpositions to the multi-
set permutation; these steps together correspond to
the second step of Williamson’s algorithm. A sample
output of MULTPERM for k = 3, m = {3, 2, 1} is
shown in Figure 8.

We experimentally evaluated MULTPERM
against Korsh and LaFollette’s algorithm, which we
label KL04. Both programs were implemented in
C++, and the structure, procedure calls, and I/O
were made as similar as possible; this is evident in
Appendix B. Timing included the initialisation and
memory-clearing procedures. By convention, output
statements were replaced by statements incrementing
a counter, whose final value was output to verify that
the correct number of objects were generated.

We ran the experiment over two multisets, each
with millions of distinct permutations, but with uni-
form and varied multiplicities respectively: both mul-
tisets had k = 5 distinct integers, but the uniform
had m = {3, 3, 3, 3, 3} and the varied had m =
{2, 3, 5, 2, 3}. Our mean times and standard devia-
tion were produced over 10 iterations.

As can be seen from Table 1, MULTPERM runs
31–34% faster than KL04 across both multisets.

MULTPERM generated the 168 million permuta-
tions of the uniform multiset in an average of 21.5s
(σ = 0.11) to KL04’s 31.3s (σ = 0.11), and the 75
million permutations of the varied multiset in 9.4s
(σ = 0.05) to KL04’s 14.2s (σ = 0.05). We attribute
the extra speed and simplicity of MULTPERM over
KL04 to the advantages of our component algorithm
for combinations over that used by Korsh and LaFol-
lette.

6 Conclusion

There is room for further investigation and improve-
ment in both of the problems we applied our frame-
work to. Algorithm MIXPAR could be modified to
allow a variable number of parenthesis types, and
nesting a second Gray coder could allow it to cy-
cle through another property of parentheses, e.g.
colour. Regarding MULTPERM, there may yet be
more advantageous loopless combinations algorithms
than Chase’s.

More interesting would be investigating which
other combinatorial generation problems can be
solved looplessly by fusion. Both of the problems we
addressed quite obviously comprise two combinator-
ial subproblems, and therefore were conducive to this
approach. We wonder:

• Can fusion be used for more complicated combi-
natorial generation problems?

• Can fusion be used where the decomposition into
subproblems is not so obvious?
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A mixpar.cpp

/* Same style as Appendix B for consistency. */
#include <iostream>

using namespace std;

int n, j, *d, *e, jj, *dd, *ee, *l, *r, *s, t, i, num;
char *par, c;

void init() {
cin>>n;

par = new char[2*n+1]; d = new int[n+1]; e = new int[n+2];
dd = new int[n+1]; ee = new int[n+2]; l = new int[n+1];

r = new int[n+1]; s = new int[2*n+1];
for (i=1; i<=n; i++) { par[2*i-1] = ’(’; par[2*i] = ’)’; }
for (i=1; i<=n; i++) { d[i] = 1; dd[i] = 1; }

for (i=1; i<=n+1; i++) { e[i] = i-1; ee[i] = i-1; }
for (i=1; i<=n; i++) { l[i] = 2*i-1; }

for (i=1; i<=2*n; i++) { s[i] = i; }
j = n; jj = n; t = n; num = 1;

}

void output() {

cout<<num<<". ";
for (i=1; i<=2*n; i++) { cout<<par[i]<<" "; }

cout<<endl;
}

void next() {
if (jj > 0) {

ee[n+1] = n;
if (dd[1] > 0 && jj == t) {

r[jj] = s[l[jj]+1];

if (jj > 1) { s[l[jj]] = s[r[jj]+1]; t = t-1; }
}

if (par[l[jj]] == ’(’)
{ par[l[jj]] = ’[’; par[r[jj]] = ’]’; }

else { par[l[jj]] = ’(’; par[r[jj]] = ’)’; }
ee[jj+1] = ee[jj]; ee[jj] = jj-1; dd[jj] = -dd[jj];
if (dd[1] < 0 && jj == t) { s[l[jj]] = l[jj]; t = t+1; }

jj = ee[n+1];
} else {

par[l[1]] = ’(’; par[r[1]] = ’)’;
jj = n; t = n;
dd[1] = 1; ee[n] = n-1;

e[n+1] = n; i = l[j];
if (d[j] > 0) {

if (l[j] == 2*j-1) { l[j] = l[j-1]+1; }
else { l[j] = l[j]+1; }

} else {
if (l[j] == l[j-1]+1) { l[j] = 2*j-1; }
else { l[j] = l[j]-1; }

}
c = par[i]; par[i] = par[l[j]]; par[l[j]] = c;

if (l[j] > 2*j-3)
{ e[j+1] = e[j]; e[j] = j-1; d[j] = -d[j]; }

j = e[n+1];

}
num++;

}

void clean() {
delete[] par; delete[] d; delete[] dd; delete[] e;
delete[] ee; delete[] l; delete[] r; delete[] s;

}

int main() {
init();
output();

while (j != 1 || jj != 0) {
next();

output();
}

clean();
}

B multperm.cpp

/* Same style as Korsh and LaFollette 2004 for comparison. */
#include <iostream>

using namespace std;

int k, n, j, x, y, i, u, v, w, num, *perm, **comb, *m, *d,
*e, *o, *r, *z, *a, *b;

void init() {
cin>>k; n = 0; m = new int[k+1];

for (i=1; i<=k; i++) { cin>>m[i]; n += m[i]; }
perm = new int[n+1];

comb = new int*[k+1];
for (i=1; i<=k; i++) { comb[i] = new int[m[i]+2]; }
d = new int[k+1]; e = new int[k+1]; o = new int[k+1];

r = new int[k+1]; z = new int[k+1]; a = new int[k+1];
b = new int[k+1];

o[1] = 0; for (i=2; i<=k; i++) { o[i] = o[i-1]+m[i-1]; }
r[k] = m[k]; for (i=k-1; i>=1; i--) { r[i] = r[i+1]+m[i]; }
for (i=1; i<=k; i++)

{ for (j=1; j<=m[i]; j++) { perm[j+o[i]] = i; } }
for (i=1; i<=k; i++) { d[i] = 1; }

for (i=0; i<=k+1; i++) { e[i] = i; }
for (i=1; i<=k; i++) {

for (j=1; j<=m[i]; j++) { comb[i][j] = j; }
comb[i][m[i]+1] = 2*r[i]+1;
z[i] = m[i]+1;

}
for (i=1; i<=k-1; i++)

{ a[i] = i+1; b[i] = 1+(m[i]>1 && r[i]%2); }
j = 1; num = 1;

}

int adj(int i) {

return comb[j][i]+1 == comb[j][i+1];
}

int inc(int i) {
return comb[j][i+1]%2 == d[j]>0;

}

void output() {
cout<<num<<". ";

for (i=1; i<=n; i++) { cout<<perm[i]<<" "; } cout<<endl;
}

void next() {
e[1] = 1;

if (z[j] == 1) {
v = 1;
if (inc(1)) {

if (adj(1)) { u = 2; w = 2*inc(2)-1; }
else { u = 1; w = 1; };

} else { u = 1; w = -1; };
} else {

if (inc(z[j]-1))
{ u = (z[j]>2 && inc(z[j]-2))+1; v = z[j]-u; w = 1; }

else { v = z[j]; u = 1+adj(v); w = 2*inc(v-1+u)-1; }

}
i = v+(w-1)*(u-1)/-2;

x = comb[j][i]; y = x+u*w;
comb[j][i] = x+w; comb[j][i+(u-1)*w] = y;
z[j] = z[j]-(comb[j][v] == v)*u*w-(v<z[j])*u;

perm[x+o[j]] = perm[y+o[j]]; perm[y+o[j]] = j;
if (a[j]<k) { o[a[j]] = o[a[j]]-b[j]*d[j]; a[j] = a[j]+1; };

if (comb[j][m[j]-b[j]+1] == r[j]-b[j]+1
&& comb[j][m[j]-b[j]] == m[j]-b[j] || comb[j][m[j]] == m[j])

{ d[j] = -d[j]; e[j] = e[j+1]; e[j+1] = j+1; a[j] = j+1; }
j = e[1]; num++;

}

void clean() {

for (i=1; i<=k; i++) { delete[] comb[i]; }
delete[] perm; delete[] comb; delete[] a; delete[] b;
delete[] d; delete[] e; delete[] m; delete[] o; delete[] r;

delete[] z;
}

int main() {

init();
output();
while (j != k) {

next();
output();

}
clean();

}

Theory of Computing 2006 - Proc. Twelfth Computing: The Australasian Theory Symposium (CATS2006)

77



CRPIT Volume 51

78



The Busy Beaver, the Placid Platypus and other Crazy Creatures

James Harland

School of Computer Science and Information Technology
RMIT University
GPO Box 2476V
Melbourne, 3001

Australia
jah@cs.rmit.edu.au

Abstract

The busy beaver is an example of a function which is
not computable. It is based on a particular class of
Turing machines, and is defined as the largest num-
ber of 1’s that can be printed by a terminating ma-
chine with n states. Whilst there have been various
quests to determine the precise value of this function
(which is known precisely only for n ≤ 4), our aim is
not to determine this value per se, but to investigate
the properties of this class of machines. On the one
hand, these are remarkably simple (and, intuitively,
form perhaps the simplest class of computationally
complete machines); on the other hand, as some of
the machines for n = 6 show, they are capable of rep-
resenting phenomenally large numbers. We describe
our quest to better understand these machines, in-
cluding the placid platypus problem, ie. to determine
the minimum number of states needed by a machine
of this type to print a given number of 1’s.

1 Introduction

The busy beaver function (Rado 1963) was intro-
duced by Rado in the 1960’s as an example of a
non-computable function, and is defined in terms of a
particular class of Turing machines(Sudkamp 2005).
This class is one in which there is a single tape which
is infinite in both directions, the machine is determin-
istic, the tape is initially blank and the tape alpha-
bet consists of only two symbols (traditionally blank
(B) and one (1)). For each machine there is a dis-
tinguished halt state, from which there are no tran-
sitions. An n-state machine of this form is one that
contains one halt state and n further non-halt states.
The busy beaver function is the maximum number of
1’s that is printed by a terminating n-state Turing
machine. This function is often denoted as Σ(n); in
this paper we will use the more intuitive notation of
bb(n). The number of 1’s printed by the machine is
known as its productivity.

This function can be shown to be non-computable
by proving that it grows faster than any computable
function. Hence this function holds a special interest
as one with an intuitively simple definition but which
is capable of some phenomenally fast growth.

Because of this rate of growth, it has been histori-
cally quite difficult to evaluate precise values for this
function. Its value for n = 1, 2, 3 were determined by
Lin and Rado in the 1960’s(Lin &Rado 1964), and the
case for n = 4 by Brady in the 1970’s(Brady 1983).

Copyright c©2006, Australian Computer Society, Inc. This
paper appeared at Twelfth Computing: Australasian Theory
Symposium (CATS2006), Hobart. Conferences in Research
and Practice in Information Technology, Vol. 51. Barry Jay
and Joachim Gudmundsson, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

However, establishing bb(5) and bb(6) has been more
problematic, particularly due to some spectacularly
large lower bounds for these values(Marxen and
Buntrock 1990, Marxen 2005). The only claim, to
the author’s knowledge, for a precise evaluation for
n = 5 is Master’s thesis published in August, 2005
(Kellett 2005), which uses a mixture of machine eval-
uation and human analysis (although there are some
others performing similar searches, such as Georgi
Georgiev(Skelet 2005)). There are some interesting
analyses of the current 5-state and 6-state champions
(Munafo 2005, Michel 2005), but some speculate that
due to the sheer size of the numbers involved, bb(7)
may never be known, despite some promising tech-
niques for evaluating machines with extremely large
productivities (Holkner 2004).

A recent variation on this problem is to consider
machines with more than two tape symbols, and there
have been various spectacular examples of large com-
putations with such machines (such as a 3-state ma-
chine with 3 tape symbols that prints 544,884,219
symbols before halting (Brady 2005)). The rela-
tionship between the busy beaver function and the
3n+1 sequence has been investigated by Pascal Michel
(Michel 2005), which has resulted in an elegant analy-
sis of the most complex machines currently known.
Some analysis has also been done on Turing machines
in which one can either move the tape head or write a
new symbol on the tape, but not both in one atomic
action(Ross 2003). There has also been an investi-
gation of busy beaver functions on a one-way tape
(Walsh 1982) rather than a two-way one.

The main use of this function has been as a simple
example of non-computability, especially as there are
also larger functions which can be defined similarly.
One such function, often denoted S(n) in the litera-
ture, the maximum number of state transitions made
by a terminating Turing machine of the above form.
We denote this function as ff(n).1 A notable use
of this function is given in Boolos and Jeffrey(Boolos
&Jeffrey 1980), in which the busy beaver function is
the subject of the first undecidability result estab-
lished, rather than the more usual choice of the halt-
ing problem for Turing machines.

The relationship between bb(n) and ff(n) has
been investigated (Julstrom 1992), and it is known
that ff(n) < bb(3n + c) for a constant c(Yang,Ding
&Xu 1997). However, this is still rather loose, and
does not give us much insight into the relationship
between bb(n) and ff(n). In a similar manner, lower
bounds on bb(n) have been known for some time
(Green 1964); however, those given for n ≤ 6 have
been far surpassed already.

In this paper, we introduce some new perspec-
tives on the busy beaver function. In essence, our
main interest is not so much the ability to define non-
computable functions, but the properties of the un-

1We call this function the frantic frog.
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derlying class of Turing machines.
To motivate this point of view, consider the ta-

ble below (drawn from (Lin &Rado 1964), (Brady
1983),(Marxen and Buntrock 1990), (Marxen 2005)).

n bb(n) ff(n)
1 1 1
2 4 6
3 6 21
4 13 107
5 ≥ 4098 ≥ 47, 176, 870
6 ≥ 1.29 ∗ 10865 ≥ 3 ∗ 101730

The vast increase from n = 5 to n = 6 seems to
suggest that 6 states is the minimum for some par-
ticular functionality, such as multiplication or expo-
nentiation, or a universal Turing machine. Moreover,
it is counterintuitive (to say the least!) to be able to
print out a sequence with as many as 10865 elements
in it via a Turing machine with only 6 states.

This makes it clear that the range of productiv-
ities for 6-state machines is astronomical, and leads
us to a problem which is in some sense dual to the
busy beaver problem. The busy beaver problem may
be considered as finding the maximum number of 1’s
that can be printed by a Turing machine with a given
number of states. The dual problem is to find the
minimum number of states needed in order to print
a given number of 1’s. Hence an n-state machine of
productivity m may be considered as evidence that
bb(n) ≥ m as well as evidence that it requires at most
n states to print m 1’s. A natural question is whether
there is a 5-state machine of productivity m for every
bb(4) < m ≤ bb(5). Because of the duality with the
busy beaver, we denote this as the placid platypus
problem.2

In order to answer questions such as these, it seems
appropriate to prepare the groundwork by searching
amongst the 5-state machines, but in such a way that
more than just the champion machine (i.e. the one
of highest productivity) is retained. It should be
stressed that this investigation is very much a means
to determine better analysis techniques, which will
hopefully make such searching partially (or perhaps
totally) redundant. We thus commence with an em-
pirical investigation, which will hopefully lead us into
a more analytic one. For example, whilst it is well
known that the lower bound for bb(5) is 4,098, there
are actually 6 machines with productivities equal to
or very close to this value, including two machines
which produce 4,098 ones. However, as one of them
takes 47,176,870 transitions and the other 11,798,826,
one can argue that the second is actually a “better”’
machine (at least in terms of the effort required to
generate the 1’s that are output). In addition, the
first machine at one point has more than 12,000 1’s
on the tape, but just before terminating, it deletes
two-thirds of these 1’s. The first though, is usually
considered the 5-state champion, as the larger value
provides a faster-growing function than then small
one. In addition, it is known that there are two
5-state machines with productivity 4097, and a fur-
ther two with productivity 4096. However, the next
highest known productivity is 1471, which suggests
that these six machines are rather unusual. Analysis
of this phenomenon has concentrated on determining
the productivity of a particular machine; however, it
would seem that it is at least as interesting to deter-
mine why only this small number of machines has this
behaviour.

2What could be the opposite to a busy beaver? A platypus
is an Australian monotreme, and hence is native to the southern
hemisphere (as the beaver is to the north). Platypuses are shy and
retiring by nature, making this name a natural choice.

In this paper we explore some of these issues, with
a particular focus on the placid platypus. Accord-
ingly, the main contribution of this paper is to iden-
tify and discuss some new aspects of this well-known
problem, rather than to report on a particular techni-
cal development. In Section 2 we disucss some basic
concepts, and in Section 3 we report on the state of
our (as yet incomplete) search of the 5-state machines.
Section 4 presents some details which emerge from the
search and Section 5 introduces the placid platypus
in some detail. Section 6 discusses some further ideas
of interest.

2 Definitions

We use the following definition of a Turing machine.

Definition 1 A Turing machine is a quadruple (Q∪
{h},Γ, δ, q0) where

• h is a distinguished state called a halting state

• Γ is the tape alphabet

• δ is a partial function from Q×Γ to Q×Γ×{l, r}
called the transition function

• q0 ∈ Q is a distinguished state called the start
state

Note that there are no transitions for state h, and
that as δ is a partial function, there is at most one
transition for a given pair of a state and a character
in the tape alphabet.

Note that this is the so-called quintuple transi-
tion variation of Turing machines, in that a transition
must specify for a given input state and input charac-
ter, a new state, an output character and a direction
for the tape in which to move. Hence a transition can
be specified by a quintuple of the form

(State, Input, Output, Direction, NewState)

Some varieties of Turing machines allow only one
of the latter two possibilities, i.e. either to write a new
character on the tape or to move , and not both; for
such machines, clearly only a tuple of 4 elements is
required. Note that our machines are deterministic
(due to δ being a function rather than a relation).

Our class of machines will be a particular type of
this variety of Turing machines.

Definition 2 A unary Turing machine is a Turing
machine containing a single two-way infinite tape,
and whose tape alphabet includes only blanks and 1.

A beaver machine is a unary Turing machine
whose tape is entirely blank on input.

An animal machine is a unary Turing machine
whose tape contains a finite number of 1’s on input.

We denote by an n-state Turing machine one in
which |Q| = n. In other words, an n-state Turing
machine has n “real” states and a halt state.

Clearly a crucial issue in the evaluation of the busy
beaver function is to determine whether or not a given
machine terminates. Whilst in general this is unde-
cidable, it is still an open problem, to the author’s
knowledge, whether the n = 5 case is decidable. In
practice, this will not be a great problem if the num-
ber of machines whose status cannot by determined
(often referred to as holdouts) is small enough for
hand analysis (say under 100).

There are various ways in which a beaver machine
may fail to terminate. One such way is to move end-
lessly in one direction, as the machine below does.
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11R

B1R

11R11R

BBL

B1RA DCB

This machine prints three 1’s before endlessly mov-
ing towards the right.

We call such machines escapees.
Another way is to return to exactly the same con-

figuration as an earlier one. For example, consider
the machine below.

h

B1R

BBL,11R

B1L

1BL1BL
B C DB1RA E

B1R
11L

11L

This continuously returns to a configuration in
state E with a single 1 on the tape. We call such
machines cyclers.

A more subtle way is to reproduce the same con-
text further along the tape. For example consider the
machine below.

h

BBL,11R

B1L

1BL1BL

1BL

B C DB1RA E

B1R
11L

B1R

This machine does not repeat the overall state of
the tape, but only because it is repeatedly shifting
the repeated pattern along to the left. We call such
machines dizzy ducks. Note also that this machine
only differs from the previous one by changing the
output of the transition for state E with a one from
a one to a blank.

Each of these three cases is relatively easy to de-
tect, and relatively common in the search conducted
thus far. A further useful observation is that if the
tape becomes all blank during computation, then we
may immediately discard the machine from consider-
ation. This is not because the machine will necessary
loop (although it may, of course), but because there
will be some other machine that produces the same
eventual outcome without the tape going blank. To
see this, let us assume that the tape becomes blank
in state 4, and the computation continues from there.
Then there is another machine which has the same

computation behaviour as the original machine does
from state 4, but commencing from the second ma-
chine’s initial state. Hence we can immediately dis-
regard any machine which makes the tape return to
being all blank. We call such machines blankers.

3 Searching for busy beavers

Searching for machines of a particular type (such as
the busy beaver) is a matter of enumerating all possi-
ble transitions, and then performing various tests. As
the number of n-state machines is exponential, it is
impractical to do so for every machine. For an n-state
machine, there are 2n transitions, each with 2 possi-
ble outputs, 2 possible directions and n + 1 possible
new states, leading to a total of (4(n+1)2n machines.
However, as the halt state will only be used once in
each machine, this naive maximum can be reduced to
2n × (4n)2n−1. In addition, by fixing the first transi-
tion (Lin &Rado 1964), we can reduce this further to
(2n − 1) × (4n)2n−2.

This number remains formidable. For n = 5, this
still leaves around 2.3 × 1011 machines to evaluate.
In practice, though, this figure can be reduced signif-
icantly.

The standard way in which to search for busy
beaver machines is to use the tree normal form
method of Lin & Rado(Lin &Rado 1964). In essence,
this involves emulating the machine as transitions are
generated. By running an incomplete machine until
an unspecified transition is required, we can then en-
sure that the new transition obeys certain constraints,
such as not generating a blank tape, and not creating
a cycler or an escapee. In addition, this method en-
sures that the halt transition is added to the machine
only when all other transitions have been allocated.
In other words, we ensure that the halt transition will
be the last one used.

We execute the machine until the halt transition
has been allocated, or until some specified maximum
number of transitions has been reached. As we are
dealing with 5-state machines, we used a maximum
of 110, i.e. three more than ff(4), thus ensuring a
“genuine” 5-state machine.

At this point, we could store the machine and
proceed to analysis. This reduces the number of
machines that must be stored to a little under 108.
This is still non-trivial, but much more in line with
what can be achieved by commodity hardware (such
as a typical desktop PC). However, our analysis of
such machines showed the presence of a surprisingly
large number of cyclers and blankers, whose behav-
iour would have been noticed earlier if we had run all
generated machines for 110 transitions, rather than
halting once the final transition was decided. Hence
we executed all machines thus generated for 110 tran-
sitions, removing those which were found to be cyclers
or blankers in this time. This drastically reduced the
search space even further (at a significant increase
in the time required to perform the search), leaving
“only” 15,595,622 machines to be stored and further
analysed.

Note also that when searching for busy beavers, it
is sensible to allocate the output of the halt transi-
tion to be always 1. This clearly cannot decrease the
productivity, and may in fact increase it. This also
helps, in a minor way, to reduce the search space. We
will denote such machines as halting up machines; we
will return to this point later.

We have a prototype implementation of this ap-
proach, but both the development of this program
and the search itself are still ongoing. The current
implementation consists of about 1,800 lines of Ciao
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Prolog (Ciao Manual 2005) (around half of which is
redundant). A feature of this implementation, when
compared to some others, is that we are interested in
keeping the evaluation results for all generated ma-
chines, and not just those which halt. Whilst this
may seem overly pedantic, and wasteful of storage
space, it seems to be a useful resource for the de-
sired further analysis of this class of machines. The
storage requirements themselves are not outrageous
by modern standards; even using a naive method of
storage takes no more than 3 Gigabytes without any
compression, which is well within the storage capac-
ity of an average PC. An intended side-effect of our
investigation is a publicly available database of these
machines; clearly it is important for this database to
be as irredundant as possible, and hence we hope to
eventually provide a more analytically compact rep-
resentation of this information than a mere collection
of all instances of the generated machines.3

For 4 states, there are in principle 117,440,512 ma-
chines to be evaluated. The above techniques reduced
this to “only” 444,481, of which 208,011 did not ter-
minate, and a further 115,750 made the tape blank
during computation. This leaves 120,720 which ter-
minated (or around 0.1% of the original number). Of
these, only 1,939 had productivity of 7 or more (i.e.
an improvement on the 3-state busy beaver), and only
22,283 had productivity of 5 or more. A more detailed
analysis is given below.

≤ 4 5 6 7 8 9 10 11+
98,437 15,089 5,255 1,487 357 74 11 10

Hence the maximal machines are very rare in the
general population, even when non-terminating ma-
chines are removed. This strongly suggests that an
analytical criterion is possible.

Our statistics are less complete for the n = 5 case.
However a preliminary analysis of the search results
to date is given below.

Type Percentage
halts 69.2
cyclers + escapees 0.001
repeaters 30.1
blankers 0.0005
unclassified 0.6

Hence classifying 99.4% of the cases leaves “only”
106,379 machines still to be classified. Such machines
will require more sophisticated analyses, such as in-
ductive methods of showing that a machine does not
terminate (as suggested in (Brady 1983)). In ad-
dition, there are various termination analysis tech-
niques that are used in analysing constraint logic pro-
grams and other declarative programming paradigms
which may be directly applicable here. Incorporating
such techniques into the implementation is work in
progress.

4 ”‘Maximal’ machines

Consider the two machines below.
3This collection will be made available at http://www.cs.rmit.

edu.au/∼jah/busybeaver.

h
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1BR
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11L

B1R

1BL

B1L

B1R

11L, 

A D

h

1BL

1BR
B1R

B1L

11R

B1L, 

B1RA DCB

11R

The first one is the 4-state busy beaver, with pro-
ductivity 13 and taking 107 steps to terminate, thus
showing that bb(4) ≥ 13 and ff(4) ≥ 107. How-
ever, the second hand machine also has productivity
13, but only takes 96 steps to terminate. Hence it
is tempting to consider the right hand machine as a
more optimal one than the left hand one, in that it has
the same productivity for fewer steps of execution.

This situation is reflected in the 5-state case. Con-
sider the six machines in Figure 4.

The machine m1 is the 5-state busy beaver candi-
date. However, as in the case for n = 4, there is a
machine (m2) of the same productivity which takes
fewer steps (denoted hops in the table above), and
it is arguably a better machine for this reason. This
pairwise behaviour recurs for productivities of 4,097
and 4,096 as well. In addition, m4 and m6 are remark-
ably similar; the differ only on two transitions (state
B with input 1 and state D with input 1). A more
in-depth understanding of the relationships between
these machines is clearly crucial to an understanding
of the busy beaver function.

5 The Placid Playtpus

It is trivial to show that bb(n) ≥ n, as it is trivial
to find an n-state machine that prints n 1’s and then
halts. Boolos and Jeffrey show how it is possible to
take a given beaver machine, and construct another
which produces doubles the length of the string of 1’s
output by the original machine. In our framework,
this takes an extra states, thus showing that bb(n +
7) ≥ 2n Hence given an n-state machine which prints
m 1’s, we can repeatedly apply these additional states
to get a n+7k-state machine which prints m×2k 1’s.

A result claimed in (Dewdney 1993), but left as an
exercise, is that bb(n) ≥ 2n. In other words, to print
m 1’s, a machine that has no more than log2m states
is required.

This leads the following question: given a string of
n 1’s, what is the minimum size of of a beaver machine
which prints it? We will refer to this function as the
placid platypus function, and denote it by pp(n). This
is in some sense a dual to the busy beaver function,
in that if bb(n) ≥ m, we have that pp(m) ≤ n. In
other words, an n-state beaver machine which prints
m 1’s shows both that bb(n) ≥ m and pp(m) ≤ n.

Dually to the frantic frog function, we also define
the weary wombat function, which is the minimum
number of state transitions for an n-state machine
necessary to print pp(n) 1’s. We denote this function
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m1: 4,098 1’s, 47,176,870 hops m2: 4,098 1’s, 11,798,826 hops
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m3: 4,097 1’s, 23,554,764 hops m4: 4,097 1’s, 11,798,796 hops
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m5: 4,096 1’s, 11,804,910 hops m6: 4,096 1’s, 11,804,896 hops

Figure 1: Monster 5-state machines
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by ww(n).
It is not hard to some early values of pp(n) and

ww(n), as shown in Figure 5.
Above the productivity of 20, our search is much

less complete (possibly due to out implementation
capping the maximum number of hops initially at
110). As can be seen in Figure 3 below, it is as yet
unknown whether there is a 5-state machine of pro-
ductivity 29, 30, 31, 34 or 37.

In fact, it is possible to obtain a machine of pro-
ductivity 31 from the one of productivity 32, by
changing the halt transition. In other words, as the
machine for productivity 32 is a halting up machine,
this shows that there is a halting down machine of
productivity 31.

This suggests that an interesting question is
whether for every bb(4) < m ≤ bb(5) there is a ma-
chine of corresponding productivity. Certainly this is
true for the range bb(3) < m ≤ bb(4), and must be
false for the range bb(5) < m ≤ bb(6). The former
case we have shown by construction, and in the lat-
ter one, there are simply too few machines to cover a
range of more than 10800 numbers. Another way to
put the question is to determine the minimum value
m such that there is no 5-state machine of productiv-
ity m. Certainly bb(5) + 1 is an upper bound on this
value; the question is whether it is a lower bound as
well. A related question is that of the largest contin-
uous range of representable numbers: in other words,
what is the largest value of m such that for every
bb(4) < k < m there is a 5-state machine of pro-
ductivity k? In general, the distribution of platypus
machines for 5-state and 6-state machines remains an
intriguing question.

A further aspect of this question is the ability to
produce an analytical answer. Certainly we can settle
the question of the distribution of 5-state machines by
enumerating all of them and examining the results.
However, we see this as a necessary first step towards
a systematic method by which one can construct an
m-state machine of productivity n, where m satisfies
a constraint such as m ≤ log2 n. For example, if
there is no 5-state machine with productivity 29, can
we construct a 6-state or 7-state machine by some
algorithmic process?

An extension of this line of thought is to consider
equivalences across varying numbers of states. For
example, consider the four machines in Figure6state,
all of which have productivity 6.

In a sense, these machines are all equivalent. In ad-
dition, the similarity between the 4-state and 5-state
machines suggests that it may be possible to reduce
the 5-state machine to a 4-state one (and possibly
further still to the 3-state one) by a process of state
elimination. Such techniques are known for finite-
state automata, and are not generally applicable to
Turing machines. However, for this restricted class
and in this particular context, it seems reasonable to
investigate an approach along these lines.

6 Discussion

We have seen how examining the machines which lead
to the busy beaver function have lead to some fur-
ther interesting questions. A similar one that can
be asked is what are the maximum productivities for
some sub-classes of machines. In particular, what is
the maximum productivity of a 5-state machine in
which there is no transition with input 1 and output
blank? (We call these machines monotonic, in that
no 1 is ever erased from the tape). What is the max-
imum productivity for eager machines? (i.e. those
with transitions whose output is always 1)? What is
the maximum productivity for contiguous machines?

(i.e. those which always maintain the 1’s in a single
string)? This latter problem is called the little busy
beaver problem in (Yang,Ding &Xu 1997), but no val-
ues are given for it. All of these are seemingly nat-
ural classes for humans attempting to construct busy
beaver machines by hand, but none of these proper-
ties holds for the six 5-state machines with the largest
known productivities.

For that matter, more sophisticated measurements
of the tape usage may be used, such as the largest
string of contiguous 1’s, the amount of tape used, or
the distance moved from the point of origin. Holkner
(Holkner 2004) has observed that several of the 6-
state monster machines use no more than 10 distinct
“blocks’, i.e. repetitions of short strings. Hence whilst
the overall length is very large, it has a very regu-
lar structure. Finding an appropriate metric for this
structure is an intriguing question.

Whilst there have been some investigation of the
busy beaver function for one-way tapes, other con-
straints on the use of the tape may be interest-
ing. One possibility is to constrain the amount of
tape that may be used, such as by using a circular
tape, or by bounding the number of tape cells that
can be written to, analogous to the difference be-
tween linear-bounded automata and Turing machines
(Sudkamp 2005).

As noted above, the are some “maximising” strate-
gies built into the search methods for busy beaver ma-
chines, such as searching only for halting up machines.
A stronger restricion is the one that ensures that the
halt transition can only be used once all other tran-
sitions have been used. Whilst this is appropriate for
the busy beaver function, in that it seems reasonable
to require that all possible transitions be used before
terminating, it is possible that the the lack of neces-
sity to use every transition may lead to some simpler
placid platypus machines. The cost is, of course, a
huge increase in the search space, making an analyt-
ical criterion for the detection of platypus machines
more critical.

A final point to note is that the machines which
do not terminate may also be of interest. In Con-
way’s game of life, for example, some of the most in-
teresting configurations are those which lead to self-
reproducing behaviour, which, in our context, cor-
respond to particular kinds of non-terminating ma-
chines. Hence dizzy ducks, which reproduce the same
context but further along the tape, may be of in-
terest in this sense. Potentially interesting also are
phoenix machines, i.e. those which continually print
some number of 1’s, and then return the tape to all
blanks in the initial state. Such a machine will eter-
nally convert the blank tape into a fixed number of
1’s and back again.

7 Conclusions and Further Work

We have seen how a quest for determining the value of
bb(5) can lead to a number of new questions about this
class of Turing machines. In this sense, the main con-
tribution of this paper is not some particular piece of
technical progress, but to consider various new ques-
tions, which, we hope, are of more general interest.
It is difficult to conceive of a practical application
of busy beaver machines4, but the fundamental sim-
plicity of the machines together with the astounding
sizes of some of the numbers involved suggest that
there is something of significant interest under the
surface. Once we have achieved a better analytical
understanding of these 2-symbol machines, we may
be able to better understand the even more astoud-

4Except, perhaps as a particularly bizarre form of a screen saver!
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n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
pp(n) 2 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5
ww(n) 4 7 11 12 14 19 30 40 53 96 ≤ 41 ≤ 45 ≤ 50 ≤ 57 ≤ 63 ≤ 43 ≤ 62

Figure 2: Lower Placid Platypus values

n 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
pp(n) 5 5 5 5 5 5 5 5 5 5 5 5 5
ww(n)* 72 98 69 223 155 298 343 102 512 427 559 691 808

(* these

are upper bounds only)

Figure 3: Higher Placid Platypus values
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Figure 4: Machines of productivity 6
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ing numbers being generated by the search for 3-, 4-,
5- and 6-symbol busy beavers.
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Abstract

A complete description and proof of correctness are
given for a new polynomial time algorithm for a class
of codes based on directed graphs and involving con-
struction well known in system theory. Our construc-
tion has already been considered in the literature in
relation to other questions. The investigation of codes
in this graph-based construction is inspired by anal-
ogy with classical cyclic codes that are defined in a
similar way in polynomial rings. We show that all
cyclic codes can be embedded in this construction.
For each graph, the algorithm computes the largest
number of errors which can be corrected by codes de-
fined with this graph. In addition, it finds a generator
of a code with this optimum value.

Keywords: algorithms, coding, directed graphs.

1 Introduction

It has been established by Downey, Fellows, Whittle,
and Vardy that several fundamental problems con-
cerning linear codes are NP-complete and W[1]-hard,
see (Downey & Fellows 1999, Downey & Fellows
1999b, Downey, Fellows, Whittle & Vardy 2001). The
aim of this paper is to develop a polynomial time
algorithm for a class of codes inspired by analogy
with classical cyclic codes. We are applying directed
graphs to define a class of error-correcting codes and
develop a polynomial algorithm for computing the
number of errors these codes can correct. Our first
main theorem proves the correctness and evaluates
the running time of the algorithm.

As a guide we are motivated by analogy with the
fact that all cyclic codes, including various efficient
codes used in practice, are specified in polynomial
rings. We are going to use another important con-
struction defined in terms of directed graphs and con-
sidered by many authors, see (Kelarev 2002) for ref-
erences. It is shown that all cyclic codes can be em-
bedded in it. This construction enables us to define
a class of error-correcting codes specified in terms of
directed graphs.

It is natural to investigate how properties of the
code depend on the properties of the graph that de-
fines it. We develop a polynomial algorithm for com-
puting the number of errors which can be corrected
by codes defined with any given graph. In addition,

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sympo-
sium (CATS2006), Hobart, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 51.
Barry Jay and Joachim Gudmundsson, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

This research has been supported by ARC Discovery grant
DP0449469.

our algorithm finds a generator of a code with this
optimum value.

We use standard concepts concerning codes follow-
ing (Lidl & Niederreiter 1994), (Lidl & Niederreiter
1997), (Lidl & Wiesenbauer 1980), (Moffat & Turpin
2002), (Pless, Huffman & Brualdi 1998) and in-
clude all the necessary information for convenience
of the readers, see also (Asano, Wada & Masuzawa
2003), (Cormen, Leiserson, Rivest & Stein 2001),
(Kelarev 2001), (Kelarev 2002), (Kelarev 2003),
(Kelarev 2004), (Kelarev & Sokratova 2001), (Kelarev
& Solé 2000), (Cazaran, Kelarev, Quinn & Vertigan
2006). As it is customary in the literature, by a poly-
nomial algorithm we mean an algorithm with poly-
nomial running time. It is worth mentioning that in
fact our algorithm solves a special case of the more
general Problem 10.1 recorded in (Kelarev 2002).

There are many known cyclic and linear codes used
in practice. For example, the BCH codes are used
in CDs, DVDs, mobile phones and digital television,
see (Stallings 2002). The second main theorem of this
paper demonstrates that our construction is general
enough to incorporate all cyclic codes providing ad-
ditional structure for them.

It is important to emphasise that the research on
algorithmic aspects of coding theory brings practi-
cal benefits as a result of cumulative combined effect
of many incremental steps in the investigation con-
ducted by many researchers throughout the world.
For example, it took decades from the invention of
the BCH codes to their practical uses in CDs, DVDs,
mobile phones and digital television.

The author is grateful to Mike Fellows for permis-
sion to use his idea of simplifying the main algorithm
that has substantially reduced its complexity. It has
lead to a much simpler polynomial algorithm and was
suggested to the author during Mike’s visit to the
School of Computing at the University of Tasmania.

2 Main results

Throughout the word ‘graph’ will mean a directed
graph without multiple edges but possibly with loops.
Let D = (V,E) be a graph with the set V =
{v1, . . . , vn} of vertices and a set E ⊆ V ×V of edges.
Following standard conventions of coding theory, let
us denote by F = Fq an encoding alphabet regarded
as a finite field. The incidence ring of D is denoted
by ID(F ) and is defined as the set of all formal finite
sums of edges in E with coefficients in F . It is en-
dowed with multiplication defined by the distributive
laws and the rule

(x, y)·(z, w) =
{

(x, w) if y = z, (x, w) ∈ E,
0 otherwise, (1)

for x, y, z, w ∈ V , see, for example, (Kelarev 2002),
§3.15. The graph D is said to be balanced if, for
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all x1, x2, x3, x4 ∈ V with (x1, x2), (x2, x3), (x3, x4),
(x1, x4) ∈ E, (x1, x3) ∈ E ⇔ (x2, x4) ∈ E. It is well
known and fairly easy to verify that the above defini-
tion correctly defines multiplication as an associative
operation on ID(F ) if and only if D is balanced.

Thus, every element x of ID(F ) is uniquely repre-
sented as a sum of the form x =

∑
(u,v)∈E x(u,v)(u, v),

where x(u,v) ∈ F and only a finite number of the co-
efficients f(u,v) are nonzero.

As a motivating example, let us recall that every
cyclic code can be defined with a generator polyno-
mial as follows. Recall that the polynomial quotient
ring

Qn = F [x]/(1− xn) (2)

consists of all polynomials with one variable x and
degree ≤ n, where addition of polynomials is defined
as usual, and multiplication is performed modulo 1−
xn. This means that the product of two polynomials
in F [x]/(1 − xn) is equal to the remainder of their
product in F [x] upon division by 1 − xn. For any
g(x) ∈ F [x]/(1−xn), the cyclic code (g(x)) generated
by g(x) is the set of all multiples of g(x), i.e., all
elements of the form

(f0 + f1x + · · ·+ fn−1x
n−1)g(x),

where f0, f1, . . . , fn−1 ∈ F . Similarly, we say that
the error-correcting code generated by the elements
g1, . . . , gk in ID(F ) is the set

CD(g1, . . . , gk) = (3)
= {(f1 + h1)g1 + · · ·+ (fk + hk)gk | where

f1, . . . , fk ∈ F, h1, . . . , hk ∈ ID(F )}.

Theorem 1 For each balanced directed graph D =
(V,E), Algorithm 1 finds the number of errors that
error-correcting codes CD(g1, . . . , gk) can correct and
returns a generator g of the optimal code CD(g) which
achieves this error-correcting capability. The running
time of the algorithm is O(n3).

