
Conferences in Research and Practice in
Information Technology

Volume 49

Database Technologies 2006

Australian Computer Science Communications, Volume 28, Number 2.

Database Technologies 2006

Proceedings of the
17th Australasian Database Conference (ADC2006),
Hobart, Tasmania, Australia, 16-19 January 2006

Gillian Dobbie and James Bailey, Eds.

Volume 49 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Proceedings of the Seventeenth Australasian Database Conference (ADC2006), Hobart, Tasmania,
Australia, 16-19 January 2006

Conferences in Research and Practice in Information Technology, Volume 49.

Copyright c©2006, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors: Gillian Dobbie
Department of Computer Science
University of Auckland
Auckland,
New Zealand
Email: gill@cs.auckland.ac.nz

James Bailey
Department of Computer Science and Software Engineering
University of Melbourne
Melbourne,
Australia
Email: jbailey@cs.mu.oz.au

Series Editor: John F. Roddick,
Conferences in Research and Practice in Information Technology
Flinders University,
PO Box 2100, Adelaide 5001
South Australia.
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 49.
ISSN 1445-1336.
ISBN 1-920-68231-7.

Printed, November 2005 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Seventeenth Australasian Database Conference (ADC2006),
Hobart, Tasmania, Australia, 16-19 January 2006

Preface . vii

Programme Committee . viii

Organising Committee . ix

CORE - Computing Research and Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xii

ACSW and ADC 2006 Sponsors . xv

Keynote Paper

Approximate Data Mining in Very Large Relational Data . 3
James C. Bezdek, Richard J. Hathaway, Christopher Leckie and Ramamohanarao Kotagiri

Invited Paper

Suffix Arrays: What Are They Good For? . 17
Simon J. Puglisi, William F. Smyth and Andrew Turpin

Full Papers

Advanced Foundations of Databases

Horn Clauses and Functional Dependencies in Complex-value Databases . 21
Sven Hartmann and Sebastian Link

Data Mining and Knowledge Discovery

A Further Study in the Data Partitioning Approach for Frequent Itemsets Mining 31
Son N. Nguyen and Maria E. Orlowska

A Two-Phase Rule Generation and Optimization Approach for Wrapper Generation 39
Yanan Hao and Yanchun Zhang

A Reconstruction-based Algorithm for Classification Rules Hiding . 49
Juggapong Natwichai, Xue Li and Maria E. Orlowska

XML and Databases

Dynamic Labeling Schemes for Ordered XML Based on Type Information . 59
Damien K. Fisher, Franky Lam, William M. Shui and Raymond K. Wong

Establishing an XML Metadata Knowledge Base to Assist Integration of Structured and Semi-
structured Databases . 69

Fahad M. Al-Wasil, W. A. Gray and N. J. Fiddian

Peer-to-Peer Form Based Web Information Systems . 79
Stijn Dekeyser, Jan Hidders, Richard Watson and Ron Addie

Information Retrieval

Dimensionality Reduction in Patch-Signature Based Protein Structure Matching 89
Zi Huang, Xiaofang Zhou, Dawei Song and Peter Bruza

Recency-Based Collaborative Filtering . 99
Yi Ding, Xue Li and Maria E. Orlowska

Document Generality: its Computation for Ranking . 109
Xin Yan, Xue Li and Dawei Song

Query Processing and Optimization

Using Reflection for Querying XML Documents . 119
Markus Kirchberg, Faizal Riaz-ud-Din, Klaus-Dieter Schewe and Alexei Tretiakov

An Optimization for Query Answering on ALC Database . 129
Pakornpong Pothipruk and Guido Governatori

A Multi-step Strategy for Approximate Similarity Search in Image Databases . 139
Paul W.H. Kwan and Junbin Gao

Advanced Database Applications

A New Approach to Intelligent Text Filtering Based on Novelty Detection . 149
Randa Kassab and Jean-Charles Lamirel

Using a Temporal Constraint Network for Business Process Execution . 157
Ruopeng Lu, Shazia Sadiq, Vineet Padmanabhan and Guido Governatori

Discovering Task-Oriented Usage Pattern for Web Recommendation . 167
Guandong Xu, Yanchun Zhang and Xiaofang Zhou

Performance Issues in Databases

Handling of Current Time in Native XML Databases . 175
Bela Stantic, Guido Governatori and Abdul Sattar

A Heuristic Approach to Cost-Efficient Fragmentation and Allocation of Complex Value Databases . . 183
Hui Ma, Klaus-Dieter Schewe and Qing Wang

OCP - A Distributed Real Time Commit Protocol . 193
Udai Shanker, Manoj Misra and Anil K. Sarje

Author Index . 203

vi

Preface

The Australasian Database Conference (ADC) series is an annual forum, exploring research, development
and novel applications of databases systems. This volume contains papers presented at the Seventeenth
ADC in Hobart, Australia. ADC 2006 is a specialist conference in the Australasian Computer Science Week
which ran from Jan 16th to 19th, 2006.

The ADC 2006 call for papers solicited contributions in all areas of database research. This years
conference is truly international with papers submitted from Australia (32), New Zealand (8), Canada (3),
USA (3), Denmark (2), Japan (2), France (1), India (1), Pakistan (1), Thailand (1), and UK (1).

The topics addressed by the submitted papers illustrate the broadness of the database discipline. The
authors categorised their submissions into one or more of the following topics:

– Data mining/knowledge discovery (14 papers)
– Information retrieval (14 papers)
– XML and databases (11 papers)
– Query processing and optimization (9 papers)
– Advanced foundations of databases (8 papers)
– Advanced database applications (7 papers)
– Semistructured data (7 papers)
– Logic in databases (6 papers)
– Data warehousing (5 papers)
– Database system integration issues (5 papers)
– Federated, distributed and parallel databases (5 papers)
– High dimensional and temporal data (5 papers)
– Performance issues of databases (4 papers)
– Web information systems (4 papers)
– Database schema integration (3 papers)
– Databases for bioinformatics (3 papers)
– Extended data type management (3 papers)
– Transaction processing (3 papers)
– Image/video retrieval and databases (2 papers)
– Query languages (2 papers)
– Spatial data processing and management (2 papers)

All papers were sent to at least three programme committee members for review and every effort was made
to obtain as many reviews as possible. Of the 55 papers submitted, 19 were selected for presentation at
the conference. The programme committee invited Professor James Bezdek to give a keynote on Approxi-
mate Clustering for Data Mining in Very Large Databases. Professor Bezdek is the William Craig Nystul
Professor of Computer Science at the University of West Florida. The committee also invited Dr Andrew
Turpin to present Suffix Arrays: What Are They Good For?. Dr Turpin is a Queen Elizabeth II Fellow at
RMIT University.

We thank all authors who submitted papers and all conference participants for helping to make the
conference a success. We also thank the members of the programme committee and the external referees for
their expertise in carefully reviewing the papers. We are grateful to Sharon Liu and Scott Lee for their work
in managing the reviewing system and processes. Last, we express our gratitude to our hosts in Tasmania.

Gillian Dobbie
University of Auckland

James Bailey
University of Melbourne

ADC 2006 Program Chairs
January, 2006

vii

Programme Committee

Chairs

Gillian Dobbie, University of Auckland, New Zealand
James Bailey, University of Melbourne, Australia

Members

Stijn Dekeyser, University of Southern Queensland, Australia
David Edmond, QUT, Australia
Raj P Gopalan, Curtin University of Technology, Australia
Guido Governatori, University of Queensland, Australia
Sven Hartmann, Massey University, New Zealand
David Hawking, CSIRO Canberra, Australia
Annika Hinze, University of Waikato, New Zealand
Patrick Hung, University of Ontario Institute of Technology, Canada
Hasan Jamil, Wayne State University, USA
Beng Chin Ooi, National University of Singapore
John Roddick, Flinders University, Australia
Klaus-Dieter Schewe, Massey University, New Zealand
John Shepherd, University of New South Wales, Australia
Markus Stumptner, University of South Australia, Australia
Saied Tahaghoghi, RMIT University, Australia
Kian-Lee Tan, National University of Singapore
Egemen Tanin, University of Melbourne, Australia
Rodney Topor, Griffith University, Australia
Andrew Turpin, RMIT University, Australia
Wei Wang, University of New South Wales, Australia
Gerald Weber, University of Auckland, New Zealand
Hugh E. Williams, Microsoft Corporation, USA
Raymond Wong, University of New South Wales, Australia
Jeffrey Yu, Chinese University of Hong Kong
Yanchun Zhang, Victoria University, New Zealand
Xiaofang Zhou, University of Queensland, Australia

viii

Organising Committee

Welcome

On behalf of the Tasmanian Organising Committee of ACSW2006 I would like to welcome all the delegates
to the conferences of this busy and interesting week, in particular those coming from overseas.

The location of the various conferences and other events at the Wrest Point Hotel allows delegates to
move quickly from event to event, and to easily and comfortably gather in groups for those conversations
and interactions that are so important for the exchange of ideas and the promotion of cooperation, not to
mention social pleasure.

We trust you will have a thoroughly enjoyable time.

Professor Young Ju Choi
Chair, Organising Committee

January, 2006

General Chair

Professor Young Ju Choi, School of Computing, University of Tasmania, Australia

Organising Committee Members

Ms Nicole Clark
Dr Julian Dermoudy
Mr Tony Gray
Mr Neville Holmes
Mr Ian McMahon
Ms Julia Mollison
Professor Arthur Sale
Ms Soon-ja Yeom

ix

x

CORE - Computing Research and Education

CORE welcomes all delegates to ACSW2006 in Hobart.
ACSW, the Australasian Computer Science Week continues to grow with new conferences becoming

entrenched in the week. As the premier annual Computer Science event in Australia and New Zealand,
it provides an unparalleled opportunity for the wide community of Computer Science academics and re-
searchers to meet, network, promote IT research and be exposed to the latest research in other areas of
IT. The research presented at each conference is of the highest standard and essential for the growth and
future of our region, in an ever more competitive world.

CORE is expanding its awards. The Distinguished Service Award first offered in late 2004 will be offered
every second year and next at the 2007 Conference. Along with the Chris Wallace Research Award, we are
offering an annual teaching award for the first time.

CORE has continued to play a part in the Federation of Australian Scientific and Technological Societies
and by participating in events such as Science Meets Parliament, CORE is becoming recognised by the
wider community and will continue to do so. A major contribution from many members in 2005 was a
submission to the RQF Forum with some of our ideas appearing in the draft. CORE and members of the
Executive have also been interviewed as representatives of the Computer Science community for several
other Government and industry inquiries and initiatives.

Thank you all for your contributions in 2005 and we look forward to an exciting 2006.

Jenny Edwards
President, Computing Research and Education

January, 2006

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2008. Communications Volume Number 30. Proposed Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Conference on Computing Education.
ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture

Conference (ACAC).
ACSC. Australian/Australasian Computer Science Conference.
ACSW. Australian/Australasian Computer Science Week.
ADC. Australian/Australasian Database Conference.
APBC. Asia-Pacific Bioinformatics Conference.
APCCM. Asia-Pacific Conference on Conceptual Modelling.
AUIC. Australian/Australasian User Interface Conference.
CATS. Computing - The Australian/Australasian Theory Symposium.

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a

wider geographical area.

xiii

xiv

ACSW and ADC 2006 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date
overview of sponsors of ACSW 2006 and ADC 2006, please see http://www.comp.utas.edu.au/acsw06/.

University of Tasmania, Australia

Australian Computer Society

CORE - Computing Research and Education

University of Auckland, New Zealand

University of Melbourne, Australia

xv

Keynote Paper

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

1

CRPIT Volume 49

2

Approximate Data Mining in Very Large Relational Data

James C. Bezdek1, Richard J. Hathaway2,

Christopher Leckie3, Ramamohanarao Kotagiri3

1Department of Computer Science, University of West Florida, Pensacola, FL 32514, USA
2Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460, USA

3Department of Computer Science and Software Engineering, University of Melbourne, Victoria, 3010, Australia
jbezdek@uwf.edu, r.hathaway@ieee.org, caleckie@cs.mu.oz.au, rao@cs.mu.oz.au

Abstract

In this paper we discuss eNERF, an extended version of
non-Euclidean relational fuzzy c-means (NERFCM) for
approximate clustering in very large (unloadable)
relational data. The eNERF procedure consists of four
parts: (i) selection of distinguished features by algorithm
DF to be monitored during progressive sampling; (ii)
progressively sampling a square N × N relation matrix
RN by algorithm PS until an n× n sample relation Rn
passes a goodness of fit test; (iii) Clustering Rn using
algorithm LNERF; and (iv), extension of the LNERF
results to RN-Rn by algorithm xNERF, which uses an
iterative procedure based on LNERF to compute fuzzy
membership values for all of the objects remaining after
LNERF clustering of the accepted sample. Three of the
four algorithms are new - only LNERF (called NERFCM
in the original literature) precedes this article.

Keywords: Cluster analysis, data mining, very large data,
non-Euclidean relational fuzzy c-means, progressive
sampling, relational data, gene product similarities..

1 Introduction

According to Huber (1996), who defines large data sets

as an order of magnitude of 108 bytes, "Some simple
standard database management tasks with computational
complexity O(n) or O(nlogn) remain feasible beyond
terabyte monster sets, while others (e.g., clustering) blow
up already near large data sets." The next generation of
clustering algorithms must not "blow up" when handling

large or even very large data (>> 1012 bytes).

Consider a set of N objects {o1,...,oN}. Numerical object

data has the form X = {x1,..., xN} ⊂ ℜs , where the
coordinates of xi provide feature values (e.g., weight,
length, etc.) describing object oi. The other type of data
commonly found in data mining is numerical relational
data, which consists of N2 pair-wise dissimilarities (or
similarities), represented by a matrix D = [dij =
dissimilarity (oi, oj) | 1 ≤ i, j ≤ N]. Many clustering
algorithms are known and used for both kinds of data

Copyright (c) 2006, Australian Computer Society, Inc. This paper
appeared at the Seventeenth Australasian Database Conference
(ADC2006), Hobart, Australia. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 49. Gillian Dobbie and James
Bailey, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

(Bezdek et al., 1999). X can be converted into
dissimilarity data D = D(X) by computing

dij = x i − x j

in any vector norm on ℜs, so most relational clustering
algorithms are (implicitly) applicable to object data.
However, there are both similarity and dissimilarity
relational data sets that do not begin as object data, and
for these, we have no choice but to use a relational
algorithm. In many application domains, a relational
representation may reflect the way the data is collected
and stored. Consider the problems of clustering actors
based on whether they have performed together in the
same film, or documents based on whether they have
similar word usage (Tasker et al., 2001). In each case, a
natural representation for the data is as a binary relation
that specifies the similarity between objects. A similar
problem arises in marketing, when trying to group
product lines that are frequently purchased together.
Rather than storing every purchasing transaction, a more
efficient representation is to simply record the frequency
with which individual pairs of products have been
purchased together.

Many algorithms have been proposed for clustering in
VL object data (Ng and Han, 1994, Bradley et al. 1998,
Ganti et al. 1999, Hathaway and Bezdek, 2005), but no
algorithms (that we are aware of) exist for "pure"
relational data (i.e., D ≠ D(X) for some X). One way to
attack the problem of clustering in VL data is discussed
in Pal and Bezdek (2002), where the technical notion of
extensibility is introduced. Roughly speaking, an
extended clustering scheme applies a clustering algorithm
to a (loadable) sample of the full data set, and then non-
iteratively extends the sample result to obtain
(approximate) clusters for the remaining data. A literal
scheme applies the clustering algorithm without
modification to the full data set.

When the data set is very large (VL), sampling and
extension makes clustering feasible for cases where it is
not otherwise possible. If the data set is merely large (L),
but still loadable, then an extended scheme may offer an
approximate solution comparable to the literal solution at
a significantly reduced computational cost - in other
words, it accelerates the corresponding literal scheme.
The benefits for the two cases can be summarized as
feasibility for VL data sets and acceleration for L data
sets. Both situations are depicted in Figure 1 where the
data set to be clustered is either DL or DVL.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

3

Figure 1: Population D∞∞∞∞ and samples D VL, D L, D SS

Our test for judging whether DS is representative of the
source may require some basic processing of the full
sample. We can load DL into primary memory and do the
required processing (to test the sample). We cannot load
DVL, but may have to page through DVL once to gather
simple statistics (e.g., bin counts for a histogram) needed
to assess the quality of candidate samples.

For DL, we can assess the approximation error by
measuring the difference between the clustering solutions
obtained using the corresponding extended and literal
schemes. On the other hand, the only solution generally
available for DVL is that obtained by the extended
scheme, in which case the approximation error cannot be
measured. Thus, our confidence in the accuracy of
extended clusters in the unverifiable case (DVL) is
necessarily derived from the verified good behavior we
can observe by conducting various DL experiments.

2 eNERF

2.1 Labels and Partitions. Let c be the number of

classes, 1 < c < n. Crisp label vectors in ℜc look

like y i = (0,…,1,…,0)T , with a 1 in the ith place meaning
that objects with this label belong to class i. Fuzzy or
probabilistic label vectors ("soft" labels) look like y =
(0.1, 0.6, 0.3)T (where c=3 classes, for example); they
have entries in [0, 1] that sum to 1. We need names for
the sets of all soft and hard label vectors, so we follow
the usual notation:

 Nfc = { y = (y1,…yc)T ∈ ℜc : yi = 1;0≤ y i ≤ 1∀ i∑ };

 Nhc = { y ∈ Nfc : yi ∈ {0,1} ∀ i} ⊂ Nfc .

Assume that DN = D = [dij] satisfies, for 1 ≤ i, j ≤ N,

 dij ≥ 0; d ij = dji ; dii = 0. (1)

We do not assume that D is transitive, because this
restriction simply does not hold for most real VL
relational data. Clustering in O (or somewhat sloppily, in
D) is the assignment of (hard or fuzzy or probabilistic)
label vectors to the objects in O. A c-partition of O (or D)
is a set of (cN) values {uik} arrayed as a c× N matrix U
= [U1 U 2 … UN] = [uik], where Uk, the kth column of U,
is the label vector in Nfc for ok. The ikth element uik of U
is the membership of ok in cluster i. Each column of U
sums to 1, and each row of U must have at least one non-
zero entry.

Table 1 contains an example of crisp (U1) and soft (U2) 2-
partitions of n=6 objects. U1 identifies 3 objects in each
of the two crisp clusters. Objects have partial
memberships (or posterior probabilities) in U2. For
example, the first object is more similar to class 1 (u2,11=
0.7) than to class 2 (u2,21=0.3). Because fuzzy partitions
may indicate partial memberships in several clusters, they
often provide valuable information about twixters (in-
between objects) that is not available in a crisp partition.
The most visible twixters in U2 are objects 3 and 4. When
we want crisp labels from soft partitions, the usual
method of "hardening" is to simply replace the maximum
entry in each column of U by a 1, and place 0's in the
remaining (c-1) columns (this is just Bayes rule when U
is a probabilistic partition). We denote the hardening of
U by H(U). The last column in Table 1 has an example
for the hardening of U2. If we compare H(U2) to U1, we
see that there is one mismatch (object 3). This is not
necessarily an error – just a mismatch (it would be an
error if U1 contained ground truth labels – i.e., labels
known to be right).

Table 1: Crisp, Soft and Hardened 2-partitions of n objects

Crisp Soft Hardened U2

 1 0 1 0 0 1

 U1 = 0 1 0 1 1 0

 0 .7 0.2 0.45 0.4 0.3 0.9

U2 = 0.3 0.8 0.55 0.6 0.7 0.1

 1 0 0 0 0 1

H(U2) = 0 1 1 1 1 0

D∞ (population)

DVL (unloadable) Objective: Feasibility Approximation Error: Unmeasurable

DL (loadable) Objective: Acceleration Approximation Error: Measurable

DS (sample of DVL or DL)

CRPIT Volume 49

4

2.2 Distinguished Features. We want to cluster a
sample of n objects On from the VL set ON, or
equivalently, we want clusters in a submatrix Dn of DN.
The progressive sampling scheme we have in mind is an
adaptation of the object data scheme in Hathaway and
Bezdek (2005). To use this approach we interpret the
relational data as object data by regarding the ith column
Di of DN (equivalently the ith row, since DN is symmetric)
as a feature vector for object oi. DN = [D1 D2 … DN]. Any
road map that has a table of distances between pairs of
cities on the map is a relation of this type. This
interpretation of Di is analogous to giving the location of
city i (= object oi) by specifying - instead of, say, its
rectangular coordinates - its distance to N-1 other cities
(i.e., the N-1 distances between city i and the other cities
on the map are its "features").

Which of these N "feature vectors" should we use? We
believe it is reasonable to pick distinguished features
(DFs) that are very different from each other. We choose
h, the number of distinguished features to be selected,
and H, which restricts the distinguished features to come
only from rows 1 through H of D. This restriction allows
the distinguished features selection portion of eNERF to
be performed with only the top H × H portion of D,
which may be loadable when D is not.

Algorithm DF (Select h distinguished features from H
rows of DN)

Choose: h = # of distinguished features to select

H = # of candidate rows for the h distinguished
features, h ≤ H

Input: An H × H dissimilarity matrix DH

(DF1) Define m1 = 1. Initialize the search array

 δδδδ1 = [1
H

1
2

1
1 ...,,, δδδ]T = [d11,...,d1H]T.

(DF2) Define m2 = j where 1
jδ ≥ 1

kδ for 1 ≤ k ≤ H.

(DF3) Define next search array δδδδ2 = [2
H

2
2

2
1 ...,,, δδδ]T =

}]d,min{,},d,[min{ Hm
1
H1m

1
1 22

δ…δ T

(DF4) Define m3 = i where 2
iδ ≥ 2

kδ for 1 ≤ k ≤ H.

(DF5) After j steps, use δδδδj = [j
H

j
2

j
1 ...,,, δδδ]T =

}]d,min{,},d,[min{ Hm
1j

H1m
1j

1 jj

−− δ…δ T to choose the

 j+1st feature as that row among the remaining
candidates whose index points to the maximum
element of δδδδj.

If there is not a unique minimizing argument at some
stage, ties can be broken by any rule. Why use the term
"distinguished features"? Well, algorithm DF is a feature
selection algorithm, but not in the usual pattern
recognition sense of the term – i.e., we are not selecting
good features for clustering or classifier design – rather,
we are selecting good features for progressive sampling.
It is our hope, of course, that these features will lead us to
good clusters in D, but the quality of the features for

clustering does not determine their selection. However,
we can relate algorithm DF to clusters in D in a very
specific way.

Algorithm DF is justified in terms of sampling potential
clusters by relating it to Dunn's index of separation
(Dunn, 1976) which characterizes sets of clusters that are
compact and well separated by a geometric criterion. The
relevant result is

Proposition DF. If OH has c compact and separated
clusters, then the first c distinguished features chosen by
algorithm DF will consist of one row corresponding to an
object from each of the c clusters.

Proof. Given in Hathaway et al. (2005)

2.3 Progressive sampling. The criterion for
acceptability of On is based on comparing the distribution
of the distinguished features found by algorithm DF in
the columns corresponding to On and ON using the
divergence test statistic. The scheme is best illustrated by
a small example, shown in Figure 2, where we depict an
 8× 8 dissimilarity matrix D8 enclosed in the heavy
square, and 2 (arbitrarily chosen) distinguished features,
m1 = feature 1 and m2 = feature 7. Imagine now that the
current candidate sample is O3 = {o2, o4, o8}. In essence,
we will accept O3 as a representative sample of O8 if for
each distinguished feature mk, the distribution of the O3
feature values (corresponding to the shaded cells in row
mk) closely approximates the distribution of the
corresponding feature values for the full sample
(corresponding to all entries in row mk).

More specifically, we accept O3 if the histogram of {d12,
d14, d18} is close enough to that of {0, d12, d13, d14, d15, d16,
d17, d18} and the histogram of {d72, d74, d78} closely
approximates that of {d71, d72, d73, d74, d75, d76, 0, d78}.
The approximation is "close enough" when the divergence
test statistic is in the left tail of the appropriate chi-square
distribution for each distinguished feature. In the bottom
portion of Figure 2, we have extracted the relevant values
needed for the divergence tests and shown them as
vectors p (sample values) and q ("population" values).
We will accept the sample if, and only if, div(p1,q1) AND
div(p7,q7) are both less than or equal to F– 1(1-ε), where F
is the cumulative distribution function (cdf) for the chi-
square distribution with b–1 degrees of freedom (b and ε
are discussed below). The use of a histogram-based test
for acceptability requires selection of histogram bin
intervals. Let b denote the desired number of histogram
bins. The histogram interval widths are based only on the
distinguished feature values of the initial sample, and the
widths vary, as necessary, so that each histogram bin
captures (as nearly as possible) the same number of initial
sample observations. For notational simplicity we drop
the second level of subscripts and let d(1) ≤ d(2) ≤ ... ≤ d(n)
denote the order statistics for the values of distinguished
feature mk from the columns of D corresponding to an
initial sample On = {

oi1

,

oi 2

,…,

oi n

}.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

5

 o2 o4 o8

DF m1 = 1→ 0 d12 d13 d14 d15 d16 d17 d18

 d21 0 d23 d24 d25 d26 d27 d28

 d31 d32 0 d34 d35 d36 d37 d38

 d41 d42 d43 0 d45 d46 d47 d48

 d51 d52 d53 d54 0 d56 d57 d58

 d61 d62 d63 d64 d65 0 d67 d68

DF m2 = 7 → d72 d72 d73 d74 d75 d76 0 d78

 d81 d82 d83 d84 d85 d86 d87 0

Sample Values → (d12 d14 d18) = p1

(Pop.) Values → (0 d12 d13 d14 d15 d16 d17 d18) = q1

div(p1,q1)

(Pop.) Values → (d72 d72 d73 d74 d75 d76 0 d78) = q7

Sample Values → (d72 d74 d78) = p7

 div(p7,q7)

Figure 2: Progressive sampling termination testing using DFs 1 and 7 for sample objects 2, 4 and 8

The b bin intervals of the histograms used to assess the
suitability, according to distinguished feature mk, of the
original and all subsequent candidate samples are
































+
b

n
1

d,0 ,































+














+
b

n2
1

b

n
1

d,d ,
































+














+
b

n3
1

b

n2
1

d,d , ... ,
















∞















 −
+

,d

b

n)1b(
1

where   denotes the ceiling function. We refer to bins

chosen this way as equal content bins, since the intervals
divide the sample data exactly, or very nearly so, equally
into the b bins.

Once the bin intervals are selected using the initial On, the
same intervals are used - they are not redefined - for all
subsequent candidates. For an example suppose that the

initial sample is O45 = {
1i

o ,
2i

o ,…,
45io } with the 45

corresponding sorted values d(1) ≤ d(2) ≤ ... ≤ d(45) for
distinguished feature mk. Then for b = 4, the intervals
defining the 4 bins are [0,

 d (13)), [d(13), d(24)),

[d(24) , d(35)), and [d(35) , ∞). Assuming the 45 data

values are all distinct, the (nearly equal) respective counts
for the 4 intervals are 12, 11, 11, and 11.

There is one more issue concerning the sample data
matrix that will be sent to LNERF for clustering. When

On = {o i1

,…,oi n
}, or equivalently, the corresponding

columns of Dn, is accepted, then exactly what data are
passed to LNERF? The sample used by LNERF consists
of the set of all pair-wise dissimilarities of objects in
{

oi1

,

oi 2

,…,

oi n

}, which is conveniently arrayed as an n

× n submatrix of the full sample matrix DN. We denote
this submatrix by Dn, where element

dn jk

 is the pair-wise

dissimilarity between sample objects

oi j

 and

oi k

. For

example, if the accepted sample is O3 = {

oi1

,

oi 2

,

oi 3

} =

{o2, o4, o8} as in Figure 2, then sample data matrix of
dissimilarities that will be processed by LNERF is

D3 =
0 d24 d28

d42 0 d48

d82 d84 0
















. Recall that we let F denote the cdf

for the chi-square distribution with b–1 degrees of
freedom. The sampling scheme is:

Algorithm PS : Relational Progressive Sampling

Inputs: An h× N dissimilarity matrix D. The

rows of D correspond to the h
distinguished features {m1,m2,...,mh}
selected by algorithm DF on DH

Constraints: D satisfies conditions (1)

Choose: b = # of histogram intervals

p = the initial sample percentage
p∆ = the incremental percentage

CRPIT Volume 49

6

 ε PS = termination criterion
(PS1) Randomly select (without replacement) n =

 100/)pN(column indices In ={c1,..., cn} from IN =

{1,2, …,N}.

(PS2) For k=1 to h: define EC histogram bins for

distinguished feature mk with {

dm kc1

,

dm kc2

,...

,
dmkcn

}.

(PS3) For i=1 to b; for k=1 to h:

Calculate N i
k , the full set count for bin i and mk ,

using row mk of D.

Calculate ni
k , the sample count for bin i and mk ,

using {

dm kc1

,

dm kc2

,... ,
dmkcn

}.

(PS4) For k=1 to h: calculate the divergence test criterion
for distinguished feature mk

divk = n
N i

k

N
− ni

k

n




 




  ln

nNi
k

Nni
k




 




 

i=1

b
∑ .

(PS5) WHILE (divk > F−1(1− ε) for at least one k ∈∈∈∈
{1,2,...,h})

∆n = min{N-n, (p∆ N)/100} : n = n + ∆n

Randomly select ∆D = (∆n) previously unselected

columns of D

D n = D n + ∆D % Adding ∆n columns to D n also adds

∆n rows to D n

Calculate

divk = n
N i

k

N
− ni

k

n




 




  ln

nNi
k

Nni
k




 




 

i=1

b
∑ ; k = 1,...,h

Output : n× n (Sample) Dissimilarity matrix Dn

2.4 LNERF. Clustering in Dn is done with the literal
NERF algorithm from Hathaway and Bezdek (1994). In

the following, ⋅ is the Euclidean norm on ℜn, ek

denotes the kth unit vector in ℜn, M is the n × n matrix
with 0’s on the main diagonal and 1’s elsewhere
(M = [1] − I n), and Mfcn is the set of all fuzzy partition

matrices U ∈ ℜcn which satisfy uik ∈ [0,1],

uik
i=1

c
∑ = 1 for

k = 1, ..., n and

uik
k =1

n
∑ > 0 for i = 1,...,c. Don't confuse

)q(U , the qth estimate of the c× n matrix U, with our
notation Uq, which denotes the qth column of matrix U.

Algorithm LNERF : Fuzzy clusters in dissimilarity
matrix Dn (Hathaway and Bezdek, 1994)

Inputs: An n× n dissimilarity matrix Dn

Constraints: Dn satisfies conditions (1) and

 α ∈ ℜ, M = [1] − I n

Choose: c = # of clusters, 2 ≤ c < n
 m = fuzzy weighting exponent, m> 1
 εL = termination criterion

)1q()q(UU −− = termination norm

 QM = maximum number of iterations

Initialize: q = 0; β = 0; U
(0) ∈ M fcn

 Udifference = 2*εL

WHILE (Udifference > εL AND q < QM)

(LN1) For 1 < I < c, calculate "mean” vector v i

(r)

v i

(q) = ((ui1
(q))m ,K, (uin

(q))m)T ((uij
(q))m

j=1

n
∑ , (2a)

(LN2) Calculate (cn) object to cluster "distances"

δ ik = (Dn +βM()v i

(q))k − (v i
(q)T Dn +βM()v i

(q)) / 2 (2b)

IF δ ik < 0 for any i and k, THEN calculate







 −δ−=β∆

2

k
)q(

iik
k,i

/2max ev ; (2c)

δ ik ← δ ik + (∆β / 2) ⋅ v i

(q) − e k

2
 ; (2d)

 β ← β + ∆β . (2e)

(LN3) Update)q(U to fcn

)1q(MU ∈+ for all k =1, …, n:

IF δδδδik > 0 for any i = 1 to c THEN

uik
(q+1) = 1 δ ik δ jk()1 (m−1)

j=1

c
∑








 ; (2f)

ELSE

 0 with k allfor 0u ik
)1q(

ik >δ=+

uik

(q+1) ∈ [0,1] such that ujk
(q+1)

j=1

c
∑ = 1

 (2g)
 1qq +←

 U
difference

 =
)1q()q(UU −−

Outputs : Membership matrix ULNERF,n ∈ M fcn ;

 "prototype" vectors { v1,…,vc} ⊂ ℜn

The main result in Hathaway and Bezdek (1996) is that
the sequence of partition matrices produced by LFCM on
an object data set X is identical to the sequence of
partition matrices produced by LNERF on the
corresponding relational matrix D(X) of pair-wise
squared Euclidean distances derived from X, i.e.,

[d ij (X)] = x i − x j

2
 


 
. The "non-Euclidean" terminology

indicates that LNERF is applicable to non-Euclidean data.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

7

Continuation of the algorithm is achieved by β-spreading
D to Dβ = Dn + βM via equations (2b)-(2e) which, when

triggered, add spread term β to the off diagonal elements
of D. Addition of the term βM produces relational
dissimilarity data that is very nearly Euclidean, while
preserving most of the cluster structure of the original D.
The {δik} shown in equations (2) are analogous to
distances in LFCM, the object data dual of LNERF, but
are not true distances in the relational data setting.
Finally, the specific norm used in LNERF for termination
is important only in that different norms may stop the
algorithm at different elements in the iterate sequence.

2.5 Extension. The final component of eNERF is
extension of LNERF results on On to the objects in (ON -
On). We temporarily denote the LNERF clustering results
by (U = ULNERF, V) without subscripts, where U = [uik] ∈

M fcn and V = [v1, v2,..., vc] ∈ ncℜ . The result of extension
is an augmented Nc× matrix Uapp obtained by appending
(N – n) columns from xNERF to the nc× matrix U. Uapp
is the approximation to Ulit, the partition of DVL that we
seek, but cannot compute. Extended NERF (xNERF)

calculates U
j = (u1j,…, ucj)

T , the membership column in

the output matrix UxNERF corresponding to oj, for n+1 ≤ j ≤
N. Unlike the direct calculation used to extend FCM in
the image and general object data cases, xNERF extension
requires iteration to produce a label vector for each of the
N-n unlabelled objects. This sounds worse, complexity-
wise, than it is. Several vector computations are done just
once. Subsequently, only simple scalar quantities are
recalculated, so the iteration that produces each Uj is fairly
inexpensive.

Calculating memberships for oj begins by appending some
of oj 's corresponding relational data to the sample
relational matrix Dn to obtain an (n+1) × (n+1) augmented
relational matrix. Then LNERF is applied to this
augmented matrix, but the sample-based estimates of U
and V from LNERF are fixed.

Let βn denote the final shifting value obtained from (2e)
while clustering Dn using LNERF; and let

Dβ n

 denote the

βn shifted version of Dn,
Dβn

= Dn + βnM. Let DN = [dik]

denote the original N×N full relation matrix. For
convenience, we assume without loss of generality that the
objects in ON have been re-indexed so that the unlabeled
objects are adjacent, ON − On = {o n+1,on+2,…,oN} . To
assign a fuzzy label vector to the jth object in ON - On, we
first define some auxiliary quantities built from the values
of row or column j of DN and the outputs of LNERF on

Dn. Let d j = (d1j,…,dnj)
T , ββββn = (βn,…,βn)T and

 z j = (d j + ββββn) be n-vectors. Next, define the (n+1) ×

(n+1) augmented matrix Dj as

D j =
Dβ n

z j

z j
T 0












 . (11)

For i = 1, ..., c, let

ai = uik

m

k =1

n
∑ using the terminal U from (2g, h) , (3a)

bi = v i

T Dβ n
v i using the terminal vi's from (2a), (3b)

ci = z j

Tv i = z j,v i . (3c)

These three quantities are used by xNERF to iteratively
estimate two sets of unknowns for the object

 oj ∈ ON − On. The unknowns that will be estimated are: c

values {v ij :1≤ i ≤ c}, which correspond to the n+1st

"components" of new prototype vectors gotten by
applying LNERF to a distance matrix of size

 (n+1) × (n+1) ; and a c×1 label vector U
j ∈ Nfc . Next

we append the unknown components of the prototypes we
seek to the input prototypes from LNERF:

 ci1;]v,[T
ij

T
iij ≤≤= vv . (4)

Let 1 = (1,1, ...,1)T ∈ ℜn and define M j as

M j = 0n×n 1

1T 0









 ∈ ℜ (n+1)×(n+1)

 . (5)

We use 1Tvi = 1, due to normalization of the sample
prototype vectors during LNERF processing of Dn, to
simplify our description of xNERF. Let τ ∈ ℜ be any
real number, and calculate

D j + τM j()v ij()
n+1

=
DβS

z j + τ1

z j
T + τ1T 0













v i

v ij























n+1
= z j

Tv i + τ1T v i = ci + τ

; (6a)

Also,

(v ij)
T (D j + τM j)(v ij) = v i

T , v ij[] DβS
z j + τ1

z j
T + τ1T 0













v i

v ij











[] 








τ+
τ++

= β

i

jiji
ij

T
i c

)(vD
v, S

1zv
v

= v i
TDβS

v i + v ij (v i
Tz j + τv i

T1)+ v ij (ci + τ)
= bi + 2vij (ci + τ)

 . (6b)

Using (6) we can simplify the quantity

D j + τM j()v ij()
n+1

− 1

2
v ij()T

D j + τM j()v ij =

()
2

b
)v1)(c()c(v2b

2

1
c i

ijiiijii −−τ+=τ++−τ+ . (7)

Now we are ready to state the extension procedure.

Algorithm xNERF (Extension of LNERF to label
object oj ∈ ON − On : j = n+1,..., N)

Inputs: From algorithm (PS): Dn

CRPIT Volume 49

8

From algorithm (LNERF):

βn;Dβn
= Dn +βn(M);

U = ULNERF ∈ M fcn ;Vc×n

 m = fuzzy weighting exponent, m> 1

Choose: εx = termination criterion
 QM = maximum number of iterations

)1q()q(−− UU = termination norm

Calculate: ai and bi from (12) for i = 1 to c.

FOR j = n+1 to N

 (xN 1) Initialize: q = 0; β = 0; Udifference = 2*εx ;

 U
(0) = (1/ c,…,1/ c)T ∈ Nfc ;

 Calculate ci from (3c) for i = 1 to c.

(xN 2)WHILE (Udifference > εx AND q < QM)

Calculate new prototypes

vij

(q) ∈ ℜn+1 for i = 1 to c:

v ij
(q) = v i

T ,
kij

ai + k ij()












T

, where

kij = uij

(q)()m

Calculate new "distances" (when positivity is violated)
from oj to the c clusters for i = 1 to c:

IF 0ij <δ for any i ∈ {1,...,c}, THEN

 { }{min ij
i

δ−=β∆

 β∆+δ←δ ijij for i = 1 to c

 β ← β + ∆β

ENDIF

Calculate }u{)1q(
ij

+ for oj for i = 1 to c:

IF 0ij >δ , i = 1 to c THEN

uij
(q+1) =

δ ij

δhjh=1

c
∑



 




 

−1

(m−1)

ELSE

uij

(q+1) = 0 for all k with δ ik > 0 , and

uij

(q+1) ∈ [0,1] such that uij
(q+1)

j=1

c
∑ = 1

ENDIF
 Update 1qq +←

 Calculate Udifference =)1q()q(−− UU

END WHILE

U j = (u1j

(q),…, ucj
(q))T

NEXT j

Output : Matrix UxNERF = [U j ,…,UN] ∈ M fc (N−n)

Remarks. (i) it is never necessary to load the entire
matrix DN = DVL. Finding the h DFs that monitor
sampling uses an H × H submatrix of DN. (ii) progressive
sampling operates on an h × N portion of DN, which is
just the h rows of DN corresponding to the h DFs. (iii)
LNERF clustering operates on the n × n matrix Dn, where
n is the size of the accepted sample. (iv) xNERF accesses
elements in an n × (N-n) portion of DN.

Figure 3 summarizes the eNERF approach to clustering
in VL dissimilarity data, which consists of the sequential
application of four algorithms: DF, PS, LNERF and
xNERF. The final operation in this sequence is to form a
c-partition of ON (if this is desired), which is done by
concatenating UxNERF,N−n with ULNERF,n, thereby

creating Uapp = [ULNERF,n | UxNERF,N−n]c×N , and the

approximation to literal clusters in DN, which cannot be
computed when DN is unloadable. The shaded cells in the
upper left panel in Figure 3 depict the H×H matrix from
which the h distinguished features {mk} are chosen by
algorithm DF.

The shaded rows in the upper right panel are the full rows
of DN corresponding to the h rows in DH. This is the input
matrix to our progressive sampling scheme. The shaded
cells in the lower right panel are the entries of Dn, the
sample matrix processed by LNERF. And finally, the
lower left panel depicts the reindexed version of DN. The
blocks of shaded cells in the first n columns are the fixed
values of Dn, while the n shaded cells in column j, n+1 ≤ j
≤N, are the components of the vector dj. The matrix Dj
which is alluded to in this view is built from the shaded
cells in this view and the terminal β-spread value βn from
LNERF.

3 Numerical Examples

The termination norms for the two examples are: for
LNERF, the sup norm for matrices, regarding them as

vectors in ℜcn; and for xNERF, the sup norm on ℜc. The
first example gives a visual display of the quality of an
extended partition using a 194 × 194 matrix consisting of
pair-wise similarities from a set of human gene products.
The second example demonstrates eNERF on a problem
that is too big for the PC used in the calculations, which
consisted of 40,000 × 40,000 dissimilarities. Storage of
this matrix can be cut in half by storing just the upper
triangular part of the symmetric input matrix, but the data
are still too large to be handled directly with LNERF.

Example 1. We demonstrate eNERF by clustering a
subset of GDP1944.30.04 with LNERF, extending the results
to the remaining objects with xNERF, and then comparing

 Uapp = [ULNERF,n | UxNERF]c×N to ULNERF,N.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

9

Figure 3: Architecture of eNERF clustering in VL dissimilarity data

GDP1944.30.04 is a 194 x 194 matrix whose entries are
similarities between pairs of gene products developed on
sets of linguistic descriptors of each protein in the set; see
Pal et al. (2005) for a complete description of the
construction and interpretation of this data. The specific
matrix we use here was called LOS4. The subscript
indicates the date that the data was originally collected.
Since the original similarity values of the data are all in
[0,1], we obtained dissimilarities by subtracting each
similarity from 1.

There is evidence (from human experts and other
clustering algorithms) to believe that the data consists of 3
main clusters, which group them into three protein
families {myotubularin, receptor precursor, collagen alpha
chain}. The data were ordered so that the first 21 columns
(or rows) corresponded to the first cluster, as did the next
87, and the final 86. Hardening an LNERF fuzzy 3-
partition of the data produces these same clusters of sizes
21, 87, and 86.

Relational data and clusters in it can be displayed as a
grayscale image. The input dissimilarity matrix for
GDP1944.30.04, in the original order (clustered by human
experts), is shown in Figure 4(a). The three dark blocks
along the main diagonal correspond to the three main
clusters.

The purpose of this example is to demonstrate the visual
quality of extended partitions using different percentages
of data in the sample. To do this we need to randomly
sample a percentage of data from the matrix D
corresponding to Figure 4(a). One way to randomly
sample from the columns is to randomly permute the rows
and columns of D by the same permutation of 1,2,...,194.
After permutation, a random sample can be easily obtained
by choosing, in order, columns from the scrambled version
of D. This approach allows us to better "see" the random
sample. Using MATLAB routine randperm, seeded with
value 824567, we obtained the scrambled form of the
dissimilarity data shown in Figure 4(b), which we denote
here as Dscram.

Visual information about clusters in a dissimilarity image
(Figure 4(a)) is also available by viewing a transformed
version of a fuzzy partition found by clustering the data.
Figure 5 demonstrates this with images based on
extended fuzzy membership matrices computed from the
first (a) 10% of Dscram, (b) 25% of Dscram, (c) 75% of
Dscram, and (d) 100% of Dscram (LNERF on Dscram). To
appreciate the extended partition images, note that these
percentages are based on the ratio of sample size n to full
sample size N=194. So the 10% case corresponds to a
sample dissimilarity matrix D19 consisting of the 19 × 19
leading principal submatrix of Dscram.

m1 = DF1

m2 = DF2

mk = DFk

mh = DFh

DF on DHxH

DNxN

PS on DhxN

LNERF on Dnxn

DNxN

H

H N

o1 o2 oi on

o1

o2

oi

on

xNERF on Dj

dj

n N-n

CRPIT Volume 49

10

Figure 4a: Input dissimilarity matrix D194

Figure 5a: 10% sample (n=19)

Figure 5b: 25% sample (n=48)

Figure 4b: Dscram reordering of D194

Figure 5c: 75% sample (n=144)

Figure 5d: 100% (n=194: ULNERF,N)

The percentage of elements (not columns) of Dscram
actually used by LNERF in the clustering phase is about
1 percent. Likewise, using 75% of the 194 objects in our
scheme is equivalent to using 9/16 ≈ 56% of the elements
of Dscram. The images in Figure 5 were produced from
fuzzy partitions of Dscram in the following way. The
columns of the fuzzy partition Uscram of Dscram are
reordered (unscrambled) to get U, corresponding to the
same object ordering as in Figure 4(a). Then the
corresponding image matrix I(U) = J – (UTU / max(UTU))

where J denotes the 194 × 194 matrix of 1's and
max(UTU) denotes the largest element in UTU. Figures
5(a, d) show that the extended partition based on only
10% of D194 is a close (visual) approximation to the result
obtained by applying LNERF to D194 itself. The
extended partition images for successively larger samples
of D194 in views (a)-(c) are increasingly better
approximations to the literal partition seen in view (d).
Note, too, the clear similarity between all of the partition-
based images in Figure 5 and the dissimilarity-based

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

11

image of Figure 4 (a). And finally, we observe that when
analyzing clustering outputs with images such as these,
there is no need to harden fuzzy partitions – these images
are built directly with the fuzzy memberships produced
by LNERF and xNERF.

Example 2. This example demonstrates the feasibility
property of eNERF by clustering a 40,000 × 40,000
relational data matrix derived as pair-wise squared
Euclidean distances from a set of 40,000 2-dimensional
points which form 8 very well separated, compact
clusters. This data set was first used for testing a visual
display technique in Huband et al. (2005), and is
represented by a scatter plot in Figure 6.

Figure 6. Scatter plot of 8-cluster, 40000-point data

set in ℜ2 from Huband et al. (2005)

The 8-cluster data set can be clustered by almost any
object data clustering algorithm without difficulty on the
PC used for this experiment. In particular, we can cluster

this data with LFCM in ℜ2, so the full data fuzzy
partition Ulit is obtainable, and by the duality theory,
identical to the one obtained by running LNERF on the
corresponding distance matrix. But for N=40000, we are
not able to calculate, load and process the full distance
data matrix DN. In other words, if we had only the
relational data, this would represent a VERY LARGE
clustering problem relative to the computing environment
available. In fact, an 800 × 40000 slice (1/50) of DN
requires 244 MB of storage as a MATLAB *.MAT file.

To cluster D using eNERF we first performed progressive
sampling with the following parameter values:
divergence acceptance threshold εPS = 0.80; number of
DF candidates H = 10; number of DFs h = 1; number of
histogram bins b = 10; initial sample percentage p = 1 (%
of N = 40000) = 400; and incremental sample percentage
∆p = 1 (% of N = 40000) = 400. The choice h = 1 means
that, for any choice of H, the only DF chosen is the first
feature (row 1). The PS scheme terminated after one
increment, the divergence accepting a representative
sample of size n = 800.

For LNERF, we used m = 2, εL = 0.00001. Initializing
with the correct hard 8-partition of the data, the 800 ×
800 submatrix Dn was clustered after 3 iterations. The
xNERF phase required a 800 × 40000 slice of D which
had storage requirements of 244 MB. To avoid "out of
memory" errors with MATLAB, the processing was
broken up by calling the extension routine 49 times, each
time supplying it with Dn and an additional 800 x 800 sub
block of DN. This chunk was used to extend the partition
for another 800 objects. The stopping criterion for the
extension iteration used εx = 0.001, and the final extended
result Uapp satisfied

Ulit − Uapp F

= 0.2548 , which is

quite small since these matrices are 8 × 40000. This was
certainly an easy problem, in terms of how well separated
the clusters actually are, but the point here was to
demonstrate the feasibility property of eNERF, and this
example does that.

4. Discussion

We have shown how to extend NERF clustering to
arbitrarily large dissimilarity data. Several opportunities
for future work immediately come to mind. An efficient
implementation of eNERF, particularly for xNERF, needs
to be made to find out to what degree, and for what
problems, eNERF can provide acceleration to LNERF. A
theoretical analysis of the convergence properties of
xNERF would be of value and would likely be possible
using the alternating optimization framework of Bezdek
and Hathaway (2003). One of the most interesting issues
concerns the selection of the optimal distinguished
features, those that best provide samples that correlate
well with accurate extended partitions. Is an alternative,
non-iterative, extension possible? We did very limited
experimentation using a direct FCM-based extension
scheme, which proved to be faster, but much less
accurate. Finally, the interesting discovery regarding the
similarity between partition and relational based images
in Example 1 suggests a potentially cheaper (since U is
smaller than D) approach than those in Huband et al.
(2005) for visual displays to assess cluster tendency and
validity.

5 References

Bezdek, J.C., Keller, J.M., Krishnapuram, R. and Pal,
N.R., (1999): Fuzzy models and algorithms for pattern
recognition and image processing. Springer, NY.

Bezdek, J. C. and Hathaway, R.J. (2003): Convergence of
alternating optimization. Neural, Parallel and
Scientific Computations, 11, 351-368.

Bradley, P., Fayyad, U. and Reina, C. (1998): Scaling
clustering algorithms to large databases. Proc. 4th Int'l.
Conf. Knowledge Discovery and Data Mining, 9-15,
AAAI Press, Menlo Park, CA,.

Dunn, J. C. (1976): Indices of partition fuzziness and the
detection of clusters in large data sets, in Fuzzy
Automata and Decision Processes, M. M. Gupta (ed),
Elsevier, NY.

CRPIT Volume 49

12

Fayyad, U. and Smyth, P. (1996): From massive data sets
to science catalogs: applications and challenges. Proc.
Workshop on Massive Data Sets, J. Kettering and D.
Pregibon (eds), National Research Council.

Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A. L.
and French, J. C. (1999): Clustering large data sets in
arbitrary metric spaces. Proc. 15th Int'l. Conf. on Data
Engineering, 502-511, IEEE CS Press, Los Alamitos,
CA.

Hathaway, R. J. and Bezdek, J. C. (1994): NERF c-
means: non-Euclidean relational fuzzy clustering.
Patt. Recog., 27(3), 429-437.

Hathaway, R.J. and Bezdek, J.C. (2005). Approximate
clustering in very large data sets. In press, Comp.
Statistics and Data Analysis.

Hathaway, R. J., Bezdek, J. C., Huband, J. M., Leckie, C.
and Kotagiri, R. (2005): Approximate clustering in
very large relational data, in review, Jo. Intell. Syst.

Huband, J., Bezdek, J. C. and Hathaway, R J. (2005):
bigVAT: visual assessment of cluster tendency for
large data sets. Patt. Recog., 38, 1875-1886.

Huber, P., (1996): Massive data workshop: The morning
after. Massive Data Sets, 169-184, National Academy
Press.

Ng, R. T. and Han, J. (1994): Efficient and effective
clustering methods for spatial data mining. Proc. 20th
Int'l. Conf. On Very Large Databases, 144-155,
Morgan Kauffman, San Francisco.

Pal, N.R. and Bezdek, J.C. (2002): Complexity reduction
for “large image” processing. IEEE Trans. on Systems,
Man and Cybernetics, B(32), 598-611.

Pal, N. R, Keller, J. M., Mitchell, J.A., Popescu, M.,
Huband, J. M. and Bezdek, J.C. (2005): Gene
ontology-based knowledge discovery through fuzzy
cluster analysis, in press, Neural, Parallel and
Scientific Computing.

Taskar, B., Segal, E. and Koller, D. (2001). Probabilistic
clustering in relational data. 17th International Joint
Conference on Artificial Intelligence, 870-876, Seattle,
USA.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

13

CRPIT Volume 49

14

Invited Paper

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

15

CRPIT Volume 49

16

Suffix Arrays: What Are They Good For?

Simon J. Puglisi
Dept. of Computing

Curtin University of Technology
Perth, Australia

Email: puglissj@computing.edu.au

William F. Smyth
McMaster University, Hamilton, Canada

Curtin University of Technology, Perth, Australia
Email: smyth@computing.edu.au

Andrew Turpin
Dept. of Computer Science & IT

RMIT University
Melbourne, Australia

Email: aht@cs.rmit.edu.au

Recently the theoretical community has displayed
a flurry of interest in suffix arrays, and compressed
suffix arrays. New, asymptotically optimal algo-
rithms for construction, search, and compression of
suffix arrays have been proposed. In this talk we
will present our investigations into the practicalities of
these latest developments. In particular, we investi-
gate whether suffix arrays can indeed replace inverted
files, as suggested in recent literature on suffix arrays.

Background

In 1990 Manber & Myers proposed suffix arrays as a
space-saving alternative to suffix trees and described
the first algorithms for suffix array construction and
use (Manber & Myers 1990, Manber & Myers 1993).
It has since been shown that any problem whose so-
lution can be computed using suffix trees is solvable
with the same asymptotic complexity using suffix ar-
rays (Abouelhoda, Kurtz & Ohlebusch 2004). In ad-
dition, suffix arrays use much less memory than suffix
trees, even less when they are compressed (Ferragina
& Manzini 2000, Sadakane 2002, Grossi, Vitter &
Gupta 2004, Puglisi, Turpin & Smyth 2005a, Mäkinen
& Navarro 2005).

It has recently been shown that given an n charac-
ter text T and its corresponding suffix array S, with
some preprocessing and auxiliary information, it is
possible to search for an arbitrary m character pat-
tern P in T using only O(m) time (Sim, Kim, Park
& Park 2003). This is superior to non-index based
string matching algorithms like that of Knuth, Mor-
ris & Pratt (1977) and Boyer & Moore (1977) which
are linear in both the pattern and text length, requir-
ing O(m + n) time to find P in T . In conjunction
with these time-efficient searching algorithms, time-
efficient construction algorithms have also been de-
veloped that require only O(n) time to construct the
suffix array on an n character text (Puglisi, Turpin &

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Con-
ference (ACSC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology, Vol. 49. Gillian
Dobbie and James Bailey, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

Smyth 2005b).
Subsequent research on compressed suffix arrays

(Sadakane 2000, Mäkinen 2000, Grossi & Vitter n.d.)
and similar structures has revealed that self-indexing
structures are possible, which can search for and re-
port matches without the need for the original text
to be stored (Mäkinen & Navarro 2004, Ferragina &
Manzini 2000, Ferragina & Manzini 2001, Navarro
2004, Grossi et al. 2004). These structures typically
require about 30% of the space of the text, and so
double as a compression scheme as the original text
can be discarded. Search times remain linear in the
length of the pattern (assuming a fixed alphabet, such
as ASCII).

While a great deal of effort has been expended in
making suffix arrays smaller, there is still a funda-
mental problem with their scalability. When search-
ing for a pattern P of length m, one must perform
m non-sequential accesses into the suffix array, and
m non-sequential access into the text. If the suffix
array is on disk, this equates to 2m seek operations,
which, for anything but small patterns (of the order of
5 characters), limits the technology to a small num-
ber of simultaneous users, or small texts that fit in
RAM. Even the compressed, self-indexing suffix ar-
ray of Grossi et al. (2004), which does not require
access to the text, requires O(m + log n) seeks into
the structure itself.

Because of the non-sequential access patterns ex-
hibited by current suffix array algorithms, all pa-
pers experimenting with such algorithms assume that
their structures can fit in memory. This seems to
contradict bold claims that suffix arrays are an im-
portant technology for searching the World Wide
Web, and even large genomic databases (Sadakane
& Shibuya 2001, Grossi et al. 2004).

The inverted file, on the other hand, is a data
structure that has been adopted by the Web search
engine community, and handles data on external stor-
age (Witten, Moffat & Bell 1999). Inverted files
have been specifically engineered to scale well, and
to minimise the number of expensive disk opera-
tions required to find a pattern in a text (Zobel &
Moffat n.d.). However, the form of the pattern is re-
stricted. With an inverted file, the form of the pattern
must be set prior to index construction. Typically

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

17

a word is chosen as the unit of indexing, restricting
pattern search to words, prefixes of words, or combi-
nations of words (phrases).

In this talk we will report on experiments with
inverted files in direct competition to suffix arrays:
that is, all data is in RAM, and arbitrary patterns
are the target of the search.

Acknowledgments This work has been supported
in part by grants from the Australian Research Coun-
cil (Turpin) and the Natural Sciences and Engineering
Research Council of Canada (Smyth).

References

Abouelhoda, M. I., Kurtz, S. & Ohlebusch, E. (2004),
‘Replacing suffix trees with enhanced suffix ar-
rays’, Journ. Discrete Algorithms 2, 53–86.

Boyer, R. S. & Moore, J. S. (1977), ‘A fast string
searching algorithm’, Communications of the
ACM 20(10), 762–772.

Ferragina, P. & Manzini, G. (2000), Opportunis-
tic data structures with applications, in ‘Pro-
ceedings of the 41st IEEE Symposium on
Foundations of Computer Science (FOCS 00)’,
IEEE Computer Society, Redondo Beach, CA,
pp. 390–398.

Ferragina, P. & Manzini, G. (2001), An experimental
study of an opportunistic index, in ‘SODA ’01:
Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms’, Society for
Industrial and Applied Mathematics, Philadel-
phia, PA, USA, pp. 269–278.

Grossi, R. & Vitter, J. S. (n.d.), ‘Compressed suf-
fix arrays and suffix trees with applications
to text indexing and string matching’, SIAM
Journal on Computing . To appear. Available
from http://www.cs.duke.edu/~jsv/Papers/
catalog/node87.html.

Grossi, R., Vitter, J. S. & Gupta, A. (2004), When
indexing equals compression: Experiments with
compressing suffix arrays and applications, in
‘SODA ’04: Proceedings of the fifteenth an-
nual ACM-SIAM Symposium on Discrete algo-
rithms’, SIAM, New Orleans, Louisianna, USA,
pp. 636–645.

Knuth, D. E., Morris, J. H. & Pratt, V. R. (1977),
‘Fast pattern matching in strings’, SIAM Journal
on Computing 6(2), 323–350.

Mäkinen, V. (2000), Compact suffix array, in ‘Com-
binatorial Pattern Matching’, Vol. LNCS 1848,
pp. 305–319.

Mäkinen, V. & Navarro, G. (2004), Compressed
compact suffix arrays, in ‘Combinatorial Pat-
tern Matching: 15th Annual Symposium, CPM
2004’, Vol. LNCS 3109, Springer-Verlag GmbH,
pp. 420–433.

Mäkinen, V. & Navarro, G. (2005), ‘Succinct suffix ar-
rays based on run-length encoding’, Nordic Jour-
nal of Computing 12(2), 40–66.

Manber, U. & Myers, G. (1990), Suffix arrays: a new
method for on-line string searches, in ‘SODA ’90:
Proceedings of the first annual ACM-SIAM sym-
posium on Discrete algorithms’, Society for In-
dustrial and Applied Mathematics, Philadelphia,
PA, USA, pp. 319–327.

Manber, U. & Myers, G. W. (1993), ‘Suffix arrays:
a new model for on-line string searches’, SIAM
Journal of Computing 22(5), 935–948.

Navarro, G. (2004), ‘Indexing text using the Ziv-
Lempel trie’, Journal of Discrete Algorithms
2(1), 87–114.

Puglisi, S. J., Turpin, A. H. & Smyth, W. F. (2005a),
The performance of linear time suffix sorting al-
gorithms, in M. Cohn & J. Storer, eds, ‘Pro-
ceedings of the IEEE Data Compression Confer-
ence’, IEEE Computer Society Press, Los Alami-
tos, CA, pp. 358–368.

Puglisi, S. J., Turpin, A. H. & Smyth, W. F. (2005b),
A taxonomy of suffix array construction algo-
rithms, in ‘Proceedings of the Prague Stringol-
ogy Conference’, Czech Technical University,
Prague, pp. 1–30.

Sadakane, K. (2000), Compressed text databases
with efficient query algorithms based on the
compressed suffix array, in ‘Proceedings of IS-
SAC’00’, Vol. LNCS 1969, pp. 410–421.

Sadakane, K. (2002), Succinct representations of
lcp information and improvements in the com-
pressed suffix arrays, in ‘SODA ’02: Proceed-
ings of the thirteenth annual ACM-SIAM sym-
posium on Discrete algorithms’, Society for In-
dustrial and Applied Mathematics, Philadelphia,
PA, USA, pp. 225–232.

Sadakane, K. & Shibuya, T. (2001), ‘Indexing huge
genome sequences for solving various problems’,
Genome Informatics 12, 175–183.

Sim, J. S., Kim, D. K., Park, H. & Park, K. (2003),
Linear-time search in suffix arrays, in ‘Proc.
14th Australian Workshop Combinatorial Alg.
(AWOCA)’, pp. 139–146.

Witten, I. H., Moffat, A. & Bell, T. C. (1999), Manag-
ing Gigabytes: Compressing and Indexing Doc-
uments and Images, second edn, Morgan Kauf-
mann Publishing, San Francisco.

Zobel, J. & Moffat, A. (n.d.), ‘Inverted files for text
search engines’. Submitted for publication.

CRPIT Volume 49

18

Full Papers

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

19

CRPIT Volume 49

20

Horn Clauses and Functional Dependencies

in Complex-value Databases

Sven Hartmann, Sebastian Link†

Information Science Research Centre, Massey University
Private Bag 11222, Palmerston North, New Zealand

e-mail: [s.hartmann,s.link]@massey.ac.nz

Abstract

We extend Fagin’s result on the equivalence between
functional dependencies in relational databases and
propositional Horn clauses. It is shown that this
equivalence still holds for functional dependencies in
databases that support complex values via nesting of
records, lists, sets and multisets.
The equivalence has several implications. Firstly, it
extends a well-known result from relational databases
to databases which are not in first normal form. Sec-
ondly, it characterises the implication of functional
dependencies in complex-value databases in purely
logical terms. The database designer can take ad-
vantage of this equivalence to reduce database design
problems to simpler problems in propositional logic.
An algorithm is presented for such an application.
Furthermore, relational database design tools can be
reused to solve problems for complex-value databases.

Key Words: Logic in Databases, Functional Depen-
dency, Implication Problem, Complex values, Horn
clause

1 Introduction

Functional dependencies, first introduced by Codd
(Codd 1970), are a fundamental and widely stud-
ied concept in relational database theory. The no-
tion of a functional dependency is intuitively simple
and is therefore often applied in practice. According
to (Delobel & Adiba 1985) about two thirds of all
uni-relational dependencies (dependencies over a sin-
gle relation schema) defined in practice are functional
dependencies. It is well-known that in some ways
functional dependencies behave precisely the same as
a certain well-studied subset of propositional logic.
More precisely, Fagin has shown in (Fagin 1977) that
a functional dependency σ is a consequence of a set
Σ of functional dependencies that all apply to some
relation schema if and only if all Horn clauses that
correspond to σ are logical consequences of the Horn
clauses that correspond to the functional dependen-
cies in Σ.

Example 1.1. Consider the relation schema

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Con-
ference (ADC), Hobart, Tasmania. Conferences in Research
and Practice in Information Technology, Vol. 49. Gill Dob-
bie and James Bailey, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

† Sebastian Link was supported by Marsden Funding, Royal
Society of New Zealand

Lecture={Class, Lecturer, Time, Room}

together with the following set Σ of functional depen-
dencies on Lecture:

• Class → Lecturer,

• Class, Time → Room,

• Lecturer, Time → Class, and

• Room, Time → Class.

Suppose we would like to find out whether Room and
Time together form a superkey for Lecture. That
is, the functional dependency σ:

Room, Time → Class, Lecturer

is implied by Σ. Fagin’s result shows that this de-
cision problem is equivalent to the problem of decid-
ing whether both of the following propositional Horn
clauses1, represented in implicational form,

• (Room ∧ Time) ⇒ Class

• (Room ∧ Time) ⇒ Lecturer

are logically implied by the following set Σ′ of propo-
sitional Horn clauses:

• Class ⇒ Lecturer,

• (Class ∧ Time) ⇒ Room,

• (Lecturer ∧ Time) ⇒ Class,

• (Room ∧ Time) ⇒ Class.

It is not difficult to see that the answer to these equiv-
alent decision problems is affirmative. To get a little
bit more insight into the relationship between Horn
clauses and functional dependencies we look at a fur-
ther example. The functional dependency σ

Class, Lecturer, Room → Time

is not implied by Σ. A counterexample to this im-
plication is given, for instance, by the following two
tuple relation r

t1=(Databases, H. Simpson, 2:30pm, 3.12),
t2=(Databases, H. Simpson, 4:30pm, 3.12).

While r satisfies all functional dependencies in Σ it
does not satisfy σ. Let’s look at the corresponding
problem in terms of Horn clauses. In fact, the truth
assignment θ that assigns true to the propositional
variables Class, Lecturer and Room, and false to the
variable Time makes all Horn clauses in Σ′ true but
leaves the Horn clause

(Class ∧ Lecturer ∧ Room) ⇒ Time

1The attributes of Lecture are now used as propositional vari-
ables.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

21

false. The point is here that the truth assignment θ
assigns true to precisely those variables whose corre-
sponding attributes have the same value in the coun-
terexample relation r = {t1, t2} above.

Due to this result it is possible to take advantage of
artificial intelligence research in the area of theorem
proving by converting results in that area into results
about relational functional dependencies. The equiv-
alence theorem has had extensions to more general
classes of dependencies (Sagiv, Delobel, Parker Jr. &
Fagin 1981, Fagin 1982) and resulted in several appli-
cations (Sagiv 1980, Parker & Delobel 1979, Delobel
& Parker 1978).
Many researchers have remarked that classical
database design problems need to be revisited in new
data formats (Suciu 2001, Vianu 2001, Vincent 1999).
Biskup (Biskup 1998) has listed two particular chal-
lenges for database design: finding a unifying frame-
work and extending achievements to deal with ad-
vanced database features such as complex data con-
structors. One possibly unifying framework can re-
sult from the classification of data models according
to the data constructors that are supported by the
model. The relational data model can be captured
by a single application of the record constructor, ar-
bitrary nesting of record and set constructor covers
aggregation and grouping which are fundamental to
many semantic data models as well as the nested re-
lational data model (Hull & King 1987, Abiteboul,
Hull & Vianu 1995). The Entity-Relationship Model
and its extensions require record, set and (disjoint)
union constructor (Chen 1976, Thalheim 2000). A
minimal set of constructors supported by any object-
oriented data model includes records, lists, sets and
multisets (Atkinson, Bancilhon, DeWitt, Dittrich,
Maier & Zdonik 1989). Genomic sequence data mod-
els call for support of records, lists and sets (Li,
Ng & Wong 2002). Finally, XML requires at least
record (concatenation), list (Kleene Closure), union
(optionality), and reference constructor (Bray, Paoli,
Sperberg-McQueen, Maler & Yergeau 2004). The fol-
lowing example illustrates the usage of complex data
constructors and what type of dependencies may arise
between complex data elements and what difficulties
they impose.

Example 1.2. Consider a simple example of a pur-
chase profile that supermarkets and Online shops may
utilise. A single entry consists of the name of the cus-
tomer, a bag of items the customer bought, and the
discount of this purchase received by the customer.
Moreover, every item of the customer’s bag consists
of an article together with the price of that article. A
database schema for such an application may look as
follows

Profile(Customer, Bag〈Item(Article, Price)〉, Discount).

An actual entry in the database may be

(Homer,〈(Chocolate,3$),(Chocolate,3$),(Beer,4$),(Beer,5$)〉,2$).

Suppose that Homer received his discount of 2$ since
beer that costs 4$ or more is on special. Intuitively,
customers with the same bag of items should receive
the same discount. This is an actual functional de-
pendency that involves complex data objects, in this
case a bag. The presence of the bag constructor shows
some surprises. Consider for instance a second data
element

(Bart,〈(Chocolate,4$),(Chocolate,5$),(Beer,3$),(Beer,3$)〉,0$).

Bart bought the same bag of articles and has same
bag of prices, yet did not receive any discount. This
is actually consistent with respect to the functional

dependency since Bart did not have the same bag of
items as Homer. In order to receive a discount it
matters which articles are bought to which price.

The major goal of this paper is to generalise Fagin’s
Equivalence theorem to databases that support any
combination of records, lists, sets and multisets. Our
studies will be based on an abstract data model that
defines a database schema as an arbitrarily nested at-
tribute where nesting may refer to records, lists, sets
and multisets. It is our intention not to focus on
the specifics of any particular data model in order to
place emphasis on the data constructors themselves.
Functional dependencies have previously been defined
in terms of subschemata of the underlying database
schema (Hartmann, Link & Schewe 2006). Section 6
of (Hartmann et al. 2006) consists of a detailed com-
parison of our approach to previous work in various
concrete data models such as the nested relational
data model and XML. In essence, the expressiveness
is complementary. Our approach leads to Brouwe-
rian algebras (McKinsey & Tarski 1946) and provides
therefore a mathematically well-founded framework
that is sufficiently flexible and powerful to study de-
sign problems for different classes of constraints with
respect to different combinations of data constructors.
The presence of the data constructors, in particular
that of set and multiset, requires a very detailed anal-
ysis in order to generalise the original proof from the
relational data model. Most importantly, the results
of this paper show that set and bag constructors must
be handled differently from record and list construc-
tor in order to capture the semantics of dependencies
consistently.

2 An Abstract Data Model

Complex-value data models have been proposed to
overcome severe limitations of the relational data
model when designing many practical database ap-
plications (Abiteboul et al. 1995).

2.1 Database Schemata

We start with the definition of flat attributes and val-
ues for them. A universe is a finite set U together with
domains (i.e. sets of values) dom(A) for all A ∈ U .
The elements of U are called flat attributes. Flat
attributes will be denoted by upper-case characters
from the start of the alphabet such as A, B, C etc.
In the following we will use a set L of labels, and
assume that the symbol λ is neither a flat attribute
nor a label, i.e., λ /∈ U ∪ L. Moreover, flat attributes
are not labels and vice versa, i.e., U ∩ L = ∅.
Database schemata in our data model will be given in
form of nested attributes. Let U be a universe and L
a set of labels. The set NA(U ,L) of nested attributes
over U and L is the smallest set satisfying the follow-
ing conditions: λ ∈ NA(U ,L), U ⊆ NA(U ,L), for
L ∈ L and N1, . . . , Nk ∈ NA(U ,L) with k ≥ 1 we
have L(N1, . . . , Nk) ∈ NA(U ,L), for L ∈ L and N ∈
NA(U ,L) we have L[N], L{N}, L〈N〉 ∈ NA(U ,L).
We call λ null attribute, L(N1, . . . , Nk) record-valued
attribute, L[N] list-valued attribute, L{N} set-valued
attribute and L〈N〉 multiset-valued attribute. From
now on, we assume that a set U of attribute names,
and a set L of labels is fixed, and write NA instead
of NA(U ,L). The null attriute λ is a distinguished
attribute whose domain is the single null value which
indicates that some information exists but has cur-
rently been left out. Some detailed explanations for
the null attribute λ is offered later on.

Example 2.1. The relation schema Lecture with
the four flat attributes Class, Lecturer, Time and

CRPIT Volume 49

22

Room can be captured by the record-valued nested at-
tribute

Lecture(Class,Lecturer,Time,Room).

More generally, a relation schema R = {A1, . . . , Ak}
with flat attributes A1, . . . , Ak may be viewed as the
record-valued attribute R(A1, . . . , Ak) using the name
R of the relation schema as a label.

Example 2.2. Given flat attributes such as Cus-
tomer, Article, Price and Discount, and labels such as
Profile, Item and Bag, we may construct the record-
valued attribute

Item(Article, Price),

the multiset-valued attribute

Bag〈Item(Article, Price)〉,

and finally the record-valued attribute

Profile(Customer, Bag〈Item(Article, Price)〉, Discount).

Using the null attribute λ we may also generate
record-valued attributes such as

Profile(Customer, Bag〈Item(Article, λ)〉, λ)

or

Profile(Customer, Bag〈Item(λ, λ)〉, Discount).

We can extend the mapping dom from flat attributes
to nested attributes, i.e., we define a set dom(N)
of possible data elements for every nested attribute
N ∈ NA. For a nested attribute N ∈ NA we de-
fine the domain dom(N) as follows: dom(λ) = {ok},
dom(A) for A ∈ U as before, dom(L(N1, . . . , Nk)) =
{(v1, . . . , vk) | vi ∈ dom(Ni) for i = 1, . . . , k}, i.e.,
the set of all k-tuples (v1, . . . , vk) with vi ∈ dom(Ni)
for all i = 1, . . . , k, dom(L{N}) = {{v1, . . . , vn} |
vi ∈ dom(N) for i = 1, . . . , n}, i.e., the set of all
finite sets with elements in dom(N), dom(L〈N〉) =
{〈v1, . . . , vn〉 | vi ∈ dom(N) for i = 1, . . . , n}, i.e., the
set of all finite multisets with elements in dom(N),
and dom(L[N]) = {[v1, . . . , vn] | vi ∈ dom(N) for i =
1, . . . , n}, i.e., the set of all finite lists with elements
in dom(N). The empty set, multiset and list are de-
noted by ∅, 〈 〉, and [], respectively. The value ok
can be interpreted as the null value “some informa-
tion exists, but is currently omitted”.

Example 2.3. Consider the nested attribute

Lecture(Class,Lecturer,Time,Room).

The 4-tuple

(Databases, H.Simpson, 1pm, 3.12)

is an element from the domain of this nested attribute.
More generally, the domain of a record-valued at-
tribute R(A1, . . . , Ak) with flat attributes A1, . . . , Ak

is the set of all k-tuples composed out of elements
from the corresponding domains dom(Ai) of the flat
attributes Ai. In other words, the record-valued at-
tribute R(A1, . . . , Ak) represents indeed a relation
schema.

Example 2.4. The data element

(Homer,〈(Chocolate,3$),(Chocolate,3$),(Beer,4$),(Beer,5$)〉,2$)

is from the domain of

Profile(Customer, Bag〈Item(Article, Price)〉, Discount).

Moreover, the data element

(Homer,〈(ok,ok),(ok,ok),(ok,ok),(ok,ok)〉,2$).

is from the domain of

Profile(Customer, Bag〈Item(λ, λ)〉, Discount).

2.2 Subschemata

The replacement of some attribute names by the null
attribute λ within a nested attribute decreases the
amount of information that is modelled by the cor-
responding schema. This fact allows to introduce an
order between database schemata.
The subattribute relation ≤ on the set of nested at-
tributes NA over U and L is defined by the following
rules, and the following rules only: N ≤ N , λ ≤ A
for all flat attributes A ∈ U , λ ≤ N for all list-valued
attributes N , L(N1, . . . , Nk) ≤ L(M1, . . . , Mk) when-
ever Ni ≤ Mi for all i = 1, . . . , k, and L[N] ≤ L[M]
whenever N ≤ M . For N, M we say that M is a sub-
attribute of N if and only if M ≤ N holds. We write
M 6≤ N if M is not a subattribute of N , and M < N
in case M ≤ N and M 6= N .

Lemma 2.1. The subattribute relation is a partial
order on nested attributes.

The subattribute relationship between nested at-
tributes generalises the inclusion relationship between
sets of attributes in the relational data model.

Example 2.5. Consider again the record-valued at-
tribute

Lecture(Class,Lecturer,Time,Room).

There is a bijection between attribute sets of the
relation schema Lecture and the subattributes of
Lecture(Class,Lecturer,Time,Room). The empty at-
tribute set ∅, for instance, corresponds to the subat-
tribute

Lecture(λ,λ,λ,λ).

The attribute set {Lecturer,Room} is correspondent to
the subattribute

Lecture(λ,Lecturer,λ,Room).

We have now seen in several examples that a relation
schema is a special case of a database schema repre-
sented by a nested attribute. In fact, such a relation
schema can be captured by a single application of the
record constructor to a finite set of flat attributes.

Another example of a subattribute is given by

Profile(Customer, Bag〈Item(λ, λ)〉, Discount)

which is a subattribute of

Profile(Customer, Bag〈Item(Article, Price)〉, Discount).

Informally, M is a subattribute of N if and only if M
comprises at most as much information as N does.
The informal description of the subattribute relation
is formally documented by the existence of a pro-
jection function πN

M : dom(N) → dom(M) in case
M ≤ N holds. For M ≤ N the projection function
πN

M : dom(N) → dom(M) is defined as follows:

• if N = M , then πN
M = iddom(N) is the identity

on dom(N),

• if M = λ, then πN
λ : dom(N) → {ok} is the

constant function that maps v ∈ dom(N) to ok,

• if N = L(N1, . . . , Nk) and M = L(M1, . . . , Mk),

then πN
M = πN1

M1
× · · · × πNk

Mk
maps

the tuple (v1, . . . , vk) ∈ dom(N) to

(πN1

M1
(v1), . . . , π

Nk

Mk
(vk)) ∈ dom(M),

• if N = L{N ′} and M = L{M ′}, then πN
M :

dom(N) → dom(M) maps the set {v1, . . . , vn} ∈

dom(N) to {πN ′

M ′(v1), . . . , π
N ′

M ′(vn)} ∈ dom(M).

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

23

• if N = L〈N ′〉 and M = L〈M ′〉,
then πN

M : dom(N) → dom(M) maps
the multiset 〈v1, . . . , vn〉 ∈ dom(N) to

〈πN ′

M ′ (v1), . . . , π
N ′

M ′(vn)〉 ∈ dom(M), and

• if N = L[N ′] and M = L[M ′], then πN
M :

dom(N) → dom(M) maps the list [v1, . . . , vn] ∈

dom(N) to [πN ′

M ′ (v1), . . . , π
N ′

M ′ (vn)] ∈ dom(M).

The projection function tells us precisely how to map
a database instance of some schema to an instance of
any of its subschemata.

Example 2.6. Consider the 4-tuple

t = (Databases, H.Simpson, 1pm, 3.12)

from the domain of

N = Lecture(Class, Lecturer, Time, Room).

The projection πN
X (t) of t from N to the subattribute

X = Lecture(λ, Lecturer, λ, Room)

is

πN
X (t) = (ok, H.Simpson, ok, 3.12).

Example 2.7. The following data element t

(Homer,〈(Chocolate,3$),(Chocolate,3$),(Beer,4$),(Beer,5$)〉,2$)

from the domain of

N = Profile(Customer, Bag〈Item(Article, Price)〉, Discount)

has projection

π
N

X
(t) = (Homer,〈(ok,ok),(ok,ok),(ok,ok),(ok,ok)〉,2$).

where

X = Profile(Customer, Bag〈Item(λ, λ)〉, Discount).

2.3 Brouwerian algebra of Subattributes

The relational data model is based on the powerset
P(R) for a relation schema R. In fact, P(R) is a
powerset algebra with partial order ⊆, set union ∪,
set intersection ∩ and set difference −. We will now
extend these operations to nested attributes. The in-
clusion order ⊆ has already been generalised by the
subattribute relationship ≤. The set Sub(N) of sub-
attributes of N is Sub(N) = {M | M ≤ N}.
We study the algebraic structure of the poset
(Sub(N),≤). A Brouwerian algebra (McKinsey &
Tarski 1946) is a lattice (L,v,t,u, .−, 1) with top
element 1 and a binary operation .− which satisfies
a .−b v c iff a v b t c for all c ∈ L. In this case,
the operation .− is called the pseudo-difference. The
Brouwerian complement ¬a of a ∈ L is then defined
by ¬a = 1 .−a. A Brouwerian algebra is also called a
co-Heyting algebra or a dual Heyting algebra. The
system of all closed subsets of a topological space is
a well-known Brouwerian algebra, see (McKinsey &
Tarski 1946). The definition of the subattribute re-
lationship ≤ completely determines the operations of
join, meet and pseudo-difference. The following the-
orem generalises the fact that (P(R),⊆,∪,∩,−, ∅, R)
is a Boolean algebra for a relation schema R in the
RDM.

Theorem 2.1. (Sub(N),≤,tN ,uN , .−N , N) forms a
Brouwerian algebra for every N ∈ NA.

The nested attribute N is the top element of
(Sub(N),≤). The bottom element λN of Sub(N)
is given by λN = L(λN1

, . . . , λNk
) whenever N =

L(N1, . . . , Nk), and λN = λ whenever N is not a
record-valued attribute.
In order to simplify notation, occurrences of λ in
a record-valued attribute are usually omitted if this
does not cause any ambiguities. That is, the sub-
attribute L(M1, . . . , Mk) ≤ L(N1, . . . , Nk) is abbre-
viated by L(Mi1 , . . . , Mil

) where {Mi1 , . . . , Mil
} =

{Mj : Mj 6= λNj
and 1 ≤ j ≤ k} and i1 < · · · < il. If

Mj = λNj
for all j = 1, . . . , k, then we use λ instead of

L(M1, . . . , Mk). The subattribute L(A, λ) of L(A, A)
cannot be abbreviated by L(A) since this may also
refer to L(λ, A).

Example 2.8. The nested attribute

Profile(Customer, Bag〈Item(Article, λ)〉, λ)

is abbreviated by

Profile(Customer, Bag〈Item(Article)〉).

The nested attribute

Profile(λ, Bag〈Item(λ, λ)〉, Discount)

is abbreviated by

Profile(Bag〈λ〉, Discount).

If the context allows, we omit the index N from the
operations tN ,uN , .−N and from λN .

2.4 Order, Multiplicity and The Null At-
tribute

We give some more explanations on the null attribute
λ. From an algebraic point of view it is simply the
bottom element N .−N of the Brouwerian algebra car-
ried by N . As already seen, replacing occurrences
of nested attributes by the null attribute according
to the rules of the subattribute relationship results
in a subattribute and therefore in a decrease of the
amount of information that can be modelled. The
null attribute therefore allows to obtain different lay-
ers of information generating ultimately the structure
of a Brouwerian algebra for a fixed database schema.
However, the null attribute also offers some in-
teresting features for database modelling, de-
pending on the presence of certain complex ob-
jects. Consider for instance the nested attribute
Speak(Person,Foreign[Language]) which is used to
store the list of foreign languages a person speaks
(ordered according to some preference). Two ele-
ments from the corresponding domain could be (Bern-
hard,[Russian,English,French]) and (John,[]). The
projections of these elements on the subattribute
Speak(Person,Foreign[λ]) are (Bernhard,[ok,ok,ok])
and (John,[]) still revealing that Bernhard speaks
3 foreign languages and John speaks none. Sup-
pose that instead of using the list-valued at-
tribute Foreign[Language] we used a set-valued at-
tribute Foreign{Language}, i.e., we are only inter-
ested in the foreign languages a person speaks,
and not in any preferences for these languages.
The element (Bernhard,{Russian,English,French})
is mapped to (Bernhard,{ok}), and the element
(John,∅) is mapped to itself. Therefore, the subat-
tribute Speak(Person,Foreign{λ}) reveals whether a
person speaks a foreign language at all. The feature
of storing the same data repeatedly therefore enables
counting, i.e., is supported by lists and multisets, but
not by sets.
The second feature is the ability to model order which
is supported by lists, but not by sets nor multisets.

CRPIT Volume 49

24

This property implies that the projections of any tu-
ple on two subattributes X and Y always determine
the projection of that tuple on the join X t Y . In
case of set or multiset constructor this property is
not valid anymore. Consider for instance the set-
valued attribute Duo{Pair(Girl,Boy)} which repre-
sents sets of dancing couples. A tuple might be {(Don
Quixote, Theresa), (Sancho Pansa, Dulcinea)} and
the second tuple {(Don Quixote, Dulcinea), (San-
cho Pansa, Theresa)} results from switching part-
ners. Both tuples coincide in their projection on
Duo{Pair(λ, Boy)} as they evaluate to {(ok, Don
Quixote), (ok, Sancho Pansa)}) and coincide in their
projection on Duo{Pair(Girl,λ)} as they evaluate to
{(Dulcinea, ok), (Theresa, ok)}, but they differ on
the join Duo{Pair(Girl,Boy)}.

2.5 Subattribute Basis

Let T be some collection of data constructors and
N an arbitrary nested attribute composed of data
constructors in T only. What is the minimal set�

T (N) ⊆ Sub(N) such that every element t ∈
dom(N) is uniquely determined by its projections
{πN

A (t) | A ∈
�

T (N)}?
Consider the simplest of all cases where T consists
of the record constructor only. Suppose further that
nested attributes are generated from flat attributes by
a single application of the record constructor. That
is, N = L(A1, . . . , Ak) for flat attributes A1, . . . , Ak.
This is just a different notation for the relation
schema R = {A1, . . . , Ak}. Now, every tuple t over
R (or t ∈ dom(N), respectively) is completely deter-
mined by its projections {πN

A1
(t), . . . , πN

Ak
(t)}. In fact,

in order to store a tuple we store its values on the indi-
vidual attributes. From an algebraic point of view the
subattributes L(A1, λ, . . . , λ), . . . , L(λ, . . . , λ, Ak) are
the join-irreducible elements of (Sub(N),≤,t,u, λN).
Recall that an element a of a lattice with bottom el-
ement 0 is called join-irreducible if and only if a 6= 0
and if a = b t c holds for any elements b and c,
then a = b or a = c. The subattribute basis of N ,
denoted by B(N), is the set of join-irreducible el-
ements of (Sub(N),≤,t,u, λN). Every element of
B(N) is called a basis attribute of N . A basis at-
tribute X ∈ B(N) is called maximal if and only if
X ≤ Y for any basis attribute Y ∈ B(N) implies that
X = Y holds. Basis attributes that are not maximal
are called non-maximal.
Consider now the case where T consists of record and
list constructor, i.e., N may be generated from flat
attributes by finitely many recursive applications of
record and list constructor. One can show that for
any t1, t2 ∈ dom(N) and for any X, Y ∈ Sub(N)
with πN

X (t1) = πN
X (t2) and πN

Y (t1) = πN
Y (t2) also

πN
XtY (t1) = πN

XtY (t2) holds. That is, the two pro-
jections of a tuple on two subattributes X and Y
uniquely determine the projection of that tuple on
the join X t Y . This shows, in particular, that�

T (N) is still the set of join-irreducible elements of
(Sub(N),≤,t,u, λN).
If we add set or multiset constructor to T , then it
becomes insufficient to consider join-irreducible ele-
ments. In fact, there is some nested attribute N
and distinct elements of dom(N) which agree on
all projections to basis attributes of N . We have
already seen such a nested attribute N and two
such tuples, namely Duo{Pair(Girl,Boy)} and {(Don
Quixote, Theresa), (Sancho Pansa, Dulcinea)} as
well as {(Don Quixote, Dulcinea), (Sancho Pansa,
Theresa)}. A further example is the nested attribute
Bag〈Item(Article, Price)〉 and the two tuples

(Homer,〈(Chocolate,3$),(Chocolate,3$),(Beer,4$),(Beer,5$)〉,2$)

and

(Bart,〈(Chocolate,4$),(Chocolate,5$),(Beer,3$),(Beer,3$)〉,0$).

In the presence of set and multiset constructor we
face the difficulty of characterising those pairs of sub-
attributes X and Y of N for which t1, t2 ∈ dom(N)
exist such that πN

X (t1) = πN
X (t2), πN

Y (t1) = πN
Y (t2)

and πN
XtY (t1) 6= πN

XtY (t2). In other words, what
subattributes of N (other than the basis attributes)
are necessary to uniquely determine every single tuple
over N? What values need to be stored to identify
a tuple uniquely? The following definition is used to
answer these questions.

Definition 2.1. Let N ∈ NA. The subattributes
X, Y ∈ Sub(N) are reconcilable if and only if one of
the following conditions is satisfied 1) Y ≤ X or X ≤
Y , 2) N = L(N1, . . . , Nk), X = L(X1, . . . , Xk), Y =
L(Y1, . . . , Yk) where Xi and Yi are reconcilable for all
i = 1, . . . , k or 3) N = L[N ′], X = L[X ′], Y = L[Y ′]
where X ′ and Y ′ are reconcilable.

If N is Duo{Pair(Girl, Boy)}, and X and Y are
Duo{Pair(Girl, λ)} and Duo{Pair(λ, Boy)}, respec-
tively, then X and Y are not reconcilable.

Theorem 2.2. Let N ∈ NA. For all X, Y ∈ Sub(N)
we have that X and Y are reconcilable if and only
if for all t, t′ ∈ dom(N) with πN

X (t) = πN
X (t′) and

πN
Y (t) = πN

Y (t′) also πN
XtY (t) = πN

XtY (t′) holds.

It still remains to clarify which projections are nec-
essary and sufficient to identify every tuple over a
nested attribute generated by finitely many applica-
tions of record, list, set and multiset constructor.

Definition 2.2. Let N ∈ NA. The extended sub-
attribute basis E(N) ⊆ Sub(N) is the smallest set
with the properties that B(N) ⊆ E(N), and that
for all X, Y ∈ E(N) which are not reconcilable also
X t Y ∈ E(N) holds.

The extended subattribute basis is therefore the
smallest set that contains the subattribute basis and
that is closed under the join of subattributes that
are not reconcilable. In the absence of sets and
multisets we have E(N) = B(N) since every pair
of subattributes is reconcilable. If N is a set- or
multiset-valued attribute, then E(N) = Sub(N). If
T consists of records, lists, sets and multisets, then�

T (N) = E(N). This seems now very natural: for
any two subattributes X, Y ∈ E(N) for which the
two projections πN

X (t) and πN
Y (t) do not determine the

value of πN
XtY (t), the subattributes X and Y cannot

be reconcilable, and X t Y is therefore included in
E(N).
There is a relatively simple way to reduce the notion
of reconcilability to the notion of comparability with
respect to ≤. The idea is to choose the units U of
N such that for all subattributes V, W ∈ Sub(N) we
have that V and W are reconcilable if and only if
V uU and WuU are comparable with respect to ≤ for
all units U of N . To spell this out, two subattributes
X, Y are comparable with respect to ≤ if and only if
X ≤ Y or Y ≤ X holds. This property is achieved
by the following definition.

Definition 2.3. Let N ∈ NA. A nested attribute
U ∈ NA is a unit of N if and only if 1) U ∈ Sub(N),
and 2) ∀X, Y ≤ U if X and Y are reconcilable, then
X ≤ Y or Y ≤ X, and 3) U is ≤-maximal with the
properties 1) and 2). The set of all units of N is
denoted by U(N).

Example 2.9. The units of

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

25

Profile(Customer, Bag〈Item(Article, Price)〉, Discount)

are

U1 = Profile(Customer),
U2 = Profile(Bag〈Item(Article, Price)〉), and
U3 = Profile(Discount).

The two subattributes U1 and U3 are reconcilable. In
fact, for every U ∈ {U1, U2, U3} we have U1 u U ≤
U3uU or U3uU ≤ U1uU . However, the subattributes

X = Profile(Bag〈Item(Article)〉), and
Y = Profile(Bag〈Item(Price)〉)

are not reconcilable. In fact, X = X u U2 and Y =
Y u U2 are incomparable with respect to ≤.

2.6 Functional Dependencies

The following definition is a natural extension of the
definition of FDs from the relational data model.

Definition 2.4. Let N ∈ NA be a nested attribute.
A functional dependency on N is an expression of the
form X → Y where X ,Y ⊆ Sub(N) are non-empty.
A set r ⊆ dom(N) satisfies the FD X → Y on N ,
denoted by |=r X → Y, if and only if for all t1, t2 ∈ r
we have πN

Y (t1) = πN
Y (t2) for all Y ∈ Y whenever

πN
X (t1) = πN

X (t2) holds for all X ∈ X .

In case a set of subattributes is the singleton {X} we
also write simply X instead of {X}. For X ⊆ Sub(N)
let ϑ(X) = max≤{Y ∈ E(N) | Y ≤ X for some X ∈
X}, i.e., ϑ(X) contains all the extended basis at-
tributes of N which are subattributes of some element
of X and which are ≤-maximal with this property. It
is not difficult to see that an instance r ⊆ dom(N) sat-
isfies X → Y if and only if r satisfies ϑ(X) → ϑ(Y).
Therefore we can assume without loss of generality
that every FD X → Y is of the form X = ϑ(X) and
Y = ϑ(Y).

Example 2.10. Consider again the nested attribute

Profile(Customer, Bag〈Item(Article, Price)〉, Discount).

Intuitively, the customers who bought the same bag
of items should receive the same discount. Formally,
this constraint can be specified as the functional de-
pendency

Profile(Bag〈Item(Article, Price)〉) → Profile(Discount).

Note that this FD is completely different from the FD

{Profile(Bag〈Item(Article)〉), Profile(Bag〈Item(Price)〉)} →
Profile(Discount)

as demonstrated by the two tuples

t1=(Homer,〈(Chocolate,3$),(Chocolate,3$),(Beer,4$),(Beer,5$)〉,2$)

and

t2=(Bart,〈(Chocolate,4$),(Chocolate,5$),(Beer,3$),(Beer,3$)〉,0$).

In fact, {t1, t2} satisfy the first FD, but do not satisfy
the second FD.

Let Σ be a set of FDs, and σ a single FD, all de-
fined on some nested attribute N . We say that Σ
(finitely) implies σ, denoted by Σ |= σ (Σ |=fin σ) if
and only if all (finite) r ⊆ dom(N) that satisfy all
FDs in Σ also satisfy σ. Furthermore, Σ implies σ in
the world of two-element instances if and only if all
r = {t1, t2} ⊆ dom(N) that satisfy all dependencies
in Σ also satisfy σ. It is not difficult to see that finite
and unrestricted implication coincide for FDs. As it

will turn out in this paper, (finite) implication even
coincides with implication in the world of two-element
instances.
We will now describe the equivalence between the im-
plication of FDs and the logical implication of propo-
sitional Horn clauses. To do so we repeat some basic
notions regarding boolean propositional logic, and fix
some notation.

3 The Equivalence

A literal is either a propositional variable V (a pos-
itive literal) or the negation ¬V of a propositional
variable V (a negative literal). A Horn clause is a
non-empty disjunction of literals, with at most one
positive literal. The Horn clause ¬V1∨· · ·∨¬Vm∨W is
represented in implicational form as V1∧· · ·∧Vm ⇒ W
where the empty conjunction is read as true. An im-
plicational statement V1 ∧ · · · ∧ Vm ⇒ W1 ∧ · · · ∧ Wn

with n ≥ 1 and positive literals W1, . . . , Wn is equiv-
alent to the n Horn clauses

V1 ∧ · · · ∧ Vm ⇒ W1, . . . , V1 ∧ · · · ∧ Vm ⇒ Wn.

Fagin shows in (Fagin 1977) that the FD A1 · · ·Am →
B1 · · ·Bm is a consequence of a set Σ of FDs on a
relation schema R if and only if the corresponding
Horn clauses

A1 ∧ · · · ∧ Am ⇒ B1, . . . , A1 ∧ · · · ∧ Am ⇒ Bm

are logically implied by the corresponding Horn
clauses of Σ. The attributes of relation schema R
are therefore interpreted as propositional variables.
It is shown that the implication of FDs over arbitrary
relations is equivalent to the implication of FDs over
two-tuple relations. Given a two-tuple relation over
R, the truth value of a propositional variable A is as-
signed true if and only if those two tuples agree on
the attribute A.
We would like to generalise this result to FDs in
complex-value databases including records, lists, sets
and multisets. The presence of these data construc-
tors causes significant problems in generalising the
original proof. The first problem is to choose which
subattributes of the underlying nested attribute N
are to be interpreted as propositional truth variables.
In general, the right choice is to interpret the elements
of

�
T (N) as propositional variables. That is, the el-

ements of the extended subattribute basis E(N) do
both, generalise the result by Fagin, and do justice to
the presence of sets and multisets.
A second problem is caused by the subattribute re-
lationship ≤. While attributes in a relation schema
form an anti-chain with respect to inclusion, the ele-
ments of the extended subattribute basis are partially
ordered by ≤. If two tuples agree on some extended
basis attribute U and V ≤ U , then they will also agree
on V . As the structure of the database schema N is
fixed, this results in a fixed set of Horn clauses that
need to be satisfied independently from the given set
of constraints. That is, Horn clauses are not only used
to encode the dependencies, but also the structure of
the underlying database schema.
Given an arbitrary truth assignment to the propo-
sitional variables, do there always exist two tuples
which precisly agree on those extended basis at-
tributes that are assigned the truth value true? While
the answer is negative in general, it is actually suf-
ficient to look for an affirmative answer in the pres-
ence of those Horn clauses which encode the database
schema. It comes then down to showing that there
are in general two tuples which precisely agree on

CRPIT Volume 49

26

the elements of a ≤-downward closed set of subat-
tributes which is closed under the join of reconcilable
attributes.
Before we describe the equivalence in general we will
illustrate the basic ideas on an example. It shows the
two different ways of reasoning which we will show to
be equivalent.

3.1 An Example

Consider the nested attribute

N =
Dance(Time,Partaker{Name},Duo{Pair(Girl,Boy)},Rating)

together with the following set Σ of FDs

• Dance(Time) →
Dance(Partaker{Name},Duo{Pair(Girl,Boy)},Rating),

• Dance(Partaker{Name}) →
{Dance(Duo{Pair(Girl)}),Dance(Duo{Pair(Boy)})},

• {Dance(Duo{Pair(Girl)}),Dance(Duo{Pair(Boy)})} →
Dance(Partaker{Name}), and

• Dance(Duo{Pair(Girl,Boy)}) → Dance(Rating).

N models dancing classes in which partakers are
grouped into pairs of girls and boys. The first FD says
informally that the time of the course determines ev-
erything else, i.e., Dance(Time) is a key. The second
FD says informally that the set of participants deter-
mines the set of boys and the set of girls. Vice versa,
the third FD says informally that the set of girls and
the set of boys together determine the set of partic-
ipants. Finally, the last FD says informally that the
set of dancing combinations determines the rating.
That is, the rating for each class depends on the com-
bination of the dancing partners. Suppose we want to
decide if the single FD σ = Dance(Partaker{Name})
→ Dance(Rating) is a consequence of Σ. The nested
two-tuple relation r consisting of

t1 = (29.2.1600,{Dulcinea, Theresa, Don Quixote, Sancho},
{(Dulcinea, Don Quixote),(Theresa, Sancho)},10) and

t2 = (1.3.1600,{Dulcinea, Theresa, Don Quixote, Sancho},
{(Dulcinea, Sancho),(Theresa, Don Quixote)},3)

satisfies all FDs in Σ, but violates σ. We have there-
fore found a counterexample relation r, and Σ does
therefore not imply σ. We consider the problem now
from a logical point of view. Therefore, the extended
basis attributes in E(N) are mapped to propositional
variables as follows:

• Dance(Time) is V1,

• Dance(Partaker{Name}) is V2,

• Dance(Partaker{λ}) is V3,

• Dance(Duo{Pair(Girl,Boy)}) is V4,

• Dance(Duo{Pair(Girl)}) is V5,

• Dance(Duo{Pair(Boy)}) is V6,

• Dance(Duo{λ}) is V7, and

• Dance(Rating) is V8.

The set ΠN of Horn clauses that encodes the structure
of the database schema N is then given by

V2 ⇒ V3, V4 ⇒ V5, V4 ⇒ V6, V5 ⇒ V7, V6 ⇒ V7.

The set Σ of FDs has the following corresponding set
Π of Horn clauses

• V1 ⇒ V2, V1 ⇒ V4, V1 ⇒ V8,

• V2 ⇒ V5, V2 ⇒ V6,

• V5 ∧ V6 ⇒ V2, and

• V4 ⇒ V8

and σ corresponds to the single Horn clause π = V2 ⇒
V8. The truth assignment θ with θ(Vi) = true iff
i ∈ {2, 3, 5, 6, 7} satisfies all clauses in Π ∪ ΠN , but
violates π. Therefore, π is not a logical consequence of
Π ∪ ΠN . Most importantly, note the correspondence
between the nested counterexample relation r and the
truth assignment θ. In fact, the tuples t1 and t2 agree
exactly on their projections to those extended basis
attributes whose corresponding propositional variable
was assigned the truth value true by θ. This turns out
to be the decisive argument for showing the equiva-
lence.

3.2 The Result

Let ϕ : E(N) → V denote a bijection between the
extended basis attributes of the underlying database
schema N and the set V of propositional variables.
Consider the FD σ = X → Y on N where X =
{X1, . . . , Xn}. Let Φ(σ) be the smallest set that con-
tains the Horn clauses ϕ(X1) ∧ · · · ∧ ϕ(Xn) ⇒ ϕ(Y)
for all Y ∈ Y . If Σ is a set of FDs defined on N , let
Π = {Φ(σ) | σ ∈ Σ} denote the corresponding set of
Horn clauses over V . Furthermore, the set

ΠN = {ϕ(U) ⇒ ϕ(V) | U, V ∈ E(N), U covers2V }

denotes those Horn clauses which encode the struc-
ture of N . For example, the FD

{Dance(Duo{Pair(Girl)}),Dance(Duo{Pair(Boy)})} →
Dance(Partaker{Name})

results in the Horn clause V5∧V6 ⇒ V2. The main re-
sult of this paper is the following extension of Fagin’s
Equivalence Theorem from (Fagin 1977).

Theorem 3.1. [Equivalence Theorem] Let N be a
nested attribute, Σ a set of FDs and σ a single FD
on N . Let ΠN denote the Horn clauses which encode
the structure of N , and Π denote the corresponding
set of Horn clauses for Σ. Then

1) Σ implies σ,

2) Σ implies σ in the world of two-tuple instances,
and

3) Π ∪ ΠN logically implies π for all π ∈ Φ(σ)

are equivalent.

3.3 An Outline of the Proof

We will use this subsection to outline the proof of
Theorem 3.1. The equivalence between 1) and 2) is
not difficult to see.
We will show the equivalence between 2) and 3). First
we show that 3) implies 2). Suppose that 2) does not
hold, i.e., Σ does not imply σ = X → Y in the world
of two-tuple instances over N . That is, there are some
t1, t2 ∈ dom(N) with |={t1,t2} τ for all τ ∈ Σ, but
6|={t1,t2} σ. Lemma 3.1 shows then that |=θ{t1,t2}

Π ∪

ΠN , but 6|=θ{t1,t2}
π for some π ∈ Φ(σ), i.e., 3) does

not hold neither. In particular, |=θ{t1,t2}
ΠN for the

following reason. Let V ⇒ W ∈ ΠN , i.e., V = ϕ(X)
and W = ϕ(Y) with X, Y ∈ E(N) and Y ≤ X . If
θ{t1,t2}(V) = true, then πN

X (t1) = πN
X (t2) and thus

2U covers V iff U < V and for all W ∈ E(N) with U ≤ W ≤ V
we have U = W or V = W , this is just the standard definition of
a cover relation for posets, see (Anderson 1987)

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

27

πN
Y (t1) = πN

Y (t2) since Y ≤ X . This, however, means
that θ{t1,t2}(W) = true holds as well, and therefore
|=θ{t1,t2}

V ⇒ W . To complete the proof for this
direction it remains to show the following lemma.

Lemma 3.1. Let σ be an FD on the nested attribute
N , and r = {t1, t2} ⊆ dom(N). Then |=r σ if and
only if |=θr

π for all π ∈ Φ(σ), where

θr(V) =

{

true , if πN
ϕ−1(V)(t1) = πN

ϕ−1(V)(t2)
false, else

for all V ∈ ϕ(E(N)).

In order to complete the proof of Theorem 3.1 it re-
mains to show that 2) implies 3). Suppose that 3)
does not hold. We will show that 2) does not hold
neither. Since 3) does not hold, there is some truth
assignment θ which makes every formula in Π ∪ ΠN

true, but makes some π ∈ Φ(σ) false. It is now suf-
ficient to find some r = {t1, t2} ⊆ dom(N) such that
θ = θr. In this case, Lemma 3.1 shows that |=r τ for
all τ ∈ Σ and 6|=r σ, i.e., 2) does not hold.
Let U(N) = {U1, . . . , Uk}, and X+

Ui
= {X ∈ E(N) |

X ≤ Ui and θ(ϕ(X)) = true} ∪ {λN}. Note that XUi

is closed downwards with respect to ≤ since θ satis-
fies ΠN . Moreover, let X+ = {X1 t · · · t Xk | Xi ∈
X+

Ui
for 1 ≤ i ≤ k}. In this case, X+ is non-empty,

closed downwards with respect to ≤, and closed un-
der the join of reconcilable elements. X+ is non-
empty since λN ∈ X+

Ui
for i = 1, . . . , k. It is closed

downwards with respect to ≤ since every X+
Ui

has the

same property. In order to see that X+ is closed
under the join of reconcilable elements suppose that
X = X1 t · · · t Xk, X ′ = X ′

1 t · · · t X ′
k ∈ X+ are

reconcilable. Since X u Ui = Xi and X ′ u Ui = X ′
i

for i = 1, . . . , k it must be the case that Xi and X ′
i

are comparable with respect to ≤ for all i = 1, . . . , k.
This, however, means that XtX ′ ∈ X+ by definition
of X+. The following lemma then shows the existence
of two tuples t1, t2 ∈ dom(N) with the property that
for all X ∈ Sub(N) we have πN

X (t1) = πN
X (t2) if and

only if X ∈ X+ holds. Since for all X ∈ E(N) we
have that θ(ϕ(X)) = true if and only if X ∈ X+

if and only if πN
X (t1) = πN

X (t2) holds, it follows that
θ = θ{t1,t2}. This concludes the proof of Theorem 3.1.

Lemma 3.2. Let N ∈ NA, and ∅ 6= X ⊆ Sub(N)
an ideal with respect to ≤ with the property that for
reconcilable X, Y ∈ X also X t Y ∈ X holds. Then
there are tN , t′N ∈ dom(N) such that for all W ∈
Sub(N) we have πN

W (tN) = πN
W (t′N) if and only if

W ∈ X .

