CONFERENCES IN RESEARCH AND PRACTICE IN
INFORMATION TECHNOLOGY

VOLUME 48
COMPUTER SCIENCE 2006

AUSTRALIAN COMPUTER SCIENCE COMMUNICATIONS, VOLUME 28, NUMBER 1.

CQupue
@ Research

AUSTRALIAN & E

COMPUTER ducation

SOCIETY

COMPUTER SCIENCE 2006

Proceedings of the
29th Computer Science Conference (ACSC 2006),
Hobart, Australia, 16-19 January 2006

Vladimir Estivill-Castro and Gillian Dobbie, Eds.

Volume 48 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library. v

iii

Proceedings of the Twenty-Ninth Australasian Computer Science Conference (ACSC 2006),
Hobart, Australia, 16-19 January 2006

Conferences in Research and Practice in Information Technology, Volume 48.

Copyright (©2006, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors: Vladimir Estivill-Castro

School of Computing and Information Technology

Nathan Campus

Griffith University

Brisbane 4111

QLD Australia

Email: v.estivill-castro@griffith.edu.au, estivill-castrov@acm.org

Gillian Dobbie

Department of Computer Science
University of Auckland
Auckland,

New Zealand

Email: gill@cs.auckland.ac.nz

Series Editor: John F. Roddick,

Conferences in Research and Practice in Information Technology
Flinders University,

PO Box 2100, Adelaide 5001

South Australia.

crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office

Sydney 1230

New South Wales

Australia.

Conferences in Research and Practice in Information Technology, Volume 48.
ISSN 1445-1336.
ISBN 1-920-68230-9.

Printed, November 2005 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

v

Table of Contents

Proceedings of the Twenty-Ninth Australasian Computer Science Conference
(ACSC 2006), Hobart, Australia, 16-19 January 2006

Preface ix
Programme Committee........ xi
Additional Referees xii
Organising Committee...... xiii
CORE - Computing Research and Education XV
ACSW Conferences and the Australian Computer Science

Communications xvi
ACSW and ACSC 2006 SPOTISOTSttt xix

Biomedical Computing and Visualization i 3
Chris R. Johnson and David M. Weinstein

Full Papers

Software Engineering and Formal Methods

Logic and Refinement for Charts e 13
Greg Reeve and Steve Reeves

Supporting Software Reuse by the Individual Programmer 25
Min-Sheng (Peter) Hsieh and Ewan Tempero

Identifying Refactoring Opportunites by Identifying Dependency Cycles. 35
Hayden Melton and Ewan Tempero

Image and Speech Processing

Unsupervised band removal leading to improved classification accuracy of hyperspectral images 43
Ian Faulconbridge, Mark Pickering and Mike Ryan

On Compensating the Mel-Frequency Cepstral Coeflicients for Noisy Speech Recognition........... 49
Eric H.C. Choi

Fault Tolerance and Security

Segregated Failures Model for Availability Evaluation of Fault-Tolerant Systems 55
Sergiy A. Vilkomir, David L. Parnas, Veena B. Mendiratta and Eamonn Murphy

On pedagogically sound examples in public-key cryptography 63
Suan Khai Chong, Graham Farr, Laura Frost and Simon Hawley

Towards Security Labelling o 69
Chuchang Liu and Mehmet A. Orgun

Algorithms

Improvements of TLAESA Nearest Neighbour Search Algorithm and Extension to Approximation
AT . o .o 77
Ken Tokoro, Kazuaki Yamaguchi and Sumio Masuda

Trust Network Analysis with Subjective Logic 85
Audun Josang, Ross Hayward and Simon Pope

A Semantic Approach to Boost Passage Retrieval Effectiveness for Question Answering 95
Bahadorreza Ofoghi, John Yearwood and Ranadhir Ghosh

Artificial Intelligence

A Programming Paradigm for Machine Learning, with a Case Study of Bayesian Networks 103
Lloyd Allison

Rule Sets Based Bilevel Decision Model e 113
Z. Zheng, G. Zhang, Q. He, J. Lu and Z. Shi

CASO: A Framework for dealing with objectives in a constraint-based extension to AgentSpeak(L) .. 121
Aniruddha Dasgupta and Aditya K. Ghose

Communications and Networks

Modelling Layer 2 and Layer 3 Device Bandwidths using B-Node Theory 127
S. Cikara, S.P. Maj and D.T. Shaw

Throughput fairness in k-ary n-cube networks. 137
Cruz Izu

A JMX Toolkit for Merging Network Management Systemst .. 147
Feng Lu and Kris Bubendorfer

Databases

A Framework for Visual Data Mining of Structures......... i 157

Hans-Jérg Schulz, Thomas Nocke and Heidrun Schumann

Shallow NLP techniques for Internet Search 167
Alex Penev and Raymond Wong

Approximative Filtering of XML Documents in Publish/Subscribe Systems....................... 177
Annika Hinze, Yann Michel and Torsten Schlieder

Distributed Systems

Manufacturing Opaque Predicates in Distributed Systems for Code Obfuscation 187
Anirban Majumdar and Clark Thomborson

Pruning Subscriptions in Distributed Publish/Subscribe Systems............, 197
Sven Bittner and Annika Hinze

The Challenge of Creating Cooperating Mobile Services: Experiences and Lessons Learned 207
Annika Hinze and George Buchanan

Graphics

Human Visual Perception of Region Warping Distortions. 217

Yang-Wai Chow, Ronald Pose, Matthew Regan and James Phillips

Rendering Multi-Perspective Images with Trilinear Projection 227
Scott Vallance and Paul Calder

vi

Extensible Detection and Indexing of Highlight Events in Broadcasted Sports Video 237
Dian Tjondronegoro, Yi-Ping Phoebe Chen and Binh Pham

Human Computer Interaction

Using Formal Concept Analysis with an Incremental Knowledge Acquisition System for Web Docu-
ment Management 247
Timothy J. Everts, Sung Sik Park and Byeong Ho Kang

Interaction Design for a Mobile Context-Aware System using Discrete Event Modelling 257
Annika Hinze, Petra Malik and Robi Malik

Constructing Real-Time Collaborative Software Engineering Tools Using CAISE, an Architecture for
Supporting Tool Development 267
Carl Cook and Neville Churcher

Programming Languages

Plagiarism Detection across Programming Languages 277
Christian Arwin and S.M.M. Tahaghoghi

Programming with Heterogeneous Structures: Manipulating XML data Using bondi 287
F.Y. Huang, C.B. Jay and D.B. Skillicorn

A Relational Account of Objects 297
Clara Murdaca and C. Barry Jay

Security

Tracing Information Flow Through Mode Changest 303

Colin Fidge and Tim McComb

SPiKE: Engineering Malware Analysis Tools using Unobtrusive Binary-Instrumentation............ 311
Amit Vasudevan and Ramesh Yerraballi

A Framework for Role-based group delegation in distributed environment 321
Hua Wang, Jiuyong Li, Ron Addie, Stijn Dekeyser and Richard Watson

Author Index 329

vii

viii

Preface

Edsger Dijkstra, was a pioneer of the field of Computer Science and a participant in 1977 in the first
Australasian Computer Science Conference later jovially named as ACSC-0. He is credited for indicating
that Computer science is no more about computers than astronomy is about telescopes. We understand now
that computer science is the accumulated knowledge through scientific methodology of data and information
manipulation by the use of the computer.

The 29th Australasian Computer Science Conference (ACSC-2006) was held at the School of Computing
at the University of Tasmania, Hobart, Tasmania, Australia from January 16th to 19th, 2006. It is part
of the Australasian Computer Science Week and brings several parallel conferences together. ACSC-06
represents a strong and reputable academic meeting addressing many research sub-disciplines in Computer
Science. It brings together the international community with a central location around Australia and
New Zealand. The meeting allows academics and researchers to discuss research topics as well as the
progress of the field and policies to stimulate its growth. It encourages the dissemination of ideas in an
inter-disciplinary and intra-disciplinary fashion. Researchers that have specialized in one direction find and
audience in others that have moved in orthogonal directions. Thus, the conference offers a forum for many
topics (over 40 general topics were listed in the Call for Papers). The International Program Committee
integrated expertise in all these areas as well as representation from most of the Australian and New
Zealand Higher Education institution members of the the Computing Research and Education Association
of Australasia, CORE. CORE is an association of university departments of Computer Science in Australia
and New Zealand.

The program committee integrated more than 40 highly regarded academics around the globe including
Brazil, Canada, Denmark, France, Germany, Japan, Mexico, Singapore and the US.

Following an international call for papers, we received 165 abstracts and 120 full papers. Each paper
was peer-reviewed in full by at least two independent reviewers, and in some cases three or four referees
produced independent reviews. The program committee was impressed by the quality of the submissions.
Only 35 papers were accepted. This means an acceptance rate of less than 30%. This is again slightly less
than the number of papers in previous years, with a more severe acceptance rate. A conscious decision was
made to select papers for which all reviews were positive and favorable. Although the Program Committee
made careful quantitative and qualitative assessments on the feedback from reviewers, it is remarkable that
all those accepted papers had a weighted score of 5 or above. (In a scale from 1 to 7, here

7 corresponds to Strong Accept [award quality],
6 corresponds to Accept [I will argue for this paper] and
5 corresponds to Weak Accept [I vote for this paper, but won’t object reject]).

While this challenged the determinations, and some high quality work may not have been included, we are
confident that the result is a very solid program and there is a strong contribution in each of the papers
reproduced in these proceedings.

Professor Chris R. Johnson from the University of Utah delivered the keynote address titled Biomedical
Computing and Visualization. Prof. Johnson’s research interests are in the area of scientific computing.
Particular interests include inverse and imaging problems, adaptive methods, problem solving environments,
numerical analysis, biomedical computing, and scientific visualization. This is very appropriate for the
diverse links between disciplines in Computer Science and the links to other sciences that the conference
is stimulating in this edition.

Based on the Guidelines on Research Practice in Computer Science by CORE, the conference awards
a best student paper award to a student author(s)/coauthor(s) provided that:

1. all other non-student co-authors confirm to the program chair(s) that the nominated author has had a
substantial participation into the paper and

2. the student academic supervisor confirm to the program chair that the contribution reflected in the
paper is the result of a major component from progress for a research higher degree.

The best student paper was awarded to Scott Vallance from Flinders University for his paper Render-
ing Multi-Perspective Images with Trilinear Projection The best paper was awarded to Hayden Melton
and Ewan Tempero, both from the University of Auckland, for their paper titled Identifying Refactoring
Opportunites by Identifying Dependency Cycles.

ix

We would like to thank Prof. John Roddick for his assistance in the production of the proceedings and
Kim Taylor for her help with the Conference Management System. We would also like to thank Prof. Jenny
Edwards for her support as president of CORE. Last but not least, we would like to thank the chair of the
local organizing committee Prof. Young J. Choi and his committee for their efforts in coordination.

Vladimir Estivill-Castro and Gillian Dobbie
ACSC 2006 Program Chairs
January, 2006

Programme Committee

Chairs

Vladimir Estivill-Castro, Griffith University, Queensland, Australia
Gillian Dobbie, University of Auckland, New Zealand

Members

Hussein A. Abbass, UNSW@QADFA, Australia

Michael H. Albert, University of Otago, New Zealand

Karin Becker, Pontificia Universidade Catolica do Rio Grande do Sul, Brazil
Andrew Bernat, Computing Research Association, USA
Stephane Bressan, National University of Singapore, Singapore
Fred Brown, University of Adelaide, Australia

Neville Churcher, University of Canterbury, NewZealand
Dominique Decouchant, C.N.R.S., France

Trevor Dix, Monash University, Australia

Gill Dobbie, University of Auckland, New Zealand

Jenny Edwards, University of Technology, Sydney, Australia
Vladimir Estivill-Castro, Griffith University, Australia

Mark Evered, University of New England, Australia

Mike Fellows, University of Newcastle, Australia

Colin Fidge, Queensland University of Technology, Australia
Ken Hawick, Massey University - Albany,, New Zealand
Annika Hinze, Waikato University, New Zealand

Jan Hoffmann, Humboldt-Universitiit zu Berlin, Germany
Nigel Horspool, University of Victoria, Canada

Michael Houle, National Institute for Informatics, Japan
Chris Johnson, Australian National University, Australia
Jyrki Katajainen, University of Copenhagen, Denmark
Paddy Krishnan, Bond University, Australia

Xuemin Lin, University of New South Wales, Australia
Bruce Litow, James Cook University, Australia

Bernard Mans, Macquarie University, Australia

Chris McDonald, University of Western Australia, Australia
Mirka Miller, University of Ballarat, Australia

Kara L. Nance, University of Alaska Fairbanks, USA

Philip Ogunbona, University of Wollongong, Australia
Michael Oudshoorn, Montana State University, USA
Alfredo Sanchez, Universidad de las Americas-Puebla, Mexico
Jin Song Dong, National University of Singapore, Singapore
Leon Sterling, University of Melbourne, Australia

Masahiro Takatsuka, University of Sydney, Australia

Bruce H. Thomas, University of South Australia, Australia
Andrew Turpin, RMIT, Australia

Alexandra Louise Uitdenbogerd, RMIT, Australia

Hua Wang, University of Southern Queensland, Australia
Geoff West, Curtin University of Technology, Australia
Graham Williams, Australian Taxation Office, Australia
Burkhard Wuensche, University of Auckland, New Zealand
Yanchun Zhang, Victoria University, Australia

Wanlei Zhou, Deakin University, Australia

Roger Zimmermann University of Southern California, LA, USA

xi

Additional Referees

Bernhard Aichernig
Brad Alexander

Saeed Araban

Sakire Arslan

Eduardo Augusto Bezerra
Jennifer Badham

Tan Barnes

Cail Borrell

Ole Borup

Rhodes Brown

Ney Laert Vilar Calazans
Phil Cook

Hai Dam

Graham Farr

Yuzhang Feng

Jacob de Fine Skibsted
Tarik Hadzic

Morten Halkjer

Jorgen Havsberg Seland
Nicolas Henschel

Claus Jensen

Craig Jones

Andrei Josephsen

Ed Kazmierczak
Mehrdad Khodai-Joopari
Carlo Kopp

Vladik Kreinovich
Susan K. Land

Geoff Leach

Yuan Fang Li

Leslie S. Liu

Qing Liu

Beth Loga

Stephan Lynge
Keith MacKenzie Frampton
Petra Malik
Robi Malik
Teddy Mantoro
Kim Marshall
Aloys Mbala
Tim McComb
Sule Nair

Lee Naish
Andrew Paplinski
Tan Peake
Jovan Pehcevski
David Pereira
Asad Pirzada
Stephen Seidman
Jialie Shen
Anthony Sloane
Sie Teng Soh
Jon Sporring
Bala Srinivasan
Linda Stern
Phil Stocks

Jun Sun

Kuldar Taveter
Chris Thorne
Phil Vines
Haojun Wang
Ang Yang
Yidong Yuan
Xiuzhen Zhang
Hong Zhu

Uwe R. Zimmer

xii

Organising Committee

Welcome

On behalf of the Tasmanian Organising Committee of ACSW2006 I would like to welcome all the delegates
to the conferences of this busy and interesting week, in particular those coming from overseas.

The location of the various conferences and other events at the Wrest Point Hotel allows delegates to
move quickly from event to event, and to easily and comfortably gather in groups for those conversations
and interactions that are so important for the exchange of ideas and the promotion of cooperation, not to
mention social pleasure.

We trust you will have a thoroughly enjoyable time.

Professor Young Ju Choi
Chair, Organising Committee
January, 2006

General Chair

Professor Young Ju Choi, School of Computing, University of Tasmania, Australia

Organising Committee Members

Ms Nicole Clark

Dr Julian Dermoudy
Mr Tony Gray

Mr Neville Holmes
Mr Ian McMahon

Ms Julia Mollison
Professor Arthur Sale
Ms Soon-ja Yeom

xiii

Xiv

CORE - Computing Research and Education

CORE welcomes all delegates to ACSW2006 in Hobart.

ACSW, the Australasian Computer Science Week continues to grow with new conferences becoming
entrenched in the week. As the premier annual Computer Science event in Australia and New Zealand,
it provides an unparalleled opportunity for the wide community of Computer Science academics and re-
searchers to meet, network, promote IT research and be exposed to the latest research in other areas of
IT. The research presented at each conference is of the highest standard and essential for the growth and
future of our region, in an ever more competitive world.

CORE is expanding its awards. The Distinguished Service Award first offered in late 2004 will be offered
every second year and next at the 2007 Conference. Along with the Chris Wallace Research Award, we are
offering an annual teaching award for the first time.

CORE has continued to play a part in the Federation of Australian Scientific and Technological Societies
and by participating in events such as Science Meets Parliament, CORE is becoming recognised by the
wider community and will continue to do so. A major contribution from many members in 2005 was a
submission to the RQF Forum with some of our ideas appearing in the draft. CORE and members of the
Executive have also been interviewed as representatives of the Computer Science community for several
other Government and industry inquiries and initiatives.

Thank you all for your contributions in 2005 and we look forward to an exciting 2006.

Jenny Edwards
President, Computing Research and Education
January, 2006

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2008. Communications Volume Number 30. Proposed Host and Venue - University of Wollongong, NSW.

2007. Volume 29. Host and Venue - University of Ballarat, VIC.

2006. Volume 28. Host and Venue - University of Tasmania, TAS.

2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.

2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.

2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue
- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.

2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.

2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,
ACT. First running of AUIC.

1999. Volume 21. Host and Venue - University of Auckland, New Zealand.

1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and
Curtin University. Venue - Perth, WA.

1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.
ADC held with DASFAA (rather than ACSW) in 1997.

1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS
joins ACSW.

1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -
Glenelg, SA.

1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first
time separately in Sydney.

1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.

1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).

1991. Volume 13. Host and Venue - University of New South Wales, NSW.

1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information
Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.

1988. Volume 10. Host and Venue - University of Queensland, QLD.

1987. Volume 9. Host and Venue - Deakin University, VIC.

1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.

1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.

1984. Volume 6. Host and Venue - University of Adelaide, SA.

1983. Volume 5. Host and Venue - University of Sydney, NSW.

1982. Volume 4. Host and Venue - University of Western Australia, WA.

1981. Volume 3. Host and Venue - University of Queensland, QLD.

1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.

1979. Volume 1. Host and Venue - University of Tasmania, TAS.

1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Conference on Computing Education.

ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture
Conference (ACAC).

ACSC. Australian/Australasian Computer Science Conference.

ACSW. Australian/Australasian Computer Science Week.

ADC. Australian/Australasian Database Conference.

APBC. Asia-Pacific Bioinformatics Conference.

APCCM. Asia-Pacific Conference on Conceptual Modelling.

AUIC. Australian/Australasian User Interface Conference.

CATS. Computing - The Australian/Australasian Theory Symposium.

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a
wider geographical area.

xvil

xviii

ACSW and ACSC 2006 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date
overview of sponsors of ACSW 2006 and ACSC 2006, please see http://www.comp.utas.edu.au/acsw06/.

UTASHS

University of Tasmania, Australia

®

AUSTRALIAN
COMPUTER
SOCIETY

Australian Computer Society

C Omputing
Research
& Education

CORE - Computing Research and Education

I\ Griffith

Griffith University, Australia

THE UNIVERSITY OF AUCKLAND
NEW ZEALAND

University of Auckland, New Zealand

Xix

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

KEYNOTE PAPER

CRPIT Volume 48

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Biomedical Computing and Visualization

Chris R. Johnson and David M. Weinstein

Scientific Computing and Imaging Institute
School of Computing
University of Utah
50 S. Central Campus Drive, Salt Lake City, UT 84112, US

crj@sci.utah.edu, dmw@sci.utah.edu

Abstract

Computers have changed the way we live, work, and even
recreate. Now, they are transforming how we think about
and treat human disease. In particular, advanced techniques
in biomedical computing, imaging, and visualization are
changing the face of biology and medicine in both research
and clinical practice. The goals of biomedical computing,
imaging and visualization are multifaceted. While some
images and visualizations facilitate diagnosis, others help
physicians plan surgery. Biomedical simulations can help
to acquire a better understanding of human physiology.
Still other biomedical computing and visualization
techniques are used for medical training. Within
biomedical research, new computational technologies
allow us to “see” into and understand our bodies with
unprecedented depth and detail. As a result of these
advances, biomedical computing and visualization will
help produce exciting new biomedical scientific
discoveries and clinical treatments. In this paper, we give
an overview of the computational science pipeline for an
application in neuroscience and present associated research
results in medical imaging, modeling, simulation, and
visualization.'

Keywords: Biomedical computing, imaging, problem
solving environment, visualization.

1 Introduction

The next decade will see an explosion in the use and the
scope of biomedical computing and visualization.
Advanced, multimodal imaging and visualization
techniques, along with new computational methods, will
change the way many biomedical researchers and
clinicians do their work. The combination of biomedical
imaging and visualization with biomedical simulations
will produce information about anatomical structure that
is linked to functional data, in the form of electric and
magnetic fields, mechanical motion, and biochemistry,
and genetics. Such an integrated approach will provide

Copyright © 2006, Australian Computer Society, Inc.f This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and
Gill Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

comprehensive views of the human body in progressively
greater depth and detail. However, such integration will
require significant advances in biomedical computing
software infrastructures and corresponding advances in
multi-scale biomedical computing, imaging, and
visualization algorithms (Johnson 2004).

Over the past two decades, the techniques of computer
simulation and visualization have had a substantial
impact on the field of biomedicine, as they have on other
areas of science and engineering. Computer simulation
allows biomedical researchers to subject increasingly
sophisticated quantitative and qualitative conceptual
models of biological behavior to rigorous quantitative
simulation and analysis.

2 Neuroscience Application: Neural Source
Imaging

Many times each second, the brain sends electrical
impulses racing through the body's web of nerve cells to
the motor neurons, where they initiate the electrochemical
reactions that cause muscles to contract. Several decades
ago, scientists recognized that these excitation currents
produce an electrical field that can be detected as small
voltages on the scalp. In 1924, German psychiatrist Hans
Berger recorded the first electroencelphogram (EEG). The
EEG electrode measures the small electrical activity from
the brain and contains continuous trains of activity. The
practice through which one can infer the inter-cranial
sources that give rise to these measurements is termed the
neural source imaging or inverse EEG problem. Neural
source imaging is a fundamental problem in neuroscience.
Learning precisely which regions of the brain are active at
a particular time is a central problem in fields ranging
from cognitive science to neuropathology to surgical
planning.

While the modern technologies of electrode design and
electronic recording apparatus differ significantly from
their predecessors, the EEG waveforms are essentially the
same as those recorded by Berger. Even with the
substantial advances in EEG technology, most of the
machines in clinical use today provide relatively coarse
descriptions of the overall electrical activity of the heart
or brain. This limitation in resolution is primarily due to
the fact that standard EEG measurements represent the
cumulative electrical activity of the brain as a very small
number of simple point sources of bioelectricity.
Physicians uses these glimpses to help spot disorders by
comparing the patient's EEGs with an atlas of waveforms

CRPIT Volume 48

that correspond to particular disease states. Compressing
all this information into a small number of features is
very efficient, but can lack the sensitivity and spatial
resolution required for diagnosing many illnesses.

In some difficult cases, physicians turn to other
techniques that are more invasive, costly, and painful and
in rare cases, to exploratory surgery. In some cases of
epilepsy, for example, physicians must establish whether
the source of this abnormal electrical activity is well
localized, and hence operable. At present, this diagnosis
may require the application of electrodes directly to the
surface of the brain.

Using computer modeling, imaging, simulation and
visualization, we are developing diagnostic tools that may
reduce the need for these cases of preoperative surgery, by
simulating and visualizing the electric fields emanating
from the brain. Using large-scale, three-dimensional
computer models of the head and brain, we can produce
more detailed visual representations of the electrical
activity within the brain than the currently used brain
snapshots from standard EEGs. A primary goal is to
develop these techniques based on painless, risk-free
voltage measurements from the head surface and gain
information that is now primarily available through
highly invasive diagnostic procedures.

3 Computational Science Pipeline

In order to solve the neural source imaging problem from
above, we must perform several steps that involve
elements of what we call the computational science
pipeline: experimental data acquisition (patient image
acquisition), mathematical modeling (physical equations
that describe bioelectric fields), geometric modeling
(segmentation, mesh generation), material modeling
(electrical conductivity and diffusion tensor), numerical
approximation (large-scale parallel finite element
analysis, linear solvers, nonlinear optimization),
visualization (of the geometric model, material model,
and solutions), and validation (of the models and
solutions).

Figure 1 schematically illustrates the “Inverse EEG
Pipeline” we have constructed for efficient and interactive
neural source imaging. In addition to creating efficient
algorithms for each task, it is also important to create
useful, integrated software, such as the SCIRun (Parker
1997, Weinstein 2005) software system described in the
next section. We now briefly describe the stages within
the inverse EEG pipeline.

| mage Processing and Modeling Simulation Analysis/Visualization

| Surface and
Forward bl \/0lume

Solvers and 3 Visualization

> Nonlinear

Optimization | ! Error
) Analysis

MR Volume | S Finit ! | Finite
Segnentaon] Surface _'g:fgﬁ;a;f“ [y Eement L] Element
and Voxel Construction Y I Mesh P Matrix
H | | Condition '

lassification Hopkcaton Construction | * | Construction

Fig 1: The Inverse EEG Computational Pipeline.

3.1 MRI Volume Segmentation and Voxel

Classification

Our pipeline takes raw MRI data from a scan of a
patient's cranium as anatomic input. This stage of the
pipeline is accomplished using modules from the Insight
Toolkit (ITK) (Yoo 2002) within SCIRun, using, for
example a level set algorithm (Lefohn 2003), as shown in
Figure 2. The output from this process is a tagged
volume of voxels, each labeled with a tag to identify the
primary material contained within that voxel. For our
application, we are specifically interested in: air, skin,
bone, cerebro-spinal-fluid, grey matter and white matter.

Figure 2: Result of segmentation of the brain using a
level set algorithm.

3.2 Surface Construction

From the classified voxels we extract the set of boundary
surfaces via a flood-fill/seed-growing style algorithm.
Each boundary then corresponds to a discrete material
region. Unfortunately, because the segmentation process
can leave some noise in the data, we often have on the
order of 10,000 surfaces after this process is completed,
with many of these surfaces only bounding a single
voxel. To reduce the number of surfaces, we pre-process
the segmented volume with an assimilation algorithm
that annexes regions containing less than some threshold
number of voxels into the largest neighboring region.
This process has the positive effect of reducing the
complexity of the model (where fewer surfaces implies
lower complexity), but it can also be destructive if the
threshold is set too high. As a result, this was one of the
parameters we studied in this study. The surfaces that
result from this extraction have a characteristic “staircase”
jaginess, since they are composed of voxel faces. To
smooth out this data into more physiologically correct
(and numerically stable) surfaces, we apply a scanline
surface algorithm (Weinstein 2000) to these non-manifold
surfaces. The result is shown in the first frame of Figure
3.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

The result of surface construction and mesh
generation from segmented MRI data.

Figure 3:

3.3 Scalp Co-registration and Boundary

Condition Application

In addition to the raw MRI data, we use two other
clinically obtained raw datasets in our pipeline. These
datasets are the basis for the functional data that will be
mapped onto the scalp surface and serve as Dirichlet
boundary conditions. The first of these datasets are the
potentials recorded through electrodes attached to the
patient's scalp. The second dataset is a list of point
locations in space, obtained with a pointing device and a
magnetic tracker. These points are used to spatially
locate the electrode positions on the MR dataset, and
consist of electrode positions and a cloud of points
digitized off the patient's scalp. The first step in the co-
registration process is to match the point cloud to the
scalp surface extracted in the surface construction stage.
This is done with a semi-automatic algorithm that applies
affine transformations to the point cloud to minimize the
summed squared distances from the points in the point
cloud to the surface. The second step of this process is to
apply the boundary conditions to the scalp surface. We
simply determine the closest scalp point to each of the
electrodes and assign it the corresponding potential with a
Dirichlet boundary condition.

3.4 Finite Element Mesh Construction

To construct our finite element mesh, we use a spatial
subdivision algorithm that subdivides space into uniform
cubic voxels and places a single mesh node in each voxel.
Voxels that correspond to air are not included in this
process. The placement of each node is chosen based on
two criteria: if a surface passes through the voxel, the
node is constrained to lie on the surface; nodes must
maintain a minimal distance from each other (a Poisson
disk constraint, applied between neighboring voxels is
used to guarantee this property). The edge lengths of
these cubic voxels will directly determine the number of
nodes generated. Since fewer nodes will result in less
accurate meshes geometrically, we varied this parameter
to evaluate the effect of geometric inaccuracies on the
cortical solution. After generating all of the nodes, we
use the CAMAL mesh generator (Sandia 2004) to
construct a tetrahedral mesh. Each element in the mesh is
tagged with a material/conductivity.

3.5 Finite element matrix construction

The finite element matrix is constructed by discretizing a
generalized Poisson equation, V:-OV® =-[,, where

D is the voltage, O is the electrical conductivity tensor,
and [, is the electric current per unit volume. The
details of the finite element theory and implementation
are described in detail in (Johnson 1997). The result of
this algorithm is a sparse, symmetric, positive-definite
stiffness matrix that encodes all of the geometry and
electrical conductivity information of the problem.

3.6 Nonlinear Optimization

In order to solve the source localization problem, one
needs to use nonlinear optimization. This involves
solving the discretized Poisson equation above multiple
times in order to find the global minimum of a misfit
function defined as the difference between the measured
voltages on the surface of the scalp and the computed
solutions assuming a model neural source. We used both
a multi-restart simplex search and a simulated annealing
algorithm to find the global minimum of the misfit
function. Both algorithms recovered the same neural
sources, modeled as dipoles. @ The simplex search
algorithm was restarted eight times for each source in
order to improve the likelihood that we had localized the
global minimum. We validated our recovered minima
through an exhaustive search of the domain. Details of
the algorithm and implementation can be found in
(Weinstein 2000).

3.7 Visualization

Researchers at the SCI Institute and collaborators have
created several novel visualization techniques to visualize
scalar, vector, and tensor fields (Kniss 2005, Livnat 2005,
Scheuermann 2005, Whitaker 2005, Zhang 2005). As an
example of a new multi-field visualization technique, we
applied a combination of stream surface visualization
with simple tensor field visualization to look at the
effects of including anisotropy within a realistic head
model for the EEG source localization simulation.
Figures 4 and 5 illustrate the visualization of the effects
of white matter anisotropy using these techniques. We
can observe a correlation between the primary direction of
the conductivity structure of the white matter fiber
bundles and the direction of the return currents. The
visualization of return currents in bioelectric field
problems can reveal important details about the
distribution of sources, interactions at conductivity
boundaries, and the effect of geometric distortion on
bioelectric fields. By integrating the stream surfaces with
a visualization of the diffusion tensors representing the
white matter, we can better understand the structural,
spatial relationships (Wolters 2005).

CRPIT Volume 48

Figure 4: Visualization of return current surfaces from an
EEG simulation using an isotropic conductivity model.

Figure 5: Visualization of return current surfaces from an
EEG simulation using an anisotropic conductivity model.

In Figure 6 we show the orientation of the anisotropic
white matter tracks from a diffusion tensor MR scan
using a novel application of super quadric glyphs
(Kindlmann 2004).

Figure 6: Visualization of half a brain DT-MRI volume
using super quadric glyphs. Red indicates left/right, green
indicates anterior/posterior, and blue indicates
superior/inferior.

4 SCIRun: Integrated Software System

The desire to understand biological systems drives
researchers to create ever-more sophisticated
computational models. While such sophistication is
essential to good research, the resulting complexity of the
scientific computing process has itself become a major
hindrance to further progress. Sources of this complexity
include the number of equations and variables required to
encapsulate realistic function, the size of the resulting
systems and data sets, and the diverse range of
computational resources (algorithms, databases, software,
and hardware) required to support significant advances.
Biomedical computing researchers gather multi-channel
and multi-modal data from real-time collection
instruments, access large distributed databases, and rely on
sophisticated simulation and visualization systems for
exploring biomedical systems.

Managing such large-scale computations requires
powerful hardware and efficient and transparent software
that frees the user to engage the complexity of the
scientific problem rather than of the tools themselves.
Unfortunately, such biomedical computing software does
not currently exist. The range of computational tools
available is growing so rapidly that navigating this large
set of possible options has become its own challenge.
The need to integrate software is especially acute when
scientists seek to create models that span spatial or
temporal scales or cross physical systems (e.g.
combining electrical with mechanical and biochemical
parameters). Integration is also necessary across the
various components of the modeling and simulation
process. No single researcher has the skills required to
master all the computational and biological knowledge
needed to successfully create geometric and mathematical

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

models, map them to numerical algorithms, implement
them efficiently in modern computers, visualize the
results, and understand them as they pertain to the specific
biological system under investigation. To successfully
model such complex systems requires a multidisciplinary
team of specialists, each with complementary expertise
and an appreciation of the interdisciplinary aspects of the
system, and each supported by a software infrastructure
that can leverage specific expertise from multiple domains
and integrate the results into a complete software system.

Problem-solving environments (PSEs)* provide a natural
platform to support integration and leverage
multidisciplinary expertise to create complete systems for
biomedical computing (Bramley 2000). Such systems
solve the challenges of interfacing disparate elements and
provide a level of functional abstraction that greatly
assists researchers dealing with complex software
systems.

PSEs also provide infrastructure for vertical integration of
computational knowledge. Specific elements that may be
incorporated into a comprehensive PSE include
knowledge of the relevant discipline(s); the best
computational techniques, algorithms and data structures;
the associated programming techniques; the relevant user
interface and human-computer interface design principles;
the applicable visualization and imaging techniques; and
methods for mapping the computations to various
computer architectures (Bramley 2000). A PSE can
consolidate knowledge from a range of experts in these
disparate areas into a system that offers the end user a
powerful set of computational tools.

Within the Scientific Computing and Imaging (SCI)
Institute at the University of Utah, we have a long
history of research in software architecture and creating
problem-solving environments for scientific computing,
such as SCIRun, BioPSE, and Uintah (SCIRun 2005).

The SCIRun PSE allows the interactive creation,
investigation, and steering of large-scale scientific
computations. SCIRun has been under development
since the mid 1990s, but it has been enhanced
significantly over the past five years due to the efforts of
two large research centers that have used SCIRun as their
core software system. These centers are 1) The Center for
the Simulation of Accidental Fires and Explosions (C-
SAFE), a Department of Energy ASHLI ASAP Level 1
Center; and 2) the NIH NCRR Center for Integrative
Biomedical Computing. Largely because of these efforts,

2 We note that there are a number alternative phrases for
what we mean by a problem solving environment
currently being used in the scientific software literature,
including software frameworks, toolkits, scientific
software environments, software workbenches, plus a
number of application specific names.

SCIRun has become a comprehensive software
environment for scientific computing applications.
SCIRun provides a component model, based on a
generalized dataflow paradigm, which allows different
computational components and visualization components
to be connected in a tightly integrated fashion. A
dataflow model implies the following: 1) data is sent to a
software component, 2) the component manipulates the
data in some manner, and 3) the new data is sent
downstream to the next component for further
manipulation.

SCIRun can be viewed as a computational workbench, in
which a scientist designs and modifies a simulation
interactively via a component-based visual programming
model. SCIRun also facilitates interactive debugging and
steering of large-scale, typically parallel, scientific
simulations by, for example, enabling a scientist to
modify geometric models and interactively change
numerical parameters and boundary conditions. As
opposed to the typical off-line simulation mode - in
which the scientist manually sets input parameters, then
computes results, and finally visualizes the results via a
separate visualization package, and then starts again at the
beginning - SCIRun closes the loop, combining each of
these phases of the scientific investigation of the chosen
problem.

While SCIRun provides the framework and software
support needed to provide the extensive functionality
discussed above, the actual science is done by individual
software components. The modules are stand-alone pieces
of software designed by various individuals or groups and
contributed to the system. It is through combining the
functionality of a number of modules that interesting
problems are solved.

SCIRun/BioPSE Example of EEG Simulation and
Visualization

An example electroencephalography (EEG) neural source
localization application is show in Figures 7 and 8.
Figure 7 contains the dataflow network that implements
an inverse EEG application. At the top of the network,
the input data files are loaded; these include the finite
element mesh that defines the geometry and conductivity
properties of the model and a precomputed lead-field
matrix that encodes the relationship between electric
sources in the domain and the resulting potentials that
would be measured at the electrodes. Further down in the
network, we have a set of modules that optimize the
dipole location in order to minimize the misfit between
the measured potentials from the electrodes and the
simulated potentials due to the dipole. Finally, we have
visualization and rendering modules, which provide
interactive feedback to the user.

CRPIT Volume 48

1 (dipole-localization-leadfield-vis.net] =10l
Fle SCIRun BiOPSE CardioWave Matiabinterface Teem]

A

Figure 7: SCIRun/BioPSE modules combined for EEG
modeling (unstructured mesh generation), simulation
(finite element simulation, parallel linear system solves,
and inverse source localization), and visualization (mesh
visualization, isosurface extraction, and vector field
visualization.

Figure 8: Visualization of simulation results of an EEG
simulation localizing a neural source.

PowerApps

One of the major hurdles to SCIRun becoming a practical
tool for the scientists and engineers has been SCIRun's
dataflow interface. While visual programming is natural
for computer scientists and some engineers, who are
accustomed to writing software and building algorithmic

pipelines, it is overly cumbersome for application
scientists’. Even when a dataflow network implements a
specific application (such as the bioelectric field
simulation network provided with BioPSE and detailed in
the BioPSE Tutorial), the user interface (UI) components
of the network are presented to the user in separate Ul
windows, without any semantic context for their settings.
For example, SCIRun provides file browser user
interfaces for reading in data. However, on the dataflow
network all of the file browsers have the same generic
presentation. Historically, there has not been a way to
present the filename entries in their semantic context, for
example to indicate that one entry should identify the
electrodes input file and another should identify the finite
element mesh file.

While this interface shortcoming has long been identified,
it has only recently been addressed. @ We recently
introduced PowerApps. A PowerApp is a customized
interface built atop a dataflow application network. The
dataflow network controls the execution and
synchronization of the modules that comprise the
application, but the generic user interface windows are
replaced with entries that are placed in the context of a
single application-specific interface window. Figure 9
shows the BioFEM PowerApp implementation of the
neural source localization application.

o soctn | v O\ Vi Cotors |

Figure 9: The BioFEM custom interface. Though the
application is functionality equivalent to the dataflow
version shown in Figure 7, this PowerApp version
provides an easier-to-use custom interface. Everything is
contained within a single window; the user is lead
through the steps of loading and visualizing the data with
the tabs on the right; and generic control settings have
been replaced with contextually appropriate labels; and
application-specific tooltips (not shown) appear when the
user places the cursor over any user interface element.

* We note this statement is often true of software written
by computer science researchers being used by application
scientists and engineers.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

5 Next Generation Software Architecture:
SCIRun2

At the SCI Institute, we are beginning development of a

next-generation software architecture, called SCIRun2
(Zhang 2004). This system shares much of its software
code-base with SCIRun, and it is our intent to evolve
SCIRun into SCIRun2 over the next year.

SCIRun2 seeks to remove barriers to software component
reuse by employing a flexible component architecture that
enables a number of different styles of components (called
component models) to be used together simultaneously.
Thus far, we have been very successful in writing
component wrappers to allow software packages (such as
ITK, Teem, MATLAB, the CAMAL mesh generator, and
so forth) to be used as modules in SCIRun. All of these
undertakings have been successes: they have broadened the
applicability of SCIRun, improved its performance, and
have made it a more useful tool for our collaborators and
for the scientific community at large. In practice,
though, some of these efforts were very straightforward
while others required significant custom development to
overcome the technical hurdles.

SCIRun2, born of our experience developing SCIRun,
provides a new internal architecture that is specifically
designed to integrate component-based and object-based
software such as the libraries described above, making
this task of integration both simpler and more powerful.

The primary innovative design feature of SCIRun2 is a
meta-component model that facilitates integration of a
number of classes of tools from various, previously
incompatible systems. In the same way that components
plug into a traditional component-based PSE (such as the
original SCIRun), SCIRun2 will allow entire component
models to be incorporated dynamically. SCIRun2
facilitates the coupling of multiple component models,
each of which can bring together a variety of components.
In addition, the SCIRun2 architecture directly enables
features that we wish to add to SCIRun, such as support
for MPI-based components, a separation of the user
interface from the computational engine, improved
scripting support, and features for collaboration.

6 Acknowledgments

This work was supported, in part, by a grant from the
NIH NCRR 5P41-1RR12553-07 and from grants from
DARPA, DOE, and NSF. SCIRun, BioPSE, and
PowerApps software are all available as Open Source
from the SCI Institute website (www.sci.utah.edu).
SCIRun, BioPSE and the PowerApps are currently
supported on three different platforms: Linux, Macintosh
OSX, and SGI IRIX. A Windows port will be available
in early 2006.

7 Summary

Advanced biomedical computing techniques coupled with
advances in multi-modal imaging and visualization will
change the way many biomedical researchers and

clinicians do their work. The combination of biomedical
imaging, and visualization with biomedical simulations
will produce information about anatomical structure that
is linked to functional data, in the form of electric and
magnetic fields, mechanical motion, and biochemistry,
and genetics. Such an integrated approach will provide
comprehensive views of the human body in progressively
greater depth and detail. However, such integration will
require significant advances in biomedical computing
software infrastructures and corresponding advances in
multi-scale biomedical computing, imaging, and
visualization algorithms.

8 References

Johnson, C.R., Macleod, R.S., Parker, S.G., and
Weinstein, D.M. (2004): Biomedical Computing and
Visualization Software Environments.
Communications of the ACM, 47 (11): 64-71.

Parker, S.G., Weinstein, D.M., and Johnson, C.R
(1997): The SCIRun Computational Steering Software
System. In Modern Software Tools in Scientific

Computing, 1-40. Arge, E., Bruaset, A.M. and
Langtangen, H.P. (eds). Birkhauser Press.
Weinstein, D.M., Parker, D.M., Simpson,],

Zimmerman, K., and Jones, G. (2005): Visualization
in the SCIRun Problem-Solving Environment. In The
Visualization Handbook, 615-632. Hansen, C.D. and
Johnson, C.R. (eds). Elsevier.

Yoo, T.S., Ackerman, M.J., Lorensen, W.E, Schroeder,
W., Chalana, V. Aylward, S., Metaxes, D., and
Whitaker, R. (2002): Engineering and Algorithm
Design for an Image Processing API: A Technical
Report on ITK - The Insight Toolkit. In Proc. of
Medicine Meets Virtual Reality, (586-592). Westwood,
J. (ed). IOS Press Amsterdam.

Lefohn, A.E., Cates, J.E., and Whitaker, R.T (2003):
Interactive, @ GPU-Based Level Sets for 3D

Segmentation. In Medical Image Computing and
Computer Assisted Intervention (MICCAI), 564-572.

Weinstein, D.M. (2000): Scanline Surfacing: Building
Separating Surfaces from Planar Contours. In
Proceeding of IEEE Visualization 2000, 283-289.

Sandia National Laboratories (2004): CAMAL - The
CUBIT Adaptive Meshing Algorithm Library -
http://cubit.sandia.gov/camal.html - Release 2.0.2.

Johnson, C.R. (1997): Computational and Numerical
Methods for Bioelectric Field Problems. In Critical
Reviews in BioMedical Engineering, 25(1):1-81.

Weinstein, D.M., Zhukov, L. and Johnson, C.R.
(2000): Lead-Field Bases for EEG Source Imaging.
Annals of Biomedical Engineering, 28(9):1059-1065.

Wolters, C.H., Anwander, A., Tricoche, X, Lew, S., and
Johnson, C.R. (2005): Influence of Local and Remote
White Matter Conductivity Anisotropy for a Thalamic
Source on EEG/MEG Field and Return Current

CRPIT Volume 48

10

Computation. In International Journal of
Bioelectromagnetism (In Press).

Kindlmann, G. (2004): Superquadric Tensor Glyphs. In
Proceeding of The Joint Eurographics - IEEE TCVG
Symposium on Visualization 2004, (147-154).

Kniss, J.M., Kindlmann, G., Hansen, C.H. (2005):
Multidimentional Transfer Functions for Volume
Rendering. In The Visualization Handbook, (189-
210). Hansen, C.D. and Johnson, C.R. (eds). Elsevier.

Livnat, Y. (2005): Accelerated Isosurface Extraction
Approaches. In The Visualization Handbook, (39-55).
Hansen, C.D. and Johnson, C.R. (eds). Elsevier.

Scheuermann, G. and Tricoche, X (2005): Topological
Methods for Flow Visualization. In The Visualization
Handbook, (341-356). Hansen, C.D. and Johnson,
C.R. (eds). Elsevier.

Whitaker, R.T. (2005): Isosurfaces and Level-Sets. In The
Visualization Handbook, (97-123). Hansen, C.D. and
Johnson, C.R. (eds). Elsevier

Zhang, S., Laidlaw, D.H., and Kindlmann, G. (2005):
Diffusion Tensor MRI Visualization. In The
Visualization Handbook, (327-340). Hansen, C.D. and
Johnson, C.R. (eds). Elsevier

Bramley, R., Char B., Gannon, D. , Hewett, T.,
Johnson, C.R., and Rice, J. (2000): Enabling
Technologies for Computational Science: Frameworks,
Middleware, and Environments. In Workshop on
Scientific Knowledge, Information, and Computing,
(19-32). Houstis, E., Rice, J., Gallopoulos, E, and
Bramley, R. (eds). Kluwer Academic.

SCIRun, BioPSE, and PowerApp Software. Scientific
Computing and Imaging Institute.
http://www.sci.utah.edu/.

Zhang, K., Damevski, K., Venkatachalapathy, V.,
Parker, S. (2004): SCIRun2: A CCA Framework for
High Performance Computing, In Proceedings of The
9th International Workshop on High-Level Parallel
Programming Models and Supportive Environments.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

FuLL PAPERS

1"

CRPIT Volume 48

12

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Logic and Refinement for Charts

Greg Reeve

Steve Reeves

Department of Computer Science,
University of Waikato,
New Zealand,
Email: {gregr,stever}@cs.waikato.ac.nz

Abstract

We introduce a logic for reasoning about and con-
structing refinements for u-Charts, a rational simplifi-
cation and reconstruction of Statecharts. The method
of derivation of the logic is that a semantics for the
language is constructed in Z and the existing logic
and refinement calculus of Z is then used to induce
the logic and refinement calculus of p-Charts, pro-
ceeding by a series of definitions and conservative ex-
tensions and hence generating a sound logic for u-
Charts, given that the soundness of the Z logic has
already been established.

Keywords: Statecharts, reactive systems, Z, Z¢, logic,
refinement

1 Introduction

The specification language p-Charts is a rational sim-
plification and reconstruction of Statecharts (Harel
1987). As such, it can be considered to define the
core of the many Statechart-like languages: a family
of visual languages that are used for designing reac-
tive systems. It is simpler than the original State-
charts, the simplification being achieved by omitting
some of the more complicated and reportedly less-
used constructs. It is designed to have a more com-
prehensible semantics, without losing expressiveness.
One important contribution of this work, then, is a
semantics and logic for the core of Statecharts, pre-
sented independently of any particular tool or other
“operational” embodiment of semantics and logic.

In the past a formal semantics has been given to
u-Charts using both a process algebraic, traces ap-
proach and denotationally using automata by Scholz
(1998), along with a logical treatment (Reeve &
Reeves 2000) using the specification language Z
(Spivey 1989),(13568 2002). While different as-
pects, and versions, of u-Charts have been published
(Philipps & Scholz 19974, Philipps & Scholz 1997,
Scholz 1998), the definitive account (prior to the de-
velopment of the Z-based logic) was published by
Scholz (1998). Characteristic features of p-Charts
are that transitions are instantaneous (and hence in-
put and output signals appear simultaneously); com-
munication using selected signals (feedback) between
charts is local (pairwise) rather than global and is
defined explicitly; and that charts may nondetermin-
istically choose between transitions.

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at T'wenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

The language semantics assumes a chaotic-
outside-of-defined-behaviour interpretation. The lan-
guage is also distinguished from process algebras
where the natural interpretation is often one where
transitions are triggered by the presence of required
signals. p-Charts also allows transitions to be trig-
gered by the absence of designated signals. This is
facilitated by imagining there is a global clock whose
tick causes all transitions leaving the state of a chart
to evaluate their guards.

The aim of this paper is to present a partial
relations-based logic for p-Charts and and then to
show how a refinement theory can be lifted from Z to
charts.

In this paper we view p-Charts as a language for
specification, especially since we allow nondetermin-
ism. In a subsequent paper we will show how imple-
mentations can be built: the method will be to use
the language and notions of refinement presented here
to move our specification towards implementation by
gradually reducing nondeterminism and adjusting the
interfaces as required, and then using the program de-
velopment work by, e.g., Henson and Reeves (2003)
and the more recently by Henson et al. (2004) to
arrive at an implementation.

The derivation of the logic rules is somewhat sim-
plified due to space constraints: the interested reader
can consult work by Reeve (2005) for a more detailed
account. For similar reasons the formal semantics
given covers just one of the three language constructs.

We do not give examples of reasoning about any
particular chart: how to use a logic to reason is, we
assume, second nature to our audience and is straight-
forward. Rather, we use the logic for the far more am-
bitious and fundamental goal of deriving refinement
rules for charts.

Section 2 presents an introduction to the formal
treatment of pu-Chart’s semantics. This includes de-
scribing one of the language operators, giving the
general method of deriving a Z model for that op-
erator and the derivation of natural deduction-style
logic rules using the Z logic. We divide this section
into two: the first part shows how the semantics for
charts is given in Z; the second part shows how the Z
semantics is given a meaning and then how rules for
charts can be derived.

Section 3 shows how we use the existing and well-
investigated refinement notion of Z to derive a re-
finement notion for charts. This is concluded with a
discussion of what this refinement notion is in terms
of the more traditional process algebraic, trace de-
scription of chart behaviour. In Section 4 we consider
monotonicity of refinement in general, and in Sec-
tion 5 we show how the logic we have developed can
be used to investigate and prove monotonicity proper-
ties of u-Charts. Finally, we present some conclusions
in Section 6.

13

CRPIT Volume 48

14

2 The p-Charts Logic

This section provides an introduction to u-Charts via
the definition its of semantics in Z. The logic and
semantics of Z itself is then used to induce a logic
and set-theoretic semantics for pu-Charts.

This process is divided into two natural phases:
we first use definitions to express the semantics of u-
Charts in Z. These definitions define what we call the
transition model, which is essentially a function which
maps expressions from p-Charts to Z, and which we
denote by [],. We then use the standard mapping

from Z into the underlying, core language Z¢ (Henson
& Reeves 2000). This mapping is denoted by [,

The composition of these two semantic mappings then
gives us the semantics of pu-Charts in Z;. We then
use the logic of Z¢ together with the definitions that
go to make up [, to induce a logic for u-Charts.

Since this logic has been constructed from the sound
logic for Z¢ by a series of conservative extensions (via
definitions), we know that the logic for u-Charts is
sound too.

A p-chart is either atomic or a combination of
charts using language operators. An atomic chart
is essentially a finite-state automaton where a transi-
tion in the chart is labelled with a pair, guard/action.
That the transition is taken (or triggered) is condi-
tional on the guard being satisfied by the current in-
put signals and leads to the action happening, mean-
ing that signals are output as required by that ac-
tion. Each chart has an input interface designating
signals that can trigger a transition and an output
interface designating signals that the chart can out-
put. A fundamental assumption is that time passes
in the control states of a chart, but the transitions
between these states occur instantaneously. A chart
reaction is therefore characterised by the input of a
set of signals from the environment and the instanta-
neous output of a set of signals to the environment.
This reaction is called a step or a tick of the clock,
but note that this does not mean that the intervals
between reactions must be equal.

A chart C has an input interface inc that typically
includes all of the signals that appear in its transition
guards and an output interface outs that typically
includes all of the signals that appear in its transition
actions.

In order to define large reactive systems, the
language has three structuring mechanisms: par-
allel composition, hierarchic decomposition and in-
put/output interface definition. In a parallel compo-
sition, each component chart reacts synchronously on
a global clock. A feedback mechanism between pairs
of charts makes output signals instantaneously avail-
able as input signals, which allows component charts
to communicate asynchronously on signals. A com-
position chart C = ¢y | ¥ | C2, which composes charts
(1 and (5 with feedback on signals in the set ¥, has
an input interface inc = in¢, Uing, and an output
interface outc = outc, U outc,.

A further structuring mechanism means some of
the states of a chart need not be atomic, but rather
one chart may be embedded in another (“inside” one
of its states) as a sub-chart, using hierarchic decompo-
sition. Finally, the definition of the assumed context
of a chart via the explicit definition of the input and
output interfaces of a chart (of arbitrary structure)
allows signal hiding.

The full definition of the language semantics, via
the logic, treats each of these language operators sep-
arately. In this paper we will concentrate on just the
definition of atomic charts and the parallel composi-
tion operator.

Figure 1: A simple atomic p-chart

2.1 The transition model

The transition model essentially relates the current
configuration of a chart and input to a new configura-
tion and the resulting output. This relation describes
every possible step that a chart can take. In contrast,
a typical way to give a semantics for such languages
is to use sets of observable input/output traces, for
example the trace semantics given by Scholz (1998).
This abstracts on the control states by defining just
its reactions in an assumed context. The link be-
tween the logical semantics described here and a trace
semantics can be constructed by considering a chart
making one step after another and recording just the
input and resulting output. The resulting trace se-
mantics is considered fully by Reeve (2005).

2.1.1 Atomic charts

An atomic chart has the general textual form (Name,
State set, Start state, Feedback signals, transition
function). Consider the chart (S,{4, B}, 4,{},9)
(where ¢ is the appropriate transition description)
pictured in Figure 1. !

Informally the behaviour that this chart captures
can be described as: the chart starts in state A; if
it is in state A and the signal « is input then signal
b is output and the chart changes to state B; and
similarly if it is in state B and c¢ is input then d is
output and the new state is A.

The essence of the transition model for an atomic
p-chart is the description of each of its transitions
using a separate Z operation schema. These opera-
tion schemas (one for each transition in the chart)
are combined using Z schema disjunction to give one
schema that describes the transition behaviour of the
chart. The Z state of the model has an observation
that indicates the current configuration of the chart.
The operation schemas describe each transition, that
is, how and when that configuration changes.

For an atomic chart (C,%,00,¥,6) we introduce Z
axiomatic definitions (Figure 2) that model the set
of possible chart states, the input interface and the
output interface. The sets i, ,. and pSignal contain
all allowable state and signal symbols.

The state schema Charte records the current state
of the chart C using observation cc. The initial state
of the chart is modelled by the schema Initc.

A separate state schema called Co is given for
each state in the chart o ¢ =.

Next we give an operation schema for each
chart transition. That is, for each transition
(Sf, St, guard/action) € § we define an operation schema
named b5;5,-

We can see from this definition that each binding
in the set has five observations. The meanings of these
are:

e cs—the state of the chart before the transition
happens, in this case the state A

1We use the piece of text which is the name of the chart to
refer to both the chart itself and its name, allowing the context to
indicate which we mean. The fact that the name stands for itself
as a piece of text is used in the syntactic process of defining the Z
that a chart has as its semantics, as we shall see.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

statesc : P pigiare
g : P uSignal
outc : P uSignal
v : P uSignal

Chartc == [c¢ : statesc]

— Inito
Chartc

cc =00

Co == [Chartc | cc = o]

—6SfSt
CSy
Cs,
ic : Ping
act :]P)MState
og : Pouto

C € act

p(guard)
o = action

Figure 2: The Z semantics, the transition model, for
an atomic chart

e is—the set of input signals which are offered by
the environment that are in the input interface
of the chart

e act—a set that denotes all currently active charts

o c,—the state of the chart after the transition
happens, in this case B

e o,—the output generated by the chart, in this
case the set containing the signal »

Note that part of the definition of atomic charts—
the observation act—is part of the mechanism that
allows for the definition of the hierarchic decomposi-
tion operator. As we will not be looking at the details
of this operator in this paper, it is sufficient to un-
derstand that a chart can be active or inactive, and
transitions happen only when an atomic chart is ac-
tive, which is recorded by having its name contained
in act. Hence the predicate C € act is part of the
precondition of the operation schema ds;s, .

The predicate p(guard), introduced in schema
bs;5,, stands for the Z predicate that models the syn-
tactic guard of a chart transition. If we consider a
transition’s guard in general as a (possibly empty)
list of signal expressions, separated by the conjunc-
tion symbol &, then each of the elements in the list
can be classified into two categories: either a posi-
tive signal expression—simply the name of a signal;
or a negative signal expression—the signal name is
prefixed with a minus sign. A positive signal expres-
sion, say sig where sig € inc, is denoted by the Z
expression sig € ic U (of; N ¥). A negative signal ex-
pression, say —sig, is denoted by the Z expression
sig & ic U (ol N ¥). The syntactic construction process
denoted by p determines the appropriate predicate
for each signal expression and connects them together
using the Z logical conjunction operator A. If the list
is empty the predicate (produced by the process p)
would be true. So, for the transition labelled a/b
in chart S in Fig.1 the predicate produced would be

a € i U (o, N W) since the guard of this transition is
just a.

This general scheme for giving the Z for a transi-
tion defines the semantic function [],. For an arbi-

trary transition (S, Si, guard/action) we have,
[[(Sf7 St, guard/action)ﬂ 5, Tdef 5SfSt

The schema 85,5, provides the Z semantics for the
transition.

Along with the schemas for each transition we also
need a single schema that models the behaviour of the
chart when it is inactive (Figure 3). Again this Z is
part of the general transition necessary to model the
entire language, in particular, including the decom-
position operator. Here it is enough to realise that an
inactive chart plays no part in output. For the gen-
eral atomic chart (C,%,00,7,6), we name the inactive
schema Inactivec.

Now, the entire transition model for an atomic
chart is given by Definition 2.12

Definition 2.1
[(C,%,00,%,8)],, =aes (V{ltl, | t €6}) V Inactivec

in a context containing the axiomatic definitions and Chartc,
Initc and Co.

The complete transition model for chart S from
Figure 1 is defined as the disjunction of each of the
individual transition schemas, i.e. §s == dap V dpa V
Inactiveg, and two of these schemas are given as ex-
amples in Figure 4.

2.1.2 The composition operator

The composition operator allows us to take two
p-charts €1 and C» and join them together to form
a new, more complex chart ¢y | ¥ | C; where ¥
is a set of signals on which ¢; and ¢ can com-
municate. As mentioned, the charts run separately
but synchronously, i.e. in lock step with one another.
Their only medium of communication is asynchronous
via the multicast of those signals in the set w. The
communication is asynchronous in that output is al-
ways enabled—a chart can always broadcast signals.
However, there is no guarantee that the other chart
in the composition is listening, that is, ready to react
on the signals broadcast. Signals persist only during
one step of the chart.

The transition model [C],, for the composed chart
C = (1 | ¥ | Cy contains a similar set of Z definitions
and schemas (Figure 5) as that for an atomic chart.
Here it is assumed that any entity subscripted with
C1 comes from the transition model of the chart ¢;
and similarly for Cs.

2.1.3 Partial relations semantics

The step semantics of a chart is no more than the
transition model of the entire p-chart specification

2We use the notation \/ X to denote the schema disjunction of
all the schemas in the set X.

— Inactivec
ZChartc
ic : Ping
act :]Pu’State
oy : Poutc

C & act
oc =1}

Figure 3: Z semantics for Inactive

15

CRPIT Volume 48

16

—0AB
SA
SB’
ig : Ping
act :]P)MState
og : Poutg

S € act
a € ig U (og N{})
og = {b}

—Inactiveg
Z=Chartg
ig : Ping
act :]P)MState
og : Poutg

S ¢ act
og ={}

Figure 4: Z for the chart in Figure 1

with the active state machinery hidden. Given an
arbitrary p-chart called €, the step behaviour of ¢
is defined by another schema which, by convention,
we call CSys (Figure 6).

The schema CSys (right) hides the active state
observation and specifies that the top-most chart of
any hierarchical structure is active.

So, [[,, for an arbitrary chart C' generates various

pieces of Z, depending on the structure of C, defining
the transition model. We then have to give a meaning
to the Z in order to generate logical rules, which we
now do.

2.2 The Z; model

From the transition model of a chart as given above
we move on to give a logic for charts by modelling the
transition model in Z¢ hence deriving introduction
and elimination rules that allow us to prove properties
about a chart’s transition model and hence about a
chart.

2.2.1 Atomic charts

Given the general method for constructing the Z se-
mantics of a chart (i.e. the transition model), we can
describe the meaning of the chart by describing the
meaning of the Z. To do so we rely on a reasonable
level of familiarity with the meta-language used in
the presentation of the kernel logic Z¢ in Henson
and Reeves (2000). Briefly, we: use the binding con-
catenation operator x; restricted membership ¢&; re-
stricted equality =; type meta-variables for example
T; oT as shorthand for all observations of the schema
type T; superscript type meta-variables to denote the
types of bindings and schemas; and the type union op-
erator Y. For brevity, we suppress mention of types
(indicated by superscripts on terms) in all cases where
this is possible and rely on the unique of types that
Zc enjoys to assure ourselves of the well-formedness
(which includes well-typedness) of our terms.

Returning to the example chart of Figure 1, again,
the Z meaning of the transition from configuration A
to B is given by the schema 6§45, whose meaning in
turn is given in the theory Z. as a set of bindings as
follows:

648z, =aer
{{ cs=>A, is>i, act Sactive, =B, oz={b}) |
i C ing A active C pg,,,. ® S € active A a € 1}

statesc : P lgiqe
ing : PuSignal
outc : P uSignal
W : P uSignal

statesg =

statesc, U statesc,
me = g, Uing,
outc = outc, U outco,

— Chartc
Chartc,
Chartc,

— Inito
Initc,
Initc,

— ¢
ACharto
ic : Ping
act : PMState
o : Poutc

C1 € act & C € act

Cy € act & C € act

Jicy, iy 0cy’ s 00, : PuSignal e
ic, = (ic U (o NT)) Ning, A
ic, = (ic U (o, NW)) Ning, A
O/C = 001/ U 002/ A 501 A 502

Figure 5: Semantics for composition

— CSys
AChartc
ic : Ping
o : Poutc

Jact : Ppg,,, ® C € act A dc

Figure 6: Top-level semantics

The second schema Inactives describes the be-
haviour of the chart when it is inactive, and its mean-
ing is given as:

[[Inactives]]ZO =def
{{ cs=>s, ig=1i, act Sactive, c;=s, o={}) |
s € {A, B} A active C pig,p, Nt C ing ® S & active}

By definition of schema disjunction the set [65] zg)
which gives in Z¢ the meaning of the transition model
for the chart, contains all of the bindings from the sets
[64Blz,, [0palz, and [Inactives] ;-

In order to make the logical rules we are working
towards slightly more readable, we define the predi-
cate Trans which captures what it means for a binding
of the transition model to characterise a transition of
the chart. Given an arbitrary transition of the form
t = (Sf, St, guard/action), from the chart C, we have,

Trans t z7 =def
z.cc = t.8f A p(t.guard)[aT/z.aT)
A z.cpy = t.St A 2.0, = t.action

The terms t.S; etc. are assumed to be defined in
the obvious way such that t.S; gives the “from state”
of a transition, t.guard gives the guard component of
a transition, ¢.S; gives the “to state” and t.action

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

gives the action component. p is as defined above
and constructs a predicate from a guard.

Now we give the formal definition of the transition
model for charts directly in terms of the meaning of
the Z model.

Definition 2.2 For the
(C,%,00,%,6), we have:

arbitrary atomic chart

H5cﬂzc =def
{2 | C ¢ z.act A z € EChartc A z.op ={} Vv
C€zact ANItede Trans t z}

From this definition we finally derive introduction and
elimination rules.

Proposition 2.1 Given the atomic chart (C,X, 00, 7¥,J),
where for arbitrary binding z we have:

2€6c actvCz t€6 Transt zF P

2 z,7)

actvCz t€d Trans t z

- (z,%)

z €d¢
assuming the usual conditions (due to the elimination of an
existential quantifier) for ¢ and P, and where, for an atomic
chart C, the predicates actv C z and inactv C z are defined
as follows:

actv C'z =qop C € z.act

inactv C'z =gop — actv C 2z

2.2.2 Composition

We give the definition of the Z¢ model for composed
charts in terms of the meaning of the transition model
in:

Definition 2.3 Given an arbitrary composition C = C |
¥ | C2 we have,

[6clz, =der
{z| C1 € z.act & C € z.act A
Co € z.act & C € z.act N\
Jo1,02 @ z.0p =01 Uo2 A
zx{ ic,=2(z.ic U z.0p N W) Ning,, oc,/ o1) €dcy, A
zx (| igyD(2.ic U 2.0 N) Ning,, 00,/ D02) € 5y}

The introduction and elimination rules for com-
posed charts shown in Figure 7 are derived from this
definition.

2.2.3 The step semantics

Now Definition 2.4 defines the step semantics for a
chart.

Definition 2.4 For arbitrary chart C with the associated
Z description CSys,

[CSys] 2, =der
{z|3Fz10 21 =2ANactvCz1 ANz1 €8¢}

From this definition we derive introduction and
elimination rules given in Figure 8.

We often refer to the step semantics as the par-
tial relations semantics. This is because the meaning
of the schema CSys can be considered as a relation
that maps the “before” configuration of a chart and
input to its “after” configuration and output. This
relation is often partial because a p-Chart specifica-
tion describes the reaction to some input events and
not others.

3 The p-Charts Refinement Calculus

In Derrick and Boiten (2001) and Woodcock and
Davies (1996), a framework for considering Z spec-
ifications and Z refinement in terms of abstract data
types (ADTs) is introduced. The idea is to map a
“standard” Z specification, i.e. state schema, initial-
isation schema and operation schemas, into a rela-
tional ADT setting. Broadly a relational ADT is a
tuple of the form (X, zi, zf, Ops) such that: X is a state
space; =i is an initialisation relation; zf is a corre-
sponding finalisation relation; and Ops is an indexed
set of relational operations. The initialisation and fi-
nalisation relations map a global observable state into
the ADT’s private state and vice versa. A program
of an ADT is defined as a particular sequence of the
indexed operations upon a data type, preceded by ini-
tialisation and ended by finalisation. This mapping is
used to derive a data refinement theory for Z specifi-
cations from the existing refinement notion for partial
relations ADTs.

Given that the partial relation semantics for p-
Charts is defined via Z we can fit charts into the
same framework. Recall from Section 2 that the Z
model of a chart constitutes a state space, an initial-
isation schema and one operation schema, this oper-
ation schema being the description of every step that
the chart can take. If we view the Z model of a chart
in the ADT framework we can say that any program
allowed by the chart is an example of composing the
step operation together with itself again and again.
Of course, what we are really interested in is the se-
quences of inputs and outputs that result from such
programs. If we imagine running this program over
all possible input sequences and recording the result-
ing output sequences then we have exactly the trace
semantics of the chart. Because we are modelling re-
active systems we choose to consider the traces over
infinite sequences of input and output. Therefore, we
need to imagine composing the step operation with
itself indefinitely.

In the following we show how we can generalise the
Z/ADT results to charts. In particular we show that
the ADT view of a chart can be considered as giving
the trace semantics of that chart. Then we derive a
notion of partial relations refinement for charts based
on an existing notion of partial relation refinement for
7.

We diverge from what may be considered the usual
way to give a refinement notion in a reactive systems
setting, that is, using the behavioural approach (as
Derrick and Boiten (2001) calls it) for completing par-
tial relations, and assume chaotic behaviour outside
of the preconditions of partial relations (which is the
more common-to-Z notion too, as it happens). The
resulting notion of refinement is particularly interest-
ing because it allows us to refine both the behaviour
of a reactive system and the context, via the system’s
interface, in which we assume that reactive system
will reside. This notion of refining both behaviour
and context is not new to this work. The notion of
“chaotic refinement” for specifications of reactive sys-
tems was suggested in the original definition of the
language p-Charts (Scholz 1998). Of course, since a
behavioural interpretation is available in the Z frame-
work, we could also derive more traditional rules for a
reactive system if we wished to, as we typically would
when we move from a specification to an implemen-
tation.

3.1 Charts and ADTs

The usual account of ADT refinement makes the sim-
plifying assumption that the types of inputs and out-
puts associated with the abstract and concrete pro-

17

CRPIT Volume 48
Proposition 2.2 Given C = C; | ¥ | Cs, for the binding 2 and arbitrary sets o3 and o4, we have:

18

z.0f, = 01 U o2,

z €8¢

z* (| ic;=>(z.ic Uz.0p N V) Ning,, oc,/ =01) €dcy,

zx { ic,=>(z.ic U z.0p NV) Ning,, oc, 02) € d¢y,

actv C z V inactv C z

FQ

Q

a-17)

where the usual conditions, due to the elimination of existential quantifiers, hold between o071, 02 and Q.
The predicates actv C z and inactv C z are defined for the composed chart C' = Cy | ¥ | (3 as:

actv C z =gef actv C1z A actv C2z A C € z.act

inactv C' z =g4¢ inactv C1 z A inactv C2 z A C & z.act

Figure 7: Rules for composition

Proposition 2.3 For arbitrary chart C and binding z we have,

z € CSys

z*zaé(sc, actv C zq F Q _

Q

(z7)

JyezxyEdc Aactv Cy

(z5)

s

z € CSys

where the usual conditions (due to the elimination of an existential quantifier) hold between z, and Q.

Figure 8: Rules for a step of the system

grams (the two n-operation programs P? and PZ)
are the same. For our purposes this simplifying as-
sumption is too strict. We allow, under what turn
out to be rather strong provisos, the input and out-
put interface of a chart to be changed via refinement.
Weakening the assumption of equivalent typed input
and output for both abstract and concrete programs
is achieved using the respective initialisation and fi-
nalisation relations in conjunction with the notion of
an observable context for charts. We assume that
refinement is a judgement made in the broadest in-
put/output context.

We use the respective initialisation and finalisa-
tion relations to make the ADT’s global state model
the appropriate input/output context. The observ-
able behaviour of the ADT (i.e. the global state) is
given by the input and output sequences that range
over the signals of both charts. The initialisation rela-
tion maps the global input sequences into appropriate
input sequences for the respective charts. Similarly,
the finalisation relation maps the outputs from the
respective charts into the global output sequences.

From this we make a link between the semantics
for a chart C given by embedding the chart in an
ADT framework, denoted by [C];”, and an infinite
trace semantic definition of charts, i.e. [C]?, as fol-

lows:?

Definition 3.1 For arbitrary chart C and sequences i € Z%
and 0 € O¥ 4

(iv 0) € HCH;W =def (iD(inc)v OD(outc)) € HCH:

Now we follow the well-known relational ADT ap-
proach (for example see Woodcock and Davies (1996)
and Derrick and Boiten (2001)) to derive refinement
rules for charts in terms of their partial relations se-
mantics. Note that Definition 3.1 allows us to relate
the resulting refinement notion back into the infinite
trace style semantics for charts as given in Scholz
(1998).

3We assume that 7 denotes the set of finite sequences ranging
over the type P Input. Similarly, O} denotes all finite sequences
over the type P Qutput. The infinite sequences Z¢ and OY% are
similarly defined.

4The notation U5 (ing) denotes the pointwise restriction of the
elements in the sequence % to the elements in the set in¢o and
similarly for outc.

3.2 Simulation and Corresponding States

Before we derive the refinement rules we briefly in-
troduce and discuss the concept of simulation. When
comparing two charts based on input and output
traces, that is, checking for or calculating trace re-
finements, the state information of the charts is al-
ready abstracted away. This is not the case, however,
when working with the partial relations semantics.
We need a way of relating the states of one chart
with those of another. This is exactly the task of sim-
ulations, sometimes also known as retrieve relations,
abstraction relations, or coupling invariants (Derrick
& Boiten 2001). Something as simple as changing the
names of the states from the abstract chart to the con-
crete requires that we have a simulation relation that
maps the abstract state names into the new concrete
state names.

In the standard ADT treatment, a simulation re-
lation encodes the relationship between the states of
the abstract specification and the states of the con-
crete specification. We usually think of the simulation
R as completing a series of commuting squares. This
allows us to prove the necessary refinement proper-
ties for each of the associated operations (in our case
there is only one) and use an inductive argument to
show that the refinement holds when we compose (in
an appropriate order) several operations together into
programs. We refer the reader to Derrick and Boiten
(2001) for a detailed description of the concepts of
data type refinement.

As discussed in Section 3.1, the initialisation and
finalisation relations are used to modify the observ-
able input and output sequences to allow refinement
to change the context (i.e. input/output interfaces)
of a chart. Reflecting this, we split the definition of
the simulation relation into two separate parts. The
first part is the simulation between configurations of
the respective abstract and concrete charts. We will
refer to this part of the simulation as the correspond-
ing relation or Corrd for a simulation between charts
Aand C.

The Z schema Corrd (Figure 9) gives the gen-
eral scheme for the corresponding relation. The pred-
icate P defines the simulation relationship between
the states of the respective charts A and C, and will,
of course, depend on precisely what charts A and C
are.

The second part of the simulation relation allows
refinements that change the input/output interfaces

Computer Science 2006 - Proc

S Cor’ré
Chart
Charty,

P

—_I04
TA :INA
ig :ing
04 :outp
op : outo

g Ning = 7,/0 Nnag
04 Noutc = oy N outy

Figure 9: Semantics for simulation relation

of a chart. For arbitrary input interfaces ing and
in¢, and output interfaces out4 and oute, the schema
10§ is constructed so that [[IOé]]ZC represents a rela-

tion between the inputs and outputs from the abstract
chart to the inputs and outputs of the concrete chart.
Importantly, when this relation is combined with the
corresponding relation we get a schema representing
the simulation relation between charts 4 and ¢ that
has type P(Ti v Ti') as follows:

Definition 3.2 For charts A and C we have,
Ré =def CO’I"I‘é A IOé

where [[Ré]]zc has type P(Ti° v Tg").

Significantly, when using the refinement theory
presented the developer need only define the relation-
ship between states of the “refining” and “refined”
charts. The input/output relationship or interface
refinement is always constrained by the general rela-
tionship identified by the schema 710.

3.3 Partial Relation Refinement

Now we can derive partial relations refinement rules
for charts. The derivation of the different sets of
rules closely follows a similar treatment by Derrick
and Boiten (2001).

We embed the Z-based chart ADT presented so far
into a relational data type as follows.

Definition 3.3 For an arbitrary chart C and all sequences
st and so, the Z ADT semantics (Chartc, Initc, {CSys}) is
embedded in the relational data type

(CState, CInit, { CStep}, CFin), such that,

CState = gop T x O% x U
Clnit = gep {(51 = (Sip(ing)» ()5 2)) | 2 € Inito}
CFin = ger {(8i1 (ing)» S0 (outy)» 2) F 80 | z € Chartc}

CStep =g {(¢ 751, 50, 21) — (81,50 "o, 22) |
z1 % (| ic=1, 0p=0) x 2, € CSys}

The embedding of the simulation R gives the simulation
relation S between the ADTSs representing charts A and C.

For arbitrary sequences si¢ and so, and bindings 21 and
22 we have,

S =def {(Sib(inA)v Sob(outA)vzl) e
(81 (ing) 1 501 (oute)> 22) | 21 % 25 € Corré}

Notice that the relational simulation S is defined
just in terms of the corresponding relation Corr4.
This is because the pointwise restriction of the se-
quences si and so already model the same relation-
ship between input and output as the schema I104.

. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

3.4 Total Chaos Refinement
3.4.1 Forward Simulation

Here we derive rules for a total chaotic interpretation
of charts. Derrick and Boiten (2001) give five refine-
ment conditions that are necessary to show that a re-
lational data type C refines a relational data type A
using a forwards simulation S. They begin by lifting
(by introducing the special value 1) and totalising
the relations of the respective data types. Derrick
and Boiten refer to the total chaotic interpretation
as the contract approach. After giving the necessary
lifted totalised relations they show how the five re-
finement conditions, referred to as initialisation, fi-
nalisation, finalisation applicability, applicability and
correctness, can be simplified (“relaxed”) to remove
any reference to the introduced value L. We give the
five relaxed conditions and refer to Woodcock and
Davies (1996) for their derivations.

Definition 3.4 Assuming data types
A = (AState, AInit, {AStep}, AFin)

and
C = (CState, CInit,{ CStep}, CFin)

a forwards simulation S is a relation from AState to CState
satisfying the following conditions:

ClInit C Alnit § S (init)
Sg CFin C AFin (fin)
ran((dom AFin) <1.S) C dom CFin (fin app)
ran((dom AStep) <1 S) C dom CStep (app)
((dom AStep) <1.5) g CStep C AStep g S (corr)

Now we use each of these conditions along with
the relational embedding defined in Definition 3.3 to
derive corresponding conditions expressed in Z.

For initialisation we have,

CInit C Alnit § S
=4

Vycoycélnitcéﬂtlotlé]nitA/\tl*yéeR

Unlike in the derivation provided by Derrick and
Boiten (2001), the finalisation condition does not hold
trivially for charts. This difference arises because
the derivation for Z refinement makes the assumption
that both the abstract and concrete ADT's have equiv-
alently typed input and output, whereas the deriva-
tions required here do not.

S g CFin C AFin
<~

outs C outc

Because the given finalisation relation is total over
all output sequences and states of the respective
charts, the finalisation applicability condition holds
trivially.

Now for the applicability condition we have:

ran((dom AStep) <1 S) C dom CStep
=4

Y Ya, Yc ® Pre ASYs yo A ya * yi € R = Pre CSys y.

And finally, for correctness we have:

((dom AStep) <1 S) g CStep C AStep g S
<~

Y Yo, Yes 2c ® (Pre ASys yo A ya*y, € R A yexz, € CSys) =

Htoya*t'éASys/\t*zcleR

19

CRPIT Volume 48

20

The completion of these derivations gives us the
necessary conditions to show that a relation R is a
forwards simulation between two charts 4 and C un-
der the total chaotic interpretation of the partial re-
lations semantics. As we have shown, it follows that
chart C refines A4 in the total chaotic trace interpre-
tation for charts. In line with the natural deduction
style presentation that we have adopted, Figure 10
gives introduction and elimination rules for forwards
simulation total chaotic refinement.

Notice the rules for forward simulation refinement
presented here are, with the exception of the initiali-
sation and finalisation conditions, very similar to the
rules presented by Deutsch and Henson in Deutsch
and Henson (2003) for SF-refinement. A similar
method of derivation gives the corresponding rules
for the backwards simulation case.

4 Monotonicity results

As with any language that provides operators allow-
ing modular specifications and a refinement calculus
for step-wise development, the monotonicity proper-
ties of the u-Charts operators needs to be considered.
These monotonicity properties are important for p-
Charts because they show to what extent the lan-
guage supports modular development. Refinement is
considered monotonic with respect to a language op-
erator if a refinement of one part of a composite spec-
ification implies a refinement of the specification as
a whole, and having this result is clearly important
when we turn to using the logic on large specifica-
tions.

It turns out that we need quite strong, but very
easy to motivate, side-conditions to guarantee that re-
finement is monotonic with respect to the chart com-
position operator.

Even though the monotonicity side-conditions de-
scribed in Proposition 5.1 are presented before the
monotonicity result itself, the conditions were formu-
lated and refined from the proof of the monotonic-
ity property (which we omit here due to space con-
straints). That the process of proving the monotonic-
ity property allows us to state (and prove) these nec-
essary side-conditions is evidence that the method of
this paper has met some important goals. That is,
the formal framework presented allows us to formu-
late precise descriptions of general, and typically non-
obvious, language properties. In the case of the mono-
tonicity result presented here, the first of the three re-
quired side-conditions is particularly non-obvious and
at first reading may appear incorrect. However, the
proof of monotonicity and careful evaluation of what
this condition actually entails, makes clear the signif-
icance of the restriction.