A nice and unexpected conclusion is that it turns
out possible to generate an optimal code with just
one generator. Thus, a perfect analogy with cyclic
codes occurs, despite the fact that not all codes can
be generated by one element in ID(F ).

It is worth noting that a brute force algorithm
for solving the same task would be exponential, be-
cause it is fairly easy to show that the number of
codes of the form CD(g1, . . . , gk), and even the num-
ber of pairwise incomparable with respect to inclu-
sion codes of the form CD(g), intricately depends on
the graph D and can grow exponentially with n. To-
gether with NP-completeness and W[1] hardness re-
sults due to (Downey et al. 2001), see also (Downey
& Fellows 1999, Downey & Fellows 1999b), it shows
that devising a polynomial algorithm in this situation
was not easy.

Theorem 2 Every cyclic code C can be embedded in
ID(F ) for some D and F so that C is generated by
one element.

Theorem 3 Every linear code can be embedded in
ID(F ) for some D and F .

3 Main algorithm

A pseudocode with concise description of the main
algorithm is given in Figure 1. This section supplies
additional intuitive explanation of the steps of the al-
gorithm. Algorithm 1 utilizes only properties of the

Algorithm 1 Given a balanced directed graph
D = (V,E), returns the largest number of errors
that codes in ID(F ) can correct and an element
generating an optimal code of this sort.

1. int i, j, b = 0, c = n*n;
2. L = a set of triplets repesented as

a red-black tree, initially empty;
3. for ( i = 1; i <= n; i++ )
4. find In(vi) = {x ∈ V | (x, vi) ∈ E};
5. for ( j = 1; j <= n; j++ ) {
6. for ( v ∈ In(vj) ) {
7. S = In(v) ∩ In(vj);
8. if ( ∃T : (v, S, T ) ∈ L )
9. { t++; insert vj in T ; }

10. else
11. insert (v, S, {vj}) in L;
12. }
13. }
14. Find (v′, S′, T ′) ∈ L with maximum |T ′| = b;
15. gb =

∑
y∈T ′(v′, y); gc =

∑
w∈E w;

16. for ( i = 1; i <= n; i++ ) {
17. for ( j = 1; j <= n; j++ ) {
18. for ( t = 1; t <= n; t++ ) {
19. if ( (t, vi), (t, vj) ∈ E ) {
20. c--;
21. gc = gc − (vi, vj);
22. break;
23. }
24. }
25. }
26. }
27. if ( b ≥ c )
28. return b(b− 1)/2c, gb;
29. else
30. return b(c− 1)/2c, gc;

Figure 1: Main Algorithm

graphs. The notation used in the algorithm is illus-
trated in Figure 2. It is well known that

Qn = F [x]/(1− xn)

always contains F , but ID(F ) does not have to con-
tain F . Besides, every code can be generated with
just one polynomial in Qn, whereas in ID(F ) several
generators can define larger classes of codes compared
to just one generator.

The algorithm calculates and returns the optimal
value which can be defined as follows. Let D = (V,E)
be a transitive graph. Recall that the in-degree and
out-degree of a vertex v ∈ V are defined by

indeg(v) = |{w ∈ V | (w, v) ∈ E}|, (4)
outdeg(v) = |{w ∈ V | (v, w) ∈ E}|. (5)

A vertex of D is called a source (sink) if indeg(v) =
0 and outdeg(v) > 0 (respectively, indeg(v) >
0, outdeg(v) = 0). Denote by sources(D) and in(D)
the sets of all sources and sinks of D, respectively.
For each vertex v ∈ V , put

sources(v) = {u ∈ out(D) | (u, v) ∈ E}, (6)
sinks(v) = {u ∈ sinks(D) | (v, u) ∈ E}. (7)

For every transitive graph it is easy to see that
sources(v) is equal to the set of all vertices u in
sources(D) such that there exists a directed path from
u to v. Similarly, sinks(v) coincides with the set of
all vertices u in sinks(D) such that there exists a di-
rected path from v to u.
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A
A
A
A
A
A
AAU

In(y)

S

v��������1

(v, S, T )

S = In(v) ∩ In(y)
for all y ∈ T .

y

T

Figure 2: Steps of Algorithm 1

As we can see from Figure 1, the two key values
computed by the algorithm can be defined as follows.
Take a vertex v ∈ V . For each vertex v ∈ V , wes
introduce two special sets of vertices:

In(v) = {x ∈ V | (x, v) ∈ E},

Out(v) = {x ∈ V | (v, x) ∈ E}.
The first value b is found as the largest number of

elements y in Out(v) such that

In(y) ∩ In(v) = S

that can be achieved for all v in V and all subsets
S of In(v). The second value c is the number of all
edges (x, y) such that there does not exist any vertex
z satisfying (z, x), (z, y) ∈ E.

Both of these values are quite sophisticated, and
this is what makes the proof of our main theorem
given in the next section rather nontrivial. Note that
a brute force exhaustive search through all the ele-
ments v and all subsets S of In(v) above requires
exponential time.

4 Proofs of the main theorems

Proof of Theorem 1. In the first part of the proof we
are going to show that the code CD(gb) can correct
b(b − 1)/2c errors and the code CD(gc) can correct
b(c− 1)/2c errors.

Minimal prerequisites on coding theory are in-
volved in a few steps of the proof of correctness of
our algorithm. Recall that the weight wtH(x) of the
element x in ID(F ) is the number of edges that occur
with nonzero coefficients in x. The minimum distance
of a code is the minimum weight of a difference of two
distinct elements in the code. The weight wtH(C)
of an error-correcting code C is the minimum weight
of a nonzero element in C. If a code is linear, then its
weight is equal to its minimum distance. A code with
minimum distance d can correct b(d − 1)/2c errors.
Conversely, a code correcting e errors has minimum
distance at least 2e + 1. Therefore, all we have to
verify in the first part is that CD(gb) has minimum
distance b and CD(gc) has minimum distance c.

First, consider the code CD(gb). It is easily seen
from line 14 in Figure 1 that Algorithm 1 ensures that

gb =
∑
y∈T ′

(v′, y),

where (v′, S′, T ′) ∈ L and b = |T ′|. It follows from
the definition (3) that

CD(gb) = {fgb + hgb | f ∈ F, h ∈ ID(F )} . (8)

Choose a nonzero element

cmin = fgb + hgb

with minimum weight in CD(gb). Since the element h
belongs to ID(F ), the definition of ID(F ) given above
implies that this element can be represented in the
form

h =
∑

(u,v)∈E

h(u,v)(u, v).

In view of (1) all edges (u, v) with v 6= v′ produce
zero products in the summand hgb of cmin. Hence we
can rewrite cmin as

cmin = fgb +
∑

(u,v′)∈E

h(u,v′)(u, v′)
∑
y∈T ′

(v′, y), (9)

where f, h(u,v′) ∈ F . Further, consider two possible
cases.

Case 1. There exists u 6= v′ such that h(u,v′) 6= 0
and (u, y) ∈ E. In this case the first term

f
∑
y∈T ′

(v′, y)

of cmin in (9) has no summands with edges which
begin in u. Therefore, if we look at the sum of the
edges in cmin which begin in u, then it follows from
(1) that we get the expression

h(u,v′)(u, v′)
∑
y∈T ′

(v′, y), (10)

which is a part of cmin and does not cancel with the
remaining summands of cmin.

For any vertex v ∈ V , define the set

In(v) = {x ∈ V | (x, v) ∈ E}.

Notice that Algorithm 1 ensures that

S = In(v) ∩ In(y)

in line 7 before it inserts y in T for (v, S, T ) ∈ L in
line 9. It follows that our triple (v′, S′, T ′) satisfies
|T ′| = b and

(∀y ∈ T ′) S′ = In(v′) ∩ In(y) (11)

Comparing (10) with (11) we see that the following
two subcases are possible.

Subcase 1.1. u /∈ S′. Then (u, v′)(v′, y) = 0 for all
y ∈ T ′. In this case (10) could have been eliminated
from (9) which would only make cmin expressed in
a simpler form in (9). Since eliminations like this
cannot continue indefinitely, we may assume that this
subcase does not occur.

Subcase 1.2. u ∈ S′. Then (u, v′)(v′, y) = (u, y)
for all y ∈ T ′, and (10) becomes

h(u,v′)

∑
y∈T ′

(u, y).

In this case the expression (10) contributes |T ′| = b
to the weight of cmin. Hence wH(cmin) ≥ b.
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Case 2. There does not exists u 6= v′ such that
h(u,v′) 6= 0 and (u, y) ∈ E. In this case it follows from
(1) that

cmin = f
∑
y∈T ′

(v′, y) + h(v′,v′)

∑
y∈T ′

(v′, y). (12)

If (v′, v′) /∈ E, then (10) implies

cmin = f
∑
y∈T ′

(v′, y)

and we get
wh(cmin) = |T ′|.

If, however, (v′, v′) ∈ E, then (10) yields

cmin = (f + h(v′,v′))
∑
y∈T ′

(v′, y). (13)

Given that cmin is nonzero, we get

f + h(v′,v′) 6= 0.

Therefore wh(cmin) = |T ′| = b, again.
Thus, in all cases we have wH(cmin) ≥ b. Clearly,

CD(gb) contains elements with weight b. By the
choice of cmin, it follows that the minimum distance
of CD(gb) is b.

Second, consider the code CD(gc). Lines 15 to 24
of Algorithm 1 guarantee that gc =

=
∑

{(u, v) ∈ E | (∀t ∈ V )(t, u) /∈ E or (t, v) /∈ E}.
(14)

It follows from (1) that hgc = 0 for all h ∈ ID(F ).
Therefore (3) implies that

CD(gc) = {fgb | f ∈ F} . (15)

Hence the minimum distance of CD(gc) is c indeed.
It remains to show that ID(F ) never has codes

of the form CD(g1, . . . , gk) which can correct more
errors than the best of the codes CD(gb) and CD(gc).
(Note that some of the codes CD(g1, . . . , gk) may have
larger information rates.) Let us consider an arbitrary
code C = CD(g1, . . . , gk). We have to verify that the
number of errors it can correct does not exceed

max{b(b− 1)/2c, b(c− 1)/2c}.

To this end we’ll show that the minimum distance of
C is at most max{b, c}.

Let us start with a nonzero element x =∑m
i=1 fi(xi, yi) which has minimum weight d in C,

where (xi, yi) ∈ E, fi ∈ F and fi 6= 0 for all i. We
are to check that wtH(x) ≤ max{b, c}. Consider sev-
eral possible cases.

Case 1. There exists u ∈ E such that
(u, xi), (u, yi) ∈ E for some i. Put v = xi. Then
it follows from (1) that (u, v)x 6= 0 and that all
edges occurring in (u, v)x begin in u. By the min-
imality of wH(x), we see that wH((u, v)x) = wH(x),
and so (u, v)x = x. Therefore, by (1) we have
x1 = · · · = xm = v and

x =
m∑

i=1

fi(v, yi), (16)

where (u, yi) ∈ E for all i.
Suppose that there exist 1 ≤ i, j ≤ m such that

In(v) ∩ In(yi) 6= In(v) ∩ In(yj).

Without loss of generality we may assume that

In(v) ∩ In(yi) ⊂ In(v) ∩ In(yj).

Choose any

w ∈ In(v) ∩ In(yj) \ In(v) ∩ In(yi).

By the choice of w and (1), we get

(w, v)(v, yi) = 0, (17)
(w, v)(v, yj) = (w, yj), (18)

because (w, yi) /∈ E and (w, yj) ∈ E. Since x is
in CD(g1, . . . , gk), it follows from (3) that (w, v)x
belongs to CD(g1, . . . , gk), too. Besides, (18) im-
plies that (w, v)x 6= 0. However, (17) shows us
that wH((w, v)x) < wH(x). This contradicts the
minimality of wH(x), and demonstrates that, for all
1 ≤ i, j ≤ m,

In(v) ∩ In(yi) = In(v) ∩ In(yj) = S. (19)

Here we have denoted the intersection which occurs
in (19) by S.

Let i be the smallest positive integer such that 1 ≤
i ≤ n and In(v) ∩ In(yi) = S. (Obviously, i ≤ b.) It
is straightforward that Algorithm 1 inserts (v, S, {vi})
in L in line 11. Hence, when L is complete and b is
being found, there will always exist T and t such that
(v, S, T ) belongs to L.

It follows from (19) that y1, . . . , ym ∈ T . Therefore
m ≤ |T | = t ≤ b by the choice of b in line 14 of the
algorithm. However, d = m. Thus d ≤ b in this case.

Case 2. For all u ∈ V and all 1 ≤ i ≤ m, if
(u, xi) ∈ E then (u, yi) /∈ E. Then the containment
condition in line 19 of Algorithm 1 never holds true
for v = xi, y = yi. Therefore line 21 is never executed
for edges (xi, yi) which occur in x. Hence all of these
edges remain in gc, and in this case we get

wH(x) ≤ wH(gc).

This demonstrates that Algorithm 1 indeed re-
turns the correct largest number of errors that a code
of the form CD(g1, . . . , gk) can correct.

Let us now evaluate the running time of Algo-
rithm 1. It is clear that lines 3, 4 execute in O(n2)
time.

The loops in lines 5, 6 have n2 iterations. Each
iteration requires O(n) to find the intersection in
line 7. Given the upper bound on |L|, the contain-
ment condition in line 8 can be verified in O(lg(n2)) =
O(lg(n)) time, see (Asano et al. 2003) and (Cormen
et al. 2001), Chapter 13. Each insertion in T in line 9
takes O(n), and could even be reduced to O(lg(n)),
but this is not necessary. Similarly, each insertion in
L in line 11 can be done in O(lg(n)). Therefore the
nested loops in lines 5 to 11 run in O(n3) time.

Line 14 executes in O(lg(n)), and line 15 takes
O(n2) to compute. The running time of lines 16 to
24 is O(n3). Therefore, the total running time of
Algorithm 1 is O(n3). 2

Proof of Theorem 2. Suppose that the cyclic code
C consists of codewords

(a0, . . . , an−1)

over the finite field F as encoding alphabet, where

a0, . . . , an−1 ∈ F.
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If we identify each codeword (a0, . . . , an−1) with the
polynomial

a0 + a1x + · · ·+ an−1x
n−1 ∈ Qn,

then the code C becomes embedded in Qn. It is well
known that then there exists one polynomial g(x) in
Qn such that C coincides with the set of all multiples
of g(x) in Qn, i.e.,

C = {f(x) · g(x) | f(x) ∈ Qn}. (20)

Let Kn = (Vn, En) be the complete graph with the
set

Vn = {v1, . . . , vn}
of vertices and E containing all edges including loops.
For any subgraph D = (V,E) of Kn, denote by A =
AD the following element of IKn(Fq)

AD =
∑

(i,j)∈E

(vi, vj) ∈ IKn
(Fq).

For example, if

Ln = (V, {(1, 1), . . . , (n, n)})

is the set of all loops, then AL is the identity element
In of IKn(Fq). Denote by Cn the cycle

Cn = (V, {(v1, v2), . . . , (vn−1, vn), (vn, v1)})

regarded as a subgraph of IKn(Fq), and let y = ACn .
The modulo operator gives the remainder of m on
division by n and is denoted by m%n = m modn.
It is easy to verify that the following equalities hold
in IKn

(F ), for all nonnegative integers k,m and all
powers of y,

yk =
n∑

i=1

ei, (i+k) mod n, (21)

ykym =
n∑

i=1

ei, (i+k+m) mod n

= y(k+m) mod n. (22)

The edge sets of the graphs of

y, y2, . . . , yn−1

partition the set of edges of complete graph Kn.
These graphs and their adjacency matrices are illus-
trated in Figure 3.

The equalities (22) for 1, y, . . . , yn−1 above are
precisely those that are satisfied for 1, x, . . . , xn−1

according to the definition of multiplication in the
quotient ring Qn. Therefore the linear space F [Y ]
spanned by the set

Y = {1, y, y2, . . . , yn−1} (23)

in IKn
(Fq) is isomorphic to Qn, i.e., it has the same

elements and operations up to notation used for el-
ements. If we identify the elements xk of Qn with
elements yk, then the parity-check code turns into
the set generated in F [Y ] as the set of all multiples
of the element

1− y =


1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
...

...
...

−1 0 0 . . . 1



u u
u
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��
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��
��

9

��
��

9
1

2

3

1 = y0 =

[
1 0 0
0 1 0
0 0 1

]
u u

u
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J

J
JĴ�1

2

3

y =

[
0 1 0
0 0 1
1 0 0

]

u u
u

-J
J

J
JJ]









�
1

2

3

y2 =

[
0 0 1
1 0 0
0 1 0

]

Figure 3: Adjacency matrices 1, y, y2 ∈ M3[F ].

This example illustrates the fact that every cyclic
code can be defined as a set of all multiples of one el-
ement g of the ring IKn

(F ) multipled by all elements
of a subring of the form

F [Y ] = Fy0 + Fy + Fy2 + · · ·+ Fyn−1,

where Y is given by (23). 2

Proof of Theorem 3. Let C be a linear (n, m) code
over a finite field F , and let D be the graph with the
set of vertices V = {1, . . . , n+1} and the set of edges
{(1, 2), (1, 3), . . . , (1, n+1)}. It is easily seen that the
set of all elements of the form

c0(1, 2) + c1(1, 3) + · · ·+ cn(1, n + 1)

such that
(c0, c1, . . . , cn) ∈ C

is equivalent to C regarded as a linear code. It is
also easily seen that this set is closed with respect to
the multiplication by arbitrary elements of ID(F ). 2

5 Examples

Example 1 Let D be the graph in Figure 4. Then it
is not hard to check that all sets T have cardinality at
most one, for all (v, S, T ) ∈ L, and so gb generates the
code which cannot correct any errors. However, the
maximum number of errors which can be corrected is
n with the optimal code generated by

gc = (xn, yn) + (v, y1) +
n∑

i=1

(xi, v) +
n−1∑
i=1

(xi, yi+1)

Example 2 Let D be the graph in Figure 5. Then
the maximum number of errors which can be cor-
rected by codes CD(g1, . . . , gk) is b(n − 1)/2c with
the optimal code generated by

gb =
n∑

i=1

(v, yi)
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Figure 4: Graph in Example 1
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Figure 5: Graph in Example 2

Example 3 Let D be the graph in Figure 6. Then
the maximum number of errors which can be cor-
rected by codes CD(g1, . . . , gk) is bn2− 1/2c with the
optimal code generated by

gc =
n∑

i=1

n∑
j=1

(xi, yj)
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Figure 6: Graph in Example 3

The author is grateful to three referees for detailed
corrections and comments that have helped to im-
prove the exposition.
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`c�Cg�r�bdnpoC�ubd¹_g��4w�yQ|a`hbuyQ�Q³ºbdqRg�^a`�wl|hiQ°C�ug�n¼»½rfwm³ºwY¾�v�bu^�yX\_yX¿
�d~�x�g��������Cb�^ÀyXo_oC|ciZyQt}��bu^lg�yQ^c~�bu\���yX°�iQ|}yÁ`ciR|c~�bdnpoC�ug�npg�\C¿
`hyÁ`hbdiR\4yX\_�Â|hiQ°_e_^�`�¶�bÃ`h�1|cg�^ao�g�t3`A`ci9npg�yQ^ceC|cg�npg�\Z`Ag�|h|ciR|h^��
[]\�`c�Cg1o_yQoKg�|�v_bÃ`+b�^�jÄiR|cn�eC�uyX`cg��&bu\�`cg�|cn�^�iQj�ypt�iQn�°_bd\_yX¿
`ciQ|hb�yX�:^cg�yQ|ht}��oC|hiQ°C�ug�n�yX\_��oC|hiÁ{Qg���`hi�°Kg�^�`h|ciR\CqQ�u~s´+wl¿
�_yX|}�MjÄiQ|1`h�Cg�qQg�\Cg�|}yX��g�|c|hiQ|c¿HjÄ|cg�g�t�yQ^cgQ�&Å_iQ|�y�^ceC°Co_|ciR°f¿
�dg�nÆiXj�`c�Cg�rCwÀ³¥w�vCy�^cbun�o_�dg�Ç�»ÄÈÂ�uiQqlÈ:¾]¿½`hbdnpg1yX�uqQiR|cbd`c�_n
bu^�qRbd{Rg�\Avf¶��_g�|hg¥ÈMbu^+y�\�eCn�°Kg�|�iXj�|cg�^�`h|cb�t�`hbdiR\&^cbÃ`hg�^��
É�Ê�ËÁÌÀÍÁÎhÏ®Ð�Ñ�t3iRn�°Cbu\_yX`ciQ|hb�yX�AiRof`cbunpbdx�yÁ`cbuiQ\:vK³¥´+�Ò|hg�^a`c|hb�t�¿
`cbuiQ\pn�yXoCoCbu\CqKvQo_yQ|a`hbuyQ���CbdqRg�^a`�vRt�iQnpoCef`}yÁ`hbdiR\_yX�Ct�iQnpoC�ug3Ó�¿
bÃ`�~R�
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�Üt�iQ\_^a`c|he_t�`hbdiR\)iXjYys³¥´+�¼oC��~f^ab�t�yQ��n�yXoMbu^¥yX\Mbdnpo�iQ|c¿
`hyX\Z`º^a`cg�o)bu\�`c�Cg�qQg�\_iQnpg4^ag�ÝZeCg�\_t�bd\_q�oC|cift�g�^h^4»Ût3j��9Þ²yX¿
`cg�|hn�yX\T»�ß�àQàZáQ¾�v2r�g3`heC°_yX�Yâ·ã)g�b��CyX\Cb�^�»�ß�àQà�äX¾�v2w�g�{�x�\_g�|
»½åXæRæQæZ¾�vXyX\K��Å_iQqRg��fâçkmiR|c\Cg1»HåXæQæRèR¾�yQ^�g�Óft�g��u�dg�\Z`�^ciQe_|ht�g�^
iXjYyQ�dqRiQ|hbÃ`h�Cnpbut�b��fg�yR^ºeK^ag��ébu\²t�iQnpoCef`}yÁ`hbdiR\_yX��°CbuiQ�uiQqR~f¾3�
���Cbu^:n�yXo1iXj_y�³¥´+�UnpiQ�ug�t3e_�dgÀt�iQ\Z`hyQbd\K^¦`c�Cgmbd\CjÄiQ|hnpyX`cbuiQ\
yX°�iQef`9�uift�yÁ`hbdiR\_^�iQj�^c�CiQ|c`�vC^co�g�t3bd¹Kt1^ceC°_^cg�ÝZeCg�\_t3g�^9t�yQ�d�ug��
npyQ|cêRg�|}^ÀyQ\_��bu\�`ce_|c\&oC�uyRt3g�^À�uiQ\CqRg�|Y³º´º�/^ceC°¦t}�_yXbu\_^miQ\
`c�Cg�t}�_|ciRn�iZ^aiRnpgQ�mÇº\Cg4yQoCoC|hiRyQt}�s`ci�t�|cg�yÁ`cgÂ`h�Cg1n�yXo�b�^
°_yQ^cg���e_oKiR\é^ao_�dbd`a`hbd\Cqs`c�Cg�npiQ�ug�t3e_�dg�bd\Z`cisnpyQ\�~�^c�CiR|a`hg�|
iQ\Cg�^ºyQ\_�Më�ËQì�Î�íÛÏÁídî�íðï�ñp`c�_g�n;¶�bd`c�)`h�Cgsò�óÁÎcôRÊ�Î}Ð�»Äê�\CiÁ¶�\
{Qg�|h~p^a�CiR|a`�³º´º�/^cg�ÝZeCg�\_t3g�^h¾3�����Cbu^YyXo_oC|ciZyQt}�p|hg�^ceC�Ã`}^Àbu\
`c�Cg�íðï_õ]Ê3Î�öÁóÁ÷CñQÎcóhø_ë�ò�Í�ÏRÊ3÷Ze_^cg���^ce_t�t�g�^h^�jÄe_�d�u~pbd\s`c�Cgºo_yQ^a`
»Û�Yg�\Cx�g�|1ß�àRáXàZ¾��
�Ün�iR|cg�|cg�t3g�\R`ÂyXoCo_|ciZyQt}��`cis`c�Cg�qQg�\CiQnpg�n�yQoét3iR\f¿

^�`h|ce_t3`cbuiQ\ù|hg��ubdg�^�iQ\FyT�fbuqQg�^�`hbdiR\/iQjpyT³¥´+�±npiR�dg�t3eC�ug
¶�bÃ`h�/|hg�^a`c|hbut3`cbuiQ\Tg�\Cx�~�npg�^²»ÄÞúyÁ`hg�|hnpyQ\<ß�àQàRáR¾��û���Cg�^cg
g�\Cx�~Znpg�^ét3eC`é³º´º�!npiQ�ug�t�eC�dg�^�¶�bd`c�Cbu\Ò^ao�g�t�bÃ¹�tXv�^c�CiQ|c`
o_yÁ`c`cg�|h\_^¥iXjm\ZeKt3�ug�iX`hbu�Cg�^Ât�yQ�d�ug���|hg�^a`c|hb�t�`cbuiQ\²^abd`cg�^��4�9jð`cg�|
`c�Cgs�CbdqRg�^a`cbuiQ\Av:`c�Cg��ug�\_qX`c�K^1iXj�iQ°f`}yXbu\Cg��MjÄ|}yXqRn�g�\Z`h^1yX|hg
n�g�yQ^ceC|hg��4yQ\_�1`h�CgmiR|cbuqQbu\_yQ�QiQ|}�fg�|cbu\Cq+iQjf`c�Cg�^agmjÄ|}yXqQnpg�\R`}^
n�e_^a`�°Kg�|hg�t�iQ\_^a`c|he_t3`cg��AvYyQ\_�µ`h�Cb�^�bu^�`c�Cg�oC��yQt�g�¶��Cg�|hg
t3iQn�°Cbu\_yÁ`hiQ|hbuyQ�2iRof`cbunpbdx�yÁ`hbdiR\Mnpg3`h�Cif�C^1t3iRnpg�`hi�`c�Cg�g�jð¿
jÄg�t�`���[]\�oC|}yQt�`hbut�gQvZ^ag�{Qg�|}yX�f{ÁyQ|cb�yX\Z`h^�iQj¦`c�Cb�^ÀyQoCoC|hiRyQt}�pyX|hg
e_^ag����U��¶YiéiQj9`c�Cg�°�g�^a`pê�\CiÁ¶�\üyX|hgéõÄëCÊ)ÏRÍÁý_ì�÷dÊ)ÏÁíÃñZÊ3Ð}õ
yX\_�²õÄëCÊ�øCóXÎ�õ½íÛóX÷2ÏÁíÃñZÊ3Ð}õm»Ä¶�bd`c��bd`h^�n�yX\�~�{ÁyX|hb�yX\Z`h^}¾��
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[]\)`c�_g��fiQeC°_�dgp�fbuqQg�^a`1yXoCoC|hiRyRt}��`�¶Yi&|hg�^a`c|hbut3`cbuiQ\Mg�\f¿
x�~Znpg�^:yX|hgle_^cg��A���U`hyX|hqQg�`�³¥´+�µb�^2yXnpoC�ubÃ¹_g���vÁgQ� q_��e_^cbd\Cq
y1w�kMs�|cg�yQt�`hbdiR\AvQyQ\_��`c�Cgºt3iQo_bdg�^ÀyX|hg9�fbu{�bu�fg��pbd\Z`hi1`c�C|hg�g
^cg3`}^���ã�iR�dg�t3eC�ug�^YjÄ|hiQnÆ`c�CgÂ¹_|}^a`�^cg3`+yQ|cgÂ�fbuqQg�^�`hg���°�~�iQ\Cg
g�\Cx�~�npgQv�npiQ�ug�t�eC�dg�^1jÄ|hiQn6`c�_g&^cg�t3iR\_� ^cg3`�yQ|cg&�fbdqRg�^a`cg��
°�~1`h�Cg9iX`h�Cg�|Àg�\Cx�~Znpg9yQ\_��n�iR�dg�t3eC�ug�^�jÄ|ciRnF`c�Cg9`c�Cbu|h�p^cg3`
yQ|cg+t�ef`m°�~p°�iX`c�sg�\Cx�~Znpg�^����9�u�¦�fbdqRg�^a`cbuiQ\_^myX|hgºt�iQnpoC�ug3`cg
jÄiR|º`h�Cg�`cbunpgp^co_yQ\MiQjÀg�yRt}�é|hg�yQt3`cbuiQ\Mbu^¥�uiQ\Cq�g�\CiReCqQ�M`ci
yQ�d�uiÁ¶Æ`h�Cg²g�\Cx�~Znpgé`ciUt�ef`&`h�Cg)`}yX|hqQg�`&^�`h|hyQ\_�TyÁ`�g�yRt}�
ift�t�eC|h|cg�\_t3gpiXj�`h�Cg�|hg�^a`c|hbut3`cbuiQ\ ^abd`cgR���+^1`h�Cg�|hg�^ceC�d`�iQ\Cg
iR°f`hyQbd\_^:`c�_|cg�gYt�iQ�u�dg�t�`cbuiQ\K^:iQjK^a�_iQ|c`2³¥´+�üjÄ|hyQqQnpg�\Z`}^A`h�_yÁ`
t�iQ|h|cg�^ao�iQ\_�s`cip`h�C|hg�g��fbuqQg�^�`hbdiR\�oC|cift�g�^h^ag�^��Y���Cg4�ug�\CqQ`c�_^
iQj¥`h�Cg�^cg)jÄ|}yXqRnpg�\Z`h^�yQ|cgén�g�yQ^ceC|hg��T�feC|hbu\CqUy qRg��+g��dg�t�¿
`h|ciRoC�CiQ|hg�^cb�^ÂoC|cift�g�^h^4yX\_�ú|hg�t�iQ|}�fg��úyR^1`c�_|cg�g�n�eC�d`cb�^cg3`h^��
Çº\s`c�Cg¥°_yQ^cb�^miQjA`c�_bu^��CyX`hy��dift�yÁ`cbuiQ\K^ÀiQj:|cg�^�`h|cb�t�`hbdiR\&^cbÃ`hg�^
bu\�`c�CgÂ`}yX|hqQg3`9³¥´+�ÒyQ|cgÂ|hg�t�iQ\_^a`c|he_t�`hg����lz+\fjÄiQ|c`ce_\_yÁ`hg��u~Qv
jÄ|hiQn·`c�Cg�t3iQn�°Cbu\_yÁ`hiQ|hbuyQ�AoKiRbd\Z`¥iXj�{�bdg�¶/`h�Cgut�ÍÁý_ì�÷dÊLt�íDv
ñZÊ�Ð�õ%wYÎhÍQì�÷dÊ3ò »½³º³¥wm¾Àb�^m´ºw�¿��_yX|}��g�{Rg�\�bu\&yQ\�bu�Cg�yX�¦t�yR^ag
bu\�{QiQ�u{�bd\_qU\Ci5g�|h|ciR|h^²»�x¥iR�u�_^�`hg�bu\çâ±ÞúyÁ`hg�|hn�yX\<ß�à�y�äX¾�v
`h�ZeK^+eC\_�dbuêQg��d~�`hi&yQ�Cn�bd`1y�o�iQ�u~Z\_iQnpbuyQ�:`hbdnpg�yX�uqQiR|cbd`c�_n��
�+\CiX`h�Cg�|¥�fb{z�t�eC�Ã`�~�¶��_but}�)n�e_^a`º°�g4`hyQêQg�\)bd\Z`hisyQt�t3iQe_\R`
¶��Cg�\ �fg�yX�ubd\Cqü¶�bÃ`h� `h�Cbu^�yQoCoC|hiRyQt}��b�^�yX\ g�Ó�o�iQ\_g�\Z`cb�yX�
\�eCn�°Kg�|�iXjÂoKiZ^c^cbd°_�dg�^ciQ�uef`cbuiQ\_^é»ÛyQ^pnpg�yQ^ceC|cg��U¶�bd`c��|hg3¿
^coKg�t�`9`hi&yp\�eCn�°Kg�|ºiQj�|hg�^a`c|hb�t�`cbuiQ\�^cbÃ`hg�^�¸ È:¾1»Hrft}�Cnpbd`a`
âÜÞ²yX`cg�|cn�yX\úß�àQàCß®¾��À�º^+yQ\)yX�d`cg�|h\_yX`cbu{Qgpõðë_Ê9øCóXÎ�õ½íÛóX÷�ÏXíDv
ñZÊ�Ð�õpóhøQø¦ÎcÍ�ó�|}ë �_yR^p°Kg�g�\ToC|hiQo�iR^cg��ç»½rfêZbug�\KyCv9r�npbÃ`h� â}:g�npêQgMß�àQàRæCv�r�ê�bdg�\_y²â r�eC\_�_yX|}yXn ß�àRà�~Z¾3���9g�|cgRvliQ\Cg
g�\Cx�~�npg+iR\C�d~pb�^myQoCoC�ubdg��p`ci�t3ef`Y`c�_gº³¥´+�çnpiQ�ug�t3e_�dgºbd\Z`ci
jÄ|}yXqRn�g�\Z`h^�iQj1�Cb{�¦g�|hg�\Z`s�ug�\CqQ`c�_^s°�~Ue_^cbd\_q `c�CgMg�\Cx�~�n�g
jÄiR|Â�Cb{�¦g�|hg�\Z`¥`cbun�g�o�g�|hbui��_^��4[]\M`c�_g�g�|c|hiQ|c¿HjÄ|cg�g�t�yR^ag�iQ\Cg
qRg3`h^l�Cg�|hg9yX�u�p��� �B�YjÄ|}yXqQnpg�\R`l�ug�\_qX`c�K^�°Kg�`�¶mg�g�\�yQ�d�CoKyXbu|h^�iQj
t�ef`h^1»Ûbd\_t��deK�fbd\_q�`�¶mipg�\_�C^�iXj2`c�_g4³º´º�FnpiQ�ug�t3e_�dg®¾��l���Cg
|hg�^ceC�d`cbu\Cq�w�óXÎ�õ½íÛóX÷�t4íÃñZÊ�Ð�õ;w�ÎcÍQì�÷dÊ�òù»½wÀ³¥wm¾�t3iR\_^ab�^a`h^Abu\4|hg3¿
t�iQ\_^a`c|he_t�`hbd\_qs`h�Cg�iQ|hbdqRbd\KyX�2oKiZ^abd`cbuiQ\_^ÂiQjm`h�Cg�t3ef`}^������Cb�^
oC|hiQ°_�dg�n�b�^¥ê�\CiÁ¶�\MyQ�u^cisbu\M�fb�^ht3|hg3`cg�qQg�iQnpg3`h|c~ú»½rfêZbug�\KyCv
r�npbd`c��â�}Ag�npêQg�ß�àQàRæCv�r�ê�bdg�\_ysß�àQà�äX¾�v�¶��Cg�|cgº�_y®{�bd\_q�yQ�d�
bu\Z`cg�|ho�iQbu\R`À�Cbu^a`hyQ\_t3g�^�vXiR\Cg�|hg�t3iR\_^a`c|he_t�`}^2`c�Cg9o�iR^cbd`cbuiQ\_^�iQj
y²^ag�`�iXjºo�iQbu\Z`h^piR\5yM�dbu\CgR��Å_iQ|�wÀ³¥wÜ`�¶mi²°_yRt}êR`h|hyRt}êZ¿
bu\Cq)yX�uqQiR|cbd`c�_np^4¶�bÃ`h�µyX\úg3Ófo�iQ\Cg�\R`hbuyQ�À¶YiQ|}^�`4t�yQ^cg�t3iQn�¿
oC�ug3Ófbd`�~��Ky®{Qg�°�g�g�\soC|ciRoKiZ^ag��p°�~pr�ê�bug�\_y�yX\_��t�iX¿�¶miR|cêRg�|}^
»Hr�ê�bdg�\_yCvlr�npbd`c�üâ�}:g�npêQgéß�àQàRæCv�rfêZbug�\Kyéâ;r�eC\_�_yX|}yXn
ß�àQà�~�¾�� []\/qQg�\_g�|}yX�Hv9`c�_gút�iQnpoC�ug3Ófbd`�~TiXj4`h�Cg wÀ³¥wÆ|hg3¿
n�yXbu\_^pyX\5iQo�g�\�ÝZeCg�^a`cbuiQ\:vYyQ�Ã`h�CiQeCqR�Unpg�yR^ae_|cg�n�g�\Z`�g�|a¿
|hiQ|}^myQ\_��\CiQb�^c~��CyÁ`}y�|hg�^ceC�d`�bd\�`c�_g4^�`h|ciR\Cq�´ºw�¿��_yX|}�f\Cg�^c^
iQjº`h�Cg)oC|hiQ°C�ug�n »a»�kmbdg��dbug�°_yQêüâ6�lb��fg�\�°�g�\Cx²åXæQæ�~Z¾�yX\K�
»�kmbdg��dbug�°_yQê¦vA�lb��fg�\�°�g�\Cx�âÆw�g�\C\_y�åXæRæQèR¾3v¦|cg�^ao�g�t3`cbu{Qg��u~C¾��
[�`Àb�^�¶YiQ|c`c��^a`c|hg�^h^abu\CqÂ`c�KyÁ`l`h�Cg9\�eCn�°�g�|ÀiXj�oKiZ^c^cbu°C�dg9^ciQ�uef¿
`hbdiR\_^�bu\p`c�Cg+wm³ºwúb�^�°�iQeC\K�fg���jÄ|hiQnûyX°�iÁ{Qg�°�~�yÂo�iQ�u~�\CiX¿
npb�yX�_bu\�`h�Cg+\�eCn�°Kg�|ÀiXjA|hg�^a`c|hb�t�`cbuiQ\�^cbÃ`hg�^º»½r�ê�bug�\_y_vfrfn�bd`c�
â�}:g�npêQgüß�àRàQæR¾3�·Ç+`c�Cg�|�êZ\_iÁ¶�\ yXoCo_|ciZyQt}�Cg�^sbu\ `h�_yÁ`
yQ|cg�y)bu\_t3�ue_�fgUÍ}ø�õHí2|hóX÷9ò�óhøQø¦íðïZñU»½rft}��¶�yX|c`cx�g3`�yX�H��ß�àRàQèCv�1yQ|co¼â r��KyXnpbd|Tß�àQà]yR¾�v�ø¦ÎcÍQì}Ê}Ïüø_óÁÎ�õHíÛóÁ÷&ÏXíÃñRÊ3Ð�õéò�óhøGv
ø¦íðïZñ�»Û´+g�¶�°�g�|hq�â ´ºyXiR|�ß�àQàQèZ¾�v¦yX\_�U÷dóQì}Ê�÷dÊ}Ï�ø_óÁÎ�õHíÛóÁ÷ÀÏXíDv
ñZÊ�Ð�õ�»Ûw�yX\K�feC|}yX\CqZyX\�â�s+yXnpg�^c� åXæRæRåQ¾3�o}:g3`�e_^�g�^ao�g3¿
t�buyQ�d�u~ºt�iQnpnpg�\Z`AiQ\Â`h�Cgl��yX°�g��ug��Âo_yQ|a`hbuyQ�Q�fbuqQg�^a`:yXo_oC|ciZyQt}�Av
¶��Cb�t}�1yX�d`c�CiReCqQ�1npiR|cglt�iQnpoC�ubut�yÁ`cg��ºjÄ|ciRn `h�Cglbun�o_�dg�n�g�\f¿
`}yÁ`cbuiQ\ùo�iQbu\Z`éiXjp{�bdg�¶ »Û�uyQ°Kg��dbu\CqT`h�Cgµg�\K�C^�iXj�yT³¥´+�
npiQ�ug�t�eC�ug�°�~Me_^cbu\Cq)|}yQ�fbuiRyRt�`cbu{Qg���yX°�g��ubu\CqZ¾3v2|hg�^ceC�d`h^�bd\Uy
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¶�bu^cgQv�n�yX|hê�`h�Cg�t�ef`+oC��yQt�g��Ew�eC\_bÃ`}^�jÄ|hiQn·`c�Cg�|cbuqQ�Z`
g�\_�&iXj:`c�Cg1^ciQ�uef`cbuiQ\�yX\_�&|cg�npiÁ{Qg6¦���¶��Cbut}��t3iR\R`}yXb�^
w�jÄ|ciRnª¦4�

»�ßR¾s[�j5¦ b�^�g�npof`�~RvRqRiÂ`ci4^a`cg�o)»�äX¾3�lÇ+`h�Cg�|h¶�b�^agRvXbd\Kt3|hg�yQ^cg
w�°Z~sßQ�2[�j�^ciQnpg�t3ef`lyX�u|hg�yQ�C~1g3Ófbu^a`h^�bu\�`c�Cg9^ciQ�uef`cbuiQ\~w
eC\Cbd`h^�jÄ|hiQn/`c�Cgm�dg�jð`2g�\_��vÁqQi9`ciº^a`cg�os»Þ~�¾���Ç+`c�Cg�|c¶�b�^agRv
n�yX|hês`h�Cg�t�ef`ºo_�uyRt3g��EwÀeC\Cbd`h^+jÄ|ciRnÆ`h�Cg��dg�jð`ºg�\K��iXj
`c�Cg�^aiR�deC`cbuiQ\Av�|cg�npiÁ{Qgk¦ � ¶��Cb�t}�ét3iR\Z`hyXb�^4w�jÄ|hiQn�¦�v
yX\_��qRi�`hi�^�`hg�o »½áR¾��

»�äX¾&���Cg+t�eC|c|hg�\Z`À^ciQ�uef`cbuiQ\�t�iQ\Z`hyQbd\K^lyX�u�Kt�ef`h^�vQbH� gR��bÃ`�t3iQ|c¿
|cg�^ao�iQ\K�C^Y`ci�yQ\&iR|h�fg�|�iXj�g��ug�npg�\Z`h^�iQj2n�eC�d`cb�^ag�`6Ê��
}Ag�`9e_^�\CiQ`cg¥`c�KyÁ`�`c�_g4yX�uqQiQ|hbd`c�Cn e_^cg�^�iR\C�u~�bd\CjÄiQ|hnpyX¿

`cbuiQ\�t3iQnpbu\Cq)jÄ|hiQn±n�eC�d`cb�^ag�`X¦ yQ\_�U�fi�g�^�\_iX`�t}�Cg�t}ê bd`
¶�bÃ`h�²n�eC�d`cb�^ag�`©Ê������Cb�^Âbu^1°�g�t�yXe_^cg�`c�Cg�yQoCoC�ubdg��MnpiÁ{Rg�^
yX|hg1`c�Cg�iQ\C�u~�oKiZ^c^cbu°C�dg�iQ\Cg�^�v¦yX\_��bu\�`h�Cg�t�yQ^cg4¶��Cg�|hg�¶Yg
�_y®{Qgl\_i+g�|h|hiQ|}^�`c�_g�~Â�_y®{Qgl`ci+°�g�t3iQ|h|hg�t�`��:���Cb�^:b�^��fg�npiR\f¿
^�`h|hyX`cg��&bu\&`h�CgÂjÄiQ�u�uiÁ¶�bd\CqpoC|hi�iXj��

6 �%��×K¬��_� ù wYÎcÍQì�÷dÊ�ò ¸6¹-º Ä � » í�Ð Ð�ÍX÷ ö®óRì3÷uÊ íðï
õHíðò�Ê
¥ · ÈÂ�uiQqlÈ ¼ ´
T�UtVAVAW}Ag3`me_^lyX\KyX�u~Zx�gÀ`h�Cg+t�iQ\_^cg�t�ef`cbu{Qg�^a`cg�oK^�iXj�`c�Cg9yQ�dqRiQ|hbÃ`h�Cn��
���Cgé¹_|h^a`s`�¶Yiü^a`cg�o_^syQ|cgéiQ°�{�bdiRe_^��Ü���Cg)`h�Cbd|}� iR\Cg

t3iQ\K^ab�^�`}^�bd\üoC�uyRt3bu\Cq)`h�Cg�^a~�npnpg3`h|cb�tst�ef`h^�bu\_�fb�t�yÁ`hg��U°Z~

o_yQbd|}^2jÄ|hiQn ¦4�ÀÇ+j¦t�iQeC|}^cgQvQbdj�¶mg��Ky®{Qg�bu\U¦�`�¶mi1b��fg�\R`hbut�yX�
^ceC°_^cg3`}^pÁ���Å)l k � Ç v®`c�Cg�\�bu\�`h�Cg�oC|hiQ°C�ug�nF¶�bd`c�CiRef`lg�|h|hiQ|}^°�iX`h�µt3ef`}^4n�eK^�`�yQoCo�g�yX|��&����e_^�v2`c�Cg�~Mn�e_^a`�°KgsoC�uyRt3g��
bu\�iQoCo�iR^cbÃ`hg1o_yX|c`h^9iXj2`c�Cg�^ciQ�uef`hbdiR\AvCbH� gR�ÀiQ\_g4t3ef`��éeC\Cbd`h^
jÄ|hiQn `c�CgM�dg�jð`&yX\_�5`h�CgM^cg�t�iQ\_�5iR\CgE� eC\_bÃ`}^�jÄ|hiQn
`c�Cg
|hbdqR�Z`Yg�\_���
�9�u�+|hg�n�yXbu\Cbu\CqUt3eC`h^syQ|cg)yR^c^c~�npg3`c|hb�tX�F�Yg�t�yQe_^cg�`c�Cg

t�eC|c|hg�\Z`�^aiR�deC`cbuiQ\5bu^�^c~�n�npg�`c|hbutQvÀ\Ciún�yÁ`c`cg�|�¶��KyÁ`s^cbu�fg
¶Yg�oC��yQt3g�`h�Cg9\Cg�Ó�`mt3ef`���rfi_vR`c�Cg9�ug3jð`Y^ab��fg9t�yQ\p°Kg+t}�_iR^cg�\Av
yR^º¶Yg��u��yQ^¥`h�Cg�^�`h|hyX`cg�qR~�iXjÀ`}yXê�bu\Cq�`c�Cg�t3eC`Â\_g�yX|hg�^a`¥`c�Cg
�ug3jð`pg�\_�U¹_|}^�`�� ���Cg�|hg3jÄiR|cgRv�`c�Cg�jÄiQe_|a`h�ü^a`cg�oübu^pt�iQ|h|cg�t�`��
[�`4yX��^ci�t�iQ\_t�g�|h\_^ºjÄeC|a`h�Cg�|�t�yX�u�ubd\Cq�iXj�^�`hg�oT»Þ~�¾�vA¶��_g�\ú¶mg
¹_�u�¦y1o_yX|c`À°�g3`�¶Yg�g�\s^a~�npnpg3`h|cb�t+t�ef`h^YyX\_�pqRi1`ci�`c�Cgº\Cg3Ó�`
Ð�÷dÍXõm»ÄbH� gQ�+ypjÄ|}yXqRnpg�\Z`9°Kg�`�¶mg�g�\�`�¶Yi�o_yQbd|}^�iXjÀ^c~�npn�g�`c|hbut
t�ef`h^�jÄ|hiQnÜ^�`hg�o�»ÛèZ¾a¾�¸ `h�Cg�\�`h�Cg�|hg�bu^�\_i4�fb{�¦g�|hg�\Kt3g�jÄ|hiQn
¶��_yX`9^ab��fg1¶YgÂ^a`hyQ|a`�`hi�o_�uyRt3g1\Cg�ÓZ`9t�ef`h^��
��jð`cg�|mo_�uyRt3bu\Cq4`h�Cgºo_|cg�{ZbuiQeK^Àt3eC`Ybu\s^a`cg�o²»Þ~�¾�¶Yg+n�eK^�`

�ui�iQê�yÁ`Y`c�_g1iQoCo�iR^cbÃ`hg¥^cb��fgÂiXjA`h�Cg4^aiR�deC`cbuiQ\A��[]\&`c�Cg1^c~Zn�¿
npg3`h|cb�t�oC��yQt�gl¶mglt�yX\C\_iX`:�_y®{Rgly�t3ef`�vÁ^abu\_t3gmyX�u�Rt3eC`h^:yR�C�fg��
yXjð`cg�|¥^�`hg�o5»ÛèR¾+yX|hg�yR^c^c~�n�g�`c|hbutQ�+�9\K�)°�g�t�yQe_^cg�bu\)n�eC�d`cbd¿
^cg3`SÊÜ`c�Cg�|cg1yX|hg¥iQ\C�u~��dg�\CqX`h�_^Yg�ÝZe_yQ�¦`ci�ß¥iR|�åCvf¶mg¥n�eK^�`
oC��yQt�g�y¥t�ef`l`hi¥qRg3`ÀyºjÄ|}yXqQnpg�\R`�iQj��ug�\CqQ`c��yÁ`lnpiZ^�`ÀåÂyÁjð`hg�|
iR\Cgºe_\CbÃ`�iR\s`h�CgÂ|cbuqQ�Z`�^ab��fg¥¶�bÃ`h�CiQef`+y�t3eC`��Àr�iKv�^a`cg�o²»HáQ¾
b�^mt�iQ|h|cg�t�`myR^À¶Yg��u�¦yQ^Y^�`hg�oM»�ßR¾l¶�bÃ`h�&y�^abunpbd��yX|m|cg�yQ^ciQ\Cbu\Cq_�
���Cg�iR\C�u~Mg�Óft�g�of`hbdiR\Av2¶��Cg�\ ¶Yg�|hg�yQt}�úyX\ g�Ófbu^a`cbu\Cq)t3eC`�v
t�iQ\_t�g�|h\_^l`h�Cg1^abd`ceKyÁ`cbuiQ\�¶��Cg�\&¶Yg+¹K�d�¦`h�CgÂ¶��CiQ�ug¥t�eC|h|cg�\R`
^c�diQ`ºyX\K��7�eCnpo�`cis`c�Cg�\Cg3Ó�`+iR\Cgs»ð`h�Cg�^c�uiX`¥t��diZ^ag�|�`ci�`c�Cg
npb��C�f�ug1iXj:`h�Cg4^ciQ�uef`cbuiQ\K¾3�
r�eCnpnpbd\Cq eCo�`c�Cg yX°�iÁ{Qg |cg�yQ^ciQ\Cbu\Cq_v ¶Yg n�y®~

t�iQ\_t��de_�Cg `c�_yX`é`h�CgüyQ�dqRiQ|hbÃ`h�Cn�b�^Mt�iQ|h|cg�t�`�� �º^)`hi bd`h^
t�iQnpoC�ug3ÓfbÃ`�~Rv�bÃjÂ`c�_g)g��ug�npg�\Z`}^�iXjL¦ yQ|cg�^ciQ|c`cg��übu\ ^a`cg�o
»HåQ¾�v�`h�Cgç^a`cg�o_^�t�yQ\ °Kgù�fiR\Cg bu\ `hbdnpgQv�|hg�^co�g�t�`hbd{Rg��u~Qv
Ç�»ÛÈ¥�uiQq�È:¾3v�Ç�»ÄÈÂ�uiQqlÈ:¾3v�Ç�»ÄÈÂ�uiQq�È:¾3v�Ç�»Ä�uiQqlÈ:¾3v�Ç�»Ä�uiQqÀÈ:¾�v
yQ\_�5Ç�»Û�diRqlÈ:¾��UrZ`hg�o_^�»2~Z¾§¦¦»2ßZ¾�yQ|cg&oKg�|ajÄiR|cnpg��µeCoU`ciúÈ
`hbdnpg�^�v9^ci `c�CgM¶��CiQ�ugMyQ�dqRiQ|hbÃ`h�Cn b�^&iXjÂ`c�Cg²t3iRn�o_�dg�Ó�bd`�~
Ç�»ÛÈ¥�uiQq�È:¾3�Sç
��ÓCyXnpoC�ug�èMo_|cg�^ag�\R`}^pbd\T�fg�`hyQbd��`h�Cg�oC|hiQo�iR^cg��5yX�uqQiX¿

|hbÃ`h�Cn��

Û �A­0���3�2�!ù Ü Ê�õºÍXýfÎ�íðï_Ð�õ�óXï;|}ÊsÍ	È9ø¦ÎcÍQì�÷dÊ�ò ¸�¹�º Ä � » ì}Ê�Ñ¦ì¥ªÁZß�Åhå0ÅcèEÅ	~EÅ}áVÅ}áVÅ�ß0Å�äqÅ}äVÅJyEÅJy0Åhà0Å�ß�æ0Å�ß�æEÅ�ßQß�Å�ß�åVÅ�ß�èEÅ�ß#~ ÇóXï�Ï®Êà¥ ÁZß�Å�ß�Å�ß]Å�ß]Å�ß�Å}åVÅ}åVÅhå0Åhå0Åhå Ç ´ á¦ë�ý�Ð
ÍéÌÀÊµë_óÁöÁÊ
�·ÎcÊ3Ð}õHÎ�í2|�õ½íÛÍXïÆø¦÷dó�|}Ê3ÐÜÌ�íðõÄë�íðï õÄëCÊ<Ð�ÍÁ÷ ýfõHíÛÍÁï!Í�È<÷dÊ�ïZñQõðëä`¨�´Àá¦ëCÊ�|}ÍÁò+ø�÷dÊ�ò�Ê3ïKõ�óXÎ�Ë�ø_óÁíðÎ}Ð²Í	È)÷dÊ�ïZñQõðë�Ðéíðï³¦ óXÎcÊ�ÑÁZß�Å�ß-~ Ç Í¯Á®å0Å�ß�è Ç Í®Á�èEÅ�ß®å Ç ÍcÁ-~)Å�ßQß Ç Í®Á®á0Å�ß�æ Ç ÍcÁ®áVÅ�ß�æ Ç ÍÁ�ß0Åcà Ç ÍMÁÁäVÅJy Ç Í+óÁï�Ï!ÁÁäVÅJy Ç ´¯áKÍ�õÄëCÊ�íðïKíðõ½íÛóX÷ð÷ Ë²Ê�ò+ø�õHË&Ð�Í�v÷ ýfõHíÛÍÁï�ÌÀÊ�óRÏQÏ óÁ÷ð÷�Ð�ËÁò�òpÊ�õHÎ�í2|!|3ýfõ½Ð�ÏQÊ�õ]Ê3Î�ò�íðï�Ê}Ï ì�ËéõÄëCÊ
íðï_Ð}õ]óÁïG|}ÊsóÁï¦Ï�ÌÀÊ�ñRÊ�õ+õÄëCÊ�Ð�Ê è ý_Ê�ï;|}ÊsÍ	ÈHÈ}Îcó�ñXò�Ê3ïKõÛÐ�ó®Ð�íðïãÀíÃñQýfÎcÊ�¨]´

Å2buqQeC|hg9áf���T^a~�npnpg3`c|hb�t�o_yX|c`liXjAyX\pg�ÓfyQnpoC�dg9^ciQ�uef`hbdiR\�iQj
oC|hiQ°_�dg�n ¸ ¹-º Ä � » �
Ï È}õ]Ê3ÎµõÄëCóXõX¦í¥ Á�ÁZß�Å�ß�~ Ç Å#ÁÁåVÅ�ß�è Ç Å#Á�èEÅ3ß�å Ç Å#Á-~EÅ�ßQß Ç ÅÁ�ß0Åcà Ç�Ç ´uû�Ê4óRÏQÏ�õðë_ÊÂÎcÊ�òpóXíðï_íðïZñâ|3ýfõ½Ð+Ð�õ]óÁÎ�õHíðïZñSÈ}ÎcÍXò õÄëCÊ
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ÍÁï�Ê�ï�Ê}óÁÎhÊ�Ð�õ+õÄëCÊ�÷dÊ�È}õ¥Ê�ï�Ï)Í	Èpõðë_ÊpÐ�ÍÁ÷ ýfõHíÛÍÁïEÍ+õÄëCÊ�ÎhÊ�Ð�ýf÷ õ9í�Ð
Ðaë_ÍÁÌ�ï²íðï¬ãÀíÃñQýfÎcÊ�©�´

Å�buqQe_|cgïßC�U�+\ g�ÓfyQnpoC�dg²^aiR�deC`cbuiQ\ iQj4oC|hiQ°C�ug�n ¸�¹�º Ä � »
¶�bÃ`h�&`h�CgÂ¹_|}^�`+^c�uiX`�¹_�u�dg��&°�~st�ef`h^��

ãÀíðï�óX÷ð÷ Ë�Í�ÌÀÊt��ýfò+øsõ]Í+õÄëCÊ�ï�Ê@òQõ¦Ð�÷dÍXõ�óÁï¦ÏÀø�÷dó]|}Ê�õÄëCÊ�ÍÁïK÷ Ë
ÎcÊ3ò�óÁíðïKíðïZñÉ|3ýfõ3Á�ß0Åcà Ç ´ká¦ëCÊ4Ì�ëCÍX÷dÊÂÐ�ÍÁ÷Ãýfõ½íÛÍXï�í�ÐºíðïÉãÀíÃñXýfÎhÊ�B´Xç

Å�buqQe_|cg�äf�m�Òt�iQnpoC�ug3`cg�^aiR�def`hbdiR\�jÄiQ|9`h�Cg4g�ÓfyQnpoC�dg1o_|ciR°f¿
�dg�n ¸ ¹-º Ä � » �

a � × Ö ¯]�ÛÙ2ª�Ú½× Ö ª
[]\Â`c�CgloKyXo�g�|�v�`h�CgÀ³¥´+�UrfbdnpoC�ubÃ¹Kg��4w�yQ|a`hbuyQ�X³+buqQg�^�`�wÀ|ciR°f¿
�dg�n�¶�yQ^&jÄiQ|hn�eC��yÁ`hg��/yX\_�çyX\_yQ�d~�x�g�� yR^�y�t3iQn�°Cbu\_yÁ`hiX¿
|cb�yX��^cg�yX|}t}�)oC|hiQ°_�dg�n������CgpqQg�\_g�|}yX�2g�|h|ciR|a¿HjÄ|cg�g�t�yR^ag�¶YyR^
oC|ciÁ{Rg���`hi&°�g�^�`h|ciR\CqQ�u~�´+wl¿H�_yQ|h�A��Çº\é`h�Cg�iQ`c�Cg�|Â�_yX\_�Av
y�^coKg�t3b�yX�¦jÄiR|cn iQjA`c�CgÂn�eC�Ã`hbu^cg3`�|hg�^ceC�d`cbu\Cq�jÄ|hiQnû`h�CgÂ�diR\Cq
�fbdqRg�^a`cbuiQ\ yX\K�²t�iQnpo�iR^cg��MiXj�iQ\C�u~Uß�^1yX\_� åX^Â|hg�^ceC�d`h^1bu\
yM^cbdnpoC�ugQvmoKiR�d~�\CiRnpbuyQ�Ã¿H`cbunpg�yQ�dqRiQ|hbÃ`h�Cn��U���Cg�ÝZeCg�^a`cbuiQ\
|cg�npyQbd\K^�iQo�g�\Av�¶��Cg3`h�Cg�|MiQ|)\CiQ`�v�yT^cbun�bu��yX|éyQoCoC|hiRyQt}�
t�yX\ú°�g�e_^cg��MjÄiQ|Â`h�Cg�n�eC�Ã`hbu^cg3`}^4t3iRnpoKiZ^ag��éiQj�iQ`c�Cg�|1|cg�¿
^�`h|cb�t�`hg��p{ÁyX�ueCg�^+»ÄgQ� q_�Yß9yX\K��èZ¾����9\�bu\Z`cg�|hg�^a`cbu\Cq1oC|hiQ°_�dg�n
bu^1y�ÝZeCg�^a`cbuiQ\²iXj�yXoCo_|ci®ÓfbunpyQ°Cbu�dbd`�~Qv¦bH� gR�pyQ\ég�Ó�b�^a`cg�\Kt3gpiXj
oKiR�d~�\CiRn�b�yX�d¿H`cbun�gºyX�uqQiQ|hbd`c�Cn¼t3iQ\K^�`h|ce_t3`cbu\Cq4^ciQ�uef`cbuiQ\_^l°Kg�¿
bd\Cq�\CiQ`ÂjÛyX|ÂjÄ|hiQn `c�_g�iQof`hbdn�eCn iQ\_g�¶�bd`c�ú|hg�^coKg�t�`Â`ci�y
^aeCbd`hyQ°C�u~&t}�CiZ^ag�\siQoC`cbunpyQ�dbd`�~&t�|cbd`cg�|cbuiQ\:�

¨U�W�p� Ö Ø2ÚÞ�
[]\&`h�Cg1jÄiR�d�uiÁ¶�bd\_q_v�`c�_g1iQ|hbdqRbd\_yQ�¦jÄiQ|hn�eC��yÁ`hbdiR\&iQj�`h�Cg�r�bun�¿
oC�dbd¹_g��üw�yQ|a`hbuyQ�Y³ºbdqRg�^a`�wl|hiQ°C�ug�n ¶�bd`c�CiRef`�g�|h|ciR|h^�bd\5bd\C¿
^�`}yX\_t�g�^�v�jÄ|ciRn!�m��yXx�g�¶�b�t3xúÊ3õ4óÁ÷µ´ »HåXæQæ_ß�¾3v2b�^�oC|hg�^cg�\Z`cg����
ÞMg1\Cg�g���^ciQnpg1yQ�C�fbd`cbuiQ\KyX�A�fg�¹_\Cbd`cbuiQ\_^��
ª ¥«9�¬ Ä Å�¬ � Å�ÆµÆµÆgÅ)¬ � � >�¸ n�eC�d`cb�^cg3`!¦6^ciQ|c`cg��Tbu\ \CiR\f¿
�fg�t�|cg�yQ^cbd\_q�iR|h�fg�|�v

l�¥+¬ � D�¬ � � ��� Ì Ä vYjÄiR|�yX\�~\!1¸ `c�Cg)�ug�\_qX`c��iQjº`h�Cg
yX\_yQ�d~�x�g���^�`h|hyQ\_��v

­r�U¥®9�¬¯��Å)¬ � � ��� Ì Äo>�v0!�¥;ß]ÆgÆ åÁÈµ¸ yQ\²iR|h�Cg�|hg��Mo_yXbu|1iXj
t3iRn�o_�dg�n�g�\Z`hyX|h~újÄ|}yXqQnpg�\R`}^&»Ûb½� gQ�5^ae_n�npbu\CqúeCoµ`hi
lm¾3vC¶��Cg�|hg]¬¯��b�^9t�yQ�d�ug��s`c�Cg1o_|cg��fg�t�g�^h^aiR|�v

° ¥ Á�± Ä Å�± � Å�ÆµÆgÆµÅ�± � Ç ¸ yp^ag�`9iXj�iR|h�Cg�|hg���oKyXbu|h^�vf¶��Cg�|hg
± � ¥�­ � iQ|4± � ¥�­ � � �t� Ì Ä v�!�¥ùß�ÆµÆ È�v

² ¥³9�x�Ä�Å)x � Å-ÆgÆµÆgÅ)x � >�¸ `h�Cg��db�^�`ÂiXjlo_|cg��fg�t�g�^h^aiR|h^9jÄ|ciRn
g�{Rg�|h~(± � v�!3¥Òß�ÆµÆ È�vX^ciQ|c`cg��4bu\�\CiR\f¿]�fg�t�|cg�yQ^cbd\CqºiQ|}�fg�|�v

´ ¥ Á�µ�Ä�Å<µ � Å�ÆµÆµÆgÅ�µ ��Ì Ä Ç ¸ y�n�eC�d`cb�^cg3`+�fg�|cbu{Qg���jÄ|hiQn ²
yQt�t3iQ|}�fbu\CqM`ci²`c�Cg�jÄiR�d�uiÁ¶�bu\CqM|heC�ugQ�dµ Ä ¥¶x Ä veµ � ¥
x �"k x ���5Ä v�!�¥ å0ÆgÆ È�v�µ ��Ì Ä ¥�l k x � �
´9iÁ¶1vC`c�Cg1oC|hiQ°_�dg�n bu^��
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Abstract

We consider the following clustering problems: given
a general undirected graph, partition its vertices into
disjoint clusters such that each cluster forms a clique
and the number of edges within the clusters is max-
imized (Max-ECP), or the number of edges between
clusters is minimized (Min-ECP). These problems
arise naturally in the DNA clone classification. We
investigate the hardness of finding such partitions and
provide approximation algorithms. Further, we show
that greedy strategies yield constant factor approxi-
mations for graph classes for which maximum cliques
can be found efficiently.

Keywords: Approximation algorithms, clique parti-
tion

1 Introduction

The correlation clustering problem has gained a lot of
attention recently (Ailon, Charikar & Newman 2005,
Bansal, Blum & Chawla 2004, Charikar, Guruswami
& Wirth 2003, Demaine & Immorlica 2003, Emanuel
& Fiat 2003, Swamy 2004); given a complete graph
with edges labeled “+”(similar) or “−”(dissimilar),
find a partition of the vertices into clusters that agrees
as much as possible with the edge labels, i.e., that
maximizes the agreements (the number of “+” edges
inside clusters plus the number of “−” edges be-
tween cluster) or that minimizes the disagreements
(the number of “−” edges inside clusters plus the
number of “+” edges between clusters).

In this paper, we consider a special variant of the
correlation clustering problem in which there are no
negative edge labels. Instead, we omit an edge be-
tween two vertices of a dissimilar pair. Furthermore,
we require an edge between each pair of vertices in
a cluster, i.e, every cluster must form a clique. We
consider the following two combinatorial optimization
problems. The maximum edge clique partition prob-
lem (Max-ECP for short) aims to find a partition of
the vertices into cliques such that the total number
of edges within all cliques is maximized. The related
minimization version of this problem, the minimum
edge clique partition problem (Min-ECP for short), is
defined analogously with the exception that the total
number of edges between the cliques is minimized.

The Max-ECP and Min-ECP problems first have
been considered in the setting of DNA clone classi-

Copyright c©2006, Australian Computer Society, Inc. This pa-
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sium (CATS2006), Hobart, Australia. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 51.
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academic, not-for profit purposes permitted provided this text
is included.

fication (Figueroa, Goldstein, Jiang, Kurowski, Lin-
gas & Persson 2005). In order to characterize
cDNA and ribosomal DNA (rDNA) gene libraries,
the powerful DNA array based method oligonu-
cleotide fingerprinting is commonly used (see, e.g.,
(Drmanac, Stavropoulos, Labat, Vonau, Hauser,
Soares & Drmanac 1996, Herwig, Poustka, Müller,
Bull, Lehrach & O’Brien 1999, Valinsky, Della Ve-
dova, Jiang & Borneman 2002, Valinsky, Della
Vedova, Scupham, Alvey, Figueroa, Yin, Hartin,
Chrobak, Crowley, Jiang & Borneman 2002)). A
key step in this method is the cluster analysis, which
aims to cluster together similar data, i.e., the finger-
prints. The problem of clustering binarized finger-
print data such that the number of clusters is mini-
mized was first studied and motivated in (Figueroa,
Borneman & Jiang 2004). In (Figueroa, Goldstein,
Jiang, Kurowski, Lingas & Persson 2005), Figueroa
et al. propose new approaches of partitioning bi-
narized fingerprints into disjoint clusters in order to
maximize the number of pairs of similar fingerprints
lying inside the clusters (equivalently, minimize the
number of pairs of similar fingerprints lying in differ-
ent clusters). These problems can hence be viewed
as the Max-ECP and Min-ECP problems where the
vertices are the binarized fingerprints and the edges
between them indicate their similarity.

Related results

The well studied correlation clustering problem was
first introduced for complete graphs by Bansal
et al. (Bansal, Blum & Chawla 2004). It has ap-
plications in many areas (see, e.g., (Bansal, Blum
& Chawla 2004, Demaine & Immorlica 2003)). As
noted in (Bansal, Blum & Chawla 2004), the prob-
lem of maximizing agreements and minimizing dis-
agreements are equivalent at optimality but differ
from the point of view of approximation. In (Bansal,
Blum & Chawla 2004), it was established that these
problems are NP-hard for complete graphs, and a
PTAS was given in the case of maximizing agree-
ments, whereas a constant factor approximation is
given in the case of minimizing disagreements. This
constant factor approximation was later improved by
Charikar et al. (Charikar, Guruswami & Wirth 2003)
where a factor 4 approximation algorithm is given
for complete graphs based on linear programming re-
laxation. The latter problem was also proved to be
APX-hard.

The problems of maximizing agreements and min-
imizing disagreements were later generalized to in-
clude non-necessarily complete graphs with edge
weights in (Charikar, Guruswami & Wirth 2003). A
factor 0.7664 approximation algorithm based on the
rounding of a semidefinite programming relaxation
for the problem of maximizing agreements for general
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weighted graphs was given in (Charikar, Guruswami
& Wirth 2003), but this factor was later improved to
0.7666 by Swamy (Swamy 2004). As for the prob-
lem of minimizing disagreements, a factor O(log n)
approximation algorithm for general weighted graphs
was proposed (independently) in (Charikar, Gu-
ruswami & Wirth 2003),(Demaine & Immorlica
2003), and (Emanuel & Fiat 2003). Recently, Ailon
et al. (Ailon, Charikar & Newman 2005) have pro-
vided a randomized expected 3-approximation algo-
rithm for minimizing disagreements. In the case of
weighted complete graphs, which satisfies probability
constraints (w+

ij
+ w−

ij
= 1 for edge (i, j)) and trian-

gle inequality constraints (w−

ik
≤ w−

ij
+ w−

jk
) on the

edges, they have provided a factor 2 approximation
algorithm.

The APX-hardness of the unweighted version
of Min-ECP has been established by Shamir et
al. (Shamir, Sharan & Tsur 2002). They have also
presented results in the case when a solution must
contain exactly p clusters; Min-ECP is solvable in
polynomial time for p = 2 but NP-complete for p > 2.

Our results

In this paper, we investigate the approximability of
Max-ECP and Min-ECP. Specifically, we prove that
Max-ECP on general, undirected graphs is hard to
approximate within a factor of n1−o(1), unless NP ⊆

ZPTIME(2(log n)O(1)
). On the other hand, we give

an n-approximation algorithm running in polynomial
time for this problem. In the case of Min-ECP we pro-
vide a polynomial-time O(log n)-approximation algo-
rithm for this problem on general, undirected graphs
with non-negative weights. We also prove that this
problem is NP-hard to approximate within 1+ 1

880 −ǫ,
for any ǫ > 0. We further consider the greedy heuris-
tic and show that it yields a 2-approximation for
both Max-ECP and Min-ECP, under the assumption
that the largest clique can be determined in polyno-
mial time. Thus, the greedy method could be ap-
plied in practice only to graph classes for which max-
imum cliques can be found efficiently, for instance
chordal graphs, line graphs and circular-arc graphs
(cf. (Figueroa, Borneman & Jiang 2004)). We also
note that these bounds are actually tight. Figure 1
summarizes our contributions.

Problem Lower Bound Upper Bound
Max-ECP n1−o(1) n

weightedMin-ECP 1 + 1
880 − ǫ O(log n)

GreedyMax-ECP 2 2
GreedyMin-ECP 2 2

Figure 1: Summary of results.

Our paper is structured as follows. We give more
formal definitions of Max-ECP and Min-ECP in Sec-
tion 2. In Section 3, we provide a factor n approxi-
mation algorithm for Max-ECP. In Section 4, we give
a lower bound on approximability of Max-ECP. In
Section 5, we provide a polynomial-time O(log n)-
approximation algorithm for the weighted version of
Min-ECP and in section 6, we derive a lower bound
on approximability of Min-ECP. Finally, in Section 7,
we consider the greedy algorithm for Max-ECP and
Min-ECP and prove that it yields a 2-approximation.

2 Preliminaries

The formal definition of Max-ECP and Min-ECP is
as follows.

Definition 1 Let G = (V, E) be an undirected graph
and let n = |V |. The problem of maximum edge clique
partition (Max-ECP for short) is to find a partition
of V into disjoint subsets V1, ..., Vk such that for each
1 ≤ i ≤ k, any two vertices in Vi share an edge and
the total number of edges within the subsets V1, ..., Vk

is maximized.
The problem of minimum edge clique partition

(Min-ECP for short) is defined analogously to Max-
ECP with the exception that the total number of
edges between the subsets V1, ..., Vk is minimized.

Note that an exact solution to Max-ECP is an ex-
act solution to Min-ECP and vice versa. The ex-
ample shown in Figure 2 demonstrates two feasible
solutions to Max-ECP and Min-ECP. As depicted in
Figure 2(a), the total number of edges inside the clus-
ters is 18, hence the solution to Max-ECP has a to-
tal cost of 18. On the contrary, the total number of
edges outside the clusters in Figure 2(a) is 12, hence
the solution to Min-ECP has a total cost of 12. The
optimal clustering is depicted in Figure 2(b), with the
total cost of 24 for Max-ECP and the total cost of 6
for Min-ECP.

(a) (b)

Figure 2: A feasible solution and the optimal solution
to Max-ECP and Min-ECP.

3 A polynomial-time n-approximation algo-
rithm for Max-ECP

Max-ECP is NP-hard and even hard to approximate
within a factor n1−O(1/(log n)γ), for some constant
γ, as proved in the next section. On the positive
side, we prove in this section that Max-ECP admits
a polynomial-time, factor k approximation algorithm,
where k is the number of vertices in the largest clique.
The approximation algorithm works as follows: Find
a maximum matching in G and output it and the
singletons containing the vertices not covered by the
matching as a clique partition.

Theorem 1 Let k be the number of vertices in the
largest clique in G. Max-ECP can be approximated
within a factor of k in polynomial time.

Proof: Denote by OPT(G) and APPR(G) the total
number of edges within cliques in an optimal solu-
tion for Max-ECP on G and in the solution returned
by the approximation algorithm described above, re-
spectively. Let (V1, V2, . . . , Vm) be an optimal solu-
tion for Max-ECP on G. There is a matching in G

which, for i = 1, ..., m, includes at least |Vi|−1
2 edges

from the clique induced by Vi. Since for i = 1, ..., m,
k ≥ |Vi|, such a matching includes at least the 1

k

fraction of edges from each of the m cliques induced
by V1, V2, . . . , Vm. Hence, APPR(G) ≥ OPT(G) /k
holds.
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4 A lower bound on the approximability of
Max-ECP

The maximum clique problem is known to not ad-
mit an approximation within n1−O(1/(log n)γ) for some
constant γ unless NP ⊆ ZPTIME(2(log n)O(1)

) (Khot
2001). It follows that aforementioned lower bound on
approximability holds for graphs on n vertices hav-
ing a clique of size m not less than n1−x, where
x = O(1/(log n)γ). Consider such a graph G. An
optimal solution to Max-ECP for G has at least

(
m

2

)

edges. Hence, an n1−3x approximation to Max-ECP
for G has at least m(m − 1)/(2n1−3x) edges. The
size of maximum clique in the approximate solution
to Max-ECP is minimized if all cliques have equal size
h. In this case the total number of edges in the ap-
proximate solution is

(
h

2

)
n/h which is less than nh/2.

Hence, we obtain the inequality m(m−1)/(2n1−3x) ≤
nh/2 which by our assumptions on G and m yields
h = Ω(nx). This implies n1−x approximation of
the maximum clique problem in G which contradicts
(Khot 2001). Thus, we obtain the following theorem.

Theorem 2 Unless NP ⊆ ZPTIME(2(log n)O(1)
), the

Max-ECP problem does not admit an n1−O(1/(log n)γ)

approximation, for some constant γ.

5 A polynomial-time O(log n)-approximation
algorithm for weighted Min-ECP

Min-ECP can be approximated within a factor of
O(log n) in polynomial time, even for edge-weighted
graphs with arbitrary non-negative weights, as fol-
lows.

Let G = (V, E) be a given instance of Min-ECP in
which each edge e has a non-negative weight w(e).
Define W = maxe∈E w(e). Construct an edge-
weighted, edge-labeled, complete graph G′ = (V, E′),
where each e ∈ E′ is labeled by ′+′ and assigned
weight w(e) if e ∈ E, or labeled by ′−′ and as-
signed weight W · n2 log2 n if e 6∈ E. Run any one
of the polynomial-time O(log n)-approximation algo-
rithms for Minimum Disagreement Correlation Clus-
tering for weighted graphs (Charikar, Guruswami &
Wirth 2003, Demaine & Immorlica 2003, Emanuel &
Fiat 2003) on G′ to obtain a clustering C′ for V , and
return the set S of subgraphs of G induced by C′.

Lemma 1 For any two vertices u, v ∈ V which are
not joined by an edge in G, u and v do not belong to
the same cluster in C′.

Proof: Suppose u and v belong to the same cluster
in C′. Then the clustering obtained from C′ by placing
u in a singleton cluster would have a disagreement
score lower than that of C′ by a factor of ω(log n),
which is a contradiction.

By Lemma 1, the vertices from each cluster in C′

form a clique in G. Since the clusters in C′ are disjoint,
S is a partition of G into cliques, which proves the
correctness of the method.

Next, we consider the approximation ratio. For
any partition M of G into cliques, denote by
ECP (M) the ECP score for M , i.e., the sum of all
weights of edges whose two endpoints belong to dif-
ferent cliques in M . Similarly, for any clustering M ′

of G′, let Disagree(M ′) be the disagreement corre-
lation clustering score for M ′. Finally, MinECP (G)
and MinDisagree(G′) denote the minimum possible
scores of ECP for G and Disagree for G’, respec-
tively.

Lemma 2 ECP (S) is at most O(log n) times
MinECP (G).

Proof: Let M be a partition of G into cliques which
minimizes ECP , and let M ′ be the clustering of G′

induced by the cliques in M . Then, since only edges
labeled by ′+′ contribute to Disagree(M ′), we ob-
tain MinECP (G) = ECP (M) = Disagree(M ′) ≥
MinDisagree(G′).

Next, observe that ECP (S) is equal to
Disagree(C′) because only edges labeled by ′+′

contribute to Disagree(C′) by Lemma 1. More-
over, Disagree(C′) is at most O(log n) times
MinDisagree(G′). It follows that ECP (S) is at
most O(log n) times MinECP (G).

To summarize:

Theorem 3 Weighted Min-ECP can be approxi-
mated within a factor of O(log n) in polynomial time.

6 A lower bound for Min-ECP

Shamir et al. have established the APX-hardness of
unweighted Min-ECP by a reduction from a special
variant of set cover in (Shamir, Sharan & Tsur 2002).
It folllows by (Shamir, Sharan & Tsur 2002) that the
Min-ECP problem cannot have a polynomial-time ap-
proximation scheme unless P=NP. However, no ex-
plicit lower bound on the approximation factor for
Min-ECP achievable in polynomial time is known in
the literature.

In this section, we present a new reduction from
the so called three way cut problem to the weighted
Min-ECP problem which yields an explicit lower
bound on the approximation factor.

The problem of three way cut (3WC) is to find a
minimum number of edges whose removal disconnects
three distinguished vertices.

Let A and B be two optimization problems (max-
imization or minimization). A linearly reduces to B
if there are two polynomial time algorithms h and g,
and constants α, β > 0 such that

1. For an instance a of A, algorithm h produces an
instance b = h(a) of B such that the cost of an
optimal solution for b, opt(b), is at most α·opt(a),
and

2. For a, b = h(a), and any solution y of b, al-
gorithm g produces a solution x of a such that
|cost(x) − opt(a)| ≤ β|cost(y) − opt(b)|.

By (Dahlhaus, Johnson, Papadimitriou, Seymour
& Yannakakis 1994), if A linearly reduces to B and B
has a polynomial-time 1+ ǫ approximation algorithm
then A has a polynomial-time (1 + αβǫ) approxima-
tion algorithm.

Max-Cut is the problem of finding, for an undi-
rected graph with vertex set V , a partition V1, V2 of V
such that the number of edges {u, v} where {u, v}∩V1
and {u, v} ∩ V2 are both nonempty is maximized.

In (Dahlhaus, Johnson, Papadimitriou, Seymour
& Yannakakis 1994), Dahlhaus et al. presented a
linear reduction of the Max-Cut problem to 3WC in
order to prove that 3WC is APX-hard. Since Max-
Cut is APX-hard (H̊astad 2001), the APX-hardness of
3WC follows. In the aforementioned reduction α = 56
and β = 1 (Dahlhaus, Johnson, Papadimitriou, Sey-
mour & Yannakakis 1994). In fact, α can be decreased
to 55 by the proof of Theorem 5 in (Dahlhaus, John-
son, Papadimitriou, Seymour & Yannakakis 1994)1.

1In the proof of Theorem 5 in (Dahlhaus, Johnson,
Papadimitriou, Seymour & Yannakakis 1994), observe that

OPT3W C(f(G)) = 56 ·

|E|

2 − K ≤ 56 · OPTMax−Cut(G) −

OPTMax−Cut(G) = 55 · OPTMax−Cut(G)
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On the other hand, H̊astad has shown that for any
ǫ > 0, it is NP-hard to approximate Max-Cut within
1 + 1

16 − ǫ (H̊astad 2001). Hence, we obtain the fol-
lowing lemma.