The detailed (and challenging) proof of Lemma 3.2
was previously published (Hartmann et al. 2006).

4 First-Literal Unit Resolution

The Equivalence Theorem 3.1 states that the FD σ
is a consequence of the set Σ of FDs on the under-
lying database schema N if and only if each of the
corresponding Horn clauses in Φ(σ) is a logical conse-
quence of Π∪ΠN . The last problem, however, can be
easily converted into the well-studied problem of sat-
isfiability of propositional Horn clauses (Horn 1951,
Henschen & Wos 1974, Dowling & Gallier 1984). A
fast algorithm for the Horn clause satisfiability prob-
lem is the “first-literal unit resolution procedure” due
to Chang (Chang 1976, Chang & Lee 1987). Using the
Equivalence Theorem, we exploit Chang’s algorithm

to obtain an efficient algorithm that solves the impli-
cation problem for FDs in complex-value databases.
In the first step of the algorithm, we form a set S of
strings of symbols. Each string consists of extended
basis attributes, negation signs (∼) and commas (,).
For each FD

{X1, . . . , Xn} → {Y1, . . . , Ym}

in Σ we include in S the m strings

∼ X1, · · · ,∼ Xn, Y1
...

∼ X1, · · · ,∼ Xn, Ym

The string ∼ X1, · · · ,∼ Xn, Yi corresponds to the
Horn clause

¬ϕ(X1) ∨ · · · ∨ ¬ϕ(Xn) ∨ ϕ(Yi).

Furthermore, consider each pair U, V ∈ E(N) with
V < U such that for all W ∈ E(N) with V ≤ W ≤ U
we have V = W or U = W . For each of these pairs
U, V we include in S the string ∼ U, V . Let σ be the
FD X → Y where X = {X1, . . . , Xn}. For conve-
nience, we assume that Y is a singleton. Otherwise,
the entire algorithm is repeated for every element of
Y . Anyway, for Y = {Y } we include in S the (n + 1)
strings

X1
...

Xn

∼ Y

which correspond to the negation of the Horn clause

¬ϕ(X1) ∨ · · · ∨ ¬ϕ(Xn) ∨ ϕ(Y).

As a simple example consider the nested attribute

N =
Dance(Time,Partaker{Name},Duo{Pair(Girl,Boy)},Rating)

and let Σ and σ be as in Subsection 3.1. In this case,
S contains the 14 strings:

∼ Dance(Time), Dance(Partaker{Name})
∼ Dance(Time), Dance(Duo{Pair(Girl,Boy)})
∼ Dance(Time), Dance(Rating)
∼ Dance(Partaker{Name}), Dance(Duo{Pair(Girl)})
∼ Dance(Partaker{Name}), Dance(Duo{Pair(Boy)})
∼ Dance(Duo{Pair(Girl)}), ∼ Dance(Duo{Pair(Boy)}),

Dance(Partaker{Name})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Rating)
∼ Dance(Partaker{Name}), Dance(Partaker{λ})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Duo{Pair(Girl)})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Duo{Pair(Boy)})
∼ Dance(Duo{Pair(Girl)}), Dance(Duo{λ})
∼ Dance(Duo{Pair(Boy)}), Dance(Duo{λ})
Dance(Partaker{Name})
∼ Dance(Rating)

We call each attribute in E(N) an “atom” and the
concatenation of a negation sign with such an atom a
“negative atom”. The algorithm proceeds by search-
ing for an atom X such that (a) X is a string in S, and
(b) There is a string in S that begins with ∼ X . In
our example the atom Dance(Partaker{Name}) sat-
isfies both (a) and (b). If there are several atoms X
that satisfy (a) and (b), the algorithm would now ar-
bitrarily select one of them. In the next step of the
algorithm, each string that begins with ∼ X is short-
ened by erasing the leading negation sign, the X , and
the comma that follows X (if there is such a comma).

CRPIT Volume 49

28

∼ Dance(Time), Dance(Partaker{Name})
∼ Dance(Time), Dance(Duo{Pair(Girl,Boy)})
∼ Dance(Time), Dance(Rating)
Dance(Duo{Pair(Girl)})
Dance(Duo{Pair(Boy)})
∼ Dance(Duo{Pair(Girl)}), ∼ Dance(Duo{Pair(Boy)}),

Dance(Partaker{Name})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Rating)
Dance(Partaker{λ})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Duo{Pair(Girl)})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Duo{Pair(Boy)})
∼ Dance(Duo{Pair(Girl)}), Dance(Duo{λ})
∼ Dance(Duo{Pair(Boy)}), Dance(Duo{λ})
Dance(Partaker{Name})
∼ Dance(Rating)

Then we repeat the procedure by again searching for
an atom X that satisfies both (a) and (b). After
selecting Dance(Duo{Pair(Girl)}) we obtain

∼ Dance(Time), Dance(Partaker{Name})
∼ Dance(Time), Dance(Duo{Pair(Girl,Boy)})
∼ Dance(Time), Dance(Rating)
Dance(Duo{Pair(Girl)})
Dance(Duo{Pair(Boy)})
∼ Dance(Duo{Pair(Boy)}), Dance(Partaker{Name})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Rating)
Dance(Partaker{λ})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Duo{Pair(Girl)})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Duo{Pair(Boy)})
Dance(Duo{λ})
∼ Dance(Duo{Pair(Boy)}), Dance(Duo{λ})
Dance(Partaker{Name})
∼ Dance(Rating)

and by selecting Dance(Duo{Pair(Boy)}) we get

∼ Dance(Time), Dance(Partaker{Name})
∼ Dance(Time), Dance(Duo{Pair(Girl,Boy)})
∼ Dance(Time), Dance(Rating)
Dance(Duo{Pair(Girl)})
Dance(Duo{Pair(Boy)})
Dance(Partaker{Name})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Rating)
Dance(Partaker{λ})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Duo{Pair(Girl)})
∼ Dance(Duo{Pair(Girl,Boy)}), Dance(Duo{Pair(Boy)})
Dance(Duo{λ})
Dance(Duo{λ})
Dance(Partaker{Name})
∼ Dance(Rating)

The entire algorithm halts either when

1) the empty string ε is generated, or when

2) there is no atom X that satisifies both (a) and
(b).

If 1) occurs first, that is, the empty string ε is gen-
erated, then σ is a consequence of Σ. If 2) occurs
first, then σ is not a consequence of Σ. The algo-
rithm always terminates, and gives a correct answer
by Chang’s theorem on Horn clauses and our Equiv-
alence Theorem.
In our example the algorithm terminates since no fur-
ther atom satisfying both (a) and (b) can be found.
Therefore, σ is not a consequence of Σ.

5 Reusing Relational Design Tools

A direct consequence of Fagin’s Equivalence Theo-
rem and Equivalence Theorem 3.1 is that relational
database design tools can be applied to solve design
problems in complex-value databases. Extended basis
attributes of the nested attribute N are interpreted
as flat attributes forming the corresponding relation
schema, i.e., RN = E(N). Each FD σ = X → Y in Σ
becomes the relational FD σ′ = ϑ(X) → ϑ(Y). Given

Σ on the nested attribute N , the corresponding set of
relational FDs is

Σ′ = {σ′ | σ ∈ Σ}∪
{U → V | U, V ∈ E(N), U covers V }

Corollary 5.1. Let Σ be a set of FDs and σ be a
single FD, all defined on the nested attribute N . Then
σ is implied by Σ if and only if σ′ is implied by Σ′ on
RN .

As a simple example consider again the nested at-
tribute

N =
Dance(Time,Partaker{Name},Duo{Pair(Girl,Boy)},Rating).

The extended basis attributes are mapped to flat at-
tribute names as follows:

• Dance(Time) is A,

• Dance(Partaker{Name}) is B,

• Dance(Partaker{λ}) is C,

• Dance(Duo{Pair(Girl,Boy)}) is D,

• Dance(Duo{Pair(Girl)}) is E,

• Dance(Duo{Pair(Boy)}) is F ,

• Dance(Duo{λ}) is G, and

• Dance(Rating) is H .

The corresponding relation schema is therefore RN =
{A, B, C, D, E, F, G, H}. The FDs in Σ from Subsec-
tion 3.1 are encoded as

A → BDH, B → EF, EF → B, D → G

and the structure of N is encoded by the following
FDs:

B → C, D → E, D → F, E → G, F → G .

Suppose we want to decide if σ from Subsection 3.1 is
a consequence of Σ. Then this is equivalent to decid-
ing whether B → H is a logical consequences of Σ′. In
order to decide the last problem, we may apply well-
known techniques for relational databases (Beeri &
Bernstein 1979) to compute the closure B+ = CEFG
of B with respect to Σ′. Since H /∈ B+ the answer
to the last problem is no. The Equivalence theorem
tells us therefore that σ is not a consequence of Σ. It
is future work to exploit the reuse of relational tools
further.

6 Conclusion and Future Work

We have extended Fagin’s well-known equivalence be-
tween implications of functional dependencies in re-
lational databases and implications of propositional
Horn clauses to functional dependencies in databases
that support arbitrary finite nesting using data con-
structors for records, lists, sets and multisets. Our
framework is not based on any specific data model,
and the result may therefore lead to a better under-
standing of complex values in general. The work in
(Hartmann et al. 2006) shows that the expressive-
ness of our functional dependencies is complementary
to those investigated in many advanced data mod-
els. The extension of the equivalence result follows
from a deep case-by-case analysis of the data con-
structors and the algebraic properties of the database
schemata. The results of this article provide two new

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

29

ways to look at the implication of functional depen-
dencies in complex-value databases: as the logical im-
plication of a corresponding set of Horn clauses, and
as the logical implication of a corresponding set of
functional dependencies in relational databases. It
is therefore possible to utilise already existing tools
from these areas for solving database design problems
in the presence of several data constructors.
For the near future we would like to extend the equiv-
alence to multivalued dependencies in the presence of
records and lists. It will be challenging to investigate
multivalued dependencies in the presence of sets, or
to extend results to include (disjoint) unions. There
is an alternative proof for the original equivalence re-
sult for relational FDs (Fagin 1977). That proof is
syntactical in the sense that it takes advantage of the
fact that the (finite) implication of FDs can be char-
acterised by a finite, sound and complete set of syn-
tactic inference rules (Armstrong 1974). Such sets of
inference rules have also been proposed for the set-
ting of the present paper (Hartmann et al. 2006). A
generalisation of these syntactical proofs seems also
desirable.

References

Abiteboul, S., Hull, R. & Vianu, V. (1995), Founda-
tions of Databases, Addison-Wesley.

Anderson, I. (1987), Combinatorics of finite sets, Ox-
ford Science Publications, The Clarendon Press
Oxford University Press, New York.

Armstrong, W. W. (1974), ‘Dependency structures of
database relationships’, Information Processing
pp. 580–583.

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich,
K., Maier, D. & Zdonik, S. (1989), The object-
oriented database system manifesto, in ‘Proceed-
ings of the International Conference on Deduc-
tive and Object-Oriented Databases’, pp. 40–57.

Beeri, C. & Bernstein, P. A. (1979), ‘Computational
problems related to the design of normal form
relational schemata’, Transactions on Database
Systems (TODS) pp. 30–59.

Biskup, J. (1998), Achievements of relational
database schema design theory revisited, in ‘Se-
mantics in databases’, number 1358 in ‘Lecture
Notes in Computer Science’, Springer, pp. 29–54.

Bray, T., Paoli, J., Sperberg-McQueen, C. M.,
Maler, E. & Yergeau, F. (2004), ‘Exten-
sible markup language (XML) 1.0 (third
edition) W3C recommendation 04 february
2004’, http://www.w3.org/TR/2004/REC-xml-
20040204/.

Chang, C. (1976), Deduce: A deductive query lan-
guage for relational data bases, in C. H. Chen,
ed., ‘Pattern Recognition and Artificial Intelli-
gence’, Academic Press, New York, pp. 108–134.

Chang, C. & Lee, R. (1987), Symbolic Logic and Me-
chanical Theorem Proving, Academic Press.

Chen, P. P. (1976), ‘The entity-relationship model:
Towards a unified view of data’, Transactions on
Database Systems (TODS) 1, 9–36.

Codd, E. F. (1970), ‘A relational model of data for
large shared data banks’, Communications of the
ACM 13(6), 377–387.

Delobel, C. & Adiba, M. (1985), Relational database
systems, North Holland.

Delobel, C. & Parker, D. (1978), Functional and mul-
tivalued dependencies in a relational database
and the theory of Boolean switching functions,
Technical report, University of Grenoble, Greno-
ble, France.

Dowling, W. & Gallier, J. (1984), ‘Linear-time algo-
rithms for testing the satisfiability of proposi-
tional horn formulae’, Journal of Logic Program-
ming 1(3), 267–284.

Fagin, R. (1977), ‘Functional dependencies in a
relational data base and propositional logic’,
IBM Journal of Research and Development
21(6), 543–544.

Fagin, R. (1982), ‘Horn clauses and data dependen-
cies’, Journal of the ACM 29(4), 952–985.

Hartmann, S., Link, S. & Schewe, K.-D. (2006), ‘Ax-
iomatisations of functional dependencies in the
presence of records, lists, sets and multisets’, ac-
cepted for Theoretical Computer Science (TCS).

Henschen, L. & Wos, L. (1974), ‘Unit refutations and
horn sets’, Journal of the ACM 21(4), 590–605.

Horn, A. (1951), ‘On sentences which are true of di-
rect unions of algebras’, Journal of symbolic logic
16, 14–21.

Hull, R. & King, R. (1987), ‘Semantic database mod-
eling: Survey, applications and research issues’,
ACM Computing Surveys 19(3).

Li, J., Ng, S. & Wong, L. (2002), Bioinformatics ad-
ventures in database research, in ‘Proceedings of
the International Conference on Database The-
ory (ICDT)’, number 2572 in ‘Lecture Notes in
Computer Science’, Springer, pp. 31–46.

McKinsey, J. C. C. & Tarski, A. (1946), ‘On closed
elements in closure algebras’, Annals of Mathe-
matics 47, 122–146.

Parker, D. S. & Delobel, C. (1979), Algorithmic ap-
plications for a new result on multivalued de-
pendencies, in ‘Proceedings of the International
Conference on Very Large Data Bases (VLDB)’,
pp. 67–74.

Sagiv, Y. (1980), ‘An algorithm for inferring multival-
ued dependencies with an application to propo-
sitional logic’, Journal of the ACM 27(2), 250–
262.

Sagiv, Y., Delobel, C., Parker Jr., D. S. & Fagin,
R. (1981), ‘An equivalence between relational
database dependencies and a fragment of propo-
sitional logic’, Journal of the ACM 28(3), 435–
453.

Suciu, D. (2001), ‘On database theory and XML’,
SIGMOD Record 30(3), 39–45.

Thalheim, B. (2000), Entity-Relationship Modeling:
Foundations of Database Technology, Springer-
Verlag.

Vianu, V. (2001), A web odyssey: from Codd to
XML, in ‘Principles of Database Systems’, ACM,
pp. 1–15.

Vincent, M. (1999), ‘Semantic foundation of 4NF
in relational database design’, Acta Informatica
36, 1–41.

CRPIT Volume 49

30

A Further Study in the Data Partitioning Approach
for Frequent Itemsets Mining

Son N. Nguyen, Maria E. Orlowska
School of Information Technology and Electrical Engineering

The University of Queensland, QLD 4072, Australia

{nnson, maria)@itee.uq.edu.au

Abstract

Frequent itemsets mining is well explored for various data
types, and its computational complexity is well
understood. Based on our previous work by Nguyen and
Orlowska (2005), this paper shows the extension of the
data pre-processing approach to further improve the
performance of frequent itemsets computation. The
methods focus on potential reduction of the size of the
input data required for deployment of the partitioning
based algorithms.

We have made a series of the data pre-processing
methods such that the final step of the Partition algorithm,
where a combination of all local candidate sets must be
processed, is executed on substantially smaller input data.
Moreover, we have made a comparison among these
methods based on the experiments with particular data
sets.

Keywords: Data mining, Frequent itemset, Partition,
Algorithm, Performance.

1 Introduction

Mining frequent itemsets is important and interesting to
the fundamental research in the mining of association
rules which is introduced firstly by Agrawal, Imielinski,
Swami (1993). Many algorithms and their subsequent
improvements have been proposed to solve association
rules mining, especially frequent itemsets mining
problems.

There are many well-accepted approaches such as
“Apriori” by Agrawal, Srikant (1994), ECLAT by Zaki
(2000), and more recently “FP-growth” by Han et al.
(2004). Another interesting class of solutions is based on
the data partitioning approach. This fundamental concept
was originally proposed as a Partition algorithm by
Savasere, Omiecinski, Navathe (1995), and it was
improved later in AS-CPA by Lin, Dunham (1998) and
ARMOR by Pudi, Haritsa (2003). A common feature of
these results is their target, namely the limitation of I/O
operations by considering data subsets dictated by the
main memory size.
In our previous work by Nguyen and Orlowska (2005),
the incremental clustering method for data pre-processing

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Database Conference
(ADC 2006), Hobart, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 49. Gillian
Dobbie and James Bailey, Eds. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

was proposed to improve the overall performance of
mining large data sets by a smarter but not too
‘expensive’ design of the data fragments - rather than
determine them by a sequential transaction allocation
based on the fragment size only.

The main goal of this paper is to extend the above work
by using the different data pre-processing methods for the
partitioning approach in order to improve the
performance. We design new fragmentation algorithms
based on new similarity functions and new cluster
constructions for data clustering. These algorithms reduce
the computation cost to get more efficient. Our study is
supported by a series of experiments which indicate a
dramatic improvement in the performance of the
partitioning approach with our fragmentation methods.

The remainder of the paper is organised as follows.
Section 2 introduces the basic concepts related to frequent
itemsets mining. Section 3 reviews the partitioning
approach for frequent itemsets mining. We propose the
different pre-processing data fragmentation methods in
section 4. Section 5 shows the result and a comparison
from our experiments. Finally, we present our concluding
remarks.

2 Preliminary concepts

For the completeness of this presentation and to establish
our notation, this section gives a formal description of the
problem of mining frequent itemsets. It can be stated as
follows:

Let I = { i1, i2, …, im} be a set of m distinct literals called
items. Transaction database D is a set of variable length
transactions over I.

Each transaction contains a set of items { i j, ik, …, ih} ⊆ I
in an ordered list. Each transaction has an associated
unique identifier called TID.

For an itemset X ⊆ I, the support is denoted supD(X),
equals to the fraction of transactions in D containing X.

The problem of mining frequent itemsets is to generate all
frequent itemsets X that have supD(X) no less than user
specified minimum support threshold.

3 Review the Partitioning approach for
frequent itemsets mining

3.1 The Partitioning approach

Savasere et al. (1995) proposed the Partition algorithm
based on the following principle. A fragment P ⊆ D of

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

31

the database is defined as any subset of the transactions
contained in the database D. Further, any two different
fragments are non-overlapping. Local support for an
itemset is the fraction of transactions containing that
itemset in a fragment. Local candidate itemset is being
tested for minimum support within a given fragment. A
Local frequent itemset is an itemset whose local support
in the fragment is no less than the minimum support. A
Local frequent itemset may or may not be frequent in the
context of the entire database. Global support, Global
candidate itemset, Global frequent itemset are defined as
above except they are in the context of the entire
database. The goal is to find all Global frequent itemsets.

Firstly, the Partition algorithm divides D into n
fragments, and processes one fragment in the main
memory at a time. The algorithm first scans fragment Pi,
for i = 1,…,n, to find the set of all Local frequent itemsets
in Pi, denoted as LPi. Then, by taking the union of LPi, a
set of candidate itemsets over D is constructed, denoted
as CG (Global candidates). There is an important
property: if itemset, X, is a frequent itemset in database
D, then X must be a frequent itemset in at least one of
the n fragments P1, P2,…, Pn. As a result, CG is a
superset of the set of all Global frequent itemsets in D.
Secondly, the algorithm scans each fragment for the
second time to calculate the support of each itemset in CG
and to find which candidate itemsets are really frequent
itemsets in D (Figure 3.1).

The main goal of this division of process into Local and
later Global computation is to process one fragment in
the main memory at a time - to avoid multiple scans over
D from secondary storage.

3.2 Related work

One of the Partition algorithm derivatives is AS-CPA
(Anti-Skew Counting Partition Algorithm) by Lin,
Dunham (1998). It makes use of the cumulative count of
each candidate itemset to achieve a smaller number of
Global candidates. The main difference is that AS-CPA
provides several effective techniques (Early Local
Pruning, Global Anti-Skew) to filter out false candidate
itemsets at an earlier stage.

Recently, there has been another development based on
the partitioning approach in the ARMOR algorithm by
Pudi, Haritsa (2003). It uses the array and graph structure
to store the cumulative CG while processing the
fragments.

All the above algorithms mainly attempt to reduce the
number of false candidates as early as possible. However,
they do not consider any features and characteristics of

data sets in order to partition the original data set more
suitably for further processing.

In our previous work (Nguyen, Orlowska (2005)), we
demonstrated that looking more closely into the data itself
may deliver good gains in overall performance. We show
how to reach a better data partition based on the relative
similarity between the transactions forming the data set.
As a result, the number of Local frequent itemsets can be
dramatically reduced. Furthermore, in many cases that
leads to a larger number of common Global candidates
among fragments. Finally, as a consequence, these
methods reduce substantially the CG set which must be
checked in the Partition algorithm.

4 Data set pre-processing methods

The data set pre-processing is used to partition the input
data set in order to get the special fragments which can
generate the smaller number of Local frequent itemsets
as well as the smaller number of Global candidate
itemsets. The goal is to generate the fragments which
have more dissimilar transactions. We start with simple
illustrations.

4.1 Intuitive example

A giving data set D has only 12 transactions as in table
4.1. Like many other authors in this area, we assume that
the set of transactions is ordered by items ids.

TID List of Items TID List of Items

T1 1,4,12,32 T7 3,6,13,22

T2 1,4,13,30 T8 3,6,14,24

T3 1,4,13,34 T9 3,6,14,22

T4 1,4,13,34 T10 3,6,14,19

T5 1,4,13,36 T11 3,6,17,29

T6 1,4,12,30 T12 3,6,18,23

Table 4.1: Example data set

We assume further, the minimum support threshold at
percentage: 50%. After a simple calculation we get;
Global frequent itemsets = { { 1} , { 4} , { 3} , { 6} , { 1,4} ,
{ 3,6} } and there are 6 itemsets. The following
subsections show clearly how much benefit can be gained
by different fragmentations.

4.1.1 Data set partitioned into 2 fragments

We consider two different partitions on the same data set
to illustrate the dependency of the fragmentation’s
composition on the computational cost of the final phase
of the Partitioning algorithm.

Let D be partitioned into 2 sequent fragments: P1 = { T1,
T2, T3, T4, T5, T6} and P2 = { T7,T8,T9,T10, T11, T12} .

As a result:
LP1 = { { 1} ,{ 4} ,{13} ,{ 1,4} ,{1,13} ,{ 4,13} ,{1,4,13} } ; |LP1| = 7
LP2 = { { 3} ,{ 6} ,{14} ,{ 3,6} ,{3,14} ,{ 6,14} ,{3,6,14} } ; |LP2| = 7

CG = LP1 ∪ LP2. Therefore, the number of the Global
Candidates, |CG| = 14. Note that there is no common
candidate among LPi.

P1

P2

Pn

Phase 1 Phase 2

LP1

LP2

LPn

CG Global
FI

P2

Pn

P1

Figure 3.1: The Partitioning approach

CRPIT Volume 49

32

However, if D is partitioned differently into 2 ‘skipping’
fragments such that each fragment holds more dissimilar
transactions: P1 = { T1, T2, T3, T7, T8, T9} and P2 = {T4,
T5, T6, T10, T11, T12} .

As a result:
LP1= { { 1} , {4} , { 13} , { 3} , { 6} , { 1,4} , { 3, 6} } ; |LP1| = 7
LP2= { { 1} , {4} , { 3} , { 6} , { 1,4} , { 3,6} } ; |LP2| = 6

CG = LP1 ∪ LP2. Therefore, the number of the Global
Candidates, |CG| = 7. Note that there are 6 common
candidates among LPi, thus only 1 candidate has to be
checked in second phase.

4.1.2 Data set partitioned into 3 fragments
This example illustrates the relationship between
densities of the fragmentation when applied with the
expected computation cost.

If D is partitioned into 3 sequent fragments: P1 = {T1, T2,
T3, T4} ; P2 = {T5,T6,T7, T8} ; P3 = {T9, T10, T11, T12} .

As a result, the number of the Global candidates is |CG| =
22 and there is no common candidate.

However, if D is partitioned into 3 ‘skipping’ fragments
that have more dissimilar transactions:

P1 = {T1, T4, T7, T10} ; P2 = {T2, T5, T8, T11} ; P3 =
{ T3, T6, T9, T12} .

As a result, the number of the Global candidates is |CG| =
10 and there are 6 common candidates, thus only 4
candidates have to be checked in the second phase of the
Partition algorithm.

This simple example confirms the fact that there are some
relationships between the composition of fragments and
the amount of computation required at the end. Our goal
is to reduce the cost of this computation.

4.2 The incremental clustering algorithm

The original incremental clustering algorithm was
proposed by Nguyen, Orlowska (2005). The requirements
for a clustering algorithm restrict the number of scans of
the data set. The data set will be scanned only once and
all clusters (fragments) containing mostly dissimilar
transactions are generated at the end of that scan. The
following are some basic definitions.

Definition 4.1: Cluster centroid is a set of all items in
the cluster, we denote it Ci = { I1, I2,.., In} . Additionally,
each item in Ci has its associated weight which is its
number of occurrences in the cluster; { w1, w2, …, wn}

Definition 4.2: Similarity function between two item
sets, in particular a transaction and a cluster centroid, is
denoted Sim (Ti, Cj) and defined as follows;

Sim (Ti, Cj) � R+ ; Calculation of this function:

1. Let S be the intersection between the arguments
of Sim function, S = Ti � Cj

 2. If S = O/ then Sim (Ti, Cj) = 0. Otherwise, S =
{ I1, I2, …, Im} with the corresponding weights
{ w1, w2, …, wm} in cluster Cj, respectively, therefore
Sim (Ti, Cj) = w1 + w2 + … + wm

Cluster Construction:

Informally, each transaction is evaluated in terms of the
following criteria;

a) We assign a new transaction Ti to cluster Cj which
has the minimum Sim(Ti, Cj) value among open
clusters (a cluster is open if has not exceeded its
expected size in terms of number of transactions).

b) Each new allocation to a cluster Cj, updates the
cluster centroid Cj. In fact the update can be
summarized by the statement; all already existing
common items’ weight is increased by 1, and the
other new items are added to Cj with the weight of
value 1.

Reasoning about the size of clusters: the cluster sizes
will be well balanced in order to control the number of
Local frequent itemsets (LPi). If the size of the cluster is
too small, then the number of LPi can be very big mainly
due to the fact that the minimum occurrence number of
Local frequent itemsets is small.

The pseudo incremental clustering algorithm is described
as follows.

Algorithm 1 (clustering by incremental processing):

Input: Transaction database: D; k – number of output
clusters

Output: k clusters based on the above criteria for
Partition approach.

Begin
1. Assign the first k transactions to all k clusters, and

initialize the all cluster centroids: { C1, C2, …, Ck}
2. Consider the next k transactions. These k

transactions are assigned to k different clusters.
These operations are done based on the following
criteria: (i) the minimum similarity between the
new transaction and the suitable clusters; (ii) the
sizes of these clusters are controlled to keep the
balance. The following are more detail about this
processing.

Let Crun = { C1, C2, …, Ck } is a set of all k clusters;
Trun = {T1, T2, …, Tk } is a set of all k transactions

For each transaction Ti in Trun : T1 to Tk

Begin

a) Calculate the similarity functions between Ti and
all the clusters in Crun ; determine the minimum
similarity function value, denoted Sim(Ti, Cj)

b) Assign Ti to cluster Cj which has the minimum
Sim(Ti, Cj) value. Update the cluster centroid Cj

c) Remove Cj from the set of all the suitable
clusters in order to keep the same size constraint.
That means the next transaction is belonged to
the existing clusters after removing Cj: Crun =
Crun – { Cj} ;

End
3. Repeat step 2 till all transactions in D are clustered

End
The time complexity of this incremental clustering
algorithm is O(|D| * k *m) where |D| is the number of all
transactions, k is the given number of clusters, and m is
the number of all items in D.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

33

4.3 Similarity function based on the minimum
support threshold

Based on the proposed Algorithm 1, we want to develop
new algorithms for further improvements. The similarity
function is one of the key points for clustering algorithms.
Traditionally, the similarity between two objects is often
determined by their bag intersection, the more elements
two objects contain, the more similarity they are
considered. There are many different measures in use, for
example, let X and Y be two objects, |X| is the number of
elements in X, the Jaccard’s coefficient (Ganesan et al.
2003), SimJacc(X,Y), is defined to be:

 SimJacc(X,Y) =
||

||

YX

YX

∪
∩

However, in the context of frequent itemsets mining we
have to consider not only the common items, but also the
number of occurrences of items. Therefore, the new
similarity function between a transaction and a cluster
centroid is defined by a different way as follows:

Given database D and the minimum support threshold
min_sup (percentage); k is the number of output clusters.

With this method, we assume that the sizes of all output
fragments are the same. As a result, the minimum number
of occurrences for Local frequent itemset in every
fragment can be calculated, denoted as supk

supk =
k

D supmin_*|| ; where |D| is number of all

transactions in D.

The new similarity function is denoted New_Sim(Ti, Cj)
� R+ , which can be calculated as below:

1). Let Cjk = { I1, I2, …, Im } ⊆ Cj; where all items in
Cjk have the corresponding weights in cluster Cj
{ w1, w2, …, wm} respectively which are no less than
(supk - 1); We only consider these items because they
may become new frequent items if the new transaction is
added to the cluster (their occurrences will increase by 1).

Let Sk be the intersection between a transaction Ti and
Cjk; Sk = Ti � Cjk

2). If Sk = O/ then New_Sim (Ti, Cj) = 0.
Otherwise, Sk = { Ik1, Ik2, …, Ikn} with the

corresponding weights { wk1, wk2, …, wkn} in cluster Cj.
Therefore,

New_Sim (Ti, Cj) = wk1 + wk2 + … + wkn

The Algorithm2 uses the same cluster construction and
method as the Algorithm1, but the similarity function is
replaced by New_Sim() function.

Algorithm 2 (similarity function based on the
minimum support threshold):

Input: Transaction database: D; min_sup - minimum
support threshold; k – number of output clusters

Output: k clusters for Partition approach.

Begin:

1. Assign the first k transactions to all k clusters, and
initialize the all cluster centroids: { C1, C2, …, Ck}

2. Consider the next k transactions. These k
transactions are assigned to k different clusters.

Let Crun = { C1, C2, …, Ck } is a set of all k clusters;
Trun = {T1, T2, …, Tk } is a set of all k transactions
For each transaction Ti in Trun : T1 to Tk
Begin
a) Calculate the new similarity function between Ti

and all the clusters in Crun ; determine the
minimum similarity function value, denoted
New_Sim(Ti, Cj)

b) Assign Ti to cluster Cj which has the minimum
New_Sim(Ti, Cj) value. Update the cluster
centroid Cj (maintenance of Cj as the Algorithm1
for further computation).

c) Remove Cj from the set of all the suitable
clusters in order to keep the same size constraint.
Crun = Crun – { Cj} ;

End

 3. Repeat step 2 till all transactions in D are clustered

End

Remarks: This Algorithm2 can reduce dramatically the
computation of similarity function, because cluster
centroid Cj contains many items (after steps, it contains
almost items in database D), but only some of them have
the corresponding weights which are no less than
(supk - 1). Therefore, the cost of intersection step for
similarity computation is reduced.

4.4 Cluster construction based on flexible sizes

The cluster sizes should be well balanced in order to have
the same distribution of items among fragments.
However, the other cluster construction can be used to get
the flexible size of clusters, we want to compare the
output result of flexible clusters with those of the other
methods and study how much we can gain with this
method. Based on the Algorithm1, this method uses the
same similarity function Sim(Ti, Cj). We extend to the
new pre-processing algorithm as follows.

Algorithm 3 (based on the flexible sizes of clusters):
Input: Transaction database: D; k – number of clusters
Output: k clusters for Partition approach.
Begin
1. Assign the first k transactions to all k clusters, and

initialize the all cluster centroids: { C1, C2, …, Ck}
2. Consider the next transaction. This transaction is

assigned to cluster which has the minimum similarity
between the new transaction and the clusters.
Let Crun = { C1, C2, …, Ck } is a set of all k clusters;
the new transaction Ti
Begin
a) Calculate the similarity functions between Ti and

all the clusters in Crun ; determine the minimum
similarity function value, denoted Sim(Ti, Cj)

b) Assign Ti to cluster Cj which has the minimum
Sim(Ti, Cj) value. Update the cluster centroid Cj

End
3. Repeat step 2 till all transactions in D are clustered

End

CRPIT Volume 49

34

5 Experimental results

In this section, we conducted experiments on three data
sets: one synthetic data set (T10I4D100K) generated by
Agrawal, Srikant (1994), one small real data set and one
big real data set (BMS-WebView-1 and BMS-POS) from
Ron et al. (2000). These data sets are converted to format
as the above definitions.

Data sets Transactions Items DB Size (~MB)

T10I4D100K 100K 870 4

WebView-1 26K 492 0.7

BMS-POS 435K 1657 10

Table 5.1: The characteristics of data sets

Our goal is to compare the cardinality of the outputs; at
the Local level and the Global level, before and after
application of our pre-processing methods. The
expectation is that the final computation cost of Partition
algorithm reduces dramatically after pre-processing.

Firstly, data set is partitioned into fragments; secondly the
Apriori algorithm implemented by Zhu T. (2004) is
applied to find Local frequent itemsets (LPi) for each
fragment. Subsequently, union of these LPi generates the
Global candidates.

Resulting figures for each data set are represented in
following template table 5.2. The 2nd, 3rd, 4th and 5th
columns’ names indicate four methods for data
preparation: Sequent fragments correspond to loading
clusters with original data (no pre-processing), Clustering
fragments are constructed as described in section 4.2
(Algorithm1); the New similarity function fragments are
the other pre-processed data as presented by our new
method described in section 4.3 (Algorithm2); the New
cluster construction fragments are the other new method
described in section 4.4 (Algorithm3).

The data sets used are indicated on the top of each table
segment. We present three different scenarios; each data
set is partitioned into 1, 2 and 5 fragments. Each column
represents the numbers of the Local level (LP1, LP2, …,
LPn), the number of Global candidates. Note that this
figure is presented by showing its two components; for
example; it, 16 + (378), indicates that there are 16
candidates to be checked and 378 common candidates
don’ t need additional check.

Further, to discuss the impact of different fragmentations
and threshold level, let us denote the cardinality of
checked Global candidates set as |Cn

G|, where n is the
number of fragments. As can be seen from table 5.2 and
table 5.3, there are big gains from the careful data pre-
processing methods.

Firstly, |Cn
G| is reduced for all data sets for all minimum

support thresholds. For example, if T10I4D100K is
partitioned into 2 fragments, |C2

G| decreases from 16 for
Sequent to 4 for Algorithm3 with the support threshold
0.01. This reduction is also present when considering
other real data sets that are partitioned into 2 fragments.
Its value reduces from 152 for Sequent to 46 for

Algorithm2 with the threshold 0.01 for real data set
WebView-1, and its value reduces from 1,820 for
Sequent to 756 for Algorithm2 with the threshold 0.005
for very large data set BMS-POS.

Moreover, if data sets are partitioned into 5 fragments,
the gap is even greater. For example, if T10I4D100K is
partitioned into 5 fragments, |C5

G| decreases from 48 for
Sequent to 24 for Algorithm1 with the threshold 0.01.
|C5

G| decreases from 698 for Sequent to 434 for
Algorithm3 with the threshold 0.005. When WebView-1
is partitioned into 5 fragments, |C5

G| decreases from 425
for Sequent to 93 for Algorithm2 with the threshold 0.01.
Exceptional performance for BMS-POS when data set is
partitioned into 5 fragments for Algorithm2: with the
threshold 0.01 the reduction is from 2,263 to only 222 as
well as with the threshold 0.005 it reduces significantly
from 10,718 to only 1,192.

Secondly, another interesting and encouraging trend can
be found in the growth of the number of common
candidates between LPi for fragmented data sets. For
example, if data sets are partitioned into 2 fragments, this
common number increases from 152 to 203 for
Algorithm1 with WebView-1 and the threshold 0.01.

In addition, if data sets are partitioned into 5 fragments,
this common number increases dramatically from 689 to
1,404 for Algorithm2 with BMS-POS and the threshold
0.01 as well as from 2,346 to 4,563 for Algorithm3 with
the same data set and the threshold 0.005.

For comparison, we can compare these three pre-
processing methods (Agorithm1, Agorithm2, Agorithm3)
based upon several metrics. Firstly, the number of Global
candidates of Algorithm1 is less than those of the others
for almost data sets and minimum support thresholds. In
contrast, Agorithm3 has the highest number of Global
candidates for all data sets and all minimum support
thresholds. Because there are different sizes of output
clusters of Agorithm3, so the Local frequent itemsets of
clusters are more different and the number of them is
higher. As a result, the number of Global candidates is
higher. For Agorithm2, with very big real data set (BMS-
POS) and the higher number of fragments (5 fragments),
the output result is more benefit than those of the other
methods. For example, the numbers of Global candidates
are 222 with threshold 0.01 and 1,192 with threshold
0.005 in comparison with those of Agorithm1 are 894 and
4,075, respectively. Secondly, as mentioned in section
4.3, Agorithm2 can save much more computation of the
similarity function that the other methods. This is very
efficient when the data sets have many different items.
Consequently, the better methods can be selected
depending on the characteristics of data sets such as the
number of all items, the number of all transactions and
the given minimum support threshold.

In summary, the figures from two tables show that the all
data pre-processing methods can significantly improve
the Partitioning approach. It is delivered in form of two
strongly related benefits; reduction of the number of
Global candidates requiring the final check and increase
of the common candidates numbers that don’ t require any
additional checks.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

35

 Sequent
(no processing)

Clustering

(Algorithm1)

New similar
Function

(Algorithm2)

New
Construction

(Algorithm3)

T10I4D100K

1-fragment: 385 Frequent Itemsets

2 fragments

LP1 385 385 383 385

LP2 387 386 391 389

C2
G 16+ (378) 3 + (384) 12 + (381) 4 + (385)

5 fragments

LP1 392 387 391 383

LP2 381 387 394 385

LP3 393 384 390 388

LP4 386 388 395 391

LP5 390 388 391 393

C5
G 48+ (366) 24+ (375) 31 + (379) 33 + (381)

WebView-1

1-fragment: 208 Frequent Itemsets

LP1 227 210 196 184

LP2 229 213 232 262

C2
G 152+ (152) 17+ (203) 46 + (191) 78 + (184)

5 fragments

LP1 284 226 220 154

LP2 197 221 212 186

LP3 241 213 228 231

LP4 255 207 228 270

LP5 266 205 216 353

C5
G 425+ (92) 74+ (181) 93 + (182) 311 + (154)

BMS-POS

1-fragment: 1,503 Frequent Itemsets

LP1 1,400 1,512 1,348 1,378

LP2 1,662 1,498 1,688 1,655

C2
G 390+

(1,336)
60+ (1,475) 342 +

(1,347)
277 +

(1,378)

5 fragments

LP1 1,996 1,150 1536 1,192

LP2 1,334 1,471 1505 1,359

LP3 744 1,864 1514 1,576

LP4 1,348 1,822 1474 1,700

LP5 2,885 1,364 1521 1,858

C5
G 2,263+

(689)
894+ (1,121) 222 +

(1,404)
1,356 +
(1,192)

 Sequent
(no processing)

Clustering

(Algorithm1)

New Similar
Function

(Algorithm2)

New
Construction

(Algorithm3)

T10I4D100K

1-fragment: 1,073 Frequent Itemsets

2 fragments

LP1 1,079 1,068 1099 1091

LP2 1,101 1,092 1084 1079

C2
G 158 + (1,011) 70 + (1,045) 213 + (985) 88 + (1041)

5 fragments

LP1 1,150 1,089 1087 1040

LP2 1,141 1,110 1088 1032

LP3 1,248 1,059 1092 1111

LP4 1,110 1,135 1094 1161

LP5 1,120 1,098 1136 1150

C5
G 698 + (893) 373 + (941) 268 + (976) 434 + (960)

WebView-1

1-fragment: 633 Frequent Itemsets

LP1 644 659 581 529

LP2 755 641 744 859

C2
G 503 + (448) 94 + (603) 191 + (567) 330 + (529)

5 fragments

LP1 1,107 779 766 413

LP2 489 733 722 552

LP3 839 676 751 770

LP4 894 663 648 898

LP5 977 597 615 1601

C5
G 1,806 + (271) 497 + (493) 538 + (485) 1643 + (404)

BMS-POS

1-fragment: 6,017 Frequent Itemsets

LP1 5,419 6,024 5,699 5,502

LP2 6,709 5,972 6,385 6,559

C2
G 1,820+

(5,154)
348+

(5,824)
756 +

(5,664)
1,061 +
(5,500)

5 fragments

LP1 8,480 4,339 6,023 4,586

LP2 4,975 5,932 5,894 5,395

LP3 2,541 7,530 6,163 6,313

LP4 5,177 7,443 6,017 6,835

LP5 12,755 5,289 6,109 7,473

C5
G 10,718+

(2,346)
4,075+
(4,191)

1,192 +
(5,467)

 6,029 +
(4,563)

Table 5.2: The figures with a support threshold 0.01 Table 5.3: The figures with a support threshold 0.005

CRPIT Volume 49

36

6 Conclusion

As an extension of our previous work, this paper
considers the extension of data pre-processing approach
for further performance improvements in frequent
itemsets computation. We show that the composition of
fragments and the number of fragments generated, impact
on the size of the data used by the original Partition
algorithm.

We proposed a series of data pre-processing methods,
mainly to demonstrate that the performance of computing
frequent itemsets can be improved by data partitioning.
The new algorithms are proposed based on different
definitions of similarity function and different cluster
constructions which are applied for data clustering to get
more efficient. Figures from the experiments show that
these data pre-processing methods offer good benefits
already.

In addition, the comparison among these methods has
been conducted. In particular, the better method can be
applied depending on the characteristics of input data sets
and the given minimum support threshold.

There is an interesting question for future work which is
how to identify the methods that will deliver an even
better partition for the original data sets.

7 References

Nguyen S., Orlowska M. (2005): Improvements in the
Data Partitioning Approach for Frequent Itemsets
Mining. Proc. 9th European Conference on Principles
and Practice of Knowledge Discovery in Databases
(PKDD 05), Springer.

Agrawal R., Imielinski T., Swami A. (1993): Mining
association rules between sets of items in lagre
database. Proc. 1993 ACM SIGMOD Int. Conf. on
Management of Data, Washington DC, USA, 22:207-
216, ACM Press.

Agrawal R., Srikant R. (1994): Fast algorithms for
mining association rules. Proc. 20th Int. Conf. Very
Large Data Bases, Morgan Kaufmann, (487 - 499)

Brin S., Motwani R., Ullman D.J., Tsur S. (1997):
Dynamic Itemset Counting and implication rules for
masket basket data. Proc. ACM SIGMOD 1997 Int.
Conf. on Management of Data, (255 - 264)

Houtsma M., Swami A. (1995): Set-oriented mining for
association rules in relational database. Proc. 11th
IEEE Int. Conf. on Data Engineering, Taipei - Taiwan,
(25 - 34)

Lin J.L., Dunham M.H. (1998): Mining association rules:
Anti-skew algorithms. Proc. 14th IEEE Int. Conf. on
Data Engineering, Florida

Pudi V., Haritsa J. (2003): ARMOR: Association rule
mining based on Oracle. Workshop on Frequent
Itemset Mining Implementations (FIMI'03 in
conjunction with ICDM’03)

Savasere A., Omiecinski E., Navathe S. (1995): An
efficiant algorithms for mining association rules in
large database. Proc. 21th Int. Conf. Very Large Data
Bases, Swizerland

Toivoven H. (1996): Sampling Large Databases for
association rules. Proc. 22th Int. Conf. Very Large Data
Bases, Mumbai, India

Ron K., Carla B., Brian F., Llew M., Zijian Z. (2000)
KDD-Cup 2000 organizers' report: Peeling the onion.
SIGKDD Explorations, 2(2):86-98

Goethals B. (2002): Survey on frequent pattern mining.
University of Helsinki

Mueller A. (1995): Fast sequential and parallel algorithm
for association rules mining: A comparision. Technical
Report CS-TR-3515, Uni. of Maryland

Zhu T. (2004): The Apriori algorithm implementation,
http://www.cs.ualberta.ca/~tszhu/, Accessed 2004

Han J., Pei J., Yin Y., Mao R. (2004): Mining frequent
patterns without candidate generation: A frequent-
pattern tree approach. Data Mining and Knowledge
Discovery, Kluwer Academic Publishers, (8): 53-87

Zaki M.J. (2000): Scalable algorithms for association
mining. IEEE Transactions on Knowledge and Data
Engineering, 12(3): 372-390

Zhang S., Wu X. (2001): Large scale data mining based
on data partitioning. Applied Artificial Intelligence
15:129-139

Ganesan P., Garcia-Monila H., Widom J. (2003):
Exploiting hierarchical domain structure to compute
similarity. ACM Transactions on Information systems.
Vol. 21, No. 1, January 2003.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

37

CRPIT Volume 49

38

A Two-Phase Rule Generation and Optimization Approach for
Wrapper Generation

Yanan Hao Yanchun Zhang
School of Computer Science and Mathematics

Victoria University
Melbourne, VIC, Australia

haoyn@csm.vu.edu.au

yzhang@csm.vu.edu.au

Abstract
Web information extraction is a fundamental issue for
web information management and integrations. A
common approach is to use wrappers to extract data from
web pages or documents. However, a critical issue for
wrapper development is how to generate extraction rules.
In this paper, we propose a novel two-phase rule
generation and optimization (2P-RULE) approach for
wrapper generation. 2P-RULE consists of internal rule
optimization (IRO) process and external rule optimization
(ERO) process. In IRO, a user, through a GUI interface,
firstly creates a mapping from useful values in web page
to a schema specified by the users according to target web
information. Based on the mapping, the system
automatically generates a rule list for the schema.
Whereas in ERO, the user can create multiple mappings to
generate further rule lists. All the acquired rule lists are
merged and refined into one optimized rule list, which is
expressed with XQuery as the final extraction rules.
Experiments show that our 2P-RULE approach is suitable
for extracting information from web pages with complex
nested structure, and can also achieve better precision and
recall ratio⋅.

Keywords: Web, extraction, wrapper, rule optimization,
XQuery.

1 Introduction
With the rapid development of Internet, World Wide Web
has already become the most important and potential
information resources (Lawrence S. and Giles L. 1999).
HTML language aims at the visual presentation of data in
web browsers, while it lacks of schema and semantic
information for efficient management and retrieval web
information. Most of valuable web information is in
HTML form even though XML has been more and more
popular today. So researchers propose wrappers
technology to extract data from web pages and convert the
information into a structured format. However, a critical
issue for wrapper development is how to generate

Copyright (c) 2006, Australian Computer Society, Inc. This
paper appeared at the Seventeenth Australasian Database
Conference (ADC2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

extraction rules for extracting data from web pages having
similar structures.

Many information extraction tools (Alberto H. F. Laender,
Berthier A. Ribeiro-Neto, Altigran S. da Silva, Juliana S.
Teixeira., 2002) have been developed to extract data on
the web. These works can be classified into three
categories: manual approach, automatic approach
(Soderland S. 1999, Arasu, A., Garcia-Molina, H. 2003,
Hu D., Meng X. 2005, Ma L., Shepherd J. 2004) and
semi-automatic approach (Liu L., Pu C., Han W. 2000,
Han W., Buttler D., Pu C. 2001, Arnaud S. and Fabien A.
1999, Sahuguet A. and Azavant F. 1999, Baumgartner R.,
Flesca S., Gottlob G. 2001, Baumgartner R., Ceresna M.,
Gottlob G., Herzog M., Zigo V. 2003, Meng X., Wang H.,
Hu D., Chen L. 2003). In the first category, extraction
rules are programmed manually which can be very hard
for common users; in the second category, (Soderland S.
1999) introduces a machine learning approach. It utilizes
the structures of sentences and relationships between
idioms and words to create rules automatically; (Arasu A.,
Garcia-Molina, H. 2003) and (Hu D., Meng X. 2005)
propose item identification techniques via HTML path
and templates for automatic data extraction from web
pages; (Ma L., Shepherd J. 2004) discovers the semantic
pattern for an identified region of a document via
inference, apposition and analogy. The drawbacks of
these four systems are their limited expressive power of
extraction rules and only suitable for simple record
schema. Semi-automatic approach requires user
interactions to build mappings between schema and
content in web pages, after that extraction rules are
derived for extracting web pages having similar structures.
In the third category, XWrap (Liu L., Pu C., Han W. 2000,
Han W., Buttler D., Pu C. 2001) only have good
performance on web pages with distinct region features;
In W4F (Arnaud S. and Fabien A. 1999, Sahuguet A. and
Azavant F. 1999), expertise is required to program part of
extraction rules manually; In Lixto (Baumgartner R.,
Flesca S., Gottlob G. 2001, Baumgartner R., Ceresna M.,
Gottlob G., Herzog M., Zigo V. 2003), the extraction
rules are expressed in Elog language, which is difficult for
the optimization and refinement of extraction rules;
secondly, it require users to specify some external and
internal conditions for extraction rules, thus the
effectiveness and robustness of rules relies on user's
action. SG-Wrapper (Meng X., Wang H., Hu D., Chen L.
2003) makes some improvements in rule generation and
expression. But its extraction rules may be invalid when

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

39

the nested structures of web page do not match the
pre-defined user schema.

All the tools above ignore the problem of usable features
of web page and their performance in constructing

extraction rules. It is very important to the robustness of
extraction rules. In this paper, based on the analysis of
usable features of web pages and their performance in
constructing extraction rules, we propose

Figure 1: A sample HTML fragment from VLDB
conference

text[1]
�

� �

text�:"Marguerite ……"

text�: " Doron Rotem"

text�: "," text�: ":"

text�: "Effective…..."

text	: "67-75"

text�: "Electronic…… "

html[1]

head[1]

title[1]

body[1]

table[1] h2[1] ul[1] h1[1]

text[1]

a[1] ..….
text[1]
 text3

text[1]
 text3

……

text[1]

a[1]
text[1]

i[2]
text[1]

text[1]

text[2]

li[1]

br[1] b[1]

text[1] text[1]

a[1] a[2]
text[2] text[1]

i[1]
text[1]

text[1]

text[3]

li[1]

br[1] b[1] a[3]

……

a[2]

ul[2] ……

�

�

�

�

�

� �

� 	

�

�

--Author

--Author

--Title

--Page

--FullText

Figure 2: DOM tree

Figure 3: The schema tree and DTD definition

FullText Page

Author

VLDB conference

Paper

AuthorList

*

 *
<!DOCTYPE VLDBConference [

<!ELEMENT VLDBConference ((Paper)*)>

<!ELEMENT Paper (AuthorList, Page, FullText)>

<!ELEMENT AuthorList ((Author)*) >

<!ELEMENT Author (#PCDATA)>

<!ELEMENT Page (#PCDATA)>

<!ELEMENT FullText (#PCDATA)>]>

CRPIT Volume 49

40

a novel two-phase rule generation and optimization
(2P-RULE) approach. 2P-RULE consists of internal rule
optimization (IRO) process and external rule optimization
(ERO) process. In IRO, a user, through a GUI interface,
firstly creates a mapping from useful values in web page to
a schema specified by the users according to target web
information. Based on the mapping, the system
automatically generates a rule list for the schema. Whereas
in ERO, the user can create multiple mappings to generate
further rule lists. All the acquired rule lists are merged and
refined into one optimized rule list, which is expressed
with XQuery as the final extraction rules. Then the
information extraction is simply a process of executing
XQuery statements in any XQuery engine. The query
result can be utilized by common users and further by
applications. Experiments show that our 2P-RULE
approach can extract information from web pages with
complex nested structure and can also achieve better
precision and recall ratio.

This rest of this paper is organized as follows. Section 2
introduces the presentation and semantic models for web
information extraction. In section 3 we present the basis of
extraction rules generation. Section 4 discusses the
extraction rules and their optimization steps. Section 5
reports the experimental results. Finally conclusion and
future work are discussed in section 6.

2 Representation and semantic models

2.1 Representation model of web documents
An HTML document is a text file containing markup tags.
The Document Object Model (DOM) represents a
document as a tree. Every node of the tree represents a
HTML tag, or a text value inside an HTML tag. The tree
structure describes the whole HTML document, including
the child, parent, or sibling relationship between tags and
text values on the page. DOM allows us to locate elements
in the tree with XPath (XML Path Language) expressions.
We choose DOM as the representation model of HTML
information in our system. All the operations in our system
are based on DOM tree.

As an example, in Figure 1 we give an HTML fragment of
the web pages at http://www.informatik.uni-trier.de/~ley/
db/conf/vldb/. Figure 2 shows its DOM tree structure. In
Figure 2 each node tag is followed by an ordinal. An
ordinal is the order of a node among all its siblings of the
same tag. For the convenience of reference, we also assign
each text node a number. For example, the following
XPath expression "html[1]/body[1]/ul[2]/li[1]/text()[3]"
identifies the data value 67-75 in the HTML fragment.

2.2 Semantic model
DOM tree is only the internal expression of web
documents. It can effectively process data in documents,
but it may not reflect the potential semantic information in
document data. In this paper we choose XML as the
semantic model and its schema is defined by DTD. The
defined DTD can be easily represented in the form of a tree
structure, which is called a schema tree. In our system,
through a GUI interface, a user can easily specify the

schema tree according to the target web documents. An
example of the schema tree and the DTD corresponding to
that can be seen in Figure 3. The ‘*’ in Figure 3 denotes
zero or more occurrences. For example, the ‘*’ between
AuthorList and Author means a AuthorList may have zero
or more authors. The schema tree can support some node
types corresponding to the data types defined by DTD.
Using regular expression, we define these supported node
types as follows:

atomic object (AO): (#PCDATA)
set object (SO): ((atomic object)*)| ((tuple object)*)
tuple object (TO): (a1, a2… an), where ai (1<=i<=n) is (an
atomic object | a set object | a tuple object)

We call each sub element of a set object a member object
(MO). If the member is an atomic object, then it will be
called a member atomic object (MAO). If the member is
a tuple, then it is a member tuple object (MTO). In
general, all nodes in the schema tree are called semantic
objects.

For example, referring the schema tree in Figure 3, both
Page and FullText are atomic objects (AO);
VLDBconference and AuthorList are set objects (SO);
Author is a member atomic object (MAO); and Paper is a
member tuple object (MTO).

After creating a schema tree, the user needs to create a
mapping from the contents of web pages to the schema tree.
To create such a mapping, the user simply selects semantic
objects in the schema tree, and then highlights the
corresponding content on web pages. Based on the
mapping, the system automatically generates rule
segments (see section 4) for each semantic object of the
schema tree.

3 Basis of extraction rules generation

3.1 Analysis of usable web features
In most information extraction systems, extraction rules
are mainly expressed with five features of web pages,
including structure, position, semantics, display and
references. Feature selection determines the performance
of extraction rules. Structure feature is the paths of DOM
tree. With path expression we can navigate HTML page
easily, so it can be a basic feature for constructing
extraction rules. But structure feature has weak
differentiating ability, and extraction rules only containing
structure feature may have low precision rate. For example
in Figure 2, the path expression html/body/ul/li/text() can
locate many nodes. Position feature includes ordinal
(section 2.1) and boundary. Boundary is a left or right
sibling node. In Figure 2, node text(16) has the left
boundary b and the right boundary a. Position feature
relies on the structure of web pages, so using position will
decrease the coverage of extraction rules but increase the
differentiating ability at the same time. Display feature
includes font, font-size, colour and alignment. It limits
nodes by node attributes in each location step of DOM
path. Normally, similar or correlative contents in web
pages have same display features, so selecting display
feature generating rules will increase the coverage. But
extraction rules can be inaccurate when multiple instances

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

41

of one semantic object (say an author object) have same
display features. Semantic feature is a common conceptual
or content feature of data to be extracted. For example, the
value of Price often contains a character ’$’. Semantic
feature lacks in differentiating ability but makes extraction
rules more flexible. Reference feature is the hyperlink
information in web pages. It has little effect on the
robustness of extraction rules and we do not discuss it in
this paper.

The goal of extraction rules is to have good coverage and
differentiating ability. Based the analysis above, we firstly
select DOM path, semantic and display features to form
extraction rules, which do not rely on the structure of web
pages and have good coverage ability, then add ordinal and
position information to extraction rules to gain good
differentiating ability.

3.2 Mismatches between schema tree and DOM
tree

To extract data from similar web pages or documents, a
user first defines a schema tree of the target data. The
schema tree reflects the user's view of extracted data. In
order to make semantics clear, the user can create a
schema tree with nested structure. For example in Figure 3,
a AuthorList object is created to represent all the authors in
one paper. Since the user creates a schema tree through a
GUI interface without knowing the details of HTML
documents, sometimes the nested structure of the schema
tree may not match its corresponding structure in DOM
tree. The mismatch happens when a complex nested object
in the schema tree does not have a corresponding node in
DOM tree, while its sub components are directly listed.
For example in Figure 3, AuthorList is a complex nested
object whose sub components are Authors. Consider the
DOM tree in Figure 2. The sub-tree in rectangle
corresponds to the semantic object Paper, and its DOM
paths correspond to author, author, title, page and
FullText respectively. No node corresponds to the
semantic object AuthorList and all the Author nodes are
listed directly.

Mismatches between schema tree and DOM tree are main
difficulties for extracting complex nested objects.
Typically, there are three sorts of mismatches:

Single set object mismatch. There is only one set object in
the schema tree that does not match its corresponding
DOM tree structure, for example the AuthorList object in
Figure 3. Let us suppose author and FullText have same
display and structure features firstly. Further more, since
the count of authors is variable, position feature can not
differentiate them either. In this case, we introduce a new
position feature big boundary. The left big boundary of a
set object is a sequence of nodes, which are all the left
siblings of the leftmost sub-tree spanned by the set object;
the right big boundary of a set object is a sequence of
nodes, which are all the right siblings of the rightmost
sub-tree spanned by the set object. For example in Figure 2,
the set object AuthorList corresponds to nodes text (10)
and text (12). The left big boundary of AuthorList is null
while its right big boundary is {text, br, b, text, a}. By big
boundary feature, we can differentiate between member

objects (Author) of a set object (AuthorList) and sibling
objects (FullText or Page) of the set object.

Multiple set objects mismatch. There are several set
objects in the schema tree, and none of them matches the
corresponding DOM tree structure. For example, a user
may define another set object AddressList as a sibling of
AuthorList. Using the big boundary, we can still
differentiate these two set objects if member object Author
and Address can be differentiated. But if Author and
Address have same features, these two set objects can not
be differentiated in our system.

Member tuple object mismatch. In this case, a member
tuple object does not have the corresponding node in DOM
tree while its sub components are listed directly. The
member tuple objects may not be differentiated. For
example in Figure 2, if the node Li[1] , which corresponds
to the semantic object Paper, does not exist, all the authors
can not be differentiated, i.e. which author belongs to
which paper. In our system, we add a virtual node to each
member tuple object to solve the member tuple object
mismatch.

In this section, we analyse the usable web features and the
mismatches between schema tree and DOM tree. They are
the basis of rules generation in our system. In section 4, we
will describe our approach to generate and optimize
extraction rules.

4 Generation and optimization

4.1 Rule segments
According to section 3, we distribute all the usable web
features in six sorts of rule segments. The initial extraction
rule for each semantic object will be composed of several
rule segments. Different semantic object has different
composition of rule segments as the initial extraction rule.
Figure 4 gives the BNF definition of all rule segments.

PureAttrPathExp(P): We use the first letter P to denote
PureAttrPathExp. Abbreviation for other rule segments is
similar. This rule segment is called pure-attribute path
expression, each location step of which only contains
attributes limitation. If there exists attributes in a location
step, then we choose all the equations of “[attribute name=
attribute value]” as predicates to limit nodes sequence, or
we do not select any predicates in this step. For example in
Figure 2, html/body[@bgcolor=“#ffffff”]/ul/li/text() is a
pure-attribute path expression. It can locate text(11),
text(16) and text(14).

AttrOrdPathExp(A): We call it attribute-ordinal path
expression, each location step of which only contains
attributes or ordinal limitation(except location steps with
the node test text()). If it contains attributes, then we use all
the equations “[attribute name= attribute value]” as
predicates, or we use ordinals to limit nodes sequence. In
Figure 2, html[1]/body[@bgcolor=“#ffffff”]/ul[2]/li[1]/
text() is an attribute-ordinal path expression.

OrdPathExp(O): This sort of rule segment is called
ordinal-path expression, each location step of which only
contains ordinal limitation (including location steps with
the node test text()). For example,

CRPIT Volume 49

42

html[1]/body[1]/ul[2]/li[1]/text()[3] is a OrdPathExp for
the semantic object Page(see Figure 2) .

OrdPathExp(O): This sort of rule segment is called
ordinal-path expression, each location step of which only
contains ordinal limitation (including location steps with
the node test text()).For example, html[1]/body[1]/ul[2]
/li[1]/text()[3] is a OrdPathExp for the semantic object
Page(see Figure 2) .

TextFeaturePredicate(T): This rule segment is called
text-feature predicate. It is a form of predicate in XPath
requiring the text content of a node (for non-leaf node, it
will be a concatenation of string-values of all its
descendants) in DOM tree contain some fixed text value.
We only use this predicate in the last location step of path
expressions. For example, html/body[@bgcolor=”#ffffff”]
/ul/li[contains(string(.)�”Electronic Edition”)] means the
text content of nodes limited by the last location step must
contain the string “Electronic Edition”.

Big _BoundaryPredicate(B): This rule segment is called
big boundary predicate. It contains left big boundary
predicate and right big boundary predicate. We introduce
this rule segment for the extraction of complex nested
objects, say AuthorList in Figure 3(section 3.2).

Small_BoundaryPredicate(S): This rule segment is
called small boundary predicate. This predicate is to limit
a node by its immediate left sibling and right sibling. In
our system we only apply this segment to atomic objects
and only to the last location step with the node test “text ()”,
because text nodes in DOM specification are regarded as
virtual nodes, and in most circumstances they do not have
sibling nodes, as they do not rely on the structure of web
pages.

In these six rule segments, the first three rule segments are
path expressions, in which PureAttrPathExp has the best
coverage ability, OrdPathExp has the worst coverage
ability, and AttrOrdPathExp is middle; the rest three rule
segments are all predicates. They can only be used
together with the first three path expressions.

 After the user creates a mapping from the contents of web
pages to the schema tree, system automatically generates
rule segments for each semantic object of the schema tree.
As for a member object, the two segments
AttrOrdPathExp and OrdPathExp do not contribute to its
extraction rule, since they both contain ordinal feature and
it can be invalid due to the variable count of member
objects. System does not generate rule segments for a plain
tuple object (i.e. it is not a member tuple object). The plain
tuple object appears only once, and if its sub components
can be extracted, they definitely belong to this tuple object.
Thus the extraction rule for plain tuple object itself is not
needed and we only need to compose rules for its sub
components. But for a member tuple object, it can appear
many times, so the corresponding extraction rule is needed
to decide which sub component belongs to which member
tuple object instance.

 The rule segments of each semantic object are marked by
“�”in Table 1. Please see section 2.2 for the definition of
semantic objects. For example, from Figure 2 we can
conclude that html/body[@bgcolor=“#ffffff”]/ul/li/text()
is a rule segment (P) for the semantic object Author
(MAO).

 Table 1: Rule segments for each semantic object

4.2 Optimization of extraction rules
For one semantic object, its rule segments can have
different combinations. Each combination is called an
initial rule for the semantic object. Different combination
of rule segments can generate different initial extraction
rules. In this section, we describe our two-phase rules

 Semantic objects
Rule segments AO MAO MTO SO

PureAttrPathExp � � � �
AttrOrdPathExp � �
OrdPathExp � �
TxtFeaturePredicate � � � �
Big_ BoundaryPredicate �
Small_BoundaryPredicate � �

PureAttrPathExp::= (NodeName("[@"AttrName"="AttrValue"]")*) |

(NodeName("[@"AttrName"="AttrValue"]")*"/"PureAttrPathExp) | NULL

AttrOrdPathExp::=(NodeName("["num"]" | ("[@"AttrName"="AttrValue"]")*)) | NULL

| (NodeName("["num"]" | ("[@"AttrName"="AttrValue"]")*)"/"AttrOrdPathExp)

OrdPathExp::=(NodeName"["num"]") | (NodeName"["num"]""/"OrdPathExp) | NULL

TxtFeaturePredicate::=("[contains(string(.) ," TxtFeatureValue ")]") +

Big_BoundaryPredicate::=(("[count(../" NodeName "after .)=" Num "]") | ("[count(../" NodeName "before .)="
Num "]")) +

Small_BoundaryPredicate::=

(("[count((../* after .)[1])=0]") | ("[((../"Nodename " after" ".)[1])=((../* after .)[1])]"))

(("[count((../* before .)[1])=0]") | ("[((../"Nodename " before" ".)[1])=((../* before .)[1])]"))

Figure 4: The BNF definition of rule segments

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

43

(2P-RULE) optimization approach. 2P-RULE consists of
the internal rule optimization (IRO) process and the
external rule optimization (ERO) process.

4.2.1 Internal optimization (IRO)
In IRO, system automatically selects an optimized initial
rule for each semantic object and generates a rule list for
the schema.

(1) Initial rules

Among the six rule segments, the first three path
expressions are XPath statements, and the rest three rule
segments are predicates. The effective combination, initial
rule, should be one and only one path expression plus
several predicates. We combine both TxtFeaturePredicate
and Small_BoundaryPredicate together with path
expressions, for these two segments do not rely on the
structure of web page. For Big_BoundaryPredicate, it is
generated to deal with set object mismatch. When there
exist set objects mismatches, we do not generate initial
rules for SO and add its Big_BoundaryPredicate to
member objects MTO and MAO. While when there are no
mismatches, the initial rules for SO are {P.T, A.T, O.T}
and the Big_BoundaryPredicate is removed. All the
possible initial rules for each semantic object are listed in
Figure 5.

Bottom. The initial rules at bottom have better coverage
ability. They select DOM path, display feature and
semantic feature. Although S rule segment is added to the
atomic object, it does not rely much on the structure of
web page. The shortcoming of bottom combination is that
it lacks of differentiating ability.

Middle. The middle level of initial rules are acquired by
adding position feature to bottom combination to get better
differentiating ability. Particularly, member objects get
new rule segment B; both atomic objects and set objects
replace their rule segment P as A, which actually
complements some ordinals for the location steps without
predicates. The better differentiating ability is at the
expense of decreasing of coverage.

Top. The top initial rules are only available for atomic
objects and set objects. They add further position feature to
the middle initial rules. Comparing with middle initial
rules, their differentiating ability is further increased but
coverage ability is further decreased.

(2) Optimization and selection

The goal of extraction rules is to have good coverage and
differentiating ability. In Figure 5 we can see, from bottom
to top, the coverage ability of initial rules is increasingly
good and the differentiating ability of initial rules is
increasingly poor. Our basic idea of rules optimization is
to select the first “good” initial rule from bottom to top for
each semantic object. Here “good” means having no
collision with the selected initial rules for other semantic
objects, i.e. they do not locate identical nodes.

In our system, the DOM paths forming into extraction
rules are relative. Extraction rules for sub objects will
locate nodes based on the extraction results of parent
objects, so only the initial rules having the same base
domain are possible to collide. For example in Figure 2,
suppose “html/body/ul/li” is an initial rule for Paper, and
the initial rule for FullText is “a/i/text()”. Obviously, these
two initial rules do not collide, because “a/i/text()” is to

FullText Page

Author

VLDB conference

Paper

AuthorList

*

 *

Figure 6: Grouping of semantic objects

(a) If no mismatch

FullText Page

Author

VLDB conference

Paper

AuthorList

*

 *

(b) If exists a mismatch

Figure 5: Initial rules for each semantic object

MTO MAO AO SO

1.1.1.1.1.1

1.1.1.1.1.2

1.1.1.1.1.3

1.1.1.1.1.5 1.1.1.1.1.6

1.1.1.1.1.8

1.1.1.1.1.9

1.1.1.1.1.10

… . … . … . … .

Initial
rules

Bottom

Middle

Top

Semantic objects

B P.T.

P.T

P.T.S.

P.T.S P.T.S

A.T.S

O.T.S

P.T

A.T

O.T

B

CRPIT Volume 49

44

locate nodes based on the sub tree li, and “html/body/ul/li”
is to locate nodes based on the whole DOM tree. To detect
potential collisions, we group the semantic objects
according to the base domain of their initial rules. The
semantic objects having sibling relationship will belong to
the same group finally.

For example, Figure 6 gives the two possible groupings of
schema tree in Figure 3. For the HTML fragment in Figure
1, we should choose the grouping (b).

Definition 1 [Containment relationship] Let XPathExp1
and XPathExp2 be two XPath expressions. We say
XPathExp1 contains XPathExp2, if

1. They have the same DOM path, and
2. The set of predicates in each location step of XPathExp1
is a subset of the set of predicates in each corresponding
location step of XPathExp2.

The containment relationship is denoted as
XPathExp2 ⊂ XPathExp1. For example, suppose
XPathExp1=A/B[@colour=�1�]/C, and XPathExp2=A/B
[@calor=� 1�][@high=� 6�]/C, then XPathExp2
⊂ XPathExp1. This means the nodes set located by
XPathExp2 are a subset of nodes set located by
XPathExp1 and so collision occurs. Semantic objects in
same group have the same DOM path, so we can use
containment relationship to detect potential collisions
between them.

Definition 2 [Invalid rule] Let soi be the ith semantic
object in a schema tree, max(soi) be the total count of
initial rules for soi and soi-rm(1�m�MAX(SOi)) be the
ith initial rule for soi. We say soi-rm is an invalid rule�if
and only if ∃ soj (j� i) such that soi-rm contains
soj-rn(1=<n<=max(soj)). Here m and n are the ordinals of
initial rules for semantic objects. For each semantic object,
its initial rules are numbered from bottom to top beginning
with 0 (See Figure 5).

We say that an initial rule is valid if it is not an invalid rule.
Based on the analysis and definitions above, the process of
selection and optimization of rules for semantic objects is
described as below:
Step 1: Group all the semantic objects.
Step 2: Group all the initial rules by the grouping of
 semantic objects.
Step 3: In each initial rules group, from bottom to top,
 Find the first valid initial rule as the optimized rule
 for each semantic object. All the optimized rules
 constitute an optimized rule list for the schema.
 We formulate this step into algorithm 1.

Algorithm 1 Internal optimization
Input: G= {gi | i=1, 2 …}, groups obtained in step 2
Output: O= {opti | i=1, 2 …}, O is an optimized rule list
 for the schema, in which opti contains the optimized rules
for semantic objects in group gi
Description:
for each group gi in G do
 Optimize (gi);
Function optimize (g)

1: s:=0; collision:=False; // s is the ordinal of an initial rule
2: for each semantic object sol in group g do
3: if max (sol) =1 then
4: // only one initial rule
5: optg-sol = sol –r0 ;
6: continue;
7: endif
8: if exists i, j such that soj-ri⊂ sol-rs then
9: // sol-rs is an invalid rule
10: collision: =True;
11: endif
12: if collision then
13: if (sol is a MO) and s=1 then
14: exit; // Can not extract this web page.
15: else
16: s: =s+1; // go up
17: goto line 8;
18: endif // if sol is a member object
19: endif // if collision
20: optg-sol = sol-rs; // Obtain the optimized rule for sol
21: optg-sol → optg; //add optg-sol to optg
22: end // end for

For example, after IRO we can obtain an optimized rule
list for the semantic objects in Figure 3:
• Paper: html/body[@bgcolor=“#ffffff”]/ul/li

[contains(string(.)��Electronic Edition�)]
• Author: a[left_big_boundary=””,

right_big_boundary =”text, br, b, text, a”]/text()
• Page: /text()

• FullText: a/li/text()[contains(string(.)�
�Electronic Edition�)]

4.2.2 External optimization (ERO)
We say a user makes a learning process, if the user creates
a mapping from the web page to the schema. Based on the
mapping, system generates an optimized rule list by IRO.
If the user is not satisfied with the extraction results, she
can make more sample learning processes. Each sample
learning process will generate one optimized rule list. In
ERO system merges and refines all the acquired rule lists
into one optimized rule list, which is expressed with
XQuery as the final extraction rules.

The whole merging and refining procedure is listed as
below:

Step 1: For each semantic object.
(1) Find all its relevant optimized rules
(2) Partition these rules into several groups. In each

group the rules have containment relationship
with each other.

(3) Select the rule having the best coverage in each
group and unit them into an optimized rule for the
semantic object.

Step 2: Save all the optimized rules as the final optimized
 rule list for the schema.

We formulate these steps into algorithm 2.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

45

Algorithm 2 External optimization
Input: Optimized rule lists: opt1, opt2, …, optk
 Opti= {opti-so1, opti-so2, …, opti-son} (0<i<k+1)
Output: the final optimized rule list Opt for the schema.
Opt= {opt-so1, opt-so2, …, opt-son}
Description:
1: for m=1 to n do
2: partition the set {optl-som|1<=l<=k} into s groups.
 In the ith (1<=i<=s) group, find optli-som that contains
 all the other extraction rules for the semantic object som

3: opt-som=)(
1

mli

s

i

soopt −
=

U

4: endfor

4.3 XQuery expression
After ERO, we get the final optimized rule list for the
schema. Each rule of the optimized rule list is expressed
with an XPath expression, and each time it can only locate
in DOM tree one semantic object instance of the schema.
In order to locate all the semantic object instances, we
translate the final rule list into a complete XQuery query
statement as the extraction rule for the schema.

According to the final optimized rule list, we generate one
FLWR expression for each semantic object, i.e.

• One FR expression (FOR statement and
RETURN statement) for a member object.

• One LR expression (LET statement and
RETURN statement) for a set object and an
atomic object.

Finally, we organize all the FLWR expressions by the
nested structure of the schema tree and form them into one
XQuery statement. The information extraction is then a
procedure of executing this XQuery statement in any
XQuery engine.

As an example, let us suppose the final optimized rule list
is the same as it in section 4.2.1. The XQuery statement is
shown in Figure 7.

5 Experiments
Based on the optimization techniques above, we have
developed a prototype system. Several experiments have
been done on the three websites sites in table 2, which are
already used for testing purposes by other information
extraction tools.

We carry out our experiments on a Windows machine with
a 2GHz Pentium IV and 512M main memory. For each
website, the experiment procedure is listed as below:

Transformation. Because our prototype system uses
XML as the presentation model of HTML information in
web pages, and all the operations are based on DOM tree,
all the web pages to be extracted to XML documents
should be transformed into XML documents firstly. We
use Tidy (HTML Tidy Library Project) to finish the
transformation.

Creating schema tree. Select sample web pages, then
require the user to create schema tree to represent the
semantic information of data to be extracted.

Creating mappings. The user selects semantic objects in
the schema tree firstly, and then highlights the
corresponding content on web pages. Meanwhile text
feature may be required.

Optimization. Execute the IRO and ERO process. System
automatically generates optimized rule list expressed with
XQuery.

Extraction. Execute the XQuery statement on an XQuery
engine to extract data on other web pages in the website.

Analysis. We manually verify the extracted results.

5.1 Evaluation metrics
We use recall and precision rate to evaluate the
effectiveness of our optimization approach. The recall and
precision are defined as

• precision = A/(A+B)*100%

• recall = A/(A+C)*100%

Where A stands for the number of relevant objects, B
stands for the number of irrelevant objects, C stands for the
number of missing objects, A+C stands for the total
number of relevant objects, and A+B stands for the total
number of extracted objects.

5.2 Results analysis
Table 3 shows our 2P-RULE extraction results on the
pages of websites collected in Table 2. Table 4 shows the
extraction results of typical system Lixto. For the third
website in Table 2, there is one webpage having 284
complex objects. Experiment results show that system
extracts 285 complex objects totally with only one
irrelevant object, so the precision is 99% (284/285) and the
recall is 100% (no missing objects). The precision does not
reach 100%, because user does not provide definite
semantic information during the first learning. One object
is extracted regarded as invalid by user. For the website

<vldb conference>
{FOR $paper IN (document("sample.xml")/html/body
 [@bgcolor="#ffffff"]/ul/li[contains(string(.),"Electronic
Edition")])
 RETURN
 <Paper>
 <AuthorList>
 {FOR $author IN $paper/ a[left_big_boundary="",
 right_big_boundary ="text, br, b, text, a"]/text()
 RETURN
 <Author>{$author}</Author>}
 </AuthorList>
 {LET $page:=$paper/text()
 RETURN
 <Page>{$page}</Page>}
 {LET $FullText:= $paper/ a/li/text()
 [contains(string(.),"Electronic Edition")]
 RETURN
 <FullText>{$FullText}</FullText>}
 </Paper>}
</ vldb conference>

Figure 7: Extraction rules expressed with XQuery

CRPIT Volume 49

46

Table 2: Test websites

Table 3: Experiment results of 2P-RULE

Table 4: Experiment results of Lixto

VLDB, our system works well. Its web pages contain
complex semantic schema structure and the set objects do
not have corresponding nodes in DOM tree. But after
learning once, our system still has 100% precision when
extracting 20 pages. For the Amazon website, there is an
average recall of 98.3% on 12 web pages. The missing
objects are due to the design of web page. We find that the
text feature selected by user does not appear in some pages
containing relevant objects and these objects are missed
when applying extraction rules into their host pages. After
learning once again, system automatically adds new text
feature into extraction rules. So the missed objects are
back and the recall becomes 100%. On this website Lixto
achieves precision of 95% after learning once, and 100%
after learning three times. Obviously, our system has better
performance in recall, precision and learning times.

6 Conclusion and future work
In this paper, we propose a novel two-phase rule
generation and optimization (2P-RULE) approach.
2P-RULE consists of internal rule optimization (IRO)
process and external rule optimization (ERO) process. In
IRO, based on the mapping created by a user, system
automatically generates an optimized rule list for the
schema. Whereas in ERO, the user can create multiple
mappings to generate further rule lists. All the acquired
rule lists are merged and refined into one optimized rule
list, which is expressed with XQuery as the final extraction

rules. Experiments show that our 2P-RULE approach is
suitable for extracting information from web pages with
complex nested structure, and can also achieve better
precision and recall ratio. Our future work includes the
automatic verification of extraction rules, the efficient
organization, storage and management of obtained
extraction rules.

References
Lawrence S., Giles L.(1999):Accessibility and distribution

of information on the Web. Nature, 1999, 400(8):
107-109.

Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran
S. da Silva, Juliana S. Teixeira. (2002): A Brief Survey
of Web Data Extraction Tools. SIGMOD Record, 2002,
31(2): 84 - 93.

Soderland S. (1999): Learning Information Extraction
Rules for Semi-structured and Free Text. Machine
Learning, 1999, 34(1-3):233-272.

Liu L., Pu C., Han W. (2000): XWRAP: An XML-enabled
Wrapper Construction System for Web Information
Sources. In Proc. of the 16th ICDE Conf., San Diego,
California, USA, 2000.

Han W., Buttler D., Pu C. (2001): Wrapping Web Data
into XML. SIGMOD Record, 2001, 30(3):33-39.

Name URL Webpage Number of pages

Amazon http://www.amazon.com Top Sellers(TVs) 12

VLDB http://www.acm.org/sigmod/dblp/db/conf/vldb VLDB 1989 20

Web Robot http://www.robotstxt.org/wc/active/html Web Robot 1

Name Wrapable? Learning times Precision Recall Test pages

1 100% 98.3% 12
Amazon Yes

2 100% 100% 12

1 99% 100% 1
Web Robot Yes

2 100% 100% 1

VLDB Yes 1 100% 100% 20

Name Wrapable? Learning times Precision Recall Test pages

1 95% 90% 12
Amazon Yes

2 98% 100% 12

1 90% 96% 1
Web Robot Yes

2 95% 98% 1

VLDB Yes 1 80% 90% 20

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

47

Arnaud S. and Fabien A. (1999): Building Light-Weight
Wrappers for Legacy Web Data-Sources Using W4F.In
Proceedings of 25th VLDB Conference, Edinburgh,
Scotland, UK, 1999.

Sahuguet A. and Azavant F. (1999): Web Ecology:
Recycling HTML Pages as XML Documents Using
W4F. In Second International. Workshop on the Web
and Databases, Philadelphia, Pennsylvania, USA, 1999.

Baumgartner R., Flesca S., Gottlob G. (2001): Visual Web
Information Extraction with Lixto. Proceedings of 27th
International Conference on Very Large Database.
Roma, Italy, 2001.

Baumgartner R., Ceresna M., Gottlob G., Herzog M., Zigo
V. (2003): Web Information Acquisition with Lixto
Suite. In Proceedings of the 19th ICDE Conference,
Bangalore, India, 2003.

Meng X., Wang H., Hu D., Chen L. (2003): A Supervised
Visual Wrapper Generator for Web-Data Extraction.
COMPSAC 2003: 657-662

Arasu A., Garcia-Molina, H. (2003): Extracting structure
data from web pages. In: Proceedings of SIGMOD.
(2003) 337–348.

Hu D., Meng X.(2005): Automatically extracting data
from data-rich web pages. DASFAA 2005, Beijing,
2005,4

Ma L., Shepherd J. (2004): Information Extraction via
Automatic Pattern Discovery in Identified Region.
DEXA 2004: 232-242

DOM.http://www.w3c.org/TR/REC-DOM-Level-1.Xpath

XML Path Language Version 2.0.
http://www.w3.org/TR/xpath20

XQuery. http://www.w3.org/TR/xquery

HTML Tidy Library Project. http://tidy.sourceforge.net/

CRPIT Volume 49

48

A Reconstruction-based Algorithm for Classification Rules Hiding

Juggapong Natwichai Xue Li Maria E. Orlowska

School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Australia
Email: {jpn, xueli, maria}@itee.uq.edu.au

Abstract

Data sharing between two organizations is common in
many application areas e.g. business planing or mar-
keting. Useful global patterns can be discovered from
the integrated dataset. However, some sensitive pat-
terns that should have been kept private could also be
discovered. In general, disclosure of sensitive patterns
could decrease the competitive ability of the data
owner. Therefore, sensitive patterns should be hid-
den before data sharing starts. To address this prob-
lem, released datasets must be modified unavoidably.
However, if the overall characteristics of the dataset
can be maintained, the dataset is still usable perfectly.
Therefore, not only the privacy should be concerned,
but also the usability. In this paper, we propose a new
algorithm to preserve the privacy of the classification
rules by using reconstruction technique for categorical
datasets. Firstly, all discovered classification rules in
the released dataset are presented to the data owner
to identify sensitive rules that should be hidden. Sub-
sequently, remained non-sensitive rules along with ex-
tracted characteristics information of the dataset are
used to build a decision tree. Finally, the new dataset
which contains only non-sensitive classification rules
is reconstructed from the tree. From empirical stud-
ies, our algorithm can preserve the privacy effectively.
Additionally, the usability of the datasets can also be
preserved.

1 Introduction

The advancement in information technology leads to
effective and efficient ways to collect, store or analyze
data. To analyze data, besides statistical methods to
determine important values from stored data, data
mining techniques are always used to extract useful
patterns in databases. Many data mining techniques
can be applied to obtain the patterns e.g. classifica-
tion mining, association rules mining or clustering.

Currently, many efficient data mining algorithms
have been proposed. On one hand, with these algo-
rithms, data owners can use them to extract useful
patterns from collected data. On the other hand, the
algorithms can become a threat to privacy. They can
be used in combination with other techniques to dis-
close sensitive private data. For example, mining on
the medical dataset can help re-identifying of individ-
ual person, although it seems to be anonymous.

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

Besides the data privacy, another problem is sen-
sitive private patterns. Sharing of the dataset is com-
mon in many applications. Collaborating companies
could share their dataset for global patterns discov-
ering. For this purpose, the datasets could be re-
leased from an organization to the other organiza-
tions. However, there can be some sensitive patterns
within shared datasets that should be kept private.
Because, in general, disclosure of sensitive patterns
could decrease the competitive ability of the data
owner.

In this paper, we focus on the problem of clas-
sification rules privacy preservation or classification
rules hiding. The motivating example was discussed
in (Natwichai, Li & Orlowska 2005) as following: a
credit card approval dataset is released by a credit
card company for a new home loan company. Each
record in the dataset is individual applicant. The col-
lected attributes of each applicant in this dataset can
be financial status, number of working years at the
current company, gender, salary level, living area and
range of age. While the class is the approval result.
With the released dataset the home loan company is
able to build an initial classification model to classify
their home loan applicants. In this case, the dataset
must be provided because two companies have differ-
ent views on each attribute. However, some sensitive
patterns can be discovered from the given dataset.
More specifically, the patterns that are able to give
competitive ability to the others more than the data
owner’s expectation can be discovered. For exam-
ple, it can be used to identify appropriate groups of
customers, or even individual person to send adver-
tising mails. It can be done simply e.g. by changing
the class label to be the post code of living area. Al-
though it might not be able to do accurately, only nar-
rowing down the scope can be considered as a threat.
Therefore, the modified dataset should be given to
the home loan company instead of the original one by
some agreement between these two companies.

As discussed above, the released datasets should
be modified in order to preserve the privacy of sensi-
tive patterns. Obviously, the correctness of a modified
dataset is decreased after modification process. De-
spite that fact, patterns are not generally discovered
from the individual record in the dataset, but over-
all characteristics. If the characteristics can still be
maintained, the dataset is usable practically. There-
fore, the privacy preservation process should also pre-
serve the overall characteristics, or usability of the
dataset.

Many works have been proposed for sensitive asso-
ciation rules hiding (Atallah, Elmagarmid, Ibrahim,
Bertino & Verykios 1999, Verykios, Elmagarmid,
Bertino, Saygin & Dasseni 2004, Oliveira & Zaiane
2003). Heuristic modification approaches are ap-
plied to this problem. It can be done by modifying
some transactions such that the support and/or con-

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

49

fident values of sensitive rules are fall below the spec-
ified thresholds. The modification should be done by
avoiding side effect as much as possible. The side
effect listed in their works are false drop rules and
ghost rules. False drop rules are non-sensitive rules
contained in the original dataset, but lost in the modi-
fied dataset. While ghost rules are non-sensitive rules
contained in the modified dataset, but not in the orig-
inal dataset. However, classification rules hiding is
different problem. Unlikely to association rules that
present the association between items in transactions,
classification rules are built from set of attribute val-
ues which can classify records into distinct prede-
fined classes. In classification mining, distribution
of classes with regards to attributes are important.
Moreover, most classification algorithms make an as-
sumption that there is no dependence between at-
tributes. Therefore, the heuristic approach that suites
for association rules hiding may be an inappropriate
approach for classification rules hiding. As we will
demonstrate it later.

In (Natwichai et al. 2005), the classification
rules hiding framework was proposed for categorical
datasets by using reconstruction technique. Instead
of arbitrary dataset modification, the framework re-
constructs a new dataset that only non-sensitive rules
can be discovered from it. Additionally, the usabil-
ity of the new dataset is also addressed. The method
is proceeded as following: a rule-based classification
algorithm is used on the given dataset to obtain all
classification rules. Subsequently, only non-sensitive
classification rules which are approved by the data
owner are used to build a data generator, a decision
tree. Finally, a new dataset which contains only non-
sensitive classification rules is reconstructed from the
decision tree. Even the difference in representation
between the reconstructed and original datasets can
be found, but this approach can maintain high usabil-
ity.

In this paper, we propose a new algorithm to hide
sensitive classification rules for categorical datasets.
Our algorithm is based on the above method. How-
ever, we propose to use more extracted characteristics
information from the dataset with regard to classifi-
cation issue to improve decision tree building, and
make the reconstruction process better. The experi-
mental results show that our proposed algorithm can
improve the usability and still maintain the privacy
of the input datasets effectively.

The rest of this paper is organized as following.
Section 2 provides a review of related work. The basic
concepts and a problem statement are presented in
Section 3. Subsequently, our proposed approach is
shown in Section 4. The experimental results on real
and synthetic datasets are brought up in Section 5.
Finally, Section 6 gives the conclusion.

2 Related Work

Generally, individual privacy preservation problem
can be addressed by access control method that
have been proposed substantially among database re-
search community (Jajodia, Samarati, Subrahmanian
& Bertino 1997, Benferhat, Baida & Cuppens 2003).
While, view mechanism can be also a simple, how-
ever, effective approach for this problem. Apart from
above approaches, statistical security-control can also
be used (Domingo-Ferrer & Torra 2004). In this ap-
proach, perturbed datasets are used instead of orig-
inal datasets. While some statistical values are still
preserved as the same as the original dataset.

In the other way, generalization and/or suppres-
sion techniques can be used to protect the privacy
of individual. Usually, the released dataset will be

generalized or suppressed until the privacy constraint
is reached. One privacy constraint is k -Anonymity
(Sweeney 2002b). A k -Anonymized dataset is the
dataset that every record can not be distinguished
from k -1 other records. There are many works ad-
dressed individual privacy problem by using this con-
straint (Sweeney 2002a, Meyerson & Williams 2004,
Jr. & Agrawal 2005).

However, not only the privacy of the individ-
ual should be considered, but also the patterns
with regard to data mining algorithms. Obvi-
ously, the significant of this problem becomes the
important issue because of the progress in data
mining techniques (Clifton & Marks 1996, Estivill-
Castro, Brankovic & Dowe 1999, Clifton & Estivill-
Castro 2002, Thuraisingham 2002). With regard
to data mining algorithm, there are many avail-
able approaches to address privacy problems. They
can be categorized into a few different groups
based on their approach such as cryptography-based,
reconstruction-based and heuristic-based techniques
(Verykios, Bertino, Fovino, Provenza, Saygin &
Theodoridis 2004). There are many proposed work
for association rules privacy preserving. Heuristic ap-
proaches are used to tackle the problem (Verykios, El-
magarmid, Bertino, Saygin & Dasseni 2004, Oliveira
& Zaiane 2003). In this approach, selected values in
the dataset are changed to decrease support and/or
confident values of sensitive rules. The rules will be
hidden successfully if their support and/or confident
values are less than specified thresholds. Instead of
values changing, there is also another heuristic way to
replace selected values with unknown values (Saygin,
Verykios & Clifton 2001). In generally, this approach
preserves the privacy by introducing margins of sup-
port and confident values to some extent of uncer-
tainty.

In classification mining context, most of the re-
search works focus on preserving privacy of indi-
viduality (Agrawal & Srikant 2000). In (Chang &
Moskowitz 1998), a privacy preserving method of
some data for data downgrading scenarios is pro-
posed. In the method, a classification result of un-
protected data is analyzed to consider its impact on
protected data. While in the viewpoint of cryptog-
raphy, the problem of computing a global decision
tree from multi-party datasets by avoiding a party
to know any other’s data is addressed in (Lindell &
Pinkas 2000).

For reconstruction-based approach, there are
many works have been done to preserve the privacy
of association rules (Rizvi & Haritsa 2002, Chen, Or-
lowska & Li 2004). Generally, this approach, firstly,
extracts selected characteristics of the datasets. After
any privacy preserving process is done, a new dataset
will be reconstructed. The approach of dataset recon-
struction has advantage over the heuristic data mod-
ification approaches since it hardly introduces side-
effect (Verykios, Bertino, Fovino, Provenza, Saygin &
Theodoridis 2004).

In privacy preservation context, there are many
proposed usability metrics. Generally, they can be
categorized into two main groups: general metrics
and data mining task-specified metrics. For general
usability metrics, the usability can be measured by
how much the dataset has been modified. For ex-
ample, in (Sweeney 2002a), generalization process is
used to preserve the individual privacy, the more gen-
eralization means the less of usability. While the data
mining task-specified metrics take proposed data min-
ing task into measurement, the more inaccurate min-
ing result means the less of usability. In general, it is
really difficult to measure the usability if there is no
specified-target mining task. Because there are vari-
ous type of data mining algorithms, manipulation of

CRPIT Volume 49

50

dataset only a little could impact some algorithms
very much. Therefore, the data owner and recipient
should make the agreement about what to be mined
before the privacy preservation process begins, so the
released dataset will be able to be used fully.

3 Basic Concepts

3.1 Datasets

Let a dataset D be a 4-tuple {U,A, V, f} where

U is a nonempty finite set of records,

A is a nonempty finite set of attributes such that for
any a ∈ A, we can associate set of values Va that
is domain of attribute a,

V is a nonempty finite set of values of all attributes
such that Va ⊆ V and

⋃

Va
= V ,

and, f is function such that f : U × A → Va, the
value of an attribute for a record.

3.2 Classification Rules

Classification problem over D is a tuple z =
(mp, f1, . . . , fn) where mp : V n → C, in which C
is a nonempty finite set of class labels. Integer n is
the number of attributes to be used for classification.
So, problem z can be defined as a problem of search-
ing for value z(u, a) = mp(f1(u, a), . . . , fn(u, a)) for
an a ∈ A.

Let a set of classification rules R over D be ex-
pressed as:

f1(a1) ∧ f2(a2) ∧ f3(a3) ∧ . . . ∧ fm(am) → c,

where f1 . . . , fm ∈ F , a1, . . . , am ∈ A and c ∈ C.
Integer m can be called length of a classification rule
R, or |R| = m.

3.3 Problem statement

Given a dataset D, a set of classes C, a set of classi-
fication rules R over D, and also R′ ⊂ R, R′ is a set
of sensitive rules, find a dataset D′ such that there
exists only a set of rules R − R′ can be derived.

4 Classification Rules Hiding Algorithms

In this section, we firstly review the heuristic mod-
ification method to be used for comparison. Subse-
quently, the framework for preserving the privacy of
classification rules by using reconstruction technique
is presented. Finally, our new algorithm is intro-
duced.

4.1 Heuristic modification method

For the sake of clarity, we demonstrate the heuris-
tic modification approach by example. A sample
dataset for credit card approval in Table 1 will be
used through this section. Every record represents a
single person who applied for credit card. The cate-
gorical dataset consists of four attributes : “# years”
the number of years at current work, “marriage sta-
tus” and ”gender” , the marriage status and gender
of applicants, “listed” an attribute of whether the ap-
plicant is on a “black list”. Finally, each class label
is an approval result. For rule hiding demonstra-
tion, firstly, we use a classification algorithm (C4.5
(Quinlan 1993)) to obtain a whole set of classification
rules. The set of rules is shown in Table 2.

Suppose that the owner of the dataset wants to
hide the rule: “# years = medium ∧ listed =

Table 1: Original credit card approval dataset
No. # years marriage gender listed class

status
1 short married female no NO
2 short married female yes NO
3 long married female no YES
4 medium divorce female no YES
5 medium single male no YES
6 medium single male yes NO
7 long single male yes YES
8 short divorce female no NO
9 short single male no YES
10 medium divorce male no YES
11 short divorce male yes YES
12 long divorce female yes YES
13 long married male no YES
14 medium divorce female yes NO

Table 2: Original credit card classification rules
Antecedence Class
years = short ∧ gender = female NO
years = short ∧ gender = male YES
years = long YES
years = medium ∧ black list = yes YES
years = medium ∧ black list = no NO

yes → class = NO”. The easiest heuristic method
(in terms of association rule mining) is to decrease
the confidence of the rule. This can be done by al-
ternating values in the right hand side, the class, of
the corresponding records. In classification context,
it is decreasing of ability to classify datasets. In this
case, corresponding records are record number 6 and
14. Suppose that the record No. 6 is chosen. Subse-
quently, its class label is changed to YES as shown in
Table 3. For checking whether the hiding successes,
the dataset has to be classified again. The set of rules
on modified dataset is listed in Table 4.

Table 3: Modified credit card approval dataset (The
record No. 6 has been modified)

No. # years marriage gender listed class
status

..
5 medium single male no YES
6 medium single male yes YES
7 long single male yes YES
..

From the result, it seems that the sensitive rule
has been hidden successfully. However, there are
some differences between the original and the mod-
ified set of rules. Some non-sensitive rules are lost
e.g. the second, the third and the fifth rules of orig-
inal dataset. Moreover, some insignificant patterns
also become significant. For example, in the original
set of rules, there is no rule likes the second, the third
and the fourth rules in the new set of rules.

However, if the selected rules has much more abil-
ity to classify records, the problem becomes more
complicated. Suppose that, the rule: “# years at
current work = long → class = YES” is se-
lected. The number of classified records in the orig-
inal dataset of this rule is 4, while the previous rule
has only 2. Obviously, more corresponding records,
the record No. 3, 7, 12 and 13 need to be considered.

If the heuristic approach is used, we may start
from modifying only one record. Suppose that the
record No. 3 is chosen as in Table 5, and its class
label is changed from YES to NO.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

51

Table 4: Modified credit card classification rules (The
record No. 6 has been modified)

Antecedence Class
years = short ∧ gender = female NO
years = long ∧ gender = female YES
years = medium ∧ gender = female YES
gender = male YES

Table 5: Modified credit card approval dataset (The
record No. 3 has been modified)
No. # years marriage gender listed class

status
1 short married female yes NO
2 short married female no NO
3 long married female yes NO
4 medium divorce female yes YES
..

Table 6 shows the result after we subsequently
classified the modified dataset. The substantial dif-
ference between results can be seen. On the other
hand, if the record No. 7 is chosen as shown in Table
7, the result shown in Table 8 is also different from
the original one.

As it can be expected, the set of rules is substan-
tially different from the original, even only one record
is changed. Obviously, rules hiding by arbitrary mod-
ification causes too much side effect.

4.2 Reconstruction-based Algorithms

As we have discussed, the reconstruction-based ap-
proach can provide output datasets with less side ef-
fect. Rather than dataset modification to obtain tar-
get patterns, the approach focuses on patterns and
dataset characteristics controlling to obtain target
dataset. In this way, the usability of the datasets
will also be preserved, although the presentation of
the datasets can be different.

D
1

4

3

2

1

4

3

2

Classification
Algorithm

Data owner’s
sensitive rule (s)

1

4

3

1

4

3D’

Decision Tree
Building Algorithm

Dataset
Reconstruction

Figure 1: The Reconstruction-based Framework.

The reconstruction framework is shown in Fig-
ure 1. It starts with classifying original dataset
by rule-based classification algorithms e.g. RIPPER
(Cohen 1995) or C4.5 (Quinlan 1993). After a set
of classification rules is extracted, the data owner
can identify the sensitive rules. The remaining non-
sensitive rules are considered as characteristics of the
dataset. Therefore, they are used to build a dataset
generator, a decision tree, by decision tree building
algorithm. Because the sensitive rules are excluded
in the algorithm, there is no such directly derivable
rules in the reconstructed dataset. Obviously, a num-
ber of used rules effects amount of the characteristics
to be preserved. Therefore, unpruned classification
rules, less significant rules, are used in the algorithm.
Finally, the decision tree is used to generate a new

Table 6: Modified credit card classification rules (The
record No. 3 has been modified)

Antecedence Class
gender = female NO
gender = male YES

Table 7: Modified credit card approval dataset (The
record No. 7 has been modified)
No. # years marriage gender listed class

status
..
6 medium single male no NO
7 long single male no NO
8 short divorce female yes NO
...

dataset with the same amount of records as the orig-
inal dataset. For simplicity, each record is built and
assigned each attribute value with uniform probabil-
ity. Then, it is induced through the respected path
in the decision tree. Finally, a class label is assigned
to the record as the terminal node of the tree.

Using uniform probability data generator provides
advantages to the approach. Obviously, the num-
ber of reconstructed records in each path of the trees
can be estimated. For example, if a binary attribute
“gender” is chosen as the root of a tree, approxi-
mated half of reconstructed records will have “male”
attribute values, while another half will have “fe-
male”.

The decision tree building algorithm is shown in
Table 9. In the algorithm, each non-sensitive rule
is put in a decision tree one by one. The ordering
of rules selection is based on their ability to classify
original dataset. The ability to classify records of each
rule, denoted as cab(r), can be determined by the
number of records classified by rule r in the original
dataset. When any rule is put earlier, it will be in the
higher level of the tree. With a uniform probability
characteristic of the dataset generator, a rule that
appears in the higher level will be used to generate
more records. This can help maintaining similarity
between original and reconstructed datasets.

In the algorithm, a selected rule is allowed to be
reflected by many paths of the tree. In this way, the
similarity between the reconstructed and the original
dataset can be maintain by a number of its paths and
levels in the tree. The function approx(r) is used to
determine a number of approximated records generate
from the rule r. As seen in the algorithm, paths from
any rule will be generated repeatedly until the number
of approximated records gets close to the number of
actual records classified by the rule in the original
dataset.

4.3 Usability Improvement

In our proposed algorithm, not only the extracted
rules are considered as the characteristics of datasets,
but the gain ratio of each attribute. While a rule is in-
duced in the tree, an attribute is selected as a node in
the tree. We select the order of attributes in each rule
by gain ratio, instead of least common attribute in the
previous work. Therefore, the higher gain attribute
is put in the higher level of the tree. This means the
high gain ratio attribute in the original dataset will
also has high gain ratio in the reconstructed dataset.
With aiding of information gain, the usability of re-
leased datasets can be improved. In the algorithm,
gain ratio for attribute a is denoted as gain(a).

With regards to computational complexity, the

CRPIT Volume 49

52

Table 8: Modified credit card classification rules (The
record No. 7 has been modified)

Antecedence Class
black list = yes NO
black list = no YES

Table 9: A new decision tree building algorithm
Inputs: R is set of classification rules.

R′ is set of sensitive rules.
Outputs: DT is a decision tree.

While |R| > 0 do
select ri to be induced such that ri ∈ R − R′,
and ∀rk ∈ R − R′, cab(ri) ≥ cab(rk).
While approx(ri) ≤ cab(ri)

While ri is not induced completely do
select aj in ri such that
∀al in ri, gain(aj) ≥ gain(al),
put aj as non-terminal node of DT .

End while.
Assign a class for ri.

End while.
End while.

time complexity of this algorithm is O(mn), where
m is the number of non-sensitive rules and n is the
number of attributes of a given dataset.

4.4 A Decision Tree Building Example

For the sake of clarity, we demonstrate how the al-
gorithm proceeds by example. Suppose that, a given
dataset has six binary attributes: A, B, C, D, E, F
and a class label (+,-). The total number of records in
the dataset is 800. Its gain ratio information is shown
in Table 11. After classification, a set of rules in Ta-
ble 10 is obtained. Suppose that the owner selects the
rule “A=a1∧ F=f0 → +” to be hidden.

The first classification rule to be induced is
“A=a1∧ B=b2 → +” since it can classify the high-
est number of records. The attribute B is selected
before attribute A because its gain ratio is higher.
Subsequently, class + is assigned as shown in Fig-
ure 2. The approximated number of reconstructed
records for this rule is 200.

“A=a1∧ C=c1 ∧ D=d2 → +” is the second rule
to be induced. The rule is placed at the left half of
the tree. Attributes are selected ordered by their gain
ratios, A, C and D respectively. The approximated
number of records for the rule is 20. Figure 3 shows
the result of the second rule induction.

In Figure 4, the rule “B=b1∧ E=e2 → +” is
induced. Noticeably, there are many options to in-
duce it. Firstly, it can be induced next to B=b1∧
A=a2. The second option is at B=b1∧ A=a1∧ C=c2.
Thirdly, it can also be at B=b1∧ A=a1∧ C=c1∧
D=d1 While, many combinations of them can be also
selected. As shown in Figure 4, the algorithm induces

Table 10: Example set of rules
Antecedence Class # Classified

Records
A=a1∧ B=b2 + 143
A=a1∧ C=c1 ∧ D=d2 + 47
B=b1∧ E=e2 + 21
E=e1∧ F=f1 + 82
default – 407

Table 11: Example gain ratios of attributes
Attribute Gain Ratio
A 0.150
B 0.153
C 0.080
D 0.070
E 0.098
F 0.072

�

�

�

�
�

�
�

�
�

�
�

Figure 2: Decision tree generation example (the first
rule is induced)

�

�

�

�
�

�
�

�
�

�
�

�

�
�

�

	
�

�
�

�

�
�

	
�

�
�

Figure 3: Decision tree generation example (the sec-
ond rule is induced)

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

53

�

�

�

�
�

�
�

�
�

�
�

�

�
�

�

	
�

�
�

��

�

�

�
�

	
�

�
�

�

Figure 4: Decision tree generation example (the third
rule is induced)

the rule by the third option. Because it makes the
number of approximate reconstructed records close to
number of classified records in the original dataset by
this rule (25 and 21). Finally, the completed decision
tree is shown in Figure 5.

�

�

�

�
�

�
�

�
�

�
�

�

�
�

�

	
�

�
�

��

�

�

� �

�

�

�
�

	
�

�
�

�

Figure 5: Final decision tree generation example

5 Experiments and results

Three real-life datasets, Credit Screening, Voting
Records and Mushrooms from UCI Repository (Blake
& Merz 1998) were used in our experiments. For the
first dataset, the continuous attributes were trans-
formed to categorical attributes. The detail of each
dataset is shown in Table 12

The experiments consist of five parts. Firstly,
a sensitive rule is randomly selected to be hidden.
The issue about privacy and side effect of the recon-
structed datasets are considered. The second experi-
ment is similar to the first one, but multi-rule hiding.
The third experiment considers usability issue. In this
experiment, the usability of the datasets with respect
to the number of non-sensitive rules that involve in
the framework is considered. Another usability of the
datasets with regard to the ability to classify records
of each single rule is considered in the forth experi-
ment. The last experiment shows the usability of the
reconstructed datasets respect to the number of re-
mained non-sensitive rules when multi-rule is hidden.