5 Monotonicity of the u-Charts composition
operator

We begin by showing that the composition operator of
u-Charts is monotonic with respect to forward simula-
tion refinement only when appropriate side-conditions
hold. Like the investigation of Deutsch et al. (2003),
the monotonicity proof itself is used to establish the
necessary side-conditions. After ascertaining the re-
quired side-conditions an intuitive (in chart terms)
justification for their necessity is given.

Recall that, by definition 3.4, to show that a for-
ward simulation refinement holds between two charts
requires that we show that an appropriate simulation
exists between the charts. The proof of monotonicity

relies heavily on splitting the definition of the simu-
lation into two parts—the simulation between the re-
spective charts’ configurations using the correspond-
ing relation and the simulation between the allow-
able input and output signals using the relation I0.
This notion of splitting the simulation relation was
introduced in Section 3.2 where we define the corre-
sponding relation between two charts A and C as
Corrg and the input/output relation as 104. Where
previously we have denoted (total chaotic) forward
simulation refinement between two charts € and A
as C J,; A, here we supplement the relation with an
explicit label that names the simulation required for
refinement. So, assuming that chart ¢ refines chart
A using the simulation s, we will write ¢ 27, A.

Proposition 5.1 states the monotonicity result for
forward simulation refinement.

Proposition 5.1 If, for arbitrary charts A1, Ca, and sig-
nal set W, we have that,

—————— SC1
[aily 27 [C2ly

SC:
outg, NW¥ = outc, NV 2

outy, N outg = outc, N outp SCs

where T =g.f C’orrff A IOS“II,’ for Cy = [02]\11 and Ay =

[Allqn then for arbitrary chart B, we have the monotonicity
result,
Co JE A1 SCi SC» SCy

(C2 | ¥ | B) fo (A1 ¥ | B)

where S =gef C’om"gzl A C’or?"g A IOéy7 and R =gef
A A
Corrczl A IOCZI.

Despite the intricate appearance of the three side-
conditions required for monotonic refinement of com-
posed charts, these conditions are not unexpected
when described in terms of charts themselves.

First consider the following property that holds in
general for arbitrary charts A; and ¢, and feedback
set .

Lemma 5.2
Ce 2 Ay
[caly 277 [,

where T’ =gef Corrézl A IOéq‘f’

outg, NV = outc, "W

Given this property holds it follows that, in the
context of the monotonicity proof of Proposition 5.1,
i.e. where SC; holds, the charts A; and C; are out-
put equivalent with respect to the signals in the set
¥, i.e. |Cof, ~o [A1],. In words, an environment that
reacts to just those signals in the set ¥ could not
tell the difference between the charts A; and ..
Therefore, we see that one of the properties required
to guarantee monotonic refinement (with respect to
composition) is that refining one part of the compo-
sition, say refining chart A; into C», cannot change
the behaviour of A; with respect to the signals in ¥
that are used to communicate with the other part of
the composition, e.g. chart B.

To explain the role of the side-condition SC; more
specifically, with regard to the monotonicity proof,
we describe two distinct parts that SC; plays in the
proof.

Firstly, SC; enforces that the precondition of
the chart, i.e. the set of state/input pairs for which
the chart has explicitly defined behaviour, cannot be

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)
Proposition 3.1 For arbitrary charts A and C, and bindings ya, yc, and zc, we have,

Ye € Initc
Ye é Inito
Pre ASys ya, Ya* vy, € R

Pre ASys ya, ya *y. € R, yex 2., € CSys
Pre ASys Ya, ya xy. € R, ye %2, € CSys

- outy C outo
=t € Inity
=t % yé €R

= Pre CSys yc
F ya x t) € ASys
Ftoxzl €R

It
E (27)
¢, A C 3,4 A ye € Initc t1 € Inita,t1 xy, € R P
_ (3O =<
— g ouio (—ﬂ-f 1) P (—Tf l/')
C d,; A Pre ASysya yaxy.E€R
-
Pre CSys y. (2 HI)
, , - Ya * th € ASys,
C 3.y A Pre ASys ya Ya*y. € R yc*2z, € CSys ‘ %Q*ZCERFP 3,)
=7fIv

P

where the usual conditions hold, due to elimination of existential quantifiers, between t;, t2 and P.

Figure 10: Rules for chaotic refinement

weakened. Note that here we use the term weaken-
ing of the precondition in a very strict sense—side-
condition SC; restricts any weakening of the precon-
dition within the domain defined by the input inter-
face of the abstract specification. Extending the do-
main of definition for a chart specification, i.e. in-
creasing the input interface and weakening the pre-
condition outside of the original domain, is still per-
mitted in general.

This first aspect of the side-condition S¢; is re-
quired for the part of the monotonicity proof re-
lated to the correctness property introduced in Sec-
tion 3.4.1.

Figure 11 presents a counter-example that illus-
trates why this part of side-condition SC; is neces-
sary in terms of charts. Given the charts 4 and ¢©
we clearly have that C> J_, A1, yet it is not the case
that ¢ 3., A That is, even though C» refines A,
the composed chart ¢ is not a valid refinement of
A. The defined reaction of chart A given input {a}
is to output {w,t}, i.e. the two left hand transitions
of chart A combine with respect to feedback to cre-
ate an overall chart transition triggered by just the
input {a}. However, chart ¢ can nondeterministi-
cally choose to output {w,t} or {w,s} given input
{a}, i.e. both the respective left hand and right hand
transitions combine to give this nondeterministic be-
haviour. Therefore, ¢ has additional nondeterminis-
tic behaviour to A and no valid refinement holds.

w.t

Figure 11: SCy,partl: Charts A= (A; |{w,t}| B) and
C=(C|{w,t}|B)

The second aspect of SC; is that it insists that
the output behaviour, with respect to feedback, of
an abstract specification is not changed via refine-
ment. The property is required to prove the part
of the monotonicity result related to the applicability
condition.

In terms of charts, Figure 12 illustrates another
counter-example that demonstrates why this second
aspect of SCj is a necessary requirement for mono-
tonic refinement. Note that the output interface of
the chart ¢, is assumed to contain the signal w, i.e.
we assume C» is a behavioural refinement of A; rather
than an interface refinement. Again we have that the
composed chart C does not refine the chart A. This
is because A is defined for input {a} due to feedback
on w where chart ¢ is not. Therefore chart C acts
chaotically for input {a} and the resulting additional
nondeterminism invalidates the refinement relation.

Al Cc2
B B

{w} {w}

Figure 12: 5S¢y and SC»: Charts A = (41 | {w} | B)
and C = (C2|{w}|B)

The same charts from Figure 12 can be used to
demonstrate why the side-condition SCs is required
for monotonicity. In this case, however, we assume
that the output interface of chart C» is reduced to the
empty set of signals, that is, in this case €, is an in-
terface refinement of A; rather than a behavioural re-
finement as above. Given this assumption SC; holds,
that is, [A1], is a valid refinement of [¢»],. However,
from inspection it is obvious that SC» does not hold
in this case, that is, outa, NV # outc, N ¥, specifi-
cally, {wyn{w,t} # {}n{w,t}. The side condition SC»
is required to prove monotonicity in relation to the
correctness condition.

Finally, the side-condition SCj is required because
u-Charts refinement allows the designer to change the
output context of a chart using interface refinement.
If an interface refinement of one chart in a composi-
tion extends the control that the chart has over the
environment using signals that were originally used

21

CRPIT Volume 48

22

just by the other part of the composition, then there
is the possibility that this new behaviour, from both
charts, will be inconsistent when the charts are re-
combined in composition. For example, consider the
counter example illustrated by the charts of Figure 13.

Al

Figure 13:
(G2 || B)

SCy(i): Charts A = (41 || B) and C =

Here the valid interface refinement ¢, 2., A4;

allows C» to control its environment over signals pre-
viously dealt with by the chart B, i.e. the signal t¢.
The result is that the composed chart ¢ can output
{s,t} for input {a} where chart A could only output
{s} for input {a}. Hence, chart ¢ has new behaviour
that was not specified by chart A and therefore C is
not a valid refinement of A.

Similar arguments can be used to show that the
same side-conditions, SC;, SC» and SCs, are sufficient
to guarantee monotonic refinement with respect to
the composition operator for charts in the backwards
simulation case.

5.1 The firing conditions interpretation of u-
Charts

A requirement for monotonic refinement is that the
preconditions remain unchanged over the domain of
definition of a chart. This requirement may cause
an observant reader to question whether the total
chaotic and firing conditions notions of refinement
coincide in the case where refinements adhere to the
monotonicity conditions. In particular, the work of
Deutsch, Henson and Reeves (2002) shows that re-
finement based on a firing conditions approach can
be considered as a notion that insists on the stability
of the precondition. That is, refinement that allows
the reduction of nondeterminism but insists that the
precondition is neither strengthened nor weakened.

In fact, we can show that total chaotic refinement
is both sound and complete with respect to firing con-
ditions refinement when we insist that just the first
condition S¢Cy, for monotonic refinement, is met. Any
(guaranteed) monotonic refinement that we can prove
using the total chaotic rules can also be proved using
the rules for firing conditions refinement.

This is expressed by Proposition 5.3 .

Proposition 5.3 For arbitrary charts A, C and signal

set ¥ we have,
c35 4 Ll 3%lel, o oia

S S
c i, A c 25 A

where S =g.r C’or?"é A IOé and T =4.f Cor’rf A IOE; for
Cy =[C], and Ay =[4],.

Notice that the second aspect of the side-condition
5S¢y and the conditions SC, and SCs are still a neces-
sary requirement to guarantee that firing conditions-
based refinements are monotonic with respect to com-
position.

Therefore, while it is the case that using 3, for
chart refinement implies a “more monotonic” refine-
ment calculus, the difference in reality is slight.

The exact difference between the two notions of
refinement is that the total chaotic model allows a re-
finement to weaken the precondition over the abstract
domain of definition where the firing conditions model
does not. The choice of the appropriate model can
only be determined by the context of the refinement
application. We do point out, though, that the total
chaotic model provides the most general refinement
framework.

6 Conclusions

A logic for composition and refinement of u-Charts
has been presented. The presented work has two sig-
nificant contributions. The first is the presentation
of a method for developing a logic for a StateCharts-
like specification language—another example of the
increasingly popular visual specification languages for
reactive systems. The second is an investigation of a
chaotic-based notion of refinement for the language
u-Charts.

The logic is developed by modelling the pu-Charts
language in the more well-known and investigated
language of Z. Given the extensive body of work that
gives a logic to Z, we can specialise this logic and
thereby induce a logic for charts. (Also, we are able to
utilise existing tools for Z to reason about the model
of a reactive system, if we wish.)

The notion of refinement that we induce
for p-Charts follows the chaotic-outside-of-defined-
behaviour approach that is typically associated with
Z-based ADT refinement or data refinement. As
with Z-based refinement, the chart refinement defined
maintains the principle of substitutivity (Derrick &
Boiten 2001). That is, the substitution of an imple-
mentation of the specification for an implementation
of a refinement of the specification will be indistin-
guishable in the context of the specification.

The notion of a chaotic semantics for u-Charts was
first introduced by Scholz (1998). The implicit non-
determinism outside of defined behaviour can be con-
sidered an abstraction mechanism just as in Z specifi-
cations. As the design is refined the nondeterminism
is reduced, i.e. more decisions are made about unde-
fined behaviour.

The chaotic semantics also facilitates refinements
of both a reactive system’s specified behaviour, and
the specified context of the reactive system. These
two types of refinement are both defined in the one
notion of refinement presented. Refinement that
changes the context of a chart preserves substitutivity
because it is assumed that the context for a specified
chart is fully defined, i.e. the context both controls
and is controllable by just the signals in the respec-
tive input and output interfaces of the specification.
Note that hiding signals from one or other of the in-
terfaces is not in general a refinement.

The refinement rules presented give half (i.e. the
forward simulation case) of a simulation based refine-
ment calculus for pu-Charts. Unlike other theories of
refinement for reactive systems the calculus presented
allows the simulations to model a change in possible
states from abstract to concrete specification as well
as a change in the signals used to interact with the
environment, i.e. the context, of the specified reactive
system.

Of course, using the methods of this paper, as
much as required of the whole of StateCharts can
have a logic induced for it—once a semantics for a
given construct has been defined in Z it is an intri-
cate but conceptually straightforward task to induce

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

logical rules for the construct from the Z¢ rules and
the definition. The same goes, also, for refinement
rules.

6.1 Future Work

Given the origins of p-Charts (it is based on a sim-
plification of the more well-known StateCharts), we
typically take for granted that pu-Charts is a useful
engineering tool for specifying reactive systems. Not
surprisingly, to date most of the uses of the presented
logic for u-Charts have been concerned with investi-
gating and proving properties of the language itself.
It remains to be shown whether or not such a logic
can be used practically to reason about and develop
reactive systems. It is clear however, that using the
formal logic for the practical development of reactive
systems will require significant tool support. Ideally,
this would be proof assistance, based specifically on
the logic rules for charts, perhaps using a more gen-
eral tool developed for the logic Z¢. Other Z-based
validation tools such as animation may also provide
useful tools for investigating u-Chart specifications.
Limited tool support for u-Charts already exists in-
cluding a p-Charts editor called AMuZed and a model
builder (i.e. a program that translates a chart into its
Z model) called ZooM (Z-lambda project 2005).

Another application of the logic that has not been
fully investigated is to use the form of the simulations
involved in refinement to suggest useful refinements
of reactive system specifications. That is, can the
form of proofs of refinements be used to indicate use-
ful development strategies for reactive systems? This
application of the logic closely follows Dijkstra’s no-
tion that “we develop program and correctness proof
hand-in-hand” (Dijkstra 1976).

References

13568, 1. (2002), Information Technology—Z For-
mal Specification Notation—Syntaz, Type Sys-
tem and Semantics, Prentice-Hall International
series in computer science, first edn, ISO/IEC.

Derrick, J. & Boiten, E. (2001), Refinement in
Z and Object-Z: Foundations and Advanced
Applications, Formal Approaches to Computing

and Information Technology, Springer.
URL: hitp://www.cs.ukc.ac.uk/pubs/2001 /1200

Deutsch, M. & Henson, M. C. (2003), An analysis of
forward simulation data refinement, in D. Bert,
J. Bowen, S. King & M. Waldén, eds, ‘ZB 2003:
Formal Specification and Development in Z and
B / Third International Conference of B and Z
Users’, Vol. 2651 of Lecture Notes in Computer
Science, Springer-Verlag Heidelberg, pp. 148-
167.

Deutsch, M., Henson, M. C. & Reeves, S. (2002),
Six theories of operation refinement for partial
relation semantics, Technical Report CSM-363,
Department of Computer Science Department,
University of Essex.

Deutsch, M., Henson, M. C. & Reeves, S. (2003),
Operation refinement and monotonicity in the
schema calculus, in D. Bert, J. P. Bowen, S. King
& M. Walden, eds, ‘ZB 2003: Formal Specifica-
tion and Development in Z and B’, Vol. 2651
of Lecture Notes in Computer Science, Springer-
Verlag, pp. 103-126.

Dijkstra, E. W. (1976), A Discipline of Programming,
Prentice Hall.

Harel, D. (1987), ‘Statecharts: A visual formal-
ism for complex systems’, Science of Computing
pp. 231-274.

Henson, M. C., Deutsch, M. & Kajtazi, B. (2004),
The specification logic vZ, Technical Report
CSM-421, Department of Computer Science,
University of Essex.

Henson, M. C. & Reeves, S. (2000), ‘Investigating Z’,
Journal of Logic and Computation 10(1), 1-30.

Henson, M. C. & Reeves, S. (2003), ‘A logic for
schema-based program development’, Formal
Aspects of Computing Journal 15(1), 48-83.

Philipps, J. & Scholz, P. (1997a), Compositional spec-
ification of embedded systems with statecharts,
in M. Bidoit & M. Dauchet, eds, ‘TAPSOFT
'97: Theory and Practice of Software Develop-
ment’, number 1214 in ‘LNCS’, Springer-Verlag,
pp. 637-651.

Philipps, J. & Scholz, P. (1997b), Formal verifica-
tion of statecharts with instantaneous chain reac-
tion, in E. Brinksma, ed., ‘Tools and Algorithms
for the Construction and Analysis of Systems’,
Vol. 1217 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 224-238.

Reeve, G. (2005), uCharts-Investigating Refinement
(To appear), PhD thesis, Department of Com-
puter Science, University of Waikato.

Reeve, G. & Reeves, S. (2000), p-Charts and Z:
Hows, whys and wherefores, in W. Grieskamp,
T. Santen & B. Stoddart, eds, ‘Integrated For-
mal Methods 2000: Proceedings of the 2nd.
International Workshop on Integrated Formal
Methods’, LNCS 1945, Springer-Verlag, pp. 255—
276.

Scholz, P. (1998), A refinement calculus for state-
charts, in E. Estesiano, ed., ‘Fundamental ap-
proaches to software engineering: First Inter-
national Conference, FASE’98’, Vol. 1382 of
Lecture Notes in Computer Science, Springer-
Verlag, Berlin, pp. 285-301.

Spivey, J. M. (1989), The Z notation: A reference
manual, Prentice Hall.

Woodcock, J. & Davies, J. (1996), Using Z: Specifi-
cation, Refinement and Proof, Prentice Hall.

Z-lambda project (2005).
URL: wwuw.cs.watkato.ac.nz/Research/fm

23

CRPIT Volume 48

24

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Supporting Software Reuse by the I ndividual Programmer

Min-Sheng (Peter) Hsieht, Ewan Temperoi
Department of Computer Science
University of Auckland
Auckland, New Zealand
tmhsi005@ec.auckland.ac.nz
ietempero@auckland.ac.nz

Abstract

Despite its long history and its benefits, software reuse has yet to become
a common practise among software programmers. While there is much
ongoing research, it focuses on large-scale organisation-level techniques
and methodologies. There is very little research that considers reuse at
the personal level as an important factor. The lack of focus and tool sup-
port has limited the potential for developers to reuse their past efforts.
This paper introduces ICRT (Individual Code Reuse Tool), which pro-
vides support for an individual to efficiently reuse code fragments writ-
ten in the past. ICRT uses the CBR methodology to manage the code
fragments, and is integrated with the Eclipse IDE.

Keywords:
Support

Code Reuse, Case-Based Reasoning, Tool

1 Introduction

Consider the following scenario: Chris has been given the
task of writing some code that creates a user interface
that requires a somewhat complex layout of its compo-
nent parts. As she begins writing the code, she realises
that what she is doing is similar to what she did for a pre-
vious project. She quickly finds the code she wrote for
that project, and confirms that large parts of it are relevant
to her current project. By judicious cutting, pasting, and
adaption, she is able to produce the code she needs much
more quickly than if she had continued developing it from
scratch.

Any programmers who have written code will be fa-
miliar with the above scenario. It is situations like this
that provide an opportunity for improved productivity by
avoiding writing that same code, if only the programmers
could quickly access their previous efforts to solve the
problem at hand. Such opportunities have been recog-
nised since the beginnings of software engineering, and
there has been much research in software reuse, that is, in
how to leverage such opportunities. Much of this research
has focused on how organisations can gain the benefits of
reuse. There have, however, been comparatively few ef-
forts that support the individual programmer reusing her
own past efforts.

In this paper, we present the results of our investigation
into providing reuse support for the individual program-
mer. Specifically, we discuss ICRT, an Individual Code
Reuse Tool. This tool stores code fragments developed by
the programmer’s past efforts and uses the case-base rea-
soning (CBR) methodology for retrieval of the most rele-
vant piece to the current effort. ICRT is integrated into the
Eclipse IDE with particular attention being paid to usabil-
ity so as to minimise the cost of its use to the programmer.

Copyright (©2006, Australian Computer Society, Inc. This paper ap-
peared at Twenty-Ninth Australasian Computer Science Conference
(ACSC2006), Hobart, Tasmania, Australia, January 2006. Conferences
in Research and Practice in Information Technology, Vol. 48. Vladimir
Estivill-Castro and Gill Dobbie, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

The paper is organised as follows. In the next section,
we introduce the important concepts, in particular what is
needed to develop a CBR-based system. We also discuss
other related research. In section 3, we present the moti-
vation for this work in more detail and discuss how that
affects the requirements for ICRT. Section 4 presents the
main concepts we use to develop a CBR-based system tar-
geted at reusing source code. We then give an overview
of ICRT in section 5. Section 6 presents an evaluation of
ICRT, and finally, we discuss future work and present our
conclusions.

2 Background and Related Work

2.1 SoftwareReuse

The idea of developing software by re-using existing soft-
ware has been around since the dawn of software engi-
neering as a discipline (Mcllroy 1969). Since that time,
much research has been done to turn this idea into re-
ality, of which we can only touch on here (see surveys
such as (Mili, Mili & Mili 1995, Kim & Stohr 1998) for
more detail). For the most part this research has focused
on planned or systematic reuse, that is, how organisations
can, by using explicit processes and standards, get the
most benefit from reuse. Early efforts in this regard ex-
amined the design, development, and organisational use
of repositories of reusable assets (see (McClure 1997) for
example). Later efforts considered domain engineering
and domain analysis as promising avenues (see (Tracz,
Coglianese & Young 1993) for example), which led to
software product lines (Clements & Northrop 2001).

There has also been much work in tool support for
reuse. The early work concentrated on repository support.
Later work examined other aspects of supporting reuse,
such as the development of reusable assets and reducing
the cost of understanding them (for example, (Biddle &
Tempero 1998)). Other work has provided support for
non-code assets, for example design patterns (Mapelsden,
Hosking & Grundy 2002).

The tools developed in this kind of research, while
used by an individual, have been intended to support reuse
at the organisational level. In fact, most Software Reuse
researchers have ruled out supporting the kind of reuse
exemplified by our scenario, describing it as software sal-
vaging and in doing so implying it is not worth supporting
(Tracz 1995). However, as we (and many others) have
noted, reuse often occurs at the individual level, where an
individual leverages her own past work rather than use an
enterprise level repository.

For this kind of reuse, there appears to have been little
work done in developing tools to support it. One excep-
tion is work by Norton on “Reuse of personal software
assets”(Norton 2003). Norton observed that an individual
builds up her own personal collection of useful assets dur-
ing her career, and that it was feasible to provide support
to help manage that collection. He identified seven fea-
tures that a tool providing this support should have: pri-

25

CRPIT Volume 48

26

vacy, Internet accessibility, customisable meta-data, flexi-
ble browsing, support for a variety of asset types, support
for relationships between assets, and a natural language
query facility. We compare Norton’s work with ours in
more detail in section 6.

2.2 Case-based Reasoning (CBR)

CBR involves reasoning from prior experience: retain-
ing a memory of previous problems and their solutions,
and solving new problems by reference to that knowl-
edge. Generally, a CBR system will be presented with
a problem, either by a user or by a program or system.
The system then searches its memory of past cases (called
the “case-base”) and attempts to find a case that has the
same problem specification as the case under analysis. If
the reasoner cannot find an identical case in its case-base,
it will attempt to find a case or multiple cases that most
closely match the current problem (Pal & Shiu 2004).

Pal and Shiu discuss many advantages in adopting
CBR (Pal & Shiu 2004). In particular, a CBR system
can still function even if the underlying theory of domain
knowledge has not been quantified or understood entirely.
Availability is another key advantage of having CBR sys-
tems. Whereas artificial intelligence techniques require
full knowledge of the domain to be available, CBR can
be usefully used even then there is only a few cases in its
case-base.

Problem«

Retrieve:

Retaine
Cage-basev

o w e oo

Revise«

| .

Confirmed Proposed
Solution«

Solution«

Figure 1: The CBR cycle

The process involved in retrieving past experience can
be generalised into four consecutive steps, known as the
CBR Cycle, as shown in figure 1 (Watson 1997).

In order for cases stored in a case-base to be retrieved
during queries, each case must have a standard represen-
tation and it must be indexed properly.

Case representation is the first step in implementing a
CBR system. It is also the most important step because
the representation will reflect the knowledge stored in
each case. In many practical CBR applications, cases are
usually represented as two unstructured sets of attribute—
value pairs that represent the problem and solution fea-
tures (Gebhardt, Vob, Grather & Schmidt-Beltz 1997).
One of the advantages of CBR is that it allows flexibil-
ity in how an attribute can be represented. There is a range
of possible choices from simple boolean, numeric and text
data, to binary files, time-dependent data and relationships
between data.

It is not enough to just represent the cases, a struc-
ture representation for the case-base is required as well.
This structure will greatly influence how the index is con-
structed. There are two common structures used: flat or
hierarchical. A flat structure has the property that the in-
dexes are chosen to represent the important aspects of the
case and retrieval involves comparing the query case’s at-
tributes to the attributes of each case in the case-base. A

hierarchical structure, on the other hand, stores the cases
by grouping them into appropriate categories to reduce the
number of cases that have to be searched during a query
(Pal & Shiu 2004).

Case indexing is the second step of implementing
CBR. In this step cases are indexed for future retrieval and
comparison. The choice of indexes is important to en-
able retrieval of the right case at the right time because the
indexes will determine in which context a case will be re-
trieved in the future. Therefore it is critical that the indexes
reflect the important features of a case and the attributes
that influence the outcome of the case, and describe the
situations in which a case is expected to be retrieved in the
future (Pal & Shiu 2004). Although there are attempts at
making the process automatic, generally indexes are as-
signed by domain exports.

Case retrieval is the process of finding cases that are
closest to the current case. In order to carry out effective
case retrieval, there must be selection criteria that deter-
mine how a case is judged to be appropriate for retrieval
and a mechanism to control how the case-base is searched
(Pal & Shiu 2004).

Nearest neighbour retrieval (NNR) is a common selec-
tion technique applied in CBR systems. The algorithm
will retrieve a case when the weighted sum of its features
that match the current query is greater than other cases in
the case-base (Pal & Shiu 2004).

Once a case has been chosen, it will be modified or
adapted to fit into the current problem. If the underlying
domain of the cases is well understood, then sometimes
this step can be automated, but often case adaptation is
performed manually.

3 Requirements

The main motivation for the development of ICRT is to
support the reuse of code that a programmer has written
in the past. To understand that this means in terms of the
specific requirements for the design of ICRT, we need to
discuss in more detail what it means to provide this kind
of support, and what some of the consequences are.

As we mentioned in the introduction, the situation
ICRT is meant for is when a programmer thinks she is
about to write code that might similar to code she has writ-
ten in the past. The first point to note is that we are only
interested in source code, and not other artifacts that could
be considered useful for reuse. The next point to note is
that we are not just interested in reuse of “whole” pieces of
code, that is, semantically complete code such as classes,
modules or components, but also code fragments that may
not even be syntactically correct. This impacts the choice
of technology for representing and storing the artifacts we
wish to reuse.

Reusing code is only useful if the total cost of doing
so is less than the cost of creating the code from scratch.
So what is the cost of reuse? In the situation above, if the
programmer knows the exact location of code that will do
exactly what is needed, then reusing it will not cost much,
although there is still the cost of navigating to the location
and of integrating the code into the current context.

If there is uncertainty about the location or relevance of
the existing code, then reusing it becomes more expensive.
It does no good if the programmer has written exactly the
code she needs some time in the past, but it takes her two
hours to find it (she eventually discovers it has been moved
to an off-line archive) when she could have re-written it in
an hour. It also does no good if the programmer takes only
15 minutes to find the code she remembered, only to re-
alise it’s of no use and have to start from scratch anyway.
The greater the uncertainty of location or the relevance
of existing code, the less likely the programmer will even
attempt to try to reuse code. This leads to the primary re-
quirement for ICRT, to quickly identify the most relevant
existing piece of code to the problem at hand.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

JTabl e tabl e = new JTabl e(15, 3)

publ i c Component prepareRenderer(Tabl eCel | Renderer renderer,

i nt

{

Conponent ¢ = super. prepar eRenderer(renderer,
renderer conponent to be transparent so background

/1 W want
/1 image is visible
i f(¢ instanceof JConponent)

row, int colum)

row, colum);

((JConponent) c) . set Opaque(fal se);

return c;
b

/1 Use our version of JScroll Pane

MyScrol | Pane sp = new MyScrol | Pane(table);

/1 Set the background image

| magel con i mage = new | nagel con("codeguruwmgif");

sp. set Backgr oundl mage(i mage);

Figure 2: A code fragment to be stored in ICRT

Another cost of reuse takes place after a relevant code
fragment has been identified, and that is the cost to adapt
and integrate it into the current context. This cost can be
reduced by initially writing the code code fragment to be
easy to reuse, however this makes the initial creation of the
fragment to be more expensive. Typically, there is a trade-
off between the development cost and the cost of adaption
and integration. If the code is reused several times, then
its up-front cost can be amortised over its lifetime. How-
ever, it is often difficult to predict whether code is going
to be reused, and so there is a risk that the cost of making
the code easier to reused will never be recovered because
the code is never reused. A way to reduce this cost is to
spread the cost of making the code easier to reuse over
its lifetime. Every time code is reused, it is improved in
a way that will (hopefully) make it easier to reuse in the
future, and the improved version is kept for future reuse
requirements. This leads to the requirement for ICRT of
providing support for retaining these improved versions.

We are proposing the use of a new tool to support code
reuse. This is in itself a cost. If the tool takes a long time
to learn or takes a significant amount of effort to use, then
it is unlikely to be actually used. This means that good
usability is an important consideration for ICRT. Usability
is now recognised as an important factor in the lack of use
of CASE tools (livari 1996). In particular, it must be easy
to store code in the tool when it is first created, easy to
search for relevant code, easy to integrate relevant code,
and easy to retain modified versions.

Finally, it must be kept in mind that the tool we’re
proposing is intended to support reuse at the level of the
individual. This has important implications in what as-
pects of the tool’s design are important. One is the us-
ability issue mentioned above. With systematic reuse, a
company’s reuse policy may get away with dictating the
use of a tool that no-one enjoys using, since there will be
external pressures (such as keeping one’s job) to ensure
the policy is followed. However if the individual is de-
ciding whether or not to use a tool, then that individual’s
experience with the tool will affect the decision.

Another consequence of providing individual support
is that there is no need to enforce any standard. In fact,
it is likely that the tool would be more acceptable if the
user could tailor its behaviour to suit her particular way of
working. Different people classify and remember things
in different ways, so we have concluded that, rather than
provide a rigid indexing structure, we should instead give
some control of the indexing to the user.

4 CBRIinICRT

In general, as others have noted, there are similarities be-
tween the CBR and reuse approaches (Tautz & Althoff
1997). However the CBR methodology seems a partic-
ularly good match to ICRT’s requirements. The artifacts
we wish to reuse, code fragments, have little useful struc-
ture on which to base a useful domain model. We expect
ICRT to be useful right from the start when there are only
a few fragments available. We want to be able to provide
support for retaining new versions of code created when
they are adapted for reuse, something that is explicit in the
CBR cycle.

The process of applying CBR as mentioned in section
2.2 can be simplified into four steps: case representation,
case indexing, case retrieval and case adaptation.

Starting with case representation, cases in ICRT con-
sist of attribute-value pairs, where the value is the code
fragment represented as a string, and the attribute de-
scribes the functionality as discussed below. We chose
to represent the code as unstructured strings, instead of,
for example, representing the semantics in some way, be-
cause unstructured strings don’t have to be even syntacti-
cally correct and yet can still be useful for our purposes.
Furthermore, from a usability perspective, operations such
as copy and paste are familiar to our user population, and
these operations are based on unstructured strings. It also
provides an opportunity for a simpler code fragment re-
trieval interface, as well as more efficient case indexing.
The cases are stored in a flat structure.

In existing CBR systems, the size of the index is the
same for each case. This is because each case is expected
to have a fixed set of features. The index for a case is then
based on the values of each feature for that case. How-
ever, in the case of indexing a code fragment there is no
standard or obvious feature set that can be used to describe
each fragment. Therefore we use a indexing mechanism
such that fragments can be assigned an arbitrary (but user
specified) number of features.

We call each feature/property pair a functionality card.
Currently the cards used in ICRT have a simple structure:
[Language — Feature — Property — Description]. For in-
stance, a code fragment that might be described as “Read-
ing a file from a given location” can be represented as:
[Java—I/O—Read—From a given location]. In this case,
the feature on the card also refers to the corresponding
Java 10 package. This structure originated from Java Al-
manac (Chen 2002) and it has been modified to fit into the
purpose of the card design. The purpose of a functionality
card is to document functionality that is meaningful to the

CRPIT Volume 48

28

user. This means that the card deck created by the user
will be unique to that user. It is possible to have repeated
cards between programmers but they may mean different
things depending on the users’ preferences.

The card approach has the benefit that it requires less
computation in case retrieval compared to text-based de-
scription because there is no need to perform text pro-
cessing to pick up the key words in both the input query
and within the cases. It also simplifies both the indexing
and retrieval process, which we believe improves usabil-
ity. Rather than learn and use a complex syntax or search
process, a user just picks out the cards the best represent
the functionality she is interested in (for retrieval) or best
represents the code fragment (for indexing).

For case retrieval, ICRT uses nearest neighbour re-
trieval. By default, cards have equal weights, but the
weights can be changed. Case adaptation in ICRT is cur-
rently performed manually.

To see how the cards work, consider the code fragment
presented in figure 2. The language is JAVA, and gener-
ally the code deals with user interface elements. However
some of it (JTabl e) is specific to the swi ng package,
whereas the last two statements are more general. When
indexing, the user might choose to separate these into sep-
arate features, such as SWING and GUI. The properties
provide more specific information about the code frag-
ment with respect to the identified features, and so the
cards that assigned to this fragment could as follows:

. gJAVA — SWING — Table — Java Swing Table re-
ated i.e., JTable]

e [JAVA — GUI — Background — Embed background
in GUI components|

e [JAVA — GUI — Image — GUI component relating
to Image]

This choice of cards is, in keeping with the comments
in section 3, completely up to the user. Another user may
have instead decided that the “image” aspect of the code
was not worth recording, and so left that card out, or that
the transparency of the cells was relevant, and so included
a card representing that information. Even the form of the
cards is up to the user. She might decide that managing the
background of a user interface was sufficiently important
that it become a feature, rather than a property.

5 Individual Code Reuse Tool (ICRT)

In this section, we demonstrate ICRT. As previously men-
tioned, ICRT is a plug-in for the Eclipse IDE, and con-
sequently uses parts of Eclipse, such as the SWT. Code
fragments are stored in HSQLDB (IBM 2005). Although
HSQLDB is not as feature rich as other database manage-
ment systems, it has the benefits that it can operate with-
out a separate database server having to be installed. ICRT
uses Hibernate provide the mapping between the relational
data model used in HSQLDB and the representation used
in ICRT (JBoss 2005).

Figure 3 shows ICRT as a user would see it. It is pre-
sented as an Eclipse View shown in the figure as one of
a set of tabbed panes in the frame at the bottom of the
interface. ICRT itself has a number of views, for code
retrieval and indexing, for card management, and for im-
proving code.

5.1 Proceduresinvolved in Code Retrieval

There are four steps involved in retrieving a code frag-
ment:

1. Select appropriate functionality cards

2. Assign weights (or importance) on the selected cards,
if necessary

3. Select a code fragment from the fragment list and the
user can preview the fragment’s content in the code
preview field

4. Press the copy button to copy the fragment to clip-
board and the user can decide where to paste the frag-
ment

The fragment search is performed automatically when-
ever the user adds/removes a card to/from the selected card
list. All fragments that have the chosen card will be listed.

5.2 Sample Scenario

To see how ICRT would be used, consider the following
scenario. Chris is assigned with the task of placing her
company logo into a Java accounting application, which
consists mainly of Java swing tables. Chris vaguely re-
members that she has a code fragment stored in ICRT that
performs similar task and she believes that the same frag-
ment can be used here.

She starts off ICRT in her Eclipse IDE and begins her
code retrieval process. She will need to pick the cards
that are directly associated with the task, that is. embed-
ding background image in a JTable. She first picks the
Background card in the GUI category first as the diagram
shown in Figure 4.

After selecting the Background card, 5 code fragments
are shown in the result list. But with only the background
card selected, Chris finds it difficult to distinguish frag-
ments relating to background colour and background im-
age. Therefore she selects the Image card in the same cat-
egory, which in turn emphasises that she is more interested
in code fragments relating to background image. By doing
so, fragments relating to both Background and Image will
now have 100% similarity rate whereas those that relate
to Background and Colour will only have 50% similarity.
Note that a new code fragment (one that matches Image
but not Background) has also been added, but also only
with 50% similarity.

From the descriptions shown in Figure 5 Chris cannot
tell which fragment is for Java Swing tables, so she se-
lects the Table card in the Swing category as shown in Fig-
ure 6. Although adding the Table card results more code
fragments appearing in the fragment list (adding those for
Table), Chris only needs to investigate the fragments that
have the highest similarity percentage as they are more
likely to be the fragment she is interested in using. In this
case, Chris sees two possible solutions to her current prob-
lem, she could choose either the “scrollable” or the “non-
scrollable” background image solution.

This example illustrates how code retrieval is per-
formed in ICRT. As one can see that the user does not
need to type out her query, instead ICRT allows the user
to could simply choose the relevant cards. The additional
benefit of using cards is that there is no worry of possible
typos, which could cause no fragments found.

5.3 Other featuressupported in ICRT

Apart from the main code retrieval functionality, ICRT
also provides other features, such as code storing and new
functionality card creation. These features are essential to
how a user may retrieve her code fragment from ICRT.

531 StoringCodeln ICRT

Code storage and retrieval are the two most important
functionalities that ICRT addresses. We have outlined
the procedures involved in code retrieval in the previous
section, therefore in this section we will discuss the pro-
cess involved in storing new code fragments into ICRT. A
screen shot of the interface is shown in Figure 7.

The process involved in storing a new code fragment
consists of six steps:

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

- Eclipse SOK mE)

File Edit Source Refackor Mavigate Search Project MyEdipse Run Window Help
] i "J&-‘y‘ﬂ @ ’33 0 = i E&’@'J@f ¥ -':1_|‘S—|‘{——]"' it et K T
Fr(Package Explarer %.\\--\ =0 | _J MainFrame. java 23 . CompanentCelEdtor java. IDTestng]ava | i El_
_[r;; i =) 'i ®import java.swe.BorderbLayout;|] [ip
Pleon S }
= B %
P “public class MainFrame extends JFcame {
+ [H (defauk package)
L@ show. PG private static final lonyg serialVersisnUID = 1L:
@y JRE System Library [irel 5,004
(== g private JTable tshle;
= public =tatic void main(Stringl]l ascgs)
new MainFrame () : !.V
PmHmlJavadnc|De:Jaratlnn B 1Fr2| 2 C =8
| Card Refactor | Project Creation | Retrieve Code™ Stating Code | Edit Cods | 1
ilvaﬂabﬁe Car‘ds. - —s5elacted Cards: - Code Fragmenks -~ Conbrols - =
: Java, GUI, Background 1 Tip
Java, GUE, Image I
Java, Swing, Table E6,67% | Nm-ﬁacnablr— 1| Importance (1-10}
66.67% thon-Scrollabl i
33,35 ﬂddnsdeL -l:
33,33% 1 Add | [Copyto Clpboard]
:-CadaFrgment: - — - 1 | Clear Selection |
JTabie kable-= new 1Tablel 15, 3))] =
(=l Refresh Card Tras |
|‘"[= | [_?.Ibllc Campanent praparefenderer(TableCelR I
I';f;',."Hierarthg 5 Elj_] i Component ¢ = super preparsRenderer re |
Bowes 70 T el o
Figure 3: ICRT as an Eclipse Plug-in
—fAvailable Cards: i Selected Cards: —————————— - Code Fragments
= fa2 ICRT Cards \Edava, UL Backaround i || 100.0% :Scrollable BG Image
= [ﬁ- Java 100.0% :Companent BG Calar
T LI 100.0% :Mon-Scrollable BG Image
e : 100.0% :Mon-3crallable BG Image
-| Background 100.0%: :Mon-Scrollable BG Image
: Colour
-~ [E] tmage
[+ = General
= Measurements
=% Operands
= Parameters
[+ [2= Swing
[+ -[z=- Tahle Properties

Figure 4: First card selected in code retrieval

—Available Cards: —Selected Cards: —————~ Code Fragments
[=]-ta= ICRT Cards Java, GUI, Background 100,0% :Scrollable BG Image
= Lﬁ e Java, GUI, Image 100.0% Mon-5crollable BG Image
S 6L 100.0% :Mon-5Scrollable BG Image
S 100.0% :Mon-Scrollable BG Image
D Background 50,0% :Image Icon

50.0%: :Component BG Color

= General

[+ =+ Measurements
=+ Operands

== Parameters

= Swing

[+ = Table Properties

I+

Figure 5: Second card selected in code retrieval

29

CRPIT Volume 48

30

~ Awailable Cards:

—Selected Cards:

~Code Fragments -

=| Background
=| Calour
=| Image

Java, GUI, Image
Java, Swing, Table

Java, GUI, Background

G667 %
33.33%
33.33%
33.33%
33.33%
33.33%
33.33%
33.33%
33.33%
33.33%
33.33%

100.0%
100.0%
G667
33.33%

Figure 6: Third card selected in code retrieval

1Scrollable BG Image
:Mon-5crollable BG Image
:Mon-5Scrollable BG Image
‘Mon-5crollable BG Image
:Basic Table

‘Rernoves Last Column
sAdd nesy Column

:Embed Comba in Table Cell
1Table using Abstract Mode
:Table Selection Options
1Add an emply row
Camponent BG Colar
Image Icon

1 Table with Adjustable widt
1Add a data (Yector) row

Figure 8: Functionality Card Tree

=elected 2-3 words
Cards description
Wmmmima‘mm X =0
Card Refactor | Project Crastion Project’s Fragmant | Retrieve Tods | Sorig Cods . B8 Cocs |
-Code Fragment: “Avalable Cards: “Selached Cards: Controds
protected LinkedList Rstinput = re S i I0RT Cards Tava, 10, Read o
probected void readlinput{H = Java
oy d A ¥ Collection -3 weord
g £ -fﬂ‘“‘:m Fead
whdle ({5t = in,readlir 2 Date
prvrrd B G | Risfracch Project Tree |
]n.duw:]- =an (Pl sedect a project | Sarve Fragment |
 ehch ([0 scapbior s} { | Aead = = ICRT Prajects
¥ | ke = Ly ld.'rﬂ'ﬂ'-ﬂhtt} | Refresh Card Tree I
4 10 Tyme] s
+ = Jgva Types
5l # (= Fying Operations
Code Field Card Tree Project Tree Controls
Figure 7: Store new code fragment
— From J Original
Language [==ta: ICRT Cards [AJ
e] —-
= L avay o Feature
== Actions
~[El Copy
- Create Mew =
& Delete
- Mave -~ T
ropert
- Rename PUEEY
i - Size b
: -- get Size _
#-[=- Arithmetic Operands
[+ Collection
[#-[= Convert
[+]-[z= Custom Data Object [\:|

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

1. Copy the code fragment into the code field

2. Make necessary changes to the code, e.g. generalisa-
tion

3. Select the cards representing the functionalities of the
code from the card tree

4. Choose a project
5. Write two to three words describing the fragment
6. Press the “Save Fragment” button

In step five, we allow a developer to write two to
three words describing on the code fragment so that when
this fragment, along with other relevant fragments, is re-
trieved, she will be able to identify the fragment that she
has the most interest in quickly.

5.3.2 Card Management In ICRT

The Functionality card design plays a big role in ICRT. It
enables a developer to retrieve code quickly and to store
new code fragments easily by selecting the relevant cards.
One of the costs of the flexibility the user has in the choice
of cards is that wrong choices may be made. For example,
a user may initially decide that “background” is useful as
a feature, but later realise that it is much too narrow and
so would be better off as a property. This suggests there
needs to be support for the management of cards.

As shown in previous figures the cards are presented
in a tree structure. As shown in Figure 8 the first level of
tree nodes represents the Language category, followed by
Feature and the leaves of the tree represent the Properties.
Since a card is made up of Language, Feature and Prop-
erty, this structure allows a developer to quickly identify
the card she is looking for. When the developer leaves
her mouse on top of a selected node she will be able to
see a tool tip showing, which contains information about
selected node.

There is also the problem that it is very easy for a de-
veloper to fall into the trap of creating a new card for each
new code fragment stored. Therefore we designed the card
refactor interface to allow a user to “refactor” her card set
to reduce redundancies. Apart from the general create,
edit and delete functionalities, we provide three additional
features that will enable the developer to refactor her cards
more easily. They are:

e Copy functionality allows the developer to copy her
cards to another language category, which saves her
time and effort in creating them individually.

e Move functionality allows the developer to move her
cards to another location. Once this operation is com-
pleted, the original cards will be removed.

e Replace functionality allows the developer to replace
a selected card with other cards. This will allow the
user to “refactor” her cards for example, replacing a
specific card with other more general cards.

There are other aspects of ICRT. Of particular interest
is the decision to clear the selected cards once the user
presses the copy button. This behaviour was added after
observing incorrect use of the tool by users, as discussed
in the next section.

6 Evaluation and Discussion

We performed a formal evaluation of ICRT. The partic-
ipants were given a task to do involving simple string-
based manipulation of dates. While ICRT has been de-
signed with the idea that users add and organise code frag-
ments themselves, time constraints meant that we could
not simulate that in our study. Instead, the participants

2 code fragments from Java SQL package (e.g.
SQL date)

3 code fragments on Java String operations (e.g.
Split string)

2 code fragments on Java Swing (e.g. Frame)

3 code fragments on General Java operation (e.g.
main, and for loop)

3 code fragments on Debugging (e.g. print list)

6 code fragments on Date Calculations (e.g. get
particular day of week)

7 code fragments on Converting Object to another
(e.g. String to Date)

16 code fragments on Java 1/O operations (e.g.
read in and write out)

Table 1: Code fragments for evaluation

One 2nd year undergraduate student
One 3rd year undergraduate student

One graduate student with a Bachelor of Engineer-
ing (4 year degree)

Two people from industry (both graduated more
than a year previously)

Table 2: Evaluation participants

where given ICRT already populated with 42 fragments
(Table 1), some of which were relevant to the task. There
were 5 participants with a variety of backgrounds (Table
2). At the end of the study, the participants filled in a ques-
tionnaire. We summarise the results of the most relevant
questions below.

Q 14 Do you think you can program faster without the
support of ICRT? Yes/No

All the participants selected “No”.

Q 15 How easy/hard is it for you to operate ICRT? Rank
from 1-5 (1 means very easy, 5 means very diffi-
cult) and what improvements would you like to see
in ICRT?

The responses were generally positive, although sev-
eral commented on the difficulty relating to not hav-
ing organised the code fragments themselves. This
confirms our belief that users prefer to do their own
organisation. The complete set of responses is shown
in Table 3.

Q 16 What do you think about the card-based searching?
Rank from 1-5 (1 means very easy, 5 means very dif-
ficult)? Could you write a few words explaining your
answer?

Again we saw comments that are related to the partic-
ipants not having organised the code fragments them-
selves. They also raised questions about how well
ICRT would work with many cards. This is some-
thing we would like to address in future studies. The
complete set of responses is shown in Table 4.

One aspect of ICRT that was noticed while observing
participants in the study was that they frequently left cards
they had used for previous queries selected when mak-
ing new queries. This meant that the effectiveness of the
search was reduced as they were mixing different func-
tionalities. As a consequence, we have changed ICRT to
clear the selected cards whenever a fragment is copied in
the buffer.

31

CRPIT Volume 48

32

Participant ID | Rank Comments made by participants

1 2 It is something that would get better with time, 1.e., contains more code.
I like it.

2 2 Enable the user to clear a particular code fragment that has been used

3 3 Handy if T have my own cards build up

4 1 I'am not sure if ICRT dynamically updates the database as code is en-
tered. It is good functionality to have.

5 2 It would have been even easier had I organised the cards myself

Table 3: Q 15 on ICRT usability

Participant ID | Rank Comments made by participants

1 3 Initially spend some time understanding what each card was for. It’s
due to experience with the tool

2 3 It is easy to find fragments using the cards provided. However in the
case where large numbers of cards are kept within the tree, it is best to
have functionalities such as key word search for the cards.

3 2 Because it increases my coding efficiency (i.e., Tess time involved in
searching for code fragment)

4 1 Convenient. But can get difficult to search if there are too many cards

5 2 (Refer to 15) Having text-based searches in addition to cards might be
quicker, especially if the persona using ICRT did not organise the cards

Table 4: Q 16 on ICRT Card design

ICRT differs from Norton’s PARSE system (Norton
2003) in several ways. In particular, ICRT only provides
support for reuse of code fragments, whereas, not only
does Norton provide support for multiple asset types, he
suggests that such support is a key feature of any personal
asset reuse support solution. We disagree. We believe it
is better to provide very good support for an asset type
that is commonly reuse, namely code fragments. In order
to provide very good support, we also focus much more
on usability. This focus has affected our decision as to
what assets are stored, and how users interact with them.
It also led to the decision to integrate ICRT with an exist-
ing IDE. ICRT has been designed with a view to minimise
the amount of time users spend searching, adding, and re-
trieving assets. To this end, ICRT uses CBR to manage
the reusability assets in the hope that this will yield high
quality search results.

Norton briefly touched on other currently available
software products that also store code fragments. Out of
19 tools he lists, Code Keeper (ICY 2005) is most similar
to ICRT in terms of functionality. This tool allows a user
to browse, search and store code fragments. There is one
major difference between ICRT and this tool is that ICRT
is integrated with an IDE, whereas Code Keeper is stand-
alone. It is also unclear how effective its search facilities
are.

7 Conclusions and Future Work

We have introduced ICRT, a plug-in to the Eclipse IDE in-
tended to support the individual programmer reusing code
she has written in the past. Specifically, ICRT provides
support for a task that many programmers currently do
anyway, namely finding and reusing code they have writ-
ten in the past.

The support provided by ICRT uses the CBR method-
ology. To do so we represent cases as fragments of code
together with a set of “cards”, which are feature/property
pairs. The cards provide a simple mechanism for index-
ing the fragments and the searching through the case base.
Matches are done using the nearest neighbour algorithm.
Usability is an important requirement of ICRT. The deci-
sions to restrict to supporting reuse of just code fragments,
the cards mechanism, and the integration with an IDE, are

all intended to meet this requirement. We have carried
out an evaluation of ICRT using a small but diverse set of
users. While the sample size was too small to draw statis-
tically significant conclusions, the feedback was positive
and provides useful direction for future work.

There is also an issue that we anticipate will require
further work. Currently, ICRT requires the user to choose
appropriate cards whenever a new fragment is added. This
takes some time, and poor choice can affect the effective-
ness of later searches. This will become more of an is-
sue as the number of cards increases. We would like to
explore either automated, or semi-automated card assign-
ment. Finally, the general question of whether or not ICRT
improves productivity is yet to be empirically answered.
Given that ICRT automates something programmers al-
ready do, there is good reason to believe it does and we
have some evidence to this effect, however more work has
to be done.

Acknowledgements

The authors would like to thank the participants in the ex-
periment for their time, and also the useful comments from
the referees.

References

Biddle, R. L. & Tempero, E. D. (1998), Towards tool
support for reuse, in ‘SEEP ’98: Proceedings of
the 1998 International Conference on Software En-
gineering: Education & Practice’, IEEE Computer
Society, p. 126.

Chen, P. (2002), Java(TM) Developers Almanac 1.4, Vol-
ume 1: Examples and Quick Reference, Addison-
Wesley Professional.

Clements, P. & Northrop, L. M. (2001), Software Product
Lines: Practices and Patterns, Addison Wesley.

Gebhardt, F., Vob, A., Grather, W. & Schmidt-Beltz,
B. (1997), Reasoning with Complex Cases, Kluwer
Academic, Norwell, MA.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

IBM (2005), ‘Eclipse and HSQLDB: Embed-
ding a relational database server into eclipse,
part 1’. http://ww+ 106.i bm com
devel operwor ks/ opensource/library/
os- echsql / ?ca=% nxw09HSQLDB.

ICY (2005), ‘Code keeper 1.0’. htt p: /7 www.
i cynorth. comf codekeeper/.

livari, J. (1996), ‘Why are CASE tools not used?’, Com-
munications of the ACM 39(10), 94-103.

JBoss (2005), ‘Introducing hibernate’. htt p: // vwwv.
hi bernate. org/ 4. htm .

Kim, Y. & Stohr, E. A. (1998), ‘Software reuse: Survey
and research directions’, Journal of Management In-
formation Systems 14(4), 113-147.

Mapelsden, D., Hosking, J. & Grundy, J. (2002), De-
sign pattern modelling and instantiation using dpml,
in ‘“CRPITS ’02: Proceedings of the Fortieth In-
ternational Confernece on Tools Pacific’, Australian
Computer Society, Inc., pp. 3-11.

McClure, C. (1997), Software Reuse Techniques, Prentice
Hall.

Mcllroy, M. D. (1969), Mass produced software compo-
nents, in P. Naur & B. Randell, eds, ‘Proceedings
of NATO Software Engineering Conference’, Vol. 1,
NATO Science Committee, pp. 138-150. Presented
at the NATO conference on software engineering,
Garmisch, Germany, 7-11 October, 1968.

Mili, H., Mili, F. & Mili, A. (1995), ‘Reusing software:
Issues and research directions’, IEEE Transactions
on Software Engineering 21(6), 528-561.

Norton, R. J. (2003), Reuse of personal software assets:
Theories, practices and tools, Master’s thesis, The
Florida State University.

Pal, S. K. & Shiu, S. C. K. (2004), Foundations of Soft
Case-Based Reasoning, John Wiley & Sons.

Tautz, C. & Althoff, K.-D. (1997), Using case-based rea-
soning for reusing software knowledge, in ‘Second
International Conference on Case-Based Reasoning
Research and Development’, pp. 156-165.

Tracz, W. (1995), Confessions of a Used Program Sales-
man: Institutionalizing Software Reuse, Addison-
Wesley.

Tracz, W., Coglianese, L. & Young, P. (1993), ‘A domain-
specific software architecture engineering process
outline’, SIGSOFT Softw. Eng. Notes 18(2), 40-49.

Watson, 1. (1997), Applying Case-based Reasoning Tech-
niques for Enterprise Systems, Calif.: Morgan Kauf-
mann.

33

CRPIT Volume 48

34

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Identifying Refactoring Opportunities by Identifying Dep endency Cycles

Hayden Melton, Ewan Tempero
Department of Computer Science
University of Auckland
Auckland, New Zealand
{haydenewan} @cs.auckland.ac.nz

Abstract Long cycles among classes in Java programs create

problems for developers because it is difficult to isolate
The purpose of refactoring is to improve the quality of awafe sys- any class in the cycle. Anyone wanting to understand any
tem by changing its internal design so that it is easier teetstdnd or class in the cycle effectively has to understand every class
modify, or less prone to errors and so on. One challenge ifomer in the cycle. This has implications for the cost of mainte-
ing a refactoring is quickly determining where to apply ite\present nance. Anyone wanting to test any class, effectively has
a tool (Jepends) that analyses the source code of a systerdénto tO test every class. And anyone wanting to lift a class
identify classes as possible refactoring candidates. Guiridentifies ~ for reuse in another system, ends up having to lift every
dependency cycles among classes because long cyclesrareede o class in the cycle. This suggests software with cycles in
understanding, testing and reuse. We demonstrate ournamhddely- the compilation dependency graph may be more costly to
downloaded, open-source, medium-sized Java program awd Isbw Mmaintain than those without, which gives motivation for
cycles can be eliminated through a simple refactoring. detecting and removing cycles.

Of course detecting and removing cycles would not be

so interesting if they did not exist in “real software”, or
1 Introduction they were “mostly harmless”. This leads into the contribu-

tions of this paper. One contribution is to show that cycles

Refactoring is defined as “the process of changing a softdC exist in real software. We have done this by examin-
ware system in such a way that does not alter the extetnd Several widely-downloaded, open-source Java appli-
nal behaviour of the code yet improves its internal struc-C&tions. In order to determine the prevalence of cycles we
ture” (Fowler 1999). Refactoring is most appropriate for Nave built a tool to detect them — this is another contri-
software systems whose existing (internal) design is harg‘mo”- Since we detect cycles from source code and not
to understand, hard to modify and prone to errors and s§om byte code we have had to develop an algorithm for
on. By refactoring such a software system we alter it<COMPUting name bindings that is of little burden to imple-
design to make it easier to understand, modify and les§1€nt, unlike a fully fledged Java compiler that by its very.
prone to errors. As such, refactoring is regarded as an imi&{ure has to compute name-bindings and requires signifi-
portant technique for improving software quality during a €ant éffort to implement— another contribution. The final
system’s maintenance phase. contribution is showing how dependency cycles detected
There are several challenges in performing a refactor?y 0ur tool can be used as the starting point for refactoring.
ing. One is to identify characteristics of a design that make, 1€ paper is organised as follows. In section 2 we mo-
it hard to understand, modify or test etc. Fowler producedVaté our work by discussing in more detail why cycles
a list of these characteristics which he refers to as ‘bad@n create problems for software developers. We then dis-
smells in code’ or simply smells. Examples of smells in- CUSS the literature related to our work in section 3. Section
clude large classes, long parameter lists, feature envy arfjPresents the algorithm we use to create the compilation
data classes. Many of these smells have a large degree §gPendency graph. Section 5 discusses Jepends and sec-
subjectivity in their interpretation. For instance, hovgla 10N 6 shows the results of applying Jepends to a medium
is 00 large for a class? How do we justify (in the case ofSized open source Java application. Section 7 discusses
the feature envy smell) if one method is ‘more interested"OW the results of the analysis can be used to identify op-

in another class than in that which it is defined? This leadgortunities for refactoring, and finally section 8 presents

us to the second challenge in performing a refactoring —oUr conclusions.

identifying where to perform it.
Since many smells have a large degree of subjectivity Motivation
or variety in their interpretation it is difficult to (relid&p

automatically detect where to apply a refactoring. Muchcycles in compilation dependency graphs (CDGs) have
refactoring therefore relies upon the slow and tedious tasimplications in understanding, testing, and reusing elass
of manually inspecting code. It would be beneficial tojn "the cycle. But are they really so bad? The
be able to reliably automatically detect where refactor-simplest “cycle is one involving two classes that de-
ingS could be applled To this effect we have |dent|f|edpend on each other. It is very easy to find exam-
a particular structure in a system’s source code that can bgies of such cycles — consideava. | ang. G ass and
automatically detected, and has a detrimental effecton theaya. | ang. r ef | ect . Met hod, from the Java API

system’s understandability, testability and reusabililye for example. It is hard to argue this cycle is ‘bad’ be-
structure we have identified is long dependency cycles because of the natural parent-child type relationship betwee
tween classes in the system. a class and its methods. This relationship is represented at

- - ; : _the source code level b§ ass providing aMet hod[]
Copyright ©2006, Australian Computer Society, Inc. This paper a|
pegr)c/edg at©'l'wenty-Ninth AustralasriJan Comput){er Science greFr)'nf:e P get Decl ar edMet hods() method andvet hod pro-
(ACSC2006), Hobart, Tasmania, Australia, January 200&if@ences Viding a Cl ass get Decl ari ngCl ass() method.
in Research and Practice in Information Technology, Vol. W&dimir Breaking this cycle would involve terminating the parent’s
Estivill-Castro and Gill Dobbie, Ed. Reproduction for aeatc, not-for ~ reference to its children or the children’s reference to its
profit purposes permitted provided this text is included. parent, both of which are necessary relationships in order

35

CRPIT Volume 48

36

to provide usabldkt hod andCl ass objects. a graph of dependencies amongst Ada source files in or-
It would be tempting to simply declare 2-class cyclesder to infer those files that can be compiled in parallel
“good” and everything else bad, but we suspect “good” 3{Cockerham 1988). Assuming multiple processors are
class cycles can also be found, and so the question woulavailable for the compilation, its time is reduced.
then be at what size do cycles become “bad”? The ‘nec- Lague etal. generate a graph of dependencies between
essary relationship’ argument stated above is an appealifg/C++ source files through processing théinclude
criteria, and may be a correct one, however it has the prolstatements (Lague, Leduc, Le Bon, Merlo & Dagenais
lem, from our point of view, that it is difficult to detect 1998). This graph is used for reverse engineering in the
violations of it through mechanical analysis. sense that Lague et al. want to recover the layered ar-
While it may be difficult to state categorically that a chitecture of the telecommunications system under study
cycle of a certain size is bad, we would argue that it wouldfrom its implementation (source files).
be hard to argue that a large cycle, of size 50 for example, Several recent studies have profiled the overall char-
is something to be entirely happy with. We feel certainacteristics of dependencies among classes in object ori-
that it would be useful to know that cycles of that size (orented systems. Wheeldon et al. profiled the distributions
larger) exist in our software, since that would provide aof 5 different types of dependencies (e.g. inheritance, ag-
candidate for refactoring. gregation) in several large Java applications (Wheeldon &
Large cycles in the CDG may indicate another prob-Counsell 2003). Marchesi et al. profiled the distributions
lem. As we discuss in the next section, a number of auef in-degrees and out-degrees for nodes in the class rela-
thors have suggested that cyclesobsystem&roups of tionship graphs of 4 Smalltalk applications where the re-
classes with coherent functionality) are bad. If we have dationship took into account potential method invocations
group of closely related classes (and so coherent functiorand superclasses (Marchesi, Pinna, Serra & Tuveri 2004).
ality) then we would tend to want to understand, test, andr'he authors of both studies found power laws in these dis-
reuse them as a unit. As we argued above, cycles withitributions. Furthermore they speculated that these distri
such classes may not be such a problem. However cycldsitions are common across all large object oriented sys-
between subsystems suggests that the subsystems aretéms and that such distributions may be useful for predict-
fact not so coherent, and so again may indicate candidatésg design complexity as a system grows and measuring
for refactoring. The larger the cycle in a CDG, the largerthe effects of refactorings on software quality. We also
the likelihood that the cycles cross subsystem boundariesonsider relationship graphs, however we concentrate on
For example, if there is cycle of size 50, but all subsystemslistributions related to the transitive closure of the +ela
have fewer than 50 classes, then it must be that there istionships.

cycle between subsystems. Work with compilation dependencies is usually asso-
Our goal then is to construct and analyse CDGs, andiated with incremental compilation. Determining what
identify cycles, in particular large cycles. needs to be recompiled when one source file is changed

is non-trivial in Java. Lagorio has developed an algorithm
for sound cascading recompilation in Java (Lagorio 2004)
that deals with these issues. Lagorio’s algorithm is sound
.in that its output is guaranteed to have the same effect as

Fecompilation of the whole program. We have adapted

analysing dependencies of different kinds. We mention_5q4rio's algorithm to identify the relationships we are
only the most directly relevant here. interested in.

Graphs are a natural representation of computer pro- " pigession in the literature of the consequences of
grams well-suited for program analysis and transformagependency cycles is limited. Booch makes the obser-
tion. Existing work in graph representations of programs,ation that a CDG should be a directed acyclic graph
is diverse. One dimension of this diversity is the context

: - S) as early as 1984, but provides no justification for it
in which program entities are considered. Program em'(Booch 1987, p.567). Szyperski also observes “...can in-

ties may be considered dynamically — from the runtimeg,qyce cyclic dependencies and threaten organizational
state of the executing program, or statically — from thegictire” (Szyperski 1998, p.275).

source code or an intermediate representation of it. An=" |- "tarms of dependency cycles between subsystems

other d_imehnsion of WO][k in ﬁ_raﬁ)hhrepres%nj[ation gf pFr,O'RieI (Riel 1996) provides a heuristic that states the model
grams is the purpose for which the graph Is used. Pulgsihe application should never be dependent on the user
poses include, but are not limited to, identifying violat$o

. odr : . interface of that application. Presumably this heuristic
of design heuristics, change propagation analysis, reversyims 1o eliminate a dependency cycle between the model

engineering, reducing compilation time, and runtime per—4 .4 view of the application
formance optimisation. The work most relevant to this ™ \artin gives the Acyclic Dependency Principle
paper relates to identifying violations of design heucsti (ADP), namely “the dependency structure betwpank-

The earliest work in the area of runtime performance, i

timisati . hs is by Kuck. Kuck introd agesmust be a directed acyclic graph” (our emphasis)
optimisa '0(;‘ usmg graphs I'Sh yd uc g uck INtroducesyhere packages are defined similarly to subsystems but
aprogram dependency graph order to determine state- it an'emphasis on reusability (Martin 1996). As we ar-

ments that can be executed in parallel in a (Fortran-likebued in the ; ; ;
previous section, long cycles in the CDG may
program (Kuck, Muraoka & Chen 1972). indicate that the ADP has been broken.

Program dependency graphs have also been used in Of- "o most comprehensive discussion we found of de-

der to analyse change propagation. The term ‘ripple efyenqency cycles among subsystems in object oriented
fect’ is often used describe how a change can prOp""gf"@’oftware is given by Lakos. Lakos argues for the acyclic

(Bl?jCkl 2001)H In essefrf]cet, a %Ea”dg‘?[t‘f[’hthte. code ogqn roperty on the basis that cyclic dependencies inhibit un-
moaule can have an efiect on the data that IS passed INi@arstanding, testing and reuse: “once two components are

other modules. This is of concern during software main+p, 1,ally dependent, it is necessary to understand both in
tenance because a change to one module that may naivelyqer 1o fully understand either” (Lakos 1996, p.185).

seem isolated could cause a regression fault in another. Hautus has developed a tool to detect cycles between

In terms of reducing compilation time the graph repre;§j1d(ages in Java applications and support removing them

3 Background

sentation typically comprises source files as vertices ang5,,1y5"2002). His tool differs from ours in that it as-
compilation dependencies as directed edges. Yu et ak,neq classes are correctly organized into subsystems by
identify false dependencies as a cause of long compilag,

Setit] clities as d : e use of Java packages. The metrics his tool computes
tion times and use a ‘partitioning’ operation on the graphy ¢ tar less comprehensive than ours and as far as we can
in order to determine redundatit ncl ude statements

. tell his tool does not prioritize classes based on some no-
(Yu, Dayani-Fard & Mylopoulos 2003). Cockerham Usesiiqn of their need for refactoring.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

4 Algorithm in S;. Single-type-import statements are imports that do
not end with a *.*'. Letbod)y(.S;) be the set of names that

We have developed an algorithm for inferring compilationcould refer to types in the body 6f. Then

dependencies between Java source files in an application.

While this may seem at first thought trivial, it is not. As body = {e1...¢jler-..€;...ex € body(S;)

noted by Lagorio the rules for name binding (i.e. bind- ~* ’ ! ’

ing identifiers in Java source code to their corresponding 1<j<k}

program entities such as classes, methods, variables) arg ondemand _ , _ body
complicated. This is “because the dot notation is used ‘kl lev.ejenlej...ex € R,
to name many different kinds of things (types, packages, e1...ej—1 € onDemands(S;)}

fields and so on), its semantics is context dependent and,Rsingle
tricky” (Lagorio 2004). i ler-..ej.enler...ej €

Suppose we are presented with the dotted name (e.g., singleType(S;), e; ... ex € RY°YV
a. b. Cin a Java source file. As stated in section 6.5 of
the Java Language Specification the following happens
to the name: “First, context causes a name syntactically single | - body demand
to fall into one of six categories: PackageName, Typeand soR; = R, ™" UR,;"™ U Ry eemanc,
Name, ExpressionName, MethodName, PackageOrType- Let T" be the set of all types declared f, ..., Sy,
Name, or AmbiguousName. Second, a name that is inithenR; = declaringSources(R; N T') wheredeclaring-
tially classified by its context as an AmbiguousName or asSourcedakes a set of type names and returns a set con-
a PackageOrTypeName is then reclassified to be a Packkining the source files in which the types are declared.
geName, TypeName, or ExpressionName. Third, the re- This presentation of the algorithm has been simpli-
sulting category then dictates the final determinationef th fied by not taking into account all of the issues due to
meaning of the name (or a compilation error if the nameJava’s rules for shadowed names, obscured names, and
has no meaning)”. There is a long set of rules for deterlested types. Lagorio discusses these issues in full detail
mining the name binding in each of the syntactic classifi-(Lagorio 2004). , . _
cations. One option would be to implement all these rules_ We illustrate the algorithm using the following source
in a program to infer dependencies. The other option is ta!'e-
];Ir?gn? heuristic based algorithm that is simpler to imple 1- //file sl

Fortunately there is a relatively simple (heuristic) al- 2: Package a. b;
gorithm for inferring dependencies between Java source3: | Mport x.*;
files — it is described in Lagorio’s work in sound, cascad- 4 1 nport y. Z
ing recompilation in Java (Lagorio 2004). Lagorio’s algo- class Mydass {

e1...ex € singleType(S;)}

rithm actually detects a superset of the actual dependen-8: Private A-a = new AQ);
cies of a source file. We have adapted Lagorio’s algorithm public void doStuff() {
so that it minimises the number of spurious dependencies®: B b = new (();
detected, and ignores some compilation dependencies thaf: a. exec(); : _
are of little consequence to the developer’s view of the System out. printin();

system’s class. The final output of our algorithm is a CDGll;
whose vertices are source files and whose (directed) edgé@- }
are compilation dependencies. The CDG is built up by
processing the names, import statements and package dec-
laration in each source file in order to determine a set Ofb du(S
fully qualified type names to which that source fitey Obg/d(1)
refer. This set is subsequently used to infer dependencied®;”"”

The different sets in the algorithm are:

{A,B,C,System.out}
{A,B, C, System.out, System}

between source files by comparing the type names in it toon Demands(S;) = {a.b,x}
those declared by other source files in the application. ondemand

A simplified version of our algorithm can be expressed 71 = {abAabBabCl,
as follows: Let the source files in the application be de- a.b.System.out,
notedSy, S», Ss, ...S,. The output of the algorithm is an a.b.System,x.A,x.B, x.C,
adjacency list representation of the program’s compitatio x.System.out, x.System}
dependency graph of the forf) — R; whereR; is the singleType(S1) = {y.z}
set of source files tha; directly “refers-to”, that is, those Rsingle _
source files contain the declarations of types usef} in 1 = {vz}

Firstly consider names in Java that are used to refer toR = {A,B,C,System.out,a.b.A,
program entities such as methods, types, variables etc. A a.b.B,a.b.C,a.b.System.out,
name can be simple, that is consist of a single identifier, a.b.System, x.A,x.B, x.C,
or qualified, that is, consists of a sequence of 2 or more x.System.out,x.System, y.Z}
identifiers delimited by “.” characters. We will express a
name in the forme;.es.ez.eq4. e, Wheree; represents It is worth noting that there were names in the body
an identifier. of the source that did not appear bndy(S1). Partic-

In order to construcR we first computeR; by com- ularly a on line 6 does not appear because its context
bining, in a particular way, the namesin the bodypthat makes it a variable name, thus its name cannot refer to
might refer to types with those appearing in #$i&s pack- a type. Method declarations/calls such. &xec() (9),
age declaration and import statement®, is the set of doStuff () (7) and. println() (10) do not appear
fully qualified class names to whicky mayrefer. In Java because their context identifies them as methods. arhe
fully qualified type names uniquely identify types within on line 9 does not appear because we can infer from the

a program. source file that it cannot refer to a type: it is in the scope
Let onDemandsS;) be the set of names used in of a declared field.
import-on-demand statements $, as well as the pack- It is also worth noting that many of the names in each

age name thaf; belongs to. Import-on-demand state- source file’sR will identify types that are not declared in

ments are imports ending with a *.*'. LetingleTypéS;) the application’s other source files. Lagorio refers to¢hes

be the set of names used in single-type-import statementsames aghost dependencieSince we are not interested
in ghost dependencies we cull them from each source file’s

37

CRPIT Volume 48

38

R in order to get a new s&®’. To know which names to Computing R for this source file yields{pack. A,
cull we build up a map from type to source file of all the x. A}. Assume that in the application’s source files both
types declared across all the source files in the applicatiortypes are declared. The JLS states that the types are re-
This allowsdeclaringSource® be computed. solved using the implicit package import in preference to
The key difference between our algorithm and Lago-import-on-demand statements (section 6.5.5) so in reality
rio’s is in the construction of the refers to s&®, We Exanpl e only depends opack. A. Our algorithm (in-
minimise the number of entries iR by resolving names correctly) infers thaExanpl e depends on bothack. A
to variables and types inside a source file where allowe@ndx. A. We expected this type of situation would be very
by the Java Language Specification (JLS) (Gosling, Joyrare. For a medium-sized Java application called Azureus
Steele & Bracha 2000, Chapter 6). We remove ghost dewe detected this situation, where two classes had the same
pendencies fromk. We do not add single-type-import simple name, and manually inspected all incidences of it
statements t&R whose types are not used in the body of in offending source files’ texts. Of the 30 occurrences
the source file (contrary to the example above). While ig-of conflicting names none caused erroneous references.
noring redundant single-type-imports is not sound in casin each case both classes were actually referenced in the
cading recompilation, it is a minor concern in programsource file's text: one using its fully qualified name and the
analysis where we found it was causing many superfluousther using its simple name in conjunction with a single-

dependencies between source files. type-import.
Another way our algorithm could infer an erroneous
41 Benefits reference is if a variable name was interpreted as a class

name. This is analog to a potential problem stated in the

It is in many ways beneficial to infer dependencies from alLS where a variable name coudtbscurea simple type
system’s source files and not its compiled code (i.e. bytéame. Fortunately the convention of naming classes with
code). While inferring a class’s dependencies from its bytean initial uppercase letter and naming variables with an
code is trivial (one can simply look at the fully qualified initial lowercase letter minimizes this type of conflict¢se
class names appearing in the class file’s constant pool) thé-S section 6.8). In all the systems we ran our tool on
process of compiling source files to byte code is seldonfluring its development we casually observed source files
straight-forward for a newly downloaded application. It had obeyed this coding standard, almost certainly elimi-
can involve having to track down external libraries, mod-nating all erroneous references that could be generated in
ify build scripts for the local environment and so on. Fur- this way. _) _
thermore if something is preventing the system from com- One final point to note is that in the general case our
piling (e.g. an unresolved reference or syntax error) therlgorithm does not infer a direct dependency between a
no dependencies can be computed. Downloading the aglass that uses an inherited field or method, and the class
plication in its compiled form doesn’t help much either be- that defines that field/method. Consider a classsing
cause it then becomes difficult to determine which classe8 field defined in its superclass’s supercl&sOur al-
correspond to sources and which classes have originategprithm detects an indirect dependency betwéeand
from external libraries. C throughA's superclass. In this particular example a

A major benefit of our algorithm is that it is specifies a Java compiler would infer a direct dependency framn
simpler means of inferring dependencies between source, and this would be written té's binary class file (see
files than the way in which a compiler goes about inferringJLS 13.4.7). Briand et al's framework for measuring cou-
these dependencies. For instance our algorithm is uncoiing more thoroughly addresses this issue (Briand, Daly
cerned with statement reachability checking, type check& Wust 1999).
ing and static context checking, whereas a compiler must
perform these steps. As a consequence of the omissiaf Jepends
of such steps our algorithm should be faster at inferring
dependencies between Java source files than a compileg
Even compared to the subsystem of a compiler whose puly

pose is to compute name bindings our algorithm is SUP€a¢ analysis we are interested in. In particular, it does not

rior in that the compiler’s subsystem is complicated to im- : ;
: ; quire that the source code be in a deployable (or even
plement because it must implement the pages upon pagré%ndame) state. This avoids problems with source files

n implementation of the algorithm described in section
has a number of practical benefits in terms of the kinds

of rules discussed in section 6.5 of the Java Languag ; : ; . : :
> . : ; ot being available or organised incorrectly, dealing with
Specification. Furthermore, again unlike a compiler, ou xternal jar files or other subsystems, or configuration is-

algorithm does not require references to any external j ues
files used by an application in order to infer dependencie We have implemented the algorithm as part of our tool

between sources. Jepends. Jepends uses the results of the algorithm to build

Another benefit our algorithm is that it could be easily 0o
adapted to infer compilation dependencies between sour(tﬁoetgreagﬁrﬁ]pyg:;gﬂsdv?/gsgdency graph, and then analyses

files in other Java-like languages such as C#. The simplic-
ity of the algorithm is such that it can be implemented in a
few hundred lines of code assuming one starts with an o
the shelf parser for the target language.

Jepends can compute a suite of sets for each of the
pplication’s source filesRefers-to — the R’ set i.e.,

he other sources referred to directly by the names in the
given source file;Refers-to-tc — the transitive closure
of refers-to; Referred-to-by — the inverse of refers-to;
4.2 Limitations Referred-to-by-tc — the transitive closure of referred-

. . . . to-by; Cycles-thru — a subset of all simple cycles (no
While the algorithm we have described avoids much ofiapeated vertices) that a given source file participates in.

the work performed by a compiler, which by its very na- The sjze of the refers-to and referred-to-by sets give the
ture has to infer dependencies, there are situations wheggt_gegrees and in-degrees of the corresponding vertex in
it could detect spurious dependencies. Consider the fokhe compilation dependency graph. The transitive closure
lowing example in illustration of this. relations determine what source files either require or are
required by a given file during the compilation process.
Currently Jepends outputs dependency profiles as text files
I Ex | that can be imported into tools such as Excel for sorting,
class Example { graphing and further analysis. Table 1 shows part of the
A a = new A(); output, in this case the top four classes when sorted by
} Cycles-thru. TherC columns are the transitive-closure

package pack;
i mport Xx.*;

gRwhE

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Class Referred-to-by TC Refers-to TC Cycles-thru
org....config.COConfigurationManager 164 1003 5 1373 3280
org....config.impl.ConfigurationDefaults 3 1003 10 1373 32
com.....defaultplugin.StartStopRulesDefaultPlugin 3 003 38 1373 3275
org....logging.LGLogger 107 1003 4 1373 3274

Table 1: Part of the output by Jepends. Class names have lidexh e

version of the column to the left. The fact that the numbers
are the same for all classes in these columns is discussed
in the next section.

The fact that Cycles-thru is subsewf all the simple
cycles a given source file participates in requires furthe

to finding all simple cycles (that is easily implemented in
Java) is to find all simple paths between each pair of node
the graph and determine which of these paths also corre
spond to a simple cycle. A simple path corresponds to :
simple cycle if there exists an edge in the graph from the
terminal node in the path to the initial node in the path.
Several different paths can correspond to the same simp
cycle and this is easily detected by checking that the path
contain the same nodes, and that these nodes occur in t
same order (when they are arranged into a cycle).
Unfortunately finding all simple paths between all

pairs of nodes is infeasible with respect to time for a graph
of any decent size. Our approach is to keep track of all
the simple cycles source files participate in that are en-
countered during the course of the depth first searches to
construct the Refers-to-tc set of each node. In this re-
gard Cycles-thru is a sample of the total cycles that pas
through a node. More importantly it shows that a given
node participates iat leastthis many simple cycles.

6 Results

In this section we demonstrate Jepends by using it ol
Azureus, an open-source application that provides pee
to-peer file sharing (Azureus 2005). Azureus is written in
Java 1.4 and release 2.3.0.0 comprises 1913 Java sout
files with approximately 114000 lines of non-comment
source statements. Azureus are uses the Standard Wi
get Toolkit for its user interface (like Eclipse), and has no
automated unit test suite.

We came across Azureus because it frequently appears
on Sourceforge’stop 10 lists for number of downloads and
development activity. Our end-user experience of Azureus
is that it is easy to use, stable and feature-rich. This is
atypical of our end-user experience with other peer-to-
peer file-sharing applications. It also raises the question
‘Is Azureus’s internal design indicative of its positiveden
user experience?’.