Lemma 3 For any ǫ > 0, it is NP-hard to approxi-
mate 3WC within 1 + 1

880 − ǫ.

To reduce 3WC to weighted Min-ECP, fix an arbi-
trary δ > 0, and transform any given instance of 3WC
on n vertices to an instance of Min-ECP as follows:

1. Assign the weight 1 to each edge in the instance.

2. For each non-adjacent pair u, v of vertices in the
instance insert an edge of weight δ/n2.

3. For each distinguished vertex si, i = 1, 2, 3, add
an auxiliary vertex ui and make it adjacent with
each vertex of the instance. Assign the weight n2

to each of the three edges (si, ui) and the weight
δ/n2 to the remaining edges incident to the ver-
tices ui, i = 1, 2, 3.

Figure 3 demonstrates how the transformation
from an instance of 3WC to an instance of Min-ECP
works.

1

1 1 1
s3

u u3

n2
n2 n

1s

1u

2

2

s2

Figure 3: Transformation from 3WC to Min-ECP.

In this figure, note that a dashed line between a
pair of vertices indicates an edge with weight δ/n2.

Note that in an optimal Min-ECP solution to
the transformed instance each of the pairs si, ui,
i = 1, 2, 3 belongs to a separate clique and the to-
tal weight of the edges outside all the cliques in the
optimal solution is between cut and cut + δ where
cut stands for the value of an optimal solution to the
instance of 3WC.

Suppose that for some ǫ > 0, weighted Min-ECP
could be approximated in polynomial time within
a factor of f where f ≤ 1 + 1

880 − ǫ. Then us-
ing the set of edges between the three cliques in an
approximate solution for weighted Min-ECP as an
approximate solution for 3WC would yield a three-
way cut for the original graph of cardinality at most
f · (cut + δ) ≤ (f + f · δ) · cut. By setting δ =

ǫ

2·(1+ 1
880−ǫ)

, we could approximate 3WC in polyno-

mial time within 1 + 1
880 − ǫ/2. We obtain a contra-

diction with Lemma 3. Hence, we obtain the following
theorem.

Theorem 4 For any ǫ > 0, it is NP-hard to approx-
imate weighted Min-ECP within 1 + 1

880 − ǫ.

7 Greedy method for Max-ECP and Min-

ECP

The greedy strategy applies naturally to the Max-
ECP and Min-ECP problems: iteratively pick the

largest clique until all elements have been partitioned
into disjoint clusters. However, the problem of find-
ing a maximum clique is itself known to be extremely
hard to approximate (Khot 2001). Thus, the greedy
method could be applied in practice only to graph
classes for which maximum cliques can be found effi-
ciently (cf. (Figueroa, Borneman & Jiang 2004)).
Theorem 5 The greedy method yields a 2-
approximation for Max-ECP and Min-ECP.

Proof: Consider an optimal solution to the Max-ECP
problem (or, the Min-ECP problem, respectively) and
let us assume that it consists of m cliques. Let C be
the largest clique, say on k vertices, picked by the
greedy method. Suppose first that the intersection of
C with any clique in the optimal partition is a single-
ton or empty. Thus, in a way, the at most k(k − 1)
former clique edges are replaced with the k(k − 1)/2
edges in C (or, the k(k − 1)/2 edges in C previously
outside the cliques with at most k(k − 1) new edges
outside the cliques, respectively). In the remaining
case, if the intersection of C with any of the cliques
in the optimal partition contains more than one ver-
tex, less than k(k−1) former clique edges are replaced
by the k(k−1)/2 edges in C (or, the k(k−1)/2 edges
in C previously outside the cliques are replaced by
less than k(k − 1) new edges outside the cliques, re-
spectively). By iterating the argument, we obtain the
theorem.

The example shown in Figure 4 demonstrates that
our upper bound on the approximation factor of the
greedy method for Max-ECP is tight. Simply, the
greedy method may produce n 2-cliques and 2n 1-
cliques (singletons) yielding n edges whereas the op-
timal clique partition consists of 2n 2-cliques yielding
2n edges.

Figure 4 is also a tight example for greedy Min-
ECP. Note that the number of edges between cliques
will be 2n in the approximate solution, whereas the
optimum contains n edges between the 2n 2-cliques.

21 n

. . .

Figure 4: An example illustrating the worst-case per-
formance of the greedy strategy for Max-ECP and
Min-ECP.

8 Final remarks

By using rather maximum weight matching than
maximum cardinality matching we can easily gener-
alize our n-approximation method for Max-ECP to
include edge weights.

It is an interesting open problem whether or not
the gap between the upper and lower bounds on ap-
proximability of Min-ECP could be tightened.

A careful reader might observe that our approx-
imation hardness result for Max-ECP does not hold
for the graph classes for which our greedy method
could be applied practically. The complexity and ap-
proximation status of Max-ECP and Min-ECP for
the aforementioned graph classes are interesting open
problems.
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Abstract

The missing pattern pair problem, introduced in
(Inenaga, Kivioja & Mäkinen 2004), was motivated
by the need for optimization in Polymerase Chain Re-
action, a technique commonly used in bioinformatics.
The problem is to find a pair of patterns of the short-
est total length within a string of length n, where
the two patterns do not occur within a distance α
anywhere in the string. Inenaga et al. (Inenaga
et al. 2004) gave an algorithm with time complexity
O(min{αn log n, n2}) to solve this problem. In this
paper we propose an algorithm of time complexity
O(min{αn log n, n3/2}), improving on the quadratic
bound part of the earlier algorithm. We also design
a simple algorithm of time complexity O(n

2

α
log2 n),

which is O(n log2 n) if α = Θ(n).

Keywords: pattern discovery, complexity, algorithm.

1 Introduction

Pattern discovery problems are among the most in-
tensively studied problems in bioinformatics (Wang,
Shapiro & Shasha 1999). An example of such prob-
lems is that of finding a pattern which does not ap-
pear in a given string — this is known as the missing
pattern problem. This problem can be solved in time
O(n) where n is the length of the given string.

Inenaga et al. (Inenaga et al. 2004) introduced
the problem called missing pattern pair (MPP) prob-
lem, where we are to find a pair of patterns of the
shortest total length which do not appear in a given
string S within a predefined distance α. An algo-
rithm of time complexity O(min{αn log n, n2}) was
given in (Inenaga et al. 2004). The problem has prac-
tical use in optimizing the sensitivity of Polymerase
Chain Reaction methods — a standard technique for
producing many copies of a region of DNA. In this
paper we give an algorithm of O(min{αn log n, n3/2})
runtime, which should improve performance for the
cases where α is large.

In the following subsection, a brief review of the bi-
ological motivation of this problem is presented, for a
detailed version, please refer to (Inenaga et al. 2004).

1.1 Biological Motivations

Polymerase Chain Reaction (PCR) is used routinely
to producing multiple copies of a sub sequence of

Copyright copyright 2006, Australian Computer Society, Inc.
This paper appeared at Computing: The Australasian The-
ory Symposium (CATS2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 51. Barry Jay and Joachim Gudmundsson, Eds. Repro-
duction for academic, not-for profit purposes permitted pro-
vided this text is included.

DNA. Primers in PCR refer a pair of short sequence.
The two primers hybridize to their binding side of
a target sequence, and this flanking the target se-
quence and makes the duplication of the flanked area
possible. One of the problem is that the primers can
bind to other sites rather than the targeting sites,
and result in incorrect flanking. In order to overcome
this problem, Adapter primers is designed. For spe-
cific primers, adapter primes bind short sequence to
them. It is argued in (Inenaga et al. 2004) that the
PCR process will be facilitated by identifying a short-
est missing pair as the adapter primers.

This paper is organized as follows: in Section 2 we
give the definitions and problem reviews. In Section 3
we propose a new method for solving the missing pat-
tern problem in time O(n), then we present how the
method can be extended to solve the missing pattern
pair problem in time O(min{αn log n, n3/2}) in Sec-
tion 4. In Section 5, an approach with running time
O(n

2

α
log2 n) is proposed, which has a complexity of

O(n log2 n) when α = Θ(n). Section 6 concludes this
paper.

2 Preliminaries

We try to follow as much as possible notations from
other literature. The symbol N denotes the set of
natural numbers. The symbol N+ denotes the set of
positive natural numbers.

Let Σ be a finite alphabet of size σ (σ is assumed
to be a constant in (Inenaga et al. 2004) and in this
paper 1). A word or a pattern is a string of symbols
over Σ, where the latter is more typically used to refer
to a substring of some (longer) word. The length of
a word S is denoted as |S|. The character at position
i of a string S is written S[i] (the starting position
being 0); while the substring of S from position i to
position j (i ≤ j) is written as S[i : j].

A pattern P of length k is said to occur at position
j of a string S if and only if j + k − 1 < n and
P = S[j : j + k − 1]. The set of all the positions that
a pattern P occurs in a string S is denoted Occ(P, S).
For example, Occ(AA,“AAATGCTAA”) = {0, 1, 7}.
A pattern P is a single missing pattern (SMP) w.r.t
a string S over Σif it does not occur at any position
of S, that is Occ(P, S) = ∅.

2.1 Sequence of k-mers

A k-mer is a word of length k. For any k ∈ N+, we let
Σ=k denote the set of all the words over Σ of length
k, that is, all the k-mers.

Given a string S and k ∈ N+, we can con-
struct a sequence of |S| − k + 1 k-mers by the po-
sitions which they occur, namely, S[0 : k − 1], S[1 :

1Σ is assumed to be {A, C, G, T} in the original application of
missing pattern.
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k], . . . , S[n − k, n − 1] (k-mers in the sequence may
not be distinct). For any string S and k ∈ N+, we
let SEQk

S
denote this corresponding sequence of k-

mers. The i-th k-mer in the sequence SEQk

S
is writ-

ten SEQk

S
[i] (the first k-mer being SEQk

S
[0]). The

subsequence of SEQk

S
from position i to j is written

as SEQk

S
[i : j].

We let each character in Σ be represented by a
number from 0 to σ − 1. Each k-mer, say s, can then
be written as a string of numbers i0i1 . . . ik−1 where
each number ij in the string has a value from 0 to
σ − 1 which represents the character at s[j]. For ex-
ample, the 8-mer “AAATATGG” may be written as
“00020211” (or simply 20211), where 0 represents A,
1 represents G, and 2 represents T . In this way, for
any fixed k, there is a 1–1 mapping from Σ=k to the
natural numbers from 0 to σk−1. This representation
of k-mers is useful as indices to arrays or lookup ta-
bles. This coding is simplified version of the hashing
idea from (Karp & Rabin 1987), here we use a 1–1
mapping, as σ is assumed to be a constant.

Unless stated otherwise, for any k ∈ N+ and string
S, we assume members in Σ=k and SEQk

S
to be of

this natural number form. Assuming that k is small
(k ≤ logσ n + 1, the same assumption is made in
(Inenaga et al. 2004) and a suffix tree is used, in which
each integer has O(log n) bits), each k-mer v ∈ Σ=k

uses only O(1) space. We shall now show that given
any S and k, the computation of SEQk

S
in such a

representation can be performed very efficiently.
Given any S and k, we first compute SEQk

S
[0],

then for any i > 0, SEQk

S
[i] can be computed with

the value of the k-mer at position i−1 by the formula:

SEQk

S
[i] = σ(SEQk

S
[i − 1] − ⌊

SEQk

S
[i − 1]

σk−1
⌋σk−1)

+ S[i + k − 1]

Thus we have the following result.

Lemma 1 For any string S and k ∈ N+, SEQk

S
can

be computed in O(|S|) time.

Similarly, SEQk−1
S

can be efficiently computed
from SEQk

S
, by the following.

SEQk−1
S

[i − 1] = ⌊SEQk

S
[i − 1]/σ⌋ (1)

We let content(SEQk

S
[i : j]) denote the set of

all k-mers which appears in the subsequence of k-
mers SEQk

S
[i : j]. For simplicity, content(SEQk

S
[0 :

|SEQk

S
| − 1]) is written as content(SEQk

S
). Let

SEQk

S
(i, d) = SEQk

S
[A : B] where A = max{0, i −

d + 1} and B = min{|S| − 1, i + d − 1}. Intuitively,
SEQk

S
(i, d) are the k-mers of up to a distance d from

the position i. content(SEQk

S
(i, d)) are the distinct

k-mers of up to a distance d from the position i.

Lemma 2 v ∈ content(SEQk−1
S

) if and only if there

exists v′ ∈ content(SEQk

S
) such that v = ⌊v′/δ⌋, or

v = SEQk−1
S

[|S| − k + 1].

Lemma 2 and Equation 1 together show that
content(SEQk−1

S
) can be computed completely from

content(SEQk

S
) in time O(|content(SEQk

S
)|).

3 Shortest Missing Pattern Problem

The shortest missing pattern problem, proposed
in (Inenaga et al. 2004), is to find the shortest sin-
gle missing pattern (SMP) w.r.t. a given string S.
(Inenaga et al. 2004) has proposed a solution based
on suffix trees which runs in time O(|S|) and space
O(|S|). It is well known that the suffix tree has a large
overhead and is difficult to implement. We propose
an alternative here which uses the same order of time
and space, but finds all the shortest SMPs w.r.t. to a
string S and easy to implement. Below we reproduce
a Lemma from (Inenaga et al. 2004) which we need
to show our result.

Lemma 3 For any string S, there exists an SMP of
length ⌈logσ(|S| + 1)⌉ w.r.t. S.

Proof: For any k, there are a total of σk possible
k-mers (that is, |Σ=k| = σk). A string S, on the
other hand, has at most distinct |S| − k + 1 k-mers.
If σk > |S| − k + 1, then there is a k-mer which does
not occur in S. Hence for any k ≥ ⌈logσ(|S| + 1)⌉,
there exists a k-mer which does not occur in S.

Below we list the algorithm which finds the short-
est SMPs. The algorithm conducts an exhaustive
search of all the k-mers, with decreasing values of
k, beginning from ⌈logσ(|S| + 1)⌉. The output is a
number k of the shortest length of the missing pat-
terns, and an array of bits B where for each v ∈ Σ=k,
B[v] = 1 if and only if v is a SMP.

Algorithm 1: Find all shortest SMPs
1. Let l = ⌈logσ(|S| + 1)⌉.
2. Compute content(SEQl

S
).

3. For k = l to 1,
4. Allocate an array B of σk bits,

initializing each bit to 0.
5. For each v ∈ content(SEQk

S
), set B[v] to 1.

6. (Note that elements in content(SEQk

S
)

range from 0 to σk − 1.)
7. If all the bits in B are set to 1

(in which case there is no
missing pattern of length k or below),

8. output k + 1 and B′

(i.e. SMPs found in the previous iteration).
(Note: by Lemma 3 there is
at least one SMP at iteration k = l.)

9. Let B′ = B, and compute
content(SEQk−1

S
) from content(SEQk

S
) (using

Equation 1 and Lemma 2).
10. End

Since content(SEQk−1
S

), B and B′ are of size σk for
the k-th iteration, the space requirement is O(σl) =
O(|S|). By Lemma 1, line-2 can be computed in time
O(|S|). There are a total of at most l iterations for
the loop at line-3, where each iteration takes time
O(σk). Thus the total time is O(

∑
l

k=1 σk). Since
∑

l

k=1 σk = σl +
∑

l−1
k=1 σk = σl + σ(σl−1

−1)
σ−1 ≤ 2σl, the

time complexity is O(σl) = O(|S|).

Theorem 4 Given any string S, Algorithm 1 finds
all the shortest SMP w.r.t S in O(|S|) time, using
O(|S|) space.

4 Missing Pattern Pair Problem

A missing pattern pair (MPP) P1 and P2 with thresh-
old α (written 〈P1, P2〉α) w.r.t. a string S is a pair of
patterns where:
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1. either P1 or P2 is an SMP w.r.t S; or

2. both P1 and P2 occur in S, and ∀p1 ∈ Occ(P1, S),
∀p2 ∈ Occ(P2, S), |p1 − p2| > α. That is, no
occurrences of P1 occur within a distance of α
from P2 (and vice versa).

Our aim is to find a missing pattern pair with the
shortest total length.

Missing Pattern Pair (MPP)Problem
(Inenaga et al. 2004)

Input: String S and α ∈ N+.
Output: An MPP 〈P1, P2〉α w.r.t. S with

minimal |P1| + |P2|.

An algorithm for the MMP Problem with
time complexity O(min{αn log n, n2}) was given in
(Inenaga et al. 2004).

4.1 Preliminaries

We first introduce the Dynamic Perfect Hashing data
structure which will be used in our algorithm.

The Dynamic Perfect Hashing (Dietzfelbinger,
Karlin, Mehlhorn & Der 1994) is a data structure
which manages a dictionary (a set of key-data pair)
with O(1) amortized runtime cost in the following op-
erations: insert(k), delete(k), and getdata(k), where
k is the key used in the operation. Its space require-
ment is linearly proportional to the number of ele-
ments managed. We write k ∈ H just in case k is the
key for a key-data pair in H; H[k] denotes the data
part of the key-data pair in H with key k.

4.2 Finding Missing Pattern Pair

This is our strategy for solving the MMP problem.
We first run Algorithm 1 on the input string S. If it
returns an SMP of length ℓ (note that by Lemma 3
Algorithm 1 must return some ℓ ∈ N+), we know:

1. any shortest MPP 〈P1, P2〉α must have |P1| +
|P2| ≤ ℓ.

2. for any shortest MPP 〈P1, P2〉α, if |P1|+|P2| < ℓ,
then both P1 and P2 occurs in S.

Based on the output of Algorithm 1, we then exhaus-
tively search for all MPPs 〈P1, P2〉α of total length ℓ,
ℓ − 1, . . . 1.

We first give a subroutine (Algorithm 2) that looks
for MPPs 〈P1, P2〉 where the lengths of P1 and P2 are
fixed to, say, l1 and l2 respectively. Without loss of
generality we let l1 ≥ l2. By the argument above
we assume that P1 and P2 both appear in the given
string.

The subroutine first computes the sequences of k-
mers SEQl1

S
and SEQl2

S
. It then computes, as output,

a σl1 × σl2 matrix BBl1,l2 where for all u ∈ Σ=l1 and
v ∈ Σ=l2 , BBl1,l2 [u][v] = 1 iff there exists some i,
j ∈ N such that SEQl1

S
[i] = u and SEQl2

S
[j] = v and

|i − j| ≤ α. That is, 〈u, v〉α is an MPP just in case
BBl1,l2 [u][v] = 0. For notation simplicity BBl1,l2 [u]
refers to the array entries BBl1,l2 [u][v] with 0 ≤ v ≤
σl2 − 1. When it is clear from the context, BBl1,l2 is
written as BB.

Algorithm 2: Find all MPPs 〈P1, P2〉
where |P1| = l1 and |P2| = l2

1. Compute SEQl1
S

, SEQl2
S

, content(SEQl2
S

(0, α)).
2. Allocate a σl1 × σl2 1-bit matrix BB,

initialize each bit in BB to 0.

3. Prepare dictionary H.
4 For each u ∈ content(SEQl2

S
(0, α))

5. Let H[u] be the number of occurrences of
u in SEQl2

S
(0, α).

6. For i = 0, 1, . . . , |SEQl1
S
| − 1,

7. Let u = SEQl1
S

[i],
8. For each key v ∈ H

(Note: v ∈ H ⇒ v ∈ content(SEQl2
S

(i, α)).
9. Let BB[u][v] = 1.
10. The following updates H so that

v ∈ H ⇒ v ∈ content(SEQl2
S

(i + 1, α)).
11. If i − α ≥ 0
12. Let v = SEQl2

S
[i − α].

13. Decrease H[v] by 1.
If H[v] = 0 remove v′ from H.

14. If i + α + 1 < |SEQl1
S
|

15. Let v = SEQl2
S

[i + α + 1].
16. If v 6∈ H, let H[v] = 1,

else increment H[v] by 1.

In Algorithm 2, line 1 runs in time O(|S|); while
line 2–3 takes O(|BB|) time, that is, O(σl1 · σl2) =
O(σℓ). Line 4–5 runs in O(α) time. There a total
of |S| iterations for the loop at line 6. At each itera-
tion i, H contains at most min{2α + 1, σl2} distinct
entries. Thus line 8–9 runs in O(min{2α + 1, σl2})
per iteration. Line 10–16 runs in constant time
for each iteration. Algorithm 2 hence runs in time
O(|S|min{2α + 1, σl2}).

Lemma 5 Given string S, l1, l2 ∈ N+ where l1 ≥ l2,
Algorithm 2 takes time O(min{|S|σl2 , |S|α}) to find
all the MPPs 〈P1, P2〉α w.r.t. S where |P1| = l1 and
|P2| = l2.

4.3 Identify Missing Pattern Pair with Min-
imum Length

Firstly the following lemma can be deduced:

Lemma 6 Given BBl1,l2 , BBl1,l2−1 can be computed
with time O(σl1+l2 + α).

Proof: There are two cases that BBl1,l2−1[u][v] = 1:

1. There exists v′ such that BBl1,l2 [u][v′] = 1 and
with v = ⌊v′/σ⌋

2. u ∈ content(SEQl1
S

(n − l2 + 1, α)), and v =
SEQl2−1

S
[n − l2 + 1].

Totally there are σl1+l2 entries in BBl1,l2 and we just
need to scan through all the entries of BBl1,l2 (which
takes time cost σl) and to obtain content(SEQk

S
, n−

l′ + 1, α) (which takes time O(α)) to compute
BBl1,l2−1.

With these, we are now ready to wrap everything
to obtain a better algorithm. Firstly we use the al-
gorithm for Section 3.1 to identify ℓ. Then we iter-
ate through all the possible combinations of (l1, l2)
(l1 + l2 ≤ ℓ) to obtain all the shortest MPPs.

As the two cases for (l1, l2) and (l2, l1) are sym-
metric, we just need to search the cases where l1 ≥ l2.
Denote δ(l) = min{l1, ℓ−l1}. The pseudo code is pre-
sented in Algorithm 3. For each l1, the algorithm will
search through all the possible values l2 (while avoid-
ing the symmetric cases) by using the result from
Lemma 6 to avoid recomputation. Algorithm 2 will
be employed for the combination (l1, δ(l1)) (given l1,
the largest possible value for l2 is δ(l1)).
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Algorithm 3: Find the Shortest MPPs
1. Identify the shortest missing pattern length ℓ

with Algorithm 1.
2. Compute content(SEQl

S
).

3. For l1 = ℓ − 1 to 1
4. Compute BBl1,δ(l1) with Algorithm 2.
5. For l2 = δ(l1) − 1 to 1.
6. Compute BBl1,l2 with Lemma 6
7. Record if there is a length l1 + l2

missing pattern is found.

The time cost is dominated by line 3-7 for Al-
gorithm 3. For each value of l1, line 4 takes
time O(|S|min{σδ(l1), α}), and line 5-6 takes time
O(

∑δ(l1)−1
l2=1 (σl2 + α)).

δ(l1)−1∑

l2=1

(σl2 + α) ≤ σδ(l2)
1

σ − 1
+ (δ(l1) − 1)α

= O(σδ(l1) + (δ(l1) − 1)α)

As l1 < ℓ = O(log n), which means σδ(l1) =
O(|S|), also we know that δ(l1) = O(σδ(l1)) and
α ≤ |S|. Combine all these in, we have:

|S| min{σδ(l1), α} + σδ(l1) + (δ(l1) − 1)α

= O(|S|min{σδ(l1), α} + |S| + δ(l1)α)

= O(min{|S|σδ(l1) + δ(l1)α, |S|α + δ(l1)α})

= O(|S|min{σδ(l1), α})

Thus for each iteration of the outer loop, line 4-6
takes time O(|S|min{σδ(l1), α}). Lastly, sum up the
terms over the possible l1 values, we have:

∑

l1≤ℓ

|S|min{σδ(l1), α} ≤ |S|min{
∑

l1≤ℓ

σδ(l1),
∑

l1≤ℓ

α}

≤ |S|min{
∑

l1≤ℓ

σmin{l1,ℓ−l1}, ℓα}

≤ |S|min{
∑

l1≤⌈
ℓ
2 ⌉

2σl1 , ℓα}

= O(|S|min{σ⌈
ℓ
2 ⌉, ℓα})

= O(|S|min{
√
|S|, α log n})

For the space complexity, it is clear that it is
O(|S| + △), where △ represents the output size. If
we just want to identify one shortest MPP, the space
complexity is O(|S|). Formally, the time and space
complexity are concluded in Theorem 7.

Theorem 7 The missing pattern pair problem with
a given string S of length n and a threshold α can
be solved with time complexity O(min{n3/2, nα log n})
and space complexity O(n) with Algorithm 3.

5 Faster Algorithm with Large α

It may be noticed if we can replace Algorithm 2 in
Algorithm 3 with a faster subroutine, Algorithm 3
will result in less running time. In this section, a
faster procedure for large α is presented. A simple
data structure named Range Union Tree is defined to
serve the purpose of this algorithm.

5.1 Range Union Tree

For k-mer sequence SEQk

S
, a report(i, j) query re-

ports the set of distinct elements of the subsequence
SEQk

S
[i : j], that is content(SEQk

S
[i : j]). At the

first glance, an array representation of SEQk

S
will be

good enough to handle the queries. However this ap-
proach will not be efficient when the report queries
are numerous and there are high duplications for the
elements of SEQk

S
. To serve the usage of this pa-

per, a balanced binary tree is adopted to represent
SEQk

S
. An example is illustrated in Figure 1. Each

element of SEQk

S
is assigned to a leaf node. For each

internal node v, we store an ordered list of the dis-
tinct integers contains in the leaf node of the subtree
which is rooted at v. The smallest and largest in-
dices in SEQk

S
under each subtree is also maintained

at each internal node respectively. The space usage
for this tree is O(n log n) since each level of the tree
requires space O(n). To construct the tree, time cost
O(n log n) is enough by a bottom-up manner (which
is similar as the merge sort). For a report query, it
is easy to see that we just need to union O(log n)
ordered lists, which can be accomplished with time
complexity O(σk log n), as σk is the upper bound of
result list size. This tree is referred as the Range
Union Tree (RUT) in this paper.

Figure 1: A RUT for sequence SEQk

S
=

{1, 3, 2, 4, 3, 1, 2, 3, 4, 1, 3, 2, 1, 4}.
To answer the query report(3, 9) the element between

SEQk

S
[3] to SEQk

S
[9], we just need to compute the

union of these sets associated with the shaded nodes.

5.2 An Algorithm Based on RUT

Denote SEQl

S
(Q,α) =

⋃
i∈Q

SEQl

S
(i, α). Let Ql

u
=

Occ(u,SEQl

S
). The task to compute BB[u] is essen-

tially equivalent to compute content(SEQl2
S

(Ql1
u

, α)).
SEQl2

S
(Ql1

u
, α) consists a set of disjoint intervals (an

interval here means a consecutive subsequence of in-
dices eg. 1, 2, 3, 4, 7, 8, 9 is considered as two max-
imal disjointed intervals [1, 4], [7, 9]). The set of
maximal disjointed intervals can be stored as an or-
dered list for each u and can be computed for all the
u values simultaneously with time cost of O(n) by
scanning SEQl1

S
once. An array A with size σl1 with

each entry indexed with u, 0 ≤ u ≤ σl1 − 1 may be
employed. The array entry at position u records the
last interval’s end index for u for the current scan-
ning. While scanning the l1-mer with u = SEQl1

S
[i],

by comparing max{0, i − α} with A[i], we will know
whether a new interval should be open, or the last
interval should be just extended for u.

To compute content(SEQl2
S

(Ql1
u

, α)) (we extend
the content notation to a set of intervals), the set
of intervals contained in SEQl2

S
(Ql1

u
, α) can be com-

puted first, then with the RUT , the content of each
interval can be obtained. Lastly the union of the con-
tent of the intervals can be identified. The number of
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disjointed intervals for each u is bounded by |S|/α+c
(from some constant c). For each u, we need query
the RUT at most |S|/α + c times. Each query will
cost time O(σl2 log n) and the time cost for each u,
0 ≤ u ≤ σl1 is O(|S|/ασl2 log n). Thus this approach
for computing BB will result in an method with time
complexity O(σl1 |S|/ασl2 log n)=O(n

2

α
log n).

Substitute it into Algorithm 3, we have:

Theorem 8 Based on RUT, the missing pattern
pair problem can be solved with time complexity of

O(n
2

α
log2 n)

6 Conclusion

In this paper, we proposed two deterministic algo-
rithms for the missing pattern problem and have im-
proved the bound for the MPP problem from O(n2)
to O(n3/2). Also we have demonstrated with a faster
subroutine for a MPP for given lengths, a faster al-
gorithm can be obtained under our framework.

References

Dietzfelbinger, M., Karlin, A., Mehlhorn, K. &
Der, F. M. (1994), ‘Dynamic perfect hashing:
Upper and lower bounds’, SIAM J. Comput.
23(4), 738–761.

Inenaga, S., Kivioja, T. & Mäkinen, V. (2004), Find-
ing missing patterns, in ‘WABI’, pp. 463–474.

Karp, R. M. & Rabin, M. O. (1987), ‘Efficient ran-
domized pattern-matching algorithms’, IBM J.
Res. Dev. 31(2), 249–260.

Wang, J. T.-L., Shapiro, B. A. & Shasha, D., eds
(1999), Pattern Discovery in Biomolecular Data:
Tools, Techniques and Applications, Oxford Uni-
versity Press.

Theory of Computing 2006 - Proc. Twelfth Computing: The Australasian Theory Symposium (CATS2006)

111



CRPIT Volume 51

112



On the logical Implication of

Multivalued Dependencies with Null Values

Sebastian Link†

Department of Information Systems, Information Science Research Centre
Massey University, Palmerston North, New Zealand

E-mail: S.Link@massey.ac.nz

Abstract

The implication of multivalued dependencies (MVDs)
in relational databases has originally been defined in
the context of some fixed finite universe (Fagin 1977,
Zaniolo 1976). While axiomatisability, implication
problem and many design problems have been in-
tensely studied with respect to this notion, almost
no research has been devoted towards the alternative
notion of implication in which the underlying universe
of attributes is left undetermined (Biskup 1980).

A milestone in the advancement of database sys-
tems was the permission of null values in databases.
In particular, many achievements on MVDs have been
extended to encompass incomplete information. Mul-
tivalued dependencies with null values (NMVDs) were
defined and axiomatised in (Lien 1982). The defini-
tion of NMVDs is again based on a fixed underlying
universe of attributes, and any complete set of in-
ference rules requires therefore some version of the
complementation rule.

In this paper we show that the axiomatisation
in (Lien 1982) does not reflect the fact that the
complementation rule is merely a means to achieve
database normalisation. Moreover, we provide an al-
ternative axiomatisation for NMVDs that does reflect
this property. We also suggest an alternative notion
for the implication of NMVDs in which the underly-
ing universe is left undetermined, and propose several
sound and complete sets of inference rules for this no-
tion. Moreover, a correspondence between (minimal)
axiomatisations in fixed universes that do reflect the
property of complementation and (minimal) axioma-
tisations in undetermined universes is shown.

Keywords: Database Theory, Multivalued Depen-
dency, Null Values, Implication, Axiomatisation

1 Introduction

Relational databases still form the core of most
database management systems, even after more than
three decades following their introduction in (Codd
1970). The relational model organises data into a col-
lection of relations. These structures permit the stor-
age of inconsistent data, inconsistent in the semantic
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search and Practice in Information Technology, Vol. 51. Barry
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ciety of New Zealand

sense. Since this is not acceptable additional asser-
tions, called dependencies, are formulated that every
database is compelled to obey. There are many differ-
ent classes of dependencies which can be utilised for
improving the representation of the target database.
Excellent surveys on relational dependencies can be
found in (Fagin & Vardi 1986, Thalheim 1991).

Multivalued dependencies (MVDs) (Delobel 1978,
Fagin 1977, Zaniolo 1976) are an important class of
dependencies. A relation exhibits an MVD precisely
when it is decomposable into two of its projections
without loss of information (Fagin 1977). This prop-
erty is fundamental to relational database design, in
particular 4NF (Fagin 1977), and a lot of research
has therefore been devoted to studying the behaviour
of these dependencies. Recently, extensions of mul-
tivalued dependencies have been found very useful
for various design problems in advanced data mod-
els such as the nested relational data model (Fischer,
Saxton, Thomas & Van Gucht 1985), the Entity-
Relationship model (Thalheim 2003), data models
that support nested lists (Hartmann & Link 2004)
and XML (Vincent & Liu 2003, Vincent, Liu &
Liu 2003).

It is very rare in practice that the information
in a database is complete. This observation has
led to many extensions of the relational data model
(Codd 1979, Lien 1982, Atzeni & Morfuni 1986, Lev-
ene & Loizou 1993, Levene & Loizou 1998, John-
son & Rosebrugh 2003) that can handle incomplete
information. In particular, multivalued dependen-
cies in the presence of null values (NMVDs) have
been studied in (Lien 1982). The notion of an
NMVD from (Lien 1982), as well as the original no-
tion of an MVD (Fagin 1977), is dependent on the
underlying set R of attributes. This dependence
is reflected syntactically by the R-complementation
rule which is part of the axiomatisation of NMVDs,
see (Lien 1982). The complementation rule is spe-
cial in the sense that it is the only inference rule
which is dependent on R. In the absence of null
values, this observation has led to further research
(Mendelzon 1979, Biskup 1978, Biskup 1980, Hart-
mann & Link 2006, Link 2006) on the complementa-
tion rule. In particular, Biskup introduced an alter-
native notion of semantic implication in which the un-
derlying universe is left undetermined (Biskup 1980).
In the same paper it was shown that this notion can
be captured syntactically by a sound and complete set
of inference rules, denoted by

�
0. If R

�
0 results from�

0 by adding the R-complementation rule, then R
�

0

is R-sound and R-complete for the R-implication of
MVDs. Moreover, every inference of an MVD by R

�
0

can be turned into an inference of the same MVD in
which the R-complementation rule is applied at most
once, and if it is applied, then in the last step of the
inference (R

�
0 is said to be complementary). This

indicates that the R-complementation rule simply re-
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flects a part of the decomposition process, and is not
necessarily essential for deriving valid consequences.
Interestingly, this research has not been extended to
encompass incomplete information, i.e., to NMVDs.
Since research on (N)MVDs seems to experience a
recent revival in the context of other data models
(Fischer et al. 1985, Thalheim 2003, Hartmann &
Link 2004, Vincent & Liu 2003, Vincent et al. 2003)
it seems desirable to further extend the knowledge on
(N)MVDs. An advancement of such knowledge may
simplify the quest of finding suitable and comprehen-
sible extensions of MVDs to currently popular data
models.

In this paper we will extend the alternative no-
tion of implication from MVDs (Biskup 1980) to the
presence of null values. First, it is demonstrated that
the sound and complete set R � of inference rules for
the R-implication of NMVDs from (Lien 1982) is not
complementary. Moreover, we propose a sound and
complete set R � that is indeed complementary for
the R-implication of NMVDs. Subsequently, we will
identify a sound and complete set � of inference rules
for the implication of NMVDs in undetermined uni-
verses. Thus, � does not permit the possibly seman-
tically meaningless inference of complementation. Fi-
nally, the set � is extended to obtain a sound and
complete set of inference rules for the implication of
functional and multivalued dependencies in the pres-
nce of null values in undetermined universes. The
problems studied in this paper are not just of theo-
retical interest. In practice one does not necessarily
want to generate all consequences of a given set of
NMVDs but only some of them. Such a task can be
accomplished by using incomplete sets of inference
rules. However, it is then essential to explore the
power of such incomplete sets.

The paper is structured as follows. Section 2 re-
peats fundamental notions from the relational model
of data as well as incomplete information. In particu-
lar, the notions for implication of multivalued depen-
dencies in the presence of null values are highlighted.
After the axiomatisation of NMVDs from (Lien 1982)
has been reviewed Section 3 identifies R-sound and R-
complete sets of inference rules for the R-implication
of NMVDs that are also R-complementary. Fur-
thermore, the alternative notion of implication for
NMVDs in which universes are left undetermined is
introduced, and a sound and complete set � of infer-
ence rules proposed. The result is extended to capture
both functional and multivalued dependencies in the
presence of nulls in undetermined universes. Some
general results are proposed in Section 4 which show
a correspondence between (minimal) complete sets of
inference rules in undetermined universes and (min-
imal) complete and complementary sets of inference
rules in fixed universes. Section 5 suggests some alter-
native axiomatisations for NMVDs in undetermined
universes that only require weak versions of some of
the inference rules in � . The paper concludes in Sec-
tion 6.

2 MVDs in Relational Databases

We use this section to introduce some notation, and
repeat notions and results for dependencies in the
presence of null values.

2.1 Partial Relations

Let � = {A1, A2, . . .} be a (countably) infinite set
of attributes. A relation schema is a finite set R =
{A1, . . . , An} of distinct symbols, called attributes,
which represent column names of a relation. Each

attribute Ai of a relation schema is associated an infi-
nite domain dom(Ai) which represents the set of pos-
sible values that can occur in the column named Ai.
In particular, it is assumed that every attribute may
have a null value, denoted by ν ∈ dom(Ai). It may
be noted that many kinds of null values have been
proposed; for example, “missing” or “value unknown
at present” (Codd 1975, Grant 1977, Grahne 1984),
“non-existence” (Mikinouchi 1977), “inapplicable”
(Grant 1977), “no information” (Zaniolo 1984) and
“open” (Gottlob & Zicari 1988). The intention of the
null value ν is to mean “undefined”, “inapplicable”,
or “nonexistent”. For instance, the maiden name of
a male employee may have a null value to mean in-
applicable, or the middle name of an employee may
have a null value to mean nonexistent.

If X and Y are sets of attributes, then we may
write XY for X ∪ Y . If X = {A1, . . . , Am}, then we
may write A1 · · ·Am for X . In particular, we may
write simply A to represent the singleton {A}. A tu-
ple over R = {A1, . . . , An} (R-tuple or simply tuple,

if R is understood) is a function t : R→
n⋃

i=1

dom(Ai)

with t(Ai) ∈ dom(Ai) for i = 1, . . . , n. For X ⊆ R
let t[X ] denote the restriction of the tuple t over R
on X , and dom(X) =

∏

A∈X dom(A) the Cartesian
product of the domains of attributes in X . A relation
r over R is a finite set of tuples over R. The relation
schema R is also called the domain Dom(r) of the
relation r over R. Suppose that t1, t2 are two tuples
in the relation r over R. It is said that t1 subsumes
t2 if for every attribute A ∈ R, either t1[A] = t2[A]
or t2[A] = ν holds. For the remainder of this article,
the following restriction will be imposed on the rela-
tions in a database: No relation in the database shall
contain two tuples t1 and t2 such that t1 subsumes
t2. When no null value is present, this restriction
amounts to saying that no two tuples are identical,
an explicit requirement for database relations.

In order to contrast relations with and without
null values, several terms are introduced. A relation
r over R is said to be a total relation if it contains no
null values. That is, if for any tuple t ∈ r and any
attribute A ∈ R, t[A] 6= ν. If r is not a total relation,
it is a partial relation or simply relation. For a tuple
t ∈ R and a set X ⊆ R, t is said to be X-total if for
any A ∈ X , t[A] 6= ν.

There are several operations on partial relations
that are natural generalisations of their counterparts
from total relations. These include projection and
natural join. Let r be some relation over R. Let X
be some attribute set of R. The projection of r on
X , denoted by r[X ], is a set of tuples t for which (i)
there is some t1 ∈ r such that t = t1[X ] and (ii) there
is no t2 ∈ r such that t2[X ] subsumes t and t2[X ] 6= t.
Let Y be some attribute set of R with Y ⊆ X . The
Y -total projection of r on X , denoted by rY [X ], is
the set rY [X ] = {t ∈ r[X ] | t is Y -total}. Given
an X-total relation r over R and an X-total relation
s over S such that X = R ∩ S the natural join of r
and s, denoted by r ./ s, is the relation over R ∪ S
which contains exactly those tuples t such that there
is some t1 ∈ r and some t2 ∈ s with t1 = t[R] and
t2 = t[S].