The procedure of the experiments is shown in Fig-
ure 6. In the experiments, two classification algo-
rithms: RIPPER and C4.5 Rule were selected. For
each experiment, two classification algorithms are

Table 12: Experimental Datasets detail
Dataset

Detail Credit Voting Mushroom
Screening Records

#Records 690 435 8124

#Attributes 15 16 22

#RIPPER
Rules 5 4 9

#RIPPER
Unpruned 26 9 12
Rules
#C4.5
Rules 5 4 7

#C4.5
Unpruned 21 9 19
Rules

used. After a set of classification rules is generated
by the first algorithm, a random rule is selected as
the sensitive rule. The set of remaining non-sensitive
rules are used to build a decision tree by our algo-
rithm. Subsequently, the tree is used to generate a
new non-sensitive reconstructed dataset. Finally, the
second classification algorithm is used to evaluate the
reconstructed dataset. In the experiments, the first
and second classification algorithms can be both the
same or different algorithm.

�

��

��������	�
���

�����
��
�

��������	�
���

�����
��
�

Figure 6: Experiment Procedure

Another experiment is multi-rule hiding. The al-
gorithm will be checked whether it can perform hid-
ing more than one sensitive rule. The same procedure
as single rule hiding is used. In this experiment, all
unpruned classification rules are used to build the de-
cision tree.

5.1 Evaluation Metrics

There are three metrics for evaluation. Firstly, the
privacy issue must be considered. More specifically,
the existing of sensitive rules is considered from the
entire set of rules discovered by the second algorithm.
Secondly, other than the sensitive rules that should
be hidden, the side effect from the hiding algorithm
is also considered. There are two main metrics to
evaluate the side effect: a number of ghost rules and
false-drop rules. Both numbers can also be seen when
the second classification algorithm is used. Obviously,
side effect should be kept minimal.

The last metric is the usability of the reconstructed
dataset. Because the released dataset are usually in-
tended to build the classification model. Therefore,
the ability to classify datasets of each attribute is
measured as the usability metric. In the experiments,

CRPIT Volume 49

54

the gain ratio (Quinlan 1993) is used to served our
propose. We measure the percentages of gain ra-
tio variations between the original and reconstructed
dataset with Equation 1.

V =

√

∑n

i=1
(oi−ri

oi

)2

n
× 100 (1)

where oi and ri are gain ratios for the ith attribute
on the original and reconstructed datasets. While n
is the number of entire attributes.

In order to evaluate the usability improvement of
our decision tree building algorithm, the algorithm
in (Natwichai et al. 2005) was used to compare. In
the experiment, the our algorithm is called ”GAIN”
algorithm, While the compared algorithm is called
”NOGAIN”.

5.2 Experimental results and discussions

Table 13: Experimental result when RIPPER is used
as both the 1st and the 2nd classification algorithm

Dataset Used # Discovered False Ghost
rules sensitive drop rules

rules rules
Credit 4 0 0 0

Screening 5 0 0 0
7 0 0 0
10 0 0 0
15 0 0 0
20 0 0 0
25 4 0 0

Voting 3 0 0 0
Records 4 0 0 0

6 0 0 0
8 0 0 0

Mushroom 8 0 0 0
9 0 0 0
10 0 0 0
11 0 0 0

Table 14: Experimental result when C4.5 Rule is used
as both the 1st and the 2nd classification algorithm

Dataset Used # Discovered False Ghost
rules sensitive drop rules

rules rules
Credit 4 0 0 0

Screening 5 0 0 0
7 0 0 0
10 0 0 0
15 0 0 0
20 0 0 0

Voting 3 0 0 0
Records 4 0 0 0

6 0 0 0
8 0 0 0

Mushroom 6 0 0 0
7 0 0 0
9 0 0 0
12 0 0 0
15 0 0 0
18 0 0 0

It can be seen from Table 13 and 14 that our
decision tree building algorithm can be used to re-
construct the datasets without any side effect, while
it is also safe for sensitive rule. Even the different
classification algorithm were used, there were only
small amount of side effects as shown in Table 15 and

Table 15: Experimental result when C4.5 Rule is used
as the 1st while RIPPER is used as the 2nd classifica-
tion algorithm

Dataset Used # Discovered False Ghost
rules sensitive drop rules

rules rules
Credit 4 0 1 0

Screening 5 0 0 0
7 0 0 0
10 0 0 0
15 0 0 0
20 0 0 0

Voting 3 0 1 0
Records 4 0 1 0

6 0 0 0
8 0 0 0

Mushroom 6 0 1 0
7 0 1 0
9 0 0 0
12 0 0 0
15 0 0 0
18 0 0 0

Table 16: Experimental result when RIPPER is used
as the 1st while C4.5 Rule is used as the 2nd classifi-
cation algorithm

Dataset Used # Discovered False Ghost
rules sensitive drop rules

rules rules
Credit 4 0 0 1

Screening 5 0 0 1
7 0 0 0
10 0 0 0
15 0 0 0
20 0 0 0
25 4 0 0

Voting 3 0 0 1
Records 4 0 0 1

6 0 0 1
8 0 0 0

Mushroom 8 0 1 1
9 0 0 1
10 0 0 0
11 0 0 0

16. Additionally, when all unpruned rules were used,
there was no any side effect at all.

Table 17, 18, 19, and 20 show the experimental
results when multi-sensitive rules were selected to be
hidden. In this experiment, all unpruned rules were
used in the reconstruction process. From this ex-
periment, no sensitive rule is discovered, even differ-
ent classification algorithms were used. However, one
ghost rule was found in Mushroom dataset when RIP-
PER was used as the first algorithm and the second
algorithm was C4.5 Rule as shown in Table 19. This
can be explain that the Mushroom dataset has small
difference between number of pruned rules (9) and
unpruned rules (12) when it is classified by RIPPER.
Therefore, the number of remained non-sensitive rules
as the dataset characteristic was not enough to recon-
struct the new dataset. By the way, this case can be
considered as the extreme case because, in this ex-
periment, 7 classification rules were hidden from all
available 9 rules.

The Figure 7 shows the usability on reconstructed
datasets respect to the number of participated non-
sensitive rules when a single rule is selected to be
hidden. In this experiment, C4.5 Rule was used as
both the first and the second classification algorithms.
Obviously, our new proposed decision tree building

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

55

Table 17: Experimental result of multi-rule hiding
when RIPPER is used as both the 1st and the 2nd

classification algorithm
Dataset Hidden Discovered False Ghost

rule sensitive drop rules
rules rules

Credit 1 0 0 0
Screening 2 0 0 0

3 0 0 0
Voting 1 0 0 0
Records 2 0 0 0

Mushroom 1 0 0 0
2 0 0 0
4 0 0 0
7 0 0 0

Table 18: Experimental result of multi-rule hiding
when C4.5 Rule is used as both the 1st and the 2nd

classification algorithm
Dataset Hidden Discovered False Ghost

rule sensitive drop rules
rules rules

Credit 1 0 0 0
Screening 2 0 0 0

3 0 0 0
Voting 1 0 0 0
Records 2 0 0 0

Mushroom 1 0 0 0
2 0 0 0
3 0 0 0
5 0 0 0

Table 19: Experimental result of multi-rule hiding
when RIPPER is used as the 1st while C4.5 Rule is
used as the 2nd classification algorithm

Dataset Hidden Discovered False Ghost
rule sensitive drop rules

rules rules
Credit 1 0 0 0

Screening 2 0 0 0
3 0 0 0

Voting 1 0 0 0
Records 2 0 0 0

Mushroom 1 0 0 0
2 0 0 0
4 0 0 0
7 0 0 1

Table 20: Experimental result of multi-rule hiding
when C4.5 Rule is used as the 1st while RIPPER is
used as the 2nd classification algorithm

Dataset Hidden Discovered False Ghost
rule sensitive drop rules

rules rules
Credit 1 0 0 0

Screening 2 0 0 0
3 0 0 0

Voting 1 0 0 0
Records 2 0 0 0

Mushroom 1 0 0 0
2 0 0 0
3 0 0 0
5 0 0 0

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100

% Used rules

%
 V

ar
ia

tio
n

Credit NOGAIN Credit GAIN

Voting NOGAIN Voting GAIN

Mushroom NOGAIN Mushroom GAIN

Figure 7: The usability with regard to the percentage
of used rules.

0

5

10

15

20

25

30

35

40

5 10 15 20 25

% records classifed by a selected rule

%
 V

ar
ia

tio
n

Credit NOGAIN Credit GAIN

Voting NOGAIN Voting GAIN

Mushroom NOGAIN Mushroom GAIN

Figure 8: The usability with regard to classifying abil-
ity of rules.

algorithm, GAIN, performed better than NOGAIN
algorithm. It means that GAIN algorithm can benefit
from aiding of gain ratio information of the original
datasets.

In Figure 8, the usability of reconstructed datasets
respect to the classifying ability of sensitive rules are
shown. A single rule with various classifying abilities
was selected for each experiment. C4.5 Rule was used
as the first and the second classification algorithms.
When the rule with high ability to classify records
was selected, the usability produced by NOGAIN and
GAIN algorithms were different apparently. It can be
seen that the NOGAIN algorithm did not seem to be
consistent in this experiment. While GAIN algorithm
could still maintain the usability very well.

The last experiment was usability measurement of
the datasets respect to the number of sensitive rules to
be hidden. Again, C4.5 Rule was used as the first and
the second classification algorithms. All unpruned
rules were used to build the decision tree. From Fig-
ure 9, it can be seen obviously that when the num-
ber of sensitive rules were increased, the usability of
all algorithms dropped. However, our algorithm still
performed very well.

6 Conclusions

In this paper, we proposed a new algorithm for pri-
vacy preserving of classification rules for categorical
datasets. By using reconstruction technique, new re-

CRPIT Volume 49

56

0

10

20

30

40

50

1 2 3 4 5
Number of hidden rules

%
 V

ar
ia

tio
n

Credit NOGAIN Credit GAIN
Voting NOGAIN Voting GAIN
Mushroom NOGAIN Mushroom GAIN

Figure 9: The usability of multi-rule hiding with re-
gard to the number of hidden rules.

constructed datasets do not contain sensitive rules.
Meanwhile, the side effect of the hiding process is
kept minimal. Moreover, the higher usability of re-
constructed datasets can be achieved when more char-
acteristics of the original datasets are used. The ex-
perimental results have showed that when more rules
or even the rules with high ability to classify records
are hidden, our proposed algorithm can still maintain
the usability satisfactorily. In the future, the other
usability metrics will be studied e.g. general usabil-
ity. Additionally, we will extend the algorithm to
work on numerical attributes. The incremental pri-
vacy preservation processing will also be addressed.

References

Agrawal, R. & Srikant, R. (2000), Privacy-preserving
data mining, in ‘Proceedings of the 2000 ACM
SIGMOD international conference on Manage-
ment of data’, ACM Press, pp. 439–450.

Atallah, M., Elmagarmid, A., Ibrahim, M., Bertino,
E. & Verykios, V. (1999), Disclosure limitation
of sensitive rules, in ‘KDEX ’99: Proceedings
of the 1999 Workshop on Knowledge and Data
Engineering Exchange’, IEEE Computer Society,
Washington, DC, USA, pp. 45–52.

Benferhat, S., Baida, R. E. & Cuppens, F. (2003), A
stratification-based approach for handling con-
flicts in access control, in ‘SACMAT ’03: Pro-
ceedings of the eighth ACM symposium on Ac-
cess control models and technologies’, ACM
Press, pp. 189–195.

Blake, C. & Merz, C. (1998), ‘UCI repository of ma-
chine learning databases’.
URL: http://www.ics.uci.edu/∼mlearn/
MLRepository.html

Chang, L. & Moskowitz, I. S. (1998), Parsimonious
downgrading and decision trees applied to the
inference problem, in ‘Workshop on New Secu-
rity Paradigms’, pp. 82–89.

Chen, X., Orlowska, M. & Li, X. (2004), A new frame-
work of privacy preserving data sharing, in ‘Pro-
ceedings of 4th IEEE International Workshop on
Privacy and Security Aspects of Data Mining’,
IEEE Press, pp. 47–56.

Clifton, C. & Estivill-Castro, V., eds (2002), IEEE
ICDM Workshop on Privacy, Security and Data
Mining, Vol. 14 of Conferences in Research and
Practice in Information Technology, ACS.

Clifton, C. & Marks, D. (1996), Security and pri-
vacy implications of data mining, in ‘Workshop
on Data Mining and Knowledge Discovery’, Uni-
versity of British Columbia Department of Com-
puter Science, Montreal, Canada, pp. 15–19.

Cohen, W. W. (1995), Fast effective rule induction, in
A. Prieditis & S. Russell, eds, ‘Proc. of the 12th
International Conference on Machine Learning’,
Morgan Kaufmann, Tahoe City, CA, United
States, pp. 115–123.

Domingo-Ferrer, J. & Torra, V., eds (2004), Pri-
vacy in Statistical Databases, Vol. 3050 of LNCS,
Springer, Berlin Heidelberg.

Estivill-Castro, V., Brankovic, L. & Dowe, D. L.
(1999), ‘Privacy in data mining’, Privacy - Law
and Policy Reporter 6(3), 33–35.

Jajodia, S., Samarati, P., Subrahmanian, V. S. &
Bertino, E. (1997), A unified framework for en-
forcing multiple access control policies, in ‘SIG-
MOD ’97: Proceedings of the 1997 ACM SIG-
MOD international conference on Management
of data’, ACM Press, pp. 474–485.

Jr., R. J. B. & Agrawal, R. (2005), Data privacy
through optimal k-anonymization., in ‘Proceed-
ings of the 21st International Conference on Data
Engineering’, IEEE Computer Society, pp. 217–
228.

Lindell, Y. & Pinkas, B. (2000), Privacy preserving
data mining, in ‘Proceedings of the 20th Annual
International Cryptology Conference on Ad-
vances in Cryptology’, Springer-Verlag, pp. 36–
54.

Meyerson, A. & Williams, R. (2004), On the com-
plexity of optimal k-anonymity, in ‘PODS ’04:
Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of
database systems’, ACM Press, New York, NY,
USA, pp. 223–228.

Natwichai, J., Li, X. & Orlowska, M. (2005), Hid-
ing classification rules for data sharing with pri-
vacy preservation, in ‘Proceedings of 7th Inter-
national Conference on Data Warehousing and
Knowledge Discovery’, Lecture Notes in Com-
puter Science, Springer, pp. 468–467.

Oliveira, S. R. M. & Zaiane, O. R. (2003), Algorithms
for balancing privacy and knowledge discovery
in association rule mining, in ‘7th International
Database Engineering and Applications Sympo-
sium’, IEEE Computer Society, pp. 54–65.

Quinlan, J. R. (1993), C4.5: Programs for Machine
Learning, Morgan Kaufmann, San Mateo, CA,
USA.

Rizvi, S. & Haritsa, J. (2002), Maintaining data pri-
vacy in association rule mining, in ‘Proceed-
ings of the 28th Conference on Very Large Data
Base’, pp. 682–693.

Saygin, Y., Verykios, V. S. & Clifton, C. (2001), ‘Us-
ing unknowns to prevent discovery of association
rules’, SIGMOD Rec. 30(4), 45–54.

Sweeney, L. (2002a), ‘Achieving k-anonymity pri-
vacy protection using generalization and sup-
pression.’, International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems
10(5), 571–588.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

57

Sweeney, L. (2002b), ‘k-anonymity: A model for pro-
tecting privacy.’, International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems
10(5), 557–570.

Thuraisingham, B. (2002), ‘Data mining, national se-
curity, privacy and civil liberties’, SIGKDD Ex-
plor. Newsl. 4(2), 1–5.

Verykios, V. S., Bertino, E., Fovino, I. N., Provenza,
L. P., Saygin, Y. & Theodoridis, Y. (2004),
‘State-of-the-art in privacy preserving data min-
ing’, SIGMOD Rec. 33(1), 50–57.

Verykios, V. S., Elmagarmid, A. K., Bertino, E., Say-
gin, Y. & Dasseni, E. (2004), ‘Association rule
hiding’, IEEE Transactions on Data and Knowl-
edge Engineering 16(4), 434–447.

CRPIT Volume 49

58

Dynamic Labeling Schemes for Ordered XML Based on Type Information

Damien K. Fisher Franky Lam William M. Shui Raymond K. Wong

National ICT Australia
and School of Computer Science & Engineering

University of New South Wales
NSW 2052, Australia

Email:
�
damienf, flam, wshui, wong � @cse.unsw.edu.au

Abstract

With the increasing popularity of XML, there arises the
need for managing and querying information in this form.
Several query languages, such as XQuery, have been pro-
posed which return their results in document order. How-
ever, most recent efforts focused on query optimization
have either disregarded order or proposed static schemes
in which updates are not handled efficiently. Some dy-
namic labelling schemes have been proposed but they do
not consider type information that is usually available with
the XML documents or maintained by the database sys-
tem. This paper presents theoretically sound algorithms
for maintaining the well-known region algebra labeling
schemes, which can take advantage of type information,
often present in XML documents.

Keywords: Order Maintenance, XML.

1 Introduction

Storing and querying XML [4] are both significantly more
challenging problems than for relational data, which has a
considerably simpler data model. The popularity of XML
has led to a significant amount of research on both of these
problems in recent years.

One of the most promising means of evaluating XML
queries in query languages such as XPath [24] and
XQuery [25] is through the use of structural joins [2].
These join algorithms rely heavily on a solution to the
ancestor-descendant problem, that is, given two nodes in
the database, determine whether one is the ancestor of the
other. The importance of a fast ancestor-descendant op-
erator to XML databases extends beyond structural join
algorithms to touch almost all XML indexing techniques,
and hence there has been a large amount of research on
labeling schemes which answer this question in the liter-
ature, which we will discuss in Section 2. Until recently,
however, the critical real-world issue of accommodating
database insertions and deletions in such schemes has only
been addressed [12, 23, 26].

A second important problem in XML databases is the
order maintenance problem. XML has an intrinsic order,
corresponding to the order of elements in the XML file.
The corresponding traversal of the logical data tree is a
preorder traversal. This order is important in many do-
mains: for instance, in an XML document, the relative
order of two paragraphs is most likely important seman-
tically. Similarly, in biological database repositories or-
der is of critical importance. As a result of this, standard
XML query languages (e.g., XPath [24] and XQuery [25])
require the output of queries to be in document order by

Copyright c
�

2006, Australian Computer Society, Inc. This paper ap-
peared at Seventeenth Australasian Database Conference (ADC2006),
Hobart, Australia. Conferences in Research and Practice in Information
Technology, Vol. 49. Gillian Dobbie and James Bailey, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided this text is
included.

default. Maintaining enough information to implement a
sort operator, whilst also allowing efficient updates, is a
non-trivial task.

In some cases, maintaining XML order is unnecessary.
For instance, while the order of the authors of a book is
important, the order between books is generally not. How-
ever, there are still many large XML repositories where or-
der throughout the document is of critical importance. Of
particular interest are biological data repositories, which
are frequently updated, and in which the relative position
of nodes is important.

These two problems are closely related: Dietz [10] ob-
served that any solution to the order maintenance prob-
lem can automatically be applied to produce a solution
to the ancestor-descendant problem. The converse is not
true, mainly because a solution to the ancestor-descendant
problem need not distinguish between siblings, while the
order maintenance problem does make a distinction in this
case. Hence, the order maintenance problem is the more
general of the two, and thus is the focus of this paper.
While we give our results in terms of the order mainte-
nance problem, it should be kept in mind that our results
apply equally well to the ancestor-descendant problem.

In this paper, we demonstrate that the use of type in-
formation can substantially decrease the overhead of doc-
ument ordering maintenance algorithms, which appear to
have quite a high overhead for disk-bound structures in
practice. We verify our results experimentally, proving
their superiority to existing results in the literature. As de-
scribed above, our results apply both to the order main-
tenance problem and the ancestor-descendant problem.
Thus, this work is the first to give theoretically sound
bounds on the update times for XML labeling schemes
while utilizing type information from the schema.

The rest of this paper is organized as follows. Section 2
provides a brief survey of work related to document or-
dering. Section 3 defines the data model we will adopt in
this paper, and defines a simple, but expensive, algorithm
to determine document ordering, which is made use of in
later sections. Section 4 describes a system which utilizes
type information to speed up ordering indices. Section 5
presents empirical tests of our algorithms, and Section 6
concludes the paper.

2 Related Work

The most closely related work to this paper is that of or-
dered labeling schemes. The most thorough work in this
area is that of Tatarinov et al [23], who study three tech-
niques: global ordering, local ordering, and Dewey order-
ing. The global ordering scheme assigns a single integral
value to each node in the database, and hence is very simi-
lar to the list labeling problem described above. The local
ordering again assigns a single value to each node, which
denotes its relative order amongst its siblings in the XML
document. The Dewey ordering is similar to the Dewey
decimal system [5], and stores with each node the con-
catenation of the local ordering identifiers of the node and

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

59

its ancestors. In each case, Tatarinov et al only consid-
ered naive, expensive, algorithms to handle updates — the
work of this paper could be directly applied to update all
three schemes more efficiently.

Another related problem is that of ancestor-descendant
labeling. In brief, an ancestor-descendant labeling scheme
allows one to quickly determine whether one node is an
ancestor of another in the XML document. Given a solu-
tion to the order maintenance problem, one can construct a
solution to the ancestor-descendant problem (the converse
is not strictly true, since an ancestor-descendant labeling
scheme does not need to maintain ordering information for
siblings). The work of this paper can be adapted to address
the ancestor-descendant problem. While many ancestor-
descendant schemes have been described in the literature
[1, 6, 8, 15–19, 26, 27], only a few of these schemes also
provide a solution to the order maintenance problem, and
even fewer handle the issue of updates in a non-trivial way.

Deschler et al [8] have recently devised a modified
Dewey ordering scheme, which uses strings instead of
numbers as values. The use of strings allows one to in-
sert new nodes anywhere in the database, without having
to relabel any other nodes. Unfortunately, this scheme suf-
fers from a lower bound on the label length which is lin-
ear in the number of nodes in the database — this bound
is impossible to circumvent in schemes which do not re-
label other nodes, as shown by Cohen et al [6]. As our
work does allow nodes to be relabeled, it is not affected
by Cohen’s result.

A novel recent work, by Wu et al [26], utilizes prop-
erties of prime numbers to provide an efficient ordered la-
beling scheme. In particular, they use the Chinese Re-
mainder Theorem to find a mapping between the prime
number labels of the nodes in the database, and their rel-
ative ordering. While the scheme is interesting, and only
relabels nodes infrequently, the length of the identifiers
is ���������
	��
������������	�� bits, where 	 is the size of the
database, as opposed to our schemes here which have
identifiers of size ���������
	�� bits. Also, their scheme in-
volves an indirection through a potentially large array in
order to answer queries, which is an expensive bottleneck
for large databases.

Since XML documents are represented as ordered
trees, there is a close relation between this problem and
the order maintenance problem addressed by Dietz and
Sleator [3, 9]. Most XML storage schemes, such as
[13–15, 19], make use of interval and preorder/postorder
labeling schemes to support constant time order lookup,
but fail to address the issue of maintenance of these la-
bels during updates. Recently, Silberstein et al [21] pro-
posed a data structure to handle ordered XML which guar-
antees both update and lookup costs. The primary differ-
ence between this paper and Silberstein el al [21] is that
we also attempt to minimize space usage (and in fact keep
the space requirement near the information theoretic min-
imum).

Finally, Fisher et al [12] addressed the order mainte-
nance problem in the context of XML database systems.
They experimentally demonstrated the poor performance
of the ������� variant of Bender’s algorithm for disk-bound
structures with heavy read loads (a common database sce-
nario), and instead proposed a simple one pass random-
ized algorithm, which has good performance when inser-
tions are distributed across the database. However, their
algorithm has worst case performance linear in the size of
the database, which occurs when insertions are clustered
together, a common occurrence in practice.

3 Formal Definitions

We will follow a common convention in the literature and
model an XML document by a labeled, ordered, unranked
tree. The order of the attributes of an element is undefined
in XML (see, for example, the XQuery specification [25]);

Accessor Description
PARENT ����� Parent of �
NEXT-SIBLING ����� Next sibling of �
PREV-SIBLING ����� Previous sibling of �
FIRST-CHILD ����� First child of �
PREORDER-PREVIOUS ����� Node before � in document order
PREORDER-NEXT ����� Node after � in document order

Table 1: Constant time accessor functions

we will adopt the convention that the attributes come be-
fore the other children of the element, in some arbitrary,
but fixed, order. This will have no impact on the results
of this paper, as the document ordering between attribute
nodes of an element is by definition arbitrary anyway.
As we do not need to distinguish between elements, at-
tributes, processing instructions, and other kinds of XML
nodes in this paper, this model is suitable for our purposes;
in fact, for most of our results we do not even need to make
the tree labeled, as labels are irrelevant when considering
document order (the only time we make use of this infor-
mation is in Section 4).

The document ordering on an XML document is the
total ordering defined by a preorder traversal of the cor-
responding tree [25]. In this paper, we will denote the
document ordering by � . As the document ordering be-
tween attribute nodes of an element is implementation de-
fined, for our purposes we can simply choose an arbitrary
ordering amongst the attributes in our ordered tree repre-
sentation, and use this as the document ordering.

Throughout this paper, we impose a specific phys-
ical data model on our XML database, which gives a
set of accessor functions which we assume take con-
stant time. We have carefully chosen this set of acces-
sors so that it is likely that any reasonable native or rela-
tional XML database which handles ordered data would
implement these accessors in constant time. The acces-
sors needed are summarized in Table 1. Of these acces-
sors, PREORDER-PREVIOUS and PREORDER-NEXT
can easily be implemented in terms of the others, although
in worst cast time linear in the depth of the database. In
practice, however, the depth of an XML database is ex-
tremely small, and we can assume that these accessors will
essentially run in constant time. In our implementation,
we do not maintain these accessors explicitly, instead re-
lying on the observed properties of real XML documents.

We assign to each node a unique identifier, the object
identifier, or oid. Throughout this document, object iden-
tifiers will be represented by integers of word size (32 bits
on many modern machines). We stress that the order of
the object identifiers of two nodes � and � does not neces-
sarily correspond to the document ordering on � and � .

This paper deals with document ordering in dynamic
XML databases. For simplicity, we assume that each in-
sertion or deletion only adds or removes a single leaf node.
The insertion or deletion of entire subtrees can be mod-
elled as a sequence of these atomic operations (with fur-
ther optimisations possible).

4 Utilizing Schema Information

As described in the Related Work, most recent XML la-
belling proposals work on on any XML document. Cer-
tainly, a significant portion of XML documents in real life
come with type information, typically in the form of a
DTD [4], XML Schema [11], or a schema written in some
other standard schema language. This type information
is used for verification purposes and provides a primitive
form of constraint checking. Even for untyped documents,
there is generally a high degree of regularity, and a large
body of research on schema inference can be used in these
cases to generate a schema.

In this section, we provide an automated system which

CRPIT Volume 49

60

can utilize type information to optimize the use of a docu-
ment ordering algorithm. There are several interesting as-
pects to our system. Firstly, the system should work with
any of the numerous schema languages available, even
though we frame our discussion in terms of the theoreti-
cally simplest, DTDs. Secondly, the algorithm can be used
to improve the practical performance of any algorithm for
the document ordering problem, and hence has wide ap-
plicability.

4.1 Problem Statement

We first give a formal definition of our problem. Firstly,
we define a useful function � :

Definition 1 The function � , from the set of XML trees
over an element set � to the set of strings over � , maps a
tree � to the string which results from listing the nodes of �
in document order.

It is clear from the definition that � is surjective, but
not injective. The function � can be implemented ex-
tremely efficiently, in a single preorder traversal over an
XML tree. If � is a set of trees, then we will use the con-
venient shorthand � ��� ��� � � ��� ���
	��
��� � .

Using this definition, we can now state the lineariza-
tion problem precisely:

Definition 2 (The Linearization Problem) The lin-
earization problem has two parts:

1. Let � be a schema for XML trees defined over an
element set � , so that � defines some tree language�

. The first part of the linearization problem is to
convert � into a schema ��� over ��� , such that the
language defined by �
� is exactly � � � � .

2. Given a language
�

of strings over an alphabet � de-
fined by some schema � , construct the linearization
graph corresponding to

�
.

In the above definition, we have been deliberately
vague about what a “schema” is. In fact, it is conceiv-
able that for some XML schema language, solving the first
part of the problem is impossible. Similarly, it is possible
that for some string schema language, the second part of
the problem is impossible. However, we will show below
that, for the case of DTDs, we can find solutions to both
problems. In any event, a “schema” is loosely defined as a
concise representation of a possibly infinite language.

In the second part of the definition above, reference
was made to the linearization graph of a language. Essen-
tially, this graph contains all the information relevant to
the relative order of symbols in strings accepted by that
language. For instance, in the regular language ��� ��� , we
always know that for any string accepted by this language
which contains both a � and a � , then the � must always
come before the � . As a more complicated example, Fig-
ure 4 gives the linearization graph for the fragment of the
DBLP DTD of Figure 1.

We formalize the notion of this linearization informa-
tion through the use of an extraction function:

Definition 3 For an alphabet � , define ������������� � ,
as:
�
��	"! 	$#&%'%(% 	$) ��� ��* 	$+-, 	$+ � �
.��0/
� � �1,'%(%'%2,-354 � � �

For a set of strings
�

, we write �
� � ���7698;:1<=�
�?>�� .
Informally, the information which the function � ex-

tracts from a set of strings is simply all possible symbols
which might follow a given symbol. Hence, by construct-
ing a graph which represents this information, we can fol-
low paths through the graph to determine the relative or-
dering of two symbols in the alphabet for a particular lan-
guage. Note that if � is countably infinite (as is the case

with XML trees), then �
� � � may not necessarily be finite.
However, we will give below a simple technique to ensure
that �
� � � is always finite in the cases we are considering.

We are now in a position to define the linearization
graph for a language:

Definition 4 (The Linearization Graph) The lineariza-
tion graph of a language

�
is the directed graph with ver-

tex set � and edge set �
� � � .
It is interesting to note that the linearization graph rep-

resents a language itself. We say that string 	 ! 	 # %(%'%�)
is accepted by the graph if and only if we can find a path
through the graph 	 ! � 	 # �@%'%(%��) . This language
can be thought of as the set of strings which is generated
only by the linearization information we have extracted,
and contains no additional structure. It is easy to see that
this language is regular:

Lemma 1 The language of the linearization graph de-
fined above is regular.

Proof: In this proof, we make use of the definition of a
context free grammar (see Definition 5).

In the following, the edge set of the linearization graph
is A . We define a context free grammar

*?B ,C��,;D9,;��. as
follows:

E B � � D�F �G	 �H�I� �KJ � � � ; that is, the set of vari-
ables is in one-to-one correspondence with the set of
terminals (the alphabet of the language), with the ex-
ception of one additional variable (the start variable�);

E For each �7�L� , let A F � � �M� * �", ��.��NA � (that
is, AKF is the set of successors of � in the graph). For
each ���OA F , define a rule D F � �PD=Q . Let the set
of rules D consist of all rules defined in this fashion,
plus a set of rules

� ���RDSFT�'	 �U�V� � .

By construction, this context free grammar is a regu-
lar grammar, and hence the language it generates is also
regular. It is also clear that this language is equivalent to
the language of the linearization graph: for every vertex �
in the graph, we have constructed a rule DWF in the graph
which corresponds to the language membership test de-
fined above. More precisely, any string which is accepted
by the rule D=F corresponds to a path in the graph begin-
ning at node � . X
4.2 Converting a DTD to a CFG

We now turn to solving the first part of the linearization
problem. While our algorithm should work with any cur-
rently used schema language, we solve the problem only
for DTDs, because they are one of the most commonly
used schema languages, as well as the simplest.

It is well-known that DTDs correspond to regular tree
grammars [20]. In fact, we do not need the power of regu-
lar tree grammars, as we only need to consider XML doc-
uments as linked lists of nodes in document order. There-
fore, we will represent DTDs as context-free grammars
(the definition below is taken from Sipser [22]):

Definition 5 (Context-Free Grammar (CFG)) A
context-free grammar is a 4-tuple

*?B ,C��,YD9,C��. where:

1.
B

is a finite set called the variables;

2. � is a finite set, disjoint from
B

, called the terminals;
and

3. D is a finite set of rules, with each rule, writtenZ � Z ! Z #&%'%(% Z\[, being a variable Z and a stringZ ! Z # %(%'% Z [of variables and terminals; and

4. �H� B is the start symbol of the grammar.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

61

When we want to model the empty string, we will fol-
low the normal convention, and use the special symbol� , which we implicitly add to the set of terminals of the
language. We will ignore this technicality throughout our
presentation, and simply use � where convenient.

We now give the straightforward process of convert-
ing a DTD to a CFG which is, for our purposes, equiv-
alent to the DTD. For simplicity, we only consider ele-
ments, ignoring other node types such as attributes and
processing instructions. Similarly, because we are uninter-
ested in data values, we ignore occurences of #PCDATA in
the DTD. With these simplifications in mind, we define a
DTD as follows:

Definition 6 (DTD) Let
�

be the countably infinite set of
element types. Then a DTD is a finite set

��* � ,��\.K�'	��
�U� � ,
where � is a finite subset of

�
, and each � is a regular

expression over � .

The only subtle issue remaining with this definition is
the #ANY keyword, which can represent any combination
of elements. To handle this, we adjoin to � above a special
element type � , which represents all element types not ap-
pearing in the DTD, i.e., all element types in

� 4�� . We
replace any occurrence of #ANY with the regular expres-
sion ��� � �Y!1�2%(%'%
� � [� � , where

� �Y!�,'%(%'% � [� � � . Similarly,
we add a rule

* � , ��� � � ! �2%(%(%
� � [� � . to the DTD, so that � is
a well-defined element type. It is clear that this definition
preserves the semantics of #ANY. Herein, we assume that,
if necessary, the rule for � has been added to the DTD,
and � has been added to its set of types � . We note that, at
this point, our DTD only refers to a finite set of elements,
because we have merged the remaining (infinite) number
of element types together into a single, special element
“type”, � . Thus, we have in essence made the alphabet for
our CFG finite, and hence ensured that the linearization
graph we construct is finite.

From this set of rules, it is easy to construct the desired
CFG. The set of terminals � becomes the set of types in
the DTD � . For each rule

* � ,��\. in the DTD, we define a
rule D	� �R�-��
 , where ��
 is a variable defining the regular
expression � . The variable �
 is obtained from � by first
converting � from a regular expression over � to a regular
expression �0� over D�
N� � D	� � �W�H� � , using the obvi-
ous isomorphism. Using well-known techniques, we then
convert �0� to a context free grammar

*?B
 ,YD�
 ,YD�
\,C��
(. . Fi-
nally, we obtain our complete CFG as:

*��
� :��

� D � � J �

�
 ,Y�K, �

� :��
� D � �R�-�
 � J �

D
 ,;��.

The only remaining problem is to define the start sym-
bol � in the definition above. Unfortunately, DTDs do
not have a “start element” we can map to � . However, in
practice, we can always find an element which appears as
the root element in every document designed to conform
to the DTD, and if this element is � , then we set ��� D�� .
Alternatively, we could follow the DTD semantics more
precisely and define a start symbol with additional rules� �O� D	�=�\	��K� � � , so that all DTD types are permitted
to be the root type; as it turns out, the choice makes no
difference to the construction.

We can summarize the above in the following theorem,
whose proof follows directly from the construction:

Theorem 1 Given a DTD, we can obtain a CFG, such
that if a document � is accepted by the DTD then the doc-
ument, when considered as a list of nodes in document
order, is accepted by the CFG. Conversely, for any string
accepted by the CFG, there exists a document accepted
by the DTD which, when considered as a list of nodes in
document order, is equivalent to the string.

Thus, we have found a construction algorithm which
solves the first part of the linearization problem for DTDs.

<!ELEMENT dblp (article|inproceedings|...)*>
<!ENTITY %field "author|editor|...">
<!ELEMENT article (%field;)*>
<!ELEMENT inproceedings (%field;)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT editor (#PCDATA)>
...

Figure 1: An excerpt from the DBLP DTD.

������� � ������� /�� ��� � / 	 � � � � �!�!� / 	#"�>��2%(%'% � �
�$��� /�� ��� � ����% ��&'�!��� �!� / �(�!��� %'%(% � �

/ 	 � � � � �!�!� / 	#"�> � ����% ��&'�!��� �!� / �(�!��� %'%(% � �
��% ��&'�!� � �
�!� / �(�!� � �

Figure 2: The DTD fragment of Figure 1, converted into a
set of regular expressions.

As an example of the translation process in action, con-
sider the fragment of the DBLP DTD given in Figure 1.
The translation of this DTD fragment into a set of regular
expressions is given in Figure 2, and using our translation
process plus a few simplifications, we obtain the CFG of
Figure 3. We will use this as a running example through-
out the remainder of this paper.

4.3 Linearizing a CFG

We now consider the second part of the linearization prob-
lem for DTDs: given a CFG, how do we construct its lin-
earization graph? Fortunately, it is easy to give a recursive
construction algorithm for this task.

Throughout this section, we will fix a CFG* B , ��,YD9,;��. for which we wish to find the linearization
graph. Our first step in this task is to define a few useful
functions which we will make use of in our construction
algorithm.

The first function we define is ACCEPTS-EMPTY,
which, given a CFG, determines whether it accepts the
empty string or not. The pseudocode for this function
can be found in Algorithm 1. Essentially, a simple dy-
namic programming approach is used, which determines
whether each rule accepts the empty string. We note that
this function, and the others we define next, only work
correctly on CFGs which accept at least one finite string.
As CFGS which do not accept any finite strings are patho-
logical, and not of the kind we are interested in (CFGs
constructed from DTDs are guaranteed to accept at least
one finite string), we will ignore these cases in this sec-
tion. The proof of correctness is easy:

Lemma 2 Algorithm 1 returns true if and only if a CFG
accepts the empty string.

Proof: Firstly, Algorithm 1 must always terminate, be-
cause it visits each variable at most once, and the number
of variables is finite. Now suppose that Algorithm 1 re-
turns true. In this case, if we trace out its execution path,
we get a valid parse tree for the empty string, and hence
the grammar must accept the empty string.

Conversely, suppose the grammar accepts the empty
string, so that there is a parse tree matching it. We can

D ! � �)�*�+� D #
D�# � � �\D=#�D	, �0D=#KD	-
D , � ����� /�� ��� D	.
D/- � / 	 � �!� � �0�!� / 	#"G> D .
D . � � �\D . �$% ��&1�!�9�0D . �!� / �(�!�

Figure 3: The DTD fragment of Figure 1, converted into a
CFG.

CRPIT Volume 49

62

Algorithm 1 Determines whether a CFG accepts the empty string.

ACCEPTS-EMPTY(
* B , ��,YD9,;��.)

1 EMPTY � Z���� % 	�� 	���� 	T	 Z � B (this is a global variable)
2 ACCEPTS-EMPTY-RECURSE � *?B ,C��,YD9,C��. ,C� ,
	��
3 return EMPTY � � �

ACCEPTS-EMPTY-RECURSE(
?B ,C��,;D9,;��.2,��% �!�0,;> �!�)

1 if EMPTY � �*% �!� ���� % 	�� 	���� 	�
 �*% �0�9� > �0� 	 then
2 return
3 > �!� 	 � > �!� 	9J � �*%1�!� �
4 for each rule �*% �!�W� ��! %'%(%�� [�UD do
5 if 	 � ��� �G!�� � then
6 EMPTY � �*%1�!� � � ���!% �
7 return
8 for / � � �1,(%'%(%2, 	 � do
9 if ��+�� B then

10 ACCEPTS-EMPTY-RECURSE � * B , ��,YD9,;�
. ,�� + ,C> �!� 	��
11 if EMPTY � � + ��������!% � then
12 break
13 else
14 break
15 EMPTY � �*%1�!� ��� ���0% �
16 return
17 EMPTY � �*% �0� ����� � � > �

be guaranteed to find a parse tree such that in every root-
to-leaf path, each variable occurs only once. If this were
not the case, then for each such path

B !T� B #�� B �%(%(% � B � %(%'%W� B [, we can delete the portion of
the tree corresponding to the part of the path between the
two non-unique occurrences, and still have a valid parse
tree for the empty string. Hence we are left with a parse
tree which corresponds to a traversal of the variables in
the grammar, where every variable is visited at most once
in each path. From this parse tree, we can construct an
execution path through the algorithm. X

Using the function ACCEPTS-EMPTY, we now define
a function, FIRST, which, given a CFG, finds the set of
terminals with which all strings accepted by the CFG must
begin. The pseudocode is given in Algorithm 2; as the
correctness proof for this algorithm is very similar to that
of ACCEPTS-EMPTY, it is omitted.

Finally, we define a function LAST, which finds the set
of terminals with which all strings accepted by the CFG
must end. As this algorithm is virtually identical to that of
Algorithm 2 (instead of the ascending iteration in line 5, a
descending iteration is performed), it is omitted.

While we have only defined FIRST and LAST to re-
turn the sets of terminals corresponding to a particular
variable (in particular, the start variable), we can extend
these functions to arbitrary strings over

B J�� as follows:
if we have such a string > , then add a rule to the gram-
mar �M� > , where � is some terminal not currently in

B
.

Then, run FIRST and LAST on the context free grammar*?B J �
T � , ��,YD J � � � > ��,-��. , and use these sets as the

result for this string. Thus, given a string of terminals and
variables, FIRST and LAST return the sets of terminals
with which strings accepted by the rule defined by that
string must begin or end.

We are now in a position to give the construction al-
gorithm for obtaining the linearization graph from a CFG.
In essence, we recursively build the edge set for the graph
from the edge sets for the linearization of subexpressions
in the CFG. The entire process is given in Algorithm 3.
Note that we only need to construct the edge set incre-
mentally, as we can leave the vertex set of the graph to be
the entire alphabet � throughout.

We summarize the correctness of this construction in
the following theorem:

Theorem 2 Algorithm 3 constructs the linearization
graph for a CFG.

The proof of this theorem follows directly from the fact
that running the extraction function � on the language de-
fined by the grammar is equivalent to the process which
happens in line 15 of the algorithm.

4.4 Using a Linearization

Once we have a linearization, it is a simple matter to ex-
tract document ordering information from it. We construct
the graph of strongly connected components � � for the lin-
earization � , using standard techniques [7]. It is clear that
�W� is a directed acyclic graph. The following lemma eas-
ily follows from the definition of the linearization graph
(Definition 4):

Lemma 3 Let �L� * B ,;A . be the linearization of a DTD,
and �W� � *?B ��,;A � . be the graph of strongly connected
components of � . Then for any document � validated by
the DTD, for any nodes �", �M� � , if � � ��� � � is reachable
from � � ��� � � in �W� , then � � � in document order, where
� ��� � is the type of � and � Z�� � B � is the strongly connected
component of vertex Z � B in � .

Thus, ordering information can be easily computed at
database creation time by traversing � � , and storing the
relative ordering between the strongly connected compo-
nents in an array of size ���Y� B � � # � . More sophisticated
techniques can be used if � B � � is large, although in prac-
tice it generally is not. We do not know the relative order
of nodes lying within the same strongly connected compo-
nent. In this case, we can apply a document ordering al-
gorithm such as Bender’s algorithm; to see why this is so,
it is sufficient to note that each strongly connected compo-
nent is a contiguous block in document order, because the
document ordering on nodes carries through to an order-
ing on the strongly connected components (by Lemma 3).

Note that we can apply a different instance of the algo-
rithm to each strongly connected component, which can
result in reducing both the size of the tag and decreasing
the cost of updates. As an extension, if we have selec-
tivity information indicating the approximate size of each
strongly connected component, then we can use this infor-
mation to choose the optimal algorithm for each compo-
nent. For instance, for very large components it may be

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

63

Algorithm 2 Determines with which terminals a string accepted by a CFG must begin.

FIRST(
* B , ��,YD9,;�
.)

1 ACCEPTS-EMPTY � *?B ,C��,;D9,;��. �
(we make use of the EMPTY global variable)

2 FIRST � Z���� 	�	 Z � B
3 FIRST-RECURSE � *?B ,C��,;D9,;��.2,;� , 	��
4 return FIRST � � �

FIRST-RECURSE(
* B , ��,YD9,;��.2,��*% �!�0,;> �!�)

1 if �*% �0�9� > �0� 	 then
2 return
3 > �!� 	 � > �!� 	9J � �*%1�!� �
4 for each rule �*% �!� � � ! %'%(%�� [do
5 for / � � �1,(%'%(%2, 	 � in ascending order do
6 if � + � B then
7 FIRST-RECURSE � *?B ,C��,;D ,C��. , � +Y,;> �!� 	��
8 FIRST � �*%1�!� � � FIRST � ��%1�!� � J FIRST � � + �
9 if EMPTY � � + ��������!% � then

10 break
11 else
12 FIRST � �*%1�!� � � FIRST � �*% �!� � J � � + �
13 break

Algorithm 3 Given a CFG, return the edge set for the corresponding linearization.

LINEARIZE(
* B , ��,YD9,;�
.)

1 return LINEARIZE-RECURSE � * B , ��,YD9,;�
. ,;�&,
	��
LINEARIZE-RECURSE(

* B , ��,YD9,;��.2,���!�� #&%'%(%�� [,;> �!�)
1 if 	 � ��� ��!�� B then
2 if � ! �U> �!� 	 then
3 return
4 > �!� 	 � > �!� 	9J � � ! �
5 A � 	
6 for each rule �*% �!�W� � � ! %'%(%�� �[� do
7 A � A J

LINEARIZE-RECURSE � *?B ,C��,YD9,C��. , � � ! %(%'%�� �[� �
8 return A
9 elif 	 � � then

10 return 	
11 else
12 3 ��� [#��
13 A=! � LINEARIZE-RECURSE � * B , ��,YD9,;�
. ,�� ! %(%'%��) �
14 A # � LINEARIZE-RECURSE � * B , ��,YD9,;�
. ,��)�� ! %(%'%�� [�
15 return A�!�J A�#
J ��* �", ��.��'	 ��� LAST ����! %'%(% ��) � ,

	 �T� FIRST ���)�� ! %(%'%�� [� �

suitable to choose the ��� � � variant of Bender’s algorithm,
but for smaller components we can choose an algorithm
with less space overhead.

4.5 Annotating a Linearization

While the scheme described so far has been very gen-
eral, it has some limitations in practice. We have found
that many schemas used in the real world are significantly
looser than they might ideally be, and that this inexact-
ness propogates itself into the analysis above. For in-
stance, consider the linearization in Figure 4. In this case,
it is clear that there are only two strongly connected com-
ponents, one consisting of the single node type dblp.
Clearly, this is not particularly useful information, be-
cause, as dblp elements are the root elements in practice,
we have only been able to deduce the relative order of a
single node.

However, we can still use type information in a heuris-
tic manner which gives good practical performance in
many cases. In Figure 4, we have annotated the lineariza-
tion with dotted edges, which represent that, in our par-

ticular database system, from any node we can access its
parent node. In fact, we also have an accessor which al-
lows any parent node to access its first child. This acces-
sor does not appear in Figure 4, because the DTD does
not give us enough information to determine what the first
child is. For instance, consider a node of type article.
From the DTD, we are unable to infer whether this node
will even have a first child. On the other hand, we always
know that any node (except dblp) will have a parent. We
will now formalize the notion of an acceptable accessor:

Definition 7 If � � * B ,;A . is the linearization graph,
then an accessor is a map from 	 � B ! � B # , whereB !�, B #�
 B , such that 	 �L� B ! , 	 ��� � can be retrieved
from � .

Not all accessors are particularly interesting in terms
of document ordering. The interesting accessors are those
that allow us to infer some information about the relative
ordering between nodes. For instance, the parent accessor
is useful, because if two nodes have different parents, then
clearly their relative order is related to the relative order of

CRPIT Volume 49

64

inproceedingsarticle

dblp

editorauthor

Figure 4: Linearization of the DTD fragment of Figure 1.

their parents. Thus, we are interested in order preserving
accessors:

Definition 8 An order preserving accessor is an accessor
	�� B ! � B # such that 	 �", � � B ! , if � � � then 	 ��� � �
	 ��� � .

The accessors available to us differ depending upon the
underlying implementation. As an example, we define the
parent accessor for a particular element type � . Let

B !
be the set of all element types that appear alongside � in
regular expressions in the DTD (that is,

B ! is the set of
all possible sibling types of �), and and

B # be the element
types which have defining regular expressions containing
an element type in

B ! . Then in our implementation there is
a map 	 � B ! � B # which yields the parent of any Z � B ! .
This accessor is illustrated in Figure 4 — the regions sur-
rounded by dotted areas are the domain and codomain of
this accessor, with the dotted lines representing the move-
ment through the accessor.

While we are interested in order preserving accessors,
we are not interested in all of them. For instance, suppose
it is possible to access the root node of the database. Then
it would be trivial to define an accessor from the set of all
element types

B
which accessed the root. This would not

be a terribly useful accessor in terms of document order-
ing, however, because 	 � , �T� B , the image under the map
would be equal, and hence traversing the accessor would
never yield additional information about the relative order
of � and � . In this case, the cost of using the accessor
outweighs the benefits.

Therefore, we introduce a threshold parameter, con-
trolled by the database creator, which specifies the max-
imum acceptable cost of an accessor. This cost could be
measured in one of several ways, and is mainly dependent
upon the underlying implementation. For the rest of our
paper, we will use the cost function that was best suited
to our implementation — the probability of incurring a
disk access by using an accessor. Under this cost mea-
sure, an accessor which frequently accessed objects lying
in the same page would score more highly than an acces-
sor which accessed objects in other pages. For a given set
of accessors, we assume we have the approximate proba-
bility of a disk access incurred by following that accessor.
This information could come from one of several sources:

E The clustering subsystem of the database;
E The database creator; or
E An analysis of a small representative sample of the

data to be stored in the database.

We do not believe that in practice it is difficult to pro-
duce these cost estimates. For instance, if DBLP is stored
in document order, then it is fairly obvious that each record
(where a record is a complete subtree rooted at article,
inproceedings, etc.) will generally lie on a single
page, and hence for intra-record accesses the likelihood of
a disk access is quite low.

article | inproceedings

dblp

author | editor

Figure 5: Linearization of the DTD fragment of Figure 1
after coalescing.

4.6 Coalescing

Once we have a set of accessors, along with their corre-
sponding costs, we coalesce portions of the linearization.
Informally, we merge nodes which have no accessors be-
tween them, and which lie in the same strongly connected
component. The motivation is that as we are unable to in-
fer any information about the relative ordering of nodes in
the database corresponding to these types, there is no point
in maintaining them as separate nodes in the linearization.

Given a set of accessors � , we coalesce using a sim-
ple greedy heuristic. Firstly, we remove any accessor
	5� B ! � B # ��� such that

B ! or
B # are not strictly

contained in a strongly connected component of the lin-
earization. We then repeat the following steps until � is
empty:

1. Remove the accessor 	M� B !T� B # ��� which has
the smallest cost, and annotate the graph with 	 .

2. Merge the nodes in
B ! into a single node, and simi-

larly merge the nodes in
B # into another node in the

graph.

3. Remove any 	 � � B �! � B �# ��� where either
B �! orB �# have a non-empty intersection with either
B ! orB # .

The process of running this procedure on the lineariza-
tion of Figure 4 is shown in Figure 5. In this example, we
assigned a high cost to the accessor from article and
inproceedings to dblp, because this almost always
incurred a disk read. Similarly, a low cost was assigned
to the accessor from author and editor to article
and inproceedings, because these frequently lay on
the same disk page, as we clustered the nodes in the
database into document order.

4.7 Using an Annotated Linearization

Using an annotated linearization is similar to using a lin-
earization. We use the techniques described in previous
sections when comparing nodes belonging to two differ-
ent strongly connected components. When the nodes lie
in the same strongly connected component, however, we
now see if they lie in the same node in the linearization
(which may be the result of merging several types). If
they are, and this node has an available accessor, we first
traverse the accessor and determine the relative ordering
under the image of the accessor. Only in the event that
this does not resolve the relative order of the two nodes do
we compare them using their own tag values.

This scheme works because we have split portions of
the strongly connected components, in such a way that we
can again apply a different instance of the document or-
dering algorithm. For instance, in Figure 5, we can apply
a separate instance of the document ordering algorithm to
each node in the graph. In fact, for the author|editor
node, we apply a separate instance of the ordering al-
gorithm to each set of nodes � such that 	 � , � ��� ,
	 ��� �
� 	 ��� � . It is easy to see that such a set of nodes must
be contiguous (in document order), from the definition of
an order preserving accessor. More precisely, for any node
in the graph with an outgoing accessor (the heuristic above

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

65

ensures there is at most one outgoing accessor), we apply
a separate instance of an ordering algorithm to each set of
nodes � such that 	 � , �T� � , 	 ��� �
� 	 ��� � . Thus, we have
refined the sets upon which we maintain ordering informa-
tion, at the cost of a more complicated query mechanism.

4.8 Issues with Other Schema Languages

While we have only discussed the linearization of DTDs,
it is not difficult to conceive of similar strategies for deal-
ing with other popular schema languages, such as XML
Schemas. However, there are a few issues that are worth
raising:

E It is possible, and perhaps desirable, that a schema
language might offer the ability for the user to spec-
ify that certain parts of an XML document are set ori-
ented, instead of list oriented, and hence that order-
ing information should not be maintained for these
portions. For example, in the DBLP database, while
ordering might be important within a record, it is un-
likely that it is important outside the record. It would
be easy to accommodate such a feature within our
framework, but it should be noted that sometimes,
it may be easier to maintain ordering information in
unordered regions anyway. For instance, suppose we
have a linked list of elements �W!U���
!����&# �
��# , where ordering information must be maintained
for � ! and � # , but not for � ! and � # . Unless there
is a way to navigate directly from �W! to ��# , it will
probably be faster to maintain ordering information
for �
! and ��# too, since they must be traversed when
moving between �W! and ��# .

E Some schema languages, notably XML Schema, al-
low the use of local types, that is, one element might
have distinctly different types, depending on its local
context. This feature can be easily incorporated into
our overall framework, by changing the vertex set of
the linearization graph from the set of all elements to
the set of all unique local types.

5 Experimental Results

5.1 Experimental Setup

We performed several experiments to determine the effec-
tiveness of the various algorithms covered in this paper.
All experiments were run on a dual processor 750 MHz
Pentium III machine with 512 MB RAM and a 30 GB,
10,000 rpm SCSI hard drive. We used as our data set the
DBLP database. Our experiments were performed on a
disk-bound database, without transactions or concurrency
enabled.

Our experiments were designed to investigate the worst
case behavior of each of the document maintenance al-
gorithms implemented. We chose to focus on the worst
case for several reasons. Firstly, previous work [12] de-
veloped an algorithm which has very good average case
performance (for a particular definition of average), but
very poor worst case performance. As our new work gives
algorithms with guaranteed worst case performance, we
emphasize this in our experiments. As we also demon-
strate that this worst case performance is extremely good,
it follows that the average case performance is also good.
More practically, however, at the time of writing it is very
difficult to determine a suitable “average” case for usage
of document ordering indices, simply because XML is still
an immature technology.

For each experiment, we investigated the performance
of four different algorithms:

1. The randomized algorithm of Fisher et al [12];

2. The ��� � � and ��������� 	�� variants of Bender et al [3];

3. The randomized variant of Bender’s algorithm by ex-
tending it to take an additional parameter, � , which
gives the number of nodes that should share the same
tag value. It is straightforward to generalize the
���������
	�� algorithm to this case: instead of defining
the density in a range of tag values as

[
#�� , where 	 is

the number of nodes in that range, we use
[
#���� . It is

easy to generalize the proof for Bender’s algorithm
to this case. For this algorithm, we used values of �
from the set

��� , �
��, � ��, �'� ��,�	1�1� , �(� �\� � ; and

4. The ���������
	�� variant of Bender’s algorithm, but aug-
mented with the linearization graph of the DBLP
DTD, using the methods of Section 4.

5.2 Experiment 1: Performance on a Bulk Insert

In this experiment, we evaluated the performance of
the algorithms under a uniform query distribution. The
experiment began with an empty database, which was
then gradually initialized with the DBLP database. Af-
ter every insertion, on average � reads were performed,
where � was a fixed parameter taken from the set� ��% � �1,;��%��'� , �1% �1� , �
��% � � . Each read operation picked two
nodes at random from the underlying database, using a
uniform probability distribution, and compared their doc-
ument order. In all of our experiments, we measured the
total time of the combined read and write operations, the
number of read and write operations, and the number of
relabelings. However, due to space considerations, and
the fact that the other results were fairly predictable, we
only include the graphs for total time.

This experiment was designed to test what is a worst
case scenario for all the algorithms except for the ran-
domized algorithm. We included this experiment because
the extremely heavy paging incurred by the uniform query
distribution demonstrates some of the practical problems
with Bender’s ��� � � algorithm.

As can be seen from the results in Figure 6, the ran-
domized algorithm is easily the best performer. The rea-
son for this excellent performance is because on every
insertion the randomized algorithm simply added one to
the identifier of the last node in the database. While we
could have added a special case to the other algorithms to
handle insertions at the end of the database in a similar
fashion, we instead opted to treat them no differently from
insertions anywhere else in the database, to indicate the
worst case performance of the algorithms. We included
the randomized algorithm as a useful baseline to compare
the other algorithms with, because it represents the fastest
possible implementation for this experiment. Neverthe-
less, the fact that this is a special case for the randomized
algorithm (and could similarly be made a special case for
the other algorithms) should be kept in mind.

We note that, as the ratio of reads increases, the perfor-
mance of both Bender’s ������� algorithm and the schema
based algorithm degrades relative to the other algorithms.
We attribute this in both cases to the extra indirection in-
volved in reading from the index. As values of ��
 �
�1�
are common in practice, we expect that the behavior of the
��� � � algorithm will be even worse than even the ���������
	��
variant for many real-life situations. This was demon-
strated more emphatically by Fisher et al [12]. Also, be-
cause of the extremely heavy paging, even the small pag-
ing overhead incurred by an algorithm such as the schema
based algorithm, which only infrequently loads in an ad-
ditional page in due to a read from the index, has a mas-
sive effect on the performance. Thus, although this ex-
periment is slightly contrived, it does demonstrate that in
some circumstances the indirection involved becomes un-
acceptable, given that values of � in real life will often be
�
�1� or �
�1� � . We note that one advantage of the schema
based algorithm is that we can remove the indirection if
necessary, whereas with the ��� � � algorithm, we cannot.

CRPIT Volume 49

66

Experiment 1 Total Time

0

2000

4000

6000

8000

10000

12000

0.01 0.1 1 10

r

T
o

ta
l T

im
e

(s
)

O(1) Bender
O(log n) Bender
c = 5
c = 10
c = 50
c = 100
c = 200
c = 1000
Schema
Randomized

Figure 6: Experiment 1 Results

Experiment 2 Total Time

0

1000

2000

3000

4000

5000

6000

7000

8000

0.01 0.1 1 10 100

r

T
o

ta
l T

im
e

(s
)

O(1) Bender
O(log n) Bender
c = 5
c = 10
c = 50
c = 100
c = 200
c = 1000
Schema
Randomized

Figure 7: Experiment 2 Results

5.3 Experiment 2: Performance on a Non-Uniform
Query Distribution

This experiment was identical to the first experiment, ex-
cept that the reads were sampled from a normal distribu-
tion with mean � �V� � 	 , and variance � �V� � �'� , and we took
�T� � � % � �1,;��%��'��, �1% �1� , �'� ��% � � . The idea was to reduce the
heavy paging of the first experiment, and instead simu-
late a database “hot-spot”, a phenomenom which occurs
in practice.

As can be seen from the results of Figure 7, this ex-
periment took substantially less time to complete than the
first experiment. It can be seen that, apart from the ran-
domized algorithm (which again performed the minimal
possible work), the schema based algorithm is clearly the
best algorithm. Indeed, it is impressive that it came so
close to the optimal performance.

5.4 Experiment 3: Worst-Case Performance for the
Randomized Algorithm

The previous two experiments showed that the random-
ized algorithm had very good performance for the special
case of appending to the end of the datbase. We demon-
strate in this experiment that, in some cases, it has very bad
performance, far worse than the other algorithms. This
experiment was identical to the first experiment, except
that instead of inserting DBLP records at the end of the
database, we inserted them at the beginning. As the ex-
periment would take an unreasonable amount of time to
run on the full DBLP, and because the worst case perfor-
mance of the randomized algorithm is so pronounced in
this case, we only ran the experiment on a small subset of
DBLP.

As can be seen from the results in Figure 8, all the other
algorithms easily beat the randomized algorithm’s perfor-
mance. Hence, in situations where worst case bounds

Experiment 3 Total Time

0

100

200

300

400

500

600

700

O(1) Bender O(log n)
Bender

c = 50 c = 200 c = 1000 Schema Randomized

Algorithm

T
o

ta
l T

im
e

(s
)

Figure 8: Experiment 3 Results

must be guaranteed, the randomized algorithm is not a
good choice.

6 Conclusions

We developed a general scheme which utilizes type in-
formation to improve the speed of document ordering in-
dices. This work is especially significant due to its wide
applicability, as it is not tied to any particular ordering al-
gorithm. We have found that in practice many large XML
repositories have a DTD or some other schema for con-
straint purposes, and hence we expect that this work will
have great practical impact.

References

[1] Serge Abiteboul, Haim Kaplan, and Tova Milo.
Compact labeling schemes for ancestor queries. In
Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 547–556. So-
ciety for Industrial and Applied Mathematics, 2001.

[2] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas,
and Jignesh M. Patel. Structural Joins: A Primi-
tive for Efficient XML Query Pattern Matching. In
ICDE. IEEE Computer Society, 2002.

[3] Michael A. Bender, Richard Cole, Erik D. Demaine,
Martin Farach-Colton, and Jack Zito. Two simplified
algorithms for maintaining order in a list. In Pro-
ceedings of the 10th Annual European Symposium
on Algorithms (ESA 2002), volume 2461 of Lecture
Notes in Computer Science, pages 152–164, Rome,
Italy, September 17–21 2002.

[4] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and
Eve Maler. Extensible Markup Language (XML)
1.0 (second edition). http://www.w3.org/TR/2000/
REC-xml-20001006, 2000.

[5] Online Computer Library Center. Introduction to
the Dewey Decimal Classification. http://www.oclc.
org/oclc/fp/about/about the ddc.htm.

[6] Edith Cohen, Haim Kaplan, and Tova Milo. Label-
ing Dynamic XML Trees. In Proceedings of PODS,
pages 271–281, New York, June 3–5 2002. ACM
Press.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to algorithms. MIT Press and McGraw-
Hill Book Company, 6th edition, 1992.

[8] Kurt Deschler and Elke Rundenstiner. MASS: A
Multi-Axis Storage Structure for Large XML Docu-
ments. In To appear in Proceedings of the Twelfth In-
ternational Conference on Information and Knowl-
edge Management, 2003.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

67

[9] P. Dietz and D. Sleator. Two algorithms for main-
taining order in a list. In Proceedings of the nine-
teenth annual ACM conference on Theory of com-
puting, pages 365–372. ACM Press, 1987.

[10] Paul F. Dietz. Maintaining order in a linked list. In
Proceedings of the fourteenth annual ACM sympo-
sium on Theory of computing, pages 122–127, 1982.

[11] D. C. Fallside (Eds). “XML Schema Part 0: Primer”.
W3C Recommendation, May 2001. http://www.w3.
org/TR/xmlschema-0.

[12] Damien K. Fisher, Franky Lam, William M. Shui,
and Raymond K. Wong. Efficient ordering for xml
data. In Proceedings of the 12th International Con-
ference on Information and Knowledge Management
(CIKM 2003), November 2003.

[13] Torsten Grust. Accelerating XPath location steps.
In Proceedings of the 2002 ACM SIGMOD inter-
national conference on Management of data, pages
109–120. ACM Press, 2002.

[14] Alan Halverson, Josef Burger, Leonidas Galanis,
Ameet Kini, Rajasekar Krishnamurthy, Ajith Na-
garaja Rao, Feng Tian, Stratis Viglas, Yuan Wang,
Jeffrey F. Naughton, and David J. DeWitt. Mixed
Mode XML Query Processing. In Proceedings of
the 29th International Conference on Very Large
Databases (VLDB), pages 225–236. Morgan Kauf-
mann, 2003.

[15] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
TIMBER: A native XML database. VLDB Journal:
Very Large Data Bases, 11(4):274–291, 2002.

[16] Haim Kaplan, Tova Milo, and Ronen Shabo. A
comparison of labeling schemes for ancestor queries.
In Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 954–963.
Society for Industrial and Applied Mathematics,
2002.

[17] W. Eliot Kimber. HyTime and SGML: Understand-
ing the HyTime HYQ Query Language. Technical
Report Version 1.1, IBM Corporation, August 1993.

[18] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon,
and P. Bruce Berra. Index structures for structured
documents. In Proceedings of the first ACM interna-
tional conference on Digital libraries, pages 91–99.
ACM Press, 1996.

[19] Quanzhong Li and Bongki Moon. Indexing and
querying XML data for regular path expressions. In
Proceedings of VLDB, pages 361–370, 2001.

[20] M. Murata, D. Lee, and M. Mani. “Taxonomy of
XML Schema Languages using Formal Language
Theory”. In Extreme Markup Languages, Montreal,
Canada, August 2001.

[21] Adam Silberstein, Hao He, Ke Yi, and Jun Yang.
BOXes: Efficient maintenance of order-based label-
ing for dynamic XML data. In the 21st International
Conference on Data Engineering (ICDE), 2005.

[22] Michael Sipser. Introduction to the Theory of
Computation. PWS Publishing Co., Boston, Mas-
sachusetts, 1997.

[23] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer,
Jayavel Shanmugasundaram, Eugene Shekita, and
Chun Zhang. Storing and querying ordered XML us-
ing a relational database system. In Proceedings of
the 2002 ACM SIGMOD international conference on
Management of data, pages 204–215. ACM Press,
2002.

[24] W3C Recommendation. XML Path Language
(XPath) Version 1.0. http:// www.w3.org/ TR/
xpath, November 1999.

[25] W3C Working Draft. XQuery 1.0: An XML
Query Language. http:// www.w3.org/ TR/ 2002/
WD-xquery-20021115, November 2002.

[26] Xiaodong Wu, Mong Li Lee, and Wynne Hsu. A
Prime Number Labeling Scheme for Dynamic Or-
dered XML Trees. In To appear in Proceedings of
the twentieth International Conference on Data En-
gineering, 2004.

[27] Masatoshi Yoshikawa, Toshiyuki Amagasa,
Takeyuki Shimura, and Shunsuke Uemura. XRel:
a path-based approach to storage and retrieval of
xml documents using relational databases. ACM
Transactions on Internet Technology (TOIT),
1(1):110–141, 2001.

CRPIT Volume 49

68

Establishing an XML Metadata Knowledge Base to Assist Integration
of Structured and Semi-structured Databases

Fahad M. Al-Wasil W. A. Gray N. J. Fiddian
Department of Computer Science

Cardiff University
 Wales, UK

{Wasil, W.A.Gray, N.J.Fiddian}@cs.cardiff.ac.uk

Abstract
This paper describes the establishment of an XML
Metadata Knowledge Base (XMKB) to assist integration
of distributed heterogeneous structured data residing in
relational databases and semi-structured data held in well-
formed XML documents (XML documents that conform
to the XML syntax rules but have no referenced DTD or
XML schema) produced by internet applications. We
propose an approach to combine and query the data
sources through a mediation layer. Such a layer is
intended to establish and evolve an XMKB incrementally
to assist the Query Processor to mediate between user
queries posed over the master view and the distributed
heterogeneous data sources. The XMKB is built in
bottom-up fashion by extracting and merging
incrementally the metadata of the data sources. The
XMKB is introduced to maintain the data source
information (names, types and locations), meta-
information about relationships of paths among data
sources, and function names for handling semantic and
structural discrepancies. A System to Integrate Structured
and Semi-structured Databases (SISSD) has been built
that generates a tool for a meta-user (who does the
metadata integration) to describe mappings between the
master view and local data sources by assigning index
numbers and specifying conversion function names. This
system is flexible: users can get any master view from the
same set of data sources depending on their interest. It
also preserves local autonomy of the local data sources.
The SISSD uses the local-as-view approach to map
between the master view and the local schema structures.
This approach is well-suited to supporting a dynamic
environment, where data sources can be added to or
removed from the system without the need to restructure
the master view and to regenerate the XMKB from
scratch..

Keywords: Well-formed XML document, Relational
database, XML queries, semi-structured data, semantic
mapping, data integration.

Copyright (c) 2006, Australian Computer Society, Inc. This
paper appeared at the Seventeenth Australasian Database
Conference (ADC2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 49. Gillian Dobbie and James Bailey, Eds. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

1 Introduction
With the growth, widespread and increasing popularity of
the Internet the number of data sources available for
public access is rapidly increasing both in number and
size, while at the same time users and application
programs increasingly need to combine data from these
different autonomous and heterogeneous data sources
(Segev and Chatterjee, December 1991.) (Karunaratna et
al., May 1998). However, for the foreseeable future, most
data will continue to be stored in relational database
systems because of the reliability, scalability, tools and
performance associated with these systems (Funderburk
et al., 2002) (Shanmugasundaram et al., September 2000).
Additionally, many web-based applications and web
services publish their data using XML (Lehti and
Fankhauser, 2004), therefore much interesting and useful
data can be found in well-formed XML documents.
Hence, building a data integration system that provides
unified access to semantically and structurally diverse
data sources is very desirable to link structured data held
in relational databases and semi-structured data in XML
documents (Gardarin et al., 1999, Lee et al., 2002).The
data integration system has to find structural
transformations and semantic mappings that result in
correct merging of the data and allow users to query the
so-called mediated schema (Kurgan et al., 2002). This
linking is a challenging problem since the pre-existing
databases concerned are typically autonomous and
located on heterogeneous hardware and software
platforms. In this context, it is necessary to resolve
several conflicts caused by the heterogeneity of the data
sources with respect to data model, schema or schema
concepts. Therefore, the mapping between entities from
different sources representing the same real-world objects
has to be defined. The main difficulty is that the data at
different sources may be represented in different formats
and in incompatible ways. For example, the
bibliographical databases of different publishers may use
different formats for authors' or editors' names (e.g., full
name or separated first name and last name), or different
units for prices. Moreover, the same expression may have
a different meaning, or the same meaning may be
specified by different expressions. This implies that
syntactical data and metadata can not provide enough
semantics for all potential integration purposes. As a
result, the data integration process is often very labour-
intensive and demands more computing expertise than
most application users have. Therefore, semi-automated
approaches seem the most promising, where mediation

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

69

engineers are given an easy tool to describe mappings
between the integrated (integrated and master are used
interchangeably in this paper) schema and local schemas,
to produce a uniform view over the local databases
(Young-Kwang et al., October 2002).

XML is becoming the standard format to exchange
information over the internet. The advantages of XML as
an exchange model, such as rich expressiveness, clear
notation and extensibility, make it the best candidate to be
a data model for the integrated schema. As the
importance of XML has increased, a series of standards
has grown up around it, many of which were defined by
the World Wide Web Consortium (W3C). For example,
the XML Schema language provides a notation for
defining new types of XML elements and XML
documents. XML with its self-describing hierarchical
structure and the language XML Schema provide the
flexibility and expressive power needed to accommodate
distributed and heterogeneous data. At the conceptual
level, they can be visualized as trees or hierarchical
graphs.

This paper mainly refers to the problem of integrating
distributed heterogenous structured data residing in
relational databases with semi-structured data held in
well-formed XML documents (that conform to the XML
syntax rules but have no referenced DTD or XML
schema) produced by internet applications. These XML
documents can be XML files on local hard drives or
remote documents on web servers. We propose an
approach to combine and query the data sources through
a mediation layer. Such a layer is intended to establish
and evolve an XML Metadata Knowledge Base (XMKB)
incrementally to assist the Query Processor in mediating
between user queries posed over the master view and the
distributed heterogeneous data sources, to translate such
queries into sub-queries -called local queries- which fit
each local data source, and to integrate the results. The
XMKB is built in a bottom-up fashion by extracting and
merging incrementally the metadata of the data sources.
The XMKB is an XML document which includes the
database or XML document name, type and location
information, and the metadata, in which the mappings
between the master view and schema structures of the
data sources are defined. A System to Integrate
Structured and Semi-structured Databases (SISSD) has
been built that generates a tool for meta-users to do the
metadata integration, producing an XML Metadata
Knowledge Base (XMKB), which is then used to
generate queries to local data sources from user queries
posed over the master view, and to integrate the results.
This tool parses the master view to generate automatically
an index number for each element and parses local
schema structures to generate a path for each element,
and produce a convenient GUI. The mappings assign
indices to match local elements to corresponding master
elements and to names of conversion functions. These
functions can be built-in or user-defined functions. The
XMKB is then generated based on the mappings by
combination over index numbers. User queries are
expressed in FLWR expressions of XQuery (a powerful
universal query language for XML) and processed

according to the XMKB, by generating an executable
query for each relevant local data source.

This system is flexible: users can get any virtual master
view they want from the same set of data sources
depending on their interest. It also preserves local
autonomy of the local data sources, thus any data sources
can be handled without rebuilding or modification. The
SISSD uses the local-as-view approach to map between
the master view and the local schema structures. This
approach is well-suited to supporting a dynamic
environment, where data sources can be added to or
removed from the system without the need to restructure
the master view. The XML Metadata Knowledge Base
(XMKB) is evolved and modified incrementally when
any data sources are added to or removed from the system
without the need to regenerate it from scratch.

The rest of the paper is organized as follows. The next
section presents related work. The architecture and its
main components are described in section 3. Section 4
presents the structure, content and the organization of
knowledge in the XMKB and how it is generated. Finally,
we present conclusions in section 5.

2 Related Work
Data integration has received significant attention since
the early days of databases. In recent years, there have
been several projects focusing on heterogeneous
information integration. Most of them are based on a
common mediator architecture (Wiederhold, March
1992). In this architecture, mediators provide a uniform
user interface to query integrated views of heterogeneous
data sources. They resolve queries over global concepts
into sub-queries over data sources. Mainly, they can be
classified into structural approaches and semantic
approaches.

In structural approaches, local data sources are assumed
to be crucial. The integration is done by providing or
automatically generating a global unified schema that
characterizes the underlying data sources. On the other
hand, in semantic approaches, integration is achieved by
sharing a common ontology among the data sources.
According to the mapping direction, the approaches are
further classified into two categories: global-as-view and
local-as-view (Lenzerini, 2002). In global-as-view
approaches, each item in the global schema is defined as
a view over the source schemas. In local-as-view
approaches, each item in each source schema is defined
as a view over the global schema. The local-as-view
approach is well-suited to supporting a dynamic
environment, where data sources can be added to or
removed from the data integration system without the
need to restructure the global schema.

There are several well-known research projects and
prototypes such as Garlic (Carey et al., 1995), Tsimmis
(Ullman, 1997), MedMaker (Papakonstantinou et al.,
1996) and Mix (Baru et al., 1999) which take a structural
and global-as-view approach. A common data model is
used, e.g., OEM (Object Exchange Model) in Tsimmis
and MedMaker. Mix uses XML as the data model; an
XML query language XMAS was developed and used as

CRPIT Volume 49

70

Figure 1: The Architecture of our System.

the view definition language there. DDXMI (Young-
Kwang et al., October 2002, Nam et al., 2003) (for
Distributed Database XML Metadata Interface) builds on
XML Metadata Interchange. DDXMI is a master file
including database information, XML path information (a
path for each node starting from the root), and semantic
information about XML elements and attributes. A
system prototype has been built that generates a tool to do
the metadata integration, producing a master DDXMI
file, which is then used to generate queries to local
databases from master queries. In this approach local
sources were designed according to DTD definitions.
Therefore, the integration process is based on the DTD
parsing that is associated with each source. (Almarimi
and Pokorny, 2004) describe an approach for mediation
of heterogeneous XML data sources. Their approach is
proposed as a tool for an XML data integration system to
combine and query XML documents through a mediation
layer. This layer is intended to describe the mappings
between the global XML schema and local heterogeneous
XML schemas. It produces a uniform interface over the
local XML data sources and provides the required
functionality to query these sources in a uniform way. It
involves two important units: the XML Metadata
Document (XMD) and the Query Translator. The XMD is
an XML document containing metadata, in which the
mappings between global and local schemas are defined.
The XML Query Translator which is an integral part of
the system is introduced to translate a global user query
into local queries by using the mappings that are defined

in the XMD. In this case the XML data sources are
described by the XML Schema language.

We classify our work as being in the structural category
but we differ from the others (Ullman, 1997,
Papakonstantinou et al., 1996, Baru et al., 1999) by
following the local-as-view approach. The XML
documents that we are interested in are well-formed XML
documents which have no referenced DTD or XML
schema, while the work in (Young-Kwang et al., October
2002, Nam et al., 2003) is interested in XML documents
designed according to DTD definitions, and that in
(Almarimi and Pokorny, 2004) is interested in XML
documents satisfying different XML schemas. Also our
work differs from the others (Young-Kwang et al.,
October 2002; Nam et al., 2003; Almarimi and Pokorny,
2004) by using an incremental tool to build the XML
Metadata Knowledge Base (XMKB). This tool would
start from the previous XMKB file and slightly modify it
in light of slight modifications to data sources schema
structure or when any data sources are added to or
removed from the system, instead of regenerating it from
scratch.

3 The SISSD Architecture and Components
In this section, we present an overview of the SISSD
architecture and summarize the functions of the main
components. The architecture we adopt is depicted in
Figure 1. Its main components are the Metadata Extractor
(MDE), the Knowledge Server (KS) and the Query
Processor (QP).

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

71

3.1 Metadata Extractor (MDE)
The MDE needs to deal with heterogeneity at the
hardware, software and data model levels without
violating the local autonomy of the data sources. It
interacts with the data sources via JDBC (Java Database
Connectivity) if the data source is a relational database or
via JXC (Java XML Connectivity) if the data source is an
XML document. The MDE extracts the metadata of all
data sources and builds a schema structure in XML form
for each data source.

We have developed JXC using a JDOM (Java Document
Object Model) interface to detect and extract the schema
structure of a well-formed XML document (that conforms
to the XML syntax rules but has no referenced DTD or
XML schema) where the metadata are buried inside the
data.

3.1.1 Schema Structures
Typically, the heterogeneous data sources use different
data models to store the data (e.g. relational model and
XML model). This type of heterogeneity is referred to as
syntactic heterogeneity. The solution commonly adopted
to overcome syntactic heterogeneity is to use a common
data model and to map all schemas to this common
model. The advantages of XML as an exchange model,
make it a good candidate to be the common data model
and for supporting the integrated data model. The
metadata extracts generated on top of the data sources by
using this data model are referred to as schema structures.
We define a simple XML Data Source Definition
Language (XDSDL) for describing and defining the
relevant identifying information and the data structure of
a data source. The XDSDL is represented in XML and is
composed of two parts. The first part provides a
description of the data source name, location and type
(relational database or XML document). The second part
provides a definition and description of the data source
structure and content. The emphasis is on making these
descriptions readable by automated processors such as
parsers and other XML-based tools. This language can be
used for describing the structure and content of relational
databases and well-formed XML documents which have
no referenced DTD or XML schema.

For relational databases the MDE employs JDBC to
access the DB without making any changes to it. The
MDE accepts the information necessary to establish a
connection to a DB to retrieve the metadata of its schema
and uses the XDSDL to build the target schema structure
for that DB, together with necessary information such as
the DB location (URL), where to save the schema
structure, the User ID and Password.

It opens a connection to that DB through a JDBC driver.
Opening this connection enables SQL queries to be issued
to and results to be retrieved from the DB. Once the
connection is established, the MDE retrieves the names of
all the tables defined in the accessed DB schema and then
uses the XDSDL to define these tables as elements in the
target schema structure. Furthermore, for each table the
MDE extracts and analyses the attribute names, then
defines these attributes as child elements for that table
element in the target schema structure using the XDSDL.

For XML documents the MDE employs JXC to access
the document without making any changes to it. The
MDE accepts the information necessary to establish a
connection to a well-formed XML document to retrieve
the metadata of its schema where the metadata are buried
inside the data. It then uses the XDSDL to build the target
schema structure for that XML document, together with
necessary information such as the document location
(URL), where to save the schema structure, and the
document name.

It opens a connection to that XML document through a
JDOM interface. Once the connection is established, the
JXC automatically tracks the structure of the XML
document, viz. each element found in the document,
which elements are child elements and the order of child
elements. The JXC reads the XML document and detects
the start tag for the elements. For each start tag, the JXC
checks if this element has child elements or not: if it has
then this element is defined as a complex element in the
target schema structure using the XDSDL, otherwise it is
defined as a simple element by the MDE. The defined
elements in the target schema structure take the same
name as the start tags.

3.2 Knowledge Server (KS)
The Knowledge Server (KS) is the central component of
the SISSD. Its function is to establish, evolve and
maintain the XML Metadata Knowledge Base (XMKB),
which holds information about the data sources and
provides the necessary functionality for its role in
assisting the Query Processor (QP). The KS generates a
tool for meta-users to do metadata integration by building
the XML Metadata Knowledge Base (XMKB) that
comprises information about data structures and
semantics. This can then be used by the Query Processor
(QP) to automatically rewrite a user query over the
master view into sub-queries called local queries, fitting
each local data source, and to integrate the results.

CRPIT Volume 49

72

3.3 Query Processor (QP)
The Query Processor receives a user query over the
master view to process it and returns the query result to
the user in integrated form. User queries are expressed in
XQuery (a powerful universal query language for XML)
using FLWR expressions. XQuery offers seven types of
expression, but FLWR expressions are among the most
interesting types of expression it offers. Using these
expressions for queries over the master view makes it
easy to translate the sub-queries directed at relational
databases into SQL queries since syntactically, FLWR
expressions look similar to SQL select statements and
have similar capabilities, only they use path expressions
instead of table and column names.

The Query Processor is composed of several components
in charge of:

• Rewriting the user query into sub-queries -called
local queries- which fit each local data source,
by using the mapping information stored in the
XMKB.

• Converting the XQuery sub-queries addressed to
the relational databases into SQL queries to
execute them, then converting the results into
XML format.

• Sending local queries to their corresponding
local data source engine, to process the query
and return the results.

• Merging the results of the sub-queries.

4 The XML Metadata Knowledge Base
(XMKB)

The building of the XML Metadata Knowledge Base
(XMKB) is performed through a semi-automatic process.
The XMKB is generated based on mappings between the
master view and the local schemas, and includes the data
source information (names, types and locations), XML
path information (a path for each node starting from the
root), and semantic information about XML elements
(function names to resolve structural and semantic
conflicts).

4.1 The Structure of XMKB
The XML Metadata Knowledge Base (XMKB) is an
XML document composed of two parts. The first part
contains information about data source name, type and
location. The second part contains meta-information
about relationships of paths among data sources, and
function names for handling semantic and structural
discrepancies. The XMKB structure with its schema is
shown in Figures 2 and 3, respectively. The
DS_information element in Figure 2 contains data source
names, types and locations. The DS_information element
has one attribute called number which holds the number
of data sources present in the integration system (3 in the
example shown). Also the DS_information element has
child elements called DS_Location elements. Each
DS_Location element contains the data source name, its
type (relational database or XML document) as an

attribute value and the location of the data source as an
element value. This information is used by the Query
Processor to specify the type of generated sub-query
(SQL if the data source type is relational database, or
XQuery if the data source type is XML document) and
the data source location that the system will submit the
generated sub-query to. The Med_component element in
Figure 2 contains the mappings between the master view
elements and the local data source elements, and the
function names for handling semantic and structural
discrepancies. The master view elements are called
source elements, while corresponding elements in local
data sources are called target elements. The source
elements in the XMKB document have one attribute
called path which contains the path of the master view
elements. Also the source elements in this document have
child elements called target which contain the
corresponding path for the master view elements in each
local data source, or null if there is no corresponding
path. The target elements in the XMKB document have
two attributes. The first one is called name and contains
the name of the local data source, while the second is
called fun and contains the function name that is needed
to resolve semantic and structural discrepancies between
the master view element and the local data source
element concerned.

4
T
in
so
co
so

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)
Figure 2: A sample XMKB document.

.2 How to Generate an XMKB
he XML Metadata Knowledge Base (XMKB) is utilized
 mediation to overcome the heterogeneity of data
urces. XMKB is intended to maintain the
rrespondence between the components of the data
urces. For each component of the master view, the

73

objective is to record the set of components having the
same meaning in the local schema structures and the
discrepancy resolution function if it is needed.

Each data source (relational database or well-formed
XML document) has its own schema structure in XML
format constructed by the Meta-data Extractor (MDE).
We assume that elements in local data sources do not
contain attributes. This implies that data source schema
structures can be represented as n-ary trees. Our approach
involves mapping paths in the master view to (sets of)
paths in the local schema structures, though we often
speak of elements instead of the paths that lead to these
elements. We match an element in the master view with
elements in local data source schema structures, through
generating an index number for each element in the
master view tree and then assigning these index numbers

Figure 3: An XML schema of an XMKB document.

to the element(s) with the same meaning in the local
schema structure trees. Hence elements with the same
number have the same meaning. By collecting all
elements with the same numbers, the source and target
paths can be generated automatically, and the XMKB can
be easily constructed. An especially convenient special
case is where an element in the master view exactly
matches one in a local schema structure, in that its field
has the same meaning as the one in the master view.
Elements in local schema structures should not appear in
the XMKB file if their meaning does not relate to any
element in the master view.

Constructing an XMKB file manually is an error prone
and tedious job, so that machine support is highly
desirable. Hence, we have developed a system that
constructs an XMKB automatically. We implement a
simple form (GUI) -from parsing a local schema
structure- as an assistant tool for mapping generation. For

example, Figure 4 presents part of a GUI for the local
schema structure shown in Figure 5.

Figure 4: A GUI for local schema structure

of the bib XML document.

The first column is used for assigning the unique index
numbers of master view elements to the equivalent
elements in the local schema structure. Elements without
an equivalent index number are not included in the
XMKB document. The second column is used to specify
the function names which are needed to resolve
heterogeneity conflicts by performing specific operations.

Figure 5: Schema structure of the bib XML document.

CRPIT Volume 49

74

Figure 6: Example of mapping between master view and XML document.

The process of XMKB generation comprises the
following steps:

1. Automatically generate unique index numbers
for the master view elements.

2. Produce a convenient GUI for each local schema
structure.

3. Using the GUI for each local schema structure,
the unique index numbers of the master view
elements are assigned to the equivalent local
schema structure elements. Figure 6 shows an
example of mapping between a master view (on
the left of the figure) and the schema structure of
the bib XML document shown in Figure 5.

4. Use the second column of the GUI form to
specify the function names which are needed to
resolve any heterogeneity conflicts by
performing specific operations.

5. After assigning index numbers and function
names, mapping paths in the master view to (sets
of) paths in the local schema structures are
generated for each element starting from the
root, see Figure 7.

6. Finally, data source information (name, type and
location), mapping paths and function names
needed to resolve semantic and structural
conflicts are merged with the XML Metadata
Knowledge Base (XMKB) based on the
mappings by collecting elements with the same
index numbers.

This approach provides a flexible environment able to
accommodate the continual change and update of data
source schemas, especially suitable for XML documents
on web servers since these remote documents are not
static and are often subject to frequent update. The SISSD
gives the flexibility to remove any data source schema
from the XMKB and then add this data source again with
an updated or altered schema without any other impact on
the XMKB or the need to regenerate it from scratch.

4.2.1 Index number generation for the master
view elements

The generated index numbers for the master view
elements are used to match local elements to
corresponding master elements. We employ a mechanism
to generate such index numbers using JDOM technology.
By applying this mechanism, a unique index number is
generated for each element in the XML document
whatever the nesting complexity of the document.

The process of generating the index numbers comprises
the following steps:

1. First, use JDOM technology to read and parse
the XML document (master view) and map it
to a tree.

2. Identify the root element of the document and
assign index number 1 to it.

3. For each element in the document (including
the root element), get all the children of this
element.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

75

Figure 7: Generated mapping paths.

4. Assign a sequential number starting from 1
for each child to represent the order of
children for that parent.

5. Combine this number given for the child with
the index number of the parent separated by
dot (.) and this will be the index number of
that child. For example, if the root element
has four child elements, the index number of
the first child element will be 1.1, the index
number of the second child element will be
1.2, and so on.

4.2.2 Mapping between elements
According to the number of elements that are involved in
the master view and a local schema structure, mappings
between them are classified as One-to-One, One-to-Many
or Many-to-One. For example, a local data source may
represent author names as full names, while the master
view separates the first and last names. In this case, the
answer from the local data source must be split up if a
query is to retrieve the first name of the author. Several
mapping cases are possible in which such conflicts may
occur between elements. In the next subsections, we
describe some cases.

• One to One with semantic functions: this can
occur when an element in the master view
matches one element in a local schema structure
but they use different reference systems. For
example, the master view may represent price
elements in dollar currency, while the local data
source uses sterling currency or represents prices
in cents. Therefore to resolve this conflict some
conversion mechanism is required to translate
between such representations.

• One-element to Many-elements: this case can
occur when there is one element in the master
view mapped to many elements in a local
schema structure. Hence, more than one element
in the local schema structure has the same index
number. For example, the master view may
represent an editor name as a full name, while
the local data source separates an editor’s first
and last names. Therefore to resolve this conflict
we need a function to concatenate the first and
the last name elements to get the full name.

• Many-elements to One-element: this case can
occur when there is more than one element in
the master view corresponding to one element in
a local schema structure. Hence, the element in
the local schema structure will have more than
one index number and more than one function
name. For example, the master view may
represent an author name as first_name and
last_name, while the local data source represents
it as a full name. Therefore to resolve this
conflict two functions, firstName and lastName,
are needed to split the author’s full name into
separate first name and last name. Figure 8
shows an example of Many-elements to One-
element mapping and how this is done inside the
GUI.

5 Conclusions
In this paper, we have described an approach for
establishing an XML Metadata Knowledge Base
(XMKB) to resolve structural and semantic conflicts
between distributed heterogeneous structured data
residing in relational databases and semi-structured data

CRPIT Volume 49

76

Figure 8: Example of Many-elements to One-element mapping.

held in well-formed XML documents produced by
internet applications. The XMKB is employed to
maintain the data source information (names, types and
locations), meta-information about relationships of paths
among data sources, and function names for handling
semantic and structural discrepancies. A GUI tool is
generated automatically for a meta-user (who does the
meta-data integration) to describe mappings between the
master view and local data sources by assigning a unique
index number generated automatically for master view
elements to the element(s) with the same meaning in the
local schema structures, and specifying any necessary
conversion functions for resolving structural and semantic
conflicts. The XMKB is built based on these mappings by
collecting element paths with the same index numbers to
contain information about data structures and semantics.
It can then be used by the Query Processor (QP) to
mediate between user queries posed over the master view
and the distributed heterogeneous data sources, to
translate such queries into sub-queries -called local
queries- which fit each local data source, and to integrate
the results of these sub-queries.

The SISSD has been developed using Java, JDOM, and
the JavaCC compiler. We have implemented the Meta-
data Extractor (MDE) using JDBC and JDOM
technology. We use JDBC as the API to connect to a
relational database system. As a result, our
implementation works on top of most commercial
database systems including DB2, Oracle and Microsoft
SQL Server, and on most hardware platforms. We have
developed JXC using a JDOM (Java Document Object
Model) interface to detect and extract the schema
structure of a well-formed XML document, where the
metadata are buried inside the data. The SISSD also
preserves local autonomy of the local data sources, thus

any data sources can be handled without rebuilding or
modifying the XMKB.

Certain issues remain to be investigated. For example, if
some elements in the local data sources contain attributes
and these attributes correspond to elements in the master
view, how mapping between them would be achieved.
This is not yet implemented, but should not be difficult.
There are other matters, notably relating to the SISSD
Query Processor, which have been outlined but not
discussed in any great detail in this paper: it is intended
that these will be elaborated in other, separate,
publications.

6 References
W3C Consortium: Extensible Markup Language (XML).

http://www.w3.org/TR/2000/REC-xml.
ALMARIMI, A. & POKORNY, J. (2004) A Mediation

Layer for Heterogeneous XML Schemas.
Proceedings of the Sixth International
Conference on Information Integration and Web
Based Applications & Services (iiWAS2004).
Jakarta, Indonesia.

BARU, C., GUPTA, A., LUDÄSCHER, B.,
MARCIANO, R., PAPAKONSTANTINOU, Y.,
VELIKHOV, P. & CHU, V. (1999) XML-based
information mediation with MIX. SIGMOD '99:
Proceedings of the 1999 ACM SIGMOD
International Conference on Management of
Data. ACM Press.

CAREY, M. J., PETKOVIC, D., THOMAS, J.,
WILLIAMS, J. H., WIMMERS, E. L., HAAS,
L. M., SCHWARZ, P. M., ARYA, M., CODY,
W. F., FAGIN, R., FLICKNER, M.,
LUNIEWSKI, A. W. & NIBLACK, W. (1995)

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

77

Towards heterogeneous multimedia information
systems: the Garlic approach. RIDE '95:
Proceedings of the 5th International Workshop
on Research Issues in Data Engineering-
Distributed Object Management (RIDE-
DOM'95). IEEE Computer Society.

FUNDERBURK, J. E., KIERNAN., G.,
SHANMUGASUNDARAM, J., SHEKITA, E.
& WEI, C. (2002) XTABLES: Bridging
Relational Technology and XML. IBM Systems
Journal, 41(4), 616-641.

GARDARIN, G., SHA, F. & DANG-NGOC, T. (1999)
XML-based Components for Federating
Multiple Heterogeneous Data Sources. ER '99:
Proceedings of the 18th International
Conference on Conceptual Modeling. Springer-
Verlag.

KARUNARATNA, D. D., GRAY, W. A. & FIDDIAN,
N. J. (May 1998) Organising Knowledge of a
Federated Database System to Support Multiple
View Generation. Proceedings of the 5th KRDB
Workshop (Knowledge Representation meets
Data Bases), pp. 12.1-12.10, Seattle,
Washington, USA.

KURGAN, L., SWIERCZ, W. & CIOS, K. (2002)
Semantic Mapping of XML Tags using
Inductive Machine Learning. Proceedings of the
International Conference on Machine Learning
and Applications - ICMLA '02. Las Vegas,
Nevada, USA.

LEE, K., MIN, J. & PARK, K. (2002) A Design and
Implementation of XML-Based Mediation
Framework (XMF) for Integration of Internet
Information Resources. HICSS '02: Proceedings
of the 35th Annual Hawaii International
Conference on System Sciences (HICSS'02)-
Volume 7. IEEE Computer Society.

LEHTI, P. & FANKHAUSER, P. (2004) XML data
integration with OWL: Experiences &
challenges. Proceedings of the International
Symposium on Applications and the Internet
(SAINT 2004). Tokyo, Japan.

LENZERINI, M. (2002) Data integration: a theoretical
perspective. Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of database systems. Madison,
Wisconsin.

NAM, Y.-K., GOGUEN, J. & WANG, G. (2003) A
Metadata Tool for Retrieval from Heterogeneous
Distributed XML Documents. Proceedings of
the International Conference on Computational
Science, LNCS 2660, Springer, pp. 1020-1029.

PAPAKONSTANTINOU, Y., GARCIA-MOLINA, H. &
ULLMAN, J. D. (1996) MedMaker: A
Mediation System Based on Declarative
Specifications. ICDE '96: Proceedings of the
Twelfth International Conference on Data
Engineering. IEEE Computer Society.

SEGEV, A. & CHATTERJEE, A. (December 1991) Data
manipulation in heterogeneous databases.
Sigmod Record, 20(4), 64-68.

SHANMUGASUNDARAM, J., SHEKITA, E. J., BARR,
R., CAREY, M. J., LINDSAY, B. G.,
PIRAHESH, H. & REINWALD, B. (September
2000) Efficiently Publishing Relational Data as
XML Documents. Proceedings of the 26th
International Conference on Very Large
Databases, (VLDB2000). Cairo, Egypt.

ULLMAN, J. D. (1997) Information Integration Using
Logical Views. ICDT '97: Proceedings of the
6th International Conference on Database
Theory. Springer-Verlag.

WIEDERHOLD, G. (March 1992) Mediators in the
Architecture of Future Information System.
IEEE Computer, 25(3), 38-49.

YOUNG-KWANG, N., JOSEPH, G. & GUILIAN, W.
(October 2002) A Metadata Integration Assistant
Generator for Heterogeneous Distributed
Databases. Proceedings of the Confederated
International Conferences DOA, CoopIS and
ODBASE, Irvine CA, LNCS 2519, Springer, pp.
1332-1344.

CRPIT Volume 49

78

Peer-to-Peer Form Based Web Information Systems

Stijn Dekeyser1 Jan Hidders2 Richard Watson1 Ron Addie1

1 University of Southern Queensland, Australia
2University of Antwerp, Belgium

Abstract

The World Wide Web revolutionized the use of forms
in everyday private and business life by allowing a
move away from paper forms to easily accessible dig-
ital forms. Data captured using such HTML forms
could be processed using relational databases or other
applications that enforce and apply business logic.
Lately XForms has been introduced, offering a log-
ical evolution of digital data capture and dissemina-
tion using Internet and document technology.

This paper introduces two important new ideas.
The first one is the main focus of the paper: a novel
type of peer-to-peer web information system where
forms are first-class citizens containing extended ac-
cess rules of very fine granularity which govern read
and update rights to data objects associated to the
forms. The second idea, which we explore in a prelim-
inary section, forms a powerful motivation for the use
of such systems: the automatic and dynamic deriva-
tion of workflow processes from the access rules con-
tained in forms.

As such, the proposed system leverages current
forms and Internet technology to liberate the creation
and use of forms and reports, facilitating the capture
and dissemination of data, while allowing dynamic
management of work flows within organizations.

1 Introduction

The background for the theory developed in this pa-
per is a real-life problem. The Department of Math-
ematics & Computing at USQ would like its staff
to easily capture data from colleagues and students
through web-based forms, efficiently store that data,
and re-use the data captured by others, without
compromising security and access rights, and with-
out staff having to script their own web pages with
database functionality. In addition, while giving ev-
eryone the opportunity to create complex interactive
data-driven applications, the system which allows this
must be able to communicate with other such systems
on different peers, and show end-users the various ac-
tions which make up the workflow represented by a
form. The workflow is not defined a priori; instead,
addition of new forms may add or alter individual
steps.

Let us consider a brief example. Suppose the sec-
retary to the Dean creates a Leave Application form
to be filled in by staff members prior to going on leave.
The Dean must approve the application, after which

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at The Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Tasmania. Conferences in Re-
search and Practice in Information Technology, Vol. 49. Gillian
Dobbie and James Bailey, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

it is sent to human resources and cannot be altered
anymore. Prior to the Dean’s approval, the applicant
may change the dates of the application, but he can-
not do so after approval is given. Months later, it
is decided that the Head of Department (HoD) must
give a separate approval, prior to the Dean’s. A sim-
ple change of the form’s definition must add this new
information and alter the original access rules, which
changes the workflow graph.

Another example in which data is re-used by differ-
ent peers is given by the Publications Form. Suppose
staff member John makes a form available to all staff
in which they can enter and alter details of publica-
tions of which they are an author, and let others use
parts of the entered information. Now suppose an-
other staff member, Jill, wants to extend this form.
She might create a form definition that re-uses John’s
data objects, but extends them with her own. End-
users may enter data in either form, after which the
basic publication data as defined in John’s form is
available to everyone, as long as the access rights are
satisfied.

These two scenarios constitute a basis for propos-
ing a new paradigm for web based information sys-
tems in which forms are first-class citizens represent-
ing complex, distributed instances and in which work-
flows are dynamically built up from the access rules
present in form definitions.

Motivation. To the best of our knowledge, a sys-
tem that allows all these functions does not yet exist.
Currently, parts of the problem can be solved using
various techniques and tools. For example, capturing
data can be done by a distributed database, where
users create their own tables and re-use information
by using views1 defined by others. Electronic forms
can be generated using HTML and special purpose
scripts, or the recent XForms [14] recommendation
may be used depending on available implementations.
In the latter case, access rights to data elements, and
a concept of workflow, still need to be coded sep-
arately. Finally, commercial workflow systems (e.g.
[7, 22]) require a complex design phase and implemen-
tation performed usually by specialists outside of the
organization, after which adaptations in the business
actions require a new cycle of design and implemen-
tation.

Hence, the two main motivations for this research
are as follows. Firstly, we want to ultimately create
truly enabling software that allows individuals a fairly
easy way to create electronic forms, capture data with
them that will be stored efficiently, and generate re-
ports of data captured by their own forms but also
those of other, distributed, users so long as this is
allowed by access rules.

Secondly, as forms defined in the system include
1This then raises the problem of updating relational views.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

79

access rights, a workflow process is automatically as-
sociated with them. There is no need for a complex
design phase for constructing a workflow, and any up-
dates to the access rules (or new ones in a new form)
incrementally modify the associated workflow. In ad-
dition to this significant benefit, we want to give cre-
ators of forms an easy method to check if the desired
end states of the form can indeed be reached, and
want to inform users of a form how the data is used
(if this is allowed by the creator). These are proper-
ties that can be derived once the graph representing
the workflow is constructed.

Contribution. The twin motivations listed above
naturally translate in two research goals. The main
contribution of this paper, however, lies with the for-
malization of the form-based peer-to-peer web infor-
mation system. Specifically we formalize schemas for
forms, and define the access rules language.

A secondary contribution lies in the exploratory
fifth section by describing research questions associ-
ated to the derivation of workflow processes implied
by access rules in forms.

Organization. This paper is organized as follows.
In Section 2 we discuss both technical and theoreti-
cal work related to ours. In Section 3 we present the
formal model for form-based peer-to-peer web infor-
mation systems. We present the access rule language
in Section 4 which will also be used to infer workflows,
as explored in Section 5. Finally, in Section 6 we give
a brief conclusion, discuss implementations, and out-
line the next steps in our ongoing research of deciding
workflow processes in electronic form systems.

2 Related Work

The examples briefly described in the introduction
point to both a variety of tools and systems that
can be used to implement such a system, and also
a variety of fundamental topics and concepts that are
being drawn upon. In the first category, we may
list tools such as XForms and server-side scripting
languages (e.g. PHP) which facilitate communication
with database servers (e.g. PostgreSQL). On the the-
ory side, clearly all of the following are relevant: work-
flow theory, data and schema integration, distributed
databases, views, peer-to-peer information systems,
and security.

2.1 XForms

Many practical problems associated with electronic
forms as implemented by html have recently been
solved by the introduction of the XForms recom-
mendation by the World Wide Web consortium [14].
In our work, we use XForms as but one of the
tools to solve our technical problem; indeed, we use
its strengths such as its Model-View-Controller de-
sign pattern, its client-side validation, construction
of XML output, and so on. Importantly, however, we
add many desirable fundamental features, thus sug-
gesting new avenues of study in the context of future
versions of XForms.

Looking at some important practical differences
between our form-based information system and
XForms, we list the following three issues:

• Database connection. In XForms, it is possible
to read data from and write data to a database.
But the tables must already exist, requiring form
designers to know the schema and provide the
correct sql expressions.
In contrast, in our system form designers need

only to focus on creating the schema of their
form, possibly re-using other form schemas; read
and write access to and from the database, as
well as preceding data-definition statements, are
handled automatically.

• Access rules. In XForms, there are no rules to
regulate access to data stored in the XML in-
stance or a database. It is assumed that all
data in the XML source is accessible, or that the
database handles access rights. In the latter case,
the form designer may not have full control over
these constraints.
In our proposed system, access rules are an ex-
plicit part of the form’s definition, under control
of the form’s designer, and enforced by the forms
server.

• Workflow modelling. There is also no notion of
a workflow process attached to XForms; fields
may be entered in a random order, although some
values are calculated from others, and constraints
may reference other fields.
The access rules we require in a form’s definition
implicitly impose an order in which fields may
be assigned values. Hence it is possible to infer
a workflow process corresponding to a form.

Turning to some more theoretical issues w.r.t.
XForms, we note that the recommendation is very
complex owing to the fact that users have a very ex-
pressive language in which to describe forms. Not
only does XForms use the full power of XML Schema’s
type system, it also introduces a rich constraint lan-
guage. This expressivity precludes finding decidable
problems such as completion. In our ongoing work,
we will take a different approach, limiting expressive-
ness to allow the study of decidability problems.

2.2 Workflow Processes

The secondary aim of this paper is to investigate un-
der which conditions (in the form of a data model and
access rules language) it is possible to automatically
construct a workflow graph corresponding to a form
definition.

Research in the area of workflow modelling [3] has
been active since the late eighties and has led to the
commercial development of various Workflow Man-
agement Systems (WfMS) [18]. The main perspec-
tives have traditionally been (1) control flow (or pro-
cess), (2) resource (or organization), (3) data (or in-
formation), (4) task (or function), and (5) operation
(or application) perspectives [2]. Often the aim has
been to extend modelling concepts to better capture
various subtle details of these perspectives. Dynamic
derivation of workflow processes has not yet received
attention, and constitutes a very significant motiva-
tion for using form-based information systems, which
are the main contribution of this paper. The most
relevant perspective relating to workflow research in
our setting is the data perspective, as electronic forms
record data and do this progressively on availability
of other data previously entered.

In contrast, in Workflow Patterns [5] control flow
(constraints on order of processing, synchronization,
etc) is more important than data-flow. In our case,
we focus on the flow of data and the operations per-
formed on them; control-flow more or less implicitly
follows from the data-flow.