Figures 1 and 2 show the distribution of set sizes in the
referred-to-by and refers-to relations. In the figures, the
x-axis is the size of the sets and the y-axis is the numbe
of classes that have a given sized set. So figure 1 say
that about 1800 classes have refers-to-by sets of size b
tween 0 and 19. Both distributions show that small values
are extremely common whereas large values are very rar
This is reminiscent of the power law relationships found
by Marchesi et al (Marchesi et al. 2004).

Figures 3 and 4 respectively show the distributions of
the set sizes for refers-to-tc and referred-to-by-tc. The
distributions in figures 3 and 4 are of particular inter-
est. Both distributions show two distinct clusters: from
0-99 and 1000-1199 for referred-to-by-tc distributiondan
from 0-99 and 1300-1499 in the refers-to-tc distribution.
These seem to be very odd distributions — in the case of
referred-to-by-tc, this says that between 1000 and 1199
classes depend (transitively) on nearly 1400 other classes

number of

number of classes

numhber of classes

2000
1800

1600 1
explanation. Efficiently finding all the simple cycles a § 1400 -
given node in a directed graph participates in is a diffi- £ 1200 -
cult problem (Alon, Yuster & Zwick 1994). One approach 2 10m0
800
B0
400

200 4

0

0-19
20-39
40-59
G0-79
80-99

— v T o v o o

260-279
280-289

Figure 1: Azureus’ referred-to-by distribution

1400

1200 4
1000 4

1200
1000

0-4
5-9

10-14
1519
20-24
2529
30-34
3539
4&44-
4549_
50-54
A5-59
G064
G569

Figure 2: Azureus’ refers-to distribution

o m I ;L m D O @ m O m @ @ @ m
ooOm mom m m m m mom m m oW @O
P > T 3 T < = B == = S = T T
R) . F— : A L = = = = =

[T R R R — T B — T — T |
o 0 0 0 90 0 o000 dda D D
e = I =T S = B T — R R
S = ™ o=
rrrrr

size of set

Figure 3: Azureus’ refers-to-tc distribution

39

CRPIT Volume 48

40

1600 1000
1400 ggg
-] |
1200 — 8
gmnn _— g o
3 2 600
= goo ;500-
EEUU - 400 4
2] 2 00
£ 4004 — £ o0 |
2 200 — gmg_ |
u] T — 0 T T T T T T T ! !_!_I
(=] o [=7] [=7] [n3] [=7] [n3] [=7] [=7] [=7] [=7] [=7] [=3] [=7] [=7] o o [=3] [=7] [=7] o (=7} [=7] o [=7]
2338838 ¢33E8¢8 ssdzzzigggess
SR &S 288885 g = 5 882 58588 8
2 = size of set
size of set

Figure 5: Tomcat's refers-to-tc distribution
Figure 4: Azureus’ referred-to-by-tc distribution

1200

Furthermore, the distributions indicate no classes depen 1om0
on (for example) 500 other classes. It is very much tha
classes depend on only a few classes (fewer than 100)
most of the classes.

The question then is, is this distribution somehow
characteristic of all applications, or somehow peculiar to
Azureus. Ifitis peculiar to Azureus, then the presence o]
such distributions may tell us something about the natur - —]]
of Azureus’ design. We used our tool to examine the dis- ' ' '
tribution of these relations in other systems such as Tom
cat 5.5.9, Eclipse 3.0 and Netbeans 3.6 and found son
clustering, but overall large valued clusters were less-com
mon than small valued clusters as exemplified by Tomcat’s
refers-to-tc distribution in Figure 5. Figure 6: Azureus’ simple cycle length distribution

Now the question is, why does Azureus have such odd
distributions? Is it just some particular characterisfic o

the application that is not related to the design, or is ither of long cycles in Azureus. Indeed 75% of the cycles in
indicative of some, possibly bad, design characteristic? jnyolve more than 50 nodes. Now the question is how we

In fact, such distributions indicate the possible pres-can use this information to identify possibilities for refa
ence of long cycles. To see this, consider the distributionoring, which we discuss in the next section.

in Figure 3. The right-hand cluster indicates that of the
approximately 1900 source files in Azureus, about 1000 .
of them depend (either directly or transitively) on 13007 Refactoring
or more other source files. The left-hand cluster indicates])] .
that the remaining 900 or so source files in the applicatiorin this section we will explain how the analysis by Jepends
depend on between 0 and 99 other source files. In fact thean be used to indicate starting points for refactoring and
900 source files in the left-hand cluster cannot depend omeasure the effect a refactoring on dependencies. The
any in the right-hand cluster because of the transitivity. | data in table 1 comes from Azureus and, as mentioned
a source file in the left-hand cluster depended on one in thearlier, shows the top 4 classes when files are sorted by
right-hand cluster, it would depend on all the source filesthe number of cycles in which they participate.
the latter depended on, which we know is 1300 or more, Based on this data, we surmise that breaking the cycles
and so that source file should have been in the right-hanthroughCOConf i gur at i onManager may greatly re-
cluster. duce the total number of (long) cycles in the sys-
Files in the right-hand cluster can refer to files in thetem. A technique for breaking all cycles through
left-hand cluster, but since there are at most 900 in the leftCOConf i gur at i onManager would be to extract an
hand cluster that meaeseryfile in the right-hand cluster interface from it and replace all existing references to
must refer to at leasine otheffile in the right-hand clus- its implementation with the extracted interface. In order
ter, meaning there must be cycles within the right-hando avoid a dependency on the interface’s implementation,
cluster. The length of the cycles depends on the internalve would have to further refactor the classes referencing
structure of the CDG, however we get hints by looking atCOConf i gur at i onManager not to create a new in-
the raw output of Jepends as shown in table 1. As notegtance of, or statically depend on, its implementation.
earlier, the values of tHEC columns for the classes shown _ While the ‘extract interface’ refactoring would defi-
are all the same. This means that with transitive closurdlitely reduce the number of cycles in a system the over-
they all have the same set of classes that they depend @l effect on design quality by repeatedly performing this
or are depended on, which could be explained by all of theefactoring is dubious. The repeated use of the refactor-
classes belonging to a cycle. ing would dramatically increase the total number of source
It was the appearance of the odd distributions forfiles in the system and the existence of the interfaces de-
Azureus compilation dependencies and other applicationned in these files would be justified on the basis of re-
that led to our interest in cycles, and the introduction ofducing cycles alone.
cycle profiling to Jepends. If we use Jepends to profile the A refactoring whose justification can be more strongly
distribution of lengths of unique simple cycles we get theargued is more subtly indicated by the data in table 1.
graph as shown in Figure 6. Note that because vertices ihhe nameCOConf i gur ati onManager suggests that
the graph can participate in more than one unique cyclefs class is involved in something to do with configuration,
the sum of the frequencies is greater than the number giotentially belonging to a configuration subsystem. Upon
source files. The graph shows that there are a large nuntiRspection of this class’s source we find that it is the Fa-
cade into the configuration subsystem. The configuration

[ux]
=
=

frequency
£ [n3]
= =
o =

[x]
=
=

=

29

[=2] o [=2]
o - wy
v h v
= o =

10-19
20-29
G0-63
70-79
80-89

[ar] =+ o
simple cycle length

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

subsystem is responsible for loading and saving user corBlack, S. (2001), ‘Computing ripple effect for soft-
figurable parameters used throughout Azureus’s code (e.g. ware maintenance’Journal of Software Mainte-
the directory to which files download, and the maximum nancel3(4), 263-279.

download and upload rates). These parameters are saved

to flat text files so they can remain persistent between engOCh' G. (1987)3oftware components with Ada: Struc-
ecutions of Azureus. tures, tools, and subsystenBBenjamin-Cummings

It is hard to believe that functionality as primi- Publishing Co., Inc., Redwood City, CA, USA.

tive as saving and reading properties from disk shouldriand, L. C., Daly, J. W. & Wiist, J. K. (1999), ‘A uni-
transitively depend on 1373 other classes. We think fied framework for coupling measurement in object-
that in a better design for the configuration subsys- oriented systems’|EEE Transactions on Software
tem would depend only on the threading subsystem Engineering?5(1), 91-121.

and the logging subsystem. These two subsystems . .
are themselves primitive and probably should not de<cockerham, B. (1988), Parallel compilation of Ada units,

brief code inspection we identified 5 classes relating to ~ TRI-Ada '88, ACM Press, New York, NY, USA,
threading: AEMoni t or, AEMbnSem AERunnabl e, pp. 147-164.

AESemaphor e, AEThr ead. These classes were mixed powler, M. (1999)Refactoring: improving the design of

up with other utility-type classes in ther g. gudy. existing codeAddison-Wesley Longman Publishing
azureus?2. cored. util package. Inthe logging sub- Co., Inc., Boston, MA, USA.

system (comprising its own package) we found 4 source
files: I LoggerlListener, LGAl ert-Li stener, Gosling, J., Joy, B, Steele, G. & Bracha, G. (200)e
LGLogger, LGogger | npl . Since the configuration Java(tm) Language Specificatiohddison-Wesley.

subsystem (again in its own package) contains 13 files W autus. E (2002), Im P
: ; c , E. , Improving java software through pack-
would expectCOConf i gur at i onManager to transi age structure analysig ‘The 6th IASTED Interna-

tively refer-to no more than 22 other files (=5+4+13). In : : ; .
any case this is an order of magnitude less than its current gggg:]gonference Software Engineering and Appli

1373.
The point of this discussion is to support our claim thatKuck, D., Muraoka, Y. & Chen, S. (1972), ‘On the number
the analysis provided by Jepends provided very valuable of operations simultaneously executable in fortran-

insight into the current design of Azureus, and so provided like programs and their resulting speedufEEE
a useful starting point for the refactoring process. Transactions on Computefi(12).
Lagorio, G. (2004), ‘Capturing ghost dependencies
8 Conclusions in java sources’,Journal of Object Technology
3(11), 77-95.
In this paper we have discussed how data from the au- URL: http://ww.jot.fnissues/

tomated analysis of source code can be used to identify issue_2004_12/article4
opportunities for refactoring. We have developed an algo- .
rithm based on work by Lagorio on incremental compila- Lagult\a/l, I(Si’glég)ju'gh(;Hall_lesiofrr]érﬁ'év%?lr(lcf)ér'sdngaeDrz?aennda}lnS)
tion, that allows compilation dependency graphs to be cre- lavered software grchitecture’s YWPC '98: Pro. g
ated for an application. We have implemented this algo- ceyedin s of the 6th International Workshop on Pro-
rithm in Jepends, which also analyses the resulting graph. Cg barglon’ anood 96 P

We have provided canonical examples of refactorings in- ~ 9ram “omprenhension, pp. 24-20.

dicated by running Jepends over the open-source Java apakos, J. (1996),arge-scale C++ software desigAddi-

plication Azureus. o son Wesley Longman Publishing Co., Inc., Redwood
Many characteristics of the distributions of depen- City, CA, USA.

dencies we found in Azureus’ source are not unique to) . .

Azureus. We have seen similar distributions in a numbeMarchesi, M., Pinna, S., Serra, N. & Tuveri, S. (2004),
of other applications that we have analysed. However we ~ Power laws in smalltalkin ‘ESUG Conference 2004
have also seen different distributions (such as Tomcat's). ~ Research Track'.

The fact that different distributions are possible suggest ~ URL: . http://ww. i am uni be. ch/
that it may be possible to get a sense of the quality of ~ Publi kati onen/techreports/ 2004/

the design by profiling these distributions. We are com- | am 04-008/file/at_downl oad

pleting the analysis of these other applications to bettefartin, R. C. (1996), Granularityin ‘The C++ Re-
understand the relationship between different profiles an port. http://wmw. obj ect ment or . cont
design quality. resources/articles/granularity. pdf.

Jepends and the algorithm it is based on are Java spe- . _ _ o
cific. However the principles behind their developmentRiel, A. J. (1996),0bject-Oriented Design Heuristics
are not language specific. We intend to widen the scope of ~ Addison-Wesley Longman Publishing Co., Inc.,
Jepends in order to carry out large-scale studies on com- Boston, MA, USA.

mercial software. Szyperski, C. (1998),Component software: beyond
object-oriented programmind\CM Press/Addison-
References Wesley Publishing Co., New York, NY, USA.

Wheeldon, R. & Counsell, S. (2003), Power law distribu-
tions in class relationship& ‘Third IEEE Interna-
tional Workshop on Source Code Analysis and Ma-
nipulation’, p. 45.

Alon, N., Yuster, R. & Zwick, U. (1994), Finding and
counting given length cyclesn ‘ESA '94: Pro-
ceedings of the Second Annual European Sympo-
sium on Algorithms’, Springer-Verlag, London, UK,

pp. 354-364. Yu, Y., Dayani-Fard, H. & Mylopoulos, J. (2003), Re-
) i moving false code dependencies to speedup soft-
Azureus (2005), ‘Azureus project pagehttp:// ware build processesn ‘CASCON ’03: Proceed-
azur eus. sourceforge. net. Sourceforge ings of the 2003 conference of the Centre for Ad-
project page for Azureus. vanced Studies on Collaborative research’, IBM

Press, pp. 343-352.

Y|

CRPIT Volume 48

42

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Unsupervised band removal leading to improved classification
accuracy of hyperspectral images

R. lan Faulconbridge, Mark R. Pickering and Michael J. Ryan

School of Information Technology and Electrical Engineering
UNSW@ADFA
Campbell, ACT, 2600

i.faulconbridge@adfa.edu.au

Abstract

Remotely-sensed images of the earth’s surface are used
across a wide range of industries and applications
including agriculture, mining, defence, geography and
geology, to name but a few. Hyperspectral sensors
produce these images by providing reflectance data from
the earth’s surface over a broad range of wavelengths or
bands. Some of the bands suffer from a low signal-to-
noise ratio (SNR) and do not contribute to the subsequent
classification of pixels within the hyperspectral image.
Users of hyperspectral images typically become familiar
with individual images or sensors and often manually
omit these bands before classification.

We propose a process that automatically determines the
spectral bands that may not contribute to classification
and removes these bands from the image. Removal of
these bands improves the classification performance of a
well-researched hyperspectral test image by over 10%
whilst reducing the size of the image from a data storage
perspective by almost 30%. The process does not rely on
prior knowledge of the sensor, the image or the
phenomenology causing the SNR problem.

In future work, we aim to develop compression
algorithms that incorporate this process to achieve
satisfactory compression ratios whilst maintaining
acceptable classification accuracies.

Keywords: Hyperspectral, classification, SNR.

1 Introduction and Context

Modern hyperspectral sensors are typically passive,
optical sensors that record spectral radiance from the
earth’s surface at fine spatial resolutions. These sensors
are capable of recording data across a wide range of
wavelengths resulting in a large number of spectral
channels or bands. The large number of contiguous
spectral bands associated with each image allows end-
users to differentiate and classify more accurately the
covering of the earth’s surface.

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

By matching the given spectral signatures to those of the
pixels in the image, the classification process is able to
determine the class or type of pixels in the image. Users
typically “train” the algorithm using areas within the
image that they know to be of a certain pixel type and
then allow the algorithm to classify the rest of the image
automatically. The data used to train the classification
algorithm is called “ground truth” data.

However, the spectral and spatial resolution of
hyperspectral images result in large data volumes causing
storage, transmission and archival challenges.
Additionally, the performance of the individual bands or
channels varies from channel to channel and sensor to
sensor resulting in variable signal-to-noise ratios (SNRS)
across the channels.

Analysts and researchers in the remote sensing field
typically become familiar with the individual sensor or
data they are using and manually remove or ignore bands
with low SNRs (see for example Shah,
Watanachaturaporn, Arora and Varshney 2003, and Tsali
and Philpot 2002). Removing these bands invariably
improves the quality of the data and enhances subsequent
processing, such as classification.

This paper proposes a process to identify the low SNR
spectral bands and remove automatically these bands
from the image during a pre-processing stage. The
process is purely statistical and does not rely on
knowledge of the phenomenology causing the SNR
problem. The context of the proposed pre-processing
stage is shown in Figure 1.

Figure 1 shows the original hyperspectral data moving
through a pre-processing stage which is where the
proposed process is implemented. Work on the data
compression stage is continuing and is not part of this
paper but is shown to assist with context. The compressed
data is then transmitted or archived. Users of the data
then decompress the data, manipulate it as required
before classifying the data. It is during end-user
manipulation that analysts currently (manually) select and
omit low-SNR spectral bands.

By automating the removal of these bands during the pre-
processing stage, the process becomes independent of
sensor, data set and user experience allowing it to be
employed even if the user is unfamiliar with the sensor
and its image characteristics. It also caters for changes in
sensor performance over time. The process improves the
subsequent classification accuracy of a test image and
reduces the image entropy (entropy being a probabilistic

43

CRPIT Volume 48

44

Original
Data

g

Pre-processing

Data
Compression

\

l \(Transmlssmn \(

/

End-user
Manipulation
& Classification

Data
Decompression

=)

Figure 1: Image pre-processing in context with overall process

measure of the number of bits per data point required to
encode and store the image).

The image used in this work is the 92AV3C image from
the NASA Jet Propulsion Laboratory (JPL) sensor called
the “Airborne Visible and Infrared Imaging
Spectrometer” (AVIRIS). The AVIRIS sensor is
typicallyflown on either an ER-2 jet aircraft which is a
modified U2, or a Twin Otter turboprop (see “AVIRIS —
General Overview”). Each pixel in an AVIRIS image
contains 224 spectral channels from 400 to 2500 nm. The
92AV3C image consists of 145 by 145 pixels at 224
spectral bands forming a “data cube” of over 4.5 million
data points. Four of the 224 spectral bands in the
92AV3C image contain zero values leaving a total of 220
non-zero bands (Shah, Arora, Robila and Varshney
2002).

This image was chosen for this work because it is freely
available courtesy of Purdue University (see “92AV3C”),
includes the necessary ground truth reference data needed
for classification and accuracy assessments, and has
become somewhat of an industry standard test image.

2 Method

The method used to identify the bands for removal is an
extension of previous work which investigated the effect
of compression-induced distortion on the classification of
the 92AV3C image (Faulconbridge, Pickering, Ryan and
Jia 2003). This worked showed that some bands are more
important than others in the 92AV3C image when it
comes to classification performance. The process
proposed here aims to identify the least important bands
contained in the image.

The first stage in our process is to normalise the image
using image mean and standard deviation to produce a
data cube with zero mean and unit variance. Normalising
the image prevents bands with large spectral returns from
dominating bands with smaller returns during subsequent
processing. We then perform an unsupervised clustering
of the image to group the pixels into statistically like

groups based on their spectral response. We use a simple
k-means clustering algorithm to do this (for an
explanation of k-means clustering, see Anderberg 1973).
Each pixel in the image is assigned to the closest k-means
vector using Euclidean distance as the measure of
“closeness”. Methods exist to determine the number of
clusters required for use in different applications (Hardy
and Lallemand 2002). Based on these methods and our
previous work, ten clusters are used in our process. Each
cluster can be characterised by its centroid (or mean
vector) and variance.

In this paper, we are looking for spectral locations where
all of the clusters are very close to one another. We use a
measure of statistical distance (or separability) between
clusters to determine these locations. Our thesis is that
spectral locations where there is very little statistical
separation between clusters will not be useful in
differentiating pixels of different class during user
classification. These are the locations we mark for
removal. On the other hand, locations where the clusters
are very distinct from one another will contribute to
differentiating pixels during classification and these are
the locations we retain.

Using first-order statistics only, such as cluster means, to
measure separability, has been shown to be weak in a
number of regards (Sweet 2003, and Shah, Arora, Robila
and Varshney 2002). To overcome the potential problems
associated with first order statistics, we use a well-
established measure called the Bhattacharyya distance
(Richards and Jia 1999) to quantify the separation
between clusters as follows:

sy =360 (255 gy 2 [(2i+21>/2] g

‘Zi ‘]/2‘2 J ‘1/2

where Bjj is the Bhattacharyya distance between cluster i
and cluster j, C; is the centroid of cluster i, and 2 is the
covariance matrix associated with cluster i.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

0.3

o
)
T

Probability (%)
o
=
(6]

0 I T I

Maximum spread]

1 2 3 4 5

6 7 8 9 10

Histogram Bins - corresponding to pixel reflectance

Figure 2: Histogram showing 10 clusters in a well-separated spectral band (band 50 of 220)

Scalar measurements such as the Bhattacharyya distance
in Equation 1 provide no indication of where (spectrally)
the differences between the two clusters lie. As we are
looking to appreciate the separability of each cluster
(from each other cluster) as a function of spectral band,
we calculate a Bhattacharyya distance between each
cluster for each spectral band using the following
modified expression;

2 2 2
(Ci,n _Cj,n) 1 |%int0Ojn
Bijn = 5 5 +=Inf ———— 2
4O'i,n +Gj,n 2 Zo'i,no'j,n

where Bjj, is the Bhattacharyya distance between cluster i
and cluster j at band n, C;, is the centroid of cluster i at
band n and ¢;, is the standard deviation of cluster i at
band n.

Using Equation 2 gives us n 1-dimensional Bhattacharyya
distances for each cluster pair, measuring the distance
between a given cluster and all of its neighbours as a
function of spectral band (in the case of the 92AV3C
image, n equals 220 as explained earlier).

As a next step, we look for spectral locations where the
separation between a cluster and its most-distant
neighbour is quite small. In other words, we are looking
for spectral locations where the maximum Bhattacharyya
distance or “spread” between all clusters is small.

Calculating the separation of the clusters in this way is
computationally inexpensive because each cluster is
simply represented by an n-dimensional mean vector and
an n-dimensional standard deviation vector. Calculations
are not performed on each pixel in the image.
Additionally, the calculations are performed during pre-
processing not during end-user classification which
further reduces the impact of the technique on the user
and their computational resources.

In a majority of the spectral bands, there is reasonably
clear separation between the individual clusters. Figure 2
shows a histogram using actual data from the 92AVC3

image at one of the well-separated bands. The concept of
maximum spread between these clusters is marked on
Figure 2 to illustrate the idea of separation. These
locations correspond to large Bhattacharyya distances and
it is bands like the one shown that facilitate accurate
classification processing.

However in other spectral locations, there is no
appreciable separation (see Figure 3) corresponding to
small maximum Bhattacharyya distances. These locations
therefore provide little or no assistance to classification
algorithms in differentiating and classifying pixels.

We identify the bands where the maximum
Bhattacharyya distance is less than a given threshold (B+)
and mark these bands for removal. The thresholds used
are discussed in Section 3. These locations coincide with
low-SNR bands in the image and we remove the bands
automatically during the pre-processing stage in Figure 1.
Removing the bands reduces the entropy (or size) of the
image and improves the classification process as detailed
in the Section 3.

3 Results

Our experimental process starts by measuring the entropy
and classification accuracies associated with the original
92AV3C image. These results become the baseline
against which we compare the results of our subsequent
pre-processing. We used Multispec© which is a freely
available application widely used in remote sensing
education, research and practice (see “Purdue/LARS
Multispec©”) to perform the classification. We use
maximum likelihood “leave one out” classification of the
training fields in the 92AV3C image. “Leave one out”
classification involves classification of each pixel in the
training fields based on class statistics calculated using
the remaining pixels in that class and provides an
unbiased assessment of classification accuracy compared
to the re-substitution method which produces optimistic
estimates of accuracy (Landgrebe and Biehl 2001).

45

CRPIT Volume 48

46

0.35

0.3

0.25

0.2

0.15

Probability (%)

0.1

0.05

1 2 3 4 5
Histogram Bins - corresponding to pixel reflectance

Figure 3: Histogram showing 10 clusters in a poorly-separated spectral band (band 105 of 220)

Although the ground truth data for 92AV3C shows that
the image contains 16 different classes of pixel, only 11
classes were used as 5 of the classes contain less than 220
pixels in the training set and cannot be used for
classification by Mulitspec© using maximum likelihood
classification (as the number of training samples is less
than the number of bands in the image). The original
92AV3C image has an entropy of 10.67 bits/data point
and an overall class accuracy of 70.5%.

We then start to remove bands from the 92AV3C image
where the maximum Bhattacharyya distance between
clusters is less than a given threshold and classify the
resulting image using Multispec©. Table 1 shows the
bands that our process removes from 92AV3C as a
function of Bhattacharyya distance threshold. Table 1
also notes the reduction in entropy (or size) of the
resultant image and the overall classification accuracy
following classification.

Table 1 shows that as we increase the Bhattacharyya
threshold (Tg), we effectively remove more and more of
the bands in the image. It is important to emphasise that
the removal process described herein is performed
without a priori knowledge of either the AVIRIS sensor
or 92AV3C image and is therefore performed during pre-
processing in Figure 1.

The results are summarised in Figure 4 which shows
overall classification accuracy versus the Bhattacharyya
threshold.

Figure 4 shows that as Tg is increased to 8 (and
corresponding bands are removed), the overall
classification accuracy of the image improves from
70.5% to 80.7%. Once Tg is increased beyond 8, we start
to remove bands containing useful information and the
overall classification accuracy therefore starts to fall
away.

Table 2 shows the classification accuracy for each of the
11 classes in the original image compared to the
accuracies achieved following the band removal process

when a Tz of 8 is used. In general, there have been
significant improvements in the classification accuracy of
individual classes including improvements of over 20%
for Corn-min, Grass/pasture, Soybeans-no till, and
Buildings.

Soybeans-min and Woods are exceptions in that they
suffer a minor reductions in classification accuracy but
remain classified at close to original accuracies. We hope
to investigate these exceptions in future work.

4 Conclusions and Future Work

During our investigations into the compression of the
92AV3C AVIRIS image, we have developed a technique
that automatically identifies and removes low SNR bands
from the image. The benefits of this technique are:

1. the user does not need to be familiar with the
image or the sensor in order to remove those
bands that do not contribute to classification
accuracy,

2. the removal of the bands improves the
classification performance from the image, and

3. the entropy (or size) of the image is reduced
because of the reduction in data contained
therein, resulting in faster processing times and
reduced storage requirements.

In the case of the 92AV3C image, we were able to
improve the overall classification accuracy of the image
from 70.5% to 80.7% whilst reducing the entropy of the
image from 10.67 bits/data point to 7.59 bits/data point.

We intend to test this technique further using alternative
measures of separability and clustering techniques, and
using different hyperspectral images. We also intend to
develop compression algorithms that incorporate this pre-
processing to achieve satisfactory compression ratios
whilst maintaining acceptable classification accuracies

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Bhattacharyya | Number of Bands Entropy Classification
Threshold (Tg) bands removed (bits/data point) | accuracy (%)
removed

0 0 - 10.67 70.5

1 23 1, 104-109, 150-163, 219-220 9.80 75.4

2 27 1-2, 103-109, 149-164, 219-220 | 9.64 75.9

3 31 1-3, 95-96, 103-109, 149-164, | 9.48 76.9
218-220

4 52 1-4, 36-37, 80-99, 103-109, 149- | 8.61 79.5
164, 218-220

5 57 1-5, 36-37, 78-100, 103-110, | 8.40 79.8
149-164, 218-220

6 63 1-7, 35-37, 78-110, 149-165, | 8.19 80.0
218-220

7 67 1-9, 35-38, 77-110, 149-165, | 8.01 80.3
218-220

8 76 1-17, 35-38, 77-110, 149-165, | 7.59 80.7
217-220

9 87 1-18, 34-39, 60-65, 75-110, 149- | 7.04 79.7
165, 217-220

10 102 1-19, 34-44, 60-110, 149-165, | 6.28 79.6
217-220

11 121 1-21, 34-111, 149-165, 215, 217- | 5.45 78.0
220

12 124 1-23, 34-111, 149-165, 215-220 | 5.31 77.4

13 129 1-25, 31, 33-112, 149-165, 215- | 5.07 74.8
220

14 131 1-26, 31, 33-112, 148-165, 215- | 4.97 74.6
220

15 137 1-112, 148-165, 214-220 4.72 71.1

Table 1: Progressive results as the Bhattacharyya distance is increased

82

Overall Classification Accuracy (%)

70 !
0

L
5 10 15
Bhattacharyya Threshold

Figure 4: Overall classification accuracy vs Bhattacharyya threshold

47

CRPIT Volume 48

48

Class Classification Classification Improvement
Accuracy before band Accuracy after band (%)
removal (%) removal (%)

Corn-no till 78.5 82.8 4.3
Corn-min 40.6 70.1 295
Corn 0 25 25
Grass/pasture 58.2 90.3 321
Grass/trees 95.2 99.3 4.1
Hay-windrowed 99.6 100 0.4
Soybeans-no till 45.3 70.0 24.7
Soybeans-min 96.6 91.9 -4.7
Soybeans-clean 26.8 72.2 45.4
Woods 99.8 99.5 -0.3
Buildings etc 20.5 60.6 40.1

Table 2: Classification for each class before and after pre-processing (Tz=8)

5 References

Shah, C. A., Watanachaturaporn, P., Arora, M. K. and
Varshney, P. K. (2003): Some Recent Results on
Hyperspectral Image Classification, IEEE Workshop on
Advances in Techniques for Analysis of Remotely
Sensed Data, Greenbelt, MD, USA.

Tsai, F. and Philpot, W.D. (2002): A Derivative-Aided
Hyperspectral Image Analysis System for Land-Cover
Classification, IEEE Transactions on Geoscience and
Remote Sensing, 40:2:416-425.

AVIRIS - General Overview, NASA
http://aviris.jpl.nasa.gov/. Accessed 27 Jul 2005.

Shah, C.A., Arora, M.K., Robila, S.A. and Varshney,
P.K. (2002): ICA Mixture Model based Unsupervised
Classification of Hyperspectral Imagery, 31st Applied
Imagery Pattern Recognition Workshop, Washington
DC, USA.

92AV3C: Hyperspectral Test Image Data Pack, Purdue
University
ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.
Accessed 31 July 2005.

Faulconbridge, R.1., Pickering, M.R., Ryan, M.J. and Jia,
X. (2003): A New Approach to Controlling
Compression-Induced Distortion of Hyperspectral
Images, Proceedings of The International Geoscience
and Remote Sensing Society Conference, Toulouse,
France, 111:1830-1832.

Anderberg, M.R. (1973), Cluster Analysis for
Applications, Academic Press, New York.

Hardy, A. and Lallemand, P. (2002): Determination of the
Number of Clusters for Symbolic Objects Described by
Interval Variables. In Classification, Clustering and
Data Analysis, 311-316, Springer-Verlag, Berlin.

Sweet, J.N. (2003): The spectral similarity scale and its
application to the classification of hyperspectral remote
sensing data, IEEE Workshop on Advances in

Techniques for Analysis of Remotely Sensed Data, 92-
99, Greenbelt, MD, USA.

Richards, J.A. and Jia, X. (1999): Remote Sensing Digital
Image Analysis, Springer-Verlag, Berlin.

Purdue/LARS Multispec©, Remote Sensing Freeware
Software, Purdue Research Foundation,
http://dynamo.ecn.purdue.edu/~biehl/Multispec®©/.
Accessed 27 Jul 2005.

Landgrebe, D. and Biehl, L. (2001): An Introduction to
Multispec, p133, Purdue Research Foundation, Indiana,
USA.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

On Compensating the M el-Frequency Cepstral Coefficients
for Noisy Speech Recognition

EricH. C. Choi

Interfaces, Machines and Graphic Environments (IMAGEN)
National ICT Australia
Locked Bag 9013, Alexandria, NSW 1435, Sydney, Austraia

Eri c. Choi @i cta.com au

Abstract

This paper describes a novel noise-robust automatic
speech recognition (ASR) front-end that employs a
combination of Mel-filterbank output compensation and
cumulative distribution mapping of cepstral coefficients
with truncated Gaussian distribution. Recognition
experiments on the Aurora Il connected digits database
revea that the proposed front-end achieves an average
digit recognition accuracy of 84.92% for a model set
trained from clean speech data. Compared with the ETS
standard Mel-cepstral front-end, the proposed front-end is
found to obtain a relative error rate reduction of around
61%. Moreover, the proposed front-end can provide
comparable recognition accuracy with the ETSI advanced
front-end, at less than half the computation load.

Keywords:: Speech recognition, noise robustness, front-
end processing, Mel-frequency cepstral coefficient.

1 Introduction

The proliferation of handheld computing devices has
been the driving force behind the growing needs of more
usable and natural user interfaces for ubiquitous
computing. Traditional user interfaces based on the use of
keyboard and mouse will not fulfill the needs of these
mobile users. Automatic speech recognition (ASR) plays
a critical role in providing more user-friendly user
interfaces for these handheld devices. However since a
handheld device can be used anywhere and in different
environments, the design of a speech recognition system
must take the potential noisy acoustic environments into
consideration.

Automatic speech recognition basically consists of two
stages (Rabiner and Juang 1993). The first stage, known
as front-end processing or feature extraction, is aimed at
extracting a time sequence of feature vectors which
represents the temporal evolution of the spectral
characteristics of a speech signal. The second stage is a

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Austraia
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided thistext isincluded.

pattern matching process where actual search is carried
out to decode the spoken words by matching the sequence
of feature vectors against the acoustic and language
models stored in the recogniser. In state-of-the-art ASR
systems, the features extracted in front-end processing are
typically Mel-frequency cepstral coefficients (MFCC)
and the pattern matching is mostly based on hidden
Markov modelling (HMM) which requires relevant
speech samples to train the acoustic models beforehand.

State-of-the-art ASR systems work pretty well if the
training and usage conditions are similar and reasonably
benign. However, under the influence of noise, these
systems begin to degrade and their accuracies may
become unacceptably low in severe environments (Deng
and Huang 2004). To remedy this noise robustness issue
in ASR due to the static nature of the HMM parameters
once trained, various adaptive techniques have been
proposed. A common theme of these techniques is the
utilisation of some form of compensation to account for
the effects of noise on the speech characteristics. In
general, a compensation technique can be applied in the
signal, feature or model space to reduce mismatch
between training and usage conditions (Huang et al.
2001).

Signal-space methods, e.g. (Ephraim 1992), typically try
to enhance a noisy speech signa by improving its signal-
to-noise ratio (SNR). However, increase in SNR does not
aways contribute to improvement in recognition
accuracy. Feature-space methods, e.g. (Hermansky 1990),
try to derive some kind of feature representation that is
potentially invariant to the change in environmental noise
conditions. This is often achieved by incorporating some
aspects of human auditory modelling. Alternatively, some
other feature-space methods (Sankar and Lee 1996; Choi
2004) try to understand and compensate the effects of
noise on a speech representation and correspondingly
reduce the mismatch. Model-space methods, e.g. (Yao et
al. 2001; Zhang and Furui 2004), try to adjust the
recognition model parameters to incorporate the effects of
noise on the acoustic models.

A few standards for ASR feature extraction are available
from the European Telecommunications Standards
Institute (ETSI). The standard WI007 Mel-cepstral front-
end (ETSI 2000) covers the processing of speech signal
into MFCCs. As this basic front-end is not that robust for
noisy speech recognition, another standard that is more
appropriate for noisy speech recognition has been
released. The WI008 advanced front-end (ETSI 2002)

49

CRPIT Volume 48

50

utilises a two-stage Mel-warped Wiener filtering to
improve the signal-to-noise ratio of a speech utterance,
and then applies an SNR-dependent waveform processing
to the noise-reduced signal. The resultant speech signal is
further processed into MFCCs and after which a blind
equalisation is applied to the cepstral coefficients. While
the advanced front-end WI008 represents the state-of-art
in terms of recognition accuracy for noisy speech, its
main drawback is high computation load due to the use of
double Wiener filtering. There is a need for an aternative
front-end that is as robust as the WI008 advanced front-
end but has comparable computation to that of the WI007
standard front-end.

In this work, the main focus is on feature-space
compensation for a cepstra based front-end. It is
demonstrated that a general framework of Mel-filterbank
output compensation can be used together with
cumulative distribution mapping to compensate the
effects of noises. Here we extend our previous work
(Choi 2004) by adding log Mel-filterbank output
weighting and frame skipping to the proposed front-end
processing. We also benchmark the proposed front-end
against the ETSI front-ends for evaluation purpose.

The organisation of this paper is as follows. It will
describe the details of the proposed front-end in Section
2. Following this in Section 3 will be some recognition
experiments on the Aurora Il digits database and the
corresponding discussion. Finally, a summary of the
conclusions will be presented in Section 4.

2 Front-end Processing

Typical ASR front-ends lack the ability to compensate the
effects of noise on feature extraction and if a speech
signal is noisy, they tend to extract more information
about the noise, instead of the speech itself. Therefore a
noise robust front-end needs to have knowledge about the
noise and accordingly adjust the processing to extract
only relevant information about the speech. To this end,
we have experimented with some novel noise
compensation techniques that not only account for the
effects of noise but aso emphasise speech information
that is less susceptible to noise corruption. A high level
block diagram of the proposed front-end is shown in
Figure 1.

The development of the proposed front-end processing is
based on the ETSI standard Mel-frequency cepstra
coefficient front-end (ETSI 2000). Typically, the MFCCs
(C) of aframe of speech data are given by:

M .
G = > mCos (-0 m; =loge(Y,);
j=1

M (@)

i=012,...,N;N<M

where Y] is the output magnitude of the j-th Mel-
filterbank and M is the total number of Mel-filters in the
filterbank analysis. In processing an utterance, each frame
of speech datais 25ms wide and there is a 10ms time shift

between current frame and the next frame of speech data
(i.e. 15ms overlap between two consecutive frames).

Speech Signal y(t) ;
> Pre-processing and

FFT

|

Mél-frequency Filtering

v

Mel-filterbank Output
Compensation

l m
Discrete Cosine
Transform (DCT)

v 13MFCCs (C0~C12)

Cumulative
OutputEeatuL Distribution Mapping &
Frame Skipping

Figure 1. Block diagram of the proposed front-end
(two novel processing blocks related to noise
compensation are highlighted)

In this work, two more processing blocks related to noise
compensation have been added to the ETSI standard
MFCC front-end. The Mel-filterbank output
compensation block incorporates noise spectral
subtraction, spectral flooring and log Meél-filterbank
output weighting into a single framework. Moreover,
noise robustness is further enhanced by applying
cumulative distribution mapping (CDM) with frame
skipping to the resultant cepstral coefficients. A detailed
description of this novel noise compensation framework
is presented as in the following sub-sections.

2.1 Meéel-filterbank Output Compensation

The noise robustness of the proposed front-end is
enhanced by compensating the Mel-filterbank outputs
according to the noise spectral characteristics. In this
work, an enhanced log Mel-filterbank output is given by:

m; = ajlogdl+ BMAXI(Y; =N yiYiI} (2

where a;, £, yal O (0,1) are parameters to adjust the
noise compensation, Nj is the noise magnitude estimate

of the j-th Mel-filterbank output and MAX[.] is afunction
which returns the maximum value of its arguments.

Note that) is used to control the degree of noise spectral
subtraction (Vaseghi 2000) and 4 is used to adjust the
degree of spectral flooring (Choi 2004). Here, both y and
£ are assumed to be independent of the Mel-filterbank
index j as we are more interested in the log Mel-filterbank

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

output weighting and this assumption can simplify the
formulation. Also these two parameters are applied
globally in that they have the same values for all the
speech utterances.

The motivation to incorporate log Mel-filterbank output
weighting is to emphasise those filterbank outputs which
are found to be more reliable and less affected by the
actual noise spectral characteristics. One possible way to
measure the reliability of a filterbank output is the signal-
to-noise ratio (SNR). From the viewpoint of
psychoacoustics (Stevens 1957), these weighing factors
(a;) are related to the spectral compression process that
converts sound intensity into perceived loudness by
human. So far in the literature, each of the weighting
factors has been assumed to be dependent on its
individual output SNR only. However, in our case, a
weighting factor is also dependent on the SNRs of other
filterbank outputs and it is given by:

Yi
loge@+),
J

iTm
Y loge(1+ 2
k=1

a)
k
N,

=1 3)
j=L

The constant “1” is added to the log function to prevent it
from having negative values since there may be errorsin
the noise estimates. In essence, ¢; is basically calculated
asthe ratio of the SNR of a particular filterbank output to
the sum of the SNRs of al the filterbank outputs.
Moreover, in this case, al the weighing factors are
caculated frame-by-frame dynamically based on the
noise estimates from the first 10 frames of each speech
utterance.

While equation (2) provides a general framework to
perform the noise compensation, it is anticipated that
some kind of normalisation to the dynamic ranges of the
compensated cepstral coefficients would be beneficial.
For this purpose, we choose to apply cumulative
distribution mapping to the cepstral coefficients after
noise compensation.

2.2 Cumulative Distribution Mapping

The cumulative distribution mapping (CDM) method
described here is based on the use of histogram
equalisation (HE) origindly developed for image
processing (Russ 1995). The use of the HE method for
noise compensation in front-end processing of speech can
aso be found in (Dharanipragada and Padmanabhan
2000). The main idea of this method is to map the
distribution of a time sequence of noisy speech features
into a target distribution with a pre-defined probability
density function (PDF). In our case, it is assumed that for
a given feature value v,, the mapping relationship would
be:

jvj_ fav = ° h(2dzior Fv)=Fiz) (4)

where F(V) is the corresponding cumulative distribution
function (CDF) of a given set of noisy speech features
and F,(2 is the target CDF, f(v) and h(z) are the
respective PDFs. From equation (4), we have

= Fz-l[Fu(Vo)] (5)

Therefore the required mapping from a given speech
feature v, into the corresponding target feature z, is
represented by equation (5). Typicaly h(Z) is assumed to
be a Gaussan as in the literature of histogram
equalisation.

On the other hand, there is no particular strong reason,
other than easier implementation, that one has to assume
h(2) to be Gaussian. In fact, we have observed that the left
tail region of the distribution of a normalised feature may
not be that useful as it represents mainly the range of
more noisy features. Based on this observation, we have
developed the novel use of atruncated Gaussian as target
distribution. Mathematically, the additional constraint is
given by:

7 = |F TR, if Fu(v) 2,
XIP, otherwise (6)
0<6, <1

where G, is a constant that determines the fraction of
features to be discarded, and “SKIP” denotes a function
that skips the current frame of speech data and does not
output any feature value. In the current implementation,
we perform the ski pei ng of a whole feature vector based
only on C, (zero™-order cepstra coefficient) as it
indicates the energy level of a frame of speech data
Moreover, the h(2) is assumed to be a Gaussian with zero
mean and unity variance. In the experiments, CDM is
applied only to the static feature vector which consists of
13 MFCCs (Cy ~ Cy,) and each cepstral coefficient is
normalised individualy.

3 Experimental Results

The proposed front-end has been evaluated on the Aurora
Il database (Hirsch and Pearce 2000). This database
contains noisy connected digits, which were created by
adding various types of noises at different SNRs to the
original clean utterances (i.e. utterances with high SNRs).
There are three test setsin the database and they contain 8
types of additive noises. Each of the test sets A and B
contains about 28K utterances and the test set C is about
half that size. The test set C includes channel distortion as
well. The SNRs of the test data range from -5 dB to more
than 20 dB. The training data consist of another 8440
clean utterances.

3.1 Experimental Setup

All the pre-processing and Mel filtering of a speech
signal in the proposed front-end followed the ETSI
standard MFCC front-end. The static feature vector of our
front-end consisted of 13 MFCCs (Cy ~ Cyp). This static

51

CRPIT Volume 48

52

feature vector was appended with their corresponding 1°-
order and 2™-order time derivatives to form a resultant
vector with 39 coefficients for speech recognition at the
backend, as per the Aurora evaluation framework. Hidden
Markov modelling (HMM) (Rabiner and Juang 1993)
was used for the speech recognition experiments. Each
model was represented by a continuous density HMM
with left-to-right configuration. Digit models had 16
states with 3 Gaussians per state, while the silence model
had 3 states with 6 Gaussians per state. An inter-digit
silence model with 1 state was also used, and it was tied
with the middle state of the silence model.

3.2

We followed the official Aurora evaluation framework in
that average recognition accuracy for each test set is
calculated from the recognition results for those test data
with SNRs from 0 dB to 20dB only. In al the
experiments reported here, the spectral flooring parameter
B and the spectral subtraction parameter) for the
proposed front-end were set to 0.001 and 0.4 respectively,
as determined empiricaly in some preiminary
experiments. Note that the 1%-order and the 2™-order time
derivatives of a static feature vector were generated after
the static features had been compensated and normalised.

The first set of experiments investigated the effect of the
frame skipping threshold (4,) on the recognition accuracy
of the proposed front-end. The experimental results
obtained with various values of the threshold are
summarised as shown in Table 1.

Comparison of Accuracy and Robustness

Table 1: Average digit accuracies (%) for Aurora test
sets, proposed front-end with various thresholds (8y,)
for skipping frames

Gn TestA | TestB Test C Avg.
0.00* 83.65 84.00 82.74 83.46
0.03 84.47 84.90 83.58 84.32
0.05 84.57 84.93 83.76 84.42
0.06 84.71 85.22 83.91 84.61
0.07 84.98 85.41 84.08 84.82
0.08 85.06 85.49 84.21 84.92
0.09 85.10 85.50 84.10 84.90
0.10 85.08 85.61 83.95 84.88

No frame skipping in this case

As observed from Table 1, the incorporation of frame
skipping in CDM does improve the accuracy of the
proposed front-end and the optimal threshold for
achieving the best average accuracy is found to be 0.08.
Since the frame skipping is applied to feature vectors
with smaller value of C,, this is equivalent to removing
speech segments which have lower frame energy.
Obviously, these segments are less reliable in
discriminating between different speech sounds, as they
can potentially contain more information about the noise
than the speech signal itself.

Furthermore, it may be observed from the table that the
optimal frame skipping threshold is different for different
test sets. It seems that some kind adaptive threshold
according to noise condition and characteristic would be
beneficial. Nevertheless, for the Aurora digit strings,
skipping about 10% of the feature vectors in an utterance
is seemed to be reasonable.

Table 2: Average digit accuracies (%) for Aurora test
sets, comparing proposed front-end (6,,=0.08) with
ETSI MFCC front-ends

Front-end Test Test Test Avg. %

A B C Improv*
ETSI std. 61.34 | 5575 | 66.14 | 61.08 0.0
ETS! adv. 86.20 | 8524 | 84.72 | 85.39 62.5
Proposed 85.06 | 8549 | 84.21 | 84.92 61.3

% Improvement is measured in terms of relative error rate
reduction reference to the ETSI standard front-end

The performances of the proposed front-end with
8,=0.08 were compared with those of the ETSI MFCC
front-ends and the results are shown in Table 2. From the
table, it can be observed that the proposed front-end
performs much better than the ETSI standard MFCC
front-end in terms of average recognition accuracy, while
it achieves comparable recognition accuracy with the
ETSI advanced front-end. Although for the test set B, the
proposed front-end seems to perform marginally better
than the advanced front-end (85.49% vs. 85.24%), the
difference in accuracy is found to be not statistically
significant. The fact that both the proposed front-end and
the advanced front-end have similar accuracy is
noteworthy since the proposed front-end requires only
about half the computation load of the advanced front-
end, asit will be shown later in Section 3.3.

9

- \.\ \\
<70 \
< o AN
: N\
g 50
< 40| [—e—ETS sd _ \
5 —8—ETS_adv \ \
Q 30 1— —¥— Proposed \\

20

10

0 ‘
0 -

Clean 20 15 10 5
SNR (dB)

Figure 2. Average recognition results for Aurora test
sets, proposed front-end (0,,=0.08) compared with
ETSI MFCC front-ends by SNR

To get an insight on how the proposed front-end is
performing at different noise levels, a break-down of the

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

recognition results according to individual SNRs and
averaged across all three test sets is shown in Figure 2.
Also shown in the figure are those corresponding results
for the ETSI MFCC front-ends.

As observed from Figure 2, both the proposed front-end
and the advanced front-end perform similarly at different
SNRs. On the other hand, both the proposed front-end
and the advanced front-end perform much better than the
ETSI standard MFCC front-end, particularly in the
noisier conditions. In some cases, more than double of the
recognition accuracy can be achieved by using the
proposed front-end (e.g. at 5dB SNR).

To illustrate the performances of the front-ends for
different noise types, the average recognition accuracy
over 0 to 20 dB SNRs obtained by each front-end for
each type of noisy speech data in test set A is plotted in
Figure 3. From the figure, it can be observed that the
proposed front-end achieves higher digit accuracy than
the ETS| advanced front-end for the babble-type noisy
speech (other people talking at background causing the
noises). The difference in accuracy (84.74% vs. 82.21%)
is found to be statistically significant (z=6.195, p<0.001,
two tailed). Overall, the advanced front-end is found to
achieve marginally better accuracy than the proposed
front-end for the other types of noisy speech.

BETSI_std BProposed OETSI_adv

©
o

[oe]
o
|

~
o

o1
S
‘

\

Digit Accuracy (%)
3
|

N
S
‘

\

22 % L L L L Ll a

aat R R A s]

30

Subway Babble Car

Noise Type

Exhibition

Figure 3. Recognition results for Aurora test set A,
proposed front-end (6,,=0.08) compared with ETSI
M FCC front-ends by noise type

Similarly, the recognition results by noise type for test
sets B and C are also shown in Figure 4. Note that the (C)
following the name of a noise type in the figure denotes
speech data from test set C which aso contains additional
channel distortion.

Again it can be observed from Figure 4 that the proposed
front-end performs as good as the advanced front-end for
all the noise types and the proposed front-end achieves a
better accuracy for the restaurant-type noisy speech. This
better accuracy (82.52% vs. 81.11%) is found to be
statistically significant (z=3.324, p<0.001, two tailed). It
seems that the proposed front-end is particularly effective

in handling background noises due to other people talking
at the same time.

Overdl the previous two figures demonstrate that the
proposed front-end is much more consistent and robust
than the ETS| standard MFCC front-end in recognising
different types of noisy speech, and it is as noise robust as
the ETSI advanced front-end in most of the cases.

BETSI_std BProposed BETSI_adv

Digit Accuracy (%)
al [o)] ~
o <) o

N
o
!

z@
N N
QO 9>° S

Noise Type

Figure 4: Recognition results for Aurora test sets B,
and C, proposed front-end (8,,=0.08) compared with
ETSI MFCC front-ends by noisetype

3.3 Comparison of Computation L oad

In order to estimate the computational complexity of the
proposed front-end processing, the ETS| standard, the
ETSI advanced and the proposed front-end were run on
the Aurora Il multi-condition training data, and the
duration was recorded as shown in Table 3. No other
processes were running on the processor at the time. The
multi-condition training set contains utterances with 4
different noise types (subway, babble, car and exhibition)
and 5 SNRs (5 to 20dB and “clean”). In total, there are
8440 utterances in the training set (422 utterances per
condition).

Table 3: Comparison of running times on a 2.66 GHz
processor with 2 GB RAM for front-end processing of
Aurora multi-condition training set (8440 utterances)

ETS std.
132

ETSI adv.
325

Front-end Proposed

158

Time (s)

On average, the computation load of the proposed front-
end was found to be about 20% more than that of the
ETSI standard MFCC front-end, but only about 49% that
of the ETSI advanced front-end. It took an average of
about 19ms for the proposed front-end to process an
utterance. The higher computational load of the ETSI
advanced front-end is expected, as the advanced front-end

53

CRPIT Volume 48

54

applies Wiener filtering twice to a speech signal based on
time-domain convolution.

Compared with the ETS| advanced front-end, the much
lighter computation requirement of the proposed front-
end can be a distinguished advantage for applications
running on handheld devices. Moreover, the proposed
front-end is easier to be implemented on fixed-point
processors used by most handheld devices.

4 Conclusions

A new and noise robust front-end based on the combined
application of Mel-filterbank output compensation and
cumulative distribution mapping with frame skipping has
been proposed. Experimental results on the Aurora Il
speech database have revealed the effectiveness of the
novel combination of these noise compensation methods.
The proposed front-end achieves an average digit
accuracy of 84.92% for the three test sets with clean
HMM training. Compared with the ETS| standard Mel-
cepstral front-end, the proposed front-end has been able
to provide a relative error rate reduction of more than
61%. Moreover, the proposed front-end can provide
comparable recognition accuracy with the ETSI advanced
front-end, at less than half the computation load. Possible
future extension work includes the use of dynamic noise
estimates to handle non-stationary noises, the
replacement of the simple spectral flooring with a more
advanced temporal masking agorithm and the use of
adaptive threshold for frame skipping.

5 References

Choi, E. (2004): Noise Robust Front-end for ASR using
Spectral Subtraction, Spectral Flooring and Cumulative
Distribution Mapping. Proc. 10th Australian Int. Conf.
on Speech Science and Technology, pp. 451-456.

Deng, Li. and Huang, X. (2004): Challenges in Adopting
Speech Recognition. Communications of the ACM,
Vol. 47, No.1, pp. 69-75.

Dharanipragada, S. and Padmanabhan, M. (2000): A
Nonlinear Unsupervised Adaptation Technique for
Speech Recognition. Proc. Int. Conf. on Spoken
Language Processing, VVal. 4, pp. 556-559.

Ephraim, Y. (1992): A Bayesian Estimation Approach for
Speech Enhancement Using Hidden Markov Models.
IEEE Trans. Sgnal Processing, Vol. 40, No. 4, pp.
725-735.

ETSI (2000): Speech Processing, Transmission and
Quality Aspects (STQ); Distributed Speech
Recognition; Front-end Feature Extraction Algorithm;
Compression Algorithms. ETS standard document ES
201 108.

ETSI (2002): Speech Processing, Transmission and
Quality Aspects (STQ); Distributed Speech
Recognition; Advanced Front-end Feature Extraction
Algorithm; Compression Algorithm. ETS standard
document ES 202 050.

Hermansky, H. (1990): Perceptual Linear Predictive
(PLP) Analysis of Speech. Journal Acoustical Society
of America (JASA), Vol. 87 (4), pp. 1738-1752.

Hirsch, H.G. and Pearce, D. (2000): The AURORA
Experimental Framework for the Performance
Evaluation of Speech Recognition Systems Under
Noise Conditions. Proc. ISCA ITRW ASR2000, pp.
181-188.

Huang, C., Wang, H. and Lee, C. (2001): An SNR-
Incremental Stochastic Matching Algorithm for Noisy
Speech Recognition. |IEEE Trans. Speech and Audio
Processing, Vol. 9, No. 8, pp. 866-873.

Rabiner, L.R. and Juang, B.H. (1993): Fundamentals of
Foeech Recognition. Prentice Hall, Englewood Cliffs,
New Jersey.

Russ, J.C. (1995); The Image Processing Handbook. 2™
ed., CRC Press.

Sankar, A. and Lee, CH. (1996): A Maximum
Likelihood Approach to Stochastic Matching for
Robust Speech Recognition. IEEE Trans. Speech and
Audio Processing, Vol. 4, pp. 190-202.

Stevens, S.S. (1957): On the Psychological Law.
Psychological Review, VVol. 64, pp. 153-181.

Vaseghi, SV. (2000): Advanced Digital
Processing and Noise Reduction. Wiley Press.

Yao, K., Paiwal, K.K. and Nakamura, S. (2001):
Sequential Noise Compensation by a Sequential
Kullback Proximal Algorithm. Proc. European Conf.
on Speech Communication and Technology, pp. 1139-
1142.

Sgnal

Zhang, Z. and Furui, S. (2004): Piecewise-linear
Transformation-based HMM Adaptation for Noisy
Speech. Speech Communication, Vol. 42, Issue 1, pp.
43-58.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Segregated Failures Model for Availability Evaluation of
Fault-Tolerant Systems

Sergiy A. Vilkomir!

David L. Parnas!

Veena B. Mendiratta?

Eamonn Murphy?

1Software Quality Research Laboratory (SQRL), Department of Computer Science
and Information Systems, University of Limerick, Limerick, Ireland,

Email: Sergiy.Vilkomir@ul.ie

David.Parnas@ul.ie

?Bell Laboratories, Lucent Technologies, Naperville, IL, USA,
Email: Veena@lucent.com
3Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland,
Email: Eamonn.Murphy@ul.ie

Abstract

This paper presents a method of estimating the avail-
ability of fault-tolerant computer systems with several
recovery procedures. A segregated failures model has
been proposed recently for this purpose. This pa-
per provides further analysis and extension of this
model. The segregated failures model is compared
with a Markov chain model and is extended for the
situation when the coverage factor is unknown and
failure escalation rates must be used instead. This
situation is illustrated in detail by estimating avail-
ability of a Lucent Technologies Reliable Clustered
Computing architecture. For this example, numeric
values are provided for availability indexes and the
contribution of each recovery procedure to total sys-
tem availability is analysed.

Keywords: software, fault-tolerance, availability, re-
liability, recovery, failures model.

1 Introduction

Some computer systems allow a variety of ways to re-
store service after a failure. We say such systems have
several recovery procedures. For example, recovery
procedure 1 can be a restart of a current application.
If the restart of the application does not succeed, the
computer can be restarted (recovery procedure 2). If
the computer is still down after the restart, a repair
or replacement is necessary (recovery procedure 3).
An example of an industrial computer system with
several recovery procedures is a Lucent Technolo-
gies Reliable Clustered Computing (RCC) applica-
tion (Hughes-Fenchel 1997). One of the basic recovery
procedures for RCC is a switchover to a spare com-
puter. Reliability and availability of systems with sev-
eral recovery procedures have been studied by Hoe-
flin & Mendiratta (1995), Lyu & Mendiratta (1999),
and Mendiratta (1998) for RCC products and by Ibe,
Howe & Trivedi (1989), Sun, Han & Levendel (2001),
and Sun, Han & Levendel (2003) for other systems.
Markov chains have been used as the most popular
approach to reliability and availability investigation of
systems with several recovery procedures (Ibe, Howe
& Trivedi 1989, Lyu & Mendiratta 1999, Mendiratta
1998, Sun, Han & Levendel 2003). In Vilkomir et
al. (2005), we have suggested a simpler analytical

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

method of availability evaluation as an alternative.
This method allows calculation of availability with-
out using special tools and yields an assessment of the
impact of every recovery procedure to system avail-
ability.

This paper continues the investigation started in
Vilkomir et al. (2005) and considers the further anal-
ysis and extension of a segregated failures model. The
paper is structured as follows. Section 2 presents a
brief review of the segregated failures model based on
Vilkomir et al. (2005) and then continues with new
analysis and an extension of this model. In section 3,
we compare our model with the Markov chain model.
Small examples show the difference of approaches to
availability evaluation for these two models and the
advantages of using the segregated failures model are
presented. We extend the model for the situation
when coverage factors are unknown and show how to
use rates of escalation instead. In section 4, a case
study of an RCC application is considered in order
to illustrate the extension of the segregated failures
model. Because the RCC application has been previ-
ously considered by Lyu & Mendiratta (1999) using
the Markov chain model, it provides an additional
chance to compare the two approaches.

2 Segregated failures model of a system with
several recovery procedures

Consider a system with n (n > 1) different recov-
ery procedures. For every procedure from 1 ton — 1,
the result of the recovery can be either successful or
unsuccessful. Level n recovery is always successful.
When a failure occurs, recovery procedures are ap-
plied sequentially starting from level 1. If the recov-
ery procedure at level 1 is unsuccessful, the level 2
procedure is applied, etc. However, if at any level
it is determined for a specific failure that the usage
of next recovery levels will not help, these levels can
be skipped and the procedure of the last level n can
be applied directly. Thus, there are three possibil-
ities when a failure recovery is attempted at level
i, 1 <1< n:

e The recovery is successful.
e The recovery is unsuccessful and the next level

procedure will be applied (the failure is escalated
from level i to the next level ¢ 4 1).

e The recovery is unsuccessful and the highest level
procedure will be applied (the failure is escalated
to level n).

These possibilities reflect real Lucent Technologies
Reliable Clustered Computing applications as consid-

55

CRPIT Volume 48

56

ered below in the Case Study section. The model can
be extended to consider additional hypothetic possi-
bilities such as:

e Skipping some restoration levels but not all of
them.

e Using diagnostics that allows changing the order
of recovery procedures for every specific failure
depending on the nature of the failure.

We do not address these extensions in this paper but
they are straightforward.

The ability of the recovery procedure to success-
fully restore a failure is described by a coverage
factor. More precisely, a coverage factor prec; of
the recovery level i is a conditional probability that
a failure is successfully recovered at level i given that
this failure is served at level i. In that way, a cover-
age factor pr..,; is the probability of the first of three
mentioned above possibilities. Denote as ppeqzti the
probability of second and as pj4s¢,; the probability of
the third possibility.

When a recovery procedure is successful, we as-
sume it provides full (not partial) recovery. This as-
sumption is valid for many practical situations includ-
ing the case study in section 4. Another assumption
is that recovery duration is a random variable. This
assumption is a traditional one and does not require
special explanations. We consider the same distribu-
tion of recovery time whether the procedure is suc-
cessful or not. To model it, we use restoration rate
i or mean restoration time 7; = 1/pu;. These indexes
describe here only the duration of restoration, not its
result (successful or unsuccessful). To highlight it, we
will also use a term mean processing time for ;.

The main idea of the proposed approach is clas-
sifying processor failures into several types and eval-
uating the influence of each type of failure on the
availability of the whole system. We propose the fol-
lowing definition of failure of type i: a failure f is said
to be a failure of type ¢ if and only if 7 is the lowest
level where this failure is successfully recovered.

The described division of failures into types and
the main parameters of the model are shown in Fig.
1, where X is a system failure rate.

Figure 1: Segregated failures model

In Vilkomir et al. (2005), we had proposed using
six main steps to evaluate availability according the
segregated failures model.

At step 1, different types of failures should be de-
termined corresponding to the recovery levels.

At step 2, probability piype, that a failure belongs
type k is evaluated for each type k. For type 1,

Ptype; = Prec,1 X Pnext,0 (1)
For types k, 1 < k < n,

k—1

Ptyper, = Prec,k X H Prext,i X Pnext,0 (2)
=1

For type n,

n—2 Jj—1
DPtype, = (plast,l + Z(plast,j X Hpnezt,i)"_
=2 i=1

n—1

+ H pnext,i) X Prext,0 +plast,O (3)
i=1

At step 3, the failure rate Ayype, is evaluated for
failures of each type k:

Atypek =Ax Ptypey, (4)

where piype, are deternined by (1), (2), and (3) .

At step 4, the restoration rate piype, is evaluated
for failures of each type k. For failures of type k, the
mean restoration time 7y, includes mean process-
ing time 74 at level k and also time which has been
unsuccessfully spent on recovery at the previous lev-
els:

k
Ttyper = ZTz‘ (5)
i=1

The restoration rate is:

1
Ptyper = < T (6)

Zi:l i

where p; is restoration (service) rate for the recovery
procedure at level i.

At step 5, the availability is evaluated for failures
of each type k. The expected down time Ty, during
a fixed period of time T relative to failures of type k
is:

Tuo(T) = T(1 — Ap) = T— e (7

Atypey, T Hiypey,

where Ar = lirype, [(Atype, + Btype,,) - availability fac-
tor.

When Aiype, < fypes, it is possible to use the
approximate value of tﬁe down time per year:

Tak = Atypey, Teypey, (8)

calculating Atype, in ‘failures per year’and Tiype, in
minutes.

At step 6, the down time of the whole system is
evaluated:

To=>Y Ta (9)
k=1

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

3 Analysis and further extension of the
model

3.1 Comparison with a Markov chain model

In this section we illustrate similarities and differences
between the Markov chain model and the segregated
failures model. The Markov chain model for a sys-
tem with several recovery levels is illustrated in Fig.
2. Despite a certain similarity between Fig. 1 (Seg-
regated failures model) and Fig. 2 (Markov chain
model), they have different meanings.

Leveln

Figure 2: Markov chain model.

The circles in Fig. 2 represent states of a system:
one working state and several faulted states for every
recovery level. The arrows represent transitions be-
tween system states. In contrast, the circles in Fig.
1 represent sets of failures. The arrows represent re-
lationships between these sets, i.e., how one set of
failures is divided into other sets (with corresponding
probabilities). The two models use the same input
data and lead to the same results but use different
approaches to system availability evaluation.

The Markov chain model is a powerful mathemat-
ical approach and allows modelling of many aspects
of a system’s behaviour, not just availability. Us-
ing the Markov chain model, the probabilities of sys-
tem states are evaluated. Knowing the probability
of a normal (working) state, the system availabil-
ity can be evaluated. However, calculations based
on this model can be quite complicated (solving the
Chapman-Kolmogorov equations). Special tools are
often required for this type of analysis. The segre-
gated failures model is designed for a specific purpose
- availability evaluation of systems with several re-
covery procedures. System states are not considered
and an impact of different types of failures on system
availability is considered instead. In contrast to the
Markov chain model, calculations are very simple and
do not required of using any tools.

The segregated failures model is proposed not in-
stead of but in addition to the Markov chain model.
Taking into account the computational complexity of
the Markov chain model, we believe it is useful to have
a simple engineering analytical method of availability
evaluation. To illustrate this, consider an application
of both models to the following simple toy example:

e A system has two different recovery procedures.

e The probability that a failure is recovered by the
first procedure is 2/3.

e The mean restoration time for the first recovery
procedure is 30 times less then for the second
one.

Both models for this case are represented in Fig. 3,
where

e)\ - system failure rate.
e 1 - recovery rate for the second procedure.

e P;,i=0,1,2 - probabilities of system states.

A
TONMRO
O
1/3 10u
o () ()
a) b)

Figure 3: System with two recovery procedures: a)
Segregated failures model and b) Markov chain model

Application of the segregated failures model for
this example is so simple that it requires only mental
calculations. Thus, the failure rates for failures of the
each type from (4) are

2

1
/\typel = g)\,)\f/ypez = g)\ (10)

The mean restoration times for failures of the each
type from (5) are

1 1 1 31
Ttype, — @7 Ttypes — @ + ; = @ (11)
Finally, the system down time can be found using
(9):
2 1 1. 31 11X
Tg=-A——+ A= — (12)
3 30 3 30 30u

Application of the Markov chain model is slightly
more complicated. We need to solve the following
simultaneous equations:

APy = 20uPy + pP (13)
300P, = APy (14)
1P =100 P, (15)

Py+ P +P=1 (16)

Transposing (14) for P; and (15) for P, and sub-
stituting P; and P, into (16) gives

A A
PBh+—FP+—F=1

1
30u 3u (17)

57

CRPIT Volume 48

58

and
- 30u
O 11A 4+ 30

The system down time during time period T can
be expressed as

Fo (18)

Ty=(1- Po)T (19)

Considering down time during 7" = lyear and us-
ing (18) , we finally have

11

=" 2
11X + 30u (20)

Ty

In practice usually Ayype, < fiype, and from (20)
the approximate value of the down time is

_m
30

which completely coincides with result (12) of the
segregated failures model.

The following conclusions can be drawn from the
example:

Ty (21)

e The segregated failures model provides the ap-
proximate values of the down time which are
very close to the accurate values. Thus, if A\ =
10 per year and p = 1 per hour, the accurate
value of Ty according (20) is 219.91 min per year.
The approximate value of T, according to (12)
or (21) is 220.00 min per year. The difference
is only 0.04% and is negligible, especially taking
into account an approximation of the input data.

e The complexity of calculations according to the
Markov chain model increases when the number
of recovery procedures increases. At the same
time, the complexity of calculations according to
the segregated failures model changes insignifi-
cantly. Thus, the benefit of using the segregated
failures model increases when more recovery pro-
cedure are used.

e Both the Markov chain model and the segre-
gated failures model allow us to evaluate the sys-
tem down time. However, the segregated failures
model also provides a separate evaluation of the
down times for each recovery procedure. This
in turn allows us to analyze availability in more
detail and to find ways to improve availability.

3.2 Rates of escalation instead of the cover-
age factor

In this section we propose an extension of the segre-
gated failures model for the situation when the input
data are different from what was considered previ-
ously. As was mentioned in Section 2, we assumed
that some conditional (given that level ¢ procedure is
applied) probabilities are known. Specifically, prob-
ability that a failure recovery is successful (prec,i) or
that a failure recovery is unsuccessful and that the
next recovery level is either level 4 + 1 (ppegt,i) Or
last level n (piast,;). For applications of the Markov
chain model, explicit rates of transitions between sys-
tem states are often used as input data instead of
these probabilities. This situation is also possible for
the segregated failures model. In this case, the input
data for the model are:

® [irec,i - successful failure recovery rate.

® [inexti - rate of the escalation from level i to the
next level 7 + 1.

® [iiqst,i - Tate of the escalation from level 7 to the
last level n.

These three possibilities are mutually exclusive
and exhaustive. So the failure processing rate p; at
level ¢ (i.e. failure exit rate regardless of the results
of recovery) is a sum of rates for these possibilities:

Wi = Mrec,i T MUnext,i T Mlast,i (22)

The best way to evaluate availability in this sit-
uation is to express Prec,i; Pnext,is and Pigses using
Hrecis Mnext,i and pqse; and then to apply the ba-
sic segregated failures model described in Section 2.
Each probability is determined as a ratio of the cor-
responding rate to the failure processing rate of the
whole procedure:

Mrec 7 Hrec,i
Drec,i = == : 23
reer i Hrec,i + Hnext,i + Hlast,i ()

P _ Hnext,i _ Hnext,i (24)
t,g — -
erh i lffrec,i + Nnext,i + Nllast,i

plast,i _ Nlast,i _ ,LLlast,i (25)

1253 Hrec,i + Hnext,i + Hlast,i

To apply the model from Section 2, we also need
to express mean service (processing) time 7; at level
i. For traditional systems with one recovery proce-
dure, the mean restoration time is a reciprocal value
of the failure restoration rate. For systems with sev-
eral recovery procedures, there are different rates for
each level, in particular, rates of successful failure re-
covery firec,; and failure processing rate ;. Because
we assume that the mean processing time for a spe-
cific level is the same for all failures and independent
of restoration results, this time is a reciprocal value
of the failure processing rate, not of the successful
recovery rate. In other words,

1 1
Ti = —_— =
i ,urec,i + ,UJnemt,i + Nlast,i

(26)

Using (23) - (26) allows us to evaluate availability
of a system with known explicit rates of escalation,
leading to the situation described in Section 2.

4 A Case Study: Describing recovery policy
by rates of escalation without the use of
coverage factor

4.1 A model

As an example of a model with rates of escalation
we consider a hypothetical RCC application, which
has been analyzed by Lyu & Mendiratta (1999) us-
ing a Markov chain model. We reuse notation and
inputs from Lyu & Mendiratta (1999) in our model
which allows us to compare different approaches to
availability evaluation.
The model has four recovery procedures:

e Fault Detection and Recovery. A small number
of hardware and software faults are detected by
the watchdog and recovery is fully automatic.
The internal data are not saved and the appli-
cation is restarted at the initial internal state.

e Volatile Data Recovery. Periodic checkpointing
is used and the critical volatile data are saved.
The process automatically restarts at the most
recent checkpointed internal state.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

e Persistent Data Recovery. Replication of the per-
sistent data on a backup disk is carried out. This
ensures data consistency when the application is
automatically recovered on the backup node.

e Manual Repair. For all hardware and software
faults when attempts of automatic recovery are
not successful, manual intervention is used. In
addition, a small set of faults is detected for man-
ual repair before applying procedures of the au-
tomatic recovery.

A diagrammatic representation of the model is
shown in Fig. 4.

All failures

type 2

Persistent Data Recovery, I
type 3
O

Manual Repai
w
Figure 4: Segregated failures model with rates of es-
calation.

type 4

Model inputs are the following:

e) - total failure rate.

e)\, i=1,2,3-level i to i+ 1 escalation rate.
e ;.1 =1,2, 3 - recovery rate at level 1.

e ;1 - manual repair rate.

e ¢ - fault detection coverage.

e ¢;,i=1,2-level i to i+ 1 coverage.

The values of input data are the following (Lyu &
Mendiratta 1999):
A = 10, 20, 30 failures per year
A1 = 30 exits per hour
Ao = 1800 exits per hour
A3 = 100 exits per hour
w1 = 30, 60 recoveries per hour
e = 1800, 3600 recoveries per hour
3 = 3600 recoveries per hour
= 0.25 repair per hour
c,c1,co = 0.9, 0.99

4.2 Availability evaluation
Step 1: The model has the following four failure types:

e Type 1: failures restored by the fault detection
and recovery procedure.

e Type 2: failures restored by the volatile data re-
covery procedure.

e Type 3: failures restored by the persistent data
recovery procedure.

e Type 4: failures restored by the manual repair
procedure.

Step 2: To turn from rates of escalation to cover-
age factors, let us calculate conditional probabilities
DPrec,iy Pnext,is and Dlast,i- The application of (23) -
(25) gives the following:

DPrec,i = A 52 172a3 (27)
Aici
next,i — s = 1a2 28
Preatii = 1 (28)
A3
nex = 29
Pnext,3 13 + A3 (29)
Xi(l—¢) .
asty = ————,1=1,2 30
Plast, Sy 1 ()
Now we can calculate pyype, applying (1) - (3):
Cclq

o = 31
ptyp 1 m T)\1 ()

C/\161,u2
oo = 32
Proves = (¥) (2 + 2o (32

C>\101/\202M3
ypes — 33
Prypes (1 + A1) (2 + A2) (s + A3) (33)

o)\1(1 — Cl))\161/\2(1 — 02)
Ptypes = € X (
(A1) (1 + A (p2 + A2)
A1C1A2C2 A

(i)+1—c (34)

* (11 + A1) (p2 + A2)(ps + Asz)

Step 3: use (4) and values of prec,i, Pneati; and
Dlast,i (obtained at Step 2) for the calculation of
Atypez"

Step 4: For the evaluation of the mean restoration
time Tiype, for failures of the every type ¢, we firstly
calculate the mean processing time 7; for the every
level ¢ using formulas 7; = ﬁ,z =1,2,3and 7y =
i. Then we find 7ype, using (5). The results of the

calculation are shown in Table 1.

Level/ | Mean resto- [u; = 30 11 = 60
Type | ration time | puo = 1800 | ps = 3600
1 T1 1.0 0.67

Trgwer 1.0 0.67
2 To 0.02 0.01
s .02 0.63
3 T3 0.02 0.02
Truves 1.03 0.7
4 Ty 240 240
Trupes 2AT.03 240.7

Table 1: Mean restoration time (minutes).

Step 5 - 6: The intermediate results and values
Ty and Ty of the down time according to (8) - (9)
are presented in Table 2 for p; = 30, ue = 1800 and
Table 3 for puy = 60, pue = 3600.

The comparison of these results with the results
from Lyu & Mendiratta (1999), where the same case
study has been analyzed using the Markov chain
model, shows that the values of the down time from

59

CRPIT Volume 48

60

Type of | Failure rate and c; = 0.99 c; = 0.9

failures down time A=10TA=20[A=30 [A=10]A=20] A=30
1 Atype, 4.95 9.9 14.85 4.50 9.00 13.50

Ta1 5.0 9.9 14.9 45 9.0 135

2 Atypes 2.45 4.9 7.35 2.03 4.05 6.07

q2 2.5 5.0 75 2.1 11 6.2

3 Atypes 2.36 4.72 7.08 1.77 3.55 5.32

3 24 49 7.3 1.8 3.7 5.5

7 rupes 024 | 048 | 0.72 1.7 340 | 5.11
4 57.9 1157 | 173.6 | 410.2 | 820.5 | 1230.7

[SystemdowntimeT; [68 [135 [203 [419 [837 [1256 |

Table 2: Failure rates (per year) and expected down time (minutes per year) for p; = 30, uo = 1800.

Type of | Failure rate and ¢; = 0.99 ¢; =09
failures down time A=10TA=20A=30]A=10]A=20] A =305
1 Atyper 6.60 13.20 19.80 6.00 12.00 18.00
q1 11 8.8 133 4.0 8.0 12.1
2 types 2.18 4.36 6.53 1.80 3.60 5.40
Tyo 1.5 2.9 4.4 1.2 24 3.7
3 types 1.05 2.10 3.15 0.79 1.58 2.36
Ty3 0.7 1.5 2.2 0.6 11 1.7
4 Atypes 0.17 0.34 0.52 1.41 2.82 4.24
q 41.6 83.3 1249 | 339.9 679.7 1019.6
[SystemdowntimeT, [48 | 97 [145 [346 [691 [1037 |

Table 3: Failure rates (per year) and expected down time (minutes per year) for p; = 60, u2 = 3600.

both models are practically the same. The difference
is on average less than 0.5%, which can be explained
by rounding off the decimal. Whereas results from
Lyu & Mendiratta (1999) provide only the system
down time values, Tables 2 and 3 also provide the
down time for each recovery procedure.

Two conclusions can be directly drawn from Tables
2 and 3:

e System down time is proportional to the value of
the total failure rate; that is also clear from the
formulas (4) and (8).

e Increasing the value of the fault detection cover-
age ¢; significantly decreases down time.

The value of the fault detection coverage c; deter-
mines the number of failures that are escalated from
the level 7 to the next level (not to last level directly).
Increasing ¢; from 0.9 to 0.99 decreases down time
several times (6.2 times from 419 min to 68 min for
w1 = 30, uo = 1800; 7.2 times from 346 min to 48 min
for p; = 60, u2 = 3600). However, the fault detec-
tion coverage value depends on the nature of software
failures and cannot always be changed by system de-
signers. Furthermore, systems with a bad diagnostic
subsystem (which cannot determine failures requiring
immediate manual repair) have a greater fault detec-
tion coverage value. But if some failures are eventu-
ally escalated (step by step) through all levels to the
last one, system down time will increase because of
the time lost at each level.

There are at least two ways for designers to im-
prove availability of a system:

e Change recovery strategy.
e Improve individual recovery procedures.

Changing the existing recovery strategy by creating
new recovery procedures can require significant effort
from designers. However, in some cases it is possi-
ble to improve availability just by changing the order
in which recovery procedures are applied. The segre-
gated failures model can be useful for studying such
changing.

An existing recovery procedure can be improved
by reducing mean recovery time for the procedure.
High recovery time for a specific procedure influences
system availability even when the number of failures
restored at this level is negligible. Thus, according to
Tables 2 and 3 for ¢; = 0.99, on average only 2.1%
of all failures are restored at level 4, i.e. by man-
ual repair. However, the contribution of this level
to system down time comes to 86% (85.1% for p; =
30, ug = 1800 and 86.7% for p; = 60, u2 = 3600).
The reason is that, according to Table 1, the mean
restoration time for the manual repair is two hundred
times more than the mean restoration time for other
procedures.

Mean restoration time can be reduced by using
better diagnostic equipment, speeding up a delivery
of spare parts, etc. Thus, if the mean restoration
time for the manual repair is reduced by 20% (from
240 min to 192 min) then, according to (8) and (9),
system down time will be reduced on average by 18%.

5 Conclusion

In this paper, we considered fault-tolerant computer
systems with several recovery procedures. We contin-
ued the earlier investigations described in Vilkomir
et al. (2005) by investigating the segregated fail-
ures model for availability evaluation of such systems.
This model provides a simple analytical method of
evaluating system availability and can be used as an
alternative to Markov chain models. We analysed
both approaches and showed that the segregated fail-
ures model not only allows us to calculate down time
of a whole system but also gives the possibility, using
intermediate results of calculations, of evaluating the
impact of each recovery procedure on system avail-
ability. The model can also be used for the correc-
tion of a recovery strategy and improvement of system
availability.

We extended the segregated failures model for the
situation when the values of implicit rates of failures
escalation are known instead of coverage factors. As

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

a case study, a Lucent Technologies Reliable Clus-
tered Computing architecture was considered. Dif-
ferent values of failure restoration rates were consid-
ered and their influence on down time was analysed.
The values of down time for every type of failures
as well as for the whole system were calculated. For
this specific case study, the main factor that impacted
system availability was the mean restoration time for
the manual repair. Thus, reducing this time is an
important practical task to improve availability.