2.2 Dependencies in the Presence of Nulls

Functional dependencies (FDs) between sets of at-
tributes have always played a central role in the
study of relational databases (Codd 1970, Codd 1972,
Beeri & Bernstein 1979, Bernstein 1976, Bernstein
& Goodman 1980), and seem to be central for the
study of database design in other data models as well
(Arenas & Libkin 2004, Hara & Davidson 1999, Hart-
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mann & Link 2004, Levene & Loizou 1998, Tari,
Stokes & Spaccapietra 1997, Weddell 1992, Wijsen
1999). The notion of a functional dependency is
well-understood and the semantic interaction between
these dependencies has been syntactically captured
by Armstrong’s well-known axioms (Armstrong 1974,
Armstrong, Nakamura & Rudnicki 2002).

Let R be a relation schema. A functional depen-
dency with nulls on R, abbreviated NFD, is a state-
ment X → Y where X, Y ⊆ R. The NFD X → Y on
R is satisfied by a partial relation r over R, denoted by
|=r X → Y , if and only if for all t1, t2 ∈ r the follow-
ing holds: if t1 and t2 are X-total and t1[X ] = t2[X ],
then t1[Y ] = t2[Y ]. Therefore, whenever two tuples
agree on a nonnull X-value, they agree on the Y -
value, which may be partial.

FDs are incapable of modelling many important
properties that database users have in mind. Mul-
tivalued dependencies (MVDs, (Delobel 1978, Fagin
1977, Zaniolo 1976)) provide a more general notion
and offer a response to the shortcomings of FDs.
MVDs in the presence of null values have been in-
troduced in (Lien 1982).

A multivalued dependency with nulls on the rela-
tion schema R, abbreviated NMVD, is an expression
X � Y where X, Y ⊆ R. A partial relation r over
R satisfies the NMVD X � Y on R, denoted by
|=r X � Y , if and only if for all t1, t2 ∈ r the follow-
ing holds: if t1 and t2 are X-total and t1[X ] = t2[X ],
then there is some t ∈ r such that t[XY ] = t1[XY ]
and t[X(R − Y )] = t2[X(R − Y )]. Informally, the
partial relation r satisfies X � Y when the total
X-values determine the set of values on Y indepen-
dently from the set of values on R − Y . This ac-
tually suggests that the relation schema R is over-
loaded in the sense that it carries two independent
facts XY and X(R− Y ). More precisely, it is shown
in (Lien 1982) that NMVDs provide a necessary and
sufficient condition for a X-total relation to be de-
composable into two of its projections without loss
of information (in the sense that the original X-total
relation is guaranteed to be the natural join of the
two projections). This means that |=r X � Y if
and only if rX [R] = rX [XY ] ./ rX [X(R − Y )]. This
characteristic of NMVDs is fundamental to database
design and a lot of research has therefore been de-
voted to studying the behaviour of these dependen-
cies. Recently, extensions of multivalued dependen-
cies have been found very useful for various design
problems in advanced data models such as the nested
relational data model (Fischer et al. 1985), the Entity-
Relationship model (Thalheim 2003), data models
that support nested lists (Hartmann & Link 2004)
and XML (Vincent & Liu 2003, Vincent et al. 2003).

For the design of a relational database schema de-
pendencies are normally specified as semantic con-
straints on the relations which are intended to be
instances of the schema. During the design process
one usually needs to determine further dependen-
cies which are logically implied by the given ones.
In order to emphasise the dependence of implication
from the underlying relation schema R we refer to
R-implication.

Definition 2.1. Let R be a relation schema, and
let Σ = {X1 � Y1, . . . , Xk � Yk} and X � Y be

NMVDs on R, i.e., X ∪ Y ∪
k⋃

i=1

(Xi ∪ Yi) ⊆ R. Then

Σ R-implies X � Y if and only if each partial re-
lation r over R that satisfies all NMVDs in Σ also
satisfies X � Y .

In order to determine all logical consequences of
a finite set of NMVDs one can use the following set
of inference rules which was proposed in (Lien 1982).

Note that we use the natural complementation rule
(Biskup 1978) instead of the complementation rule
that was originally proposed (Lien 1982).

X � Y
Y ⊆ X

X � Y

XU � Y V
V ⊆ U

(reflexivity, R) (augmentation, A)

X � Y

X � R− Y

X � Y, X � Z

X � Y Z
(R-complementation, CR) (union, U)

X � Y, X � Z

X � Z − Y

X � Y, X � Z

X � Y ∩ Z
(difference, D) (intersection, I)

In (Lien 1982) the set R � = {R,A,U , CR} of in-
ference rules is proven to be both R-sound and R-
complete for the R-implication of MVDs, on all rela-
tion schemata R. Let Σ∪ {σ} be a set of NMVDs on
the relation schema R. Let Σ ` � σ denote the infer-
ence of σ from a set Σ of NMVDs with respect to the
set

�
of inference rules. Let Σ+� = {σ | Σ `

�
σ} de-

note the syntactic hull of Σ under inference using only
rules from

�
. The set R

�
is called R-sound for the R-

implication of NMVDs iff for every set Σ of NMVDs
on R we have Σ+

R
� ⊆ Σ∗

R = {σ | Σ R-implies σ}.
The set R

�
is called R-complete for the implication

of NMVDs if and only if for every set Σ of NMVDs
on R we have Σ∗

R ⊆ Σ+

R
� . The set R

�
is called sound

(complete) for the R-implication of NMVDs iff it is R-
sound (R-complete) for the R-implication of NMVDs
for all relation schemata R.

An interesting question is now whether all the
rules of a certain set are really necessary to capture
the R-implication of NMVDs for every R. More pre-
cisely, an inference rule < is said to be R-independent
from the set R

�
if and only if there is some set

Σ ∪ {σ} of NMVDs on the relation schema R such
that σ /∈ Σ+

R
� , but σ ∈ Σ+

R
�
∪{<}

. Moreover, the in-

ference rule < is said to be independent from R
�

if
and only if there is some relation schema R such that
< is R-independent from R

�
. Finally, a complete set

R
�

is said to be minimal for the R-implication of
NMVDs if and only if every inference rule < ∈ R

�

is independent from R
�
− {<}. This means that no

proper subset of R
�

is still complete.
Apart from R � the following sets are also complete

for the R-implication of NMVDs. This fact was not
noticed in (Lien 1982), but is not difficult to see.

Theorem 2.1. The sets R � 1 = {R,A, I, CR} and
R � 2 = {R,A,D, CR} are sound and complete for the
R-implication of NMVDs.

Proof. The union rule U is derivable from {I, CR}

X � Y X � Z
X � R− Y X � R− Z

X � (R− Y ) ∩ (R − Z)
X � R− ((R− Y ) ∩ (R − Z))

︸ ︷︷ ︸

=Y ∪Z

and the intersection rule I is derivable from {D}

X � Y X � Z
X � Z − Y X � Z
X � Z − (Z − Y )

︸ ︷︷ ︸

=Y ∩Z
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Note that
X � Y, Y � Z

X � Z − Y
, the pseudo-transitivity

rule T , which is essential for MVDs (Beeri, Fagin &
Howard 1977), is not R-sound in the presence of null
values (Lien 1982).

2.3 NMVDs in Undetermined Universes

Consider a slight modification of the classical exam-
ple (Fagin 1977) in which the NMVD Employee �
Child is specified, i.e., the set of children is completely
determined by an employee, independently from the
rest of the information in any schema. If the relation
schema R consists of the attributes Employee, Child
and Salary, then we may infer the NMVD Employee

� Salary by means of the R-complementation rule.
However, if the underlying relation schema R con-
sists of the four attributes Employee, Child, Salary
and Year, then the NMVD Employee � Salary is no
longer R-implied. Note the fundamental difference
between the NMVDs

Employee � Child and Employee � Salary.

The first NMVD has been specified to establish the
relationship of employees and their children as a fact
due to a set-valued correspondence. The second
NMVD does not necessarily correspond to any se-
mantic information, but simply results from the con-
text in which Employee and Child are considered. If
the context changes, the NMVD disappears. We can
therefore observe the following:

• If consequences of NMVDs are inferred by a set
R

�
of inference rules with respect to a fixed uni-

verse R, applications of the R-complementation
rule during any inference by R

�
should be ei-

ther completely avoided or limited to the very
last step of the inference.

• It may be argued that consequences which are
dependent on the underlying universe are in fact
no consequences at all. This implies, however,
that the notion of R-implication is not suitable.

We follow the first observation first, and come
back to the second observation later. One may
ask whether the R-sound and R-complete set R � =
{R,A,U , CR} of inference rules reflects the property
of R-complementation. More precisely, a complete
set R

�
of inference rules for the R-implication of

(N)MVDs is said to be complementary iff it is R-
complementary for all relation schemata R, i.e., for
each X � Y ∈ Σ+

R
� there is an inference of X � Y

from Σ by R
�

in which the R-complementation rule
CR is applied at most once and (if at all) as the last
rule. The following example shows that the set R � is
not complementary.

Example 2.1. Let Σ = {A � BC, A � B}. The

following table represents the syntactic hull Σ+

{R,A,U}

of Σ under inferences using {R,A,U}. The NMVD

U � V belongs to Σ+

{R,A,U}
iff the entry at row la-

belled U and column labelled V is a cross ×.

∅ A B C AB AC BC ABC

∅ ×
A × × × × × ×
B × ×
C × ×

AB × × × × × ×
AC × × × × × × × ×
BC × × × ×

ABC × × × × × × × ×

It shows in particular that A � C /∈ Σ+

{R,A,U}
. More-

over, Lemma 3.1 shows that A � Y /∈ Σ+

{R,A,U}
for

all Y such that Y − {A, B, C} 6= ∅. However, for

R = {A, B, C, D} we have A � C ∈ Σ+

R � , say by

A � BC
A � AD A � B

A � ABD
A � C

.

Hence, in any such inference the rule CR must be
used at least once, but since R−{C} = {A, B, D} the
R-complementation rule CR is not only used as the
last rule.

Biskup introduced the following sound inference
rules for the R-implication of MVDs

∅ � ∅

X � Y, Y � Z

X � Y Z
(empty-set-axiom,R∅) (additive transitivity, T ∗)

X � Y, W � Z

X � Y ∩ Z
Y ∩W = ∅

(subset, S)

and showed that the complete set R
�

=
{R∅,A, T , T ∗,S, CR} is also complementary. That is,

X � Y ∈ Σ+

R �
if and only if (2.1)

X � Y ∈ Σ+

� or X � (R− Y ) ∈ Σ+

�

where Σ = {X1 � Y1, . . . , Xk � Yk} and X ∪ Y ∪
k⋃

i=1

(Xi ∪ Yi) ⊆ R.

Moreover, Biskup introduced an alternative notion
of implication for MVDs (Biskup 1980), which leaves
the underlying relation schema undetermined. This
brings us back to our second observation from above.
We will now generalise the notion of MVDs in un-
determined universes to the presence of null values.
An NMVD is a syntactic expression X � Y with
X, Y ⊆ � . The NMVD X � Y is satisfied by some
partial relation r if and only if X ∪ Y ⊆ Dom(r) and
rX [Dom(r)] = rX [XY ] ./ rX [X ∪ (Dom(r) − Y )].

Definition 2.2. The set Σ = {X1 � Y1, . . . , Xk �
Yk} of NMVDs implies the single NMVD X � Y if
and only if for each partial relation r with X ∪ Y ∪
k⋃

i=1

(Xi∪Yi) ⊆ Dom(r) the NMVD X � Y is satisfied

by r whenever r already satisfies all NMVDs in Σ.

In this definition, the underlying relation schema
is left undetermined. The only requirement is that
the NMVDs must apply to the partial relations. The
following fact is immediate and generalises a result
from (Biskup 1980).

Theorem 2.2. Let Σ = {X1 � Y1, . . . , Xk � Yk} be

a set of NMVDs, and X ∪Y ∪
k⋃

i=1

(Xi ∪Yi) ⊆ R. If Σ

implies X � Y , then Σ R-implies X � Y .

The following example shows that the converse of
Theorem 2.2 is false.

Example 2.2. For R ={Employee,Child,Salary} and
Σ ={Employee � Child} we have that Σ R-implies
Employee � Salary. However, Σ does not imply Em-
ployee � Salary. Consider for instance the follow-
ing partial relation r with domain {Employee, Child,
Salary, Year}.

CRPIT Volume 51

116



Employee Child Salary Year

Don Juan ν 4000 2004
Don Juan ν 5000 2005

The two relations rEmployee[Employee, Child]

Employee Child

Don Juan ν

and rEmployee[Employee, Salary, Year]

Employee Salary Year

Don Juan 4000 2004
Don Juan 5000 2005

show that r satisfies the NMVD Employee
� Child. However, the two relations
rEmployee[Employee, Salary]

Employee Salary

Don Juan 4000
Don Juan 5000

and rEmployee[Employee, Child, Year]

Employee Child Year

Don Juan ν 2004
Don Juan ν 2005

indicate that r does not satisfy Employee � Salary.
Consequently, Σ does not imply Employee � Salary.

A set
�

of inference rules is called sound for the
implication of (N)MVDs if and only if for every fi-
nite set Σ of (N)MVDs we have Σ+� ⊆ Σ∗ = {σ |
Σ implies σ}. The set

�
is called complete for the

implication of (N)MVDs if and only if for every finite
set Σ of (N)MVDs we have Σ∗ ⊆ Σ+� . An inference
rule < is said to be independent from the set

�
if and

only if there is some finite set Σ ∪ {σ} of (N)MVDs
such that σ /∈ Σ+� , but σ ∈ Σ+�

∪{<}
. A complete set

�

of inference rules is said to be minimal for the impli-
cation of (N)MVDs if and only if every inference rule
< in

�
is independent from

�
− {<}. This means

that no proper subset of
�

is still complete for the
implication of (N)MVDs.

It should be noted that the singletonsR,A,U ,D, I
are all sound, and the R-complementation rule is R-
sound, but not sound as just demonstrated by the
previous example.

The second major result in (Biskup 1980) shows
that the set

�
= {R∅,A, T , T ∗,S} is sound and com-

plete for the implication of MVDs in undetermined
universes.

3 NMVDs in fixed and undetermined Uni-
verses

The last section has identified two major objectives:

1. Find a set R � of inference rules which is
sound, complete and complementary for the R-
implication of NMVDs.

2. Identify a set � of inference rules which is sound
and complete for the implication of NMVDs.

Biskup has successfully provided solutions to these
two problems for MVDs, i.e., in the absence of null
values. One may hope that the inclusion of the ad-
ditive transitivity rule T ∗ and/or subset rule S into
R � result in a complete set of inference rules that
is also complementary. Both rules, however, are not
sound for the implication of NMVDs as the following
example demonstrates.

Example 3.1. Consider the following partial relation
r:

A B C D
a b1 c1 ν
a b2 c2 ν

For X = A, Y = BC, W = D and Z = B we see
that |=r X � Y and |=r W � Z with Y ∩W = ∅.
However, 6|=r X � Y ∩Z. Note that r satisfies W �
Z since the two tuples are not total on W . This shows
the incorrectness of the subset rule for NMVDs.

The incorrectness of the additive transitivity rule
follows from the following example. Consider the par-
tial relation r:

A B C D
a ν c1 d1

a ν c2 d2

For X = A, Y = B and Z = C we see that |=r X �
Y and |=r Y � Z. However, 6|=r X � Y Z. Note
that r satisfies Y � Z since the two tuples are not
total on Y .

3.1 NMVDs in fixed Universes

Our first theorem shows that there are indeed com-
plete sets which are complementary. In order to be
precise, we give the following definition.

Let Σ be a finite set of NMVDs, and let
�

be a
set of inference rules. A finite sequence of NMVDs
γ = [σ1, . . . , σk] is called an inference from Σ by

�

if and only if each σi is either an element of Σ or is
obtained by applying one of the rules of

�
to appro-

priate elements of {σ1, . . . , σi−1}. We say that the
inference γ infers σk (the last element of the sequence
γ). The syntactic hull Σ+� is the set of all NMVDs
which can be inferred by some inference from Σ by�

.

Theorem 3.1. Let Σ be a set of NMVDs on the re-
lation schema R. For each inference γ from Σ by the
set R � = {R,A,U , CR} there is an inference ξ from
Σ by the set R � = {R,A,U ,D, CR} with the following
properties:

1. γ and ξ infer the same NMVD.

2. In ξ the R-complementation rule CR is applied at
most once.

3. If CR is applied in ξ, then CR is applied as the
last rule.

Proof. The proof is by induction on the length l of the
inference γ = [σ1, . . . , σl]. If l = 1, then ξ := γ has
the desired properties. Let l > 1, and γ = [σ1, . . . , σl]
be an inference from Σ by � which has length l. We
consider four cases according to how σl was obtained
from [σ1, . . . , σl−1].

Case 1. σl is either an element of Σ or was ob-
tained using the reflexivity axiom R. Then ξ = [σl]
has the desired properties.

Case 2. We obtain σl by applying the augmen-
tation rule A to the premise σi with i < l. Let
ξi be obtained by using the induction hypothesis for
γi := [σ1, . . . , σi]. Consider the inference ξ := [ξi, σl].
If in ξi the rule CR is not applied, then ξ has the de-
sired properties. If in ξi the rule CR is applied (as last
rule), then the last two steps of ξ are of the form:

X � Y
X � R− Y

XU � (R − Y )V
V ⊆U.
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However, these two steps can be replaced as follows:

X � Y

XU � Y XU � V
V ⊆U⊆XU

XU � Y − V

XU � R− (Y − V )
︸ ︷︷ ︸

=(R−Y )V

The result of this replacement is an inference with the
desired properties.

Case 3. We obtain σl by applying the union rule
U to the premises σi and σj with i, j < l. Let ξi

and ξj be obtained by using the induction hypothesis
for γi = [σ1, . . . , σi] and γj = [σ1, . . . , σj ], respec-
tively. Consider the inference ξ := [ξi, ξj , σl]. We
distinguish four cases according to the occurrences of
the R-complementation rule CR in ξi and ξj .

Case 3.1. If CR is applied neither in ξi nor in ξj ,
then ξ has the desired properties.

Case 3.2. If CR is applied in ξi (as last rule), but
not in ξj , then the last step of ξi and the last step of
ξ are of the following form:

X � Y
X � R− Y X � Z

X � (R− Y )Z
.

However, these steps can be replaced as follows:

X � Z X � Y
X � Y − Z

X � R− (Y − Z)
︸ ︷︷ ︸

=(R−Y )Z

.

The result of this replacement is an inference with the
desired properties.

Case 3.3. If CR is applied in ξj (as last rule), but
not in ξi, then the last step of ξj and the last step of
ξ are of the following form:

X � Z
X � Y X � R− Z

X � Y (R− Z)
.

However, these steps can be replaced as follows:

X � Y X � Z
X � Z − Y

X � R− (Z − Y )
︸ ︷︷ ︸

=Y (R−Z)

.

The result of this replacement is an inference with the
desired properties.

Case 3.4. If CR is applied both in ξi and ξj (as
last rule), then the last steps of ξi and ξj and the last
step of ξ are of the following form:

X � Y X � Z
X � R− Y X � R− Z

X � (R− Y ) ∪ (R− Z)
.

However, these steps can be replaced as follows:

X � Y X � Z
X � Z − Y X � Z
X � Z − (Z − Y )

︸ ︷︷ ︸

=Y ∩Z

X � R− (Y ∩ Z)
︸ ︷︷ ︸

=(R−Y )∪(R−Z)

.

The result of this replacement is an inference with the
desired properties.

Case 4. We obtain σl by applying the R-
complementation rule CR to the premise σi with i < l.
Let ξ be obtained by using the induction hypoth-
esis for γi := [σ1, . . . , σi]. Consider the inference
ξ := [ξi, σi]. If in ξi the rule CR is not applied, then
ξ has the desired properties. If in ξi the rule CR is
applied (as last rule), then the last two steps of ξ are
of the following form:

X � Y
X � R− Y

X � R− (R− Y )
︸ ︷︷ ︸

=Y

.

Hence, the inference obtained by removing these two
steps from ξ has the desired properties.

The set R � is complete for the R-implication of
NMVDs since R � is an extension of the complete set
R � (Lien 1982). While R � is minimal the set R �
is not (the pseudo-difference rule D can be omitted).
However, R � is complementary while R � is not. A
reasonable question is whether there is any minimal
set R

�
which is also complementary. This might be

a reasonable task for future research.

3.2 NMVDs in Undetermined Universes

We now explore the power of the common part of
the sets R � , namely � = {R,A,U ,D}, which can be
obtained from any of the sets R � by removing the
R-complementation rule CR. Hence, � does not per-
mit the possibly semantically meaningless inference
of complementation.

Theorem 3.1 states that for all relation schemata R
the set � = {R,A,U ,D} is nearly R-complete. More
precisely, we can formulate the following corollary.

Corollary 3.1. Let R ⊆ � be a finite set of at-
tributes. Then for all finite sets Σ = {X1 �
Y1, . . . , Xk � Yk} of NMVDs, for all NMVDs X � Y

such that X ∪ Y ∪
k⋃

i=1

(Xi ∪ Yi) ⊆ R we have that

X � Y ∈ Σ+

R � if and only if

X � Y ∈ Σ+

� or X � (R− Y ) ∈ Σ+

� .

Corollary 3.1 indicates that by the set � we can infer
those consequences of a given set of NMVDs which
are independent of the underlying relation schema R.

We shall prove now that the set � is actually sound
and complete for the implication of NMVDs, in the
sense of Definition 2.2, that is by � we can generate
exactly all implications in an undetermined universe.

Lemma 3.1. Let Σ = {X1 � Y1, . . . , Xk � Yk}
be a finite set of NMVDs. If X � Y ∈ Σ+

� , then

Y ⊆ X ∪
k⋃

i=1

Yi.

Proof. We show that if γ = [σ1, . . . , σl] is an inference
from Σ by � such that γ infers the NMVD σl = X �

Y , then Y ⊆ X ∪
k⋃

i=1

Yi. The proof is by induction on

the length l of γ. If l = 1, then X � Y was obtained
either by application of the reflexivity axiom, i.e. Y ⊆
X , or it is an element of Σ. Thus we have Y ⊆ X ∪
k⋃

i=1

Yi in any case.
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Let l > 1. We consider four cases according to how
σl was obtained from [σ1, . . . , σl−1].

Case 1. σl was obtained by application of the re-
flexivity axiom or it is an element of Σ. This is the
same situation as for l = 1.

Case 2. σl was obtained by application of the aug-
mentation rule A to the premise σi with i < l. Then
the last step of γ has the form

R � S

RU � SV
V ⊆ U

where σi = R � S and S ⊆ R ∪
k⋃

i=1

Yi by induction

hypothesis, and σl = RU � SV . Consequently, we
have

SV ⊆ RU ∪
k⋃

i=1

Yi .

Case 3. σl was obtained by application of the
union rule U to the premises σi and σj with i, j < l.
Then the last step of γ has the form

R � S, R � T

R � ST

where σi = R � S and S ⊆ R ∪
k⋃

i=1

Yi by induction

hypothesis, σj = R � T and T ⊆ R∪
k⋃

i=1

Yi by induc-

tion hypothesis, and σl = R � ST . Consequently, we
have

ST ⊆ R ∪
k⋃

i=1

Yi .

Case 4. σl was obtained by application of the dif-
ference rule D to the premises σi and σj with i, j < l.
Then the last step of γ has the form

R � S, R � T

R � T − S

where σi = R � S and S ⊆ R ∪
k⋃

i=1

Yi by induction

hypothesis, σj = R � T and T ⊆ R∪
k⋃

i=1

Yi by induc-

tion hypothesis, and σl = R � T − S. Consequently,
we have

T − S ⊆ R ∪
k⋃

i=1

Yi .

This concludes the proof.

Lemma 3.2. Let Σ = {X1 � Y1, . . . , Xk � Yk} be a

finite set of NMVDs. Let W :=
k⋃

i=1

(Xi ∪ Yi). If X �

Y ∈ Σ+

� , then there is an inference γ = [σ1, . . . , σl] of
X � Y from Σ by � such that any attribute occurring
in σ1, . . . , σl−1 is an element of W .

Proof. Let ξ̄ = [R1 � S1, . . . , Rl−1 � Sl−1] be any
inference of X � Y from Σ by � . Consider the se-
quence

ξ := [R1 ∩W � S1 ∩W, . . . , Rl−1 ∩W � Sl−1 ∩W ].

We claim that ξ is an inference of X ∩W � Y ∩W
from Σ by � . For if Ri � Si is an element of Σ or
was obtained by application of the reflexivity axiom

R, then Ri∩W � Si ∩W = Ri � Si. Moreover, one
can verify that if Ri � Si is the result of applying one
of the rules A,U ,D in ξ̄, then Ri∩W � Si∩W is the
result of the same rule applied to the corresponding
premises in ξ.

Now by Lemma 3.1 we know that Y ⊆ X∪
k⋃

i=1

Yi ⊆

X∪W , hence Y −W ⊆ X . However, this implies that
we can infer X � Y from X ∩W � Y ∩W by the
augmentation rule A:

X ∩W � Y ∩W

(X ∩W ) ∪X
︸ ︷︷ ︸

=X

� (Y ∩W ) ∪ (Y −W )
︸ ︷︷ ︸

=Y

.

Hence the inference [ξ, X � Y ] has the desired prop-
erties.

Theorem 3.2. The set � = {R,A,U ,D} is sound
and complete for the implication of multivalued de-
pendencies with null values.

Proof. Let Σ = {X1 � Y1, . . . , Xk � Yk} be a finite
set of NMVDs, and let X � Y be an NMVD. We
have to prove that

Σ implies X � Y iff X � Y ∈ Σ+

� . (3.2)

Let T := X ∪ Y ∪
k⋃

i=1

(Xi ∪ Yi). In order to prove

the soundness of � (if-part of (3.2)) we assume that
X � Y ∈ Σ+

� holds. Let r be any partial relation
such that T ⊆ Dom(r) and such that r satisfies Xi �
Yi ∈ Σ for all i = 1, . . . , k. We must show that r also
satisfies X � Y . According to Lemma 3.2 there is
an inference γ of X � Y from Σ by � such that
R ∪ S ⊆ T ⊆ Dom(r) holds for each NMVD R � S
occurring in γ. Since each rule of � is sound we can
conclude (by induction) that each NMVD occurring
in γ is satisfied by r. Hence, r satisfies X � Y in
particular.

In order to prove the completeness of � (only if-
part of (3.2)) we assume X � Y /∈ Σ+

� . Let R ⊆ � be
a finite set of attributes such that T is a proper subset
of R, that is T ⊂ R. Consequently, R − Y is not a
subset of T . Hence, by Lemma 3.1, X � (R − Y ) /∈
Σ+

� . Now from X � Y /∈ Σ+

� and X � (R − Y ) /∈

Σ+

� we conclude that X � Y /∈ R � by Corollary
3.1. Since R � is R-complete for the R-implication of
NMVDs it follows that Σ does not R-imply X � Y .
Hence, Σ does not imply X � Y by Theorem 2.2.

3.3 All minimal Sets of Inference Rules

One may ask whether there are any other subsets of
{R,A,U , I,D} which are also complete for the impli-
cation of NMVDs. The proof of the following result
consists of independence proofs. These independence
proofs have been computationally verified using GNU
pascal (providing set arithmetic) programs.

Theorem 3.3. � is the only minimal complete subset
of {R,A,U , I,D} which is sound and complete for the
implication of NMVDs.

Proof. We show that all four inference rules of � are
essential for gaining completeness, i.e., each inference
rule is independent from the rest of the inference
rules.
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• The reflexivity axiom R is independent from�
= {A, I,D,U}. Let Σ = ∅, and σ = ∅ � ∅.

Since σ /∈ Σ+� , but σ ∈ Σ+�
∪{R}

we have found

witnesses Σ and σ for the independence ofR from�
.

• The augmentation rule A is independent from�
= {R, I,D,U}. Let Σ = {A � B}, and σ =

AC � B. The following table represents the
closure Σ+� of Σ under

�
neglecting all remaining

trivial NMVDs X � Y with Y ⊆ X and X, Y ⊆
� .

∅ A B C AB AC BC ABC

∅ ×
A × × × ×
B × ×
C × ×

AB × × × × ×
AC × × × ×
BC × × × ×

ABC × × × × × × × ×

Since σ /∈ Σ+� , but σ ∈ Σ+�
∪{S}

we have found

witnesses Σ and σ for the independence ofA from�
.

• The union rule U is independent from
�

=
{R,A, I,D}. Let Σ = {A � B, A � C}, and
σ = A � BC. The following table represents
the closure Σ+� of Σ under

�
neglecting all re-

maining trivial NMVDs X � Y with Y ⊆ X
and X, Y ⊆ � .

∅ A B C AB AC BC ABC

∅ ×
A × × × × × ×
B × ×
C × ×

AB × × × × × × × ×
AC × × × × × × × ×
BC × × × ×

ABC × × × × × × × ×

Since σ /∈ Σ+� , but σ ∈ Σ+�
∪{U}

we have found

witnesses Σ and σ for the independence of U from�
.

• The difference rule D is independent from
�

=
{R,A, I,U}. Let Σ = {A � BC, A � B}, and
σ = A � C. The following table represents the
closure Σ+� of Σ under

�
neglecting all remaining

trivial NMVDs X � Y with Y ⊆ X and X, Y ⊆
� .

∅ A B C AB AC BC ABC

∅ ×
A × × × × × ×
B × ×
C × ×

AB × × × × × ×
AC × × × × × × × ×
BC × × × ×

ABC × × × × × × × ×

Since σ /∈ Σ+� , but σ ∈ Σ+�
∪{D}

we have found

witnesses Σ and σ for the independence ofD from�
.

3.4 NFDs and NMVDs in undetermined Uni-
verses

Finally, we use Theorem 3.2 and the results from
(Lien 1982) to obtain an axiomatisation for NFDs and
NMVDs in undetermined universes.

Theorem 3.4. The following set of inference rules

X → Y
Y ⊆X

X → Y

XU → Y V
V ⊆U

X → Y, X → Z

X → Y Z

X → Y

X → Z
Z⊆Y

X → Y

X � Y X � Y
Y ⊆X

X � Y

XU � Y V
V ⊆U

X � Y, X � Z

X � Y Z

X � Y, X � Z

X � Z − Y

is sound and complete for the implication of func-
tional and multivalued dependencies with null val-
ues.

The reflexivity rule for NMVDs is certainly redun-
dant in this set of inference rules. It has been included
to emphasize the fact that NFDs and NMVDs can be
dealt with separately (even when they are specified
together). This is entirely different from traditional
relational databases without null values where FDs
and MVDs have been shown to interact non-trivially
(Beeri et al. 1977).

4 General Results

We will use this section to show an equivalence be-
tween complete sets of inference rules in undeter-
mined universes and complete and complementary
sets in fixed universes. Due to space limitations we
omit the proofs in this section. For a set

�
of infer-

ence rules that is sound for the implication of NMVDs
let R

�
denote the set

�
∪ {CR}.

Theorem 4.1. Let
�

be a sound set of inference
rules for the implication of NMVDs. The set

�
is

complete for the implication of NMVDs if and only
if the set R

�
is complete and complementary for the

R-implication of NMVDs.

This equivalence from Theorem 4.1 can even be
extended to minimal complete sets of inference rules.

Corollary 4.1. Let
�

be a sound set of inference
rules for the implication of NMVDs. The set

�
is

minimal and complete for the implication of NMVDs
if and only if the set R

�
is complete and complemen-

tary for the R-implication of NMVDs, and there is no
inference rule < ∈

�
such that the set R(

�
− {<})

is still both complete and complementary for the R-
implication of NMVDs.

The last corollary helps us finding all subsets of
{R,A,U , I,D} that are complete and complementary
for the R-implication of NMVDs.

Lemma 4.1. The R-complementation rule CR is in-
dependent from

�
= {R,A,U , I,D}.

Proof. Let R = A, Σ = ∅ and σ = ∅ � A. Since
σ /∈ Σ+� , but σ ∈ Σ+�

∪{CR}
we have found witnesses

R, Σ and σ for the independence of CR from
�

.

The next corollary is a consequence of Theorem 3.3,
Corollary 4.1 and Lemma 4.1.

Corollary 4.2. There are no proper subsets of R �
which are both complete and complementary for the
R-implication of NMVDs.
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5 Minimising Minimality

Recall that a complete set
�

of inference rules is said
to be minimal iff none of the rules in

�
can be omitted

from
�

without losing completeness. In this sense the
set � = {R,A,U ,D} is minimal for the implication
of NMVDs. A stricter version of minimality would
include that the side conditions of all inference rules
cannot be weakened. For instance, since both the

reflexivity axiom
X � Y

Y ⊆X and the augmentation

rule
X � Y

XU � Y V
V ⊆U are present in � one may replace

the reflexivity axiom R by the empty-set-axiom R∅:

∅ � ∅
and still maintain completeness. In fact, the

empty-set-axiomR∅ is a very weak form of the reflex-
ivity axiom R representing just the single instance of
R where X = Y = ∅. However, R is derivable from
{R∅,A}:

∅ � ∅

X � Y
Y ⊆X .

Theorem 5.1. The set {R∅,A,U ,D} is sound and
complete for the implication of multivalued dependen-
cies with null values.

Instead of weakening the reflexivity axiom, one
may replace the augmentation rule A by the weak

augmentation rule W :
X � Y

XA � Y
which is a very re-

stricted form of augmentation in which V = ∅ and
U = A is a singleton. However,A can be derived from
{R,W ,U} as follows (suppose U = {A1, . . . , Ak}):

X � Y
XA1 � Y

...

XA1 · · ·Ak � Y XU � V
V ⊆U⊆XU

XU � Y V

.

The reflexivity axiom R may also be replaced by
the empty-set-axiom R∅ and the attribute axiom

At:
A � A

. In fact, R can be derived from

{R∅,At,W ,U}. If Y = ∅ and X consists of k at-
tributes, then we apply the empty-set-axiom R∅ first
to derive ∅ � ∅. Subsequently, the weak augmenta-
tion rule W is applied k times to derive X � ∅. In
case that Y = {B1, . . . , Bl} and X has k attributes,
k ≥ l, we derive B1 � B1, . . . , Bl � Bl by l appli-
cations of the attribute axiom At. Subsequently, we
apply the weak augmentation ruleW to each of these
NMVDs k times to derive X � B1, . . . , X � Bl. Fi-
nally, the union rule U is applied l−1 times to derive
X � Y .

Theorem 5.2. The set {R∅,At,W ,U ,D} is sound
and complete for the implication of multivalued de-
pendencies with null values.

6 Conclusion

We have explored multivalued dependencies in the
presence of null values (NMVDs) with meaning “un-
defined”, “inapplicable”, or “non-existent”. It was
shown that Lien’s original axiomatisation of NMVDs
(Lien 1982) is not complementary. That is, there are
inferences of NMVDs in which the application of the
complementation rule can neither be avoided nor de-
ferred until the last step of the inference. The fact
that the complementation rule simply reflects a part

of the normalisation process is therefore not reflected
by Lien’s axiomatisation. In this paper sound and
complete sets of inference rules for the R-implication
of NMVDs have been proposed that are indeed com-
plementary. Moreover, Biskup’s alternative notion of
implication for MVDs, in which the underlying uni-
verse is left undetermined, was extended to the pres-
ence of null values. Several sound and complete sets
of inference rules for the implication of NMVDs have
been proposed, which can be extended to cover both
functional and multivalued dependencies in the pres-
ence of null values. The results clarify the role of the
R-complementation rule for NMVDs, and may sim-
plify the quest of finding suitable and comprehensible
notions of multivalued dependencies in the context
of advanced database models. Moreover, the results
clarify the power of several R-incomplete subsets.

Some interesting problems warrant future re-
search. While the R-implication problem of MVDs
has received a considerable amount of interest with
the best current time bound proposed in (Galil 1982),
no research has been devoted to the corresponding R-
implication problem of NMVDs. In the spirit of our
article it seems also interesting to investigate the im-
plication problem of (N)MVDs in undetermined uni-
verses, and maybe derive further correspondences be-
tween implication and R-implication.

An interesting open problem is to generalise the
approach in (Levene & Loizou 1998) from functional
to multivalued dependencies. The approach uses a
possible world semantics exploring all extensions of an
incomplete database to a complete database. Weak
MVDs must be satisfied by some possible world while
strong MVDs are satisfied by all possible worlds.
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Abstract

We present a new method for finding closed forms
of recursive Boolean function definitions. Tradition-
ally, these closed forms are found by iteratively ap-
proximating until a fixed point is reached. Concep-
tually, our new method replaces each k-ary function
by 2k Boolean variables defined by mutual recursion.
The introduction of an exponential number of vari-
ables is mitigated by the simplicity of their defini-
tions and by the use of a novel variant of ROBDDs
to avoid repeated computation. Experimental evalua-
tion suggests that this approach is significantly faster
than Kleene iteration for examples that would require
many Kleene iteration steps.

Keywords: Boolean functions, fixed points, decision
diagrams

1 Introduction

The need to obtain closed forms of recursively defined
functions arises in many fields of mathematics and
computer science, including formal language theory,
database theory, and formal semantics. The theoret-
ical foundations for solving recursive definitions were
laid a long time ago, in the fields of order and fixed
point theory. Improved algorithms, however, are still
being developed for special applications.

A typical case is abstract interpretation, which is
concerned with automated inference of program prop-
erties, as needed, for example, by optimising com-
pilers and other program analysis and transforma-
tion tools (Cousot & Cousot 1977). Problems in
abstract interpretation boil down to finding extreme
fixed points (usually least fixed points) in structures
that can be fairly complex. The meaning of a pro-
gram is assumed to be given as a fixed point char-
acterisation: the least fixed point of some functional
F defined over a domain of program states, based on
the semantic domains for the programming language.
Program analysis is then obtained by faithfully ab-
stracting F to work on some abstract domain instead,
that is, on a domain of approximate program states.
Usually the process can be divided into two stages:
firstly constructing a set of (mutually) recursively de-
fined functions as a conservative approximation of
the aspect of the behaviour of the components of the

∗Peter Schachte’s work on this project has been supported in
part by NICTA Victora Laboratories.
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posium (CATS2006), Hobart, Australia. Conferences in Re-
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program one is interested in, and secondly finding a
closed-form “solution” of the recursive equations.

The usual approach to finding fixed points for re-
cursively defined equations is Kleene iteration. The
essential idea is to transform the set of mutually re-
cursively defined functions into a single non-recursive
functional that takes a tuple of closed form tenta-
tive solutions to these equations and uses the original
definitions of the functions, modified to use the ten-
tative solutions in place of recursive calls, to compute
a better approximation. Kleene iteration repeatedly
applies this functional to the result of the previous
iteration until a fixed point is reached. If the func-
tional is monotone on a lattice with the ascending-
chain property, and iteration begins with the least
element, the process is guaranteed to terminate with
the least fixed point, i.e., the strongest closed form
solution to the initial set of equations.

Consider, for example, the following equation:

f(x, y, z) = (x ∧ (y ↔ z))∨
∃u, v.((x↔(u ∧ v)) ∧ f(v, u, z))

This function arises in the groundness analysis of a
Prolog program to find the last element of a list using
an accumulating parameter. To apply Kleene itera-
tion to this, one defines a functional

F (f) = λx, y, z.( (x ∧ (y ↔ z))∨
∃u, v.((x↔(u ∧ v)) ∧ f(v, u, z)))

Note that the call to f is no longer recursive; it
now invokes the parameter to F . Kleene iteration
would begin by applying F to the least possible func-
tion f , which is λx, y, z.0 . For brevity, henceforth
we shall agree that the arguments of this function
are x, y, and z, and omit the λ. Thus the result of
F (0 ) is (x ∧ (y ↔ z)) ∨ ∃u, v.((x↔(u ∧ v)) ∧ 0 )) =
x ∧ (y↔ z). Next we apply F to this and get
(x ∧ (y ↔ z)) ∨ ∃u, v.((x↔(u ∧ v)) ∧ v ∧ (u↔ z)) =
(x ∧ (y ↔ z)) ∨ (x↔ z). Applying F to this, we get
(x ∧ y) → z. Finally, applying F to this, we get back
(x∧y) → z, indicating a fixed point has been reached.