Hence, a workflow case in the context of this pa-
per is an instance over a certain form’s schema, an
action corresponds to the entry of data in a part of
a form, and the workflow process is the sequence of
actions that can be executed to arrive at a correctly

CRPIT Volume 49

80

completed form as defined by the access rules over the
data provided by the form’s designer.

Workflow Mining. Another area in workflow re-
search recently has been the mining of workflow pro-
cesses from diverse information sources such as trans-
action and event logs [4, 8]. In this case, as in our
work, workflow processes are not modelled ahead of
time by experts. However, the focus is significantly
different from ours, and the two methods are com-
pletely independent.

Finally, in our own previous work [16, 17], we
have discussed formal methods to decide when two
workflow processes are the same, and have also pre-
sented non-destructive methods to integrate form-
based views in workflow systems.

2.3 Databases, Modelling, Integration, Dis-
tribution, and Views

The largest area of research relevant to this paper is
most obviously that of databases. Several topics are
especially relevant. Firstly, our form definitions con-
tain a schema strongly based on entity-relationship
modelling. Instances over the schemas correspond
in fact to nested relations, a concept widely studied
in the seventies of the previous century. We repre-
sent the instances as trees and will normally serialize
them as XML documents, another popular, if much
more recent, database research area. Likewise, the
schemas will be expressed in a language based on
XML Schema. In addition, our access rules language
is based on a subset of XPath corresponding to first
order logic restricted to two variables (FO2).

Distributed Databases and Peer-to-Peer Infor-
mation Systems. A clear design decision for our
forms system has been to use the powerful notion
of peer-to-peer information systems. Rather than
describing one centralized forms server, we assume
groups of users each have their own server which com-
municates with peers to access forms, obtain data
stored at other locations, and add to that data. This
aspect opens up many interesting topics already stud-
ied in the context of distributed databases. We shall
assume solutions from that field rather than re-invent
the wheel. However, two related issues deserve some
additional attention: views and data & schema inte-
gration.

Data and Schema Integration. Both within a
single peer as between various peers, it is possible
and desirable to reuse schemas introduced by differ-
ent forms. Schema integration is a very complex and
widely studied topic in the context of databases sys-
tems [10, 11, 20, 21]. In our case, some of the complex-
ities are irrelevant, while other results are very much
applicable. However, the main difference, from a data
integration perspective, is that we don’t limit integra-
tion to read-only data. Indeed, we must allow users
to read information from various peers representing
an integrated schema, but we must also enable them
to update this data. This further complicates inte-
gration considerably, however, the description of our
form-based information system will adequately sup-
port a simple and efficient procedure for reading and
writing data from various sources.

Views. Our data model stores a collection of log-
ically related data structured in accordance to the
schemas present in forms. In a real sense, each form
schema plus its access rules acts as a view on the
underlying data model. The isa constraints that we

define in Section 3 are able to project parts from differ-
ent entities. The join operation is present in the mod-
elling of relations in the schema. And some form of
selection is done when applying access rules. Hence,
creators of forms have an implicit view language at
their disposal, and the problem of view updatability
and maintenance appears.

The data model can be implemented in various
types of database systems; usually, a relational dbms
will be used because our nested relations-like in-
stances can be translated easily to this model. Alter-
natively, native or XML-enabled databases can also
be used. When a relational system is chosen, results
from research into relational views can be used [12].
Research into updating XML views is currently un-
derway [19].

2.4 Security and Authentication

Forms systems collect, store, retrieve and dissemi-
nate possibly sensitive information. It is essential
that such systems provide secure access to data when
required. The area of security has been and contin-
ues to be thoroughly studied. Formal languages for
expressing security relationships have also been de-
fined [15, 24]. In our work, we take a rather database-
oriented approach to security; in Section 4 we describe
a rule language that enables a forms creator to define
precisely who can create, read and delete data cor-
responding to forms. These rules will be part of the
data dictionary of the forms system.

A reliable authentication process together with
data encryption, typically based on public key cryp-
tography and digital certificates, is needed in addition
to the access rules to build a truly secure system. It
is assumed that these authentication and encryption
procedures are available as a service to the form-based
information system, and so is outside the scope of the
current work.

Authentication on single server systems is a
straightforward operation. Extending authentication
seamlessly to systems where data is shared across
multiple peers is not so simple. We certainly wish to
avoid the situation were a user is required to identify
herself to every peer that is involved in a forms trans-
action. Instead, authentication should be carried out
at the primary forms server, and inter-peer negoti-
ation should propagate appropriate access rights to
data on other servers. This problem as yet requires
additional research.

3 FormWIS Data Model

We proceed with describing what a form-based web
information system (FormWIS) is, and define the
data model that it uses.

Form-based Web Information System. A
FormWIS is a cooperative information system that
presents all data to the user in electronic web forms.
As such it offers a view on the underlying data model
that can be updated through data entry in the form.
Users can perform all manipulations of the presented
data if this is allowed by the access rules that are part
of the definition of a form2.

Users can add new forms that may or may not
share information with previously defined forms. The
underlying data model is then automatically extended
with the extra information in this new form defini-
tion. The access rules associated to the new data are
determined by the user who defined the form.

2This implies that users may have to identify themselves by sup-
plying, for example, a password. We assume such an authentication
mechanism is present.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

81

A FormWIS will cooperate with peers over a net-
work, making data sharing between disparate organi-
zations possible. What is special and desirable about
FormWISs, is that they allow a more natural evolu-
tion of data capturing and liberal reuse of information
sources both within an organization and with third
parties, while maintaining strict rules about who has
which type of access to which data. In addition, as
will be discussed in Section 5, they allow for auto-
matic and dynamic modelling of a workflow process.

3.1 Formal Definitions

To foster a clear understanding of the FormWIS data
model, we will first define schemas and instances over
schemas, before turning to two different semantics of
instances.

3.1.1 Schemas and Instances

A FormWIS stores definitions of forms and instances
that belong to a form. We will defer the formal defi-
nition of a form to Section 4, but one important part
of a form is its schema. In turn, a schema consists of
several parts. We first define a frame.

Definition 1 (Frame) A frame is a tuple F =
(C, R, s, t) where

• C is a set of class names partitioned into Ce, the
entity classes, and Cv, the value classes

• R a set of relation names

• s : R → Ce and t : R → C giving the source and
target classes of a relation.

A frame is said to be a forest frame if the correspond-
ing multi-graph is a forest.

Author

Book

writes

Name

Title

hasname

hastitle

Figure 1: An example of a frame.

Example 1 Consider the following frame F which
will be used in the context of a form capturing book
publication details for authors. F = (C, R, t, s)
where C = Ce ∪ Cv with Ce = {Author, Book}
and Cv = {Name, Title}. R = {writes, hasname,
hastitle}, and s(writes) = {Author: dekeyser } =
s(hasname). Furthermore, s(hastitle) = {Book} =
t(writes), t(hasname) = {Name: }, and t(hastitle) =
{Title}. A graphical representation of this frame is
shown in Figure 1.

One of the central ideas in our work is that we argue
that forms are usually hierarchical in nature. It there-
fore seems natural to use an hierarchical data model
like nested relations or XML. However, we will want
to model many-to-many relations such as the relation-
ship between the classes Book and Author, which is
more easily done in a graph-based model such as the
Entity-Relationship Model (ER Model) or the Object
Exchange Model (OEM).

Definition 2 (Instance of frame) An instance of
a frame F = (C,R, s, t) is a tuple (O, IC , IR) where

• O a set of objects partitioned into Oe, entities,
and Ov, values

• IC : C → 2O the class interpretation function
such that IC(c) ⊆ Oe if c ∈ Ce and IC(c′) ⊆ Ov

if c′ ∈ Cv

• IR : R → 2O×O the relation interpretation func-
tion such that for all (o1, o2) ∈ IR(r) it holds that
o1 ∈ IC(s(r)) and o2 ∈ IC(t(r)).

Example 2 Consider the following instance I of
frame F presented in Example 1: I = (O, IC , IR)
where O = Oe ∪Ov with Oe = {a1, a2, a3, b1, b2} and
Ov = {knuth, date, widom, programming, databases}.
Furthermore, IC(Author: dekeyser) = {a1, a2, a3}
and IC(Book) = {b1, b2}. Finally, IR(writes) =
{(a1, b1), (a2, b1), (a2, b2), (a3, b2)}, IR(hasname) =
{(a1,knuth), (a2,date), (a3,widom)}, and
IR(hastitle) = {(b1,programming), (b2,databases)}.

An instance of a frame can also be thought of as a
labelled graph where the nodes are labelled with sets
of classes (meaning that a node is an object in each
of those classes) and edges are labelled with the name
of a relationship.

Definition 3 (Instance graph) The graph of an
instance (O, IC , IR) of a frame (C, R, s, t) is the tuple
(O, E, λ) where

• O is the set of nodes,

• E = {(o1, r, o2)|(o1, o2) ∈ IR(r)} is the set of
labelled edges

• λ : O → 2C the node labelling function such that
λ(o) = {c ∈ C|o ∈ IC(c)}.

Example 3 The instance formulated in Example 2
can be presented as the graph shown in Figure 2.

writes

writes writes

writes
hasname hasname

hasname

hastitle hastitle

a1 a2 a3

b1 b2

Knuth Date Widom

programming databases

Figure 2: An instance graph for Frame F presented
in Example 1, with the λ labelling function omitted
for clarity.

We are now ready to define the schema of a form.

Definition 4 (Schema) A schema is a tuple S =
(F, K) where F is a forest frame and K a set of con-
straints over F . These can be any type of constraint
but we will assume here that they are of the following
forms: c1 isac2, r1 isa↓ r2 and r1 isa↑ r2 with c1, c2 ∈ C
and r1, r2 ∈ R.

This definition allows us to create one conceptual
schema from a variety of schemas each belonging to
different forms. Thus, a form’s schema is a forest
frame consisting of one tree plus isa constraints.
These constraints can refer to classes or relationships

CRPIT Volume 49

82

within the form’s frame, but also to other forms’
frames. It is only when taking the schemas of all
forms together that one, purely conceptual, schema
emerges; this super schema is a forest of trees with
isa ‘vines’ between them. An example is given in
Figure 3.

Note that it is the inclusion of the isa constraints
in our theoretical data model that allows implemen-
tations to become peer-to-peer, hence providing the
functionality alluded to in the title of this paper. In-
deed, in Figure 3 the separate schemas that make up
the conceptual super schema may be present on dif-
ferent peers.

3.1.2 Graph and Tree-based Semantics

Whereas a form’s schema is a tree, a corresponding
instance is actually a graph. Clearly the writes rela-
tion used in the previous examples is many-to-many,
meaning that an author has written several books and
a book may be written by several authors. Thus, the
corresponding instance is a graph, as shown in Fig-
ure 2.

However, we would like instances to be trees, for
a variety of reasons. First, because a form’s schema
is hierarchical, we would like to render its instances
as trees on the users’ screens. Exactly how the ren-
dering should indicate that two objects shown is ac-
tually one and the same object is a gui issue that
we don’t discuss here. An instance being a tree also
allows data to be serialized as XML documents (per-
haps using attribute references), which can then be
further manipulated using languages such as XSLT
and XQuery. The main reason, however, will become
clear in Section 5: without hierarchical instances it is
not possible to describe individual states in the state
diagram corresponding to the form’s workflow model.

To allow users to specify many-to-many relation-
ships in the presence of both hierarchical schemas
and instances, we will require them to use isa con-
straints. Consider that we have a second form whose
schema S′ = (F ′,K). The frame F ′ is similar to F :
F ′ = (C ′, R′, s′, t′), C ′ = {Book’, Author’}, R′ =
{written}, s′(written) = {Book’}, and t′(written) =
{Author’}. In addition, the set K has the following isa
constraints: Book′ isa Book, Author′ isa Author, and
written isa↑ writes. The conceptual super schema is
given in Figure 3.

Author

Author'Book

Book'isa isa

isa

writes written

Figure 3: An example of a conceptual super schema
obtained from schemas S and S′.

In the presence of such isa constraints, we must
define the semantics of instances. We first turn to
graph instances.

Definition 5 (Graph Instance) A graph instance
of a schema S = (F, K) is an instance (O, IC , IR) of
F that satisfies the constraints in K:

1. if c1 isa c2 ∈ K then IC(c1) ⊆ IC(c2)

2. if r1 isa↓ r2 ∈ K then IR(r1) ⊆ IR(r2)

3. if r1 isa↑ r2 ∈ K then IR(r1)−1 ⊆ IR(r2)

and the following two general constraints:
1. disjointness if o ∈ IC(c1)∩ IC(c2) then there is a

c3 ∈ C such there are isa paths from c3 to both
c1 an c2 and o ∈ IC(c3)

2. surjectivity if o ∈ IC(t(r)) then there is an o′
such that (o′, o) ∈ IR(r)

Note 1 We make the following remarks about this
definition:
• The disjointness constraint we use means that

if an object belongs to two distinct classes, then
these classes have a common subclass of which
the object is also a member. This constraint is
more liberal than requiring for two classes to be
disjoint there should be no directed path of isa
edges between them.

• There can be implicit isa constraints that are
logically implied by the set K. In previous work,
we have shown how they can be derived. We as-
sume in this paper that this derivation happens
automatically when a form is submitted.

• To have a simple notion of “location” of data we
will assume that there are no cycles of isa edges
and there is no multiple inheritance. Under these
conditions there is always a unique highest class
for an object, which might be considered as the
true storage location of the data.

Example 4 The instance graph shown in Figure 2 is
a graph instance since for the preceding examples the
set of isa constraints K is empty, and the disjointness
and surjectivity constraints are satisfied.

As we will not be using graph instances, but hi-
erarchical instances, we now turn to the tree-based
semantics.
Definition 6 (Tree Instance) A tree instance of a
schema S = (F,K) is an instance (O, IC , IR) of frame
F plus an equivalence relation ≡ ⊆ O ×O such that
the graph of the instance is a forest and nodes are
labelled by λ with at most one class, and moreover
satisfies the constraints in K under ≡:
1. if c1 isa c2 ∈ K then I≡C (c1) ⊆ I≡C (c2) where

I≡C (c) = {[o]≡|o ∈ IC(c)}
2. if r1 isa↓ r2 ∈ K then I≡R (r1) ⊆ I≡R (r2) where

I≡R (r) = {([o1]≡, [o2]≡)|(o1, o2) ∈ IR(r)}
3. if r1 isa↑ r2 ∈ K then I≡R (r1)−1 ⊆ I≡R (r2)

and the following four general constraints:
1. disjointness if o1 ∈ IC(c1), o2 ∈ IC(c2) and o1 ≡

o2 then there is a c3 ∈ C and o3 ∈ IC(c3) such
o2 ≡ o3 and there are isa paths from c3 to both
c1 an c2 and o ∈ IC(c3)

2. surjectivity if o ∈ IC(t(r)) then there is an o′
such that (o′, o) ∈ IR(r)

3. duplicate-free attributes3 if (o1, o2) ∈ IR(r) and
(o1, o3) ∈ IR(r) then o2 6≡ o3

4. equivalent common attributes4 if o1, o2 ∈
IC(s(r)), o1 ≡ o2 and (o1, o3) ∈ IR(r) then
there is an o4 ∈ O such that o3 ≡ o4 and
(o1, o4) ∈ IR(r)

It is important to understand (1) why the graph
semantics and the tree semantics are not equivalent,
and (2) why this is not important in the context of
this paper. However, the reasons for this can only be
given when we have defined the access rules.

3Every equivalence class appears only once in attribute.
4Equivalent nodes have the same set of equivalence classes in

common attributes.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

83

writes

writes writes

writes
hasname hasname

hasname

hastitle hastitle

a1 a2 a3

b1 b2'

Knuth Date Widom

programming databases'

hastitle

b1'

programming'

hastitle

b2

databases

Figure 4: A tree instance corresponding to the graph
instance shown in Figure 2.

4 Access Rules

We have now defined the data model for the forms
system. Up to now a form has a hierarchical schema
to which a number of hierarchical instances corre-
spond. This means that users accessing a form can
now be shown instances of the form, and can also
make changes to the instance. However, we need to
be able to specify access rules to each object in the
instance. We will describe such rules in this section.

4.1 Actions on Data

Users of the forms system will want to do a number
of things with it. Firstly, they want to open a form to
see the instances that are associated with it. Clearly,
it should be possible to restrict users to see only in-
stances they are entitled to see, as defined by the
form’s designer. Secondly, they will want to update
information in the form, either by changing values in
an existing instance, or by creating a new instance all
together.

A good example is the paper submission form
present in our department. Users of the form will
want to see those details of all papers that they are
entitled to see. They will also want to be able to
change the title of a paper, but only if it’s a paper of
which they are an author. Likewise, they should be
able to add a new paper as long as they are an author
of it.

In our system, we will allow the designer of a form
to specify access rights tied to the schema of the form.
The access rules in the schema will be evaluated over
the corresponding instances, and only those objects
in the instance where the rules are satisfied will be
accessible.

CRUD. Of the usual CRUD (Create, Read, Up-
date, Delete) rules used for accessing data objects,
only the C, R, and D rights will be needed. This is
because our rules will be tied to edges in the data
model, and edges have no properties of their own,
making an update of an edge meaningless. Updating
the value of a property of a class involves removing
an edge and creating a new one. Furthermore, as in
previous work [13], we will only consider leaf opera-
tions: edges can be created or deleted if they appear
as leafs in the tree. Larger operations on the tree
(such as a move) can be simulated by a sequence of
leaf operations.

Note that there is no need for propagation of updates
between different peers, as each individual data item
is stored at a unique location and peers that use it

must obtain it from this location1.
Handling updates on form schemas when they are

used across different peers is another matter. We as-
sume that in such instances the system will notify
affected users.

4.2 Access Rule Language and Forms

As mentioned in Section 2, our access rule language
is based on a limited subset of XPath correspond-
ing to FO2. Specifically, we use XPath’s surface syn-
tax, including conditions containing path expressions,
but excluding the descendent-or-self axis (denoted as
//). As our instances resemble nested relations more
than semi-structured data, the nesting depth is al-
ways fixed in the schema, thus making this axis un-
necessary.

The path expressions can be used on their own,
meaning that existence of the end-node is checked, or
in a comparison to a constant or one of three system
variables userid, date, and time. In addition, path
expressions can be combined using and, or, and not.

Definition 7 (Access Rule) Given a frame F =
(C, R, s, t), an access rule is a tuple (e, o, r) with edge
e ∈ R, o a create, read, or delete operation, and r an
access rule expression.

Thus, access rules are attached to edges in the frame
of a schema and indicate that the operation in ques-
tion may be performed when the access rule expres-
sion evaluates to true. An access rule is evaluated
over each instance tree of the forest of instances be-
longing to a schema. Evaluation of a path expression
starts from the node in the tree that corresponds to
the class from which edge e departs in the schema.

Note that this definition of an access rule allow
very fine-grained security provisions. Indeed, access
is regulated to the level of individual attributes, giv-
ing the designer of a form full control over how data
captured through her form, but also other forms that
re-use part of her schema, is used.

Definition 8 (Form) A form is a tuple (S, A) where
S is a schema with a frame F that is a single tree,
and A is a set of access rules.

The notion of a form is the central idea in this paper:
a form represents a tree-like data model with isa
constraints and a set of access rules, and corresponds
with a forest of tree instances over its schema. Users
may access and edit the instances as long as the access
rules are satisfied. Individual objects in the instances
may be shared over various forms.

A Comprehensive Example. We now show how
the real-life example described in the Introduction can
be solved in our forms-based information system. Fig-
ure 5 gives a graphical representation of the schema of
the Leave Application form. A non-exhaustive list of
corresponding access rules is given in Figure 6. Note
that we use the abbreviation U as a shorthand for
both create and delete rules.

Rule (1) means that users can only create new
leave applications for themselves. Rule (2) means
that users can only see their own applications, except
for the Dean and the Head of Department, who can
see all applications. The begin and end dates for leave
applications can only be changed by the user whose
application it is, as stated by rules (3) and (4), and
only if the Head of Department has not already ap-
proved the application. Rule (5) indicates that only

1Of course, for efficiency reasons, an actual implementation may
choose to propagate updates instead; our model doesn’t necessitate
this but does allow it.

CRPIT Volume 49

84

Staff

name uid dob

LeaveApp

bdate edate ready hodOK deanOK

HoDDean

isa isad h

n u o

b e r x y

Faculty

f p

Dept.
l

Figure 5: The Schema of the Leave Application Form.

(l, C, ./uid = userid) (1)
(l, R, ./uid = userid ∨ ./f/d/uid = userid ∨ ./p/h/uid = userid) (2)

(b, U, ../uid = userid ∧ not(./hodOK)) (3)
(e, U, ../uid = userid ∧ not(./hodOK)) (4)
(x, U, ./ready ∧ ../p/h/uid = userid) (5)
(y, U, ./hodOK ∧ ../f/d/uid = userid) (6)

Figure 6: Some access rules for the Leave Application Form.

the Head of Department can set the hodOK attribute
to true, and only if the user has indicated that her
application is ready. Hence, the system can automat-
ically notify the Head of Department that his input is
sought, when rule (5) is satisfied. This illustrates how
control-flow is derived from the access rules. Finally,
rule (6) says that the Dean can approve the applica-
tion when the Head of Department has already done
so.

The definition of a form indicates that it is the
form’s creator (or owner) that sets up the access
rules for individual data items described in the form’s
schema. When another person creates a new form
that re-uses all or part of the original form’s schema,
the original access rules still apply, in addition to any
new access rules defined by the new form. To give an
example, suppose the above Leave Application form
was created by the Faculty, but the Head of Depart-
ment wants to capture additional data if his staff are
applying for leave (e.g. he wants them to supply a
reason). His new form will re-use the original form’s
schema and access rules, and in addition he can add
rules. All rules must be satisfied before the operation
can proceed. If the HoD wants the original rules to be
modified, he will need to negotiate with the owner of
the form that first defined the rule. We argue that this
precisely captures real-life dynamics within an orga-
nization, making significantly liberated capture and
re-use of data possible while maintaining the highest
level of security.

4.3 Information Leakage

While the access rules language we presented provides
a very powerful yet elegant method to constrain ac-
cess, the method is not water tight. Consider the fol-
lowing scenario: form designer Bob creates a class C1
and specifies that only he can read it. Now suppose a
second person Alice creates a form with a class C2 and

specifies that the class C2 may be read if C1.a = x
(where a is some attribute of C1 and x is a value for
a). Alice (and others) can now infer the the value of
C1.a by attempting to modify C2, which is against
the access rule specified by Bob.

A simple access rule evaluator will hence allow in-
formation leakage in certain cases. A somewhat naive
solution would be to decree that access rules may only
be evaluated over parts of the instance tree that the
user may see. However, this is circular as now visibil-
ity may become dependent on visibility.

It seems that information leakage, however, is a
decidable property of a set of access rules. Hence, a
practical solution to this potential security concern is
to check newly submitted forms with their access rules
and reject those that test positive for the information
leakage property.

5 Workflow Processes

It is clear that the access rules not only regulate who
can see and update which part of the instance, but
also that these rules impose an order on updates.
Hence, it would be very useful if our system could
automatically derive the workflow process associated
to this form. We investigate this in a preliminary
manner in this section.

The reason why we include this rather informal
discussion in this paper is twofold: firstly, automatic
derivation of workflow processes is one of the main
motivations for introducing form-based information
systems. Secondly, the section will show that there
are some highly interesting, non-trivial research prob-
lems to be found in this topic. This is the sec-
ondary contribution of this paper, and may perhaps
inform the direction of continued research associated
to XForms.

The leave application form detailed in the previous

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

85

C:s

U:r+

U:x+

U:y+

U:y-U:x-U:b U:e

Figure 7: The Leave Application Workflow Process.

section illustrates that a form corresponds to a work-
flow process. In workflow literature, processes are
usually modelled using finite state machines or more
often using Petri nets [1, 23]. We will first examine fi-
nite state machines, attempting to establish whether
one can be derived automatically for a form. Figure 7
shows a finite state machine (excluding some transi-
tions for simplicity) modelling the workflow process
of the leave application form shown in Figure 5.

States correspond to separate steps (or actions) in
the workflow process. They represent an instance of
the form at a certain time. A specific update of the
instance represents a transition to another state.

The transitions are labelled with an abbreviation
of the operation performed on the instance repre-
sented by the starting state of the transition. For
example, U:x+ means an update of edge x with value
true (minus meaning false), while C:s means the cre-
ation of a new edge s to a new object of the LeaveApp
class.

Importantly, the FSM in Figure 7 shows that differ-
ent end states may exist. For this purpose, we extend
the definition of a Form to include a completed form
formula, expressed in the access rule language, which
describes ‘completion’ end states; i.e., states that the
creator of the form has indicated are acceptable com-
pletions of the form.

An interesting research question can now be posed:
can we represent a form’s workflow process using fi-
nite state machines such that reachability of comple-
tion states is decidable?

5.1 Canonical Instances

The first problem we need to solve is that of find-
ing a finite representation of the infinite number of
instances that may correspond to a form. The num-
ber of instances is infinite even when only structure
is concerned and specific values are disregarded, since
a relationship between two classes in a schema may
have a many-to-many participation constraint. Fig-
ure 8 shows some instances for a simple frame involv-
ing relationships a and b.

Figure 8 also illustrates that it is possible to parti-
tion the set of infinite instances into a finite number of
equivalence classes, which we call canonical instances.
From the perspective of the access rule language (at
least when considering only unary path expressions
that check whether a node exists but does not com-
pare values) each member of a canonical instance is
indistinguishable from another member.

In the example, canonical instance I represents all
instances in which no a edge exists (and hence no b
edge under it). Canonical instance II represents all
instances in which at least one a exists, but none of
them have a b child. The third canonical instance
represents those that have at least one a edge, and
each of them has a b edge. Finally, canonical instance
IV contains instances that have at least one a, and at
least one of those has a b child.

Theorem 1 (Canonical Instances) The set of all
tree instances of a form can be partitioned into a finite
number of canonical instances.

Clearly it is very important that we now have a finite
number of canonical instances, since finding a finite
state machine representing a form’s workflow process
involves finding a finite set of states for the automa-
ton.

Note that we can only create canonical instances
for tree instances, not for graph instances. That is
why we presented both in Section 3, and stated that
we have to use the tree instances instead of the graph
instances.

Unfortunately, a finite set of states for the FSM
is not sufficient. Consider that transitions between
instances going left to right in Figure 8’s top row rep-
resent addition operations that add an a edge, while
transitions in the opposite direction represent dele-
tions of such edges. The problem is that the transition
from canonical instance II to I also involves a deletion
of the ‘last’ a remaining in II. We require these cases
to be in two different canonical instances, because our
XPath-based access rule language can distinguish be-
tween the two (e.g. /a). Hence, we require counting
to determine if a transition stays within a canonical
instance, or results in another canonical instance.

The conclusion is that we cannot use canonical in-
stances as the states and update operations as the
transitions of the FSM that is to represent the work-
flow process of a form. Therefore we briefly consid-
ered using Petri nets because they have the ability to
do some counting using different tokens inside places.
Unfortunately, use of inhibitor arcs [9] proved neces-
sary to perform the counting we need, thus making
reachability undecidable.

5.2 Decidability

The problems outlined above indicate that checking
reachability of completion states is undecidable.

Theorem 2 (Undecidability) Given a form with a
schema, access rules, and a completed form formula,
it is undecidable whether a completion state can be
reached.

The proof involves reduction to the two-counter au-
tomaton, a FSM with two registers that contain whole
numbers, and that can check whether the registers
contain 0. Transitions increment or decrement the
registers. It is well known that two-counters are
Turing-complete. We can simulate the registers us-
ing edges in instances, and check for 0 by expressing
for example not(a).

One positive result so far, involves dead-end states,
or instances of a form that cannot be changed any-
more. Dead-ends are usually interpreted in a negative
way: as states that should not be reached because the

CRPIT Volume 49

86

...

...

...

I

II

III
IV

a

a

a a

a a

b b

b b

a

Figure 8: (Canonical) Instances over a simple schema. Some edge labels omitted for clarity.

system then enters a deadlock. However, it may be
the case that a completed form formula describes a
situation in which data in a form should not be up-
datable when some flag has been set. Not updatable
means that it’s a dead-end state, but one that repre-
sents a valid, correctly completed form. An example
is where the Dean has approved a leave application,
after which nothing in it can be changed anymore. In
this sense, determining dead-ends is very worthwhile,
helping the designer of the form to verify the rules he
supplied with the form.

Theorem 3 (Dead-Ends) Given a form including
a schema and access rules, and an instance tree over
the schema, it is decidable whether the instance can
be updated.

This result is due to our access rules language con-
forming to FO2, which is a decidable subset of First
Order logic using only two variables.

Unfortunately, because of the undecidability of
general reachibility, we cannot prove that the dead-
ends we found were reachable in the first place, mak-
ing this result somewhat less practical.

To end our examination of the secondary aim of this
work, i.e., under which circumstances would it be pos-
sible to automatically construct a workflow process
from a form definition, we offer the conjecture that a
positive result may be found when a slightly weaker
access rules language is used.

Conjecture 1 (Decidability) Given a form with a
schema, access rules over the proposed XPath subset
without negation, and a completed form formula, it is
decidable whether a completion state can be reached.

6 Conclusion, Implementations, and Future
Work

Conclusion. We have presented a formal model for
a form-based peer-ro-peer web information system.
The model includes a definition for forms that in-
corporate a schema extended with access rules. A
schema may be constructed by re-using elements from

other schemas, both on the same peer and on other
peers. This re-use is done via isa relationships. With
a schema corresponds an instance in the form of a
graph. To allow the access rules to traverse upwards
to just one parent of a node, the instance is shred-
ded into a forest of trees. The access rules impose
an implicit order for data entry in the corresponding
form, enabling us to check whether a workflow graph
can be constructed, and to find specific states in the
workflow.

Future Work

We are currently refining the data model we presented
in this paper, and are investigating, given that data
model, what subsets of the rule language do allow
decidability while still maintaining a practical level
of expressiveness.

We will also construct a rigorous proof, based on
our current sketch, that the information leakage prop-
erty we presented in Section 4.3 is decidable.

Implementation

On a practical level, we have already implemented
a first prototype of very limited abilities [6] and are
starting work on a second prototype that implements
most of the ideas presented in this paper. Many prac-
tical issues, such as user interface design, will not be
dealt with in this second prototype and will require
additional research.

The second prototype is built around a substantially
altered version of the Document Object Model as im-
plemented in Java by the Xerces Apache project. It
is currently a stand-alone forms server that accepts
requests and updates and returns a form instance re-
stricted by applying the relevant access rights. Ex-
tending it to enable peer-to-peer communication is
being planned.

Derivation of workflow processes is not yet considered
in the second prototype. This is the main goal of our
third prototype, concurrently being planned. Here
data is stored in a relational back-end, and a very re-
stricted access rules language is offered. A key design

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

87

issue is how to push the checking of access rules to
the relational database.

Acknowledgement

We would like to thank Toon Calders for sharing his
insights in the decidability problem described in this
paper, and Hua Wang for valuable discussions about
security issues.

References

[1] W. van der Aalst: Petri-net-based Workflow Man-
agement Software. In Proceedings of the NFS
Workshop on Workflow and Process Automation
in Information Systems, pp 114–118, May 1996.

[2] W. van de Aalst, P. Barthelmess, C. Ellis, and
J. Wainer: Workflow Modeling using Proclets. In
Proceedings of CoopIS’00, pp. 198–209, 2000.

[3] W. van der Aalst and K. van Hee: Workflow Man-
agement: Models, Methods and Systems. MIT
Press, 2001.

[4] W. van der Aalst, A. Weijters, and L. Maruster:
Workflow Mining: Discovering Process Models
from Event Logs. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), volume
16(9), pages 1128-1142, 2004.

[5] W. van der Aalst, A. ter Hofstede, B. Kie-
puszewski, and A. Barros: Workflow Patterns.
Technical Report Eindhoven University of
Technology. http://is.tm.tue.nl/research/
patterns/documentation.htm, 2002.

[6] R. Addie: FormsFree – a secure but accessible
system development and use of on-line forms. Uni-
versity of Southern Queensland Technical Report,
December 2004.

[7] Advantys: http://www.workflowgen.com/en/,
2004.

[8] R. Agrawal, D. Gunopulos, and F. Leymann:
Mining process models from workflow logs. Lec-
ture Notes in Computer Science, 1377:469498,
1998.

[9] N. Busi: Analysis issues in Petri nets with in-
hibitor arcs. Theoretical Computer Science, 275:1-
2, pp. 127–177, 2002.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, R.
Rosati: Logical Foundations of Peer-To-Peer Data
Integration. In Proceedings of PODS’04: pp. 241–
251, 2004.

[11] D. Calvanese, G. De Giacomo, M. Lenzerini, R.
Rosati, G. Vetere: Hyper: A Framework for Peer-
to-Peer Data Integration on Grids. ICSNW’04:
pp. 144–157, 2004.

[12] S. Cosmadakis, and C. Papadimitriou: Up-
dates on relational views. Journal of the ACM,
31(4):742–760, 1984.

[13] S. Dekeyser, J. Hidders, and J. Paredaens: A
Transaction Model for XML Databases. World
Wide Web Journal, 7(1): 29–57, Kluwer, 2004.

[14] M. Dubinko, L. Klotz, R. Merrick, and T.V. Ra-
man: XForms 1.0. World Wide Web Consortium
(W3C) Recommendation, October 2003.

[15] J. Glasgow, G. MacEwen, and P. Panangaden:
A logic for reasoning about security. ACM Trans-
actions on Computer Systems 10(3), pp 226–264,
August 1992.

[16] J. Hidders, M. Dumas, W. van der Aalst, A. ter
Hofstede, and J. Verelst: When are two Workflow
Processes the same? Computing: the Australian
Theory Symposium (CATS’05), 2005.

[17] J. Hidders, J. Paredaens, P. Thiran, G-J Houben,
K. van Hee: Non-destructive Integration of Form-
based Views. In Proceedings of ADBIS’05, 2005.

[18] D. Hollingsworth: Workflow Management Coali-
tion: The Workflow Reference Model Ten Years
On. Technical Report, February 2004.

[19] H. Kozankiewicz, J. Leszczylowski, and K. Subi-
eta: Updatable XML Views. In Proceedings of
ADBIS’03, LNCS 2798, 2003.

[20] M. Lenzerini: Data Integration Is Harder than
You Thought. In Proceedings of CoopIS’01: pp.
22-26, 2001.

[21] M. Lenzerini: Data Integration: A Theoretical
Perspective. In Proceedings of PODS’02: pp. 233–
246, 2002.

[22] Microsoft: InfoPath 2003 Product Information:
The Microsoft Office information gathering and
management program. http://www.microsoft.
com/office/infopath/prodinfo/trial.mspx,
2004.

[23] T. Murata: Petri Nets: Properties, Analysis and
Applications. Proceedings of the IEEE, 77(4):541–
580, April 1989.

[24] S. Nanchen and R. Stark: A Security Logic for
Abstract State Machines. In Proceedings of the
11th International Workshop on Abstract State
Machines ’04. LNCS 3052, 2004.

CRPIT Volume 49

88

Dimensionality Reduction in Patch-Signature Based Protein
Structure Matching

Zi Huang1 Xiaofang Zhou1 Dawei Song2 Peter Bruza2

1School of Information Technology and Electrical Engineering
University of Queensland,

St. Lucia, QLD 4072
Australia

Email: {huang,zxf}@itee.uq.edu.au
2Distributed Systems Technology Centre

Level 7, General Purpose South
University of Queensland,

St. Lucia, QLD 4072
Australia

Email: {dsong,bruza}@dstc.edu.au

Abstract

Searching bio-chemical structures is becoming an
important application domain of information re-
trieval. This paper introduces a protein structure
matching problem and formulates it as an infor-
mation retrieval problem. We first present a novel
vector representation for protein structures, in which
a protein structural region, formed by the vectors
within the region, is defined as a patch and indexed
by its patch signature. For a k-sized patch, its patch
signature consists of 7k − 10 inter-atom distances
which uniquely determine the patch’s spatial struc-
ture. A patch matching function is then defined.
As structures for proteins are large and complex,
it is computationally expensive to identify possible
matching patches for a given protein against a large
protein database. We propose to apply dimensional-
ity reduction to the patch signatures and show how
the two problems are adapted to fit each other. The
Locality Preservation Projection (LPP) and Singular
Value Decomposition (SVD) are chosen and tested
for this purpose. Experimental results show that
the dimensionality reduction improves the searching
speed while maintaining acceptable precision and
recall. From a more general point of view, this paper
demonstrates that information retrieval techniques
can play a crucial role in solving this biologically
critical but computationally expensive problem.

Keywords: Protein Structure Matching, Similarity
Measure, Dimensionality Reduction

1 Introduction

Information science has been applied to computa-
tional biology, resulting in a new field called Bioinfor-
matics, which investigates “the collection, archiving,
organization and interpretation of biological data”
(Orengo, Jones & Thornton 2003).

Copyright (c) 2006, Australian Computer Society, Inc. This
paper appeared at the Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

Discovering functional relationships between pro-
teins is recognized as a central task of modern bioin-
formatics. The problem of comparing amino acid se-
quences in proteins has been investigated extensively
in the past. The research focus has now been shifted
towards higher level biological structures and func-
tions. It has been found that it is common for pro-
teins that do not share significant sequence similarity
to have significant structural similarity (thus poten-
tially functional similarity) (Mount 2001). When the
sequence similarity is below a certain percentage, say
20%, only structure analysis can reveal the poten-
tial relationship which may be hidden at the sequence
level(Bourne & Weissig 2003). It is known that the
protein’s unique three-dimensional structure often de-
termines its properties. Finding proteins with simi-
larly substructures is an important problem, as cer-
tain structural regions of a protein often perform some
specific functions, and having one or more similar 3D
substructures has been considered as an essential con-
dition for potential protein interaction.

As 3D protein structures are large and complex, it
is computationally expensive to identify possible loca-
tions and sizes of the matching structural regions for
a given protein against a large protein database. A
commonly used structure representation is the inter-
atom distance matrix. As the complexity of the dis-
tance matrix representation is quadratic to the num-
ber of atoms, it is very expensive for processing a
large number of proteins.

To alleviate this problem, we introduce a patch sig-
nature model which has been recently proposed based
on a vector representation for protein structures. A
structural region is defined as a patch formed by the
vectors within the region. The patch signature is
used to characterizes a patch. Compared to the tradi-
tional distance matrix representation, patch signature
is more compact and linear to the number of atoms.
The matching function between two patches is then
defined as pair-wise comparisons between their patch
signatures.

However, the matching stage can still be very ex-
pensive since the dimensionality of patch signature
data can be large when the size of patch is large.
A obvious solution to more efficient patch match-
ing is to reduce the dimensionality of patch signa-
tures while maximally preserve the matching func-
tion defined between two patches in the resultant

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

89

C α
C αC N

O H

H

R

C

O

N
H

H

R

C α
C αC N

C N

C
β

C
β

(a) (b)

Figure 1: A fragment of amino acid chain.

lower dimensional space. Dimensionality reduction
has been extensively applied in information retrieval.
The goal is to find an “intrinsic” subspace, which is
the best lower dimensional approximation of the orig-
inal space depending on the objective function a di-
mensionality reduction algorithm tries to preserve. A
well known approach is Singular Value Decomposi-
tion (SVD), which best preserves inner product in
an Euclidean space and is the basis of the Latent
Semantic Indexing (LSI)(Deerwester, Dumais, Lan-
dauer, Furnas & Harshman 1990)(Landauer, Foltz
& Laham 1998). Recently, a novel Locality Pre-
serving Projection (LPP) algorithm (He, Cai, Liu &
Ma 2004) has been introduced to document indexing
and demonstrated a better performance. Unlike SVD,
LPP aims to preserve local geometrical structure in a
manifold in terms of L2 distance between data points.
In this paper, we will address how the LPP and SVD
can be applied to patch matching and demonstrate
that they can largely improve efficiency (measured by
CPU time) while maintaining an acceptable precision
and recall.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief introduction to protein structure
and its 3D representations. We present a patch sig-
nature model and its similarity measure in Section
3. Two typical dimensionality reduction approaches,
SVD and LPP, and their application in patch signa-
ture matching are studied in Section 4. Section 5
reports the experimental results. The related work
are described in section 6. Section 7 finally concludes
the paper and highlights the future work.

2 Preliminaries

A protein is a large molecule composed of one or more
chains of amino acids in a specific order. Twenty
standard amino acids have been identified in protein
structures. As illustrated in Fig. 1(a), each amino
acid contains a central atom Cα to which an amino
(N -H) group and a Carboxyl (C = O) group are at-
tached. The amino group, carboxyl group and Cα
atom construct the mainchain(or backbone) of an
amino acid. In addition, each amino acid (except
Gly) has a sidechain (or R group) attached to its cen-
tral atom Cα. It is the sidechain and sidechain alone
which distinguishes one amino acid from another and
furthermore confers the specific function to an amino
acid(Bourne & Weissig 2003). The sidechain is typi-
cally connected to Cα via another atom Cβ(Branden
& Tooze 1998). A protein is constructed by amino
acids that are linked by peptide bonds forming a
polypeptide chain.

The amino acid sequence of a protein’s polypep-
tide chain is called its primary structure, which can
be represented a linear string of amino acids, abbre-
viated with one-letter codes.

Protein structure can be folded into a three-
dimensional configuration as a set of points (atoms)

in 3D space. For example, PDB (Protein Data
Bank)(Protein data Bank n.d.) arranges a protein on
an imaginary Cartesian coordinate frame and assigns
(x,y,z) coordinates to each atom. This representation
serves as a basis of different higher level representa-
tions. Different regions on the amino acid sequence
form regular secondary structures, including the α he-
lices and β sheets in the three-dimensional space. A
3D protein structure can usually be characterized by
its mainchain (via Cα atoms) and/or sidechains (via
Cβ atoms).

For example, in the DALI(Holm & Sander
1993)(Holm & Sander 1996) system, a distance ma-
trix containing all pairwise distances between Cα
atoms is built, where each Cα-Cα distance reflects
the relationship of two amino acids respectively cen-
tered by the two Cα atoms. If the distance between
two amino acids (Ai and Aj) of protein A is similar
to the distance between two amino acids (Bi and Bj)
of protein B, amino acids Ai and Aj could be mapped
to the amino acids Bi and Bj .

The VAST(Gibrat, Madej & Bryant 1996) and
SARF(Alexandrov & Fischer 1996) systems use sec-
ondary structural elements (SSE). Each SSE in a pro-
tein is represented by position, length, and direc-
tion of a vector determined by the position of the
Cα atoms along the SSE. It assumes that if two vec-
tors representing two secondary structures are simi-
lar, the internal structure within secondary structures
are similar.

The program SSAP(Orengo & Taylor
1996)(Orengo & Taylor 1989) represents 3D structure
of protein as structural environments for amino acids,
each of which is the set of vectors from the Cβ atom
to Cβ atoms of all other amino acids in the protein.

There are some other methods such as Torsion (di-
hedral) Angles (Bergeron 2003). However, all the
above methods are based on either mainchains (via
Cα) or sidechains (via Cβ) alone, thus they are in-
sufficient to model the orientation of sidechains. A
different way of representing a protein’s structure as
vectors of Cα-Cβ atoms. A pair of Cα-Cβ atoms in
the same amino acid constructs a vector, denoted−−−→
CαCβ , from its Cα end to Cβ end. More recently,
the vector representation model(Spriggs, Artymiuk &
Willett 2003, Huang, Zhou & Song 2005) has been op-
erationalized. For each residue, a vector from Cα to
Cβ can be constructed. This vector representation in-
volves not only the mainchain but also the sidechain
information. The position of Cβ atom is used to em-
phasize the functional part of the side-chain corre-
sponding to the vector. The vector representation
also offers a flexibility of generalizing the use of Cβ to
a psudo-atom (center of the sidechain). It has been
argued in (Artymiuk, Spriggs & Willett 2005)(Spriggs
et al. 2003):

“The vectorial representation is clearly an ex-
tremely simple description of the relative orientations
of the side-chains in a 3D protein structure. It does,
however, have the advantage that it does not overde-
fine the orientations of ends of side-chains, as could
occur if a more precise representation was to be used
that was based directly on the individual atomic co-
ordinates in the PDB. ”

There are currently over 30,000 proteins in the
PDB database, containing 3D coordinates of all atoms
in each protein. It is practical and relatively straight-
forward to build the vector model for each protein and
calculate Euclidean distances between atoms. For the
rest of this paper, a protein always means its vector
model. We adopt this approach as a basis of our

CRPIT Volume 49

90

Vi
Vj

Cαi Cαj

Cβi
Cβj

dαα

dββ

dαβ
dβα

dαα< ς

(a) (b)

ς

Figure 2: (a)Spatial relationship between two vectors. Four
internal distances are denoted as dαα, dββ , dαβ , and dβα. (b)
An example of patch. Each vector represents an amino acid.
The diameter is ε. The dashed line shows the α-α distance
(dαα) between two vectors.

model, which is formulated in the next section.

3 Problem Formulation

This section presents a protein structure matching
problem, which has been first introduced in (Huang
et al. 2005). The problem essentially deals with the
identification of matching structural regions, called
“patches”, between two proteins.

3.1 Vector Representation of Protein Struc-
tures

A protein can be defined as a set P of three dimen-
sional vectors:

P = {vi|1 ≤ i ≤ N} (1)

where N = |P |.
Each vi denotes a vector of

−−−→
CαCβ for amino acid i

(Fig.1(b)). The length of a vector (i.e., the distance
between its α-end and β-end) is typically fixed at 1.5
Å (angstrom).

3.2 Characterizing Protein Structures via
patch Signatures

Since the proteins can be represented as geometric
objects. The structures of the geometric objects have
a direct influence on the proteins structure matching.
We propose that 3D protein structure comparison can
be performed by comparing the spatial relationship
among vectors between two proteins. In other words,
if two protein structures are similar, the spatial re-
lationship among vectors of one structure must be
similar to that of the other. The notion of charac-
terization of spatial relationship refers to constraints
which tie the vectors so that they have a fixed spatial
relationship. That is, they can only rotate or trans-
late globally as a whole without any internal change
of positions. As the distances between atoms play a
significant role in protein structure analysis, here we
consider a distance-based characterization of spatial
relationships between vectors. Since the PDB (Pro-
tein Data Bank) supplies coordinates of each atom
of proteins in three-dimensional space, it is easy to
calculate Euclidean distances between atoms.

The structural regions on a protein can be de-
scribed as patches(Huang et al. 2005) which are sub-
sets of vectors in the protein structure within a certain
distance cutoff.

Definition 1 (Patch). A patch is defined as a spher-
ical region of protein P, whose diameter is ε (ie. a
distance cut-off) (Fig.2)(b). More formally, M =
{v1, v2, ..., vQ} ⊆ P (Q > 2) is a patch if (∀vi, vj ∈

Cβi'

Cαi

(a) (c)

(d)

Cα1

Cα2 Cβ1

Cβ2

(e)

v1

v2

v1

v2

v2 v2

v1v1
vi

Cβi

(b)

v1

v2

Cα1

Cα2

Cβ2

Cβ1 Cβ1

Cβ1 Cβ1

Cα1 Cα1

Cα1

Cα2

Cα2Cα2

Cβ2

Cβ2 Cβ2

Cβi

Cβi Cβi

Figure 3: Patch Signature.

M, di,j
αα ≤ ς). In addition, M is called a non-

extendable patch if and only if (∀vi, vj ∈ M, di,j
αα ≤ ς)

∧ (∀vk ∈ M, ∀vl 6∈ M,dk,l
αα > ς).

We can observe from the above definition that a
non-extendable patch actually represents a maximal
structural region with respect to a distance cutoff ς
(15Å in this paper). Generally, a patch is a set of
vectors with particular constraints on spatial arrange-
ment.

Proposition 1. For a k-sized patch (k > 2), 7k −
10 internal distances are sufficient to characterize the
spatial relationship among the vectors.

A formal proof of this proposition can be found in
(Huang 2005). As an example, we can look at one way
of introducing the internal distances, as illustrated in
Fig.3 (the dashed lines as internal distances). The
first two vectors v1 and v2 form a stable triangular
pyramid with the internal distances among their ends
(Fig.3(a)). When the ith (i > 2) vector vi comes in,
it constructs two triangular pyramids for tying to the
original structure (i.e. v1 and v2), with four internal
distances dv1,vi

αα , dv1,vi

ββ , dv1,vi

αβ , dv1,vi

βα , and other three
distances dv2,vi

αα , dv2,vi

ββ and dv2,vi

αβ (Fig.3(e)). There-
fore, for k vectors, the total number of internal dis-
tances is 4 + (k − 2)× 4 + (k − 2)× 3 = 7k − 10.

Proof. Proof omitted. Refer to (Huang 2005) for de-
tails.

For a k-sized patch (k > 2), the set of 7k − 10
internal distances is called its patch signature, which
identifies the spatial relationship between vectors in
the patch. Proposition 1 proves that O(k) distances
are required. It is of significance because the patch
matching algorithms presented later are based on a
number of internal distances linear to k. The fewer
distances involved, the faster in patch comparison.

A k-sized patch is an unordered collection of k vec-
tors and in theory it has k! representations of 7k− 10
distances. Ordering the vectors is necessary for gen-
erating a unique representation of the patch.

To generate an ordering of vectors in a patch,
a basevector vib

needs to be selected as a starting
point, based on which an ordering function φib

: q →
q′|q, q′ = 1..k is defined. An detailed ordering algo-
rithm was given in (Huang 2005). Throughout the
rest of the paper, we assume that the vectors in any
k-sized patch S are already ordered, denoted as SC.
Now consider a k-sized patch SC = {vi1 , vi2 , ..., vik

}.
According to Proposition 1, SC can be represented

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

91

uniquely by 7k−10 distances (dimensions) in the fol-
lowing order:
SC= < di1,i2

αα , di1,i3
αα , ..., di1,ik

αα , di2,i3
αα , ..., di2,ik

αα ,
di1,i2

ββ , di1,i3
ββ , ..., di1,ik

ββ , di2,i3
ββ , ..., di2,ik

ββ ,
di1,i2

αβ , di1,i3
αβ , ..., di1,ik

αβ ,
di1,i2

βα , di1,i3
βα , ..., di1,ik

βα >
Recall that in Section 2 we have mentioned the

distance matrix approach, which would require three
matrices to store all the dαα, dββ , dαβ , and Cβα dis-
tances. The advantage of our patch signature model
lies in its linear representation, based on which we
shall develop more efficient patch comparison algo-
rithms.

3.3 Patch Matching

The following is the definition of a matching function
between two patch signatures.

Definition 2 (k-sized patch matching). Given
two k-sized patches, SC = {vi1 , vi2 , ..., vik

} and
S′C = {ui1 , ui2 , ..., uik

}, both represented by their
7k − 10 dimensional patch signatures, i.e. SC =<
s1, s2, ..., sn > and S′C =< s′1, s

′
2, ..., s

′
n >. They

match each other (denoted as SC ≈δ S′C or in short
SC ≈ S′C) if

s1 ≈ s′1 ∧ s2 ≈ s′2 ∧ ...sn ≈ s′n (2)

where “≈” means “equals to within a tolerance δ”.
Based on the k-sized patch matching, we can then

define the non-extendable patch and protein structure
matchings as follows.

Definition 3 (Non-extendable Patch Match-
ing). For two non-extendable patches M and M ′,
they match each other (M ≈δ M ′) if there exists a k-
sized patch S ⊆ M and another k-sized patch S′ ⊆ M ′
such that SC ≈δ S′C and 5 < k ≤ 20.

Definition 4 (Protein structure matching). For
two proteins P and P ′, they have a matching structure
if there exists non-extendable patches M ⊆ P and
M ′ ⊆ P ′ such that M ≈δ M ′.

In summary, given a query protein Q, the general
problem we investigate is to find all the proteins from
a protein database such that the resultant proteins
have a one or more matching non-extendable patches
with Q, and to identify all the maximum sized match-
ing patches. The maximum sized matching patches
are of interest and will be presented to the biologists
for post-processing and further investigation.

3.4 A Match-and-Expand Strategy

In this subsection, we introduce a match-and-expand
strategy for fast protein structure matching.

If two non-extendable patches M and M ′ have a
maximal matching patch of K vectors, they must also
have matching sub-patches of 1, 2, · · · , K − 1 vec-
tors. The match-and-expand strategy, similar to the
philosophy of BLAST system(Altschul, Gish, Miller,
Myers & Lipman 1990), first matches patches of the
size k(k ≤ K) to reduce the number of candidates. A
set of all patches of size k is pre-computed for all pro-
teins in the database. In order to check if M and
M ′ have a matching patch, the k-sized patches of
M and M ′ are checked first. If no k-sized match-
ing sub-patches are found, M and M ′ will not have

any matching sub-patches. Otherwise, M and M ′ will
be further checked in the expand step, starting from
their matching k-sized patches, until finding maxi-
mum K sized matching patches. Operationally the
expand stage can be accomplished by incrementally
expanding k-sized sub-patches S and S′ by one vec-
tor each time until maximum matching patches are
reached.

The choice of k is important. If it is too small, then
the match step may generate too many false hits; if it
is too large, then the cost of materializing all k-sized
patches can be very high. However, the choice of k is
beyond the scope of this paper. We will focus on the
match step.

We have defined the patch signature which is linear
with respect to the number of atoms within a patch.
The two k − sized patches can then be matched by
comparing their patch signatures. Though the di-
mensionality of this representation (7k − 10) is much
less than the traditional inter-atom distance matrix
(C2

2k), searching a large patch database is still expen-
sive when k is large. A obvious solution to the prob-
lem is to reduce the dimensionality of patch signatures
while maximally preserving the matching function be-
tween two patches in the lower-dimensional space. We
will study two powerful dimensionality reduction ap-
proaches in the next section and discuss how to apply
them on patch signature data.

4 Dimensionality Reduction on Patch Signa-
tures

Dimensionality reduction has been extensively ap-
plied in information retrieval. The goal is to find
an “intrinsic” subspace, which is an approximation
of the original space but with a lower dimensional-
ity. It has been demonstrated that there does exist
an intrinsic semantic sub-space where the dimensions
with lower eigenvalues carry redundant information
and therefore can be truncated(Ding 1999).

On the other hand, projecting the original data
to a lower dimensional space also helps discover some
embedded “latent semantics” - i.e., some implicit as-
sociations which are unseen in the original high di-
mensional space.

A well known dimensionality reduction approach
is the Singular Value Decomposition (SVD), which
is the basis of the Latent Semantic Indexing
(LSI)(Deerwester et al. 1990)(Landauer et al. 1998).

Recently, a Locality Preserving Projection (LPP)
algorithm (He et al. 2004) has been introduced for
document indexing and demonstrated better perfor-
mance than SVD. Unlike SVD, which preserves inner
product in an Euclidean space, the LPP aims to pre-
serve local geometrical structure of data manifold.

Note that our patch signature matching function,
defined in the last section, requires that the difference
between values of each dimension of two data points
should be within a tolerance. Neither SVD nor LPP
is designed to directly preserve such a matching func-
tion. Therefore, we propose to use the Euclidean dis-
tance based measure between two patch signatures as
an approximation of the previous pairwise matching
function. Since k-sized patches can be equivalently
treated as points in a 7k − 10 dimensional space, the
similarity between two patches can then be measured
by the Euclidean distance between them.

Definition 5 (Patch Similarity ∼δ′). Given two
k-sized patches SC =< s1, s2, ..., sn > and S′C =<
s′1, s

′
2, ..., s

′
n >. They are similar (denoted as SC ∼δ′

CRPIT Volume 49

92

S′C or in short SC ∼ S′C) if d2(SC, S′C) < δ′, where

d2(SC, S′C) =

√√√√
n∑

i=1

|si − s′i|2 (3)

Next, we will show theoretically how the Eu-
clidean distance based similarity measure can return
a super-set of the resultant matches from the pair-
wise matching and thus guarantees the recall of
matching results.

Proposition 2. If SC ≈δ S′C, then d2(SC, S′C) <√
nδ

Proof. This proposition can be proven trivially ac-
cording to definition 3 and definition 6.

The next two subsections will describe SVD and
LPP algorithms respectively and give details in how
they can be applied to the patch signature data.

4.1 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is a powerful
technique from linear algebra. Given m×n patch sig-
nature matrix X with rank r, where m is the number
of k-sized patches and n is the number (i.e., 7k − 10)
of dimensions, X can be decomposed to:

X = UΣV T (4)

where U and V are orthogonal m× r and n× r ma-
trices respectively and Σ is an r × r diagonal matrix
whose values are monotonically increasing non-zero
singular values of X. The columns of U and V are
the eigenvectors of XXT and XT X respectively.

Dimensional reduction is performed by taking only
the first p eigen vectors and singular values to form:

Xp = UpΣpV
T
p (5)

where Up and Vp are m× p and n× p matrices com-
posed of the first p columns of U and V respectively.
According to the Eckart-Young theorem, Xp is the
closest rank-p approximation by least square method
to X in sense of both matrix Frobenius norm and
2-norm, i.e.

Xp = min
rank(B)=p

||X −B||2 (6)

Xp = min
rank(B)=p

||X −B||F (7)

Via SVD, the j−th patch signature vector SCj can
be projected to a p-dimensional vector on the feature
space of span V T

p . The projected vector is actually
recorded as the j-th row of Up.

For a general exposition of the theory of SVD the
reader is directed to (Golub & Van Loan 1996). The
major difficulty of LSA is the choice of a suitable value
for p. Tough the choice of optimal p can be theoreti-
cal, for example the work by Ding (Ding 1999), exper-
imental approach is more widely used in information
retrieval community, where an optimal p is derived by
reference to some experiment. In our experiments we
also adopt the experimental way.

4.2 Locality Preserving Projection

Locality Preserving Projection (LPP) (He & Niyogi
2003)(He et al. 2004) aims to preserve the intrinsic
geometric structure in term of local neighborhood in-
formation of the data on a manifold.

Suppose a set of n-dimensional patches
x1, x2, ..., xm in space <n form a m × n data
matrix X. The core LPP algorithm includes the
following steps:

1. Construct an adjacency graph with each data
point (i.e., patch) as a node and put an edge between
two point xi and xj if they are close enough. The
closeness between xi and xj can be measured by their
distance ||xi − xj ||2. A simple but effective way of
connecting two nodes is based on q nearest neighbors,
i.e., xi and xj are the q nearest neighboring points;

2. A m×m adjacency matrix W is built whereby
W (i, j) = 1 if xi and xj are connected; otherwise
W (i, j) = 0.

There are some other options to the adjacency
graph construction and adjacency matrix weighting.
We do not compare these different options in this pa-
per and will leave it as one of our future work.

3. Compute Eigenmaps by solving the following
generalized eigenvector problem:

XLXT al = λlXDXT al (8)

where D is m × m diagonal matrix with Dii =∑
j Wji, L = D − W is the Laplacian matrix, λl

is the l-th eigenvalue and al is the l-th eigenvector.
The transformation matrix A = [a1, a2, ..., ap] can be
formed, ordered by the eigenvalues λ1 < λ2 < ... < λp
where p << n.

4. Project the points to p-dimensional space <p:

xi → x′i = AT xi (9)

Note that LPP is a linear approximation of Lapla-
cian Eigenmaps (Belkin & Niyogi 2001). They both
try to preserve locality via the following objective
function:

min
∑

ij

(x′i − x′j)
2Wij (10)

They are the same in the first two steps. The step 3
of the latter is to compute the generalized eigenvector
for:

Lal = λlDal (11)

The rows of resultant m× p matrix A can be used
as approximation of the original data in the lower
dimensional space <p:

x′i = (a1(i), a2(i), ..., ap(i)) (12)

The justification for their ability of preserving ge-
ometric structure on manifold is based on the Lapla-
cian matrix L which is an approximation to the
Laplace-Beltrami operator defined on the manifold
(Belkin & Niyogi 2001).

5 Experiments

In this section, we set up the experiments and re-
port the results of an extensive performance study
conducted to evaluate the proposed representation
model and the dimensionality reduction on protein
patch data.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

93

Table 1: Statistics of test data
Total number of proteins 811
Total number of vectors 190,669

Average number of vectors per protein 216
Average number of 16-sized

patches per protein
5308

5.1 Experimental setup

5.1.1 Test Data

A total number of 811 sample proteins are
selected for our initial experiments according
to the PDB LIST 20040601 (R-factor<0.2 and
Resolution<1.9) in the WHATIF relational database.
The PDB structures stored in the WHAT IF rela-
tional database are a representative set of sequence-
unique (a sequence identity percentage cutoff of 30%)
structures(WHATIF relational database n.d.). After
pre-processing, the data statistics are shown in Table
1.

5.1.2 Query proteins

Ten different sized proteins are selected as queries.
The average number of vectors per query is 238.

5.1.3 Baseline

To choose a baseline for comparison with our method,
we perform pairwise matching of all distances between
two patch signatures. The baseline matching results
are assumed “correct matches”.

The models we test in our experiments are the
Euclidean distance based similarity search based on

- Dimensionality Reduction via SVD

- Dimensionality Reduction via LPP

5.1.4 Performance Indicators

Our programs are written in C++ and running on
Pentium 4 CPU (2.8GHZ) with 1G RAM. The major
performance indicators we used are:

- CPU time (in seconds) to complete a query

- Precision: percentage of returned patches being
correct

- Recall: percentage of correct matching patches
being returned

- F-measure: 2∗Precision∗Recall
Precision+Recall

Note that all the experimental results reported
later will be averaged for one query protein matches
against one protein in the database.

5.1.5 Parameter settings

There are several parameters need to be set for our
model and search method, four of which are fixed in
our experiments:

- Distance cutoff (ς): 15Å

- Pair-wise matching tolerance (δ): 4Å

- Size of patches to match (k): 16 (leading to a
total dimensionality 102 for patch signatures)

- Number of nearest neighbors in LPP (q): 10

Two other parameters are variables. We will test how
the different settings of them affect the performance.

- Euclidean distance based similarity threshold δ′:
1Å, 1.2Å, 1.5Å

- Size of reduced dimensionality p: 5, 10, 20, 30,
40, 50, 102

5.2 Experimental results

Table 2, 3, Fig.4, and Fig.5 summarize the experi-
mental results. In addition, the CPU time for the
baseline is 3.1 seconds. We can make the following
observations:

Dimensionality reduction by both SVD and LPP un-
der all the different parameter settings saves CPU
time by from 3.2% up to 84%. This suggests that it
does largely improve the efficiency for patch match-
ing.

Larger threshold value δ′ lead to increasing CPU time
and recall, and decreasing precision. This co-relates
our intuition. According to proposition 3, a threshold
δ′ =

√
nδ = 40Å guarantees 100% recall. The cost is

losing precision. In the rest of our analysis, we take
the F-measure as the main effectiveness indicator, as
it represents the trade-off between precision and re-
call. We can observe that a much lower threshold like
1.2Å is enough to obtain reasonable F-value.

The “intrinsic” dimensionality for either LPP or SVD
is quite low (20 for SVD and 10-20 for LPP). In
Fig.5, for each model the F-value grows rapidly until
it reaches the peak, where the corresponding dimen-
sionality is the intrinsic dimensionality. After this
certain point, the F-value decreases while the dimen-
sionality increases. This suggests that a large number
of less significant dimensions carry no much meaning-
ful information. This also indicates the usefulness and
necessity of dimensionality reduction. It is also inter-
esting to note the difference between LPP and SVD.
The performance of SVD decreases more rapidly than
LPP when the dimensionality increases. More theo-
retical comparison between the two approaches will
be conducted in the future work.

6 Related Work

This paper deals with the problem of finding similar
substructures. The most related techniques to our
methods include protein structure modelling, such as
geometric hashing and graph theoretical approach,
and high-dimensional indexing for similarity search.

Geometric hashing (Wolfson 1997) was originally
developed in computer vision and now used in pro-
tein structure comparison. It defines a set of refer-
ence frames for a structure. The coordinates of all
points in the structure are re-calculated in a reference
frame, forming a reference frame system. Geometric
features of the structure are calculated based on the
reference frame systems and stored in a hash table.
This method ignores the sequential order of amino
acids and gives the result invariant to the translation
and rotation of the compared structures(Nussinov &
Wolfson 1991) and thus is useful to discover match-
ing substructures. However, we do not adopt this ap-
proach as it is computationally expensive. The num-
ber of reference frame systems to be constructed and
the number of frame system comparisons are both

CRPIT Volume 49

94

Table 2: Summary of SVD performance
p δ′ CPU Time %ofbaselineCPUtime Precision Recall F-Measure

1 0.4 13% 0.21 0.79 0.33
5 1.2 0.4 13% 0.17 0.90 0.29

1.5 0.9 29% 0.05 0.99 0.10
1 0.5 16% 0.7 0.23 0.30

10 1.2 0.5 16% 0.16 0.75 0.26
1.5 0.8 26% 0.04 0.99 0.08
1 0.52 17% 0.92 0.42 0.21

20 1.2 0.57 18% 0.28 0.46 0.35
1.5 1.2 80% 0.01 0.99 0.02
1 0.6 19% 0.85 0.39 0.07

30 1.2 0.6 19% 0.24 0.26 0.25
1.5 1 32% 0.02 0.99 0.04
1 0.8 26% 0.22 0.003 0.06

40 1.2 0.8 26% 0.31 0.12 0.17
1.5 2 64% 0.02 0.98 0.04
1 0.8 26% 0.3 0.002 0.004

50 1.2 0.9 29% 0.23 0.05 0.08
1.5 1.5 48% 0.03 0.98 0.06
1 1.1 35% 0 0 N/A

102 1.2 1.3 42% 0.14 0.001 0.002
1.5 2.5 81% 0.08 0.98 0.15

Table 3: Summary of LPP performance
p δ′ CPU Time %ofbaselineCPUtime Precision Recall F-Measure

1 0.5 16% 0.14 0.74 0.24
5 1.2 0.5 16% 0.07 0.77 0.13

1.5 0.6 19% 0.02 0.96 0.04
1 0.5 16% 0.25 0.47 0.33

10 1.2 0.5 16% 0.20 0.52 0.29
1.5 0.8 26% 0.01 0.96 0.02
1 0.8 26% 0.37 0.25 0.30

20 1.2 0.8 26% 0.32 0.34 0.33
1.5 1 32% 0.02 0.94 0.04
1 0.6 19% 0.51 0.16 0.24

30 1.2 0.7 23% 0.43 0.21 0.28
1.5 2.1 68% 0.02 0.97 0.04
1 0.7 23% 0.62 0.11 0.19

40 1.2 0.7 23% 0.57 0.18 0.27
1.5 1.3 42% 0.02 0.98 0.04
1 0.7 23% 0.67 0.09 0.16

50 1.2 1 32% 0.53 0.15 0.23
1.5 1.1 35% 0.02 0.96 0.04
1 1 32% 0.78 0.05 0.09

102 1.2 1 32% 0.65 0.09 0.16
1.5 2.1 68% 0.02 0.96 0.04

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Reduced Dimenionality (p)

F-
M

ea
su

re

(a) SVD performance (b) LPP performance

δ'=1

δ'=1.2 δ'=1.5

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Reduced Dimensionality (p)

F-
M

ea
su

re

δ'=1

δ'=1.5

δ'=1.2

Figure 4: F-Measure.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

95

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Dimensionality

F-M
ea

su
re

LPP

SVD

Figure 5: Intrinsic dimensionality(δ′=1.2).

combinatorial. Moreover, recalculation of the coordi-
nates of points in a new reference frame via rotation
and translation is also expensive.

The graph theoretical approach is used in sys-
tems, such as ASSAM(Spriggs et al. 2003, Grindley,
Artymiuk, Rice & Willett 1993) and VAST(Gibrat
et al. 1996), to find the maximal common substruc-
ture. The problem is often transformed to the
clique problem. Vector representation is also used
in ASSAM(Spriggs et al. 2003) which is developed
to search for patterns of amino acid side chains in
the 3D structures. A substructure is characterized
by the distances among all pairs of vectors. This is
therefore different from our model, where the over-
all spatial relationship of all the vectors in the sub-
structure is characterized by its patch signature to
make a more compact representation. ASSAM then
detects cliques using a maximal common subgraph
isomorphism algorithm borrowed from graph the-
ory (Bron & Kerbosch 1973). As the clique de-
tection problem is NP-Complete, many heuristic al-
gorithms are developed. The most existing heuris-
tic algorithms for the clique problem are partially
enumerative and branch-and-bound based (Gardiner,
Artymiuk & Willett 1997). However, they are insuffi-
cient to handle large scale data. For example, the test
queries used for the experiments reported in (Spriggs
et al. 2003) were all triad residues. In other words,
the maximum size of cliques was three. A protein
was “hit” once a matching substructure of size 3 was
found. In our work, a query is a whole protein and
we aim to find from the database all the matching
substructures in any size. Therefore, we do not use
the clique detection algorithms in our work. Instead,
we developed a more scalable IR and database solu-
tion featured by a highly efficient query processing
strategy.

7 Conclusions and Future Work

This paper presents a protein structure matching
problem and formulates it as an information retrieval
problem. A patch signature model is addressed based
on a vector representation of protein structure. A pro-
tein structural region is defined as a patch, formed by
a set of vectors within the region. A k-sized patch
is then indexed by the 7k − 10 internal inter-atom
distances constituting its patch signature. A match-
ing function is defined to compare two patches based
on their patch signatures. Though the dimensional-
ity of this representation (7k − 10) is much less than
the traditional inter-atom distance matrix (C2

2k) ap-
proach, searching a large patch database is still ex-

pensive when k is large. We propose to apply dimen-
sionality reduction to patch signatures and show how
the two problems are adapted to fit each other. The
Locality Preservation Projection (LPP) and Singular
Value Decomposition (SVD)are chosen and tested for
this purpose. Experimental results show that the di-
mensionality reduction improves the searching speed
with acceptable precision and recall. From a more
general point of view, this paper demonstrates that
information retrieval techniques can play a crucial
role in solving this biologically critical but previously
computationally prohibitive problem. It is our hope
that the marriage between information retrieval and
bio-informatics will extend the boundaries of both ar-
eas.

From the experimental results, we can observe that
there is still some room for further performance im-
provement in dimensionality reduction via both LPP
and SVD (The best F-values are separately 33% and
35%). We will investigate other possibly more effec-
tive approximations to the pairwise patch matching
function, other than the Euclidean distance used in
this paper. On the other hand, more dimensionality
reduction algorithms will be studied. At this stage,
we focus on matching same sized patches. In the fu-
ture, we plan to develop an efficient indexing mech-
anism for different sized patches. In this paper, we
did not compare our approach to other protein struc-
ture matching algorithms. As a future work, we will
also consider testing our approach on a collection of
”homologs” produced from the SCOP database.

Acknowledgements

The work reported in this paper has been funded
in part by the Australian Research Council (Grant
No. DP0344488) and the Co-operative Centre for
Enterprise Distributed Systems Technology (DSTC)
through the Australian Federal Government’s CRC
Programme (Department of Education, Science and
Training).

References

Alexandrov, N. & Fischer, D. (1996), ‘Analysis of
topological and nontopological structural simi-
larities in the pdb: New examples with old struc-
tures’, Proteins 25, 354–365.

Altschul, S., Gish, W., Miller, W., Myers, E. & Lip-
man, D. (1990), ‘Basic local alignment search
tool’, J Mol Biol 215(3), 403–10.

CRPIT Volume 49

96

Artymiuk, P., Spriggs, R. & Willett, P. (2005),
‘Graph theoretic methods for the analysis of
structural relationships in biological macro-
molecules’, Journal of the American Society for
Information Science and Technology 56(5), 518–
528.

Belkin, M. & Niyogi, P. (2001), Laplacian eigenmaps
and spectral techniques for embedding and clus-
tering, in ‘Advances in Neutral Information Pro-
cessing Systems 14 NIPS2001’.

Bergeron, B. (2003), Bioinformatics Computing,
Pearson Education, Inc.

Bourne, P. & Weissig, H. (2003), Structural Bioinfor-
matics, John Wiley and Sons.

Branden, C. & Tooze, J. (1998), Introduction to Pro-
tein Structure, Garland Publishing, Inc.

Bron, C. & Kerbosch, J. (1973), ‘Algorithm 457 -
finding all cliques of an undirected graph’, Com-
munications of ACM 1973(16), 575–577.

Deerwester, S., Dumais, S., Landauer, T., Furnas,
G. & Harshman, R. (1990), ‘Indexing by latent
semantic analysis’, Journal of American Society
for Information Science 41, 391–407.

Ding, C. (1999), A similarity-based probability model
for latent semantic indexing, in ‘Proceedings of
the Tweenty-Second Annual Internation ACM
SIGIR Conference on Research and Development
in Information Retrieval’, pp. 59–65.

Gardiner, E., Artymiuk, P. & Willett, P. (1997),
‘Clique-dection algorithms for matching three-
dimensional molecular structures.’, Journal of
Molecular Graphics and Modeling 15, 245–253.

Gibrat, J.-F., Madej, T. & Bryant, S. (1996), ‘Surpris-
ing similarities in structure comparison’, Curr.
Opin. Struct. Biol. 6, 377–385.

Golub, G. & Van Loan, C. (1996), Matrix Computa-
tions, John Hopkins University Press.

Grindley, H., Artymiuk, P., Rice, D. & Willett, P.
(1993), ‘Use of techniques derived from graph
theory to compare secondary structure motifs in
proteins’, J. Mol. Biol. 229, 707–721.

He, X., Cai, D., Liu, H. & Ma, W. (2004), Local-
ity preserving indexing for document represen-
tation, in ‘Proceedings of the 27th Annual Inter-
nation ACM SIGIR Conference on Research and
Development in Information Retrieval’, pp. 96–
103.

He, X. & Niyogi, P. (2003), Locality preserving pro-
jections, in ‘Advances in Neutral Information
Processing Systems 16 NIPS2003’.

Holm, L. & Sander, C. (1993), ‘Protein structure com-
parison by alignment of distance matrices’, J.
Mol. Biol. 233, 123–138.

Holm, L. & Sander, C. (1996), ‘Mapping the protein
universe’, Science 273, 595–603.

Huang, Z. (2005), Indexing protein substructures
for efficient similarity queries, Technical re-
port, School of ITEE, University of Queensland,
http://www.itee.uq.edu.au/ huang/Report.pdf.

Huang, Z., Zhou, X. & Song, D. (2005), High dimen-
sional indexing for protein structure matching
using bowties, in ‘Proc. of 3rd Asia-Pacific Bioin-
formatics Conference’, pp. 21–30.

Landauer, T., Foltz, P. & Laham, D. (1998), ‘Intro-
duction to latent semantic analysis’, Discourse
Process 25(2&3), 259–284.

Mount, D. (2001), Bioinformatics: Sequence and
Genome Analysis, Cold Spring Harbor Labora-
tory Press.

Nussinov, R. & Wolfson, H. (1991), ‘Efficient de-
tection of three-dimensional structural motifs in
biological macromolecules by computer vision
techniques.’, Proc. Natl Acad. Sci. October-
December, 10495–10499.

Orengo, C., Jones, D. & Thornton, J. (2003), ‘Bioin-
formatics: Genes, proteins and computers’.

Orengo, C. & Taylor, W. (1989), ‘Protein structure
alignment’, J. Mol. Biol. 208, 1–22.

Orengo, C. & Taylor, W. (1996), ‘Ssap: Sequential
structure alignment program for protein struc-
ture comparison’, Methods Enzymol. 266, 617–
635.

Protein data Bank (n.d.), http://www.rcsb.org/pdb/.

Spriggs, R., Artymiuk, P. & Willett, P. (2003),
‘Searching for patterns of amino acids in 3D
protein structures’, J Chem Inf Comput Sci.
43(2), 412–21.

WHATIF relational database (n.d.),
http://www.cmbi.kun.nl/gv/whatif/select/.

Wolfson, H. (1997), ‘Geometric hashing: an
overview.’, IEEE Comp. Science and Eng.
October-December, 10–21.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

97

CRPIT Volume 49

98

Recency-Based Collaborative Filtering

Yi Ding Xue Li Maria E. Orlowska

School of Information Technology and Electrical Engineering
University of Queensland

ITEE, University of Queensland, QLD 4072, Australia
Email: {ding,xueli,maria}@itee.uq.edu.au

Abstract

Collaborative filtering is regarded as one of the most
promising recommendation algorithms. Traditional
approaches for collaborative filtering do not take con-
cept drift into account. For example, user purchase
interests may be volatile. A new mother may be in-
terested in baby toys, although previously she had no
interest in these. A man may like romantic films while
he preferred action movies one year ago. Collabora-
tive filtering is characterized by concept drift in the
real world. To make time-critical predictions, we ar-
gue that the target users’ recent ratings reflect his/her
future preferences more than older ratings. In this
paper, we present a novel algorithm namely recency-
based collaborative filtering to explore the weights for
items based on their expected accuracy on the future
preferences. Our proposed approach is based on item-
based collaborative filtering algorithms. Specifically,
we design a new similarity function to produce sim-
ilarity scores that better reflect the reality. Our ex-
perimental results have shown that the new algorithm
substantially improves the precision of traditional col-
laborative filtering algorithms.

Keywords: collaborative filtering, item-based ap-
proach, recency-based approach, concept drift, sim-
ilarity measure

1 Introduction

With the evolution of the Internet, information over-
load is becoming a major problem for users. Differ-
ent approaches are used in order to cope with this
problem. Content-based filtering analyses the items’
attributes to make recommendation, while collabora-
tive filtering uses historical data on user preferences to
predict items that a user might like. To date, collabo-
rative filtering is best known for its use on e-commerce
web sites. It has also been widely used in other ar-
eas, for example, filtering Usenet News, recommend-
ing TV shows and Web personalization.

Over the years, various approaches for collabora-
tive filtering have been developed. However, in tradi-
tional approaches for collaborative filtering, data col-
lection is regarded as static. Ratings produced at

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

different times are weighted equally. Concept drift is
not taken into account. Concept drift results from
the fact that patterns revealed from analysing data is
constantly changing. In collaborative filtering, con-
cept drift means that user purchase preferences that
we want to predict are always drifting. For example,
a man previously liked romantic movies. So he rated
Casablanca , a romantic movie released in 1942, the
highest score 5 three years ago. But he changes his
interest as time goes by. Currently, he dislikes roman-
tic movies. He rated Sweet Home Alabama , a roman-
tic movie released in 2002, the score 2 a month ago.
Traditional collaborative filtering algorithms suppose
these two scores have the same weights in predicting
the user future preference for romantic movies.

Collaborative filtering is characterized by con-
cept drift in the real world. The fast growth of e-
commerce makes this concept drift factor more se-
vere. In (Ali & Stam 04), the authors described the
TiVo television show collaborative recommendation
system which started four years ago. It has cur-
rently accumulated approximately 100 million user
ratings, some of which are very old. In (Linden,
Smith & York 2003), the authors mentioned that at
Amazon.com old users can have a glut of information,
based on thousands of ratings.

Since the value of these old ratings is question-
able, we should seek to develop an algorithm that will
deal with the changing data in collaborative filter-
ing, thereby obtaining the most accurate prediction.
That is to say, the algorithm must alleviate the influ-
ence of data representing outdated user preferences.
A widely used approach is to discount old data at a
constant rate. However, precisely calculating the dis-
count rate of data can be quite difficult. A higher
rate would lower the accuracy of the algorithm since
it is supported by a less amount of training data and
a lower rate would make the algorithm less sensitive
to the current trend (Wang, Fan, Yu & Han 2003).
Furthermore, in collaborative filtering, the discount
rate depends on the duration of user preferences for
items. This means the discount rate varies with dif-
ferent users and different items. The longer the target
user’s preference for a specific item lasts, the lower the
discount rate.

In this paper we propose a novel algorithm namely
recency-based dollaborative filtering, using weights
for items based on their expected accuracy on the
future preferences. Instead of discounting data using
a discount function, our approach shall make deci-
sions based on data distribution, rather than based
solely on data arrival time. This is more reasonable
and simpler compared to discount functions.

We use a simple example to illustrate the problem
of concept drift in collaborative filtering. Assume the
data points represent a user’s preferences for a cate-
gory of items in Figure 1.

One data point represents the user’s rating on one

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

99

Figure 1: Concept Drift in Collaborative Filtering

item. For example, Figure 1 is used to represent the
user Alice’s preference for thriller movies. Data point
A represents Alice’s rating on one thriller: The 39
Steps . Data point B represents Alice’s rating on an-
other thriller: The Bourne Identity . For every data
point, the value of x means the rating’s produced time
and the value of y means the score. Here, Alice’s rat-
ing on The 39 Steps is 5 and Alice’s rating on The
Bourne Identity is 4. S0 is the oldest data and S2
is the newest data. Let Si be the data that came in
between time ti and ti+1. From Figure 1, we can see
that Alice’s preferences for thrillers are always chang-
ing. In S0 Alice’s scores on thrillers are relatively
high, while in S1 the scores are low. This means Al-
ice’s preference for thrillers went down at this period
of time. However, in the time interval [t2, t3), Alice
recovered the preference for thrillers.

In summary, the challenge is: How do we deal
with the changing data in collaborative filtering so
that the most accurate prediction can be obtained?
On the one hand, in order to reduce the influence
of old data that may represent old preferences, we
should use the most recent data. For example, we
should only use the data in S2. However, because of
insufficient amount of data, the prediction precision
is likely to be degraded. On the other hand, using all
the historical data simply may also reduce the pre-
diction precision. From Figure 1, we can see that the
discrepancy between the underlying trends of S1 and
S2 becomes the cause of the problem. To address the
problem, we argue that the most recent rating reflects
the user future preference most. Hence, in Figure 1,
we should assign a high weight to S0 and S2 and a
low weight to S1. This is because S2 represents the
newest trend and, at the same time, S0 and S2 have
similar data distribution.

The rest of the paper is organized as follows. Sec-
tion 2 briefly presents some of the research literature
related to our work. In section 3, we propose the new
algorithm and describe different sub-tasks in detail.
Section 4 presents our experimental work. It provides
details of our data set, evaluation metrics, and results
of different experiments and discussion of the results.
The final section provides some concluding remarks
and directions for future work.

2 Related Work

Recommender systems started attracting major re-
search interest during the early nineties (Goldberg,
Nichols, Oki & Terry 1992). Since that time, many
techniques have been explored in collaborative filter-
ing. Generally, they are categorized into two classes:
memory-based algorithms and model-based algo-
rithms (Breese, Heekerman & Kadic 1998). Memory-

based algorithms represent the classical trend in col-
laborative filtering. This type of algorithm uses sta-
tistical techniques to find a set of neighbours and uses
the nearest neighbours to predict the users’ prefer-
ences. They include user-based collaborative filtering
and item-based collaborative filtering. If the algo-
rithm computes the similarity between different users,
drawing on a set of users as nearest neighbours to
do recommendation, it is called user-based collabora-
tive filtering (Resnick, Iacovou, Suchak, Bergstorm &
Riedl. 1994). Nevertheless, if the algorithm computes
the similarity between different items and uses a set
of items as nearest neighbours to do recommendation,
it is called item-based collaborative filtering (Sarwar,
Karypis, Konstan & Riedl 2001). On the other hand,
model-based algorithms deploy the data to build a
model that is then used for predictions. These mod-
els may use Bayesian network, clustering or associa-
tion rules and most of these models are probabilistic
models. In probabilistic models, users are grouped
into different classes based on their rating patterns.
Assuming that users in the same class have the same
preferences, the probability of a target user belong-
ing to different classes is computed. The models then
use this probability to predict the target user’s pref-
erences.

Maritza L. et al made a comparison of dif-
ferent collaborative filtering algorithms: memory-
based algorithm, dependency-networks algorithm, on-
line learning algorithm and support vector machine
and conducted many experiments in (L. & Perez-
Alcazar 2004). The results from these experi-
ments showed that for a wide range of conditions,
memory-based algorithm outperforms support vector
machine, dependency-networks and online methods.
In memory-based algorithms, item-based approaches
can dramatically improve the scalability of collabora-
tive filtering and provide better quality compared to
user-based approaches (Sarwar et al. 2001). Up un-
til now, item-based collaborative filtering algorithms
have been widely used in many real world applications
such as at Amazon.com.

However, few works have discussed concept drift
in collaborative filtering. Loren Terveen et al de-
fined users’ preferences using their personal history
(Terveen, McMackin, Amento & Hill 2002). Kazu-
nari Sugiyama et al explored a type of time-based
collaborative filtering with detailed analysis of user’s
browsing history in one day (Sugiyama, Hatano &
Yoshikawa 2004). Yi Ding et al proposed comput-
ing the time weights for different items in a man-
ner that will assign a decreasing weight to old data
(Ding & Li 2005). Recently, mining concept-drifting
data in data streams has received growing interest.
Haixun Wang et al proposed a general framework us-
ing weighted ensemble classifiers (Wang et al. 2003).
Wei Fan pointed out that using old data indiscrimi-
nately helps produce a more accurate hypothesis only
if there is no concept-drifting and the amount of
old data chosen arbitrarily just happens to be right
(Fan 2004). In (Wang et al. 2003)(Fan 2004), empir-
ical study shows that selecting data wisely has sub-
stantial advantage over using new data or all data
indiscriminately in ensuring prediction precision.

At the same time, there has been much effort ded-
icated to the improvement of similarity measure. In
collaborative filtering, the quality of similarity func-
tion is a key issue. It influences the prediction pre-
cision to a great extent. Rong Jin et al proposed
normalizing ratings of different users before comput-
ing similarity (Jin & Si 2004). Jonathan L. Herlocker
et al proposed to devalue similarity weights for the
users who just rated few items (Herlocker, Konstan,
Terveen & Riedl 2004). Prasanna Ganesan et al ex-
plored new similarity measures that exploit a hierar-

CRPIT Volume 49

100

chical domain structure (Ganesan, Garcia-Molina &
Widon 2003).

However, all these approaches are based on Pear-
son Correlation Coefficient or Cosine Similarity mea-
sure. To date, no research has been conducted on
the applicability of similarity measures in collabora-
tive filtering. In order to produce similarity scores
that better reflect the reality, we design a new sim-
ilarity function for item-based collaborative filtering
algorithms.

3 Proposed Algorithm

Our new algorithm is based on item-based collabora-
tive filtering algorithms and makes an improvement
on prediction accuracy. The main idea includes the
follows:

First, we design a new similarity function for item-
based collaborative filtering algorithms to produce
similarity scores that better reflect the reality. We
study the applicability of common similarity measures
used in collaborative filtering and argue that in item-
based collaborative filtering we look for items sharing
common user preferences.

Second, we use a set of items as nearest neigh-
bours to predict a user’s preference for a specific item.
To tackle the problem of concept drift, we assign the
weights for items by estimating their expected pre-
diction error on the future purchase preferences. We
assume that the most recent rating is closest to the
future preference. Consequently, the weight of the
items can be approximated by computing the devia-
tion of their ratings from the most recent rating.

In the following sections, we first describe the def-
inition of collaborative filtering algorithms, and then
we introduce the traditional item-based collaborative
filtering algorithm. Finally, we propose our new al-
gorithm and describe different sub-tasks of the algo-
rithm in detail.

3.1 Item-Based Collaborative Filtering

The collaborative filtering problem can be defined as
follows:

Given a database D as a tuple < Ui, Ij , Oij >,
where Ui identifies the i-th user of the system, Ij iden-
tifies the j-th item of the system and Oij represents
the i-th user’s opinion on the j-th item, find a list of
k recommended items for each user U.

In item-based collaborative filtering algorithms, an
item is regarded as a vector in the user space. The
whole process is divided into two phases:

Phase 1 Similarity Computation. Similarity be-
tween two items is computed by isolating the
users who have rated them and then applying
a similarity computation technique. There are
two common techniques:
Cosine similarity: The similarity between differ-
ent items is measured by computing the cosine
of the angle between different vectors as:

sim(Ia, Ib) = cos(~a,~b) =
~a ·~b
|~a||~b|

=
Σm

i Oia ×Oib√
Σm

i O2
ia

√
Σm

i O2
ib

(1)
where Ia identifies the a-th item of the system.
Oia represents the i-th user rating on the a-th
item.
Pearson correlation coefficient: The similarity
between different items is measured as:

sim(Ia, Ib) =
Σm

i (Oia −Oi)× (Oib −Oi)√
Σm

i (Oia −Oi)2
√

Σm
i (Oib −Oi)2

(2)

where Oi is the average of the i-th user’s ratings

Phase 2 Preference Prediction. The prediction on
an item i for a user j can be computed by us-
ing the sum of the ratings of the user to items
weighted by similarity between different items as:

Oij =
Σk

c=1Oic · sim(Ij , Ic)
Σk

c=1sim(Ij , Ic)
(3)

where Ij identifies the j-th item
Ic identifies nearest neighbors of the j-th item
Oij represents the i-th user’s rating on the j-th
item.

3.2 Recency-Based Collaborative Filtering

As discussed before, in the real world collaborative
filtering is characterized by concept drift. To tackle
the problem, we propose a novel algorithm namely
recency-based collaborative filtering. Our approach
is divided into two phases: Similarity Computation
and Preference Prediction.

3.2.1 Similarity Measures

The notion of similarity is used to identify items hav-
ing common “characteristics”. In item-based collab-
orative filtering algorithms, from the perspective of
intuition, we look for items sharing common user pref-
erences. If all the user preferences on two items are
very close, we consider these two items similar. On
the other hand, if the user preferences on two items
are different, we consider these two items not sim-
ilar. Nowadays, in collaborative filtering there are
two common approaches to compute the similarity
between different items: Pearson Correlation Coeffi-
cient and Cosine Similarity. The details are shown
in Equation 1 and Equation 2. Although these two
similarity measures have been widely used in the real
world, some of their properties are not applicable to
item-based collaborative filtering algorithms.

First, for Pearson Correlation Coefficient and Co-
sine Similarity, the similarity between different items
is calculated by comparing user ratings on these
items. However, ratings are determined not only by
user preferences but also by the rating habits of users.
There are two factors that can lead to rating variance
among users with similar interests (Jin & Si 2004).

• Shift of average ratings. This problem refers to
the fact that some users are more tolerant and
therefore their ratings of items tend to be higher
than other users. As a consequence, the average
ratings for the tolerant users are higher than the
strict users.

• Different rating scales. This problem refers to the
factor that some conservative users tend to assign
items to a narrow range of rating categories while
others tend to assign items to a wide range of
rating categories.

Although Pearson Correlation Coefficient takes
the factor of shift of average into account by sub-
tracting the corresponding user average, it ignores the
influence of rating scale. Intuitively, we look for the

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

101

items that share common user preferences rather than
common user ratings. So we should convert the user
ratings into the user preferences and then compare
the user preferences to get more appropriate similar-
ity scores.

Second, both Cosine Similarity and Pearson Coef-
ficient Correlation are scale invariant. That is to say,
they do not depend on the length of vector. From Fig-
ure 2 and Figure 3, we can see the property clearly.

Figure 2: Cosine Measure

For cosine measure,

Sim(C)(Ia, Ib) = Sim(C)(αIa, Ib) α > 0 (4)

For example, as illustrated in Figure 2, for points
x1(1, 1) x2(4, 4) x3(2, 1), we can get Sim(C)(x1, x3) =
Sim(C)(x2, x3).

Figure 3: Pearson Coefficient Correlation

For Pearson Coefficient Correlation,

Sim(P)(Ia, Ib) = Sim(C)(Ia − I, Ib − I)

= Sim(C)(α(Ia − I), Ib − I) α > 0 (5)

For example, as illustrated in Figure 3, for points
x1(3, 3) x2(4, 4) x3(5, 3), we can get Sim(P)(x1, x3) =
Sim(P)(x2, x3).

This property allows documents with the same
composition, but different totals, to be treated iden-
tically. This makes Cosine Measure the most popular
measure for text documents in information retrieval.
However, this is not our designed property. In item-
based collaborative filtering algorithms, the length of
vector stands for how users like an item. To produce

similarity scores that better reflect the reality, we de-
sign a new similarity measure for item-based collabo-
rative filtering. The similarity between different items
is computed as:

Sim(Ia, Ib) = e−d

d = Σm
i=1|Pia−Pib|

m

Pij = Oij−Oi√
1

Ni−1Σj(Oij−Oi)2

(6)

Here, Pij stands for the i-th user’s preference for
the j-th item

d stands for the average distance between the a-th
item and the b-th item.

Equation 6 is derived using the following process:
First we use the Gaussian normalization method to
diminish the influence of shift of average ratings and
different rating scales, thereby transforming the user
ratings into the user preferences. The Gaussian nor-
malization Equation is listed as follows:

Pij =
Oij −Oi√

1
Ni−1Σj(Oij −Oi)2

(7)

Where Oij stands for the i-th user’s rating for the
j-th item.

Oi stands for the average of the i-th user’s ratings.
Ni stands for the number of the i-th user’s ratings
We then use Manhattan distance to compare the

user preferences on two items. Manhattan distance
belongs to the family of Minkowski distances. The
Minkowski distances are the standard metrics for ge-
ometrical problems. The equation is listed as follows:

Lp(Ia, Ib) = (Σd
i=1|Iia − Iib|p)1/p (8)

For p=1 we can get the Manhattan distance. The
Manhattan distance between two items is the sum of
the distances of their corresponding components. In
item-based collaborative filtering, similarity between
two items is computed by isolating the users who have
rated them and then applying a similarity function.
In this case, the Manhattan distance between two
items is the sum of the distances of user preferences
for two items. However, we may isolate the different
number of the users when computing similarity be-
tween items. For example, there are 400 users who
have rated both Ia and Ib. Accordingly, we use 400
user preferences to compute Sim(Ia, Ib). There are
500 users who have rated both Ia and Ic. Accordingly,
we use 500 user preferences to compute Sim(Ia, Ic).
To address this problem, we divide the Manhattan
distance by m to get the average distance on one di-
mension. In Equation 6, m is the number of the users
that have rated both items. Finally, we use the aver-
age distance to measure how close the user preferences
for different items are. To avoid the value of zero, we
use the exponential form: s = e−d to relate the aver-
age distance d and similarity s. From Equation 6, we
can observe that the value of the similarity function
is in the range of (0,1] and it reduces with the aver-
age distance. When the similarity between the two
items is equal to 1, it means that user preferences on
these items are very similar (identical). In contrast,
when the similarity between two items is close to 0, it
means the user preferences on these items are always
different.

Usually, similarity measure is a function of a dis-
tance function in a given space but it does not have
to be. For example, when the data is nominal data,
the distance function is not applicable. The key point
is that similarity measure as a function should have
behaviour imitating our interpretation of similar ob-
jects.

CRPIT Volume 49

102

3.2.2 Weights Based on Expected Accuracy

As discussed before, traditional approaches for item-
based collaborative filtering use a set of items as near-
est neighbours to predict a user’s preference for a spe-
cific item. Ratings produced at different times are
weighted equally. However, in the real world the user
purchase interest is sensitive to time. To capture the
current trend and get the most accurate prediction,
we propose that in the phase of Preference Prediction,
each rating is assigned a weight which is reversely pro-
portional to the expected prediction error on the fu-
ture preference. That is to say, Equation 3 is modified
as:

Oij =
Σk

c=1Oic · sim(Ij , Ic) ·Wc

Σk
c=1sim(Ij , Ic) ·Wc

(9)

Where Wc represents the weight assigned to item
Ic.

To achieve the appropriate weights, we need to
know the actual rating of the user on the target item.
However, this is unavailable. In this case, we assume
the most recent rating in all the ratings on the nearest
neighbours represents the current trend and is closest
to the future preference. Consequently, the weight of
item can be approximated by computing the devia-
tion of the rating on the item from the most recent
rating. The formula is listed as follows:

Wi = (1− |Oi −Or|
|R|)α (10)

Here, Wi represents the weight assigned to the i-
th item. Oi represents the rating of the target user
on the i-th item. Or represents the most recent rat-
ing of the target user on the nearest neighbours. |R|
represents the rating scale. α is a parameter for a
well-tuned performance.

From Equation 10, we can observe that the value
of weight is in the range of [0,1] and the weight of the
most recent rating is equal to 1. The more the rating
on an item deviates from the recent rating, the lower
the weight of the item.

3.3 An Example

The following example illustrates the whole process
of our recency-based collaborative filtering algorithm.
Assume that four users have rated five movies. The
ratings are shown in Table 1.

Table 1: Users’ Ratings on Movies
Movie Movie Movie Movie Movie

A B C D E
John 1 4 2 5 4
Helen 4 2 5 2 -
Bob 4 3 - 3 3
Alice 2 4 3 ? 2

Here, the value 1 means the lowest rating and the
value 5 means the highest rating. The symbol “-
” means the user did not rate the movie. Suppose
Alice’s ratings on Movie A, Movie B, Movie C and
Movie E produced on (22 9, 2004), (24 12, 2004), (22
10, 2002), (22 7, 2003) respectively. The values inside
bracket represent the date Alice rated the movie. The
time stamps for other ratings are also recorded. Our
aim is to predict Alice’s preference on movie D. The
whole process is listed as follows:

Step 1: Similarity Computation

Table 2: Users’ Preferences on Movies
Movie Movie Movie Movie Movie

A B C D E
John -1.34 0.48 -0.73 1.09 0.48
Helen 0.5 -0.83 1.16 -0.83 -
Bob 1.5 -0.5 - -0.5 -0.5
Alice -0.78 1.30 0.26 ? -0.78

By using the Gaussian Normalization method
(Equation 7), we transform the users’ ratings to the
users’ preferences. The details are shown in Table 2.

Here, the value of preference is larger than zero,
which means that the user likes the movie. The value
of preference is equal to zero, which means that the
user neither likes nor dislikes the movie. The value of
preference is less than zero, which means that the user
dislikes the movie. The lower the value of preference,
the more the user does not like the movie.

We then calculate Manhattan distance between
different movies using Equation 8. The details are
shown in Table 3.

Table 3: Manhattan Distance

Movie Movie Movie Movie Movie
A B C D E

Movie A 0 7.23 2.31 5.76 3.82
Movie B 7.23 0 4.24 0.61 2.08
Movie C 2.31 4.24 0 3.81 2.25
Movie D 5.76 0.61 3.81 0 0.61
Movie E 3.82 2.08 2.25 0.61 0

From the Table 3, we can see that Manhattan
distance is symmetric and reflexive. These proper-
ties satisfy the criteria of similarity function. How-
ever, we may isolate the different number of the users
when computing Manhattan distance between differ-
ent movies. For example, when we calculate Man-
hattan distance between Movie A and Movie B, we
use four users’ preferences for Movie A and Movie B:
John, Helen, Bob and Alice. While when we calculate
Manhattan distance between Movie C and Movie D,
we just use two users’ preferences for Movie C and
Movie D: John and Helen. So we explore the average
distance to measure how close the user preferences
for different items are. The average distance between
two movies is equal to Manhattan distance divided by
the number of the users who have rated both movies.
The details are shown in Table 4.

Table 4: Average Distance

Movie Movie Movie Movie Movie
A B C D E

Movie A 0 1.80 0.77 1.92 1.27
Movie B 1.80 0 1.41 0.20 0.69
Movie C 0.77 1.41 0 1.90 1.13
Movie D 1.92 0.20 1.90 0 0.30
Movie E 1.27 0.69 1.13 0.30 0

At last, we use the exponential form to transform
Average distance into similarity score. The details
are shown in Table 5.

Step 2: Selection of Nearest Neighbours
Since our aim is to predict Alice’s preference on

Movie D, we should select the nearest neighbours of
Movie D. We compare the similarity between differ-
ent items and use 0.5 as a threshold. If the similarity

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

103

Table 5: Similarity Scores

Movie Movie Movie Movie Movie
A B C D E

Movie A 1 0.1653 0.4630 0.1466 0.28
Movie B 0.1653 1 0.2441 0.8187 0.5016
Movie C 0.4630 0.2441 1 0.1496 0.323
Movie D 0.1466 0.8187 0.149 1 0.7408
Movie E 0.28 0.5016 0.323 0.7408 1

score between two items is higher than 0.5, we con-
sider these two items similar. From row 5 in Table
5, we can see that the similarity score between Movie
B and Movie D is 0.8187 and the similarity score be-
tween Movie D and Movie E is 0.7408. In this case, we
select Movie B and Movie E as the nearest neighbours
of Movie D.

Step 3: Weight Computation
From the perspective of statistic, we can conclude

that the users’ preferences for Movie B, Movie D and
Movie E are similar. However, from row 5 in Table
1 we can find that Alice’s ratings on Movie B and
Movie E are quite different. That is to say, as time
goes by, Alice changes her preference for this category
of movies. As proposed before, to capture the current
trend and obtain most accurate prediction, we assign
different weights to Movie B and Movie E. Since Al-
ice’s rating on Movie B is the most recent rating in
all the nearest neighbours and it represents Alice’s
current preference, we assign a weight to a movie ac-
cording to the deviation of the rating on the movie
from the rating on Movie B. By using Equation 10,
the weights for Movie B and Movie E can be calcu-
lated as follows:

WMovieB = (1− |4−4|
5)1 = 1

WMovieE = (1− |2−4|
5)1 = 0.6

In this case, |R| is equal to 5. We assign 1 to the
parameter α .

Step 4: Preference Prediction
The prediction of Alice’s rating on Movie D can

be computed by using Alice’s ratings on Movie B and
Movie D weighted by similarity between them and
expected accuracy weight as:

O = 4×0.8187×1+2×0.7408×0.6
0.8187×1+0.7408×0.6 = 3.3

3.4 Building the Model

Our proposed algorithm is based on item-based col-
laborative filtering. In the phase of Similarity Com-
putation, we design a new similarity measure to get
more appropriate similarity scores. In the phase of
Preference Prediction, we explore the weights based
on expected accuracy for different items to tackle
the problem of concept drift in collaborative filtering.
The input to this algorithm is the N × M user-item
matrix C, N × M user-time matrix T that represents
the time users’ opinions on items were produced, a pa-
rameter n that specifies the number of item-to-item
similarities that will be stored for each item and a
parameter l that denotes the number of recommen-
dation items. If the i-th user has no rating on the
j-th item in the system, the values of Cij and Tij are
both equal to zero. The output is an N × l matrix N
that stores the N × l recommendation items. In it,
every row represents every user. For each user there
are l recommendation items. The algorithm is shown
in Figure 4.

NewProposedCollaborativeFiltering (C,T,n,l)
1. Matrix M←ComputeItemSimilarity(C,n);
2. FindNearestNeighbours(C,n);
3. FindRecentRating(T);
4. GetWeights(C);
5. Matrix N←
6. PredictRecommendationItems(l);

Figure 4: Recency-Based Collaborative Filtering Al-
gorithm

4 Experiments

We have conducted a set of experiments to examine
the performance of our new algorithm. Particularly,
we address the following three issues:

1 How do the similarity measures influence the pre-
diction precision?
The quality of similarity function is a key issue
in collaborative filtering. That is to say, the se-
lection of similarity measures influences the pre-
diction precision to a great extent. In this exper-
iment, we compare our new designed similarity
measure with two common similarity measures
used in item-based collaborative filtering to ex-
amine the impact of similarity measures on the
final performance of collaborative filtering algo-
rithms.

2 How does concept drift influence the prediction pre-
cision?
As discussed before, in the real world collabo-
rative filtering is characterized by concept drift.
The problem of concept drift degrades the pre-
diction precision of collaborative filtering. To
tackle the problem, we proposed using weights
based on expected accuracy for different items.
In this experiment, we compare our approach
with no-weight item-based approach. These two
approaches are both incorporated into the Pear-
son Correlation Coefficient method.

3 How is our new algorithm compared to the existing
collaborative filtering algorithm?
Our algorithm that includes the new similarity
measure and weights based on expected accuracy
is compared to the traditional item-based algo-
rithm.

4.1 Experiment Design

We use two datasets in our experiments: EachMovie
1 and GroupLens 2. EachMovie and GroupLens have
been the most widely used common datasets in col-
laborative filtering research projects. EachMovie was
collected during 18 months where 72,916 users rated
1628 movies (Herlocker et al. 2004). GroupLens con-
sisted of 1,000,209 ratings for 3900 movies by 6040
users. The global statistics of these two datasets used
in our experiments are showed in Table 6.

We alter the training size to be the first 60, 200
or 400 users for training. At the same time, we also
utilize the protocol, All But One. In All But One,
the newest rated items for each user are used for test-
ing. By varying the number of training users, we
can test our proposed algorithm for different config-
urations. In all the experiments the number of the
nearest neigbours is set to 30 and α is set to 0.7.
The evaluation metric used in our experiments is the

1www.research.compaq.com/SRC/eachmovie
2www.cs.usyd.edu.au/Research/GroupLens/data/million

CRPIT Volume 49

104

Table 6: characteristics of EachMovie

Name of database EachMovie GroupLens
Number of Users 1394 574
Number of Items 1628 100

Avg.] of rated Items/User 145.6 31.7
Number of Ratings 6 5

mean absolute error (MAE). MAE is a popular metric
in collaborative filtering. It computes the average ab-
solute deviation of recommendations from their true
user-specified values. The MAE can be computed as:

MAE =
ΣN

i=1|pi − qi|
N

(11)

Here N identifies the number of the user’s ratings.
pi identifies the predicted rating for the i-th item.
qi identifies the user’s true rating for the i-th item.

4.2 Experiment(1): Impact of Similarity
Measures

In the first experiment, we vary the similarity mea-
sures and compare our new similarity function with
two common used similarity measures: Pearson Cor-
relation Coefficient and Cosine Measure. The results
are demonstrated in Table 7 and Table 8. Obviously,
our new similarity function can substantially improve
the prediction precision of collaborative filtering com-
pared to Pearson Correlation Coefficient and Cosine
Measure.