The case study shows that the segregated failures
model provides a simple, convenient and practical ap-
proach for availability evaluation. In future work, we
will consider an application of this model to the anal-
ysis of different recovery strategies and selection of an
optimal strategy for any given system.

6 Acknowledgement

This work was supported by Science Founda-
tion Ireland under SFI Grants 01/P1.2/C009 and
03/CE3/1405.

References

Hoeflin, D.A. & Mendiratta, V.B. (1995), Elementary
Model for Predicting Switching System Outage
Durations, in ‘Proceedings of XV International
Switching Symposium’, Berlin, Germany, 23-28
April, 1995.

Hughes-Fenchel, G. (1997), A flexible clustered ap-
proach to high availability, in ‘Digest of Papers
of Twenty-Seventh Annual International Sym-
posium on Fault-Tolerant Computing’, FTCS-
27, Seattle, Washington, USA, 24-27 June 1997,
pp. 314-318.

Ibe O., Howe, R. & Trivedi, K. S. (1989), Approx-
imate Availability Analysis of VAXCluster Sys-
tems, IEEFE Transactions on Reliability, Vol. 38,
No. 1, April 1989, pp. 146-152.

Lyu, M.R. & Mendiratta, V.B. (1999), Software fault
tolerance in a clustered architecture: techniques
and reliability modelling, in ‘Proceedings of the
1999 IEEE Aerospace Conference’, Volume 5,
Snowmass, CO, USA, 6-13 March 1999, pp. 141-
150.

Mendiratta, V.B. (1998), Reliability analysis of clus-
tered computing systems, in ‘Proceedings of the
Ninth International Symposium on Software Re-
liability Engineering’, Paderborn, Germany, 4-7
November 1998, pp. 268-272.

Sun, H., Han, J.J. & Levendel, H. (2001), A generic
availability model for clustered computing sys-
tems, in ‘Proceedings of 2001 Pacific Rim In-
ternational Symposium on Dependable Com-
puting’, Seoul, Korea, 17-19 December 2001,
pp. 241-248.

Sun, H., Han, J.J. & Levendel, H. (2003), Availabil-
ity requirement for a fault-management server in
high-availability communication systems, IEEFE

Transactions on Reliability, Volume 52, Issue 2,
June 2003, pp. 238-244.

Vilkomir S., Parnas D., Mendiratta V. & Mur-
phy E. (2005), Availability evaluation of hard-
ware/software systems with several recovery pro-
cedures, in ‘Proceedings of the 29th IEEE An-
nual International Computer Software and Ap-
plications Conference’ (COMPSAC 2005), IEEE
Computer Society, Volume 1, Edinburgh, Scot-
land, 25-28 July 2005, pp. 473-478.

61

CRPIT Volume 48

62

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

On pedagogically sound examples in public-key cryptography

Suan Khai Chong

Graham Farr

Laura Frost Simon Hawley

Clayton School of Information Technology
Monash University
Clayton, Victoria 3800
Australia
Email: {skchoS ,gfarr, lauraf}(chse .monash.edu.au, sa_hawley@yahoo.com.au

Abstract

Pencil-and-paper exercises in public-key cryptogra-
phy are important in learning the subject. It is de-
sirable that a student doing such an exercise does
not get the right answer by a wrong method. We
therefore seek exercises that are sound in the sense
that a student who makes one of several common
errors will get a wrong answer. Such exercises are
difficult to construct by hand. This paper considers
how to do so automatically, and describes software
developed for this purpose, covering several popular
cryptosystems (RSA, Diffie-Hellman, Massey-Omura,
ElGamal, Knapsack). We also introduce diagnostic
exercises, in which all error paths lead to different
answers, so that the answer given by the student may
suggest the nature of their error. These too can be
generated automatically by our software.

Keywords: sound example, diagnostic example, ex-
ample generator, public-key cryptography, RSA,
Diffie-Hellman, Massey-Omura, ElGamal, knapsack.

1 Introduction

Public-key cryptography is now taught in a large
number of courses around the world, in response to
the rapid development of the subject and its ap-
plications since the first papers in the area (Diffie
& Hellman 1976, Rivest, Shamir & Adleman 1978).
Countless textbooks, articles and lectures take stu-
dents through the principles and manipulations in-
volved in the best-known public-key cryptosystems
(such as the RSA (Rivest, Shamir & Adleman 1978),
ElGamal (ElGamal 1985) and Knapsack (Merkle &
Hellman 1978) systems) and their relatives (such as
the Diffie-Hellman key exchange scheme (Diffie &
Hellman 1976) and the Massey-Omura realisation
(Massey & Omura 1986) of the Shamir three-pass pro-
tocol). To learn how these systems work, it is helpful
for students to have exercises on them to do by hand.
These exercises will often use small numbers, so that
students can see the how the various steps work and
fit together without being lost in difficult computa-
tion. This is, of course, quite opposite to the demands
of practical applications, where large numbers must
be used in order to make cryptanalysis difficult.

If a student is to work through a particular exer-
cise themselves, it is important that, as far as possible,
they only get the right answer if they use the right
method. Students may often have access to the right

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

answer after doing the exercise (e.g., from their lec-
turer, or the back of a textbook), and if their answer
is the same, then their method of calculation is likely
to be reinforced in their minds.

In doing public-key cryptography exercises manu-
ally, certain errors crop up repeatedly. We enumer-
ate those that are most common in our experience in
§63—4. Of course, it is not possible to give an exhaus-
tive list, and there is always the possibility that a
student may make an unpredictable arithmetic slip
or some conceptual error we have not anticipated.
Nonetheless, the most common and predictable errors
are worth taking some account of.

It is not altogether trivial to construct, by hand,
exercises with small numbers for which common er-
rors give a wrong answer. For example, suppose we
ask a student to do RSA cryptanalysis manually for
what is virtually the smallest possible example: p = 3
and ¢ = 5, so that n = 15 and p(n) = 8. We find that
every d € Z,(p) is its own multiplicative inverse. Any
exercise constructed with these numbers will have the
unfortunate property that a student who mixes up
the public and private exponents, and so encrypts in-
stead of decrypting, will still get the right answer.
The same problem occurs for (p,q) = (3,7) or (5,7),
and for other pairs (p, q) of small primes one may still
need to choose with care as self-inverse d are reason-
ably numerous.

With these concerns in mind, we have studied, for
the public-key cryptosystems mentioned above, and
for certain kinds of exercises based on these systems,
the set of exercises that are sound in the sense that
any set of errors from a given list will lead to a wrong
answer. We have constructed a program that gener-
ates sound exercises of the required sort, and enables
study of the set of possible exercises.

The program may be applied not only to help the
teacher construct better exercises, but as an on-line
tool for use by students. A student can ask for a sound
example to be generated, try to solve it by hand, enter
their answer, and be informed whether their answer
is right or not.

Applications of this sort suggest another, stronger
property of exercises. We say that an exercise is di-
agnostic if all of the methods considered — the right
one, and all the wrong ones we have allowed for —
give different answers. The idea here is that the an-
swer supplied by the student gives some evidence as
to the nature of the error(s) (if any) they may have
made (though the evidence is not absolutely conclu-
sive, since a student may make unpredictable arith-
metic slips or other errors we have not anticipated).
Diagnostic exercises may thus enable some useful on-
line feedback to the student. Our system can also
generate diagnostic exercises, where they exist, and
assist in study of the set of diagnostic exercises for a
given cryptosystem.

The exercises we consider are generally based on

63

CRPIT Volume 48

64

carrying out the operations of encryption and decryp-
tion in the various public-key cryptosystems. We do
not cover all possible tasks that might be set for these
cryptosystems, but only ones that illustrate the main
manipulations involved in using the systems and for
which certain kinds of errors (discussed in §3) keep
coming up. The exercises generated by our system
can, in any case, often be used as the basis for other
exercises of slightly different character.

The concepts and software described here can also
be applied to exercises using larger numbers that are
designed to be solved with the aid of calculators or
mathematical software. Our emphasis is on pencil-
and-paper exercises, since students may have more
feel for manipulating smaller numbers. Also, exercises
with smaller numbers have a lower chance of being
sound or diagnostic if chosen at random, so there is
a clear role for automated assistance in constructing
such exercises.

We assume familiarity with public-key cryptogra-
phy, particularly the RSA, Diffie-Hellman, Massey-
Omura, ElGamal and Knapsack systems (see, e.g.,
(Welsh 1988)).

This work is based on Summer Studentship
projects by Chong (2003-04), Frost (2002-03)
and Hawley (2002-03), and especially on Chong’s
BCompSc Honours project (Chong 2003), all super-
vised by Farr at the School of Computer Science and
Software Engineering, Monash University.

The rest of this paper is organised as follows. In
the next section we give more formal definitions of the
concepts of sound and diagnostic examples. In §3 we
describe what seem to be the main kinds of error in
the systems we consider: these occur repeatedly in ex-
ercises on all the different systems. In §4 we describe
the exercise types themselves and, for each, the exact
set of errors we use. In §5 we give an overview of the
software, describing the main functionalities present
in the system. Some conclusions and suggestions for
further work are given in §6.

2 Definitions

In the cryptography exercises we consider, the stu-
dent is given some input and must calculate the corre-
sponding output. The inputs and outputs are numeric
rather than symbolic, and usually belong to finite al-
gebraic systems such as Z,. Exercises are usually
of one of two types: encryption, where the student is
given the public key and the message and must calcu-
late the cypher (or any other information that is sent
between sender and receiver); and decryption, where
the student is given the public key and the cypher
(and anything else that is exchanged between sender
and receiver) and must work out the original message
(or any other secret information shared by sender and
receiver).

The aim of such a cryptography exercise is to get
the student to practise carrying out some algorithm
A for computing the desired output from the given
input. The algorithm Ay may be (slightly) nondeter-
ministic: there might be some flexibility in how the
student works out the answer.

We suppose that there is also a set of alternative,
incorrect algorithms Aq,..., A, that each might be
used, by some students, to try to solve the exercise.

An exercise X is sound if each of the alternative
algorithms produces an incorrect answer: A;(X) #
Ao(X) for all i =1,... k.

An exercise X is diagnostic if all of the algo-
rithms — correct or incorrect — give different an-
swers: A;(X) # A;(X) for all i,j € {0,1,...,k},
i 7.

We assume that the alternative algorithms
Ay, ..., Ay arise in the following way. Let E be the
assumed set of errors that a student might make in
executing Ag. Let f:{0,1,...,k} — 2F be a bijec-
tion with f(0) = () and k = 2%l — 1. Let algorithm
A; be the algorithm obtained by trying to execute Ay
but making precisely the errors from the set f(i) C E
while doing so. In this way, each algorithm is identi-
fied with some subset of the error set F, with Ay being
the correct algorithm in which no errors are made.

In what follows, the set of alternative algorithms
will be specified by giving the error set F.

3 Errors

For all the systems we consider, many of the same
basic errors recur, mostly involving choice of mod-
ulus, confusion between encryption and decryption,
and errors in carrying out the extended Fuclidean al-
gorithm (EEA). (Recall that the EEA applied to co-
prime a and b produces a sequence of triples (4§, z,y)
where 0 = ax + by, culminating in (1,u,v), where
v=>b"1 (mod a). A student might choose u as the
inverse instead of v; note that w = a=! (mod b). If
v < 0, the student might ignore the sign and use —v.
It is also possible that the student will take the ex-
tended Euclidean algorithm one step further, to the
triple (0, +b, Fa). This is useful as a check, but a stu-
dent might erroneously take one of +b or Fa as the
desired inverse of b, in effect treating the “0O-triple” as
if it were the important “I-triple”.) Most errors seem
to arise through one or more of the following:

e confusion over whether to do a calculation mod
n or mod ¢(n) or mod n—1 (even students doing
RSA, where n — 1 has no particular role, some-
times work mod n — 1 as they may recall seeing
p — 1 in other systems, e.g., ¢(p) = p — 1 in the
Massey-Omura system);

e using a quantity itself instead of its inverse (e.g.,
e instead of d in RSA);

e taking the wrong element from the EEA calcula-
tion;

e ignoring the sign of the element taken from the
EEA calculation.

4 Exercises and error lists

In this section, we take five systems — RSA, Diffie-
Hellman, Massey-Omura, ElGamal and Knapsack —
and, for each, we describe one or two types of exercise
and the assumed error list for each exercise type. The
exercise types are usually encryption and decryption.

Our decryption exercises usually take the position
of a cryptanalyst attempting to recover the message
given the cyphertext and public keys. Sometimes we
use decryption exercises where the student is given
part of the private key as well. There are a couple
of reasons why this may be useful at times. Firstly,
if that part of the private key is not given, the exer-
cise may be of such a different kind that the errors
students make are quite different to the ones we con-
sider here. The exercise may still be worthwhile, but
falls outside the scope of the present work. Secondly,
pencil-and-paper exercises may use sufficiently small
numbers that some particular part of the private key
may be easy to guess in practice, so that the real
task only begins once that part of the private key is
known. (This does not mean that the lecturer nec-
essarily gives that part of the private key when pre-
senting the exercise to students. We treat the relevant
part of the private key as known only when designing
the exercise.)

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

For each exercise type, we state, in turn: the infor-
mation assumed to be given to the student; what the
student must find; the method (i.e., Ag) the student
should use; and the set of possible errors we consider.
In our software (§5), the user selects which of these er-
rors belong to the assumed error set E. For the RSA
system, we give an example to illustrate the various
concepts we have introduced.

4.1 RSA

Encryption

GIVEN: modulus n = pq, public exponent e € Z;(n)7
and message m € Z,,.

FIND: cyphertext ¢ = m® mod n.

METHOD: find ¢ = m® mod n, preferably by fast
modular exponentiation.

ERRORS:

(a) use p(n) instead of n as the modulus for expo-
nentiation;

(b) use n — 1 instead of n as the modulus for expo-
nentiation.

Decryption

GIVEN: modulus n = pq, public exponent e € Z
and cyphertext c € Z,,.

FIND: m = ¢? mod n, where d = e~ mod ¢(n).
METHOD: factorise n, to find p and ¢; calculate
o(n) = (p—1)(g —1); find d = e~ mod p(n) us-
ing the EEA; and find m = ¢? mod n, preferably by
fast modular exponentiation.

ERRORS:

(a) use n — 1 instead of ¢(n) as the modulus when

finding e~ 1;

(n);

(b) use n instead of p(n) as the modulus when find-
ing e 1;
(c) use e instead of dj

(d) negate the inverse e~
(e) swap the modulus and d when computing d~!
(so, with modulus ¢(n), the student finds

©(n)~! mod d instead of d~ mod ¢(n));

(f) use ¢(n) instead of n as the modulus for expo-
nentiation;

(g) use n — 1 instead of n as the modulus for expo-
nentiation.

Example

Suppose we want an RSA decryption exercise with
assumed error set set F = {(b), (¢), (f)}. Let n =77,
sothat p="7,¢q=11. If d =17, e = 53, m = 12, and
c = 45, then we could give a student the decryption
exercise (n,e,c) = (77,53,45). The correct method
Ay would find d = 537! mod 60 = 17 and then
m = 45" mod 77 = 12. However, this same answer is
obtained if error (c¢) is made, but no others: putting
d = e = 53 yields m’ = 457 mod 77 = 12 = m.
This example is therefore unsound. A sound example
(for this error set) can be obtained by putting d = 17,
e =53, m = 6, and ¢ = 62. This example is not, how-
ever, diagnostic, since the incorrect answer m’ = 32 is
obtained either by making error (f) alone or by mak-
ing errors (c) and (f). The following example may be
shown to be diagnostic for E: n =161, p =7, ¢ = 23,
d =13, e =61, m = 17, ¢ = 80. Diagnostic examples
tend to be much harder to construct than ones that
only have to be sound.

4.2 Diffie-Hellman

GIVEN: prime p, primitive root a € Z,,, y; = a”* mod
p, Y2 = a™ mod p.

FinD: K = a®™'*2 mod p.

METHOD: either find z7 (i.e., solve the discrete log
problem y; = a®* mod p), then form K = y5* mod p,
or find xq, then form K = y7? mod p.

ERRORS:

(a) find discrete log mod p — 1 instead of mod p;
(b) do exponentiation mod p — 1 instead of mod p.

4.3 Massey-Omura

The Massey-Omura cryptosystem follows the Shamir
three-pass protocol.

Encryption

GIVEN: prime p, v € Z,, 1,y € Z,_, m.

FinD: m® mod p, m*™ mod p, m¥Y mod p.

METHOD: calculate m* mod p, (m*)Y mod p, and
then either calculate m¥Y mod p or find 7! mod p—1

and calculate (m®)® ' mod p. (The latter is more
efficient, and is what the sender actually does when
using this system. The former is sometimes done by
students in exercises, and will still give the right an-
swer if done correctly, although it cannot be done in
practice since it involves the sender using information
known only to the receiver.)

ERRORS:

(a) do exponentiation mod p — 1 instead of mod p,
at any stage;
(b) find 2! mod p instead of mod p — 1;

(c) negate the inverse z~1;

(d) swap the modulus and x when computing z~*

(so, with modulus p — 1, the student finds (p —
1)~ mod x instead of 7! mod p — 1);

(e) use z instead of x 1.

Decryption

Here we consider the somewhat artificial situation
in which the cryptanalyst is given (or has found) each
party’s private information, except the message, and
must only recover the message.
GIVEN: p,x € Z, 1,y € Z, 4,
FIND: m.
METHOD: either find 7! mod p — 1, calculate m =
(myg‘”)gf1 mod p, find y~! modp — 1 and calculate

m=(m¥)v"
ERRORS:

(a) find inverse mod p instead of mod p — 1;

m*¥ mod p.

mod p.

(b) use x instead of 2% (or y instead of y~1);

)
(c¢) negate the inverse;
) 1

(d) swap the modulus and = when computing z~
(or similarly when computing y~1);
(e) do exponentiation mod p — 1 instead of mod p.

4.4 ElGamal

Encryption

GIVEN: prime p, primitive root a € Z,, y =
a®*modp, k€ Zyp_1, m € Zp.

FIND: ¢ = (a* mod p, Km mod p) where K = y* =
a®* mod p.

MEeTHOD: find ¢ modp, K =
Km mod p; ¢ = (a*, Km) mod p.
ERRORS:

y¥ mod p, form

65

CRPIT Volume 48

66

(a) do exponentiation a* mod p — 1 instead of p;
(b) do exponentiation * mod p — 1 instead of p;

(c¢) do the final multiplication mod p — 1 instead of
mod p.

Decryption

GIVEN: p, a, y = a® mod p, a® mod p, Km mod p

where K = y* mod p = a®* mod p.

FIND: m.

METHOD: find K as in Diffie-Hellman, find K~' mod

p, find m = K~1(Km) mod p.

ERRORS:

(a) in Diffie-Hellman subproblem, to find K: find
discrete log mod p — 1 instead of mod p;

(b) in Diffie-Hellman: do exponentiation mod p — 1
instead of mod p;

find K~! mod p — 1 instead of mod p;

use K instead of K~! (i.e., as its own inverse);

)

)

) negate the inverse;

) swap the modulus and K when computing K ~!;
)

do the final multiplication mod p — 1 instead of
mod p.

4.5 Knapsack

The Knapsack cryptosystem is considered insecure,
but is still useful for teaching purposes. We only
consider decryption exercises. Encryption, while also
good for students to do, does not have much potential
for the kind of errors we consider.

Decryption

This exercise may seem somewhat artificial: the
cryptanalyst is assumed to know the private multi-
plier w. Without w, on the face of it the student just
has to solve an ordinary (nonsuperincreasing) subset
sum problem manually, which involves different kinds
of potential errors to the ones considered in this paper
(though it is a good exercise for them to do). Also,
for small manual exercises, w is often easily deduced
by guessing the smallest term or two of the private
superincreasing sequence and observing how they are
related to the corresponding terms of the public se-
quence.
GIVEN: N, w € Z}, public sequence (a;)" ;, cypher
block ¢ = Z?:l a;m;, where the m; are the message
bits.
FIND: m = (m;)}.
METHOD: find w™! mod N, find the private superin-
creasing sequence (z;)"_; by ¥; = w~ta; mod N, find
w~'cmod N, and find the m; by solving the super-
increasing subset sum problem w™te = Y"1 | a;m;.
ERRORS:

(a) find w™! mod N — 1 instead of mod N;
use w instead of w™!;

negate the inverse;

swap the modulus and w when computing w™!;

do the final multiplications (to obtain the ;)
mod N — 1 instead of mod N.

5 Software

We have written software for generating examples
with the properties discussed in §4 (Chong 2003).
This section describes the main features of the system
and related functionalities that give users control of
the system. We begin by describing the main modes

of operation which present different ways in which the
system can be used. We then briefly discuss the se-
lection of error paths in the system (discussed in §3)
and of how the information is displayed.

Source code for the software mentioned in this pa-
per includes C programs for the example generators
and Java programs for the web interface. The C files
for the example generators can be obtained from:

http://www.csse.monash.edu.au/ skcho5/

CryptoTools/generators.zip
and the Java interface files can be downloaded from:

http://www.csse.monash.edu.au/"skcho5/

CryptoTools/web.zip

The software can be run online by using any
browser that supports Java 1.1 or above! on the web-
page

http://www.csse.monash.edu.au/ " skcho5/

CryptoTools/Gui.html

5.1 Modes of operation

Three main modes of operation are provided in the
system - Interactive mode, Random mode and Calcu-
late mode. Each of those modes is now described in
turn.

5.1.1 Interactive mode

Interactive mode provides the ability to check
whether an example supplied by the user is unsound,
sound or diagnostic. First, the user is required to
provide inputs that specify an example, typically the
public key values, private key values and the message.
The system then validates these inputs. For instance,
for an RSA example, the value of the exponent e must
be in Zg,,,, and the user is warned if a self-inverse
exponent is chosen.

After validation, the system can check which cat-
egory the examples falls into. This mode is useful as
a quick check for a manually generated example, for
instance, an exercise in a textbook. However, for au-
tomatic generation of examples, random mode should
be used instead.

5.1.2 Random mode

Random mode is the mode by which the system per-
forms its main function: automatic generation of ran-
dom sound or diagnostic examples. At each iteration,
random inputs are chosen. These must be small, and
must satisfy certain validity tests (as mentioned in
§5.1.1). The inputs together give a random exam-
ple, from which the set of paths is constructed. On
comparison of the paths, the system determines if the
example is sound or diagnostic. If the example gen-
erated is not of the desired type, another iteration is
attempted, and so on, until an example of the desired
type is found.

Other supplementary modes such as no-filtering
and target mode can be used with random mode.
No-filtering mode removes the restriction on input
sizes, so the example generated might use numbers
that are too large for pen and paper exercises (though
might still be suitable for exercises using calcula-
tors or mathematical software). It also increases the
chance of a generated example being sound or diag-
nostic. Target mode makes the system randomly gen-
erate examples with user specified target values for
some of the inputs. (The actual selected input will
be within 5% of the specified target.)

1Support for Macintosh browsers is currently limited to
Netscape versions only.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

5.1.3 Probability calculation mode

Probability mode enables the user to study how com-
mon sound or diagnostic examples are, among all pos-
sible examples. For each input, the program either
takes a value from the user or loops over all possi-
ble values. The proportions of sound and diagnostic
examples are tabulated and the probabilities of these
example types are shown. This capability allows us to
study what kinds of inputs give a higher proportion
of sound or diagnostic examples and also, the mini-
mum input sizes for constructing sound or diagnostic
examples.

5.2 Path selection

Path selection allows users to choose, from a list of
possible errors (being just those error lists given in
84), which errors are to be included in the assumed
error set E. This reflects the observation that some
errors are more likely than others and that the error
set may need to be adapted to the different needs of
different groups of students.

5.3 Path display

In our implementation, a path is a sequence of num-
bers obtained by carrying out the successive steps of
an algorithm, where path ¢ is the path obtained from
algorithm A; (refer §2). A collection of paths gives us
a path table where the top row of the table will always
be the correct path and the remaining rows account
for all other paths corresponding to all the subsets of
E. An alternative path display is in the form of a path
tree where the paths displayed are grouped by simi-
lar error subsets, which enables the user to trace the
consequences of errors. The program allows the user
to choose either a path table or a path tree display.

5.4 Using the software

The programs can be run with a variety of command-
line options. Full details may be found in the man
pages or in our technical report (Chong, Farr, Frost
& Hawley 2004). We briefly describe the operation of
the program rsa, which generates examples for the
RSA system.
This program may be run in interactive mode us-
ing the command
rsa -e
It outputs a list of the available primes and prompts
the user for p and ¢. Subsequent interaction al-
lows the user to choose the other numbers used by
RSA, leading to a particular choice of public and pri-
vate keys, which the user may accept or reject (and
try for another). The user is advised which expo-
nents in Z;(n) are self-inverse, but is not prevented

from choosing such a value. Once the problem is
fully specified, the program outputs all possible er-
ror paths for the decryption problem, advising the
user of whether or not the example chosen is sound.
Interactive mode allows study of the error paths of
any example, whether sound or unsound, but does
not generate examples for the user.

Random mode is the main mode of the program.
Suppose the user wants a randomly generated sound
example with n ~ 77, using the same error set as in
our example in §4.1: E = {(b),(c),(f)}. Then the
user enters

rsa -g -t 77 -s0110010
The successive bits in the —s option are used to switch
on, or off, the corresponding errors from (a)—(g) in
§4.1. The program might then randomly choose the
sound example given in §4.1: p =7, ¢ = 11, d = 17,

e =53, m = 6, ¢ = 62. In this case the student would
be given the public key (n,e) = (77,53) and the
cyphertext ¢ = 62, and asked to find the message m.
The program’s output includes a table giving the re-
sults of all error paths under our assumed error set E:

Path | d phi_n mod m’
11 17 60 77 6
2 | 17 60 60 32
3 | 16 7 7 15
4 | 16 7 60 16
5 | 53 - 7 13
6 | 53 - 60 32

The first column here gives the path number. The
second gives the value of d used. This corresponds
to which, if any, of errors (b) and (c) are made, with
d =17, 16 or 53 according as neither, (b) only, or (¢)
only is made. Note that errors (b) and (c) will not
both be made, and that this column is not affected by
whether or not error (f) is made. The third column
gives the modulus used for finding d = e~!, which
should be ¢(n) = 60, but will be n = 77 if error (b)
is made, and is inapplicable if error (c¢) is made. The
fourth column gives the modulus used for finding m =
¢, which should be n = 77, but will be ¢(n) = 60 if
error (f) is made. The fifth column gives the message
found.

Path 1 in the above table is the correct path, and
the remaining paths correspond to different subsets
of the error set:

Path | Errors made
1 | none

()

(b)

(b), ()

(c)

(c), ()

The output concludes with a brief remark that
this example is not diagnostic and a summary of the
amount of searching done before this example was
found.

Generation of random diagnostic examples works
similarly, with option -d instead of -g. However, it
may be necessary to use larger values of n, or smaller
sets of possible errors, otherwise it may be too slow,
due to the rarity of such examples.

Probability calculation mode can be employed us-
ing

rsa -c
The user is prompted successively for values of n, e
and m. For each of these, the user may enter either a
number or the character ‘r’. If the latter, the program
will examine all possible values from some appropri-
ate range. Once all three entries have been made,
the program examines all possible examples with the
given values, or ranges of values, for n, e and m, and
determines the numbers of these examples that are
sound or diagnostic. By default, all errors in E are
permitted. If the user wants a more restricted set,
then these can be specified as above. For example, to
use the error set E = {(b), (c), (f)}, the user enters
rsa -c¢ -s0110010

Suppose the user enters n = 77 and then enters ‘r’
for both e and ¢. The program reports that it exam-
ined 159 different values of m and 40 different val-
ues of e (equivalently, of d), and that of the exam-
ples thus determined, 1950 were unsound, 4410 were
sound, and 2220 were diagnostic, giving probabilities
of about 0.31, 0.69 and 0.35 respectively.

The programs may also be run using the web in-
terface mentioned in §5.

S U W N

67

CRPIT Volume 48

68

6 Conclusions

We have investigated pedagogically sound examples
in public-key cryptography and constructed software
to generate and study such examples. Our tools aid
the task of constructing good exercises for students
by automatically generating examples that are sound
or diagnostic, where with the absence of such tools,
arbitrarily generated examples have a high chance of
being unsound.

Future extensions to the tools could include creat-
ing an error feedback learning tool for students. The
learning tool could use the ideas and software detailed
in this report to give effective feedback on errors that
students might make. The tool could also be extended
to collect answers submitted by students and so carry
out a more systematic study of errors that students
make.

Some errors are more likely than others. If some
estimates of the probabilities of the various errors
were known (perhaps from the work envisaged at the
end of the previous paragraph), it would be possi-
ble to generate exercises for which the probability of
getting the right answer by a wrong path is bounded
above by some small positive constant.

The ideas of this paper and their implementation
could also be applied to other cryptosystems and pos-
sibly other teaching problems.

References

Chong, S. K. (2003), Cryptographic teaching tools,
BCompSc Honours, Monash University, Clayton,
Australia.

Chong, S. K., Farr, G. E., Frost, L., & Haw-
ley, S. (2004), Pedagogically sound examples in
public-key cryptography, Technical Report No.
2004/155, School of Computer Science and Soft-
ware Engineering, Monash University.

Diffie, W. & Hellman, M. E. (1976), ‘New directions
in cryptography’, IEEE Trans. Inform. Theory
IT-22 (6) 644-654.

ElGamal, T. (1985), ‘A public key cryptosystem and
a signature scheme based on discrete logarithms’,
IEEE Trans. Inform. Theory IT-31 (4) 469-472.

Massey, J. L. & Omura, J. K. (1986), Method and
apparatus for maintaining the privacy of digital
messages conveyed by public transmission, U.S.
Patent number 4,567,600.

Merkle, R. C. & Hellman M. E. (1978), ‘Hiding infor-
mation and signatures in trapdoor knapsacks’,
IEEFE Trans. Inform. Theory IT-24 (5) 525-530.

Rivest, R. L., Shamir, A., & Adleman, L. M. (1978),
‘A method for obtaining digital signatures and
public-key cryptosystems’, Communications of
the ACM 21 (2) 120-126.

Welsh, D. (1988), Codes and Cryptography, Oxford.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Towards Security Labelling

Chuchang Liuf

Mehmet A. Orgun!

tInformation Networks Division
Defence Science and Technology Organisation
PO Box 1500, Edinburgh, SA 5111, Australia

Chuchang.Liu@dsto.defence.gov.au

iDepartment of Computing, Macquarie University
Sydney, NSW 2109, Australia

mehmet@Qics.mq.edu.au

Abstract

Security labels are applied for numerous reasons, including the
handling of data communicated between open systems. The
information contained within a security label can be utilised
to perform access control decisions, specify protective measure,
and aid in the determination of additional handling restrictions
required by a communications security policy. This paper con-
cerns the issues regarding security labelling in open systems.
We propose a security labelling framework for such systems;
and further, based on this framework, we develop a mechani-
cally checkable model for security labelling systems and discuss
its implementation issues. This model provides a functional
base for future design and implementation of security labelling
systems.

Keywords: open systems, security policy, security labelling,
label validation.

1 Introduction

The systems considered here are called open systems.
An open system is viewed as a set of one or more com-
puters, associated with software, peripherals, termi-
nals, human operators, physical processes, informa-
tion transfer means, etc., that forms an autonomous
whole capable of processing and/or transferring in-
formation. A real open system complies with cer-
tain requirements in its communication with other
systems. Open System Interconnection Environment
(OSIE for short) can be regarded as an abstract rep-
resentation of the set of concepts, elements, functions,
services, protocols, etc., as defined by the Basic Refer-
ence Model proposed by ISO (the International Orga-
nization for Standardization) (ISO/IEC 7498-1 1994),
and those specific standards derived from ISO, which
enable communications among open systems.

Security labelling as an element of the OSIE is one
of mechanisms that provide data security. Data secu-
rity is the set of measures taken to protect data from
unauthorized or accidental modification, destruction,
or disclosure. Security labelling plays an important
role in enforcing security policies. However, we note
that security labelling itself does not provide sufficient
data security, it needs to be complemented by other
security mechanisms.

Security labels (Internet CIPSO Working Group
1993) applied in open systems convey information

Copyright ©2006, Australian Computer Society, Inc. This pa-
per appeared at the Twenty-Ninth Australasian Computer Sci-
ence Conference (ACSC2006), Hobart, Tasmania, Australia,
January 2006. Conferences in Research and Practice in Infor-
mation Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

used by protocol entities to determine how to han-
dle data transferred between systems. Information
contained within a security label can be utilised to
control access, specify protective measures, and de-
termine additional handling restrictions required by
a communication security policy. Security labelling
should be supported by their protocols in commu-
nications among open systems. In data communi-
cation protocols, security labels provide a support
to the protocol processing for correctly handling the
data transferred between two systems (Housley 1993).
Here handling means the activities performed on data
such as collecting, processing, transferring, storing,
retrieving, disseminating, and controlling,.

Data security includes data integrity and data con-
fidentiality. The data integrity is about protection
from modification, destruction, and disclosure. In
computer systems, this is protection from writing and
deleting. With data integrity, Biba (Biba 1977) pro-
posed a model that includes security labels. The Biba
model specifies rule-based controls for writing and
deleting necessary to preserve data integrity, and it
also specifies rule-based controls for reading to pre-
vent a high integrity process from relying on data
that has less integrity than the process. The data
confidentiality is about protection from disclosure. In
computer systems, this is protection from reading.
With data confidentiality, Bell and LaPadula (Bell
& LaPadula 1976) defined a model that includes se-
curity labels. The Bell-LaPadula model specifies rule-
based controls for reading necessary to preserve data
confidentiality, and it specifies rule-based controls for
writing to ensure that data is not copied to a con-
tainer where confidentiality can not be guaranteed.
In both the Biba and the Bell-LaPadula models, the
security label is an attribute of the data. In gen-
eral, the security label associated with the data re-
mains constant. Housley (Housley 1993) considered
the problem of relabelling which often appears as the
result of some entity handling the data among open
systems.

The security label as an attribute of data should
be bound to the data. When data moves among
open systems, the integrity security service is gen-
erally used to accomplish this binding. If the com-
munications environment does not include a protocol
providing the integrity security service to bind the
security label to the data, then the communications
environment should include other mechanisms to pre-
serve this binding.

The notion of security label also appears in
security-typed languages, which have recently been
proposed to enforce security properties including con-
fidentiality and integrity by type checking (Heintze

69

CRPIT Volume 48

70

& Riecke 1998, Myers & Liskov 2000, Zdancewic et
al. 2001). In security-typed languages, types are ex-
tended with security labels to enforce information
flow control, but the sort of labels are usually ap-
plied only to denote security classes associated with
users and the resources that programs access (Zheng
& Myers 2004).

The security labels we are concerning in this pa-
per are generic. Such labels have a standard form,
such as the one of the standard security label defined
in (FIPS188 1994), which is specifically applied for
information transferring. We endeavour to provide
a formal methodology for modelling security labels
and labelling systems. The methodology would sup-
port the design and implementation of such systems.
We do not intend to discuss a practical labelling sys-
tem, but the methods and techniques for modelling
security labels and several important issues regarding
the implementation of a labelling system will be pre-
sented. Our formal description for security labelling
does not discuss the physical labelling of information
or storage media and information displayed on a com-
puter screen or other peripherals. Labelling of infor-
mation stored in internal memory and storage media
(e.g. hard disks, compact disks, magnetic tapes, etc.)
is also outside of the scope of this paper although
similar techniques can be applied. The protection of
data in transit and their associated labels along with
the binding between the data and the labels is the re-
sponsibility of the communications protocols involved
in the transfer and therefore not discussed in this pa-
per. Although in the discussion section we give a con-
sideration to threats and some technical discussions
on preventing attacks, the compliance with our ap-
proach does not provide assurance of the suitability
of an implementation for the protection of data ac-
cording to specific security policies. That assessment
must be made through the appropriate evaluation and
certification processes.

In this paper, we first discuss a framework of se-
curity labelling, in which security domains, security
objects, security classifications, caveats, and the se-
curity policy as the basic elements involved in secu-
rity labelling are formally defined. Then, based on
the framework, we propose a model for security la-
belling, which is mechanically checkable and can be
easily handled. We discuss implementation issues for
this model, including a representation of abstract syn-
tax for a security labelling system, which gives suit-
able syntactic constructs for conveying security label
information, and the basic elements (mechanisms) of
the system. We also propose a method for the label
validation based on the model. The model proposed
in this paper provides a functional base for future de-
sign and implementation of security labelling systems.
It can be easily modified according to specific security
requirements. Our approach is therefore very general,
it would be useful for guiding the developer towards a
design of a labelling system and its implementation,
and it may also help the user to understand and anal-
yse whether such a system satisfies security properties
required.

The paper is structured as follows. Section 2 dis-
cusses several preliminary notions related to security
issues of open systems. Section 3 proposes a secu-
rity labelling framework for such systems. In Section
4, we present a model for security labelling systems.
Section 5 discusses implementation issues with this
model. Section 6 contains some further considerations
for our model, and Section 7 concludes the paper.

2 Preliminary Notions

Considering those elements that are essential to the
security labelling for open systems, we first give the
following (informal) definitions:

e Security policy: A set of criteria for the provi-
sion of security services, which defines and con-
strains the activities of a data processing facility
in order to maintain security conditions for sys-
tems and data.

e Security level: A hierarchical indicator of the
degree of sensitivity to a certain threat. Any
particular security level implies a specific level of
protection according to the security policy being
enforced.

e Security domain: A collection of entities, to
which applies a single security policy executed
by a single authority where an entity can be re-
garded as a subject or an active agent (a person, a
computer or something else) in an open system.

e Security information object: A resource,
tool, or mechanism used to maintain a condi-
tion of security in a computerized environment.
The class of objects are defined in terms of at-
tributes they possess, operations they perform
or are performed on them, and their relationship
with other objects.

Security labels contain security tags or tag sets
to carry security-related information applied for the
protection of information exchanged among open
systems. According to (ITU-T Recommendation
X.841 2000), the aspects of security expressed by a
security policy, indicated in a security label, include
the level of protection to be given to data stored in
a system, who is authorized to access data, processes
or resources, security markings shown on any display
or print of the material, routing and enciphering re-
quirements for data transmitted between systems, re-
quirements for protection against unauthorized cop-
ing, and so on. When data held on an system or
when it transmitted electronically between systems,
the data are labelled to indicate the security com-
partment to which the data belongs and thus how
the data to be handled for security. Thus, we further
need to define

e A security tag is an information unit containing
a representation of certain security-related infor-
mation (e.g., a restrictive attribute bit map). A
named tag set is the field containing a TagSet-
Name and its associated set of security tags. The
TagSetName can be numeric identifier associated
with a set of security tags.

o A security label, consisting of one or more secu-
rity tag sets, is a marking bound to a security
information object; it names or designates the
security attributes of that object.

o A security labelling system is a system (or soft-
ware) used to generate security labels for infor-
mation objects that need to be labelled.

Formal definition for these notions will be given later.

3 Security Labelling Framework

Assume that there are protected documents which are
regarded as security information objects and need to

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

be appropriately labelled such that each document is
correctly disseminated utilising security mechanisms.
Usually, a labelling system is employed to perform
such tasks. The labelling system in general depends
on the security labelling framework, which is based
on security domains (subjects), security information
objects (or simply objects), security classification,
caveats, and security policies. Formally, we define
the following notations:

S ={s1,...,5m} — a finite subject set;

O ={o1,...,0,} — a finite object set;

L={l,...,l,} — the set of security levels with the
partial order “<” defined;

...,Cs} — the set of caveats (related to
security tags); and

P ={p1,...,pr} — the policy set.

In reference to security levels, caveats and the pol-
icy set, more details are given for further discussions.

The set of security levels, £, is associated with a
partial ordering relation, <. We call (£, <) a security
classification system. (L, <) is called a linear hierar-
chy classification system if, for all 1;,l; € £, I; < ;
when 7 < j. A specific linear hierarchy classification
system is shown in Figure 1(a), which is commonly
used and consists of five security levels with the rela-
tion that unclassified < restricted < confidential <
secret < top_secret.

The classification system (£, <) may be formed as
a (finite) lattice. In such a case, there exists a unique
element, say ly, such that for all 7,1y < [;, and, sym-
metrically, there exists a unique element, say [,., such
that for all 4,l; < .. Thus, Iy and [, are called the
minimum element and the maximum element of this
lattice respectively or, accordingly, the lowest secu-
rity level and the highest security level of the classi-
fication system. It is not difficult to show that the
two security classification systems in Figure 1 are lat-
tices. For both of the systems, the lowest security
level is unclassified and the highest security level is
top_secret.

We argue that it may be possible to implement
a single security labelling system which encompasses
multiple classification systems based on the lattice
classification method. In fact, when the security clas-
sification system is a lattice, any path from the lowest
security level to the highest level forms a single linear
hierarchy classification system, see Figure 1(b).

Top-Secret

Top-Secret

Secret

Highly—Sensitive

Protected

Unclassified

(b)Y

Confidential

Unclassified

@

Confidential

Restricted

Figure 1: Security Classification Systems

A caveat appearing in a label contains information
related to security tag type, tag names and scope to

which the object marked with the label would be de-
livered. A label for a particular object may have sev-
eral caveats. Due to the assumption we have made
that each object has only one label, if a caveat ap-
pears in a label of an object, we may simply say that
the object has the caveat. In contrast, if a subject
is contained within the scope of a caveat, we may
say that the subject belongs to the caveat. Further
discussion about caveats will be given later.

Policies p;,i = 1,...,k, are defined as boolean
functions, such as:

read-deny: § x O — {true, false}

It is a predicate defined over S x O. read-deny(s, o)
means that the subject s is not allowed to read the
object o (or, the request of s for reading o is denied).

Note that, although the security levels have cre-
ated the possibility of allowing some object to be kept
secret from some subjects, the particular policy may
cause an abnormal case where the subject must be
kept out from some object(s) that would be delivered
to it in the usual case. For instance, assume that john
and mary have the same security level restricted, usu-
ally both of them may be allowed to access restricted
documents. However, it is possible that there is a spe-
cific policy by which a restricted document d is not
allowed to be delivered to john but mary can receive
it.

We now propose the framework for security la-
belling as follows.

Definition 1 Given an open system G, let S be the
subject set, O the object set, (L, <) the security clas-
sification system within G, C the set of caveats (see
below for the definition of caveats), and P the policy
set. Then we call (S,0,(L,<),C,P,F) the security
labelling framework for the system G, where F is a
pair (fi, fe) such that f is a total function from SUO
to L and f, is a total function from SU O to 2€:

fl-' SUO - L.
fer SUO —2°.

Intuitively, in this definition f;(z) is the classfication
level assigned to the object or subject z, and f.(x) is
the set of caveats which z (as an object) possesses or
x (as a subject) belongs to.

4 A Model for Security Labelling Systems

Security labelling systems are used to generate secu-
rity labels for the objects that need to be labelled in
open systems. In this section, we present a model for
security labelling, then discuss implementation issues
with this model in the next section.

4.1 Label Format

For simplification of our discussion, we assume that
each object will be only assigned one label and every
label has only one tag set. In practice, a label may
contain information regarding security label identifier
and security label length etc. Without loss of gener-
ality, we define that a label has the following format:

[PolicyID, Classification, Caveats]

This format complies with X.841 structures (ITU-T
Recommendation X.841 2000). Here the field Poli-
cylID is the object identifier for the policy which is
applied, the field Classification is the security level of
the object to be labelled, and the field Caveats is a
sequence of caveats. A caveat has a format as follows:

71

CRPIT Volume 48

72

(TagType, TagName,)

where “_” is a field associated with TagName and may

be used to contain caveat qualifiers. If no qualifiers
are required, then this is deemed by the specification
to have the value “NULL”.

In X.841, there are five basic security tag types
introduced and used for labelling systems: restric-
tive bit map (REST), Enumerated (ENUM), Range
(RANG), permissive bit map (PERM), and Informa-
tive (INFO). The first four types contain the type,
one or more non-negative integers and, for the types
REST and PERM, also a bit string. The non-negative
integer conveys a security level. The type INFO, a
free form type, is intended as a wild-card tag type that
may carry any user-defined type of data appropriate
for use with the protocol handling the labels. These
tag types are used to maintain compatibility with a
labelling scheme for non-OSI communication systems
(Internet CIPSO Working Group 1993). Therefore,
in our label format, TagType is one of the five types.

The field TagName gives the name of the tag such
as, for example, SendTo, and DeptOnly. The mean-
ings of these names are given in advance at the stage
of the design for a labelling system, for instance, we
assume that SendT o stands for “this document is sent
to” and DeptOnly for “Only department members
can access this document”. Two caveats as examples
are given as follows:

Caveat; = (PERM, SendTo,{Ay,...
Caveats = (REST, DeptOnly, -)

Further investigating caveats, we note that, for ex-
ample, if caveat Caveat; is contained in a label bound
to an object, then it in fact implies that, based on this
caveat together with the consideration of the security
level (say L) given in the label, this object can be de-
livered to only those agents in {4;,...,A4,} whose
security level is equal to, or higher than, L. We
call the set consisting of all those agents the scope
of the caveat Caveat; with L, or simply, the scope
of Caveat;, denoted Scoper,(Caveat;). Similarly, we
may have Scoper,(Caveats) that consists of all those
department members whose security level is equal to,
or higher than, L.

In this view, for any given single caveat, we are
able to identify its scope based on the form (defini-
tion) of the caveat together with the consideration of
the security level given in the label. Thus, we can
recursively define the scope of a sequence of single
caveats, as follows:

Scoper,(Caveats) = Scoper,(C), if Caveats = C; and
Scoper,(Caveats) = Scoper,(C1) N Scoper,(Cs ...Ch),
if Caveats = C1Cs...Ch.

where C,C;(i = 1,...,n) are single caveats.

;An})

4.2 The Mechanically Checkable Model

Based on the security labelling framework, we give the
formal definition of a security labelling system model
as follows:

Definition 2 Let © = (S,0, (£, <),C,P, F) be a se-
curity labelling framework for a given open system G.
A security labelling system model based on the frame-
work is a pair (0,v), where v is called the labelling
function that assigns a label to each object. That is,
in this model, for any object o € O, we have the secu-
rity label v(o) = [P,L,C ...C}] bound to the object,
where P € P, L = f(0), and {C4,...,Cr} C f.(0),
We simply call (©,v) a security labelling system for
the system G.

Intuitively, a security labelling system for a given
(open) system consists of the security labelling frame-
work for that system and a labelling function consis-
tent with this framework. In other words, the la-
belling system is determined by the security labelling
framework and a labelling function consistent with
this framework.

In our model, the components of the label bound
to an object are definitely determined. Firstly, L is
explicitly defined by the function f; of the framework
0. We now consider how to obtain other two compo-
nents of the label for a given object. Labels alone are
not sufficient to ensure the security of information.
The security policy as well as the caveats that ap-
plies to the information needs to be enforced in open
systems while the labelled information is within the
scope of their control. All the organizations, individ-
uals and IT systems that process an item of infor-
mation are presumed to know the security policy and
the caveats for that information. Anyone who want
to exchange information with others needs to estab-
lish trust in one another to be satisfied that infor-
mation will be handled according to agreed security
policies. This trust is usually established through a
formal agreement. Therefore, for any information ob-
ject, which security policy is applied and what caveats
need to be marked in the label of this object should
be directly derived from such agreements.

This is a mechanically checkable model. In other
words, given the correctness of the security labelling
framework for a system, the consistency of the la-
belling function to the framework is mechanically
checkable based on this model. The consistency
checking can in fact be easily performed through the
label validation process. We will give a detailed dis-
cussion on label validation in the next section.

4.3 Remarks about the Model

If a labelling system does not provide sound labels
that satisfy a certain security property, then it cannot
be regarded as a correct system. In particular, if the
security policy within a label is not satisfied, then
the label is useless. For verifying whether or not the
security policy is satisfied within labels, there is a
need to provide a measurement method by which the
satisfaction of a policy is easy-checkable.

We now give a formal definition of the security
domain as follows:

Definition 3 Let p be a policy and o an object,
then the security domain related to p and o, denoted
SD(p,0), is defined by SD(p,0) = {s|p(s,0)}.

With the access control policy, for example, the
security domain explicitly or implicitly gives the do-
main that contains all individuals (subjects) who are
allowed to access the object o under the policy p.
While the security label bound to an object provides
the actual domain that contains those individuals who
may finally be able to touch (or have) the object ac-
cording to this label. Such an actual domain depends
on the label bound to the object. Formally, we have

Definition 4 Let a be the label bound to an ob-
ject o. The touch domain of the object o based
on «a, denoted TD(w,0), is defined by TD(a,0) =
{s|can_have(s,0) based on a}, where can_have(s, o)
means that the subject s may finally be able to touch
(or have) the object o.

Furthermore, we can give

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Definition 5 Let a = [P,L,Cy...Cy] be a label
bound to an object o within the model defined above,
we say that the label o violates the policy P if there
is a conflict between the security domain SD(P,o)
and the touch domain TD(a,0). In other words, if
there exists s € TD(a,0) but, in other hand, for-
mula —~can_have(s,0) can be derived from the fact that
SD(P,0) is the security domain related to P and o,
then the label a violates the policy P.

As an example, let us consider the policy
be_secret and a file d1, assume SD(be_secret,dl) =
{s|be_secret(s,d1)} consists of all individuals who
must be kept out from the file d1. Assume v(dl) =
[P,L,C;...Cy] where P is the policy be_secret
and TD(v(dl),dl) contains an element belonging to
SD(be_secret,dl), then there is a conflict and, there-
fore, v(d1) violates the policy P.

Definition 6 Given a model (0,v), we say that a
label v(o) = [P,L,C1 ...C%] is security-valid, if v(o)
does not violate the policy P.

Assume agents who control a label as well as the
object to which the label is bound always honestly
and correctly apply the label to handle the object,
then the following formula should be true: for a label
v(o) = [P,L, X} ... X}], we have

TD(v(0),0) = Scoper, (X1 ... Xy) (A)

Definition 7 A model (©,v) is checkable iff there
is an algorithm which can be applied to determine
whether or not any label is security-valid.

On this view, our model is mechanically check-
able. In fact, based on definitions 4 and 5 and for-
mula (A), in order to check whether a label v(0) =
[P,L,C} ...Cy] is security-valid, what we need to do
is, for all s € Scoper (X ...Xg), to check whether
s is not allowed to touch (have) the object o, ac-
cording to the security domain SD(P,0). Consider-
ing that SD(P,0) and Scoper,(X ...Xy) are all com-
putable, there is no difficulty to construct such an al-
gorithm applied to determine whether or not a label
is security-valid (see Section 5.4).

5 Implementation Issues

The implementation of a labelling system within our
model involves many technical aspects, including the
representation of syntax, the techniques for binding
security labels to objects, and the techniques applied
for reasoning, especially for label validation, etc. It
also rely on the availability of a registration service
to assign TagSetName and serve as the repository
of the semantics, special handing rules, and other de-
tails required for the use of security policy-specific
label sets. When security labels are specific to a par-
ticular application, it may also be related to a specific
application protocol. Implementing a practical secu-
rity labelling system is not in the scope of this paper.
Instead, we only discuss several technical problems,
and point to some essential elements for implement-
ing such systems.

In this section, we first introduce the syntax and
those basic mechanisms needed for implementing a
security labelling system, then discuss two specific as-
pects — binding security labels to objects, and label
validation.

5.1 Abstract Syntax

Based on our model given above, a representation of
abstract syntax for the labelling system can be ob-
tained as follows:

Label := [PID,Cls,Cavts]
PID == pi|...|p
Cls == bL|...|1
Cavts = Caveat | Caveat Cavts
Caveat := (TagType,TagName, Domain)
TagType = REST |PERM |ENUM|...
TagName := SendTo | DeptOnly | ...
Domain == _| Subset | Subset Domain
SubSet = {Subject} | Subset U {Subject}
Subject = s1|...|sm

Here “Caveat Cavts” is the resulted sequence of
putting Caveat to the front of the sequence Cavts
as the first element of the new sequence, and
the same explanation should also be made for
“Subset Domain”.

5.2 Basic Mechanisms

Intuitively, within a security labelling system, the la-
belling function accepts an object as input, and out-
puts a security label, which will be bound to this ob-
ject. In order to implement the system, one needs to
build a number of mechanisms to perform a variety of
functions. In our model, the security labelling func-
tion is performed by three major mechanisms. They
are:

e PIM (Policy Identification Mechanism): a mech-
anism to determine which policy is applied to a
specific object;

e SLFM (Security Level Finding Mechanism): a
mechanism to find the security level for any given
object to be labelled;

e CCM (Caveat Choosing Mechanism): a mecha-
nism to determine what caveats may or should be
chosen for constructing the label for an object;

All these mechanisms operate based on the security
labelling framework, which consists of three modules,
SOD (Subjects & Objects Database), PM (Policy
Management), and TR (Tags Registration).

Other two important components contained in a
labelling system are:

¢ VRE (Validation & Reasoning Engine): a reason-
ing engine used to check the consistency of secu-
rity labels produced. It directly connects with
the lebelling framework as well as the security
labelling function.

e LBM (Label Binding Mechanism): a mechanism
applied to bind a valid label to an object.

Figure 2 shows all these mechanisms and mod-
ules, which form main components of a labelling sys-
tem, and their connections. Note that in most sys-
tems PIM, SLFM, and CCM require human input and
judgement.

5.3 Binding a Security Label to an Object

For binding the security label to an information ob-
ject, we may or may not use a cryptographic service
(ITU-T Recommendation X.841 2000). The methods
are as follows:

73

CRPIT Volume 48

74

Security Labelling Framework
|\ -~ -~ -—-°----—---=----=-=-=T 1
! 1
o ! PIM SLFM CCM |
—t ! VRE
1 [
! |
:_ _ _ _ _ Security Labelling Function !
v(o)bound to o V(o)
_[vo - ©
(valid label)

Figure 2: Main components of a labelling system

o A method without the use of a cryptographic ser-
vice. In this method, a copy of the data (ob-
ject 0) and a copy of the security label (v(0)) are
stored together, as a data record, inside the se-
cure boundary of the system. In the case, we as-
sume that the system is capable of protecting the
integrity of the security label and the integrity,
as well as possibly the secrecy, of the data. With
this binding method, no cryptographic function
is needed for the binding.

o A method with the use of a cryptographic service.
Using a digital signature algorithm (SigAlg) and
the private key (Kj) of a public key algorithm, a
digital signature SigAlg(Ks, H(0),v(0)) is gener-
ated, where H is a public function such that H (o)
does not reveal information about o. In the case,
the digital signature SigAlg(Ks, H(0),v(0)) is
stored together with o and v(o) in a data
record; the generated digital signature binds
v(0) to o. With this binding method, v(0) and
SigAlg(K, H(0),v(0)) need not be stored inside
the secure boundary of the system. If a crypto-
graphic service is invoked with an incorrect value
of v(0), o or SigAlg(K,, H(0),v(0)), the incon-
sistency is detected. This is accomplished using
the public key of the public key algorithm as a
verification key to verify the signature.

5.4 Label Validation

Security labels are generated by the labelling system
based on the syntax above and intended as an exten-
sion to end system labels. It is necessary to ensure
the integrity of the labels and their binding to the cor-
responding objects. That is, it is important to check
whether the label marked on an object is valid before
the label is to be used for security purpose.

Given amodel M = ((S, O, (£, <),C,P, F),v), let
v(o) = [P,L,X; ... X,]. Within the label validation
procedure, the major task is to check whether the
label v (o) violates the policy P. We employ the fol-
lowing algorithm to check the validity of v(0):

1. If there exists s € Scoper,(Xi ... Xy) such that
f1(s) < L, then the checking process terminates
and outputs v(o) is invalid; otherwise,

2. If there exists s € Scoper(X;...Xy) and
—can_have(s,0) is derived based on SD(P,o0),

then the checking process terminates and out-
puts v(0) is invalid; otherwise,

3. If all elements in Scoper(X; ...X) have been
checked and the checking process does not ter-
minate at step 1 or step 2, then the process ter-
minates and outputs v(o0) is valid.

The policy identified to be used for making a label
must not be violated by the label itself. In the ver-
ification procedure, it is important to check whether
the policy is satisfied. In Step 1 of our algorithm,
a very simple condition is used to assess the validity
status of a label. Note that L = fi(0) in our model,
the condition can be stated as follows:

o The security level of those subjects, to which an
object labelled is intended to be delivered, can
not be less than the security level of the object.

Similarly to this condition, the formula f;(o) < fi(s)
has been used for mandatory access control systems
(MAC), see (Spalka, Cremers & Lehmler 2000).

Step 2 is to check whether there is any conflict
between the security domain SD(P,0) and the touch
domain T'D(v(0),0). The intuitive meaning of the
condition employed in this step is:

e If 0 is possibly touched by s but = can_have(s, o)
can be derived from the fact that SD(P, o) is the
security domain related to P and o, then there is
a conflict, which leads to that v(0) is invalid.

For example, if P is the policy represented as follows:
(Ve : H) be_secret(e,0),

which means that o must be kept secret from all sub-
jects in H. Therefore, we must have

(Ve : H) (e ¢ Scope(Xi ... Xy)).

6 Discussion and Security Considerations

With security labelling, some problems have arisen
through practical applications. We discuss some of
these sorts of problems below, which need to be care-
fully considered in the design and implementation of
a labelling system.

6.1 Threats

Security labels are implemented within both govern-
ment agencies and commercial entities, to protect na-
tional and commercial information, respectively. This
section is not intended to be a threat analysis, rather
it highlights the distinction between threats at secu-
rity levels and between classification systems. It is im-
portant to note that different threats affect different
types of information. In order to protect information
adequately Schneier (Schneier 2000) notes the impor-
tance of understanding the real threats to the system,
and ensuring that the countermeasures implemented
protect against and solve the right threats.
Government agencies recognise foreign intelligence
services, terrorist organisations, and disgruntled indi-
viduals as potential sources of threats. This is not an
exhaustive list, merely an example of possible threats.
For example adversary nation states may have avail-
able to them a large resource pool, in both a financial
and capability sense. In conjunction with the capa-
bilities to perform an attack, there would also be an
interest in the information providing a motivation. A
possible attack from such a threat would be that of

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

communication interception with a cryptanalysis at-
tack. As an attack of this nature constitutes a high
threat the strength of countermeasure and the mech-
anisms involved would be required to be strong.

In contrast commercial information should pri-
marily be protected from disgruntled groups or indi-
viduals, along with interest in proprietary informa-
tion from both commercial competitors and crimi-
nal groups. However the threat from foreign intel-
ligence services has not been excluded, merely de-
emphasised. The threats that would be of princi-
pal concern would not generally come in the form
of cryptanalysis, therefore allowing less stringent en-
cryption methods to be employed. In this circum-
stance attacks from within the organisation or agency,
would be considered to pose a significant threat. An
example of this may include internal users attempt-
ing to gain unauthorised access to data. The findings
of the 2002 Australian Computer Crime and Secu-
rity Survey (AusCert 2002) show that 58 percent of
respondents identified disgruntled employees or con-
tractors as the most likely source of attacks, preceded
only by independent hackers (73%). This may even
extend to an employee being bribed or selling infor-
mation to an external source. Therefore the internal
security policy would provide a degree of protection
against such a threat.

For all organisations that have public connections
to the Internet there is a significant threat from hack-
ers attacking the system from the external points, web
connections and organisational web pages. Hackers
operating with independent motivations are difficult
to predict, however a proactive approach is always the
best, followed by quick responses to alleviate vulner-
abilities.

6.2 Prioritised Access Control Models

One problem with previous approaches to access con-
trol policy approaches, is that they are based on an
idealisation of the true problem. They provide a first
approximation: may or may not a subject access a
given object? This binary, logical function is the es-
sential starting point, but is generally insufficient to
guide the hard decisions that are required in imple-
mentation. To provide such guidance - or to pro-
vide evaluative criteria by which adequacy of security
architectures may be assessed and compared - a fine-
grain statement of the full access control requirements
is required.

In the positive case — where access to the object
is granted — there has been a work in refining this
policy statement. Most of this refinement has been in
the area of the Quality of Service (QoS). As such this
does not directly refer to the security of the access,
although QoS may include availability and integrity
aspects.

It is however in the negative case — where access
is denied — that there is the most need to provide
additional elaboration to a security policy formula-
tion. Although it is nice to imagine that whenever
a security policy asks for access to be denied, that
this can be easily enforced in a uniformly strong and
secure way, in reality this can rarely be achieved. In-
stead, efficient use of a finite security budget means
that prioritisation needs to be applied in the use of
access control enforcement mechanisms. It can be
argued that a large part of the value of a good secu-
rity architecture is in the way in which it efficiently
combines security and other elements to implement
security policy with appropriate protections against
the threats.

How is this prioritisation to be achieved, and how
is it to be specified? It is clearly infeasible for even
a moderate system to specify the required type and
level of enforcement required between each (subject,
object) pair for which access is denied. Naturally the
concept of grouping subjects (and possibly objects)
as generally used in access control policies, is a pow-
erful mechanism that can be adopted here, but note
that the groupings that are useful for positive state-
ments granting access, are unlikely to be reusable for
statements about access enforcement. For example,
a corporation’s ACDF may be based on its business
units (production, finance, sales etc.) while the en-
forcement policy may group subjects by location type
(head office, field agent, overseas station, etc.)

To determine prioritisations, in theory all the rel-
evant risks and costs associated with managing secu-
rity could be captured and combined to provide an
integrated cost model, effectively reducing the prob-
lem to a standard risk/economic optimisation prob-
lem. Note that with security this is considerably more
complex than with more traditional risk management
areas, since the threats are responsive and predic-
tive: it enters the area of Games Theory (McCabe,
Rassenti & Smith 1996). In any case, such a fine
level of detail is again unmanageable and unachiev-
able. Instead appropriate abstractions must be used.

In our approach we make some simplifying as-
sumptions regarding how to derive the appropriate
type and level of protection. We focus on two key
aspects: the value to us of keeping the subject from
accessing the object; and the ability of the subject
to carry out an attack. The policy then states the
strength to which we desire to prevent unauthorised
accesses across the range of different attacks.

Consider a function

val : Sx O =YV

where V represents the value to us of preventing the
subject to access that object. For this paper, we con-
sider Value as {Low, Med, High}, but may be repre-
sented by any scale of values that might be in use or
understood by a given organisation (e.g. dollar value
of intellectual property revealed, or the cost to insure
against loss (Reiter& Stubblebine 1997)).

The second aspect we wish to formalise is the feasi-
bility of a hostile subject carrying out different types
of attacks. Such differences reflect many factors, in-
cluding cost, time, technical ability, opportunity, risk
aversion level, and strength of desire to gain access.
We consider different types of attack to come from
a space A , and the feasibilities of attack from a set
F = {Easy, Achievable, Hard}. Again, more quan-
titative measures, such as probabilistic likelihood of
successful attack per year, could be used for attack
feasibilities. For each pair (s,a) we define the feasi-
bility of subject S carrying out attack a:

feas: SxA—F

We can now begin our model of a refined security
policy. Firstly we need to decide what value objects
must be protected against what feasibility of attacks
- this defines the policy. Define a predicate Pol C
V x F, such that Pol(v, f) holds whenever we require
that all attacks of feasibility f against objects of value
v are prevented. So, given an implementation security
architecture that defends object o from attack a by
subject s whenever Arch(s,o0,a) holds, we say that
this architecture satisfies the policy if:

Vs,0,a : Pol(val(s,0), feas(s,a)) = Arch(s,o0,a)

75

CRPIT Volume 48

76

6.2.1 Example Policy

We now consider a simplified and mythical version of
the security policy implemented for a Government.
For our simple example, we can describe two hostile
subjects: MsSpy and MrFraud, representing the sub-
ject "user” communities of potentially hostile nation-
states, and white-collar crime, respectively.

We also consider two different types of attack: it
CryptAnalysis, and BribeInsider. The first relies on
collecting communications, and decrypting it if re-
quired. The second attack involves gaining the confi-
dence of a legitimate subject for accessing the desired
object, who provides a copy. We now look at esti-
mated feasibilities of attacks:

feas(MsSpy, CryptAnalysis) = Achievable
feas(MsSpy, BribeInsider) = Achievable
feas(MrFraud, CryptAnalysis) = Hard
feas(MrFraud, BribeInsider) = Easy

Let us also consider the value of various docu-
ments. Suppose we have two documents (objects):
FighterContract, and FighterSpecs. If MrFraud ob-
tained a copy of the draft contract, then severe losses
to the contractor, Defence, and the taxpayer will re-
sult. If MsSpy obtains the fighter technical specifica-
tion, national security may be endangered. For this
paper, we consider both these outcomes equally detri-
mental. Values of keeping documents from various
subjects can thus be represented as follows:

val(M sSpy, Fighter Specs) = High
val(M sSpy, FighterContract) = Low
val(MrFraud, FighterContract) = High

Now the security policy can be represented by
a relation in which Pol(High, Achievable) holds (so
achievable and easy attacks against High value ob-
jects must be prevented). We can then deduce that
for an architecture to meet this policy it must prevent
MsSpy’s CryptAnalysis or Bribelnsider attacks
against FighterSpecs, and MrFraud’s Bribelnsider
attack against FigherContract. Note that unless the
policy is more restrictive than yet stated, it does
not need to protect against CryptAnalysis attacks
against FighterContract, since MrFraud does not
find such attack’s very feasible, while there is low
value to keep that document from M sSpy.

7 Conclusion

A mechanically checkable model has been proposed
for security labelling in an open system. The model
supports the design and implementation of a security
labelling system. A basis for label validation was also
considered, however we did not provide details, which
would be included in future work.

Future work may include an extended discussion
on the dynamic management of security policies and
its implementation. The aim would be to discuss the
combination of security labels and associated security
mechanisms to achieve the required security goals.
Further analysis of threats and attacks that directly
affect security labels and labelling systems may also
be considered.

Acknowledgements

Many thanks to Dr. Maris Ozols for helpful discus-
sions, valuable comments and suggestions. The work
presented in this article has been supported in part
by an Australian Research Council (ARC) Discovery
Project grant.

References

FIPS PUB 188. (1994), Standard Security La-
bel for Information Transfer. Available from
www.itl.nist.gov/fipspubs/fip188.htm.

ISO/IEC 7498-1 (1994), Information Technology —
Open Systems Interconnection — Basic Reference
Model: The Basic Model. ISO (the International
Organization for Standardization) and IEC (the
International Electrotechnical Commission).

AusCert, Deloitte Touche Tohmatsu. (2002), Aus-
tralian Computer Crime and Security Survey.
http://www.auscert.org.au/Information/
Auscert_info/2002cs.pdf.

Bell, D. E. & LaPadula, L. J. (1976), Secure Com-
puter System: Unified exposition and Multics in-
terpretation. MTR-2997, MITRE, Bedford, MA.

Biba, K. J. (1977), Integrity Consideration for Se-
cure Computer Systems. MTR-3153, The Mitre
Corporation.

Internet CIPSO Working Group. (1993), Common
IP Security Option Version 2.3. Internet Draft.

Heintze, N. & Riecke, J. G. (1998), The slam calcu-
lus: Programming with secrecy and integrity. In
Proceedings of 25th ACM Symposium on Princi-
ples of Programming Languages (POPL), pages
365-377, San Diego, California.

Housley, R. (1993), Security Labeling Framework for
the Intenet. Internet RFC 1457, May 1993.

ITU-T Recommendation X.841 (2000), Information
technology - Security Techniques - Security in-
formation objects for access control.

McCabe, K., Rassenti, S. & Smith, V. (1996), Game
theory and reciprocity in some extensive form
experimental games. Proceeding of The National
Academy of Science, 93:13421-13428.

Myers, A. C. & Liskov, B. (2000), Protecting privacy
using the decentralized label model. ACM Trans-

actions on Software Engineering and Methodol-
ogy, 9(4):410-442.

Reiter, M.K. & Stubblebine, S.G.(1997), Toward
acceptable metrics of authentication. In Pro-
ceedings of the IEEE Symposium on Security and
Privacy.

Schneier, B.(2000), Secrets and Lies — Digital Secu-
rity in a Networked World. John Wiley & Sons.

Spalka, A., Cremers, A.B. & Lehmler, H. (2000),
Protecting confidentiality against trojan horse
programs in discretionary access control sys-
tem. In Proceedings of the 5th Australasian
Conference on Information Security and Privacy
(ACISP 2000), volume 1841 of Lecture Notes in
Computer Science, pages 1-17. Springer.

Zdancewic, S. Zheng, L., Nystrom, N. & Myers, A.C.
(2001), Untrusted hosts and confidentiality:
Secure program partitioning. In Proceedings of
the 18th ACM Symposium on Operating Systems
Principles (SOSP), pages 1-14, Banff, Canada.

Zheng, L. & Myers, A.C. (2004), Dynamic security
labels and noninterference. In Proceedings of the
2nd International Workshop on Formal Aspects
in Security and Trust (FAST), Toulouse, France.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Improvements of TLAESA Nearest Neighbour Search Algorithm
and Extension to Approximation Search

Ken Tokoro

Kazuaki Yamaguchi

Sumio Masuda

Kobe University,
1-1, Rokkodai, Nada-ku, Kobe 657-8501 Japan,
Email: ky@kobe-u.ac. jp

Abstract

Nearest neighbour (NN) searches and k nearest neigh-
bour (k-NN) searches are widely used in pattern
recognition and image retrieval. An NN (k-NN)
search finds the closest object (closest k objects) to a
query object. Although the definition of the distance
between objects depends on applications, its compu-
tation is generally complicated and time-consuming.
It is therefore important to reduce the number of dis-
tance computations. TLAESA (Tree Linear Approx-
imating and Eliminating Search Algorithm) is one of
the fastest algorithms for NN searches. This method
reduces distance computations by using a branch and
bound algorithm. In this paper we improve both the
data structure and the search algorithm of TLAESA.
The proposed method greatly reduces the number of
distance computations. Moreover, we extend the im-
proved method to an approximation search algorithm
which ensures the quality of solutions. Experimental
results show that the proposed method is efficient and
finds an approximate solution with a very low error
rate.

Keywords: Nearest Neighbour Search, k Nearest
Neighbour Search, TLAESA, Approximation Search,
Distance Computaion.

1 Introduction

NN and k-NN searches are techniques which find the
closest object (closest k objects) to a query object
from a database. These are widely used in pattern
recognition and image retrieval. We can see exam-
ples of their applications to handwritten character
recognition in (Rico-Juan & Micé 2003) and (Micé
& Oncina 1998), and so on. In this paper we consider
NN (k-NN) algorithms that can work in any metric
space. For any x,y, z in a metric space, the distance
function d(-, -) satisfies the following properties:

d(CC,y) :O@I:y,
d(z,y) = d(y,z),
d(z,z) < d(z,y) +d(y, 2).

Although the definition of the distance depends on
applications, its calculation is generally complicated
and time-consuming. We particularly call the calcu-
lation of d(-,-) a distance computation.

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at T'wenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

For the NN and k-NN searches in metric spaces,
some methods that can manage a large set of ob-
jects efficiently have been introduced(Hjaltason &
Samet 2003). They are categorized into two groups.
The methods in the first group manage objects with
a tree structure such as vp-tree(Yianilos 1993), M-
tree(Ciaccia, Patella & Zezula 1997), sa-tree (Navarro
2002) and so forth. The methods in the second group
manage objects with a distance matrix, which stores
the distances between objects. The difference be-
tween two groups is caused by their approaches to
fast searching. The former aims at reducing the com-
putational tasks in the search process by managing
objects effectively. The latter works toward reducing
the number of distance computations because gen-
erally their costs are higher than the costs of other
calculations. In this paper we consider the latter ap-
proach.

AESA (Approximating and Eliminating Search
Algorithm)(Vidal 1986) is one of the fastest algo-
rithms for NN searches in the distance matrix group.
The number of distance computations is bounded by
a constant, but the space complexity is quadratic.
LAESA (Linear AESA)(Micé, Oncina & Vidal 1994)
was introduced in order to reduce this large space
complexity. Its space complexity is linear and its
search performance is almost the same as that of
AESA. Although LAESA is more practical than
AESA, it is impractical for a large database be-
cause calculations other than distance computations
increase. TLAESA (Tree LAESA)(Micé, Oncina &
Carrasco 1996) is an improvement of LAESA and re-
duces the time complexity to sublinear. It uses two
kinds of data structures: a distance matrix and a bi-
nary tree, called a search tree.

In this paper, we propose some improvements
of the search algorithm and the data structures of
TLAESA in order to reduce the number of distance
computations. The search algorithm follows the best
first algorithm. The search tree is transformed to a
multiway tree from a binary tree. We also improve
the selection method of the root object in the search
tree. These improvements are simple but very effec-
tive. We then introduce the way to perform a k-NN
search in the improved TLAESA. Moreover, we pro-
pose an extension to an approximation search algo-
rithm that can ensure the quality of solutions.

This paper is organized as follows. In section 2,
we describe the details of the search algorithm and
the data structures of TLAESA. In section 3, we pro-
pose some improvements of TLAESA. In section 4,
we present an extension to an approximation search
algorithm. In section 5, we show some experimental
results. Finally, in section 6, we conclude this paper.

77

CRPIT Volume 48

78

Pi - Dy

Distance matrix

Search tree

Figure 1: An example of the data structures in
TLAESA.
2 TLAESA

TLAESA uses two kinds of data structures: the dis-
tance matrix and the search tree. The distance matrix
stores the distances from each object to some selected
objects. The search tree manages hierarchically all
objects. During the execution of the search algorithm,
the search tree is traversed and the distance matrix
is used to avoid exploring some branches.

2.1 Data Structures

We explain the data structures in TLAESA. Let P
be the set of all objects and B be a subset consisting
of selected objects called base prototypes. The dis-
tance matrix M is a two-dimensional array that stores
the distances between all objects and base prototypes.
The search tree T is a binary tree such that each node
t corresponds to a subset Sy C P. Each node t has
a pointer to the representative object p; € Sy which
is called a pivot, a pointer to a left child node I, a
pointer to a right child node r and a covering radius
r¢. The covering radius is defined as

Ty = ggt{d(p,pt)- (1)

The pivot p, of r is defined as p,, = p;. On the other
hand, the pivot p; of [is determined so that

pi = argmax d(p, ;). (2)
PES:

Hence, we have the following equality:

e = d(pe, p1)- (3)

Sy is partitioned into two disjoint subsets S, and .5;
as follows:

ST = {p S St|d(p7p?”) < d(pypl)}7 (4)
S; =85 — 5.

Note that if ¢ is a leaf node, S; = {p:} and r = 0.
Fig. 1 shows an example of the data structures.

2.2 Construction of the Data Structures

We first explain the construction process of the search
tree T. The pivot p; of the root node ¢ is randomly
selected and Sy is set to P. The pivot p; of the left
child node and the covering radius r; are defined by
Egs. (2) and (3). The pivot p, of the right child node
is set to p;. S: is partitioned into S, and S; by Eq.
|(4)‘ These operations are recursively repeated until
S| = 1.

The distance matrix M is constructed by selecting
base prototypes. This selection is important because

g){

b

d(b,x)

X

Figure 2: Lower bound.

base prototypes are representative objects which are
used to avoid some explorations of the tree.

The ideal selection of them is that each object is
as far away as possible from other objects. In (Micé
et al. 1994), a greedy algorithm is proposed for this
selection. This algorithm chooses an object that max-
imizes the sum of distances from the other base pro-
totypes which have already been selected. In (Micé &
Oncina 1998), another algorithm is proposed, which
chooses an object that maximizes the minimum dis-
tance to the preselected base prototypes. (Mic6 &
Oncina 1998) shows that the latter algorithm is more
effective than the former one. Thus, we use the later
algorithm for the selection of base prototypes.

The search efficiency depends not only on the se-
lection of base prototypes but also on the number
of them. There is a trade-off between the search
efficiency and the size of distance matrix, i.e. the
memory capacity. The experimental results in (Micé
et al. 1994) show that the optimal number of base
prototypes depends on the dimensionality dm of the
space. For example, the optimal numbers are 3, 16
and 24 if dm = 2,4 and 8, respectively. The exper-
imental results also show that the optimal number
does not depend on the number of objects.

2.3 Search Algorithm

The search algorithm follows the branch and bound
strategy. It traverses the search tree T in the depth
first order. The distance matrix M is referred when-
ever each node is visited in order to avoid unnecessary
traverse of the tree T. The distance are computed
only when a leaf node is reached.

Given a query object ¢, the distance between ¢ and
the base prototypes are computed. These results are
stored in an array D. The object which is the closest
to q in B is selected as the nearest neighbour candi-
date ppin, and the distance d(q, pmin) is recorded as
dmin. Then, the traversal of the search tree T' starts
at the root node. The lower bound for the left child
node [is calculated whenever each node t is reached if
it is not a leaf node. The lower bound of the distance
between ¢ and an object x is defined as

See Fig. 2. Recall that d(q,b) was precomputed be-
fore the traversals and was stored in D. In addition,
the value d(b,xz) was also computed during the con-
struction process and stored in the distance matrix
M. Therefore, g, is calculated without any actual
distance computations. The lower bound g, is not ac-
tual distance d(g,). Thus, it does not ensure that the
number of visited nodes in the search becomes mini-
mum. Though, this evaluation hardly costs, hence it
is possible to search fast. The search process accesses
the left child node [if g,, < gp,, or the right child
node r if g, > g¢p,. When a leaf node is reached,
the distance is computed and both p,,;, and d,,;, are
updated if the distance is less than d,,;,.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

p min

Figure 3: Pruning Process.

procedure NN search(q)

1: t < root of T

2: dmzn =00, 0p, = 0

3: for b € B do

4. DI[b] =d(q,b)

5. if D[b] < dpsn then
7. end if

8: end for

% gp, = Max |(D[b] — M[b, ps])|
10: search(t, gp,, 9, Pmin, dmin)
11: return pnin

Figure 4: Algorithm for an NN search in TLAESA.

We explain the pruning process. Fig. 3 shows the
pruning situation. Let ¢ be the current node. If the
inequality

Amin + 11 < d(Qapt) (6)

is satisfied, we can see that no object exists in S
which is closer to ¢ than p,,;, and the traversal to
node t is not necessary. Since g,, < d(gq,p:), Eq. (6)
can be replaced with

min + 7t < p, - (7)

Figs. 4 and 5 show the details of the search
algorithm(Micé et al. 1996).

3 Improvements of TLAESA

In this section, we propose some improvements of
TLAESA in order to reduce the number of distance
computations.

3.1 Tree Structure and Search Algorithm

If we can evaluate the lower bounds ¢ in the ascending
order of their values, the search algorithm runs very
fast. However, this is not guaranteed in TLAESA
since the evaluation order is decided according to the
tree structure. We show such an example in Fig. 6.
In this figure, u, v and w are nodes. If g,, < gp.,,
it is desirable that v is evaluated before w. But, if
9p, > p., W might be evaluated before v.

We propose the use of a multiway tree and the
best first order search instead of a binary tree and
the depth first search. During the best first search
process, we can traverse preferentially a node whose
subset may contain the closest object. Moreover, we
can evaluate more nodes at one time by using of the
multiway tree. The search tree in TLAESA has many
nodes which have a pointer to the same object. In the
proposed structure, we treat such nodes as one node.
Each node t corresponds to a subset S; C P and has
a pivot py, a covering radius 7, = max d(p,p:) and

pECot

pointers to its children nodes.

procedure search(t, gp,, ¢, Pmins dmin)

1: if ¢ is a leaf then

2. if g, < dpmin then

3: d = d(q,p:) {distance computation}
4: if d < dpin then

5: Pmin = Pt, Ayin = d

6: end if

7. end if

8. else

9: 1 is a right child of ¢

10: [1is a left child of ¢

11: gp,. = Ip,

122 gp, = max|(D[b] — MIb, pr])|
13 if g, < gp, then

14: if dmin + 11 > gp, then

15: search(l, g, , Dmin, dmin)
16: end if

17: if dymin + 17 > gp, then

18: search(r, 9p, s Pmin, dmin)
19: end if

20. else

21: if dyin + 17 > gp, then

22: search(r, gp, , Dmin, Amin)
23: end if

24: if dmin + 11 > gp, then

25: search(l, 9p; s Pmin, dmin)
26: end i

27 end if

28: end if

Figure 5: A recursive procedure for an NN search in
TLAESA.