The first contribution of this paper is to propose an
alternative view of this problem. Consider again the
original function f . We build a table in which each
row shows a possible input to f and the value of f for
that input. In each row of the table, we substitute the
input for that row, and all possible combinations of
values for the existentially quantified variables. Thus
the table will contain no variables whatsoever; all that
remains will be Boolean constants and recursive calls.
Furthermore, since each recursive call has all argu-
ments statically known, it refers to a fixed row of the
table. The following table illustrates the same exam-
ple f shown above using the new approach (we use
subscripts for function arguments).
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f000 = 0 ∨ ∃u, v.(¬(u ∧ v) ∧ fvu0)
f001 = 0 ∨ ∃u, v.(¬(u ∧ v) ∧ fvu1)
f010 = 0 ∨ ∃u, v.(¬(u ∧ v) ∧ fvu0)
f011 = 0 ∨ ∃u, v.(¬(u ∧ v) ∧ fvu1)
f100 = 1 ∨ ∃u, v.(u ∧ v ∧ fvu0)
f101 = 0 ∨ ∃u, v.(u ∧ v ∧ fvu1)
f110 = 0 ∨ ∃u, v.(u ∧ v ∧ fvu0)
f111 = 1 ∨ ∃u, v.(u ∧ v ∧ fvu1)

Now we view this as a set of eight mutually-
recursively defined variables. Of these, f100 and f111

are unambiguously determined to be 1 . Also, f101 is
defined to be f111, which is 1, and f000, f001, f010,
and f011 are all defined to be disjunctions including
either f100 or f101, both of which are now known to
be 1, so all are 1. This leaves only f110, which is
defined to be f110. This indicates both truth values
will be fixed points for this row. Assigning it 0 yields
the least fixed point (x ∧ y) → z, as given by Kleene
iteration. Plugging in 1 yields f(x, y, z) = 1 which
can also be verified to be a fixed point.

In this example, only two fixed points exist. In
general, there will be 2n fixed points, where n is the
number of strongly-connected components (SCCs) in
the dependency graph among rows in the truth table.

It is possible, for the domain of Boolean functions
of arity n, to give a recursive definition for which
the ascending Kleene sequence has maximal possible
length: 2n + 1. In fact this can be achieved in several
different ways. The following definition exemplifies
this for a function of arity 4. What is defined in this
cumbersome manner is the constant function 1, but
it takes 16 Kleene iteration steps to determine this.

p(v1, v2, v3, v4) =
∃v5.(v4 ∧ p(v1, v2, v3, v5))

∨ (v3 ∧ p(v1, v2, v4, 1 )
∨ (v2 ∧ (v3 ↔ v4) ∧ p(v1, v3, 1 , 1 ))
∨ (v1 ∧ (v2 ↔ v3) ∧ (v3 ↔ v4) ∧ p(v2, 1 , 1 , 1 ))
∨ ((v1 ↔ v2) ∧ (v2 ↔ v3) ∧ (v3 ↔ v4))

Again, this is a definition that arises in the ground-
ness analysis of a certain Prolog program, although
the program would not appear in the typical Prolog
programmer’s collection. It comes from one of sev-
eral families suggested by Codish (1999) and Genaim,
Howe & Codish (2001) as particularly challenging for
analysis, because of their heavily iterative nature. In
fact, the challenge that these programs have posed
to our existing analysis tools (which make use of
straight-forward Kleene iteration) has been the pri-
mary motivation for the work reported here.

The remainder of this paper will proceed as fol-
lows. In Section 2 we recall some basic concepts from
fixed point theory and decision diagrams. Section 3
introduces a data structure, a variant of ROBDDs,
and an algorithm to efficiently solve recursive defini-
tions of Boolean functions. Section 4 reports on the
experimental evaluation of the algorithm, Section 5
discusses related work, and Section 6 concludes.

2 Preliminaries

2.1 Lattices and fixed points

A partial ordering is a binary relation that is reflexive,
transitive, and antisymmetric. A set equipped with a
partial ordering is a poset. Let (X,≤) be a poset. A
(possibly empty) subset Y of X is a chain iff for all
y, y′ ∈ Y, y ≤ y′ ∨ y′ ≤ y.

Let (X,≤) be a poset. An element x ∈ X is an up-
per bound for Y ⊆ X iff y ≤ x for all y ∈ Y . Dually

we may define a lower bound for Y . An upper bound
x for Y is the least upper bound for Y iff, for every
upper bound x′ for Y , x ≤ x′, and when it exists, we
denote it by

⊔
Y . Dually we may define the greatest

lower bound ⊓Y for Y .
A poset X for which every subset possesses a least

upper bound and a greatest lower bound is a complete
lattice. We denote the least element ⊓X of X by ⊥X

(or usually just ⊥). X is ascending chain finite iff
every ascending chain in X is finite.

Let (X,≤) and (Z,�) be posets. F : X → Z is
monotone iff x ≤ x′ → F (x) � F (x′) for all x, x′ ∈
X . A fixed point for F : X → X is an element x ∈ X
such that x = F (x). If X is a complete lattice, then
the set of fixed points for a monotone F : X → X
is itself a complete lattice. The least element of this
lattice is the least fixed point for F , and we denote it
by lfp(F ).

2.2 ROBDDs

Let B = {1 , 0}. The set of Boolean functions is
Bool =

⋃
n∈N

B
n → B. Let the set V of propositional

variables be equipped with a total ordering ≺.
Binary decision diagrams (BDDs) are defined in-

ductively as follows:

• 0 is a BDD.

• 1 is a BDD.

• If x ∈ V and R1 and R2 are BDDs then
ite(x, R1, R2) is a BDD.

The meaning of a BDD is given as follows:

[[0]] = 0
[[1]] = 1
[[ite(x, R1, R2)]] = (x ∧ [[R1]]) ∨ (¬x ∧ [[R2]])

Let R = ite(x, R1, R2). A BDD R′ appears in R
iff R′ = R or R′ appears in R1 or R2. We define
vars(R) = {v | ite(v, , ) appears in R}.

A BDD is an OBDD iff it is 0 or 1 or if it
is ite(x, R1, R2) where R1 and R2 are OBDDs, and
∀x′ ∈ vars(R1) ∪ vars(R2) : x ≺ x′.

An OBDD R is an ROBDD (Reduced Ordered
Binary Decision Diagram (Bryant 1992)) iff for all
BDDs R1 and R2 appearing in R, R1 = R2 when
[[R1]] = [[R2]]. Practical implementations (Brace,
Rudell & Bryant 1990) use a function mknd(x, R1, R2)
to create all ROBDD nodes as follows:

1. If R1 = R2, return R1 instead of a new node, as
[[ite(x, R1, R2)]] = [[R1]].

2. If an identical ROBDD was previously built, re-
turn that one instead of a new one; this is ac-
complished by keeping a hash table, called the
unique table, of all previously created nodes.

3. Otherwise, return ite(x, R1, R2).

This ensures that ROBDDs are strongly canonical:
a shallow equality test is sufficient to determine
whether or not two ROBDDs represent the same
Boolean function.

Figure 1 gives a visual presentation of a simple
ROBDD. For all diagrams in this paper, the leftmost
of the two outgoing edges from any non-terminal node
is the 1-edge and the rightmost is the 0-edge.

There are 22n

different Boolean functions of arity
n, and it has been shown (Liaw & Lin 1992) that
an ROBDD for an n-input Boolean function requires
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Figure 1: An ROBDD for the function (x ∧ y) ∨ z.

at most (2n/n) nodes, so the worst-case complexity
is exponential. However, the size of ROBDDs can
vary enormously, not only with the ordering of vari-
ables, but also with the type of functions that are
represented. For a great variety of Boolean functions,
the ROBDD representation has polynomial complex-
ity, which makes ROBDDs very attractive for a wide
variety of applications.

Many important properties of Boolean functions
can be easily tested from the ROBDD form of a func-
tion. Testing for unsatisfiable or tautological func-
tions can be done in constant time: an unsatisfiable
function is represented by the 0-terminal and a tau-
tological function is represented by the 1-terminal.
If the satisfiability of a function requires a particular
variable to have a value v, then all nodes labelled with
that variable will have their (¬v)-edge point directly
to the 0-terminal. Finally, the ROBDD representa-
tion of a function that is independent of a particular
variable will have no nodes labelled by that variable.

3 Solving as graph manipulation

Before we embark on describing the new algorithm,
we describe an algorithm that served as inspiration.

3.1 A depth-first approach

The algorithm we describe first is due to Le Charlier
& Van Hentenryck (1992). It is rather more general
than ours, indeed it is presented as a “universal top-
down fixed point algorithm”. It is well described (and
appraised) by Fecht & Seidl (1999). Figure 2 is es-
sentially Fecht and Seidl’s presentation of algorithm
TD, as they name it.1

The idea behind the algorithm is to maintain a
“partial table” σ that maps variables to their current
(approximate) values. In Figure 2, σ is a globally
accessible table.

Suppose we have initiated solving for x and in the
process find that we need the value of y. The ap-
proach is to eagerly turn to solving for y, that is, to
find the next approximation to y’s final value. How-
ever, there are two situations in which eagerness is
abandoned and the current approximation σ(y) to y’s
value is used instead. One is where we are already in
an iteration initiated for y. A set Called is thus main-
tained to keep track of variables for which an iteration
has been started but not completed. The other situ-
ation is where solving for y is deemed useless because
no variable that influences y has changed its value. A
set Stable is thus maintained to keep track of stable
variables. A procedure call destabilize(x) makes sure
that the implications of changing the value of x are
tracked, so that Stable remains reliable.

1Fecht and Seidl’s version is incorrect, probably as a result of a
typographic error. The line marked with (*) in Figure 2 is missing
in Fecht and Seidl’s presentation. As a result, the closed form of,
say, f(x, y) = x ∨ f(y, x) comes out incorrectly as f(x, y) = x.

procedure main
σ := ∅; Stable := ∅; Called := ∅; infl := ∅;
foreach x ∈ V do solve(x) od

end

procedure solve(x : V )
if x /∈ Stable and x /∈ Called then
if x /∈ dom(σ) then

σ(x) := ⊥; infl(x) := ∅

fi;
Called := Called ∪ {x};
do

Stable := Stable ∪ {x};
old := σ(x);
σ(x) := evalrhs(x, λy.eval(x, y));
if σ(x) 6= old then

Stable := Stable \ {x}; (*)
destabilize(x)

fi;
until x ∈ Stable;
Called := Called \ {x}

fi
end

function eval(x, y : V ) : D
solve(y);
infl(y) := infl(y) ∪ {x};
return σ(y)

end

procedure destabilize(x : V )
temp := infl(x); infl (x) := ∅;
foreach y ∈ temp do

Stable := Stable \ {y};
destabilize(y)

od
end

Figure 2: Algorithm TD (after Fecht and Seidl)

The role of evalrhs(x, ·) is to evaluate the right-
hand side of x’s definition. This evaluation has access
to (the global) σ. However, to evaluate eagerly, and
to (dynamically) keep track of variable dependencies,
λy.eval(x, y) is used instead of σ. The table infl is
used for the bookkeeping—infl(y) is the set of vari-
ables that may depend on y. Essentially, eval(x, y)
provides for the solving for y in a context of solving
for x, updating infl to track the dependency.

3.2 A data structure for equation systems

The algorithm just presented is general. We now turn
to the special case of finding closed forms for (mutu-
ally) recursively defined Boolean functions and the
second contribution of this paper: a new data struc-
ture and algorithm for this special case.

To be more formal, assume we are given a set F of
Boolean function names. As a convenience, we also
fix a set V of variables, with its total ordering ≺. We
let the smallest n variables serve as the sequence of
formal parameters for all Boolean functions, with all
larger variables serving as local variables in definition
bodies. Then we can define the set of Boolean func-
tion bodies and definitions as:
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Bod = B ∪ V ∪ (F × Vn) ∪ {x ∧ y | x, y ∈ Bod} ∪
{x ∨ y | x, y ∈ Bod} ∪ {¬x | x ∈ V}

Def = F → Bod

Here the logical connectives have their usual interpre-
tation, and local variables are implicitly existentially
quantified over the definition body.

We define the set of closed form Boolean function
definitions to omit function applications:

Bodc = B ∪ V ∪ {x ∧ y | x, y ∈ Bodc} ∪
{x ∨ y | x, y ∈ Bodc} ∪ {¬x | x ∈ V}

Defc = F → Bodc

Note that Defc ⊆ Def. Furthermore, because
{∧,∨,¬} are functionally complete for Bool, and by
de Morgan’s laws, Bodc is equivalent to B

n → B, and
thus is a subset of Bool. Let Bodc be ordered by en-
tailment.

Now we define a functional F : Def → Defc → Defc
in terms of E : Defc → Bodc → Bodc as follows:

F D C = (E C) ◦ D

E C t = t where t ∈ B

E C v = v where v ∈ V

E C (f v1 . . . vn) = C f v1 . . . vn

E C (c1 ∧ c2) = (E C c1) ∧ (E C c2)
E C (c1 ∨ c2) = (E C c1) ∨ (E C c2)

E C (¬v) = ¬v

We say C ∈ Defc is a closed form for equation system
D ∈ Def iff C is a fixed point of F D, that is, if
C = F D C. Note that due to the way negation
is included in our definition of Bod, F is monotone,
ensuring that F D has fixed points. In what follows we
shall take the closed form of D ∈ Def to be lfp(F D),
although any fixed point will do, and our algorithm
can be modified to find all fixed points.

For convenience we shall restrict the syntax of Bod
to a specialised disjunctive normal form that sepa-
rates closed parts of function definitions as follows:

Bod = {f ∨ d | f ∈ Bodc ∧ d ∈ Dis}

Dis = Con ∪ {d1 ∨ d2 | d1, d2 ∈ Dis}

Con = {f ∧ c | f ∈ Bodc ∧ c ∈ Ap}

Ap = (F × Vn) ∪ {c1 ∧ c2 | c1, c2 ∈ Ap}

By distributivity, commutativity, and associativity of
conjunction and disjunction, this new definition has
equivalent expressiveness to the previous one. How-
ever, it makes our algorithms simpler.

3.3 A tabular view of equation solving

Consider the Boolean function definitions:

f(x, y) = (x↔ y)
g(x, y) = (x↔ y) ∨ g(y, x)

h(x) = g(0 , x)

Although these definitions do not fit the specified syn-
tax, it is easy to rewrite them as equivalent definitions
that do:

f : (v1 ∧ v2) ∨ (¬v1 ∧ ¬v2)
g : (v1 ∧ v2) ∨ (¬v1 ∧ ¬v2) ∨ g(v2, v1)
h : ¬vn+1 ∧ g(vn+1, v1)

v1 v2 g(v1, . . . , vn)
0 0 1
0 1 g(1 , 0 )
1 0 g(0 , 1 )
1 1 1

v1 h(v1, . . . , vn)
0 g(0 , 0 )
1 g(0 , 1 )

Table 1: Tabular view of example

iteration
v1 v2 g(v1, v2) 0 1 2
0 0 1 0 1 1
0 1 g(1 , 0 ) 0 0 0
1 0 g(0 , 1 ) 0 0 0
1 1 1 0 1 1

Table 2: Tabular Kleene iteration

Note that v1 and v2 are the first two formal parame-
ters, and vn+1 is the smallest local variable, implicitly
existentially quantified over the function body.

Table 1 presents the values of these functions for
each combination of inputs. We have omitted f for
brevity, as it is defined without reference to any func-
tions, so its table is an ordinary truth table. Since g
only involves parameter variables v1 and v2, we need
only consider 4 cases, and h only requires 2 cases. To
handle the unconstrained variable vn+1 in the defi-
nition of h, we use the disjunction of the body with
vn+1 given value 1, and with it given value 0.

These tables do not show a final solution to these
equations, as they are not in closed form. However,
we can use Kleene iteration to find a closed form,
as shown in Table 2. Assuming we wish to find the
least fixed point, we begin in iteration 0 by assigning
the value 0 to all rows. In iteration 1, we compute
the value for each row, using the values assigned in
iteration 0 wherever the definition of a row refers to a
another row (or the same row). Iteration 2 repeats the
process, using the values from row 1. In this example,
iteration 1 is a fixed point, as confirmed in iteration 2.

3.4 Towards ROBDDs

The tabular approach taken above will work well for
functions of low arity. However, for functions with
dozens of arguments, it quickly becomes unworkable.
In this subsection we shall reformulate the tabular
approach to work on an ROBDD-like structure.

Our revision of the ROBDD structure is similar to
our relaxation of the truth table: we allow Boolean
function invocations, as well as 0 and 1, as sinks of the
structure. Just as we did for the tabular approach,
we take advantage of the fact that, at the sinks, the
values of all relevant formal parameter variables are
known. Thus the “formulae” we allow for sinks are
in fact just references to other sinks in the structure.
Figure 3 shows the example of Section 3.3 in this view.

The structure is an ordered binary decision tree
down to its leaf nodes; however, leaf nodes may re-
fer to one another, even cyclically. It is also ordered
in the same sense as an OBDD. It is not reduced,
as the destinations of links from a leaf node depend
upon that node’s position in the tree. We refer to this
structure as a tree because of its underlying structure,
although it is, strictly speaking, a directed graph.

In the style of an ROBDD we would like to be able
to evaluate the function for a given input by follow-
ing the arcs until we reach a terminal node. If we
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f(x, y) = x ↔ y g(x, y) = (x ↔ y) ∨ g(y, x) h(x) = g(0 , x)

Figure 3: ROBDD-like views of recursive definitions

wish to evaluate the structure in Figure 3 for g(0 , 0 )
or g(1 , 1 ) then we have no problems. But when we
attempt evaluation of g(0 , 1 ) we are referred to the
value of g(1 , 0 ), and vice versa. Solving this problem
is the focus of the remainder of this section. Before
we can tackle that, however, we must generalise our
data structure.

The example of Figure 3 does not show the full
generality of function bodies permitted by Bod. In
particular, it does not illustrate disjunctions of con-
junctions of function invocations, nor does it make
clear how to handle existentially quantified variables
in function calls.

To handle disjunctions of conjunctions of function
invocations, we generalise our definition of the DDS
structure to specify that leaf nodes in the structure
may be either 0, 1, or a disjunction of conjunctions
of Boolean function invocations. We shall depict the
new sink node graphically as an unlabelled node with
a number of “pimples,” each of which refers to a num-
ber of other sinks in the structure. The intended
meaning is that the pimpled node should be inter-
preted as true iff at least one of the pimples are true.
A pimple is considered to be true if all the nodes it
refers to are true.

Consider the recursive definition:

f(x, y) = x ∧ y
∨ x ∧ f(y, x) ∧ f(x, x)
∨ x ∧ f(x, x)

This definition can be depicted as follows:

x

y

1

0

The pimpled node in this example represents the ex-
pression (1 ∧ 0 ) ∨ 1 = 1 .

Existentially quantified variables are slightly
harder to handle. A naive approach would be to treat
an existentially quantified variable the same as any
other, and simply extend the tree with new variables.
While this approach would indeed work, it leaves the
task of eliminating the existentially quantified vari-
ables.

Since existentially quantified variables are all
greater (in the variable ordering) than all formal pa-
rameter variables, they are always placed on the tree’s
fringe. Thus eliminating these variables is a matter of
disjoining all the sinks below the greatest parameter
variable. Since our representation of sinks explicitly
allows disjunctions, handling existentially quantified

variables is simply a matter of coalescing the disjunc-
tions that would appear anywhere under the greatest
parameter variable into a single sink node.

Consider, for example, the function:

f(x, y) = (x ∧ y) ∨ (∃u.f(x, u))

We treat the ∃u.f(x, u) expression as if it were (the
equivalent) f(x, 0 ) ∨ f(x, 1 ), leading to this:

x

y

1

3.5 Dendritic decision structures

We can improve on the TD algorithm by exploiting
properties specific to our Boolean domain. Two ob-
servations are crucial here. First, as the recursively
defined objects are simply truth values, living in a do-
main of height one, once a variable’s value changes, it
never needs to be re-visited. Second, as a fringe node
in the structure effectively is an expression in DNF, a
simple bookkeeping technique allows us to determine
an appropriate time to re-evaluate a variable. Ideally
we would like to re-evaluate a variable only when that
evaluation would trigger a change of value. The idea
is that, when the number of conjuncts in each dis-
junct is high, we often find that re-evaluation of one
conjunct does not change the value of the conjunc-
tion. If a variable’s right hand side has d disjuncts
with c conjuncts in each, then it is possible for all but
one conjunct in each disjunct to become true with-
out making the whole equation true. This means it
may take (c − 1)d + 1 evaluations before the variable
becomes true.

It would naturally be more efficient if we could
cache the work we did during the first evaluation and
re-use it, instead of repeating it. The third contri-
bution of this paper is to propose a very simple data
structure and corresponding algorithm that does this
very efficiently.

We consider three possible states for a variable:
Undetermined (⊥), definitely true (1 ), and definitely
false (0 ). Evaluation follows the rules of Kleene’s
logic:

¬
⊥ ⊥
0 1
1 0

∧ ⊥ 0 1
⊥ ⊥ 0 ⊥
0 0 0 0
1 ⊥ 0 1

∨ ⊥ 0 1
⊥ ⊥ ⊥ 1
0 ⊥ 0 1
1 1 1 1

To implement these rules we introduce an efficient
structure to represent a partially evaluated disjunc-
tion. A “pimple” off a node v becomes a receptor
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which keeps count of the number of nodes that must
be true before v becomes true. Dependency arrows
become reversed, turning into axons pointing from
nodes to receptors. We call the resulting structures
dendritic decision structures, or simply DDSs. Their
purpose is to speed up processing of cyclic dependen-
cies discovered during evaluation.

Take the situation where a depends on b and b
depends on a. If we start evaluation at a we discover
a cycle when we request a’s value during evaluation
of b. In the standard recursive algorithm we would
record the information that b depends on a, and use
that to remember that b must be re-evaluated if a’s
value ever changes. In our new approach we create
an axon at a and a receptor at b. The receptor has a
value of 1, indicating that there is a conjunction in b
with one and only one axon targeting it. Note that we
only create a receptor for a node if the value of that
variable depends upon as yet undetermined variables.

If the value of a changes to 1 then we follow the
axon to the receptor, which is decremented. If and
when a receptor reaches 0, all values in the conjunc-
tion in b represented by the receptor have become
1 . In that case, b has been sufficiently stimulated to
change and is given value 1 .

3.6 The algorithm

Figure 4 gives the algorithm that uses DDSs.
The method uses a principle of aggressive propa-

gation of truth. For each node x, a set of axons point
to the nodes that depend on the value of x. More
specifically, the axons point to receptors that repre-
sent conjunctions containing x. We use the notation
u 7→ (v, c) for an axon that emanates from node u
and points to the receptor c associated with node v.
The procedure fire shows what happens when a node
u has been determined to be 1: Every receptor (v, c)
pointed to is decremented, and if and when it reaches
0, v is deemed to have value 1 as well. Solving is then
complete as far as v is concerned, and the immedi-
ate consequences of v taking value 1 are pursued: v
activates its axons.

As in the previous algorithm, a set Called keeps
track of nodes for which an iteration has been started
but not completed. Another set, Evaluated , keeps
track of nodes that no longer need be considered.
This, however, does not just mean nodes that have
a final value 0 or 1. Once a node has been examined,
it is not “solved for” again; it is considered “evalu-
ated”. However, it may still change its value from ⊥,
through appropriate activation of axons that point to
the node.

3.7 An example

Figure 5 gives an example to illustrate the benefits
of axons and receptors. If we begin evaluation at a
and evaluate right-hand sides from left to right then
we immediately find we must evaluate b, which sends
us to c and then to d, which refers back to a. At
this point a receptor is associated with d, starting
with the value 1, and an axon is created at a pointing
to that receptor. If a ever changes value later, we
can immediately determine that d depends on it and
update its value directly.

Continuing with evaluating d we reach the refer-
ence to b, also in the same conjunction. b is also under
evaluation, so we create an axon on b pointing back
to the same receptor and increase the value of the re-
ceptor to 2. If both a and b take the value 1 then the
receptor will reach 0 and d will be set to 1 .

procedure main
σ := ∅; Called := ∅; Evaluated := ∅;
foreach x ∈ V do solve(x) od

end

function solve(x : V ) : D
/* Solve for variable x */
if x ∈ Evaluated then

/* x has final value or is ⊥ and has receptors */
return σ(x)

elseif x ∈ Called then
/* x is currently under evaluation */
return ⊥

else
/* x has not been examined before */
Called := Called ∪ {x};
σ(x) := evalrhs(x);
Called := Called \ {x};
Evaluated := Evaluated ∪ {x};
if σ(x) = 1 then fire(x) fi;
return σ(x)

fi
end

function evalrhs(x : V ) : D
/* Evaluate right hand side of x’s definition */
foreach disjunct d in rhs(x) do

Uncertain := ∅;
foreach conjunct c in d do
if solve(c) = ⊥ then

Uncertain := Uncertain ∪ {c}
fi;

od;
if Uncertain 6= ∅ then

Create receptor (x, c) with value |Uncertain|;
foreach u ∈ Uncertain do

Create an axon u 7→ (x, c)
od

fi
od;
if all conjuncts of any disjunct have value 1 then
return 1

elseif x has receptors then
return ⊥

fi;
return 0

end

procedure fire(u : V )
/* Activate all axons from node u */
foreach axon u 7→ (v, c) do

Decrement c;
if c = 0 then

σ(v) := 1 ;
Evaluated := Evaluated ∪ {v};
fire(v)

fi
od

end

Figure 4: The algorithm based on DDSs

We do the same with the second conjunction in
d’s right-hand side, creating a second axon at a and
an axon at c, both pointing to another receptor with
value 2. This concludes the evaluation of d. We will
never evaluate d again, although we may visit it later
as the result of an axon firing. The configuration of
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a = b

b = c ∨ e

c = d ∧ f

d = (a ∧ b) ∨ (a ∧ c)
e = 1

f = 0

Dependencies:

a b c d

e f

Axons and receptors:

a b c d

e f

2
2

Figure 5: Use of axons and receptors

receptors and axons after processing of d is shown in
figure 5. If we had started from a different defini-
tion, the configuration could be different. Note that
in this figure and the following diagrams we omit the
tree structure above the leaf nodes, as they do not
contribute to the discussion.

Evaluation now returns to c. The value of d re-
mains ⊥ for now. c requires f , which immediately
evaluates to 0 , so c has value 0 also. Receptors and
axons are now:

a b c d

e f

2
2

Evaluation of c has finished, so we return to evalu-
ating b. This requires e which immediately evaluates
to 1 . As the two variables that b depends on are dis-
joined, the value of b is 1 . Now the axon emanating
from b is fired, reducing the value of its target recep-
tor to 1. No action is taken at d, as all receptors are
still non-zero:

a b c d

e f

1
2

Finally, we return to evaluation of a. It depends only
on b which now has value 1 , so a is 1 . This causes
two axons to fire. The order of firing is not impor-
tant, so let us consider the axons in the order in which
they were created. The first axon’s target receptor is
decremented to 1. The second axon’s target receptor
is decremented to 0. This receptor represents a con-
junction in which all conjuncts are 1 , so we can set
the value of d to 1 . At this point we should activate
d’s axons as well, but there are no axons for this node.
Evaluation of a has finished, and the system is solved
completely. The solution is:

a = b = d = e = 1

c = f = 0

3.8 Unresolved axons

It is possible to be left with a cycle of axons and re-
ceptors when we finish evaluation of the initial vari-
able. The simplest example of this involves just two
variables.

a = b
b = a

a b

1

1

Clearly, this system has two solutions. In general, for
n sets of variables which are linked by unresolved ax-
ons there are 2n solutions to the system of equations.
The sets of variables are SCCs, considering axons as
edges. We obtain the least solution by setting all
variables in all SCCs to 0 , but any solution can be
generated easily at this point.

3.9 Fine-tuning the algorithm

We use shortcut Boolean evaluation within evalrhs
for a considerable gain in efficiency. Once we have
determined that a conjunct is 0 , there is no need to
continue evaluation of other conjuncts within that dis-
junct. Likewise, once any disjunct is determined to be
1 , we can finish evaluation of the variable altogether.

If we have decided in advance that we want to find
the least solution then we can avoid creating some ax-
ons and receptors. By incorporating Tarjan’s SCC de-
tection algorithm (Tarjan 1972) into our algorithm we
can determine when we are at the “head” of an SCC—
the first variable of the SCC we discovered (also the
variable we finish evaluation of last). If a variable
evaluating to ⊥ is known to be the head of an SCC
then we may safely set it to 0 , as we will be doing
that in the final phase in any case. It is also unneces-
sary to place any receptors on the head of an SCC as
it always takes a final value. If we are lucky this will
resolve all variables in the SCC to a final value. If we
are unlucky we may get a case such as the following:
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a = b
b = c
c = a ∨ b

a

c b

11

1

The diagram shows the state when a finishes eval-
uation. As a is the head of an SCC and its value is
⊥, we set it to 0 . This disables the receptor it points
to, but cannot resolve the value of c. Likewise, b does
not receive a final value.

To avoid the final phase of finding unresolved ax-
ons and setting them to 0 then we can keep a record
of all variables which were given receptors within each
SCC. When we finish with the head of the SCC we
can go through this list and set any variables which
still have the value ⊥ to 0 . This helps to reduce the
amount of space needed by the algorithm, as fewer
axons and receptors are in existence at any one time.

4 Experimental evaluation

We have evaluated the algorithm discussed above, in-
cluding the optimisations discussed in Section 3.9,
for groundness analysis over the domain Pos for
Prolog programs (Armstrong, Marriott, Schachte &
Søndergaard 1998). The analysis derives the possi-
ble groundness states on success of each predicate
in a program, possibly consisting of many source
files. All source files are read into memory simulta-
neously, but predicates are only analysed simultane-
ously when required. We have implemented the fixed
point algorithm in C and the abstracter in Prolog,
using an established ROBDD manipulation library
(Schachte 1996), written in C, in both.

The computing/test environment used has the fol-
lowing characteristics: desktop system with X server
running, a timer with 1ms resolution (not the stan-
dard 10ms), Debian GNU/Linux version 3.1, Linux
kernel version 2.6.8, Intel Pentium 4 3.0GHz CPU
with 1 MB cache, 1 GB memory.

Here are the characteristics of the benchmarking
undertaken:

• Timings include only fixed point processing, not
the translation to Boolean form.

• Each test was performed sufficiently often to con-
sume 10 minutes, up to a maximum of 1000 rep-
etitions, and the smallest time was taken.

• The majority of programs benchmarked had re-
sults under 2 ms for all algorithms. These pro-
grams are not included in the table as the results
were considered too inaccurate.

• NT stands for a single repetition which took more
than 60 seconds.

4.1 Challenging examples

Table 3 looks at the performance of the new algo-
rithm on the “challenge” examples for Kleene itera-
tion. These examples are difficult because they re-
quire the maximum number of iteration steps to find
a fixed point — a number which grows exponentially
in the number of arguments.

Table 3: Challenge benchmark results (ms)

Benchmark Kleene DDSs
chain8 7.20 1.50
chain10 48.87 6.42
chain12 508.65 28.62
chain14 8382.47 130.52
chain16 NT 588.78
def8 8.56 0.87
def10 59.02 3.39
def12 569.65 15.10
def14 11362.96 66.41
def16 NT 295.14
challenge6 2.15 8.09
challenge8 18.84 150.27
challenge10 292.38 2767.88
challenge12 10099.08 48657.50

Table 4: Standard benchmark results (ms)

Benchmark Kleene DDSs
reducer 2.11 2.82
press 2.13 2.26
ann 2.42 7.49
bryant 2.46 20.83
ili 2.61 2.78
qplan 2.71 3.29
parser dcg 3.09 4.42
neural 3.54 3.68
scc1 3.73 4.00
ga 3.98 4.81
simple analyzer 5.29 21.10
sim v5-2 5.73 6.15
peval 7.51 9.17
chat parser 13.08 240.96
chat 13.36 247.43
chat 80 39.37 345.94

Each program is parametrised over an integer.
The minimum value for each parameter is that for
which analysis took at least 2ms for at least one al-
gorithm. For chain and def, the value of the param-
eter is also the number of argument variables in each
predicate. For challenge, the number of argument
variables is twice the value of the parameter.

The chain class of programs are due to Codish
(1999). The def and challenge classes of programs
are due to Genaim et al. (2001). We already met
an example recursive definition arising from the def
family in Section 1: the function p is the one that
arises from def4.

Examining traces of execution with Val-
grind (Nethercote & Seward 2003) reveals much
about the behaviour of both algorithms. Of course,
the cost of Kleene iteration grows quickly as the num-
ber of arguments is increased because the number
of iteration steps grows exponentially. But to make
matters worse, the size of the data structures grows
with the number of arguments, so the cost of each
iteration step also grows. The new algorithm does
create and traverse dependency chains of exponential
length (this appears to be unavoidable in some
cases), however it only traverses each chain once.

The relative performance of the challenge class
of programs is interesting to observe. For all sizes of
challenge problems considered in our testing, Kleene
iteration outperforms our algorithm. However, note
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that for the higher arity cases, the time cost of Kleene
iteration grows faster than that of our algorithm.
For slightly higher arities, our algorithm will over-
take Kleene iteration. In fact, for all three problem
classes in Table 3, the cost of Kleene iteration grows
substantially faster than the cost of our algorithm.

4.2 Standard benchmarks

Table 4 shows results for a number of small standard
test cases. For these, Kleene iteration performs bet-
ter or much better than our new algorithm. The new
algorithm can be quite efficient, but it only takes one
predicate with high arity or a large number of exis-
tentially quantified variables to make it impractical.

The examples for which our algorithm perform sig-
nificantly slower merit closer examination. Analysis
of the chat parser (chat, chat parser, chat 80) was
particularly expensive. Most of the analysis time
was spent on an SCC which contains a predicate
possessive/14. This predicate contains 8 local vari-
ables which are abstracted as existentially quantified
variables. For each of the 214 combinations of ar-
gument variables, there are 28 combinations of values
for the existentially quantified variables, any of which
could make the object variable take value T . Our al-
gorithm checks each of these combinations, leading to
poor performance in these cases. Clearly, for our ap-
proach to be practical for groundness analysis, it will
be necessary to find ways to avoid complete explo-
ration of all possible inputs and all possible valuations
of existentially quantified variables.

5 Related work

One broad class of fixed point algorithms use a work-
list as a basic structure. These algorithms usually
include some method of detecting dependencies be-
tween variables. The general idea is to add variables
into the worklist whenever a value they depend on
has been changed. Variables are then selected from
the worklist to be re-evaluated until the worklist is
empty.

The simplest worklist algorithm adds all variables
to the worklist when any variable changes value. This
requires no knowledge of dependencies between vari-
ables and is trivially correct. However, if variables
from the worklist are chosen in a poor order, the
method may end up taking the maximum number
of iterations. We can improve on this by making a
preliminary pass over all the right hand sides, and
finding which variables depend (statically) on other
variables. For each variable x we want to know the
set infl(x), that is, the variables that depend on x.
The algorithm of Kildall (1973) uses this idea. Many
variants of this idea are possible, depending on policy
for removal of worklist items, and the order in which
elements are added. A good approach appears to be
eager evaluation (Wunderwald 1995).

More efficient worklist algorithms track “dynamic”
dependencies. The dependencies that can be read off
a recursive definition over-approximate the actual de-
pendencies, which may well change during evaluation.
For example, raising the value of x from x = F to
x = T in the expression x∨ y removes its dependence
on the value of y. “Dynamic” algorithms have such
independence detection built in. Variants include the
methods of Jørgensen (1994) and Vergauwen, Wau-
man & Lewi (1994), as well the W algorithm of Fecht
& Seidl (1999).

A clever alternative to worklist algorithms with
dynamic dependency detection is offered by Le Char-
lier & Van Hentenryck (1992). Their work is based on
the observation that when a variable has many depen-
dencies, it is highly likely that the value we get will
change during the computation. It would be better to
evaluate those variables that do not depend on oth-
ers first, followed by evaluating those which depend
on variables which already have their final value, and
so on. The method of Le Charlier & Van Henten-
ryck aims at maintaining the precision provided by
dynamic dependency detection while at the same time
processing variables in an optimal order. For a vari-
able which has not been evaluated yet, the worklist
solver uses the initial approximation ⊥. Le Charlier
& Van Hentenryck, on the other hand, suspend evalu-
ation of the current variable and eagerly begin evalua-
tion of the needed variable. This leads to the recursive
algorithm shown in Figure 2. A further refinement is
the WRT algorithm of Fecht & Seidl (1999).

Our algorithm is based on Le Charlier & Van Hen-
tenryck (1992), but is otherwise incomparable to the
methods discussed here, as it exploits properties of
the Boolean domain to make shortcuts not available
to a general algorithm.

Fecht & Seidl (1999) examine the choice of which
equation to re-evaluate first in a system of recursively
defined equations. They demonstrate that a work-
list based solver which uses timestamps as a method
of dynamic SCC detection is generally more efficient
than the approach of Le Charlier and Van Henten-
ryck. As a measure of efficiency they use the number
of evaluations of right hand sides. The complexity of
each right hand side is not taken into account. The
improved efficiency consists of differences in handling
strongly connected components. These differences do
not always result in an improvement however.

The issues discussed by Fecht and Seidl are not rel-
evant to us. Once we have found an SCC using depth
first search, we treat it as a single entity and solve it
at once. At the valuation level, we examine each val-
uation only once, revisiting it only when required by
an axon. This makes a comparison based on number
of evaluations of right hand sides inappropriate.

Englebert, Le Charlier, Roland & Van Hentenryck
(1993) introduce two optimisations which can be ap-
plied to many fixpointing algorithms. One is clause
prefix dependency, and the other is caching of oper-
ations. The first improvement avoids re-evaluating
a clause prefix when no abstract value on which it
depends has been updated. The second improvement
consists of caching all operations on substitutions and
reusing the results whenever possible. They note that
the second optimisation largely subsumes the first, as
the caching eliminates most of the cost of evaluating
clause prefixes. Analysis time was reduced by around
28% in a C implementation by these methods. Our
approach of using DDSs effectively implements this
caching optimisation.

Fecht & Seidl (1998) look at limiting the calcula-
tions needed to raise a particular value in the right
hand side from its previous approximation to the
new approximation. Instead of recalculating the right
hand side from the new value, they calculate the right
hand side for the difference between the new and old
values, defined as diff (dold, dnew) = ddiff such that
dold ⊔ ddiff = dnew . The result is then joined with
the result of the old calculation. In our setting the
domain has only two values, so this optimisation is
not useful.
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6 Conclusion

We have presented a novel approach to the problem
of finding closed forms of recursively defined Boolean
functions. Our approach centers on the idea of solving
these equations one valuation at a time. The advan-
tage of this is that the solution for a single valuation is
ultimately a Boolean value. This means that, since we
are climbing an ascending chain of height one, once
the solution for a valuation changes from an initial
value of false, it will not change again.

To capitalise on this advantage, we have intro-
duced a new data structure, the dendritic decision
structure. This data structure captures the depen-
dency relation among valuations, leading to an al-
gorithm for finding closed forms that very efficiently
handles problems requiring many iterations when
solved by Kleene iteration.

This new algorithm, like Kleene iteration, suf-
fers from very bad worst-case performance. Unfor-
tunately, this worst-case performance occurs in our
testing domain of groundness analysis of common pro-
grams for our algorithm, but only on rare or artificial
cases for Kleene iteration. Therefore we do not yet
consider this algorithm suitable for practical use in
groundness analysis. Further work is needed to make
it competitive in general. In particular, it will be nec-
essary to find a way to avoid building and exploring
the entire DDS structure for a function whenever pos-
sible. It will also be important to avoid exploring all
valuations for existentially quantified variables when-
ever possible.

On the positive side, it is clear that a hybrid ap-
proach would give the best of both worlds. We can
perform a few steps of Kleene iteration, which is
enough to solve the majority of inputs. If this does
not produce a solution, then we can use the last ap-
proximation from Kleene iteration as a starting point
for our algorithm. This is easily accomplished by re-
placing the fixed part of the definitions of all func-
tions in the SCC being solved with the corresponding
current Kleene approximation. Based on the bench-
mark results, such an approach would be efficient for
all cases except challenge, which is difficult for all
algorithms.
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Abstract

Learning from examples is an important characteris-
tic feature of intelligence in both natural and artifi-
cial intelligent agents. In this paper, we study learn-
ability of term rewriting systems from positive exam-
ples alone. We define a class of linear-bounded term
rewriting systems that are inferable from positive ex-
amples. In linear-bounded term rewriting systems,
nesting of defined symbols is allowed in right-hand
sides, unlike the class of flat systems considered in
Krishna Rao [8]. The class of linear-bounded TRSs is
rich enough to include many divide-and-conquer pro-
grams like addition, logarithm, tree-count, list-count,
split, append, reverse etc.