Table 7: MAE using different similarity measures on
EachMovie. (AllButOne) A smaller value means a
better performance
Training Users Size similarity measures MAE

Cosine Measure 0.2301
60 Pearson Correlation 0.1808

New Similarity 0.1720
Cosine Measure 0.2038

200 Pearson Correlation 0.1982
New Similarity 0.1855
Cosine Measure 0.2024

400 Pearson Correlation 0.1856
New Similarity 0.1760

Table 8: MAE using different similarity measures on
GroupLens. (AllButOne) A smaller value means a
better performance
Training Users Size similarity measures MAE

Cosine Measure 0.8549
60 Pearson Correlation 0.8104

New Similarity 0.8032
Cosine Measure 0.8873

200 Pearson Correlation 0.8508
New Similarity 0.8418
Cosine Measure 0.8901

400 Pearson Correlation 0.8637
New Similarity 0.8081

4.3 Experiment(2): Impact of Concept Drift

In the second experiments, we compare our weighted
approach with no-weighted item-based collaborative
filtering. These two approaches are both incorporate
into the Pearson Correlation Coefficient method. The
results are shown in Table 9 and Table 10. From Table

9 and Table 10, we can see that our weighted approach
outperforms no-weighted item-based collaborative fil-
tering in prediction precision.

Table 9: MAE using weights on EachMovie.
(AllButOne) A smaller value means a better perfor-
mance

Training Users Size method MAE
60 no-weighted 0.1808

weighted 0.1775
200 no-weighted 0.1982

weighted 0.1967
400 no-weighted 0.1856

weighted 0.1841

Table 10: MAE using weights on GroupLens.
(AllButOne) A smaller value means a better perfor-
mance

Training Users Size method MAE
60 no-weighted 0.8104

weighted 0.7883
200 no-weighted 0.8508

weighted 0.8125
400 no-weighted 0.8637

weighted 0.7707

4.4 Experiment(3): Comparison to the Clas-
sic Item-based Algorithm

In this experiment, we compare our recency-based
collaborative filtering algorithm to the classic item-
based collaborative filtering algorithm. The results
are presented in Table 11, Table 12, Figure 5 and
Figure 6. Obviously, our new algorithm is able to
boost the prediction precision for all configurations.

Table 11: MAE using different algorithms on Each-
Movie. (AllButOne) A smaller value means a better
performance

Training Users Size method MAE
60 traditional 0.1808

new proposed 0.1711
200 traditional 0.1982

new proposed 0.1845
400 traditional 0.1856

new proposed 0.1735

4.5 Complexity Analysis

Our proposed algorithm’s scalability is that it can
create the expensive similar items table offline. The
offline computation of the similar table is extremely
time intensive, with O(N2M) as worst case. Here,
N represents the number of items. M represents the
number of users. The online component is just look-
ing up similar items of the user’s ratings. So our al-
gorithm scales independently of the number of users
and items. The algorithm is fast even for extremely
large data sets.

5 Conclusions

In this paper, we present a new collaborative filter-
ing algorithm namely recency-based collaborative fil-
tering. Unlike the traditional approaches, we design
a new similarity measure and propose using weights
based on expected accuracy for items. The main con-
tributions are:

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

105

Figure 5: MAE using different algorithms on Each-
Movie

Table 12: MAE using different algorithms on Grou-
pLens. (AllButOne) A smaller value means a better
performance

Training Users Size method MAE
60 traditional 0.8104

new proposed 0.7880
200 traditional 0.8508

new proposed 0.8130
400 traditional 0.8637

new proposed 0.7695

• tackled the problem of concept drift in collabo-
rative filtering

• Designed and tested a more appropriate similar-
ity function for item-based collaborative filtering
algorithms in the context of concept drift

Our experimental results have shown that the new
algorithm can substantially improve the prediction
precision of item-based collaborative filtering algo-
rithms.

Our further work is to study collaborative filtering
algorithms on streaming data. This issue brings us a
new challenge that data are all contained not in a
database ready for random access but are seen once
only from online resources.

References

Ali, K. & Stam, W. v. (04), Tivo: making show rec-
ommendations using a distributed collaborative

Figure 6: MAE using different algorithms on Grou-
pLens

filtering architecture, in ‘Proceedings of Confer-
ence on Knowledge Discovery in Data’, Seattle,
WA, USA, pp. 394 – 401.

Breese, J. S., Heekerman, D. & Kadic, C. (1998), Em-
pirical analysis of predictive algorithms for col-
laborative filtering, in ‘Proceedings of the Four-
teenth Conference on Uncertainty in Artificial
Intelligence(UAI)’.

Ding, Y. & Li, X. (2005), Time weight collabora-
tive filtering, in ‘Conference on Information and
Knowledge Management, ACM CIKM, accepted
paper’.

Fan, W. (2004), Systematic data selection to mine
concept-drifting data streams, in ‘Proceedings of
the 2004 ACM SIGKDD international conference
on Knowledge discovery and data mining’, Seat-
tle, WA, USA, pp. 128 – 137.

Ganesan, P., Garcia-Molina, H. & Widon, J. (2003),
‘Exploiting hierarchical domain structure to
compute similarity’, ACM Transactions on In-
formation Systems (TOIS) Volume 21(Issue
1), 64 – 93.

Goldberg, D., Nichols, D., Oki, B. M. & Terry, D.
(1992), ‘Using collaborative filtering to weave
an information tapestry’, communications of the
ACM 35(12), 61–70.

Herlocker, J. L., Konstan, J. A., Terveen, L. G. &
Riedl, J. T. (2004), ‘Evaluating collaborative
filtering recommender systems’, ACM Transac-
tions on Information Systems (TOIS) Volume
22(Issue 1), 5 – 53.

Jin, R. & Si, L. (2004), A study of methods for nor-
malizing user ratings in collaborative filtering, in
‘Annual ACM Conference on Research and De-
velopment in Information Retrieval’, pp. 568 –
569.

L., Maritza, C. & Perez-Alcazar, J. d. J. (2004),
A comparison of several predictive algorithms
for collaborative filtering on multi-valued rat-
ings, in ‘ACM symposium on Applied comput-
ing’, pp. 1033 – 1039.

Linden, G., Smith, B. & York, J. (2003), ‘Ama-
zon.com recommendations item-to-item collab-
orative filtering’, IEEE Internet Computing
pp. 76–80.

Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P.
& Riedl., J. (1994), Grouplens: an open archi-
tecture for collaborative filtering of netnews, in
‘ACM conference on Computer supported coop-
erative work’, pp. 175 – 186.

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J.
(2001), Item-based collaborative filtering recom-
mendation algorithms, in ‘Proceedings of In-
ternational Conference on World Wide Web’,
pp. 285 – 295.

Sugiyama, K., Hatano, K. & Yoshikawa, M. (2004),
Adaptive web search based on user profile con-
structed without any effort from users, in ‘Pro-
ceedings of the 13th international conference on
World Wide Web’, New York, NY, USA, pp. 675
– 684.

Terveen, L., McMackin, J., Amento, B. & Hill, W.
(2002), Specifying preferences based on user his-
tory, in ‘Conference on Human Factors in Com-
puting Systems’, Minneapolis, Minnesota, USA,
pp. 315 – 322.

CRPIT Volume 49

106

Wang, H., Fan, W., Yu, P. S. & Han, J. (2003), Min-
ing concept-drifting data streams using ensem-
ble classifiers, in ‘Proceedings of the ninth ACM
SIGKDD international conference on Knowledge
discovery and data mining’, Washington, D.C,
pp. 226 – 235.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

107

CRPIT Volume 49

108

Document Generality: its Computation for Ranking

Xin Yan Xue Li Dawei Song

School of Information Technology and Electrical Engineering,
University of Queensland

ITEE, University of Queensland, QLD 4072, Australia
Email: {yanxin, xueli}@itee.uq.edu.au

Knowledge Media Institute
The Open University

Walton Hall, Milton Keynes, MK7 6AA, United Kingdom
Email: dawei song2005@hotmail.com

Abstract

The increased variety of information makes it criti-
cal to retrieve documents which are not only relevant
but also broad enough to cover as many different as-
pects of a certain topic as possible. The increased
variety of users also makes it critical to retrieve doc-
uments that are jargon free and easy-to-understand
rather than the specific technical materials. In this
paper, we propose a new concept namely document
generality computation. Generality of document is
of fundamental importance to information retrieval.
Document generality is the state or quality of docu-
ment being general. We compute document general-
ity based on a domain-ontology method that analyzes
scope and semantic cohesion of concepts appeared in
the text. For test purposes, our proposed approach
is then applied to improving the performance of doc-
ument ranking in bio-medical information retrieval.
The retrieved documents are re-ranked by a combined
score of similarity and the closeness of documents’
generality to that of a query. The experiments have
shown that our method can work on a large scale
bio-medical text corpus OHSUMED (Hersh, Buckley,
Leone & Hickam 1994), which is a subset of MED-
LINE collection containing of 348,566 medical journal
references and 101 test queries, with an encouraging
performance.

Keywords: generality, document ranking, re-ranking

1 Introduction

Generality is the state or quality of being general,
according to its definition in Webster Dictionary. A
document with high generality might be general or
broad in its meaning such as tutorials and reviews. A
document with low generality might be specific and
narrow in its meaning, for example a journal paper
talking about a specific research problem. General-
ity retrieval is an information searching behavior to
find documents which are both relevant to the query
and above a certain degree of generality. The trend of
generality retrieval is resulted by the information ex-
plosion and the popularity of WWW searching. Gen-
erality of documents should act as an importance role
in information retrieval.

On the one hand, information explosion somehow
increases not only the quantity of information but
also the variety. For instance a query for general

Copyright (c) 2006, Australian Computer Society, Inc. This
paper appeared at the Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

AIDS information in PubMed1, a medical searching
service, may bring some troubles. Thousands of docu-
ments may be retrieved in a wide range such as treat-
ment, drug therapy, transmission, diagnosis and his-
tory. User may need to have a glance of the topic on
the whole, a kind of documents which are not only rel-
evant but also broad enough in meanings to cover as
many different aspects of a certain topic as possible,
to be retrieved. In this example, user may request
review articles of AIDS information.

On the other hand, the growing popularity of
WWW information retrieval makes domain-specific
information retrieval open to the public. Easy-to-
understand and jargon free information is needed by
users with insufficient domain knowledge. For exam-
ple, the patient education materials and tutorials of
diseases in bio-medical domain are often requested by
the public rather than those materials which are tech-
nical and specific.

However, to the best of our knowledge, there is a
lack of solutions in literature to satisfy the stringent
requirement of generality-based retrieval. The first
problem we need to solve is how to compute document
generality. In this paper we develop a novel ontology-
based document generality computation method via
analyzing the scope and semantic cohesion of a doc-
ument. Our method is then applied to improving the
performance of document ranking in bio-medical in-
formation retrieval.

Document ranking is well known to be a critical
component in information retrieval system. It is the
computer judgements of how relevant a document is
to a query comparing with other documents retrieved
by the same query. Due to the quantity of search
result and the limitation of user’s time and patience,
it is impractical for user to review all the retrieved
documents and judge their relevances. In what order
to present retrieved documents is a key problem in IR
research area.

Based on an assumption that users have a sequen-
tial browsing behavior, document ranking determines
the presentation order of those retrieved documents.
The order is based on how close or relevant a doc-
ument is to a query. In general, relevance is com-
puted by similarity functions. In traditional IR mod-
els such as the vector space model (Salton, Wong &
Yang 1975), documents are represented by vectors of
keywords and ranked by how similar the document
vectors are to the query vector. Two widely used sim-
ilarity functions are cosine similarity and inner prod-
uct.

Generality retrieval challenges the traditional doc-
ument ranking since traditional ranking process is
insufficiently based on similarity only. For a sim-
ple query “AIDS” in PubMed, we assume that a

1http://pubmed.gov

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

109

user’s information need is to retrieve general infor-
mation about AIDS. One of the documents retrieved
by PubMed, is a specific research paper namely Multi-
ple Dimensions of HIV Stigma and Psychological Dis-
tress Among Asians and Pacific Islanders. Another
article about general AIDS information, HIV/AIDS:
A Minority Health Issue, is also retrieved. As a re-
sult of similarity-based ranking, the former document
is ranked much higher than the latter one, whereas,
the latter one is closer to user’s information need for
general AIDS information.

Based on the above discussions, we argue that the
factor of “generality” should be taken into account in
a document ranking process. Our purpose is to im-
prove the query performance of domain specific (bio-
medical literature in this paper) information retrieval
by re-ranking retrieved documents on generality.

In order to re-rank retrieved documents by gen-
erality, we need to know if the generality ranking is
required. In practice, there are three ways to deter-
mine user’s need of generality-based retrieval: man-
ual, semiautomatic and automatic.

Manual Detection of Query Generality User
explicitly labels query as general or specific to
indicate if the general or specific documents are
required.

Semiautomatic Detection of Query Generality
User uses a set of pre-defined words such as
“review”, “introduction” and “tutorial” to test
query. User’s feedback is needed after retrieval
in order to verify user’s need of generality
retrieval.

Automatic Detection of Query Generality
System automatically estimates the generality
of query as if it were a document.

In our research, we assume that user’s needs of
generality retrieval is pre-determined by the IR sys-
tem through any of the three ways we mentioned
above. The focus of our work is to investigate on
how to rank documents by their generality.

A novel ontology-based document re-ranking
framework is proposed. Based on the hypothesis that
there is no dependence between the document gen-
erality and its similarity to a query, the documents
are ranked by a combined score of similarity and the
closeness of documents’ generality to the query’s. Ex-
periments have been conducted on a large scale bio-
medical text corpus, OHSUMED (Hersh et al. 1994),
which is a subset of MEDLINE collection contain-
ing 348,566 medical journal references and 101 test
queries. By submitting those queries to our IR base-
line system, the similarity of retrieved documents to
queries are computed and scored. The correlation
analysis between document generality and its simi-
larity score further proves our hypothesis of the inde-
pendent relationship between generality and similar-
ity. The comparison of retrieval performances before
and after re-ranking process reveals that our approach
demonstrates an encouraging improvement on tech-
nical generality retrieval performance with a positive
impact to the overall performance of 101 queries.

The remainder of this paper is organized as fol-
lows: Section 2 presents related work. Section 3 gives
a detailed definition of generality. Our methods for
re-ranking documents on generality are proposed in
Section 4. Section 5 reports experimental setup and
results. Section 6 concludes the paper and addresses
future research directions.

2 Related Work

To our knowledge, no researches directly focusing
on generality computation are currently available.
The studies about so-called “aspect retrieval” and
“subtopic retrieval” are mostly close to our work.
Here we regard the related work in terms of two cat-
egories: the interactive generality retrieval and the
automatic generality ranking. The former is about
how the generality is concerned in an interactive IR
process while the latter is about how generality is as-
sociated in a ranking process.

2.1 Interactive Generality Retrieval

Interactive generality retrieval, or so-called “aspect
retrieval”, is studied in the interactive track of TREC-
6,7,8 (Swan & Allan 1998, Robertson, Walker &
Beaulieu 1999, Hersh 2000). The purpose of these
studies is to help user retrieve documents covering as
many different aspects of a topic as possible in a lim-
ited time. An aspect is defined as one of the many
possible answers to the topic (Over 1999). Aspects
of topics and documents in the collection are defined
and judged by human assessors in order to evaluate
the performance of aspect retrieval. In the area of as-
pect retrieval, researches are mainly focused on user’s
searching behavior and the interface of retrieval sys-
tem.

We regard the aspect retrieval problem as a simpli-
fied version of the generality retrieval problem since
the intuition is that the more aspects broadly covered
by a document, the more general the document is.
However, generality is richer than the aspect retrieval.
Generality implies not only the broadness but also the
deepness of a document in its meaning. Therefore our
research will broaden the aspect retrieval into a prob-
lem of generality.

Furthermore, in order to help user’s generality
retrieval, automatic methods need to be developed.
Given a query, automatic generality rankings is a pro-
cess of ranking the retrieved documents by systemati-
cally estimating their generality. In the case of a large
number of documents returned for a query, it is in-
sufficient to improve the efficiency of the generality
retrieval by improving the interface between user and
the retrieval system. Automatic generality retrieval
may be more efficient to help user to sort out docu-
ments with the consideration of generality. In next
subsections, some researches closely related to auto-
matic generality ranking are discussed.

2.2 Automatic Generality Ranking

Studies concerning automatic generality ranking aim
at finding approaches to automatically rank general
documents more closely to a query.

The study of subtopic retrieval (Zhai, Cohen &
Lafferty 2003) seeks an automatic solution for the as-
pect retrieval problem we mentioned above. Zhai et
al. addressed that there is a need (e.g literature sur-
vey) to find documents that “cover as many differ-
ent subtopics of a general topic as possible” (Zhai
et al. 2003). Given a set of documents retrieved
by a baseline IR system, subtopic retrieval method
re-ranks those documents by their generality feature
and their relevance to the query. Statistical language
models and maximal marginal relevance (Carbonell
& Goldstain 1998) were used to perform subtopic re-
trieval.

Another research (Liu, Zhang, Chen, Lyu & Ma
2004) namely “affinity rank” is close to the study of
subtopic retrieval. Affinity rank is based on the as-
sumption that in a vector space model, “the more

CRPIT Volume 49

110

neighbors a document has, the more informative it is;
moreover, the more informative a document’s neigh-
bors are, the more informative it is as well” (Liu
et al. 2004). Information richness was modeled by
computing the principal eigenvector of a matrix M
where each entry represents the value of a similarity
function of each pair of documents in the vector space
model.

The common feature of affinity ranking research
and subtopic retrieval study is that document gen-
erality is based on the overall statistical properties
of document in the collection rather than the con-
cept generality. Concept generality is defined in our
work as the generality of individual terms in the con-
text of a given ontology. In WordNet, for example,
hypernyms are defined as those concepts being more
general than others; hyponyms are defined as those
concepts being more specific than others. Since doc-
uments are composed of terms, document generality
is consequently affected by the concept generality of
all its terms.

Allen and Wu (Allen & Wu 2002) defined docu-
ment generality as the mean generality of terms in the
documents. For example, 64 selected words were de-
termined manually as a reference collection for com-
puting the generality. Half of the words in the collec-
tion were regarded as general and the other half as
concrete. The joint entropy measure was used to ver-
ify that general terms were more related to each other
than concrete terms. Thus, through the relatedness
computation between the terms in documents and in
those 64 terms of the reference collection, the gener-
ality of the terms in documents could be calculated.

However, some problems still remain unsolved.
First, the generality of the terms in the reference list is
determined by human experts. This is computation-
ally infeasible to deal with a large number of words.
Particularly if a term does not appear in the reference
list, it is excluded from the generality computation.
This is impractical in many applications that have a
large vocabulary. It is expected that automatic meth-
ods can be developed to measure the concept gener-
ality objectively and efficiently for documents with a
large domain-specific vocabulary. Secondly, not only
the statistical term relatedness, but also the semantic
relations between terms should be taken into account.
Sometimes general terms may have low relatedness
if they cross different domains. In the area of bio-
medical information retrieval, for example, a stom-
ach medicine may be semantically related to a skin
medicine in terms of their generality. However, they
may not have a statistical relatedness at all, simply
due to no co-occurrence in the text corpus. Third,
in (Allen & Wu 2002), the generality was ranked for
merely six documents and then manually judged for
the evaluation. For dealing with large collections, this
is obviously impractical. Finally, user generally would
not prefer a document with high generality but low
relevance to the query. Combining document gener-
ality with query generality should be considered. In
next subsection, we briefly review some studies re-
lated to query generality.

2.3 Query Generality

To our knowledge, no researches considering query
generality in document ranking or re-ranking pro-
cess are currently available. Some definitions (He
& Ounis 2004), (Plachouras, Cacheda, Ounis &
Rijsbergen 2003), (Van Rijsbergen 1979) about query
generality have been made long before the studies of
document ranking. They mainly focus on the over-
all generality of retrieval rather than the generality of
individual documents against a query. Van Rijsber-
gen (Van Rijsbergen 1979), (Plachouras et al. 2003)

regarded query generality as “a measure of the den-
sity of relevant documents in the collection”. Derived
from Van Rijsbergen’s definition, He and Ounis (He
& Ounis 2004) defined query generality as:

ω = −log(
NQ

N
) (1)

where NQ is the total number of documents con-
taining at least one query term and N is the total
number of documents in the collection.

Based on these definitions of query generality, the
more documents a query is related, the more gener-
ality the query has.

However, it is not sufficient to quantify the query
generality purely based on this method. Let’s con-
sider two queries Q1 “AIDS review” and Q2 “SARS
review”. Q1 requires literature reviews about AIDS,
T2 requires reviews about SARS, a newly discovered
disease. In PubMed, Q1 may result 19,311 docu-
ments. Whereas, there are only 396 documents re-
turned by Q2. Since it is hard to count the exact
size of whole PubMed database, we assume that N is
11,000,000. According to Equation 1 the generality of
Q1 is around 6.3450. The generality of Q2 is around
10.2320. Is Q2 more general than Q1? The answer
is probably “no”, because “SARS” is a newly discov-
ered disease which has just less related documents in
the collection than “AIDS”.

In conclusion, there are some major differences be-
tween existing related work in the literature and our
proposed approach.

1. We assume that the relevance judgment of a
document is independent to that of the others
retrieved by the same query. In the study of
subtopic retrieval, relevance between two docu-
ments may depend on which documents a user
sees the first.

2. We broaden the research problems of aspect re-
trieval, subtopic retrieval and affinity rank and
propose the concept “generality” in document
ranking.

3. Semantics inherence in the documents is consid-
ered in our research. We measure the ontology
based semantic relationships of document con-
cepts in order to compute generality. In litera-
ture, only statistical methods were used.

4. We consider both document generality and query
generality. The documents are re-ranked by a
combined score of similarity and the closeness of
documents’ generality to the query’s. In litera-
ture, only document generality was considered.

In next section, we introduce the details of our
ideas on re-ranking by generality.

3 Different Types of Generality

In our research, we divide generality into two cate-
gories based on user’s information needs: technical
generality and non-technical generality.

Technical Generality. How broad a document is
for describing a certain topic. Documents with
high technical generality are divided into two
subcategories:

1. Summary
2. Review

Non-technical Generality. How deep a document
is for describing a certain topic. Documents with
high non-technical generality are divided into two
categories:

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

111

1. Introduction
2. Tutorial

Technical generality should be considered when
there is a need to retrieve summaries and technical re-
view articles which broadly describe a certain topic.
Non-technical generality should be considered when
there is a need to retrieve introductive documents or
tutorials that are jargon free and easy to understand.
In this paper, we mainly focus on the study of tech-
nical generality, that is, on how to measure the doc-
ument generality according to its broadness.

4 Proposed Approach

The intuition of our proposed computational general-
ity is given as follows:

• Document Scope (DS) - We consider document as
a collection of terms. The scope of a document is
regarded as a coverage of terms onto the concepts
in MeSH ontology. The more concepts matched
within the MeSH the more specific the document
is. Also, within a MeSH tree, the deeper the
concepts appear, the more specific the document
is.

• Document Cohesion (DC) - When there is a fo-
cused topic or theme discussed in a document,
the terms are closely correlated in a certain con-
text. The cohesion of a document is regarded as
a computation of the associations between the
concepts found in the MeSH tree. It reflects the
frequencies of the associated concepts that ap-
pear in the MeSH ontology. The more closely
the concepts are associated, the more specific the
document is.

We formulate the problem of document ranking
with generality as that: given a query Q , a rank
(R,≤), R = {d1, . . . dn} which is retrieved by Q, the
similarity function Sim(Q, di),

1. find a function Gen(Q, di) to return the closeness
of generality between di and Q

2. re-rank (R,≤) to (R′,≤) so that
di ≤ dj ⇐⇒ f ′(Sim(Q, di), Gen(Q, di)) ≤
f ′(Sim(Q, dj), Gen(Q, dj)) where di, dj ∈ R′. f ′

is a function considering both Sim(Q, di) and
Gen(Q, di).

We approach the generality ranking problem from
two perspectives. The first is to consider the query
generality. We believe that generality ranking de-
pends on both query generality and document gen-
erality. To a specific query (i.e., a query with low
generality), it is not proper to simply rank general
documents higher than the specific ones. The second
consideration is the semantics in documents. For in-
stance, “HIV” is more specific than “virus” in terms
of a given domain knowledge. The statistical analy-
sis cannot reflect the semantic relationship between
them.

A query can be regarded as a short document. In
the same way, a query is to be computed for its gen-
erality as though it were a document. Then the doc-
uments are re-ranked by comparing the closeness of
documents’ generality scores to the query’s.

On the other hand, the semantics of documents
can be computationally gripped in terms of ontology.
In our work, we use bio-medical documents together
with an ontology database called MeSH hierarchical
structure (or MeSH tree) in bio-medical domain. Our
purpose is to compute generality of text by consid-
ering the semantic properties and relations of terms

appearing in the MeSH tree. For example, stomach
medicine and skin medicine both belong to “Chemi-
cals and Drugs” no matter how different their usages
are. Here we regard the terms in text which can be
found in MeSH ontology as domain specific concepts
or MeSH concepts. The terms in text which cannot be
found in MeSH ontology are referred to non-ontology
concepts.

In following subsections, we will describe the
MeSH hierarchical structure and propose a method to
identify MeSH concepts from text. We then present
our approach to computational generality of docu-
ments.

4.1 Ontology: MeSH Hierarchical Structure

All the headings used to index OHSUMED (Hersh
et al. 1994) documents are well organized in a hier-
archical structure namely MeSH tree. Figure 1 is a
fragment of the MeSH tree.

Health Personnel

N02.360

Allied Health Personnel

N02.360.067

Community Health Aids

N02.360.067.080

Animal Technicians

N02.360.067.040

Dental Auxiliaries

N02.360.067.105

Figure 1: A Fragment of MeSH tree

The MeSH terms are numbered and organized
based on a broader/ narrower relationships in the
tree. In this example, the heading “Allied Health
Personnel” is a kind of “Health Personnel” and “Com-
munity Health Aides” is a kind of “Allied Health Per-
sonnel”.

Moreover, MeSH provides entry terms which may
act as synonyms of a certain heading. In the given
document example, the heading “Allied Health Per-
sonnel” has the following entry terms: “Allied Health
Personnel”, “Allied Health Paramedics”, “Paramed-
ical Personnel”, “Specialists, Population Program”
and “Paramedics”. With entry terms, it is possible
to take advantage of semantic relation between terms
to identify synonyms.

4.2 Computation of Document Generality

4.2.1 Concept Identification

In order to use MeSH ontology to extract the seman-
tic relations between terms, the MeSH concepts in
the text corpus must be recognized. An algorithm of
concept identification is proposed to match single or
compound(noun) terms in the corpus with the con-
cepts in the MeSH tree.

The algorithm is mainly concerned with the sub-
sumed terms: a part of a compound term may match
with a MeSH concept. For example, the compound
“Plant Viruses” contains the term “Viruses”. If we
stop the concept identification process after a match
of “Viruses” in the MeSH tree is found, then “Plant”
will be mistakenly regarded as a term out of domain
ontology. Indeed, ”Plant Viruses” is also a MeSH
concept. We solve the problem by introducing the

CRPIT Volume 49

112

conceptual marking tree (CMT) that is derived from
the MeSH tree. The structure of a node in CMT is
shown in Figure 2. A concept C is a sequence of terms
{T1 . . . Tn}, where n is the length of C. The occur-
rence information of individual terms is stored sepa-
rately in the cells of an array. In cell Ti, 0 ≤ i ≤ n, we
use Pi to store a set of position values {pi1 . . . pim},
where m is the term frequency of Ti in a document.
pij (0 ≤ j ≤ m) is the term position of the jth oc-
currence of Ti. The term position pij indicates that
there are (pij−1) terms before T1 from the beginning
of a document.

T1...Tn

P1 Pn

T1 TnTi

Pi

Figure 2: Data Structure of a Node in CMT

There are 3 steps to perform the conceptual mark-
ing for a document.

1. Pick up a term t which is the k-th term counted
from the beginning of the document (initially k =
0).

2. Locate t in CMT.

3. Assign the position value k to pij in Pi. j will
be increased by one automatically when a new
element is added to Pi.

4. Increase k by one, then goto step 1.

For example, the following is a one-sentence doc-
ument just containing one sentence:

Over 390 individual descriptions of
plant viruses or virus groups are
provided. 2

In this example, “plant viruses” and “viruses”
are all MeSH concepts. We assume that stemming
has been done so that “viruses” can be identified as
“virus”. After the CMT is created for this document,
the concept “plant viruses” in CMT have two cells,
T1 = “plant”, T2 = “viruses”. p11 = 6, p21 = 7,
p22 = 9. The concept “viruses” has one cell T1 =
“viruses” where p11 = 7, p12 = 9.

After marking CMT, if it is always true that
p(i−1)j = p(i)j + 1 (1 ≤ i ≤ m), then the concept C is
identified as a candidate concept at its jth occurrence
in the document. If no other candidate concepts can
be found with more compound terms than concept C
in the same place of the document, then C is identified
as the concept at its jth occurrence in the document.
For the above example, we may find that the MeSH
concept “viruses” may be identified as the candidate
concept in position 7 and 9. However, the concept
“plant viruses” has p11 = p21 + 1. Furthermore, it
has two constituent terms but the concept “viruses”
only has one. Thus it is “plant viruses” rather than
“virus” which is identified as the concept at position
6.

4.2.2 Computing Document Scope

Document scope is about how broad or vague a doc-
ument is for describing a certain topic. It is an im-
portant feature of document generality. Consider the

2http://www.dpvweb.net/dpv/index.php

following two definitions of SARS. Definition 1 comes
from ABOUT 3, a web information service for daily
life. Definition 2 is an official definition from the De-
partment of Health in Hong Kong 4.

1. A viral respiratory illness that was recognized as
a global threat in March 2003.

2. A viral respiratory infection caused by a coron-
avirus (SARS-CoV).

In above definition 2 we may identify three MeSH
concepts: “respiratory infection”, “coronavirus” and
“SARS-CoV”. However, in definition 1 which is for
the general public, no MeSH concept is found. “Res-
piratory illness” is used to broadly describe SARS
rather than a more narrowed concept “respiratory in-
fection”.

We mentioned that the scope of a document is re-
garded as a coverage of terms onto the concepts in
MeSH ontology. The more concepts matched within
the MeSH the more specific the document is. Also,
within a MeSH tree, the deeper the concepts appear,
the more specific the document is. In our compu-
tation of document scope, both MeSH concepts and
non-ontology concepts in document are considered.
Firstly a mean function of tree depths of all concepts
in document is proposed to calculate document scope.
The depth of a MeSH concept is measured by the dis-
tance between that concept and the root of the MeSH
tree. The tree depth of a non-ontology concept in
MeSH tree is zero. Secondly, we normalize the scope
function within the range of 0 and 1.

It is often the case that a document contains a
large percentage of non-ontology concepts but just
a small percentage of MeSH concepts. This kind of
documents may have a low average tree depth of all
concepts and may be close to each other in terms of
their computed scope values. Therefore, we need to
make the scope function to be more sensitive to doc-
uments with low average tree depths compared with
that of the documents with high average tree depths.
In our research, we select an exponential function that
can well satisfy our requirement for the distribution
of scope function values.

Scope(di) = e−
(∑n

i=1
depth(ci)

n

)
(2)

In Equation 2, n is the total number of concepts
of both MeSH concepts and general concepts. More-
over, stop words are excluded in this example. Func-
tion depth(ci) is to get the tree depth of concept i
in the MeSH tree. As to a document which contains
only non-ontology concepts, its document scope is 1,
the maximum value. For a document which has max-
imum average tree depth of all its MeSH concepts,
its scope is e−11, the minimum value. The time com-
plexity of scope-based ranking is O(m× n), m is the
number of retrieved documents, n is the average con-
cepts in those documents.

There are two typical examples where the con-
cepts in documents may have different distributions
in MeSH tree in terms of their subsumption relation-
ships. Concept A subsuming concept B in the MeSH
tree indicates that A is one of the parent nodes
of B. The followings are illustrations of our scope
algorithm in both examples.

Example One

A document may contain MeSH concepts that
have no subsumption relationship between each

3http://about.com
4http://www.info.gov.hk

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

113

other in the MeSH tree. In Figure 3, there is a
piece of MeSH tree. Every labeled node is a MeSH
concept. Suppose that di and dj are two documents
in the document collection. di is more general than
dj . Each of them contains only two concepts. The
concepts o and p in di have matches found in the
MeSH tree (the darkened nodes). The concepts k
and h in dj have matches found in the MeSH tree
too. According to our algorithm, the average tree
depths of di and dj are respectively 3 and 4. The
scope of di is 0.0498, which is greater than 0.0183,
the scope of dj .

m

n

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

o
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

p

a

b

x
x
x
x
x
x
x
x
x
x

di

c

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

k

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

h

dj

w

Figure 3: di and dj with different document scope

Example Two

A document may contain MeSH concepts that
have subsumption relationship between each other in
the MeSH tree. In Figure 4, there is a piece of MeSH
tree. Every labeled node is a MeSH concept. Sup-
pose that di and dj are two documents in the doc-
ument collection. di is more general than dj . Each
of them contains only two concepts. The concepts
m and n in di have matches found in the MeSH tree
(the darkened nodes). The concepts c and h in dj
have matches found in the MeSH tree too. According
to our algorithm, the average tree depths of di and dj
are respectively 1.5 and 3.5. The scope of di is 0.2231,
which is greater than 0.0302, the scope of dj .

In above SARS example, S(d1) is 1 be-
cause no MeSH concept can be found. As
to S(d2), Depth(“respiratory infection′′) = 3,
Depth(“coronavirus′′) = 5.5 since there are two
nodes in MeSH tree representing “coronavirus”, one
has a depth 5 and another is 6. An average tree
depth is calculated in this example. Depth(“SARS−
CoV ′′) = 6.5. The total number of concepts in defi-
nition 2 is 8. Therefore the value of S(d2) is 0.1534
which is smaller than S(d1). This result shows defi-
nition 2 has less generality than definition 1.

4.2.3 Computing Document Cohesion

With MeSH hierarchical structure (tree), it is possi-
ble to retrieve the semantic distance between MeSH
concepts according to their positions in the tree.

We introduce the concept of document cohesion
which is a state or quality that the elements of a
text (e.g. clauses) “tend to hang together” (Morris &
Hirst 1991). The intuition of our approach is based
on a hypothesis that document with less cohesion

would be more general. Consider two definitions of
HIV: the first one comes from a web site called AIDS
101, Guide to HIV basics5, and the second come from
MeSH ontology. Obviously, definition 1 is more gen-
eral than definition 2.

1. “HIV-1” is the virus most researchers believe
causes AIDS.

2. HIV is a non-taxonomic and historical term re-
ferring to any of two species, specifically HIV-1
and/or HIV-2.

In definition 2, three MeSH concepts can be iden-
tified: “HIV”, “HIV-1” and “HIV-2”. In definition 1,
“HIV”, “AIDS” and “virus” are identified as MeSH
concepts.

What causes definition 1 to be more general than
definition 2? We found that there is stronger cohesion
in definition 2 than in definition 1. In other words,
concepts in definition 2 are more strongly associated
than those in definition 1. “HIV-1” and “HIV-2” are
two types of “HIV” in terms of MeSH ontology. How-
ever, in definition 1, “HIV” is a kind of virus but
“AIDS” is a kind of diseases. There is not a direct
relationship between them. Moreover, “HIV” doesn’t
directly belong to “virus” in MeSH tree.

Following the above observations, it seems that the
document generality is somehow related to document
cohesion. The higher a document’s degree of cohe-
sion, the lower its generality.

We mentioned that the cohesion of a document
is regarded as a computation of the associations be-
tween the concepts found in the MeSH tree. The
more closely the concepts are associated, the more
specific the document is. In terms of that, firstly,
in our computation of document scope MeSH con-
cepts in document are considered rather than non-
ontology concepts. A mean function is used to calcu-
late the average strength of associations between all
pairs of MeSH concepts found in document. Secondly,
we assume that the strength of association between
two MeSH concepts is a monotonic decreasing func-
tion of the shortest path between them in the MeSH
tree. The minimum value of the function is set to
0 when the shortest path between two MeSH con-
cepts is as large as twice the maximum tree depth.
The maximum value of the function is resulted when
the shortest path between them equals to 1. In our

5http://www.sfaf.org/aids101/

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

m

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

n

o p

a

b

x
x
x
x
x
x
x
x
x
xdi

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

c

k

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

h

dj

w

Figure 4: di and dj with different document scope

CRPIT Volume 49

114

research, the calculation of semantic association be-
tween concepts is based on the Leacock-Chodorow
similarity (Leacock & Chodorow 1998) function which
is a logistic function featured for measuring the short-
est path between two concepts in the MeSH tree.

Cohesion(di) =

∑n
i,j=1 Sim(ci, cj)

NumberofAssociations
, (n > 1, i < j)

(3)

Sim(ci, cj) = −log
len(ci, cj)

2D
(4)

NumberofAssociations =
n(n− 1)

2
(5)

In Equation 3, n is the total number of MeSH con-
cepts in a document di. Sim(ci, cj) is a function com-
puting the Leacock-Chodorow semantic similarity by
using the shortest path len(ci, cj) between ci and cj in
the MeSH tree. NumberofAssociations is the total
number of associations among different MeSH con-
cepts, which is defined in Equation 5.

In Equation 4, D is the maximum MeSH tree
depth. In our experiments, D is 11. The scope of
Equation 3 is [0,−log(1

22)]. As to a document with
zero or one MeSH concept only, its document cohesion
is set to 0. For a documents with strongest associa-
tions among all the concepts within the document, its
cohesion is −log(1

22), the maximum value. The time
complexity of cohesion-based ranking is O(m×n2), m
is the number of retrieved documents, n is the average
concepts in those documents.

There are two typical examples where the con-
cepts in documents may have different distributions
in MeSH tree in terms of their subsumption relation-
ships. Concept A subsuming concept B in the MeSH
tree indicates that A is one of the parent nodes of
B. The followings are illustrations of our cohesion
algorithm in both examples.

Example Three

A document may contain MeSH concepts that
have no subsumption relationship between each
other in the MeSH tree. In Figure 5, there is a
piece of MeSH tree. Every labeled node is a MeSH
concept. Suppose that di and dj are two documents
in the document collection. dj is more general than
di. Each of them contains only two concepts. The
concepts o and p in di have matches found in the
MeSH tree (the darkened nodes). The concepts x
and y in dj have matches found in the MeSH tree
too. According to our algorithm, the length of the
shortest path between o and p is 2. The shortest
distance between x and y is 4. Thus the cohesion of
di is 2.3979, greater than the generality of dj , 1.7047.

Example Four

A document may contain MeSH concepts that
have subsumption relationship between each other in
the MeSH tree. In Figure 6, there is a piece of MeSH
tree. Every labeled node is a MeSH concept. Suppose
that di and dj are two documents in the document
collection. dj is more general than di. Each of them
contains only two concepts. The concepts o and n in
di have matches found in the MeSH tree (the dark-
ened nodes). The concepts i and y in dj have matches
found in the MeSH tree too. According to our algo-
rithm, the length of the shortest path between o and
n is 1. The shortest distance between i and y is 2.
Thus the cohesion of di is 3.0910, greater than the
generality of dj , 2.3979.

4.2.4 Computing Document Generality

The following is the formula for the calculation of
document generality.

DG(di) =
Scope(di)

Cohesion(di) + 1
(6)

The query generality computation is similar to the
computation of document generality. The difference
between them is that we take ω, the Statistical Query
Generality (SQG), in Equation 1 as an optional pa-
rameter for query generality calculation.

QG =
SQG ∗ Scope(Q)
Cohesion(Q) + 1

(7)

In Equation 7, QG is the query generality. The
calculations of query cohesion and scope is the same
as document cohesion and scope.

However, we argue that it is better to give high
ranks to those documents whose generality are close
to the queries’. For example, it is not suitable to
give high ranks to the review or introduction pa-
pers on “malignant pericardial effusion” for the query
“best treatment of malignant pericardial effusion in
esophageal cancer”. Thus, we rank the documents
by comparing the closeness of documents’ generality
scores to the query’s. In this research the generality
closeness between query Q and document di is com-
puted as the absolute value of the difference between
DG(di) and QG.

4.2.5 Correlation Analysis

The independent relationship between generality and
similarity is a major hypothesis of this paper. Prov-

i

h

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

x

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

y

k

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

dj

m

n

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

o

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

p

di

w

Figure 5: di and dj with different document cohesion

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

i

h

x

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

y

k

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

dj

m

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

n

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

o p

di

w

Figure 6: di and dj with different document cohesion

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

115

ing this hypothesis is important for the further com-
bination of similarity and generality in the re-ranking
process.

Theoretically, the similarity computation itself,
does not reflect the generality that exists within the
documents. For example, we assume that user can
explicitly specify for a given query, if the query is
intended to be specific, or general, then the conven-
tional similarity-based methods would not be able to
retrieve documents which are specific or general in a
given domain knowledge.

Practically, we clarify the relationship between
generality and similarity by using intuitive scatter di-
agrams and Pearson’s correlation coefficients. Pear-
son’s correlation coefficient can measure the degree of
association between two continuous variables. Scatter
diagram can visualize their association. By submit-
ting query to a IR system, the similarity of retrieved
documents to query are computed and scored. Our
proposed method to calculate document generality is
then applied on those retrieved documents in order
to get their generality score. The correlation analysis
between document generality and its similarity score
is then used to prove our hypothesis of the indepen-
dent relationship between generality and similarity.

4.2.6 Combining Similarity and Generality

As an important step in our proposed approach, we
consider both the document similarity and general-
ity. Here information retrieval system is regarded as
a black box. Through the query submitted as input,
the output of the black box is a ranked list where
documents are scored. Let RScore(di) denote the
similarity score given to a ranked document di and
QG is the query generality. The final score consider-
ing both document similarity and generality is given
in the following formula.

Score(di, Q) = RScore(di)α ∗ e−|DG(di)−QG|β (8)

α and β are parameters for a well tuned perfor-
mance.

5 Experiment and Evaluation

It is necessary to evaluate the effectiveness of our pro-
posed algorithm. The evaluation of effectiveness can
be divided into two aspects. The first is on how it
can improve the overall performance of a baseline IR
system, while the second is on how it can improve the
performance of the generality retrieval.

We evaluated the effectiveness of our proposed re-
ranking algorithm on the overall query performance
by comparing our algorithm against a baseline IR sys-
tem.

5.1 Data Set and Queries

Our model has been evaluated on the
OHSUMED (Hersh et al. 1994) corpus, which
is a subset of Medline and contains 348566 medical
references. There are a number of fields in a ref-
erence, such as title, abstract, author, source and
publication type.

In OHSUMED (Hersh et al. 1994) there are 106
topics and their relevance judgments made by novice
physicians. Each topic has two parts: the patient in-
formation and the physician’s information need. In
this research, 106 test queries are formed by combin-
ing both parts for each of the 106 topics. In addition,
queries 8, 28, 49, 86, and 93 are dropped because
there are no relevant documents identified for them.

Therefore, a total number of 101 test queries are used
in our experiments.

There are queries apparently asking for review in-
formation. The following eight review-type queries
are selected to test the effect of query generality.

• No.4 reviews on subdurals in elderly

• No.11 review article on cholesterol emboli

• No.17 RH isoimmunization, review topics

• No.31 chronic pain management, review article,
use of tricyclic antidepressants

• No.34 review article on adult respiratory syn-
drome

• No.54 angiotensin converting enzyme inhibitors,
review article

• No.105 review of anemia of chronic illness

• No.106 HIV and the GI tract, recent reviews

5.2 Baseline and Pre-processing

Lucene6 is used as the baseline IR system to index
and retrieve the titles and abstracts of documents in
OHSUMED collection (Hersh et al. 1994). We chose
Lucene as our baseline IR system as it offers a full rep-
resentative features of a traditional keyword matching
IR system. All terms are filtered by the SMART 571
stop word list and stemmed using the Porter stem-
ming algorithm. The MeSH concepts are identified
by using our conceptual marking tree algorithm.

5.3 Evaluation Methodology

In our experiments, the baseline IR system is used
to retrieve 1000 documents for each test query. We
then cover all nine possible cases where query gener-
ality, document generality and SQG are used solely
or together in a reasonable manner. Those nine cases
are derived from our proposed Equation 6, 7 and 8
for re-ranking the documents retrieved by the base-
line IR system. For example, DS is the case where
only document scope (i.e. Equation 2) is considered
in the computation of document generality. The score
function in Equation 8 is then simplified as Equation 9
and 10 where α and β are parameters for a well tuned
performance.

DG(di) = Scope(di) (9)

Score(di, Q) = RScore(di)α ∗DG(di)β (10)

QS+QC+DS+DC is the case where the closeness
between query generality (scope and cohesion) and
document generality (scope and cohesion) is consid-
ered in the computation of generality re-ranking(i.e.
Equation 8). QS and QC denote query scope and
query cohesion, DS and DC denote document scope
and document cohesion.

5.4 Performance Indicators

The performance of re-ranking is measured in two as-
pects. Firstly we compare the precision and recall of
re-ranking with the original ranking given by baseline
IR system7 for all the 101 test queries. Secondly, we
check if all the review type queries get larger improve-
ment in term of average precision.

6http://lucene.apache.org/java/docs/index.html
7http://lucene.apache.org/java/docs/index.html

CRPIT Volume 49

116

Figure 7: (Query No.5) Up: DS R = -0.24 Down:
QS+QC+DS+DC R = -0.17

5.5 Experiment Results

In the upper part of Figure 7, the correlation between
DS case and the baseline IR system is shown in a
scatter diagram. In the lower part of Figure 7, the
correlation between QS+QC+DS+DC case and the
baseline IR system is shown in a scatter diagram.

Figure 8 shows the precision-recall graph in a cer-
tain range of precision and recall. Due to the limi-
tation of space, Table 1 shows only the detailed pre-
cisions of one of the nine cases with the best per-
formance at different recall levels. In Table 2, we
show how the review type queries are improved by
a comparison of mean average precision between our
proposed re-ranking algorithms and the baseline IR
system. The mean average precision (“MAP” in the
tables) and the percentages of improvement in MAP
(“%” in the tables) are summarized.

Figure 8: Precision Recall Graph of Overall Query
Performance (Recall in [0, 0.4], Precision in [0.2, 0.7])

Table 1: Detailed Precision-Recall Comparisons

Recall Baseline DS
0 0.6369 0.6858

0.1 0.4071 0.4591
0.2 0.3239 0.3674
0.3 0.254 0.2881
0.4 0.1963 0.2125
0.5 0.1679 0.1770
0.6 0.1396 0.1414
0.7 0.088 0.0917
0.8 0.0544 0.0565
0.9 0.0223 0.0236
1 0.0018 0.0023

MAP 0.1849 0.2036
% 10.11%

R-prec 0.2246 0.2800
% 24.67%

Table 2: Precision Improvement on Review Type
Queries

QNo. Baseline QS+QC+DS+DC
4 0.0821 0.0827
11 0.0741 0.0935
17 0.0021 0.0023
31 0.1522 0.1525
34 0.0193 0.0190
54 0.1099 0.1124
105 0.2950 0.2949
106 0.0085 0.0087

MAP 0.0929 0.0958
% 3.07%

5.6 Results Analysis

In Figure 7, it can be clearly seen that there is
no strong relationship (e.g. linear relationship) be-
tween generality and similarity in the scatter dia-
grams. Moreover, the values of correlation coefficient
are quite small too. Therefore it shows that general-
ity and similarity are two different concepts without
strong correlation between them.

Within all the cases, DS improve the query per-
formance significantly for all 101 queries. There are
a 10.11% improvement of MAP and 24.67% improve-
ment of R-prec. This indicates that it is effective to
do the re-ranking by considering both document gen-
erality and similarity.

The results show the better performance
of QS+QC+DS+DC on review type queries.
There is an encouraging 3.07% improvement for
QS+QC+DS+DC. We performed a dependent t-test
(Paired Two Sample for Means) which compares
the paired precisions between the baseline and the
QS+QC+DS+DC algorithm over different queries in
Table 2. With a p − value less than 0.05, it turns
out that the improvement is significant. This also
verifies our motivation discussed that the technical
generality retrieval happens more often for review
type queries from non-domain-expert user.

6 Conclusions

In this paper, we argued that there is a need of docu-
ment generality computation in information retrieval.
A novel approach to generality computation has been
proposed. Our approach uses the MeSH ontology
structure in bio-medical domain to compute the gen-

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

117

erality based on both statistical and semantic rela-
tionships between the terms. Then we applied our
proposed generality computation method to the docu-
ment re-ranking in bio-medical information retrieval.
Traditional similarity-based document ranking meth-
ods are incorporated with the generality computa-
tions. The experiments of our approach have shown
that “generality” is an important complement to the
traditional similarity-based ranking. The intuition is
that when search results are returned by IR system,
user may expect to see the documents broadly de-
scribing a certain topic to be ranked on the top of the
list, so that they can get an overview of the topic first
rather than going into the specific ones immediately.

In our proposed framework of document re-
ranking in bio-medical information retrieval, doc-
uments are scored and re-ranked by a combina-
tion of their similarity to query and the closeness
of documents’ generality to the query’s. Experi-
ments have been conducted on a large corpus namely
OHSUMED (Hersh et al. 1994). Our approach shows
an improved query performance and encourages us to
pursue the further investigation. Our approach can
also be applicable to other domains where the domain
specific ontology is available.

There are some further works expected. Firstly
the cohesion algorithm currently has an oversimpli-
fication since it considers semantic relationship be-
tween MeSH concepts only. Since there is a large
percentage of non-ontology concepts in documents, it
is necessary to consider statistical relationships be-
tween concepts. A possible solution is to consider
the co-occurrence relationship of concepts (i.e. both
MeSH and non-ontology concept). The more often
two concepts co-occur, the stronger their association
is.

Secondly, it is necessary to fully evaluate the ef-
fectiveness of our proposed algorithms on generality-
based retrieval by comparing our algorithms with
other baselines (Zhai et al. 2003), (Liu et al. 2004).
More experiments on the evaluation frameworks in re-
lated work (Zhai et al. 2003), (Liu et al. 2004) need to
be performed for the purpose of tuning the generality
computation formulas.

Finally, the domain-independent generality rank-
ing may need to be studied. Currently our proposed
algorithms are domain dependent. We re-rank bio-
medical documents in the context of a given bio-
medical ontology. The performance of our re-ranking
algorithms in a general domain-independent environ-
ment is unknown. However, the idea presented in this
paper has shown a new way of document ranking and
is promising towards the improvement of information
retrieval in general.

7 Acknowledgments

The work reported in this paper has been funded in
part by the Co-operative Centre for Enterprise Dis-
tributed Systems Technology (DSTC) through the
Australian Federal Governments CRC Programme
(Department of Education, Science and Training).

References

Allen, R. B. & Wu, Y. (2002), Generality of texts,
in ‘Proceedings of the 5th International Con-
ference on Asian Digital Libraries: Digital Li-
braries: People, Knowledge, and Technology’,
pp. 111–116.

Carbonell, J. & Goldstain, J. (1998), The use of
MMR, diversity-based reranking for reordering
documents and producing summaries., in ‘SIGIR

’98: Proceedings of the 21st annual international
ACM SIGIR conference on Research and devel-
opment in information retrieval’, ACM Press,
New York, NY, USA.

He, B. & Ounis, I. (2004), Inferring query perfor-
mance using pre-retrieval predictors, in ‘11th
Symposium on String Processing and Informa-
tion Retrieval’, Padova, Italy, pp. 43–54.

Hersh, W. (2000), TREC-8 interactive track re-
port, in ‘The Eighth Text REtrieval Conference’,
pp. 57–64.

Hersh, W., Buckley, C., Leone, T. J. & Hickam, D.
(1994), OHSUMED: an interactive retrieval eval-
uation and new large test collection for research,
in ‘Annual ACM Conference on Research and
Development in Information Retrieval’, pp. 192
– 201.

Leacock, C. & Chodorow, M. (1998), Combining local
context and wordnet similarity for word sense
identification, in ‘Fellbaum’, pp. 265–283.

Liu, Y., Zhang, B., Chen, Z., Lyu, M. R. & Ma, W.-
Y. (2004), Affinity rank: A new scheme for effi-
cient web search, in ‘The Thirteenth World Wide
Web conference’, Vol. 203-211, ACM, New York,
USA.

Morris, J. & Hirst, G. (1991), ‘Lexical cohesion com-
puted by thesaural relations as an indicator of
the structure of text’, Computational Linguistics
17(1), 21–48.

Over, P. (1999), TREC-7 interactive track report,
in ‘The Seventh Text REtrieval Conference’,
pp. 65–72.

Plachouras, V., Cacheda, F., Ounis, I. & Rijsbergen,
C. v. (2003), University of glasgow at the web
track: Dynamic application of hyperlink analy-
sis using the query scope., in ‘In Proceedings of
the 12th Text Retrieval Conference TREC 2003’,
Gaithersburg.

Robertson, S. E., Walker, S. & Beaulieu, M. (1999),
Okapi at TREC-7: automatic ad hoc, filtering,
vlc and interactive track., in E. M. Voorhees
& D. K. Harman, eds, ‘The Seventh Text
REtrieval Conference (TREC-7)’, Gaithersburg,
MD, USA.

Salton, G., Wong, A. & Yang, C. S. (1975), ‘A vector
space model for automatic indexing’, Communi-
cations of the ACM 18(11).

Swan, R. C. & Allan, J. (1998), Aspect windows, 3-
D visualizations, and indirect comparisons of in-
formation retrieval systems, in ‘SIGIR ’98: Pro-
ceedings of the 21st annual international ACM
SIGIR conference on Research and development
in information retrieval’, ACM Press, New York,
NY, USA, pp. 173–181.

Van Rijsbergen, C. J. (1979), Information Retrieval,
London; Boston: Butterworths.

Zhai, C., Cohen, W. W. & Lafferty, J. (2003), Beyond
independent relevance: Methods and evaluation
metrics for subtopic retrieval, in ‘Proceedings of
the 26th annual international ACM SIGIR con-
ference on Research and development in infor-
maion retrieval’, pp. 10–17.

CRPIT Volume 49

118

Using Reflection for Querying XML Documents∗

Markus Kirchberg, Faizal Riaz-ud-Din, Klaus-Dieter Schewe, Alexei Tretiakov

Massey University, Department of Information Systems &
Information Science Research Centre

Private Bag 11 222, Palmerston North, New Zealand
Email: [m.kirchberg|f.din|k.d.schewe|a.tretiakov]@massey.ac.nz

Abstract

XML-based databases have become a major area of
interest in database research. Abstractly speaking
they can be considered as a resurrection of complex-
value databases using constructors for records, lists,
unions plus optionality and references. XQuery has
become the standard query language for XML. In this
paper an implementation of XQuery based on linguis-
tic reflection is proposed. That is, XQuery is trans-
lated into a query algebra for rational tree types based
on simple operations and structural recursion for lists.
The major purpose of using reflection is to expand
path expressions in a type-safe way.

1 Introduction

As emphasised in (Lobin 2001) the original purpose of
XML – same as SGML – was to support the descrip-
tion of content rather than layout of text documents.
For instance, in the Orlando project (Ruecker 2000)
XML is used to markup the content of novels of fe-
male British and Irish writers. Nevertheless, XML
has become a major area of interest in database re-
search. If some aspects of XML that make sense
for text markup but not so much for databases are
neglected, XML can be considered as a complex-
value data model using constructors for records, lists,
unions plus optionality and references (Abiteboul,
Buneman & Suciu 2000, Siméon & Wadler 2003).

Using XML for databases requires schema defini-
tion, query and update languages. By now, XML
Schema (World Wide Web Consortium (W3C) 2001)
has become the W3C standard for defining schemata,
while XQuery (Katz 2003, World Wide Web Consor-
tium (W3C) 2004) is the recommended standard for
querying XML documents. For updates only little
work has been done so far, e.g. (Tatarinov, Ives,
Halevy & Weld 2001).

In fact, XML Schema supports almost directly the
definition of tree types using the mentioned construc-
tors. XQuery combines ideas from various predeces-
sor proposals for XML query languages (Abiteboul,
Quass, McHugh, Widom & Wiener 1997, Buneman,
Davidson, Hillebrand & Suciu 1996, Deutsch, Fernan-
dez, Florescu, Levy & Suciu 1999). Most importantly,
queries are composed of a matching part that binds
variables to values according to a given XML docu-
ment, and a construction part that creates new XML

∗ The work reported in this paper was supported by
FRST/NERF grant MAUX0025 “DIMO – Distributed Multi-Level
Object Bases”.
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Seventeenth Australasian Database Conference
(ADC2006), Hobart, Australia. Conferences in Research and
Practice in Information Technology, Vol. 49. Gill Dobbie and
James Bailey, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

documents from these variables.
When it comes to implementing XML databases

and in particular XQuery, there are two major lines of
research. The first one, e.g. (DeHaan, Toman, Con-

sens & Özsu 2003), attempts a translation to SQL
based on a reification of XML via relational database
technology. The drawback of this approach is that
semantics may be lost in the translation from trees
to relations. The alternative is to approach a direct
implementation of XQuery, e.g. (Paparizos, Wu, Lak-
shmanan & Jagadish 2004). Our own research follows
this second line.

The major difficulty in implementing XQuery re-
sults from path expressions, i.e. from the fragment of
the language that subsumes XPath (Chen, Davidson
& Zheng 2004). These difficulties are supported by
the theoretical analysis of the complexity of XPath
(Gottlob, Koch & Pichler 2003, Marx 2004).

Our work reported in this paper follows the idea
of translating XQuery to a (general purpose) query
algebra for rational trees as defined in (Schewe 2001).
For short let RTA denote this query algebra. RTA
uses operators for the type system, i.e. for the ab-
stract system of types as defined in (Katz 2003). In
particular, it exploits structural recursion (Tannen,
Buneman & Wong 1992, Wadler 1992) for lists. Koch
in (Koch 2005) has used a similar approach based on
list comprehensions. However, his work is placed in a
complexity-theoretic setting. The advantages of such
a translation to a query algebra are the support of al-
gebraic query optimisation, the easy implementation
of the operations and the integration with program-
ming languages, e.g. using the physical architecture
from (Kirchberg, Schewe & Tretiakov 2003), and the
easy extension to other constructors such as sets and
multisets in case the order that comes with the list
constructor is considered unnecessary or even unde-
sired.

However, the translation of XQuery to RTA re-
quires schema information, in particular for the path
expressions. Thus, it is a natural idea to exploit type-
safe linguistic reflection (Stemple, Fegaras, Sheard &
Socorro 1990) to deal with this problem. This is what
we do in this paper, i.e. we present a translation from
essential parts of XQuery to RTA and show how this
translation benefits from linguistic reflection.

Therefore, we first introduce an abstract model of
XML, XQuery and RTA in Sections 2 and 3, respec-
tively. In Section 4 we then outline the translation
from XQuery to RTA. We focus on structural recur-
sion and show that some of the functions used as pa-
rameters have a “complicated nature”, as they refer
to path finding. For this we introduce linguistic re-
flection and show how it can be used to expand these
functions of “complicated nature”. We conclude with
a brief summary.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

119

2 Abstract Model of XML and
XQuery

In this section we describe some basics of XML and
XQuery. Of course, as both of these are complex lan-
guages, we cannot describe all details and therefore
take a more abstract view focusing more on the se-
mantics than on the syntax.

2.1 XML Documents as Trees

Start with a type system that supports records, lists
and unions. Using abstract syntax this type system
can be described by

t = b | (t1, . . . , tn) | [t] | t1 ⊕ · · · ⊕ tn.

Here b represents a (not further specified) collec-
tion of base types, e.g. the base types supported by
XML such as String , Integer , Double, ID , etc. For
reasons that will become clear, when we add refer-
ences, we only use a single type ID for identifiers.
Furthermore, assume that one of the base types is
Empty with only one possible value. This type can
be used to support optionality.

We use (t1, . . . , tn) to denote an ordered record
type with component types ti, the type [t] is used for
finite lists, and t1 ⊕ · · · ⊕ tn is used for a (disjoint)
union type with components ti.

Each type t denotes a set of values called its do-
main dom(t). Formally, we obtain these domains as
follows:

– dom(bi) = Vi, i.e. for each base type bi we as-
sume some set Vi of values of that type, e.g.
dom(EMPTY) = {⊥}.

– dom((t1, . . . , tn)) = dom(t1) × · · · × dom(tn).

– dom([t]) = {[v1, . . . , vk] | k ∈
�
, vi ∈ dom(t)}.

– dom(t1 ⊕ · · · ⊕ tn) = {(i, vi) | 1 ≤ i ≤ n, vi ∈
dom(ti)}.

Then an XML document can be represented by a
value of some type t, which in turn is representable
as a tree, provided the document does not contain
references. In particular, we can treat attributes in
the same way as subelements – which is no loss of
generality for databases, whereas for text markup it
may make a significant difference.

In order to also capture references, we extend the
type system to

t = b | ` | (t1, . . . , tn) | [t] | t1 ⊕ · · · ⊕ tn | ` : t,

where ` represents reference labels. The do-
mains are simply dom(`) = dom(ID) and dom(` :
t) = {(i, v) | i ∈ dom(`), v ∈ dom(t)}. Following
(Abiteboul et al. 2000) each occurrence of a value
i of type ID in some complex value v that corre-
sponds to a labelled type ` : t defines a reference,
whereas each occurrence of a value i of type ID in v
that corresponds to a label ` uses the reference. In
XML Schema the usage of references corresponds to
the type IDREF , whereas the definition of references
corresponds to the type ID . Furthermore, IDREFS
corresponds to a list type [`] – in fact, here we would
prefer to use a set type, but for simplicity and or-
thogonality of the constructors let us use only one
bulk type constructor.

Example 2.1 Let us look at the following schema
definition in XML Schema:

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="cellar">

<xs:complexType>
<xs:sequence>

<xs:element ref="wines"/>
<xs:element ref="wineries"/>
<xs:element ref="regions"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="wines">

<xs:complexType>
<xs:sequence>

<xs:element ref="wine"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="wineries">

<xs:complexType>
<xs:sequence>

<xs:element ref="winery"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="regions">

<xs:complexType>
<xs:sequence>

<xs:element ref="region"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="wine">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="year"
type="xs:integer"
minOccurs="0"/>

<xs:element ref="blend"
maxOccurs="unbounded"/>

<xs:element name="price"
type="xs:decimal"/>

</xs:sequence>
<xs:attribute name="w-id"

type="xs:ID" use="required"/>
<xs:attribute name="producer"

type="xs:IDREF" use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="blend">

<xs:complexType>
<xs:sequence>

<xs:element name="grape"
type="xs:string"/>

<xs:element name="percentage"
type="xs:integer"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="winery">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="owner"
type="xs:string" maxOccurs="unbounded"/>

<xs:element name="area"
type="xs:string"
minOccurs="0"/>

<xs:element name="established"
type="xs:date" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="v-id"

type="xs:ID" use="required"/>
<xs:attribute name="in-region"

type="xs:IDREF" use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="region">

<xs:complexType>

CRPIT Volume 49

120

<xs:sequence>
<xs:element name="name" type="xs:string"/>

</xs:sequence>
<xs:attribute name="r-id"

type="xs:ID" use="required"/>
<xs:attribute name="famous-wines"

type="xs:IDREFS" use="required"/>
</xs:complexType>

</xs:element>
</xs:schema>

That is, a cellar contains a list of wines, winer-
ies and regions. A wine is described by a name, a
year (optional) and a blend, which is a sequence of
grapes together with their percentages. A winery is
described by a name, a list of owners, an area (op-
tional) and an establishment date (optional). A re-
gion just has a name. Furthermore, there are ref-
erences from a wine to the winery that produces it,
from a winery to the region it is located in, and from
a region to all its famous wines.

Using our type system, we obtain the following
complex type definitions for representing this schema:

cellar = (wines, wineries, regions)
wines = [w-id : wine]
wineries = [v-id : winery]
regions = [r-id : region]
wine = (w-name, year ⊕ Empty , [blend], price, pro-
ducer)
w-name = String
year = Integer
price = Decimal
producer = v-id
blend = (grape, percentage)
grape = String
percentage = Integer
winery = (v-name, [owner], area ⊕ Empty ,

established ⊕ Empty , in-region)
v-name = String
owner = String
area = String
established = Date
in-region = r-id
region = (r-name, famous-wines)
r-name = String
famous-wines = [w-id]

Here w-id, v-id and r-id are labels.

Example 2.2 Consider the following XML docu-
ment that is in accordance with the schema defined
in Example 2.1:

<cellar
xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="cellar.xsd">
<wines>
<wine w-id="o11" producer="o1">

<name>Marlborough Riesling</name>
<year>2003</year>
<blend>

<grape>Riesling</grape>
<percentage>100</percentage>

</blend>
<price>13.95</price>

</wine>
<wine w-id="o12" producer="o1">

<name>Marlborough Gewurztraminer</name>
<year>2000</year>
<blend>

<grape>Gewurztraminer</grape>
<percentage>100</percentage>

</blend>
<price>17.95</price>

</wine>
<wine w-id="o13" producer="o1">

<name>Everyday’s Favourite</name>
<blend>

<grape>Sauvignon Blanc</grape>
<percentage>65</percentage>

</blend>
<blend>

<grape>Semillon</grape>
<percentage>35</percentage>

</blend>
<price>5.95</price>

</wine>
</wines>
<wineries>

<winery v-id="o1" in-region="o2">
<name>Marlborough Winery</name>
<owner>Jacques Vine</owner>
<owner>Claudine Vine</owner>
<area>231 ha</area>
<established>1987-01-01</established>

</winery>
</wineries>
<regions>

<region r-id="o2" famous-wines="o11 o12">
<name>Marlborough</name>

</region>
</regions>

</cellar>

This XML document can be represented by the
following complex value:

([(&o11,(Marlborough Riesling, 2003,
[(Riesling, 100)], 13.95, &o1)),

(&o12,(Marlborough Gewurztraminer, 2000,
[(Gewurztraminer, 100)], 17.95, &o1)),

(&o13,(Everyday’s Favourite, ⊥,
[(Sauvignon Blanc, 65), (Semillon, 35)],
5.95, &o1))],

[(&o1,(Marlborough Winery, [Jacques Vine,
Claudine Vine], 231 ha, 1987, &o2))],

[(&o2,(Marlborough, [&o11, &o12]))])

2.2 XQuery in a Nutshell

XQuery is a query language allowing to extract se-
quences of subtrees and base type values from any
number of XML document trees, and to combine
them to construct a sequence of trees and basic values
(the so-called items) forming the result of the query.
In practice, most often the result of the query is a
sequence consisting of a single tree.

In XQuery, the XML documents serving as in-
put are identified by using the so-called input func-
tions, of which the most commonly used one is doc,
which accepts a URL corresponding to the location
of an XML document as a parameter. For example,
doc("cellar.xml") would retrieve the cellar.xml
document from the current directory.

Sequences of subtrees are retrieved by using the
so-called path expressions, consisting of one or more
steps separated by a slash, /, or double slash, //.
Each step acts on the sequence of items created
by the previous step to form a further sequence,
which either forms the output of the path expres-
sion (if the step is the last one), or serves as in-
put for further steps. The following query, formed
by combining an input function with a path expres-
sion, will result in a sequence of name elements rep-
resenting wine names (assuming cellar.xml is the
XML document introduced in the previous section):
doc("cellar.xml")/cellar/wines/wine/name.

doc("cellar.xml")/cellar results in a se-
quence consisting of a single cellar element,
doc("cellar.xml")/cellar/wines results in a se-
quence consisting of a single wines element (a subele-
ment of the cellar element obtained in the previous
step), doc("cellar.xml")/cellar/wines/wine will
result in a sequence of all wine elements from wines
and so on. Filtering can be applied to restrict which

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

121

of the items are to be included in a given step. While
/ retrieves child items (branches immediately con-
nected to the root), // forms a sequence consisting
of all matching subtrees, at all depths. / and // are
illustrated in examples 2.3 and 2.4, respectively.

As XQuery is a functional language, an XQuery
program can be regarded as an expression formed by
subexpressions which, at execution time, are evalu-
ated in the order of precedence. The most commonly
used type of expressions in XQuery are the so-called
FLWOR (for, let, where, order by, return) ex-
pressions. In a FLWOR expression, a for clause binds
each item of a sequence to a variable, and evaluates
the rest of the expression with that binding, resulting
in as many evaluations as there are items in the se-
quence. The for clause is illustrated in Example 2.4
below.

A let clause binds the whole sequence to a vari-
able, and evaluates the rest of the expression just
once, with that binding. The let clause is illustrated
in Examples 2.5, 2.6, and 2.7.

The where clause serves as a filter: the rest of the
FLWOR expression is executed only if the boolean
expression associated with the where clause evaluates
to true. This is illustrated in Example 2.5, 2.6, and
2.7.

The order by clause is used for sorting (we do not
discuss it here any further).

Finally, the return clause is a constructor, instan-
tiating an item that is to be included as the result of
the query. By using return, items retrieved from
different parts of the same document, or from differ-
ent documents, can be combined together, resulting
in sophisticated joins. As shown in Example 2.7, the
constructor formed by using the return clause can
include subqueries, whose output is incorporated into
the sequence created by the constructor.

XML Query can make use of type information
from XML Schema documents associated with XML
documents inputted by the query by explicitly spec-
ifying the type of items to be included in sequences
or to be constructed. In addition, parsers are able to
analyse and to reject a query based on schema infor-
mation only, if the query is found to construct items
that do not match the declared types for constructor
output.

Example 2.3 Assume the document in Example 2.2
is stored in cellar.xml. Then

<wines>
{
doc("cellar.xml")/cellar/wines/wine/name

}
</wines>

is a simple query that will select the names of wines.
For our example document the result would be

<wines>
<name>Marlborough Riesling</name>
<name>Marlborough Gewurztraminer</name>
<name>Everyday’s Favourite</name>

</wines>

Example 2.4 The query

<wine-makers>
{
for $N in doc("cellar.xml")//owner
return

<name>{ $N/text() }</name>
}

</wine-makers>

returns the names of winery owners.

Example 2.5 The following is a query with a more
interesting where-clause, which returns the names of
Riesling wines:

<Rieslings>
{

for $W in doc("cellar.xml")/cellar/wines/wine
let $N := $W/name, $B := $W/blend
where $B/grape/text() = "Riesling"
and $B/percentage/text() = 100

return <name>{ $N/text() }</name>
}

</Rieslings>

Example 2.6 The following query, which contains
selection conditions on the paths, will produce a list
of wines with their producers:

<wines>
{

let $db := doc("cellar.xml")
for $W in $db//wine, $V in $db//winery
let $P := $W/@producer, $N := $W/name,
$M := $V/name, $I := $V/@v-id

where $I = $P
return
<wine>

<product>{ $N/text() }</product>
<producer>{ $M/text() }</producer>

</wine>
}

</wines>

Example 2.7 The following is an example of a
nested query:

<wines>
{

let $db := doc("cellar.xml")
for $N in $db//wine/name
return
<wine>

{ $N }
{
for $W in $db//wine
where $W/name = $N
return $W/year

}
</wine>

}
</wines>

The query lists the names of all wines, adding to each
name the corresponding production year, when such
information is available.

3 RTA: A Rational Tree Query
Algebra

Following a basic idea in (Schewe 2001) we use a query
algebra with operations “induced” from the type sys-
tem plus a join-operation. For our purposes here it is
more convenient to consider products instead of joins.

In doing so, let 1l denote a trivial type with only
one value in its domain. We use a unique “forget”-
operation triv : t → 1l for each type t. Assume
further a boolean type BOOL with constant val-
ues T and F. Thus, we may consider the opera-
tions ∧ : BOOL × BOOL → BOOL (conjunction),
¬ : BOOL → BOOL (negation) and ⇒: BOOL ×
BOOL → BOOL (implication).

For record types we consider projection πi :
(t1, . . . , tn) → ti and product o1 × · · · × on : t →
(t1, . . . , tn) for given operations oi : t→ ti. As usual,
we write πi1,...,ik

as a shortcut for πi1 × · · · × πik
.

For union types we use the canonical embeddings
ιi : ti → t1 ⊕ · · · ⊕ tn. Other operations on union
types take the form o1 + · · · + on : t1 ⊕ · · · ⊕ tn → t
for given operations oi : ti → t.

CRPIT Volume 49

122

For list types we may consider _ (concatenation),
the constant empty : 1l → [t] and the singleton oper-
ation single : t→ [t] with well known semantics.

It should be noted here that document order is
preserved through the use of lists. The ordering of the
elements in the lists conforms to the ordering of the
elements in the queried xml document (or conforms
to specific re-ordering in the query itself) throughout
the execution process.

3.1 Structural Recursion

In addition, we consider structural recursion
src[e, g,t] : [t] → t′ with a value e of type t′, an
operation g : t→ t′ and an operation t : (t′, t′) → t′,
which is defined as follows:

src[e, g,t]([]) = e

src[e, g,t]([x]) = g(x)

src[e, g,t](X_Y) = src[e, g,t](X) t src[e, g,t](Y)

Let us illustrate structural recursion by some more
or less standard examples. First consider an oper-
ation f : t → t′. We want to raise f to an op-
eration map(f) : [t] → [t′] by applying f to each
element of a list. Obviously, we have map(f) =
src[[], single ◦ f,_].

Next consider an operation ϕ : t → BOOL,
i.e. a predicate. We want to define an operation
filter(ϕ) : [t] → [t], which maps a given list to the
sublist of all elements satisfying the predicate ϕ. For
this we may write filter(ϕ) =

src[[], if else ◦ (ϕ× single× (empty ◦ triv)),_]

with the operation if else : (BOOL, t, t) → t
with (T, x, y) 7→ x and (F, x, y) 7→ y.

As a third example assume that t is a type, on
which addition + : (t, t) → t is defined. Then
src[0, id,+] with the identity id on t defines the sum
of the elements in a list.

3.2 Querying XML with RTA

Let us simply illustrate now how RTA can be applied
to query XML. We will use the queries from the pre-
vious section and write equivalent queries in RTA.

Example 3.1 Let us consider first the query in Ex-
ample 2.3. In this case we basically have to analyse
a path expression. For this assume that vin is the
complex value in Example 2.2, i.e. it represents the
corresponding XML document cellar.xml.

The construct doc(cellar.xml)/cellar creates a list
with the whole document as its only entry, which cor-
responds to applying the RTA-operation single to
vin. Then /wines selects the first successor of the
root. As vin is a triple, this corresponds to applying
map(π1) to [vin]. This gives

map(π1)([vin]) = src[[], single ◦ π1,
_]([vin])

= single ◦ π1(vin)

= [π1(vin)]

The effect of /wine in the XQuery path expression
is to produce only the list of wines, i.e. π1(vin). This
can be achieved by another application of structural
recursion, in this case src[[], id,_]. This gives

src[[], id,_]([π1(vin)]) = π1(vin)

as desired. Finally, the effect of /name in the
XQuery path expression is first to throw away the

identifiers for wines, which can be achieved by ap-
plying π2, then taking the first component, i.e. to
apply π1. Thus, the last step is the application of
map(π1 ◦ π2).

In summary, the query in Example 2.3 corresponds
to the query

map(π1 ◦ π2) ◦ src[[], id,
_] ◦ map(π1) ◦ single.

Applied to vin we obtain the list value [Marlbor-
ough Riesling, Marlborough Gewurztraminer, Every-
day’s Favourite] as desired.

Example 3.1 already gives valuable hints, how a
translation of XQuery into RTA might work. Ba-
sically, we follow the execution model for XQuery,
which works on lists and applies operations to the el-
ements of the list. So, basically each step corresponds
to some structural recursion operation.

Example 3.1 also indicates the expected advantage
from the translation into RTA, as we were able to sim-
plify the algebraic query. This is a first step towards
query “optimisation”.

However, in Example 3.1 we used only explicit
path expressions. The next example handles a query,
in which we have to search for the path. We will see
that this constitutes a much more complicated appli-
cation of structural recursion.

Example 3.2 Let us now consider the query in Ex-
ample 2.4. As in the previous example we first have
to apply single to vin to achieve the same effect as
doc(cellar.xml) in the XQuery path expression. How-
ever, the follow-on RTA-operation has to capture the
effect of //owner, which can be done by structural
recursion. That is, we apply src[[], h,_] to [vin] with
an operation h that searches for successors with the
name owner.

The application of this operation h to some x can
be defined recursively as follows:

if type(x) = owner
then [x]
else
if type(x) = (t1, . . . , tn)
then h(π1(x))

_ . . ._h(πn(x))
else
if type(x) = [t]
then src[[], h,_](x)
else
if type(x) = t1 ⊕ · · · ⊕ tn
then h(π2(x))
else []
endif

endif
endif

endif

Finally, we can neglect the return-clause, as it is
just a renaming of tags, which do not appear in our
anonymised complex values.

In summary, the corresponding RTA-query is
src[[], h,_] ◦ single with

h = if then ◦ (ϕ1 × single× h1)

h1 = if then ◦ (ϕ2 × (_ ◦ (h ◦ π1 ×
_ ◦ (. . .

(h ◦ πn−1 × h ◦ πn) . . .))) × h2)

h2 = if then ◦ (ϕ3 × src[[], h,_] ◦ h3)

h3 = if then ◦ (ϕ4 × h ◦ π2 × empty)

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

123

and the obvious Boolean operations

ϕ1(x) ≡ type(x) = owner

ϕ2(x) ≡ type(x) = (t1, . . . , tn)

ϕ3(x) ≡ type(x) = [t]

ϕ4(x) ≡ type(x) = t1 ⊕ · · · ⊕ tn

Example 3.2 shows that some of the operations
used within RTA-queries require complex definitions.
It is not difficult to see that the other examples of
queries from the previous section require analogous
techniques. We will present a general solution for the
translation in Section 4.

3.3 Multi-Dimensional Extension

Let us finally mention a “multi-dimensional” exten-
sion of structural recursion, but let us restrict for sim-
plicity to the binary case. That is, we define an op-
eration src2[f, g, h] : ([t1], [t2]) → t with parameters
f : [t2] → t, g : (t1, [t2]) → t, and h : (t, t) → t.
Similarly to the “one-dimensional” case we define

src2[f, g, h]([], L2) = f(L2)

src2[f, g, h]([x], L2) = g(x, L2)

src2[f, g, h](X_Y, L2) = h(src2[f, g, h](X,L2),

src2[f, g, h](Y, L2))

This can be used to define the product of lists
(both of type [t]) as

L1 × L2 = src2[[], g,_](L1, L2),

where [] is treated as a constant function, and g is
defined by

g(x, L2) = src[[], single ◦ (x × id),_](L2).

4 Linguistic Reflection in Translating
XQuery to RTA

Our goal is to translate XQuery into RTA. For this re-
call that XQuery is basically a functional language, so
each query corresponds to a sequence of function calls.
For instance, for the simple query in Example 2.3
we would first evaluate 〈wines〉 by simply printing it,
then evaluate the expression { doc(cellar.xml)/. . . },
finally evaluate 〈/wines〉, which again amounts only
to a simple print. Therefore, we concentrate on ex-
pressions of the form { . . . } with the dots standing
for a FLWOR-expression.

4.1 The Basic Translation Model

XQuery works on lists, and each part of a query
corresponds to some function that is executed on
all elements of the list. As we assume to be given
a FLWOR-expression, we first look at the for-
construct. In its simple form it has the form

for $X in 〈path-expression〉,

so we have to evaluate the path expression first:

– If doc(xxx.xml) appears in the path expression,
then xxx.xml is some input document, which is
represented by some complex value, say vin. As
we have already seen in Examples 3.1 and 3.2,
the input-function doc simply corresponds to the
RTA-operation single.

– If p/name appears in the path expression, we
first translate p, say the result is trans(p). Then
/name gives rise to an application of structural
recursion, say src[[], g/name,

_]. Thus, the trans-
lation of p/name is

trans(p/name) = src[[], g/name,
_](trans(p)).

The difficult part is then to determine the oper-
ation g/name. Note that all applications of struc-
tural recursion in Example 3.1 refer to this step.

– If p//name appears in the path expression,
we proceed analogously. That is, //name
gives rise to an application of structural recur-
sion src[[], g//name,

_], and the translation of
p//name is

trans(p//name) = src[[], g//name,
_](trans(p)).

Note that the structural recursion in Example
3.2 refers to this step. It also indicates how to
define g = g//name in general:

g = if then ◦ (ϕ1 × single× h1)

h1 = if then ◦ (ϕ2 × (_ ◦ (g ◦ π1 ×
_ ◦ (. . .

(g ◦ πn−1 × g ◦ πn) . . .))) × h2)

h2 = if then ◦ (ϕ3 × src[[], g,_] ◦ h3)

h3 = if then ◦ (ϕ4 × g ◦ π2 × empty)

with the Boolean operations

ϕ1(x) ≡ type(x) = name

ϕ2(x) ≡ type(x) = (t1, . . . , tn)

ϕ3(x) ≡ type(x) = [t]

ϕ4(x) ≡ type(x) = t1 ⊕ · · · ⊕ tn

The crucial remaining part is to take care of the
Boolean operations, as these require type-checks.

– If p[test] appears in the path expression, we first
translate p. Furthermore, test will be translated
into a Boolean condition ψ, and we can combine
both using structural recursion, in this case a
filter-operation, i.e.

trans(p[test]) = filter(ψ)(trans(p)).

If there is more than one condition in the for-
clause, say

for $X1 in 〈path-expression1〉, . . .
$Xn in 〈path-expressionn〉,

each path expression will be translated separately re-
sulting in RTA-operations o1, . . . , on, each producing
some list, say Li. Then we have to combine these lists
into one list containing all tuple combinations, i.e. we
obtain L1 × · · · × Ln.

The following let-clause simply binds further vari-
ables depending on the list resulting from evaluating
the for-clause. As this may again require evaluating
a path expression, we proceed analogously to trans-
lating the for-clause.

Example 4.1 Look at the query in Example 2.5.
Analogous to Example 3.1 the for-clause will be
translated to the operation

src[[], id,_] ◦ map(π1) ◦ single,

CRPIT Volume 49

124

which will be applied to vin. Now the first part of
the let-clause corresponds to map(π1 ◦π2) as already
seen in Example 3.1. Similarly, the second part of the
let-clause corresponds to map(first ◦ π3 ◦ π2) with
an operation first that selects the first element of a
list.

However, we do not want to replace the $W -values
by the $N -values or the $B-values, but keep all three,
so the let-clause defines the operation

map((id× π1 × (first ◦ π3)) ◦ π2).

The remaining clauses in FLWOR expressions are
easy to handle. A where-clause defines a filter-
operation. The greatest difficulty is to determine
the Boolean operation, which may again involve the
translation of a path expression. An order-clause
corresponds to applying a sorting-operation, which
can be expressed by structural recursion. Finally, the
return-clause only constructs a value, so the only
difficulty that may occur is that this construction in-
volves evaluating another query.

Example 4.2 Let us continue our previous exam-
ple, as Example 2.5 contains a where-clause. The list
resulting from the application of the operation in Ex-
ample 4.1, which represents the combination of the
for- and let-clause, contains triples, where the first
component corresponds to a wine, the second one to
its name and the third one to the first-listed com-
ponent of its blend. Thus, applying π1 ◦ π3 to such
a triple gives the requested name of the first grape,
while the application of π2 ◦ π3 results in the corre-
sponding percentage.

Thus, the first condition in the where-clause cor-
responds to the Boolean operation eq ◦ ((π1 ◦ π3) ×
Riesling), in which Riesling is treated as a con-
stant operation. Similarly, the second condition
gives the Boolean operation eq ◦ ((π2 ◦ π3) × 100),
and thus, the whole where-clause corresponds to the
RTA-operation filter(ϕ), where ϕ is defined by the
Boolean operation

∧◦((eq◦((π1◦π3)×Riesling))×(eq◦((π2◦π3)×100))).

Finally, let us complete the translation of the
query in Example 2.5. Taking all the parts together,
we obtain the RTA-operation

map(π2) ◦ filter(ϕ)◦

map((id× π1 × (first ◦ π3)) ◦ π2)◦

src[[], id,_] ◦ map(π1) ◦ single

4.2 Type-Safe Linguistic Reflection

In the previous subsection we have seen that the
translation of XQuery can be done by parsing through
FLWOR expressions and translating them step-by-
step into RTA-operations, most of which happen to
be special cases of structural recursion. More than
this, all applications of structural recursion have the
form src[[], g,_] and the real difficulty is to deter-
mine the functions g. For this we identify two cases:

– We obtain a highly recursive operation g that
searches through the whole document. Example
3.2 is a prototype for this case.

– We obtain an operation that is determined by
the schema. Example 3.1 is a prototype for this
case.

As the chances for query optimisation are much
higher in the second case – as already seen in Exam-
ple 3.1 – it will be advantageous to apply this case,

value of

reflection type

value of

reflection type

XQuery

code

RTA

code

?

6

-

-

drop raise

trans

expand

Figure 1: Linguistic Reflection

wherever it is possible. However, this means to ex-
plore the schema. As shown in (Stemple et al. 1990)
a type-safe way of doing this is to apply linguistic
reflection.

Linguistic reflection is the ability of a system to
observe and manipulate its own components. This
is done by extending the system with extra modules
which are created, compiled and linked in by the sys-
tem itself, either during execution or at compile-time.
The language in which the system has been written
would, of course, need to provide the ability for the
system to behave in this manner.

The general idea is to consider constructs in a
query that are used for defining an operation, such
as /name for g/name in the previous subsection, as
macros that have to be expanded. This can be done
by ignoring that they represent query code, thus drop
this meaning, and treat them as values of some type.
The expansion function will then take this value plus
the schema, which is represented as a value of some
other type, and create a new value. This new value
will finally be raised back to an executable operation.
This is illustrated by Figure 1.

Therefore, we will define reflection types in the
next subsection, and finally illustrate, how the ex-
pansion procedure for paths works.

4.3 Reflection Types

In order to represent XSchema schemata we need at
least reflection types for types, elements, attributes,
and schemata. So we get the reflection type typerep
= Xtyperep ⊕ RTtyperep indicating that we are using
types within XSchema and the rational tree types.
For the types that are used to describe XSchema types
we then get the following definitions:

Xtyperep = xs complex typerep ⊕ xs simple typerep
xs simple typerep = String
xs complex typerep = xs sequencerep ⊕ xs choicerep

xs sequencerep = [(namerep ⊕ xs elementrep,
min, max ⊕ Empty)]

xs choicerep = [(namerep ⊕ xs elementrep,
min, max ⊕ Empty)]

min = Integer
max = Integer
namerep = String
xs elementrep = (namerep, Xtyperep, [xs attributerep])
xs attributerep = (namerep, xs simple typerep, userep)
userep = String

and finally

XSchemarep = (namespacerep, namerep,
[xs elementrep])

namespacerep = String

Example 4.3 The value (1, (1, (1,
[((1,“wines”),1,(1,1)), ((1,“wineries”),1,(1,1)),
((1,“regions”),1,(1,1))]))) of type typerep represents
the complex type used for the element “cellar” in
Example 2.1. The leading 1s indicate that it is a

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

125

value of an XSchema type, a complex type, and a
sequence type, respectively. Note that the min- and
max-values are the defaults.

Analogously, the value (1, (1, (1,
[((1,”region”),0,(2,⊥))]))) represents the com-
plex type for the element “regions” in Example
2.1.

The value (“http://www.w3.org/2001/XMLSchema”,
“cellar”, [(“cellar”, (1, (1, (1, [((1,“wines”),1,(1,1)),
((1,“wineries”),1,(1,1)), ((1,“regions”),1,(1,1))]))),
[]), . . .]) of type XSchemarep represents the schema in
Example 2.1. Here the dots stand for representations
of all the elements used in the schema.

The value (“wine”, (1, (1, [((2, (“name”, (2,
“String”), [])), 1, (1,1)), ((2, (“year”, (2, “Integer”),
[])), 0, (1,1)), ((1, “blend”), 1, (2,⊥)), ((2, (“price”,
(2, “Decimal”), [])), 1, (1,1))])), [(“w-id”, “ID”,
“required”), (“producer”, “IDREF”, “required”)])
of type xs elementrep represents the element specifi-
cation for “wine” in Example 2.1. It would of course
be part of the value representing the schema.

Analogously, for the types used with RTA we
obtain the following reflection types:

RTtyperep = (namerep, type exprep)
type exprep = base typerep ⊕ labelrep ⊕
record typerep

⊕ list typerep ⊕ union typerep
⊕ labelled typerep ⊕ namerep

base typerep = String
labelrep = String
record typerep = [type exprep]
list typerep = type exprep

union typerep = [type exprep]
labelled typerep = (labelrep, type exprep)

Example 4.4 The type winery from Example 2.1
will be represented by the value (“winery”, (3, [(7,
“v-name”), (4,(7, “owner”)), (5,[(7, “area”), (1,
“Empty”)]), (5,[(7, “established”), (1, “Empty”)]),
(7, “in-region”)])) of type RTtyperep.

Similarly, the type in-region is represented by (“in-
region”, (2, “r-id”)), and the type wineries is repre-
sented by the value (“wineries”, (4, (6, (“w-id”, (7,
“wine”))))).

Finally, we also need representation types for the
RTA-operations. For this, the following is sufficient:

Operationrep = base oprep ⊕ projectionrep
⊕ productrep ⊕ embeddingrep
⊕ sumrep ⊕ srcrep ⊕ compositionrep

base oprep = String
projectionrep = Integer
productrep = [Operationrep]
embeddingrep = Integer
sumrep = [Operationrep]
srcrep = Operationrep × Operationrep × Operationrep

compositionrep = [Operationrep]

Example 4.5 The values (1,“single”) and (1,“con-
cat”) represent the operations single and concate-
nation _ on lists, respectively. The value (6,
((1,“empty”), (2,3), (1,“concat”))) represents the op-
eration src[[], π3,

_]. The value (7, [(2,2), (2,1),
(1,“single”)]) represents the operation π2◦π1◦single.

4.4 The Expansion Procedure for Paths

Let us now look at the problem of expanding paths,
as this turned out to be the core of the translation
problem. We have seen above that /name gives rise
to a structural recursion operation src[[], g/name,

_],
so we have to determine a representation of g/name.

In order to do so, we first determine the RT type
that corresponds to an element in the schema using
an operation

expand elt type : (String ,XSchemarep) → RTtyperep,

i.e. we associate with an element name and a rep-
resentation of a schema a rational tree type. This
can be achieved by parsing through the schema repre-
sentation and then applying the rules for type trans-
formation that we used in Section 2. In particular,
we blur the differences between subelements and at-
tributes, and we replace references by occurrences of
the base type ID :

expand elt type(n, S) =
expand elt type′(n, search(n, π3(S)), S)

search(n, S) =
if π1(first(S)) = n
then (π2 × π3)(first(S))
else search(n, rest(S))
endif

expand elt type′(n, (e, L), S) =
case π1(π2(e)) = 2
then (n, (1, π2(π2(e))))

case π1(π2(π2(e))) = 1
then (n, (3, check ID(

parse seq(π2(π2(π2(e)))
_L, S))))

case π1(π2(π2(e))) = 2
then (n, (5, check ID(

parse seq(π2(π2(π2(e)))
_L, S))))

endcase

parse seq(L, S) =
if L = []
then []
elsif first(L) = ((1, n′),m,M)
then if m = 1 ∧M = (1, 1)

then [π2(expand elt type(n′, S))]_

parse seq(rest(L), S)
elsif m = 0 ∧M = (1, 1)
then [(5, [π2(expand elt type(n′, S)),

(1, “Empty”)])]_parse seq(rest(L), S)
else [(4, π2(expand elt type(n′, S)))]_

parse seq(rest(L), S)
endif

elsif first(L) = ((2, e),m,M)
then if m = 1 ∧M = (1, 1)

then [π2(expand elt type′(π1(e), (π2(e),
π3(e)), S))]_parse seq(rest(L), S)

elsif m = 0 ∧M = (1, 1)
then [(5, [π2(expand elt type′(π1(e), (π2(e),

π3(e)), S)), (1, “Empty”)])]_

parse seq(rest(L), S)
else [(4, π2(expand elt type′(π1(e), (π2(e),

π3(e)), S)))]_parse seq(rest(L), S)
endif

elsif first(L) = (n′, t, u)
then if t 6= “IDREFS”

then [(1, t)]_parse seq(rest(L), S)
else [(4, (1, “ID”))]_parse seq(rest(L), S)
endif

endif

check ID(L) =
if L = []
then []
elsif π1(first(L)) = 1 ∧ π2(first(L)) = “ID”
then (3, [first(L), (3, rest(L))])
elsif first(check ID(rest(L))) = (1, “ID”)
then (3, [(1, “ID”), (3, [first(L)]_

π2(first(rest(check ID(rest(L))))))])
else L
endif

CRPIT Volume 49

126

Example 4.6 If S represents the schema from Ex-
ample 2.1, we obtain

expand elt type(“wine”,S) =
(“wine”, (3,[(1,“ID”), (3,[(1,“String”),

(5,[(1,“Integer”), (1,“Empty”)]),
(4,(3,[(1,“String”), (1,“Integer”)])),
(1,“Decimal”), (1,“ID”)])]))

and expand elt type(“name”,S) = (“w-name”,
(1,“String”)) assuming in the latter case that we add
some renaming to avoid name-conflicts.

Now that we got the transformation of types, we
can define the expansion of paths, i.e. we get an op-
eration

expand elt : (String ,XSchemarep) → Operationrep

such that expand elt(n, S) will be a representation
of the operation g/n. In order to define the expansion
we need both the types for the element n and its par-
ent, and the position at which the type of n appears
inside the type of its parent. We then parse through
the parent type and determine the operation g/n ac-
cording to the given position:

expand elt(n, s) =
parse type(π2(expand elt type(n, S)),

π2(first(parents(n, π3(S)))),
π2(expand elt type(

π1(first(parents(n, π3(S)))), S)))

parents(n,L) =
if L = []
then []
else list match(n, π1(first(L)),
π2(π2(π2(first(L)))), 1)_parents(n, rest(L))

endif

list match(n, n′, L, i) =
if L = []
then []
else match(n, n′, π1(first(L)), i)

_list match(n, n′, rest(L), i+ 1)
endif

match(n, n′, e, i) =
if π1(e) = 1 ∧ π2(e) = n
then [(n′, i)]
elsif π1(e) = 2 ∧ π1(π2(e)) = n
then [(n′, i)]
else []
endif

parse type(t, i, t′) =
if π1(t

′) = 3 ∧ first(π2(t
′)) = (1, “ID”)

then (7, [parse type(t, i, first(rest(π2(t
′)))), (2, 2)])

else case t = t′

then (1,“id”)
case π1(t

′) = 3
then (2, i)

case π1(t
′) = 4

then (1,“id”)
case π1(t

′) = 5
then (7, [(1, “if else”), (3, [(7, [(1, “eq′′),

(3, [(2, 1), (1, i)])]), (1, “single”),
(7, [(1, “empty”), (1, “triv”)])])])

endcase
endif

Example 4.7 If S represents the schema in Exam-
ple 2.1 we obtain expand elt(“wine”, S) = (1, “id′′),
and expand elt(“name”, S) = (7, [(2, 1), (2, 2)]).

Similarly, we get an operation expand att such
that expand att(n, S) will be a representation of the
operation g/@n. We omit the details.

Finally, let us look at the expansion of paths con-
taining some //name. In this case we get an operation

expand elt∗ : (String ,XSchemarep) → Operationrep

such that expand elt∗(n, S) will be a representa-
tion of the operation g//n. We already saw the gen-
eral structure of this operation, when we discussed
the basic model of the translation into RTA, so let
us now concentrate on the Boolean operations only.
The only condition that involves the element name n
is ϕ1. So, let

expand bool1 : (String ,XSchemarep) → Operationrep

be such that expand bool1(n, S) will be a rep-
resentation of the operation ϕ1 associated with n.
Thus, we get:

expand bool1(n, S) =
(7, [(1, “eq”), (3, [(1, “type”),

(7, [(1, expand elt type(n, S)), (1, “triv”)])])])

The other operations can be obtained analogously.

5 Conclusion

In this paper we addressed the translation of XQuery
to a complex value query algebra. The model un-
derlying this algebra is based on a type system that
supports constructors for records, lists and unions as
well as optionality and references. This captures the
rational tree structures represented by XML docu-
ments. The query algebra uses operations defined on
this type system, in particular structural recursion for
lists.

We demonstrated that the basic execution model
of XQuery easily gives rise to nested structural recur-
sion. However, the function parameters involved in
these operations require complex definitions resulting
from information about the schema. These functions
can be generated using compile-time linguistic reflec-
tion.

An obvious advantage of this approach is type
safety. Furthermore, a translation to a simple query
algebra enables the support of algebraic query optimi-
sation, the easy implementation of the operations and
thus the integration with programming languages, the
easy extension to other constructors such as sets and
multisets in case the order that comes with the list
constructor is considered unnecessary or even unde-
sired. In particular, much of the complexity resulting
from path expressions is captured in the translation
process.

References

Abiteboul, S., Buneman, P. & Suciu, D. (2000), Data
on the Web: From Relations to Semistructured
Data and XML, Morgan Kaufmann Publishers.

Abiteboul, S., Quass, D., McHugh, J., Widom, J. &
Wiener, J. (1997), ‘The LOREL query language
for semi-structured data’, International Journal
on Digital Libraries 1(1), 68–88.

Buneman, P., Davidson, S., Hillebrand, G. & Suciu,
D. (1996), A query language and optimization
techniques for unstructured data, in ‘Proceed-
ings of the 1996 ACM SIGMOD International
Conference on Management of Data’, Montréal,
Canada, pp. 505–516.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

127

Chen, Y., Davidson, S. B. & Zheng, Y. (2004),
BLAS: An efficient XPath processing system, in
G. Weikum, A. C. König & S. Deßloch, eds, ‘Pro-
ceedings of the 2004 ACM SIGMOD-SIGART-
SIGACT Symposium on Principles of Database
Systems (SIGMOD 2004)’, ACM, Paris, France,
pp. 47–58.

DeHaan, D., Toman, D., Consens, M. P. & Özsu,
M. T. (2003), A comprehensive XQuery to SQL
translation using dynamic interval encoding, in
A. Y. Halevy, Z. G. Ives & A. Doan, eds, ‘Pro-
ceedings of the 2003 ACM SIGMOD-SIGART-
SIGACT Symposium on Principles of Database
Systems (SIGMOD 2003’, ACM, San Diego, Cal-
ifornia, USA, pp. 623–634.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A. &
Suciu, D. (1999), ‘A query language for XML’,
Computer Networks 31(11-16), 1155–1169.

Gottlob, G., Koch, C. & Pichler, R. (2003), The
complexity XPath query evaluation, in ‘Pro-
ceedings of the 22nd ACM SIGMOD-SIGART-
SIGACT Symposium on Principles of Database
Systems (PoDS 2003)’, ACM, San Diego, Cali-
fornia, USA, pp. 179–190.

Katz, H., ed. (2003), XQuery from the Experts –
A Guide to the W3C XML Query Language,
Addison-Wesley.

Kirchberg, M., Schewe, K.-D. & Tretiakov, A. (2003),
A multi-level architecture for distributed object
bases, in ‘Proceedings of the 5th International
Conference on Enterprise Information Systems
(ICEIS)’, Vol. 1, ICEIS Press, pp. 63–70.

Koch, C. (2005), On the complexity of nonrecursive
xquery and functional query languages on com-
plex values, in ‘Principles of Database Systems’,
ACM.

Lobin, H. (2001), Informationsmodellierung in XML
und SGML, Springer-Verlag.

Marx, M. (2004), Conditional XPath, the first order
complete XPath dialect, in ‘Proceedings of the
23rd ACM SIGMOD-SIGART-SIGACT Sympo-
sium on Principles of Database Systems (PoDS
2004)’, ACM, Paris, France, pp. 13–22.

Paparizos, S., Wu, Y., Lakshmanan, L. V. S. & Ja-
gadish, H. V. (2004), Tree logical classes for effi-
cient evaluation of XQuery, in G. Weikum, A. C.
König & S. Deßloch, eds, ‘Proceedings of the
2004 ACM SIGMOD-SIGART-SIGACT Sympo-
sium on Principles of Database Systems (SIG-
MOD 2004)’, ACM, Paris, France, pp. 71–82.

Ruecker, S. (2000), A conceptual taxonomy of SGML
tags, in X. Zhou, J. Fong, X. Jia, Y. Kambayashi
& Y. Zhang, eds, ‘WISE 2000, Proceedings of
the First International Conference on Web Infor-
mation Systems Engineering, Volume II (Work-
shops)’, IEEE Computer Society, pp. 2–10.

Schewe, K.-D. (2001), On the unification of query
algebras and their extension to rational tree
structures, in M. E. Orlowska & J. F. Roddick,
eds, ‘Database Technologies – Proceedings of the
12th Australasian Database Conference (ADC
2001)’, IEEE Computer Society, Gold Coast,
Queensland, Australia, pp. 52–59.

Siméon, J. & Wadler, P. (2003), The essence of
XML, in ‘Proceedings of the 30th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2003)’, ACM.

Stemple, D. W., Fegaras, L., Sheard, T. & Socorro, A.
(1990), Exceeding the limits of polymorphism in
database programming languages, in F. Bancil-
hon, C. Thanos & D. Tsichritzis, eds, ‘Advances
in Database Technology - EDBT’90’, Vol. 416 of
LNCS, Springer-Verlag, pp. 269–285.

Tannen, V., Buneman, P. & Wong, L. (1992), Nat-
urally embedded query languages, in J. Biskup
& R. Hull, eds, ‘Database Theory (ICDT 1992)’,
Vol. 646 of LNCS, Springer-Verlag, pp. 140–154.

Tatarinov, I., Ives, Z., Halevy, A. & Weld, D.
(2001), Updating XML, in ‘Proceedings of the
2001 ACM SIGMOD International Conference
on Management of Data’, Santa Barbara, Cali-
fornia, pp. 413–424.

Wadler, P. (1992), ‘Comprehending monads.’,
Mathematical Structures in Computer Science
2(4), 461–493.

World Wide Web Consortium
(W3C) (2001), ‘XML Schema’,
http://www.w3c.org/TR/xmlschema-0,
http://www.w3c.org/TR/xmlschema-1,
http://www.w3c.org/TR/xmlschema-2.

World Wide Web Consortium (W3C) (2004),
‘XQuery’, http://www.w3c.org/TR/xquery.

CRPIT Volume 49

128

An Optimization for Query Answering on ALC Database

Pakornpong Pothipruk Guido Governatori

School of Information Technology and Electrical Engineering
University of Queensland, Australia 4072,

Email: pkp@itee.uq.edu.au

Abstract

Query answering over OWLs and RDFs on the Semantic
Web is, in general, a deductive process. To this end, OWL,
a family of web ontology languages based on description
logic, has been proposed as the language for the Seman-
tic Web. However, reasoning even on ALC, a description
logic weaker than OWL, faces efficiency problem. To ob-
viate this problem, at least for ALC, we propose a par-
tition approach that improves the efficiency by splitting
the search space into independent Aboxes. Each parti-
tion class, i.e., an Abox, can be queried independently.
The answer to a query is the simple combination of the
answers from each Abox. We prove the correctness of
this approach and we outline how to represent compactly
the content of each independent Abox. This work can be
seen as an optimization for querying a deductive semi-
structured database.

Keywords: Description Logic, Query Optimization, Web
Database.

1 Introduction

The Semantic Web, originated from an idea of the creator
of the Web Tim Berners-lee (Berners-Lee 1999), is an ef-
fort to bring back structure to information available on the
Web. The structures are semantic annotations that con-
form to an explicit specification (called ontology) of the
intended meaning of a piece of information. Thus the the
Semantic Web contains implicit knowledge, and informa-
tion on the Semantic Web is often incomplete since it as-
sumes open-world semantics. In this perspective query
answering on the Semantic Web is a deductive process
(Stuckenschmidt 2003).

RDF, a semi-structure data page, is a basic compo-
nent for the Semantic Web. Thus, in the Semantic Web
perspective, there are huge number of RDF data pages.
In addition, A family of web ontology languages (OWL)
based on Description Logic (DL) has been proposed as
the languages to represent and reason with the Seman-
tic Web. In the nutshell, querying the Semantic Web is
the process of reasoning over OWLs and RDFs, based on
DL reasoning. DL emphasizes clear unambiguous lan-
guages supported by complete denotational semantics and
tractable/intractable reasoning algorithms (McGuinness,
Fikes, Stein & Hendler 2003). Nevertheless, DL still faces
problems when applied in context of the Web. One of
them is the efficiency of query answering. Consequently,
there is an urgent need of optimizations for querying the
Semantic Web.
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Conference
(ADC2006), Hobart, Australia. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 49. Gillian Dobbie and James
Bailey, Eds. Reproduction for academic, not-for profit purposes permit-
ted provided this text is included.

There are many works about DL reasoning optimiza-
tion. However, most of them focus only on ontology rea-
soning with out any data, i.e., DL-Tbox reasoning. In
fact, DL-Abox reasoning, which is the basis for query-
ing OWL and RDF on the Semantic Web, was seriously
studied by some researchers recently. At present, there
are only two prominent works for DL-Abox reasoning
optimization, i.e., Instance Store (Horrocks, Li, Turi &
Bechhofer 2004) and RACER (Haarslev & Möller 2002).
Nevertheless, none of above works can eliminate a chunk
of individuals at-a-time from retrieval reasoning. Thus, we
create optimization techniques that support this idea. We
present here a novel optimization technique for instance
checking, an Abox reasoning. We also introduce a tech-
nique of instance retrieval, another Abox reasoning.