1%

Figure 6: A case in which the search algorithm in
TLAESA does not work well.

We show a method to construct the tree structure
in Fig. 7. We first select randomly the pivot p; of
the root node t and set S; to P. Then we execute the
procedure makeTree(t, p;, S;) in Fig. 7.

We explain the search process in the proposed
structure. The proposed method maintains a priority
queue @ that stores triples (node ¢, lower bound g,,,
covering radius ;) in the increasing order of gp, — 4.
Given a query object g, we calculate the distances be-
tween ¢ and base prototypes and store their values in
D. Then the search process starts at the root of 7.
The following steps are recursively repeated until Q
becomes empty. When ¢t is a leaf node, the distance
d(q,p¢) is computed if gp, < dpmin. If ¢ is not a leaf
node and its each child node #’ satisfies the inequality

Gp, < Tt + dmin, (8)

the lower bound g,, is calculated and a triple
(', gp,, 1) is added to Q. Figs. 8 and 9 show the
details of the algorithm.

79

CRPIT Volume 48

80

procedure makeTree(t, s, St)

procedure search(t, gp,, ¢, Pmins dmin)

1: t' « new child node of ¢

2: if |St| =1 then

3 py =p; and Sy = {py}

4: else

5. pp = argmaxd(p,p;)
PES:

6: Sy ={p € Sild(p,pr) < d(p,pt)}

7 St = D¢ — Oy

8: makeTree(t', py, Sy)

9. makeTree(t,ps, St)

10: end if

Figure 7: Method to construct the proposed tree
structure.

procedure NN search(q)

1: t + root of T

2: dmzn =00, gp, = 0

3: for b € B do

4 D[b] =d(q,b)

5. if D[b] < dpin then
6: Pmin = ba d’min = D[b}
7. end if
s: end for

9

C gt = Igleaé(‘(D[b] — M[b, p])|

10: Q {(t’gptvrt)}

11: while @ is not empty do do
12: (t,Gp,,7t) — element in Q

13: search(t, gp,, ¢, Dmin, Amin)
14: end while

15: return ppin

Figure 8: Proposed algorithm for an NN search.

3.2 Selection of Root Object

We focus on base prototypes in order to reduce node
accesses. The lower bound of the distance between a
query ¢ and a base prototype b is

9p = max |d(q,b) — d(b,b)]
=d(q,b).

This value is not an estimated distance but an actual
distance.

If we can use an actual distance in the search pro-
cess, we can evaluate more effectively which nodes
are close to ¢q. This fact means that the search is effi-
ciently performed if many base prototypes are visited
in the early stage. In other words, it is desirable that
more base prototypes are arranged in the upper part
of the search tree. Thus, in the proposed algorithm,
we choose the first base prototype b, as the root ob-
ject.

3.3 Extension to a k-NN Search

LAESA was developed to perform NN searches and
(Moreno-Seco, Micé & Oncina 2002) extended it so
that £-NN searches can be executed. In this section,
we extend the improved TLAESA to a k-NN search
algorithm. The extension is simple modifications of
the algorithm described above. We use a priority
queue V for storing k nearest neighbour candidates
and modify the definition of d,,;,. V stores pairs
(object p, distance d(gq,p)) in the increasing order of

1: if ¢ is a leaf then

2. if g, < dpmin then

3: d = d(q,p:) {distance computation}
4: if d < dpin then

5: Pmin = Pt, Ayin = d

6: end if

7. end if

8. else

9: for each child ¢ of t do

10: if gp, <7y + dppin then

11: 9p = max |(D[b] — M[b, pr])|
12: Q — QU{(t/?gptmrt’)}

13: end if

14: end for

15: end if

Figure 9: A procedure used in the proposed algorithm
for an NN search.

procedure k-NN search(q, k)

1: t « root of T

2: dmln =00, gp, = 0

3: for b € B do

4. Db =d(g,b)

5. if D[b] < din then

6 V.~V U{(b,D[b])}

7 if |V|=k+1 then

8: remove (k + 1)th pair from V
9: end if

10: if |[V| =k then

11: (¢,d(g,c)) < kth pair of V
12: min — d(Qv &

13: end if

14: end if

15: end for

16: gp, = max|(D[B] — M1b, p])|
170 Q «— {(t, gp,,74)}

18: while @ is not empty do

19: (t,gp,,7t) < element in Q)
20: search(t, gp,,q, V, dmin, k)
21: end while

22: return k objects «— V'

Figure 10: Proposed algorithm for a k-NN search.

d(q,p). dmin is defined as

(0.9)
dmin =
{d(q, c)

where c is the object of the kth pair in V.

We show in Figs. 10 and 11 the details of the k-
NN search algorithm. The search strategy essentially
follows the algorithm in Figs. 8 and 9, but the k-NN
search algorithm uses V instead of ppin.-

(Moreno-Seco et al. 2002) shows that the optimal
number of base prototypes depends on not only the
dimensionality of the space but also the value of k£ and
that the number of distance computations increases
as k increases.

(V] <h)
(1vi=#)

4 Extension to an Approximation Search

In this section, we propose an extension to an ap-
proximation k-NN search algorithm which ensures the

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

procedure search(t, g,,,q, V, dmin, k)

1: if t is a leaf then

2. if gp, < dmin then

3 d = d(q,p¢) {distance computation}
4: if d < d,n;n, then

5: V= VU{(p,d(g,pr))}

6: if V| =k+1 then

7 remove (k + 1)th pair from V'
8: end if

9: if |V| =k then

10: (¢,d(gq,c)) < kth pair of V
11: min — A\{g,C

12: end if

13: end if

14: end if

15: else

16: for each child ¢’ of t do

17: if gp, <7r¢ + dpmin then

W gy = max| (D]~ Mb,p)
19: QHQU{(t/agptmTﬂ)}

20: end if

21: end for

22: end if

Figure 11: A procedure used in the proposed algo-
rithm for a k-NN search.

quality of solutions. Consider the procedure in Fig.
11. We replace the 4th line with

if d < a - d;, then
and the 17th line with
if g¢ <71y + - dmin then

where « is real number such that 0 < o« < 1. The
pruning process gets more efficient as these conditions
become tighter.

The proposed method ensures the quality of solu-
tions. We can show the approximation ratio to an
optimal solution using a. Let a be the nearest neigh-
bour object and a’ be the nearest neighbour candi-
date object. If our method misses a and give a’ as
the answer, the equation

g(q,a) > a-d(g,a")

is satisfied. Then a will be eliminated from targeted
objects. Since g(q,a) < d(g,a), we can obtain the
following equation:

(10)

(g, < d(g.0). (1)

Thus, the approximate solution are suppressed by é
times of the optimal solution.

5 Experiments

In this section we show some experimental results and
discuss them. We tested on an artificial set of random
points in the 8-dimensional euclidean space. We also
used the euclidean distance as the distance function.
We evaluated the number of distance computations
and the number of accesses to the distance matrix in
1-NN and 10-NN searches.

2 300 -
Re] .

g 250 \X\‘X'"x'"X"-x»—-x.r-xﬁrxv.-x--,x,»_x-»—x“’x";
[e%

€

o 200 |

o

c 150 -

S

R

O 100 |

g ; o TLAESA(1-NN) ——
8 50 . TLAESA(10-NN) s 1
E Proposed(1-NN) %
2 _ Proposed(10-NN) e

0 M
0 10 20 30 40 50 60 70 80 90 100 110 120
Number of Base Prototypes

Figure 12: Relation of the number of distance com-
putations to the number of base prototypes.

1-NN 10-NN
TLAESA 40 80
Proposed 25 60

Table 1: The optimal number of base prototypes.

5.1 The Optimal Number of Base Prototypes

We first determined experimentally the optimal num-
ber of base prototypes. The number of objects
was fixed to 10000. We executed 1-NN and 10-NN
searches for various numbers of base prototypes, and
counted the number of distance computations. Fig.
12 shows the results. From this figure, we chose the
number of base prototypes as shown in Table. 1.

We can see that the values in the proposed method
are fewer than those in TLAESA. This means that
the proposed method can achieve better performance
with smaller size of distance matrix. We used the
values in Table. 1 in the following experiments.

5.2 Evaluation of Improvements

We tested the effects of our improvements described
in 3.1 and 3.2. We counted the numbers of distance
computations in 1-NN and 10-NN searches for various
numbers of objects. The results are shown in Figs.
13 and 14. Similar to TLAESA, the number of the
distance computations in the proposed method does
not depend on the number of objects. In both of 1-NN
and 10-NN searches, it is about 60% of the number of
distance computations in TLAESA. Thus we can see
that our improvements are very effective.

In the search algorithms of TLAESA and the pro-
posed methods, various calculations are performed
other than distance computations. The costs of the
major part of such calculations are proportional to
the number of accesses to the distance matrices. We
therefore counted the numbers of accesses to the dis-
tance matrices. We examined the following two cases:

(i) TLAESA vs. TLAESA with the improvement of
selection of the root object.

(ii) Proposed method only with improvement of tree
structure and search algorithm vs. proposed
method only with the improvement of selection
of the root object.

In the case (i), the number of accesses to the distance
matrix is reduced by 12% in 1-NN searches and 4.5%
in 10-NN searches. In the case (ii), it is reduced by
6.8% in 1-NN searches and 2.7% in 10-NN searches.

81

CRPIT Volume 48

é 100

s 9

3 80+ 4

§ 70 | ’/'/’%._/‘——"’_"/’7-

2 60

c 50

< Hmemmmen) K-mmmmm s 3¢-mmmmmm K- mmm o Kemmmmmm e Hommmmmnns ¢mmmmmmn) Kemmmmme

@ 40

% 30 |

5 20|

2 10t TLAESA ——

§ 0) Proposed -

= 0 2000 4000 6000 8000 10000
Number of Objects

Figure 13: The number of distance computations in
1-NN searches.

100 — : .
Ak-LAESA
90 ¢ Proposed -~

70

50 |
40 ¢

30 | T

20 |

10 |

Error Rate E[%)]

o

Figure 15: Error rate in 10-NN searches.

82

é 300

s 270 ¢t i

3 240 | /a/—*"%

§ 210t :

o

O 180 |

2 150 F .

©

5 120 |

% 2 |

5 60

S 0 . Proposed -

= 0 2000 4000 6000 8000 10000
Number of Objects

Figure 14: The number of distance computations in
10-NN searches.

Thus we can see that this improvement about selec-
tion of the root object is effective.

5.3 Evaluation of Approximation Search

We tested the performance of the approximation
search algorithm. We compared the proposed method
to Ak-LAESA, which is the approximation search al-
gorithm proposed in (Moreno-Seco, Micé & Oncina
2003). Each time a distance is computed in Ak-
LAESA, the nearest neighbour candidate is updated
and its value is stored. When the nearest neighbour
object is found, the best k objects are chosen from the
stored values. In Ak-LAESA, the number of distance
computations of the k-NN search is exactly the same
as that of the NN search.

To compare the proposed method with Ak-
LAESA, we examined how many objects in the ap-
proximate solutions exist in the optimal solutions.
Thus, we define the error rate E as follows:

~ Nailas ¢ Opt,i=1,2,--- K}
a k

E[%] x 100 (12)

where {z1, 22, -, 21} is a set of k objects which are
obtained by an approximation algorithm and Opt is
a set of k closest objects to the query object.

Fig. 15 shows the error rate when the value of « is
changed in 10-NN searches. Fig. 16 also shows the re-
lation of the number of distance computations to the
value of o in 10-NN searches. In the range o > 0.5,
the proposed method shows the lower error rate than

2 160
2
8 140t /
2
£ 120 | /1
o 100 r /f’
c 80 f s
3 SIS
2 60 [
S 40 f
£ 20 | ALAESA
S Proposed -+
zZ 0 : . . .
0 0.2 0.4 0.6 0.8

o

Figure 16: Relation of the number of distance com-
putations to the value of a in 10-NN searches.

AL-LAESA. In particular, the error rate of the pro-
posed method is almost 0 in range a > 0.9. From two
figures, we can control the error rate and the number
of distance computations by changing the value of a.
For example, the proposed method with a = 0.9 re-
duces abount 28.6% of distance computations and its
error rate is almost 0.

Then we examined the accuracy of the approx-
imate solutions. We used a = 0.5 for the pro-
posed method because the error rate of the proposed
method with @ = 0.5 is equal to the one of Ak-
LAESA. We performed 10-NN searches 10000 times
for each method and examined the distribution of kth
approximate solution to kth optimal solution. We
show the results in Figs. 17 and 18. In each figure,
x axis represents the distance between a query ob-
ject ¢ and the kth object in the optimal solution. y
axis shows the distance between ¢ and the kth ob-
ject in the approximate solution. The point near the
line y = x represents that kth approximate solution is
very close to kth optimal solution. In Fig. 17, many
points are widely distributed. In the worst case, some
appriximate solutions reach about 3 times of the op-
timal solution. From these figures, we can see that
the accuracy of solution by the proposed method is
superior to the one by Ak-LAESA. We also show the
result with o = 0.9 in Fig. 19. Most points exist near
the line y = x.

Though Ak-LAESA can reduce drastically the
number of distance computations, its approximate so-
lutions are often far from the optimal solutions. On
the other hand, the proposed method can reduce the
number of distance computations to some extent with

c

.9

2 16

D .
o 14}

© i
E 12}

3

=

< 08f}

£

< 06¢

[0}

£ 047

=

o 02}

o

5 0 ' ' '

® 0 0.2 0.4 0.6 0.8
o

Distance to the k th Optimal Solution

Figure 17: The distribution of the approximate solu-
tion by Ak-LAESA to the optimal solution.

c

S

2 16

(2}

o 14}

IS

E 12t

x

o 1

g .
< 08f}

£

< 06}

[0}

£ 04}

<]

o 027

o

5 0 ' ' '
@ 0 0.2 0.4 0.6 0.8
o

Distance to the k th Optimal Solution

Figure 18: The distribution the approximate solution
by the proposed method with o = 0.5 to the optimal
solution.

very low error rate. Moreover, the accuracy of its ap-
proximate solutions is superior to that of Ak-LAESA.

6 Conclusions

In this paper, we proposed some improvements of
TLAESA. In order to reduce the number of distance
computations in TLAESA, we improved the search
algorithm to best first order from depth first order
and the tree structure to a multiway tree from a bi-
nary tree. In the 1-NN searches and 10-NN searches
in a 8-dimensional space, the proposed method re-
duced about 40% of distance computations. We then
proposed the selection method of root object in the
search tree. This improvement is very simple but is
effective to reduce the number of accesses to the dis-
tance matrix. Finally, we extended our method to an
approximation k-NN search algorithm that can en-
sure the quality of solutions. The approximate so-
lutions of the proposed method are suppressed by é
times of the optimal solutions. Experimental results
show that the proposed method can reduce the num-
ber of distance computations with very low error rate
by selecting the appropriate value of «, and that the
accuracy of the solutions is superior to Ak-LAESA.
From these viewpoints, the method presented in this
paper is very effective when the distance computa-
tions are time-consuming.

2 16

n

o 141}

T

E 12y

3

=

< 08f

E +
< 06}

(0]

£ 047

e

o 02}

o

3 0 ' '

B 0 0.2 0.4 0.6 0.8
o

Distance to the k th Optimal Solution

Figure 19: The distribution the approximate solution
by the proposed method with a = 0.9 to the optimal
solution.

References

Ciaccia, P., Patella, M. & Zezula, P. (1997), M-tree:
An efficient access method for similarity search
in metric spaces, in ‘Proceedings of the 23rd
International Conference on Very Large Data
Bases (VLDB’97)’, pp. 426-435.

Hjaltason, G. R. & Samet, H. (2003), ‘Index-driven
similarity search in metric spaces’, ACM Trans-
actions on Database Systems 28(4), 517-580.

Micé, L. & Oncina, J. (1998), ‘Comparison of fast
nearest neighbour classifiers for handwritten
character recognition’, Pattern Recognition Let-
ters 19(3-4), 351-356.

Micé, L., Oncina, J. & Carrasco, R. C. (1996), ‘A
fast branch & bound nearest neighbour classi-
fier in metric spaces’, Pattern Recognition Let-
ters 17(7), 731-739.

Micé, M. L., Oncina, J. & Vidal, E. (1994), ‘A new
version of the nearest-neighbour approximating
and eliminating search algorithm (AESA) with
linear preprocessing time and memory require-
ments’, Pattern Recognition Letters 15(1), 9-17.

Moreno-Seco, F., Mic6, L. & Oncina, J. (2002),
‘Extending LAESA fast nearest neighbour algo-
rithm to find the k-nearest neighbours’, Lecture
Notes in Computer Science - Lecture Notes in
Artificial Intelligence 2396, 691-699.

Moreno-Seco, F., Mic6, L. & Oncina, J. (2003), ‘A
modification of the LAESA algorithm for ap-
proximated k-NN classification’, Pattern Recog-
nition Letters 24(1-3), 47-53.

Navarro, G. (2002), ‘Searching in metric spaces
by spatial approximation’, The VLDB Journal
11(1), 28-46.

Rico-Juan, J. R. & Mic6, L. (2003), ‘Comparison
of AESA and LAESA search algorithms using
string and tree-edit-distances’, Pattern Recogni-
tion Letters 24(9-10), 1417-1426.

Vidal, E. (1986), ‘An algorithm for finding nearest
neighbours in (approximately) constant average
time’, Pattern Recognition Letters 4(3), 145-157.

Yianilos, P. N. (1993), Data structures and algo-
rithms for nearest neighbor search in general
metric spaces, in ‘SODA ’93: Proceedings of the
fourth annual ACM-STAM Symposium on Dis-
crete algorithms’, pp. 311-321.

Computer Science 2006 - Proc. Twegty-Ninth Australasian Computer Science Conference (ACSC2006)

83

CRPIT Volume 48

84

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Trust Network Analysiswith Subjective Logic

Audun Jgsang!

Ross Hayward!

Simon Pope?

1School of Software Engineering and Data Communications*
Queensland University of Technology, Brisbane, Australia

Email: {a. j osang,

r. hayward}@ut . edu. au

2CRC for Enterprise Distributed Systems Technology (DSTC Pty Ltd)*
The University of Queensland, Brisbane, Australia
Email: skj pope@nmai | . com

Abstract

Trust networks consist of transitive trust relationships
between people, organisations and software agents con-
nected through a medium for communication and inter-
action. By formalising trust relationships, e.g. as rep-
utation scores or as subjective trust measures, trust be-
tween parties within the community can be derived by
analysing the trust paths linking the parties together. This
article describes a method for trust network analysis using
subjective logic (TNA-SL). It provides a simple notation
for expressing transitive trust relationships, and defines
a method for simplifying complex trust networks so that
they can be expressed in a concise form and be computa-
tionally analysed. Trust measures are expressed as beliefs,
and subjective logic is used to compute trust between ar-
bitrary parties in the network. We show that TNA-SL is
efficient, and illustrate possible applications with exam-
ples.

1 Introduction

Modern communication media are increasingly removing
us from the familiar styles of interacting that traditionally
rely on some degree of pre-established trust between busi-
ness partners. Moreover, most traditional cues for assess-
ing trust in the physical world are not available through
those media. We may now be conducting business with
people and organisations of which we know nothing, and
we are faced with the difficult task of making decisions
involving risk in such situations. As a result, the topic
of trust in open computer networks is receiving consid-
erable attention in the network security community and
e-commerce industry [1, 4, 13, 18, 19, 23, 26]. State
of the art technology for stimulating trust in e-commerce
includes cryptographic security mechanisms for provid-
ing confidentiality of communication and authentication
of identities. However, merely having a cryptographi-
cally certified identity or knowing that the communication
channel is encrypted is not enough for making informed
decisions if no other knowledge about a remote transac-
tion partner is available. Trust therefore also applies to
the truthfulness of specific claims made by parties who re-
quest services in a given business context as described in

*Support from the ARC Research Network Secure Australia acknowledged.

T The work reported in this paper has been funded in part by the Co-operative

Research Centre for Enterprise Distributed Systems Technology (DSTC) through
the Australian Federal Government’s CRC Programme (Department of Education,
Science, and Training).
Copyright (©2006, Australian Computer Society, Inc. This paper ap-
peared at Twenty-Ninth Australasian Computer Science Conference
(ACSC2006), Hobart, Tasmania, Australia, January 2006. Conferences
in Research and Practice in Information Technology, Vol. 48. Vladimir
Estivill-Castro and Gill Dobbie, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

the WS-Trust specifications [26], and trust between busi-
ness partners regarding security assertions as described in
the Liberty Alliance Framework [18, 19]. Trust also ap-
plies to the honesty, reputation and reliability of service
providers or transaction partners, in general or for a spe-
cific purpose. In this context, the process of assessing trust
becomes part of quality of service (QoS) evaluation, deci-
sion making and risk analysis.

Being able to formally express and reason with these
types of trust is needed not only to create substitutes for
the methods we use in the physical world, like for instance
trust based on experiences or trust in roles, but also for cre-
ating entirely new methods for determining trust that are
better suited for computerised interactions. This will facil-
itate the creation of communication infrastructures where
trust can thrive in order to ensure meaningful and mutually
beneficial interactions between players.

The main contribution of this paper is a method for
discovering trust networks between specific parties, and a
practical method for deriving measures of trust from such
networks. Our method, which is called TNA-SL (Trust
Network Analysis with Subjective Logic), is based on
analysing trust networks as directed series-parallel graphs
that can be represented as canonical expressions, com-
bined with measuring and computing trust using subjec-
tive logic. We finally provide a numerical example of how
trust can be analysed and computed using our method.

2 Trust Transitivity

Trust transitivity means, for example, that if Alice trusts
Bob who trusts Eric, then Alice will also trust Eric. This
assumes that Bob actually tells Alice that he trusts Eric,
which is called a recommendation.

It can be shown that trust is not always transitive in real
life [2]. For example the fact that Alice trusts Bob to look
after her child, and Bob trusts Eric to fix his car, does not
imply that Alice trusts Eric for looking after her child, or
for fixing her car. However, under certain semantic con-
straints [15], trust can be transitive, and a trust system can
be used to derive trust. In the last example, trust transitiv-
ity collapses because the scopes of Alice’s and Bob’s trust
are different.

We define trust scope' as the specific type(s) of trust
assumed in a given trust relationship. In other words, the
trusted party is relied upon to have certain qualities, and
the scope is what the trusting party assumes those qualities
to be.

Let us assume that Alice needs to have her car ser-
viced, so she asks Bob for his advice about where to find
a good car mechanic in town. Bob is thus trusted by Alice
to know about a good car mechanic and to tell his honest

!The terms “trust context” [6], “trust purpose” [13] and “subject matter” [20]
have been used in the literature with the same meaning.

85

CRPIT Volume 48

86

Indirect functional trust

Alice Bob

Eric
1]

1] | %
Direct referral trust

w oV
~Seo _ _-- ‘
Recommendation
a

Direct functional trust

Figure 1: Transitive trust principle

opinion about that. Bob in turn trusts Eric to be a good car
mechanic. This situation is illustrated in Fig.1, where the
indexes indicate the order in which the trust relationships
and recommendations are formed.

It is important to separate between trust in the ability to
recommend a good car mechanic which represents refer-
ral trust, and trust in actually being a good car mechanic
which represents functional trust. The scope of the trust is
nevertheless the same, namely to be a good car mechanic.
Assuming that, on several occasions, Bob has proved to
Alice that he is knowledgeable in matters relating to car
maintenance, Alice’s referral trust in Bob for the purpose
of recommending a good car mechanic can be considered
to be direct. Assuming that Eric on several occasions has
proved to Bob that he is a good mechanic, Bob’s func-
tional trust in Eric can also be considered to be direct.
Thanks to Bob’s advice, Alice also trusts Eric to actually
be a good mechanic. However, this functional trust must
be considered to be indirect, because Alice has not directly
observed or experienced Eric’s skills in car mechanics.

Let us slightly extend the example, wherein Bob does
not actually know any car mechanics himself, but he
knows Claire, whom he believes knows a good car me-
chanic. As it happens, Claire is happy to recommend the
car mechanic named Eric. As a result of transitivity, Alice
is able to derive trust in Eric, as illustrated in Fig.2, where
the indexes indicate the order in which the trust relation-
ships and recommendations are formed. The prefix “dr-”
denotes direct referral trust, “df-"’ denotes direct functional
trust, and “if-”” denotes indirect functional trust.

Alice 5 Bob _ 5 Claire Eric
B 7~ O e B
n dr-trust dr-trust df-trust

n
\derivedi_f-trus/
3

Figure 2: Transitive serial combination of trust arcs

Defining the exact scope of Alice’s trust in Bob is more
complicated in the extended example. It is most obvious
to say that Alice trusts Bob to recommend somebody (who
can recommend somebody etc.) who can recommend a
good car mechanic. The problem with this type of formu-
lation is that the length of the trust scope expression be-
comes proportional with the length of the transitive path,
so that the trust scope expression rapidly becomes impen-
etrable. It can be observed that this type of trust scope has
a recursive structure that can be exploited to define a more
compact expression for the trust scope. As already men-
tioned, trust in the ability to recommend represents refer-
ral trust, and is precisely what allows trust to become tran-
sitive. At the same time, referral trust always assumes the
existence of a functional trust scope at the end of the tran-

sitive path, which in this example is about being a good
car mechanic.

The “referral” variant of a trust scope can be consid-
ered to be recursive, so that any transitive trust chain, with
arbitrary length, can be expressed using only one trust
scope with two variants. This principle is captured by the
following criterion.

Definition 1 (Functional Trust Derivation Criterion)
Derivation of functional trust through referral trust,
requires that the last trust arc represents functional trust,
and all previous trust arcs represent referral trust.

In practical situations, a trust scope can be charac-
terised by being general or specific. For example, knowing
how to change wheels on a car is more specific than to be
a good car mechanic, where the former scope is a subset
of the latter. Whenever a given trust scope is part of all the
referral and functional trust scopes in a path, a transitive
trust path can be formed based on that trust scope. This
can be expressed with the following consistency criterion.

Definition 2 (Trust Scope Consistency Criterion) A
valid transitive trust path requires that there exists a trust
scope which is a common subset of all trust scopes in the
path. The derived trust scope is then the largest common
subset.

Trivially, every arc in a path can carry the same trust
scope. Transitive trust propagation is thus possible with
two variants (i.e. functional and referral) of a single trust
scope.

Specifying the two scope variants separately can be
omitted in case it is difficult to separate between them in
a given application. Although trust scopes are always ex-
pressed with the two variants in all the descriptions and
example of this paper, it is perfectly possible to assume
the same descriptions and examples without specifying the
two variants.

A transitive trust path stops with the first functional
trust arc encountered when there are no remaining out-
going referral trust arcs. It is, of course, possible for a
principal to have both functional and referral trust in an-
other principal, but that should be expressed as two sepa-
rate trust arcs.

The examples above assume some sort of absolute trust
between the agents along the transitive trust path. In re-
ality trust is never absolute, and many researchers have
proposed to express trust as discrete verbal statements, as
probabilities or other continuous measures. One observa-
tion which can be made from an intuitive perspective is
that trust is diluted through transitivity. Revisiting the ex-
ample of Fig.2, it can be noted that Alice’s trust in the car

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

mechanic Eric through the recommenders Bob and Claire
can be at most as confident as Claire’s trust in Eric.

It could be argued that negative trust in a transitive
chain can have the paradoxical effect of strengthening the
derived trust. Take for example the case where Bob dis-
trusts Claire and Claire distrusts Eric, whereas Alice trusts
Bob. In this situation, Alice might actually derive positive
trust in Eric, since she relies on Bob’s advice, and Bob
says: “Claire is a cheater, do not rely on her”. So the fact
that Claire distrusts Eric might count as a pro-Eric argu-
ment from Alice’s perspective. The question boils down
to ““is the enemy of my enemy my friend?”’. However this
question relates to how multiple types of untrustworthi-
ness, such as dishonesty and unreliability, should be inter-
preted in a trust network, which is outside the scope of this
study.

3 Parallel Trust Combination

It is common to collect advice from several sources in or-
der to be better informed when making decisions. This can
be modelled as parallel trust combination illustrated in
Fig.3, where again the indexes indicate the order in which
the trust relationships and recommendations are formed.

Bob
o
H ‘e - ~ rec' .
Alice "9~ 2._ Claire Eric
- X/\' ?1 T e
T
df-trust
« Te et -
LN 2 I
> /&')
(“,“\)

David

derived if-trust
3

Figure 3: Parallel combination of trust paths

Let us assume again that Alice needs to get her car
serviced, and that she asks Bob to recommend a good car
mechanic. When Bob replies that Claire, a good friend of
his, recommended Eric to him, Alice would like to get a
second opinion, so she asks David whether he has heard
about Eric. David also knows and trusts Claire, and has
heard from her that Eric is a good car mechanic. Alice who
does not know Claire personally, is unable to obtain a first
hand recommendation about the car mechanic Eric, i.e.
she does not directly know anybody with functional trust
in Eric. Intuitively, if both Bob and David recommend
Claire as a good advisor regarding car mechanics, Alice’s
trust in Claire’s advice will be stronger than if she had only
asked Bob. Parallel combination of positive trust thus has
the effect of strengthening the derived trust.

In the case where Alice receives conflicting recom-
mended trust, e.g. trust and distrust at the same time, she
needs some method for combining these conflicting rec-
ommendations in order to derive her trust in Eric. Our
method, which is described in Sec.6, is based on subjec-
tive logic which easily can handle such cases.

4 Structured Notation

Transitive trust networks can involve many principals, and
in the examples below, capital letters A, B,C, D and E
will be used to denote principals instead of names such as
Alice and Bob.

We will use basic constructs of directed graphs to rep-
resent transitive trust networks. We will add some nota-
tion elements which allow us to express trust networks in
a structured way.

A single trust relationship can be expressed as a di-
rected arc between two nodes that represent the trust
source and the trust target of that arc. For example the
arc [A, B] means that A trusts B.

The symbol “:” will be used to denote the transitive
connection of two consecutive trust arcs to form a tran-
sitive trust path. The trust relationships of Fig.2 can be
expressed as:

([AvE]) = ([AvB] : [370] : [C’ E]) (D

where the trust scope is implicit. Let the trust scope e.g.
be defined as o: “trust to be a good car mechanic™. Let
the functional variant be denoted by “fo” and the refer-
ral variant by “ro”. A distinction can be made between
initial direct trust and derived indirect trust. Whenever
relevant, the trust scope can be prefixed with “d” to indi-
cate direct trust (do), and with “i” to indicate indirect trust
(io). This can be combined with referral and functional
trust, so that for example indirect functional trust can be
denoted as “ifo”. A reference to the trust scope can then
be explicitly included in the trust arc notation as e.g. de-
noted by [A, B, dro]. The trust network of Fig.2 can then
be explicitly expressed as:

([4, E,ifo]) =
(@)

([A, B,dro] : [B,C,dro] : [C, E,dfo])

Let us now turn to the combination of parallel trust
paths, as illustrated in Fig.3. We will use the symbol “¢”
to denote the graph connector for this purpose. The “¢”
symbol visually resembles a simple graph of two parallel
paths between a pair of agents, so that it is natural to use
it for this purpose. Alice’s combination of the two parallel
trust paths from her to Eric in Fig.3 is then expressed as:

([A, E,ifo]) =

((([A, B,dro] : [B,C,dra]) ©

([A, D,dro] : [D,C,dro])) : (3)

[C, E,dfo))
In short notation, the same trust graph is expressed as:
([4, E]) = ((([4,B]: [B,C]) o

“)
([4, D] :[D,C)) - [C, E))

It can be noted that Fig.3 contains two paths. The
graph consisting of the two separately expressed paths
would be:

(4, E]) = ([4,B]: [B,C]: [C, E]) o)
([A,D] : [D,C]:[C, E)])

A problem with Eq.(5) is that the arc [C, E] appears
twice. Although Eq.(4) and Eq.(5) consist of the same
two paths, their combined structures are different. Some
computational models would be indifferent to Eq.(4) and
Eq.(5), whereas others would produce different results de-
pending on which expression is being used. When im-
plementing the serial “:”” as binary logic “AND”, and the
parallel “¢” as binary logic “OR”, the results would be
equal. However, when implementing *“:” and “¢” as prob-
abilistic multiplication and comultiplication respectively,
the results would be different. It would also be different in

87

CRPIT Volume 48

88

the case of applying subjective logic operators for transi-
tivity and parallel combination which will be described in
Sec.6 below. In general, it is therefore desirable to express
graphs in a form where an arc only appears once. This will
be called a canonical expression.

Definition 3 (Canonical Expression) An expression of a
trust graph in structured notation where every arc only
appears once is called canonical.

With this structured notation, arbitrarily large trust net-
works can be explicitly expressed in terms of source, tar-
get, and scope, as well as other attributes such as measure
and time whenever required.

A general directed trust graph is based on directed trust
arcs between pairs of nodes. With no restrictions on the
possible trust arcs, trust paths from a given source X to
a given target Y can contain cycles, which could result in
inconsistent calculative results. Cycles in the trust graph
must therefore be controlled when applying calculative
methods to derive measures of trust between two parties.
Normalisation and simplification are two different control
approaches. Our model is based on graph simplification,
and a comparison with normalisation methods used in e.g.
PageRank proposed by Page et al. (1998) [21], and in
EigenTrust proposed by Kamvar et al. (2003) [17] is pro-
vided in [10].

5 Network Simplification

Simplification of a trust network consists of including as
many arcs as possible from the original trust network,
while still maintaining a canonical expression. Graphs
that can be represented as canonical expressions with our
structured notation are known as directed series-parallel
graphs (DSPG) [5]. A DSPG can be constructed by se-
quences of serial and parallel compositions that are de-
fined as follows [5]:

Definition 4 (Directed Series-Parallel Composition)

e Adirected series composition consists of replacing an
arc [A, C] with two arcs [A, B] and [B, C] where B
is a new node.

e A directed parallel composition consists of replacing
an arc [A, C] with two arcs [A, C]; and [4, C]s.

The principle of directed series and parallel composi-
tion are illustrated in Fig.4.

T

1
1
v

b) Parallel graph composition

1

1

‘
a—{s8]

|

a) Series graph composition
Figure 4: DSPG composition.

By successively applying the principles of series and
parallel composition, arbitrarily large DSPGs can be con-
structed.

We will first describe an algorithm for determining all
practical trust paths from a given source to a given target,
and secondly algorithms for determining near-optimal or
optimal DSPGs.

5.1 Finding Paths

The first step is to determine the possible directed paths
between a given pair of agents called the start source and
the final target. The pseudo-code in Fig.5 represents an
algorithm for finding all practical directed paths between a
given start source and a given final target, where no single
path contains cycles.

Pseudo-Constructor for a trust arc between two parties:

Arc(Node source, Node target, Scope scope, Variant variant){
this.source = source;
this.target = target;
this.scope = scope;
this.variant = variant;

Pseudo-code for a depth-first path finding algorithm:
After completion, ‘paths’ contains all possible paths between source
and target.

void FindPaths(Node source, Node target, Scope scope) {
SELECT arcs FROM graph WHERE (
(arcs.source == source) AND
(arcs.target NOT IN path) AND
(arcs.scope == scope))
FOR EACH arc IN arcs DO {
IF (
(arc.target == target) AND
(arc.variant == ‘functional’) AND
(Confidence(path + arc) > Threshold)) {
paths.add(path + arc);

}
ELSE IF (
(arc.target != target) AND
(arc.variant == ‘referral’) AND
(Confidence(path + arc) > Threshold)) {
path.add(arc);
FindPaths(arc.target, target, scope);
path.remove(arc);

Pseudo-code for method call:
The global variables ‘path’ and ‘paths’ are initialized.

Vector path = NEW Vector OF TYPE arc;
Vector paths = NEW Vector OF TYPE path;
FindPaths(StartSource, FinalTarget, scope);

Figure 5: Path finding algorithm

In the pseudocode of Fig.5, the conditional
IF (Confidence(path + arc) > Threshold)

represents a heuristic rule for simplifying the graph anal-
ysis, where the path is only retained as long as the condi-
tional is TRUE. By removing paths with low confidence,
the number of paths to consider is reduced while the in-
formation loss can be kept to an insignificant level. For a
given application, the threshold can be defined as the low-
est level for which a trust relationship is meaningful. The
mathematical interpretation of confidence is described in
Sec.6.1.

5.2 Finding Directed Series-Parallel Graphs

Ideally, all the possible paths discovered by the algorithm
of Fig.5 should be taken into account when deriving the
trust value. A general directed graph will often contain
cycles and dependencies. This can be avoided by exclud-
ing certain paths, but this can also cause information loss.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Specific selection criteria are needed in order to find the
optimal subset of paths to include.

Fig.6 illustrates an example of a non-DSPG with de-
pendent paths, where it is assumed that A is the source
and F is the target. While there can be a large number of
possible distinct paths, it is possible to use heuristic rules
to discard paths, e.g. when their confidence drops below a
certain threshold.

Figure 6: Dependent paths

With n possible paths, there are 2" — 1 different com-
binations for constructing graphs, of which not all neces-
sarily are DSPGs. Of the graphs that are DSPGs, only one
will be selected for deriving the trust measure.

In Fig.6 there are 3 possible paths between A and E:

o1 = ([A,B]:[B,C]:[C,E]),
¢2 = (|A,D]:[D,C]:[C,E]), 6)
o3 =([A,B]:[B,D]:[D,C]:[C,E]).

This leads to the following 7 potential combina-
tions/graphs.

=01, VA= P10¢2, V7= P10 P20 P3.
Yo = @2, V5= @10 @3, (7N
V3= @3, Y6 = P20 ¢3,

The graph represented by 7 contains all possible paths
between A and E. The problem with ~7 is that it can
not be represented as a canonical expression, i.e. where
an arc can only appear once. In this example, one path
must must be removed from the graph in order to have a
canonical expression. The expressions 4, 5 and g can
be canonicalised, and the expressions 1, 2 and <3 are
already canonical, which means that all the expressions
except y7 can be used as a basis for constructing a DSPG
and for deriving A’s trust in E.

The optimal DSPG is the one that results in the highest
confidence level of the derived trust value. This principle
focuses on maximising certainty in the trust value, and not
e.g. on deriving the most positive or negative trust value.
The interpretation of confidence can of course have differ-
ent meanings depending on the computational model, and
our approach is based on he classic confidence value of
probability density functions.

There is a trade-off between the time it takes to find
the optimal DSPG, and how close to the optimal DSPG a
simplified graph can be. It is possible to use a relatively
fast heuristic algorithm to find a DSPG close to, or equal
to the optimal DSPG. It is also possible to use a relatively
slow exhaustive algorithm that is guaranteed to find the
optimal DSPG.

5.2.1 Heuristic Search for Near-Optimal DSPGs

Fig.7 represents a heuristic algorithm for finding a near-
optimal DSPG. It constructs the DSPG by including new
paths one by one in decreasing order of confidence. Each
new path that potentially could turn the graph into a non-
DSPG and break canonicity is excluded. This is detected
by analysing each new potential branch with the method:

dspg.sep-_subgraph(branch.source,branch.sink)

Pseudo-code search algorithm for a near optimal DSPG:
After completion, ‘dspg’ contains a near-optimal trust graph

void FindNear Optimal DSPG(Vector paths) {
paths.sort_according_to_confidence;
dspg = paths(0);
paths.remove(0);
FOR EACH path IN paths DO {
end_of_path = FALSE;
branch = EMPTY;
WHILE NOT end_of_path DO {
next_arc = path.next;
end_of_path = path.no_more_arcs;
IF (next_arc.sink NOT IN dspg) {
branch.add(next_arc);

}
ELSE IF ((next_arc.sink IN dspg) AND
(branch != EMPTY)) {
branch.add(next_arc);
IF (dspg.sep-subgraph(branch.source,branch.sink) {
dspg.add(branch);
branch = EMPTY;

}
ELSE {

end_of_path = TRUE;
}

}
}
}
}

Pseudo-code for method call:
The global variables ‘dspg’ and ‘paths’ are initialized.

Vector dspg = NEW Vector OF TYPE arc;
Vector paths = NEW Vector OF TYPE path;
FindNearOptimalDSPG(paths);

Figure 7: Heuristic algorithm for a near-optimal DSPG

which returns TRUE if the new branch can be added, and
FALSE if not. More precisely, it verifies that the subgraph
between the nodes where the new branch is to be added is a
separate sub-DSPG, so that a clean parallel graph compo-
sition according to Fig.4 is possible when adding the new
branch. While this subgraph analysis can be computation-
ally intensive, efficiency can be improved by caching these
intermediate results, so that in case several new branches
between the same nodes must be added, the analysis of the
corresponding subgraph only needs to be done once.

This method only requires the computation of the trust
value for a single DSPG, with computational complexity
Comp = [m, where m is average number of paths in the
DSPGs, and [is the average number of arcs in the paths.

The heuristic method produces a DSPG with overall
confidence in the trust level equal or close to that of the
optimal DSPG. The reason why this method can not guar-
antee to produce the optimal DSPG, is that it could ex-
clude two or more paths with relatively low confidence
levels because of conflict with a single path with high con-
fidence level previously included, whereas the low confi-
dence paths together could provide higher confidence than
the previous high confidence path alone. In such cases it
would have been optimal to exclude the single high confi-
dence path, and instead include the low confidence paths.
However, only the exhaustive method described below can
guarantee to find the optimal DSPG in such cases.

5.2.2 Exhaustive Search for the Optimal DSPG

The exhaustive method of finding the optimal DSPG con-
sists of determining all possible DSPGs, then deriving the
trust value for each one of them, and finally selecting the

89

CRPIT Volume 48

90

DSPG and the corresponding canonical expression that
produces the trust value with the highest confidence level.

For brevity, we have not included the pseudocode al-
gorithm for the exhaustive search algorithm, because it
would be similar to the heuristic search algorithm. The
main difference is that all 2 — 1 possible orders of in-
cluding the paths are tried one by one, potentially leading
to 2" — 1 different DSPGs that must be evaluated. Nor-
mally, the DSPG that produces the highest confidence is
finally selected.

The computational complexity of the exhaustive
method is Comp = Im(2™ — 1), where n is the number
of possible paths, m is the average number of paths in the
DSPGs, and [is the average number of arcs in the paths.

6 Trust Derivation with Subjective Logic

Subjective logic represents a practical belief calculus that
can be used for calculative analysis trust networks. TNA-
SL requires trust relationships to be expressed as beliefs,
and trust networks to be expressed as DSPGs in the form
of canonical expressions. In this section we describe how
trust can be derived with the belief calculus of subjective
logic. A numerical example is given in Sec.7.

6.1 Subjective Logic Fundamentals

Belief theory is a framework related to probability the-
ory, but where the probabilities over the set of possible
outcomes do not necessarily add up to 1, and the remain-
ing probability is assigned to the union of possible out-
comes. Belief calculus is suitable for approximate reason-
ing in situations of partial ignorance regarding the truth of
a given proposition.

Subjective logic [7] represents a specific belief calcu-
lus that uses a belief metric called opinion to express be-
liefs. An opinion denoted by w? = (b, d, u,a) expresses
the relying party A’s belief in the truth of statement x.
When a statement for example says “Party X is honest
and reliable regarding o, then the opinion about the truth
of that statement can be interpreted as trust in X within
the scope of 0. Here b, d, and u represent belief, disbe-
lief and uncertainty respectively, where b, d, u € [0, 1] and
b+ d+ u = 1. The confidence parameter used in the
pseudocode of Fig.fig:find-path can be defined as equal to
(1 —¢), i.e. the confidence of a trust value is equivalent to
the certainty of the corresponding opinion. The parameter
a € [0,1] is called the base rate, and is used for comput-
ing an opinion’s probability expectation value that can be
determined as E(w?) = b + au. More precisely, a deter-
mines how uncertainty shall contribute to the probability
expectation value E(w?). In the absence of any specific
evidence about a given party, the base rate determines the
a priori trust that would be put in any member of the com-
munity.

The opinion space can be mapped into the interior
of an equal-sided triangle, where, for an opinion w, =
(bs, dy, Uy, ay), the three parameters b, d, and u, deter-
mine the position of the point in the triangle representing
the opinion. Fig.§8 illustrates an example where the opin-
ion about a proposition x from a binary state space has the
value w,, = (0.7, 0.1, 0.2, 0.5).

The top vertex of the triangle represents uncertainty,
the bottom left vertex represents disbelief, and the bot-
tom right vertex represents belief. The parameter b, is
the value of a linear function on the triangle which takes
value O on the edge which joins the uncertainty and dis-
belief vertexes and takes value 1 at the belief vertex. In
other words, b, is equal to the quotient when the perpen-
dicular distance between the opinion point and the edge
joining the uncertainty and disbelief vertexes is divided by

U ncer'iai nty

Example opinion:
wx=(0.7,0.1,0.2,0.5)

Projector

Ipelief

o
2

i
Ex) 1
Probability axis

Figure 8: Opinion triangle with example opinion

the perpendicular distance between the belief vertex and
the same edge. The parameters d, and u, are determined
similarly. The base of the triangle is called the probability
axis. The base rate is indicated by a point on the probabil-
ity axis, and the projector starting from the opinion point
is parallel to the line that joins the uncertainty vertex and
the base rate point on the probability axis. The point at
which the projector meets the probability axis determines
the expectation value of the opinion, i.e. it coincides with
the point corresponding to expectation value E(w2).

Opinions can be ordered according to probability ex-
pectation value, but additional criteria are needed in case
of equal probability expectation values. We will use the
following rules to determine the order of opinions [7]:

Let w, and w, be two opinions. They can be ordered
according to the following rules by priority:

1. The opinion with the greatest probability expectation
is the greatest opinion.

2. The opinion with the least uncertainty is the greatest
opinion.

3. The opinion with the least base rate is the greatest
opinion.

The probability density over binary event spaces can
be expressed as beta PDFs (probability density functions)
denoted by beta («, 3) [3]. Let r and s express the num-
ber of positive and negative past observations respectively,
and let a express the a priori or base rate, then « and (3 can
be determined as:

a=r+2a, B=s+2(1-a).)

The following bijective mapping between the opinion
parameters and the beta PDF parameters can be deter-
mined analytically [7, 14].

be =7/(r+s+2) r=2by/uy

dy =8/(r+s+2) $=2dy/uy
e = 2/(r 45 +2) S bt dtu @
» = base rate of x a = base rate of x

This means for example that a totally ignorant opinion
with u, = 1 and a, = 0.5 is equivalent to the uniform
PDF beta (1, 1) illustrated in Fig.9.

It also means that a dogmatic opinion with u,; = 0
is equivalent to a spike PDF with infinitesimal width and
infinite height expressed by beta (b,n, d.n), where n —
oo. Dogmatic opinions can thus be interpreted as being
based on an infinite amount of evidence.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Probability density Betap |1,1)

Probabilityp

Figure 9: A priori uniform beta(1,1)

After r positive and s negative observations in case of
a binary state space (i.e. a = 0.5), the a posteriori distri-
bution is the beta PDF with « = r + 1and 8 = s + 1.
For example the beta PDF after observing 7 positive and
1 negative outcomes is illustrated in Fig.10, which also is
equivalent to the opinion illustrated in Fig.8

5

Probability density Betap |8,2)

0 1 ! !
0 0.2 0.4 0.6 0.8 1

Probability p

Figure 10: A posteriori beta(8,2) after 7 positive and 1
negative observations

A PDF of this type expresses the uncertain probability
that a process will produce positive outcome during future
observations. The probability expectation value of Fig.10
is E(p) = 0.8. This can be interpreted as saying that the
relative frequency of a positive outcome in the future is
somewhat uncertain, and that the average value is 0.8.

The variable p is a probability variable, so that for a
given p the probability density beta(a, 3) represents sec-
ond order probability. The first-order variable p represents
the probability of an event, whereas the density beta(c, 3)
represents the probability that the first-order variable has
a specific value. Since the first-order variable p is con-
tinuous, the second-order probability beta(c, 3) for any
given value of p € [0, 1] is vanishingly small and therefore
meaningless as such. It is only meaningful to compute

i ; * beta(c, 3) for a given interval [p1, p2], or simply to

compute the expectation value of p. The expectation value
of the PDF is always equal to the expectation value of the
corresponding opinion. This provides a sound mathemati-
cal basis for combining opinions using Bayesian updating
of beta PDFs.

6.2 Determining Trust with Reputation Systems

The trust representation of subjective logic is directly
compatible with the reputation representation of Bayesian
reputation systems [12, 13, 25, 24]. This makes it possi-
ble to use reputation systems to determine trust measures.
The method for doing this is briefly described below.
Bayesian reputation systems allow agents to rate
other agents, both positively and negatively, by arbitrary

amounts, for a single transaction. This rating takes the
form of a vector:

p:[Z],whereTZOandszo. (10)
A simple binary rating system can e.g. be implemented
by using p™ = [1,0] for a satisfactory transaction and

p~ = [0, 1] for an unsatisfactory transaction [11].
A particular rating can be denoted as:

(1)

which can be read as X ’s rating of Z at time ¢t . When-
ever not relevant, these super- and subscripts can be omit-
ted.

X
PZtr

6.2.1 Aging Ratings

Agents (and in particular human agents) may change their
behaviour over time, so it is desirable to give greater
weight to more recent ratings. This can be achieved by
introducing a longevity factor A, which controls the rate at
which old ratings are ‘forgotten’:
Xt t—tr X

Pzir = A szth (12)
where 0 < A\ < 1, tp is the time at which the rating was
collected and ¢ is the current time.

6.2.2 Aggregating Ratings

Ratings may be aggregated by simple addition of the com-
ponents (vector addition).
For each pair of agents (X, Z), an aggregate rating

p'(X, Z) can be calculated that reflects X’s overall opin-
ion of Z at time ¢:

(X, Z) = Zp;ﬁ’;, where tg < t . (13)

Also, Z’s aggregate rating by all agents in a particular
set .S can be calculated:

p'(2) =" p'(X, 2).

XeSs

(14)

In particular, the aggregate rating for Z, taking into ac-
count ratings by the entire agent community C, can be
calculated:

p'(2)="> p'(X,2).

XeC

5)

6.2.3 The Reputation Score

Once aggregated ratings for a particular agent are known,
it is possible to calculate the reputation probability distri-
bution for that agent. This also takes into account the base
rate reputation score a of all agents in the community. The
reputation score is then expressed as:

beta(p’(Z)) = beta(r + 2a, s + 2(1 — a)),

where
r2=1].

However probability distributions, while informa-
tive, cannot be easily interpreted by users. A simpler
point estimate of an agent’s reputation is provided by
E[beta(p'(Z)) |, the expected value of the distribution.
This provides a score in the range [0, 1], which can be
scaled to any range (including, for example, ‘0% reliable
to 100% reliable’).

(16)

91

CRPIT Volume 48

92

Definition 5 (Reputation Score) Let p'(Z) = [r, s]’ rep-
resent target Z’s aggregate ratings at time ¢. Then the
function R*(Z) defined by:

+ 2
RY(Z) = E| beta(p!(2))] = ﬁ (17)

is called Z’s reputation score at time ¢.

The reputation score R(Z) can be interpreted as a
probability measure indicating how a particular agent is
expected to behave in future transactions.

The base rate a is particularly useful for determining
the reputation score of agents for which the aggregated
ratings have low confidence, e.g. because the agents have
been idle for longer periods, or because they are new en-
trants to the community. It is interesting to note that in a
community where the base rate a is high, a single negative
rating will influence the reputation score more than a sin-
gle positive rating. Similarly, in a community where the
base rate a is low, a single positive rating will influence the
reputation score more than a single negative rating. This
nicely models the intuitive observation from everyday life
where ““it takes many good experiences to balance out one
bad experience”.

6.3 Trust Reasoning

Subjective logic defines a number of operators [7, 22, 16],
where some represent generalisations of binary logic and
probability calculus operators, whereas others are unique
to belief theory because they depend on belief ownership.
Here we will only focus on the discounting and the con-
sensus operators. The discounting operator can be used to
derive trust from transitive paths, and the consensus oper-
ator can be used to derive trust from parallel paths. These
operators are described below.

e Discounting [7] is used to compute transitive trust.

Assume two agents A and B where A has refer-

ral trust in B, denoted by wpy = (b, dp, u, af).

In addition B has functional trust in C, denoted by
w8 = (b8,d8,uB,aB). A’sindirect functional trust
in C' can then be derived by discounting B’s trust in
C with A’s trust in B. The derived trust is denoted
by wd? = (b&P,dEP, u& P, afiP). By using the
symbol ‘®’ to designate this operator, we can write

A:B _ A B
weT =wp Quwe.

R

447 = b

(18)
ugt = dig +ujg + biud
aé:B =al.

The effect of discounting in a transitive path is to in-
crease uncertainty, i.e. to reduce the confidence in the
expectation value.

e Consensus [7, 8, 9] is used to fuse two (possibly con-
flicting) beliefs into one. Letw§ = (b2, dA, ud, ad)
and wf = (bB,dB,uB,aB) be trust in C
from A and B respectively. The opinion
wg? (bA°B, d2°P B, af°P) is then
called the consensus between wé and wg, denoting
the trust that an imaginary agent [A, B] would have
in C, as if that agent represented both A and B. By
using the symbol ‘@’ to designate this operator, we

AoB

: _ A B
can write wg =we Pwe-

Case I: ud +u8 — udul # 0

pAeB _ Zéug;‘bg:éB
c ugtug—ugug

JASB _ dAuB 1B uA
¢ ugHug—ugug

UA<>B — “é‘“g
¢ = gl
ote? = at

Case II: ué + ug — uéug =0

bg°P = (VPG +08)/(vVE + 1)

A48 = (AP a4+ dB)/(v4/% +1)

AoB _
ug®” =0
adB =ac .

where the relative weight 74/ 8 = lim(uZ /uf)
The effect of the consensus operator is to reduce un-
certainty, i.e. to increase the confidence in the expec-
tation value. In case the subjective opinions are prob-
ability values (u = 0), Case II produces the weighted
average of probabilities.

The discounting and consensus operators will be used
for the purpose of deriving trust measures in the example
below.

7 Example Derivation of Trust Measures

Transitive trust graphs can be stored and represented in a
computer system in the form of a list of directed trust arcs
with additional attributes.

This numerical example is based the trust graph of
Fig.3. Table 1 specifies trust measures expressed as opin-
ions. The DSTC Subjective Logic API? was used to com-
pute the derived trust values.

Table 1: Direct trust measures of Fig.3

Arc Variant Measure Time

[A, B] r 0.9, 0.0, 0.1, 0.5) 7

[4, D] r 0.9, 0.0, 0.1, 0.5) 7

[B,C)] r
T1
0.3, 0.0, 0.7, 0.5

T1

)
)
0.9, 0.0, 0.1, 0.5) 7
)
D, C] r)
)

(
(
(
C,E] f (09,0001, 05
(
[A,B) r (00,09, 0.1, 05

T2

A parser based on the algorithms of Fig.5 and Fig.7
can go through the arcs of Table 1 to construct the trust

2 Available atht t p: / / securi ty. dst c. coml spect r um

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

network of Fig.3, and the corresponding canonical expres-
sion of Eq.(4). By applying the discounting and consensus
operators to the expression of Eq.(4), a derived indirect
trust measure can be computed.

e Case a:

First assume that A derives her trust in £ at time 71,
in which case the first entry for [A, B] is used. The
expression for the derived trust measure and the nu-
merical result is given below.

wh = ((wh®wd) & (wh ®wl)) ®w§ 19
= (0.74, 0.00, 0.26, 0.50)

The derived trust measure can be translated into a
beta PDF according to Eq.(9) and visualised as a den-
sity function as illustrated by Fig.11

7

sl
> 5
z
g sr
&

.l

Wl

0 L

0 0.2 04 0.6 0.8 1
Probability
Figure 11: wi = beta(6.7, 1.0)
e Case b:

Let us now assume that based on new experience at
time 7o, A’s trust in B suddenly is reduced to that
of the last entry for [A, B] in Table 1. As a result
of this, A needs to update her derived trust in F and
computes:

wi = (Wi ®wl) & (wh ®wl)) ®w§ 0
= (0.287, 0.000, 0.713, 0.500)

Fig.12 below visualises the derived trust measure.

7

6 4

5 4

Probability density

0 I I I I
0 0.2 04 0.6 0.8 1

Probability

Figure 12: w' = beta(1.8, 1.0)

It can be seen that the trust illustrated in Fig.11 is rel-
atively strong but that the trust in Fig.12 approaches the
uniform distribution of Fig.9 and therefore is very uncer-
tain. The interpretation of this is that the distrust intro-
duced in the arc [A, B] in case (b) has rendered the path

([A,B] : [B,C] : [C, E]) useless. In other words, when
A distrusts B, then whatever B recommends is completely
discounted by A. It is as if B had not recommended any-
thing at all. As a result A’s derived trust in £ must be
based on the path ([A, D] : [D,C] : [C, E]) which was
already weak from the start.

8 Discussion and Conclusion

We have presented a notation for expressing trust net-
works, and a method for trust network analysis based on
graph simplification and trust derivation with subjective
logic. This approach is called Trust Network Analysis
with Subjective Logic (TNA-SL).

Our approach is different from trust network analysis
based on normalisation, as e.g. in PageRank and Eigen-
Trust. The main advantage of normalisation is that large
highly connected random graphs can be analysed while
still taking all arcs into account. The main disadvan-
tages of normalisation is that it is difficult to express
negative trust, and that it makes trust measures relative,
which prevents them from being interpreted in any abso-
lute sense like e.g. statistical reliability. Neither PageRank
nor EigenTrust can handle negative trust.

Trust network simplification with TNA-SL produces
networks expressed as directed series-parallel graphs. A
trust arc has the three basic attributes of source, target and
scope, where the trust scope can take either the functional
or the referral variant. This makes it possible to express
and analyse fine-grained semantics of trust. Additionally,
we have incorporated the attributes of measure and time
into the model in order to make it suitable for deriving
indirect trust measures through computational methods.

One advantage of TNA-SL is that negative trust can
be explicitly expressed and propagated. In order for dis-
trust to be propagated in a transitive fashion, all interme-
diate referral arcs must express positive trust, with only
the last functional arc expressing negative trust. Another
advantage is that trust measures in our model are equiv-
alent to beta PDFs, so that trust measures can be directly
interpreted in statistical terms, e.g. as measures of reliabil-
ity. This also makes it possible to consistently derive trust
measures from statistical data. Our model is for exam-
ple directly compatible with Bayesian reputation systems
[12, 25], so that reputation scores can be directly imported
as trust measures. This rich way of expressing trust sep-
arates between the nominal trust value (positive/negative)
and the confidence level (high/low), and also carries infor-
mation about the baseline trust in the community.

The main disadvantage of TNA-SL is that a complex
and cyclic network must be simplified before it can be
analysed, which can lead to loss of information. While the
simplification of large highly connected networks could
be slow, heuristic techniques can significantly reduce the
computational effort. This is done by ignoring paths for
which the confidence level drops below a certain thresh-
old, and by including the paths with the strongest confi-
dence level first when constructing a simplified network.
This also leads to minimal loss of information.

The approach to analysing transitive trust networks de-
scribed here provides a practical method for expressing
and deriving trust between peers/entities within a commu-
nity or network. It can be used in a wide range of appli-
cations, such as monitoring the behaviour of peers and as-
sisting decision making in P2P communities, providing a
quantitative measure of quality of web services, assessing
the reliability of peers in Internet communities, and eval-
uating the assurance of PKI certificates. Combined with
subjective logic, TNA-SL allows trust measures to be effi-
ciently analysed and computed, and ultimately interpreted
by humans and software agents.

93

CRPIT Volume 48

94

References

(1]

(3]

[4]

[5]

[6]

[10]

[11]

Matt Blaze, Joan Feigenbaum, and Jack Lacy. De-
centralized trust management. In Proceedings of
the 1996 IEEE Conference on Security and Privacy,
Oakland, CA, 1996.

B. Christianson and W. S. Harbison. Why Isn’t Trust
Transitive? In Proceedings of the Security Protocols
International Workshop. University of Cambridge,
1996.

M.H. DeGroot and M.J. Schervish. Probability and
Statistics (3rd Edition). Addison-Wesley, 2001.

C. Ellison et al. RFC 2693 - SPKI Certifi-
cation Theory. IETF, September 1999. url:
http://www.ietf.org/rfc/rfc2693.txt.

P. Flocchini and FL. Luccio. Routing in Series
Parallel Networks. Theory of Computing Systems,
36(2):137-157,2003.

T. Grandison and M. Sloman. A Survey of Trust in
Internet Applications. IEEE Communications Sur-
veys and Tutorials, 3, 2000.

A. Jgsang. A Logic for Uncertain Probabili-
ties. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 9(3):279-311, June
2001.

A. Jgsang. The Consensus Operator for Combin-
ing Beliefs. Artificial Intelligence Journal, 142(1-
2):157-170, October 2002.

A. Jgsang, M. Daniel, and P. Vannoorenberghe.
Strategies for Combining Conflicting Dogmatic Be-
liefs. In Xuezhi Wang, editor, Proceedings of the
6th International Conference on Information Fusion,
2003.

A. Jgsang, E. Gray, and M. Kinateder. Simplifi-
cation and Analysis of Transitive Trust Networks
(to appear). Web Intelligence and Agent Systems,
00(00):00-00, 2005.

A. Jgsang, S. Hird, and E. Faccer. Simulating the
Effect of Reputation Systems on e-Markets. In
P. Nixon and S. Terzis, editors, Proceedings of the
First International Conference on Trust Manage-
ment (iTrust), Crete, May 2003.

A. Jgsang and R. Ismail. The Beta Reputation Sys-
tem. In Proceedings of the 15th Bled Electronic
Commerce Conference, Bled, Slovenia, June 2002.

A. Jgsang, R. Ismail, and C. Boyd. A Survey of
Trust and Reputation Systems for Online Service
Provision (to appear). Decision Support Systems,
00(00):00-00, 2006.

A. Jpsang and S. Pope. Normalising the Consensus
Operator for Belief Fusion. In Proceedings of the
18th Australian Joint Conference on Artificial Intel-
ligence, Sydney 2005.

A. Jgsang and S. Pope. Semantic Constraints for
Trust Tansitivity. In S. Hartmann and M. Stumpt-
ner, editors, Proceedings of the Asia-Pacific Confer-
ence of Conceptual Modelling (APCCM) (Volume 43
of Conferences in Research and Practice in Infor-
mation Technology), Newcastle, Australia, February
2005.

[16]

[17]

[21]

(23]

[24]

[25]

[26]

Audun Jgsang, Simon Pope, and Milan Daniel. Con-
ditional deduction under uncertainty. In Proceedings
of the 8th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncer-
tainty (ECSQARU 2005), 2005.

S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina.
The EigenTrust Algorithm for Reputation Manage-
ment in P2P Networks. In Proceedings of the
Twelfth International World Wide Web Conference,
Budapest, May 2003.

Liberty-Alliance. Liberty ID-FF Archi-
tecture Overview. Version: 1.2-errata-v1.0.
http://www.projectliberty.org/specs/liberty-idft-
arch-overview-v1.2.pdf, 2003.

Liberty-Alliance. Liberty Trust Models Guide-
lines. http://www.projectliberty.org/specs/liberty-
trust-models-guidelines-v1.0.pdf, Draft Version 1.0-
15 edition, 2003.

G. Mahoney, W. Myrvold, and G.C. Shoja. Generic
Reliability Trust Model. In A. Ghorbani and
S. Marsh, editors, Proceedings of the 3rd An-
nual Conference on Privacy, Security and Trust,
St.Andrews, New Brunswick, Canada, October
2005.

L. Page, S. Brin, R. Motwani, and T. Winograd.
The PageRank Citation Ranking: Bringing Order to
the Web. Technical report, Stanford Digital Library
Technologies Project, 1998.

Simon Pope and Audun Jgsang. Analsysis of com-
peting hypotheses using subjective logic. In Pro-
ceedings of the 10th International Command and
Control Research and Technology Symposium (IC-
CRTS). United States Department of Defense Com-
mand and Control Research Program (DoDCCRP),
2005.

Ronald L. Rivest and Butler Lampson. SDSI — A
simple distributed security infrastructure. Presented
at CRYPTO’96 Rumpsession, 1996.

R. Wishart, R. Robinson, J. Indulska, and A. Jgsang.
SuperstringRep: Reputation-enhanced Service Dis-
covery. In Proceedings of the 28" Australasian
Computer Science Conference (ACSC2005), 2005.

A. Withby, A. Jgsang, and J. Indulska. Filtering Out
Unfair Ratings in Bayesian Reputation Systems. The
Icfain Journal of Management Research, 4(2):48—
64, 2005.

WS-Trust. Web Services Trust Language (WS-Trust).
ftp://wwwb.software.ibm.com/software/developer/
library/ws-trust.pdf, February 2005.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

A Semantic Approach to Boost Passage Retrieval Effectiveness
for Question Answering

Bahadorreza Ofoghi
John Yearwood
Ranadhir Ghosh

Centre for Informatics and Applied Optimization
School of Information Technology and Mathematical Sciences
University of Ballarat
PO Box 663, Ballarat, Victoria 3353, Australia

bofoghi@students.ballarat.edu.au
{j.yearwood, r.ghosh}@ballarat.edu.au

Abstract

In the current state of the rapid growth of information
resources and the huge number of requests submitted by
users to existing information retrieval systems; recently,
Question Answering systems have attracted more
attention to meet information needs providing users with
more precise and focused retrieval units. As one of the
most challenging and important processes of such systems
is to retrieve the best related text excerpts with regard to
the questions, we propose a novel approach to exploit not
only the syntax of the natural language of the questions
and texts, but also the semantics relayed beneath them via
a semantic question rewriting and passage retrieval task.
The semantic structure used to address the surface
mismatch of the semantically related passages and queries
is FrameNet which is a lexical resource for English
constituted based on frame semantics. We have run our
proposed approach on a subset of the TREC 2004 factoid
questions to retrieve passages containing correct answers
from the AQUAINT collection and we have obtained
promising results.

Keywords: Passage Retrieval,
Answering, Semantic Boosting.

FrameNet, Question

1 Introduction

In recent years, Question Answering (QA) systems have
evolved out of the field of Information Retrieval (IR) to
better understand and more precisely cope with
information requests. Unlike simple and popular
keyword-based information retrieval systems (e.g. Web
search engines), QA systems aim to communicate directly
with users through a natural language which brings more
convenience and comprehension to users who submit
their information needs. Having received natural
language questions, such systems perform various
processes to return actual direct answers to the requests

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

eliminating the burden of query formulation and reading
lots of irrelevant documents to reach the desired answer
by users. This is due to the fact that a user usually wants
not whole documents but brief answers to the specific
questions like: “How old is the President? Who was the
second person on the moon? When was the storming of
the Bastille?”” (Hovy, Gerber et al. 2001).

In a typical architecture of a question answering system,
there are four main procedures; i) question analysis and
query formulation, ii) document retrieval, iii) passage
retrieval, and iv) answer extraction. The task of analysis
of a question contains different sub-procedures based on
the general view of the question answering system. In an
ontology-based system, this consists of finding related
ontology nodes for the submitted question in order to
carry out further related processes (Hejazi, Mirian et al.
2003), while in most other systems the procedure of
question analysis tries to find named entities and/or to
recognize the answer category of the question (Moschitti
and Harabagiu 2004), to take into account the temporal
issues of the question (Saquete, Martinez-Barco et al.
2004), and to formulate the best representative keyword-
based query to boost the retrieval precision in the tasks of
document and passage retrieval (Brill, Dumais et al.
2002). Obviously, none of these goals could be achieved
before precise and sophisticated natural language
processing on the question. In the next step the question
answering system is supposed to find the best textual
documents from inside the collection which is the answer
resource of the system. Such documents should contain
passages relevant to the topic of the question. The task of
document retrieval, which could be automated using the
best known search engines, is bypassed in some question
answering systems as they retrieve best passages directly
from inside the whole collection. However, the main idea
of retrieving the most relevant text snippets to the
question is commonly accepted by all question answering
systems, When it comes to answering specific
information needs of users, the successful extraction of
candidate and actual answers could be achieved only on
the part of the text which is most similar to the queries
formulated based on the original questions. The idea of
how to find candidate and actual answers of a question is
mostly dependent on the syntactic or semantic structure
that is used by the question answering system. START

95

CRPIT Volume 48

96

tries to extract such short amounts of information based
on ternary expressions matching (Katz 1997). There is a
proposed idea for modelling documents based on
recognizing Named Entities (Pérez-Coutifio, Solorio et al.
2004) which leads to finding corresponding named
entities already recognized inside the text using the
SUMO ontology. One of the sophisticated approaches to
extract answers has been developed based on frame
semantics and sentence annotation using the English
lexicon resource, FrameNet, which performs frame and
frame element matching and makes inferences inside the
related parts of the conceptual graph of FrameNet
(Narayanan and Harabagiu 2004).

While working on a question answering architecture, we
realized that the precision of best known passage retrieval
algorithms could not go higher than a low pick due to
some inconsistencies between the questions and the
contents of the documents. Having considered that the
passage retrieval task is one of the necessary sub-
processes in a question answering system (Clarke and
Terra 2003), it is worthy to work more on this step to
boost the current state-of-the-art of the existing best-
known passage retrieval algorithms. Hence, we propose
and explore a novel approach on boosting the
effectiveness of the passage retrieval task in the context
of question answering in a large collection of text so that
the system could cope with different types of syntactical
mismatch between formulated queries and the texts. We
justify our approach based on the results we obtained for
a subset of the TREC 2004 factoid questions and the
AQUAINT collection using the MultiText (Clarke,
Cormack et al. 1997) passage retrieval algorithm and
Lemur’s passage retrieval engine. Our idea, which
exploits Intra-Frame relations between different English
terms inside the frames of FrameNet (Baker, Fillmore et
al. 1998), has been developed on the basis of poor
coverage of the two above-mentioned passage retrieval
techniques on the answers of the questions. It has shown
impressive results, even though the idea requires that the
question (rewritten question) be submitted to the passage
retrieval engine more than once.

This paper is organised as follows. Section 2 describes
what we mean by passage retrieval for question
answering, and also introduces the two passage retrieval
algorithms that we have used. In section 3 the main idea
of Intra-Frame analysis in FrameNet in order to rewrite
the questions and retrieve semantically related passages,
as well as the methodology of judging the passages, are
described. Section 4 explains the experimental issues and
finally, in section 5 we conclude the paper.

2 Passage Retrieval for Question Answering

There are different reasons for a question answering
system to perform either well or poorly on the basis of the
precision of the answers it provides to submitted
questions. We are convinced that in order to find
candidate answers that can be used to decide about the
actual answer, such systems should be provided with one
or more text snippets each of which may contain one or
more sentences. This is a crucial sub-process of an end-
to-end question answering system. It is also clear that in

case there is no candidate or actual answer present inside
retrieved passages, then there is no chance for the system
to return a correct answer.

There have been many efforts on different passage
retrieval algorithms (Tellex, Katz et al. 2003) for
dissimilar purposes with diverse points of view on the
definition of the word “passage”. As mentioned in
(Callan 1994) and (Kaszkiel and Zobel 1997) and also
referred to in (Kaszkiel, Zobel et al. 1999), the most
effective and reliable definition of passage is what
includes a fixed-length sequence of words starting and
ending anywhere in the document. However, it is not
clear that they have tried all well-known algorithms
including MultiText algorithm (Clarke, Cormack et al.
1997) which, in our experiments, outperforms Lemur’s
passage retrieval engine (using its best retrieval model)
that will be discussed further later. All of the Lemur’s
passage retrieval models take into account fixed-size
passages to be indexed and retrieved.

The output of the passage retrieval task is very dependent
on the query formulation of the original question, and
certainly, the query formulation process could not be
established before accurate knowledge about the index
structure (e.g. if phrase indexing is supported, and if
stemmed terms are indexed) of the texts inside the
collection. In the next sections, we explore the two
passage retrieval methods that we used as well as the
specific settings necessary for each. The selection of
these two passage retrieval algorithms is strongly based
on the fact they cover both fixed-size and dynamic-size
passages which is of important characteristics of such
algorithms.

2.1 MultiText Algorithm

One of the best-known passage retrieval algorithms is the
MultiText algorithm exploited for document ranking and
retrieval purposes as well. This algorithm interprets all
documents as a series of continuous words and also
interprets passages as any number of words starting and
ending anywhere inside the documents of a collection
(Clarke, Cormack et al. 1997). These passages, which are
initially identified by covers, start with one of the query
keywords and end with another one, not overlapping the
boundaries of documents which constitute the unique
string of the words. Experiments performed in (Tellex,
Katz et al. 2003) show that this algorithm has shown
quite high performance; the third highest MRR (Main
Reciprocal Rank) in documents retrieved by the PRISE
search engine and the highest MRR in those retrieved by
the Lucene search engine. The results are obtained among
the eight passage retrieval algorithms investigated by the
authors. This high performance, as well as the frequent
participation of MultiText in TREC (Clarke, Cormak et
al. 2000), were the main reasons for choosing MultiText
as one of our passage retrieval algorithms.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

2.2 Lemur’s Retrieval Engine

Lemur is a toolkit designed to facilitate research in
language modelling and information retrieval®. It includes
a well-designed and supported implementation of
different functionalities for text parsing, indexing,
retrieval, summarization, and clustering. We have used
the indexing and passage retrieval functions of Lemur.
Focusing on passage retrieval, Lemur has seven retrieval
models each of which could be applied for both document
and passage retrieval tasks; i) the tf/idf model, ii) the
Okapi bm25 model, iii) KL-divergence language model
based method, iv) the CORI model, v) CORI collection
selection model, vi) Cosine similarity model, and vii)
Indri structured query language. After comparing the
retrieval efficiency of these different models, the CORI
collection selection model showed the best performance
in retrieving the most related passages for the TREC 2004
factoid questions in the AQUAINT collection. The task
of passage retrieval is performed based on fixed-size
passages inside the documents, while passages have
overlaps equal to half of the size of the passages.

3 Exploiting Intra-Frame Term-Level
Relations inside FrameNet

As most passage retrieval algorithms are dependent on
the occurrences of exact matches of surface features
inside the queries and textual documents, even their state-
of-the-art precision of retrieval could not go beyond the
limitations which are formed by mentioned syntactic
structures. In other words, there is little chance for any
such passage retrieval algorithm to return a passage
which contains the word “spot” in response to a query
containing the keyword “discover”, for instance. This is
because of the fact that there could not exist any type of
syntactic similarity between the two words, though they
share similar meaning. The problem could be still more
complex to solve, in a state of common concepts rather
than meanings. For example, in a scenario of a passage
where the word “son” is mentioned, there is no syntactic
clue to relate any query containing the word “father” to
the passage. Such types of mismatch between query
keywords and those which may occur inside the texts lead
us to resolve the issue by moving towards the semantics
underlying the text. Initially, we have found a solution to
this sort of query and passage mismatch by using
FrameNet data in a Question Rewriting and re-retrieval of
passages inside the collection.

3.1 FrameNet Lexicon Resource

FrameNet is a lexicon resource for English (Baker,
Fillmore et al. 1998) whose infrastructure is based on
Frame Semantics (Lowe, Baker et al. 1997) which is
different with Marvin Minsky’s frames. FrameNet
contains two main entities to completely model and
conceptualize the scenarios and the target words which
could be realized in the scenarios. Frames, in the highest
level of abstraction within FrameNet, encode the base
definitions necessary to understand the semantics and the

2 http://www.lemurproject.org/lemur/overview.html

scene of each contained word. In other words, real-world
knowledge about the scenarios and their related
properties are encoded inside the Frames (Lowe, Baker et
al. 1997). To address this, each Frame contains some
Frame Elements as representatives of the different
semantic and syntactic roles (valences) regarding a target
word inside the Frame. The semantic roles are usually
common among all of the words that are inherited from a
Frame. This ensures a suitable generalization over the
English words which either have similar meanings or
share the context and/or the scenario in which they could
occur in the sentences of the language.

FrameNet is different from WordNet as it contains not
only words with similar meanings, but also higher level
concepts of similar scenarios of usage in the real-world.
On the other hand, these scenarios are related to each
other to model an end-to-end scenario containing some
smaller sub-scenarios. The different relation types
existing between Frames cover this overview of the
different events all of which could be realized by
FrameNet.

In addition, FrameNet has more than what are formulated
by the Predicate-Argument Structure (Surdeanu,
Harabagiu et al. 2003), considering the fact that
predicates in the Predicate-Argument structure normally
are the verbs of the language and the arguments are
formed based on dissimilar roles that the predicate could
play in the sentences of the language. Target words of
FrameNet are nouns, verbs, and even adjectives of the
language.

Given the above considerations, FrameNet is well suited
for our proposed idea on the resolution of the passage-
query syntactical mismatches.

3.2 Passage-Query Mismatch Resolution

The generalization over conceptual scenarios and their
related properties is the main characteristic of FrameNet
that we have been interested in for resolving the problem
of poor passage retrieval performance in the context of
question answering due to the syntactic mismatch
between the words inside the collection and the keywords
of the queries formulated based on original questions.
The semantic generalization applied by FrameNet is
playing the role of the lost chain for retrieving
semantically related passages in response to the queries.

It should be noticed that, in the context of question
answering, not all types of semantic query expansion is of
interest regarding the fact that a question answering
system has to be capable of answering exact questions
with actual direct answers. For instance, it is not realistic
to change the original query, formed based on the original
question, using WordNet semantic relations which has
performed well for document retrieval tasks (Voorhees
1994). It causes the retrieval of more indirectly related
passages to the question leading to extracting answers
which may not be of interest. This argument does not
include the systems which try to identify online relations
between concepts of different abstraction levels (e.g.
(Moldovan, Harabagiu et al. 2002)) that may result in a
beneficial semantic matching of the text of the questions

97

CRPIT Volume 48

98

and passages. On the other hand, applying ontology
relations between entities or using fuzzy inclusion
relations (Akrivas, Wallace et al. 2002) could result in
irrelevant passages to come up in the final ranking of
retrieved passages. We argue that these methods are not
suitable for answering direct factoid questions; however,
they have performed well in different contexts.

In what is called generalization over conceptual scenarios
and their related properties, the actual procedure of our
proposed idea contains a joint generalization-
specialization action which evokes a Frame and then
considers one of the related terms that is inherited from
the Frame. This generalization-specialization method
guarantees the query remains at the same semantic
abstraction level of the original question.

While these sorts of passages either could not be retrieved
or have a very low similarity measure with the query, the
way to boost the performance of the retrieval is to
substitute the target word of the question with
semantically related ones. This is what we call Intra-
Frame Term-Level relation, as the substitution is
performed based on the target Frame inside FrameNet
and the lexical units (terms) covered by the Frame. Figure
1 depicts what happens in a cycle of boosting the passage
retrieval effectiveness via question rewriting in the
context of question answering.

PASSAGE RETRIEVAL BOOSTER 1Yes

question
1
1

r—-T-T--~-~=°=° e I

1 h 4 \

[} . -

1 Question Analysis & Intra-Frame !

i Query Formulation = Analysis 1

! 1

i query _ !