1 Introduction

Starting from the influential works of Gold [5] and
Blum and Blum [3], a lot of effort has gone into de-
veloping a rich theory about inductive inference and
the classes of concepts which can be learned from
both positive (examples) and negative data (coun-
terexamples) and the classes of concepts which can
be learned from positive data alone. The study of
inferability from positive data alone is important be-
cause negative information is hard to obtain in prac-
tice –positive examples are much easier to generate
by conducting experiments than the negative exam-
ples in general. In his seminal paper [5] on induc-
tive inference, Gold proved that even simple classes
of concepts like the class of regular languages cannot
be infered from positive examples alone. This strong
negative result disappointed the scientists in the field
until Angluin [1] has given a characterization of the
classes of concepts that can be infered from positive
data alone and exhibited a few nontrivial classes of
concepts inferable from positive data. This influen-
tial paper inspired further research on the inductive
inference from positive data. Since then many pos-
itive results are published about inductive inference
of logic programs and pattern languages from posi-
tive data (see a.o., [9, 2, 10, 7, 8]. To the best of
our knowledge, inductive inference of term rewriting
systems from positive data has not received much at-
tention – [8] is the only publication on this topic so
far.

In the last few decades, term rewriting systems
have played a fundamental role in the analysis and
implementation of abstract data type specifications,
decidability of word problems, computability theory,

Copyright copyright 2006, Australian Computer Society, Inc.
This paper appeared at Computing: The Australasian The-
ory Symposium (CATS2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 51. Barry Jay and Joachim Gudmundsson, Eds. Repro-
duction for academic, not-for profit purposes permitted pro-
vided this text is included.

design of functional programming languages (e.g. Mi-
randa), integration of functional and logic program-
ming paradigms, and artificial intelligence – theorem
proving and automated reasoning.

In this paper, we propose a class of linear-bounded
term rewriting systems that are inferable from pos-
itive examples. Linear-bounded TRSs have a nice
property that the size of redexes in an innermost
derivation starting from a flat term t is bounded by
the size of the initial term t. This property ensures
that we only need to consider rewrite rules whose sides
are bounded by the size of the examples in learning
linear-bounded TRSs from positive data.

The class of linear-bounded TRSs is rich enough to
include many divide-and-conquer programs like addi-
tion, logarithm, tree-count, list-count, split, append,
reverse etc. The relation between the class of linear-
bounded TRSs and the class of simple flat TRSs re-
cently introduced in [8] is discussed in a later section.
In particular, flat TRSs can define functions (like dou-
bling), whose output is bigger in size than the input,
which is not possible with linear-bounded TRSs. On
the other hand, flat TRSs do not allow nesting of de-
fined symbols in the rewrite rules, which means that
we cannot define functions like reverse and quick-sort
that can be defined by a linear-bounded TRS. Due to
space restrictions, many proofs are omitted.

The rest of the paper is organized as follows. The
next section gives preliminary definitions and results
needed about inductive inference. In section 3, we
define the class of linear-bounded TRSs and establish
a few properties of them in section 4. The inferability
of linear-bounded TRSs from positive data is estab-
lished in section 5. The final section concludes with
a discussion on open problems.

2 Preliminaries

We assume that the reader is familiar with the basic
terminology of term rewriting and inductive inference
and use the standard terminology from [6, 4] and [5,
9]. The alphabet of a first order language L is a tuple
〈Σ,X〉 of mutually disjoint sets such that Σ is a finite
set of function symbols and X is a set of variables..
In the following, T (Σ,X ) denotes the set of terms
constructed from the function symbols in Σ and the
variables in X . The size of a term t, denoted by |t|,
is defined as the number of occurrences of symbols
(except the punctuation symbols) occurring in it.

Definition 1 A term rewriting system (TRS, for
short) R is a pair (Σ, R) consisting of a set Σ of func-
tion symbols and a set R of rewrite rules of the form
l → r satisfying:
(a) l and r are first order terms in T (Σ,X ),
(b) left-hand-side l is not a variable and
(c) each variable occuring in r also occurs in l.
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Example 1 The following TRS defines multiplica-
tion over natural numbers.

a(0, y) → y
a(s(x), y) → s(a(x, y))

m(0, y) → 0
m(s(x), y) → a(y, m(x, y))

Here, a stands for addition and m stands for multipli-
cation. ¦
Definition 2 A context C[, . . . , ] is a term in
T (Σ ∪ {¦},X ). If C[, . . . , ] is a context contain-
ing n occurrences of ¦ and t1, . . . , tn are terms then
C[t1, . . . , tn] is the result of replacing the occurrences
of ¦ from left to right by t1, . . . , tn. A context con-
taining precisely 1 occurrence of ¦ is denoted C[ ].

Definition 3 The rewrite relation ⇒R induced by
a TRS R is defined as follows: s ⇒R t if there is a
rewrite rule l → r inR, a substitution σ and a context
C[ ] such that s ≡ C[lσ] and t ≡ C[rσ]. We say that
s reduces to t in one rewrite (or reduction) step if
s ⇒R t and say s reduces to t (or t is reachable from
s) if s ⇒∗

R t, where ⇒∗
R is the transitive-reflexive clo-

sure of ⇒R). The subterm lσ in s is called a redex.
A redex is an innermost redex if no proper subterm
of it is a redex. A derivation s ⇒∗

R t is an inner-
most derivation if each reduction step in it reduces
an innermost redex.

Example 2 The following innermost deriva-
tion shows a computation of the value of the term
m(s(s(0)), s(s(s(0)))) by the above TRS.

m(s(s(0)), s(s(s(0))))
⇒ a(s(s(s(0))), m(s(0), s(s(s(0)))))
⇒ a(s(s(s(0))), a(s(s(s(0))), m(0, s(s(s(0))))))
⇒ a(s(s(s(0))), a(s(s(s(0))), 0))
⇒ a(s(s(s(0))), s(a(s(s(0)), 0)))
⇒ a(s(s(s(0))), s(s(a(s(0), 0))))
⇒ a(s(s(s(0))), s(s(s(a(0, 0)))))
⇒ a(s(s(s(0))), s(s(s(0))))
⇒ s(a(s(s(0)), s(s(s(0)))))
⇒ s(s(a(s(0), s(s(s(0))))))
⇒ s(s(s(a(0, s(s(s(0)))))))
⇒ s(s(s(s(s(s(0))))))

This is one of the many possible derivations from
m(s(s(0)), s(s(s(0)))). Since the system is both ter-
minating and confluent, every derivation (innermost
or not) from this term ends in the same final value
s(s(s(s(s(s(0)))))). ¦
Remark 1 The conditions (b) left-hand-side l is not
a variable and (c) each variable occuring in r also
occurs in l of Definition 1 avoid trivial nonterminating
computations. If a rewrite rule x → r with a varible
left-hand-side is present in a TRS, every term can
be rewritten by this rule and hence no normal form
exist resulting in nonterminating computations. If the
right-hand-side r contains a variable y not present in
the left-hand-side l of a rule l → r such that r ≡ C[y],
then the term l can be rewritten to C[l] (substitution
σ replacing the extra-variable by l) resulting in ever
growing terms and obvious nontermination.

Definition 4 Let U and E be two recursively enu-
merable sets, whose elements are called objects and
expressions respectively.

• A concept is a subset Γ ⊆ U .

• An example is a tuple 〈A, a〉 where A ∈ U and
a = true or false. Example 〈A, a〉 is positive if
a = true and negative otherwise.

• A concept Γ is consistent with a sequence of
examples 〈A1, a1〉, . . ., 〈Am, am〉 when Ai ∈ Γ if
and only if ai = true, for each i ∈ [1,m].

• A formal system is a finite subset R ⊆ E.

• A semantic mapping is a mapping Φ from formal
systems to concepts.

• We say that a formal system R defines a concept
Γ if Φ(R) = Γ.

Definition 5 A concept defining framework is a
triple 〈U,E, Φ〉 of a universe U of objects, a set E
of expressions and a semantic mapping Φ.

Definition 6 A class of concepts C = {Γ1, Γ2, . . .} is
an indexed family of recursive concepts if there exists
an algorithm that decides whether w ∈ Γi for any
object w and natural number i.

Here onwards, we fix a concept defining framework
〈U,E, Φ〉 arbitrarily and only consider indexed fami-
lies of recursive concepts.

Definition 7 A positive presentation of a nonempty
concept Γ ⊆ U is an infinite sequence w1, w2, . . . of
objects (positive examples) such that {wi | i ≥ 1} =
Γ.

An inference machine is an effective procedure
that requests an object as an example from time to
time and produces a concept (or a formal system
defining a concept) as a conjecture from time to time.
Given a positive presentation σ = w1, w2, . . ., an in-
ference machine IM generates a sequence of conjec-
tures g1, g2, · · ·. We say that IM converges to g on
input σ if the sequence of conjectures g1, g2, . . . is fi-
nite and ends in g or there exists a positive integer k0
such that gk = g for all k ≥ k0.

Definition 8 A class C of concepts is inferable from
positive data if there exists an inference machine IM
such that for any Γ ∈ C and any positive presentation
σ of Γ, IM converges to a formal system g such that
Φ(g) = Γ.

We need the following result of Shinohara [9] in
proving our result.

Definition 9 A semantic mapping Φ is monotonic if
R ⊆ R′ implies Φ(R) ⊆ Φ(R′). A formal system R
is reduced w.r.t. S ⊆ U if S ⊆ Φ(R) and S 6⊆ Φ(R′)
for any proper subset R′ ⊂ R.

Definition 10 A concept defining framework C =
〈U,E, Φ〉 has bounded finite thickness if

1. Φ is monotonic and

2. for any finite set S ⊆ U and any m ≥ 0, the set
{Φ(R) | R is reduced w.r.t. S and |R| ≤ m} is
finite.

Theorem 1 (Shinohara [9])
If a concept defining framework C = 〈U,E, Φ〉 has
bounded finite thickness, then the class

Cm = {Φ(R) | R ⊆ E, |R| ≤ m}
of concepts is inferable from positive data for every
m ≥ 1.
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3 Linear-bounded Term Rewriting Systems

In the following, we partition Σ into set D of defined
symbols that may occur as the outermost symbol of
left-hand-side of rules and set C of constructor sym-
bols that do not occur as the outermost symbol of
left-hand-side of rules.

Definition 11 The set DR of defined symbols of
a term rewriting system R(F , R) is defined as
{root(l) | l → r ∈ R} and the set CR of construc-
tor symbols of R(F , R) is defined as F −DR.

To show the defined and constructor symbols ex-
plicitly, we may write the above rewrite system as
R(DR, CR, R) and omit the subscript when such
omission does not cause any confusion. The terms
containing no defined symbols are called construc-
tor terms, and we refer to the terms of the form
f(t1, · · · , tn) such that f is a defined symbol and
t1, . . . , tn are constructor terms as level 1 terms. In
this paper, we only consider constructor systems –
left-hand sides are level 1 terms.

We need the following definition in the sequel.

Definition 12 An argument filter is a mapping π
that assigns to every defined symbol of arity n, a list
of argument positions [i1, . . . , ik] such that 1 ≤ i1 <
i2 < · · · , < ik ≤ n.

Unlike the usual practice in termination (and con-
text sensitive rewriting) literature, we use argument
filters only for defined symbols and do not distinguish
the case of π(f) being a single argument.

The following notion of parametric size over con-
structor terms and level 1 terms is central to our re-
sults.

Definition 13 For a constructor term t, the para-
metric size [t] of t is defined recursively as follows:

• if t is a variable x then [t] is a linear expression
x,

• if t is a constant then [t] is zero,

• if t = f(t1, . . . , tn) then [t] is a linear expression
1 + [t1] + · · ·+ [tn].

For a level 1 term t ≡ f(t1, · · · , tn), the parametric
size [t] of t is defined as [ti1 ]+ · · ·+[tik

] when π(f) =
[i1, . . . , ik].

Example 3 The parametric sizes of constructor
terms a, h(a,x,b), h(g(a), g(g(x)), g(y)) are
0, x + 1, 5 + x + y respectively. The parametric size
of level 1 term f(g(a), g(g(x)), g(y)) with argu-
ment filter π(f) = [1, 3] is [g(a)]+[g(y)] = 1+1+y =
2 + y. ¦

The following function LIgen generates a set of
equations and two sets of linear inequalities from a
given rewrite rule l → r in a constructor system and
an argument filter π (note that π is used by this
function implicitly through Def. 13). It uses fresh
variables V ar1, V ar2, · · · which do not occur in the
rewrite system under consideration.

function LIgen(l → r, π);
begin

EQ := φ; LI1 := φ; LI2 := φ;
i := 0; /* counter for fresh variables. */
while r contains defined symbols do
begin

Let r ≡ C[u1, . . . , um], showing all the level 1
subterms of r;

r := C[V ari+1, . . . , V ari+m];

EQ := EQ ∪ {V ari+1 = u1, . . . , V ari+m = um};
for j := 1 to m do
begin

ineq1i+j := [uj ] ≥ V ari+j ;
ineq2i+j := [l] ≥ [uj ]

end
LI1 := LI1 ∪ {ineq1i+1, . . . , ineq1i+m};
LI2 := LI2 ∪ {ineq2i+1, . . . , ineq2i+m};
i := i + m

end;
LI2 := LI2 ∪ {ineq20 : [l] ≥ [r]};

end;

The above function LIgen introduces one fresh
variable (and one equation in EQ and one inequality
each in LI1 and LI2) corresponding to each defined
symbol in the right-hand side term r of the rule l → r.
If a defined symbol f occurs above another defined
symbol g in r and variables V ari and V arj correspond
to f and g respectively, then i > j. The set EQ of
equations and the numbering of inequalities are only
needed in the proofs in the sequel.

Now, we are in a position to define the class of
linear-bounded TRSs.

Definition 14 Let R be a constructor system and π
be an argument filter. Then, R is a linear-bounded
system w.r.t. π if each rule in it is linear-bounded
w.r.t. π. A rewrite l → r is linear-bounded w.r.t.
π if the inequalities in LI1 imply each inequality in
LI2, where LI1 and LI2 are the sets of inequalities
generated by the function LIgen(l → r, π).

A constructor system is linear-bounded if it is linear-
bounded w.r.t. some argument filter π.

Remark 2 The validity of (linear) inequalities is
traditionally defined as the follows: the inequality
expression1 ≥ expression2 is valid if and only if it
is valid for all possible assignments of values to vari-
ables in it. In the sequel, we only talk of sizes which
are obviously non-negative and hence the inequality
expression1 ≥ expression2 is valid if and only if
it is valid for all possible assignments of non-negative
values to variables in it. According to this, X+1 > X
is valid but X + Y > X is not valid because Y can
take a zero value and X + 0 is not greater than X.
Similarly, 2X > X is not valid because X can take a
zero value. However, both X + Y ≥ X and 2X ≥ X
are valid.

The following examples illustrate the concept of
linear-bounded systems. We use short notations
LI1(l → r) and LI2(l → r) to denote the inequali-
ties generated by LIgen(l → r, π), when π is clear
from the context (and write LI1 and LI2 when the
rule is also clear).

Example 4 Consider the following constructor sys-
tem reversing a list.

app(nil, y) → y
app(cons(x, z), y) → cons(x, app(z, y))
rev(nil) → nil
rev(cons(x, z)) → app(rev(z), cons(x, nil))

We show this system to be linear-bounded w.r.t. argu-
ment filter π such that π(app) = [1, 2] and π(rev) =
[1]. For the first rule, LI1 = φ and LI2 = {y ≥ y}.
Since y ≥ y is a valid inequality, LI1 obviously im-
plies LI2 and hence this rule is linear-bounded. Sim-
ilarly, the third rule can be easily shown to be linear-
bounded (with LI1 = φ and LI2 = {0 ≥ 0}).

For the second rule, LI1 = {z + y ≥ Var1}
and LI2 = {x + y + z + 1 ≥ z + y, x + y + z + 1 ≥
x + Var1 + 1}. The first inequality x+y+z+1 ≥ z+y
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in LI2 is a valid inequality and the second inequality
x+ y+ z+ 1 ≥ x+ Var1 + 1 in LI2 is implied by the
inequality z+y ≥ Var1 in LI1. Therefore, this rule is
linear-bounded.

For the fourth rule, LI1 =
{z ≥ Var1, Var1 + x + 1 ≥ Var2}
and LI2 = {x + z + 1 ≥ z, x + z
+1 ≥ Var1 + x + 1, x + z + 1 ≥ Var2}. The first
inequality x + z + 1 ≥ z in LI2 is a valid inequality,
the second inequality x+ z+ 1 ≥ Var1 + x+ 1 in LI2
is implied by the inequality z ≥ Var1 in LI1, and the
third inequality x+ z+ 1 ≥ Var2 in LI2 is implied by
the two inequalities z ≥ Var1 and Var1+x+1 ≥ Var2
in LI1. Therefore, this rule is linear-bounded too. ¦

4 Some Properties of Linear-bounded Sys-
tems

In this section, we prove some properties of linear-
bounded systems. A nice property of the class of
linear-bounded systems is that it is decidable whether
a given TRS is linear-bounded or not, as this problem
can be reduced to the satisfiability problem of linear
inequalities.

Theorem 2 It is decidable whether a TRS R is
linear-bounded or not.

The following theorem captures the basic idea
of linear-bounded systems – the size of output is
bounded by the size of input.

Theorem 3 Let R be a linear-bounded TRS and t
be a level 1 term with root in D. If t ⇒∗ v is an
innermost derivation and v is a constructor term (i.e.,
a normal form), then the parametric sizes of t and v
satisfy the property [t] ≥ [v].

Further, the size of any innermost redex in the
above derivation is bounded by the size of the initial
term.

Theorem 4 Let R be a linear-bounded TRS and t
be a level 1 term with root in D. If t ⇒∗ u is an in-
nermost derivation such that w is an innermost redex
in u, then the parametric sizes of t and w satisfy the
property [t] ≥ [w].

The above characteristic properties of linear-
bounded TRSs ensure that it is decidable whether
a flat term t reduces to a constructor term u by a
linear-bounded system or not.

Theorem 5 If t is a level 1 term with root in D, u is
a constructor term and R is a linear-bounded TRS,
it is decidable whether t ⇒∗

R u or not.

5 Inferability of linear-bounded TRSs from
Positive Data

In this section, we establish inductive inferability of
linear-bounded TRSs from positive data.

Definition 15 Let LBk be the set of all linear-
bounded rules of the form l → r such that |l|+|r| ≤ k,
FC be the cartesian product of (a) the set of all level
1 terms with root in D and (b) the set of all con-
structor terms, and Φ be a semantic mapping such
that Φ(R) is the relation {(s, t) | s ⇒∗

R t, s is a level 1
term with root in D and t is a constructor term}. The
concept defining framework 〈LBk, FC, Φ〉 is denoted
by LBFk.

The following Lemma follows from Theorems 5
and 2.

Lemma 1 The class of rewrite relations defined by
linear-bounded TRSs is an indexed family of recursive
concepts.

The following theorem plays the predominant role
in proving our main result.

Theorem 6 The concept defining framework LBFk
= 〈LBk, FC, Φ〉 has bounded finite thickness.

Proof : Since Φ is the rewrite relation, it is obviously
monotonic, i.e., Φ(R1) ⊆ Φ(R2) whenever R1 ⊆ R2.

Consider a finite relation S ⊆ FC and a TRS
R ⊆ LBk containing at most m ≥ 1 rules such that
R is reduced w.r.t. S. Let n be an integer such that
n ≥ [t] for every (t, u) ∈ S}. Let S′ be the set of
innermost redexes in innermost derivations t ⇒∗ u
such that (t, u) ∈ S}. By Theorem 4, n ≥ [w] for
every term w ∈ S′. Since R is reduced w.r.t. S, every
rule in R is used in derivations of S. Hence, n ≥ [l]
for every rule l → r ∈ R.

Since Σ is finite, there are only finitely many
linear-bounded TRSs containing at most m rules of
the form l → r such that n ≥ [l] and |l|+ |r| ≤ k (ex-
cept for the renaming of variables)1. Therefore, the
set {Φ(R) | R is reduced w.r.t. S and contains at most
m rules} is finite. Hence, the concept defining frame-
work 〈LBk, FC, Φ〉 has bounded finite thickness. ¦

From this Theorem, Lemma 1 and Theorem 1, we
obtain our main result.

Theorem 7 For every m, k ≥ 1, the class of linear-
bounded TRSs with at most m rules of size at most k
is inferable from positive data.

6 Discussion

In this paper, we study inductive inference of term
rewriting systems from positive data. A class of
linear-bounded TRSs inferable from positive data is
defined. This class of TRSs is rich enough to in-
clude divide-and-conquer programs like addition, log-
arithm, tree-count, list-count, split, append, reverse
etc. To the best of our knowledge, only known re-
sults about inductive inference of term rewriting sys-
tems from positive data are from [8], where the class
of simple flat2 TRSs is shown to be inferable from
positive data. The classes of simple flat TRSs and
linear-bounded TRSs are incomparable for the fol-
lowing reasons.

1. Linear-bounded TRSs only capture functions
whose output is bounded by the size of the in-
puts. Functions like addition, list-count, split,
append, reverse have such a property. But func-
tions like multiplication and doubling are beyond
linear-bounded TRSs as the size of their output
is bigger than that of the input. The following
simple flat TRS computes the double of a given
list (output contains each element of the input
twice as often).

double(nil) → nil
double(cons(H, T)) → cons(H, cons(H, double(T)))

1Since argument filters –and hince the parametric linear– ignore
some arguments, the additonal condition |l|+ |r| ≤ k is needed. In
[8], no argument filters are used and hence this additional condition
is not needed.

2A TRS is simple flat if defined symbols are not nested in any
rule and the sum of the sizes of arguments of defined symbols in
the right-hand side of a rule is bounded by the sum of the sizes of
arguments of defined symbols in the left-hand side [8].
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This shows that there are functions that can
be computed by simple flat TRSs but not by
linear-bounded TRSs.

2. The rewrite system for computing reverse of a list
given in Example 4 is linear-bounded, but it is
beyond simple flat TRSs as it involves nesting of
defined symbols. This shows that there are func-
tions that can be computed by linear-bounded
but not by simple flat TRSs.

Open problem: In view of this incomparability
of the simple flat TRSs and linear-bounded TRSs,
it will be very useful to work towards extending
the frontiers of inferable classes of rewrite systems
and characterize some classes of TRSs having the
expressive power of both simple flat TRSs and
linear-bounded TRSs, and yet inferable from positive
data.
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Abstract

We investigate a scheduling problem motivated by
pull-based data delivering systems where there is a
server keeping a number of pages; and clients request-
ing the same page can be satisfied simultaneously by
one broadcast.

The HEU algorithm of Woeginger (1994) is proven
to be optimal in maximizing the number of satisfied
requests when the pages have equal length and the
requests have tight deadlines. However, we show that
when there are maximum bounds on the number and
weight of requests at any time in the system, the HEU
algorithm is not optimal. We then propose a modified
algorithm, VAR, which is optimal for this case.

Keywords: Competitive analysis; Broadcast schedul-
ing; Tight deadline.

1 Introduction

In this paper, we study an on-line scheduling prob-
lem motivated by pull-based broadcasting systems.
In such a system, there is a server with a number
of pages to be broadcasted to clients upon requests.
Each request r arrives at an arbitrary time a(r) and
requests for some page p(r). The request is satisfied if
page p(r) is broadcasted completely before the dead-
line d(r). Since multiple requests to the same page
can be satisfied simultaneously in a single broadcast,
the challenge here is to determine the schedule, i.e.,
which page to broadcast at what time, so as to sat-
isfy as many simultaneous requests as possible. More
precisely, our objective is to maximize the number of
satisfied requests. Furthermore, we assume that the
requests are given in an on-line fashion: the attributes
of a request r are only known at the time of arrival
a(r). Before that, nothing about r (not even its ex-
istence) is known. Thus we need to design an on-line
algorithm which makes decisions on the fly as the re-
quests come. An on-line algorithm A is said to be
c-competitive if on every input, the number of satis-
fied requests in the schedule produced by an optimal
offline algorithm, denoted by OPT, is at most c times
that of A.

It is easy to see that without pre-emption, an on-
line algorithm A cannot have a bounded competitive
ratio. Imagine A is broadcasting a page for a set J of
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requests when another set R of α|J | new requests for
another page with tight deadlines arrive. If A does
not abort J , OPT will broadcast the page requested
by R and no other requests come later. Thus, the
number of requests satisfied by OPT is α times that
satisfied by A. Since α can be arbitrarily large, A
does not have a bounded competitive ratio. In this
paper, we consider the preemption-restart model in
which the server may pre-empt a broadcast before its
completion and the pre-empted request can only be
satisfied by broadcasting the requested page from the
beginning again.

Previously, Jiang and Vaidya (1998) studied the
problem assuming knowledge of the probability dis-
tribution of the requests. Kim and Chwa (2003) were
the first to design algorithms with provable worst case
performance bounds without assuming such knowl-
edge. When pages are of equal length, they presented
an online algorithm (called AC) and proved it to be
5.828-competitive. Using a tighter analysis, Chan et
al (2004) showed that their GREEDY algorithm is
5-competitive for the general case and 4-competitive
for the special case where all requests have tight dead-
lines. (The GREEDY algorithm is actually the AC
algorithm with a modified parameter which we called
the abortion ratio.)

This special case of tight deadlines is especially
interesting. Here, a request r must be served imme-
diately upon its arrival or else it can never be sat-
isfied. This case is actually related to the weighted
interval scheduling problem in which the input is a
set of weighted intervals with fixed starting and end-
ing points and the goal is to schedule the intervals
so that no two scheduled intervals overlap and the
weighted sum of scheduled intervals is maximized. By
viewing the number of requests to the same page in
our broadcast scheduling problem as the weight of an
interval in the weighted interval scheduling problem,
it is easy to see that algorithms for on-line interval
scheduling can be applied to our problem. For this
problem, Woeginger (1994) proposed the HEU algo-
rithm (which is the same as GREEDY) and proved it
to be 4-competitive. Furthermore, he showed that it
is optimal by giving a matching lower bound for any
deterministic algorithm.

To overcome the lower bound of 4, Miyazawa
and Erlebach (2004) considered randomization. In
particular, they designed a randomized algorithm
called Virtual Weight that has an expected com-
petitive ratio of 3 when the weights are monotonic
non-decreasing and the intervals have agreeable end-
points, i.e., intervals that have earlier start point will
have earlier end point. This leads to the following
question: Are there other special cases of the prob-
lem in which we can obtain an on-line algorithm with
competitive ratio less than 4?

In many situations, various kinds of information to
be broadcasted may be of different importance, or the
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usefulness of the same information varies for different
requesters or at distinct time periods. To model this
situation, we assume that the requests are weighted to
represent their different importance. Moreover, there
may be an upper bound on the number of requests
that can be satisfied by one broadcast in some situa-
tions. For example, it can be due to the limitation of
the physical system, or simply because the number of
clients in a system is bounded. Based on the above
two factors, if the weight of an arbitrary request has
a bounded range, the maximum total weight gained
in a broadcast (i.e., the sum of the weight of every
request satisfied in that broadcast) is also bounded.
We denote by M such an upper bound.

1.1 Our Results

In this paper, we show that when each page has equal
length and there is an upper bound M on the satisfied
weight in one broadcast, the deterministic algorithm,
HEU, has competitive ratio less than 4. Note that the
lower bound of Woeginger applies to the unit length
job case as well. Thus, the upper bound on the total
weight of satisfied requests in one broadcast is essen-
tial for achieving a competitive ratio of less than 4.
Furthermore, we show that HEU is actually not an
optimal algorithm in this case. We show that there
exists an on-line algorithm with competitive ratio ar-
bitrarily close to c∗ where c∗ is a value depending
on M . The main novelty in our algorithm is that it
adaptively changes its abortion ratio according to the
recent history. We also show a matching lower bound
for any deterministic algorithm. Thus our algorithm
is optimal for this case. To implement the algorithm,
we need to compute the value of c∗. Unfortunately,
we are not able to derive a closed-form formula for c∗
in terms of M . For different values of M , we compute
numeric values on c∗ and compare them with those
of HEU.

1.2 Related Work

Broadcast scheduling is such an important problem
that various different models have been studied in the
literature. The one closest to ours seems to be that of
Kalyanasundaran and Velauthapillai (2003) which as-
sumes that the server has a number of files partitioned
into pages of equal length and a client can receive a
file as long as the pages are sent in a cyclic order. In
another model, the server is allowed to break down a
page into different parts and send them over the net-
work simultaneously. Yet, some may assume that the
receivers have certain amount of buffer so that part
of a page previously broadcasted can be cached. All
these are not allowed in our model.

For our model, most of the previous works con-
centrate on minimizing the flow time where the flow
time of a request is the time elapsed between its
arrival and its completion. For example, Aacharya
and Muthukrishnan (1998) and Edmonds and Pruhs
(2002) studied the problem of minimizing the total
flow time while Bartal and Muthukrishan (2000) stud-
ied the minimization of the maximum flow time. Ak-
soy and Franklin (1998) presented a practical param-
eterized algorithm and evaluated it with extensive ex-
periments.

The rest of the paper is organized as follows. Sec-
tion 2 gives some basic notations and preliminaries on
our problem. In section 3 we analyze the competitive-
ness of HEU, and in section 4 we present and analyse
our heuristic algorithm VAR. We prove a lower bound
of competitive ratio in section 5 and present some nu-
meric computations on the competitive ratios of HEU
and VAR in section 6. Finally, section 7 concludes
this paper.

2 Notations and Preliminaries

Since all the pages have equal length, we assume with-
out loss of generality that each page has unit length.
Given an input I (a set of requests) and an on-line
algorithm A, we denote by SA(I) and S∗(I) the sched-
ules produced by A and by an optimal off-line algo-
rithm on I respectively. When A and I are under-
stood from the context, we will simply denote the
schedules by S and S∗ respectively.

A schedule S is a sequence of broadcasts
(J1, J2, . . .) where each broadcast Ji is a set of re-
quests to the same page started being served at time
s(Ji). The broadcasts are indexed such that s(Ji) <
s(Ji′) for i < i′. Denote by |Ji| the total weight of
requests in Ji. For convenience, assume that each re-
quest has weight at least 1 and hence |Ji| ≥ 1. If
s(Ji) + 1 > s(Ji+1), then the broadcast Ji is aborted
by Ji+1; otherwise Ji is said to be completed. We de-
note by |S| the total weight of satisfied requests in
the schedule S, i.e., we only count those completed
requests.

To analyze a schedule produced by an arbitrary
algorithm A, we often find it convenient to parti-
tion the schedule into basic subschedules. A ba-
sic subschedule is a maximal sequence of broadcasts
δ = (J0, J1, . . . , Jm) such that for all 0 ≤ i ≤ m−1, Ji
is aborted by Ji+1 and only Jm is completed. Since
the sequence is maximal, there is either an idle in-
terval or a completed broadcast immediately before
J0. Note that m may equal 0 if there is no aborted
broadcasts in δ.

3 The HEU Algorithm

In this section we will analyse the performance of
HEU. For simplicity, we assume M = 2k for some
integer k ≥ 1.

Suppose HEU is broadcasting a page for a set J
of requests when new requests arrive and let R be
the request set with the largest weight. (If there are
more than one pages having requests with the same
weight, ties are broken arbitrarily.) Then HEU aborts
J if and only if R is at least twice the size of J . (We
say that HEU has abortion ratio 2.) Note that there
is no pending requests since the requests have tight
deadlines. Also, aborted requests will never be satis-
fied.

Theorem 3.1 Suppose each broadcast can satisfy a
total weight of at most M = 2k for some positive
integer k. Then HEU is 4(1− 1/M)-competitive.

Proof. The proof technique is similar to that of
Chan et al. (2004). Consider a basic subschedule
δ = (J0, J1, . . . , Jm) produced by HEU. Recall that
Ji (0 ≤ i ≤ m− 1) is aborted while Jm is completed
by HEU. Thus, HEU gains |Jm| in this basic sub-
schedule.

For OPT, denote by Oi the broadcast OPT starts
when HEU is serving Ji (0 ≤ i ≤ m), i.e., Oi
is the broadcast started by OPT in the interval
[s(Ji), s(Ji+1)) for i < m and in [s(Ji), s(Ji) + 1))
for i = m. Let |Oi| be the total weight of requests
in Oi. Since OPT has complete knowledge of all the
requests, we assume that all its broadcasts will run
to completion. Thus, OPT can gain

∑m
i=0 |Oi| within

this basic subschedule. On the other hand, requests
in Ji can never be satisfied later by OPT due to their
tight deadlines. We will show that

∑m
i=0 |Oi| is at

most 4(1 − 1/M) of |Jm|. Clearly, this implies the
same overall competitive ratio.

By the construction of HEU, |Ji| ≤ 1
2 |Ji+1| (0 ≤

i ≤ m− 1) and hence |Jm| ≥ 2m−i|Ji| ≥ 2m|J0|.
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On the other hand, we have |Oi| < 2|Ji| ≤|Ji+1|, or else HEU will abort Ji to start Oi, con-
tradicting that Ji is aborted by Ji+1. Thus, |Oi| <
( 1
2 )m−i−1|Jm| and hence

m∑

i=0

|Oi| <
m−1∑

i=0

(
1
2
)m−i−1|Jm|+ |Om|

= 2[1− (
1
2
)m]|Jm|+ |Om|.

Since |J0| ≥ 1, we have |Jm| ≥ 2m|J0| ≥ 2m. On
the other hand, |Jm| is no more than the upper bound
M = 2k. Hence, m ≤ k. We will discuss the relation-
ship of m and k in two cases.

(Case 1: m = k). In this case Jm is Jk. Since
2k ≤ |Jk| ≤ 2k, we have |Jk| = 2k = M and then
|Ok| ≤ M = |Jk|. Thus,

∑k
i=0 |Oi| < {2[1 − ( 1

2 )k] +
1}|Jk| ≤ 4[1− ( 1

2 )k]|Jk|.
(Case 2: m ≤ k − 1). Since Om will not abort

Jm, |Om| ≤ 2|Jm| holds. Then,
∑m

i=0 |Oi| < {2[1 −
( 1
2 )m] + 2}|Jm| ≤ {2[1 − ( 1

2 )k−1] + 2}|Jm| = 4[1 −
( 1
2 )k]|Jm|.

In both cases,
∑m

i=0 |Oi|/|Jm| < 4[1 − ( 1
2 )k], that

is, HEU is 4(1− 1/M)-competitive.

4 The VAR Algorithm

In this section we will present and analyze our algo-
rithm, called VAR, which is a heuristic depending on
the upper bound M .

Suppose VAR is broadcasting a page for the set J
of requests when new requests arrive. Let R be the
largest set of requests for the same page, i.e., largest
total weight, ties broken arbitrarily. Further, let J ′
be the empty set if the machine is idle before J was
started. Otherwise, let J ′ be the set of broadcasts
aborted by J . Then VAR will abort J to serve R if
and only if |R| ≥ c(|J | − |J ′|) where c is a constant
in the range (2, 4) to be determined according to M .
Thus, we can view VAR as aborting J if |R|/|J | is
larger than a certain abortion ratio which is changing
according the previous aborted job.

Consider a basic subschedule δ = (J0, J1, . . . , Jm)
produced by VAR. Define a sequence of values
{ri}0≤i<m such that ri = |Ji+1|/|Ji|. Also, define
another sequence {r̃i}0≤i<m such that r̃0 = c, and
for i ≥ 1, r̃i = c(1 − 1

r̃i−1
). Then the following two

lemmas hold.

Lemma 1 For all i ≥ 0 such that r̃i > 1, we have
r̃i+1 < r̃i.

Proof. r̃1 = c − c/r̃0 < r̃0 = c. Suppose that
r̃i < r̃i−1 hold for some i > 0. Then we have that
r̃i+1 = (c − c

r̃i
) < (c − c

r̃i−1
) = r̃i and the lemma

follows.

Lemma 2 For all i ≥ 0 such that r̃i > 1, we have
ri ≥ r̃i.

Proof. By construction of VAR, we have that r0 ≥
c = r̃0. Suppose that ri ≥ r̃i holds for some i ≥ 0.
Then by construction of VAR, ri+1 = |Ji+2|/|Ji+1|
≥ c(1− |Ji|

|Ji+1| ) = c(1− 1
ri

) ≥ c(1− 1
r̃i

) = r̃i+1. Hence,
the lemma follows.

Lemma 3 Assume 2 < c < 4. Then for any M ≥
2, there exists an integer N such that r̃N > 1 but
r̃N+1 ≤ 1.

Proof. We will assume r̃i > 1 for all i ≥ 0 and derive
a contradiction. Expressing r̃i in terms of r̃i+1, we
have

r̃i =
c

c− r̃i+1
.

Consider the difference between consecutive elements
in the sequence {r̃i}, we have

r̃i − r̃i+1

=
c− cr̃i+1 + r̃2

i+1

c− r̃i+1

≥ c(1− c/4)
c− r̃i+1

>
c(1− c/4)

c− 1

where for the first inequality, we use the fact that
(r̃i+1− c

2 )2 ≥ 0, and for the second inequality, we use
the assumption that r̃i+1 > 1. Define ∆ = c(1−c/4)

c−1 .
So ∆ > 0 (for 2 < c < 4) and is independent of the
subscript i. That means r̃0 > r̃N + N∆ > 1 + N∆
which is greater than c for N ≥ 3/∆, a contradiction.
Hence the lemma follows.

Note that N is monotonic increasing with c. We
claim that the product r̃0r̃1 . . . r̃N is also monotonic
increasing with c. First, r̃0 = c and r̃1 = c − 1 are
obviously monotonic increasing with c. Suppose that
r̃i = c(1 − 1

r̃i−1
) is monotonic increasing with c for

some 1 < i < N , then r̃i+1 = c(1 − 1
r̃i

) is monotonic
increasing with c for (1− 1

r̃i
) is monotonic increasing

with r̃i. Given an M ≥ 2, we define c∗ as the (unique)
value of c ∈ (2, 4) such that r̃0r̃1 · · · r̃N = M . Then
we have the following theorem.

Theorem 4.1 For any M ≥ 2, VAR is c-competitive
if c > c∗ and 2 < c < 4.

Proof. Similar to the analysis in Theorem 3.1, we
consider a basic subschedule δ = (J0, J1, . . . , Jm) pro-
duced by VAR. Denote by |δ| what VAR gains in δ,
and by |δ∗| what OPT gains in δ respectively. Let Oi
and |Oi| be as defined before.

By construction of VAR and definition of ri,
|Jm| ≥ rm−1|Jm−1| ≥ · · · ≥ rm−1 · · · r0|J0| ≥
rm−1 · · · r0.

We claim that m− 1 < N . Otherwise, by Lemma
2, definition of c∗, and the assumption that c > c∗,
we have that |Jm| ≥ rN · · · r1r0 ≥ r̃N · · · r̃1r̃0 > M ,
contradicting the assumption that each broadcast can
satisfy a total weight of at most M . In other words,
an arbitrary basic subschedule has finite length.

By the construction of δ, VAR gains |Jm| in δ,
i.e., |δ| = |Jm|. Now we bound |δ∗|. For OPT,
|Oi| < c(|Ji| − |Ji−1|) and |O0| < c|J0|. Other-
wise Oi would have aborted Ji, contradicting that
Ji is aborted by Ji+1. Thus, |δ∗| =

∑m
i=0 |Oi|

< c|J0|+
∑m

i=1 c (|Ji| − |Ji−1|) = c|Jm|.
Since all requests have tight deadlines, OPT can-

not start any broadcast in δ after VAR does. Hence,
|δ∗|/|δ| ≤ c and VAR is c-competitive.

5 A Lower Bound

In this section we will prove that VAR is an optimal
algorithm for this case, that is, c∗ is a lower bound of
the competitive ratio for any deterministic algorithm
for this problem.
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Theorem 5.1 No deterministic algorithm can be
better than c∗-competitive when all requests have tight
deadlines.

Proof. The main idea of the proof is similar to that
of Woeginger (1994). We start our proof by a lemma
and a definition of request sets. With the definition
of r̃i, we have the following lemma.

Lemma 4 Let {r∗i }i≥0 be the sequence {r̃i}i≥0 when
c = c∗. Then r∗0 = c∗, r∗1 = c∗ − 1, and for i > 1, r∗i
= c∗ − 1−∑i−1

p=1

∏p
q=1

1
r∗

i−q
.