2 Preliminary: Description Logic

The Semantic Web community implicitly adopted DL as a
core technology for the ontology layer. One of the reasons
behind this is that this logic have been heavily analyzed
in order to understand how constructors interact and com-
bine to affect tractable reasoning, see (Donini, Lenzerini,
Nardi & Nutt 1991). Technically, we can view the current
Semantic Web, not including rule, proof and trust layers,
as a DL knowledge base. Thus, answering a query posed
on the Semantic Web (RDF and ontology layers) can be
reduced to answering a query posed on a DL knowledge
base, not taking into account low-level operations, such as
name space resolution.

Description logic itself can be categorized into many
different logics, distinguished by the set of constructors
they provide. We focus on ALC description logic since it
is the basis of many DL systems.

The language of ALC consists of an alphabet of dis-
tinct concept names CN, role names RN, and individual
names IN, together with a set of constructors for building
concept and role expressions (Tessaris 2001).

Formally, a description logic knowledge base is a pair
K = 〈T ,A〉 where T is a Tbox, and A is an Abox. The
Tbox contains a finite set of axiom assertions. Axiom as-
sertions are of the form

C v D |C .= D,

where C and D are concept expressions. Concept expres-
sions are of the form

A | > | ⊥ | ¬C |CuD |CtD | ∃R.C | ∀R.C,

where A is an atomic concept or concept name in CN,
R is a role name in RN, > (top or full domain) is the
most general concept, and ⊥ (bottom or empty set) is the
least general concepts. The Abox contains a finite set
of assertions about individuals of the form a : C or C(a)
(concept membership assertion) and (a,b) : R or R(a,b)
(role membership assertion), where a, b are names in IN.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

129

The semantics of description logic are defined in
terms of an interpretation I = (∆I ,•I), consisting of a
nonempty domain ∆I and a interpretation function •I .
The interpretation function maps concept names into sub-
sets of the domain (AI ⊆ ∆I), role names into subsets of
the Cartesian product of the domain (RI ⊆ ∆I ×∆I), and
individual names into elements of the domain. The only
restriction on the interpretations is the so called unique
name assumption (UNA), which imposes that different in-
dividual names must be mapped into distinct elements of
the domain. Given a concept name A (or role name R), the
set denoted by AI (or RI) is called the interpretation, or
extension, of A (or R) with respect to I.

The interpretation is extended to cover concepts built
from negation (¬), conjunction (u), disjunction (t), exis-
tential quantification (∃R.C) and universal quantification
(∀R.C) as follows:

(¬C)I = ∆
I \CI

(CuD)I = CI ∩DI

(CtD)I = CI ∪DI

(∃R.C)I =
{

x ∈ ∆
I |∃y.〈x,y〉 ∈ RI ∧ y ∈CI

}
(∀R.C)I =

{
x ∈ ∆

I |∀y.〈x,y〉 ∈ RI → y ∈CI
}

An interpretation I satisfies (entails) an inclusion ax-
iom CvD (written I |=CvD) if CI ⊆DI , and it satisfies
an equality C .= D if CI = DI . It satisfies a Tbox T if it
satisfies each assertion in T . The interpretation I satisfies
a concept membership assertion C(a) if aI ∈CI , and sat-
isfies a role membership assertion R(a,b) if (aI ,bI)∈RI .
I satisfies an Abox A (written I |= A) if it satisfies each
assertion inA. If I satisfies an axiom (or a set of axioms),
then we say that it is a model of the axiom (or the set of ax-
ioms). Two axioms (or two sets of axioms) are equivalent
if they have the same models. Given a knowledge base
K = 〈T ,A〉 we will say that the knowledge bases entails
an assertion α (written K |= α) iff for every interpretation
I, if I |=A and I |= T , then I |= α .

The DL Abox can be viewed as a semi-structured
database, consisting of a collection of RDF data, while
the DL Tbox contains a set of constraints for the data in
Abox. Thus, the Tbox can be compared to data modeling
in database, e.g., Entity-Relationship data model. How-
ever, the semantics of description logics are defined in
terms of an interpretation which differentiate description
logics from databases. In addition, the domain of interpre-
tation can be chosen arbitrarily, and it can be infinite. The
non-finiteness of the domain and the open-world assump-
tion are distinguishing features of description logics with
respect to the modeling languages in the database. Even
description logics, as modeling languages, overlap to a
large extent with modeling languages in database (Baader,
Calvanese, McGuinness, Nardi & Patel-Schneider 2003),
the particular feature of description logics is in the reason-
ing capabilities that are associated with it. In other words,
while modeling has general significance, the capability of
exploiting the description of the model to draw conclu-
sions about the problem at hand is a particular advantage
of modeling using description logics. In the next section,
we introduce basic reasoning tasks in description logics.

2.1 Reasoning in Description Logic

A description logic knowledge base basically supports two
major kinds of reasoning tasks, i.e., Tbox reasoning (on-
tology reasoning), and Abox reasoning (data reasoning
with ontology). Note that, both kinds of reasonings are
based on satisfiability problem. Also, keep in mind that,
like other logic system, the knowledge base contains im-
plicit knowledge that can be made explicit through infer-
ences.

2.1.1 Reasoning for Tbox

In description logic, basic reasoning services for concepts
in Tbox T consist of (Baader et al. 2003):
• Knowledge base consistency: a Tbox T is consistent

iff it is satisfiable, i.e., there is at least a non empty
model for T . An interpretation I is a model for T if
it satisfies every assertion in T .

• Satisfiability: a concept C is satisfiable with respect
to T if there exists a model I of T such that CI is
nonempty. I is also a model of C.

Definition 1 (Satisfiability w.r.t. Knowledge base) A
concept expression C is satisfiable with respect to a
knowledge base Σ if there exists a model I of Σ such
that CI is nonempty, (∃I,I |= Σ∧I |= C). I is also
a model of C.

Note that the Definition 1 resembles the definition of
entailment, but not the same. Thus, we also present
here the definition of entailment and its complement
for the sake of clarity.

Definition 2 (Entailment) A concept C is entailed by
a knowledge base Σ (Σ |= C) if, for every models I of
Σ, each I is also a model of C (∀I,I |= Σ→I |= C).

Definition 3 (Non-entailment) A concept C is not
entailed by a knowledge base Σ (Σ 6|= C) if there ex-
ists model I of Σ such that I is not a model of C, i.e.,
CI is empty (∃I,I |= Σ∧I 6|= C).

However, entailment problem can be reduced to sat-
isfiability problems.

Definition 4 (Entailment Reduction to Unsatisfia-
bility) A concept C is entailed by a knowledge base
Σ (Σ |= C) iff Σ∪ {¬C} is unsatisfiable, i.e has no
model, or ∀I,I |= Σ→I 6|= ¬C.

Definition 5 (Non-entailment Reduction to Satisfi-
ability) A concept C is not entailed by a knowledge
base Σ (Σ 6|= C) iff Σ∪{¬C} is satisfiable, i.e., model
exists, or ∃I,I |= Σ∧I |= ¬C.

• Subsumption: a concept D subsumes a concept C
with respect to T (C vT D or T |= C v D) if CI ⊆
DI for every model I of T .

• Equivalence: two concepts C and D are equivalent
with respect to T (C .=T D or T |= C .= D) if CI =
DI for every model I of T .

• Disjointness: two concepts C and D are disjoint with
respect to T if, for every model I of T , CI ∩DI = /0.

If the Tbox T is clear from the context, we can drop
the qualification “with respect to T ”. In the special case
where Tbox is empty, we simply write , |= C v D if D
subsumes C, and , |= C .= D if C and D are equivalent.

Subsumption, equivalence and disjointness tests can be
reduced to concept (un)satisfiability test, which is, in turn,
can be achieved through tableaux algorithm (see section
2.1.3). Consequently, concept satisfiability test is the key
inference for Tbox reasoning.
• Subsumption: C is subsumed by D (C v D) iff Cu
¬D is unsatisfiable with respect to T .

• Equivalence: C and D are equivalent (C .= D) iff both
Cu¬D and Du¬C are unsatisfiable with respect to
T .

• Disjointness: C and D are disjoint iff CuD is unsat-
isfiable with respect to T .

However, in the description logic without full negation,
e.g.,AL, subsumption and equivalence cannot be reduced
to unsatisfiability test.

CRPIT Volume 49

130

2.1.2 Reasoning for Abox

Recall that Abox consists of only two kinds of assertion:
concept membership assertion of the form C(a) and role
membership assertion of the form R(a,b). Hence Abox
alone cannot be seen as a knowledge base, it must be cou-
pled with Tbox. Consequently, Abox reasoning will al-
ways be done with respect to a Tbox.

In description logic, basic reasoning services for Abox
consist of (Baader et al. 2003):

• Instantiation test or instance check: determine
whether an assertion is entailed by Abox A or not.
Since, in this work, we consider only ALC which
does not contain any role constructor to form com-
plex roles, role membership assertion test will be
easy, i.e., simply find the occurrence of that role as-
sertion in the Abox. At the time of writing, instance
check generally refers to only concept membership
assertion testing. To check for a concept member-
ship assertion, we just check whether the assertion
is entailed by the Abox. The assertion is entailed by
Abox (A |=C(a)) if every interpretation that satisfies
A, i.e., every model of A, also satisfies C(a).

• Realisation: given an individual a and a set of con-
cepts, find the most specific concept C from the set
such that A |= C(a).

• Retrieval: given an Abox A and concept C, find all
individuals a such that A |= C(a).

• Abox consistency: Abox A is consistent iff it is
consistent with respect to Tbox T . Consequently,
we must use Tbox in this reasoning, i.e., for ALC,
expanding the Abox with unfolded Tbox concepts
(Tessaris 2001). Unfolded concept or expanded con-
cept C′ is obtained by replacing names in the descrip-
tion of the original concept C with their descriptions
in T . Note that C is satisfiable with respect to T iff C′
is satisfiable, i.e., the original concept and the consis-
tency preserving expanded/unfolded concept are in
fact equivalent, C .=T C′ (Horrocks 1997). Therefore
expansion of A with respect to T (the Abox A′) can
be obtained by replacing each concept assertion C(a)
in A with the assertion C′(a). In every model of T ,
a concept C and its expansion C′ are interpreted in
the same way. Hence, A is consistent with respect to
T iff A′ is consistent. A′ is consistent iff it is sat-
isfiable, i.e., there is at least a nonempty model for
A′. Note that A′ also represents the whole knowl-
edge base Σ = 〈T ,A〉.

Theorem 6 (Expanded Abox) Given a satisfiable Tbox
T , an Abox A is satisfiable with respect to T iff its ex-
pansion A′ is satisfiable.

Proof see (Baader et al. 2003)

It is easy to see that Theorem 7 logically follows from
Theorem 6.

Theorem 7 (Expanded Abox Entailment) Given a satis-
fiable Tbox T , a knowledge base Σ = 〈T ,A〉 entails a con-
cept expression Q (〈T ,A〉 |= Q) iffA′ entails Q (A′ |= Q).

Realisation and retrieval can be reduced to instanti-
ation test. They can be done through series of instan-
tiation tests. In addition, we can reduce instantiation
test to consistency problem for Abox since A |= C(a) iff
A∪ {¬C(a)} is inconsistent. Concept satisfiability can
also be reduced to Abox consistency test since C is sat-
isfiable iff {C(a)} is consistent, where a is an arbitrary
individual name.

At this point, it turns out that there is one main in-
ference problem, i.e., consistency check for Abox, to
which all other reasoning services can be reduced. Since

tableaux algorithms can be used to solve such test, thus
all of the reasoning services in description logic can be
achieved through the application of tableaux algorithm
(Baader et al. 2003). In addition, most of the practical
description logic systems, such as FACT (Horrocks 1997)
and RACER (Haarslev & Möller 2002), exploit tableaux
algorithm as the basis for their reasoning. In fact, tableaux
becomes the de-facto standard for reasoning in description
logic. We will explain tableaux in section 2.1.3.

2.1.3 Tableaux algorithm

Traditionally, tableaux algorithm was designed to prove
the satisfiability of a concept expression. The main idea
behind this algorithm (Baader & Hollunder 1991) is based
on notational variant of the first order tableaux calculus. In
fact, a tableaux algorithm tries to prove the satisfiability
of a concept expression C by demonstrating a nonempty
model of C. It constructively builds a model for a given
concept. If it can build a model, then the concept is satis-
fiable.

First, we will present tableaux algorithm for testing the
satisfiability of a Tbox concept and describe its operation.
Then, we will show how this algorithm can also be applied
to Abox consistency test. However, this topic is intended
to illustrate the general principles only. For proof of ter-
mination, soundness and completeness of the algorithm,
consult (Baader et al. 2003).

Before we proceed with the algorithm, we need to in-
troduce an appropriate data structure for representation of
each tableau. The original paper by Schmidt-Schauβ and
Smolka (Schmidt-Schauß & Smolka 1991), and also many
other papers on tableaux algorithms for description logic
(Baader et al. 2003), exploit a notion of a constraint sys-
tem for this purpose. A constraint system is a set of con-
straints, which are syntactic elements of the forms:

• x : C concept constraint

• 〈x,y〉 : R role constraint

• x 6= y inequality constraint

Although the syntax is similar to the one for Abox as-
sertions, there is a difference in the meaning of the x and
y terms. Since we are going to test the satisfiability of a
Tbox concept expression, no individual is involved. Con-
sequently, x and y are not individuals, but variables, so the
unique name assumption does not apply to them unless
stated explicitly by an inequality constraint. The presence
of at-most number restriction may lead to the identifica-
tion of different individual names. However, our consid-
ered description logic does not contain at-most number re-
striction constructor, thus we do not need inequality con-
straint here. A constraint system can be seen as a graph
where the nodes are individual variable names, and the
edges corresponds to role names. Each node has associ-
ated concept expressions which are, in fact, constraints of
the variable corresponded to the node.

To test satisfiability of a concept expression C with
respect to Tbox T , firstly, unfold the concept expres-
sions with their definitions defined in T , and get the
new expanded concept C′. Next, transform the con-
cept expression into a negation normal form (NNF), i.e.,
push negation signs as far as possible into the descrip-
tion, using combination of de Morgan’s law and usual
rules for quantifiers, for example ¬∃R.C = ∀R.¬C and
¬∀R.C = ∃R.¬C. The concept expression is in negation
normal form if negations apply only to concept names,
not to any compound terms. For example the concept
C = ¬∃R.Au¬(∃R.Dt∀S.¬D) can be transformed into
NNF, C0 = ∀R.¬Au∀R.¬Du∃S.D. Now, we get a new
concept expression as a constraint system S.

The process of constructing a model proceeds by com-
pleting (or extending) a constraint system S, using a set of

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

131

consistency preserving transformation-completion (or ex-
pansion) rules in figure 2.1.3. These rules modify a con-
straint system by adding or rewriting the constraints. Ap-
ply these rules to the constraint system until no more rules
apply. When no rule is applicable, the constraint system is
said to be completed if there is no obvious contradiction,
so called clash, i.e., {x : A,x : ¬A} or {x :⊥}, occurs. The
concept C′ is consistent iff there exists a completed con-
straint system, i.e., a nonempty model. Since C .=T C′, the
concept C is consistent with respect to T iff the expanded
concept C′ is consistent.

The→u -rule
Condition: x : C1uC2 is in S, and both x : C1and x : C2 are
not in S.
Action: S = S∪{x : C1,x : C2}

The→t -rule
Condition: x : C1 tC2 is in S, and neither x : C1nor x : C2
is in S.
Action: S′ = S∪{x : C1}, S′′ = S∪{x : C2}

The→∀ -rule
Condition: x : ∀R.C is in S, 〈x,y〉 : R is in S, and y : C is
not in S.
Action: S = S∪{y : C}

The→∃ -rule
Condition: x : ∃R.C is in S,
and there is no z such that both 〈x,z〉 : R and z : C are in S.
Action: S = S∪{〈x,y〉 : R,y : C} where y is new variable
name.

Figure 1: Completion rules for ALC satisfiability test

Note that the only rule that is non-deterministic is the
disjunction rule (→t). For more detail proof of these
rules, see (Donini, Lenzerini, Nardi & Schaerf 1996).

In order to test Abox consistency using tableaux al-
gorithm, we simply allow x and y in constraint system
notation to be able to represent individual name. Con-
sequently, concept constraint and role constraint in a con-
straint system become concept membership assertion and
role membership assertion in Abox respectively. The al-
gorithm is the same as above, except, instead of a concept
expression, we try to prove satisfiability of the whole ex-
panded Abox A′.

2.2 Reasoning Complexity and Optimization

Since, all basic reasoning services can be reduced to satis-
fiability problem, which, in turn, can be achieved through
tableaux algorithm, complexity of reasoning services pro-
vided in almost description logic systems are based on
complexity of tableaux algorithm. Recall that description
logic was invented because of inefficiency of first-order
logic. In fact, description logic is one of two major ap-
proaches for mitigation of inefficiency of reasoning for
logic. Its prominent significance is that trade-offs between
expressive power and efficiency of reasoning were studied
throughout a decade.

We denote problem that is solvable using algorithm
with polynomial time (PTIME) worst-case complexity as
tractable problem, and intractable problem otherwise.
Normally, tractable is preferred. However, there is worse
class of problem, undecidable problem. We says the
problem is undecidable if there is no solving algorithm
that terminates, and decidable otherwise. To the best of
our knowledge, the most expressive description logic that

its concept satisfiability problem is decidable in PTIME
worst-case complexity is ALN .

Logics with PTIME worst-case complexity have been
criticized for their too limited expressive power (Doyle &
Patil 1991). Thus we need the language that is more ex-
pressive. Consequently, we choose ALC which is expres-
sive enough, since it is a subset of mostly every expressive
description logics (Donini & Massacci 2000).

3 The Efficiency Issue

In DL, there are two standard types of queries allowed,
i.e., boolean query and non-boolean query, which are in
turn instance checking (or instantiation test) and retrieval
Abox reasoning services respectively.

A boolean query Qb refers to a formula of the form

Qb← QExp,

where QExp is an assertion about individual, e.g.,

Qb← Tom : (Parent u∃hasChild.Employee)

The query will return one of the member of the boolean
set {True,False}. Qb will return True if and only if ev-
ery interpretation that satisfies the knowledge base K also
satisfies QExp, and return False otherwise.

A non-boolean query Qnb refers to a formula of the
form

Qnb← QExp,

where QExp is a concept expression, e.g.

Qnb← Parent u∃hasChild.Employee

In this case the query will return one of the member of
the set {⊥,M}, where ⊥ refers to the empty set, andM
represents a set of models {M1, . . . ,Mm}, where each of
them satisfies QExp with respect to the knowledge base
K. The query will returnM if and only if there exists at
least one such model, otherwise return ⊥.

A non-boolean query (retrieval) can be trivially trans-
formed into a set of boolean queries for all candidate tu-
ples, i.e., retrieving sets of tuples can be achieved by re-
peated application of boolean queries with different tuples
of individuals substituted for variables. However, answer-
ing a boolean query is in fact an entailment problem. For
example, answering the boolean query:

Qb← Tom : (Parent u∃hasChild.Employee),

is the problem of checking whether

K |= Tom : (Parent u∃hasChild.Employee).

In a DL (supporting full negation, e.g., ALC), boolean
query or instance checking can be reduced to knowledge
base satisfiability test: K |= C(a) iff K∪{¬C(a)} is un-
satisfiable.

(Donini & Massacci 2000) gave a tableaux algorithm
for solving ALC satisfiability problem with respect to a
Tbox. They proved that their algorithm has EXPTIME-
complete worst-case complexity. To the best of our knowl-
edge, this is the latest known result of complexity proof
for the ALC satisfiability problem with respect to a Tbox.
Nevertheless, the ontology language OWL, in particular
OWL-DL, of the Semantic web technology is based on
SHOIQ(D) which is even more expressive than ALC.
Since the query answering is in fact an instance checking
(or a retrieval reasoning service) which can be reduced to
a satisfiability problem. It is easy to verify that the exist-
ing DL reasoning services are still not enough to be used
solely with the Semantic web technology. One way to mit-
igate the problem is to optimize the algorithm more and
more. We propose an optimization technique for answer-
ing a query over a description logic knowledge base. This
technique is coherent with nature of the Web in that it sup-
ports multiple-Abox environment, which is corresponding
to multiple data source environment in the Web.

CRPIT Volume 49

132

4 The Approach

This contribution focuses on finding an answer to the
question: “How can we (efficiently) answer a query in
ALC based-Semantic Web system, given single ontology
T , and multiple data sourcesAs, examining the minimum
number of data sources?”. We refer to an Abox as a data
source.

The idea of this section is based on the observation that
2m > 2n + 2p, where m = n + p for n, p > 1. This means
that if we can split the search space into independent parts,
query the parts independently from each other, and com-
bine the answers, then we have a considerable improve-
ment of the performance of the query system. This idea
agrees with the understanding of the Semantic Web as a
collection of sometime “unrelated” data sources. In addi-
tion we propose to attach to each data source a data source
description (or source description), a compact representa-
tion of the content of the data page. This idea is similar
to the intuition behind indexes in databases. In the same
way that type of indexes is more or less appropriate for
particular queries, source descriptions depend on the type
of queries. On the other hand, as we will see in the rest of
this section, the relationships among data sources are not
influenced by queries. They are determined by the struc-
ture of the data itself.

In this approach, the knowledge base architecture is
shown in the following figure:

Figure 2: The Knowledge Base Architecture

The intuition here is to associate to every Abox A a
source description SD(A), and to supplement the infer-
ence engine with information about the mutual dependen-
cies of the Aboxes in the system, in order to determine
which Aboxes are relevant and must be queried.

The first step is to associate to every Abox its domain.

Definition 8 Given an Abox A, let HA be the Herbrand
universe of A (i.e., the set of all the individual occurring
in expression in A). For any interpretation I, ∆IA, the
domain of A is defined as follows:

∆
I
A =

{
d ∈ ∆

I |a ∈ HA∧aI = d
}

.

Definition 9 (Multiple Assertional Knowledge Base)
Given a set Ā of Aboxes A1, . . . ,Ak, i.e.,
Ā= {A1, . . . ,Ak} and a Tbox T , the multiple assertional
knowledge base is the knowledge baseK= 〈T ,A〉, where
A is the Abox obtained from the union of all the Aboxes
in Ā, i.e., A=A1∪A2∪ . . .∪Ak.

A consequence of the above definition is that the inter-
pretation domain of A is equivalent to the union of inter-
pretation domains of the A js (∆IA =

⋃
1≤ j≤k ∆IA j

). Since
CI ⊆ ∆I by definition, thus, for arbitrary C, CIA =

⋃
CIA j

,

for j ∈ {1, . . . ,k} and CA j is the concept C that occurs in
a concept membership assertion in A j.

We approach the problem in 5 steps:

1. Determine dependencies among data sources, and
group data sources which are dependent on each
other together.

2. Associate each data source (or group of data sources)
with a source description.

3. When one queries the knowledge base, exploit a pro-
cedure to find irrelevant data sources (or groups of
data sources) with respect to the query, taking into
account source descriptions and the query. Eliminate
the irrelevant data sources (or groups of data sources)
from query answering process, yielding a set of pos-
sible relevant data sources (or groups of data sources)
to be queried.

4. For each remaining data source (or group of data
sources) from the previous step, apply the existing
query answering procedure to each of them, yielding
answer from each of them.

5. Simply combine answers from the queried data
sources (or groups of data sources) together, since
each data source (or group of data sources) is inde-
pendent with the other.

Since a reasoning procedure for simple query answering
in the fourth step exists (Tessaris 2001), we will focus on
other steps, which are in fact the steps of the data source
space partitioning and reduction using source description.

The approach can be implemented by the following al-
gorithm.

Algorithm 1 partitioned QA(query,A):
depset = {}
answer = False
for all Am ∈ Ā do

AG(Am) = create abox graph(Am)
end for
for all 2-combinations {Ai,A j} of A do

if find abox dependency(AG(Ai),AG(A j)) = True
then add dep(Ai,A j) to depset

end if
end for
Ag = combine dependent abox(A,depset)
create source description(Ag)
for all Ah ∈ Ag do

if query relevancy(SD(Ah),query) = True then
answer = answer ∨ instance checking(Ah,query)

end if
end for

First, since an AboxAi can overlap with another Abox
A j, we must consider multiple Aboxes at the same time.
However, we will not treat all of the Aboxes as a single
Abox, because, in this case, the associated reasoning is
computational expensive. Consequently, we need some
additional procedure to determine dependencies among
Aboxes since we need to know which Aboxes should be
considered together. In other word, we need to group de-
pendent Aboxes together and treat them as a new single
Abox consisting of multiple dependent Aboxes. To make
this clear, we need to formally define the dependency be-
tween Aboxes in the context of Abox reasoning.

Firstly, we will introduce graph notation for an Abox.

Definition 10 (Abox Graph) An Abox graph for an Abox
A, AG(A), consists of a set N of nodes (vertexes), a set E
of edges (arcs), and a function f from E to {(a,b) | a,b ∈
N}. Each edge, label ed Ri, represents exactly a role name
of a role membership assertion Ri(a,b) ∈ A. Hence, each

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

133

node represents exactly one individual name. An Abox
graph is a directed multigraph.

The create abox graph function will produce an Abox
graph AG(Am) for each Abox Am. We will say that an
Abox A is connected if its Abox graph AG(A) is weakly
connected.

Definition 11 (Abox Dependency) Given two connected
Aboxes A1 and A2, where A = A1 ∪A2; A1 and A2 de-
pend on each other if the graph of Abox A is (weakly)
connected, and independent otherwise.

Proposition 12 Let A1 and A2 be two independent
Aboxes in multiple assertional knowledge base. Let ∆IA1

and ∆IA2
be the domains of A1 and A2, then:

• ∆IA1
∩∆IA2

= /0;

• for any concept C, CIA1
∩CIA2

= /0, where CIAi
is the

extension of C in ∆IAi
.

If A is unconnected, i.e., A1 and A2 are independent on
each other, then it means that A1 and A2 do not share any
common node (individual) because AboxesA1 andA2 are
already connected by themselves. Thus, we can use Abox
graphs to determine Abox dependency.

For any unordered pair of Aboxes {Ai,A j}, we de-
termine the Abox dependency between the two Aboxes
(Ai and A j). According to the definition, Abox depen-
dency can be detected using the connectivity of the Abox
graph of A, i.e., AG(A), where A = Ai ∪A j. Thus,
we can exploit any UCONN (undirected graph connec-
tivity problem) algorithm for this purpose. The function
find abox dependency(AG(Ai),AG(A j)) returns True if
two Aboxes Ai and A j depend on each other, and False
otherwise. If the function returns True, then we add
dep(Ai,A j) to the set “depset”, i.e., the set that stores de-
pendency value of each pair of Aboxes. Then we virtu-
ally combine dependent Aboxes together as a group by the
function combine dependent abox(A,depset). The Abox
Āwill becomeAg, i.e., the set of already-grouped Aboxes
and ungrouped Aboxes. Each Abox in Ag is independent
of each other.

Next, we need to show two things:

1. if two Aboxes depend on each other, then a DL rea-
soning service, in particular instance checking and
retrieval, needs to take into account the two Aboxes
together;

2. if two Aboxes are independent of each other, then a
DL reasoning over the two Aboxes can be done sep-
arately over each of them.

The following theorem supports the last step in our ap-
proach. It provides the reason why we can simply combine
the answer from each Ai ∈ Ag together. In other words
it states that the the instance checking (a query answer-
ing) problem over Ag can be reduced to separate instance
checking problems over each Ai.

Theorem 13 (Independent Abox for Boolean Query)
Given two connected Aboxes A1 and A2, where
A = A1 ∪A2, If A1 and A2 are independent on each
other, then for any boolean query Q and Tbox T ,
〈T ,A〉 |=Q if and only if 〈T ,A1〉 |=Q or 〈T ,A2〉 |=Q.

Proof First, we prove the only if direction, and we will
assume that both A1 and A2 are consistent with K, since
if one of them is not then the theorem trivially holds.

Since A1 and A2 are independent on each other, by
Proposition 12, we have ∆I1 ∩∆I2 = /0, where ∆I1 and ∆I2
are the domains of A1 and A2 respectively.

Suppose 〈T ,A1〉 6|=Q and 〈T ,A2〉 6|=Q. These mean
∃I1 such that I1 |=A1, I1 |= T , I1 |= ¬Q, and ∃I2 such
that I2 |= A2, I2 |= T and I2 |= ¬Q. Note that I1 and
I2 are arbitrary interpretations of A1 and A2 respectively
with the only constraint of being interpretations of T .

Since A = A1 ∪A2 and ∆I1 ∩∆I2 = /0, we can create
an interpretation I of A such that I is the union of the
interpretation I1 of A1 and the interpretation I2 of A2
(I = I1 ∪ I2). More precisely, I = 〈∆I ,•I〉 is defined
as follows:

(i) ∆I = ∆I1 ∪∆I2 becauseA=A1∪A2, where ∆I is the
domains of A

(ii) For any constant a,

aI =
{

aI1 if a occurs in A1
aI2 if a occurs in A2

(iii) For any concept C, CI = CI1 ∪CI2

(iv) For any role R, RI = RI1 ∪RI2

Since ∆I1 ∩∆I2 = /0, then it is immediate to verify that I
is indeed an interpretation, and I |= T , since I1 |= T and
I2 |= T .

Since I1 |=¬Q and I2 |=¬Q, from (iii), we can imme-
diately verify I |= ¬Q, i.e., (¬Q)I = (¬Q)I1 ∪ (¬Q)I2 ,
where I is the interpretation of A. From (ii), (iii) and
(iv), we can also infer that (A)I = (A1)I1 ∪ (A2)I2 , i.e.,
I |=A.

SinceA1 andA2 are assumed to be consistent by them-
selves, we only need to prove that there is no clash be-
tween A1 and A2. For an arbitrary concept C, by general
definition in description logic, we get CI ⊆ ∆I . In addi-
tion, we get (¬C)I = (∆I\CI) ⊆ ∆I . Thus, for arbitrary
C, CI1 ⊆ ∆I1 and (¬C)I2 ⊆ ∆I2 . Since ∆I1 ∩∆I2 = /0, there-
fore, CI1 ∩ (¬C)I2 = /0, which infers that no clash can oc-
cur between A1 and A2.

Thus for the interpretation I of A, we have (A)I 6= /0
and (¬Q)I 6= /0, i.e., I |= A∧I |= ¬Q which is the def-
inition of A 6|= Q. Therefore, A |= Q only if A1 |= Q or
A2 |=Q which infers 〈T ,A〉 |=Q only if 〈T ,A1〉 |=Q or
〈T ,A2〉 |=Q.

For the if direction, we assume that either 1) 〈T ,A1〉 |=
Q or 2) 〈T ,A2〉 |=Q. In both cases, by monotonicity, we
obtain 〈T ,A1∪A2〉 |=Q which is 〈T ,A〉 |=Q. 2

In the second step of the approach, we associate each
Abox (or group of Aboxes) with a source description, us-
ing create source description(Ag). A source description
can be view as a surrogate of each data source. Surrogate
refers to a brief representation of an information source
that is designed to convey an indication of the information
source’s intent (Goodchild 1998). A good surrogate has
two major properties: (1) it corresponds to some common
understanding in the user’s community, and (2) it can be
organized in a way that is searchable.

Source descriptions are used to determine the rele-
vancy of each Abox Ah ∈ Ag with respect to a query.
Source descriptions depend on the type of the query. For
boolean queries, the source description of each AboxAh ∈
Ag can be a simple list of all individuals appearing in the
AboxAh. The idea is if the query does not satisfy SD(Ah)
(necessary and sufficient conditions), it is guaranteed that
the query over AboxAh will fail, i.e., it returns False. This
is done by the function query relevancy(SD(Ah),query).
This function returns False if the query does not sat-
isfy SD(Ah), i.e., the Abox Ah is fully irrelevant to the
query, and will contribute nothing to the answer of the
query. The function works by extracting an individual
from the query, then checking if it is in the source de-
scription SD(Ah) or not. If it is, then it queries the Abox

CRPIT Volume 49

134

Ah, using normal boolean query answering procedure in-
stance checking(Ah,query).

This can be formalised as follows:
Definition 14 Let A be an Abox, the boolean query
source description for A (SDb(A)) is the the Herbrand
universe of A, i.e., SDb(A) = HA.

We can now prove soundness and completeness of the
proposed algorithm.
Theorem 15 (Soundness and Completeness) Let Q be
a boolean query. Let A 6]Q represents when
query relevance(SDb(A),Q) returns False, i.e., A is not
relevant the queryQ, and letA]Q represents otherwise. If
A 6]Q then 〈T ,Ā−{A}〉 |=Q if and only if 〈T ,Ā〉 |=Q.
Proof SupposeA 6]Q. This means a 6∈ SDB(A), whereQ
is C(a).

First, we prove the only if direction. Suppose 〈T ,Ā−
{A}〉 |= Q. However, Ā− {A} ⊆ Ā. By monotonicity,
we obtain 〈T ,Ā〉 |=Q.

Therefore, 〈T ,Ā−{A}〉 |=Q only if 〈T ,Ā〉 |=Q.
For the if direction, suppose 〈T ,Ā〉 |= Q. We, then,

prove by case.
Case 1: Q is a tautology. It is immediate to verify that

〈T ,Ā−{A}〉 |=Q is true.
Case 2: Q is not a tautology. From Lemma 16, we

obtain 〈T ,A〉 6|= Q. In addition, 〈T ,Ā〉 |= Q is equal
to 〈T ,Ā − {A} ∪ {A}〉 |= Q. By Theorem 13, we get
〈T ,Ā− {A}〉 |= Q or 〈T ,A〉 |= Q. Since 〈T ,A〉 6|= Q,
we obtain 〈T ,Ā−{A}〉 |=Q.

These cases cover all possibilities. Therefore, 〈T ,Ā−
{A}〉 |=Q if 〈T ,Ā〉 |=Q.

Therefore, ifA 6]Q then 〈T ,Ā−{A}〉 |=Q if and only
if 〈T ,Ā〉 |=Q. 2

Lemma 16 Let Q be a boolean query C(a). If a 6∈
SDB(A) and Q is not a tautology, then 〈T ,A〉 6|=Q.
Proof Suppose a 6∈ SDB(A). By definition, this means
a 6∈ ∆IA. In other words, there is no a in A, i.e., C(a) is
definitely not inA. SuppposeQ is not a tautology. At this
state, we want to prove 〈T ,A〉 6|= C(a) which is equal to
proving that 〈T ,A〉∪{¬C(a)} is satisfiable. Since 〈T ,A〉
is consistent, 〈T ,A〉∪{¬C(a)} will be unsatisfiable only
if either C(a) is in A or C(a) is a tautology. Since neither
of them is true, 〈T ,A〉∪ {¬C(a)} is satisfiable. Conse-
quently, we prove 〈T ,A〉 6|= C(a).

Therefore, if a 6∈ SDB(A) andQ is not a tautology, then
〈T ,A〉 6|=Q. 2

Finally, in the last step we simply combine the answers
together using disjunction. Again this step is justified by
Theorem 13.

5 Example for the Approach

Suppose we have a knowledge bases K = 〈T ,A〉, where
the data is distributed over four Aboxes, i.e., A = A1 ∪
A2∪A3∪A4.

Suppose the Tbox T is as follows:
T = {Male .= ¬Female,

Man .= HumanuMale,

Woman .= HumanuFemale,

Father .= Manu∃hasChild.Human,

Mother .= Womanu∃hasChild.Human,

Parent .= FathertMother,

Employee .= Humanu∃workFor.Org,

Org .= Pro f itableOrgtCharityOrg,

Pro f itableOrg .= ¬CharityOrg,

Pro f itableOrg .= CompanytPartnershiptSoleProprietorship

NewspaperCompany .= Companyu∃publish.Newspaper}

Suppose that the four Aboxes are as follows:

A1 = {Man(John),Man(Clark),Woman(Chloe),
SoleProprietorship(BKKDelight),hasChild(John,Clark),
workFor(Clark,DailyPlanet),attend(Clark,MetroNews05),
hasChild(John,Chloe),workFor(Chloe,BKKDelight),
enrolAt(Chloe,DKE)}

A2 = {ResearchGroup(DKE),School(ENG),University(UQ),
Workshop(MetroNews05), partO f (DKE,ENG),
f acultyO f (ENG,UQ), locatedIn(UQ,Australia)}

A3 = {NewspaperCompany(DailyPlanet),Workshop(MetroNews05),
NewspaperCompany(Inquisitor), locatedIn(DailyPlanet,USA),
sponsoredBy(MetroNews05,DailyPlanet),
sponsoredBy(MetroNews05, Inquisitor),
sponsoredBy(MetroNews05,DKE)}

A4 = {CharityOrg(WorldHel p),CharityProgram(T suHel p),
CharityProgram(QuakeHel p),
locatedIn(WorldHel p,Germany),
create(WorldHel p,T suHel p),create(WorldHel p,QuakeHel p)}

We simply create the Abox graph for each Abox, yield-
ing four Abox graphs: AG(A1), AG(A2), AG(A3), and
AG(A4). For every combination of two Aboxes of A, we
determine the Abox dependency between them using the
find abox dependency function. The function will com-
bine the two Aboxes together, and apply UCONN algo-
rithm to the graph of the combined Abox.

If the graph is connected, then the two Aboxes depend
on each other. We, then, add dep(Ai,A j) to the set depset
as they are dependent, i.e., the function returns True. We
get

depset = {dep(A1,A2),dep(A1,A3),dep(A2,A3)}

Since we know that A1 depends on A2, and also on A3,
we virtually group them together, i.e., we will consider
the data in both three Aboxes together. This is done by the
combine dependent abox(A,depset) function. As a result
we have Ag = {A123,A4}, where A123 = A1∪A2∪A3.

At this stage, we create source description for each
Abox in Ag, using the create source description(Ag) pro-
cedure:

• SD(A123)= (DailyPlanet,Australia, Inquisitor,
ENG,DKE,Chloe,MetroNews05,
Clark,USA,BKKDelight,John,UQ)

• SD(A4) = (Malaysia,T suHel p,WorldHel p,
QuakeHel p)

Suppose, we have a boolean query John : (Parent u
∃hasChild.Employee). For every Ah ∈Ag, we determine
relevancy with respect to the query, using the procedure
query relevancy(SD(Ah),query). The procedure will ex-
tract “John” from the query, and search whether “John” is
in SD(Ah) or not. In this case, “John” is in SD(A123), but
not in SD(A4). Consequently, we simply query A123, us-
ing the instance checking(Ah, query) function. The result
from instance checking test of the query in A123 is True.
Thus, answer = False ∨ True = True, which is the same
result as when we query the whole Abox A.

6 Complexity Analysis

Each Abox Graph can be trivially generated in O(n2),
where n is the number of assertions in Abox A. The
next part is Abox dependency determination. We need
k(k − 1)/2 comparisons (2-combinations) of unordered
pair of Aboxes, where k is the number of Aboxes in A.
Each comparison needs UCONN algorithm. UCONN can

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

135

be solved by DFS in O(v2), where v is the number of indi-
viduals in each Abox.

For source description, the cre-
ate source description(Ag) procedure requires not
more than O(n2) for all Aboxes, since it can be imple-
mented using the quick sort algorithm. To determine the
relevancy of an Abox to a query, we call the function
query relevancy(SD(Ah),query) that operates in O(n)
for sequential search. Finally, we simply use the in-
stance checking(Ah,query) function to find the answer
for each Abox, and simply combine the answer.

Till now, our space partitioning and reduction ap-
proach exploits at most PTIME algorithms in each part,
i.e., the Abox dependency part and the source description
part. Overall, our algorithm can be operated in PTIME,
not including the instance checking part. Since the in-
stance checking part is known to be solved in EXPTIME-
complete, assuming P 6= EXPTIME, the overall algorithm
still operates in EXPTIME, but with a reduced exponent.
The Abox dependency part will partition the search space,
thus the exponent will be reduced if there are at least two
partitions, e.g., the time complexity is reduced from 2m

to 2n + 2p, where m = n + p. The source description part
will further reduce the exponent if there are some Aboxes
which can be eliminated from the process, e.g., the time
complexity is reduced from 2m to 2q, where q < m.

7 The Extension

We intend to extend our work to non-boolean query an-
swering (Abox retrieval) optimization. The space par-
titioning, Theorem 13, can be easily extended to cover
Abox retrieval reasoning services. The main differences
will be with the source description. Furthermore, we will
investigate possible extensions of Theorem 13 to more ex-
pressive DLs.

In the nutshell, a source description of an Abox A for
retrieval (SD(A)) consists of several types of source de-
scriptions. In the basic setting, we shall have SDC(A) and
SDR(A). SDC(A) is a set of least common subsumers or
LCSs of concepts appeared in concept membership asser-
tions in the Abox A. SDR(A) is a set of roles appeared
in role membership assertions in the Abox A. Let Q be a
non-boolean query, C,D be concept expressions, and Ah
be an Abox. The source description usage is different for
each form of Q, for example:

• For the case Q ← C, Ah is relevant to Q if ∃s ∈
SDC(Ah),Qv s

• For the case Q←CuD, Ah is relevant to Q if Ah is
relevant to C and Ah is relevant to D.

• For the case Q←CtD, Ah is relevant to Q if Ah is
relevant to C or Ah is relevant to D.

• For the case Q← ∃R.C, Ah is relevant to Q if R ∈
SDR(Ah) and Ah is relevant to C.

• For the case Q← ¬C, Ah is relevant to Q if Ah is
irrelevant to C.

These operations can be recursive. Hence, we can achieve
a methodology for determine relevancy of the Abox Ah
with respect to the arbitrary-formed non-boolean query Q.
Note that the correctness of the above methodology fol-
lows from the independent Abox theorem, extended for
non-boolean query.

8 Summary and Discussion

The optimization approach presented in this work is based
on the procedure normally adopted for deduction over a
description logic knowledge base (the query answering

process over such knowledge base is a deduction process).
In particular we refer to the tableaux algorithm. Tradition-
ally, tableaux algorithm was designed to prove the satisfi-
ability problem. The main idea behind this algorithm is
based on a notational variant of the first order tableaux
calculus. In fact, a tableaux algorithm tries to prove the
satisfiability of a concept expression C by demonstrating a
nonempty model of C. It constructively builds a model for
a given concept. The process of constructing a model pro-
ceeds by completing a constraint system (Tessaris 2001),
using a set of consistency-preserving completion (or ex-
pansion) rules. The process will continue if it can extend
the existing constraint system. In ALC reasoning with T
and A, the process will proceed via a role membership
assertion. The idea behind our work is to specify the con-
dition where we guarantee that the reasoning process over
A1 will never proceed to A2 if A1 and A2 are indepen-
dent from each other. This optimization, in particular,
the space partitioning part, can be seen as a divide-and-
conquer technique. A general disadvantage of this kind of
technique is the parts overlap. However, in this work we
proposed a methodology to avoid overlapping part, thus, it
does not suffer from such disadvantage of the divide-and-
conquer technique.

Apparently, the major drawback of this approach is ob-
viously the additional cost from Abox dependencies and
source descriptions determination. But the cost is still in
PTIME, as shown in previous section. One may argue that
our space partitioning approach would support the reduc-
tion in apparent worst-case complexity for query answer-
ing, but at a high price in practice, in particular for a large
knowledge base. However, this is not a scholarly argu-
ment, because the larger the knowledge base is, the less
the relative cost is (recall that the normal query answering
is in EXPTIME while the additional cost is in PTIME).
Thus, our approach should behave well in practice. The
only issue that we must give additional attention to is a
design of effective Abox dependency information distri-
bution, minimizing information exchange between nodes
in the network, where each node represents an Abox. In
addition, if the data pages do not change frequently, then
there is no need to recompute the dependency of the Abox.
In addition data source can be organised in indexes for fast
retrieval.

One may also argue that this work is based on ALC
description logic which is weaker than OWL. We accept
this argument since at first we want to consider OWL-DL.
However, OWL-DL is based on SHOIQ(D) description
logic which is, in fact, the extension of ALC. In the his-
tory of description logic, the least expressive language was
investigated first. Then, the result were extended to cover
more expressive languages consecutively. Consequently,
we consider ALC first. We will, then, investigate the ex-
tension to cover OWL, in particular, OWL-DL, later.

This approach can be applied to a system which al-
lows only one ontology (or Tbox). Though the Semantic
Web technology tends to exploit multiple ontologies. In
ontology-based integration of information area (Wache,
Vögele, Visser, Stuckenschmidt, Schuster, Neumann &
Hübner 2001), we can divide the exploitation of ontology
into 3 approaches: single-ontology approach, e.g., SIMS
(Arens, Hsu & Knoblock 1996), multiple-ontologies ap-
proach, e.g., OBSERVER (Mena, Kashyap, Sheth &
Illarramendi 1996), and hybrid-ontology approach, e.g.,
COIN (Goh 1997). The single ontology approach allows
only one ontology in the system while multiple-ontologies
approach allows many ontologies in the system. The
multiple-ontologies approach requires additional mapping
specifications between each pair of ontologies. Since such
mappings are infact ontologies themselves (Akahani, Hi-
ramatsu & Kogure 2002), we need additional n(n− 1)/2
ontologies for such an approach, where n is number of
existing ontologies in the system. In hybrid-ontology ap-
proach, a global ontology and additional n mapping spec-
ifications (between global ontology and each local ontol-

CRPIT Volume 49

136

ogy) are required. Hence the single-ontology approach
can be viewed as generalization of the other two ap-
proaches. Thus, we follow such approach. In addition,
since the aim of our work is to study how to query mul-
tiple data sources, thus we do not need to add complexity
arisen from ontology mapping in the last two approaches.
Simple single-ontology approach, but not trivial for query
answering, is enough. Note that we can extend our work to
include multiple ontologies later when the research about
ontology binding and ontology mapping and ontology in-
tegration is more mature.

This approach can be applied to a system which allows
multiple data sources (or Aboxes). We can think of an
Abox as an RDF document. In addition RDF databases
try to partition RDF triples in disjoint graphs , where each
graph can be understood as a data page of our approach.
However, recent research has shown that there are several
semantic problems when people tried to layer an ontol-
ogy language, i.e., OWL, on top of the RDF layer (Pan
& Horrocks 2003). Such problems stem from some fea-
tures/limitations of RDF, e.g., no restriction on the use of
built-in vocabularies, and no restriction on how an RDF
statement can be constructed since it is just a triple. Thus,
this implies that the ontology layer may be not compati-
ble with the RDF layer of the Semantic Web. However,
there is a work proposing additional layer on top of the
RDF layer, i.e., RDF(FA) (Pan & Horrocks 2003). This
layer corresponds directly to Aboxes, thus RDF(FA) may
be very useful in the future.

There are few works related to our work, i.e., Instance
Store (Horrocks et al. 2004) and RACER (Haarslev &
Möller 2002). Both works propose retrieval optimization
techniques. Hence, our approach seems to be the first ap-
proach for Abox instance checking optimization. Instance
Store imposes an unnatural restriction on Abox, i.e., en-
forcing Abox to be role-free. This is a severe restric-
tion since role names are included even for FL− (ALC
without atomic negation), a DL with limited expressive
power. RACER proposes several innovative Abox rea-
soning optimization techniques. However, RACER allows
single Abox, while our approach allows multiple Aboxes.
Thus after we apply our techniques to reduce the reasoning
search space, we can apply RACER techniques to reduce
it further. Consequently, the approach taken in RACER
seems to be complementary to ours. We will investigate
the combination of our approach and RACER approach in
the future.

References

Akahani, J., Hiramatsu, K. & Kogure, K. (2002), Coordi-
nating heterogeneous information services based on
approximate ontology translation, in ‘Proceedings
of AAMAS-2002 Workshop on Agentcities: Chal-
lenges in Open Agent Systems’, pp. 10–14.

Arens, Y., Hsu, C. & Knoblock, C. A. (1996), ‘Query pro-
cessing in the sims information mediator’, Advanced
Planning Technology .

Baader, F., Calvanese, D., McGuinness, D., Nardi, D.
& Patel-Schneider, P., eds (2003), The Description
Logic Handbook: Theory, Implementation, and Ap-
plications, Cambridge University Press, New York.

Baader, F. & Hollunder, B. (1991), A terminological
knowledge representation system with complete in-
ference algorithm, in ‘The Workshop on Processing
Declarative Knowledge’, pp. 67–86.

Berners-Lee, T. (1999), Weaving the Web : the Original
Design and Ultimate Destiny of the World Wide Web
by its Inventor, HarperSanFrancisco, San Francisco.

Donini, F. M., Lenzerini, M., Nardi, D. & Nutt, W.
(1991), The complexity of concept languages, in

J. Allen, R. Fikes & E. Sandewall, eds, ‘Proceed-
ings of the Second International Conference on Prin-
ciples of Knowledge Representation and Reasoning
(KR-91)’, Massachusetts, pp. 151–162.

Donini, F. M., Lenzerini, M., Nardi, D. & Schaerf, A.
(1996), ‘Reasoning in description logics’, Founda-
tion of Knowledge Representation pp. 191–236.

Donini, F. M. & Massacci, F. (2000), ‘Exptime tableaux
for ALC’, Artificial Intelligence 124(1), 87–138.

Doyle, J. & Patil, R. (1991), ‘Two theses of knowledge
representation: Language restrictions, taxonomic
classification, and the utility of representation ser-
vices’, Artificial Intelligence Journal 48, 261–297.

Goh, C. H. (1997), Representing and Reasoning about
Semantic Conflicts in Heterogeneous Information
Sources, PhD thesis, MIT.

Goodchild, A. (1998), Database Discovery in the Orga-
nizational Environment, PhD thesis, University of
Queensland.

Haarslev, V. & Möller, R. (2002), Optimization strategies
for instance retrieval, in ‘Proceedings of the Interna-
tional Workshop on Description Logics (DL 2002)’.

Horrocks, I. (1997), Optimising Tableaux Decision Proce-
dures for Description Logics, PhD thesis, University
of Manchester.

Horrocks, I., Li, L., Turi, D. & Bechhofer, S. (2004),
The instance store: Description logic reasoning with
large numbers of individuals, in ‘International Work-
shop on Description Logics (DL 2004)’, pp. 31–40.

McGuinness, D. L., Fikes, R., Stein, L. A. & Hendler, J.
(2003), Daml-ont: An ontology language for the se-
mantic web, in D. Fensel, J. Hendler, H. Lieberman
& W. Wahlster, eds, ‘Spinning the Semantic Web:
Bringing the World Wide Web to its Full Potential’,
MIT Press.

Mena, E., Kashyap, V., Sheth, A. & Illarramendi, A.
(1996), Observer: An approach for query processing
in global information systems based on interoper-
ability between pre-existing ontologies, in ‘Proceed-
ings of the 1st IFCIS: International Conference on
Cooperative Information Systems (CoopIS ’96)’.

Pan, J. Z. & Horrocks, I. (2003), Rdfs(fa): A dl-
ised sub-language of rdfs, in ‘Proceedings of the
2003 International Workshop on Description Logics
(DL2003)’.

Schmidt-Schauß, M. & Smolka, G. (1991), ‘Attributive
concept descriptions with complements’, Artificial
Intelligence 48(1), 1–26.

Stuckenschmidt, H. (2003), ‘Query processing on the se-
mantic web’, Künstliche Intelligenz 17.

Tessaris, S. (2001), Questions and Answers: Reasoning
and Querying in Description Logic, PhD thesis, Uni-
versity of Manchester.

Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H.,
Schuster, G., Neumann, H. & Hübner, S. (2001),
Ontology-based integration of information - a survey
of existing approaches, in ‘Proceedings of the IJCAI-
01 Workshop: Ontologies and Information Sharing’,
pp. 108–117.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

137

CRPIT Volume 49

138

A Multi-step Strategy for Approximate Similarity Search

in Image Databases

Paul W.H. Kwan

School of Mathematics, Statistics and Computer Science

University of New England

Armidale, NSW 2351, Australia

kwan@mcs.une.edu.au

Junbin Gao

School of Information Technology

Charles Sturt University

Bathurst, NSW 2795, Australia

jbgao@csu.edu.au

Abstract

Many strategies for similarity search in image databases

assume a metric and quadratic form-based similarity model

where an optimal lower bounding distance function exists

for filtering. These strategies are mainly two-step, with the

initial "filter" step based on a spatial or metric access

method followed by a "refine" step employing expensive

computation. Recent research on robust matching methods

for computer vision has discovered that similarity models

behind human visual judgment are inherently non-metric.

When applying such models to similarity search in image

databases, one has to address the problem of non-metric

distance functions that might not have an optimal lower

bound for filtering. Here, we propose a novel three-step

"prune-filter-refine" strategy for approximate similarity

search on these models. First, the "prune" step adopts a

spatial access method to roughly eliminate improbable

matches via an adjustable distance threshold. Second, the

"filter" step uses a quasi lower-bounding distance derived

from the non-metric distance function of the similarity

model. Third, the "refine" stage compares the query with

the remaining candidates by a robust matching method for

final ranking. Experimental results confirmed that the

proposed strategy achieves more filtering than a two-step

approach with close to no false drops in the final result.

Keywords: Multi-step Strategy, Similarity Search, Image

Databases, Non-metric Distance, Lower Bound

1 Introduction

Researches on similarity search in image databases cover

both data representation and query specifications. Images

are usually represented as numerical vectors indexed by a

spatial access method (Gaede and Günther 1998). In terms

of query specifications, both range and nearest neighbour

queries have been widely studied and analyzed (Weber,

Schek and Blott 1998). In practice, a similarity query is

often processed in two steps, namely the initial “filter” step

employing a spatial index built on the distance function of

the underlying similarity model, followed by a "refine"

step performing exact but expensive distance calculations

(Brinkhoff et al. 1994, Ankerst, Kriegel and Seidl 1998).

Copyright © 2006, Australian Computer Society, Inc. This paper

appeared at the Seventeenth Australasian Database Conference

(ADC2006), Hobart, Australia. Conferences in Research and

Practice in Information Technology (CRPIT), Vol. 49. Gillian

Dobbie and James Bailey, Eds. Reproduction for academic,

not-for profit purposes permitted provided this text is included.

However, most strategies assume a metric and quadratic

form-based similarity model for which an optimal lower

bounding distance function exists for filtering (Ciaccia and

Patella 2002). Recent research on robust image matching

methods for appearance-based vision has discovered that

similarity models behind human visual judgment are often

non-metric (Jacobs, Weinshall and Gdalyahu 2000).

When applying such models, one has to address the

problems of non-metric distance functions that might not

have an optimal lower bound for filtering. Here, we

proposed a novel three-step "prune-filter-refine" strategy

for approximate similarity search for non-metric similarity

models. First, the "prune" step adopts a spatial index to

roughly eliminate improbable matches via an adjustable

distance threshold. Second, the "filter" step uses a quasi

lower-bounding distance derived from the non-metric

distance function. Third, the "refine" stage compares the

remaining candidates via a robust matching method for

final ranking. Experimental evaluation confirmed that the

proposed strategy achieves more filtering than a two-step

approach with close to no false drops in the final result.

The rest of this paper is organized as follow. In Section 2,

the proposed multi-step strategy is described. In Section 3,

related works are mentioned. In Section 4, experimental

evaluation performed on a database of traditional Japanese

kamon images is presented. Lastly, Section 5 ends with

concluding remarks.

2 The Multi-step Strategy

The proposed strategy consists of three successive steps,

collectively known as the “prune-filter-refine” (or PFR)

strategy. To facilitate explanation, Figure 1 illustrates the

processing mechanisms behind the proposed strategy in

the context of a shape-based image retrieval system that

the authors developed based on a related research (Kwan,

Kameyama and Toraichi 2003). This database application

will serve as a guiding example throughout this paper.

2.1 The “Prune” Step

Similar to many two-step query processing strategies in

the literature, the prune step of the proposed strategy uses

a multi-dimensional spatial index to quickly eliminate

irrelevant database objects from further matching. Each of

the database objects is represented as a numerical vector

whose values are derived from features of the image. Here,

the set of numerical vectors is constructed by performing

Discrete Fourier Transform (DFT) on both the horizontal

and the vertical autocorrelation plots generated from each

of the images by treating these plots as time sequence data.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

139

End user

Keyword

Search

Similarity

Search

Name: 土 岐 桔 梗
Sound: き
Caption: 五角

Name：

Sound:

Shape:

Search:

Browse Enlarge

… …

…
High-dimensional

Spatial Index

Shape Attributes

Kamon

Image DB

Browse

Query

Feature

Extraction

Similarity

Query

Filter Step

Refine Step

Feature

Vectors

Similarity

Ranking

Database

Administrator
Batch

Processing

Feature

Vectors

Browse

Result

Features

Extraction

(Prune Step)Shape

Attributes

Candidate

List

Query

Processing

Query

Specifications

. . .

Figure 1: The Multi-step Strategy in relation to a Shape-based Image Retrieval System

The algorithm used in constructing these plots is similar to

Nagashima, Tsubaki and Nakajima (2003). The idea is

illustrated visually in Figure 2. Starting from a complete

overlap of an image by a copy of itself, the horizontal

autocorrelation is taken by shifting the image one pixel at a

time from left to right while calculating for each shift the

degree of autocorrelation, measured in terms of the

number of non-background pixels that overlap. This is

repeated until the image and its copy no longer overlap.

Similar steps are taken when the vertical autocorrelation is

measured by shifting from top to bottom instead.

More formally, let x and y be variables that denote the

autocorrelation lengths measured in the horizontal and the

vertical directions respectively. Then, the horizontal and

vertical autocorrelations can be expressed as:

() ∑ ∑
=

−

=

+
−

=
Y Xl

Y

xl

XXY
h YxXfYXf

xll
xAC

1 1

),(),(
11

 (1)

() ∑ ∑
=

−

=

+
−

=
X Yl

X

yl

YYX
v yYXfYXf

yll
yAC

1 1

),(),(
11

 (2)

Here, f(·,·) is a function that returns 0 for a background

pixel and a 1 for a non-background pixel. Based on these

equations, the horizontal and vertical autocorrelation plots

shown in Figures 2(c) and (d) can be generated.

Considering both horizontal and vertical autocorrelation

plots as time sequences, the DFT generates for each a set

of Fourier series coefficients as in Rafiei and Mendelzon

(1997). Let a time sequence][txx = for t = 0, 1, …, n-1

be a finite duration signal. The DFT of x , denoted by

][fXX = , is given by:

1,...,1,0
1

1

0

2

−== ∑
−

=

−

nfex
n

X
n

t

n

tfj

tf

π

 (3)

Here, 1−=j is the imaginary unit.

The inverse DFT of X returns the original time sequence

by the following equation:

1,...,1,0
1

1

0

2

−== ∑
−

=

nteX
n

x
n

f

n

tfj

ft

π

 (4)

For each database image, the two sets of coefficients are

concatenated to produce a numerical vector. As illustrated

in Table 1, for the experiments the first 15 Fourier series

coefficients from each plot are used.

Horizontal Autocorrelation Vertical Autocorrelation

163.334

28.528

-3.659

4.017

6.754

5.332

2.356

-1.210

-0.703

0.857

2.701

2.598

0.811

-0.557

-0.562

212.053

49.417

21.058

27.413

33.419

29.126

25.692

21.002

19.098

21.020

22.260

21.999

19.137

15.825

14.272

Table 1: The first 15 Fourier series coefficients of the

autocorrelation plots shown in Figure 2(c) and (d)

CRPIT Volume 49

140

 Figure 2: (a) and (b) illustrate how horizontal and vertical autocorrelations of an image is taken

 (c) and (d) are the generated horizontal and vertical autocorrelation plots respectively

To index the set of numerical vectors, a k-d-B tree based

spatial index is chosen (Robinson 1981). The k-d-B tree

combines the multi-dimensional search efficiency of k-d

trees (Bentley and Friedman 1979) and the I/O efficiency

of B-trees (Comer 1979) to handle multi-dimensional

points. When applying the k-d-B tree in this work, the

numerical vectors are normalized before embedded in a

d-dimensional Euclidean space Ed. Let U be the universe

of all such vectors. For any Oi,Oj ∈ U, their dissimilarity

is defined by a distance metric D(Oi,Oj) ∈ R+in Ed as:

() () ()2211 ..., d
j

d
ijiji OOOOOOD −++−= (5)

Here, k
iO and k

jO denote the attribute values of Oi and Oj

in the kth-dimension respectively. Further, the condition

below holds for the distance function:

() dOOD ji ≤< ,0 , UOO ji ∈∀ , and ji ≠ (6)

Based on the k-d-B tree based spatial index, two types of

similarity queries, namely nearest neighbour and range

queries could be possible. However, in the context of the

proposed strategy, only range queries are relevant because

the objective of the “prune” step is to reduce the search

space quickly to a much smaller candidate set for further

processing by the “filter and refine” steps. Given Oq ∈ U

as the query, by specifying r ∈ R+ as the range, such that

dr ≤≤0 holds, the candidate set (denoted C) that meets

the condition below is returned:

(){ }rOODandUOOC qppp ≤∈= , (7)

Lastly, as seen from Figure 1, a pointer (or ID) is appended

as the last element in each numerical vector to facilitate

retrieving shape attributes of the corresponding image that

will be used in the filter and refine steps.

2.2 The “Filter and Refine” Steps

The “filter and refine” steps of the proposed strategy are an

application of Kwan et al. (2003). There, an approximate

query processing approach for addressing the performance

problem brought about by sequential matching in a related

research was introduced (Kwan, Kameyama and Toraichi

2003). Kwan, Kameyama and Toraichi (2003) applied a

robust image matching algorithm based on probabilistic

relaxation labeling when comparing the query with every

database image, and ranked them by a heuristic distance

function. The features used were function approximated

contour segments derived from closed contours of shapes

extracted from the images. Figure 3 gives an example.

Figure 3: Function approximated image (on the right)

showing joint points between contour segments used

by Kwan, Kameyama and Toraichi (2003)

X

y

Y

lY

x

X lx

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

141

Because the heuristic distance function is defined using

probabilistic variables whose final values are not known

until after the matching has converged, the distances from

the query to all other objects in the space cannot be

accurately determined even when the query is entered.

Further, the space of all objects is non-metric, in the sense

of obeying the triangle inequality on distances, rendering it

difficult to designate one database object as the vantage

point for a possible index (Bozkaya and Ozsoyoglu 1997).

The approximate query processing approach of Kwan et al.

(2003) and thereby, the “filter and refine” steps of the

proposed strategy enables a close “approximation” of the

retrieval result while simultaneously reducing the amount

of computation required. At its centre is the concept of a

lower bounding distance function for filtering improbable

database objects from the need of computing expensive

query distances. Provided that a provable lower bounding

distance function exists and employed, no relevant objects

should be discarded by the filtering step. Because some

objects that remain after filtering might not belong to the

final result, a further refining step based on computing the

actual query distances is required to eliminate any false

alarms (Ciaccia and Patella 2002).

Whereas related work used provable lower bounds due to

the metric nature of their similarity models, in research

like ours where non-metric distance functions are used, a

provable lower bound might not be easily found. As one

approach for addressing this problem, in our work a quasi

lower bounding distance function was introduced. This

function (which could be many) is defined using both the

non-metric distance function and a confidence factor. In

practice, it is computed right after the initial state of a

robust matching algorithm is set, but before the process of

advancing towards a final state has commenced.

In our formulation, the following notations are defined:

Dinitp ≡ distance calculated after initial state located;

Dquery ≡ actual query distance;

Dquasi ≡ the quasi lower bounding distance;

c_factor ≡ the confidence factor.

The following condition should be held during the entire

retrieval process:

 initpquery DD ≤ (8)

The role of the confidence factor is to facilitate adjusting

Dinitp for the dual purpose of minimizing the chance of

false drops while avoiding excessive false alarms. It is

applied in the following equation:

1_0,_ ≤<∗= factorcDfactorcD initpquasi (9)

Here, a heuristic procedure is introduced to determine the

value of the confidence factor dynamically by treating it as

a discrete random variable that takes the value of the mean

of the cumulative sum of the ratio, Dquery / Dinitp, averaged
by the number of times that Dquery has computed. In other

words, the confidence factor represents a running average

of the ratio of Dquery and Dinitp. Taken over an infinite time

interval, it approximates the expected mean, E[c_factor].

Changes to the query processing strategy of Kwan et al.

(2003), likewise for other robust matching methods such

as based on deformable template matching, hierarchical

neural network, etc) were made in two places. The first

change was made where the initial state of the relaxation

labeling algorithm is set and the second concerned the

filtering step that was enabled by Dquasi, calculated by the

product of Dinip and c_factor. An important assumption is

that the amount of computation spent in setting the initial

system state is much less than that of computing the actual

query distances. In the context of Kwan et al. (2003), the

changes made are summarized as follows:

1. Rough matching between the query and all database

images is performed all at once initially. For each

match, an initial Dinitp is calculated. This differs from

Kwan, Kameyama and Toraichi (2003) in that rough

matching between every (query, database image) pair

is followed by actual distance calculation at once.

2. In the filtering step, Dquasi is computed by taking the

product of Dinitp and the running value of c_factor. A

database image is a candidate for refining wherever

less than k nearest neighbours have been found so far

or when the following criterion is satisfied:

Dquasi(db[i]) ≤ Dquery(current kth-NN) (10)

Here, db([i]) refers to the current database image being

compared, and kth-NN the kth element in the nearest

neighbour list accumulated so far. Only those that satisfy

(10) at their respective turn of comparison will have their

actual Dquery calculated. The Dquery computed is used in

updating the k-NN list. Further, the value of Dquery / Dinitp is

used in updating the running value of c_factor to be used in

matching the next database image.

Pseudo code for “filter and refine” steps is given below:

[BEGIN]

expected_c_factor = 0.0;

cumulative_c_factor = 0.0;

count = 0;

for (i : [1,NUMBER_DB_IMAGES]) {

 D_initp[i] = rough_matching(Query, DB_Image[i]);

}

for (i : [1,NUMBER_DB_IMAGES]) {

 if (Less than k images in NN-List) {

D_query = fine_matching(Query, DB_Image[i]);

Update the NN-List;

count = count + 1;

cumulative_c_factor += (D_query / D_initp[i]);

expected_c_factor = cumulative_c_factor / count;

 } else {

D_quasi = expected_c_factor * D_initp[i];

if (D_quasi <= distance of kth-NN) {

D_query = fine_matching(Query, DB_Image[i]);

Update the NN-List;

count = count + 1;

expected_c_factor += (D_query / D_initp[i]);

expected_c_factor = cumulative_c_factor / count;

}

CRPIT Volume 49

142

 }

}

Result ← The NN-List

[END]

The “filter” step works to produce a significant reduction

in the number of expensive distance calculations for the

“refine” step, which is supported by experimental results.

3 Related Work

First, the autocorrelations have been previously employed

as features for 1D or 2D signal classification in a wide

range of applications, like texture classification, face

detection and recognition, EEG signal classification

(McLaughlin and Raviv 1968, Kurita, Otsu and Sato 1992,

Kreutz, Volpel and Janssen 1996). For example, in Kurita,

Otsu and Sato (1992), a set of local autocorrelation kernels

defined on a neighbourhood of 3 x 3 pixels is used for

computing 25 local autocorrelation coefficients from a

digital facial image by spatial convolution. The set of

coefficients is used as values for the numerical vectors in a

multi-dimensional feature space. On the other hand, in

this work global rather than local autocorrelation between

an image and itself is taken, resulting in horizontal and

vertical autocorrelation plots which are then transformed

into the frequency domain by the DFT to obtain the

Fourier series coefficients used in the numerical vectors.

Second, many two-step “filter and refine” approaches have

been reported in the literature, like Brinkhoff et al. (1994),

Hafner et al. (1995), Korn et al. (1996), Ankerst et al.

(1998) and Ciaccia and Patella (2002). Most of them used

a provable lower bound on the query distance to filter out

irrelevant database objects from further matching. Since a

“true” lower bounding distance was used, no relevant

objects would be discarded by the filtering step.

In our approach, because the non-metric distance function

used involves probabilistic values that might not allow for

a “true” lower bound be accurately determined without

having to go through the expensive iterative probability

updating until convergence, the concept of a quasi lower

bounding distance is introduced. The quasi lower

bounding distance is computed using the same non-metric

distance function weighted by a confidence factor which

resembles the scaling factor of Ciaccia and Patella (2002).

4 Experimental Evaluation

4.1 Evaluation Criteria

A number of experiments were performed on a database of

2,000 Japanese kamon images (System Product 2003).

Kamons are family emblems traditionally that have both

cultural and commercial values. Because their meanings

are largely conveyed by shapes, they were chosen as the

objects for our shape-based image retrieval experiments.

There are three primary evaluation criteria as follows:

1. The effectiveness of using Fourier series coefficients

derived from both the horizontal and the vertical

autocorrelation plots as values of numerical vectors

for the multi-dimensional index in the “prune” step.

2. The effectiveness of the combination of quasi lower

bounding distance and confidence factor in reducing

the number of distance calculations in the “filter and

refine” steps while not compromising the recall.

3. The advantage of the proposed strategy over the

2-step “filter and refine” approach in terms of the

overall reduction in the number of images matched.

4.2 Experimental Results

First, the results presented in Tables 1 and 2 collectively

addresses evaluation criterion (1). The values in Table 1

are distances measured in the normalized Euclidean space

Ed between each member of the group of 6 kamon images

shown in Table 2. In this experiment, one pair of visually

similar images from 3 of the 9 shape categories is chosen.

It is clear from Table 1 that the distance is closer between

images that are visually similar in Table 2, namely they

belong to the same group. This is supported by the shape

of the autocorrelation plots generated from these images in

Table 2, underlying the effectiveness of employing the set

of Fourier series coefficients in the index for pruning.

Second, to address evaluation criterion (2), the result of a

k-nearest neighbour query (k = 20) by using the method of

Kwan, Kameyama and Toraichi (2003) is shown in Table

3. It will be used as the benchmark for recall for the rest of

our experiments. Note that in Table 3, Dquery refers to the

query distance computed by using the original non-metric

distance function while Dindex is the distance measured in

the indexed Ed space. While they do not exhibit full

correlation, it is noteworthy that Dindex alone could still be

effective in approximate similarity ranking.

Because the second set of experiments is meant to verify

how effective the filtering by the quasi lower bounding

distance is achieved based on the number of database

images that have to go through actual expensive distance

calculations, two metrics are defined.

The first of these is a reduction ratio defined as follow:

Reduction1 = (# images actually match / # total database

images) ∗ 100% (11)

The second metric is the recall defined as follow:

Recall1 = (# correct responses in the “filtered” result / #

responses returned) ∗ 100% (12)

 K1 K2 K3 K4 K5 K6

K1 0 0.64 2.37 2.40 3.09 3.31

K2 0.64 0 2.43 2.38 3.00 3.07

K3 2.37 2.43 0 1.99 3.29 3.40

K4 2.40 2.38 1.99 0 3.08 3.09

K5 3.09 3.00 3.29 3.08 0 1.08

K6 3.31 3.07 3.40 3.09 1.08 0

Table 1: Distance in E
d
 space between the set of 6

images shown in Table 2

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

143

Shape Category Horizontal Autocorrelation Plot Vertical Autocorrelation Plot

(K1)

R
o
u
n
d

(K2)

(K3)

Q
u
ad
ra
n
g
le

(K4)

(K5)

H
ex
ag
o
n

(K6)

Table 2: Horizontal and vertical autocorrelation plots for pairs of similar images in 3 of 9 shape categories

CRPIT Volume 49

144

Rank: 1 2 3 4 5 6 7 8 9 10

Dquery:0.0 0.61 0.66 0.71 0.74 0.75 0.77 0.78 0.79 0.80

Dindex:0.0 0.754 0.558 1.526 1.272 2.819 2.211 1.351 1.492 1.623

11 12 13 14 15 16 17 18 19 20

0.81 0.82 0.84 0.86 0.866 0.869 0.872 0.875 0.883 0.886

1.630 1.592 1.937 1.548 1.429 1.347 1.491 1.374 1.339 1.573

Table 3: Result of a k-nearest neighbour query (k ==== 20) by using Kwan, Kameyama and Toraichi (2003)

Figure 4: Reduction achieved by filter-and-refine

 Figure 5: Relation between Recall and Reduction

Here, the denominator of Recall1 is k, which is the number

of nearest neighbours to return. Recall1 is the percentage

of correct responses that are included in the “filtered”

result. In this group of experiments, for each setting of the

c_factor (both manual and automatic), the Reduction1 and

Recall1 are computed. Results are given in Figure 4 and 5.

For k = 20, one can notice that the “filter and refine” steps

achieved a significant reduction (more than 70%) in

number of actual distance calculations while the recall is

maintained (that is, Recall1 = 1.0) at the point where the

confidence factor is deduced automatically. Compared to

this, both for k = 10 and k = 5, although the reductions are

greater, Recall1 suffered. Nonetheless, in applications

where either the number of nearest neighbours to return is

not overly small (about 20 in our case) or that approximate

results can be accepted, the savings in computation by the

“filter and refine” steps are highly significant.

k = 20

“c_factor”: 0.9536

R.Ratio (Matched): 0.2947

k = 10

“c_factor”: 0.938

R.Ratio (Matched): 0.1403

k = 5

“c_factor”: 0.9137

R.Ratio (Matched): 0.0772

k = 20

“c_factor”: 0.9536

Precision: 1.0

k = 10

“c_factor”: 0.938

Precision: 0.7

k = 5

“c_factor”: 0.9137

R.Ratio (Matched): 0.6

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

145

Range

(r)
Recall

(Recall2)
Reduction Ratio

(Reduction2)

5.0 1.0 1.0

4.0 1.0 0.99

3.0 1.0 0.94

2.9 1.0 0.92

2.8 0.95 0.90

2.6 0.95 0.84

2.4 0.95 0.74

2.2 0.90 0.65

2.0 0.90 0.55

1.8 0.85 0.42

1.6 0.75 0.28

1.4 0.4 0.13

Table 4: Recall versus reduction ratio by varying r

Finally, to address criterion (3), we combine the previous

results and that of the following experiment. Although at

the moment there is no effective way to deduce an optimal

value for range r as a function of the query that can provide

maximum pruning while minimizing the number of false

drops, it is still possible to heuristically deduce an

approximate value for the database of our experiment via

simulation. This result summarized in Table 4.

Two additional metrics are defined for evaluating the

performance, namely Recall2 and Reduction2. Their

definitions are given as follows:

 Recall2= k’ / k (13)

Here, k’ is the number of correct answers in Table 3 that

remain after pruning. That is, 0 ≤ Recall2 ≤ 1 holds.

 Reduction2 = n’ / n (14)

Here, n and n’ are the total size of the database and the

number of images remained after “pruning”.

From Table 4, it is reasonable to conclude that the optimal

value r’ should satisfy this condition, 2.8 < r’ ≤ 2.9 for the

query and the database that are used. At r = 2.9, pruning is

about 8% while the recall is 1.0. When we assumed that

pruning using a value of r = 2.9 has been done before the

“filter and refine” steps are performed in the proposed

multi-step strategy, the overall reduction in the actual

distance calculations can be close to 80% for k = 20.

5 Conclusion

In this paper, a novel three-step "prune-filter-refine" query

processing strategy for approximate similarity search in

image databases is described. First, the "prune" step

adopts a k-d-B tree based multi-dimensional spatial index

to eliminate improbable matches via an adjustable distance

threshold. Second, the "filter" step makes use of a quasi

lower-bounding distance derived from the original

non-metric distance function of the underlying similarity

model to further reduce the number of candidates for

detailed matching. Third, the "refine" stage evaluates the

remaining candidates by a robust matching method to

return the final similarity ranking. Experimental results on

a shape-based retrieval system for Japanese kamon images

verified that the proposed strategy achieves larger overall

reduction in actual distance calculations than two-step

approaches with close to no false drops in the final result.

6 References

Ankerst, M., Kriegel, H.-P. and Seidl, T. (1998): A

multistep approach for shape similarity search in image

databases. IEEE Trans. Knowl. Data Eng. 10

(6):996-1004.

Bentley, J. L. and Friedman, J. H. (1979): Data structures

for range searching. ACM Computing Surveys 11 (4):

397-409.

Bozkaya, T. and Ozsoyoglu, M. (1997): Distance-Based

Indexing for High-Dimensional Metric Spaces. In Proc.

ACM SIGMOD International Conference on

Management of Data, 357-368.

Brinkhoff, T., Kriegel, H.-P., Schneider, R. and Seeger, B.

(1994): Multi-step processing of spatial joins. In Proc.

ACM SIGMOD International Conference on

Management of Data, Minneapolis, Minn., 23:197-208,

ACM Press.

Ciaccia, P. and Patella, M. (2002): Searching in Metric

Spaces with User-Defined and Approximate Distances.

ACM Trans. Database Systems. 27 (4):398-437.

Comer, D. (1979): The ubiquitous B-tree. ACM

Computing Surveys 11 (2): 121-138.

Gaede, V. and Günther, O. (1998): Multidimensional

Access Methods. ACM Computing Surveys 30

(2):170-231.

Hafner, J., Sawhney, H.S., Equitz, W., Flickner, M. and

Niblack, W. (1995): Efficient Color Histogram Indexing

for Quadratic Form Distance Functions. IEEE Trans.

Patt. Anal. Mach. Intell. 17 (7):729-736.

Jacobs, D., Weinshall, D. and Gdalyahu, Y. (2000):

Classification with Nonmetric Distances: Image

Retrieval and Class Representation. IEEE Trans. Patt.

Anal. Mach. Intell. 22 (6):583-600.

Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E. and

Protopapas, Z. (1996): Fast Nearest Neighbor Search in

Medical Image Databases. In Proc. of the 22nd VLDB

Conference, Mumbai, India, 215-226.

Kreutz, M., Volpel, B. and Janssen, H. (1996):

Scale-Invariant Image Recognition Based on Higher

Order Autocorrelation Features. Pattern Recognition 29

(1).

Kurita, T., Otsu, N. and Sato, T. (1992): A Face

Recognition Method Using Higher Order Local

Autocorrelation and Multivariate Analysis. In Proc. 11th

IAPR International Conference on Pattern Recognition,

The Hague, 213-216.

CRPIT Volume 49

146

Kwan, P., Kameyama, K. and Toraichi, K. (2003): On a

relaxation-labeling algorithm for real-time

contour-based image similarity retrieval. Image and

Vision Computing. 21 (3):285-294.

Kwan, P., Toraichi, K., Kitagawa, H. and Kameyama, K.

(2003): Approximate Query Processing for a

Content-Based Image Retrieval Method. In: V. Malik et

al.(Eds.): DEXA 2003, LNCS 2736, Springer-Verlag,

517-526.

McLaughlin, J. A. and Raviv, J. (1968): Nth-order

autocorrelations in pattern recognition. Information and

Control 12:121-142.

Nagashima, H., Tsubaki, S. and Nakajima, J. (2003): A

Classification for Trademark Images Using the

Auto-correlation Function Graph Figure. IEEJ Trans.

EIS. 123 (9):1547-1554.

Rafiei, D. and Mendelzon, A. (1997): Similarity-Based

Queries for Time Series Data. In Proc. ACM SIGMOD

International Conference on Management of Data,

Tucson, Ariz., USA, 13-24.

Robinson, J. T. (1981): The K-D-B-tree: A search

structure for large multidimensional dynamic indexes.

In Proc. ACM SIGMOD International Conference on

Management of Data, New Jersey, USA, 322-331.

System Product Co. Ltd. (2003), “Home Page”,

http://www.e-spc.co.jp/hp/product_3_3.htm

Weber, R., Schek, H-J. and Blott, S. (1998): A

Quantitative Analysis and Performance Study for

Similarity-Search Methods in High-Dimensional Spaces.

In Proc. of the 24th VLDB Conference, New York, USA,

194-205.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

147

CRPIT Volume 49

148

A New Approach to Intelligent Text Filtering Based on Novelty

Detection

Randa Kassab Jean-Charles Lamirel

LORIA - INRIA Lorraine
Campus scientifique - BP. 239
54506 Vandoeuvre-lès-Nancy

France
Email: {kassabr,lamirel}@loria.fr

Abstract

This paper presents an original approach to mod-
elling user’s information need in text filtering envi-
ronment. This approach relies on a specific novelty
detection model which allows both accurate learning
of user’s profile and evaluation of the coherency of
user’s behaviour during his interaction with the sys-
tem. Thanks to an online learning algorithm, the
novelty detection model is also able to track changes
in user’s interests over time.

The proposed approach has been successfully
tested on the Reuters-21578 benchmark. The exper-
imental results prove that this approach significantly
outperforms the well-known Rocchio’s learning algo-
rithm.

Keywords: novelty detection, information filtering,
personalization, profile, online learning.

1 Introduction

Consequently to the constant increase of information
available on the Web, in digital libraries and in other
similar resources, new techniques for personalized in-
formation access have become more and more impor-
tant. Information filtering is one of the most useful
and challenging tasks for effective information access.
It is concerned with dynamically adapting the distri-
bution of information where both evolving user’s in-
terests and new incoming information are taken into
account. For building up a model of user’s informa-
tion need, also called user’s profile, information fil-
tering relies on user’s positive examples, represented
by documents he likes, and possibly on user’s negative
examples, represented by documents he dislikes. This
profile is furthermore used to automatically separate
relevant from irrelevant documents in an incoming
stream.

A wide range of machine learning algorithms and
information retrieval techniques have been applied to
text filtering task, including the Rocchio’s linear clas-
sifier, k-nearest neighbours, Bayesian classifiers, neu-
ral networks, Support Vector Machines and boosting
(Ault & Yang 2001, Schapire & Singer 1998, Schutze,
Hull & Pedersen 1995, Dumais, Platt, Heckerman &
Sahami 1998, Shankar & Karypis 2000). All these
techniques focus on exactly learning user’s profile in
order to filter the content that would be interesting
for the user as accurately as possible. This practice

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

is very suitable considering the fact that the perfor-
mance of the filtering process is extensively depen-
dent on the accuracy of the user’s profile. However,
these techniques could not provide any information
about the user’s behaviour during his interaction with
the filtering system. In our opinion, user’s informa-
tion need can be of different types, e.g. precise, ex-
ploratory or thematic (Lamirel & Créhange 1994);
and according to these types the system must adapt
the filtering results in a specific way. Moreover, most
of the existing methods operate in an off-line mode
where all the training documents have to be stored.
Consequently, at each time a new training example
need to be added, the system has to restart the train-
ing from the beginning. Such learning mode is not ap-
propriate in online applications where memory space
is limited and real-time filtering response is crucial.

This paper presents a new approach to text fil-
tering based on the novelty detection principle. The
main objective of novelty detection is to emphasize
the novelty in yet unseen document with respect to
previously learned ones. The basic idea is to learn a
model of available documents and to use it for identi-
fying the dissimilar documents (novelty). In filtering
context, the novelty detection principle is mainly ap-
plied in a reverse way, i.e. the documents that are
similar to a model learned from positive examples
of user’s need will be selected. The specific novelty
detector filter (ndf) we use, is an adaptation of a
former novelty detector model proposed by Kohonen
(kohonen 1984) and based on the orthogonal projec-
tion operators. The most powerful feature of this
filter is its ability to accurately learn user’s profile
and to evaluate, in a parallel way, the coherency of
user’s behaviour during his interaction with the sys-
tem. Thanks to an online learning algorithm, the
novelty filter is also able to track changes in user’s
interests over time.

The novelty detector filter is investigated on the
Reuters-21578 benchmark. We compare experimen-
tally its performance with the widely used Rocchio’s
algorithm; our experiments clearly highlight that the
novelty detector filter is more effective than this latter
algorithm.

The paper is organized as follows: Section 2 in-
troduces the basic concepts of the novelty detector
filter. Section 3 describes our adaptation of this filter
for the text filtering task. Section 4 reports on our
experiments. The paper ends with the description of
our future work.

2 The Novelty Detector Filter

The novelty detector filter is a linear adaptive sys-
tem which acts, after its learning on a reference data,
as a projection operator in a vector space that is or-
thogonal to the vector space spanned by the refer-
ence data. Consider figure 1; the ndf only passes

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

149

through the “novelty” component of a data with re-
spect to the previously learned reference data. The
residual component which is orthogonal to the nov-
elty component is known as the “habituation” com-
ponent. Such a system has a transfer function equiv-
alent to a square matrix : ∅k = I − XkXk

+ where
Xk = [x1, x2, . . . xk] is the reference data matrix in
which each xi is a n-dimensional vector, Xk

+ is the
penrose pseudo-inverse of Xk, I denotes the identity
matrix. The inputs and the outputs are thus related
by x′ = ∅k · x.

Figure 1: The model of the novelty detector filter

The mathematical learning model of the nov-
elty detector is based on the theorem of Greville
(kohonen 1984) which yields a recursive expression
for calculating the transfer function of the filter. Af-
ter simplification, the theorem can be expressed as:

∅k = ∅k−1 −
x′kx′Tk
‖x′k‖2

(1)

where xk
′ = ∅k−1 · xk represents the orthogonal pro-

jection of the vector xk on a space that is orthogonal
to the space spanned by the k − 1 learned vectors;
‖x‖ represents the length of the vector x; and the
recursion starts with ∅0 = I .

Once the learning phase described above is over,
the filter becomes habituated to the reference data.
Thus, if one of the reference data or their arbitrary
linear combination is applied to the filter input, the
novelty output will be zero. On the other hand, if
a novel data not belonging to the space spanned by
the reference data is chosen as an input, the corre-
sponding output will be nonzero and can be seen as
representative of the new features extracted from the
input data with respect to the reference data.

3 The Novelty Detector Filter in Text Filter-
ing

The principle of novelty detection is particularly in-
teresting for text filtering. In this context, a data
corresponds to a text document which is itself repre-
sented by a weighted feature vector in a n-dimensional
description space, where n is the total number of
features extracted from the training documents (i.e.
all the documents currently available in the system).
The reference data are the documents marked by the
user as examples of his information need, i.e. the
positive training examples.

Our previous evaluations of the ndf for text filter-
ing (Kassab, Lamirel & Nauer 2005, Kassab, Lamirel
& Nauer 2005) enable us to observe that the per-
formance of the ndf is quite effective in the case of
single-label datasets where each document belongs ex-
actly to one category. However, it fails in the multi-
label case where a document may be belong to more
than one category. Although the latter case is rel-
atively more difficult to process for all the existing
approaches, since high correlation between relevant
and irrelevant documents is strongly probable, it has

proved much harder than expected for the ndf. This
can be mainly explained by the fact that the learning
rule (Eq.1), which is essentially designed for novelty
detection, is not directly applicable to filtering task.
In fact, the novelty detection learning rule is mainly
intended to distinguish the novelty parts from the old
or habituated parts in the input data with respect to
the previously learned reference data, regardless of
whether a learned data is more seen in the reference
data than another or not. Hence, such a learning rule
does not allow cumulative learning of the user’s need.
In other words, both training examples which are re-
garded as redundant (i.e. those that do not carry
novelty, that is, those for which x′ is null) and the
features that have been totally learned (i.e. those for
which the novelty vector is null when applying the
unit vector associated to the feature as input) are no
more taken into account during training. Therefore,
it is often possible to learn the discriminating and
non discriminating features with the same degree of
relevancy. Accordingly, a good separation between
relevant and irrelevant documents will not always be
easy to achieve. An adaptation of the learning rule
to filtering is then required.

Our proposal is to introduce the identity matrix
in the learning formula for considering separately all
training examples, and consequently all their features,
during the learning phase. The new learning rule is
defined as:

∅k = I + ∅k−1 −
x′kx′Tk
‖x′k‖2

(2)

where xk
′ = (I + ∅k−1)xk and ∅0 is a zero, or null,

matrix.
As learning progresses, features which frequently

appear in the training documents become more and
more habituated as compared to the less frequent
ones. This typically helps to discriminate more
accurately the relevant and irrelevant documents.
An example and further details about the defects of
the original learning rule of the ndf (Eq.1) when
applied to filtering task and how our modified rule
(Eq.2) can improve performance are provided in the
appendix.

Since learning from only positive examples is
suitable for several applications, two strategies are
considered and tested for using the novelty detector
filter in text filtering system according to the kind of
available training examples.

3.1 Positive training examples only

The learning of a ndf on a set of positive training
examples permits to calculate the transfer function
∅ of the filter. This function is a projection matrix
that represents a space that is orthogonal to the space
spanned by the positive training examples. Then, the
projection of each yet unseen document, say d, on the
filter matrix ∅ will generate a novelty vector d′ = ∅·d.
Two proportions can be thus computed:

• The novelty proportion which quantifies the
amount of novelty in the document under consid-
eration with respect to the documents that have
been seen during training.

Nd =
‖d′‖

n × ‖d‖
(3)

where n is the number of training documents.

CRPIT Volume 49

150

• The habituation proportion which quantifies the
similarity of the document with the previously
learned ones.

Hd = 1 −
‖d′‖

n × ‖d‖
(4)

This later proportion could be considered as the
relevance score of the document d and thus be used
for ranking documents: the higher the habituation
proportion is, the more relevant the document will
be.

3.2 Positive and negative training examples

When training set consists of positive and negative
examples of user’s need, two novelty detector filters
should be used. The acceptance filter ∅A which is
learned from the positive examples and the rejection
filter ∅R learned from the negative examples. After
learning, the relevance score of each new document d
is computed using the following formula:

Rd = β · HAd − γ · HRd (5)

where HAd is the habituation proportion of the doc-
ument d using the acceptance filter;
HRd is the habituation proportion of the document d
using the rejection filter;
β, γ are positive parameters which control the relative
importance of the positive and negative examples re-
spectively.

Concept of saturation

Since most filtering systems use all features assigned
to positive or negative examples for modelling user’s
profile, this could naturally lead to an increased noise
in this profile and consequently to reduce filtering ac-
curacy. Nevertheless, if the accuracy becomes too low
this phenomenon can surely be imputed to the user
who has not been able to correctly formulate his need.
Unfortunately, to the best of our knowledge, this fact
is not taken into account in most existing systems de-
spite its great importance for choosing a well-suited
strategy for adjusting a dissemination threshold.

The saturation of a ndf (SNDF) may be under-
stood as the inability of this filter to extract new fea-
tures with respect to the learned documents. In other
words, it corresponds to the learning by the filter of
all features of the description space. This case can
occur if the number of the learned documents is such
as it generates a subspace whose dimension is equal
to the dimension of the description space. We define
the saturation of a ndf as the ratio of the number of
learned features1 to the total number of features in
the description space.

The saturation value is useful for assessing the
type of user’s information need. This later can be
considered as precise when the saturation is quite
low and thus the filtering threshold must be set to
a high value, while the user’s need can be regarded
as exploratory when the saturation is very high, or
maximal, and in this case the filtering threshold
must be set to a low value2 (see figure 2).

1We mean here by learned features, the features for which the
habituation proportion is higher than zero or a predefined thresh-
old.

2We expect that a threshold set to the value (1−SNDF) would
be suitable, but we have not yet compared it with other threshold-
ing strategies.

Figure 2: Evolution of the saturation when learning
from all 10 categories and when learning only from
one category (e.g. Interest)

4 The Rocchio Algorithm

Rocchio’s Algorithm is a relevance feedback algorithm
that has been widely used for improving the per-
formance of information retrieval systems (Rocchio
1971) and that has been then adapted to text filtering
task (Schapire et al. 1998, Ault et al. 2001). It allows
computing of a prototype profile Pc as the weighted
difference of the centroid vectors of the positive and
the negative examples:

Pc = β ·

∑

d∈R d

|R|
− γ ·

∑

d∈N d

|N |
(6)

The parameters β and γ control the relative impact
of the positive and negative examples; |R| and |N |
are respectively the number of positive and negative
examples. The profile Pc is restricted to non negative
values.

Ranking is then achieved by performing a cosine
similarity between the prototype profile and each new
document.

5 Experiments

In this section, we describe our experiments for test-
ing the performance of the novelty detector filter in
text filtering environment. Throughout the present
study we focus our attention on the evaluation of the
quality of the learned profile, i.e. the filter’s matrix,
for representing user’s information need and thus for
ranking documents by relevancy. Hence, we did not
use any dissemination threshold but we plan to inves-
tigate this strategy in near future.

Experimental results on the Reuters-21578 collec-
tion are presented, demonstrating that our approach
is more effective than the Rocchio’s learning algo-
rithm.

5.1 Reuters collection

We conducted our experiments on the Reuters-21578
collection3. The documents of this collection are di-
vided into training and test sets and they are la-
belled by 135 categories. Our experimental results
are reported for the set of the top 10 categories with
the highest number of positive training documents.

3The Reuters-21578 collection is publicly available at :
http://www.daviddlewis.com/resources/testcollections/reuters21578/

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

151

Table 1: # training and test examples in the top 10
categories of Reuters collection

Category name # train # test
acq 1650 719
corn 181 56
crude 389 189
earn 2877 1087
grain 433 149
interest 347 131
money-fx 538 179
ship 197 89
trade 369 117
wheat 212 71

Table1 gives the number of training and test docu-
ments in each of the categories.

Usually, the training documents assigned to each
category are used as positive examples of user’s need
and the rest of training documents in the other cat-
egories as negative examples. Due to the relative
high quantity of the negative examples in Reuters
collection, we have selected the negative examples
using the query zoning method (Singhal, Mitra &
Buckley 1997, Schapire et al. 1998), where only the
|R| top ranking documents retrieved from the nega-
tive training examples by the centroid vector of the
positive examples are used. This method has proved
to be efficient for Rocchio’s algorithm.

5.2 Preprocessing

We performed standard preprocessing steps: docu-
ment parsing, tokenization, stop words removal. Only
single words were used for content representation.
The highly discriminating word features were selected
using the chi-square statistic (Yang & Pedersen 1997)
as follows. Given a set of candidate features, we com-
pute the feature goodness for each category as:

x(f, c) =

√
N × (AD − CB)

√

(A + C) × (B + D) × (A + B) × (C + D)
(7)

where N is the total number of training documents;
A is the number of times f and c co-occur; B is the
number of times f occurs without c; C is the number
of times c occurs without c; D is the number of times
neither f nor c occurs.

Then, the values were sorted in descending order
and the top 50 features were chosen for each cate-
gory4 and used for forming a global description space
of 379 features. These later were thus used for repre-
senting both training and test documents by vectors
of feature-weights. These weights are calculated us-
ing tf×idf weighting (Salton & Buckley 1988) for
training examples and only tf weights for test exam-
ples5. The vectors are normalized using the cosine
normalization method (Salton et al. 1988), so that
each document has a length of 1.

5.3 Performance measure

Evaluation is achieved using average uninterpo-
lated precision metric, which is widely used
for trec

6 routing tasks without dissemination

4Selecting the top 50 feautures is solely based on the fact that
the average length of the training documents after preprocessing is
47 words.

5The tf (term frequency) formula used in our study is: TF =
1 + log2(tf) where tf is the feature frequency within a docu-
ment. The idf (inverse document frequency) is defined as: IDF =

log2(N+1

n
) where N is the total number of documents in the train-

ing collection, n the number of documents containing the feature.
6Text REtrieval Conference, TREC. http://trec.nist.gov/

Table 2: Comparison of performance results for the
original learning rule (NDRule) and our modified
learning rule (FRule) using only positive examples

Category name NDRule FRule
acq 74.50 95.65
corn 61.09 81.34
crude 40.49 91.65
earn 84.45 91.95
grain 64.48 97.82
interest 58.16 78.83
money-fx 50.95 76.70
ship 54.60 88.10
trade 33.30 93.35
wheat 59.34 87.61
mean AvgP 58.14 88.30

thresholds(Robertson & Soboroff 2001). It is defined
as the sum of the precision value at each point where a
relevant document appears in the ranked list, divided
by the total number of relevant documents. Rele-
vant documents which are not retrieved within the
top 1000 receive a precision of zero.

5.4 Results and discussion

For the purpose of demonstration, we firstly present
the results from the original learning rule (Eq.1) and
our modified learning rule (Eq.1) for the 10 most
frequent categories from the Reuters collection. As
it can be seen in Table2, our modified learning rule
(FRule) substantially outperforms the original learn-
ing rule (NDRule). More specifically, NDRule yields
58.14% accuracy over the ten categories, while our
modified learning rule FRule yields 88.30%, resulting
in an overall improvement of 30%. The explanation
of the substantial difference between the two learning
rules has to do again with the fact that the original
learning rule is not able to distinguish between dis-
criminating and non discriminating features in train-
ing documents (see section 3). Consequentely, the
failure of the NDRule becomes obvious when docu-
ments are represented by a few highly discriminating
features against too many non discriminating ones.
Hence, when we looked at the ranking performed by
the NDRule we found a considerable confusion be-
tween the categories. As an example, the NDRule
produces particularly bad results for trade because of
its confusion with earn. As soon as trade shares al-
most all its features with earn, some of these features
are certainly more relevant to trade than to earn.
Nevertheless, the inability of the NDRule to discrim-
inate such features led it to consider most earn doc-
uments as relevant and even more relevant to trade
than its proper documents. On the other hand, earn
is less sensitive to this phenomenon because of the
higher number of the test documents associated to
this category as compared to trade.

In the rest of this discussion we evaluate the per-
formance of the ndf using our modified learning rule
(FRule) with and without negative examples. Table3
summarizes our results using only positive training
examples. Compared to Rocchio’s method, ndf pro-
duces superior average precision on almost all cate-
gories with +3.25% overall performance. Although
Rocchio is slightly better than ndf for some cate-
gories (viz. ship, trade, wheat), we believe that ndf

learning is constantly better than Rocchio learning
especially for distinguishing between discriminating
and non discriminating features in training examples.
This situation is especially obvious for the crude cat-
egory whose documents are represented with a high
ratio of discriminating features. In our opinion, one

CRPIT Volume 49

152

Figure 3: Comparison of NDF and Rocchio on the Reuters categories using only positive examples

reason of the small advantage of the Rocchio’s method
for few categories might be the presence of some out-
liers among the test documents which are extreme in
comparison with the training documents, i.e. their
discriminating features are quite different from those
of the training documents. Thus, the ndf will ad-
vantage the outliers of the other categories that are
similar to the positive training documents over the
outliers of the training category. As a consequence,
these outliers might disturb the ranking of the last rel-
evant documents. On the other hand, Rocchio avoids
this problem because its separation between discrimi-
nating and non discriminating features is less precise.
We would also like to mention that Rocchio achieved
much better effectiveness in our experiments than
the current state-of-the-art Rocchio’s method on the
Reuters collection, see (Dumais et al. 1998, Shankar
et al. 2000). We think that the results are quite
sensitive to the indexing and feature selection meth-
ods. For example, unlike the claims reported in (Ault
et al. 2001), we found that chi-square test leads to
a considerable improvement in performance on the
Reuters collection. Nevertheless, this improvement
depends on how the selection criterion is applied. A
general practice is to use a global measure that av-
erages the chi values over the number of categories (
Liu, Liu, Chen & Ma 2003, Yang et al. 1997). This
strategy enables to eliminate the most common fea-
tures, but not to extract the most discriminating fea-
tures between categories. For this reason, we have
measured individually the relevancy of a feature for
each category and then selected the top 50 features
of each category in order to form our global feature
space.

To get a better understanding of the behavior of
the ndf, we have calculated the average uninterpo-
lated precision in relation to the number of positive
training examples for the 10 categories. Considering
the results we obtained, shown in figure 3, we observe
that ndf and Rocchio are closely competitive when
training from very few postive examples. However, as

Table 3: AvgP using only positive examples
Category name Rocchio ndf

acq 92.46 95.65
corn 78.88 81.34
crude 83.88 91.65
earn 86.04 91.95
grain 97.02 97.82
interest 73.73 78.83
money-fx 66.75 76.70
ship 88.55 88.10
trade 94.48 93.35
wheat 88.72 87.61
mean AvgP 85.05 88.30

the number of positive training examples increases,
ndf is consistently superior to Rocchio for almost all
categories.

As expected, exploiting negative examples yields
better results for both Rocchio’s and ndf approaches.
Table4 shows the average precision for β = 2, γ = 1
(see equations 5,6). Despite the significant improve-
ment in the performance of Rocchio’s method, we ob-
serve that the ndf remains more effective through all
categories.

In order to explore the sensitivity of our proposed
approach to the control parameters setting, we con-
duct experiments using different values of these pa-
rameters. The mean uninterpolated average precision
over the categories is depicted in table5. Conversely
to (Singhal et al. 1997), our results show that β = γ is
unsuitable for multi-label collection, especially when
both query zoning and feature selection techniques
are jointly applied. Our hypothesis is that for the
most similar categories, like corn, grain and wheat,
which have many features in common, such param-
eter settings could yield the elimination of the most
expressive features of the relevant category and thus
the irrelevant documents would be favoured over the
relevant ones. This effect becomes evident when fea-

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

153

Table 4: AvgP using positive and negative examples
Category name Rocchio ndf

acq 95.29 97.27
corn 95.45 95.94
crude 92.96 93.27
earn 90.02 92.66
grain 97.80 98.50
interest 84.04 90.92
money-fx 80.41 88.99
ship 88.38 89.32
trade 95.73 96.87
wheat 91.75 91.95
mean AvgP 91.18 93.57

Table 5: Mean average precision for different β, γ
β γ Rocchio ndf

1 1 78.57 58.01
16 4 88.90 91.62

0.75 0.25 89.77 92.50
2 1 91.18 93.57

ture selection method is applied. In a concrete exam-
ple, assuming that a document d has a positive simi-
larity 0.8 with the acceptance filter (respectively, the
centroid of positive examples in Rocchio’s method)
and a negative similarity 0.9 with the rejection filter
(respectively, the centroid of negative examples) the
relevance score of this document will be -0.1. Thus,
this document which is a common document between
relevant category and one or more of the negative
categories would be ranked under the irrelevant docu-
ments which have very low or zero similarity with the
positive and negative examples. In this case, Rocchio
will perform better than ndf because it prohibits this
effect by arbitrarily setting the negative components
to zero.

6 Conclusion

We have presented a promising approach to modelling
user’s information need in intelligent text filtering en-
vironment. This approach is based on a specific nov-
elty detection model, the ndf, which allows to ac-
curately learn user’s profile and which provides, in
a parallel way, a more comprehensive capture of the
type of user’s information need. Experiments carried
out on the Reuters collection showed the effective-
ness of the ndf as compared to Rocchio’s method.
Moreover, when combining our method with a suit-
able feature selection approach, the results seem to
be better than the ones ever reported for the best of-
fline learning method, like knn, svm and bootstrap.
Hence, in a further step, we plan to more thoroughly
compare our approach with these latter methods.

Nevertheless, a more extensive evaluation is
needed, concerning especially the dissemination
thresholds setting and the performance of the ndf for
adaptive filtering task (see definition in (Robertson
et al. 2001)). Last but not least, we plan to exploit
the ability of our approach to detect the novelty for
controlling the amount of redundancy in filtering re-
sults according to the type of user’s information need
(Zhang, Callan & Minka 2002). Hence, the filtering
result should exactly response to user’s need when
this later is precise, whereas, if the type of the user’s
information need is exploratory, the filtering result
should firstly recover as much as possible the user’s
need. In this latter case redundancy could be present
and new information could also be recommended to
the user.

References

Ault, T. & Yang, Y. (2001), kNN, Rocchio and Met-
rics for Information Filtering at TREC-10, in
‘The Tenth Text REtrieval Conference (TREC
10)’

Dumais, S., Platt, J., Heckerman, D.,& Sahami, M
(1998), Inductive Learning Algorithms and Rep-
resentations for Text Categorization, in ‘Pro-
ceedings of the Seventh International Confer-
ence on Information and Knowledge Manage-
ment CIKM’, pp. 148–155.

Kassab, R., Lamirel, J.C., & Nauer, E. (2005), Nov-
elty Detection for Modeling User’s Profile, in
‘Proceedings of the 18th International Florida
Artificial Intelligence Research Society Confer-
ence (FLAIRS 05)’, Clearwater Beach, Florida,
AAAI Press. pp. 830–831.

Kassab, R., Lamirel, J.C., & Nauer, E. (2005), Une
nouvelle approche pour la modélisation du pro-
fil de l’utilisateur dans les systèmes de filtrage
d’information : le modèle de filtre détecteur
de nouveauté, in ‘The Deuxième Confrence en
Recherche d’information et Applications, CO-
RIA’05’, France, pp. 185–200.

Kohonen, T. (1984), Self organisation and associative
memory, Springer Verlag, New York, USA.

Lamirel, J.C., & Créhange, M. (1994), Applica-
tion of a Symbolico-Connectionist Approach for
the Design of a Highly Interactive Documen-
tary Database Interrogation System with On-
Line Learning Capabilities, in ‘Proceedings of
the Third International Conference on Informa-
tion and Knowledge Management (CIKM 94)’,
pp. 155–163.

Liu, T., Liu, S., Chen, Z. & Ma, W. (2003), An Eval-
uation on Feature Selection for Text Clustering,
in ‘Proceedings of the Twentieth International
Conference on Machine Learning (ICML-2003)’.

Robertson, S.E. & Soboroff, I. (2001), The TREC-9
Filtering Track Final Report, in ‘Proceedings of
the 9th Text REtrieval Conference (TREC 9)’,
pp. 25–40.

Rocchio, J J (1971), Relevance feedback in informa-
tion retrieval, In The SMART Retrieval System
: Experiments in Automatic Document Process-
ing, Prentice Hall Inc., Englewood Cliffs, New
Jersey.

Salton, G. & Buckley, C. (1988), Term weighting ap-
proaches in automatic text retrieval, in ‘Informa-
tion Processing and Management’, 24(5), 513–
523.

Schapire, R., Singer, Y. & Singhal, A. (1998), Boost-
ing and Rocchio Applied to Text Filtering, in
‘Proceedings of the Twenty-first Annual Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval’, pp. 215–
223.

Schutze, H., Hull, David A. & Pedersen, Jan O.
(1995), A Comparison of Classifiers and Doc-
ument Representations for the Routing Prob-
lem, in ‘Proceedings of SIGIR’95, the Interna-
tional Conference on Research and Development
in Information Retrieval (1995)’, ACM Press,
pp. 229–237.