1 v alternatives |

| 1

: Passage Question Rewriting :

i Retrieval 1
1

i passages 1

. :

1 v 1

| 1

[}

! Passage Analysis Answer !

i Found? 1

1

. :

| 1

| 1

answer passage

Figure 1: The main cycle of boosting passage retrieval
effectiveness in the context of question answering

It should be noticed that the passage retrieval algorithm
that is mainly used in this architecture is a modified
version of MultiText passage retrieval algorithm whose
modifications will be discussed further in the next
sections.

The cycle of passage retrieval starts with submitting a
question to the system already developed for this purpose.
Initially, the question is subject to natural language
processing in order that the main keywords to formulate
the representative query are known and some other
information related to other tasks of question answering is
extracted. Then, the query will be sent to the passage
retrieval engine to find the best match text excerpts. If the
top-ranked passages, based on the manual analysis

performed by the passage analysis module, contain the
real answer, then no further process is performed at this
stage; otherwise, the system tries to identify semantically
related text snippets, which are missed due to a syntactic
mismatch, after the Intra-Frame analysis on the Frame
from which the current target word inherits. The
alternative word is one which is also inherited from the
evoked Frame by the initial target word and in addition, it
has the same part-of-speech (e.g. verb) as that of the
initial target. In order to better explain the idea, we
consider Example 1.

Example 1: A question from the question list of TREC
2004 is considered (the question id is 3.1 and the target id
is 3). The question is fed to the system and the retrieval
cycle is as follows;

Question “When was the comet discovered?” (TREC
Target: Hale Bopp comet) - Query “comet discover
Hale Bopp” - No Answer in Retrieved Passages ->
Corresponding Frame Call Evokes the Frame
“BECOMING_AWARE” - Intra-Frame Analysis and
Alternative Predicate Finding “Spot” - Question
Rewriting Using Alternative Predicate “ When was the
comet spotted” (TREC Target: Hale Bopp comet) ->
Query “comet spot Hale Bopp” > Answer Found in the
Second Passage.

Inside the AQUAINT collection for TREC 2004, there
are some passages containing similar passages to the
original question 3.1; however, none of them contains the
answer. The top-most passage which is returned by the
modified MultiText at the first cycle is:

<PASSAGE no=1 score= 1.0>

Hale-Bopp, a newly-discovered extraordinarily large

comet in the solar system, has been recently observed for

the first time in China.

</PASSAGE>

which is very similar to the query formulated as
mentioned above. However, because of the fact that the
real answer has not been mentioned using the same
predicate “discover”, the passage retrieval algorithm
could not either bring the container of the real answer to
the top ranks or even retrieve it, as it is the case in this
example.

After finding the alternative semantically related
predicate “Spot” from inside the corresponding Frame
“BECOMING_AWARE”, the rewrite question and the
respective query will come up with a passage like below
at the second rank;

<PASSAGE no=2 score= 0.96209>

The comet, one of the brightest comets this century, was

first spotted by Hale and Bopp, both astronomers in the

United States, on July 23, 1995.

</PASSAGE>
which contains the correct answer to the question,
although it still needs some context resolution and actual
answer extraction processes to be performed.

This example clearly shows what happens in the passage
retrieval process for question answering systems which
could not extract correct answers for those questions
which have not a syntactically direct match inside the
collection. In contrast, the proposed idea for re-
submitting rewrite questions based on Intra-Frame Term-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Level analysis shows promising resolution over the
problem.

3.3 Evaluating Passages

As discussed in (Kaszkiel, Zobel et al. 1999) there are
usually two ways to measure the retrieval performance of
a text retrieval system (e.g. a passage retrieval system).
The first way is to measure the efficiency which is based
on the usage of the resources like disk, time, and
memory. In the second manner, the effectiveness of the
system is measured with regard to the value of
satisfaction of users by retrieved texts.

In the context of the question answering systems, the
effectiveness of the passages are more important
especially to the extent that they potentially deliver
correct actual answers to the question submitted by a
user.

In focussing on a QA task and using the TREC QA track,
our judgment of the passages is based on whether the
retrieved passages satisfy the reported correct answer
patterns by TREC for each question. In standard passage
retrieval, passages are judged for relevance or “aboutness’
but in this instance we are assessing passages on whether
or not they contain the correct answers. This is a more
stringent requirement than relevance. Consequently many
highly similar passages, in this context, will not have the
actual answer.

The justification of the passages in passage analysis
module of the boosting cycle, in further experiments, is to
be based on complicated judgements on the candidate
answers in the context of a question answering system,
although in our first experiments, as mentioned earlier,
this has been done manually with regard to the answer
patterns reported by TREC. The manual justification of
the passages is subject to further study and work with
respect to the features of the answer extraction process in
an end-to-end question answering system.

In addition, we are concerned about a reasonable method
that could extract such answers from inside the
potentially correct passages. We do not cover these issues
here as they are part of our work in the question
answering architecture and the subject of our current and
next study.

4 Experimental Issues

We discuss our experimental results with regard to the
three aspects of the research study that is being
undertaken for semantically answering factoid questions.

41 Data

The dataset that has been used for this research study is
the TREC 2004 question list and its corresponding text
collection of AQUAINT?. This collection contains news
articles from New York Times News Service (1998-
2000), Xinhua News Service (1996-2000), and

% http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31/

Associated Press Worldstream News Service (1998-
2000).

The question list contains 65 targets and 230 factoid
questions (the total number of all type of the questions is
351). We have tried our proposed idea on a subset of this
track which contains 20 targets out of 65 and 65 factoid
questions out of 230 which is equal to 28.26% of the total
number of factoid questions in the TREC 2004 QA track.
However, there are 5 questions out of these 65 factoid
questions for which no answer could be found in the
AQUAINT collection, as a subset of NIL answers
reported by TREC (Voorhees 2004). Therefore, we
consider a total of 60 questions in our experiments.

4.2 Procedure

In order that a passage retrieval task is performed, in most
question answering systems, there is a document retrieval
process prior to the passage retrieval task, as mentioned
earlier. This should be the case, especially when
manipulating a huge-sized collection of text on which a
direct passage retrieval task is very complex and time-
consuming. Therefore, we used the top-ranked documents
reported by TREC for each target* to escape the need of
the implementation of a document retrieval engine. This
ensures that we are convinced of the necessity of a
document retrieval stage, although we have not
implemented it and benefited from the results from the
PRISE information retrieval system via the TREC
reports.

We ran two passage retrieval algorithms on the dataset;
modified MultiText, which we implemented, and
Lemur’s passage retrieval engine, where we used the
APIs.

In modified MultiText, we create a feature vector for both
the passage and the query. Afterwards, we use the Cosine
similarity function to measure the similarity value
between passages and the query. To find the feature
values of the feature vector for the passages we use
Equation 1 and to measure the similarity value between
the two feature vectors of the query and the passage
Equation 2 is applied, which is composed of the well-
known Cosine Similarity Function and the effect of the
term coverage of the passage.

tf;

Ci = *weight; D
log(passageLength;) +tf;
) coverage;
Sim(q, p) = cos(q, p)* —————)
queryLength

In Equation 1, tf; is the raw term frequency of the query
term i inside the passage, weight; is the weight of this
term which is assigned based on two considerations; i)
the part-of-speech of the term (i.e. the verbs have higher
weights than nouns, adjectives, and so on), and ii) the
terms which occur inside the TREC target of the question
gain a bonus on their weights to increase up to 1.0. The
value coveragej, in Equation 2, contains the unique

* http://trec.nist.gov/data/ga.html

99

CRPIT Volume 48

100

number of the query terms that a passage covers and
queryLength is the total number of the terms inside the

query.

While running Lemur’s passage retrieval algorithm, we
used the passage size of 160 words. Authors in (Kaszkiel,
Zobel et al. 1999) have mentioned that this could be in
the optimum value range for the passage retrieval
algorithms which take into account a fixed size for the
passages to be retrieved. Also, we tried different retrieval
methods of Lemur and decided that the CORI-Collection
Selection method outperforms the other supported models
in the context of our work.

4.3 Results

We developed a software platform to test the two above-
mentioned passage retrieval algorithms and also to
perceive the increase on the output results based on the
evaluation methodology explained at the section 3.3.

As shown in Table 1, the highest retrieval effectiveness
for Lemur’s retrieval engine, which has been acquired by
the CORI-Collection Selection retrieval model, was
58.2%, while this percentage went up to 70% for the
same questions using the modified MultiText algorithm.

Questions with
. Answers in No. of
Retrieval Method Top 10 Questions
Passages

Lemur’s PR %58.3 60
Modified MultiText %70 60
Modified MultiText %75 60
along with Semantic

Resolution

Table 1: Retrieval effectiveness of the three runs of
passage retrieval

The results have been obtained by considering the top 10
passages for each retrieval task. Whenever the answer
was recognized inside one of the top 10 passages
retrieved for any question the score for that question was
considered 1; otherwise 0. In the end, the percentage was
calculated as the average value of over all scores.

Because of the higher performance of the MultiText
algorithm on the dataset that we are working on, we
chose to apply the proposed idea of semantic question
rewriting and semantic mismatch resolution on the
modified version of the MultiText algorithm. We
obtained an effectiveness of 75% on the same subset of
factoid questions and their representative queries. A
promising increase in effectiveness is gained on a subset
of the TREC questions. We expect that this performance
may go even higher either on a bigger subset or on the
total number of the questions in the track.

5 Conclusion

Due to the poor coverage of the best-known passage
retrieval algorithms on the actual answers related to a
question answering task of TREC 2004, we have
developed an idea to retrieve passages which are not
syntactically matched to the keywords of representative
queries of the original questions. As long as deep
semantic relations are not considered by the passage
retrieval process, it can not cope with syntactically
mismatched passages which at the same time contain
semantically related elements to the question. The
proposed idea tries to rewrite the questions which come
up in such situations using alternative related terms from
inside the evoked Frame of FrameNet by the original
target predicate. This rewriting and re-submit cycle is
protective of the original semantic abstraction level of the
questions and does not cause any unnecessary
generalization over the concepts which exist in the
questions to avoid retrieving irrelevant passages. We have
developed our idea on a subset of the TREC 2004
questions and the AQUAINT collection and have
achieved impressive improvement on the state-of-the-art
of two best-known passage retrieval algorithms.

6 References

Akrivas, G., M. Wallace, et al. (2002): Context-Sensitive
Semantic Qquery Expansion. Proceedings of the 2002
IEEE International Conference on Artificial
Intelligence Systems (ICAIS’02).

Baker, C. F., C. J. Fillmore, et al. (1998): The Berkeley
FrameNet Project. International Conference On
Computational Linguistics 1: 86 - 90.

Brill, E., S. Dumais, et al. (2002): An Analysis of the
AskMSR Question-Answering System. Proceedings of
2002 conference on empirical methods in natural
language processing (EMNLP 2002).

Callan, J. P. (1994): Passage-Level Evidence in
Document Retrieval. Proceedings of the 17th annual
international ACM SIGIR conference on Research and
development in information retrieval: 302-310.

Clarke, C., G. Cormack, et al. (1997): Relevance Ranking
for One to Three Term Queries. Proceedings of RIAO-
97, 5th International Conference Recherche
d'Information Assistee par Ordinateur": 388-400.

Clarke, C. L. A., G. V. Cormak, et al. (2000): Question
Answering By Passage Selection (MultiText
Experiments for TREC-9). Ninth Text REtrieval
Conference (TREC 9).

Clarke, C. L. A. and E. L. Terra (2003): Passage Retrieval
vs. Document Retrieval for Factoid Question
Answering. Proceedings of the 26th annual
international ACM SIGIR conference on Research and
development in informaion retrieval: 427 - 428.

Hejazi, M. R., M. S. Mirian, et al. (2003): TeLQAS: A
Telecommunication Literature Question Answering
System Benefits from a Text Categorization
Mechanism. IKEO3.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Howy, E., L. Gerber, et al. (2001): Question Answering in
Webclopedia. Proceedings of the TREC-9 Conference.

Kaszkiel, M. and J. Zobel (1997): Passage Retrieval
Revisited. Proceedings of the 20th annual international
ACM SIGIR conference on Research and development
in information retrieval: 178-185.

Kaszkiel, M., J. Zobel, et al. (1999): Efficient passage
ranking for document databases. ACM Transactions on
Information Systems (TOIS) 17(4): 406-439.

Katz, B. (1997): Annotating the World Wide Web using
Natural Language. Proceedings of the 5th RIAO
Conference on Computer Assisted Information
Searching on the Internet (RIAO '97).

Lowe, J. B., C. F. Baker, et al. (1997): A Frame-Semantic
Approach to Semantic Annotation. SIGLEX Workshop
on Tagging Text with Lexical Semantics: Why, What,
and How?

Moldovan, D., S. Harabagiu, et al. (2002): LCC Tools for
Question Answering. Proceedings of the eleventh Text
REtrieval Conference (TREC 2002).

Moschitti, A. and S. Harabagiu (2004): A Novel
Approach to Focus Identification in
Question/Answering Systems. In proceedings of the
Workshop on Pragmatics of Question Answering at
HLT-NAACL 2004.

Narayanan, S. and S. Harabagiu (2004): Question
Answering Based on Semantic Structures.
International Conference on Computational Linguistics
(COLING 2004).

Pérez-Coutifio, M., T. Solorio, et al. (2004): Toward a
Document Model for Question Answering Systems.
Second International Atlantic Web Intelligence
Conference, AWIC 2004: 145-154.

Saquete, E., P. Martinez-Barco, et al. (2004): Splitting
Complex Temporal Questions for Question Answering
systems. Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics: ACL
2004: 566-573.

Surdeanu, M., S. Harabagiu, et al. (2003): Using
predicate-argument structures for information
extraction. Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics 1: 8-15.

Tellex, S., B. Katz, et al. (2003): Quantitative Evaluation
of Passage Retrieval Algorithms for Question
Answering. Proceedings of the 26th annual
international ACM SIGIR conference on Research and
development in informaion retrieval: 41 - 47.

Voorhees, E. M. (1994): Query Expansion Using Lexical-
Semantic Relations. Annual ACM Conference on
Research and Development in Information Retrieval:
61-69.

Voorhees, E. M. (2004): Overview of the TREC 2004
Question Answering Track. The Thirteenth Text
REtrieval Conference Proceedings (TREC 2004).

Fillmore, Charles J. (1976): Frame semantics and the
nature of language. In Annals of the New York
Academy of Sciences: Conference on the Origin and
Development of Language and Speech 280: 20-32.

101

CRPIT Volume 48

102

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

A Programming Paradigm for Machine Learning, with a Case
Study of Bayesian Networks

Lloyd Allison

Clayton School of Information Technology,
Monash University,
Victoria,
Australia 3800.
tel:(+61) 3 9905 5205,
Email: L1oyd.Allison@infotech.monash.edu.au
http://www.csse.monash.edu.au/~1loyd/tildeFP/II/

Abstract

Inductive programming is a new machine learning
paradigm which combines functional programming
for writing statistical models and information theory
to prevent overfitting. Type-classes specify general
properties that models must have. Many statistical
models, estimators and operators have polymorphic
types. Useful operators combine models, and esti-
mators, to form new ones; Functional programming’s
compositional style of programming is a great advan-
tage in this domain. Complementing this, informa-
tion theory provides a compositional measure of the
complexity of a model from its parts.

Inductive programming is illustrated by a case
study of Bayesian networks. Networks are built from
classification- (decision-) trees. Trees are built from
partitioning functions and models on data-spaces.
Trees, and hence networks, are general as a natural
consequence of the method. Discrete and continuous
variables, and missing values are handled by the net-
works. Finally the Bayesian networks are applied to
a challenging data set on lost persons.

Keywords: inductive inference, functional program-
ming, Haskell, minimum length encoding, statistical
models, Bayesian networks.

1 Introduction

The paper describes inductive programming (IP) a
new paradigm for quickly writing succinct solutions
to inductive inference problems from machine learn-
ing. Solutions take the form of statistical models and
their estimators: Given particular data, infer a gen-
eral model from the data; the data are invariably
noisy. IP uses functional programming to program
models and estimators, and the information theoretic
criterion, minimum message length (MML), to pre-
vent over-fitting.

Much research in machine learning involves devis-
ing a new kind of statistical model and implementing
a program to learn (infer, fit, estimate) a model given
data. The resulting stand-alone programs are often
hard to modify and to combine with others to im-
plement new statistical models. To address this, IP
defines types and classes of statistical models and the
properties that instances, that is particular models,
must have and provides a library of such instances.

Copyright ©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

Given the huge variety of problems in general-
purpose computing, the chances of having a ready-
made program that already solves some new prob-
lem is small. Things are no different in inductive
inference so it is useful to have a way of creating
new solutions, quickly and easily. Programming lan-
guages exist to make it easier to write new solu-
tions in general computing. One could devise a spe-
cial purpose programming language for inductive in-
ference and examples exist, sometimes as a “script-
ing” language as distinct from the main “implemen-
tation” language in a data analysis platform such as
R (CRAN 2004) and S-Plus (Crawley 2002). But
such scripting languages are often interpreted and
lack compile-time type checking. Instead IP uses an
existing general purpose functional programming lan-
guage that is compiled and has a strong type system
— Haskell (Peyton-Jones et al 1999). Haskell is a good
choice (Allison 2005) for the domain because it is ex-
pressive and has a powerful system of polymorphic
types and type-classes; it is good programming lan-
guage technology. Functional programming encour-
ages the composition of functions, and polymorphic
types lead to general solutions; this makes for short
and general programs. We see these benefits rubbing-
off on statistical models when they are transformed
and composed.

Previous work on IP (Allison 2003) created ba-
sic but useful statistical models, estimators and func-
tions. The present paper shows how they can be ex-
tended, composed and tailored quickly to suit a new
problem, and used as parts of a new model. Many
models and associated functions are polymorphic; a
good type and class system reveals their true general-
ity. Statistical models and functions on them can be
very general — any computable model inferred from
almost any type of data by an arbitrary algorithm.

Over-fitting is a well known problem in machine
learning. William of Occam argued long ago that
an explanation should be kept simple unless necessity
dictates otherwise. A computer program doing induc-
tive inference must address model complexity in some
way. In particular, if sub-models are to be composed
to make new models, the complexity of the parts and
the whole must be dealt with. Later we will see basic
models used within models of missing data which are
used within classification trees which in turn are used
within Bayesian networks. With its compositional na-
ture, minimum message length (MML) (section 2.1)
inference (Wallace & Boulton 1968, Wallace 2005) is
a natural partner for functional programming in ma-
chine learning.

The questions that are raised, and that are be-
ing answered as IP develops, include: what are the
types and classes of statistical models, what can be
done to them, and how can they be transformed and

103

CRPIT Volume 48

104

M; DM

Recelver |« Transmitter

Figure 1: Message Paradigm

combined? Depending on one’s background and in-
clination, IP can be seen as a software engineering
analysis of machine learning, as a compositional de-
notational semantics of statistical models, as an ap-
plication of functional programming, or as an embed-
ded language (van Deursen, Lint & Visser 2000). The
Haskell code produced could also be seen a rapid pro-
totype for other data analysis platforms.

The next section covers background material. Af-
ter that inductive programming (IP) is illustrated by
a case study of Bayesian networks. The Bayesian
networks are then applied to a data set of lost per-
sons (Koester 2001). It is a challenging data set of
363 records and 15 variables, half of them missing on
average. It shows the kind of problem that typically
pops up with real data, if any data set can be said to
be typical.

Bayesian networks form a case study; the main
aim of the paper is to show how a new statistical
model can be programmed quickly to suit a new prob-
lem. It explores IP’s expressiveness not the statisti-
cal performance of any particular model(s). If IP and
some other system have equivalent models then those
models will, in principle, behave roughly equivalently.
Rather the point is to show how IP can be used to
create a new model to suit a new inference problem,
as opposed to “massaging” the problem to suit some
existing model.

All code shown is Haskell-98 (Peyton-Jones et al
1999) in the interests of standardization and has been
compiled under the Glasgow Haskell Compiler, ghc,
version 6.0.1.

2 Background

For completeness, this section briefly introduces
MML and IP’s main type-classes.

2.1 MML

Minimum message length (MML) (Wallace & Boulton
1968, Wallace 2005) builds on Shannon’s mathemati-
cal theory of communication (1948), hence ‘message’,
and on Bayes’s theorem (Bayes 1763):

Pr(M&D) = Pr(M) .Pr(DIM) = Pr(D).Pr(M|D)
msglen(E) = -log(Pr(E))
msgLen (M&D)

= msgLlen (M) +msgLen(D|M)
= msglen (D) +msgLen(M|D)

where M is a model (theory, hypothesis, parameter
estimate) of prior probability Pr(M) over some data,
D, and E is an event of probability Pr(E). MsgLen(E)
is the length of a message, in an optimal code, an-
nouncing E; the units are nits for natural logs, bits
for base 2 logs.

MML notionally considers a transmitter sending a
two-part message to a receiver (figure 1). The first
part, of length msgLen(M), states a model which is
an answer to some inference problem. The second
part, msgLen(D|M), states the data encoded as if the
answer, M, is true; note that the receiver cannot de-
code the second part without the first part. There is
a trade-off between the complexity of the model, M,

Super-
—-Model

A
Y
/

Time- Model |~ " | Function-

—Series ‘\// —Model

Figure 2: Classes and Conversions

and its fit to the data, D|M: A simple model is cheap
to state but may not fit the data well. A complex
model may fit the data better but is more expensive to
state (Georgeff & Wallace 1984). In some simple cases
MML is equivalent to maximum aposteriori (MAP)
estimation but this is not true in general (Wallace &
Freeman 1987, Farr & Wallace 2002). For example, if
one or more continuous parameters are involved they
must be stated to finite, optimal precision, and MML
shows how to do this. Note that a one-part message
can be very slightly more efficient in transmitting D
but it does not offer an explanation of D; it does not
state an answer to an inference question.

MML (Wallace & Boulton 1968) is related to
the minimum description length (MDL) princi-
ple (Rissanen 1978). The former aims to select a
parameterized model — the parameters being stated
to optimal precision — and embraces explicit priors.
The latter aims to select a model-class and favours
universal distributions and implicit priors. MML
and MDL have been featured in the Journal of the
Royal Statistical Society (Wallace & Freeman 1987,
Rissanen 1987) and in a special issue of the Computer
Journal on Kolmogorov complexity (Gammerman
& Vovk 1999). Oliver and Baxter (1994, p. 24)
made a direct comparison and concluded that only
MML (Wallace & Freeman 1987) had all the desir-
able properties of invariance under non-linear trans-
formations of parameters, of applicability to large and
small samples (not only asymptotic), and of making
a definite inference.

Strict MML (SMML) relies on the design of a full
optimal code book. Unfortunately SMML is infea-
sible for most inference problems (Farr & Wallace
2002). Fortunately there are efficient, accurate MML
approximations for many useful problems and mod-
els (Wallace 2005).

MML is a natural compositional criterion because
the complexity of data, models and sub-models are
all measured in the same units. “[It is possible] to
use [message] length to select among competing sub-
theories at some low level of abstraction, which in
turn can form the basis (i.e., the ‘data’) for theories
at a higher level of abstraction. There is no guar-
antee that such an approach will lead to the best
global theory, but it is reasonable to expect in most
natural domains that the resulting global theory will
at least be near-optimal” (Wallace & Georgeff 1983).
MML’s compositional nature is a good fit with func-
tional programming’s compositional style of program-
ming. This is illustrated in the Bayesian network case
study of section 3. MML has been used to assess the
complexity of combined models of some specific types
(e.g. Allison et al (1999) and Powell et al (2004))

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

class ... SuperModel sMdl where
prior :: sMdl -> Probability
msgl : sMdl -> MessageLength
mixture :: . mx sMdl -> sMdl

class Model mdl where
pr :: (mdl dataSpace) ->
dataSpace -> Probability

nlPr :: (mdl dataSpace) ->
dataSpace -> MessagelLength
msg (mdl dataSpace) ->
[dataSpace] -> MessagelLength
msg2 :: (mdl dataSpace) ->

[dataSpace] -> MessagelLength

class FunctionModel fm where

condModel :: (fm inSpace opSpace) ->
inSpace -> ModelType opSpace
‘...7 stands for omitted details, ‘::’ for ‘has type’,

‘[t]’ for list of a type t’, and ‘->’ for function type.

Figure 3: Classes of Statistical Model

but its full programming potential has only recently
started to be studied (Allison 2003). A functional
programming language with a parametric polymor-
phic type system is a sound foundation for such a
study.

2.2 Types and Classes of Statistical Models

We want to be able to program as large as possi-
ble a set of things that people call statistical models
and yet have the set clean, orthogonal and built on a
small foundation. For simplicity, we also want a small
collection of just their essential properties. Here sta-
tistical model is taken to cover things that assign ex-
plicit probabilities to data. Haskell type-classes (fig-
ures 2, 3) Model, FunctionModel and TimeSeries
were previously defined (Allison 2003, Allison 2005)
for basic models (distributions), function-models (re-
gressions) and time-series models; the first two are
used in the following case study.

A basic Model, mdl (figure 3), can return the prob-
ability, pr, and the negative log probability, n1Pr, of
a datum from its data-space. It can also compute
the second-part, msg2, and the total two-part mes-
sage length, msg (section 2.1), for a data set. We are
only concerned with the most important properties
here; a statistical model might be able to do several
other things.

Note that in Haskell t->u denotes the function
type with input type t and output type u. A data
set over a data-space ds has the type [ds], that is
‘list of ds.” For example, the pr operator of class
Model (figure 3) has the type (mdl dataSpace) ->
dataSpace -> Probability. That is, given a model
over the dataSpace and a datum from the dataSpace
return the probability of the datum.

A function-model has an input-space (exogenous
variables) and an output space (endogenous vari-
ables). Its principal ability is to return a model of
its output space conditional, condModel, on a value
from the input space.

A super-class, SuperModel, states that an instance
of one of the various sub-classes must return its own
prior probability and message length, msg1, and that
it must be able to form mixtures; it must also be
in the standard class Show so that we can print the
answers to inference problems.

@) o)
\/

@

Some types are provided for models to be built
in standard ways: Type ModelType is an instance of
type-class Model, and types FunctionModelType and
CTreeType (classification tree type) are instances of
type-class FunctionModel.

Operators are defined to implement familiar laws
of probability. For example, assuming that variables
over the data-spaces ds1 and ds2 are independent,
bivariate m1 m2 forms a model of the product data-
space, (ds1, ds2), from m1, a model of ds1, and m2,
a model of ds2. For the case where ds2 is condi-
tionally dependent on dsi, condition ml fm forms
a model of (ds1, ds2) from ml, a model of dsi,
and fm, a function-model from ds1 to ds2. There
are related operators on estimators — estBivariate,
estCondition and so on. Many of these operators are
polymorphic in that their types contain type variables
such as ds1 and ds2.

Useful statistical models, including multi-state, in-
teger, normal and multi-variate distributions, mixture
models, Markov models, finite function-models (con-
ditional probability tables) and classification trees,
have been defined and made instances of the appro-
priate classes. Below, these building blocks are ex-
tended, tested and used in a case study of Bayesian
networks to explore and illustrate IP.

Figure 4: Example Network.

3 Case-Study: Bayesian Networks

A Bayesian network (Korb & Nicholson 2004) is a
good tool to investigate relationships among the vari-
ables of a data set. A Bayesian network is a directed
acyclic graph. A node represents a variable. An edge
represents a direct conditional dependence of a child
on a parent and, in a suitable context, has a causal
interpretation. Creating and applying an estimator of
the structure and parameters of a Bayesian network
forms our case study to illustrate IP — a network is
a non-trivial tool and implementing one provides a
good test of a system’s expressive power. A Bayesian
network is in class Model (section 2.2) and can as-
sign a probability to a data tuple; belief updating
was not required by the application and has not been
implemented. Figure 4 shows an example Bayesian
network in which variable 2 is a child of variables 0
and 1 and is a parent of 4, variable 3 has no rela-
tionship to the other variables, and so on. It happens
that variables 0 and 4 are continuous and variables 1,
2 and 3 are discrete.

Friedman and Goldszmidt (1996) first suggested
using decision-trees (classification trees), in place of
the full conditional probability tables (CPTs) often
used within the nodes of networks over discrete vari-

105

CRPIT Volume 48

106

ables; Comley and Dowe (2003) have also used trees
within the nodes of networks. A classification tree can
“become” a full CPT in the limit but can be much
more economical, that is less complex, in many cases.

It happens that previous work created a rather
general classification tree algorithm (Allison 2003,
Allison 2005). The tree’s type is an instance of class
FunctionModel. Such a tree can test arbitrary vari-
ables — discrete, continuous, multi-variate, sequence —
from its input space and can have arbitrary distribu-
tions over its ouptut space, or even function-models
(regressions), in the leaves. These possibilities follow
naturally from IP’s exploitation of Haskell’s polymor-
phic type system. The classification tree is reused
here as the basis of our new Bayesian networks; also
see section 3.7. Each classification tree consists of at
least one leaf-node, CTleaf, and possibly also fork-
nodes, CTfork. These tree-nodes are not to be con-
fused with the network’s nodes; there is one tree per
network node. The classification tree type is an in-
stance of the class FunctionModel (section 2.2). A
fork tests a parent (input) variable value. A leaf
models the appropriate child (output) variable. Typ-
ically the multi-state distribution, mState, models a
discrete variable, and the normal distribution models
a continuous variable but other distributions can be
used if desired because the tree estimator is parame-
terized by the leaf estimator. MML gives a trade-off
between the complexity of a tree and its fit to the
data and this is used to control the search. Note that
when used within a node in a Bayesian network, one
or more tests on a parent variable in a tree indicate
a parent-child dependency, an edge, at the network
level.

The following sections describe the application of
Bayesian networks to lost person data. As an example
of IP it shows the composition of statistical models:
Multi-state and normal distributions within models
of missing data within classification trees within a
Bayesian network. Some new generic features were
required to handle this data set. Any of those fea-
tures may exist in some other data analysis platform,
perhaps this is true of all of them, but it is unlikely
that they all exist in the same platform, and unlikely
that such a platform could be as easily adapted to
further new features. The point is to investigate how
eagsy it is to adapt IP to a new task. This is important
because it often seems that every data set has its own
oddities as one gets to know it.

3.1 Application of Bayesian Networks: Lost
Person

Koester’s (2001) lost person data set has been ex-
amined in CSSE, Monash (Twardy 2002, Twardy &
Hope 2004). Here it provides an application of the
Bayesian network case study. There are 363 records,
and 15 variables, numbered 0-14. Approximately half
of the variable values are missing overall. Attention
is sometimes restricted to the first eight variables;
one aim is to predict distance travelled, Dist IPP vari-
able 7, from variables zero to six. In general, workers
want to have an “explanation” of the data; the struc-
ture and parameters of a network are a good start.

3.2 Describing the Data

The first step in the application is to define the vari-
able types in the lost person data set; in Haskell this
is done quite naturally as:

data Tipe = Alzheimers| Child| Despondent |
Hiker | Other| Retarded|
Psychotic deriving ...

Double

type Age

data Race = ...

data Gender = ...

data Topography = Mountains| Piedmont |
Tidewater
deriving (Ord, Enum, Bounded,...)

data Urban = Rural | Suburban | Urban
deriving (Ord, Enum, Bounded,...)

type HrsNt = Double -- hours notified
type DistIPP = Double -- distance
type MissingPerson =

(Maybe Tipe, Maybe Age, ...)

The Haskell keyword ‘deriving’ directs the compiler
to add a new data type, for example Topography, to
standard Haskell classes such as Ord (ordered), Enum
(enumerated) and Bounded.

Missing values are an issue and are represented
by Maybe t where Maybe t = Nothing | Just t is
a standard Haskell type with parameter t; also see
section 3.6.

A datum, a lost person, is a tuple of the compo-
nent variables. Haskell’s standard Prelude (Peyton-
Jones et al 1999) instantiates tuples, up to 7-tuples,
in classes Read and Show, so the 15-tuples here need
to be made instances of those classes for input and
output respectively. This is an easy, if tedious, job
and could in principle be automated in template
Haskell (Sheard & Peyton-Jones 2002), say.

3.3 Modelling the Variables

The question of which distribution, and therefore
which estimator, to use for each variable now arises.
The standard estimator for the normal (Gaussian)
distribution uses a uniform prior on the mean and an
inverse prior on the standard deviation and requires
their ranges, and also the data measurement accu-
racy. Note that the multi-state distribution and its
estimator are polymorphic, being applicable to any
bounded enumerated data-space (type).

e0 = estModelMaybe estMultiState -- Tipe
el = estModelMaybe (estNormal 0 90 1 70 0.5)

Function estModelMaybe was quickly created to al-
low for missing values in a variable; it is discussed in
section 3.6.

Finally the individual estimators are assembled
into estMissingPerson, a composite that matches
a data tuple.

3.4 Partitioning Data Spaces: Class Splits

A classification tree, as used in a node of a Bayesian
network, operates by splitting, that is partitioning, a
data set from its input space by tests on input vari-
ables; a Splitter partitions a data set. In this way
the data are directed into subtrees and eventually into
leaves where the output variable(s) can be well mod-
elled. Function splits of class Splits (Allison 2003)
proposes, in order of decreasing prior probability,
Splitters for use by the classification tree estima-
tor, estCTree.

class Splits ds where
splits :: [ds] -> [Splitter ds]

The current tree estimator uses a simple zero-
lookahead algorithm in the search to balance tree
complexity (msgl) against fit to the data (msg2).

A multi-variate input space is, by default, split
by splitting on one of its component variables. To
implement this, the ways of splitting the components
are interleaved for consideration in turn.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

A continuous ordered (0rd) variable, such as Age,
is split on being < or > some value. By default
splitsOrd proposes values as follows: Median, quar-
tiles, octiles, and so on (Wallace & Patrick 1993).

A discrete, Bounded, enumerated (Enum), variable,
such as Gender, of a k-valued type is conventionally
split into k parts, as defined in the obvious way by
function splitsBE. However Topography and Urban
are instances of the standard Haskell classes Bounded,
Enum (enumerated) and also 0rd (ordered), as can be
seen from their definitions, so we also have the options
of splitting each of them into two parts on the basis
of order, as covered by splitsOrd:

instance Splits Tipe where
splits = splitsBE

instance Splits Topography where
splits = splitsBE
-- or alternatively = splitsOrd
instance Splits Urban where
splits = splitsBE

-- or alternatively = splitsOrd

Yet another alternative was also implemented and
tested for lost persons: Tipe has seven values and
high-arity, un-ordered, discrete types like Tipe can
cause difficulties to function-models because of the
large number of cases and the few data in some or
all of them. If some cases are thought to behave in
similar ways then, rather than using splitsBE, values
can be grouped into nominated sub-sets (and their
complement) accordingly. This only affects splitting
on Tipe, not modelling of it. A function to implement
this setSplits option is just a few lines.

setSplits sets [] = []

setSplits sets xs =

let y:ys = map (memberships sets) xs

in if all ((==) y) ys then [] --trivial
else [setSplitter sets]

instance Splits Tipe where -- e.
splits = setSplits [[Alzhelmers] [Ch11d]]

If ‘’k’ sub-sets are specified, their complement is taken
to be the (k+1)st. Note that the programmer decides
how to group the values in Tipe here. In principle a
program could search through the possibilities but it
would, of course, add to the overall search time.

It is a simple matter in IP to implement exten-
sions, such as setSplits, to models to suit a problem
and its data.

3.5 Selecting Sub-Spaces: Projections

In a typical application of a classification tree, the in-
put variables and the output variable are fixed. But
here, in a Bayesian network, the selection of parent
(input) and child (output) variables must be under
program control on a node by node basis; this prop-
erty made the case study particularly interesting from
the IP point of view. Class Project, as in projec-
tion, was created for this purpose. Some such mech-
anism is needed for heterogeneous variable types in a
strongly typed language; the network estimator (sec-
tion 3.7) does not “care” what types the data and
sub-estimators have, provided only that they are con-
sistent. An instance, type t, of class Project is some
multi-dimensional type for which a list of Boolean
flags can be used to restrict t’s activities to certain
selected dimensions. The non-selected dimensions be-
have in a trivial, “identity” manner, that is appropri-
ate to type t, if they are ever called upon. In the

estNetwork perm estMV dataSet =
let
= (length . selAll) (estMV [])
search _ [] = [1 -- done
search ps (c:cs) =
--parents ps, children c:cs

let
opFlag = ints2flags [c] n =--child
ipFlags = ints2flags ps n --parents

cTree = estCTree
(estAndSelect estMV opFlag)
(splitSelect ipFlags)
dataSet dataSet
in cTree : (search (c:ps) cs)
trees = search [] perm --network

msglen = sum (map msgl trees) --total msgl
nlP datum = sum
(map(\t -> condN1Pr t datum datum) trees)
in
MnlPr msglen nlP --return a Model
(A -> "Net:"++(show trees))

Figure 5: Network estimator.

case of a Model this behaviour is to return zero in-
formation, probability one, for non-selected variables,
i.e. they are taken to be already known, or to be of
no interest.

class Project t where
select :: [Bool]l -> t -> t

As discussed in section 3.4, class Splits exists
for partitioning data-spaces — discrete, continuous,
multi-variate or whatever other data-spaces are made
instances of it. A new class Splits2, inspired by
Project, was defined (it could perhaps be folded into
class Splits) to allow splitting on only selected vari-
ables:

class Splits2 ds where
splitSelect :: [Bool]l->[ds]->[Splitter ds]

3.6 Handling Missing Data

The lost person data set is difficult in having many
missing values. Most data have at least one missing
value, and some have several. Every variable is miss-
ing in some datum. Haskell already has the ideal type
to represent possibly missing values: Maybe. New op-
erators were implemented to extend arbitrary statis-
tical models to cover possibly missing values. Rather
than cleaning the data — deleting data with miss-
ing values — or imputing (replacing) missing values,
missing-ness is built into our model.

Function modelMaybe m1 m2 might be called a
“high-order” function on models because it acts on
models which are, if not literally functions, princi-

pally made up of them. It turns an arbztmry model,
m2, of non-missing data of type t into the correspond—
1ng model of Maybe t. It requires a model, m1, of
Bool, for whether the data is present (True) or miss-

ing (False).

modelMaybe ml m2 =
let
neglogPr (Just x) = nlPr ml True + nlPr m2 x
neglLogPr Nothing = nlPr ml False
in MnlPr (msgl mil + msgl m2) neglogPr
. .show method omitted

MnlPr is a constructor for a type in class Model; it
takes a message length, a negative log likelihood func-
tion, and a description which shows the model.

107

CRPIT Volume 48

108

The related high-order function, estModelMaybe
acts on estimators; it turns an estimator of non-
missing data into the corresponding estimator where
the data may include missing values:

estModelMaybe estModel dataSet =

let

present (Just _) = True

present Nothing = False

ml = uniformModelOfBool

m2 = estModel (map (\(Just x)->x)

(filter present dataSet))

in modelMaybe ml m2

This is not the same as just coding missing-ness as a
“special” value because it is not estimated with the
given definition of m1.

In the present application the missing-ness of val-
ues is certainly non-random for some variables, for
example Age is often not recorded by search teams
for cases of Hiker: : Tipe. However we are not inter-
ested in modelling missing-ness in this problem; it is
common knowledge. Hence a fixed unbiased model,
ml, is used above to “predict” missing (Nothing) or
present (Just...). The following definition of m1 can
be used instead if it is necessary to estimate missing-
ness:

ml = estMultiState (map present dataSet)

In addition to modelling, missing values also affect
splits, that is partitions of the data (section 3.4). A
simple strategy is for the variable to be split as for the
underlying type but with an extra option for missing
(Nothing) cases. Other splitting strategies, not ex-
amined here, could try to predict in various ways what
the missing value, or its distribution, really is and act
on that. There are a great many possibilities and,
this being an example, we just give one reasonable,
simple approach that is sufficient for the application.

3.7 Mixed Bayesian Networks and the Lost
Person Network

The function, estNetwork (figure 5), for inferring a
Bayesian network is given a permutation, a total or-
dering, of the selected variables that are to be con-
sidered; a variable may be dependent on none, some
or all of the variables preceding it in the permu-
tation. The use of total or partial orders on vari-
ables is not uncommon in network learners (Korb
& Nicholson 2004). It is sufficient for this applica-
tion because a plausible ordering of the variables is
fairly obvious but, in principle, it would be possible
to search over permutations. Such a search would
have to be heuristic if there were many variables, and
information theory does suggest some heuristics, but
the simple algorithm does not do this and the permu-
tation is currently taken to be common knowledge.

Internally estNetwork uses the estimator for clas-
sification trees (Allison 2003), estCTree, to do much
of the work. The remainder consists of organising
selector flags (section 3.5) corresponding to the al-
lowed parents for the child in the current node. Note
that the dataSet seems to be passed to estCTree
twice, as both the input and output variables — its
third and fourth parameters. But its first and sec-
ond parameters use straightforward auxiliary func-
tions ints2flags, estAndSelect and splitSelect,
to flag the child (output) to be predicted by the leaf
estimator and the parents (input) to be used for split-
ting as appropriate at each node in the network.

For lost persons, variables 1 to 3, Age, Race and
Gender cannot, in a causal sense, depend on other
variables and should come first, in some arbitrary
order, say [1,2,3]. Tipe probably depends on one

opog’

DistIPP

Figure 6: Lost Person Network 1.

or more of them, for example there are few young
Alzheimers cases. Topography and Urban can sen-
sibly come next, and one expects a relationship be-
tween them. That leaves HrsNt and finally DistIPP
to make up a plausible ordering, [1, 2, 3, 0, 4, 5, 6, 7],
of the first eight variables. There is also a natural null
hypothesis which models the variables independently.
The code to run the inference is shown below:

dataSet = read (readFile theDataFile)

[MissingPerson] --input
nw = estNetwork [1,2,3,0,4,5,6,7]
estMissingPerson dataSet --model

nullModel = estMissingPerson dataSet

Figure 6 shows the first network inferred for vari-
ables 0 to 7; the node parameters are inferred but not
shown.

Tipe depends strongly on Age and also on Gender
and Race. As expected, Urban is dependent on
Topography. There is some direct dependence of
DistIPP on HrsNt, and of the latter on Age, but
there seems to be no strong predictor of DistIPP from
other variables. The model is significant with a total
two-part message length, for the first eight variables,
of 5512 nits against 5936 nits under the null model.
Other analyses were tried, for example allowing or-
dered (0rd) splits on Topography and Urban, in place
of Bounded Enum splits; the conclusions were broadly
similar.

When Tipe was allowed to split accord-
ing to setSplits [[Alzheimers], [Child]]
(section 3.4), the implicit complement being
[Despondent...], the link from Age to HrsNt was
replaced by a link from Tipe (which itself depends
strongly on Age) for a saving of 6 nits on the model
against a loss of 3.7 nits on the data (figure 7).
However this small net gain should be taken with a
big pinch of salt and may well be due to the pattern
of missing data as much as anything.

As a final example, modelling all 15 variables gave
the network shown in figure 8; variable Tipe has been
duplicated for ease of drawing. The extra variables,
8 to 14, are:

TrackOffset (continuous),

Health = Well | Hurt | Dead,

Outcome = Find | Suspended | Invalid,
FindRes = Ground | Air | Local | Law | Dog,

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Race

Topog

/

DistIPP,

Figure 7: Lost Person Network 2.

FindLoc = Brush | Woods | Field | Water |
Linear | Thing,

HrsFind (continuous),

HrsTo (continuous).

These extra variables can all be missing.

3.8 Comparisons

Weka (Witten & Frank 1996) which is based on Java
is perhaps the system closest to the present work.
Weka’s Bayesian networks “assume that all variables
are discrete” (Bouckaert 2004) p. 22 and “a limitation
of the current classes is that they assume that there
are no missing values” (Bouckaert 2004) p. 23. In
Weka, continuous variables must be discretized first
and how this is done may affect the final result. Dis-
cretization is unnecessary in IP for modelling and, for
splitting, is part of the network optimization as a by-
product of using our classification trees (section 3.2).
Missing-ness was built into the model when necessary
(section 3.6).

There are distant similarities between IP and in-
ductive logic programming (ILP): There has been
some interest in the use of complexity-based measures
in ILP (Conklin & Witten 1994, Srinivasan, Muggle-
ton & Bain 1994) but this aspect of ILP is less devel-
oped than work on MML. The programmer is involved
in the design of the search algorithm (section 3.7) in
IP to a greater extent than in ILP, typically in de-
signing new models and estimators; it is infeasible to
have a very general search over too large a class of
computable statistical models.

A model in IP, particularly one that is used as a
component of other models (figure 9), must be able
to handle extreme data sets. For example a Bayesian
network may contain several trees and each tree may
contain several leaf distributions. One or more of
those leaf distributions may be given a sub-set of data
that is “unusual” — perhaps consisting of just a single
item. MML insists that every model effects a valid,
decodable message (in principle) so there can be no
understating of a model’s complexity. A (sub-) model
must guarantee this, or at the very least raise an ex-
ception if it cannot. This principle keeps us “honest”
and ensures that the top-level model’s complexity is
valid.

Figure 8: All 15 Variables.

4 Conclusions

Inductive programming (IP) uses the compositional
abilities of functional programming, Haskell and min-
imum message length (MML) inference. Haskell’s fea-
tures have a number of advantages in inductive infer-
ence. Mapping a data set, such as lost persons, onto
the Haskell type system is a useful exercise in get-
ting to know the data very precisely; a data-analyst
will work in this space for some time. The need to
define a variable’s properties, e.g. Ord or not, auto-
matically suggests what is possible, such as whether
to split Topography as discrete or as ordered data
(section 3.2). These things cannot be forgotten; the
type and class system brings them to your attention.
The TP code shown is standard Haskell-98 but
other experiments (Allison 2004) do show that some
Haskell type extensions can be useful in some other
problems. In-built support for wide tuples, (,),
would make it easier to deal with large multi-variate
data sets, although template Haskell (Sheard &
Peyton-Jones 2002) is a possible solution.
High-order functions, such as estModelMaybe (sec-
tion 3.6), are invaluable in creating new ways of using
arbitrary statistical models. The polymorphic type
system ensures that the uses are both general and
type-safe. Haskell’s type inference algorithm often
finds a more general type for a function than its pro-
grammer did and this can also be the case with sta-
tistical models and their estimators. There is poten-
tial for an extensive library of operators on statistical

109

CRPIT Volume 48

110

Bayesian network

classification tree

modelMaybe

normal multi State

Figure 9: Model Layers

models and their estimators.

Lazy evaluation means, for example, that only
models of selected variables of lost persons (sec-
tion 3.2) are evaluated. Selections are made once at
the top level; most of the algorithms do not “consider”
the matter at all.

Computing model complexity by minimum mes-
sage length (section 2.1) is a good match with the
compositional style of functional programming. The
reader may hardly have noticed any explicit Mes-
sage length calculations but they are handled by
modelMaybe (section 3.6) and other functions, and
are combined in the complexity of the Bayesian net-
work (section 3.1 and figure 9) and its classification
trees (figure 8) to inform the search.

A specific model can be created quickly for a new
problem thanks to Haskell’s expressive power. Of
course it cannot yet be claimed that the types and
classes created are the best possible designs for a com-
positional denotational semantics of statistical mod-
els. For example, a case can be made for specify-
ing the notion of a data set; perhaps data traversal,
data measurement accuracy and data weights should
be wrapped up in suitable types and classes. Only
more experience and time will let us settle on the best
trade-off between generality, usability and efficiency,
but experience to date is positive.

The Bayesian network estimator, estNetwork, and
associated classes Project and Splits2 (section 3.5)
took one day to create. The lost person application
(section 3.2) came along some weeks later and it took
one and a half days to create a working model, includ-
ing how to handle missing data (section 3.6) which
had previously been in the ‘must think about that
one day’ category. Any amount of further time can
be spent playing with the data once a model and a
program exist, although there is a fine line between
data exploration and fishing.

4.1 Acknowledgments.

It is a pleasure to thank Charles Twardy, Ann Nichol-
son and Kevin Korb for generous discussions of
Bayesian networks. Charles Twardy also discussed
missing people and he coined the term ‘inductive pro-
gramming’. Chris Wallace (1933-2004) always gave
much help and was an inspiration; he is sadly missed.
The Department of Computer Science at the Univer-
sity of Wales Aberystwyth, and the Department of
Computer Science and the Programming Language
and Systems Research Group at the University of
York were very hospitable during my visits in 2004.

References

Allison, L. (2003), Types and classes of machine learn-
ing and data mining, in 26th Australasian Com-
puter Science Conference (ACSC), pp. 207-215.

Allison, L. (2004), Inductive inference 1.1,
TR 2004/153, School of Computer Science
and Software Engineering, Monash University.
http://www.csse.monash.edu.au/~lloyd/tildeFP /I1/

Allison, L. (2005), ‘Models for machine learning
and data mining in functional programming’,
J. Functional Programming 15(1), pp. 15-32,
doi:10.1017/S0956796804005301.

Allison, L., Powell, D. & Dix, T. I. (1999), ‘Compres-
sion and approximate matching’, BCS Computer
J. 42(1), pp. 1-10.

Baxter, R. A. & Oliver, J. J. (1994), MDL and MML:
Similarities and differences, TR 207, Depart-
ment of Computer Science, Monash University.
(Amended 1995.)

Bayes, T. (1763), ‘An essay towards solving a prob-
lem in the doctrine of chances’, Phil. Trans. of
the Royal Soc. of London 53, pp. 370418, and
reprinted in Biometrika 45(3/4), pp. 296-315,
1958.

Bouckaert, R. R. (2004), Bayesian networks in Weka,
TR 14/2004, Comp. Sci. Dept.. U. of Waikato.

Comley, J. & Dowe, D. (2003), General Bayesian
networks and asymmetric languages, in 2nd
Hawaii Int. Conf. on Statistics and Related
Fields (HICS-2).

Conklin, D. & Witten, I. H. (1994), Complexity-based
induction, Machine Learning 16(3), pp. 203-225.

Crawley, M. J. (2002), Statistical Computing — an In-
troduction to Data Analysis using S-Plus, Wiley.

Farr, G. E. & Wallace, C. S. (2002), ‘The complex-
ity of strict minimum message length inference’,
BCS Computer J. 45(3), pp- 285-292.

Friedman, N. & Goldszmidt, M. (1996), Learning
Bayesian networks with local structure, in Un-
certainty in A.L., pp. 252-262.

Gammerman, A. & Vovk, V. (eds) (1999), Special Is-
sue on Kolmogorov Complexity, BCS Computer
J. 42(4).

Georgeff, M. P. & Wallace, C. S. (1984), A general
selection criterion for inductive inference, in Eu-
ropean Conf. on Artificial Intelligence (ECAI84),
Pisa, pp. 473—-482.

Koester, R. J. (2001), ‘Virginia dataset on lost-person
behaviour’, author’s site http://www.dbs-
sar.com/.

Korb, K. B. & Nicholson, A. E. (2004), Bayesian Ar-
tificial Intelligence, Chapman and Hall / CRC.

Peyton-Jones, S. et al, (1999), Report on the Pro-
gramming Language Haskell-98, Available at
http://www.haskell.org/.

Powell, D. R., Allison, L. & Dix, T. I. (2004),
Modelling alignment for non-random sequences,
in 17th ACS Australian Joint Conf. on Ar-
tificial Intelligence (AI2004), Springer-Verlag,
LNCS/LNAI Vol. 3339, pp. 203-214.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

R, wvarious authors, (2004), ‘CRAN: The
Comprehensive R Archive Network’,
http://lib.stat.cmu.edu/R/CRAN/.

Rissanen, J. (1978), ‘Modeling by shortest data de-
scription’, Automatica 14, pp. 465-471.

Rissanen, J. (1987), ‘Stochastic complexity’, J. Royal
Statistical Society series B. 49(3), pp. 223-239
and 252-265.

Shannon, C. E. (1948), ‘A mathematical theory of
communication’, Bell Syst. Technical Jrnl. 27
pp- 379423 and pp. 623-656.

Sheard, T. & Peyton-Jones, S. (2002), Template
meta-programming for Haskell, in Proc. of the
Workshop on Haskell, ACM, pp. 1-16.

Srinivasan, A., Muggleton, S. & Bain, M. (1994), ‘The
justification of logical theories based on data
compression’, Machine Intelligence 13, pp. 87—
121.

Twardy, C. R. (2002), ‘SARbayes: Predicting lost
person behavior’, presented to National Associ-
ation of Search and Rescue (NASAR), available
at http://sarbayes.org/nasar.pdf.

Twardy, C. R. & Hope, L. (2004), ‘Missing data on
missing persons’, School of Computer Science
and Software Engineering, Monash University,
personal communication.

van Deursen, A., Lint, P. & Visser, J. (2000), Domain-
specific languages: An annotated bibliography,
in ACM SIGPLAN Notices 35(6), pp. 26—36.

Wallace, C. S. (2005), Statistical and Inductive In-
ference by Minimum Message Length, Springer-
Verlag.

Wallace, C. S. & Boulton, D. M. (1968), ‘An informa-
tion measure for classification’, BCS Computer
J. 11(2), pp. 185-194.

Wallace, C. S. & Freeman, P. R. (1987), ‘Estimation
and inference by compact coding’, J. Royal Sta-
tistical Society series B. 49(3), pp. 240-265.

Wallace, C. S. & Georgeff, M. P. (1983), A general
objective for inductive inference, TR 32, Dept.
of Computer Science, Monash University.

Wallace, C. S. & Patrick, J. D. (1993), ‘Coding deci-
sion trees’, Machine Learning 11, pp. 7-22.

Witten, I. H. & Frank E. (1999), Nuts and bolts:
Machine learning algorithms in Java, in Data
Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan
Kaufmann, pp. 265-320.

11

CRPIT Volume 48

112

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Rule Sets Based Bilevel Decision Model

Zheng 2., Zhang G.", He Q.*, Lu J.", Shi z.*
" Faculty of Information Technology, University of Technology, Sydney
PO BOX 123, Broadway, NSW 2007, Australia
Key Laboratory of Intelligent Information Processing, Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

Corresponding Author Email:

Abstract

Bilevel decision addresses the problem in which two
levels of decision makers, each tries to optimize their
individual objectives under constraints, act and react in an
uncooperative, sequential manner. Such a bilevel
optimization structure appears naturally in many aspects
of planning, management and policy making. However,
bilevel decision making may involve many uncertain
factors in a real world problem. Therefore it is hard to
determine the objective functions and constraints of the
leader and the follower when build a bilevel decision
model. To deal with this issue, this study explores the use
of rule sets to format a bilevel decision problem by
establishing a rule sets based model. After develop a
method to construct a rule sets based bilevel model of a
real-world problem, an example to illustrate the
construction process is presented.

Keywords: Bilevel programming, Decision making,
Decision model, Rough set, Rule set.

1 Introduction

Organizational decision making often involves two
levels. In general, the decision maker at the upper level
will influence, control or induce the behavior of the
decision maker at the lower level but not completely
control his action. In addition, the lower level decision
maker gains his objective under a given region, although
his decision is in a subordinate position. In such a bilevel
decision situation, decision maker at each level has
individual payoff function, and the upper level the
decision maker is at, the more important and global his
decision is. Therefore, a bilevel decision model intends to
reach certain goals, which reflect the upper level decision
makers’ aims and also consider the reaction of the lower
level decision makers on the final decisions. Such a
decision problem is called as a bilevel decision problem.
The decision maker at the upper level is known as the
leader, and at the lower level, the follower.

Bilevel decision problems have been introduced by Von
Stackelberg in the context of unbalanced economic
markets in the fifties of the 20™ century [Stackelberg

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australian Institute of
Computer Ethics Conference (AICE2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

jielu@it.uts.edu.au

1952]. After that moment a rapid development and
intensive investigation of these problems begun both in
theoretical and in applications oriented directions [Chen
and Gruz 1972] [Candler and Norton 1977] [Bialas and
Townsley 1982] [Bard and Falk 1982] [Bard and Moore
1992] [Bard 1998] [Dempe 2002]. Contributions to this
field have been delivered by mathematicians, economists
and engineers and the number of papers within this field
is ever growing rapidly. This interest stems from the
inherent complexity and consequent challenge of the
underlying mathematics, as well as the applicability of
the bilevel decision model to many real-world situations.

From its inception, bilevel decision problems have been
introduced to the optimization community. Most of the
efforts concentrated on theoretical or applied
development for the linear or nonlinear version of the
problem, such as K-Best approach [Bialas and Karwan
1984] or Kuhn-Tucker approach [Bard and Falk 1982] for
solving linear bilevel programming problems, and
Penalty function approach [White and Anandalingam
1993] or stability based approach [Liang and Sheng 1992]
for solving nonlinear bilevel programming problems.
However, bilevel decision making may involve many
uncertain factors in a real world problem. Therefore it is
hard to determine the objective functions and constraints
when build a bilevel decision model. In addition, even if
all the functions are linear, the resultant model may be
difficult to be solved by the methods of optimization
[Bard 1998]. To handle the two issues, it therefore needs
to explore establishing a bilevel model by using uncertain
information processing techniques.

Our previous work presented a new definition of solution
and related theorem for linear bilevel programming, thus
solved a fundamental deficiency of existing linear bilevel
programming theory [Shi et al 2005]. We also developed
an extended Kuhn-Tucker approach [Shi et al 2005a] and
an extended Kth-best approach [Shi et al 2005b] for
solving linear bilevel decision problems. As a new
exploration to model and solve a bilevel decision
problem, this paper first formulates a bilevel decision
problem using decision rule sets. It then applies the
methods of rough set to reduce the models. With the
methods of value reduction in rough set theory, simpler
decision rule sets are extracted from decision rule sets
(decision tables) to represent the evaluation methods of
the objectives or the constraints. Besides, attribute
importance degree based rule trees are used to solve
uncertain problems and get the final decision. The
structures can be extended beyond two levels with the
realization that attending behavioral and operational

113

CRPIT Volume 48

114

relations become much more difficult to conceptualize
and describe. The paper is divided into five sections.
Section 2 introduces the preliminaries of this paper,
including some notions about decision tables and decision
rules. Section 3 proposes the model of the rule sets based
bilevel decision problem, and then the algorithm of
modelling. In Section 4, an example is presented. The last
section includes the conclusion and future work.

2 Preliminary

For the convenience of description, we introduce some
basic notions of decision tables and decision rules.
Besides, we also develop some related definitions that
will be useful in this paper.

2.1

A decision table is commonly viewed as a functional
description, which maps inputs (conditions) to outputs
(actions) without necessarily specifying the manner in
which the mapping is to be implemented [Lew and
Tamanaha 1976]. The formal definition is as follows.

Decision Tables

Definition 2.1[Wang 2001] (Decision tables): A decision
table is defined as

S=<U,R,V, >,

where U is a finite set of objects; R=CUD is a finite set
of attributes, C is the condition attribute set and D is the
decision attribute set; set of its values V, is associated for
every attribute a€R, and V=U,xV,; and each attribute
has a determine function f: UxR—V, and f determines the
attribute value of each object X.

A decision table is as a special and important knowledge
expression system. It shows that, when some conditions
are satisfied, decisions, actions, operations or controls can
be made. Decision attributes in a decision table can be
unique or not. In the latter case, the decision table can be
converted to one with unique decision attribute [Wang
2001]. So, we suppose that there is only one decision
attribute in decision tables in this paper.

2.2

Definition 2.2[Wang 2001] (Decision rules): Let S = <U,
R, V, f > be a decision table, and BC C. Then a decision

rule dr is generated from B and D with the form

dr: /\ {(a7 Va)} = (d9 Vd)a
where a€B, V,EV,, dED, v4€Vy, and V,, Vy is defined
by Def. 2.1; A{(a, va)} is called as the precondition of a
decision rule (denoted as Cong,) and (@, v,) is called as an

element in the precondition; (d, vq) is called as the
decision of a decision rule (denoted as Desyy).

Decision Rules

It is obvious that objects in decision tables can be
expressed by decision rules.

In order to describe the rule sets based bilevel decision
model clearly, we present some notions related with
decision rules as follows.

Definition 2.3 (Father decision rules): Decision rule dr;
is said to be the father rule of decision rule dr,, if each
element in Cong,, is also an element in Congy,, and there is
at least one element in Congy,, that is not an element in
Cong,1. Here, dr; is said to be the son rule of dr;.

Definition 2.4 (Objects which are consistent with a
decision rule): A object 0 is said to be consistent with
decision rule dr: A {(a, Va)} = (d, v4) (a€B, deD), if for
V ae(B UD), 0,7V, is satisfied, where 0, is the value of
0 on attribute a. Given a decision table S, the set of all
objects in S that are consistent with decision rule dr is
denoted as [dr]s.

Definition 2.5 (Objects which are conflict with a
decision rule): A object 0 is said to be conflict with
decision rule dr: A\ {(a, va)} = (d, vg) (2 EB, dED), if for
V a€ B, we have 0,=V,, and 04#V4. Given a decision table
S, the set of all objects in S that are conflict with decision
rule dr is denoted as [€F]s.

Definition 2.6 (Rules which are consistent with a
decision table): A decision rule dr is said to be consistent
with a decision table S, if there isn’t any object in S that is
conflict with dr.

Definition 2.7 (Rule inclusion): Decision rule dr; is said
to be including decision rule dr,, if all objects which are
consistent with dr, are also consistent with dr;, denoted
as Incl(dry, dry). In this case, if the number of the
elements in dr;’s precondition is the same as that in dr,’s
precondition, then dr; is said to be equal to dr.

Definition 2.8 (Rule conflict): Decision rule dr; is said
to be conflict with decision rule dr,, if all objects satisfied
dr, are conflict with dry, which is denoted as Conf(dr,,
dr,). In this case, if the number of the elements in dr;’s
precondition is the same as that in dr,’s precondition, then
dr; is said to be completely conflict with decision rule
dr,, else dr; is said to be partly conflict with dr».

Definition 2.9 (Rule length): Rule length is the number
of elements in the rule’s precondition.

Decision rule set RS is the set of decision rules. It can be
divided into the following two categories (Def 2.10 and
Def. 2.11) according to whether there are conflicts among
its rules.

Definition 2.10 (Consistent decision rule sets): A
decision rule set RS is said to be consistent, if there isn’t
any rule in the rule set conflicting with other rules in the
rule set, that is to say, V dry, dr, €RS (7 Conf(dry, dr,)).

Definition 2.11 (Inconsistent decision rule sets): An
decision rule set RS is said to be inconsistent, if there is
some rule in the rule set conflicting with at least one

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

another rule in the rule set, that is to say, 3 rule;ERS
(3 rule; ERS (Conf(ruley, ruley))).

Definition 2.12 (Simplest decision rule sets): Suppose
dr is a random decision rule in a consistent decision rule
set RS, if dr is replaced by one of its father rules fdr and
the resultant decision rule set is still consistent, then RS is
said to be a redundant decision rule set, otherwise, it is
said to be a simplest decision rule set.

3 Rule Sets Based Bilevel Decision Problem
Modelling

When solving a bilevel decision problem, which objective
functions and constraints related are expressed by linear
or nonlinear functions, optimization approaches can be
used. However, some real-world problems can’t be easily
formulated or approximated as linear or nonlinear
programs. To handle the issue, new models for bilevel
decision problems are needed.

A decision table can be used to lay out in a tabular form
all possible situations where a decision may encounter
and to specify which action to take in each of these
situations. They can be used in projects to clarify
complex decision making situations. Decision tables are
commonly thought to be restricted in applicability to
procedures involving sequencing of tests, nested-IFs, or
CASE statements. In fact, a decision table can implement
any computable function. It was observed that any Turing
Machine program can be “emulated” by a decision table
by letting each Turing Machine instruction of the form
(input, state) + (output, tape movement, state) be
represented by a decision rule (or an object in a decision
table) where (input, state) are conditions and (output, tape
movement, state) are actions. From a more practical point
of view, it can also be shown that all computer program
flowcharts can be emulated by decision tables [Lew and
Tamanaha 1976].

Therefore, in theory, after emulating all possible
situations in a domain, constraints of a decision problem
can be transformed to a decision table, named as a
constraint decision table. In a similar way, objective
functions can also be transformed to a decision table,
named as objective decision table. That is to say, a bilevel
decision problem can be transformed into a set of
decision tables, where decision variables are represented
by the objects in these decision tables.

Rule sets are more general knowledge generated from
decision table and they had stronger knowledge
expressing ability than decision table. Rule sets overcome
the following disadvantages of decision tables:

1) For complex situations, decision tables may
become extremely large;

2) The objects in decision tables lack of
adaptability. They can’t adapt any new situations
and one object can only record a situation.

So, we use rule sets to describe the objectives and
constraints. The bilevel decision problem, which
objectives and constraints of both leader and follower are
described by rule sets, is called as a rule sets based bilevel
decision model. And the bilevel decision model based on
decision tables is a special case of rule sets based decision
model.

3.1

To present the model of rule sets based bilevel decision
model, the definition of decision rule set function is
needed.

Given a decision table S=<U, R, V, f >, where R=CUD
and D={d}. Suppose X and y are two variables, where
XEX and X=Vgyx...xVam, YEY and Y=Vy. V, is the set of
attribute r’s values and a;€C, i=1 to m and m is the
number of condition attributes. RS is a decision rule set
generated from S.

Decision Rule Set Function

Definition 3.1 (Decision rule set function): A decision
rule set function rs from X to Y is a subset of the cartesian
product X x Y, such that for each X in X, there is a unique
y in Y generated with RS such that the ordered pair (X, Y)
is in rs. RS is called as the decision rule set related with
the function, X is called as the condition variable, Y is
called as the decision variable, X is the definitional
domain and Y is the value domain.

Calculating the value of a decision rule set function is to
make decisions for undecided objects with decision rule
sets, where undecided objects are objects without
decision values. In order to present the method of
calculating the value of a decision rule set function, we
first introduce a definition.

Definition 3.2 (Undecided objects matching a decision
rule): An undecided object 0 is said to be matching a
decision rule dr: A{(a, va)} = (d, vg) , where aEB,
d€ED, if for each a€EB, 0,=V, is satisfied, where 0, is
object 0’s value on attribute a.

Given a decision rule set RS, all rules in RS that is
matched by object 0 is denoted as MR{; .

With the definitions, a brief method of calculating the
result of a decision rule set function is showed as follows:

Step 1: Calculate MR ;

Step 2: Select a decision rule dr from MRy , where

dr:A{(a, va)} = (d, vg);

Step 3: The value of rs(0) is set to be vy, that is,
rs(0)=vg.

Complete

115

CRPIT Volume 48

116

It is obvious that there may be more than one rule in
MR . In this case, when decision values of the rules in

MRZs are different, the result could be various according

to above method, which is called as the uncertainty in a
decision rule set function. Methods of selecting the final

rule from MRJ are very important, and they are said to
be the uncertainty solution methods.

The elimination of uncertainty is a process of selection.
We can select a rule rightly only when some information
is known. In other words, we are said to be informed only
when we can select rightly and definitely. In this paper,
we present a rule tree based model to deal with the
uncertainty in Section 3.2.

3.2

Rule tree is a compact and efficient structure expressing a
rule set. We first introduce the definition of rule tree,
which is developed in our previous work [Zheng and
Wang 2004]. Based on the definition of rule tree, we
improve the rule tree structure with two constraints.

Rule Trees

Definition 3.3 (Attribute importance degree based rule
tree): Attribute importance degree based rule tree is a
rule tree, and it satisfies the following two conditions:

1) The attribute expressed by the upper level is
more important than that expressed by any lower
level;

2) Among the branches with the same start node,
the value represented by the left branch is more
(or better) than the value represented by any
right branch. And every possible value is more
(better) than the value “*”.

Definition 3.4 (Comparison of rules): Rule dri: A {(a;,
Vaii)} = (d1, Vvg1) is Dbetter than rule dra:/A{(a,
Va2i)} = (d, Vgp), if Vayi is better than vgy or the value of
ay is deleted from rule dr,, where attribute a; is more
important than a;;, and for each j<K, Vaij=Vay;.

Theorem 3.1: The rule expressed by the lefter branch in
an attribute importance degree based rule tree is better
than the rule expressed by the righter branch.

It is obvious that the theorem holds from Def. 3.4.

Theorem 3.2: After transformed to an attribute
importance degree based rule tree, the rules in a rule set
are total order, that is to say, every two rules can be
compared.

It is obvious that the theorem holds from Def. 3.4 and
Theorem 3.1.

3.3 Rule Sets Based Bilevel Decision Model

In the following, the mathematical model of rule sets
based bilevel decision model is presented. Here, we
suppose there are one leader and one follower. Besides,
we suppose that, if X is the undecided object of the leader
and y is the undecided object of the follower, then X @'y
is the combined undecided object of the leader and the
follower together.

Definition 3.5 (Model of rule sets based bilevel
decision):

min f (x® y)
X

st. g (X®y)>0

min fz (x® y)
y

st gr (X® y)>0, 3.1)

where X and y are undecided objects of the leader and the
follower respectively. f_ and g, are the objective decision
rule set function and constraint decision rule set function
of the leader respectively, fr and gr are the objective
decision rule set function and constraint decision rule set
function of the follower respectively. F|, G, Fr and Gg
are the corresponding decision rule sets of above decision
rule set functions respectively.

3.4 Modelling Algorithm of Rule Sets Based
Bilevel Decision Model

In the following, we present the modelling algorithm of
rule sets based bilevel decision model.

Algorithm 3.1 (Modelling Algorithm of Rule Sets Based
Bilevel Decision Model)

Input: A bilevel decision problem with its objectives and
constraints of both the leader and the follower;

Output: A rule sets based bilevel decision model;
Step 1: Transform the problem with decision rule sets;

Step 2: Preprocess Fi, such as delete reduplicate rules
from the rule sets, eliminate noisy and etc.;

Step 3: If F| need to be reduced,

then using reduction algorithm to reduce F;

Step 4: Preprocess G, such as delete reduplicate rules
from the rule sets, eliminate noisy and etc.;

Step 5: If G need to be reduced,

then using reduction algorithm to reduce G

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Step 6: Preprocess Fr, such as delete reduplicate rules
from the rule sets, eliminate noisy and etc.;

Step 7: If Fg need to be reduced,
then using reduction algorithm to reduce F;

Step 8: Preprocess Gp, such as delete reduplicate rules
from the rule sets, eliminate noisy and etc.;

Step 9: If Gg need to be reduced,
then using reduction algorithm to reduce Gg;

Complete

Step 1 is the key step of the modeling process. The users
can complete the step by lay out all possible situations,
that is, transform the problem to decision tables. When
the users know the general knowledge (rules) under the
problem, they can directly transform the problem to some
simpler decision rule sets. In general, the realization of
the step depends on the characters of the problem and the
users’ knowledge related with the problem.

In Step 2, Step 4 and Step 6, the four rule sets are
preprocessed. The process is very important, because
incomplete, noisy and inconsistency are the common
characters of huge and real data. So, we should use some
techniques to eliminate these problems in data before
modeling. In [Han and Kamber 2001], the issue is
discussed in detail.

In Step 5, Step 7, and Step 9 of Alg. 3.1, rule set is
reduced by some reduction algorithm. To reduce a
decision rule set or extract decision rules from a decision
table, the methods based on rough set theory are popular
and efficient. Many rough set based decision rule
extraction algorithms, named as value reduction
algorithms, are developed in rough set theory [Pawlak
1991] [Hu and Cercone 1995] [Mollestad and Skowron
1996] [Wang 2001] [Zheng and Wang 2004]. And the
algorithms made successful applications in many fields
[Kiak 2001] [Pawlak and Slowinski 1986] [Kiak 2001]
[Carlin et al 1998]. Besides, there are some rough set
based systems, such as ROSETTA [ROSETTA], RIDAS
[Wang et al 2002], RSES [Jan et al 2002] and so on, can
be used to extract decision rule sets from decision tables.
So, we use rough set theory based methods to reduce the
rule sets based models in this paper.

Based on rough set theory, various value reduction
algorithms can be developed. Value reduction is a process
to find a subset of values in decision rule set which
satisfies that removing any value in this subset will
definitely cause new inconsistency. There are many value
reduction algorithms [Wang 2001] [Hu and Cercone
1995] [Mollestad and Skowron 1996] [Zheng and Wang
2004]. A simplest decision rule set (Def. 2.12) can be
extracted from a rule set or decision table with the
reduction algorithms of rough sets.

In the following section, we use an example to illustrate
the modelling process.

4 Example

Suppose there is a factory with two levels in its staff
management. The upper level is the factory executive
committee and the lower is a workshop management
committee. Now, the factory wants to recruit new
workers. The factory executive committee should
consider the overall objectives, and the workshop
management committee considers its own needs, so the
objectives for the two levels may be different. The
executive committee of factory could ask the workshop to
calculate and submit an optimal production plan as
though it were operating in isolation. Once the plans are
submitted, they are modified with the overall objective of
the factory in mind. An output plan ultimately emerges
that is optimal for the factory as a whole.

When decide whether a person could be recruited, the
factory executive committee considers the following two
factors, which are team spirit and organizational ability of
the person; and the workshop management committee
considers two factors, which are age and eyesight of the
person. Suppose the condition attributes in ascending
order according to the importance degree are “Team
Spirit”, “Organizational Ability”, “Age”, “Eyesight”.

The two committees can’t express the conditions of the
workers they want recruit to linear or nonlinear functions.
But they have a base recorded the worker’s information
having been recruited. So, we can transform the base to
two decision tables (Table 4.1, 4.2), which are the
objective rule sets of the leader and the follower. The
objects of the decision tables represent workers. The
condition attributes of the decision tables are the factors;
the decision attributes of the two decision tables are both
the accept grade of the worker represented by the
condition attribute values. The constraints of the two
committees are expressed by simple rule sets (Equation
4.1, 4.2), which define the constraint region.

Then, we use Alg. 3.1 to transform the problem to rule
sets based bilevel model.

Alg. 3.1-Step 1: Transform the problem with decision
rule sets. Table 4.1 represents the objective rule set of the
leader, Table 4.2 represents the objective rule set of the
follower, Equation 4.1 represents the constraint rule set of
the leader and Equation 4.2 represents the constraint rule
set of the follower.

Table 4.1 Objective rule set of the leader

St | aniy | Age | Evesiont |G
Poor Middle Middle | Middle 2
Good Middle Middle | Middle 1
Good Fine Old Middle 1
Middle Poor Young Poor 3
Poor Poor Middle | Middle 3
Middle Poor Old Poor 3

117

CRPIT Volume 48

118

Good Middle Middle Good 1
Good Fine Middle | Middle 1
Middle Fine Old Poor 2
Good Fine Old Good 1
Good Poor Old Good 3
Good Fine Young Good 1
Good Poor Young | Middle 3
The constraint rule set of the leader:
G.={ (Team Spirit, Good) = (pc, 1)
(Team Spirit, Middle) = (pc, 1)
} 4.1

Table 4.2 Objective decision table of the follower

O by | Age | Eyesiont | G

Fine Young Poor 2

Poor Old Good 2

Fine Young Good 1

Fine Old Middle 1

Poor Young | Middle 3

Middle Middle Poor 2

Poor Middle Poor 3

Poor Old Poor 3

Fine Old Good 1

Poor Young Good 2

Middle Young | Middle 2

Poor Middle | Good 2

Fine Old Good 1

Middle Middle | Good 2

Fine Middle Poor 2

The constraint rule set of the follower:

Ge= {(Eyesight, Poor) = (pc, 0)} 4.2)

Because the scale of the data is very small, the preprocess
steps(Step 2, Step 4, Step 6 and Step 8) are not needed.
Besides, the constraint rule sets of the leader and the
follower are very brief, so the reduction steps of G and
Gk (Step 5 and Step 9) are not needed.

In the constraint rule sets, we suppose that, if the decision
of a rule is (pc, 0), any undecided objects consistent with
the rule are not in the constraint region; if the decision

value of a rule is (pc, 1), any undecided objects consistent
with the rule are in the constraint region. We can also use
some other formats of the constraint rule to express the
constraint region.

Alg. 3.1-Step 3 and Step 7: Reduce the objective rule
sets of the leader and the follower.

After reducing the decision tables based on rough set
theory, we can get reduced objective rule sets of the
leader and the follower (4.3, 4.4). Here, we usc the
decision matrices based value reduction algorithm
[Ziarko et al 1996] in RIDAS system [Wang et al 2002].

The reduced objective rule set of the leader:

F.={(Team Spirit, Poor)/\(Organizational
Middle) = (Accept Grade, 2)

Ability,

(Team Spirit, Good) /\(Age, Middle)= (Accept
Grade, 1)

(Team Spirit, Good) /A (Organizational Ability,
Fine) = (Accept Grade, 1)

(Organizational Ability, Poor) = (Accept Grade, 3)

(Team Spirit, Middle) /A (Organizational Ability,
Fine) = (Accept Grade, 2)

} (4.3)
The reduced objective rule set of the follower:
Fe={(Organizational ~ Ability, Fine) /\(Eyesight,

Poor) = (Accept Grade, 2)

(Organizational ~ Ability, Poor) /\(Eyesight,
Good) = (Accept Grade, 2)

(Organizational ~ Ability, Fine) /\(Eyesight,
Good) = (Accept Grade, 1)

(Organizational Ability, Fine) /\ (Age,
Old) = (Accept Grade, 1)

(Organizational ~ Ability, Poor) /\(Eyesight,

Middle) = (Accept Grade, 3)

(Organizational Ability, Middle) = (Accept Grade,

2)

(Organizational ~ Ability, Poor) /\(Eyesight,
Poor) = (Accept Grade, 3)

} 4.4)

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

With above steps, we get the rule sets based bilevel
decision model of the problem, that is

min f (x® y)
X

st. gL (X®y)>0

min fz (x@ y) 4.5
y

s.t. g (X@y) >0,

where fi, fr, g1, gr are the corresponding decision rule set
functions of F, Fg, G, Gg.

5 Conclusion and Future Work

In this paper, we explore the use of rule set approach to
format a bilevel decision problem by establishing a rule
sets based model. We have seen that the common features
of bilevel decision problems are:

a) Interactive decision making units exist within a
predominantly hierarchical structure;

b) The lower level executes its policies after, and in
view of, decisions made at the upper level,;

¢) Each unit independently maximizes net benefits
(minimizes net costs), but is affected by the
actions of other units through externalities;

d) Extramural effects enter a decision maker’s
problem through his objective function and
feasible strategy set.

Rule sets based bilevel decision problems incorporate
above features. From these features, it is obvious that to
solve a rule sets based bilevel problem should be based
on the solving method of rule sets based multiple
objectives decision problems. Besides, we can divide the
algorithms solving rule sets based decision problems into
three categories, that is, forward algorithms, reverse
algorithms and mixed algorithms. These issues would be
discussed in our future work.

6 Acknowledgments

The work presented in this paper was supported by
Australian Research Council (ARC) under discovery
grants DP0557154 and DP0559213, and University of
Technology, Sydney (UTS) under grant

7 References

Bard, J.F. (1998), Practical Bilevel
Algorithms and Applications,
Publishers, USA.

Bard, J.F. and Falk, J.E. (1982), An Explicit Solution to
the Multi-Level Programming Problem, Computers &
Operations Research 9, 77-100.

Optimization:
Kluwer Academic

Bard, J.F. and Moore, J.T. (1992), An Algorithm for the
Discrete Bilevel Programming Problem, Naval
Research Logistics 39, 419-435.

Bialas, W. F. and Karwan, M. H. (1982), On Two-Level
Optimization, IEEE Trans Automatic Control AC-26,
211-214.

Bialas, W. and Karwan, M. (1984), Two-Level Linear
Programming, Management Science 30, 1004-1020.

Candler, W. and Norton, R. (1977), Multilevel
Programming and Development Policy, World Band
Staff Work No. 258, IBRD, Washington, D.C..