Proof. By the definition of r∗i , we have that r∗0 = c∗,
r∗1 = c∗ − 1, and for i > 1, r∗i = (c∗ − c∗

r∗
i−1

). Then

r∗2 = (c∗− c∗
r∗1

) = c∗−1− c∗−r∗1
r∗1

= c∗−1− 1
r∗1

. Suppose

r∗i = c∗ − 1−∑i−1
p=1

∏p
q=1

1
r∗

i−q
holds. Then c∗ − r∗i =

1 +
∑i−1

p=1

∏p
q=1

1
r∗

i−q
. We have that

r∗i+1 = c∗ − c∗

r∗i

= c∗ − 1− c∗ − r∗i
r∗i

= c∗ − 1−
1 +

∑i−1
p=1

∏p
q=1

1
r∗

i−q

r∗i

= c∗ − 1−
i∑

p=1

p∏
q=1

1
r∗i+1−q

.

Hence, the lemma follows.

We define request sets SET (Ji, Ri, σi) =
{Ki,1, . . . , Ki,q} where Ki,j is a set of requests for
the same page, Ji = Ki,1, Ri = Ki,q, and all requests
in SET are of tight deadlines. Thus, each request
needs to be served on its arrival or else it cannot be
satisfied. Here, σi = σ/2i such that

∑∞
i=0 σi < 2σ

where σ > 0 is an arbitrarily small real number and
its value will be determined later. Denote by |Ki,j |
the total weight of requests in Ki,j . SET has the
following three properties:

1. |Ki,j | < |Ki,j+1| ≤ |Ki,j |+ σi for 1 ≤ j ≤ q − 1.

2. |Ri| = r∗i |Ji| where by Lemma 4, r∗0 = c∗ and for
i ≥ 1, r∗i = c∗ − 1−∑i−1

p=1

∏p
q=1

1
r∗

i−q
.

3. Denote by a(Ki,j) the arrival time of request set
Ki,j . Then a(Ki,j) satisfies 0 < a(Ki,1) < · · · <
a(Ki,q) < a(Ki,1) + 1 < · · · < a(Ki,q) + 1.

Since a(Ki,q) < a(Ki,1)+1, all request sets Ki,j pair-
wise collide with each other.

Let 0 < θ < 1 be an arbitrarily small real. We will
introduce an input list of request sets SET (∗, ∗, ∗)
and an adversary that forces an arbitrary on-line algo-
rithm A to act poorly on the list and to have the com-
petitive ratio at least c∗ − θ. The adversary proceeds
in steps and in each step, A is fed by a SET (∗, ∗, ∗),
whose exact structure depends on the behavior of A
during the preceding steps, and A is forced to abort
the current broadcast. After finite steps, what A
gains will be a factor of approximately c∗ − θ away
from that of OPT.

Step 1. The adversary releases SET (J0, R0, σ0)
where |J0| = 1. A can process at most one of the
request sets due to the construction of SET . If A
selects the smallest request set J0, the adversary will

release no more requests. OPT will serve R0 and what
OPT gains is c∗ times of what A does, making A lose.
Thus, A has to select some other request set J1. We
define the request set arriving immediately before J1
as J ′1. OPT will serve J ′1. By construction of SET ,
we have |J ′1| ≥ |J1| − σ0.

Step 2. The adversary presents SET (J1, R1, σ1) to
A so that it comes after OPT completes J ′1 but before
A completes its current service. If A does not abort
the current broadcast, it cannot serve any request in
SET (J1, R1, σ1) and the adversary releases no more
requests later. OPT will then select to serve R1 after
finishing J ′1. In this case A completes |J1| requests
and OPT gains |R1| + |J ′1| ≥ r∗1 |J1| + (|J1| − σ0) =
c∗|J1| − σ, and then A loses for σ can be arbitrar-
ily small. Therefore, A is forced to abort the cur-
rent broadcast when SET (J1, R1, σ1) arrives. More-
over, A will not select the smallest set of requests in
SET (J1, R1, σ1) or else it loses for the weight of the
smallest request set is the same as that of the aborted
one. Denote by J2 the new set of requests selected by
A, and we define the set of requests arriving immedi-
ately before J2 as J ′2. OPT will then select to serve
J ′2 after finishing J ′1. Similarly, |J ′2| ≥ |J2| − σ1.

This is repeated over and over again. In step i,
SET (Ji−1, Ri−1, σi−1) releases after OPT completes
J ′i−1 but before A completes its current service. A is
forced again to abort the current broadcast. Other-
wise if A continues the current broadcast with |Ji−1|
requests, the adversary will release no more requests.
OPT will then select to serve Ri−1 after finishing
J ′i−1. In this case, A gains |Ji−1| and OPT gains

|Ri−1|+
i−1∑

j=1

|J ′j | ≥ r∗i−1|Ji−1|+
i−1∑

j=1

|Jj | −
i−2∑

j=0

σj . (1)

Since Ji−1 is a request set in
SET (Ji−2, Ri−2, σi−2), |Ji−1| ≤ |Ri−2| =
r∗i−2|Ji−2| ≤ . . . ≤ (

∏i−2
p=j r∗p)|Jj | holds for

1 ≤ j ≤ i − 2, and hence
∑i−2

j=1 |Jj | ≥(∑i−2
j=1

∏i−j−1
p=1

1
r∗

i−1−p

)
|Ji−1|. Moreover,

∑i−2
j=0 σj < 2σ. Together with Lemma 4, inequality

(1) turns out to be

|Ri−1|+
i−1∑

j=1

|J ′j |

>


r∗i−1 + 1 +

i−2∑

j=1

i−j−1∏
p=1

1
r∗i−1−p


 |Ji−1| − 2σ

= c∗|Ji−1| − 2σ. (2)

Then A loses for σ can be arbitrarily small. So, A has
to make an abortion in step i.

However, by Lemmas 1 and 3, we know that r∗i
is decreasing as i increases and eventually r∗N+1 ≤ 1.
So, the list of SET (∗, ∗, ∗) has finite length.

Specifically, assume A is broadcasting a set of
request JN+1. Then at step N + 2, we give
SET (JN+1, RN+1, σN+1) (which contains only two
request sets both of weight |JN+1|) after OPT
completes J ′N+1 but before A completes JN+1 in
SET (JN , RN , σN ). Whether A continues its cur-
rent broadcast or starts a new set of requests in
SET (JN+1, RN+1, σN+1), it gains |JN+1|. On the
other hand, OPT starts RN+1 after finishing J ′N+1
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in SET (JN , RN , σN ) and then gains totally

|RN+1|+
N+1∑

j=1

|J ′j |

≥ r∗N+1|JN+1|+
N+1∑

j=1

|J ′j |

> c∗|JN+1| − 2σ

using the same analysis as inequality (2). Now set
σ ≤ θ|JN+1|/2. Then, A has competitive ratio at
least c∗ − θ. Since θ can be arbitrarily small, the
theorem is proved.

6 Numeric Values

According to the definition of c∗, it depends on M =
2k. In this section, we will discuss the variation of c∗
and compare it with the competitive ratio of HEU for
different value of M . In the computer program, we set
(r̃0r̃1 · · · r̃N )−M ≤ 0.001, the criteria of ending com-
putation. Figure 1 shows the relationship between k
and the competitive ratio of VAR and HEU respec-
tively where cHEU denotes the competitive ratio of
HEU.

n c∗ k r̃N r̃N+1

1 2.9312 3 1.414 0.859
2 3.7486 10 1.177 0.564
3 3.9206 20 1.103 0.366
4 3.9962 100 1.024 0.094
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Figure 1: Relationship between c∗ and k.

For VAR, when k = 3, its competitive ratio
c∗ = 2.9312, and as k increases, c∗ increases with
an obviously decreasing speed and asymptotically ap-
proaches 4 from below. Hence, we conjecture that if
M →∞, VAR has the competitive ratio 4 in the case
of tight deadline.

By figure 1, c∗ < cHEU holds for each
k. That is, VAR is better than HEU. For
instance, when k = (3, 10, 20, 100), c∗ =
(2.9312, 3.7486, 3.9206, 3.9962) and by Theorem 3.1,
cHEU = (3.50, 3.9961, 4.00, 4.00).

7 Conclusion

In this paper, we discuss the broadcasting problem
with the upper bound on the number and weight of
requests in the system. We proposed the VAR algo-
rithm and prove its competitiveness. By experiment,
we show that VAR is better than HEU introduced
by Woeginger (1994) in the case of tight deadline.

We also prove that VAR matches the lower bound of
competitive ratio for deterministic algorithms.

Since both VAR and HEU do not consider the
deadlines of requests, their competitive ratios when
not all requests have tight deadlines are simply those
in the tight deadline case plus one. It is conceiv-
able that the competitive ratio can be further im-
proved in the case of arbitrary deadline if the dead-
lines are taken into consideration. In fact, Zheng et
al. (2004) have constructed a 4.56-competitive algo-
rithm in Kim’s model, in which they considered the
deadlines of requests. An obvious open problem is:
when there is an upper bound on request weight and
number, does there exist a better algorithm that con-
siders request deadline?
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Abstract

We study the following on-line model for set-covering:
elements of a ground set of size n arrive one-by-one
and with any such element ci, arrives also the name
of some set Si0 containing ci and covering the most of
the uncovered ground set-elements (obviously, these
elements have not been yet revealed). For this model
we analyze a simple greedy algorithm consisting of
taking Si0 into the cover, only if ci is not already
covered. We prove that the competitive ratio of this
algorithm is

√
n and that it is asymptotically optimal

for the model dealt, since no on-line algorithm can do
better than

√

n/2. We next show that this model can
also be used for solving minimum dominating set with
competitive ratio bounded above by the square root
of the size of the input graph. We finally deal with
the maximum budget saving problem. Here, an initial
budget is allotted that is destined to cover the cost of
an algorithm for solving set-covering. The objective
is to maximize the savings on the initial budget. We
show that when this budget is at least equal to

√
n

times the size of the optimal (off-line) solution of the
instance under consideration, then the natural greedy
off-line algorithm is asymptotically optimal.

Keywords: Set-covering, On-line algorithm, Compet-
itive ratio, Dominating set, Budget saving

1 Introduction

Let C be a ground set of n elements and S a family
of m subsets of C such that ∪S∈SS = C. The set
covering problem consists of finding a family S ′ ⊆ S,
of minimum cardinality, such that ∪S∈S

′S = C. In
what follows, for an element ci ∈ C, we set Fi =
{Sj ∈ S : ci ∈ Sj} and fi = |Fi|; also, we set f =
max{fi : i = 1, . . . , n}.

The set covering problem has been extensively
studied over the past decades. It has been shown to be
NP-hard in Karp (1972) and O(log n)-approximable
for both weighted and unweighted cases (see Chvá-
tal (1979), for the former, and Johnson (1974),
Lovász (1975) and Slavík (1996), for the latter; see
also Paschos (1997) for a comprehensive survey on
the subject). As it is shown by Feige (1998), this
approximation ratio is the best achievable, unless
NP ⊆ DTIME(nO(log log n)), i.e., unless problems

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sympo-
sium (CATS2006), Hobart, Australia. Conferences in Research
and Practice in Information Technology, Vol. 51. Barry Jay
and Joachim Gudmundsson, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

in NP could be proved solvable by slightly super-
polynomial algorithms.

In on-line computation, one can assume that the
instance is not known in advance but it is revealed
step-by-step. Upon arrival of new data, one has to
decide irrevocably which of these data are to be taken
in the solution under construction. The fact that the
instance is not known in advance, gives rise to several
on-line models specified by the ways in which the final
instance is revealed, or by the amount of information
that is achieved by the on-line algorithm at each step.
In any of these models, one has to devise algorithms,
called on-line algorithms, constructing feasible solu-
tions whose values are as close as possible to optimal
off-line values, i.e., to values of optimal solutions as-
suming that the final instance is completely known in
advance. The closeness of an on-line solution to an
optimal off-line one is measured by the so-called com-
petitive ratio m(x, y)/ opt(x), where x is an instance
of the problem dealt, y the solution computed by the
on-line algorithm dealt, m(x, y) its value and opt(x)
the value of an optimal off-line solution. This mea-
sure for on-line computation has been introduced by
Sleator et al. (1985).

Informally, the basic on-line set-covering model
adopted here is the following: elements of a ground
set of size n arrive one-by-one and with any such el-
ement ci, arrives also the name of some set Si0 con-
taining ci and covering the most of the ground set-
elements that have not been yet covered. Clearly, any
uncovered element is yet unrevealed. For this model
we analyze a simple greedy algorithm consisting of
taking Si0 into the cover, only if ci is not already
covered. We prove that the competitive ratio of this
algorithm is

√
n and that it is asymptotically optimal

for the model dealt, since no on-line algorithm can do
better than

√

n/2. This model generalizes the one
proposed in Alon et al. (2003) and, furthermore, it
uses a very simple, fast and intuitive algorithm that
could be seen as the on-line counterpart of the natural
greedy (off-line) set-covering algorithm.

In Alon et al. (2003), the following on-line set cov-
ering model has been studied. We suppose that we
are given an instance (S, C) that it is known in ad-
vance, but it is possible that only a part of it, i.e., a
sub-instance (Sp, Cp) of (S, C) will finally arrive; this
sub-instance is not known in advance. A picturesque
way to apprehend the model is to think of the ele-
ments of C as lights initially switched off. Elements
switch on (get activated) one-by-one. Any time an
element c gets activated, the algorithm has to decide
which among the sets of S containing c has to be
included in the solution under construction (since we
assume that (S, C) is known in advance, all these sets
are also known). In other words, the algorithm has to
keep an online cover for the activated elements. The
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algorithm proposed for this model achieves competi-
tive ratio O(log n log m) (even if less than n elements
of C will be finally switched on and less than m sub-
sets of S include these elements).

The on-line model dealt here and studied in Sec-
tion 2, is inspired, yet quite different, from the one of
Alon et al. (2003). Given C, S (not known in advance
as Alon et al. (2003) assumes) and an arrival sequence
Σ = (σ1, . . . , σn) of the elements of C (i.e., elements
of C are switched on following the order σ1, . . . , σn),
the objective is to find, for any i ∈ {1, . . . , n}, a family
S ′i ⊆ S such that {σ1, . . . , σi} ⊆ ∪S∈S

′

i

S. For any σi,

i = 1, . . ., we denote by Sj
i , j = 1, . . . , fi, the sets of S

containing σi, by S̄j
i the subset of the elements of Sj

i

still remaining uncovered and by δj
i the cardinality

of S̄j
i . By fi, we denote the frequency of σi, i.e., the

number of sets in S containing σi. When σi switches
on, the only information revealed is the name of some
set Sj0

i ∈ argmax{δj
i , j = 1, . . . , fi}. So, no a priori

knowledge of the topology of the instance (S, C) is
assumed by the model. In particular, we do not have
to know which are the yet uncovered elements of Sj0

i
but only the fact that their number is maximum with
respect to any other Sj

i .
The algorithm that we study for this model, called

LGREEDY in the sequel, informally works as follows:
once an element σi ∈ C switches on, if σi is not
already covered, then set Sj0

i ∈ argmax{δj
i , j =

1, . . . , fi} is added in the cover under construction.

Clearly, by the way LGREEDY works, the content of S̄j0
i

is still unrevealed. This algorithm follows the same
principle as the natural greedy algorithm for (off-line)
minimum set covering, called FGREEDY in the sequel,
modulo the fact that this principle applies not to the
whole instance (S, C) that is to be finally revealed,
but to the part of (S, C) induced by the elements
of C that, at a given moment, are switched off (even
if the topology of this part is not known). We prove
that the competitive ratio of this algorithm is

√
n

and also that there exist arbitrarily large instances
for which this ratio is at least

√

n/2. We then show
that the set-covering model dealt can be used to solve
also minimum dominating set, within competitive ra-
tio
√

n where n is the order of the input graph. Min-
imum dominating set is defined as follows: given a
graph G(V,E), we wish to determine the least subset
V ′ ⊆ V that dominates the rest of the vertices, i.e.,
a subset V ′ ⊆ V such that for all u ∈ V \ V ′ there
exists v ∈ V ′ for which (u, v) ∈ E.

In Section 3, we provide a lower bound, equal
to

√

n/2 for the competitiveness of a whole class of
on-line algorithms running on our model. These al-
gorithms are the ones that construct a cover by tak-
ing, at any activation step, at least one set containing
some not yet covered recently activated ground ele-
ment. Based upon this result, one can conclude that
LGRREDY is asymptotically optimal for this class and
for the model adopted.

There exist several reasons motivating, to our
opinion, the study of the model dealt in this paper.
The first one is that the algorithm used is as it has al-
ready been mentioned, a kind of on-line alternative of
the famous greedy algorithm for set-covering. Hence,
analysis of its competitiveness is interesting by itself.
The second reason is that a basic and very interesting
feature of the model dealt is its very small memory
requirement, since the only information needed is the
binary encoding of the name of Sj0

i . This is a ma-
jor difference between our approach and the one of
Alon et al. (2003). There, anytime an element gets

activated, the algorithm needs to compute the value
of a potential function using an updated weight pa-
rameter for each element and then chooses covering
sets in a suitable way so that this potential be non-
increasing; the greedy online algorithm in our model
needs only a constant number of memory places, mak-
ing it more appropriate for handling very large in-
stances with very few hardware ressources.

In many real-life problems, it is meaningful to re-
lax the main specification of the online setting, that is,
to keep a solution for any partially revealed instance,
in order to achieve a better solution quality. In this
sense, a possible relaxation is to consider that several
algorithms collaborate in order to return the final so-
lution. The costs of using these algorithms can be
different the ones from the others, depending upon
the sizes of the solutions computed, the time over-
heads they take in order to produce them, etc. More-
over, we can assume that an initial common budget
is allotted to all these algorithms and that this bud-
get is large enough to allow use of at least one of the
algorithms at hand to solve the problem without ex-
ceeding it. A nice objective could be in this case, to
use these algorithms in such a way that a maximum
of the initial budget is saved. For the case of set-
covering, the following budget-model, giving rise to
what we call maximum budget saving problem is con-
sidered in Section 4. We assume that two algorithms
collaborate to solve it: the LGREEDY and the FGREEDY.
The application cost of the former is just the cardinal-
ity of the solution it finally computes, while, for the
latter, its application cost is the cardinality of its so-
lutions augmented by an overhead due, for example,
to the fact that it is allowed to wait before making
its decisions. For an instance x of set-covering, the
initial budget considered is B(x) =

√
n opt(x) (this is

in order that at least LGREEDY is able to compute a
solution of x without exceeding the budget for any x).
Denote by c(x, y) the cost of using A in order to com-
pute a cover y for x. The objective is to maximize the
quantity B(x)− c(x, y) and, obviously, the maximum
possible economy on x is B(x)− opt(x). We show in
Section 4 that there exists a natural algorithm-cost
model such that FGREEDY is asymptotically optimal
for maximum budget saving.

Before closing this section, let us quote another
very interesting approach that could be considered
to be at midway between semi-on-line approaches
and solutions-stability ones, developed in Gambosi et
al. (1997). There, the problem tackled is the main-
tenance of approximation ratio achieved by an algo-
rithm while the set covering instance undergoes lim-
ited changes. More precisely, assume a set covering
instance (S, C) and a solution S ′ for it. How many
insertions of some of the ground elements in subsets
that did not previously contain these elements pro-
duce an instance for which the solution S ′ of the ini-
tial instance guarantees the same approximation ratio
in both of them? It is shown in Gambosi et al. (1997)
that if solution S ′ has been produced by application
of the natural greedy algorithm achieving approxi-
mation ratio O(log n) (see Chvátal (1979)), then af-
ter O(log n) such insertions initial solution S ′ still
guarantees the same approximation ratio.

2 A greedy on-line algorithm

As already mentioned, the model studied in this sec-
tion assumes an arrival sequence Σ = (σ1, . . . , σn)
of the elements of C, and the objective is to find,
for any i ∈ {1, . . . , n}, a family S ′

i ⊆ S such
that {σ1, . . . , σi} ⊆ ∪S∈S

′

i

S. Once an element σi,

i = 1, . . . , switches on, the encoding for Sj0
i ∈
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argmax{δj
i , j = 1, . . . , fi} is also revealed.

For this model, we propose the following algo-
rithm, LGREEDY, where, although it is not necessary,
we suppose for reasons of simplicity of algorithm’s
specification that n is known to it:

• set S ′
0

= ∅;

• for i = 1 to n do (σi switches on): if σi is not
already covered by S ′

i−1
,

– then set S ′i = S ′i−1
∪ {argmax{δj

i : j =
1, . . . , fi}};

– else set S ′i = S ′i−1
;

• output S ′ = S ′n.

Theorem 1. Consider an instance (S, C) of mini-
mum set covering with |C| = n. Consider also the
on-line model introduced above, and denote by S∗ =
{S∗

1
, . . . , S∗

k∗} an optimal off-line solution on (S, C).
Then, the competitive ratio of LGREEDY is bounded

above by min{
√

2n/k∗,
√

n}. Furthermore, there ex-
ist large enough instances for which this ratio is at

least
√

n/2.

Proof. Fix an arrival sequence Σ = (σ1, . . . , σn) and
denote by c1, . . . , ck, its critical elements, i.e., the el-
ements having entailed introduction of a set in S ′. In
other words, critical elements of Σ are all elements ci

such that ci was not yet covered by the cover under
construction upon its arrival. Assume also that the
final cover S ′ consists of k sets, namely, S1, . . . , Sk,
where S1 has been introduced in S ′ due to c1, S2 due
to c2, and so on.

Let δ(Si) be the increase of the number of covered
elements just after having taken Si in the greedy cover
(recall that if Si has been added in S ′ for critical

element ci = σj , δ(Si) = max{δ1

j , . . . , δ
fj

j }). We have:

δ (S1) = |S1| (1)

and, for 2 6 i 6 k,

δ (Si) =

∣
∣
∣
∣
∣

i⋃

`=1

S`

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣

i−1⋃

`=1

S`

∣
∣
∣
∣
∣

(2)

Fix now an optimal off-line solution S∗ of cardinal-
ity k∗. Any of the critical elements c1, . . . , ck can be
associated to the set of smallest index in S∗ contain-
ing it. For any S∗

i ∈ S, we denote by Ŝ∗

i , the set
of the critical elements associated with S∗

i (obviously,

Ŝ∗

i ⊆ S∗

i ). The critical content h(S∗

i ) of any S∗

i ∈ S
∗

is defined as the number of critical elements associ-
ated to it as described before, i.e., h(S∗

i ) = |Ŝ∗

i |.
Let S∗

1
, . . . , S∗

r be the sets in S∗ of positive critical
contents h(S∗

1
), . . . , h(S∗

r ), respectively. Clearly,

r∑

i=1

h (S∗

i ) = k (3)

r 6 k∗ (4)

For any S∗

i , let c1

i , . . . , c
h(S∗

i
)

i be the elements of its
critical content ordered according to their position
in the arrival sequence Σ; in other words, following

our assumptions, Ŝ∗

i = {c1

i , . . . , c
h(S∗

i
)

i } (recall that

Ŝ∗

i ⊆ S∗

i ).
Suppose, without loss of generality, that, for ` =

1, . . . , h(S∗

i ), the set Sj`
∈ S has been introduced in S ′

when the critical element c`
i has been activated. At

the moment of the arrival of c1

i , the set S∗

i is also a
candidate set for S ′. The fact that Sj1 has been cho-
sen instead of S∗

i means that δ(Sj1) > δ(S∗

i ); hence,

since as noticed just above, Ŝ∗

i ⊆ S∗

i , the following

holds immediately: δ(Sj1) > δ(S∗

i ) > |Ŝ∗

i | = h(S∗

i ).
When c2

i gets activated, the set S∗

i has lost some of its
elements that have been covered by some sets already
chosen by the algorithm. In any case, it has lost c1

i

(covered by Sj1). So, following the arguments devel-
oped just above for Sj1 , δ(Sj2) > h(S∗

i )−1, and so on
(quantities δ(·) are defined either by (1), or by (2)).
So, dealing with c`

i , the following holds:

h (S∗

i )− ` + 1 6 δ (Sj`
) (5)

For example, consider the illustration of Figure 1.
Let S∗ be a set of the fixed optimal cover S∗ and de-
note by Ŝ the set of its critical elements, c1, c2 and c3

(ranged in the order they have been activated). Let
S be the set chosen by LGREEDY to cover c2. The
shadowed parts of S∗, Ŝ and S correspond to ele-
ments already covered by LGREEDY at the moment of
arrival of c2. At this moment, S must contain at least
as many uncovered elements as S∗ does and a fortiori
at least one uncovered element for any yet uncovered
critical element of S∗ (two uncovered elements for S
appear below the dashed line for c3 and c4).

PSfrag replacements

S

Ŝ

S∗

c1 c2
c3 c4

Figure 1: An example for (5)

Summing up inequalities (5), for ` = 1, . . . , h(S∗

i ),

and setting
∑h(S∗

i
)

`=1
δ(Sj`

) = ni, we finally get for Si:

h (S∗

i ) (h (S∗

i ) + 1)

2
6

h(S∗

i
)

∑

`=1

δ (Sj`
) = ni

=⇒ h (S∗

i ) 6
√

2ni (6)

Set, for 1 6 i 6 r, ni = αin, for some αi ∈ [0, 1].
Then,

∑r

i=1
αi = 1 and

r∑

i=1

√
αi 6

√
r (7)
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Using (3), (4), (6) and (7), we get:

k =

r∑

i=1

h (S∗

i ) 6
√

2n

r∑

i=1

√
αi 6

√
r
√

2n 6
√

k∗

√
2n

(8)
Dividing the first and the last members of (8) by k∗,
we get:

k

k∗
6

√

2n

k∗
(9)

On the other hand, remark that, if k∗ = 1, i.e., if there
exists S∗ ∈ S such that S∗ = {S∗}, then LGREEDY
would have chosen it from the beginning of its running
in order to cover σ1; next, no additional set would
have entered the S ′. Consequently, we can assume
that k∗ > 2 and, using (9),

k

k∗
6
√

n (10)

Combination of (9) and (10) concludes the competi-
tive ratio claimed.

Fix an integer N and consider the following in-
stance (S, C) of minimum set covering:

C =

{

1, . . . ,
N(N + 1)

2

}

S1 = {1, . . . , N}

S2 = {N + 1, . . . , 2N − 1}

...

SN =

{
N(N + 1)

2

}

SN+1 =

{

(i− 1)N −
i(i− 3)

2
: i = 1, . . . , N

}

SN+2 = C \ SN+1

Consider the arrival sequence (1, . . . , N(N + 1)/2).
LGREEDY might compute the cover S ′ = {Si, 1 6 i 6
N}, while the optimal one is S∗ = {SN+1, SN+2}.
Hence, the competitive ratio in this case would
be N/2, with N = (−1 +

√
1 + 8n)/2 which is asymp-

totically equal to
√

n/2 as claimed.
For example, consider Figure 2. For Σ starting

with 1, 6, 10, 13, 15, LGREEDY may have chosen sets:

{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12}, {13, 14}, {15}

respectively, while the optimal cover would consist of
the two sets:

{1, 6, 10, 13, 15} (11)

{2, 3, 4, 5, 7, 8, 9, 11, 12, 14} (12)

The proof of the theorem is now complete.
Revisit (9), set ∆ = maxSi∈S{|Si|} and take into

account the obvious inequality: k∗ > n/∆. Then,
the following result is immediately derived from The-
orem 1.

Corollary 1. The competitive ratio of LGREEDY is

bounded above by
√

2∆.

The set-covering model dealt here is very economic
and thus suitable to solve very large instances. In-
deed, its memory requirements are extremely reduced
since the only information LGREEDY needs at any
step i is the encoding of the name of a set Sj0

i ∈

argmax{δj
i , j = 1, . . . , fi}. This is not the case for

PSfrag replacements
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10

Figure 2: The ratio
√

n/2 for LGREEDY is asymptoti-
cally attained

the intensive computations implied by the model of
Alon et al. (2003).

Let us note that the model dealt above can be
used to solve a natural on-line version of the mini-
mum dominating set problem. Given a graph G(V,E)
with |V | = n, assume that its vertices switch on one-
by-one. Any time a vertex σi does so, the name of its
neighbor with the most neighbors still switched off is
announced. Denote by vi0 such neighbor of σi. If σi

is not yet dominated by the partial dominating set V ′

already constructed, then vi0 enters V ′.
Consider the following classical reduction from

minimum dominating set to set covering: the vertex-
set V of the input-graph G becomes both the family
of subsets and the ground set of the set covering in-
stance (hence, both items have size n) and for any
vertex vi ∈ V , the corresponding set contains vi itself
together with its neighbors in G. It is easy to see that
any set cover of size k in the so-constructed set cov-
ering instance corresponds to a dominating set of the
same size in G and vice-versa. Remark also that the
dominating set model just assumed on G is exactly,
with respect to the transformation just sketched, the
set-covering model dealt before. Consequently, the
following result follows immediately.

Proposition 1. The on-line set-covering algorithm
of Theorem 1 is

√
n-competitive for minimum domi-

nating set in graphs of order n.

Note also that the counter-example instance given
in the proof of Theorem 1 can be slightly modified
to fit the case where, at each step, whenever a yet
uncovered element arrives, the algorithm is allowed to
take in the cover a constant number of sets containing
it and such that the number of elements yet switched
off that belong to these sets is maximized. For some
ρ > 1 and for some integer N , consider the following
instance:

S =
{

X,Y, Sj
i : 1 6 i 6 N, 1 6 j 6 ρ

}
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C =

N⋃

i=1

ρ
⋃

j=1

Sj
i

(

|C| = ρ
N(N − 1)

2
+ N = n

)

X = {x1, . . . , xN}
∣
∣
∣S

j
i

∣
∣
∣ = N − i + 1 for i = 1, . . . , N

Sj
i

⋂

Sk
l = ∅, if i 6= l

Sj
i

⋂

Sk
i = {xi} , if j 6= k

Y = C \X

Consider the arrival sequence where x1, . . . , xN are
firstly revealed. LGREEDY might take in the cover all
the Sj

i ’s, while the optimal cover is {X,Y }. In this
case, the competitive ratio is ρN/2, with

N =
ρ− 2

2ρ
+

√
(

ρ− 2

2ρ

)2

+ 2
n

ρ

i.e., the value of the ratio is asymptotically
√

ρn/2.
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Figure 3: A counter-example for the case where the
algorithm is allowed to take a constant number of sets
containing a recently arrived element

For example, set ρ = 2 and N = 5 and consider
the instance of Figure 3. For Σ starting with x1,
x2, x3, x4, x5, the algorithm may insert to the cover
the sets depicted as “rows”, while the optimal cover
would consist of the “column”-set {x1, x2, x3, x4, x5}
together with the “big” set containing the rest of the
elements (drawn striped in Figure 3).

In the weighted version of set-covering, any set S
of S is assigned with a non-negative weight w(S), and
a cover S ′ of the least possible total weight W =∑

S∈S
′ w(S) has to be computed. A natural modifi-

cation of LGREEDY in order to deal with weighted set-
covering is to put in the cover, whenever a still uncov-
ered element arrives, a set Si containing it that min-
imizes the quantity w(Si)/δ(Si). Unfortunately, this
modification cannot perform satisfactorily. Consider,
for example, an instance of weighted set-covering con-
sisting of a ground set C = {x1, . . . , xn}, and three
sets, S = C with w(S) = n, X = {x1} with w(X) = 1
and Y = C \ {x1} with w(Y ) = 0. If x1 arrives first,
the algorithm could have chosen S to cover it, yielding
a cover for the overall instance of total weight n, while
the optimal cover would be {X,Y } of total weight 1.

3 A lower bound for a whole class of on-line
algorithms

We now prove that, in the general model, no on-line
algorithm can achieve, for the model dealt, competi-
tive ratio better than

√

n/2, even if it is allowed to
choose at any step more than one set to be introduced
in the solution.

Proposition 2. Let A be an on-line algorithm for set-
covering such that, at any step, it takes in the cover at
least one set containing some not yet covered arriving
element. Let kA be the size of the cover computed
by A and k∗ be the size of the optimal cover. Then,

kA/k
∗ >

√

n/2.

Proof. Consider the following set-covering instance
built, for any integer N , upon a ground set S = {xij :
1 6 j 6 i 6 N}; obviously, |C| = n = N(N +1)/2. A
path-set of order i is defined as a set containing N−i+
1 elements {xiji

, . . . , xNjN
}. The set-system S of the

instance contains all possible path-sets of each order i,
1 6 i 6 N . Clearly, there exist N !/0! path-sets of
order 1, N !/1! path-sets of order 2, and so on and,
finally, N !/(N − 1)! path-sets of order N , i.e., in all
N !(1+ . . .+1/(N − 1)!) ≈ eN ! path-sets. Finally, the
set-system S is completed with an additional set Y
containing all elements of C but those of some path-
set of order 1, that will be specified later (hence, |Y | =
n−N).

As long as there exist uncovered elements, the ad-
versary may choose to have an uncovered element xij

of the lowest possible i arriving, which will be con-
tained only in all path-sets of order less than or equal
to i. Notice that as long as algorithm A has r < N
sets inserted in the cover, there will be at least one
element xr+1j for some j, 1 6 j 6 k + 1, not yet
covered. Suppose that after the arrival of σt, the size
of the cover computed by A gets equal to, or greater
than, N . Clearly, 1 6 t 6 N . At time t + 1, a
new element arrives, contained in some path-sets and
in Y , which can be now specified as consisting of all
elements in C except of the elements of some path-
set S∗ of order 1 containing σ1, . . . , σt; the rest of the
arrival sequence is indifferent.

Clearly the optimum cover in this case would have
been path-set S∗ together with set Y ; hence, kA/k

∗ >
N/2, with N tending to

√
2n as n increases.

For example consider the instance of Figure 4,
with N = 5 (the elements of C are depicted as cy-
cles labelled by (i, j) for 1 6 j 6 i 6 3). The Si

sets can be thought of as paths terminating to a
sink on the directed graph of Figure 4(a). As-
sume that (1, 1) arrives, and algorithm A chooses sets
{(1, 1), (2, 1), (3, 1)}, {(1, 1), (2, 2), (3, 2)} for covering
it; the uncovered element (3, 3) arrives next, so A
has to cover it by, say, the set {(2, 1), (3, 3)} (Fig-
ure 4(b)). The optimal cover might consist of set
{(1, 1), (2, 2), (3, 3)} together with a big set consist-
ing of the rest of the elements, that could not have
been revealed to A upon arrival of (1, 1), or of (3, 3)
(Figure 4(c)).

It is easy to see that the above construction can
be directly generalized so that the same result holds
also in the case that the on-line algorithm is allowed
to take more than one sets at a time in the cover: if
σ1 = x11, then as long as the size of the online cover is
less than N , there exists always some i`−1 < i` 6 N
and some ji`

for which xi`ji
`

is yet uncovered. Hence,
if σ` is this element, then the algorithm will have to
put some sets in the cover. Finally, the algorithm will
have put N sets in the cover, while the optimum will
always be of size 2.
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Figure 4: The counter-example of Proposition 2 for
N = 5

4 The maximum budget saving problem

In this section, we study a kind of dual version of
the minimum set-covering, the maximum budget sav-
ing problem. Here, we are allotted an initial bud-
get B(S, C) destined to cover the cost of an algo-
rithm that solves minimum set-covering on (S, C).
Any such algorithm has its own cost that is a func-
tion of the size of the solution produced, of the time
overheads it takes in order to compute it, etc. Our ob-
jective is to maximize our savings, i.e., the difference
between the initial budget and the cost of the algo-
rithm. For simplicity, we assume that the maximum
saving ever possible to be performed is B(S, C)− k∗,
where, as previously, k∗ is the size of an optimum
set-cover of (S, C).

We consider here that the set-covering instance ar-
rives on-line. If a purely on-line algorithm is used to
solve it, then its cost equals the size of the solution
computed; otherwise, if the algorithm allows itself to
wait in order to solve the instance (partly or totally)
off-line then, its cost is the sum of the size of the solu-
tion computed plus a fine that is equal to some root,
of order strictly smaller than 1, of the solution that
would be computed by a purely on-line algorithm. We
suppose that the budget allotted is equal to k∗

√
n,

where n = |C|. This assumption on B(S, C) is quite
natural. It corresponds to a kind of feasible cost for
an algorithm; this is algorithm LGREEDY presented in
Section 2.

The interpretation of this model is the following.
We are allotted a budget corresponding to the cost of
an algorithm always solving set-covering. In this way,
we are sure that we can always construct a feasible so-
lution for it. Furthermore, by the second part of The-

orem 1, it is very risky to be allotted less than k∗
√

n
since there exist instances where the bound

√
n is

attained. On the other hand, we can have at our
disposal a bunch of on-line or off-line set-covering al-
gorithms, any one having its proper cost as described
just above, from which we have to choose the one
whose use will allow us to perform the maximum pos-
sible economy with respect to our initial budget. The
fact that the measure of the optimum solution for
maximum budget saving is B(S, C) − k∗, has also a
natural interpretation: we can assume that there exist
an arrival sequence Σ for C such that, for any σi ∈ Σ,
an oracle can always choose to cover σi with the same
set with which σi is covered in an optimum off-line
solution for instance (S, C). Under this assumption
for the measure of the optimum budget saving solu-
tion, this problem is clearly NP-hard since it implies
computation of an optimum solution for minimum
set-covering. Finally, denoting by cA(S, C) the cost
of algorithm A when solving minimum set-covering
on (S, C), the approximation ratio of maximum set
saving is equal to:

B(S, C)− cA(S, C)

B(S, C)− k∗
(13)

Obviously this ratio is smaller than 1 and, further-
more, the closer the ratio to 1, the better the algo-
rithm achieving it.

Theorem 2. Under the model adopted, FGREEDY is
asymptotically optimum for maximum budget saving.

Proof. Consider an instance (S, C) of minimum set-
covering and denote by kF and kL, the sizes of the solu-
tions computed by algorithms FGREEDY and LGREEDY,
respectively. By what has been assumed just above,
denoting by cF the cost of using FGREEDY, there exist
some ε > 0 such that:

cF(S, C)) = kF + k1−ε
L (14)

Moreover, the following inequalities hold, the first one
from Slavík (1996) and the second one from Theo-
rem 1:

kF 6 k∗ log n (15)

kL 6 k∗
√

n (16)

Using (14), (15) and (16), we get the following in-
equality for cF(S, C)):

cF(S, C)) 6 k∗1−εn
1−ε

2 +k∗ log n 6
(

n
1−ε

2 + log n
)

k∗

(17)
On the other hand, as assumed above:

B(S, C) = k∗
√

n (18)

Using (13), (17) and (18), we obtain:

B(S, C)− cF(S, C)

B(S, C)− k∗
>

k∗
√

n−
(

n
1−ε

2 + log n
)

k∗

k∗
√

n− k∗

=

√
n−

(

n
1−ε

2 + log n
)

√
n− 1

(19)

It is easy to see that, for n large enough, the last term
of (19) tends to 1, and the statement claimed by the
theorem is true.

Remark also that if we are allotted with a budget
equal to k∗ log n log m (i.e., the cost of the on-line
algorithm of Alon et al. (2003)) and we assume that
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the fine paid by algorithm FGREEDY is also computed
with respect to the algorithm of Alon et al. (2003),
then a similar analysis as in the proof of Theorem 2
leads to the same result, i.e., that FGREEDY remains
asymptotically optimum.

Also, if the budget allotted is k∗
√

n and one calls
the on-line algorithm of Alon et al. (2003), this latter
algorithm is asymptotically optimum for maximum
budget saving.

5 Conclusions

We have introduced an on-line model associated with
a natural greedy on-line algorithm achieving non-
trivial competitive ratio

√
n. Moreover, we have

shown that this simple algorithm is strongly compet-
itive since no on-line algorithm for this model, even
if it introduces in the cover more than one sets at a
time, can guarantee better than

√

n/2. One of the
features of our model is that the algorithm can run
with an extremely small amount of memory and disk
requirements and hence it is suitable for solving very
large instances.

Next, we have introduced and studied the maxi-
mum budget saving problem. Here, we have relaxed
irrevocability in the solution construction by allow-
ing the algorithm to delay its decisions modulo some
fine to be paid. For such a model we have shown that
the natural greedy off-line algorithm is asymptotically
optimal.

A subject for further research is the extension
of our models to deal with minimum-weight set-
covering. For this version work is in progress.
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