CRPIT Volume 49

154

Shankar, S. & Karypis, George(2000), Weight Ad-
justment Schemes for a Centroid Based Classi-
fier, ‘Computer Science Technical Report (TR00-
035)’, Department of Computer Science, Univer-
sity of Minnesota, Minneapolis, Minnesota.

Singhal, A., Mitra, M.& Buckley, C. (1997), Learn-
ing routing queries in a query zone, in ‘Proceed-
ings SIGIR’97, 20th ACM International Confer-
ence on Research and Development in Informa-
tion Retrieval’, pp. 25–32.

Yang, Y. & Pedersen, Jan O. (1997), A Compar-
ative Study on Feature Selection in Text Cat-
egorization, in ‘Proceedings of ICML-97, 14th
International Conference on Machine Learning’,
pp. 412–420.

Zhang, Y., Callan, J.& Minka, T. (2002), Novelty
and redundancy detection in adaptive filtering,
in ‘Proceedings of the 25th annual international
ACM SIGIR conference on Research and devel-
opment in information retrieval’, pp. 81–88.

Appendix

Illustrative example of the NDF learning
model

In sections 2 and 3 we have outlined the basic
concepts of the ndf model and our adaptation of this
model to text filtering task. This appendix presents
a simple example showing the main defect of the
original learning rule of the ndf (Eq.1) when applied
to filtering task and why a modification of this rule
is required. The example also illustrates how the
modified rule (Eq.2) can enhance the efficiency of
the filtering process, in both learning user’s profile
and ranking the filtering result. We will refer to the
original learning rule as NDRule and to the modified
learning rule as FRule.

Table 6: Sample feature-by-document matrix (5 fea-
tures × 7 documents)

Train Test
d1 d2 d3 d4 d5 d6 d7

f1 1 1 0 0 1 0 1
f2 0 0 0 1 0 0 0
f3 0 1 1 1 0 1 0
f4 0 0 1 1 0 1 0
f5 0 0 0 0 1 0 0

Let us now consider the set of documents
presented in table6 which contains four training
documents and three new testing documents. Let us
suppose that the two documents d1, d2 are selected
by the user as examples of his information need
among the four available documents. The system has
to learn the user’s profile using these two examples
in order to rank the incoming testing documents by
relevancy for the user.

As a result of running the NDRule on the refer-
ence documents d1, d2 we obtain the transfer matrix
∅2 of the ndf:

1.

∅1 = ∅0 −
d′1d′T1
‖d′1‖2

where ∅0 = I and d1
′ = ∅0 · d1

2.

∅2 = ∅1 −
d′2d′T2
‖d′2‖2

=









0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1









with d2
′ = ∅1 · d2

On the basis of the above matrix, it is possible to
calculate the habituation proportion of all features
by projecting the unit vector Uf associated with each
feature on the space spanned by the ndf; using the
following formula:

Hf = 1 −
|∅2Uf |

|Uf |

we get:

Hf1 = Hf3 = 1, Hf2 = Hf4 = Hf5 = 0

This means that the features f1, f3 have been
totally learned and will have the same relevancy for
representing the training documents, despite the fact
that f1 is more relevant for discriminating user’s
need than f3 which could be a common feature
(i.e. a non discriminating feature) among documents
in collection. This is due to the fast learning of
features that is characteristic to the NDRule. Hence
once a feature is totally learned it will no more
be considered since only the novelty vector is used
during learning (i.e. the presence or absence of such
a feature in the ensuing training documents will not
affect learning in the next steps). This increases
the learning possibility of non discriminating features.

Calculating now the relevance score of each new
document which corresponds to the habituation
proportion of each document, we get:

Rank Document Relevance score
1 d7 1
2 d5,d6 0.29

Note that although d5 is more relevant than
d6, they were ranked as having the same degree of
relevancy7. The main reason for this is the inability
of the NDRule to correctly distinguish between
discriminating and non discriminating features.
Modifying the learning strategy is then imperative to
avoid this problem. In the following discussion we are
going to show how our modification of the learning
rule (FRule) can improve the filtering efficiency.

Starting from the modified learning rule FRule,
the transfer matrix ∅2 we obtain is:

∅2 =









0.8 0 −0.4 0 0
0 2 0 0 0

−0.4 0 1.2 0 0
0 0 0 2 0
0 0 0 0 2









If we now calculate the habituation proportions
of the features according to Eq.4, we get:

7In more complex cases where there is a high similarity be-
tween the relevant and non relevant training and/or test docu-
ments, many relevant documents may have lower rank than non
relevant ones.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

155

Hf1 = 0.55, Hf3 = 0.37, Hf2 = Hf4 = Hf5 = 0

As it can be seen, f1 is now more habituated than
f3 and accordingly, f1 will be considered as more
relevant than f3 for representing the user’s need.
The ranking of the new documents is shown in the
following table:

Rank Document Relevance score
1 d7 0.55
2 d5 0.23
3 d6 0.16

As it can be expected, the non relevant document
d6 is ranked with the lowest relevance score.

CRPIT Volume 49

156

Using a Temporal Constraint Network for Business Process Execution1

Ruopeng Lu, Shazia Sadiq, Vineet Padmanabhan, Guido Governatori

School of Information Technology and Electrical Engineering
The University of Queensland

Brisbane, Australia
{ruopeng, shazia, vnair, guido}@itee.uq.edu.au

Abstract

Business process management (BPM) has emerged as a
dominant technology in current enterprise systems and
business solutions. However, the technology continues to
face challenges in coping with dynamic business
environments where requirements and goals are constantly
changing. In this paper, we present a modelling framework
for business processes that is conducive to dynamic change
and the need for flexibility in execution. This framework
is based on the notion of process constraints. Process
constraints may be specified for any aspect of the process,
such as task selection, control flow, resource allocation, etc.
Our focus in this paper is on a set of scheduling constraints
that are specified through a temporal constraint network.
We will demonstrate how this specification can lead to
increased flexibility in process execution, while
maintaining a desired level of control. A key feature and
strength of the approach is to use the power of constraints,
while still preserving the intuition and visual appeal of
graphical languages for process modelling..

Keywords: Process modelling; Workflows; Temporal
constraints; Constraint Satisfaction

1 Introduction

It has been long established that automation of specific
functions of enterprises will not provide the productivity
gains for businesses unless support is provided for overall
business process control and monitoring.
Workflowssystems have delivered effectively in this area
for a class of business processes, but typical workflow
systems have been under fire due to their lack of flexibility,
i.e., their limited ability to adapt to changing business
conditions. In the dynamic environment of e-business
today, it is essential that technology supports the business
to adapt to changing conditions, where different process
models should be derived from existing ones to tailor
individual process instances . However, this flexibility
cannot come at the price of process control, which remains
an essential requirement of process enforcement
technologies.

1This work is partly supported by the Australian Research
Council funded Project DP0558854

Copyright © 2006, Australian Computer Society, Inc. This paper
appeared at the Seventeenth Australasian Database Conference
(ADC2006), Hobart, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 49. Gillian
Dobbie and James Bailey, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

Providing a workable balance between flexibility and
control is indeed a challenge, especially if generic
solutions are to be offered. Clearly, there are parts of the
process which need to be strictly controlled through fully
predefined models. There can also be parts of the same
process for which some level of flexibility must b e offered,
often because the process cannot be fully predefined due to
lack of data at process design time. For example, in call
centre responses, where customer inquiries and
appropriate response cannot be completely pre -defined, or
in health systems, where patient care procedures resulting
from individual patient diagnosis cannot be anticipated.

In general, a process model needs to be capable of
capturing multiple perspectives (Jablonski and Bussler
1996), in order to fully capture the business process. There
are a number of proposals from academia and industry on
the modelling environment (language) that allow these
perspectives to be adequately described. Different
proposals offer different level of expressiveness in terms
of these perspectives. Basically these perspectives are
intended to express the constraints under which the
business process can be executed such that the targeted
business goals can be effectively met.

We see three essential classes of constraints:

• selection constraints that define what activities
constitute the process,

• scheduling constraints that define when these
activities are to be performed, both in terms of
ordering as well as temporal dependencies, and
lastly

• resource constraints that define which resources
are required to perform the activities.

These constraints are applicable at two different levels,
process level and activity level. Process level constraints
specify what activities must be included within the process,
and the flow dependencies within these activities
including the control dependencies (such as sequence,
alternative, parallel etc.) and inter-activity temporal
dependencies (such as relative deadlines). Activity level
constraints constitute the specification of various
properties of the individual activities within the process,
including activity resources (applications, roles and
performers, data), and time (duration and deadline
constraints).

Although, the various constraints are inter-related, in this
paper, we primarily focus on process level scheduling
constraints. In typical process specifications, such
constraints are specified using rigid control flow

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

157

dependencies. One such specification approach is
introduced in section 2. Although such approaches have
had significant success for a large class of processes due to
their intuitive and visual appeal, their appropriateness is
debatable for processes that require much greater
flexibility in execution. As an example, consider the
following scenario:

In a Telco servicing organization, customer requests are
received through a web portal. Requests are then assigned
to supervising engineers. These supervising engineers are
considered domain experts capable of diagnosing service
requests and preparing a customized service plan. The
service plan essentially consists of several diagnostic tests
and subsequently one or more actions. This service plan is
then executed and results of the services rendered are
compiled into a service report and logged into the system.
Actual execution of the service plan may be long duration
and involve delegation to several field workers.

In this scenario, consider specifically the task that prepares
the service plan. Suppose that a number of diagnostic tests,
(say 5 tests, T1, T2, … T5), are available. Any number of
these tests can be prescribed for a given request, and in a
given order. The supervising engineer has the flexibility to
design a plan that best suits the customer request. However,
there are certain restrictions on the scheduling of these
tests. For example, T4 and T5 must be performed at the
same time, and T2 must always be performed before T3.
Providing a complete specification of all valid
configurations of these tests is clearly not feasible, but
would be necessary in typical control flow based graphical
languages .

In this paper we target the modelling and execution of
processes which have requirements as identified in the
above scenario. We propose a framework which firstly
allows scheduling constraints to be captured through a
temporal constraint network. Temporal Constraint
Networks (TCN) have been widely studied (Allen 1983;
Vilain, Kautz et al. 1989; van Beek 1990; Dechter, Merir
et al. 1991; van Beek 1992; Meiri 1995; Nebel and Buckert
1995; Drakengren and Jonsson 1996). Essentially TCNs
are defined through 13 interval relations (Allen 1983)
describing the relative positions between each pair of
objects, including before, meets, during, overlaps, starts,
finishes, the inverse of these relations after, met-by,
contains, started-by, finished-by and a special relation
equals. Temporal knowledge of multiple time intervals
can be expressed by these relations and reasoned about in
such a TCN. Using well established results from literature,
we will present a discussion on the properties of such
networks, showing that they not only provide a highly
expressible and succinct specification to meet advanced
requirements as described above, but also viable reasoning
techniques for determining network consistency (i.e.
ensuring executable processes). We will cover this
discussion in section 3.

The proposed framework secondly also provides an
execution environment in which individual instances can
be customized according to specific needs, but still
conform to process constraints. Instance customization is
offered in an intuitive graphical language, whereas
analysis on the correctness of the instance template is

provided through TCN reasoning. In section 4, we will
deliberate on how this is achieved, by illustrating the
concepts through the above scenario. A review of related
literature is provided in section 5, and finally conclusions
and potential extensions are presented in section 6.

2 Background Concepts

In this section we provide essential concepts necessary for
subsequent discussion. These concepts relate to typical
business process modelling and execution, constraint
satisfaction in general and temporal constraint networks in
specific.

A substantial segment of the BPM space endorses the use
of graphical models due to their intuitive and visual appeal
(see e.g. (van der Aalst 1996; Coalition 1998; WfMC 1998;
Sadiq and Orlowska 1999; Sadiq and Orlowska 2000)).
An exa mple of such a modelling language is given in
figure 1.

Choice Merge

EndBegin Fork Synchronizer

Figure 1. Graphical Modelling Language

The language consists of basic constructs such as sequence,
fork, choice etc. Further details of this language can be
found in (Sadiq and Orlowska 1999). We will use this
simple notation to illustrate various examples in this paper.
For example, figure 2 provides three acceptable process
models for the telco scenario.

Figure 2: Process Models for Telco Scenario

Tasks RE, AS, T1, T2, T3, T4, T5, LR in figure 2
correspond to the following process activities in the
scenario (respectively) - customer Request Enter, Assess
Situation and preparation of service plan by supervisor
engineer, Test 1 to Test 5, and finally Logging service
Report.

Constraint satisfaction is a well known problem solving
approach where a problem is formulated as a constraint
satisfaction problem (CSP) and searching for solutions and

CRPIT Volume 49

158

reasoning about some hypotheses in a restricted domain of
knowledge can be performed. The process of problem
formulation is called constraint modelling and the process
of knowledge reasoning and solution searching is called
constraint processing. The problem to be solved is
modelled and represented in a constraint network N , where
N is a triple >< CDX ,, 1. X is a finite set of variables
X = {X1, X2,…Xn} with respective domains D =
{D1,D2,…Dn}, which contain the possible values for each
variable. C is a set of constraints C = {C1, C2,…Ct} where
each constraint Ci is a relation that imposes a limitation on
the values a variable, or a combination of variables may be
assigned to. A constraint can be specified on single
variable (unary constraint), or on a pair of variables
(binary constraint). (Jeavons 1999; Dechter 2003).
However, practical CSPs with higher order constraints are
generally NP-complete (Cook and Mitchell 1997), since
modelling of real world problems often requires a large
number of variables with large domains. e.g. to determine
the satisfiability of a formula containing three literals
(3-SAT problem) is NP-complete.

A simple CSP can be given as finding an assignment of
values from domain {1, 2, 3} to variables x, y and z such
that x > y and y > z hold, where X={x, y, z}, D = {Dx, Dy ,
Dz}, Dx =Dy =Dz ={1, 2, 3} and C={Cxy, Cyz}, Cxy= x > y,
Cyz = y > z.

Figure 3 shows the constraint graph of this problem. A
vertex in the constraint graph represents a variable and the
arc between two vertices represents the constraint between
the two variables.

Figure 3: Constraint Graph

A solution of CPS is an assignment of a single value from
its domain to each variable such that no constraint is
violated. A problem may have one, many or no solution. A
problem that has one or more solutions is satisfiable or
consistent . The only possible solution to the previous
example is x = 3, y = 2, z =1. Constraint satisfaction in
general is a well-studied area and many techniques are
available for reasoning and solving different class of
CSPs.

The requirements to represent and reason about scheduling
constraints in business processes necessitate a formal
framework to capture temporal relations between process
activities. Such temporal information is often incomplete
and indefinite. (Allen 1983) has proposed a framework,
called Interval Algebra (IA) network, for representing and
reasoning about such information.

1 To be more precise, we can define N = >< CdDX ,,, , where d

is a function Dxd 2: → which maps a variable to some value in
the corresponding domain.

Figure 4: Basic Interval Relations (Allen 1983)

In (Allen 1983), 13 basic relations are given (see figure 4),
which can hold between two intervals. In order to
represent indefinite information, the relations between two
intervals are allowed to be a disjunction of the basic
relations. For example, the relation {before, meets}
between intervals x and y restricts that x either finishes
before y starts or x finishes immediately before y.

A restricted class of IA networks (Vilain, Kautz et al.
1989), denoted SA, can be translated into the Point
Algebra framework, called Point Algebra (PA) network in
polynomial time without loss of information. A point
algebra network is a network of binary relations where the
variables represent time points, and the binary relations
between variables are disjunctions of the basic point
relations },,{ >=< . In SA networks, the allowed relations
between two intervals are the subsets of IA that can be
represented using the relations },,{ >=< into conjunctions

of relation between the endpoints (start and finish points)
of the intervals (van Beek 1990). For example, let the

),(11
+− TT and),(22

+− TT denote the start and finish points
of interval T1 and T2 respectively, an IA relation
T1{meets}T2 can be translated into SA as

)()()()(21212121
++−++−−− <∧=∧<∧< TTTTTTTT . The

complete description of SA can be found in (van Beek
1990).

These concepts have been utilized in temporal constraint
networks (TCN). A temporal constraint network is a
subclass of constraint networks where the representations
of temporal information can be viewed as binary constraint
networks and constraint satisfaction techniques can be
used to reason about the temporal information. The
variables in TCNs represent time intervals and constraints
represent sets of allowed temporal relations between them.
A solution or consistent instantiation of the network is an
instantiation of the variables such that all the constraints
between the variables are satisfied (van Beek 1992;
Dechter 2003)

There are two fundamental reasoning problems in
temporal constraint networks(van Beek 1992; Nebel and
Buckert 1995; Dechter 2003). Given a temporal constraint
network N,

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

159

• decide whether there exist a consistent
assignment of values to all variables such that no
constraint is violated, also known as the SAT
problem, and

• find the minimal network of N.
The first problem is to reason about whether the set of
temporal relations modelled in N is valid by determining
whether the given temporal information is consistent, that
is, whether it is possible to find a scenario where the
intervals can be arranged along the time line according to
the given information.
The second problem is to find (if the information is
consistent) the feasible relations between all pairs of
intervals, that is find one, some or all arrangements of the
intervals along the time line, each corresponding to a
possible scenario.
The major advantage of the constraint satisfaction
approach to solve process modelling problems is that all a
process designer has to do is to provide an appropriate
formulation of the CSP. Well established techniques from
constraint processing can be utilized to determine network
consistency, as well as to find solutions. As such, we apply
temporal constraints to modelling scheduling requirements
for ordering of process activities in business processes in a
constraint network. In the following section, we will
provide formal specifications to such a framework.

3 Business Process Constraint Network

Informally, we consider the business process as a set of
tasks, where a task is either an atomic activity (a unit of
work to be done) or a sub-process that contains one or
more activities. The ordering of the tasks is specified by
the temporal relations between the tasks.

3.1 Definition of BPCN

We follow Allen’s IA network approach (Allen 1983) to
represent and reason about temporal information of
business process. A task T in a business process is
modelled as a time interval, which is an ordered pair

),(+− TT such that +− <TT , where −T and +T are

interpreted as points on the time line. In particular, −T is

the point of time when task T starts execution, and +T is

the point of time when T finishes execution. Henceforth,
we refer to a task T as a time interval interpreted by the
endpoints −T and +T .

The scheduling constraints between the tasks constituting
a business process can be expressed by some combination
of the 13 pair-wise interval relations (figurer 4) where each
relation can be defined in terms of endpoint relations.

One or more re lations can be defined on each pair of tasks.
If more than one relation is defined on the same pair of
tasks, we take the disjunction of the relations, which
requires at least one relation must hold for all instances of
the process. These relations describe a partial order of the
tasks while a total order can be given if we assign exactly
one relation between each pair of tasks. A process instance
is a totally ordered instance if for every pair of tasks in the
process either one of the 13 relations holds. The

characteristic of partial order relations corresponds to the
uncertain relationship between tasks, which allows for a
large number of possibilities in which execution of tasks
can be ordered according to different instances of a
process.

Given a set of interval relations defined on the tasks of a
business process, we can determine through logical
inference whether a satisfiable ordering of task can be
constructed. We define a Business Process Constraint
Network (BPCN) based on a temporal constraint network
adapted to represent scheduling constraints between tasks
in the business process.

More specifically, a BPCN is a temporal constraint
network N = >< CDX ,, where the set of variables

},...,{ 1 nTTX = is the set of all tasks in the business

process represented as time intervals , the set of domains
},...,{ 1 nDDD = is the set of ordered pairs of discrete time

values {(s, e) | s < e}, representing the start (s) and end (e)
points of the corresponding task intervals . Binary
constraints between pairs of interval variables are given as
IA relations. The constraint ijC between task

iT and jT is

defined as },,,,,,,,,,,{ eqfifsisoiomimbibRCij =⊆

which describes the allowed relative locations of paired
tasks in the discrete time line. A subset of basic relations
corresponds to an ambiguous, disjunctive relationship
between intervals. As a result, the set of constraints C in a
BPCN defines the partial-order of the process execution
model.

A solution to a BPCN is an assignment of a pair of values
to each variable such that no constraint is violated. A
solution can be established by assigning a single relation to
each pair of tasks that is consistent with the constraint
definition. A solution defines a total order of the process
execution model.

3.2 Consistent BPCN

Consistency is used to describe the quality of the
constraints defined in the constraint network. If conflicts
exist between the constraints, or the inferred constraints,
then we can conclude that the constraint network is
inconsistent and hence no solution exists . The problem of
determining whether a given BPCN is consistent can be
mapped to the SAT problem.

It is desirable that given a BPCN, one can derive multiple
process instances to suit different process requirements.
Thus, we need to make sure that at least one satisfiable
instance can be found, i.e. to determine the given BPCN is
consistent (satisfiable).

Since the set of 13 interval relations are totally disjoint,
and in Allen’s IA network we allow multiple relations
defined on the same pair of variables, conflicts of
constraints in the BPCN can only exist between different
pairs of variables. For example, we have a network of three
variables, X = {T1, T2, T3} and the constraints C = {C12,
C13, C23}, where C12= T1{b, m}T2, C13= T1{s, eq} T3 and
C23 = T2{b, m} T3. The definition for each Cij does not
cause conflicts since for a particular process instance we
only require one relation to hold for each pair of variables,

CRPIT Volume 49

160

i.e. T1{b}T2. However, the network is inconsistent since
from C12 and C23 we can infer '

13C = T1{b}T3, but

∅=∩ 13
'
13 CC , which means we cannot find a scenario

that satisfies C12, C23 and C13 at the same time. Hence the
network is inconsistent.

The technique to determine consistency for BPCN is based
on enforcing local consistency on the network. Before
defining local consistency, we first give a formal
definition for a consistent BPCN.

A BPCN >=< CDXN ,, is said to be consistent if we
can find a consistent scenario of network N. A
network N ′ is a consistent scenario of a network N if and
only if (iff):

1. there exists exactly one relation between each pair of
variables (Ti, Tj) in N ′ , namely, || '

ijR =1; and

2. every such relation '
ijR in N ′ is a subset of the relation

between the same pair of variables in N, namely,

ijij RR ⊆' ; and

3. there exists a consistent instantiation of N ′ .

We assume that each variables have sufficient large
domains, as such when condition 1 and 2 hold, we can
determine N ′ is a consistent scenario of N. To find a
consistent scenario we simply search through the different
possible Ns that satisfy conditions 1 and 2 (van Beek
1992).

Given a BPCN N where the set of relations C is restricted
by SA subclass, to determine the consistency of N only
requires to determine whether N is path-consistent (Vilain,
Kautz et al. 1989; van Beek 1990). To define
path-consistency in BPCN, we need to define the
following operations.

IA describes all possible relations between two intervals,
as such the universal relation between two intervals (which
means there is no constraint defined on them) is the set of
basic relations R.

Being part of Allen’s IA, the inverse, intersection and
composition operations on pairs of variables are also
defined, which are given as follows (Allen 1983; Dechter
2003):

The inverse ∪R of the relation R is the relation
}),(|),{(RabbaR ∈=∪ .

The intersection of two IA relations 'R and ''R , denoted
by ''' RR ∩ , is the set theoretic intersection of 'R and ''R .
For example, given },,,{' mfsoR = and },,{'' dfsR = ,

},{''' fsRR =∩ .

The composition of two basic IA relations 'r and ''r ,
denoted by ''' rr ⊗ , is defined by the transitive table (see
figure 5). For example, the basic relations T1 meets T2,
T2 before T3 induce a new (single or composite) relation
T1 before T3. The composition of two composite
relations 'R and ''R , denoted by ''' RR ⊗ , is the
composition of the constituent basic relations:

 }'''',''|'''{''' RrRrrrRR ∈∈⊗=⊗

 ''r

 'r
b s d o m

b b b b o m d s b b

s b s d b o m b

d b d d b o m d s b

o b o o d s b o m b

m b m o d s b b

Figure 5: Portion of the transitivity table defined by
(Allen 1983)

A binary constraint Cij is path-consistent relative to a
variable Tk iff ∅≠⊗∩))((kjikij CCC . A BPCN is a

path-consistent BPCN iff for every relation Rij (including
universal relations) and for every jik ,≠ , Rij is
path-consistent relative to Tk.

Validation of the constraint definition on a BPCN can be
achieved by applying a generic path-consistency
algorithm.

Figure 6: Path-Consistency Algorithm (Dechter 2003)

We repeatedly apply the above algorithm to the network N
until no further changes can be made to the current
constraints or some constraint becomes empty, indicating
inconsistency. The operation)(kjikijij CCCC ⊗∩←

applied to each constraint is called the relaxation operation
(Dechter 2003). For some class of IA relations, this
algorithm is guaranteed to determine consistency in

)(3nO time, where n is the number of intervals in N.
Further discussions can be found in section 4.

4 Execution Framework

As explained in the previous section, process definition
consists of a pool of activities and a small number of
constraints defined on those activities. However, the
process instances are allowed to follow a very large
number of execution paths. As long as the given
constraints are met, any execution path dynamically
constructed at runtime is considered legal. This ensures
flexible execution while maintaining a desired level of
control through the specified constraints. The key feature
and strength of the approach is to use the power of

Input: An IA network N

Output: A path-consistent IA network

1 for k:= 1 to n do

2 for i,j:=1 to n do begin

3)(kjikijij CCCC ⊗∩←

4 if ∅=ijC then break

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

161

constraints, while still preserving the advantages of
graphical languages.

Below we explain the core functions of the process
management system based on the concepts presented
above. The discussion is presented as a series of steps in
the specification and deployment of the Telco example
process. Figure 7 provides an overview diagram of these
steps and associated functions.

Figure 7: Framework Overview

• Step 1: The definition of the (flexible) process model
takes place. The pool of activities and associated
constraints are defined.

We specify the telco business process using BPCN. The
process is represented as N = <X, D, C>. There are 8 tasks
in this business process, X = {RE, AS, T1, T2, T3, T4, T5,
LR}, which correspond to customer request, situation
assessment by Supervisor Engineer, test 1 to test 5, and
logging service report, respectively.

The set of constraints C is defined according to the
scheduling requirements. Consider the following
restrictions on the scheduling of the tests: Test 1 must start
before test 2 starts. If both tests do not solve the problem
then further test 3 is ordered. Test 3 must not start before
test 2 finishes. Test 4 and test 5 must start at the same time.
Besides, no tests can start before Supervisor Engineer
starts assessing the report, and no tests can be started after
service report is logged. One can define the set of
scheduling constraints C = {CRE-AS, CAS-T1, CAS-T4, CT1-T2,
CT2-T3, CT4-T5, CAS-LR,, CT2-LR, CT3-LR, CT5-LR}, where

CRE-AS= RE{b, m, o}AS CT4-T5 = T4{s, si, eq}T5

CAS-T1= AS{b, m, o }T1 CAS-LR = AS{b, m}LR

CAS-T4= AS{b, m, o }T4 CT2-LR = T2 {b, m}LR

CT1-T2= T1 {b,m,o,di,fi}T2 CT3-LR = T3 {b, m}LR

CT2-T3 = T2{b, m}T3 CT5-LR = T5 {b, m}LR

For example, constraint CT2-T3 = T2{b, m}T3 defines a
precedence order on the executions of T2 and T3, which
requires T2 must finish execution before or meets T3
(Figure 8).

Figure 8: Valid relations between T2 and T3

Figure 9 shows some of the many valid orders of
execution for T2 and T3 in some instance templates based
on graphical model. The unnamed tasks represent any
valid tasks in the process.

On the graphical model, relations {o, oi, s, si, d, di, f, fi, eq}
correspond to concurrent execution pattern, i.e., there is no
path between two tasks. Relations {b, bi, m, mi }
correspond to either concurrent or serial execution pattern.
The interval relation between two tasks in concurrent
execution pattern requires consideration of the execution
duration of the tasks, i.e. for each task, its estimated
maximum duration must be provided. T2 and T3 in figure9
(a) (b) (c) execute in serial, while in figure9 (d) execute in
concurrent threads of control.

Figure 9: Valid execution order of T2 and T3. (a)(c)
and (d) correspond to T2{meets}T3, (b) corresponds to

T2{before}T3

If no constraint is defined on a pair of tasks, then universal
constraint applies, which means any 13 relations can be
assigned to this pair of tasks.

Figure 10 shows the constraint graph of the BPCN
network N.

Figure 10: Constraint graph of N

CRPIT Volume 49

162

• Step 2: The process definition is verified for structural

errors (Sadiq and Orlowska 2000). The validation of
the given constraint set may take place at this time.

This step is to determine whether the BPCN is consistent.
We apply the algorithm shown in figure 6 to the BPCN,
the resulting consistent network is shown in figure 11.

Figure 11 Path-Consistent Network of N

In the original network, T2{m}LR is not consistent with
respect to CT2-T3. and CT3-LR since from T2{b,m}T3 and
T3{b,m}LR we can infer through transitive table
T2{b}LR but not T2{m}LR. Thus T2{m}LR has been
deleted from CT2-LR. Similarly AS{m}LR has been deleted
from CAS-LR.

It is important to point out that the choice of constraints
that will be removed as a result of conflicts is a design
issue. The framework will only identify which constraints
have conflicts. Process designers then have to make a
decision based on process requirements, as to which
constraint can be removed.

• Step 3: The definition created above is uploaded to
the process engine. This process model is now ready
for deployment.

• Step 4 : For each case of the process model, the user or

application would create an instance of the process
model. On instantiation, the engine creates a copy of
the process definition and stores it as an instance
template. This process instance is now ready for
execution.

• Step 5: The available process activities of the newly

created instance are assigned to performers through
work lists and activity execution takes place as usual,
until the instance needs to be dynamically adapted to
particular requirements arising at runtime (as shown
in next step).

• Step 6: The knowledge worker or expert user, shown

as the dynamic instance builder, will invoke a special
build function, and undertake the task of dynamically
adapting the instance template with available pool of
activities, while guided by the specified constraint set.
This revises the instance template. The build function
is thus the key feature of this approach and requires
the capability to load and revise instance templates for
active instances.

An instance template is a particular customization of a
given instance to suit runtime requirements, e.g. a
particular configuration of tests prescribed by a service

plan. Instance templates define total order of task
execution. Figure 2(b)(c) are examples of valid instance
templates for the Telco scenario.

• Step 7: The next step is to validate the new template,
to ensure that it conforms to the correctness properties
of the language as well as the given constraints.

An instance template is a totally ordered process instance,
where for each pair of tasks, there must be exactly one
relation between them. The total ordering in the given
template is defined by the assignment of values to the
endpoints of each task instance and visualised in the
graph-based model. The template validation service first
translates the total ordering of task instances from
graph-based model into the interval model and checks
whether the given sequence of task execution conforms to
the constraints defined in the network. The objective of the
translation is to find out the implicit temporal relations
between tasks and check against the process constraints
defined as interval relations on the tasks.

Take the instance template shown in figure 2(c) as the
instance template to be validated. Through the PA-IA
translation table (van Beek 1990) given in figure 12, we
can work out the interval relation between each pair of
tasks (as shown in figure 13). Then we check for each
translated relation '

ijr . If '
ijr belongs to Rij of the consistent

relations given in figure 11, then ijr is a valid relation

between Ti and Tj. If ijr is valid for all Ti and Tj in the

instance template, then this template is a valid process
instance according to N (a consistent scenario of N).

 PA

IA

−−
ji TT +−

ji TT −+
ji TT ++

ji TT

{eq} = < > =

{b} < < < <

{d} > < > <

{o} < < > <

{m} < < = <

{s} = < > <

{f} > < > =

{di} < < > >

{oi} > < > >

(fi) < < > =

Figure 12: PA-IA translation for basic IA relations
(van Beek 1992)

The validation procedure corresponds to determining
whether a given network instance is a consistent scenario
of the original network, as discussed in section 3.2.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

163

 PA

 IA
−−
ji TT +−

ji TT −+
ji TT ++

ji TT
Translated
Relation

'
ijR

RE-AS < < = < {m}

AS-T1 < < = < {m}

AS-T4 < < < < {b}

T1-T2 < < = < {m}

T2-T3 < < = < {m}

T4-T5 = < > = {eq}

AS-LR < < < < {b}

 T2-LR < < < < {b}

T3-LR < < = < {b}

T5-LR < < < < {b}

Figure 13: PA-IA translation for the given instance
template

Since every translated relation ijr in the given instance

template belongs to Rij, we can determine that the instance
template is valid. We can say that the instance template as
a totally ordered process instance is consistent with regard
to the constraint definition in N.

• Step 8: On satisfactory validation results the newly

defined (or revised) instance template resumes
execution. Execution will now continue as normal,
until completion or until re-invocation of the build
function, in which case steps 6-8 will be performed
again.

Discussion

The execution framework presented above is based on the
fact that consistency of BPCN can be determined by
algorithm shown in figure 6, and the translations between
IA and PA are made possible without loss of information.

It has been shown (Allen 1983; Vilain, Kautz et al. 1989)
that the algorithm applied in step 2 is sound but incomplete
for the full IA network. It is sound because it does not
introduce invalid relations to the network. It is incomplete
because in some cases consistency cannot be determined.
Determining the minimal network for some class of IA
network is known to be NP-complete. However, in the
execution framework, we only consider the SA, a subclass
of IA network that can be translated into PA, because we
also need such translations when verifying instance
templates given in graphical process models. SA networks
are tractable (Vilain, Kautz et al. 1989; Schwalb and Vila
1998), where enforcing path-consistency correctly decides
consistency of the network (SAT) in)(3nΟ where n is the
number of intervals .

Besides, many tractable subclasses of IA network have
been identified, including pointisable IA by (Vilain, Kautz
et al. 1989; van Beek 1990), tractable subclass of the
Point-Interval algebra by (Drakengren and Jonsson 1996;
Jonsson, Drakengren et al. 1996), ORD-Horn subclass of

IA (Nebel and Buckert 1995) and Interval-point algebra
(IPA) network by (Meiri 1995). A complete classification
of tractability in Allen’s Algebra has been given by
(Drakengren and Jonsson 1997). On the other hand,
approximation can also be made to express intractable
subclass of relations by the tractable counterpart (van Beek
1989).

Furthermore, it is also worthwhile to consider how many
relations are sufficient to describe scheduling relations for
certain classes of business processes. If no constraint is
specified on a BPCN, we permit any combinations of
ordering of the tasks in any process instance. If too many
constraints are specified, the constraint network is too
rigid, and corresponds to the over-constraint problem
(Beaumont, Sattar et al. 2001). The minimal requirement
is that any constraint definition should permit at least one
consistent scenario (to make constraint network
consistent). The practical requirement however is that the
constraint definition should permit a large number of
consistent scenarios. This is the case when the full
potential of the proposed framework will be realized (as
illustrated previously in this section).

5 Related Work

Constraints have been incorporated with business process
modelling. (Crampton 2004) identifies a generic class of
constraints, called entailment constraints, which restrict
the execution order of process tasks with respect to
authorisation. e.g.“Task 2 must be performed by a role that
is more senior than the role that performed task
1”(Crampton 2004).

In (Tsang 2003), constraint satisfaction in business process
modelling is aligned with Distributed Constraint
Satisfaction (DCSP), a branch of CSP in a collaborative
agent environment. An additional set of constraints, E,
called open constraints is used to capture external and
uncertain information. Many studies on DCSP are
available in literature (Yokoo 2001).

Planning and scheduling are major applications in
constraint satisfaction. (Barták 1999) provides a
classification for resource allocation and temporal
constraints, as well as dynamic models for reasoning about
such information. Particularly, time is modelled in either
discrete model or event-based model. In discrete time
model, the timeline is divided into a sequence of discrete
time intervals with some duration. The variables are time
intervals describing durations of process activities. This
model is applicable for modelling processes where time
intervals represent individual tasks. The event-based
model only capture time points when change takes place.
This model associate mostly with resources constraints. In
our execution framework, the temporal information is
modelled as discrete time intervals.

Temporal reasoning techniques have been applied to
business process modelling, mostly to capture relative and
absolute deadline constraints (Marjanovic and Orlowska
1999; Marjanovic 2000; Li and Yang 2004; Eder, Panagos
et al. 1999; Eder, Gruber et al. 2000; Combi and Pozzi
2003). In particular, (Marjanovic 2000) provides a
dynamic verification algorithm for absolute and relative
deadline constraints in workflow, where the algorithm is

CRPIT Volume 49

164

based on execution durations represented by metric points.
(Combi and Pozzi 2003) describe absolute and relative
deadline constraints based on endpoints of intervals , as
well as some considerations to represent fork and merge
operators. It is obvious that these constraints can be
described by a small subset of PA, but there is no
constraint validation algorithm given in this approach.
(Eder, Panagos et al. 1999) present a timed workflow
graph approach to express the upper and lower bound
constraints of task execution, where the constraint
semantics is based on the execution durations and relative
deadlines of process tasks. (Bettini, Wang et al. 2002)
present a quantitative temporal constraints model which
supports multiple time granularity. In this model,
constraints are defined on quantitative time points (i.e.
seconds, hours), such time points are regarded as variables,
and the constraints are defined as temporal distances. In
some process modelling approaches, scheduling
constraints are incorporated with resource allocation
constraints, such as (Li and Yang 2004; Li and Yang 2004;
Tan, Crampton et al. 2004; Tan, Crampton et al. 2004).

The distinctions between the framework proposed in the
paper and the previous work can be made as follows:
Firstly, we have shown that a large subset of full IA
network, called the SA network can be used to represent
temporal relations in business processes within the BPCN.
Secondly, we have shown through a case study that using
generic constraint propagation techniques
(path-consistency algorithm shown in figure 6) is
sufficient to provide validation for such information in
BPCN. Last but not least, we have shown translations
between graph-based process description to interval-based
process description where the former enables intuitive
model expression and the later provides a wealth of
reasoning techniques.

6 Summary and Outlook

In summary, we have presented a framework that allows
for flexible business process execution. The framework is
based on the notion of process constraints, and in this
paper a particular sub class of process constraints has been
considered. In general, we see the level of definition of
these constraints along a continuum of specification. There
is the completely predefined model on one end, and the
model with no predefinition on the other. Thus the former
only has strong constraints (e.g. X and Y are activities of a
given process, and Y must immediately follow X), and the
latter no constraints at all. The former extreme is too
prescriptive and not conducive to dynamic business
environments; and the latter extreme defeats the purpose
of process enforcement, i.e. with insufficient constraints,
the process goals may be compromised and quality of
service for the process cannot be guaranteed. Finding the
exact level of specificity along this continuum will mostly
be domain dependent. However, technology support must
be offered at a generic level. This work has accordingly
attempted to address the need to provide a modelling
environment wherein the level of specification can be
chosen by the process designer such that the right balance
between flexibility and control can be achieved.

We see significant potential in expanding this framework
to incorporate other classes of constraints, and especially

to study the interplay between them. For example if two
tasks X and Y have a scheduling constraint on them,
defined by an overlap relation X {o}Y , and then a resource
constraint is also defined on them, say by the binding of
duty (Li and Yang 2004) relation (i.e. X and Y must be
performed by the same resource), what impact does this
have on the overall constraint network. There can be
several interpretations of this problem, which need to be
analysed to formulate workable solutions. However, the
essence of the framework will still hold true, that is, a
small number of constraints can potentially be specified to
realize a very large number of valid instances at runtime.

Another interesting problem is to augment the template
construction (see section 4) with an intelligent search
function for best template. This requires at a minimum a
facility to build an objective function into the BPCN and
furthermore a facility to search the solution space of the
BPCN for solutions meeting the objective. Example of
such an objective function can be minimum time span of
part or whole of the process, minimum consumption of a
given resource, maximal concurrent execution of process
activities etc. Such a service could greatly enhance the
productivity of the knowledge worker who is dynamically
building the template, by not only allowing them to
incorporate domain experience in to the template
construction, but also providing guidelines on best
practice.

7 References

Allen, J. F. (1983): Maintaining knowledge about
temporal intervals. Communications of the ACM
26: 832 - 843.

Barták, R. (1999): Dynamic Constraint Models for
Planning and Scheduling Problems. Lecture
Notes In Computer Science; Vol. 1865, Selected
papers from the Joint ERCIM/Compulog Net
Workshop on New Trends in Constraints,
Springer-Verlag London, UK: 237 - 255.

Beaumont, M., A. Sattar, et al. (2001): Solving
Overconstrained Temporal Reasoning Problems .
14th Australian Joint Conference on Artificial
Intelligence: Advances in Artificial Intelligence,
Springer-Verlag.

Bettini, C., X. S. Wang, et al. (2002): Temporal Reasoning
in Workflow Systems. Distributed and Parallel
Databases 11(3 (May 2002)): 269 - 307\6.

Combi, C. and G. Pozzi (2003): Temporal Conceptual
Modelling of Workflows. Lecture Notes in
Computer Science, Springer-Verlag. 2813: 59 -
76.

Cook, S. A. and D. G. Mitchell (1997): Finding Hard
Instances of the Satisfiability Problem: A Survey.
The DIMACS Workshop on Satisfiability
Problems, American Mathematical Society.

Crampton, J. (2004): On the satisfiability of authorization
constraints in workflow systems.
RHUL--MA--2004--1, Department of
Mathematics, Royal Holloway, University of
London.

Dechter, R. (2003): Constraint Processing, Morgan
Kaufmann Publishers.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

165

Dechter, R., I. Merir, et al. (1991): Temporal Constraint
Networks. Artificial Intelligence 49: 61 - 95.

Drakengren, T. and P. Jonsson (1996): Maximal Tractable
Subclasses of Allen's Interval Algebra:
Preliminary Report. AAAI/IAAI. Vol. 1: 389-394.

Drakengren, T. and P. Jonsson (1997): Towards a
Complete Classification of Tractability in Allen's
Algebra. IJCAI: 1466-1475.

Eder, J., W. Gruber, et al. (2000): Temporal Modeling of
Workflows with Conditional Execution Paths.
Database and Expert Systems Applications: 11th
International Conference, DEXA 2000, London,
UK, Springer-Verlag GmbH.

Eder, J., E. Panagos, et al. (1999): Time Constraints in
Workflow Systems. Advanced Information
Systems Engineering: 11th International
Conference, CAiSE'99, Heidelberg, Germany,,
Springer-Verlag GmbH.

Jablonski, S. and C. Bussler (1996): Workflow
Management - Modeling Concepts, Architecture
and Implementation, International Thomson
Computer Press.

Jeavons, P. (1999): Constructing Constraints . The 4th
International Conference on Principles and
Practice of Constraint Programming,
Springer-Verlag.

Jonsson, P., T. Drakengren, et al. (1996): Tractable
subclasses of the point-interval algebra: A
complete classification. KR'96, AAAI Press/The
MIT Press.

Li, H. and Y. Yang (2004): Dynamic checking of temporal
constraints for concurrent workflow. Electronic
Commerce Research and Applications 4(2005):
124-142.

Li, H. and Y. Yang (2004): Verification of Temporal
Constraints for Concurrent Workflows.
Advanced Web Technologies and Applications,
6th Asia-Pacific Web Conference, APWeb 2004,
Hangzhou, China, Springer.

Marjanovic, O. (2000): Dynamic verification of temporal
constraints in production workflows.
Proceedings of 11th Australasian Database
Conference, 2000. ADC 2000.

Marjanovic, O. and M. E. Orlowska (1999): Dynamic
Verification of Absolute and Relative Deadline
Constraints in Production Workflows, Technical
Report, No. 446, Department of Computer
Science and Electrical Engineering, University of
Queensland, Australia.

Meiri, I. (1995): "Combining qualitative and quantitative
constraints in temporal reasoning." Artificial
Intelligence 87: 343 - 385.

Nebel, B. and H.-J. Buckert (1995): "Reasoning about
temporal relations: A maximal tractable subclass
of Allen's interval algebra." Journal of ACM
42(1): 43 - 66.

Sadiq, W. and M. E. Orlowska (1999): On Capturing
Process Requirements of Workflow Based
Business Information System. 3rd International

Conference on Business Information Systems
(BIS '99), Poznan, Poland, Springer-Verlag.

Sadiq, W. and M. E. Orlowska (2000): "Analyzing Process
Models using Graph Reduction Techniques."
Information Systems 25(2): 117 - 134.

Schwalb, E. and L. Vila (1998): Temporal Constraints: A
Survey. Constraints 3(2 - 3): 129-149.

Tan, K., J. Crampton, et al. (2004): The consistency of
task-based authorization constraints in workflow
systems . Proceedings of 17th IEEE Computer
Security Foundations Workshop, 2004 .

Tsang, E. P. K. (2003): Constraint Satisfaction in Business
Process Modelling,
http://www.econ.uba.ar/servicios/publicaciones/j
ournal7/tsang.htm, Accessed 2005.

van Beek, P. (1989): Approximation algorithms for
temporal reasoning. The 11th International Joint
Conference on Artificial Intelligence, Detroit,
Mich, Morgan Kaufmann.

van Beek, P. (1990): Exact and Approximate Reasoning
about Qualitative Temporal Relations. Dept. of
Computer Science, University of Alberta, PhD
Thesis.

van Beek, P. (1992): "Reasoning about Qualitative
Temporal Information." Artificial Intelligence 58:
297 - 326.

van der Aalst, W. M. P. (1996): Three Good reasons for
Using a Petri-net-based Workflow Management
System. Proceedings of the International
Working Conference on Information and Process
Integration in Enterprises (IPIC'96): S. Navathe
and T. Wakayama. Camebridge, Massachusetts :
179 - 201.

Vilain, M., H. Kautz, et al. (1989): Constraint propagation
algorithms for temporal reasoning: a revised
report. Readings in qualitative reasoning about
physical systems. San Francisco, CA, USA,
Morgan Kaufmann Publishers Inc: 373--381.

WfMC (1998): Interface 1: Process Definition Interchange,
Process Model, Workflow Management
Coalition.

Yokoo, M. (2001): Distributed Constraint Satisfaction ,
Springer.

CRPIT Volume 49

166

Discovering Task-Oriented Usage Pattern for Web Recommendation

Guandong Xu1, Yanchun Zhang1, Xiaofang Zhou2
1School of Computer Science and Mathematics

Victoria University, PO Box 14428, VIC 8001, Australia
2 School of Information Technology & Electrical Engineering

 University of Queensland, Brisbane QLD 4072, Australia

{xu,yzhang}@csm.vu.edu.au
zxf@itee.uq.edu.au

Abstract
Web transaction data usually convey user task-oriented
behaviour pattern. Web usage mining technique is able to
capture such informative knowledge about user task
pattern from usage data. With the discovered usage
pattern information, it is possible to recommend Web user
more preferred content or customized presentation
according to the derived task preference. In this paper, we
propose a Web recommendation framework based on
discovering task-oriented usage pattern with Probabilistic
Latent Semantic Analysis (PLSA) model. The user
intended tasks are characterized by the latent factors
through probabilistic inference, to represent the user
navigational interests. Moreover, the active user’s
intuitive task-oriented preference is quantized by the
probabilities, by which pages visited in current user
session are associated with various tasks as well.
Combining the identified task preference of current user
with the discovered usage-based Web page categories, we
can present user more potentially interested or preferred
Web content. The preliminary experiments performed on
real world data sets demonstrate the usability and
effectiveness of the proposed approach.
Keywords: Task-Oriented Usage Pattern, Web Usage
mining, Web Recommendation.

1 Introduction
With the rapid development of a variety of Internet
applications, Web has recently become not only a
powerful platform and tool for retrieving information, but
also a large repository for discovering knowledge.
However, how to find needed and related information
from the Web is a big challenge that Web information
search domain is facing. Among much work addressed to
such so-called information overload problem, Web
recommendation is one of the instrumental means to help
users locate more preferred information. Basically, Web
recommendation is considered as the process of
identifying user’s preference and adapting service to
satisfy user’s need based on referring the historical
behaviour of current user or others who share similar
interest to this user.

To-date, there are two kinds of approaches and
techniques commonly used in Web recommendation,
namely content-based filtering agents and collaborative
filtering systems (Dunja 1996; Herlocker, Konstan et al.
2004). Content-based filtering systems, such as
WebWatcher (Joachims, Freitag et al. 1997) and client-
side agent Letizia (Lieberman 1995), generally generate
recommendation based on the pre-constructed user
profiles by measuring the similarity of Web content to
these profiles. In contrast, Collaborative filtering systems
make recommendation by utilizing the rating of current
user for objects via referring other users’ preference that
is closely similar to current one. Since collaborative
filtering technique refers common interest of user group
instead of individual’s and is capable of presenting more
preferable content to users, it has recently been widely
adopted in Web recommendation applications and have
achieved great success as well (Shardanand and Maes
1995; Konstan, Miller et al. 1997; Herlocker, KONSTAN
et al. 1999). In addition, Web usage mining (WUM) has
been proposed as an alternative method for not only
revealing user access pattern, but also making Web
recommendation in recent year (Mobasher, Dai et al.
2002). WUM is an application of data mining to discover
usage pattern from Web log files and identify the
underlying user functional interests that lead to common
navigational activity, and has become an active topic of
research and commercialization. Existing WUM
techniques, which are well studied and developed in data
mining domain, include collaborative filtering based on
the k-Nearest Neighbor algorithm (kNN) (Shardanand and
Maes 1995; Konstan, Miller et al. 1997; Herlocker,
KONSTAN et al. 1999), Web clustering (Han, Karypis et
al. 1998; Perkowitz and Etzioni 1998; Mobasher, Dai et
al. 2002), association rule mining (Agrawal and Srikant
1994; Agarwal, Aggarwal et al. 1999) and sequential
pattern mining technique (Agrawal and Srikant 1995).
Amongst these methods, Web clustering is an important
topic that engages in clustering not only Web users but
also pages - discovering clusters of users that exhibit
similar access pattern and categories of pages that share
close functionality to users. By making use of the
discovered knowledge from user clusters or page
categories, Web designer may understand the users better,
capture the unobservable relationships among pages from
user’s view ponit deeply, thus, can improve Web
structure design and provide more preferable and
customized service to the users.
In our previous work (Xu, Zhang et al. 2004; Xu, Zhang
et al. 2005), Web user clustering and page grouping

Copyright (c) 2006, Australian Computer Society, Inc.
This paper appeared at the Seventeenth Australasian
Database Conference (ADC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 49. Gillian Dobbie and James
Bailey, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

167

techniques are well investigated to reveal such
informative knowledge with regard to user behaviour and
page functionality based on mining usage data.
Especially, a so-called Probabilistic Latent Semantic
Analysis (PLSA) model is proposed to address the topic
of Web clustering. Different from other existing Latent
Semantic Analysis (LSA) method, PLSA is to capture not
only the underlying relationships among Web users as
well as pages, but also reveal the hidden task-oriented
pattern derived form WUM with probability inference
approach. The main idea of this paper is to extend the
above work to Web recommendation by identifying user
task-oriented access pattern and integrating usage-based
Web page category into Web recommendation process to
improve the efficiency of recommendation. Moreover,
approaches based on PLSA has been successfully applied
in collaborative filtering (Hofmann 2004) Web usage
mining (Jin, Zhou et al. 2004; Xu, Zhang et al. 2004; Xu,
Zhang et al. 2005), text learning and mining (Cohn and
Chang 2000; Hofmann 2001), co-citation analysis (Cohn
and Hofmann 2001; Hofmann 2001) and related topics.
In this paper, we propose a Web recommendation
framework based on discovering task-oriented usage
pattern with PLSA model. The Web recommendation
process exploits the usage pattern derived from Web
usage mining to predict user preferred content or
customized presentation. At data preparation stage, we
collect Web transaction data from Web server log files,
and construct user session collection and Web page
corpus respectively. Conceptually, each user session can
be expressed as a weighted Web page vector, in which
the element reflects the relative significance contributed
by the corresponding Web page in same user session.
After integrating all user sessions, the Web access
observation (i.e. usage data), on which the mining task is
performed, is ultimately constructed in the form of page-
based weight matrix. By employing PLSA model, we can
not only characterize the underlying relationships among
Web access observation but also identify the latent
semantic factors that are considered to represent the
navigational tasks of users during their browsing period.
Such relationships are determined by the estimated
probabilities, and then are utilized to discover the task-
oriented usage patterns in the form of a dominant task
sequence. Furthermore, we make use of this discovered
knowledge of usage pattern for Web recommendation by
combining the task-oriented usage pattern and Web page
category into Web recommendation to predict the more
potentially interested or preferred content to user.
The main contributions we have done in this work are
described as follows: firstly, we present a Web usage
mining and Web recommendation integrated framework
based on PLSA model. Secondly, we investigate the
discovery of user access pattern and latent factor related
to these patterns via employing probability inference
process, in turn, make use of the discovered usage
knowledge for Web recommendation. Particularly, we
develop an algorithm for identifying task-oriented usage
pattern and predicting user potentially visited pages based
on Bayesian updating approach and incorporating Web
page category into Web recommendation. Finally, we
demonstrate the usability and effectiveness of the

proposed model by conducting experiments on two real
world datasets.
The rest of the paper is organized as follows. In section 2,
we introduce Web usage mining technique with PLSA
model, especially we discuss how to identify user access
session and achieve probability estimations via
Expectation-Maximization (EM) algorithm. We present
the algorithms for discovering Web page categories and
identifying task-oriented access pattern in section 3. In
section 4, we concentrate on how to develop Web
recommendation framework upon the discovered usage
knowledge. To validate the proposed approach, we
conduct preliminary experiments on two real world
datasets, present evaluation results in section 5, and
conclude the paper and outline future work in section 6.

2 Web Usage Mining with PLSA
Web usage mining usually consists of three steps, i.e. data
collection and pre-processing, pattern mining as well as
knowledge application. As a result, Web recommendation
is actually the ultimate stage of the Web usage mining,
i.e. application stage. The overview of Web usage mining
and Web recommendation is depicted in Figure 1.

2.1 Usage Data Model
Prior to introducing Web usage mining technique, we
briefly discuss the issue with respect to construction of
usage data. In general, the exhibited user access interests
may be reflected by the varying degrees of visits on
different Web pages during one session. Thus, we can
represent a user session as a weighted page vector visited
by the user during a period. In this paper, we use the
following notations to model the co-occurrence activities
of Web users and pages:

• { }1 2, , mS s s s= � : a set of m user sessions.

• { }1 2, , nP p p p= � : a set of n Web pages.

• For each user, the navigational session is
represented as a sequence of visited pages with
corresponding weights: { },1 ,2 ,, ,i i i i ns a a a= �

,

where aij denotes the weight for page
jp visited in

is user session. The corresponding weight is
usually determined by the number of hit or the
amount time spent on the specific page. Here, we
use both of them to construct usage data from two
real world data sets.

• { },m n i jSP a× = : the ultimate usage data in the

form of weight matrix with dimensionality of
m n× .

Generally, the element in the session-page matrix, ija , is

the normalized weight associated with the page jp in the

user session si, which is usually determined by the
number of hit or the amount time spent on the specific
page. The session normalization is able to capture the
relative significance of a page within one user session
with respect to others pages accessed by same user. For
example, Figure 2 depicts an usage snapshot from log file
(Shahabi, Zarkesh et al. 1997; Xiao, Zhang et al. 2001).

CRPIT Volume 49

168

The element in the normalized session-page matrix is
determined by the ratio of the visiting time on
corresponding page to total visiting time, e.g.

11 15 (15 43 52 31 44)*100 9.7a = + + + + = … and so on.

Fig. 1. The overview of Web Mining and Web
Recommendation system

Fig. 2. A usage snapshot and its normalized session-
page matrix expression

2.2 PLSA Model
The PLSA model is based on a statistic model called
aspect model, which can be utilized to identify the hidden
semantic relationships among general co-occurrence
activities (Hofmann 1999). Similarly, we can
conceptually view the user sessions over Web pages
space as co-occurrence activities in the context of Web
usage mining to discover the latent usage pattern. For the
given aspect model, suppose that there is a latent factor
space { }1 2, , kZ z z z= � and each co-occurrence

observation data (,)i js p is associated with the factor

kz Z∈ by varying degree to kz . In this manner, each

usage data (,)i js p can convey the user navigational

interest by mapping the observation data into the k-
dimensional latent factor space. The degrees to which

such relationships are “explained” by each factor are
represented by the factor-conditional probabilities. Below
is some background of PLSA. We use
following probability definitions to model usage data:

• ()iP s denotes the probability that a particular user

session is will be observed in the occurrences data,

• (|)k iP z s denotes a user session-specific
probability distribution on the unobserved class
factor kz explained above,

• (|)j kP p z denotes the class-conditional

probability distribution of pages over the latent

variable kz .

Based on these definitions, we calculate probability of an
observed pair (,)i js p by adopting the latent factor

variable kz as:

)|()(),(ijiji spPsPpsP •= (1)

(|) (|) (|)j i j i
z Z

P p s P P z P z s
∈

= •∑ (2)

By applying Bayesian formula, we obtain the probability
of an observation data associated with the latent factor as:

)|()|()(),(zPPzsPzPpsP j
Zz

iji ∑
∈

••= (3)

Following the likelihood principle, the total likelihood Li
is determined as

∑
∈∈

•=
PpSs

jijii
ji

psPpsmL
,

),(log),((4)

where (,)i jm s p is the element of the session-page

matrix corresponding to session is and page jp .

From knowledge of statistics, Expectation Maximization
(EM) algorithm is an effective way to perform maximum
likelihood estimation in latent variable model (Dempster,
Laird et al. 1977). Usually, two steps namely Expectation
(E) and Maximization (M) step are iterating in this
algorithm, i.e. E step leads to calculate the posterior
probabilities for the latent factors based on the current
estimates of conditional probability; whereas M step
results in updating the estimated conditional probabilities
and maximizing the likelihood based on the posterior
probabilities computed in the previous E-step, i.e.
(1) In the E-step, we can simply apply Bayesian formula

to generate following variable based on usage
observation:

∑
∈

••

••
=

Zz
kjkik

kjkik
jik

k

zpPzsPzP

zpPzsPzP
pszP

)|()|()(

)|()|()(
),|(

 (5)

(2) In M-step, we can compute:

∑
∑

∈∈

∈

•

•

=

PpSs
jikji

Ss
jikji

kj

ji

i

pszPpsm

pszPpsm

zpP

',

''),|(),(

),|(),(
)|(

 (6)

1) Main Movies: 20sec Movies News: 15sec NewsBox: 43sec
Box-Office Evita: 52sec News Argentina:31 sec Evita: 44sec

2) Music Box: llsec Box-Office Crucible: 12sec Crucible
Book: 13sec Books: 19sec

3) Main Movies: 33sec Movies Box: 21sec Boxoffice Evita:
44sec News Box: 53sec Box-office Evita: 61 sec Evita : 31sec

4) Main Movies: 19sec Movies News: 21sec News box: 38sec
Box-Office Evita:61 sec News Evita:24sec Evita News: 31
sec News Argentina: 19sec Evita: 39sec

5) Movies Box: 32sec Box-Office News: 17sec News Jordan:
64sec Box-Office Evita: 19sec Evita: 50sec

6) Main Box: 17sec Box-Office Evita: 33sec News Box: 41
sec Box-Office Evita: 54sec Evita News: 56sec News: 47sec



















=

00.000.000.06.221.355.3500.085.6
00.000.000.05.278.192.356.1700.0
00.000.000.08.272.341.3233.854.7
00.000.000.08.122.438.2164.86.13

6.346.230.2000.08.2100.000.000.0

00.000.000.05.214.251.3632.776.9

exSP

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

169

∑
∑

∈∈

∈

•

•

=
∈

PpSs
jikji

Pp
jikji

ki

ji

j

pszPpsm

pszPpsm

zsP

,

''

'

),|(),(

),|(),(

)|(
 (7)

∑
∈∈

•=
PpSs

jikjik
ji

pszPpsm
R

zP
,

),|(),(
1

)((8)

where

∑
∈∈

=

PpSs
ji

ji

psmR
,

,),((9)

Substituting equation (6)-(8) into (3) and (4) will result in
the monotonically increasing of total likelihood Li of the
observation data. The executing of E-step and M-step is
repeating until Li is converging to a local optimal limit,
which means the estimated results can represent the final
probabilities of observation data.
It is easily found that the computational complexity of
this algorithm is ()O mnk , where m is the number of user
session, n is the number of page, and k is the number of
factors.

3 Identifying Web Page Category and Task-
Oriented Access Pattern

As we discussed in section 2, note that each latent factor

kz do really represent specific aspect associated with co-
occurrence in nature. For each factor, the degree related
to the co-occurrence is expressed by the factor-based
probability estimate. From this viewing point, we, thus,
can utilize the class-conditional probability estimates
generated by the PLSA model and clustering algorithm to
partition Web pages into various usage-based groups.
Meanwhile, we can infer the latent factors by interpreting
the meaning of “dominant” Web pages whose
probabilities are exceeding the predefined threshold.

3.1 Discovering Web Page Category
Note that the set of (|)k jP z p is conceptually representing

the probability distribution over the latent factor space for
a specific Web page jp , we, thus, construct the page-

factor matrix based on the calculated probability
estimates, to reflect the relationship between Web pages
and latent factors, which is expressed as follows:

,1 ,2 ,(, ,...,)j j j j kvp c c c= (10)

Where ,j sc is the occurrence probability of page
jp on

factor sz . In this way, the distance between two page
vectors may reflect the functionality similarity exhibited
by them. We, therefore, define their similarity by
applying well-known cosine similarity as:

() 2 2
(,) , ()i j i j i jsim p p vp vp vp vp= • (11)

where () , ,
1

,
k

i j i m j m
m

vp vp c c
=

=∑ , 2
,2

1

k

i i l
l

vp C
=

= ∑

With the page similarity measurement (11), we propose a
modified k-means clustering algorithm to partition Web

pages into corresponding categories. The detail of the
clustering algorithm is described as follows:

Algorithm 1 Clustering Web Page
Input: the set of (|)k jP z p , predefined threshold µ

Output: A set of Web page categories and centroids
1 { , , }PPCL PCL PCL= �

1. Select the first page 1p as the initial cluster 1PCL and

the centroid of this cluster:
1 1{ }PCL p= and

1 1Cid p= .

2. For each page jp , measure the similarity between jp

and the centroid of each existing cluster (,)j isim p Cid

3. If (), max((,))j t j ii
sim p Cid sim p Cid µ= > , then insert

jp into the cluster
tPCL and update the centroid of

tPCL as

1/
t

t t j
j SCL

Cid PCL vp
∈

= • ∑ (12)

where tPCL is the number of sessions in the cluster

Otherwise, jp will create a new cluster itself and is

the centroid of the new cluster.
4. If there are still sessions to be classified into one of

existing clusters or a session that itself is a cluster, go
back to step 2 iteratively until it converges (i.e. all
clusters’ centroid are no longer changed)

5. Output { }pPCL PCL=

In addition, note that (|)j kP p z represents the conditional

occurrence probability over the page space corresponding
to a specific factor, whereas (|)k jP z p represents the

conditional probability distribution over the factor space
corresponding to a specific page, which is expressed in
the form of:

∑
∈

•

•
=

Zz
kkj

kkj
jk

k

zPzpP

zPzpP
pzP

)()|(

)()|(
)|(

 (13)

In such expression, we may consider that the pages whose
conditional probabilities (|)j kP p z and (|)k jP z p are

both greater than a predefined threshold µ can be viewed
to contribute to one particular functionality related to the
latent factor. Furthermore, we choose all pages satisfying
aforementioned condition to form “ dominant” page sets
to characterize the latent factor.

3.2 Identifying Task-Oriented Access Pattern
Suppose that the conditional probability estimates are
derived from the PLSA model as described above, we, in
turn, utilize them to identify the user’ s underlying access
task and to predict the potentially interested Web content
to user in recommendation process.
Since the user session is represented as a sequence of
visited pages, we can capture the task sequence derived
from clicked pages within the session accordingly. This

CRPIT Volume 49

170

aim is accomplished by computing the posterior
probability of each task based on Bayesian updating
approach, given that pages are independent on tasks.
These posterior probabilities associated with the various
tasks indicate the likelihood of user’ s underlying
intention. The usage pattern, therefore, is characterized as
a sequence of tasks with corresponding probabilities. By
presetting an appropriate threshold, we choose all tasks
whose posterior probabilities are greater than the preset
value as a dominant task collection to reflect the user’ s
initial intention. In section 5, we present two examples of
task-oriented access pattern to illustrate how such task
sequences are represented in terms of probability weights.

4 Web Recommendation Based on Task-
Oriented access pattern

The discovered task-oriented access pattern can actually
reveal the user’ s intrinsic access intend associated with
latent task factors. As a result, incorporating the identified
sequence of dominant tasks with the task-based page
categories derived from previous section will lead to
discover the potential pages more likely to be visited or
interested by the user in following period. The detailed
algorithm of Web recommendation is described as
follows:

Algorithm 2 Web Recommendation
Input: the active user session

1 2, , , ,i i i i
i t js p p p p P=< > ∈�

,

a set of estimated conditional probabilities (|)j kP p z and

threshold.
Output: the dominant task sequence corresponding to the
user session

1{ , , }i i
tTL z z= � and the top-N

recommendation pages { }r
jRS p= .

1. For each task
kz Z∈ , which is independent on the

pages, calculate the posterior probability of sz given

all pages in is by employing Bayesian updating
method (Russell and Norvig 1995):

(|) () (|)
i

ij

i
k i k j k

p S

P z s P z P p zα
∈

= ∏

where α is a constant.
2. Choose all tasks whose conditional probabilities are

greater than a preset threshold as the dominant task
sequence corresponding to the user session.

{ | , (|) }k k k iTL z z Z P z s µ= ∈ >

3. For each kz in TL, incorporate it with the
corresponding task-based page category, then compute
the recommendation score for each page jp as

,

() (|) (|), ,
k j

j k i j k j k
z p

rs p P z s P p z p P z TL= ⋅ ∈ ∈∑
Note that the recommendation score will be 0 if the
page is already visited in the current session

4. Sort the computed recommendation scores from step 3
in a descending order, i.e. 1((), , ())r r

nrs rs p rs p= � ,

and choose the N pages with the highest scores to
construct the top-N recommendation set.

1{ | () (), 1, 2, , 1}r r r
j j JRS p rs p rs p j N+= > = −�

5 Experiments and Evaluations
In order to evaluate the effectiveness of the proposed
method based on PLSA model and explore the discovered
latent semantic factor, we have conducted preliminary
experiments on two real world data sets.

5.1 Data Sets
The first data set we used is downloaded from KDDCUP
(www.ecn.purdue.edu/KDDCUP/). After data
preparation, we have setup an evaluation data set
including 9308 user sessions and 69 pages, where every
session consists of 11.88 pages in average. We refer this
data set to “ KDDCUP data” . In this data set, the numbers
of Web page hits by the given user determines the
elements in session-page matrix associated with the
specific page in the given session.
The second data set is from a academic Website log files
(Mobasher 2004). The data is based on a 2-week Web log
file during April of 2002. After data pre-processing stage,
the filtered data contains 13745 sessions and 683 pages.
The entries in the table correspond to the amount of time
(in seconds) spent on pages during a given session. For
convenience, we refer this data as “ CTI data” .
Discovery of latent task factor with PLSA model has
been investigated in our previous work (Xu, Zhang et al.
2004). In this part, we just present the experimental
results in terms of Web page category, task-oriented
access pattern as well as the evaluation of
recommendation.

5.2 Examples of Web Page Categories
At this stage, we utilize aforementioned clustering
algorithm to partition the Web pages into various clusters.
By analysing the discovered clusters, we may conclude
that many of groups do really reflect the single user
access task; whereas others may cover two or more tasks,
which may be relevant in nature. As indicated above, the
former can be considered to correspond to the intuitive
latent factors, and the latter may reveal the “ overlapping”
relationships in content among Web pages.
In Table 1, we list three Web page groups out of total
generated groups from KDDCUP data set, which is
expressed by top ranked page information such as page
numbers and their relative URLs as well. It shows that
each of these three page groups reflects sole usage task,
which is consistent with the corresponding factor
depicted in Table 1 of (Xu, Zhang et al. 2005). Table 2
illustrates two Web page groups from CTI data set
correspondingly. In this table, the upper row lists the top
ranked pages and their corresponding content from one of
the generated page clusters, which reflect the task
regarding searching postgraduate program information,
and it is easily to conclude that these pages are all
contributed to factor #13 displayed in Table 2 of (Xu,
Zhang et al. 2005). On the other hand, the listed
significative pages in lower row in the table involve in the
“ overlapping” of two dominant tasks, which are

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

171

corresponding to factor #3 and #15 depicted in Table 2 of
(Xu, Zhang et al. 2005).

Table 1. Examples of Web page groups from
KDDCUP

Page Content Page Content

10
28
37

main/vendor
articles/dpt_privacy
articles/dpt_contact

38
39
40

articles/dpt_payment
articles/dpt_shipping
articles/dpt_returns

27
32
42
44
45
47

main/login2
main/registration
account/your_account
checkout/expresCheckout
checkout/confirm_order
account/address

50
52
60
64
65
66

account/past_orders
account/credit_info
checkout/thankyou
account/create_credit
main/welcome
account/edit_credit

12
13
14
15
16
17
18
19

dpt_about
dpt_about_mgmtteam
dpt_about_boarddirectors
dpt_about_healthwellness
dpt_about_careers
dpt_about_investor
dpt_about_pressrelease
dpt_refer

20
21
22
23
24
57
58

dpt_affiliate
new_security
new_shipping
new_returns
dpt_terms
dpt_about_the_press
dpt_about_advisoryboard

Table 2. Examples of Web page groups from CTI

Page Content Page Content

386
575
586
587

/News
/Programs
/Prog/2002/Gradcs2002
/Prog/2002/Gradds2002

588
590
591
592

/Prog/2002/Gradect2002
/Prog/2002/Gradis2002
/Prog/2002/Gradmis2002
/Prog/2002/Gradse2002

65
70
352
353
355

/course/internship
/course/studyabroad
/cti/…/applicant_login
/cti/…/assistantship_form
/cti/…/assistsubmit

406
666
678
679

/pdf/forms/assistantship
/program/master
/resource/default
/resource/tutoring

Note that with these generated Web page categories, we
may make use of these intrinsic relationships among Web
pages to reinforce the improvement of Web organization
or functionality design. For example, the instrumental and
suggestive task list based on the discovered page groups
can be added into the original Web page as the means of
Adaptive Web Site Design, to provide better service to
users.

5.3 Examples of Task-Oriented Usage Patterns
As described in section 4, we exploit the posterior
probability derived from PLSA model to identify the
task-oriented usage pattern and predict the user’ s
potentially visited Web pages by combining the task-
oriented page categories into recommendation process. In
the following table, we demonstrate two examples of
derived task-based usage patterns through employing
algorithm 2 on two real user sessions from KDDCUP and
CTI dataset respectively. We list the active user sessions
as well as tasks model derived from their sessions.
From the table, it is easily found that the two users have
visited 10 and 11 pages respectively during their
browsing period. The task-based usage patterns as well as
their corresponding probabilities are depicted in the third
and fourth column of the table. The upper part of the table
shows that the user’ s activity actually involves in multiple
purposes. However, the user’ s main intention is to

perform online shopping as the probability of task #6 is
significantly greater than the occurrence probabilities of
other tasks. Therefore, we conclude that the dominant
theme of first user’ s behaviour is actually locating on task
#4.

Table 3. Examples of Task-Oriented Usage Pattern

Real user session Task # & title Prob.

1

1. boutique
2. search-result
3. ProductDetailLegcare
4. shopping_cart
5. login2
6. Welcome
7. expressCheckout
8. your_account
9. confirm_order
10. vendor

Online shopping (#6)
Product Legcare (#2)
Boutique (#9)
Department search (#1)
Vendor info (3)

0.94
0.02
0.02
0.01
0.01

2

1. admissions/
2. admissions/requirements
3. admissions/mailrequest
4. admissions/orientation
5. gradapp/appmain_right
6. /news/default
7. /programs/
8. programs/gradcs2002
9. programs/gradect2002
10. /programs/gradhci2002
11. /programs/core_guide

Admission (#4)
Postgrad Program (#13)

0.63
0.37

For another user, we can find that the user was mainly
conducting two tasks, i.e. task #4 and task #13.
Incorporating the derived task model in table 1, we can
further identify that task #4 represents prospective
students searching for admission information, such as
requirement, orientation etc., whereas task #13 reflects
the activity of those students who are particularly
interested the postgraduate programs in IT discipline.
Unlike the first user, the second user clearly exhibits the
cross-interest as the difference of the two corresponding
probabilities is not quite significant.
Once the task model of user is identified, it is further
utilized to recommend user preferred content accurately

5.4 Evaluation Metric for Web Recommendation
From the view of the user, the effectiveness of the
proposed approach is evaluated by the precision of
recommendation. Here, we exploit a metric called hit
precision (Mobasher, Dai et al. 2002) to measure the
effectiveness in the context of top-N recommendation.
Given a user session in the test set, we extract the first j
pages as an active session to generate a top-N
recommendation set via the procedure described in
section 4. Since the recommendation set is in descending
order, we then obtain the rank of 1j + page in the sorted

recommendation list. Furthermore, for each rank 0r > ,
we sum the number of test data that exactly rank the rth

as ()Nb r . Let
1

() ()
r

i
S r Nb i

=
=∑ , and () /hitp S N T= ,

where T represents the number of testing data in the

CRPIT Volume 49

172

whole test set. Thus, hitp stands for the hit precision of
Web recommendation process.
Table 4 gives the effectiveness of recommendation in
terms of hit precision. From the table, it is shown that
bigger the N number is, higher the hitp value is. In most
case, the hit precision parameters are larger than 30%.

Table 4. The Results of Recommendation Hit
Precision

N 5 6 7 8 9 10 11 12

hitp 0.17 0.19 0.20 0.22 0.27 0.30 0.32 0.33

N 13 14 15 16 17 18 19 20

hitp 0.34 0.35 0.36 0.36 0.37 0.37 0.37 0.38

6 Conclusion and Future Work
Web transaction data between Web visitors and Web
functionalities usually convey user task-oriented behavior
pattern. As a result, there is an increasing demand to
develop techniques that can not only discover user task-
oriented usage patterns, but also provide more benefits
for recommend user more interested or preferred content
In this paper, we have developed a Web recommendation
technique by exploiting the knowledge of usage pattern
from Web usage mining process based on PLSA model.
With the proposed probabilistic method, we can measure
the co-occurrence activities (i.e. user session) in terms of
probability estimations to capture the underlying
relationships among users and pages. Analysis of the
estimated probabilities leads to build up task-oriented
usage patterns and Web page categories, identify the
hidden factors conceptually representing user interests or
tasks. The discovered usage patterns can result in
improvement of Web recommendation. We demonstrate
the usability and effectiveness of our technique through
experiments performed on the real world datasets.
Our future work will focus on the following issues: we
intend to conduct experimental work on more datasets to
validate the scalability of our approach. Meanwhile we
plan to develop other machine learning algorithms to
improve the accuracy of Web recommendation.

Acknowledgement
This research has been partly supported through ARC
Discovery Project Grant DP0345710 and National
Natural Science Foundation of China (No 60403002).

7 Reference
Agarwal, R., C. Aggarwal, et al. (1999): A Tree Projection

Algorithm for Generation of Frequent Itemsets. Journal of
Parallel and Distributed Computing 61(3): 350-371.

Agrawal, R. and R. Srikant (1994): Jorge B. Bocca and Matthias
Jarke and Carlo Zaniolo. Proceedings of the 20th
International Conference on Very Large Data Bases (VLDB),
Santiago, Chile, 487-499, Morgan Kaufmann.

Agrawal, R. and R. Srikant (1995): Mining Sequential Patterns.
Proceedings of the International Conference on Data
Engineering (ICDE), Taipei, Taiwan, 3-14, IEEE Computer
Society Press.

Cohn, D. and H. Chang (2000): Learning to probabilistically
identify authoritative documents. Proc. of the 17th

International Conference on Machine Learning, San
Francisco, CA, 167-174, Morgan Kaufmann.

Cohn, D. and T. Hofmann (2001): The missing link: A
probabilistic model of document content and hypertext
connectivity: an in Advances in Neural Information
Processing Systems. T. G. D. Todd K. Leen, and Tresp,
V.(eds). MIT Press.

Dempster, A. P., N. M. Laird, et al. (1977): Maximum
likelihood from incomplete data via the EM algorithm.
Journal Royal Statist. Soc. B 39(2): 1-38.

Dunja, M. (1996). Personal Web Watcher: design and
implementation, Department of Intelligent Systems, J. Stefan
Institute, Slovenia.

Han, E., G. Karypis, et al. (1998): Hypergraph Based Clustering
in High-Dimensional Data Sets: A Summary of Results. IEEE
Data Engineering Bulletin 21(1): 15-22.

Herlocker, J., J. KONSTAN, et al. (1999): An Algorithmic
Framework for Performing Collaborative Filtering.
Proceedings of the 22nd ACM Conference on Researchand
Development in Information Retrieval (SIGIR'99), Berkeley,
CA.

Herlocker, J. L., J. A. Konstan, et al. (2004): Evaluating
collaborative filtering recommender systems. ACM
Transactions on Information Systems (TOIS) 22(1): 5 - 53.

Hofmann, T. (1999): Probabilistic Latent Semantic Analysis.
Proc. of the 22nd Annual ACM Conference on Research and
Development in Information Retrieval, Berkeley, California,
50-57, ACM Press.

Hofmann, T. (2001): Unsupervised Learning by Probabilistic
Latent Semantic Analysis. Machine Learning Journal 42(1):
177-196.

Hofmann, T. (2004): Latent Semantic Models for Collaborative
Filtering. ACM Transactions on Information Systems 22(1):
89-115.

Jin, X., Y. Zhou, et al. (2004): A Unified Approach to
Personalization Based on Probabilistic Latent Semantic
Models of Web Usage and Content. Proceedings of the AAAI
2004 Workshop on Semantic Web Personalization (SWP'04),
San Jose.

Joachims, T., D. Freitag, et al. (1997): WebWatcher: A Tour
Guide for the World Wide Web. Proceedings of the
International Joint Conference in AI (IJCAI97), Los Angeles.

Konstan, J., B. Miller, et al. (1997): Grouplens: Applying
Collaborative Filtering to Usenet News. Communications of
the ACM 40: 77-87.

Lieberman, H. (1995): Letizia: An agent that assists web
browsing. Proc. of the 1995 International Joint Conference
on Artificial Intelligence, Montreal, Canada, 924-929,
Morgan Kaufmann.

Mobasher, B. (2004): Web Usage Mining and Personalization:
an in Practical Handbook of Internet Computing. M. P.
Singh(eds). CRC Press.

Mobasher, B., H. Dai, et al. (2002): Discovery and Evaluation
of Aggregate Usage Profiles for Web Personalization. Data
Mining and Knowledge Discovery 6(1): 61-82.

Perkowitz, M. and O. Etzioni (1998): Adaptive Web Sites:
Automatically Synthesizing Web Pages. Proceedings of the
15th National Conference on Artificial Intelligence, Madison,
WI, 727-732, AAAI.

Russell, S. J. and P. Norvig (1995): Artificial Intelligence, A
Modern Approach, Prentice Hall.

Shahabi, C., A. Zarkesh, et al. (1997): Knowledge discovery
from user web-page navigational. Proceedings of the 7th
International Workshop on Research Issues in Data
Engineering (RIDE '97), 20-29, IEEE Computer Society.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

173

Shardanand, U. and P. Maes (1995): Social Information
Filtering: Algorithms for Automating 'Word of Mouth'.
Proceedings of the Computer-Human Interaction Conference
(CHI95), Denver, CO.

Xiao, J., Y. Zhang, et al. (2001): Measuring similarity of
interests for clustering web-users. Proceedings of the 12th
Australasian Database conference (ADC2001), Queensland,
Australia, 35: 107-114, ACS Inc.

Xu, G., Y. Zhang, et al. (2004): Discovering User Access
Pattern Based on Probabilistic Latent Factor Model.

Proceeding of 16th Australasian Database Conference,
Newcastle, Australia, 39: ACS Inc.

Xu, G., Y. Zhang, et al. (2005): Using Probabilistic Semantic
Latent Analysis for Web Page Grouping. 15th International
Workshop on Research Issues on Data Engineering: Stream
Data Mining and Applications (RIDE-SDMA'2005), Tokyo,
Japan.

CRPIT Volume 49

174

Handling of Current Time in Native XML Databases

Bela Stantic1 Guido Governatori2 Abdul Sattar1

1 Institute for Integrated and Intelligent Systems,
Griffith University, Brisbane Australia

2 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane Australia,

Email: B.Stantic@griffith.edu.au, guido@itee.uq.edu.au, A.Sattar@griffith.edu.au

Abstract

The introduction of Native XML databases opens many re-
search questions related to the data models used to represent
and manipulate data, including temporal data, in XML. In-
creasing use of XML for Valid Web pages warrants an adequate
treatment of now in Native XML databases. In this study, we
examined how to represent and manipulate now-relative tem-
poral data. We identify different approaches being used to rep-
resent current time in XML temporal databases, and introduce
the notion of storing variables such as ‘now’ or ‘UC’ as strings
in XML native databases. All approaches are empirically eval-
uated on a query that time-slices the timeline at the current
time. The experimental results indicate that the proposed ex-
tension offers several advantages over other approaches: better
semantics, less storage space and better response time.

Keywords: Native XML Databases, Temporal
Databases, current time

1 Introduction

There has been a lot of research into adding time to
different data models, for example to Semantic data
model, Knowledge-based data model and Entity Re-
lationship model. But most of the literature in tem-
poral databases is related to Relational and Object-
Oriented data model (Jensen 2000). A large number
of temporal data models were studied and the design
space for the relational data model has been exhaus-
tively explored (Date, Darwen & Lorentzos 2002).
Clifford et al. (Clifford, Croker & Tuzhilin 1994)
classified them as two main categories: temporally
ungrouped and temporally grouped. Although tem-
porally grouped models have long been known to be
more expressive and appealing to intuition (Clifford,
Croker, Grandi & Tuzhilin 1995), they cannot be sup-
ported easily in the framework of flat relations and
SQL, and therefore they have not been actually im-
plemented in temporal database projects and proto-
types (Ozsoyoglu & Snodgrass 1995).

Recently research in temporal representtion and
reasonng has been extended to XML. Research on
adding temporal features to XML has taken into ac-
count change, versioning, evolution and also explicitly
temporal aspects. Some extensions of the XML, such
as τXQuery language, have been proposed to extend
XQuery for temporal support (Chawathe, Abiteboul
& Widom 1999), (Gao & Snodgrass 2003). Recently,
database researchers, vendors and SQL standardiza-
tion groups started work toward extensions of SQL

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

with XML capabilities (http://www.sqlx.org 2004)
and to support languages such as XQuery (XQuery
1.0: An XML query language 2004) on XML data
(Carey, Kiernan, Shanmugasundaram & et al 2000)
(Funderburk, Kiernan, Shanmugasundaram, Shekita
& Wei 2002). XML and XQuery can be viewed as a
new powerful data model and query language provide-
ing a better basis for representing and querying tem-
poral data. In contrast to relational databases tempo-
rally grouped data model is supported well by XML
and its query languages.

Most modern database applications involve a sig-
nificant amount of time dependent data and a sub-
stantial proportion of this data is now-relative, i.e.
the end time of their validity follows the current time.
Now-relative data are natural and meaningful part of
every temporal database as well as being the focus
of most queries. It has been shown that different se-
mantics for now in temporal relational environment
significantly influence performance (Torp, Jensen &
Bohlen 1999), (Stantic, Khanna & Thornton 2004).
As XML is used for Valid Web, which has temporal
features and is associated with current validity of Web
pages, handling now in XML is even more impor-
tant than in relational databases. While significant
research has been oriented toward adding different
temporal dimensions to XML and querying such data
with XQuery and on different extensions to XQuery,
handling current time or now has received only a little
attention. The majority of the proposals for simplic-
ity consider only closed intervals. For closed intervals
exact starting and ending point must be known up
front. This is obviously unrealistic in real applica-
tion domains. These proposals do not support data
where ending time of validity follows the current time,
now-relative data. Proposals that mentioned ‘now’
usually do so only briefly, in line with temporal re-
lational research, recommending the MAX approach
to represent current time or suggesting the usage of
user defined functions. These recommendations are
usually made without any further explanation or em-
pirical results that show the efficiency and support
the recommendation (Wang & Zaniolo 2003).

For the above reasons we decided to investigate
how different semantic for now influence not only
the performance but also the accuracy of the queries.
Also, we decided to investigate whether temporally
groping of data offers any advantage and better per-
formance than the direct conversion of relations to
XML. In order to do this testing we decided to use
data set generated in relational environment.

At first, we identify available options for represent-
ing now in XML-Temporal. Interestingly, the options
ruled out as not suitable for relational databases can
be considered as viable options for XML and Native
XML databases. We introduce the notion of storing
variables such as ‘now’ or ‘UC’ as strings in XML na-
tive databases. All approaches are empirically eval-

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

175

uated on a query that time-slices the timeline at the
current time. The experimental results indicate that
the proposed extension offers several advantages over
other approaches: better semantics, less storage space
and better response time.

The remainder of this paper is organised as fol-
lows, in the next section we look more closely at
temporal dimensions of interest in XML. In Section
3 we demonstrate that any temporal data can be
viewed in two different ways: the DIRECT represen-
tation and in temporally grouped data model; both
can be represented in XML and efficiently queried by
XQuery. Furthermore in this section, we discuss avail-
able methods to represent current time and highlight
their limitations and disadvantages. Also, in Section
3, we illustrate the experiment taken to evaluate the
identified approaches to represent current time and
present the experimental results and analysis. Fi-
nally, in Section 4, we present our conclusions and
suggest future work.

2 Temporal data and XML

A significant percentage of data for web pages is dy-
namic and generated as a result of queries most often
in form of XML, so it is more natural and more con-
venient to store data directly in XML format. There
are two basic methods to store XML documents in
a database. The first is to map the document’s
schema to a database schema and transfer data ac-
cording to that mapping. The second is to use a fixed
set of structures that can store any XML document.
Databases that support the first method are called
XML-enabled databases while databases that support
the second method are called native XML databases
(xml.com 2005).

XML-enabled databases are useful when publish-
ing existing data as XML or importing data from an
XML document into an existing database. For in-
stance, DB2s XML Extender (www3.ibm.com 2005)
takes advantage of user-defined functions and stored
procedures to map between XML data and rela-
tional data. Another approach of XML-enabled
databases is a middleware based approach such as
used in SilkRoute (Fernandez, Tan & Suciu 2000) and
XPERANTO (Carey et al. 2000). However, XML-
enabled databases are not a good way to store com-
plete XML documents. The reason is because they
store data and hierarchy but discard everything else:
document identity, sibling order, comments, process-
ing instructions, and so on. This approach obviously
has some limitations as XML itself is more power-
ful and conversion from relational model to XML is
considered as straightforward, but the opposite con-
version is not always possible without some ingenuity.

Native XML databases, on the other hand, store
complete documents and can store any document, re-
gardless of schema. Native XML databases are used
in a wide number of fields, such as health care, ge-
netics, insurance, data integration, messaging, Web
sites, etc. The most popular of these are storing and
querying document-centric XML, integrating data,
and storing and querying semi-structured data. Na-
tive XML databases are used in these cases because
the data involved does not easily fit the relational
data model, while it does fit the XML data model.

In order to access data in XML that are valid at
particular (and most often present) time, it is neces-
sary to represent time dimensions in XML. This issue
opens a big question not only for databases but also in
computer science in general, i.e. how to handle and
store current time or now. The assumption mostly
taken in the literature is that only closed intervals of
validity exist (Wang & Zaniolo 2003). This is obvi-

ously unrealistic; often ending points will be unknown
and will follow the advancing current time indicating
that, for example, fact is valid now and that its end-
ing time of validity is unknown.

2.1 Time dimensionality of interest

Research on adding temporal features to XML has
identified different time dimensions of interest. The
focus of some approaches was on the representa-
tion and management of changes, where different
versions of data are produced by updates. In this
approach, temporal attributes are often used to
timestamp stored versions (Amagasa, Yoshikawa, &
Uemura 2000), (Chawathe et al. 1999) and they rep-
resent the time the updates were applied, which ba-
sically has the same semantics as transaction time.
Transaction time is the time that shows the status of
the data in a database, from when it is inserted in the
database to when it is logically deleted, if ever. With
respect to the Web, it represents the on-line availabil-
ity and versioning of resources in a Web site, even if
they are basically not created by transactions. This
notion of time requires storing the current time or
now to represent that the element is current and be-
long to the current database state that is not logically
deleted.

Another approach, basically represents the classi-
cal notion of valid time. It is a XML/XSL infrastruc-
ture, named ‘The Valid Web’, designed to represent
and manage temporal Web documents containing his-
torical information (Grandi & Mandreoli 2000). In
this approach timestamps are explicitly encoded by
the document authors to assign validity to informa-
tion content. Temporal documents can then be se-
lectively browsed in accordance with a user-supplied
temporal period of interest. This approach is further
extended in (Wang & Zaniolo 2002). The valid time
is the time when some fact is true in the real world.
In Web applications, it concerns the temporal validity
of the information carried by the contents of a Web
resource. It is obvious that this notion of time also
requires storing the current time or now. This is be-
cause it is expected to have facts that started to be
valid at certain past time, they are valid now, and
the end of their validity is unknown. The end time of
validity of facts follows the current time.

There are several other temporal dimensions that
have been also mentioned in the literature in relation
to XML: navigation time, which concerns the inter-
action of users during their browsing of Web sites.
Furthermore, a publication time, in the context of
legal documents, and efficiency time (Grandi, Man-
dreoli, Tiberio & Bergonzini 2003). Navigation time
and publication time do not require to store ‘now’ and
are relevant for this study.

2.2 Representation of temporal dimensions

There are basically two different approaches to repre-
sent temporal dimensions in XML.

• to represent timestamps by XML elements,

• to represent timestamps by the temporal at-
tributes of the XML elements.

For simplicity, in our running samples we will use
data from temporal relational databases but our dis-
cussion applies to any more complex nested XML
structure. We will consider valid time data but it
is applicable to any other temporal dimension that
requires to handle ‘now’. The running sample used
in this paper, which captures the history of Scott’s
positions, is shown in Table 1.

CRPIT Volume 49

176

Name Position Vstart Vend
Scott A 2000-05-19 2001-03-12
Scott B 2001-03-12 2004-03-10
Scott C 2004-03-10 now

Table 1: Employment history

The first method represents a simple flat trans-
lation of relational attributes to XML elements, as
introduced in (Fernandez et al. 2000). In this model,
which we dubbed as the DIRECT model, each at-
tribute is represented by an element in XML. Accord-
ing to this approach, the XML structure representing
the data shown in Table 1 would look like:

<Employment>
<row>

<Name>Scott </Name>
<Position>A</Position>
<Vstart>2000-05-19</Vstart>
<Vend>2001-03-12</Vend>

</row>
<row>

<Name>Scott </Name>
<Position>B</Position>
<Vstart>2001-03-12</Vstart>
<Vend>2004-03-10</Vend>

</row>
<row>
<Name>Scott </Name>
<Position>B</Position>
<Vstart>2004-03-10</Vstart>
<Vend>now</Vend>

</row>
</Employment>

The second approach relies on XML ability to have
attributes within the elements. By adding attributes
to the element it becomes a complex type. But the
attributes themselves are always declared as a simple
type. This means that an element with attributes
always has a complex type definition. For example:

<Position Vstart="2000-05-19"
Vend="2001-03-12">A</Position>

This approach is suitable for storing XML tem-
poral data related to the representation and man-
agement of changes. Also, it is suitable to manage
temporal Web documents containing historical infor-
mation. Furthermore, this approach enables usage of
temporally grouped data model. Clifford et al. have
shown that the temporally grouped data model has
more expressive power and is more natural since it is
history oriented (Clifford et al. 1994).

It is possible to restrict data supplied for attributes
and also to ensure that they are supplied. When an
XML element or attribute has a type defined, it puts
a restriction on the element’s or attribute’s content.
For example, if an XML element is of type “xs:date”
and contains a string the element is not valid.

<xs:attribute name="Vstart" type="xs:date"
use="required"/>

Considering the running sample from Table 1 tem-
porally grouping data by Employee Name, will result
in data as represented in Table 2.

Temporally grouped data, presented in Table 2,
can be easily represented in XML using the attribute
approach:

<Employment Vstart="2000-05-19" Vend="now">
<Name Vstart="2000-05-19"

Name Position
2000-05-19 2000-05-19

A
2001-03-12

2001-03-12
Scott B

2003-02-15

2003-02-15
C

now now

Table 2: Temporally Grouped Valid Time History of
Employees

Vend="now">Scott </Name>
<Position Vstart="2000-05-19"

Vend="2001-03-12">A</Position>
<Position Vstart="2001-03-12"

Vend="2003-02-15">B</Position>
<Position Vstart="2003-02-15"

Vend="now">C</Position>
</Employment>

It is considered easy to perform different queries
using XQuery, for example to retrieve the snapshot
at the certain date on closed intervals in either of
approaches to add temporal dimensions to XML. But
it is an open question how to represent current time
or now in XML-temporal in order to efficiently and
accurately access open ended intervals, now-relative
XML-temporal data.

2.3 Modelling now-relative temporal data in
XML

In line with research in temporal databases applied to
relational technology, with respect to different repre-
sentations for now, we decided to evaluate same ap-
proaches in XML.

MAX

The often mentioned approach to represent current
time is to represent the current time as unrealistic
large date most often used ‘31-DEC-9999’, which in
XML to ensure the order has to be in format ‘YYYY-
MM-DD’ or ‘9999-12-31’. In the reminder of this pa-
per we will refer to this approach as MAX approach.

Considering the nature of XML and Native XML
databases, and the fact that data are stored as text,
there are several other different representations for
current time that could be of interest.

Null Data

Despite being ruled out as not suitable in relational
databases, as columns with NULL can not be effi-
ciently indexed, we decided to evaluate the NULL ap-
proach due to the specific nature of NULL in XML. In
the database world, null data means that data simply
is not there. Considering the XML, NULL can mean
that value is inapplicable or value is missing. XML
supports the concept of NULL data through optional
element types and attributes. If the value of an op-
tional element type or attribute is null, it simply is
not included in the document. As with databases, at-
tributes containing zero length strings and empty ele-
ments are not null: their value is a zero-length string.

Some Native XML databases offer the choice of
defining what constitutes NULL in an XML docu-
ment, including support for xsi:null attribute from
XML Schema.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

177

Variables

Due to the nature of XML and Native XML databases
to store all data as text, it is possible to consider
variables such as ‘now’ or ‘UC’ (until changed) to be
stored as words ‘now’ or ‘UC’ to represent current
time. These variables can be simple stored as text in
native XML databases. Variables to represent current
time are widely recommended in the literature but
have not been appropriate for storing it in relational
temporal database environment, and this approach
has been ruled out. This is because date type can-
not accommodate such variables. In contrast XML
offers the possibility to create new complex data-type
that inherit properties of the data-types used to cre-
ate them. Thus it is possible to create a new tempo-
ral data-time as the union of normal time data-type
and the string ‘now’. In any case, even if XML has
data-types these are just defined as combinations of
Unicode characters, thus they are simply strings of
text.

A further advantage of the ‘now’ approach is that
opens the possibility to separate the time value repre-
sentation from the representation of now, for example
by introducing an empty and optional sub-element
<now/> of <vend>. Thus we can have:

<vend><now/></vend>

for the ending time of now. Accordingly queries
that require ‘now’ can traverse a path expression that
descents to now, e.g.,

//vend/now

while, for queries where this is not needed, the
expression

//vend < current-date()

is well-defined.
In addition, this strategy can take advantage of

DBMS offering element indexes beside word indexes.
In this case all <now/> will be included in an element
index and the index can be used to faster search. This
is in contrast with word indexes where ‘now’ can oc-
cur inside a sentence instead of as a special times-
tamp; consequently we have to check that the ele-
ments where ‘now’ occurs are of the right type.

3 Empirical study

In order to find the best choice for representing now in
XML we decided to test performance and accuracy of
all identified approaches. Testing was performed both
on XML structure where timestamps are represented
as XML elements (Direct model) and where times-
tamps are represented as attributes of XML elements
(on temporally grouped data). Also, we intended to
compare query response time and space usage for Di-
rect and grouped model.

During the experiment we identified that some of
the approaches to represent now do not yield the cor-
rect answer. This is the case if data contains closed
intervals where the ending point is bigger than the
current time. For that reason, we decided to include
in our tests checking whether the query yields the cor-
rect number of elements that satisfy the given condi-
tion.

3.1 Environment

The experimental results presented in this sec-
tion are computed on four 450MHZ CPU -
SUN UltraSparc II processor machine running

the open source Native XML eXist database
(eXist:http://exist.sourceforge.net/ 2004). During
the testing server did not have any other significant
load.

We decided to test the performance of a point
query that timeslices time line at the current time.
Point queries, as a special type of range queries, are
considered to be the most important query type for
temporal data. This is because it is expected that the
current state of reality will be queried most often.

Searching a native XML database is handled in dif-
ferent ways, depending on the vendor of the database.
Some native XML databases require the user to se-
lect the elements or attributes to be indexed. This
information is then used to build an index that the
searching mechanism can use to faster locate match-
ing documents. Other native XML databases simply
index all elements in a document, which obviously
causes the need for more storage space. Indexing all
elements in native XML databases has more sense
compared with indexing of all columns in a relational
database. While most of the XML native databases
use well proven B+-tree structures for indexing, spe-
cific demand of XML databases has forced introduc-
tion of different approaches such as: Reverse-Lookup
indexing and Forward Dictionary Segment Build-Up
indexing invented by QuiLogic, as well as traditional
indexing technologies like hashing. The native XML
eXist database, used for this experiment, uses B+-
tree structures for indexing. Users have option to de-
fine the elements and depth that should be indexed.

In our experiments index depth was set to three
and all elements were included in the index.

3.2 Data sets

In order to investigate the effect of different percent-
age of now-relative data we used different data distri-
butions. The start position of the intervals was always
uniformly distributed on the interval domain, while
the duration and percentage of now-relative data was
varied. The following data distributions have been
considered:

• Uniformly distributed interval start and uniform
distributed duration within the range [1,10000]
with 10% of uniformly distributed now-relative
data.

• Uniformly distributed interval start and uniform
distributed length within the range [1, 10000]
with 20% of uniformly distributed now-relative
data.

In relational environment 100.000 rows of sample
data was generated and then converted to XML for-
mat. Same sample data set represented in Direct
model required 400.000 elements while temporally
grouped model for same data, due to the grouping,
required only 154.256 XML elements. Part of data
for temporary grouped model is shown in Table 2.
For each approach to represent now we created two
XML files, one for temporally grouped model and one
for Direct model. XML files differ only on the sematic
to represent now. The resulting files were imported
into eXist XML Native database.

3.3 Query Sets

We focus on intersection queries and particularly on
Point queries as specific cases. The results for in-
tersection queries also hold for the containment and
enclosure queries, as those are a subset of the inter-
section query. We use two different query sets:

CRPIT Volume 49

178

• Window: a set of queries sorted according to the
start point and with a fixed length. This query
set is covering the whole data space.

• Random: A set of random query intervals with
different answer size.

3.4 Results

All identified approaches to represent now have been
tested. For MAX approach, where current time is
stored as some unrealistically big date, we used 9999-
12-31. XML does not support data types in any
meaningful sense of the word, all data in an XML
document are stored as text. This is even if data rep-
resents another data type, such as date or integer.
For that reason, it was necessary to represent date in
format YYYY-MM-DD to ensure that dates can be
ordered into ordered list.

The XQuery code used to test the performance of
the MAX approach without referencing the current
time approach is:

for $b in doc("/db/now/dirmax.xml")/table/row
where $b/vend=’9999-12-31’ and

$b/vstart<xs:string(current-date())
return

<result> { $b } </result>

We found that without referencing to the current
time the query yields the wrong answer if data con-
tains closed intervals with ending point bigger than
the current date. These intervals are meaningful for
all temporal data. In order to get the correct answer,
considering the number of elements returned, there is
a need to compare ending point of the interval valid-
ity with the current time. This can be achieved using
the XQuery function current-date() that references
to the current time:

for $b in doc("/db/now/dirmax.xml")/
table/row

where $b/vend>=xs:string(current-date())
and $b/vstart<xs:string(current-date())

return
<result> { $b } </result>

Usage of user-defined functions ensures that the
query yields the correct answer when current time
is represented with MAX approach. A sample user-
defined function check now (expressed in XQuery) re-
turns vend, if the value is different from ‘9999-12-31’
and current-date otherwise.

declare function local:check_now
($n as xs:string) as

xs:string{ if ($n="9999-12-31") then
xs:string(current-date()) else $n };

for $b in doc("/db/now/dirmax.xml")/
table/row

where local:check_now($b/vend)>=
xs:string(current-date())

and $b/vstart<
xs:string(current-date())

return
<result> { $b } </result>

Usage of this user-defined function guarantees cor-
rect answers but suffers from extremely poor perfor-
mance as it cannot use indexes, so a sequential search
is required.

The nature of the XML native databases, all data
are stored as text, opens the possibility to store now
as the word “now”. This approach could not be con-
sidered for relational databases, since it is not possible
to store characters into date data type. Introduction

of variables in temporal relational databases leads to
the under researched area of Variable databases. In
XML it is possible to create a new complex data-type
as the union of normal time data-type and the string
‘now’. Because storing variables as text in XML is
straightforward we decided to test performance and
accuracy of representing current time with the vari-
able such as ‘now’. To indicate that the fact is cur-
rently valid the variable ‘now’ is assigned for the end-
ing point of their validity. The following XQuery was
used for performance and accuracy testing of variable
approach for representing current time.

for $b in doc("/db/now/dirnow.xml")/
table/row

where $b/vend>=’now’ and
$b/vstart<xs:string(current-date())

return
<result> { $b } </result>

Without referencing to the current time the vari-
able approach also does not yield correct answers if
data contains closed intervals with ending point big-
ger than the current date. Referencing to the current
time yields correct answer.

Because XML native databases have a different
view to NULL data than the relational databases we
decided to reconsider and test the performance and
accuracy of the NULL approach to represent current
time. Advantages of NULL are obviously from used
space point of view. Response time for NULL ap-
proach is very good in case of not referencing to the
current time but due to the wrong answer problem
it can not be considered. To get the correct answer
there is a need to reference to the current time with
user defined functions. Despite being previously sug-
gested as favorite in the literature, usage of user de-
fined functions performed very poorly.

For temporally grouped model we performed
queries on identified approaches to representing now
with and without referencing to the current time.
Same as for DIRECT model, any approach that does
not reference to the current time yields wrong answer
if data contains closed intervals of validity where the
ending point of validity is beyond the current time.
All such intervals are omitted and not included in the
answer. The sample query for MAX approach that
references to the current date function is as follows:

for $s in doc("/db/now/grmax.xml")/
table/row/

position[@vstart<xs:string(current-date())
and

@vend>=xs:string(current-date())]
return
<result> { $s/../name }

{$s }
</result>

Also, we performed a query that finds all employ-
ees that have current position and have started their
employment before the certain date. We performed
this experiment to investigate how answer size effects
the response time.

For NULL approach to represent current time it is
not possible to compare with the current time directly
because NULL is represented by the empty string and
it is not clear whether the empty string is bigger or
smaller than any string. Only possibility is to use
user defined functions.

Testing NULL with temporally grouped model
yielded totally wrong number of elements and had
a very long query response time so we did not include
the results in the above table.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

179

Figure 1: MAX approach without reference to the current date

Figure 2: Temporally Grouped model - variable approach with reference to the current time

Approach Reference Query yields Timeslice Contained
current time correct answer query (sec) query (sec)

MAX No No 16.77 7.78
MAX Yes Yes 27.47 14.08
MAX with user defined function Yes Yes 100.48 98.98
’now’ No No 14.96 7.14
’now’ Yes Yes 23.88 12.25
NULL No No 22.08 9.13
NULL with user defined function Yes Yes 97.64 94.26

Table 3: Direct model - response time for different representations of now, 20 % of now-relative data

3.5 Analysis

It is significant to note that, if there is no reference
and comparison to the current time the query yields
the wrong answer, considering the number of elements
returned that satisfy the query criteria. This is be-
cause all elements with closed interval whose ending
time is bigger than the current time are not included
in the answer. Usage of user defined functions, which

was previously suggested as favorite in the literature,
has poor response time as index can not be used and
sequential search is required. Due to the nature of
Native XML databases, where all data is stored as
text, the current time can be stored as variable such
as ‘now’ or ‘UC’. Because the ASCI code of the men-
tioned variables is bigger than xs:string(current-
date()), the usage of variables yields correct answer
and at the same time uses less space. Surprisingly,

CRPIT Volume 49

180

Approach Reference Query yields Timeslice Contained
current time correct answer query (sec) query (sec)

MAX No No 32.36 20.78
MAX Yes Yes 36.10 20.23
MAX with user defined function Yes Yes 104.43 94.18
’now’ No No 27.03 16.95
’now’ Yes Yes 31.84 18.52

Table 4: Temporally Grouped Model - response time for different representations of now, 20 % of now-relative
data

temporally grouped model has worse response time
than the Direct model, despite having more expres-
sive power and is more natural since it is history ori-
ented. This is due to more complex structure of ele-
ments. Grouped model is slower due to the complex-
ity of elements that consist of attributes vstart and
vend and index can not be used efficiently.

Faster response time when there is no reference
to the current time is partly due to the wrong and
smaller answer size and because in case of referencing
to the current time there is additional processing cost
for build-in function current-date() and need for
conversion of the date to the string.

Slightly better performance of the variable ap-
proach to represent current time in comparison to the
MAX approach is due to the smaller length of string
‘now’ comparing to the ‘9999-12-31’, which causes
smaller XML file size and also higher fanout of el-
ements in index nodes. Also, computational cost for
comparison is smaller due to the shorter length of the
string ‘now’.