Carlin, U. S., Komorowski, J. and Ohrn, A. (1998),
Rough set analysis of patients with suspected of acute
appendicitis, Proc. IPMU’98, Paris, France, 1528-
1533.

Chen, C.I. and Gruz, J.B. (1972), Stackelberg Solution
for Two Person Games with Biased Informtaion
Patterns, IEEE Trans. On Automatic Control AC-17,
791-798.

Dempe, S. (2002), Foundations of Bilevel Programming,
Kluwere Academic Publishers.

Han, J. and Kamber, M. (2001), Data Mining Concepts
and Techniques, Morgan Kaufmann Publishers.

Hu, X.H. and Cercone, N. (1995), Learning in relational
database: a rough set approach, Computational
Intelligence, 11, 323-338.

Kiak, A. (2001), Rough Set Theory: A Data Mining Tool
For Semiconductor Manufacturing, IEEE Transaction
on Electronics Packaging Manufacturing, 24, 44-50.

Jan, G. B., Marcin, S. S. and Jakub, W. (2002), A New
Version of Rough Set Exploration System, Rough Sets
and Current Trends in Computing, Publisher? 397-404.

Lew, A. and Tamanaha, D. (1976), Decision table
programming and reliability,
Proc. 2nd Intl. Conf. Software Engineering, San
Francisco, 345-349.

Liang, L. and Sheng S.H. (1992), The Stability Analysis
of Bilevel Decision and Its Application, Decision And
Decision Support System 2, 63-70.

Mollestad, T. and Skowron, A. (1996), A rough set
framework for data mining of propositional default
rules. Proc. Foundations of Intelligent Systems of the
9th International Symposium, 448-457, Springer-
Verlag.

Pawlak, Z. (1991), Rough sets Theoretical Aspects of
Reasoning about Data, Boston, Kluwer Academic
Publishers.

Pawlak, Z. and Slowinski, K. (1986), Rough
Classification of Patients After Highly Selective
Vagotomy Duodenal Ulcer, International Journal of
Man-Machine Studies 24, 413-433.

Pooch, U.W. (1974), Translation of decision tables, ACM
Computing Survey 6, 125-151.

119

CRPIT Volume 48

120

ROSETTA: The ROSETTA Homepage,
http://www.rosettaproject.org/.

Schlimmer, J. C. and Fisher, D A. (1986), Case study of
incremental concept induction, Proceedingsof the
Fifth National Conf. on Artificial Intelligence, 1, 496-
501.

Shan, N., Ziarko, W., Hamilton, H. J., and Cercone, N.
(1995), Using rough sets as tools for knowledge
discovery, Proc. 1st Int. Conf. Knowledge Discovery
Data Mining, Menlo Park, CA, 263-268.

Shi, C., Lu, J. and Zhang, G. (2005a), An extended Kuhn-
Tucker approach for linear bilevel programming,
Applied Mathematics and Computation 162, 51-63.

Shi, C., Lu, J. and Zhang, G. (2005b), An extended Kth-
Best approach for linear bilevel programming, Applied
Mathematics and Computation 164, 843-855.

Shi, C., Zhang, G. and Lu, J. (2005), On the definition of
linear bilevel programming solution, Applied
Mathematics and Computation 160, 169-176.

Stackelberg, H. V.(1952), The Theory of Market
Economy, Oxford, Oxford University Press.

Skowron, A. and Polkowski, L. (1998), Rough Sets in
Knowledge Discovery, Physica Verlag, Heidelberg.

Wang, G.Y. (2001), Rough set theory and knowledge
acquisition, Press of Xi’an Jiaotong University (In
Chinese).

Wang, G. Y., Zheng, Z. and Zhang, Y. (2002), RIDAS-A
Rough Set Based Intelligent Data Analysis System,
Proceedings of the First International Conference on
Machine Learning and Cybernetics, 646~649.

White, D. and Anandalingam, G. (1993), A Penalty
Function Approach For Solving Bi-Level Linear
Programs, Journal of Global Optimization 3, 397-419.

Zheng, Z. and Wang, G.Y. (2004), RRIA:A Rough Set
and Rule Tree Based Incremental knowledge
Acquisition Algorithm, Fundamenta Informaticae 59,
299-313.

Ziarko, W., Cercone, N. and Hu, X. (1996): Rule
Discovery from Databases with Decision Matrices, 9"
Int. Symposium on Foundation of Intelligent Systems,
653-662.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

CASO: A Framework for dealing with objectives in a
constraint-based extension to AgentSpeak(L)

Aniruddha Dasgupta

Aditya K. Ghose

Decision Systems Lab
School of IT and Computer Science
University of Wollongong,
Wollongong, NSW 2522,
Email: ad8440Quow.edu.au, aditya@uow.edu.au

Abstract

Incorporating constraints into a reactive BDI agent
programming language can lead to better expres-
sive capabilities as well as more efficient computa-
tion (in some instances). More interestingly, the
use of constraint-based representations can make it
possible to deal with explicit agent objectives (as
distinct from agent goals) that express the things
that an agent may seek to optimize at any given
point in time. In this paper we extend the pre-
liminary work of Ooi et.al in augmenting the pop-
ular Belief-Desire-Intention (BDI) language AgentS-
peak(L) with constraint-handling capabilities. We
present a slightly modified version of their proposal,
in the form of the language CAS (Constraint AgentS-
peak). We then extend CAS to form the language
CASO (Constraint AgentSpeak with Objectives) to
incorporate explicit objectives (represented as objec-
tive functions) and present techniques for performing
option selection (selecting the best plan to use to deal
with the current event) as well as intention selection.
In both cases, we present parametric look-ahead tech-
niques, i.e., techniques where the extent of look-ahead
style deliberation can be adjusted.

1 Introduction

The concept of using constraints has been introduced
by Ooi et al. (1999) where it has been shown that the
integration of constraints in a high-level agent specifi-
cation language yields significant advantages in terms
of both expressivity and efficiency. The BDI frame-
work employed in the multi agent broker system is
implemented with an improvised computation strat-
egy - a synergy of unification and constraint solving.
The improvisation applies constraint directed solving
on the context section of a BDI agents plan specifi-
cation in order to determine an application plan to
fire. The constraint system introduced into the BDI
framework maintains a constraint store that collects
a set of constraints that augment the beliefs of an
agent.

In this paper we extend the work one by Ooi et
al. (1999) by incorporating explicit objectives beside
the constraints. We also describe some efficient plan
and intention selection methods which would result
in better expressibility and more efficient computa-
tion which has not been addressed in either Agents-
peak(L) introduced by Rao (1996) or by Ooi et al.

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology, Vol. 48.
Vladimir Estivill-Castro and Gillian Dobbie, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

(1999). This type of selection mechanisms are par-
ticulary useful in many real world applications which
require the use of intelligent agents to perform some
critical tasks. This paper extends the preliminary
work presented by Dasgupta et al. (2005).

The remainder of this article is organized as follows.
Section 2 gives an example which is used throughout
the rest of the paper. Section 3 introduces the lan-
guage CASO and section 4 discusses its operational
semantics and describes the algorithms for efficient
plan and intention selection. Finally, concluding re-
marks and comparisons are presented in the last sec-
tion.

2 Motivation

In this section we give an example of detailed
reasoning behind the adoption of CASO. We begin
by outlining a specific scenario of using CASO
by a truck in order to deliver goods one location
to another. The roads that the truck would take
consists of several roads with choices available at
various important points to follow one of the many
paths. For simplicity, let us assume that the truck
can either take the city road or the highway and
both runs in parallel and the truck can at exit from
the highway into a city road or enter the highway
from city road from the important points.

Let us assume that there following tasks that
need to be achieved.
G1. Deliver a parcel X to location B from the current
location A.
G2. Fill up the tank whenever there is less than a
quarter of petrol in the tank.

The following objectives may also be supplied to
the truck driver.
O1. Choose the shortest path for delivery of the
parcel.
02. Minimize the amount of petrol required.

A constraint the truck driver may be supplied
with might be the following.
C1. Parcel must be delivered by 5p.m.

Let us also assume the following ground beliefs.
B1. Petrol consumption rate in highways is 10
k.m./litre.

B2. Petrol consumption rate in city roads is 8
k.m./litre.

The two goals above are fairly independent of each
other. Within an agent context the above tasks may
be represented as a set of goals that need to be ful-
filled. In order to fulfil each goal, the truck driver
needs to execute a sequence of actions (i.e. to exe-
cute a plan). There might be a number of plans for

121

CRPIT Volume 48

122

achieving the same task. As an example, for achiev-
ing the first goal there might be two possible plans:
Plan P1: 1. From location A take H1. 2. Deliver
the parcel X at B.

Plan P2: 1. From location A take city road R1. 2.
Deliver the parcel X at B.

Note that each of the plans above may have subplans
which would describe the exact route to be followed.
Both the above plans achieve the same result of de-
livering the parcel. However, the difference that exist
are the time and petrol needed. In case of plan P1,
the time taken is less as there is less traffic and for
plan P2, the amount of fuel required is less whereas
time taken is more.

3 Agent Programming with CASO

Informally, an agent program in CASO consists of a
set of beliefs B, a set of constraints C, an objective
function O, a set of events E, a set of intention I, a
plan library P, a constraint store CS, an objective
store OS and three selection functions Sg, Sp, S to
select an event , a plan and an intention respectively
to process and n, and n; are the two parameters
which denote the number of steps to look-ahead for
plan and intentions selection respectively.

Definition 1:

An agent program is a tuple
I,C,0,50,SE, S1,np,n;,CS, 08} where
B is a set of Beliefs.

P is agent plan repository, a library of agent plans.
E is set of events (including external and internal).
I is a set of intentions.

C'is a set of constraints.

O is an objective function.

SEg is a selection function which selects an event to
process from set E of events.

So is a selection function which selects an applicable
plan to a trigger t from set P of plans.

St is a selection function which selects an intention
to execute from set I of intentions.

CS is a constraint store which stores constraints
which come as events.

0S is an objective store which stores the objective
function which comes as an event.

ny 15 an integer which denotes the number of steps
required to look-ahead for plan selection.

n; 18 an integer which denotes the number of steps
required to look-ahead for intention selection.

{B, PE,

In CASO, a constraint directed improvisation is
incorporated into the computation strategy employed
during the interpretation process. Constraint logic
programming (CLP) combines the flexibility of
logic with the power of search to provide high-level
constructs for solving computationally hard problems
such as resource allocation.

Formally, a language CLP(X) is defined by a con-
straint domain X, a solver for the constraint domain
X and a simplifier for the constraint domain X.

Definition 2:

A CASO plan p is of the form t : by Abo A+ ANb, A
c1 Neca N N Cp «— Sg1,8G2, -, Sgr where t is the
trigger; each b; refers to a belief; each c; is an atomic
constraint; each s, is either an atomic action or a
subgoal.

For brevity we will use BContext(p) to denote the
belief context of plan.

Thus BContext(p) =by Aba--- Ab,

Similarly, we will use CContext(p) to denote the
constraint context of plan p.

Thus CContext(p) =c1 Nca--+ Acm

In our trucking example the beliefs and plans
could be given as follows where TF refers to 'Tank
Full’, FC to 'Full Capacity of tank’ and CL to
"Current Level’ :

Beliefs
TF = false.
FC = 60.

Plans

+!fill-tank(CL):

TF = false&SFC = 606CL < 0.25 x FC «— (stop-to-
fill(gas-station)); delay(5).

The above plan simply states that in order to
achieve the goal of filling the tank, the tank has to
be quarter full and the actions to be taken would to
stop at a gas station and fill up the tank and this
would have a delay of Transition of agent program
to process events depends on the event triggers. An
event trigger, t, can be addition(+) or removal(-) of
an achievement goal(+g;) or a belief (£b;).

4 Operational Semantics of CASO

The CASO interpreter manages a set of events,
a constraint store, a objective store and a set of
intentions with three selection functions. Intentions
are particular courses of actions to which an agent
has committed in order to handle certain events.
Each intention is a stack of partially instantiated
plans. Events, which may start off the execution of
plans that have relevant triggering events, can be
external when originating from perception of the
agents environment (i.e., addition and deletion of
beliefs based on perception are external events) ; or
internal, when generated form the agents own execu-
tion of a plan (i.e., as subgoal in a plan generates an
event of the type addition of an achievement goal).
In the latter case, the event is accompanied with the
intention which generated it (as the plan chosen for
that event will be pushed on top of that intention).
External events create new intentions, representing
separated focuses of attention for the agents acting
on the environment.

The constraint store is initialized by the relevant
constraints whenever a trigger contains a constraint
in its context. At every cycle of the interpreter, the
constraint store is enhanced with new constraints
when applicable selected plan is executed. These
incremental constraints collecting process eventually
leads to a final consistent constraints set. Constraint
solving is applied to the context of each plan to
determine applicable plans as well as to generate
solutions for subsequent actions. Similarly, the
objective store contains the set of objective functions
that need to be maximized (or minimized) which are
part of the event context and is similarly updated at
each cycle.

In the following sections we explain the basics of how
CASO interpreter works. At every interpretation
cycle of an agent program, CASO updates a list of
events, which may be generated from perception of
the environment, or from the execution of intentions
(when subgoals are specified in the body of plans). It
is assumed that beliefs are updated from perception
and whenever there are changes in the agents beliefs,
this implies the insertion of an event in the set of
events.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

4.1 Plan selection

After Sg has selected an event, CASO has to unify
that event with triggering events in the heads of
plans. This generates a set of all relevant plans. The
constraints (if any) that are included in the constraint
part of the context are put in the constraint store.
The context part of the plans is unified against the
agents beliefs. Constraint solving is now performed
on these relevant plans to determine whether the
constraint(s) in the context of the plan is (are)
consistent with the constraints already collected
in the constraint store . This results in a set of
applicable plans(plans that can actually be used at
that moment for handling the chosen event).

The objective store maintains a set of objective
function which may be present in the event context.
At each interpreter cycle, the objective store is also
updated with an objective function for maximizing
(or minimizing).

Definition 3:

Given plans pl and p2 in the plan library,
and given a current constraint store C and a
current objective store O, p1 <opt p2 if and

only if: OptSol(C U CContext(p),0S) >
OptSol(C U CContext(p2),0) where Opt-
Sol(Constraints, Objective) denotes the wvalue of

the objective function when applied to the optimal
solution to the problem denoted by the pair (Con-
straints, Objective).

We assume of course that C'U CContext(p;) and
C U CContext(pz) are solvable.

Optimization techniques are then applied by the
optimizer to each of the applicable plan to determine
an optimal solution. In effect we are solving a ’Con-
straint Satisfaction Optimisation Problem’ (CSOP)
which consists of a standard ’Constraint Satisfaction
Problem’ (CSP) and an optimisation function that
maps every solution (complete labelling of variables)
to a numerical value. So now chooses this optimal
solution from that set, which becomes the intended
means for handling that event, and either pushes
that plan on the top of an existing intention (if the
event was an internal one), or creates a new intention
in the set of intentions (if the event was external,
i.e., generated from perception of the environment).
Thus plan selection is defined as follows:

Definition 4:

Given a trigger t and a set of applicable plans
AppPlans(t) for t, a plan p € AppPlans(t) is referred
to as an O-preferred plan if and only if: p <opt p; for
all p; € AppPlans(t).

The agent program is also responsible for making
sure that the objective store is consistent at any
point of time. During each cycle of the interpreter,
new objectives are added into the objective store
and hence a consistency checker is used to maintain
consistency. Formally a consistent objective store is
defined as below.

Definition 5:
Given an objective store OS and a new objective f,
the result of augmenting OS with f, denoted by OS%

, is defined as y(MaxCons(OS U f)) where v is a
choice function and MaxCons(X) is the set of all
xr C X such that

1. z is consistent and

2. there exists no x’ such that ¢ C 2’ C X and z’ is
consistent.

It is to be noted here that the triggering event

can be the removal of an objective function
also. The new objective store is now given by

v(MazCons(OS U O) N OS where v is the choice

function, OS is the objective store and O is the
negation of the objective O.

Selection of O-preferred plan can be further

enhanced by using np the lookahead parameter
form plan selection. In case np=0, no look-ahead
is performed and maximizing the objective function
on the set of applicable plans would result in an
O-preferred plan as described earlier. However, if
n, > 0 then a look-ahead algorithm (similar to the
one used for choosing the next move in a two-player
game) is performed to select the O-preferred plan.
We assume that the agent is trying maximize its
objective function and the environment may change
in the worst possible way which would minimize the
objective function. The goal of the agent would be
to select a plan which would maximize the minimum
value of the objective function resulting from the
selection of plans which may occur due to the set
of new possible events that may come from the
environment.
We follow the definition of goal-plan tree given by
Thangarajah (2004) to decompose the set of plans
into a tree structure. In CASO, goals are achieved
by executing plans and each goal has at least one
plan, if not many, that can be used to satisfy the
goal. Each plan can include sub-goals, but need not
have any. The leaf nodes of the tree are plan-nodes
with no children (i.e., no sub-goals).

Definition 6:

The relationship between a top level goal, its plans
and subgoals defines a tree structure for each top-level
goal, which is termed the goal-plan tree for that goal.

Each goal-plan tree consists of - a number
of "AND’ nodes which are subgoals that must
be executed sequentially for the goal to succeed;
and a number of ’OR’ nodes which are subgoals any
one of which must be executed for the goal to succeed.

In our trucking example,there are two important
criteria, which the user may want to satisfy:
1. the vehicle should go from the starting point to
the destination point as fast as possible
2. the vehicle should go from the starting point to
the chosen destination by maximum fuel saving.
The cost function for one length unit of a road R;
may look as: C,,(R;) = K x F,(R;)+1 where C,(R;
is the cost of one length unit (for example one meter
of the road R;, F,(R;) is fuel consumption for one
length unit of the road R;, and K denotes the degree
of compromise (it must be a number equal or greater
then zero). If K = 0 then the fuel consumption will
be ignored and only the number of length units will
be important the algorithm will find the shortest
way to the destination. If the K parameter is a high
number, the fuel saving will be very important for
the optimization algorithm. The (global) cost of N
used roads will then be the sum of N road costs:
TC = > (L(R;) x Cu(R;)). TC is the total cost of
plan for the optimization algorithm and L(R;) is the
used length of a road R;.

Given a set of applicable plans, the truck agent
would always try to achieve this objective at every
decision step. However, there could be unforeseen
road blocks and other situations which may result
in the truck from changing its route at any of these
decision points. This may result in the truck in
spending more fuel than that what it would have

123

CRPIT Volume 48

124

used. Thus the strategy for the agent is to compute in
advance the worst case scenario that may occur due
to the change in the highly dynamic environment.
Let us consider that the example of two applicable
plans pl and pl each having one subgoal.

Plan p;
+llocation(truck, D1,k) : location(truck, R1)&k >
0 —!follow(A, F1,L1,k)

Plan po
+llocation(truck, D1,k) : location(truck, R1)&k >
0 —!follow(B, F2,L2, k)

p1 suggests that if truck is at location R1 and it
needs to go to destination D1 then it can follow route
A. py suggests an alternate route of going to D1 from
R1 given by B. F1 and F2 are the fuel consumption
per kilometer of distance and L1 and L2 are the
lengths of the two roads and k is the fuel compromise
factor as described earlier. Let us assume that plan
p1 and po have the following possible subplans.

Plan p;
+!follow(A,F, L, k) : F = 3&L = 3&(timeleft <
1)&k > 0&k < 2 — +ldrive(A)

Plan p; o
+!follow(A, F,L,k) : F = 1.5&L = 3&(timeleft >
)&k > 2 «— +ldrive(A)

Plan py
+!follow(B,F,L,k) : F = 3&L = 2&(timeleft <
1)&k > 0 — +!drive(B)

Plan ps o
+!follow(B,F,L,k) : F = 0.5&L = 2&(timeleft <
1)&k > 2 — +!drive(B)

Plan p;.1 suggest that if current time left to reach
destination is less than 1 hr. then, the value of
k should lie between 0 and 2. Similarly, plan p; o
suggests k should be greater than 2 if more than 1
hr. of time is left. Plan po; and ps.o suggest similar
plans for route B.

Since the objective is to maximize the value of TC
shown earlier, let the constraint solving yields the
value of k=0 from plan p; 1 and k=2 for plan pi ..
Similarly, for plan py, the values for k are 0 and 2
respectively. Figure 1 shows the tree decomposition
for plan p depicting all possible choices. The num-
bers corresponding to the leaf nodes are the values
of the optimization function TC which we are try-
ing to maximize. Thus choosing plan p;;1 and p;o
would give values 3 and 12 respectively; similarly for
plans p21 and psoo the corresponding values would
be 2 and 4. Using the LookAheadPlanSelection algo-
rithm shown below, we obtain the value of 3 at the
root node which suggest that the agent should follow
plan p;.

Following the above algorithm, the truck agent
would choose the p;.

4.1.1 Incremental Resolving of CSOPs

A single decision with such a strategy has O(b™)
time complexity where b is the branching factor
of the decision tree being explored and n is the
number of steps to look ahead which is passed on
as a parameter. The efficiency of plan selection
can be greatly improved if we do not solve the
CSOPs at every step from the beginning of n-step
look-ahead at each decision point but instead apply

3 (Max. of 3 and 12)

2 (Min. of 2 and 4)

Figure 1: Plan Tree

Algorithm 1 LookAheadPlanSelection(int n, state
S, ObjectiveStore OS, ConstraintStore CS)

1: Generate goal-plan tree up to n levels from cur-
rent state S comprising of subgoals of AND and
OR nodes with subplans.

2: Start from the root node.

3: Let constraint store at node p = ¢,

4: Let o, denote the value of objective function at
node p.

5: For each node p in the goal plan tree set ¢, — CS

6: if node p has child nodes p1,ps - - -, px in an AND
structure then

7. Apply constraint solving at each p; with the

current constraint store c¢p; and the set of con-
straints for p; to obtain op;.

8: Set cpiy1 « cp; for all ¢ > 1.

9: Initialize constraint store for all child nodes of

each p; with cp;.

10: end if

11: if node p has child nodes p1,ps -+, pr in an OR
structure then

12: Compute the objective function and update the

constraint store for each p;.

13: Initialize constraint store for all child nodes of

each p; with cp;.

14: end if

15: while n # 1 do

16: Propagate minimum value of objective function

up to each parent node starting from the leaf
node.

172 n=n-—1

18: end while

19: Propagate the maximum value of its children for
state S.

20: At state S, the best plan is the child with the
maximum value.

some heuristic for incrementally resolving the CSOPs.

A heuristic similar to Look Back schemas like back-
tracking that are often used for consistency check
in CSPs can be employed for resolving the CSOPs.
Without any look-ahead, the CSOP for the given plan
P is solved and the solution along with the set of con-
straints in the constraint store at that point is stored.
In order to solve the CSOP for each step of look-
ahead, the new set of constraints that are associated
with each of the subplans at each decision point for
plan P is added to the currently solved CSOP set -

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

if this new set of constraints violate the current value
of the objective function, then backtracking is per-
formed to the most recently instantiated variable that
still has alternatives available and the new CSOP is
solved with the new value of the instantiated variable.

4.2 Intention Selection and Execution

Once a plan is chosen the next stage is to execute
a single intention in that cycle. The S; function
selects one of the agents intentions (i.e., one of the
independent stacks of partially instantiated plans
within the set of intentions). Look-ahead technique
using decision tree is similarly employed here which
could help in selecting an intention which would
give the optimal solution. The parameter n; denotes
the number of steps for required to look ahead. In
case of Intention selection, this merely becomes the
number of items to be evaluated at the top of the
intention stack. If there are more than one intention
stacks present, then look-ahead procedure pops the
top n; elements of the stack from each intention
and computes the optimal solution based on the
constraint and the objective store.

Let us assume that in case of our truck agent, there
are currently two intention stacks (I; and I3) each
corresponding to the two independent goals. The
first one is to follow plan p; (described earlier) and
the other one is to follow plan p3 which describes the
goal of picking up a parcel P2 from location C.

1. Take route A to location D1 from R1 (plan p;).
2. Pick up parcel P2 from location C (plan p3).

Both the above constitute a set of plans which are
in the intention stack ready to be executed. The de-
liberation process of the truck agent is to decide which
intention stack to pursue at a given point in time. For
our example, let us assume that plan p; has subplan
p11 in the intention stack (i.e. So has selected plan
p11 to be executed). Let us also assume that the body
of plan p3 consists of the subplan p3; followed by sub-
plan pso followed by action a; (i.e. ps1;ps2;al).

The intention selection mechanism with one step
look ahead would be to enumerate each of the above
plans p; and p3 with respect to the set of constraints
associated with each plan and objective function (i.e.
Mazimize TC) to determine the best intention to ex-
ecute. A two-step look-ahead mechanism would look
at maximizing the value of TC by enumerating plans
p11 and p3; with the set of constraints associated with

1. plan p; along with subplan p;; on intention stack
I

2. plan p3 along with subplan p3; on intention stack
Is.

Thus depending on n;, the number of steps given
by the programmer, the prioritization of intention is
determined by the value of the objective function up
to n; levels in the intention stack for each intention.
The one which yields the maximum value of the objec-
tive function would the the intention selected by Sy.
In this case the tree generated is called the intention
tree as shown in Figure 2 below where I, I5, - - - I,, are
the set of intention stacks.

The algorithm for selecting new intention using
look-ahead is given below.

On the top of the selected intention there is a plan,
and the formula in the beginning of its body is taken
for execution. This implies that either a basic action
is performed by the agent on its environment, an in-
ternal event is generated (in case the selected formula

S
™
PR
5

P1mi P11 Pn1

Prmn

‘ P12

. ‘ Pn2

Figure 2: Intention Tree

Algorithm 2 LookAheadIntentionSelection(int n,
ObjectiveStore OS, ConstraintStore CS))

1: Generate intention tree for all Intention Stacks.

2: Let constraint store at node p = ¢

3: Compute the value of objective f?mction at the
leaf nodes starting from left to right for each in-
tention stack up to n nodes (i.e. n elements from
top of Intention Stack) each by taking objectives
and constraints from the objective store and the
constraint store.

4: The best intention to execute is the intention
stack which has the maximum value of the ob-
jective function at node n from the left.

is an achievement goal denoted by lg;), or a test goal
is performed (which means that the set of beliefs has
to be checked). If the intention is to perform a basic
action or a test goal denoted by ?g;, the set of in-
tentions needs to be updated. In the case of a test
goal, the belief base will be searched for a belief atom
that unifies with the predicate in the test goal. If that
search succeeds, further variable instantiation will oc-
cur in the partially instantiated plan which contained
that test goal (and the test goal itself is removed from
the intention from which it was taken). In the case
where a basic action is selected, the necessary updat-
ing of the set of intentions is simply to remove that
action from the intention (the interpreter informs to
the architecture component responsible for the agent
effectors what action is required). When all formulae
in the body of a plan have been removed (i.e., have
been executed), the whole plan is removed from the
intention, and so is the achievement goal that gener-
ated it (if that was the case).

This ends a cycle of execution, and CASO starts all
over again, checking the state of the environment af-
ter agents have acted upon it, generating the relevant
events, and so forth.

5 Comparison and Conclusion

We now briefly summarize some of the work related
to AgentSpeak(L) and BDI framework below.

Chalmers et al.(2001) constraint logic programming
and data model approach is used within BDI agent
framework. However, this work speaks of BDI agents
in general and does not integrate with any BDI pro-
gramming language. AgentSpeak(XL) programming
language as described by Bordinin et al.(2002) inte-
grates AgentSpeak (L) with the TAEMS scheduler in
order to generate the intention selection function. It
also describes a precise mechanism for allowing pro-

125

CRPIT Volume 48

126

grammers to use events in order to handle plan fail-
ures which is not included in AgentSpeak(L). This
work, however, adds priority to the tasks. Some re-
lated theoretical work on selecting new plans in the
context of existing plans is presented by Horty et
al.(2001). Another related work on detecting and re-
solving conflicts between plans in BDI agents is pre-
sented by Thangarajah et al.(2003). The degree of
boldness of an agent, as defined by Schut et al.(2000),
represents he maximum number of plan steps the
agent executes before re-considering its intentions.
However in this case it is assumed that the agent
would backtrack if the environment changes after it
has started executing the plans.

In this paper we have presented a general overview
and informal discussion of the concept of incorporat-
ing constraints and objectives functions to AgentS-
peak(L) as well as describe a means of how to design
the option selection function for selecting a plan or an
intention by using parametric look ahead mechanism.
In future we would be extending CASO to incorporate
inter-agent constraints in a multi-agent environment
where agents may need to negotiate with each other.

References

Ooi, B. Hua & Ghose, A. K. (1999), Constraint-Based
Agent Specification for a Multi-agent Stock Bro-
kering System, in ‘Multiple Approaches to In-
telligent Systems:Proceedings of the 12th Inter-
national Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Ex-
pert Systems’, Vol. 1611, Springer-Verlag Lec-
ture Notes in Computer Science, pp. 409-419.

Jaffar, J. & Maher, M.J. (1994), Constraint logic pro-
gramming: A survey., in ‘Journal of Logic Pro-
gramming’ pp. 503-581

Kinny, D. & Georgeff, M. (1997), Modeling and design
of multi-agent systems, Intelligent Agents III,
Lecture Notes in Artificial Intelligence Springer,
Berlin.

Morley., D. (1996), Semantics of BDI agents and their
environment., in ‘Tech. Rep. 74, Australian Ar-
tificial. Intelligent Institute, Melbourne’.

Rao, A.S. (1996), AgentSpeak(L): BDI agents speak
out in a logical computable language, in ‘Agents
Breaking Away: Proceedings of the 7th Euro-
pean WS on Modelling Autonomous Agents in a
Multi-Agent World’, LNAI Vol 1038, pp. 42-55,
Springer Verlag: Heidelberg, Germany.

Rao, A.S. & Georgeff, M. (1995), BDI Agents: from
theory to practice., in ‘Proceedings of First In-
ternational Conference on Multi-Agent Systems’,
ICMAS-95, pp 312-319, San Francisco, CA.

Schut, M. & Wooldridge, M. (2000), Intention recon-
sideration in complex environments, in ‘Proceed-
ings of International Conference on Autonomous
Agents’, Barcelona, Spain.

Bordini, R.H., Bazzan, A.L.C., Jannone, R.O., Basso,
D.M., Vicari, R.M. & Lesser, V.R. (2002),
AgentSpeak(XL):Efficient intention selection in
BDI agents via decisiontheoretic task schedul-
ing, in Castelfranchi C. & Johnson, W.L. eds,
‘Proceedings of the 1st International Joint Con-
ference on Autonomous Agents and Multi-Agent
Systems’, ACM Press, pp 1294-1302, New York,
USA.

Horty, J. & Pollack, M. (2001), Evaluating new op-
tions in the context of existing plans., Artifical
Intelligence, Vol. 127, pp 199-220.

Machado, R. & Bordini, R.H. (2002), Running
AgentSpeak(L) agents on SIMAGENT in Meyer
J. & Tambe, M., eds.,'pre-proceedings of the
8th International Workshop on Agent Theories,
Architectures and Languages’, LNCS Vol. 2333,
Springer Verlag: Berlin, Germany.

Lin, Z.-N., Hsu, H.-J. & Wang, F.-J. (2005), Inten-
tion Scheduling for BDI agents, in ‘International
Conference on Infomration Technology: Coding
and Computing’, ITCC-05, Vol-II.

Thangarajah, J., Padhgam, L. & Winikoff, M. (2003),
Detecting and Avoiding Interference Between
Goals in Intelligent Agents, in ‘Proceedings of
the 18th International Joint Conference on Arti-
ficial Intelligence’ IJCAI 2003, pp. 721-726, Aca-
pulco, Maxcio.

Thangarajah, J. (2004), Managing the Concurrent
Execution of Goals in Intelligent Agents, Ph.D.,
RMIT, Australia.

Chalmers, S. & Gray, P.M.D. (2001), BDI agents and
constraint logic, AISB Journal Special Issue on
Agent Technology Vol. 1, pp. 21-40.

Dasgupta, A. & Ghose, A.K. (2005),Dealing with
Objectives in a Constraint-Based Extension to
AgentSpeak(L), in ‘Eighth Pacific Rim Work-
shop on Multi-Agent Systems’, PRIMA 2005.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Modelling Layer 2 and Layer 3 Device Bandwidths using B-Node
Theory

S Cikara, S P Maj and DT Shaw

School of Computer and Information Science
Edith Cowan University
2 Bradford St Mount Lawley, Perth 6050, Western Australia

scikara@gmail.com; p.maj@ecu.edu.au; alidades@iinet.net.au

Abstract

Modern computer networks contain an amalgamation of
devices and technologies, with the performance exhibited
by each central to digital communications. Varieties of
methods exist to measure and/or predict these
performance characteristics. “Rule-of-Thumb” s
subjective and based on prior experience, typically
offering little mathematical rigour. Benchmarks use
different scales and units, with comparative results
possibly requiring further interpretation. Stochastic
modelling uses complex mathematics which can be
problematic and difficult to understand and conceptualise
to the typical network administrator. As such, the specific
technique employed depends on the problem domain and
the cost of getting it wrong.

Bandwidth-Nodes (B-Nodes) are a high-level bandwidth-
centric abstraction used to de-couple and control the
complexity of a particular technology from the underlying
implementation. Devices and/or technologies can be
modelled as an individual node or as a collection of
nodes, describing the overall function and interactions
between both the sub-systems and the operating
environment.

This paper uses a simple, common measurement method
to calculate the theoretical maximum bandwidth of a
single and/or collection of B-Nodes. It demonstrates that
the efficiency of B-Nodes can be decomposed and shown
as a product of all efficiencies contained within that node.
Sub-optimal operation and device efficiency and its effect
on bandwidth is also introduced. These are empirically
validated and incorporated into the B-Node formula,
allowing the bandwidth of a network to be calculated to a
first approximation for a variety of devices and
technologies. Hence, the anticipated performance of a
network given a technical specification can be easily and
quickly determined.

Keywords: modelling, B-Nodes, bandwidth, performance.

1 Introduction

A wide range of methods, terms, units and metrics are

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Society Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

used to describe the performance of a network system. In
conjunction with other factors such as price, they are used
as an aid to selection (Maj and Veal 2001). In order to be
of any practical value, they should be easy to understand
and therefore be based on user perception of performance
and as such, be simple and use reasonably sized units
(Maj, Veal et al. 2000). Many of the results of these
methods may require further interpretation and pose
additional questions themselves. Others involve the use of
complex mathematics and modelling, such as queuing
theory, which can be problematic to analyse and difficult
to understand and conceptualise to the typical network
administrator.

Bandwidth-Nodes (B-Nodes) are a conceptually simple
model used to control the detail of a system by the use of
abstraction (Maj and Veal 2001). Details of the technical
implementation are deliberately hidden as the specific
technological execution may change rapidly and vary
from device to device.

B-Nodes use a simple formula to determine the
anticipated performance of individual components and
networks as a whole. Recursive decomposition allows the
performance of a node to be assessed by a simple,
common measurement- bandwidth. Sub-optimal operation
of B-Node efficiencies, including multiple compounded
efficiencies, can also be introduced into an existing
system, allowing the efficiency of a single or multiple B-
Node(s) to be incorporated and evaluated right down to
the device, protocol or technology level if so desired.

B-Node experimentation has shown the use of tools such
as PING and File Transfer Protocol (FTP) to ascertain the
bandwidth of a given configuration (Veal, Kohli et al.
2005). Work to date has not addressed the addition and
subtraction of protocols and/or services to a specific
device or configuration. This research will focus on
empirically validating these variables and modelling each
as its own individual sub-B-Node that impacts network
performance, either positively or negatively.

Therefore, it is proposed that the anticipated performance
of a network given a technical specification can be easily
and quickly determined using B-Node modelling.

2 Network Performance

Network Performance is an amalgamation of terms, units
and metrics used to characterise and quantify parameters
such as delay, packet loss and bandwidth (Coccetti and
Percacci 2002). As such, these cannot be simply
expressed by a single parameter, and consequently there

127

mailto:scikara@gmail.com
mailto:.maj@ecu.edu.au

CRPIT Volume 48

128

are numerous metrics and measurement methodologies
employed to express such quantities.

As different applications place different requirements on
a network, common criteria must be designed to
maximise accurate common understanding by end users
and service providers of the performance and reliability
both of end-to-end paths and of specific ‘IP clouds’
(Paxson, Almes et al. 1998). For example, Voice over IP
(\VolP) is an application that is sensitive to delay but
requires relatively small bandwidth, and bulk data
transfers that are insensitive to delay but require large
bandwidth. As such, different metrics are used to measure
the different quantities- delay is typically measured using
packet loss and round trip time (Coccetti and Percacci
2002), (Padmanabhan, Qui et al. 2002), (Lai and Baker
2000), and bandwidth is typically measured by capacity,
throughput and available bandwidth (Strauss, Katabi et al.
2003), (Lai and Baker 1999), (Prasad, Dovrolis et al.
2003), (Jain and Dovrolis 2002). Benchmarks can be used
as an aid to answering these questions, however results
may require further interpretation and additional
questions may arise (Maj and Veal 2000).

Performance metrics must use concrete and well defined
metrics, be repeatable, exhibit no bias for IP clouds using
identical technology, exhibit fair and understood bias for
IP clouds using non-identical technologies, avoid
introducing artificial performance goals and be useful to
users and providers in understanding the performance
they experience or provide (Paxson, Almes et al. 1998).

Bandwidth, in a network-centric context, quantifies the
data rate at which a network link or network path can
transfer information (Prasad, Dovrolis et al. 2003). It
must address the impact of application data plus
overheads required to transport the data, all in a coherent
and easily understood manner. Applications that depend
on network capacity to transfer significant quantities of
data over a single congestion-aware transport connection
rely on the Bulk Transfer Capacity (BTC) of the network.
BTC is defined as the long term average data rate over
the path in question (Mathis and Allman 2001) and is
hence defined as:

_ data _sent
BTC = Aapsed _time

Therefore, the performance as perceived by the user, is
constrained by the overall elapsed time an application
takes to be executed over the underlying network (Mathis
and Allman 2001).

BTC is an active measurement technique that directly
probes network properties by generating the traffic
required to make the measurement (Claffy and McCreary
1999). This active and direct method of analysis has the
undesirable effect of the measurement traffic having a
negative impact (saturation) on the performance of other
traffic on the link (Coccetti and Percacci 2002), (Claffy
and McCreary 1999).

As networks consist of heterogeneous devices and
technologies (Maj and Kohli 2002) including computer
nodes or hosts, network connection media, protocols,
infrastructure and applications, interchanging any of these
variables may vary network performance as each of these

technologies have differing overheads. Subsequently,
there exists a need for unbiased, empirical performance
analysis that is simple, easy to use and conceptualise and
be based on user perception of performance.

3 B-Nodes

Generally, any performance analysis or benchmark
should provide a coherent conceptual model (Maj and
Veal 2000). As such, the measurement standard used
must be easy to understand, be based on user perception
of performance, be simple, and utilize reasonably sized
units (Maj, Veal et al. 2000).

Bandwidth Nodes, or B-Nodes, are a bandwidth-centric
concept that uses high level abstraction to de-couple and
hide the complexity of a particular technology from the
underlying implementation (Maj and Veal 2001). They
allow B-Nodes to be modelled as individual nodes
(Figure 1) or as a sequence of nodes linked together
(Figure 2).

Figure 1: B-Node

) N
Figure 2: Interconnected B-Nodes

They also allow recursive decomposition to permit a
device to be modelled as a collection of B-Nodes (Figure
3). A B-Node can also permit full or partial system or
device overlap (Figure 4) (Maj, Veal et al. 2001).

Bx

Figure 3: Recursive Decomposition

Hardware Device B

Hardware Device A

Figure 4: Partial device overlap

Furthermore, “...each node ... can now be now be treated
as a quantifiable data source/sink ... with associated
transfer characteristics (Frames/s or Mbytes/s). This
approach allows the performance of every node and data
path to be assessed by a simple, common measurement-
bandwidth. Where Bandwidth = Clock Speed x Data Path

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Width with the common units of Frames/s (Mbytes/s) ...
(Maj, Veal et al. 2000).

Operational constraints, including but not limited to
processing capacity and interactions between slower
nodes, typically influence B-Nodes to perform sub-
optimally (Maj, Veal et al. 2001), (Maj and Veal 2001).
As such, Maj et. al. has modified the simple bandwidth
formula to incorporate sub-optimal operation using an
“efficiency” multiplier. Therefore, the bandwidth of a B-
Node is defined as:

Bandwidth = Clock Rate x Data Path Width x Efficiency
or

B=CxDxE

Equation 1: B-Node formula showing sub-optimal
operation

This formula can be applied to the theoretical maximum
Bulk Transfer Capacity (and hence bandwidth) for
TCP/UDP payloads over 100BASE-TX (100Mbps)
Ethernet. All efficiency calculations within this paper are
based on this reference protocol. Using the highest level
of abstraction, 100BASE-TX has the following
transmission characteristics:

Example 1: Bandwidth = ?
Clock Speed = 100 MHz
Data Path = % B (converting bits into
bytes), and
Efficiency = 1 (no transport overheads)
Hence:

leOOMHzx%Bxl

B=125MB/s

Using a lower level of abstraction, 100BASE-TX data
encoding uses 4B/5B block coding which means that a
100Mb/s data stream requires 125Mb/s on the media (a
25% speedup resulting in 20% overhead or non-data bits
transmitted) (Kaplan and Noseworthy 2000).

Example 2: Clock Speed =125 MHz (25% speedup)
Data Path =% B, and
Efficiency = % (20% overhead for
non-data bits transmitted)

And so:

B:l25MHz><%B><%

B=125MB/s

Alternately, viewing the same problem from an even
lower level of abstraction (after MLT-3 coding) the same
formula now becomes:

Example 3: Clock Speed = 12% MHz

=31.25MHz (frequency
is reduced to ¥4) (Kaplan
and Noseworthy 2000)

Data Path =% B, and

Efficiency= % x4=32 (20%
overhead for non-data bits transmitted)

By reducing the carrier frequency without reducing the
data rate, the efficiency is increased by a factor of 4.
When it is demodulated at the other end, the efficiency is
reduced by the same factor (4 times). So:

B = 31.25MHz x % Bx3.2

B=12.5MB/s

From this we can see that the regardless of the level of
abstraction, the formula still yields the same result- that
being the maximum bandwidth of Ethernet is 12.5MBI/s.
For simplicity, all further calculations and assumptions
are based on Example 1.

This high level abstraction only deals with 100BASE-TX
and its effect on bandwidth. It does not address the
subsequent reduction in efficiency additional network
protocols and their associated overheads incur, in
particular TCP/IP (hence referred to in this document as
Ethernet).

4 The Internet Protocol (IP)

Internet Protocol version 4 (IPv4), developed in the
1980’s (Information Sciences Institute 1981), is the most
commonly used protocol in today’s networks, and forms
the integral basis for what we know as the Internet. As
new and powerful applications using the Internet are
developed, the underlying protocols operating in the
lower layers of the OSI model (the networking protocol
stack itself) remain unchanged (Xie 1999).

IPv4 is a network layer protocol that has provision for a
32-bit address space. Modern networks have surpassed
IPv4’s capabilities (Tanenbaum 1996). In order to address
these and other shortcomings, Internet Protocol Version 6
(IPv6) has been developed (Deering and Hinden 1998)
and is slowly being integrated into existing IPv4
infrastructure (Tanenbaum 1996).

IPv6 has a new simplified header format, including a 128-
bit address space, which is designed to keep overhead to a
minimum. The non-essential and optional fields have
moved to extension headers that are placed after the IPv6
header. This reduces the common-case processing cost of
packet handling and to limit the bandwidth cost of the
new header (Deering and Hinden 1998) allowing for
more efficient processing. IPv4 headers are not
interoperable with IPv6 headers and hosts must
implement both protocols in order to recognize and
process both types of headers.

129

CRPIT Volume 48

130

4.1 IP Overhead

By breaking down the various headers, we can analyse
and predict the BTC performance degradation incurred
between IPv4 and IPv6. By elaborating on Raicu and
Zeadally’s table (Raicu and Zeadally 2003), we can
calculate the Total Bytes of the Frame on the Wire for an
individual packet, as shown in Table 1 (grey rows denote
new fields introduced by the authors).

Packet IPv4 TCP | IPv6 TCP | IPv4 UDP | IPv6 UDP
Component (B) (B) (B) (B)
Preamble 7 7 7 7

Start of Frame
Delimiter ! ! L L
Ethernet
Header 14 14 14 14
IP Header 20 40 20 40
TCP/UDP
Header 20 20 8 8
TCP/UDP 1460 1440 1472 1452
Payload
Checksum 4 4 4 4
Interframe Gap 12 12 12 12
Total Overhead 78 98 66 86
Total Bytesof |) 5q0 1538 1538 1538
Frame on Wire
Efficiency (%) 94.93 93.63 95.71 94.41

Table 1: IPv4 and IPv6 header overhead showing both
TCP and UDP

Using the Total Bytes of Frame on Wire, we can calculate
the theoretical maximum single packet efficiency using
the maximum data payload via Equation 2:

TCP/UDP Payload
Total Bytesof Frameon Wire

Equation 2: Theoretical maximum efficiency of a single
packet

SinglePacketEfficiency(%) =

To evaluate the Bulk Transfer Capacity (bandwidth) of
100BASE-TX using these efficiency values, we get the
results in Table 2:

No
E,trgigzslt IPv4 | IPv6 | IPv4 | IPV6
TCP TCP UDP UDP
Overhead
(Example)
Maximum Line
Speed (Mbls) 100 100 | 100 | 100 | 100
Maximum Line
Speed (MBfs) | 120 125 | 125 | 125 | 125
Efficiency of
Ethernet (%) 100 9493 | 93.63 | 95.71 | 94.41
Max Bulk
Transfer 1250 | 1187 | 1270 | 11.96 | 11.80
Capacity
(MB/s)

Table 2: Bulk Transfer Capacity of IPv4 and IPv6

Using the efficiency percentages from Table 1, we obtain
the efficiency of a specific protocol (Eggmeme) and from
this, the computed theoretical maximum BTC for a single

protocol (or B-Node) is calculated for 100BASE-TX
(Table 2). However, the simple B-Node formula
(Equation 1) does not address multiple B-node
efficiencies. It must be extrapolated further to combine
the effects of multiple efficiencies and their influence on
node bandwidth.

5 B-Node Efficiency Decomposition

By further decomposing Equation 1, the efficiency of the
B-Node (E) can be shown as a product of all efficiencies
(e7) contained within the B-Node (Equation 3).

Equation 3: B-Node efficiency product formula

For each B-Node, there is the absolute efficiency, which
is the ratio of input to output of each individual B-node,
and a relative efficiency which compares the reference
value to the output of the B-Node. An example is shown
in Figure 5.

Input (reference point)
100 Mbps

e

Calculated

efficiency of this
node = 95%

e absolute node output =
100Mbps x 0.95
=95Mbps

ez node input = 95Mbps

e2

Calculated
efficiency of this
node = 95%
e; absolute node output =
95Mbps x 0.95
=90.25Mbps

ey node input = 90.25Mbps
ed

Calculated

efficiency of this
node = 95%

€3 absolute node output =
90.25Mbps x 0.95
= 85.74Mbps
-

Qutput

Efficiency of entire B-Node (E) = (0.95)°
=0.8574

Bandwidth of entire B-Node = 100Mbps * 0.8574
= 85.74Mbps

Figure 5: B-Node decomposition example

The component efficiencies (e;) can further be divided
dependent on whether the additional overhead contains
Control Packet information or Data Packet overheads.

Data Packet overheads are defined as overheads that are
directly added to packets that are transmitting application
data. One such example includes Virtual Local Area
Network (VLAN) tags. Therefore, e, to a first
approximation now becomes:

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

E=¢ x(1-g xAe,,)

A, = Additional Data Packet Overhead

where =
e Data payload

Equation 4: Data packet efficiency equation

Control Packet information is defined as entirely
additional packets used to control link flow. They carry
no user data and can typically be viewed as packets that
reduce the bandwidth of a link, without transmitting any
real application data. Some examples include Spanning-
Tree Protocol (STP), Routing Information Protocol (RIP),
Enhanced Interior Gateway Routing Protocol (EIGRP)
and Open Shortest Path First (OSPF). In this situation,
ei+n to a first approximation becomes:

€isn = (l_ o€)

_ Control packet size per second

where in =
ten Link speed per second

ae

Equation 5: Control packet efficiency equation

The original B-Node formula remains the same, however
the ej., parameter can be interchanged with as many
Control Packet or Data Packet efficiencies as required to
be added.

To remove an efficiency from a already calculated B-
Node, this can simply be achieved by multiplying the B-
Node efficiency with the inverse of the efficiency to be
removed (Equation 6):

1

€in

Equation 6: Efficiency removal equation

This can be applied to both Control and Data Packet
efficiencies.

For example, using a B-Node with 5 sub-nodes as defined
below:

ey is Ethernet Efficiency

e, and es are Data Packet efficiencies

ez and e, are Control Packet Efficiencies
The B-Node formula (Equation 1) now becomes:

B=C><D><(el><e2 X @y X€y xe5)

B =CxDx(ex(e x{L-{8 <8,)| x(1—crey) x(L-arey) x(1-{e, xA)

As all devices are not created equally, each with their
own technological constraints, the B-Node formula does
not cater for individual device efficiencies. As such, it
must be further expanded to account for these variations
in device implementations.

5.1 Device Sub-Optimal operation and its effect

on Bandwidth

In an ideal system, an intermediary device such as a
switch, router or bridge would have little or no impact on
bandwidth. However, this is not always the case. A
device itself can introduce latency or processing
overheads within a link and hence reduce bandwidth.
This may be particularly pronounced in computationally
intensive operations such data encryption and decryption.

It is envisaged that there is no one single figure (ep;) for
an entire device, rather a figure for each process the
device purports to undertake. For example, a router might
be particularly fast at switching IPv4 packets, but not
very fast at IPv4 encryption using Advanced Encryption
Standard (AES) with 256 bit keys. As such, these must be
addressed individually. The Efficiency parameter now
becomes:

n

E=Ileey
i=1

Equation 7: B-Node efficiency formula with device sub-
optimal operation

The B-Node formula is extrapolated again to take into
account this device sub-optimal operation:

Equation 8: Extrapolated B-Node equation

Using empirically derived results, ep; for an individual
process on a particular device can be evaluated.

6 Empirical Validation

6.1 Initial Benchmarking

The initial test bed consisted of two identical 800MHz
Celeron dual-stack 1BM-compatible PCs with Windows
2003 Enterprise operating system installed. The Intel Pro
100S network interface cards of each machine were
directly connected to each other via a crossover cable.
This setup (Figure 6) forms the benchmark baseline.

To empirically measure the Bulk Transfer Capacity of a
link (and hence evaluate B-Nodes), there was a
requirement for a single program that could perform
IPv4, IPv6, TCP and UDP measurements. In addition to
this, it was identified that the performance of a BTC
program is often limited by the speed of a disk drive
(Spurgeon 2000). Furthermore, the program had to
account for this by performing memory-to-memory data
transfers. Iperf (NLANR Distributed Application Support
Team 2003) was initially evaluated, however erroneous
results for IPv6 UDP transfers rendered the program
inadequate for the purposes of this experimentation. As
such, nuttcp (Fink and Scott 2004) was assessed to meet
all the aforementioned requirements. The program’s
documentation describes “...its most basic usage is to
determine the raw TCP (or UDP) network layer
throughput by transferring memory buffers from a source

131

CRPIT Volume 48

132

system across an interconnecting network to a destination
system, either transferring data for a specified time
interval, or alternatively transferring a specified number
of buffers.”

6.1.1 Initial Benchmark Results (PC to PC)

Using the above method, the efficiency of any introduced
or removed system can be calculated and validated. In
this case, the efficiency of a BTC test between two
identical PCs connected via a cross-over cable was to be
assessed. This relative measurement for a minimalistic
system was important as it demonstrated the maximum
transfer characteristics of an “unloaded” node. All other
measurements are calculated relative to these values,
either directly or indirectly.

Figure 6 shows the experimental setup consisting of three
B-Nodes. The centre node consists of the two identical
PCs, the second most inner node is made of Ethernet
efficiency (which has already been calculated in Table 2),
and the outer B-Node, which is the overall efficiency of
the node in relation to the input (reference point) and the
output (measuring point). This measured value, in
conjunction with Ethernet efficiency, allows the empirical
calculation of the inner node, and the node efficiency for
that specific hardware setup.

Input {reference paint)

T E N

{Entire B-Node

Efficiency)

¢ Eethamet ™y
{Max calculated
Ethernet Efficiency)

i | ™

E
{Efficiency of || pC 9
Introduced

B-Node)

PC2

e vy

Output {measuring point)

Figure 6: Initial experiment test-bed setup showing B-
Node decomposition

From the results (Table 3), it can be concluded that both
IPv4 and IPv6 TCP have almost optimal (or 100%)
efficiencies compared to the calculated value, with both
being above 99.78%. Both UDP transfers perform
slightly worse than their TCP counterparts (at best almost
1% less) with IPv6 UDP (98.48%) approximately a
further 0.5% less than IPv4 UDP (98.93%).

EQ g T @
ez |2 | .| z|% |%3
=8 |5 2 s | % g
I+ |3 a o5 o~ | §2
2e|Eg| 2| EE | 2€ |28
[+ 0 S w =] =
£€ |=S| 8| 85| 52 |3
e || 8 8¢ B8 | B5
gm |2E| & =8 | 28 | EES
S5l £ =) =
£2 |38/ 5 |55 | &8 |5
IPvATCP | 1187 | 1184 0.03 | 9493 | 9475 | 09.78
1Pv4 UDP | 1196 | 11.83| 013 | 9571 | 9466 | 98.93
IPv6 TCP | 1170 | 1168 0.02 | 93.63 | 9343 | 09.82
1Pv6 UDP | 11.80 | 1162] 0.18 | 9471 | 9206 | 98.48

Table 3: Bulk Transfer Capacity of IPv4 and IPv6
showing actual efficiency of introduced B-Node.

6.2 Layer 2 Device Measurement

6.2.1 Single Switch Experiments

To calculate specific device efficiencies, the experiment
was further elaborated to incorporate both unmanaged
(DLink DES1008D) and managed (Cisco 2950 and 3550
series) switches. The equipment was set up as shown in
Figure 7.

As managed switches have more features available than
unmanaged switches, the opportunity to individually test
the efficiencies of these was investigated. Initially, a
Cisco default switch configuration was tested. In this
case, the PCs were in Virtual Local Area Network 1
(VLAN 1), and Spanning-Tree Protocol (STP) was
enabled. Various combinations of these were then
evaluated including:

1. PCsinVLAN 1 and STP disabled

2. PCsinVLAN 1 and STP enabled (Cisco default
configuration)

3. PCsinVLAN 10 and STP disabled

4. PCsinVLAN 10 and STP enabled

Note: On a switch, access ports or non-trunking ports
have no VLAN information passed on them. The VLAN
tags are not passed through to the PC (and hence do not
occupy any time on the wire) and as such, should not
impact bandwidth.

It should also be noted that the experiments were
conducted using a stable and settled STP network with
hello timers set to the default of 2 seconds. Using these
parameters, we obtain a calculated maximum efficiency
for an STP B-Node to be 99.999663%. This should have
negligible impact on BTC.

The experimental setup (Figure 7) in this instance
consists of four B-Nodes, but with a variable number of
eiy, sub-nodes shown in the switch. These variable
numbers of sub-nodes in the switch pertain to device
specific functionality, such as VLANSs and STP. Building
up on the methodology introduced in Section 6.1.1, the
measured output allows the empirical derivation of the
ei+n Sub-nodes, and hence, the specific node efficiency for
a particular hardware setup, as well as a particular
protocol or configuration activated and operating on that
device.

From the results obtained, we can see that the introduced
B-Node efficiency for both managed and unmanaged
switches, regardless of protocols used, was overall fairly

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

constant and close to optimal efficiency (with the
minimum being 99.58%, the average being 99.89%).
There were instances where the efficiency was greater
than 100% (the maximum being 100.6%), but to a first
approximation, these can be accounted for in
measurement, rounding errors and uncertainties. As such,
it can be determined that the addition of a switch within a
B-node will have negligible or no effect on Bulk Transfer
Capacity.

Analysing the switch sub-node efficiencies also
demonstrated that regardless of the VLAN or if STP was
enabled or disabled, the result was a negligible impact on
bandwidth. The sub-node efficiencies ranged from
99.66% to 100.17%, with an average of 99.97%.

Input (reference point)

E
[Entire B-Mode
Efficiency)

(" Eemuou ™
{Max calculated
Ethernet Efficlency)

(e
(Efficiency of
initial benchmark)

Dutput (measuring point)

Figure 7: Single switch experiment setup

6.2.2 Dual Switch Experiments

The experiment was then further extended to incorporate
two unmanaged (DLink DES1008D) or two managed
(Cisco 2950 and 3550 series) switches. The equipment
was set up as shown in Figure 8.

The additional features that were tested are listed below:

1. PCsin VLAN 1, using 802.1Q encapsulation
and STP disabled

2. PCsin VLAN 1, using 802.1Q encapsulation
and STP enabled (default configuration)

3. PCsinVLAN 10, using 802.1Q encapsulation
and STP disabled

4. PCsin VLAN 10, using 802.1Q encapsulation
and STP enabled

5. Same combinations as above, but using Inter-
Switch Link (ISL) for encapsulation

The experimental setup (Figure 8) again shows four B-
Nodes, and a variable number of e, sub-nodes. The
variable numbers of sub-nodes are setup-specific
functionality, such as VLANSs and STP and encapsulation
type. The specific node efficiency for a particular
hardware setup as well as a particular protocol or
configuration activated and operating on that device was
then evaluated.

From the results, excluding IPv6 TCP on the 3550
(reasons explained further on), we can see that introduced
B-Node efficiency is overall fairly constant for both dual
managed and unmanaged switches for the features tested
(average of 99.92%).

Input {reference point)

e ™
{Entire B-Node
1

" Ecanamar)
(Max calculated
Ethernet Efficiency)

Output (measuring point)

Figure 8: Dual switch experiment setup

On the Cisco 3550 wusing IPv4 TCP with ISL
encapsulation, the efficiency also varies the greatest with
respect to the reference value (96.84% and 98.99%). IPv4
and IPv6 UDP with VLAN tagging and ISL
encapsulation also had an efficiency that is greater than
what can be accounted for in measurement, rounding
errors and uncertainties (101.76% to 101.86%). This
indicates that the use of these protocols increases the
efficiency of the B-Node. Possible explanations for this
may include the Cisco implementation of these protocols.
Further research is required to investigate this
phenomena.

133

CRPIT Volume 48

134

IPv6 TCP bandwidth for the Cisco 3550 was significantly
lower than for the Cisco 2950 switch (average of 81.62%
with approximate 1% deviation from minimum to
maximum). Further research is required to explain this,
however one possible solution is the software
implementation of this particular Internetworking
Operating System (10S) of this switch and its interaction
with the congestion control algorithms of IPv6 TCP. This
demonstrates that the device efficiency (ep;) for a Cisco
3550 switch using IPv6 TCP is significantly lower than
for any of the other devices tested.

The sub-node efficiencies (ej.n) showed also that
regardless of VLAN, encapsulation or if STP was enabled
or disabled, the result was an insignificant effect on
bandwidth. The sub-node efficiencies ranged from
99.16% to 101.95%, with an average of 100.22%.

It can be seen from these results that the device (ep;) in
conjunction with the protocol used (Egmeme) has the
greatest effect on Bulk Transfer Capacity. Ancillary
protocols or features (such as STP, encapsulation type
and VLANS) have little or no effect on bandwidth. This
information would be particularly valuable to a network
administrator ~ evaluating and planning network
infrastructure.

6.3 Layer 3 Devices

6.3.1

The effect of Layer 3 devices on bandwidth was next to
be investigated and empirically evaluated. The device
assessed in these experiments was a 2621XM Cisco
router, and setup as in Figure 7 (but with the switch
replaced with the router). The results are shown in Table
4,

Single Router Experiments

> o el
E o (<3} Q Q
=] g z | & K E 5T
£ = = S z = b= S ¥
= S 7 [aa) = NS o O =
3 Ex | = | & @ | ER 52
I S < w D > < C o
=2 EE @ =5 “~ O - o - 0T
— = o 2 X S C = T = O
S S o= c £ c o © 5 ° =
= <= - = o @ w 's > Z >4
B >3] k= = E 2 m g
S g | & | W S 8 28
D 5 [a) > S Q L a5
S e} 8 < = =
= = w i}
L ~ - © I5e) © o .
54 © > S e} N ~ G
a9 - ~ e < [} © o
z — o © ©
™
N~ ™ © ~
IS @ S | & =@ ™ © p
& — ; <] %)
Fol 3 ™~ ™ o © © 9
W © - o - @ < —
¥ au <} ~ o ~ = T
D_Dg — < CH w o o CI.J>
=22 3 ~ < o st fry) o
™
© — N o
Il 2| 3 | & | & e 0 S
&)
as50 —i 7o) %) <))
2 — ™~ = o rs) fre} 9
L o ™ o —
SHFE| N 0 Q| <« = < % 3
[— N o = —i
=2 — o o 3¢ ~ x >
S o ™ o~ © bt
T L & | 8| « = N =
©))
o — ~ o o)
& — =~ o re) © Y
W o ™ — © ™
cal|l @ & o [~ — < s 3
a33 — i S < S S
22 — A — o — — x >
o
o — © <t
a ™~ ™ ©
sEg| s (2| S 8BS
el = ~ ~ = s}) 3

Table 4: Single Router Bandwidths

The effect the router has on bandwidth is much more
pronounced than a switch. With the exception of IPv6
without using Cisco Express Forwarding (CEF), average
TCP bandwidth (65.65%) is consistently higher than UDP
(59.86%), with IPv4 TCP (average of 66.83%) having a
greater efficiency than [IPv6 TCP (63.28%) by
approximately 3.5%. Conversely to this, IPv4 UDP
(59.37%) is lower than IPv6 UDP (60.84%) by about
1.5%.

Disabling CEF and using IPv6 has the greatest effect on
overall router bandwidth. With IPv6 TCP, the efficiency
was reduced to 21.41%. IPv6 UDP was approximately
51% less efficient than IPv6 TCP with 10.93%

More pronounced is the effect sub-nodes have on IPv6
router efficiency. By enabling CEF on IPv6 TCP, the
efficiency is almost trebled to 295.60%. The result of
enabling CEF on IPv6 UDP Bulk Transfer Capacity is
even more significant, at 556.69%. Less distinctive is the
effect of CEF on IPv4, with the sub-node contributing
less than a 0.5% increase in efficiency.

6.3.2

To quantify the effect of multiple layer 3 devices,
2621XM Cisco routers were paired up and the results
noted as follows. In addition, a single Access Control List
statement (ACL) was applied to the in and out direction
of the ingress interface of Router 1 and egress interface of
Router 2. Experimental setup was as in Figure 8, with the
switches replaced with routers. Table 5 displays the
results.

Dual Router Experiments

Average IPv4 TCP performance using dual routers
(67.12%) compared favourably with single routers
(66.84%), as did IPv4 UDP (dual routers 60.19%) and
single routers (59.37%).

Excluding the results obtained from using no CEF, and
ACL statements, IPv6 TCP dual routers (DR) were
approximately lower by 10.5% than with single routers
(SR), to 52.74%.

IPv6 TCP with no CEF was also fairly comparable (DR
20.12% compared to SR 21.41%), as was IPv6 UDP with
no CEF (DR 11.10% to SR 10.93%).

Single ACL statements also have significant impact on
IPv6 efficiencies. For IPv6 TCP, the statement reduces
bandwidth by 13.27% to 39.47%. With IPv6 UDP, this
was only reduced by 8% to 52.41%. IPv4 ACL
statements improved efficiency by less than 0.6%, which
can be accounted for in errors and rounding.

The sub-node efficiencies (ej.n,) for IPv4 demonstrated
that CEF or an ACL statement does not have an
appreciable effect on bandwidth. IPv6 TCP showed that
with the introduction of two routers with CEF enabled,
efficiency increased to 262.13%, but the addition of an
ACL statement reduced this by almost 66% to 197.17%.
IPv6 UDP with CEF enabled increased to 544.19% and
an ACL statement reduced this by 72.1% to 472.09%

From the results it can be seen that the device sub-nodes
(i+n) in conjunction with the protocol used (egtemet) has a
significant effect on Bulk Transfer Capacity in routers.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

E S ®
2 z @ IS &) o
£ @ 2 oo 24 2 .
= o m D Q T X “az FRE=R=N
T S S £ 1S 2 °23c
S @ < < S > O > o> o >t
o £ O = O I =IKT)
o =] o =] = cog|lcge
= 54 o i S s O |8
TS S = kS c o 58~ |c38
=g 2 o X © w 's = 2 =39
1) & D S = — & &= o £ 5
e S £ Et < & w o we=z
o = w S w =] =
& = a 3] c =
= <
%u_ <
™~ ™ < 0
e} o 2 b=y o <] >
I3 pa ~ ™ 3 8 8 T
a = o
~ ™ © ~ ~
I3 @ S 8 S @ @)
a — < o © =3
=F O 9 ~ [32) > R bl 3
5o
©
~ ™ =)
=< © S 5 o S} 0 g
< — 4 < < ~
S — © ®) © © S
£ 0
T8 <
© — o <
188 | @ 8 5 > < > >
o — [¥e] © [<2] Y=
_D§ o ~ ~ > sl 3 &
< o w o ~ o = e) &
S AW < o <) ™~ n — S
a — Ty © =)
=20 — ™~ <+ [) @ S
T © ~ < — © ™ S
O0WO < — @Q ™~ 2 2 P
LT50< b ~ ~ 9 8 3]
o —
O o ™ o o~ S
3 = 3 93 © S = >
© B — [se} o o Y=
> — N @ o — Y 3}
gz x
S
)
o ™ © <
i S g 3 @ N ~ by
© 0 — o v) = o B
c 4 o < PP Q
So
~
<)) @ ~
=< ~ ° 3 © © < ;‘
© -) © o
S — -~ ™~ o ™ ™ =2
£ 0
Su S
<l
o — — [o
>4 2 R o ~ X = >
] pa - S & S pa 5
gz o
a
(=2
o — o —
=g @] S N = s g
© — < © o
S O — ™~ ~ =) © 35
=
%_I
Q o — o~ — =4
o< 3] 2 = ~ ~ < g
© — 5 5 < I} oi
S — © b = < o i
20

Table 5: Dual Router Bandwidths

6.4 B-Node Network Performance Analysis

A fictitious network administrator has been given the task
to analyse the network shown in Figure 9, and to use B-
Node methodology to predict the performance of the
topology. The technical specification is detailed as below:

1. PC1,2and 3 are all identical 800MHz PCs
2. Switch 1 is a DLINK DES1008D switch
3. Switch 2 and 3 are Cisco 3550 switches
4. Router 1, 2 and 3 are Cisco 2621XM routers

Figure 9: Fictitious network

Assuming no competing transfers, the administrator wants
to evaluate the anticipated performance between PC 1 and

PC 2 using IPv6 UDP. Router 1 does not use CEF. The B-
Nodes for this configuration are:

1. IPv6 UDP Ethernet

2. PCtoPC

3. DLink DES 1008D switch, and
4

Cisco 2621XM with no CEF (and hence no sub-
nodes)

The B-Node formula hence becomes:

leoox%x{e

€pLink X €(Router1NoCEF)

IPv6UDP Ethernet X €pctopc X

Using the empirically derived results from this research,
we get:

B =100x % x (0.9441x 0.9848x100.60x10.16)

B=1.19MB/s

The anticipated bandwidth of this configuration is
1.19MB/s. The experimental result obtained was
1.23MB/s which compares favourably with the predicted
result.

The network administrator now wants to evaluate the
bandwidth between PC 1 and PC 3 using IPv4 TCP
transfers, again assuming no competing transfers. Switch
2 and 3 use VLANS, ISL encapsulation but no STP.
Router 2 and 3 use CEF. The B-Nodes now are:

1. IPv4 TCP Ethernet

2. PCtoPC

3. DLink DES 1008D switch
4

Router to Router (Cisco 2621XM) with a CEF
sub-node, and

5. Dual 3550 switches and ISL encapsulation with
the sub-node VLANS

The B-Node formula becomes:

€ipvaTCP Ethernet X €pctopc * €pLink X
B =100 x % X (e(Routerto Router)®(Router to Router CEF))X

€ (Dual 3550+ ISL encapsulation)€(Dual 3550 +VLANS))

Using the empirically derived results from this research,
we get:

B =100x %x (0.9493x0.9978x0.9988 x

(0.6695x0.9987)x (0.9701x101.95))
B=7.82MB/s

The anticipated calculated bandwidth of this configuration
between PC1 and PC3 is 7.82MB/s. Results obtained
experimentally compared well to the calculated figure to a
first approximation, with a 7.92MB/s bandwidth obtained.

From this, we can see that for a given technical network
specification and using B-node analysis, the expected
bandwidth for non competing transfers can be calculated
to a first approximation.

135

CRPIT Volume 48

136

6.5 Conclusion

B-Nodes may provide a simple, easy to use diagrammatic
tool that can be used to hide the complexity of devices
and technologies and the performance exhibited by them.
Through the use of abstraction, the complexity of a
particular technology and its implementation can be
decoupled and controlled, allowing them to be modeled as
an individual node, or as a collection of nodes showing
the overall system structure.

Using the B-Node methodology and its empirical
validation, specific technology and device efficiencies
have been evaluated and calculated. By decomposing the
elements within a configuration and using this
information, the simple B-Node formula allows the
bandwidth of a network to be calculated to a first
approximation, down to the individual components if so
desired. Each network communication device, computer
nodes or hosts, network connection media and protocols,
may be evaluated as required and using this information,
the anticipated network performance, given a technical
specification, can be easily and quickly determined using
the simple B-Node formula, however further investigation
and empirical validation of a wider variety of protocols
and hardware platforms is required.

7 References

Claffy, K. C. and S. McCreary: (1999): Internet
measurement and data analysis: passive and active
measurement,
http://www.caida.org/outreach/papers/1999/Nae4hans
en/Nae4hansen.html

Coccetti, F. and R. Percacci (2002). Bandwidth
Measurement and Router Queues. Trieste, Sezione de
Trieste.

Deering, S. and R. Hinden: (1998): RFC 2460 Internet
Protocol Version 6 (IPv6) Specification,
http://www.rfc-editor.org

Fink, B. and R. Scott: nuttcp, v5.1.11
ftp://ftp/lcp.nrl.navy.mil/pub/nuttcp/ 2004

Information Sciences Institute: (1981): RFC 791 Internet
Protocol, http://www.rfc-editor.org

Jain, M. and C. Dovrolis (2002). End-to-end Available
Bandwidth: Measurement Methodology, Dynamics,
and Relation with TCP Throughput. SIGCOMM,
Pittsburgh, Pennsylvania, USA.

Kaplan, H. and B. Noseworthy: (2000): The Ethernets:
Evolution from 10 to 10,000 Mbps- How it all
Works!, http://www.iol.unh.edu/training/ethernet.html

Lai, K. and M. Baker (1999). Measuring Bandwidth. 18th
Annual Joint Conference of the IEEE Computer and
Communications Societies.

Lai, K. and M. Baker (2000). Measuring Link Bandwidth
Using a Deterministic Model of Packet Delay. Proc.
Conference on Applications, Technologies,
Acrchitectures, and Protocols for Computer
Communication, Stockholm, Sweden, ACM Press.

Maj, S. P. and G. Kohli (2002). Modelling Global IT

Structures using B-Nodes. 3rd Annual GITM World
Conference, New York, USA.

Maj, S. P. and D. Veal (2000). Architecture Abstraction
as an Aid to Computer Technology Education. ASEE
Computers in Education Division, St Louis, Missouri,
USA.

Maj, S. P. and D. Veal (2001). B-Nodes: A proposed new
method for modelling information system technology.
International Conference on Computing and
Information Technologies, Montclair State University,
NJ, USA.

Maj, S. P. and D. Veal (2001). Controlling Complexity in
Information Technology: Systems and Solutions.
IASTED Conference on Computers and Advanced
Technology in Education (CATE), Banff, Canada.

Maj, S. P., D. Veal and P. Charlesworth (2000). Is
Computer Technology Taught Upside Down? 5th
Annual SIGCSE/SIGCUE Conference on Innovation
and Technology in Computer Science Education,
Helsinki, Finland.

Maj, S. P., D. Veal and R. Duley (2001). A Proposed
New High Level Abstraction for Computer
Technology. ACM Special Interest Group for
Computing Science Education (SIGCSE) 2nd
Technical Symposium in Computer Science
Education, Charlotte, North Carolina, USA.

Mathis, M. and M. Allman: (2001): RFC: 3148 A
Framework for Defining Empirical Bulk Transfer
Capacity Metrics, www.rfc-editor.org

NLANR Distributed Application Support Team: Iperf,
http://dast.nlanr.net 2003

Padmanabhan, V. N., L. Qui and H. J. Wang (2002).
Technical Report MSR-TR-2002-39: Server Based
Inference of Internet Performance, Microsoft
Research, Microsoft Corporation: Redmond, WA.

Paxson, V., G. Almes, J. Mahdavi and M. Mathis: (1998):
RFC 2330 Framework for IP Performance Metrics,
www.rfc-editor.org

Prasad, R., C. Dovrolis, M. Murray and K. C. Claffy
(2003). Bandwidth Estimation: Metrics, Measurement
Techniques, and Tools. IEEE Network. 17: 27- 35.

Raicu, I. and S. Zeadally (2003). Impact of IPv6 on End-
User Applications. IEEE International Conference on
Telecommunications (ICT), Tahiti, French Polynesia.

Spurgeon, C. E. (2000). Ethernet: The Definitive Guide,
Library of Congress Cataloguing-in-Publication Data.

Strauss, J., D. Katabi and F. Kaashoek (2003). A
Measurement Study of Available Bandwidth
Estimation Tools. Proc. ACM SIGCOMM Conference
on Internet Measurement, Miami Beach, FL.

Tanenbaum, A. S. (1996). Computer Networks. Upper
Saddle River, N.J, Prentice Hall.

Veal, D., G. Kohli, S. P. Maj and J. Cooper (2005). A
Framework for a Bandwidth Based Network
Performance Model for CS Students. 2005 ASEE
Annual Conference and Exposition "The Changing
Landscape of Engineering and Technology Education
in a Global World", Portland, Oregon.

Xie, P. P. (1999). Network Protocol Performance
Evaluation of IPv6 for Windows NT. San Luis
Obispo, California Polytechnic State University.

http://www.caida.org/outreach/papers/1999/Nae4hansen/Nae4hansen.html
http://www.caida.org/outreach/papers/1999/Nae4hansen/Nae4hansen.html
http://www.rfc-editor.org/
ftp://ftp/lcp.nrl.navy.mil/pub/nuttcp/
http://www.rfc-editor.org/
http://www.iol.unh.edu/training/ethernet.html
http://www.rfc-editor.org/
http://dast.nlanr.net/
http://www.rfc-editor.org/

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Throughput fairness in k-ary n-cube networks

Cruz Izu

School of Computer Science
The University of Adelaide
Adelaide 5001, South Australia

cruzl@cs.adelaide.edu.au

Abstract

The performance of an interconnection network is
measured by two metrics: average latency and peak
network throughput. Network throughput is the total
number of packets delivered per unit of time.

Most synthetic network loads consist of sources injecting
at the same given rate, using traffic patterns such as
random, permutations or hot spot, which reflect the
distribution of packet destinations in many parallel
applications. The network is assumed to be fair: all source
nodes are able to inject at the same rate. This work will
show such assumption is unfounded for most router
proposals. All router designs exhibited significant
network unfairness under non-uniform loads. Some
routers are also unfair under random traffic patterns. At
loads above saturation, if the channel utilization is
uneven, the injection matrix will become uneven: packet
at low used areas will be accepted at a higher rate that
those at the busy areas.
As synthetic traffic does not reflect the coupled nature of
the traffic generated by parallel applications, the impact
of this unfairness on application performance could not be
measured. New synthetic loads need to be developed to
better evaluate network response beyond saturation.

Keywords: Interconnection Networks, network

throughput, fairness, channel utilization.

1 Introduction

Massively Parallel Processors (MPPs) are built by
connecting a large number of common microprocessors
with off-the shelf interconnect technologies such as
Myrinet or Quadrics (Pretini et al, 2002) or custom
designed network such as those built into the BlueGene
(Blomrich et al 2003) or the Cray XT3. In addition of
managing message traffic for parallel applications, the
interconnection network (IN) provides support for data
distribution, periodic check-pointing, input/output
handling and results storage.

Copyright © 2006, Australian Computer Society, Inc.
This paper appeared at the Twenty-Ninth Australasian
Computer Science Conference (ACSC2006), Hobart,
Australia. Conferences in Research and Practicein
Information Technology (CRPIT), Vol. 48. Vladimir
Estivill-Castro and Gill Dobbie, Eds. Reproduction for
academic, not-for profit purposes permitted provided this
text is included.

The first step to design an interconnection network is to
choose the network topology. Low degree networks are
popular as they map easily into the plane, which
facilitates implementation. Besides, if we are bandwidth
limited, lower node degree results in wider physical
channels that reduce message transmission time. K-ary n-
cube networks of degree 2 or 3 are a popular choice
(Duato, Yalamanchili and Ni, 1997) as they provide a
regular symmetric direct network with the advantages this
entails.

The IN should provide low latency and high throughput,
and avoid any network anomalies such as deadlock,
livelock or starvation. There is a large body of result in
dealing with deadlock issues either by deadlock
avoidance or deadlock recovery. Most of the solutions are
based on restricting routing to eliminate cyclic
dependencies (Duato, Yalamachili and Ni, 1997) or to
break the possible cycles by mapping messages to
separate virtual channels (Dally and Seitz, 1987). Once
we achieve a deadlock-free network design it is easy to
increase adaptivity by applying Duato's theory (Duato,
1996). Deadlock recovery strategies rely on the fact that
deadlock occurrences are rare when the router provides
high levels of adaptivity (Anjan and Pinkston, 1997).
Instead of using many resources (i.e. virtual channels) to
avoid deadlock, we will need lesser resources per router
to forward deadlocked messages. However, deadlock
detection is not a trivial problem and poor performance
may result from either low detection rates or false
deadlocks. Misrouting can also be used to avoid deadlock
as well as to increase fault tolerance and circumvent
congestion areas. However, any non-minimal routing
introduces a livelock risk, as a message that is misrouted
may be prevented from reaching its destination in a
bounded time.

Finally, most router designs avoid starvation by providing
a fair arbitration scheme that guarantees a bounded
waiting time for any packet requesting an output channel.
Note that starvation is the worst-case scenario of network
unfairness in which a particular computation node
remains unable to access the network resources for an
unbounded time limit. Lesser cases of network unfairness
will allow different network nodes to inject packets at
different rates, resulting in some of the nodes
experiencing saturation while other nodes are still able to
inject at their full rates. Dally and Towles (2004) stated
that network unfairness is caused by unfair arbitration.
They cite the chaos router as an example: its arbiter gives
priority to packets queued at the router over incoming
packets. When routing arbitration is fair, it is expected

137

CRPIT Volume 48

138

that the whole network will also be fair in terms of
throughput. Thus, the only metric used for measuring
network throughput is the number of packets (of flits)
delivered per unit of time.