4 Conclusion and future work

This study makes the following contributions to the
field:

• By investigating different representations of now
in XML, we presented a better understanding of
the significance of modelling current time, par-
ticularly how it influences the efficiency and ac-
curacy;

• We identified available approaches for adding
time dimension to XML;

• We empirically demonstrated that usage of user
defined functions to handle current time in XML,
which is previously recommended as favorite in
the literature, is basically inefficient and is obvi-
ously not appropriate;

• We showed that the flat translation of temporal
attributes to XML elements (DIRECT model), is
more efficient than the usage of attributes within
the XML elements.

• We identified available options to represent and
store current time in native XML databases and
empirically evaluated their suitability;

• We concluded that any approach to represent
‘now’ if not referencing to the current time yields
wrong answer.

• We introduced the notion of storing variables
such as ‘now’ or ‘UC’ as strings in XML na-
tive databases. Usage of variables at the same
time yields the correct answer and query re-
sponse time is good. Another advantage of using
variables is clear semantics, the meaning of the
word ‘now’ suggests of current time in contrast to
‘9999-12-31’ where the meaning is introduced by
convention. For those reasons storing variables

to represent current time can be considered as
the most appropriate approach in XML tempo-
ral.

The present paper shows that native XML
databases offer better support for temporal reason-
ing than relational databases and at the same time
they support richer data models. As we have argued,
temporal data is very frequent in real life application,
thus we believe that native XML database will present
a viable alternative to relational temporal database
when complex time dependent data has to be ma-
nipulated and recorded. On the contrary due to the
nature of XML data and the verbosity of XML, the
response time of the Native XML temporal databases
does no compare with the response time of relational
databases. This also indicates the need for further
research on efficient storage architecture and access
methods for Native XML temporal databases.

We intend to work on more efficient access method
for temporal XML data, based on the intrinsic nature
and format of temporal data types in XML databases.
We believe that the resulting access method will prove
useful not only in dealing with XML temporal data,
but also can be employed on XML data of different
nature.

References

Amagasa, T., Yoshikawa, M., & Uemura, S. (2000),
‘A Data Model for Temporal XML Documents’,
In Proc. of 11th Intl’ Conf. on Database and Ex-
pert Systems Applications (DEXA 2000), Lon-
don, England .

Carey, M., Kiernan, J., Shanmugasundaram, J. &
et al (2000), ‘XPERANTO: A middleware for
publishing objectrelational data as XML docu-
ments’, VLDB .

Chawathe, S. S., Abiteboul, S. & Widom, J.
(1999), ‘Managing Historical Semistructured
Data’, Theory and Practice of Object Systems
5(3), 143–162.

Clifford, J., Croker, A., Grandi, F. & Tuzhilin, A.
(1995), ‘On temporal grouping’, In Recent Ad-
vances in Temporal Databases, Springer Verlag
p. 194213.

Clifford, J., Croker, A. & Tuzhilin, A. (1994), ‘On
Completeness of Historical Relational Query
Languages’, 19(1), 64–116.

Date, C., Darwen, H. & Lorentzos, N. (2002), Tempo-
ral Data and the Relational Model, Morgan Kauf-
mann.

eXist:http://exist.sourceforge.net/ (2004).
*http://exist.sourceforge.net/

Fernandez, M., Tan, W. & Suciu, D. (2000),
‘Silkroute: trading between relations and XML’,
33(16), 723–745.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

181

Funderburk, J., Kiernan, G., Shanmugasundaram, J.,
Shekita, E. & Wei, C. (2002), ‘XTABLES: Bridg-
ing Relational Technology and XML’, IBM Sys-
tems Journal 41(4).

Gao, D. & Snodgrass, R. T. (2003), ‘Syntax, Se-
mantics, and Query Evaluation in the τXQuery,
Temporal XML Query Language’, TR-72 A
TIMECENTER Technical Report .

Grandi, F. & Mandreoli, F. (2000), ‘The Valid Web:
an XML/XSL Infrastructure for Temporal Man-
agement of Web Document’, In Proc. of the Intl’
Conf. on Advances in Information Systems (AD-
VIS’2000), Izmir, Turkey .

Grandi, F., Mandreoli, F., Tiberio, P. & Bergonzini,
M. (2003), ‘A Temporal Data Model and System
Architecture for the Management of Normative
Texts (Extended Abstract)’, Proc. SEBD 2003 -
Natl’ Conf. on Advanced Database Systems, Ce-
traro, Italy pp. 169–178.

http://www.sqlx.org (2004).
*http://www.sqlx.org

Jensen, C. S. (2000),
‘http://www.cs.auc.dk/ csj/Thesis/pdf/’.
*http://www.cs.auc.dk/ csj/Thesis/pdf/

Ozsoyoglu, G. & Snodgrass, R. (1995), ‘Temporal and
real-time databases: A survey’, IEEE Trans. On
Knowledge and Data Engineering 7(4), 513–532.

Stantic, B., Khanna, S. & Thornton, J. (2004),
‘An Efficient Method for Indexing Now-relative
Bitemporal data’, In Proceeding of the 15th
Australasian Database conference (ADC2004),
Denidin, New Zealand 26(2), 113–122.

Torp, K., Jensen, C. S. & Bohlen, M. (1999), ‘Lay-
ered implementation of temporal DBMS con-
cepts and techniques’, A TimeCenter Technical
Report TR-2 .

Wang, F. & Zaniolo, C. (2002), ‘Preserving and
Querying Histories of XML-published Relational
Databases’, In Proc. of 2nd Intl’ Workshop
on Evolution and Change in Data Management
(ECDM 2002), Tampere, Finland pp. 26–38.

Wang, F. & Zaniolo, C. (2003), Temporal Queries in
XML Document Archives and Web Warehouses,
in ‘In Proceeding of the 10th International Sym-
posium on Temporal Representation and Rea-
soning (TIME-ICTL 2003), Cairns,Australia’,
pp. 47–55.

www3.ibm.com (2005), ‘In DB2 XML Extender’.
*http://www3.ibm.com/software/data
/db2/extenders/xmlext/

xml.com (2005), ‘Making the case for XML Native
databases’.
*http://www.xml.com/pub/a/2005/03/30/
native.html

XQuery 1.0: An XML query language (2004).
*http://www.w3.org/TR/xquery/

CRPIT Volume 49

182

A Heuristic Approach to Cost-Efficient Fragmentation and

Allocation of Complex Value Databases

Hui Ma, Klaus-Dieter Schewe, Qing Wang

Massey University, Department of Information Systems
& Information Science Research Centre

Private Bag 11 222, Palmerston North, New Zealand,
Email: h.ma|k.d.schewe|q.q.wang@massey.ac.nz

Abstract

The quality of database distribution design, which
involves fragmentation and allocation, should be as-
sessed by the performance of a system. In particu-
lar, this applies to non-relational database systems.
This paper addresses fragmentation and allocation in
the context of complex value databases. Fragmenta-
tion and fragment allocation are performed simulta-
neously. For this we present a query processing cost
model to evaluate the performance of the system. The
core of the paper is a heuristic approach for fragmen-
tation and fragment allocation, which uses the cost
model and is targeted at globally minimising these
costs. The validity of the approach is supported by
experimental results.

Keywords: fragmentation, complex value database, al-
location, query cost model, heuristics

1 Introduction

With the increasing demand of database applications
that are accessed by users from different geograph-
ical locations, database distribution design becomes
an essential part of the database design, which targets
at increasing the overall system performance. From
early 1980s the problem of database distribution de-
sign has attracted researchers interests. It has first
been discussed in the context of the relational data-
model, then in the object oriented datamodel. With
the current popularity of web information systems,
there are increasing needs for distributed database
systems (DDBMS) to provide back-end support for
Web-based database applications. In particular
this applies to non-relational database systems such
as object oriented databases (Schewe & Thalheim
1993), object-relational databases (Thalheim 2000) or
databases that are based on the eXtensible Markup
Language (XML) (Abiteboul, Buneman & Suciu
2000), which are becoming more and more the stan-
dard models for advanced database applications. In
this article we concentrate on one common aspect of
these models, the presence of complex values.

In the context of the relational datamodel (RDM)
distribution design mainly addressed the problems
of schema fragmentation and allocation of the frag-
ments to the machines in a computer network (Özsu
& Valduriez 1999). Fragmentation is commonly di-
vided into horizontal fragmentation, which splits a

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

relation into disjoint unions, and vertical fragmen-
tation, which projects a relation onto a subset of
its attributes. Horizontal and vertical fragmentation
have been discussed intensively in (Chu 1992, Chu &
Ieong 1993, Khalil, Eid & Khair 1999, Lin, Orlowska
& Zhang 1993), allocation in (Apers 1988) and also
integrated approaches have been tried (Tamhankar &
Ram 1998).

Several authors have approached the generalisa-
tion of fragmentation techniques to complex value and
object oriented datamodels. For instance, horizon-
tal fragmentation is discussed in (Bellatreche, Karla-
palem & Simonet 2000, Ezeife & Barker 1995, Ma
2003, Schewe 2002), and vertical fragmentation in
(Chinchwadkar & Goh 1999, Ezeife & Barker 1998,
Malinowski & Chakravarthy 1997, Schewe 2002). Due
to the similarity between object oriented and semi-
structured data, some of these techniques have also
been adapted to semi-structured data (Schewe 2002)
and XML (Ma & Schewe 2003).

The aim of database distribution design is to make
applications that access the database more efficient
and effectively. Therefore, the global queries have to
be analysed in order to design an adequate distribu-
tion of the data. In this paper we address the prob-
lem to design fragments and to allocate them in such
a way that the overall performance of the distributed
database system is better than the one of an equiva-
lent centralised one. That is, we first develop a query
cost model for complex value databases. Then we
present a heuristic approach to minimise query costs
for the case of horizontal fragmentation. We show
that the minimisation of transportation costs is deci-
sive, and that this can be achieved locally by either
accepting or rejecting a horizontal fragmentation with
a simple predicate that arises from one of the most
frequent queries.

In Section 2 we present the basic definitions of
a complex value datamodel that is adapted from
the higher-order Entity Relationship model (HERM)
from (Thalheim 2000). For this model we also de-
scribe a general query algebra following the general
approach in (Schewe 2001). This leads to query trees
which can be subject to algebraic query optimisation,
for which we adapt the techniques from the RDM.

In Section 3 we discuss fragmentation operations,
which we slightly generalise by taking an additional
splitting operation into account (Schewe 2002). In
Section 4 we then discuss a cost model and approach
the optimisation of costs. In Section 5 we present
some heuristics needed in the process of horizon-
tal fragmentation and allocation. Section 6 shows
some experimental results that validate our proposed
heuristics. We conclude with a short summary in Sec-
tion 7.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

183

2 Complex Value Databases

In this section we present the basic definitions of
a complex value datamodel following basically the
work in (Thalheim 2000). Furthermore, we introduce
a generic query algebra for this model, and discuss
heuristic algebraic query optimisation.

2.1 The Datamodel

In order to define complex values we use a type sys-
tem. Using abstract syntax, types can be defined by

t = b | (a1 : t1, . . . , an : tn) | {t}.

Here b represents an arbitrary collection of base
types, e.g. BOOL for boolean values T and F, OK
for a single value ok , PIC for images, MPIC for video
data, CARD and INT for numbers, DATE for dates,
etc. Finally, (·) and {·} are constructors for records
and finite sets, respectively.

On the basis of this type system we can define
database schemata, which are sets of database types.

A database type of level k has a name E and con-
sists of a set comp(E) = {r1 : E1, . . . , rn : En}
of components with pairwise different role names ri
and database types Ei on levels lower than k with
at least one database type of level exactly k − 1, a
set attr(E) = {a1, . . . , am} of attributes, each asso-
ciated with a data type dom(ai) as its domain, and
a key id(E) ⊆ comp(E) ∪ attr(E). We shall write
E = (comp(E), attr(E), id(E)).

A database schema is a finite set S of database
types such that for all E ∈ S and all ri : Ei ∈
comp(E) we also have Ei ∈ S. That is schemata
are closed under component references.

Example 2.1. The following database schema is
adapted from the ODIN system (Feyer, Kao, Schewe
& Thalheim 2000):

Department = (∅, {name, homepage, contact},
{name})
Course = (∅, {name, degree}, {name})
Lecturer = ({in:Department}, {name, position,
homepage, email}, {name, in:Department})
Paper = (∅, {no, kind, name, level, description,
regularity, points}, {no})
Prerequisite = ({of:Paper, for:Paper}, ∅,
{of:Paper, for:Paper})
Lecture = ({goal:Paper}, {semester, schedule,
literature, comment}, {goal:Paper, semester})
Teacher = ({who:Lecturer, for:Lecture}, ∅,
{who:Lecturer, for:Lecture})
Contribution = ({for:Course, of:Paper},
{optional}, {for:Course, of:Paper})
Involved = ({who:Department, in:Course}, ∅,
{who:Department, in:Course})

As a domain for an attribute we have
dom(schedule) = {(kind:STRING , time:TIME ,
day:STRING , room:STRING)} in the database type
Lecture. All other domains have been omitted.

Given a database schema S we associate two
types t(E) and k(E) – called representation type
and key type, respectively – with each E = ({r1 :
E1, . . . , rn : En}, {A1, . . . , Ak}, {ri1 : Ei1 , . . . , rim

:
Eim

, Aj1 , . . . , Aj`
}) ∈ S:

• The representation type of E is the tuple type

t(E) = (r1 : t(E1), . . . , rn : t(En), A1 : dom(A1),
. . . , Ak : dom(Ak)).

• The key type of E is the tuple type

k(E) = (ri1 : k(Ei1), . . . , rim
: k(Eim

), Aj1 :
dom(Aj1), . . . , Aj`

: dom(Aj`
)).

Finally, a database db over a schema S is an S-
indexed family {db(E)}E∈S such that each db(E) is a
finite set of values of type t(E) satisfying the following
two conditions:

• whenever t1, t2 ∈ db(E) coincide on their projec-
tion to id(E), they are already equal;

• for each t ∈ db(E) and each ri : Ei ∈ comp(E)
there is some ti ∈ db(Ei) such that the projection
of t onto ri is ti.

2.2 Query Algebra

According to our definition of complex value
databases above the definition of a query algebra is
mainly determined by operations defined on the type
system. There is no operation on OK , but for BOOL
we may consider the operations ∧ : BOOL×BOOL →
BOOL (conjunction), ¬ : BOOL → BOOL (nega-
tion) and ⇒: BOOL×BOOL → BOOL (implication).
Furthermore, we consider two constants true : 1l →
BOOL and false : 1l → BOOL.

For tuple types we consider projection πi : t1×· · ·×
tn → ti and product o1 × · · · × on : t → t1 × · · · × tn
for given operations oi : t → ti.

For set types we may consider ∪ (union), − (dif-
ference), the constant empty : 1l → {t} and the sin-
gleton operation single : t → {t} with well known
semantics. In addition, we consider structural recur-
sion, which exploits the constructors for finite sets,
i.e. the constant empty, the singleton operation and
the union operation. In order to define an operation
on a set type, say op : {t} → t′ it is therefore suffi-
cient to define it on the empty set, on singleton sets
and on unions.

Formally, we define op = src[e, g,t] with a value
e of type t′, a function g : t → t′ and a function
t : t′× t′ → t′. Then src[e, g,t] is defined as follows:

src[e, g,t](∅) = e ,

src[e, g,t]({x}) = g(x) for each x of type t, and

src[e, g,t](X ∪ Y) = srcd[e, g,t](X) t src[e, g,t](Y)

for disjoint X,Y of type {t}.

It is easy to see that structural recursion is able
to express projections, selections and aggregate func-
tions as they appear in standard query languages such
as SQL.

For completeness we also use operations on func-
tions. In particular, we consider composition ◦ :
(t2 → t3) × (t1 → t2) → (t1 → t3), evaluation
ev : (t1 → t2) × t1 → t2, and abstraction abstr :
(t1 × t2 → t3) → (t1 → (t2 → t3)). All these opera-
tions are standard.

Furthermore, assume an equality predicate =t: t×
t → BOOL for all types t except function types and a
membership predicate ∈: t × {t} → BOOL. We shall
also use a unique “forget”-operation triv : t → 1l
for each type t. Combining all the operations for all
types of the type system gives all operations induced
from the type system.

In (Schewe 2001) it has been shown that these op-
erations suffice to express more complex operations
for nesting and unnesting.

Finally, we will need a generalized join-operation.
For this, we first define subtyping in the standard way
as the smallest preorder such that the following holds:

• For any type t we have t ≤ OK.

• For set types (or list types, multiset types, re-
spectively) we have {t} ≤ {t′} (or [t] ≤ [t′],
〈t〉 ≤ 〈t′〉, respectively) iff t ≤ t′ holds.

CRPIT Volume 49

184

• For tuple types we have t1 × · · · × tm ≤ t′1 ×
· · · × t′n iff tσ(i) ≤ t′i holds for some injective σ :
{1, . . . , n} → {1, . . . ,m}.

Then each subtype relation t ≤ t′ defines an asso-
ciated subtype function πt′ : t → t′. In (Schewe 2001)
the following result has been proven:

If t is a common supertype of t1 and t2 with associ-
ated subtype functions πi

t : ti → t, then there exists a
common subtype t1 ./t t2 together with subtype func-
tions πti

: t1 ./t t2 → ti such that π1
t ◦ πt1 = π2

t ◦ πt2
holds. Furthermore, for any other common sub-
type t′ with subtype functions π′

ti
: t′ → ti with

π1
t ◦ π′

t1 = π2
t ◦ π′

t2 there is a unique subtype func-
tion π : t′ → t1 ./t t2 with πti

◦ π = π′
ti

.
With the existence of the join types t1 ./t t2 the

join over t can be defined as
C1 ./t C2 = {z : TC1

./t TC2
| ∃z1 ∈ C1.∃z2 ∈ C2.

πt1(z) = z1 ∧ πt2(z) = z2}.

2.3 Heuristic Query Optimisation

Using the query algebra, each query gives rise to a
query tree in the same way as for the relational data
model. Furthermore, there are equalities among the
operators, which will allow us to rearrange the exe-
cution order of the operations. Without going into
detail – the heuristics are the same as for the RDM –
we can rearrange a query tree in a way that (if pos-
sible) we first apply structural recursion operations
src[e, g,t] on the sets of input database, i.e. on some
db(E).

In particular, selections and projections, i.e. those
operations that will reduce the size of a set of com-
plex values, can be expressed by structural recursion
(Schewe 2001).

First consider a function f : t → t′ for arbitrary
types t and t′. We want to “raise” f to a function
map(f) : {t} → {t′} by applying f to each element of
a set. Obviously, we have map(f) = src[∅, single ◦
f,∪]. Projection is just a special case of map.

Next consider a function ϕ : t → BOOL. We de-
fine selection as an operation filter(ϕ) : {t} → {t},
which associates with a given set the subset of all
elements “satisfying the predicate” ϕ, i.e. elements
that are mapped to T. Then we may write

filter(ϕ) = src[∅, if then else ◦ (ϕ × single×
(empty ◦ triv)),∪]

with the function if then else : BOOL × t × t → t
with (T, x, y) 7→ x and (F, x, y) 7→ y.

3 Schema Fragmentation

Let us now introduce operations for fragmentation.
Similar to the RDM horizontal fragmentation exploits
the fact that each database type E defines a set db(E)
in a database db, thus can be partitioned into disjoint
subsets. As our complex value datamodel provides
deeply nested structures, we use splitting as another
fragmentation operation. Roughly speaking, splitting
introduces new components.

3.1 Horizontal Fragmentation

As in any database db the database type E is as-
sociated with a finite set db(E), we obtain an easy
generalisation of relational horizontal fragmentation.
For this let E be some database type. Take boolean
valued functions ϕi (i = 1, . . . , n) such that for each
database db we obtain

db(Ei) =
n
⋃

i=1

filter(ϕi)(db(E))

with disjoint sets σϕi
(db(E)). We then replace E in

the schema by n new database types Ei, all with the
same definition as E.

Example 3.1. Take the schema from Example 2.1
and fragment the database type Paper into two new
instances Advanced Paper and Basic Paper us-
ing ϕ1 ≡ level ≥ 300 and ϕ2 ≡ level < 300.

3.2 Vertical Fragmentation

Let E be a database type with k(E) as
key type. It takes a form, E = ({r1 :
E1, . . . , rn : En}, {A1, . . . , Ak}, {ri1 : Ei1 , . . . , rim

:
Eim

, Aj1 , . . . , Aj`
}). Vertical fragmentation on E

replace E with a set of new types E1, . . . , Em with
Ej = ({rj

1 : Ej
1, . . . , r

j
n : Ej

n}, {A
j
1, . . . , A

j
k}, {r

j
i1

:

Ej
i1

, . . . , rj
im

: Ej
im

, Aj
j1

, . . . , Aj
j`
}) such that:

• the components and attributes will be dis-
tributed:

{E1, . . . En} =

m
⋃

j=1

{Ej
1, . . . , E

j
ni
},

{A1, . . . Ak} =

m
⋃

j=1

{Aj
1, . . . , A

j
ni
},

• db(E) is split into db(E1), . . . , db(Em) such that
db(E) could be reconstructed by using the join
operation on all the instances:

db(E) = db(E1) ./ · · · ./ db(Em),

• in the query algebra E = Ei ./ · · · ./ Em.

Using the query algebra, vertical fragmentation could
be written as db(Ej) = map(πEj

)(db(E)) for all j ∈
{1, . . . ,m}. It normally requires that the key type
k(E) is part of all Ej .

Example 3.2. Take the schema from Example 2.1
and fragment the database type

Lecturer = ({in:Department}, {name, posi-
tion, homepage, email}, {name, in:Department})
into two new types Lect Details and Lect Page
with

Lect Details=
({in:Department}, {name, position, email}),

Lect Page =
({in:Department}, {name, homepage}).

Correspondingly the instance of Lecturer is
fragmented using the map operation:

db(Lect Details) = map(πLecturer Details)(db(E))

db(Lect Page) = map(πLecturer Homepage)(db(E))

3.3 Fragmentation by Splitting

The splitting operation is quite simple. Sup-
pose the schema contains a database type E
and take subsets comp′(E) ⊆ comp(E) and
attr′(E) ⊆ attr(E). Then simply add a new
database type E′ = (comp′(E), attr′(E), id(E′)) to
the schema S and change the definition of E to

Enew = (comp(E) − comp′(E) ∪ {r′ : E′}, attr(E) −
attr′(E), id′(E))

with id′(E) = id(E)−comp′(E)−attr′(E)∪{r′ : E′}
if id(E) ∩ (comp′(E) ∪ attr′(E)) 6= ∅, id′(E) = id(E)
otherwise, and id(E′) = comp′(E) ∪ attr′(E).

Then db(E) is reconstructed from db(Enew) and
db(E′) by a dereferencing operation δ.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

185

Example 3.3. Example 2.1 suffices to illustrate the
splitting operation. We could split the database type
Contribution into the types

Contribution = ({of:Paper, r′:Contribution′},
∅, {of:Paper, r′:Contribution′})

and

Contribution′ = ({for:Course}, {optional},
{for:Course, optional})

If we first apply splitting, we increase the num-
ber of database types in the schema. Thus, splitting
widens the possibilities for applying horizontal frag-
mentations.

3.4 The Impact of Fragmentation on Opti-
mised Query Trees

Using the query algebra presented in the last sec-
tion we can write queries in the form of query trees.
The “optimisation assumption” then allows us to as-
sume that the leaves of such trees are the input doc-
ument(s), and predecessors of leaves are structural
recursion nodes, which represent first a selection ex-
pressed via filter, then a projection expressed via
map. Equivalently, we may assume that we have sub-
queries of the form

map(πX)(filter(ϕ)(db(E))) (*)

Horizontal fragmentation corresponds to replacing
db(E) by some union db(E1) ∪ · · · ∪ db(En). We may
assume that splitting has been executed first to obtain
enough such horizontal fragments.

As the new sets db(Ei) (i = 1, . . . , n) are all ex-
pressed by selections, we may assume again n = 2
by switching to horizontal fragmentation with normal
predicates, i.e. satisfiable conjunctions of simple se-
lection formulae. That is, we basically replace db(E)
in the subquery (*) above by db(E1) ∪ db(E2).

Another round of query optimisation might shift
the selection filter(ϕ) and the projection map(πX)
inside the newly introduced union, but the “upper
part” of the query tree would not be affected. There-
fore, in order to optimise horizontal fragmentation, it
is decisive and sufficient to consider subqueries of the
form (*) above.

Vertical fragmentation corresponds to replacing
db(E) by some join db(E1) ./ · · · ./ db(En). Another
round of query optimisation might shift the selection
filter(ϕ) and the projection map(πX) inside newly
introduced join, but again the “upper part” of the
quey tree would not be affected. Hence, it is also
decisive and sufficient to consider subqueries in the
form (*) above for the purpose of optimising vertical
fragmentation.

Similarly, splitting fragmentation corresponds to
replacing db(E) by δ(db(Enew), db(E′)). Query opti-
mization might shift the selection filter(ϕ) and the
projection map(πX) inside the newly introduced deref-
erence. At the same time the upper part of the query
tree would also be affected. Again, we can just con-
sider subqueryies in the form for optimising splitting
operation.

4 A Cost Model

We now analyse the query costs in the case of horizon-
tal fragmentation. The major objective is to base the
fragmentation decision on the efficiency of the most
frequent queries. As a general pragmatic guideline
we follow the recommended rule of thumb to con-
sider only the 20% most frequent queries, as these
usually account for most of the data access (Özsu &
Valduriez 1999).

4.1 Size Estimation

Crucial to the query costs are the sizes of sets of com-
plex values that have to be built during query exe-
cution, as these sets have to be stored at secondary
storage, retrieved from there again, and sent between
the locations of a network. Therefore, we first ap-
proach an estimation of these sizes.

In order to do so, we look at the components r :
E′ ∈ comp(E) and the attributes A ∈ attr(E), and
estimate the size s(t(E)), i.e. the average size of an
element in db(E). The size of db(E) itself is then nE ·
s(t(E)), where nE is the average number of elements
in the set db(E).

Let si be the average size of elements dom(bi)
for a base type bi. This can be used to de-
termine first the size s(A) of an attribute A, i.e.
the average space needed for it in storage. We obtain:

s(A) =







si if dom(A) = bi
∑n

i=1 s(ti) if dom(A) = (a : t1, . . . , an : tn)
r · s(t) if dom(A) = {t}

In the last of these cases r is the average number
of elements in sets of type {t} within an attribute A.

Then for E = ({r1 : E1, . . . , rn :
En}, {A1, . . . , Ak}, id(E)) we obtain

s(t(E)) =

n
∑

i=1

s(t(Ei)) +

k
∑

j=1

s(Ai).

The calculation of sizes of class instances applies
also to the intermediate results of all queries. How-
ever, we can restrict our attention to the nodes in the
subqueries of the form (*), as the other nodes in the
query tree will not be affected by horizontal fragmen-
tation and subsequent heuristic query optimisation.
Thus, we only have to look at selection and projec-
tion nodes and ignore all other nodes in query trees.

• The size of a selection node filter(ϕ) is p · s,
where s is the size of the successor node and p is
the probability that an element in the successor
will satisfy ϕ.

• The size of a projection node map(πX) is (1− c) ·

s ·
s(tX)

s(t)
where t is the type of elements in the

set associated with the successor node, and tX
is the type of the elements in the set associated
with the projection node.

The work in (Ma 2003) contains a discussion of
sizes of results for other algebra operations as well,
but we will not need this here.

4.2 Query Processing Costs

Fragmentation of type E results in a set of fragments
{E1, . . . , En} of average sizes s1, . . . , sn. If the net-
work has a set of nodes N = N1, . . . , Nk we have to
allocate these fragments to the nodes, which gives rise
to a mapping λ : {1, . . . , n} → {1, . . . , k}, which we
call a location assignment .

However, the fragments only appear on the leaves
of query trees. More generally, we must associate
a node λ(v) with each node v in each relevant query
tree. λ(v) indicates the node in the network, at which
the intermediate query result corresponding to v will
be stored.

Given a location assignment λ we can compute the
total costs of query processing. Let the set of queries
be Qm = {Q1, . . . , Qm}. Query costs are composed
of two parts: storage costs and transportation costs :
costsλ(Qj) = storλ(Qj) + transλ(Qj).

CRPIT Volume 49

186

The storage costs give a measure for retrieving the
data back from secondary storage, which is mainly de-
termined by the size of the data. The transportation
costs provide a measure for transporting between two
nodes of the network.

The storage costs of a query Qj depend on the
size of the intermediate results and on the assigned
locations, which decide the storage cost factors. It
can be expressed as

storλ(Qj) =
∑

h

s(h) · dλ(h),

where h ranges over the nodes of the query tree for Qj ,
s(h) are the sizes of the involved sets, and di indicates
the storage cost factor for node Ni (i = 1, . . . , k).

The transportation costs of query Qj depend on
the sizes of the involved sets and on the assigned
locations, which decide the transport cost factor
between every pair of sites. It can be expressed by

transλ(Qj) =
∑

h

∑

h′

cλ(h′)λ(h) · s(h
′).

Again the sum ranges over the nodes h of the query
tree for Qj , h′ runs over the predecessors of h in
the query tree, and cij is a transportation cost fac-
tor for data transport from node Ni to node Nj

(i, j ∈ {1, . . . , k}).
Furthermore, for each query Qj we assume a value

for its frequency freqj . The total costs of all the
queries in Qm are the sum of the costs of each query
multiplied by its frequency:

m
∑

j=1

costλ(Qj) · freqj .

In general, the distribution could be called optimal
if we find a fragmentation and allocation schema such
that the resulting total query costs are minimal. As
this problem is practically incomputable, we suggest
to use a heuristic instead.

4.3 The Impact of Horizontal Fragmentation
on Query Costs

Let us now discuss the impact of fragmentation on
query costs (Ma & Schewe 2005). We concentrated on
horizontal fragmentation, but vertical fragmentation
and splitting can be handled similarly. As distribu-
tion is intended to increase query performance, let us
now ask which fragmentations are reasonable. As al-
ready stated we may concentrate on the most frequent
queries only and ignore all others. Each such query
defines a set of simple selection formulae. Obviously,
we should restricted ourself in horizontal fragmenta-
tion based on normal predicates due to the limitation
of the available space.

Therefore, let Φw denote the set of all simple se-
lection formulae that are used within the selected set
Qm = {Q1, . . . , Qm} containing the most frequent
queries. Let Nw be the set of normal predicates de-
fined by Φw. We address the optimisation of horizon-
tal fragmentation under the constraint that we want
to select a reasonable subset of Nw, say N y ⊆ Nw,
such that query performance with fragments defined
by N y is (almost) optimal. We further assume that
the storage cost factors di are the same for all nodes
Ni of the network.

Let us first look at the effects to query costs of
a fragmentation with a single simple formula. Basi-
cally we have to adapt query trees, take into account
algebraic optimisation, the effect of which will be on
the subqueries of the form (*), and find a modified
location assignment λ that would reduce the query
processing costs, provided such a λ exists. We have
to distinguish three cases for this scenario.

op

X

1
E

op

E

jQ '

jQ

t
N

aN

tN

bN

X

Figure 1: Scenario I for Query Tree Rewriting in Case
of Horizontal Fragmentation

Scenario I

Assume that the selection formula ϕ in (*) has the
form ϕ = ψ∧ω. Using simple predicates ψ to perform
fragmentation on db(E) in (*) we get two frag-
ments: db(E1) = filter(ψ)(db(E)) and db(E2) =
filter(¬ψ)(db(E)) with db(E) = db(E1) ∪ db(E2).
Then query Qj only needs to access fragment db(E1)
and should be rewritten as

Qj = op(. . . (map(πX)(filter(ω))(db(E1))))

Correspondingly, on the query tree the leave
db(E) would be replaced by the fragment db(E1);
and its predecessor in the query tree would become
filter(ω). Here we neglect the special case that ω
is true, in which case the selection would completely
disappear. Consequently, allocation of the subquery
tree would be changed from Na to some Nb as shown
Figure 1. There is no further change to the query
tree.

Let p be the possibility that the objects in db(E)
satisfy the condition ψ then we have sE1

= p · sE . If
we know the size of selection node filter(ω)(E1) or
size of selection node filter(ω ∧ ψ)(db(E)) then we
get

1. the leaf node reduced in size by factor p, and

2. one internal node may be reduced to 0, i.e. not
existing anymore.

Assume the storage cost factors di for all sites
among the network are equal, the effect on storage
costs is:

stor(Q′
j) = stor(Qj) − (1 − p) · sE

Lets use sG to represent the size of the node
map(πX)(filter(ϕ)(db(E))) of the query tree Qj .
Assume the processor of πX is allocated to node Nt,
then only the transport cost is changed from sG · cat
to sG · cbt, if E1 is allocated to a site b which is
different from site a to which E is allocated. Hence
we get:

trans(Q′
j) = trans(Qj) − cat · sG + cbt · sG

From the cost analysis above we make the follow-
ing observations:

• The size associated with the projection node does
not change. Therefore, if the location assignment
λ was optimal before the fragmentation, it does
not make sense to change it for any node other
than the three nodes corresponding to the sub-
query (*).

• Unless the selection node is deleted from the
query tree, its size remains unchanged. This im-
plies that there is at most a small change to the
storage costs. In particular, as transportation

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

187

op

X

l
E

op

X

E

t
N

aN

tN

X

sE

sbN
lbN

jQ '

jQ

Figure 2: Scenario II for Query Tree Rewriting in
Case of Horizontal Fragmentation

costs are assumed to be larger anyway, we may
neglect this effect on the storage costs.

• The processing of the subquery itself does not
require any transport of data. Therefore, we can
assume that λ assigns the same network node to
these nodes in the subquery tree.

Scenario II

Assume now that fragmentation with the selection
formula ψ′ leads to two fragments E1 and E2, i.e. the
query Qj needs data from both fragments. Then (*)
would be replaced by

map(πX)(filter(ϕ)(db(E1) ∪ db(E2))). (†)

Algebraic query optimisation will move the se-
lection and projection inside the union, i.e. we obtain

map(πX)(filter(ϕ)(db(E1)))
∪map(πX)(filter(ϕ)(db(E2))). (‡)

As a consequence, the fragment allocation can only
require that the network nodes assigned to the two
new fragments are different and maybe also be dif-
ferent from the target network node Nt. Then the
fragment with the larger size after the selection will
determine the location assignment for the union, un-
less the fragment with the smaller size after the selec-
tion is at the target site Nt, in which case the larger
fragment should be moved to site Nt. Figure 2 shows
the changes of the query tree with site allocation.

The effect of the horizontal fragmentation on the
storage costs is only extra costs for storing a union
node:

stor(Q′
j) = stor(Qj) + sE .

Using the same argument as for Scenario I we may
again neglect this change to the storage costs.

Let b1 be the site allocated to E1, b2 the one
for E2. Let l be 1 or 2 such that size sjl of node
map(πX)(filter(ω)(db(El))) is maximal, sjs be the
size of the smaller fragments. The effect of the frag-
mentation on the transportation costs is different in
the following two situations:

• If Ns 6= Nt, then trans(Q′
j) = trans(Qj) − cat ·

sG + cblt · sG + cbsbl
sjs.

• If Ns = Nt, then trans(Q′
j) = trans(Qj) − cat ·

sG + cblbs
sjl.

We observe the following:

• As in case I the size of data transported to the
target note Nt does not changed because the size
of the union node in Q′

j is the same as the projec-
tion node in Qj . Also, we obtain again marginal
changes to the storage costs. Thus, we can con-
centrate on the transportation costs.

op

1
E

op

X

E

jQ '

jQ

t
N

aN

1bN

X

2
E

2bN

tN

op

1
E

'

jQ

1b
N

2
E

2b
N

t
N

[,]Xamg

Figure 3: Scenario III for Query Tree Rewriting in
Case of Horizontal Fragmentation

• The processing of the subquery would require
sending the smaller selection result to the loca-
tion of the larger one if the fragment of smaller
size is not allocated to the target site Nt.

Scenario III

Taking the same assumption as for Scenario II,
we now consider a special case when the sizes of
filter(ϕ)(db(Ei)) are almost equal for i = 1, 2, and
that the projection has only a small impact on the
size of the result of (†). Then we get sj1 ≈ sj2 ≈ sE

2 .
In this case it is advantageous to read both frag-

ments filter(ϕ)(db(E1)) and filter(ϕ)(db(E2))
and to transfer both to the same node, at which the
projection operation will be performed after the union
of the two fragments. We may even assume that the
union and the follow-on projection can be combined
in a single computation, amg(∪, π), which can reduce
the costs of sorting. The result on the query tree is
illustrated in Figure 3.

As in the two other cases, we may neglect the
changes to the storage costs. Then the total query
costs are:

trans(Q′
j) = trans(Qj)− cat · sG + cb1t · sj1 + cb2t · sj2

≈ trans(Qj) + (
cb1t+cb2t

2 − cat) · sG .

We observe that when both fragments are needed
by Qj and allocated the same site as E, there is no
change for the query costs.

5 A Heuristic Approach for Horizontal Frag-
mentation and Allocation

The first step in the design of fragmentation is ac-
quiring application information to determine a set of
simple predicates, which takes the form path θ v with
a path expression path on type E, a value of the cor-
responding type, and a comparison operator θ, which
can be one of =, 6=,≤, <,≥, >,⊇,⊂,⊇,⊃,∈,3, /∈, and
63.

Let Φm = {ϕ1, . . . , ϕm} denote a set of simple
predicates defined on type E. Then the set of normal
predicates Nm = {N1, . . . ,Nn} on type E is the set
of all satisfiable predicates of the form

Nj ≡ ϕ∗
1 ∧ · · · ∧ ϕ∗

m

where ϕ∗
i is either ϕi or ¬ϕi.

Each of the normal predicates defines a atomic
horizontal fragment,

Fj = filter(Nj)(db(E))

Let J ⊆ {1, . . . ,m} be a subset of all simple pred-
icates. Normal predicates can therefore be written as:

CRPIT Volume 49

188

∧

j∈J

Pj ∧
∧

j /∈J

¬Pj

Let h be a network node, Jh = {j|j ∈
J ∧ Pj executed at site h} be all simple predi-
cates executed at site Nh. The request of a atomic
fragment at site h are:

requesth(Fj) =
N

∑

j=1,j∈Jh

freqj

with freqj as the frequency of query Qj .
Note that the biggest number of atomic fragments

can be up to 2x with x as the number of simple predi-
cates using for fragmentation. As we know the biggest
number of fragments of a type E is the number of net-
work node k. Therefore, atomic fragment recombina-
tion is a necessary step for getting a final horizontal
fragmentation schema. In the following, we introduce
a heuristic that performs the task of horizontal frag-
mentation, atomic fragments recombination as well as
fragment allocation simultaneously.

5.1 A Heuristic for Horizontal Fragmenta-
tion and Fragment Allocation

According to our discussion above about the three
basic cases of how fragmentation affects the query
costs, the allocation of fragments to network nodes
following the cost minimisation heuristics, already
determines the location assignment, provided that an
optimal location assignment for the queries was given
prior to the fragmentation. This suggests the follow-
ing horizontal fragmentation and allocation Heuristic.

Algorithm: HF Frag Alloc
Input: Φx = {ϕ1, . . . , ϕx} /* a set of simple predi-
cates
Output: Horizontal fragmentation schema and frag-
ment allocation schema
Begin

for each h ∈ {1, . . . , k}
Eh = ∅

end-for
define a set of normal predicates N x using Φx

define a set of atomic fragments Fx using N x

for each atomic fragment Fj ∈ Fx, 1 ≤ i ≤ 2x do

for each node h ∈ {1, . . . , k} do
calculate requesth(Fj)

end for
choose w such that requestw(Fi) =

Max(request1(Fi), . . . , requestk(Fj))
/* find the maximum value

λ(Fj) = Nw /* allocate the atomic fragment
to the site of biggest request

define Eh with Eh =
⋃

{Fj |λ(Fj) = Nh}
/* put the atomic fragment into the

corresponding fragment
end for

End {HF Frag Alloc}

The above algorithm first finds the site that has
the biggest value of request then allocates the atomic
fragment to the site. A fragmentation schema and
fragment allocation schema can be obtained simulta-
neously. Note that heuristics have to be employed,
because the complexity of finding an optimal alloca-
tion schema is NP-hard due to the fact that there
are as many as k(2x) atomic fragments where x is the
number of simple predicates and k is the number of
network nodes.

5.2 An Allocation Heuristic for Distributed
Query Trees

Site allocation of a query tree is performed from bot-
tom to top. Horizontal fragmentation results leaf E
on all query trees replaced with E1 ∪ · · · ∪En, if frag-
ments Ei is relevant to the query. Another round of
query optimization is performed to further optimise
all the queries. In this section, we introduce an allo-
cation heuristic for the allocation of distributed query
trees.

Firstly, the root of a query tree is allocated to
the site that issued it. Secondly, we do allocation
for each leave of the query tree. A leaf of query
trees is either a horizontal fragment or type, which
is not fragmented. If leaves are horizontal fragments,
allocation is decided by HF Frag Alloc introduced
above. If a leaves is type, its allocation is decided
by the needs of queries from it, i.e. to allocate the
instance of a type to the site that have the highest
value of needs of all queries calculated by

needsh(E) =
N

∑

j=1,Nj=h

sj · freqj

with sj as the size of data volume required by query
Qj and freqj as the frequency of Qj , j = 1, . . . , N .

To allocate sites to intermediate nodes, following
situations may occur:

• if there is a rooted path having two ends at the
same site, allocate all nodes on the path at that
site.

• if a node has one successor or two successors at
the same site, allocate it to the site of its succes-
sor or successors.

• if a node has two successors at different sites,
allocate the node the same site of the successor
of bigger size.

5.3 A Heuristic Procedure of Primary Hori-
zontal Fragmentation

The discussion about how horizontal fragmentation
affect query costs in (Ma & Schewe 2005) shows that
fragmentation of a type using a predicate ϕ in Φ will
lead the follow two cases:

• One of the two fragments resulting from hori-
zontal fragmentation with a formula in Φ will
reside at the same location as the document be-
fore fragmentation, whereas the other fragment
will be moved to a new location.

• Both fragments will reside at the same node.

In the second case the transportation costs remain
the same. In the first case the transportation costs
will be reduced. This suggests to take a total order
on the elements of Φ according to their frequency,
i.e. let Φw = [ϕ1, . . . , ϕw] with freq(ϕi) ≥ freq(ϕj)
iff i ≤ j. Then determine Φy = [ϕ1, . . . , ϕy] such
that fragmentation with elements in Φy leads to a re-
allocation of a fragment, whereas the fragmentation
with elements in Φw−Φy does not add changes. Then
y can be determined by binary search.

For a given database schema S =
{E1, . . . , Ei, . . . , En}, there is a set of queries,
Qm = {Q1, . . . , Qm}, that access the database 20%
most frequently or are used by the most critical
transactions. A heuristic procedure of horizontal
fragmentation is proposed in (Ma & Schewe 2004a)
to get a reasonable fragmentation schema by looking
at most frequently used simple predicates. We now

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

189

adopt the heuristic to the complex value databases.
Based on the cost model introduced above a heuristic
procedure of horizontal fragmentation for complex
value databases includes the following steps:

1. sort queries by decreasing frequency to get a list
of queries Q = [Q1, . . . , Qj , . . . , Qm]

2. optimise all the queries and extract simple pred-
icates from the queries to get a list of Φ of simple
predicates,

3. construct a usage matrix based on Φ to obtain a
list of simple predicates Φw for each type E,

4. take the list of selection predicates Φw =
[ϕ1, . . . , ϕw] to get a list of indices X =
[0, 1, . . . , x1, . . . , x2, . . . , w],

5. determine y, 1 ≤ y ≤ n, such that fragmenta-
tion with the first y predicates in Φw leads to
a re-allocation of a fragment, whereas the frag-
mentation with elements in ϕy+1 does not add
changes. y can be determined by binary search
using Num Simple Predicates,

6. take the first y simple predicates in Φw to get a
subset of simple predicates Φy,

7. perform horizontal fragmentation with Φy using
PF Frag Alloc. This results a fragmentation
schema of type E and allocation schema of its
fragments.

5.4 Simple Predicates for Horizontal Frag-
mentation

We first introduce an algorithm,
Cost PH Fragmentation, for calculating total query
cost using the cost model, with following parameters
used in the algorithm: Qm = {Q1, . . . , Qm} as a set
of 20% most frequent queries, Φw = [ϕ1, . . . , ϕw]
as a list of simple predicate abstracted from Qm,
X = [0, 1, . . . , x1, . . . , x2, . . . , w] as the list of indices
corresponding to Φw, x as a index of a simple predi-
cate with x ∈ X, costx as the total query costs when
E is fragmented using the first x simple predicates
in Φw, sji as the size of data volume needed from
fragment Ei of E by Qj .

Algorithm: Cost PH Fragmentation
Input:Qm = {Q1, . . . , Qm}

Φw = [ϕ1, . . . , ϕw]
x

Output: costx
Begin

take the first x simple predicates in Φw to get Φx

apply HF Frag Alloc to get a horizontal
fragmentation schema of E and allocation
schema of its fragments E1, . . . , En

for each query tree Qj ∈ Qm do
replace E with E1 ∪ · · · ∪ En in the query

trees if sji > 0
optimise all query trees using heuristic query

optimisation
apply the allocation heuristic to allocate

intermediate nodes of query trees
calculate query cost costλ(Qj) for each

query using the cost model
end-for
calculate total query cost using the cost model:

costx =
m
∑

j=1

costλ(Qj) · freqj

End {Cost PH Fragmentation}

Using the Cost PH Fragmentation algorithm
above, an algorithm for finding the number y of
simple predicates that should be used for horizontal
fragmentation is presented as below.

Algorithm: Num Simple Predicates
Input:Qm = {Q1, . . . , Qm}

Φw = [ϕ1, . . . , ϕw]
X = [0, 1, . . . , x1, . . . , x2, . . . , w]

Output: y
Begin:

set a = 0, b = w
do while b − a ≥ 3
randomly choose x1, x2 from X such that

0 < x1 < x2 < b
for each x ∈ {a, x1, x2, b} do

Cost PH Fragmentation
end-for
min := Min{costa, costx1

, costx2
, costb}

/* find the minimal among the four values
if costy1

= costy2
and y1 < y2 with

y1, y2 ∈ {a, b, x1, x2} then
min := costy1

end-if
if costa = min then

b := x1
else-if costx1

= min then
b := x2

else-if costx2
= min then

a := x1
else costb = min then

a := x2
end-do
choose y ∈ {a, . . . b} such that

costy = Min{costx : x ∈ {a, . . . , b}}
End{Num Simple Predicates}

Basically, the above algorithm takes as input a list
of indices of simple predicates, iteratively chooses four
numbers a, b, x1, x2 with a < x1 < x2 < b, starting
with a = 0 and b = w, calculates the corresponding
total query costs, compares the costs to decide a rea-
sonable number y of simple predicates for horizontal
fragmentation.

6 Experimental Evaluation of the Heuristics

We present here some experiments that are con-
ducted to verify the algorithms, HF Frag Alloc and
Num Simple Predicates proposed above. We first
build up a test bed. For this we design a database
schema S and populate the database with records to
get db(S). Then we assume from four sites over a
network there are 30 queries, which are the 20% most
frequently queries or used by most critical transac-
tions. We design these 30 queries by applying the
similar pattern of queries as in OO7 project (Carey,
DeWitt & Naughton 1993). According to the well-
known 20/80 rule, the system performance is assessed
by the total query costs of these 30 queries. There is
one type E ∈ S, on which there are a set Φ of 14
simple predicates abstracted from the 30 queries.

Before testing Num Simple Predicates we need
first to validate the algorithm HF Frag Alloc because
HF Frag Alloc is used by Num Simple Predicates.
For this purpose, we fragment the type E by us-
ing all 14 simple predicates, as we did traditionally.
The fragmentation results 42 atomic fragments. It
is impossible to get an optimal allocation schema for
the atomic fragments because the complexity of it is
442 ≈ 1026, which is practically incomputable. There-
fore, to allocate the resulting set of atomic fragments
we try the following two different allocation strategies
and compare the total query costs from them:

CRPIT Volume 49

190

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

y

c
o

s
ts

Instance 1

Instance 2

Instance 3

Figure 4: A Chart of Simple Predicate Query Costs

• get an allocation schema of each atomic fragment
by using HF Frag Alloc and get the correspond-
ing total query costs.

• get a set of allocation schemata by randomly al-
locate each atomic fragments to a site over the
network and calculate total query costs under
each of the allocation schemata. Choose the least
query costs among them.

The experimental results show that the total query
costs from both strategies are same. This means that
the heuristic HF Frag Alloc can leads to semi optimal
allocation schema. We conclude that given a set
of simple predicates to do horizontal fragmentation,
allocating each atomic fragment to a site that re-
quests it most frequently leads to a fragment allo-
cation schema with nearly least total query costs.

To valid the algorithm Num Simple Predicates, we
first calculate total query costs with respect to every
value x ∈ {1, 2, . . . , 14}, the number of simple predi-
cates from Φw that is used for fragmenting a type E,
on three different database instances that have the
same selectively with respect to each simple predi-
cate in Φw but with different sizes. The results are
shown in Figure 6. We note that the trends of all
the three graphs are similar, i.e. the lines become flat
from y = 11.

We then test the Num Simple Predicates algo-
rithm on the 3 different instances and get the fol-
lowing results:

test 1 2 3
instance size 1,000 5,000 10,000

y 11 11 11

From the above results we conclude that:

• given a set of simple predicates Φw, we only need
a subset Φy of simple predicates with Φy ∈ Φw to
perform horizontal fragmentation such that the
system performance can be improved in the same
way as using all the simple predicates in Φw.

• the heuristic is efficient in the sense of rapidly
getting the value y.

• with the increase of sizes of the instances, the
query costs vary obviously with the change of
the number of simple predicates for fragmenta-
tion, i.e., the more simple predicates the less total

, , , , ()
w

s
E X Q db E

Num_Simple_Predicates

Cost_PH_Fragmentation

uses

HF_Frag_Alloc

uses

Take the first y simple

predicates

1
,...,

n
E E

1
(),... ()

n
E E

, , , , ()
w

E X Q db E

On a Sample Database Instance On the Original Database Instance

Step 1 Step 2

HF_Frag_Alloc

y

Figure 5: A Fragmentation Design Model

query costs. But total query costs stop changing
from a certain point.

• with the decrease of the sizes of sample database
instances the speed of running the algorithms in-
creases tremendously.

This suggests that to fragment a instance db(E)
we can first get a value of y by applying the
Num Simple Predicates algorithm on a small sample
instance, which have the same selectivity as the orig-
inal instance regarding the set of simple predicates.
Then we use the first y simple predicates to do frag-
mentation and fragment allocation on the original
database instance. Note that with the reduce of num-
ber of simple predicates for fragmentation, the com-
plexity of the following up allocation problem can be
reduced, i.e, from k2w

to k2y

with w as the number of
simple predicates abstracted from the most frequent
20% queries. This procedure is depicted in Figure 6.

It takes as input a given type E, a set of sim-
ple predicates Φw on it, the corresponding simple
predicate indices X of simple predicates, the set of
queries Qm considered for system performance as-
sessment, uses Num Simple Predicates on a sample
database instance to find out the value y. Once get
the value y, we use HF Frag Alloc on the original
database instance to perform fragmentation. The
outputs of the procedure are a set of fragments
E1, . . . , En of type E, with E = E1 ∪ · · · ∪ En,
and a allocation schema of all the fragments. Note
that the algorithm Num Simple Predicates uses al-
gorithm Cost PH Fragmentation which in turn uses
algorithmHF Frag Alloc.

7 Conclusion

In this paper we continued our work on distribu-
tion design for complex value databases from (Ma
2003, Schewe 2002, Ma & Schewe 2004b, Ma &
Schewe 2005). We presented slightly generalised hor-
izontal fragmentation operations. The core of the
work in this paper, however, was a detailed query per-
formance cost model and a set of heuristics for frag-
mentation and allocation. We addressed the problem
to design fragments and to allocate them in such a
way that the overall performance of the distributed
database system can be improved in the same way
as using all the simple predicates abstracted from the
most 20% queries.

The query cost model is directly based on a query
algebra derived from the work in (Schewe 2001) which
does not assume unnesting or any other relational
representation. In addition, to the presentation of
a heuristic approach to minimise query costs for the

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

191

case of horizontal fragmentation, we presented some
experiments that valid the heuristic approach. We
showed that the minimisation of transportation costs
is decisive, and that this can be achieved locally by
either accepting or rejecting a horizontal fragmenta-
tion with a simple predicate that arises from one of
the most frequent queries.

The next natural step in our work is a generalisa-
tion from horizontal fragmentation to fragmentation
in general, for this we will discuss the effects of ver-
tical fragmentation, splitting and replication on the
query costs using the same query cost model. Of
course, considering the requirement of global optimi-
sation, we need to integrate the handling of horizon-
tal and vertical fragmentation. Further, we will have
more rigorous experiments to validate the allocation
heuristic by studying the performance against the op-
timal case for a small set of queries over some types
in the database schema. Another planned extension
is to provide more rigorous mathematical support for
the allocation and fragmentation heuristics, though it
is well known that this is a very hard task.

Acknowledgement

Authors are grateful for valuable comments from Sven
Hartmann, at Massey university, on this paper and
during the research.

References

Abiteboul, S., Buneman, P. & Suciu, D. (2000), Data
on the Web: From Relations to Semistructured
Data and XML, Morgan Kaufmann Publishers.

Apers, P. M. G. (1988), ‘Data allocation in
distributed database systems’, ACM Trans.
Database Syst. 13, 263–304.

Bellatreche, L., Karlapalem, K. & Simonet, A. (2000),
‘Algorithms and support for horizontal class
partitioning in object-oriented databases’, Dis-
tributed and Parallel Databases 8(2), 155–179.

Carey, M. J., DeWitt, D. J. & Naughton, J. F. (1993),
‘The OO7 benchmark’, SIGMOD Record (ACM
Special Interest Group on Management of Data)
22(2), 12–21.

Chinchwadkar, G. S. & Goh, A. (1999), ‘An
overview of vertical partitioning in object ori-
ented databases’, The Computer Journal 42(1).

Chu, P.-C. (1992), ‘A transaction oriented approach
to attribute partitioning’, Information Systems
17(4), 329–342.

Chu, P.-C. & Ieong, I. T. (1993), ‘A transaction-based
approach to vertical partitioning for relational
databases’, IEEE Transactions on Software En-
gineering 19(8), 804–812.

Ezeife, C. I. & Barker, K. (1995), ‘A comprehen-
sive approach to horizontal class fragmentation
in a distributed object based system’, Distributed
and Parallel Databases 3(3), 247–272.

Ezeife, C. I. & Barker, K. (1998), ‘Distributed object
based design: Vertical fragmentation of classes’,
Distributed and Parallel Databases 6(4), 317–
350.

Feyer, T., Kao, O., Schewe, K.-D. & Thalheim, B.
(2000), Design of data-intensive web-based in-
formation services, in Q. Li, Z. M. Ozsuyoglu,
R. Wagner, Y. Kambayashi & Y. Zhang, eds,

‘Proceedings of the 1st International Confer-
ence on Web Information Systems Engineering
(WISE 2000)’, IEEE Computer Society, pp. 462–
467.

Khalil, N., Eid, D. & Khair, M. (1999), Availability
and reliability issues in distributed databases us-
ing optimal horizontal fragmentation, in T. J. M.
Bench-Capon, G. Soda & A. M. Tjoa, eds,
‘Database and Expert Systems Applications’,
Vol. 1677 of Lecture Notes in Computer Science,
Springer, pp. 771–780.

Lin, X., Orlowska, M. & Zhang, Y. (1993), ‘A graph-
based cluster approach for vertical partitioning
in databases systems’, Data & Knowledge Engi-
neeering 11(2), 151–170.

Ma, H. (2003), Distribution design in object oriented
databases, Master’s thesis, Massey University.

Ma, H. & Schewe, K.-D. (2003), Fragmentation
of XML documents, in ‘Proceedings XVIII
Simpósio Brasileiro de Bancos de Dados (SBBD
2003)’, Manaus, Brazil, pp. 200–214.

Ma, H. & Schewe, K.-D. (2004a), A heuristic ap-
proach to horizontal fragmentation in object ori-
ented databases, in J. Barzdins, ed., ‘Proceed-
ings of the 2004 Baltic Conference on Databases
and Information Systems’, Riga, Latvia, pp. 31–
46.

Ma, H. & Schewe, K.-D. (2004b), Query cost anal-
ysis for horizontally fragmented complex value
databases, in ‘Proc. 3rd Chilenean Database
Workshop’.

Ma, H. & Schewe, K.-D. (2005), Query optimisa-
tion as part of distribution design for com-
plex value databases, in Y. Kiyoki, H. Kangas-
salo, H. Jaakkola & J. Henno, eds, ‘Proc. 15th
European-Japanese Conference on Information
Modelling and Knowledge Bases’, Tallinn Uni-
versity of Technology, Estonia, pp. 269–276.

Malinowski, E. & Chakravarthy, S. (1997), Fragmen-
tation techniques for distributing object-oriented
databases, in D. W. Embley & R. C. Goldstein,
eds, ‘Conceptual Modeling - ER ’97’, Vol. 1331
of Lecture Notes in Computer Science, Springer,
pp. 347–360.

Özsu, M. T. & Valduriez, P. (1999), Principles of Dis-
tributed Database Systems, Alan Apt, New Jer-
sey.

Schewe, K.-D. (2001), On the unification of query al-
gebras and their extension to rational tree struc-
tures, in M. Orlowska & J. Roddick, eds, ‘Proc.
Australasian Database Conference’.

Schewe, K.-D. (2002), Fragmentation of object ori-
ented and semi-structured data, in H.-M. Haav
& A. Kalja, eds, ‘Databases and Information
Systems II’, Kluwer Academic Publishers, pp. 1–
14.

Schewe, K.-D. & Thalheim, B. (1993), ‘Fundamen-
tal concepts of object oriented databases’, Acta
Cybernetica 11(4), 49–84.

Tamhankar, A. M. & Ram, S. (1998), ‘Database
fragmentation and allocation: An integrated
methodology and case study’, IEEE Transac-
tions on Systems Management 28(3), 194–207.

Thalheim, B. (2000), Entity-Relationship Modeling:
Foundations of Database Technology, Springer-
Verlag.

CRPIT Volume 49

192

OCP- A Distributed Real Time Commit Protocol

Udai Shanker* Manoj Misra Anil K. Sarje
Department of Electronics & Computer Engineering

Indian Institute of Technology Roorkee
Roorkee-247 667 India

udaigkp@gmail.com,{manojfec, sarjefec}@iitr.ernet.in

Abstract
Most of the existing commit protocols try to improve the
system performance by allowing a committing cohort to
lend its data to an executing cohort, thus reducing data
inaccessibility. However, these protocols block the
borrower when it tries to send
WORKDONE/PREPARED message (Qin & Liu 2003,
Haritsa, Ramamritham & Gupta 2000, Gupta, Haritsa,
Ramamritham & Seshadri 1996, Gupta, Haritsa, &
Ramamritham 1997), thus increasing the transactions
commit time. This paper first analyzes all kind of
dependencies that may arise due to data access conflicts
in executing-committing transaction when a committing
cohort is allowed to lend its data to an executing cohort,
and then proposes a static two phase locking based
optimistic commit protocol i.e. OCP. In OCP, the
execution phase of a cohort is divided into two parts
locking phase and processing phase and then, in place of
WORKDONE message, WORKSTARTED message is
sent just before the start of processing phase of the
cohort. Again, in case of dependency, borrower with only
commit dependency is allowed to send
WORKSTARTED message instead of being blocked.
This reduces the time needed for commit processing and
is free from cascaded aborts. To ensure non-violation of
ACID properties, checking of completion of processing
and removal of dependency of cohort are required before
sending the Yes-Vote message. The performance of the
OCP is also analyzed for partial read-only optimization.
.

Keywords: cohort, commit, workstarted message,
workdone message, distributed real time database
systems.

1 Introduction

1.1 General
A real time database system operating on distributed data
should maintain data consistency as well as it must satisfy
timing constraints associated with transaction, typically
expressed in term of deadlines. One of the important

*Lecturer, M. M. M. Engg. College, Gorakhpur - 273010, Uttar
Pradesh, India under QIP Scheme.

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Database Conference
(ADC 2006), Hobart, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 49. Gillian
Dobbie and James Bailey, Eds. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

factors that contribute to the difficulty in meeting
transaction deadlines is the data access conflicts among
them. The lifetime of a transaction is divided into two
stages, viz., execution stage and commitment stage (Lam,
Pang, Son & Cao 1999). In the execution stage, the
operations of a transaction are processed at different sites
of the system, while, in the commit stage, a commit
protocol is used to ensure transaction atomicity. Data
conflicts can be between two transactions in execution
stage (execute-execute conflicts) or between one
transaction in execution stage and other in commit stage
(execute-commit conflicts). Though, the issue of handling
data conflicts between two executing transactions has
been addressed up to some extent, very little work has
been done on the issue of handling data conflicts between
executing-committing transactions. The commit
processing in a DRTDBS can significantly increase the
execution time of a transaction. This may adversely affect
the system’s ability to meet transaction deadlines.
Therefore, designing a good commit protocol is important
for the DRTDBS not only for resilience to failure and
speed of recovery but also for normal processing.
1.2 Background and Related Work
The Two Phase Commit (2PC) is still the one most
commonly used protocol in the study of DRTDBS (Gray
1991). Most of the existing protocols proposed in the
literature are based on it, such as, presumed commit (PC)
and presumed abort (PA) (Mohan, Lindsay & Obermarck
1986). PA is optimized for read-only transactions and a
class of multisite update transactions, whereas PC is
optimized for other classes of multisite update
transactions. Soparkar et al. (1992) have proposed a
protocol that allows individual sites to unilaterally
commit. If it is later found that the decision is not
consistent globally then compensation transactions are
executed to rectify errors. The problem with this
approach is that many actions are irreversible in nature. In
(Yoon, Cho & Han 1996), same compensation approach
is used.

Gupta et al. proposed optimistic commit protocols in
(Gupta, Haritsa, Ramamritham & Seshadri 1996, Gupta,
Haritsa, & Ramamritham 1997). These protocols try to
improve system concurrency by allowing executing
transactions to borrow data from transactions in their
commit stage. But these protocols create dependencies
among transactions. If a transaction depends on other
transactions, it is not allowed to start commit processing
and has to be blocked until the transactions, on which it
depends, have committed. The blocked committing
transaction may include a chain of dependencies as other
executing transactions may have data conflicts with it.
Enhancement has been made in PROMPT commit

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

193

protocol proposed in Haritsa et al. (2000), which allows
executing transactions to borrow data in a controlled
manner only from the healthy transactions in their
commit phase. However, it does not consider the type of
dependencies between two transactions. The abort of a
lending transaction aborts all transaction that has
borrowed the data from it. The performance of the system
is dependent on chosen threshold value of health factor
(HF), which is defined as ratio of TimeLeft to MinTime,
where TimeLeft is the time left until the transaction’s
deadline and MinTime is the minimum time required for
commit processing. The impact of buffer space and
admission control is also not studied since it is assumed
that buffer space is sufficiently large to allow the
retention of data updates until commit time. The
technique proposed by Lam et al. (1999) maintains three
copies of each modified data item (before, after and
further) for resolving execute-commit conflicts. This not
only creates additional workload on the systems but also
has priority inversion problems. Based on the concepts of
papers (Lam, Pang, Son, & Cao 1999) and (Haritsa,
Ramamritham & Gupta 2000), Biao Qin et al. (2003)
proposed a protocol (2SC) which classifies the
dependencies between lender and borrower into two
types; commit and abort. The abort of lending transaction
only forces transactions in its abort dependency set to
abort. The transactions in the commit dependency set of
aborted lending transaction continue as normal.

There are two locking approaches used by the
transactions to obtain a lock on data item i.e. static two
phase locking (S2PL) and dynamic two phase locking
(D2PL) (Lam, Hung & Son 1997). In conventional
database system, D2PL is more favourable than S2PL
because the prior locking information of the transactions
required in S2PL is not available in most cases. As a
result of the better defined nature of real time
transactions, it is not uncommon to assume the locking
information of transactions to be known before
processing. Actually, many real-time concurrency control
protocols have made these assumptions or even stronger
assumptions. For example, priority ceiling protocols
(Rajkumar 1989, Sha, Rajkumar & Lehoczky 1988)
explicitly assume the availability of such information. It
is acceptable for real time database system because the
designer of the real time database systems know in what
environment the system operate in order to design system
satisfying timing requirement. Actually, real-time S2PL
(RT-S2PL) protocols do possess desirable features
making them suitable for RTDBS, especially for
distributed real-time database systems (DRTDBS), in
which remote locking is required and distributed
deadlock is possible. At the same time, the problem of
prior knowledge on the required data objects of a
transaction is easy to address in DRTDBS as it is
generally agreed that the behaviour and the data items to
be accessed by real-time transactions, especially hard
real-time transactions, are much more well-defined and
predictable. In addition, the number of messages and the
time delay for remote locking can be significantly
reduced as they can be packed into a single message for
each site. There is no local deadlock. A distributed
deadlock is much easier to resolve with S2PL than with

D2PL. Deadlock freedom and lower communication
overhead of locking by using S2PL makes it attractive for
DRTDBS. The use of S2PL for concurrency control in
real-time database systems (RTDBS) has received little
attention in the past. Actually, there is a complete lack of
work on the use of real-time S2PL for RTDBS and
DRTDBS (Lam 1994).

The protocols, that allow an executing cohort to
borrow data from a committing cohort, do not allow the
borrower to send WORKDONE/ PREPARED message
and block it until the lender commits. This avoids the
problem of cascading aborts but the blocked borrower
may be aborted by a higher transaction. They also deal
with either blind write model or update model. Our work
first analyzes all kinds of dependencies that may arise due
to data access conflicts in executing-committing cohort
considering an update model, and then proposes a new
static locking based real time commit protocol OCP.
Here, the execution phase of a cohort is divided into two
parts locking phase and processing phase, and in place of
WORKDONE message, WORKSTARTED message is
sent just before the start of processing phase of the
cohort. A cohort may wait due to data contention only
during its locking phase. Once, it acquires all the locks,
the transaction either completes or is aborted either by a
higher priority transaction or due to the expiry of its
deadline In case of dependency, borrower is allowed to
send WORKSTARTED message, if it is only commit
dependent on other cohorts instead of being blocked as
opposite to Qin et al. (2003), Haritsa et al. (2000), Gupta,
et al. (1996), Gupta et al. (1997). This reduces the time
needed for commit processing and is free from cascaded
aborts. To ensure non-violation of ACID properties,
checking of completion of cohort’s processing and the
removal of its dependency are required before sending the
Yes-Vote. The performance of the OCP is also analyzed
for partial read-only optimization which minimizes
intersite message traffic, execute-commit conflicts and
log writes consequently resulting with a better response
time. Simulation of the proposed work is also done which
shows that the proposed protocol improves the system
performance.

The remainder of the paper is organized as follows.
Section 2 introduces a distributed real time database
model. Section 3 describes data access conflicts resolving
strategies. Section 4 presents OCP with pseudo code of
algorithms. Section 5 discusses simulation results,
performance measure and evaluation. Section 6 shows the
impact of partial read optimization. Section 7 concludes
the paper.

2 Distributed Real-Time Database Model
The performance of the OCP is evaluated by developing
two simulation models for DRTDBS. The first one is for
main memory resident DRTDBS which eliminates the
impact of different disk scheduling algorithms on the
performances. Since main memory resident databases are
not so common in commercial database system, we have
also developed another model for disk resident DRTDBS.
The structure of our simulation model followed by
description of various components such as system model,

CRPIT Volume 49

194

network model, cohort execution model, database model
and model assumptions has been given below.

Network
ManagerSite 2 Site 3

Site N

Transaction
Manager

Transaction
Generator Sink

C.C.Manager

Abort
Terminate

MemoryComputation

Commit

Database
Operation

Priority
Assignment wait Queue

ready queue

Blocked

Site 1

Fig. 1 Distributed Real-time Database System Model

2.1 System Model
In a distributed database system model, the global
database is partitioned into a collection of local databases
stored at different sites. Each site consists of a transaction
generator, a transaction manager, a concurrency
controller, a CPU, a ready queue, a local database, a
communication interface, a sink and a wait queue. The
transaction generator is responsible for the creation of
transactions with inter-arrival time and is independent of
the generation at other sites. At each site, two types of
transactions are generated: global transactions and local
transactions. The transaction manager generates cohorts
on remote site on behalf of the coordinator. Before a
cohort performs any operation on a data object, it has to
go through the concurrency control component to obtain a
lock on that object. If the request is denied, the cohort is
placed into the wait queue. The waiting cohort will be
awakened when the requested lock is released and all the
locks are available. If the request of all the locks is
granted, the cohort will access the memory and perform
computation on data items. Finally, cohort may
commits/aborts and releases all the locks it has been
holding. The sink component of the model is responsible
for gathering the statistics for the committed or
terminated transactions.

2.2 Database Model
The database is modelled as collection of data items that
are uniformly distributed across all the sites. Transactions
make requests for the data items and concurrency control
is implemented at the data item level. No replication of
data items at various sites is considered here.

2.3 Network Model
A communication network interconnects the sites. There
is no global shared memory in the system, and all sites

communicate via messages exchange over the
communication network. Thus, a network manager
models the behaviour of the communications network.

2.3 Locking Mechanism
Some of the main techniques used to control concurrent
execution of transactions are based on the concept of
locking data items. A transaction is said to follow the two
phase locking protocol if all locking operations precede
first and then unlock operation in the transaction. A
variation known as conservative 2PL or static 2PL
(S2PL) used here requires a transaction to lock all the
data items it accesses before the transaction begins
execution, by predeclaring it’s read-set and write-set. If
any of the predeclared items can not be locked, the
transaction does not lock any items; instead, it wait until
all the items are available for locking.

2.4 Cohort Execution Model
There are two types of distributed transaction execution
model i.e. sequential and parallel. In sequential execution
model, there can be at most one cohort of a transaction at
each execution site, and only one cohort can be active at a
time. While, in case of parallel execution model, the
coordinator of the transaction spawns cohorts all together
by sending a message to remote site with a request to
activate the cohort, lists all operations to be executed at
that site and then cohorts may start execution at the same
time in parallel. We have considered cohorts executing in
parallel way.

2.5 Model Assumptions
We assume that the transactions are firm real time
transactions. Each transaction in this model exists in the
form of a coordinator process that executes at the
originating site of the transaction and a collection of
cohorts executing at remote sites, where the required data
items reside. If there is any local data in the access list of
the transaction, one cohort is executed locally. Before
accessing a data item, the cohort needs to obtain locks on
the data item. We also assume that:
• The processing of a transaction requires the use of

CPU and data items located at local site or remote
site.

• Arrivals of transactions at a site are independent of
the arrivals at other sites and use Poisson
distribution.

• Each transaction pre-declares its read-set (set of data
items that the transaction will only read) and write-
set (set of data items that the transaction will write).

• A lending transaction cannot lend the same data item
in read/update mode to more than one cohort.

• The cohort already in the dependency set of another
cohort cannot permit another incoming cohort to read
or update.

• A distributed real time transaction is said to commit,
if the coordinator has reached to the commit decision
before the expiry of the deadline at its site. This
definition applies irrespective of whether cohorts
have also received and recorded the commit decision
by the deadlines.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

195

• Studies have been made for both main memory
resident and disk resident database Communication
delay is considered either 0ms or 100ms.

• In case of disk resident database, buffer space is
sufficiently large to allow the retention of data
updates until commit time.

3 Data Access Conflicts Resolving Strategies
 Sharing of data items in conflicting modes creates
dependencies among conflicting transactions and
constraints their commit order.

Real time transactions used in DRTDBS can be
classified on basis of types of operation performed
(Ramamritham 1993). It is given below.
• Blind Write Model (Write Only): These types of

transactions obtain state of the environment and write
into the database.

• Update Model (Read before Write): These types of
transactions derive new data and store in the database.

• Read only: These types of transactions read data from
database.

3.1 Update Model
Updating data items is often more complex task than
querying data items. Updating means editing (or
changing) database data, satisfying some condition. When
a cohort updates a data item, all constraints must be
enforced and controlled, so that action of one cohort does
not interfere with those of other and database must be free
from inconsistency problem of the concurrent execution
of a number of transactions.

3.1.1 Types of Dependencies & their Definitions
We assume that a cohort requests update lock if it wants
to update a data item x. The modified definitions of
dependency in this paper are given below:

Commit dependency (CDS)
If a transaction T2 updates a data item read by another
transaction T1, a commit dependency is created from T2
to T1. Here, T2 is not allowed to commit until T1 is
committed.

Abort dependency (ADS)
If T2 reads / updates an uncommitted data item written by
T1, an abort dependency is created from T2 to T1. T2
aborts, if T1 aborts and T2 is not allowed to commit
before T1.

These dependencies are required to maintain the
ACID properties of the transaction. Each transaction Ti,
that lends its data while in prepared state to an executing
transaction, maintains following set.

CDS (Ti): the set of transactions Tj, that are commit
dependent on transaction Ti.

ADS (Ti): the set of transactions Tj, that are abort
dependent on transaction Ti

3.1.2 Type of Dependency in Different Cases of
Data Conflicts
When data conflicts occur, there are three possible cases
of conflict.

Case 1: Read-Update Conflict.

If T2 requests update-lock while T1 is holding a read-
lock, a commit dependency is defined from T2 to T1.
First, the transaction id of T2 is added to the CDS (T1).
Then T2 acquires the update-lock.

Case 2: Update – Update Conflict.

If both locks are update –locks and HF(T1) ≥ MinHF, an
abort dependency is defined from T2 to T1. The
transaction id of T2 is added to ADS (T1), and T2
acquires the update-lock; otherwise, T2 is blocked.
{discuss later in section 4)

Case 3: Update -Read Conflict

If T2 requests a read-lock while T1 is holding a update-
lock and HF(T1) ≥ MinHF, an abort dependency is
defined from T2 to T1. The transaction id of T2 is added
to ADS (T1), and T2 acquires the read-lock; otherwise,
T2 is blocked.

On the basis of the data conflicts discussed in section
3.2.1, the accesses of data item in conflicting mode are
processed by lock manager as follows.

If (T2 CD T1)

{

 CDS (T1) =CDS (T1) {T2}; ∪
 T2 is granted Update lock;

}

else if ((T2 AD T1) AND (HF(T1) ≥ MinHF))

 {

ADS (T1) =ADS (T1) {T2}; ∪
T2 is granted the requested lock (read or
Update);

 }

 else T2 will be blocked;

3.2 Mechanics of interaction between lender and
borrower cohorts
When T2 had accessed the already locked data by T1, one
among the three possible scenarios described below may
arise.

Scenario 1: T1 receives decision before, T2 is going to
start processing phase after getting all locks.

If the global decision is to commit, T1 commits.

(1) All cohorts in ADS (T1) and CDS (T1) will execute
as usual and the set of ADS (T1) and CDS (T1) deleted.

 (2) If the global decision is to abort, T1 aborts. The
cohorts in the dependency set of T1 will execute as
follows:
� all cohorts in ADS (T1) will be aborted;
� all cohorts in CDS (T1) will execute as usual;
� the set of ADS (T1) and CDS (T1) deleted.

CRPIT Volume 49

196

Scenario 2: T2 is going to start processing phase after
getting all locks Before, T1 Receives Global Decision.

T2 is allowed to send a WORKSTARTED (discussed in
later section) message to its coordinator, if it is commit
dependent only; else, it is blocked for sending the
WORKSTARTED message (So, the coordinator cannot
initiate the commit processing operation). It has to wait,
until

1. either T1 receives its global decisions, or
2. its own deadline expires, whichever occurs earlier.
In case 1, the system will execute as the first scenario,

whereas in the case 2, T2 will be killed and will be
removed from the dependency set of T1.

Scenario 3: T2 aborts before, T1 receives decision

In this situation, T2’s updates are undone and T2 will be
removed from the dependency set of T1.

4 The OCP Commit Protocol

A critical task in the execution of a transaction in a
DRTDBS is to ensure its consistent termination. This is
the atomic commitment problem. To address this issue,
we have designed a new real time protocol based on the
concepts describe below.

Basic Idea

A commit protocol can improved transaction success
percentage by

1. Reducing the commit duration for each transaction,
2. Causing locks to be released sooner reducing the

wait time of other transactions, and
3. Allowing ordered sharing of locks.
The ideas discussed below are based on the factors

listed above.

(A) The execution of a transaction may be delayed due to
resource (CPU and disk) or data contentions. The
optimization proposed in this paper is based on the
following observations:

1. Data contention is the main cause of delay in
transaction’s execution.

2. A cohort may wait due to data contention only
during its locking activity.

We therefore propose to divide the execution phase of
the transaction into two parts:

1. Locking Phase, and
2. Processing Phase.
The execution of cohort is carried out according to the

following steps:
1. During locking phase, the transaction locks the

data items.
2. Just before the start of processing phase, the cohort

sends the WORKSTARTED message to its
coordinator. Then, it is executed.

3. After the receipt of WORKSTARTED messages
from all its cohorts, the coordinator sends
PREPARE message at time t, calculated as
follows:

t = max {ti + processing_timei} - Tcom

where,

ti = arrival time of WORKSTARTED message from
cohorti

processing_timei = processing time needed by cohorti

Tcom= Communication Delay

The important point to note here is that the required
optimization is local to each site and do not requires inter-
site communications. Moreover the proposed
optimization can be integrated with any other protocol
based on 2SC.

(B) If a cohort T2 utilizes the dirty data items already
locked by other cohorts, one of the following three types
of dependencies may arise.

1. It may be commit dependent on other cohorts.
2. It may be abort dependent on other cohorts.
3. It may be commit dependent as well as abort

dependent both on other cohorts.

Let us consider the case; T2 is going to start
processing phase after getting all locks, before lenders
receive global decision. In case of completion of data
processing of T2 before receipt of global decision by T1,
existing commit protocols including 2SC block borrower
from sending the WORKDONE message until lender
commits/aborts. We propose to allow a commit dependent
borrower to send the WORKSTARTED message as the
abort of lender never aborts it. Hence, one of the
following two decisions is taken based on types of
dependencies, cohort locks all the required lock and
going to start processing phase.

1. T2 is allowed to send WORKSTARTED message to

its coordinator if it is only commit dependent on other
cohorts. This is free from cascaded abort because
abort of T1 (lender) causes T2 (borrower) not to abort.

2. T2 is not allowed to send a WORKSTARTED
message to its coordinator if it is only abort dependent
or combination of commit and abort dependent both
on other cohorts. So the coordinator cannot initiate the
commit processing. Instead, it has to wait until either
T1 receives its global decisions or its own deadline
expires, whichever occurs earlier.

(C) Cohort sends the Yes-Vote in response to its
coordinator’s PREPARE message only when its
dependencies are removed and it has finished its
processing. If it is still dependent on any cohort or
processing is not finished, the Yes-Vote message is
deferred. The deferred Yes-Vote message is being sent by
the borrower after completion of processing and removals
of dependency either due to abort or commit of lender.
The important point to note here is that the required
modification is local to each site and do not requires
inter-site communications.

(D) The CPU scheduling algorithm for the cohorts is
described below.

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

197

1. When two cohorts are ready to run on the same
processor, the higher priority cohort is scheduled
first.

2. While in locking period, if a higher priority cohort
(Th) arrives, the lower priority cohort (TL) aborts.
TL releases all its locked data items.

3. Cohort processing is done on the basis of
availability of the CPU and priority. If a higher
priority cohort (Th) arrives during the processing
phase of TL it aborts the lower priority transaction
(TL). The aborted cohort/transaction releases all its
locked data items.

Algorithm

On the basis of above discussion, the complete pseudo
code of the protocol is given below.

if (T1 receives global decision before, T2 is going to start
processing phase after getting all locks)

{ONE: if (T1’s global decision is to commit)

 {

T1 enters in the decision phase;

All cohorts in ADS (T1) and CDS (T1) will
execute as usual;

Delete set of ADS (T1) and CDS (T1);

 }

 else //T1’s global decision is to abort

 { T1 aborts;

The cohorts in CDS (T1) will execute as usual;

Transaction in ADS (T1) will be aborted;

 Delete sets of ADS (T1) and CDS (T1);

 }

 }

else if (T2 is going to start processing phase after getting
all locks before, T1 receives global decision)

 {

 check type of dependencies;

 if (T2’s dependency is commit only)

 T2 sends WORKSTARTED message;

 else

 {

 T2 is blocked for sending WORKSTARTED
message;

 while (! (T1 receive global decision OR T2
misses deadline))

 {

 if (T2 misses deadline)

 {

 Undo computation of T2;

 Abort T2;

 Delete T2 from CDS (T1) & ADS (T1);

 }

 else GoTo ONE;

 }

 }

 }

 else //T2 is aborted by higher transaction before,

 // T1 receives decision

 {

 Undo computation of T2;

 Abort T2;

 Delete T2 from CDS (T1) & ADS (T1);

 }

5 Simulation Results, Performance Measure
and Evaluation

5.1 Performance Parameters and Measures

Since there is no practical benchmark program for
DRTDBS in the market or in the research community to
evaluate the performances of proposed policy (Lee, Lam
& Kao 1999), a distributed real time database system
consisting of N sites is simulated. The default values of
different parameters used in the simulation experiments
are given in Table 1. These settings were chosen to
ensure significant levels of both resource contention (RC)
and data contention (DC). They were chosen to be in
accordance with those used in earlier studies.

The concurrency control scheme used is S2PL with
high priority. When a cohort requests a lock on a data
item that is held by one or more higher priority cohorts in
a conflicting lock mode, the requesting cohort waits for
the data item to be released. On the other hand, if the data
item is held by only lower priority cohorts in a conflicting
way, the lower priority cohorts are aborted and requesting
cohort is granted the desired locks. The new reader can
join a group of lock-holding readers only if its priority is
higher than that of all the writers waiting for the locks.

For simplicity, the cohort’s priority assignment policy
used is Earliest Deadline First (EDF) in all the
experiments. Here, the cohort with closest deadline is
assigned highest priority. If any two of the cohorts have
same deadline, the one with earliest arrival (FCFS) is
assigned a higher priority.

For DRTDBS, one of the most important performance
metrics is how well the system can meet the deadlines.
Thus, our primary performance measure is the proportion
of missed deadlines (or miss ratio, MR) which is defined
as the percentage of input transactions that system is
unable to complete on or before their deadlines.

MR= number of transactions aborted / number of
transactions submitted to system for processing

CRPIT Volume 49

198

Miss percentage values in the range of 0 to 20 percent
are taken to represent system performance under normal
loads, while miss percentage in the range of 20 to 100
percent represents system performance under heavy load
(Haritsa, Carey & Livny 1992).

In our simulation model, a small database (200 data
items) is used to create a high data contention
environment. This helps us in understanding the
interaction among the different policies. A small database
means that degree of data contention in the system can
easily be controlled by the sizes of the transactions. The
small database also allows us to study the effect of hot-
spots, in which a small part of the database is accessed
very frequently by most of the transactions.

The deadline of a transaction is controlled by the
runtime estimate of a transaction and the parameter slack
factor, which is the mean of an exponential distribution of
slack time. The deadlines of transactions (both global and
local) are calculated based on their expected execution
times. The deadline (Di) of transaction (Ti) is defined as:

Di=Ai+ SF *Ri

where,

Ai is the arrival time of transaction (Ti) at a site.

SF is the slack factor.

Ri is the minimum transaction response time.

As cohorts are executing in parallel, the Ri can be
calculated as:

Ri =Rp+Rc

where, Rp, the time for execution phase and Rc, the time
for commitment phase are given as below.\

For global transaction

Rp= max.((2*Tlock + Tprocess) × Noper_local, (2*Tlock +
Tprocess)*Noper_remote)

Rc= Ncomm* Tcom

For local transaction

Rp= (2*Tlock + Tprocess) × Noper_local

Rc= 0

Where,

Tlock is the time required to lock/unlock a data item;

Tprocess is the time to process a data item (assuming read
operation takes same amount of time as write operation);

Ncomm is no. of messages;

Tcom is communication delay i.e. the constant time
estimated for a message going from one site to another;

Noper_local is the number of local operations;

Noper_remote is maximum number of remote operations
taken over by all cohorts.

Parameters Meaning Default setting

Nsite Number of Site 4

AR Arrival Rate 4 Transactions/
Second

Tcom Communication
Delay

100 ms
(constant)

SF Slack Factor 1-4 (uniform
distribution)

Noper No. of Operations
in a Transaction

3-20 (uniform
distribution)

PageCPU CPU page
Processing Time

5 ms

PageDisk Disk page
Processing Time

20 ms

DBsize Database Size 200 Data
Objects/Site

Pwrite Write Operation
Probability

.60

Table I. Default values for the model parameters

5.2 Simulation results
We compare the OCP with PROMPT and 2SC

5.2.1 Main Memory Database
Fig.2 and Fig. 3 show the comparison of OCP with

PROMPT and 2SC respectively at communication delay
100ms & 0ms as a function of the average transaction
inter-arrival rate/site under normal and heavy load
conditions in main memory based database. It can be seen
that the proposed protocol works best under all load
conditions. The performance improvements are primarily
due to not blocking the cohorts to send their
WORKSTARTED messages and by not allowing higher
priority transactions to abort a borrower. The
communication delay is minimized by overlapping the
processing time and message transmission time and early
sending of WORKSTARTED messages by commit
dependent only cohorts, thus reducing the overall time
needed for commit processing.

Fig.2 Miss % with (RC+DC) at Communication Delay=100
Normal & heavy Load

Transaction Arrival Rate

2 4 6 8 10 12 1

M
is

s
%

4
0

20

40

60

80

100

PROMPT
2SC
OCP

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

199

Fig. 3 Miss % with (RC+DC) at Communication Delay=0ms
Normal & Heavy Load

Transaction Arrival Rate

10 15 20 25 30 35 40 45 50

M
is

s
%

0

20

40

60

80

PROMPT
2SC
OCP

5.2.3 Disk Resident Database

Fig.4, Fig. 5 and Fig 6 show the miss ratio at
communication delay at 100ms as well as 0ms at different
transaction arrival rate in disk resident based database. It
can be seen that the proposed protocol works again better
than 2SC and PROMPT at communication delay 100ms
under all load conditions. The performance improvements
are primarily due to not blocking the cohorts to send their
WORKSTARTED messages and minimizing queuing
delay. The communication delay is also minimized by
early sending of WORKSTARTED messages by cohorts
only commit dependent.

However, it is not better at communication delay 0ms
at higher transaction arrival rate. Rather it is almost at par
with 2SC and PROMPT due to higher number of aborts,
increased number of dependent cohorts and longer
queuing delay for use of resources in the system.

.

Fig.4 Miss % with (RC+DC) at Communication Delay=0ms
Normal Load

Transaction Arrival Rate

3 4 5

M
is

s
%

6
0

5

10

15

20

25

PROMPT
2SC
OCP

Fig. 5 Miss % with (RC+DC) at Communication Delay=0ms
Heavy Load

Transactional Arrival rate

6 9 12 15 18

M
is

s
%

0

20

40

60

80

100

PROMPT
2SC
OCP

Fig. 6 Miss % with (RC+DC) at Communication Delay=100
Normal & Heavy load

Transaction Arrival Rate

2 4 6 8 10 12 1

M
is

s
%

4
0

20

40

60

80

100

PROMPT
2SC
OCP

6 Performance of OCP with Partial Read
Optimization

This most common optimization is called partial read
optimization. It means that a cohort has no work to do at
commit and so does not need a PREPARE, commit or
abort message from its coordinator. Therefore, a cohort
having read only locks will have no locks after sending
WORKSTARTED message. This cohort may send a
read-only WORKSTARTED message to its coordinator
indicating that it is no longer needed by cohort to
participate in 2PC. Hence, the write-write and write-read
are the only possible conflicts in this case. So, the
dependency required in this case is given below:

 Abort dependency (ADS)
If T2 reads/writes an uncommitted data item written

by T1, an abort dependency is created from T2 to T1. T2
aborts, if T1 aborts and T2 is not allowed to commit
before T1.

There are two possible cases of data conflict [1]. Let
T1 be the transaction in commit phase and T2 be the
transaction in execution phase.

Case 1: Write –Write Conflict

If both locks are write–locks and HF(T1) ≥ MinHF,
an abort dependency is defined from T2 to T1. The

CRPIT Volume 49

200

transaction id of T2 is added to ADS (T1), and T2
acquires the write-lock; otherwise, T2 is blocked.

Case 2: Write-Read Conflict

If T2 requests a read-lock while T1 is holding a write-
lock and HF(T1) ≥ MinHF, an abort dependency is
defined from T2 to T1. The transaction id of T2 is added
to ADS (T1), and T2 acquires the read-lock; otherwise,
T2 is blocked.

The effect of partial read only optimization has been
also studies in the main memory and disk resident
database at communication delay 0 as well as 100 ms.
However, the performance gain is better. It is varying in
between the range 1%-5% which has been shown in Fig.
7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11 for different types of
cases. At low arrival rates it is slightly better but it
improve at higher arrival rates.

Main Memory Database

Fig. 7 Miss % with (RC+DC) at Communication Delay=0ms
Normal & Heavy Load

Transaction Arrival Rate

10 15 20 25 30 35 40 45 50

M
is

s
%

0

20

40

60

80

OCP
OCP with Partial Read Ootimization

Fig.8 Miss % with (RC+DC) at Communication Delay=100
Normal & heavy Load

Transaction Arrival Rate

2 4 6 8 10 12 1

M
is

s
%

4
0

20

40

60

80

OCP
OCP with Partial Read Optimization

Disk Resident Database

Fig. 9 Miss % with (RC+DC) at Communication Delay=100
Normal & Heavy load

Transaction Arrival Rate

2 4 6 8 10 12 1

M
is

s
%

4
0

20

40

60

80

OCP
OCP with Partial Read Optimization

Fig.10 Miss % with (RC+DC) at Communication Delay=0ms
Normal Load

Transaction Arrival Rate

3 4 5

M
is

s
%

6
0

5

10

15

20

OCP
OCP with Partial Read Optimization

Fig. 11 Miss % with (RC+DC) at Communication Delay=0ms
Heavy Load

Transactional Arrival rate

6 9 12 15 18

M
is

s
%

0

20

40

60

80

100

OCP
OCP with Partial Read Optimization

7 Conclusion

In a large network, communication and queuing delays
become a bottleneck. In this paper, we propose to send
WORKSTARTED message just before the start of
cohort’s processing in place of sending WORKDONE

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

201

message. This overlap the message transmission time
with the cohort’s processing time and reduces the overall
transaction’s completion time. It also allows the borrower
to send WORKSTARTED message if there is only
commit dependencies between borrower and its lenders.
It is free from cascaded abort since borrower with only
commit dependency is not aborted in case its lenders
abort. This reduces the blocking period of the borrower.
The simulation results show that the gain in performance
can be achieved at low and moderate loads. A suitable
modification in distributed real time commit protocol at
the time of sending Yes Voting message has been made
to ensure atomicity. The important point to note here is
that the protocol’s feature required is local to each site
and do not requires inter-site communications. Moreover,
the proposed optimization can be integrated with any
other protocol based on 2PC.

8 References
Qin, B. and Liu, Y. (2003): High performance distributed

real time commit protocol. Journal of Systems and
Software, Elsevier Science Inc, 1-8.

Mohan, C., Lindsay, B. and Obermarck, R. (1986):
Transaction management in the R* distributed
database Management System. ACM transaction on
Database Systems, Volume 11(4).

Soparkar, N., Levy, E., Korth, H. F. and Silberschatz, A.
(1992): Adaptive Commitment for Real-time
Distributed Transaction. Technical Report TR-92-15,
Department of Computer Science, University of
Texax, Austin.

Yoon, Y., Cho, J. and Han, C. (1996): Real-Time Commit
Protocol for Distributed Real-Time Database Systems.
Proceedings of Second International Conference on
Engineering of Complex Computer Systems, Canada,
IEEE Computer Society Press, Los Alamitos, CA,
221-225.

Lam, K.Y., Pang, C-L., Son, S.H. and Cao, J. (1999):
Resolving executing-committing conflicts in
distributed real-time database systems. The computer
Journal, 42 (8): 674-692.

Haritsa, J., Ramamritham, K. and Gupta, R. (2000): The
PROMPT real time commit protocol. IEEE
Transaction on parallel and distributed systems,
11(2):160-181.

Lam, K. Y. (1994): Concurrency Control in Distributed
real time database systems. PhD Thesis, City
University of Hong Kong.

Gupta, R., Haritsa, J., Ramamritham K. and Seshadri, S.
(1996): Commit processing in distributed real time
database systems. Proceedings of Real-time Systems
Symposium, Washington DC. IEEE Computer Society
Press, San Francisco.

Gupta, R., Haritsa, J. and Ramamritham, K. (1997): More
optimistic about real time distributed commit
processing. Proceedings of Real-Time Systems
Symposium.

Ramamritham, K. and Chrysanthis, P. (1996): A
Taxonomy of correctness criteria in database
applications. VLDB J., 5: 85-97.

Ulusoy, O. (1995): A study of two transaction processing
architecture for distributed real-time database systems.
J. Syst. Software, 31: 97-108.

Ulusoy, O. and Buchmann, A. (1998): A real time
concurrency control protocol for main memory
database systems. Inf. System, 23:109-125.

Ulusoy, O. (1992): Concurrency control in real time
database systems. PhD Thesis, Department of
Computer Science, University of Illinois Urbana-
Champaign.

Gray, J. and Reuter, A. (1993): Transaction Processing:
Concepts and Technique. San Mateo, CA, Morgan
Kaufman.

Pang, C-L. and Lam, K.Y. (1998): On using similarity for
resolving conflicts at commit in mixed distributed real-
time databases. Proceedings of the Fifth International
Conference on Real-Time Computing Systems and
Applications.

Gray, J. (1991): Notes on database operating systems.
Operating Systems: an Advanced Course. 60:397–405.

Lam, K. Y., Hung, S L. and Son, S. H. (1997): On Using
Real-Time Static Locking Protocols for Distributed
Real-Time Databases. Real-Time Systems, 13: 141–
166.

Rajkumar, R. (1989): Task Synchronization in real time
systems. Ph.D. Thesis, Carnegie-Mellon University.

Sha, L., Rajkumar, R. and Lehoczky, J. P. (1988):
Concurrency Control for distributed real time data
bases. ACM SIGMOD Record, 17(1): 82-98.

Thomasian, A. (1993): Two Phase Locking Performance
and It’s Thrashing Behavior. ACM Transactions on
Database Systems, 18(4): 579-625.

Silberschatz, A., Korth, H.F. and Sudarshan, S. (2002):
Database Management. McGraw Hill Higher
Education, International Edition.

Lee, Victor C. S., Lam, Kam-yiu and Kao, B. (1999):
Priority Scheduling of Transactions in Distributed
Real-Time Databases. The International Journal of
Time-Critical Computing Systems, 16: 31–62.

Taina J. and Son, S. H. (1999): Towards a General Real-
Time Database Simulator Software Library.
Proceedings of Active and Real-Time Database
Systems.

Agrawal, D., Abbadi, A. El., Jeffers, R. and Lin, L.
(1995): Ordered share Locks for real Time Databases.
Journal of VLDB, 4: 87-126.

Ramamritham, K (1993): Real-time databases.
Distributed and Parallel Databases, Special issue:
Research topics in distributed and parallel databases,
1(2):199-226.

Haritsa, J. R. Carey, M. J. and Livny, M. (1992): Data
Access Scheduling in Firm Real-Time database
Systems. Journal of Real-Time systems, 4(3):203-242.

CRPIT Volume 49

202

Author Index

Addie, Ron, 79
Al-Wasil, Fahad M., 69

Bailey, James, iii
Bezdek, James C., 3
Bruza, Peter, 89

Dekeyser, Stijn, 79
Ding, Yi, 99
Dobbie, Gillian, iii

Fiddian, N.J., 69
Fisher, Damien K., 59

Gao, Junbin, 139
Governatori, Guido, 129, 157, 175
Gray, W.A., 69

Hao, Yanan, 39
Hartmann, Sven, 21
Hathaway, Richard J., 3
Hidders, Jan, 79
Huang, Zi, 89

Kassab, Randa, 149
Kirchberg, Markus, 119
Kotagiri, Ramamohanarao, 3
Kwan, Paul W.H., 139

Lam, Franky, 59
Lamirel, Jean-Charles, 149
Leckie, Christopher, 3
Li, Xue, 49, 99, 109
Link, Sebastian, 21
Lu, Ruopeng, 157

Ma, Hui, 183

Misra, Manoj, 193

Natwichai, Juggapong, 49
Nguyen, Son N., 31

Orlowska, Maria E., 31, 49, 99

Padmanabhan, Vineet, 157
Pothipruk, Pakornpong, 129
Puglisi, Simon J., 17

Riaz-ud-Din, Faizal, 119

Sadiq, Shazia, 157
Sarje, Anil K., 193
Sattar, Abdul, 175
Schewe, Klaus-Dieter, 119, 183
Shanker, Udai, 193
Shui, William M., 59
Smyth, William F., 17
Song, Dawei, 89, 109
Stantic, Bela, 175

Tretiakov, Alexei, 119
Turpin, Andrew, 17

Wang, Qing, 183
Watson, Richard, 79
Wong, Raymond K., 59

Xu, Guandong, 167

Yan, Xin, 109

Zhang, Yanchun, 39, 167
Zhou, Xiaofang, 89, 167

Database Technologies 2006 - Proc. Seventeenth Australasian Database Conference (ADC2006)

203

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 41 - Theory of Computing 2005
Edited by Mike Atkinson, University of Otago, New
Zealand and Frank Dehne, Griffith University, Aus-
tralia. January, 2005. 1-920-68223-6.

Contains the papers presented at the Eleventh Computing: The Australasian Theory Sympo-
sium (CATS2005), Newcastle, NSW, Australia, January/February 2005.

Volume 42 - Computing Education 2005
Edited by Alison L. Young, UNITEC, New Zealand
and Denise Tolhurst, University of New South Wales,
Australia. January, 2005. 1-920-68224-4.

Contains the papers presented at the Seventh Australasian Computing Education Conference
(ACE2005), Newcastle, NSW, Australia, January/February 2005.

Volume 43 - Conceptual Modelling 2005
Edited by Sven Hartmann, Massey University, New
Zealand and Markus Stumptner, University of South
Australia. January, 2005. 1-920-68225-2.

Contains the papers presented at the Second Asia-Pacific Conference on Conceptual Modelling
(APCCM2005), Newcastle, NSW, Australia, January/February 2005.

Volume 44 - ACSW Frontiers 2005
Edited by Rajkumar Buyya, University of Mel-
bourne, Paul Coddington, University of Ade-
laide, Paul Montague, Motorola Australia Software
Centre, Rei Safavi-Naini, University of Wollon-
gong, Nicholas Sheppard, University of Wollongong
and Andrew Wendelborn, University of Adelaide.
January, 2005. 1-920-68226-0.

Contains the papers presented at the Australasian Workshop on Grid Computing and e-
Research (AusGrid 2005) and the Third Australasian Information Security Workshop (AISW
2005), Newcastle, NSW, Australia, January/February 2005.

Volume 45 - Information Visualisation 2005
Edited by Seok-Hee Hong NICTA, Australia.
January, 2005. 1-920-68227-9.

Contains the papers presented at the Asia-Pacific Symposium on Information Visualisation,
APVis.au, Sydney, Australia, January 2005.

Volume 46 - ICT in Education
Edited by Graham Low University of New South
Wales, Australia. October, 2005. 1-920-68228-7.

Contains selected refereed papers presented at the South East Asia Regional Computer Con-
federation (SEARCC) 2005: ICT Building Bridges Conference, Sydney, Australia, September
2005.

Volume 47 - Safety Critical Systems and Software 2004
Edited by Tony Cant, University of Queensland.
March, 2005. 1-920-68229-5.

Contains all papers presented at the Ninth Australian Workshop on Safety-Related Pro-
grammable Systems, (SCS2004), Brisbane, Australia, October 2004.

Volume 48 - Computer Science 2006
Edited by Vladimir Estivill-Castro, Griffith Uni-
versity and Gillian Dobbie, University of Auckland,
New Zealand. January, 2006. 1-920-68230-9.

Contains the papers presented at the Twenty-Ninth Australasian Computer Science Conference
(ACSC2006), Hobart, Tasmania, Australia, January 2006.

Volume 49 - Database Technologies 2006
Edited by Gillian Dobbie, University of Auckland,
New Zealand and James Bailey, University of Mel-
bourne. January, 2006. 1-920-68231-7.

Contains the papers presented at the Seventeenth Australasian Database Conference
(ADC2006), Hobart, Tasmania, Australia, January 2006.

Volume 50 - User Interfaces 2006
Edited by Wayne Piekarski, University of South
Australia. January, 2006. 1-920-68232-5.

Contains the papers presented at the Seventh Australasian User Interface Conference
(AUIC2006), Hobart, Tasmania, Australia, January 2006.

Volume 51 - Theory of Computing 2006
Edited by Barry Jay UTS, Australia and Joachim
Gudmundsson, NICTA, Australia. January, 2006.
1-920-68233-3.

Contains the papers presented at the Twelfth Computing: The Australasian Theory Symposium
(CATS2006), Hobart, Tasmania, Australia, January 2006.

Volume 52 - Computing Education 2006
Edited by Denise Tolhurst, University of New South
Wales, Australia and Samuel Mann, Otago Poly-
technic, Otago, New Zealand. January, 2006. 1-920-
68234-1.

Contains the papers presented at the Eighth Australasian Computing Education Conference
(ACE2006), Hobart, Tasmania, Australia, January 2006.

Volume 53 - Conceptual Modelling 2006
Edited by Markus Stumptner, University of South
Australia, Sven Hartmann, Massey University, New
Zealand and Yasushi KiyokiKeio University, Japan.
January, 2006. 1-920-68235-X.

Contains the papers presented at the Third Asia-Pacific Conference on Conceptual Modelling
(APCCM2006), Hobart, Tasmania, Australia, January 2006.

Volume 54 - ACSW Frontiers 2006
Edited by Rajkumar Buyya, University of Mel-
bourne, Tianchi Ma, University of Melbourne,
Rei Safavi-Naini, University of Wollongong, Chris
Steketee, University of South Australia and Willy
Susilo, University of Wollongong. January, 2006. 1-
920-68236-8.

Contains the papers presented at the Fourth Australasian Workshop on Grid Computing and
e-Research (AusGrid 2006) and the Fourth Australasian Information Security Workshop (AISW
2006), Hobart, Tasmania, Australia, January 2006.

Volume 55 - Safety Critical Systems and Software 2005
Edited by Tony Cant, University of Queensland.
Late 2005. 1-920-68237-6.

Contains all papers presented at the 10th Australian Workshop on Safety Related Pro-
grammable Systems, August 2005, Sydney, Australia.

Volume 56 - Visual Information Processing 2005
Edited by Hong Yan, City University of Hong Kong,
Jesse Jin, University of Newcastle, Australia, Zhi-
qiang Liu, City University of Hong Kong and Daniel
Yeung, Hong Kong Polytechnic University. Late 2005.
1-920-68238-4.

Contains papers from the Asia-Pacific Workshop on Visual Information Processing (VIP2005),
Hong Kong, December 2005.

Volume 57 - Multimodal User Interaction 2005
Edited by Fang Chen and Julien Epps National
ICT Australia. December, 2005. 1-920-68239-2.

Contains the proceedings of the Multimodal User Interaction Workshop 2005, NICTA-HCSNet,
Sydney, Australia, 13-14 September 2005.

Volume 58 - Advances in Ontologies 2005
Edited by Thomas Meyer, National ICT Australia,
Sydney and Mehmet Orgun Macquarie University.
December, 2005. 1-920-68240-6.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2005), Sydney, Aus-
tralia, 6 December 2005.

CRPIT Volume 49

204

	P00Headers.pdf
	P01CRPITV49Bezdek.pdf
	P01ZZZ.pdf
	P02 InvitedHeader.pdf
	P02CRPITV49Puglisi.pdf
	P03 PapersHeader.pdf
	P03CRPITV49Hartmann.pdf
	P04CRPITV49Nguyen.pdf
	P04ZZZ.pdf
	P05CRPITV49Hao.pdf
	P06CRPITV49Natwichai.pdf
	P07CRPITV49Fisher.pdf
	P08CRPITV49AlWasil.pdf
	P09CRPITV49Dekeyser.pdf
	P10CRPITV49Huang.pdf
	P10ZZZ.pdf
	P11CRPITV49Ding.pdf
	P11ZZZ.pdf
	P12CRPITV49Yan.pdf
	P13CRPITV49Kirchberg.pdf
	P14CRPITV49Pothipruk.pdf
	Introduction
	Preliminary: Description Logic
	Reasoning in Description Logic
	Reasoning for Tbox
	Reasoning for Abox
	Tableaux algorithm

	Reasoning Complexity and Optimization

	The Efficiency Issue
	The Approach
	Example for the Approach
	Complexity Analysis
	The Extension
	Summary and Discussion

	P14ZZZ.pdf
	P15CRPITV49Kwan.pdf
	P15ZZZ.pdf
	P16CRPITV49Kassab.pdf
	P17CRPITV49Lu.pdf
	P18CRPITV49Xu.pdf
	P19CRPITV49Stantic.pdf
	P20CRPITV49Ma.pdf
	P21CRPITV49Shanker.pdf
	Introduction
	2 Distributed Real-Time Database Model
	2.1 System Model
	4 The OCP Commit Protocol
	A critical task in the execution of a transaction in a DRTDB
	Basic Idea
	A commit protocol can improved transaction success percentag
	Reducing the commit duration for each transaction,
	Causing locks to be released sooner reducing the wait time o
	(B) If a cohort T2 utilizes the dirty data items already loc
	5 Simulation Results, Performance Measure and Evaluation

	Trailers.pdf