Recent work on limited injection mechanisms has
highlighted the presence of network unfairness for non-
uniform loads (Izu, Miguel-Alonso and Gregorio, 2005).
Such loads caused a non-uniform use of network
resources beyond saturation. This paper extends that
evaluation by showing network unfairness is present in
most router proposals at loads beyond saturation,
regardless of their flow control, routing strategy or
arbitration policy. Furthermore, we will see that some
networks exhibit throughput unfairness even under
uniform loads. Such findings question the validity of
reported network performance under heavy loads.
Furthermore, this work restates the need for better
synthetic loads that reflect the behaviour of parallel
applications at saturation (Chien and Konstantinidou,
1994).

2 Interconnection Network design

In this section we will briefly describe the main router
proposals for k-ary n-cube networks (Duato,
Yalamanchili and Ni, 1997). As we aim to prove that
network unfairness occurs in most routers, we need to
consider a representative set of k-ary n-cube routers,
including both oblivious and adaptive routers. In most
cases, deadlock management has a significant impact on
router architecture and channel utilization. Thus, we will
cover the full range of deadlock avoidance methods.

2.1 Static routers

Dimensional order routing (DOR) in a k-ary n-cube
network forwards packets in dimensional order: the path
from a source node A with coordinates (ai, .., a,) to a
destination node B = (by, .., b,) will travel in the first
dimension to node (by,a,, ..a,), then on the second
dimension to read the node with coordinates (by,b, ...a,)
and so for until reaching the destination node. This
strategy is also called oblivious or static routing.

A torus can be seen as a collection of uni-dimensional
rings (each row or column in a 2D torus). As nodes travel
dimensions in a fix order, it is not possible to form
deadlock cycles over multiple rings. However, it is
possible to reach a deadlock configuration inside one of
these rings.

The channel dependency graph (Dally and Seitz 1987) of
any unidirectional ring has a cycle as shown in figure
1.(a). This represents a network in which each node in
one ring (for example, row 2 in the +X direction) has full
input and output buffers and none of those messages have
reached their destination yet. As the next node’s buffer is
also full, no message will be forwarded; all of them will
continue to wait for the next input buffer to become
available.

2.1.1 DOR-2vc router

The DOR-2vc router is an oblivious router that divides
each physical channel into two virtual channels to avoid
deadlock, as illustrated in figure 1(b). Messages that cross
the wrap-around link must change from using virtual
channel 0 to using virtual channel 1. This eliminates the
cyclic dependencies in each unidirectional ring as shown
in the channel dependency graph of figure 1(c).

c0 cl c2 c3 c4
R EG B R, BN I

(a) channel dependency graph (CDG)

c01
| ML L T T

’—b

(b) one-dimensional ring with 2 virtual channels

c00 c01 c02 c03 c04

(c) Acyclic CDG

Figure 1. Breaking the channel dependency cycle using
virtual channels

This method was initially proposed for wormhole torus
networks (Dally and Seitz 1987) and it has been used
extensively as it was the only proven method to avoid
deadlock in wormhole networks. Note that this deadlock
avoidance method is also applicable to virtual cut-through
networks.

2.1.1 DOR-Bubble router

Bubble flow control (BFC) is an extension of VCT flow
control that prevents the network interface from filling up
its router buffer capacity (Carrion et al, 1997). If the ring
is not full, deadlock cannot occur. Figure 2 illustrates the
use of bubble flow control in a unidirectional ring.

Packets (shaded queue units) are allowed to move
(shaded arrows) from one queue to another inside the ring
as per virtual cut-through switching. However, packet
injection is only allowed at a given router if there are at
least two empty packet buffers in the local queue on top
of the VCT restriction. By doing so, we guarantee that,
even when multiple nodes inject simultaneously, there
will always be at least an empty packet buffer in the ring.
That free buffer acts as a bubble, allowing at least one
packet to progress. Both packet injection and packet
turning from an X ring to a Y ring are subject to BFC.
Packets inside a ring move as per VCT.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Injection
0

Injection

%

Injection

-

Injection Injection
3 4

4 4 4

BB

>r&ﬂ> BB&D

N

Figure 2.- Deadlock avoidance in a ring using Bubble Flow control.

2.2 Minimal Adaptive routers

Fully adaptive routers allow packets to select any
minimal path between source and destination, based on
the network status. The packet travels along a default path
(probably DOR) but if its next output channel is busy it
will change dimension of travel. A packet will block
when it cannot progress in any dimension. Thus, latency
is reduced at medium loads.

As packets may turn in any direction, fully adaptive
routing increases the risk of deadlock. Fortunately,
Duato’s theory (1996) provides a framework on how to
built deadlock free fully adaptive networks: it is possible
to combine a fully adaptive virtual network with a
deadlock-free virtual network so that the latter provides
escape paths for any potentially deadlocked packet in the
fully adaptive sub-network.

2.2.1 Duatodvce

This router is built by adding two more fully adaptive
virtual channels to the DOR-2vc router. Note we can add
any number of fully adaptive channels. Adding more
virtual lanes may reduce even further head-of-line
blocking but at the cost of higher arbitration and crossbar
complexity.

This network is similar to that use in some commercial
systems such as the Alpha 21364 (Mukherjee et al, 1997)
or the Cray T3E (Scott and Thorson, 1996).

2.2.2 Adap-Bubble

This router is built by adding two more fully adaptive
virtual channels to the DOR-bubble router. Thus, it uses 3
virtual channels per physical link. There is no restriction
to inject packets in the adaptive sub-network and packet
can move form escape to adaptive channels as required.
Changing from an adaptive channel to an escape one
must meet the bubble flow control conditions; for a full
description see (Puente et al, 2001). This router design
has been implemented in the torus network of the
BlueGene/L supercomputer (Blumrich et al, 2003)

2.2.3 Dishadvce

This fully adaptive wormhole router implements a
deadlock recovery strategy that forwards a deadlocked
packet using a dedicated central buffer per router as
described in (Anjan and Pinkston 1997).

Disha is reminiscent of Duato’s approach used in the
other router as it has two virtual networks -- one
susceptible to deadlocks (possibly adaptive) and the other
that provides escape routes. However, there are
significant differences. Escape paths in Duato’s scheme
use two virtual channels as per DOR-2vc. However, the
escape channel in Disha is a single Deadlock Buffer
central to the router. This buffer is shared between
neighbouring nodes and, unlike edge buffers, is not
dedicated to any path. A packet is assumed to be
deadlocked after its blocking time at the node reaches a
threshold. The selection of a proper time-out interval is
important to obtaining optimum performance. Deadlock
feeds upon itself in that if cycles are not broken quickly,
more and more

2.3 Non-Minimal adaptive routers

A non-minimal adaptive router allows packet to select
output channels that will taken further away from their
destination. This allows packets to circumvent faults
and/or avoid minimal path congested areas. On the other
hand, each packet uses more network resources so that
network throughput may be reduced.

2.3.1 The Chaos router

The chaos router is a fully adaptive virtual cut-through
router that instead of using virtual channels to avoid
deadlock, it relies on misrouting of the blocked packets.

In the absence of congestion packet follow non-minimal
paths. The router has one buffer per input channel, and a
central queue to store blocked packets, which have not
being able to cut-through while the rest of the packet was
transmitted. Once the central queue is full, and a packet is
blocking the input channel, misrouting is triggered at one
of the queued packets is forced to use the available output

139

CRPIT Volume 48

140

channel. The packet at the input can then be queued so
that the input channel is ready to accept another packet.
Thus, a packet whose destination is in a congested area
may be forced to take non-minimal paths once or more
times. The chaos router solves livelock by randomising
the selection of the packet to be misrouted, so it is most
unlikely for a given packet to be repeatedly misrouted.
For more details please refer to (Bolding, Fulham and
Snyder, 1997).

3 Evaluation methodology

Evaluations of architectural proposals need to be carried
out during all design stages. Simple functional simulators
help us assessing routing algorithms, deadlock avoidance
mechanisms, fault-tolerance, etc during the early stages.
These simulators do not incorporate all the details
required in an actual, hardware-implemented system;
however, the most relevant aspects of the design are
there, allowing us to check the viability of a proposal—or
its drawbacks. In subsequent stages, more detailed
simulators or even hardware prototypes can be used to
refine the design.

Network performance is reported using two figures:
latency (time from packet generation until its delivery)
and throughput, which is measured as the number of
packets delivered in a given time interval divided by the
interval length and the network size. In other words, this
is the average load accepted by the network (i.e., the
network throughput), which is expected to be even
amongst the network nodes. Chien advocated in (Chien
and Konstantinidou, 1994) that other throughput
measures are needed to reflect relevant throughput
characteristic such as fairness and guarantee of
throughput. However, most network studies kept on
reporting only peak throughput at saturation.

In order to evaluate network fairness we have modified
the three simulators described below, so they now
measure the number of packets injected per processing
node. Using this injection matrix we can calculate not
only the average network throughput but also the
minimum and maximum throughput per node as
suggested in (Dally and Towles, 2004).

3.1 Network simulators

In most comparative studies, the same network simulator
is used to compare two or more design alternatives. As
the goal of this paper is not to compare routers but to
estimate the network unfairness or each router proposal,
we have use a range of functional simulators whose
source has been made available by their authors, and
which are representative of the state of the art in
interconnection network simulation. In particular, the
chaos router is evaluated using the chaos simulator,
Duato4ve and Dishadvc are evaluated using flexsim 1.2
(2005) and the static and adaptive bubble routers are
simulated with FSIN (2005). This reflect the way network
throughput was measured in the state of the art literature,
and provides a wider choice of router implementation
details, as per router proposal, instead of the uniformity
provided by a single simulator.

All simulators emulate the pipeline stages of a network
router each cycle: reception of phits, header decoding and
generation of channel request, arbitration and crossbar
transmission, virtual channel arbitration and phit
transmission. Each simulator has its own set of
parameters that allows us to compare different design
alternatives, such as input buffer size, the number of
virtual channels, the routing policy etc. For example,
flexsim emulates a range of wormhole routers including
dor-2vc, disha and duato. FSIN emulates VCT routers
and chaos emulates oblivious wormhole, oblivious cut-
through and chaos. In most cases we have use the default
parameter values assumed by the simulator. All of them
allow us to choose the network size, which we set to a
16x16 torus network (with full-duplex links). We set the
packet length to be 16 flits (or phits if it is a VCT router')
and in most cases the input buffer capacity is for two
packets (except chaos which has single-packet buffers).

For practical reasons, most performance studies of
interconnection networks are carried out using synthetic
traffic. Each processing node is modelled as an
independent traffic source, which generates packet
following a Bernoulli (or sometimes Poisson) distribution
with a parameter that depends on the applied load. All
simulators provide standard destination functions such as
random, a range of permutations (transpose, bit reversal,
perfect shuffle etc) and random with hot-spots.

4 Network Evaluation

This section presents throughput results under both
uniform and non-uniform loads for each of the routers
under consideration. This results complement the average
throughput values reported in the literature.

4.1 Random Load

Figures 3 and 4 show the range on node throughput
values versus load for a range of router designs. Under
random traffic most networks exhibit minor variations
between the minimum and maximum throughput
experience by any given node. These variations are
probably due to the minor traffic fluctuation which
impact on their injection rates. Note that random traffic
makes an even use of the physical channels. In most
routers, channel utilization is balanced amongst the VCs,
as packets are free to move from one virtual channel or
lane to another.

Both DOR-Bubble and Chaos give preference to transit
packets over new injections, so that they cause starvation.
However, under random traffic they seem to be
reasonably fair at very high loads. On the contrary, both
DOR-2vc and Duato4vc exhibit significant network
unfairness for load beyond saturation. The main
difference for this type or routers is their unbalanced use
of the oblivious virtual channels as reported in (Bolding,
1992).

! Flit stands for FLow control unIT, which in VCT is a
packet; phit is the physical unit sent in one cycle.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

0.6 DOR-Bubble Router Disha Router
0.5
< 05 . . =
3 . .
Q) =04
E 0.4 - . - e %
g 3
=03 £ 03
3 =
& 5
0.2 £02 t
e 2 .,
£ o1 —AVG £ |
: - MIN =01 {
o MAX b e
0 0 e
0 0.2 0.4 0.6 0.8 1 0 0.2 04 06 08 1
Offered load (flits/cycle/node) Offered load (flits/cycle/node)
DOR-2VC Router 0.7 Chaos router
0.7 06
06 —Ave % s .
o —+-MIN . E‘ ’ . —
% 0.5 -==-MAX T T ;‘g 0.4 e
K] o =
g 04 é_ 03
- a o
203 - 3
.a . £02
302 o " —Ave
£ A T 01 e MIN
0.1 / P R~ o ~o- MAX
0 \\.,.,,,,.,,,,, ,,,,,,,,,,,,,,,,,,,, 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0 0.2 0.4 06 08 1.0 Offered load (flits/node/cycle)
Offered load (flits/node/cycle)
Figure 4. Minimum, maximum and average node
Duato-dve Router throughput versus offered load for a Chaos (top) and a
07 e Disha (bottom) 16x16 torus network under random
0.6 o traffic.
I ——AVG L -
305 “TMIN w7 As flexsim 1.2 does not provides virtual channel
2 o4 R i utilization maps we did run the equivalent DOR-2ve
=1 under FSIN, selecting an optimised version on Dally’s
o 0.3 . .
5 deadlock-free routing function so that packets not
3
go2 crossing the wrap-around link are injected in any of the
= ~ . . e .
o1 | — virtual channels. Figure 5 shows the channel utilization
“ map for the channel +X for both Dor-Bubble and DOR-
0 L R Sy 0 .
0 02 04 06 08) 2vc under 10% of the maximum network load.
Offered load (flts/cycleinode) We could see that the Bubble router exhibits a balanced
used of the network channels while the Dor-2vc router
06 Adaptive Bubble Router exhibits, in spite of the optimisation, a quite unbalanced
use of its two virtual channels. This is because by
05 I selecting a fixed link as the wrap-around that limits

virtual channel utilization, the network symmetry is
broken: nodes close to the link are forced to use VCO.

N
IS

Note that a high loads many packets will blocked and

Throughput (flits/cycle)
o
w

02 oA resort to use the escape sub-network, including new

0 = MIN packet at the injection ports. In other words, a packet at

2 - MAX injection will encounter different channel utilization (for

0 the VC selected by the routing function) depending of its
0 0.2 0.4 06 08 1

network location. The Adaptive Bubble router is slightly
fairer that its oblivious counterpart, as the additional
virtual channels do not disadvantage new packets. Disha

Figure 3. Minimum, maximum and average node is quite fair as well but suffers significant degradation at
throughput versus offered load for a range of deadlock- loads beyond saturation.

free minimal 16x16 torus networks under random traffic.

Offered load (flits/node/cycle)

141

CRPIT Volume 48

X+ Channel utilization DOR-Bubble

N = =X
NI

- ®0.1-0.12

0.08-0.1

“\ S
ORI 1, £

0.06-0.08

0.04-0.06

0.02-0.04

0-0.02

oL RS

S s

0.1 |2 \VI"’:,).i@!' LoF
N/ =S,

2=

R ‘Q:\;\)\? | 0.1-0.12

10.08-0.1
0.06-0.08
0.04-0.06
0.02-0.04

0-0.02

X+ Channel utilization DOR-2vc VC1

“v N/ ' !)‘V 0.06-0.07
X v ""‘ 0.05-0.06
Y/ L !-fé“’i‘ O

0-0.01

Figure 5. Channel utilization for the two oblivious routers under 10% random offered load.

4.2 Non-Uniform Loads

All permutation patterns made a very unbalanced
usage of network resources under DOR routing.
Adaptive routing addresses this issue by exploiting
multiple paths but most patterns still exhibit uneven
channel utilization. For example, the transpose pattern
builds congestion amongst the network diagonals and
the bit-reversal permutation does put pressure on the
network bisection. In this section we will limit the
discussion to the transpose permutation, but throughput
unfairness is significant for any non-uniform traffic
pattern.

Router Minimum | Average | Maximum
DOR-2vc 0.0014 | 0.14218 | 0.59792
DOR-Bubble- 0.0001 0.1334 0.4630
Duato4vc 0.0017 0.2557 0.7065
Adap-Bubble 0.0988 0.2339 0.6508
Chaos 0.0008 0.2067 0.4796
Disha4vc 0.0019 0.2752 0.6632

Table 1. Minimum, maximum and average node
throughput (flits/cycle) for a 16x16 tours network with
transpose permutation pattern at 0.8 flits/cycle/node

offered load.

142

4.1.1 Transpose

Table 1 summarizes the average, minimum and
maximum node throughput in flits/cycle. We can see
all networks exhibit high levels of throughput
unfairness. To explain these values we need to look at
the channel utilization for each router. We will start
first showing the values for the chaos router, which is
simpler as it does not have virtual channels.

Figure 6 shows the distribution of X+ channel
utilization in the Chaos router both below and above
saturation. At loads below saturation, the injection
matrix is flat as all nodes are able to inject their
packets. Note that the nodes in the diagonal don’t send
messages through the network as the destinations are
their own nodes, hence their value is zero. Any other
node is injecting approximately 800 packets. This
matrix is similar regardless of the router design chosen,
provided the load is below its saturation point.

For loads above saturation we observe there is a
noticeable change in the channel utilization, which is
due to the use of misrouting. At high loads, the routers
around the congested diagonal will fill their central
queues and force many packets to misroute. This
causes the increase in channel utilization close to the
diagonal.

The injection matrix shows a direct co-relation
between high utilization channels and low number of
injected packets. In other words, a peak in channel
utilization results in a valley in the injection matrix.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

X+ Channel utilization below saturation Injection matrix below saturation

10.25-0.3 W750-900
10.2-0.25 11600-750
110.15-0.2 111450-600
0.1-0.15 300-450
0.05-0.1 150-300
0-0.05 0-150
4000
3500
M0.8-0.9 W 3500-4000
0.7-0.8 3000 W3000-3500
05607 2500-3000
2500
D 1912000-2500
10.4-0.5 2000 11500-2000
0.3-0.4
1000-1500
0.2-0.3 1500
0402 500-1000
0-0.1 1000 0-500

500

Figure 6. Channel utilization (left) and distribution of the injection rates for a 16x16 chaos network under transpose
traffic pattern for a 0.8 flits/cycle/node offered load.

Injection matrix Adaptive Bubble

W 3500-4000

m1400-1600
13000-3500 12001400
2500-3000 J 1000-1200
192000-2500 B i H I W800-1000
171500-2000 o /1 U T 600-800
1000-1500 [A \ 400-600
500-1000 \ i, 'I ,“\‘\IN 200-400
0-500 \ = | I‘-\“ \ ,/Iii,‘l““ \\\ 0-200
: il
U
L7 ”\l‘
lu
W4000-4500 W4000-4500
W3500-4000 W3500-4000
m3000-3500 m3000-3500
2500-3000 2500-3000
12000-2500 12000-2500
171500-2000 171500-2000
1000-1500 1000-1500
500-1000 500-1000
0-500 0-500

Figure 7. Injection matrix for a 16x16 network under transpose traffic (0.8 flits/cycle/node offered load) with a range
of router alternatives.

143

CRPIT Volume 48

144

Similarly, a valley in the channel distribution graph turns
into a peak in the injection matrix. Note that some nodes
inject well above the theoretical limit of 0.5 flits/cycle as
they are in low utilization areas, so they are able to inject
at their wish. This additional traffic increases congestion
in the diagonal and further reduces the injection rates of
the nodes close to the diagonal.

This relation occurs in all routers, although the injection
matrix varies depending on the ability of the router to
distribute the packets amongst its set of virtual channels.
Figure 7 shows the injection matrix distribution at 80%
load for other network alternatives. All of them exhibit
large levels of unfairness, as described in Table 1, Note
that all the wormhole routers have a similar unfairness
pattern, which is related by the default paths and
arbitration used in the flexsim simulator. Is out of the
scope of this paper to analyse the differences amongst
them.

We could see that the router architecture has a negligible
impact on network fairness. In fact, the chaos router
proves to be one of the more fair alternatives for the
transpose traffic pattern. Besides, design choices such as
increasing the buffer size or the number of virtual
channels do increase peak throughput but do not alter the
channel utilization patterns.

All the above results link network fairness to the balanced
usage of the network resources and not to the arbitration
policy as suggested in (Dally and Towles, 2004). Similar
uneven figures are obtained for other permutation
patterns such as bit-reversal and perfect shuffle.

5 Summary

This paper has shown that network throughput seen by
each computing node at saturated loads varies with node
location. This indicates that reported values of average
network performance at heavy loads, beyond its
saturation point, are to not be relied upon.

All network designs exhibit significant network
unfairness under non-uniform loads. Furthermore,
duato4vc, a popular router design implemented in many
commercial systems, exhibits unfairness under uniform
random traffic. We can conclude that fair arbitration is
not sufficient to guarantee network fairness; in that case,
the node injection rate depends on the level of activity of
its router. Thus, network fairness relies on the ability of
the network to balance channel utilization amongst its
routers.

Network unfairness is not desirable in terms of
application performance. A tightly coupled application in
which there is a high level of data exchange amongst the
nodes will keep them working at the same pace. A
loosely coupled application may allow some nodes to
race ahead of the pack, only to wait later at some
synchronization barrier, reducing the overlap between
computation and communication. Further work is needed

to explore if network fairness will bring significant gains
to application performance.

6 Acknowledgements

I would like to thank my colleagues Jose and J.A. whose
collaborative work lead us to consider fairness as an issue
for the adaptive bubble router.

Thanks also to the three network research groups for
making their simulation code available to others, so that I
could save many hours on writing code to emulate their
proposals.

7 References

K. V. Anjan, Timothy Mark Pinkston: An Efficient, Fully
Adaptive Deadlock Recovery Scheme: DISHA.
Proceedings of the 22nd Annual International
Symposium on Computer Architecture, ISCA '95 pp.
201-210,

Anjan K.V. and T.M. Pinkston (1997). An Efficient, Fully
Adaptive Deadlock Recovery Scheme: Disha.
Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 201--
210,

N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik,
C.L. Seitz, J.N. Seizovic, and W. Su. Myrinet: A
Gigabit-per-second Local Area Network. IEEE
Micro, 15(1):29-36, February 1995

Kevin Bolding (1992). Non-Uniformities Introduced by
Virtual Channel Deadlock Prevention, University of
Washington, Technical Report UW-CSE-92-07-07.

Bolding, M. L. Fulgham, L. Snyder, The Case for
Chaotic Adaptive Routing. IEEE Trans. Computers
46(12): 1281-1291 (1997).

M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa,
P. Heidelberger, S. Singh, B. Steinmacher-Burrow,
T. Takken, P. Vranas. Design and Analysis of the
BlueGene/L. Torus Interconnection Network IBM
Research Report RC23025 (W0312-022) December
3,2003.

C. Carrion, R. Beivide, J.A. Gregorio and F. Vallejo
(1997), A Flow Control Mechanism to Prevent
Message Deadlock in k-ary n-cube Networks,
Proceedings of the Fourth International Conference
on High Performance Computing (HiPC'97).
Bangalore, India.

A. A. Chien and M. Konstantinidou (1994) "Workload
and performance metrics for evaluating parallel
interconnects,” IEEE Computer Architecture
Technical Committee Newsletter, Summer-Fall 1994
pp. 23 - 27,

Chaos simulator (1996) from the Chaos Project group
http://wotug.ukc.ac.uk/parallel/simulation/communic
ations/chaos/

W.J. Dally, B. Towles (2004). Principles and Practices of
Interconnection Networks. Morgan-Kaufmann, 2004.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

W.J. Dally, C.L. Seitz (1987): The Torus Routing Chip
Distributed Computing 1:187-196.

J. Duato (1996). “A Necessary and Sufficient Condition
for Deadlock-Free Routing in Cut-Through and
Store-and-Forward Networks”. IEEE Trans. on
Parallel and Distributed Systems, 7: 841-854.

J. Duato, S. Yalamanchili and L. Ni (1997)
Interconnection Networks: an engineering Approach,
IEEE Computer Society Press.

FSIN (2005) functional simulator for interconnection
networks from the Parallel Technology Group at
http://www.sc.ehu.es/acwmialj/ptech/index.html

C. Izu, J. Miguel-Alonso and J.A. Gregorio (2005),
Evaluation of Interconnection Network Performance
Under Heavy Non-uniform Loads, ICA3PP 2005,
LNCS 3719, pp. 396 —405, 2005.

Konstantinidou S. and Snyder L.(1990) The chaos router:
A practical application of randomization in network
routing. 2nd Ann. Symp. on Parallel Algorithms and
Architectures SPAA'90 pp. 21-30.

S. Mukherjee, P. Bannon, S. Lang, A. Spink and David
Webb (1997), “The Alpha 21364 Network
Architecture”, IEEE Micro 21:26-35.

F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E.
Frachtenberg (2002) The quadrics network: High-
performance clustering technology. IEEE Micro,
22(1):46—57.

Pinkston T. M. and Warnakulasuriya S (1997) On
Deadlock in Interconnection Networks. Proceedings
24th Int. Symposium Computer Architecture,
ISCA'97, Denver.

V. Puente, C. Izu, J.A. Gregorio, R. Beivide, and F.
Vallejo (2001), The Adaptive Bubble router, Journal
on Parallel and Distributed Computing, 61(9) 1180-
1208.

FlexSim1.2, from the SMART group at the U. of
Southern California., accessed 22 August 2005,
http://ceng.usc.edu/smart/FlexSim/flexsim.html

S. L. Scott and G. Thorson (1996), The Cray T3E
networks: adaptive routing in a high performance 3D
torus, Proc. of Hot Interconnects I'V.

145

CRPIT Volume 48

146

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

A JMX Toolkit for Merging Network Management Systems

Feng Lu

Kris Bubendorfer

School of Mathematical and Computing Sciences
Victoria University of Wellington,
P. O. Box 600 Wellington, New Zealand,
Email: Feng.Lu®Omcs.vuw.ac.nz, kris@mcs.vuw.ac.nz

Abstract

The ever increasing size of networks has resulted in
a corresponding escalation of administration costs
and lengthy deployment cycles. Clearly, more scal-
able and flexible network management systems are
required to replace existing centralised services. The
work described in this paper forms part of a new
network management system that fuses dynamic ex-
tensibility, Java Management Extension (JMX), and
mobile agents. The primary focus is on integra-
tion with the many widely deployed legacy SNMP-
based network management systems. One of the pri-
mary contributions is the design of a generic SNMP
adaptor to enable JMX compliant agents to be ac-
cessed by SNMP-based management applications. A
set of SNMP APIs have been developed to support
the development of the SNMP adaptor. A number
of other tools have been developed to support the
SNMP adaptor, these include: a Management Infor-
mation Base (MIB) compiler that automatically gen-
erates MBeans representing a given SNMP MIB; and
a SNMP proxy service to allow non-SNMP manage-
ment applications to access the SNMP agent using a
variety of protocols.

Keywords: JMX, Network Management, SNMP

1 Introduction

Traditional network management (NM) approaches,
such as SNMP (Simple Network Management Proto-
col) and CMIP (Common Management Information
Protocol), are based on a static centralised manage-
ment platform: a centralised manager acting as client
controls the entire network through agents which re-
side in each network node acting as server. Agents
are responsible for monitoring and controlling man-
aged objects in the network. The manager has the
responsibility of collecting data from agents, inter-
preting that data and directing the agents (Yemini
et al. 1991). However, with the rapid growth of net-
works, such approaches are no longer suitable as the
increasing complexity of these systems results in high
administration costs and long deployment cycles. The

Copyright ©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobiie, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

need for more scalable and flexible network manage-
ment approaches is leading to greater decentralisa-
tion (Simoes 1999).

Dynamic extensibility is one of the solutions that
has been used to support the distributed network
management model. The extensible agent can add
or delete managed objects and management services
at run time upon requests by other management en-
tities. Recently, Sun Microsystems introduced a set
of standards to equip Java with an extensible agent
model for distributed management, known as Java
Management Extension (JMX).

JMX aims to achieve the goal of scalable, dis-
tributed network management (JMX1.2 2002). Its
support for mobile code enables the transfer of
lightweight applications to management agents at
runtime, delegates the management tasks from a cen-
tralised manager to management agents distributed
around the network, and place the management tasks
closer to the management data. This reduces network
traffic and increases scalability (Lange et al. 1999).
Also, the JMX component based architecture allows
each JMX resource or service to be plugged into or re-
moved from the management agent dynamically, de-
pending on the runtime network requirements. This
means that a JMX based implementation can scale
from small handhold devices to large telecommunica-
tions switches.

However, legacy management systems are still
widely deployed. Network managers have to rely on
the legacy management protocol to access the net-
work resources in the heterogeneous network envi-
ronment. Therfore, a JMX based solution needs to
coexist with and integrate with traditional network
management systems, like SNMP, instead of replac-
ing them. It is attractive and cost-efficient to develop
and deploy a distributed management system using
JMX that can cooperate with deployed legacy sys-
tem. This interoperability can be achieved by equip-
ping the JMX-based solution with SNMP capability.
Without it, the JMX-based solution will not become a
general solution for distributed network management.

The research efforts presented in this paper fo-
cus on the the integration of JMX with traditional
SNMP-based network management systems. One of
the primary contributions is the design of a generic
SNMP adaptor to enable JMX compliant agents to be
accessed by SNMP-based management applications.
A set of SNMP APIs have been developed to support
the development of the SNMP adaptor. A number
of other tools have been developed to support the
SNMP adaptor, these include: a Management Infor-
mation Base (MIB) compiler that automatically gen-
erates MBeans representing a given SNMP MIB; and
a SNMP proxy service to allow non-SNMP manage-
ment applications to access the SNMP agent using a
variety of protocols.

147

CRPIT Volume 48

148

2 Background

The majority of deployed network management sys-
tems utilise a centralised approach, where the man-
agement application periodically accesses the data
collected by a set of software modules on network
devices. The software modules on network devices
are mainly concerned with information gathering and
simple calculation, while the management application
handles decision making and higher level functions.
The centralised approach is driven by two assump-
tions (Goldszmidt 1993):

e Network devices lack resources to execute com-
plex computational tasks.

e Management data and functions are relatively
simple.

The Simple Network Management Protocol is the
dominant protocol in existing managed systems. The
protocol is designed to be an easily implemented,
basic network management tool. The SNMP set of
standards defines an information management model
along with a protocol for the exchange of the informa-
tion between a managed device with an SNMP agent
and an SNMP manager. International Standard Or-
ganisation (ISO10165-1 1993) presents another gen-
eral management information model of OSI systems
management information. The ISO model has a sim-
ilar approach to the SNMP management model, but
differs in the way it operates.

The rapid expansion of networks has resulted in
real network management problems that can’t be ad-
equately addressed (Meyer et al. 1995). Also, the
computational capability of network devices has in-
creased. The increase in the capability of managed
devices has made it possible to distribute complex
computations and significant duties to the managed
devices (Puliafito et al. 2000). Research on the de-
centralised approaches to network management be-
gan as early as SNMPv1’s RMON (Remote Network
Monitoring) MIB. The core of RMON are the re-
mote monitors, that take responsibility for the col-
lection and analysis of statistical information on net-
work traffic and device status on sub-networks. The
remote monitors report only significant information
to the SNMP managers. The enhanced SNMPv2 pro-
vides a manager-to-manager (M2M) MIB to support
a hierarchical management architecture. Similar to
the RMON, the M2M allows a sub-manager to func-
tion as a remote monitor for a sub-network. The lat-
est SNMPv3 management framework makes it possi-
ble to develop a set of distributed entities, composed
of several interacting modules. However, the SNMP
management framework does not specifically address
distribute network management. Instead, the IETF
DIAMAN working group proposes a distributed man-
agement architecture based on the SNMP manage-
ment framework (DISMAN 1996).

On the other hand, Yemini and Gold-
szmidt (Yemini et al. 1991) proposed the Management
by Delegation (MbD) model for distributed network
management. The fundamental idea behind this
approach is to dynamically distribute management
functions amongst management entities. The MbD
model is based on the technology ”code mobility”.
It moves the code, describing management functions,
closer to the data they process. Moving code is
more efficient if the amount of data that needs to be
transferred is larger, and reduces the total amount
of network management traffic (Schonwalder 1997).
The MbD model consist of three parts: a delegation
protocol, a delegation language and an agent. The
delegation protocol is used to communicate between
managers and agents. The delegation protocol

g
Instrumentation
Resources
(MBeans) Level

enables the manager to transfer the delegation code,
to control the behaviour of the delegation code
(execute, suspend and stop etc.), and to retrieve the
results of the execution. The delegation language
is used to write management functions, that can
be executed at runtime. Several different languages
have been in different research prototypes ranging
from high-level interpreted languages to low-level
stack-oriented languages (Schonwalder 1997). A
MbD agent acts in both an agent role and a manager
role. To managers requesting information from the
MbD Manager, it is an agent, while to those agents
it queries, it is a manager. The MbD agent provides
the services to parse and execute received delegation
code. It also provides the interfaces that enable
the remote manager to control the execution of the
delegation and retrieve the results. In addition, the
MbD agent can delegate its management functions
to other MbD agents.

Dynamic extensibility has been used to support
the MbD model for distributed network management.
Extensible agents are MbD agent that can dynami-
cally add or delete managed objects upon the requests
from other management entities. The early extensible
agent model is based on the SNMP framework with
a distributed MIB consisting of a static MIB resid-
ing in the master agent and several temporary MIB
dynamically registered by subagents.

This paper relates our experience in designing
and implementing a JMX based network management
toolkit.

3 JMX Architecture

The JMX specification provides a framework for a
distributed management model based on manage-
able resources, dynamically extensible agents and dis-
tributed management services as shown in Figure 1.
The JMX architecture is separated into three layers:
the instrumentation level, the agent level and the dis-
tributed services level.

Other Management
Applications

Distributed
Services Level

\ Agent
|:| Services

JMX-compatible

L JMX Manager
Management Application

Agent Level

C - Connector
PA - Protocol Adaptor

Figure 1: JMX Architecture

3.1 Instrumentation Level

The instrumentation level provides a specification for
implementing JMX manageable resources. A resource
can be an application, a device, or the implemen-
tation of a service. A JMX manageable resource
must comply with the MBean standard defined in the
JMX specification, and may be dynamically added
to or removed from the JMX agent. MBeans encap-
sulate manageable objects as attributes and opera-
tions through their public methods, and utilise de-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

sign patterns to expose them to management appli-
cations (JMX1.2 2002).

There are two kind of MBean. Standard MBeans
provide a static management interface, which is fixed
at compile time and is invoked by reflection. The
standard MBeans’ interfaces are made up of the meth-
ods for reading and writing attributes and for invok-
ing operations. The design pattern followed by a stan-
dard MBean is derived from the JavaBeans compo-
nent model (JavaBeans 1999). In this design pattern,
attributes are exposed through the getter and setter
methods in the MBeans’ interface. Attributes may be
read-only, write-only or read-write. The return value
or arguments of methods for attributes must conform
to the data type of attributes. Operations are ex-
posed by the methods other than getter and setter in
the MBeans’ interface. They can be defined with any
number of arguments with any data types.

public interface Dynami cMBean {

public bject getAttribute(String attribute)
throws AttributeNot FoundException, MBeanException, ReflectionException;

public AttributeList getAttributes(String[] attributes);
public MBeanlnfo getMBeanl nfo();

public Ohject invoke(String actionName, Chject[] paranms, String[] signature)
throws MBeanException, ReflectionException;

public void setAttribute(Attribute attribute)
throws AttributeNot FoundException, | nvalidAttributeVal ueException,
MBeanException, ReflectionException;

public AttributeList setAttributes(AttributeList attributes);

Figure 2: DynamicMBean Interface

Dynamic MBeans conform to a specific interface
that exposes the management interface at runtime.
Unlike standard MBeans, dynamic MBeans do not
have getter or setter methods for each attribute and
operation. Instead, the DynamicMBean interface is
defined to provide generic method for getting or set-
ting an attribute and for invoking an operation. As
shown in Figure 2, the getMBeanInfo method defined
in the DynamicMBean interface returns an object
which contains meta information about the MBean’s
attributes, operations and notifications that may be
emitted by the MBean.

Using this meta information, management appli-
cations can access the MBean’s attributes and invoke
the MBean’s operations through generic methods de-
fined by the DynamicMBean interface. Compared
with standard MBeans, dynamic MBeans provide a
more flexible way to instrument resources and make
it simple to instrument existing JMX incompatible
resources (legacy management resources, etc.).

Dynamic MBeans can be further refined into two
useful specialisations:

e An open MBean is a dynamic MBean that relies
on a small, predefined set of universal Java Types
to describe managed objects. It is useful where a
management application and agent do not share
application-specific data types.

e The model MBean, is a generic configurable man-
agement template for managed resources. Model
MBeans can be used to instrument almost any
resources rapidly.

3.2 Agent Level

The agent level provides a specification for imple-
menting the JMX agents that control the MBean re-
sources and make them available to management ap-
plications. A JMX agent consists of a MBean server, a
set of agent services, and at least one communication
protocol adaptor or connector, see section 3.3. The

MBean server acts as a central registry for MBeans
managed by the agent. Only registered MBeans may
be accessed from outside of the MBean server. The
MBean server provides a set of interfaces to manip-
ulate MBeans. All management requests are han-
dled by the MBean server, which dispatches them to
the appropriate MBean. Through the MBean server,
management applications may: register or deregis-
ter MBeans, browse and query MBeans, discover the
management interface of MBeans, read or write the
values of MBeans’ attributes, invoke the operations
exposed by MBeans, and register and deregister no-
tification listeners for MBeans.

JMX agent services are also MBeans that provide
services for other MBeans or management applica-
tions. There are four standard services defined in the
JMX specification: Dynamic Loading Service, Mon-
itoring Service, Timer Service and Relation Service.
Dynamic Loading Service allows the agent to instan-
tiate MBeans using Java classes and native libraries
dynamically downloaded from the network. Monitor-
ing Service notifies its listeners on certain conditions
or events. Timer Service sends notifications at prede-
termined intervals and acts as a scheduler. Relation
Service defines associations between MBeans.

3.3 Distributed Services Level

The distributed services level defines management in-
terfaces and components that allow remote manage-
ment applications to perform operations on agents
through different protocol adaptors and connectors.
Both protocol adaptors and connectors use the ser-
vices of the MBean server to apply the management
operations they receive to the target MBeans, and
to forward notifications, such as an attribute change
notification, to management applications. Both pro-
tocol adaptors and connectors should preferably be
implemented as MBeans. This offers greater flexibil-
ity to their operation as they can be activated or de-
activated through any of the other available adaptors
or connectors.

There are two main differences between protocol
adaptors and connectors, though they are similar in
terms of functionality:

e Management applications that connect to proto-
col adaptors access the JMX agent through oper-
ations defined by the given protocol, and the op-
erations are then received by protocol adaptors
and are mapped to those of the MBean server
through protocol adaptors; whereas connectors
provide a higher level view for the JMX agent
through the local representation of the MBean
server. The remote management applications us-
ing connectors may access the JMX agent as if it
were local.

e Management applications that connect to proto-
col adaptors are usually tied to a given proto-
col, whereas management applications which use
connectors may use different protocols as long as
corresponding connectors are provided.

4 SNMP Adaptor

The SNMP adaptor makes the JMX agent accessible
from legacy SNMP managers. The SNMP adaptor
emulates the standard SNMP agent, and is configured
dynamically to provide mappings between SNMP and
MBeans and JMX Notifications via XML mapping
files. As shown in Figure 3, the SNMP adaptor con-
sists of a SNMP protocol engine and a MIB registry.
The SNMP protocol engine is used to receive and

149

CRPIT Volume 48

150

parse SNMP messages to determine the type of re-
quest and the Object Identifier (OID) of the MIB
object. The engine queries the MIB registry and gets
the proxy for the MBean object identified by the OID.
The engine then invokes the appropriate access func-
tion on the proxy, which will forward the invocation
to the appropriate MBean object registered with the
MBean server. The notification listener receives the
notifications, which the SNMP adaptor is interested
in, and forwards them to the SNMP protocol engine.
The SNMP protocol engine generates the correspond-
ing SNMP trap message.

SNMP Adaptor

SNMP Protocol | look up
Engine |

SNMP Reques| Dynamical Proxie:

SNMP Trap
~ < [mlproxy| | o MBean m1
5
T MIB Registry g
e N N
Noticaton r2pro g | —|vmeanm2]
Listener =

Figure 3: SNMP Adaptor

4.1 SNMP Protocol Engine

The SNMP protocol engine is built on top of the JoeS-
NMP API (OpenNMS 2002) and supports SNMP
protocol versions V1, V2c. It consists of several com-
ponents: transport layer, message dispatcher, mes-
sage handler and trap generator. These components
interact with each other to facilitate communications
between the SNMP manager and the SNMP adaptor.
Figure 4 describes how the SNMP message is handled
by the SNMP engine.

—=={ |SNMPv1 Handler
Message Dispatcher | |
| MIB
'—*=| | SNMPv2c Handlel L

Message Handler

L—

SNMP
Message

Transport Layer

Trap Generator

SNMP Engine

Figure 4: SNMP Protocol Engine

1. The SNMP request message is received by the
transport layer, and then is forwarded to the
message dispatcher. The current transport layer
supports UDP.

2. The message dispatcher parses the SNMP mes-
sage to determine the SNMP version and to ex-
tract the Protocol Data Unit (PDU) from the
message. Then, it forwards the extracted PDU
to the appropriate message handler.

3. There are two message handlers, the SNMPv1
handler and SNMPv2c¢ handlers which are re-
sponsible for the corresponding version’s SNMP
message. The message handler parses the PDU
to determine the PDU type and the OIDs of the
required MIB objects. The message handler then
looks up the MIB Registry to get the required
MIB objects.

4. The message handler invokes the appropriate ac-
cess method on the MIB objects, and then con-
structs a response message with the new values
of the MIB objects.

5. The response message is returned back to the
message dispatcher and then is forwarded to the
transport layer.

6. The transport layer returns the response mes-
sage. The transport layer also forwards SNMP
trap messages to registered SNMP managers.

4.2 MIB Registry

The MIB registry organises MBean proxies into a
SNMP OID tree structure. Figure 5 shows the class
hierarchy for the MIB objects in the MIB registry.
These objects are organised as several MIBGroup ob-
jects. A MIBGroup object can not contain other
MIBGroup objects. The managed objects in the
MIBGroup are represented as MIBLeafProxy objects
or MIBTableProzy objects in terms of the node type.

/l\
/\ /\

(tabular)z1l z2
/' \
ri r2

Figure 6: MIBGroup Example

For instance in Figure 6, the node x has three child
nodes: y1, y2 and y3. The node y1 is a leaf node. The
node y2 has two child nodes: z1 (tabular node) and

2 (leaf node). The node y3 also has two child nodes:
3 (leaf node) and z4 (leaf node). This OID tree can
be represented as follows:

e MIBGroup x contains MIBLeafProzy y1

o MIBGroup y2 contains MIBTableProxy z1 and
MIBLeafProxy z2

e MIBGroup y3 contains MIBLeafProry z3 and
MIBLeafProxzy z4

Referring back to Figure 5, the MIBEntry abstract
class describes the basic structure for a managed ob-
ject. It contains the attribute oid which is used to
identify the managed object. It also defines three ab-
stract methods getRequest, getNextRequest and setRe-
quest to handle three primitive SNMP actions: GET,
GETNEXT and SET. Both the MIBLeaf class and
the MIBTable class are sub class of the MIBEntry
abstract class.

A MIBLeaf class represents a scalar type managed
object, but it also can represent a columnar object of
a SNMP table. A columnar object defines the be-
haviour of managed object instances in a particular
column of a SNMP table (Agent++ 2000). The MI-
BLeaf object contains an attribute value which rep-
resents the instance of the managed object. The MI-
BLeafProxy class extends the MIBleaf class with two
additional attributes: mbeanName and attribute. The
mbeanName represents the object name of the target
MBean object, and the attribute represents one of the
attributes of this MBean object. With these two at-
tributes, the MIBLeafProry object acts as a proxy
for the MBean object, and maps the SNMP actions
to the appropriate methods on the JMX agent. For
instance, when the methods getValue or setValue is
invoked, the MIBLeafProxy object invoke the method

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

MIBGroup
content : SortedSet

+ add(item : MIBEntry) : void
+ remove(oid : SnmpObjectld) : void
+ getContent() : SortedSet

MIBRegistry

groups : SortedSet
+ addGroup(group : MIBGroup) : void
.| + find(oid : SnmpObjectld) : MIBEntry

+ findNext(oid : SnmpObjectld) : MIBEntry
+ findPrev(oid : SnmpObjectld) : MIBEntry

()

7 ARG

MIBLeafProxy =
oid : SnmpObjectld

MIBTableProxy
value : SnmpSyntax
attribute : ModelMBeanAttributelnfo
mbeanName : ObjectName
+ getOID() : SnmpObjectld
+ getValue() : SnmpSyntax
+ setValue(value : SnmpSyntax) : void

oid : SnmpObjectld

rows : SortedSet

columns : MIBTableRow

mbeanName : ObjectName
mbeaninfo : ModelMBeanlInfo

+ getRequest(req : Request, index : int) : void

+ getNextRequest(req : Request, index : int) : void

+ setRequest(req : Request, index : int) : void

+ setAttribute(attribute : ModelMBeanAttributelnfo) : void
+ setMBeanName(name : ObjectName) : void

updateListener : NotificationListener

+ getOID() : SnmpObjectld

+ addColumn(column : MIBLeaf) : void
+ addRow(index : SnmpObjectld) : void
+ getRequest(req : Request) : void

+ getNextRequest(req : Request, index : int) : void

+ setRequest(req : Request, index : int) : void

+ setMBeanInfo(mbeaninfo : ModelIMBeanInfo) : void
+ setMBeanName(name : ObjectName) : void

|
MIBEntry |
oid : SnmpObjectld

|

|

+ getOID() : SnmpObjectld |

+ getRequest(req : Request, index : int) : void \

+ getNextRequest(req : Request, index : int) : void \
+ setRequest(req : Request, index : int) : void

|
MiBLeaf
oid : SnmpObjectld

MIBTable
value : SnmpSyntax
+ getOID() : SnmpObjectld
+ getValue() : SnmpSyntax
+ setValue(value : SnmpSyntax) : void
+ getRequest(req : Request, index : int) : void
+ getNextRequest(req : Request, index : int) : void
+ setRequest(req : Request, index : int) : void

oid : SnmpObjectld

rows : SortedSet

columns : MIBTableRow
+ getOID() : SnmpObjectid
+ addColumn(column : MIBLeaf) : void

+ addRow(index : SnmpObjectld) : void

/| + getRequest(req : Request, index : int) : void

,’/ + getNextRequest(req : Request, index : int) : void
’,/ + setRequest(req : Request, index : int) : void

™ /
MIBTableRow
index : SnmpObjectld
items : SortedSet
+ getindex() : SnmpObjectld
+ setlndex(index : SnmpObijectld) : void
+ addltem(item : MIBLeaf) : void
+ getltem(index : int) : MIBLeaf

Figure 5: MIB Registry Class Hierarchy Diagram

151

CRPIT Volume 48

152

getAttribute or setAttribute on the JMX agent with
the mbeanName and the attribute as parameters to
access the attribute of the target MBean object.

A MIBTuble class represents a SNMP table (tab-
ular type managed object). A SNMP table may
have multiple rows, and each row consists of multi-
ple columnar objects. The MIBTableRow class is de-
fined to represent a row of a SNMP table. It provides
the methods to add MIBLeaf objects, which repre-
sent columnar objects in the row, and methods to get
and remove them. The MIBTable object may contain
multiple MIBTableRow object. The MIBTable con-
tains a group of MIBLeaf objects named meta colum-
nar object, which describe the structure information
for the row. This group of MIBLeaf objects is or-
ganised as a MIBTableRow object named columns.
When a new row is added, MIBTable will clone the
MIBTableRow object to create a new MIBTableRow
object. Each columnar object in the new row is the
copy of the meta columnar object of its column, but
with a different value. The MIBTable class provides
the methods to manipulate columnar objects.

The MIBTableProxy class is a sub class of the
MIBTuable class. It acts as the proxy for a special kind
of MBean object, which has a TabularData type at-
tribute. TabularData is defined in the JMX specifica-
tion and describes a table structure with an arbitrary
number of rows that can be indexed by any number
of columns (JMX1.2 2002). Each row is a Composite-
Data object, which is a hash map with multiple data
items. The Composite Type object is used to describe
the CompositeData object. All rows in a TabularData
object must be associated with the same Composite-
Type object. This special kind of MBean object is
automatically generated from the SNMP table by the
MIB compiler (see Section 4.3).

The MIBTableProxy class supports a cache mech-
anism for efficiency. When a MIBTableProzy object
initialised, MIBTableProzy queries the MBean (iden-
tified by the MIBTableProxy’s two attributes: mbean-
Name and MBeanlInfo), and stores the MBean ob-
ject’s TabularData type attribute in the cache. The
MIBTableProxy object also registers a notification
listener for the MBean object. When the MBean’s
TabularData object is changed, the MIBTableProxy
object will receive a notification and will query the
MBean to update the cache. The cache mecha-
nism is more efficient because the MIBTableProxy
object does not need to contact the MBean when
a SNMP management application performs GET or
GETBULK actions on it. Only SET actions cause
the MIBTableProxy object to update the MBean’s
TabularData object.

4.2.1 Generating Dynamic MBean Proxies

Both the MIBLeafProxzy and MIBTableProxy objects
act as proxies for a MBean. The SNMP operations
performed on them are mapped to the accessor meth-
ods on the appropriate MBean objects, and then are
forwarded to the MBean server. The MBean server
finds the target MBean object, invokes the method
on it and then returns the result or raises the excep-
tion. Proxies are dynamically generated from XML
mapping files and are added into the MIB Registry.
The mapping files define the mapping relationship be-
tween the MIB and MBean objects. Figure 7 provides
an example of the mapping of a MBean object into
the MIB.

The RMIConnectorServer is implemented as a
MBean so that it can also be managed through proto-
col adaptors or connectors. There must be a relation-
ship between the RMIConnectorServer and the nodes
in the MIB; otherwise the SNMP adaptor has no idea
how to map a SNMP request to the operations on

the RMIConnectorServer. The RMIConnectorServer
exposes four methods defined in the interface JMX-
ConnectorServerBean, see Figure 7. Two of them,
isActive and getAddress, are the get methods of the
attributes active and address, and other two are op-
erations according to design pattern described in the
JMX 1.2 specification. Our prototype only supports
the mapping of MBean attributes as SNMP does not
support objects. The file MBeansToMIB.zml is used
to describe how to map MBeans into the MIB. The
mapping file assigns the OID 71.3.6.1.4.9876.1.1” to
the MBean RMIConnectorServer, and describes the
MBean’s ObjectName so that the SNMP adaptor can
locate the RMIConnectorServer instance through the
MBean server. It also assigns the OID respectively to
the attributes active and address.

The mapping file also maps the Java data type
of the MBean attributes to the MIB data type. In
this case, the SNMP adaptor loads the mapping file,
and generates a MIBGroup object with two MIBLeaf-
Proxy objects which respectively represent the at-
tributes address and active.

4.3 MIB Compiler

As described in Section 4.2.1, existing MBeans can be
mapped into the MIB using the MBeansToMIB.zml
file. However, JMX manageable resources must follow
the design patterns and interfaces defined in the JMX
1.2 specification. Any incompatible resources must be
instrumented as MBeans so that they can be managed
by a JMX agent.

Our MIB compiler automatically generates
MBeans representing a given SNMP MIB. The MIB
compiler consist of two components: a MIB parser
and a code generator. The MIB parser imports a MIB
file and generates an intermediate representation.
The code generator generates the Java source code
and the XML file. The generated code is based on the
JMX’s model MBean specification (JMX1.2 2002)
and can be used to create a model MBean on the fly.
The generated XML is used to dynamically configure
the model MBean. The model MBean provides
management interfaces for non JMX compatible re-
sources. This significantly reduces the programming
burden and means that a developer can instrument
existing resources according to the JMX specification
as little as three or five lines of code.

4.3.1 MIB Parser

The MIB file is a normal text file written in Abstract
Syntax Notation One (ASN.1) (ISO8824 1990) lan-
guage, a formal language used to define abstract syn-
taxes of application data.

Rather than having single ASN.1 compiler with a
lexer, a parser and a code generator, we utilise dele-
gating compiler objects (DCO) (Bosch 1996), a novel
approach to compiler construction that provides mod-
ular and extensible implementation of compilers. In
DCO compilation is achieved through the coopera-
tion of a group of compiler objects. A compiler ob-
ject is only responsible for a particular part of the
syntax, and has its own lexer and parser. The pro-
gramming language is decomposed into a set of struc-
ture. Each structure is compiled by its associated
compiler object. As shown in Figure 8, a MIB file
can be decomposed into ten modules. The TypeAs-
signment module is used to define a new data type.
The new data type can be Simple Type, Structured
Type or Subtype. The ValueAssignment module is
used to assign a value to a variable. In the MIB file,
the ValueAssignment module is mostly used to assign
a value to the Object Identifier variable. The Im-
port module is used to import the types and variable

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

directory (1)

public interface JIMXConnectorServerMBean {
public void start() throws IOException;

pubic void stop() throws IOException;

public boolean isActive();

public class RMIConnectorServer
implements JMXConnectorServerMBean {

}

mgmi

mib-2 (1)

public String getAddress(); _——-
}

iso (1)

org (3)
dod (6)
internet (1)
mate @)
enterprises (1)
T T wuwesre)

mjmx (1)

|
|
|
|
|
|
| RMIConnectorServer (1)
|
|
|
|
|
|

B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<MBeanMapping>

</MBean>
</MBeanMapping>

<MBean name="nz.ac.vuw.mjmx.remote.rmi.RMIConnectorServer"
objectName="jmx:Connectors:type=RMIConnector" oid="1.6.3.1.4.1.9876.1.1">
<attribute name="active" type="java.lang.Boolean" oid="1" getMethod="isActive" mibType="INTEGER"/>
<attribute name="address" type="java.lang.String" oid="2" getMethod="getAddress" mibType="DisplayString"/>

Figure 7: Mapping a MBean into the MIB

declared by other MIB files. The other seven mod-
ules, including ModularIdentity, ObjectType, Textual-
Convention, ObjectGroup, NotificationType, Notifica-
tionGroup and ModuleComppliance, represent seven
macros defined in the MIB specifications. Our MIB
compiler utilises a separate compiler object for each
of the ten MIB modules. Each compiler object has a
its own lexer and parser.

MIB compilation firstly eliminates all unneeded in-
formation in the MIB file (such as comments) and
then passes the stream through the ten DCO com-
piler objects. Each DCO compiler performs its lexi-
cal analysis and then its parser provides the syntactic
analysis. The entire syntactic analysis of the MIB
file is the result of the collaboration of the different
DCO parsers. Since only a very small subset of ASN.1
syntax is used in each DCO, the complexity of the im-
plementation of DCO parser is significantly reduced.
The output of DCO parsers are module objects rep-
resenting the different modules. Module objects are
divided into two groups: type groups and variable
groups. Objects in the type group represent a data
type, and objects in variable group represent an in-
stance with type and value. Then, the module ob-
jects go through semantic analysis to check if objects
are legal and meaningful (for instance, the values are
valid, the types are defined, the compulsory attributes
are set, and so on). The final step is to organise the
objects as a MIB tree in terms of the OID value of
each object. An optional XML file is also generated
to represent the MIB file in the XML format.

4.3.2 Code Generator

The code generator walks through the MIB tree ex-
ported by the MIB parser and generates the instru-
mentation code and configuration files for the vari-
ables in the MIB tree. The code generator generates
a Java class for each MIB group node. Every leaf node
in the MIB group is represented by an attribute of the
Java class. The corresponding accessor methods, such
as getX or setX are defined in the Java class. In this

case, X denotes the attribute name. Also, the code
generator generates the Java class for each SNMP ta-
ble. The methods to access the rows in the SNMP
table are defined in this Java class. In addition, each
generated Java class is associated with a XML config-
uration file that describes the mapping relationship
between the Java class and the MIB. However, the
generated instrumentation code only define the inter-
faces and provide skeleton code to describe how JMX
incompatible resources can be accessed. The remain-
ing manual tasks are to complete the skeleton code
and implement the defined interfaces.

The generated Java classes can not be accessed di-
rectly by the JMX agent and must be wrapped into
the model MBeans. The model MBean provides a set
of interfaces which allow the JMX agent to perform
the management operations on the resources wrapped
in the model MBean object. The wrapping process
starts by extracting the information for attributes,
operations and notifications from the XML file asso-
ciated with each Java class and then added this in-
formation to the model MBean. The whole process
is done in one line code as follow. The method con-
vertXmlToMBeanInfo converts the xml file into the
MBeanInfo object which describes custom attributes,
operations and notifications information, and then
the RequiredModelMBean constructor use these in-
formation to construct a customised model MBean in-
stance. The wrapping process is done automatically.
The users can edit the file JMXModelMBeanInfo.xml
to add the configuration file location and name for
resources they want to wrap. When a JMX agent
is initialzied, it checks out the file JMXModelMBean-
Info.xml and then generates the model MBean for the
resources.

new RequiredModelMBean(convertXmlToMBeanInfo (xml));

4.3.3 A Code Generation Example

A code generation example for a MIB group is shown
in Figure 9. The system group describes a set of ob-
jects common to all managed systems. It consists

153

CRPIT Volume 48

154

Lexical Analysis Syntactic Analysis

‘ TypeAssisnment Module Lexer

‘ TypeAssisnment Module Parser

‘ ValueAssignment Module Lexer

‘ ValueAssignment Module Parser

‘ Import Module Lexer ‘ Import Module Parser

MIB ‘ Modularldentity Module Lexer

‘ Modularldentity Module Parser

‘ ObjectType Module Lexer

‘ ObjectType Module Parser

—f A

‘ TextualConvention Module Lexer

Semantic Analysis
Variable / \

XML

—| Table

‘ ObjectGroup Module Lexer

‘ ObjectGroup Module Parser

‘ NotificationType Mudule Lexer

‘ NotificationType Mudule Parser

‘ NotificationGroup Module Lexer

‘ NotificationGroup Module Parser

‘ ModuleCompliance Module Lexer

‘ TextualConvention Module Parser ‘

‘ ModuleCompliance Module Parser

Figure 8: MIB Parser

of eight scalar objects and a table object with four
columns. The MIB compiler compiles the system
group MIB file and generates five files:

e System.java: a Java class representing the whole
system group except the table object sysORTable

e System.xml: a configuration file describing the
mapping relationship between the System class
and the system group in the MIB file

e SystemORTable.java: a Java class representing
the table object sysORTablein the MIB file

e SystemOREntry.java: a Java class represent-
ing four column objects in the table object
sysORTable

e SystemORTable.xml: a configuration file de-
scribing the mapping relationship between the
sysORTable class and the sysORTable object in
the MIB file

The System class in Figure 9 contains eight at-
tributes that represent the eight scalar objects in the
system group. The accessor methods for these at-
tributes are also included. The System class does
not include any OID information, but the configu-
ration file System.zml describes the mapping relation
between the attributes of the System class and the
scalar objects of the system group. When the System
class is wrapped into a model MBean and is registered
within a JMX agent, a proxy object is dynamically
generated from the System.xml file and is registered
within the MIBRegistry in the SNMP adaptor (see
Section 4.2.1). This proxy object will call the System
class’s get and set method upon Get and SET SNMP
request.

The SysORTable class contains the attribute
sysORTable which represents the table object of the
system group. The row of the sysORTable is repre-
sented by the SysOREntry class. The SysOREntry
class contains four attributes that represent four col-
umn objects. The access methods for these attributes
are also defined. The SysORTable class defines the
methods to manipulate the table object. The get-
SysORTable method is used to retrieve all rows in
the table. The updateEntry method is used to up-
date an existing row or add a new row in the table,
and the deleteFntry is used to delete a row from the
table. Similar to the System class, a proxy object is
also generated from the SysORTable.xml and is asso-
ciated with the SysORTuable class.

—t—=| Connector |—=|
——=| Connector |—|

- -

4.4 SNMP Proxy

The SNMP adaptor makes JMX resources accessi-
ble to legacy SNMP managers. However, non-SNMP
management applications can not access SNMP re-
sources directly since they do not support the SNMP
protocol. We have designed and developed a SNMP
proxy to address this interoperability issue. As
shown in Figure 10, the MIB supported by a re-
mote SNMP agent is represented by multiple model
MBeans. These model MBeans are registered within
the MBean server and can be accessed by multiple
protocols, such as Java RMI. These model MBeans
act as proxies and the operations on them are for-
warded to the appropriate remote SNMP agents
through the SNMP proxy.

.| Mapping File k ‘ Mapping File ‘ Mapping File |,
~ / N
- S

h
A

N N
\

IMX Agent \ /
N o N < \

s } \
Model MBean P SNMP Agent \
7 \

~ }

|

/ /
<—| Model MBean [~
- / SHUYP BT /
) /
P /
. / T ,
H 7
Model MBean " SNMP Agent |~
|
|

s
|
|
|

~ /N SNMP Proxy

=
@
&
8
g
o
g
2
<

1

Figure 10: SNMP Prozxy

To create proxy objects representing the remote
SNMP agent’s MIB, the MIB compiler is used to
generated instrumentation code and xml configura-
tion files from the remote SNMP agent’s MIB file.
However, only xml configuration files are used to
create proxy objects. The instrumentation code is
simply discarded. The JMX implementation used
in this project provides two basic model MBeans:
RequiredModelMBean and JMXSNMPProxyModelM-
Bean. The RequiredModelMBean is used to in-
strument MBean incompatible managed resources.
The operations on the RequiredModelMBean are for-
warded to the managed resource. The JMXSNMP-
ProxyModelMBean does not instrument any managed
resources, but forwards the operations on it to the
SNMP proxy. Generating a JMXSNMPProxyMod-
elMBean instance using the toolkit is a single line of
code (as shown below).

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

System group MIB

system OBJECT IDENTIFIER ::= { mib-2 1}

sysDescr OBJECT-TYPE
SYNTAX DlsplayStnng (SIZE (0..255))
ACCESS read-only
STATUS current
n={system1}

sysObjectID OBJECT-TYPE
SYNTAX OBJECT IDNETIFIER
ACCESS read-only
STATUS current
n={system 2}

sysUpTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS current
= { system 3}

—- system group includes other five leaf nodes
—- sysContact ::= { system 4

-- sysName
—- sysLocation
—- sysServices ::= { system 7 }

—- sysORLastChange ::= {system 8}

sysORTable OBJECT-TYPE
SYNTAX SEQUENCE OF SysOREntry
ACCESS not-accessible
STATUS current
u={system 9}

sysOREntry OBJECT-TYPE
SYNTAX SysOREntry
ACCESS not-accessible
STATUS current
INDEX { sysORIndex }
:={sysORTable 1}

SysORENtry ::= SEQUENCE {
sysORIndex INTEGER,
sysORID OBJECT IDENTIFIER,
sysORDescr DisplayString,
sysORUpTime TimeStamp

sysORIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647
ACCESS not-accessible
STATUS current

= { sysOREntryEntry 1}

sysORID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS current
:={sysOREntry 2 }

sysORDescr OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS current
:={sysOREntry 3}

sysORUpTime OBJECT-TYPE
SYNTAX TimeStamp
ACCESS read-only
STATUS current
:={sysOREntry 4 }

System.java

public class System {
String sysDescr;
String sysObjectID;
Long sysUptime;
String sysContact;
String sysName;
String sysLocation;
Integer sysServices;
Long sysORLastChange;

public System() {...}
public String getSysDescr() {...}

public void setSysDescr(String value) {...}

-

System.xml

<ModelMBean name="example.System" group="1.3.6.1.2.1.1">
<attributes>
<attribute name:“sysDescr" type:"java.lang.String" oid="1"
getMethod= getSysDescr mibType— DisplayString"/>
<attribute name="sysObjectID" type="java.lang.Long" oid = "2"
getMethod="getSysObjectID" mibType="OBJECT IDENTIFIER"/>

</attributes>
<operations>

;)Operations>
</ModelMBean>

SysORTable.java & SysOREntry,java

public class SysORTable extends JMXAbstractTable {
String[] indexNames;
HashMap sysORTable;
NotificationListener listener;

MIB Compiler

public SysORTable() {...}

public String[] getindexNames() {...}

public TabularData getSysORTable() {...}

public void updateEntry(Object[] indexObjects, CompositeData entry) {...}
public void deleteEntry(Object[] indexObjects) {...}

public void addNotificationListener(NotificationListener listener) {...}
public void remoteNotificationListener(NotificationListener listener) {...}

}

class SysOREntry {
Integer sysORIndex;
String sysORID;
String sysORDescr;
Long sysORUpTime;

public Integer getSysORIndex() {...}
public void setSysORIndex(Integer value) {..}

)

SysORTable.xml

<ModelMBean name="example.SysORTable" group="1.3.6.1.2.1.1">
<attributes>
<attribute name="SysORTable" type="javax.management.openmbean.TabularData"

getMethod="getSysORTable" oid= mibType "table">
<columnAttribute name="sysORIndex" type="java.lang.Integer
<columnAttribute nam " mleype "OBJECT IDENTIFIER"/>
<columnAttribute nam: * mibType="' Dlsplaysmng "[>
<columnAttribute name="sysORUpTime" type="java.lang.Long" oid="1.4" mibType="TimeStamp"/>

</attributes>

<operations>

id="1.1" mibType="INTEGER"/>

<f6perations>
</ModelMBean>

Figure 9: A Code Generation Example

155

CRPIT Volume 48

156

new JMXSNMPProxyModelMBean(objectName, SNMPProxyRef,
convertXmlToMBeanInfo(xml));

The objectName represents the name of the model
MBean object and the SNMPProzyRef is a reference
to the SNMP Proxy. The convertXmlToMBeanInfo
method converts the xml file into the MBeanInfo ob-
ject that describes custom attributes, operations and
notification information.

When a method of the JMXSNMPProxyModelM-
Bean object is invoked, the JMXSNMPProxyMod-
elMBean object forwards the invocation and ob-
ject name to the SNMP proxy. The SNMP proxy
checks the file JMXSNMPProzyConf.xml that de-
scribes the relationship between JMXSNMPProx-
yModelMBean objects and remote SNMP agents.
For instance, an JMXSNMPProzyModelMBean ob-
ject with object name ” jmx:snmpagent:type=system”
represents the System group of the MIB supported by
a SNMP agent. This SNMP agent resides in the host
”130.195.106.3” and listens on the port 7161”. After
locating the SNMP agent, the SNMP proxy converts
the invocation to a SNMP PDU, and sends it to the
target SNMP agent.

5 Related Work

There are some commercial toolkits that provide
broadly similar functionality to the work presented
in this paper, such as Sun’s JDMK toolkit (JDMK
1999). However, these are proprietary designs and
their details are not available in the public domain.
None-the-less, there are a number of important dif-
ferences that we have been able to identify. For
example, ordinary MBeans (those not generated by
the JDMK’s MIB compiler) can’t be accessed by
SNMP managers, whereas our toolkit enables ordi-
nary MBeans to be accessible to SNMP managers
via the "MBean-To-MIB” configuration file. Another
difference is that JDMK generated MBeans are di-
rectly bound to the SNMP adaptor, whereas our
MBean proxies are generated and bound at run time
via the MBean Server. This is a cleaner more flexi-
ble solution, and conforms to the hourglass protocol
model (Shanmugam et al. 2002).

6 Conclusions

The growing number of applications and services im-
plemented in Java has increased the demand for Java
based network management solutions. JMX provides
a standard way to enable manageability for any Java
based application, service or device (JMX1.2 2002).
However, most existing management systems can not
be managed directly via JMX compliant implementa-
tions. In this paper we present a toolkit that allows
the rapid development of JMX agents, and that can
interoperate with legacy SNMP-based network man-
agement systems. The core of this toolkit is a generic
SNMP adaptor to enable JMX compliant agents to be
accessed by SNMP-based management applications.
A set of SNMP APIs have been developed to sup-
port the development of the SNMP adaptor. Several
other tools have been developed to support the SNMP
adaptor, these include: a MIB compiler that automat-
ically generates MBeans representing a given SNMP
MIB; and a SNMP proxy service to allow non-SNMP
management applications to access the SNMP agent
using a variety of protocols. A simple example is also
given to illustrate the MBean generation process for
a given SNMP MIB.

References

A. Puliafito & O. Tomarchio(2000), Using Mobile
Agents to implement flexible Network Man-
agement strategies, Computer Communication
Journal, 23(8):708-719.

Danny B. Lange & Mitsuru Oshima (1999), Seven
Good Reasons for Mobile Agents, Communica-
tion of ACM, volume 42.

Frank Fock (2000), Agent++, An Object Oriented
Application Programmers Interface for Devel-
opment of SNMP Agents Using C++ and
SNMP++, http://www.agentpp.com.

German Goldszmidt(1993), On Distributed Sys-
tem Management, In Processings of the Third
IBM/CAS Conference.

IETF DIMAN Working Group (1999), Dis-
tributed Management (DISMAN) Charter,
http://www.ietf.org/html.charters/disman-
charter.html.

International Organization for Standardization
(1990), Information Technology- Open Systems
Interconnection - Specification of Abstract
Syntax Notation One (ASN.1).

International Organization for Standardization
(1993), ISO 10165-1: Information Process-
ing System - Open Systems Interconnection
- Structure of Management Information -
Partl:Management Inforamation Model.

Jan Bosch (1996), Delegating Compiler Objects:
Modularity and Reusability in Language Engi-
neering, Nordic Journal of Computing.

J. Schonwalder(1997), Network Management by Del-
egation - From Research Prototypes Towards
Standards, In Processings of 8th Joint European
Networking Conference.

K. Meyer, M. Erlinger, J. Betser, C. Sunshine, G.
Goldszmidt & Y. Yemini(1995), Decentralising
Control and Intelligence in Network Manage-
ment, In Processings of International Sympo-
sium on Integrated Network Management.

OpenNMS (2002), joeSNMP
http://sourceforge.net/projects/joesnmp/.

Paulo Simoes (1999), Enable Mobile Agent Technol-
ogy For Legacy Network Management Frame-
works, Technical Report, University of Coimbra.

API

)

Sun Microsystem Inc. (2002), Java Management Ex-
tensions Instrumentation and Agent Specifica-
tion, v1.2

Sun Microsystem Inc. (1999), Java Dynamic Manage-
ment Kit, http://java.sun.com/products/jdmk/.

Sun Microsystem Inc. (1999), JavaBeans Specification
1.0.1, http://java.sun.com/products/jdmk/.

R. Shanmugam, R. Padmini, S. Nivedita. (2002), Spe-
cial Edition: Using TCP/IP, 2nd Edition, Que.

Y. Yemini, G. Goldszmidt & Mitsuru Oshima (1991),
Network Management by Delegation, Interna-
tional Symposium on Integrated Network Man-
agement.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

A Framework for Visual Data Mining of Structures

Hans-Jorg Schulz

Thomas Nocke

Heidrun Schumann

Department of Computer Science,
University of Rostock,
18051 Rostock, Germany,
Email: {hjschulz, nocke, schumann}@informatik.uni-rostock.de

Abstract

Visual data mining has been established to effectively
analyze large, complex numerical data sets. Espe-
cially, the extraction and visualization of inherent
structures such as hierarchies and networks has made
a significant leap forward. However, it is still a chal-
lenging task for users to explore explicitly given large
structures. In this paper, we approach this task by
tightly coupling visualization and graph-theoretical
methods. Therefore, we investigate if and how visu-
alization can benefit from common graph-theoretical
methods — mainly developed for the investigation of
social networks — and vice versa. To accomplish this
close integration, we introduce a design of a general
framework for visual data mining of complex struc-
tures. Especially, this design includes an appropriate
processing order of different mining and visualization
algorithms and their mining results. Furthermore, we
discuss some important implementation details of our
framework to ensure fast structure processing. Fi-
nally, we examine the applicability of the framework
for a large real-world data set.

1 Introduction

Visual data mining (VDM) has been proven to be
an effective method to explore large data sets. It
combines automated mining algorithms with visual-
ization techniques. A variety of powerful methods
and tools (e.g. the InfoVis (Fequete 2004) and the
Prefuse (Heer, Card & Landay 2005) Toolkit and
the systems Polaris (Stolte, Tang & Hanrahan 2002),
Spotfire (Ahlberg 1996) or Visage (Roth, Lucas,
Senn, Gomberg, Burks, Stroffolino, Kolojejchick &
Dunmire 1996)) have been developed in the last few
years. These tools combine linked views on the data
with a high amount of interactivity, enabling users to
switch quickly between automated and visual meth-
ods. Therefore, they integrate mining methods to ex-
plore numerical data from a variety of research areas,
for instance Al, statistics and KDD. These methods
can extract structures that are inherent in the data
(e.g. hierarchical clustering). Furthermore, a number
of visualization methods have been developed and in-
tegrated to visualize such abstract data as well as
structures, gathered by the VDM process or already
given with the data set. Examples for such structures
are web link graphs and chemical molecule bonds.
Another prominent example for such structures are

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at T'wenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

social networks that apply methods to analyze social
structures, i.e. to identify central nodes that can be
understood as essential for the entire data set.

In this paper we want to discuss the question, if
and how calculation methods from graph theory can
be employed to essentially enrich VDM tools to ex-
plore structures. Our intention is to design a uniform
framework that integrates a variety of well-known
graph-theoretical and visualization methods for struc-
tures. For this purpose, dependencies of such meth-
ods have to be considered to design an appropriate
control flow.

Up to now, the integration of graph-theoretical
methods into VDM environments has not been in the
research focus. A main reason for this is the high
complexity of these algorithms that does not allow
an interactive linking and brushing in VDM environ-
ments. To achieve this goal, special effort needs to be
done.

Ankerst classifies current visual data mining ap-
proaches into three categories (Ankerst 2001). Meth-
ods in the first group apply visualization techniques
independent of data mining algorithms. The second
group uses visualization in order to represent patterns
and results from mining algorithms graphically. The
third category tightly integrates mining and visual-
ization algorithms in such a way that intermediate
steps of the mining algorithms can be visualized. In
our approach we focus at the second level, separating
the mining process into two parts:

1. execute time-consuming (automatic) algorithms
and store their results, and then

2. enable users to do an interactive exploration
of the structures in real-time, combining differ-
ent visualization and less time-consuming graph-
theoretical measures.

Although separating the time consuming execu-
tion of certain algorithms from the VDM process, per-
formance issues are still of high relevance. Thus, ef-
ficient data structures and access mechanisms - man-
aging both graphs and trees - are of high benefit for
the interactive VDM (see e.g. (Fequete 2004)). In
our framework implementation, we developed mecha-
nisms that allows efficient storage of both structures
and structural measures and algorithm results.

The paper is organized as follows: first we outline
the background of graph-theoretical algorithms, vi-
sualization methods for structures and inspiring ap-
plication areas (section 2). Afterwards, we discuss
graph-theoretical methods suited for VDM, which es-
pecially includes their interaction with visualization
techniques in section 3. Then, in section 4, we in-
troduce our framework for VDM of structures. This
includes the development of a general design and
the discussion of internal data structures and their
performance for different graph theoretical measures
and algorithms. Afterwards, we discuss challenges of

157

CRPIT Volume 48

158

our approach and demonstrate its application to real-
world data sets in section 5. Finally, we conclude the
paper and discuss future work in section 6.

2 Background

On the one hand, in the last few years visual-
ization of large structures, especially of trees and
graphs, has been remarkably improved. Visualiza-
tion techniques enable users to interactively explore
complex structural relationships between the infor-
mation objects. Well-known examples for hierarchy
representations are (Lamping, Rao & Pirolli 1995),
(Robertson, Mackinlay & Card 1991), (Shneiderman
1992), (Granitzer, Kienreich, Sabol, Andrews &
Klieber 2004) and for networks examples are (Tollis,
Eade)s & di Battista 1999) and (Brandes & Corman
2002).

A major challenge in this context is an intu-
itive navigation through large data sets to quickly
find interesting patterns while preserving orientation.
Therefore, focus+context techniques on structures
have been developed (see e.g. (Gansner, Koren &
North 2004), (van Ham & van Wijk 2004)).

A further challenge is the amount of data to be
processed. Methods to explore and visualize huge
structures that do not even fit in memory have been
developed (e.g. (Abello, Finocchi & Korn 2001),
(Abello & van Ham 2004)). Here, to ensure inter-
active data exploration, mechanisms that decide to
precompute long-lasting algorithms needed to be de-
veloped.

On the other hand, there is a variety of auto-
matic methods introduced by graph theory to explore
structures. General work has been done to determine
the complexity of graph-theoretical algorithms and to
estimate their efficiency and effectivity for practical
data sets (e.g. (Valiente 2002)). Furthermore, these
methods have been applied and refined for practical
application fields, such as social sciences (e.g. to de-
tect community structures within social and biologi-
cal networks (Girvan & Newman 2002)) and biotech-
nology (e.g. the usage of generalized interval graphs
to solve the physical mapping problem that occurs
when sequencing fragments of DNA (Zhang 1994)).

Moreover, there are a few approaches to apply
graph-theoretical measures to parameterize visualiza-
tion and vice versa. For instance, van Ham and van
Wijk (van Ham & van Wijk 2004) use hierarchical
clustering on graphs and represent nodes in the fo-
cus in another hierarchy level than nodes in the con-
text. Other examples are (Abello & van Ham 2004),
(Frischman & Tal 2004) and (Gansner et al. 2004).

However, a systematic approach that integrates
measures and algorithms of graph theory with inter-
active visualization methods is still missing. In fact,
this can be very helpful to support VDM of struc-
tures, for instance to select and parameterize tree and
graph visualization by graph measures. Therefore,
nodes of high connectivity or of other specific values
of interest can be laid out into the focus. Moreover,
a tree visualization technique resp. a graph visualiza-
tion technique can be chosen to represent a structure
in dependency of its similarity to a tree. If there
are only a few edges to be deleted from a graph to
form a tree, a tree visualization technique can be a
good choice to visualize this graph, representing the
non-tree edges in another way (see figure 1 right and
(Fekete, Wang, Dang, Aris & Plaisant 2003)). If, on
the other hand, the graph is less similar to a tree,
tree visualization techniques are not appropriate (see
figure 1 left), and a default graph-drawing technique
is the better choice.

Figure 1: Networks represented by the tree visual-
ization technique MagicEyeView (Kreuseler & Schu-
mann 2002) with a large (left) and a small (right)
numb]er of non-tree edges [images taken from (Voigt
2001)].

3 Algorithmic mining techniques for complex
structures

Even though the visualization is a powerful and im-
portant part within the concept of VDM, each visu-
alization technique has its limits on how much data
it can possibly display. This most critical problem
occurs rather often when analyzing real-world data,
but it can be overcome to some extent by appro-
priate information-hiding, brushing or focus+context
techniques embedded within the visualization used.
To parameterize those techniques, further informa-
tion about the given data set can be computed by a
thorough algorithmic pre-processing:

- irrelevant data, like statistical outliers that can
be hidden

- somehow ”important” data that needs to be em-
phasized

- bits of data that are very similar and can be clus-
tered

The field of graph theory already provides a wide vari-
ety of such mining techniques (i.e. finding maximum
cliques, shortest paths or calculating modular decom-
positions). Different domains, like the theory of so-
cial networks, the so-called web structure mining that
is used by search engines throughout the WWW or
the bio-chemical analysis of protein structures, supply
further methods for analyzing large amounts of struc-
tured data. Roughly, these methods can be divided
in three categories which can be subtle interrelated or
simply used one by one if needed:

- structural measures that capture important at-
tributes of the graph (the list in section 3.1 is
based upon an overview given in (Brandes &
Wagner 2003)),

- clustering algorithms to decompose large struc-
tures,

- methods for graph matching to identify and lo-
cate substructures of interest.

Additionally to these three categories, efficient ap-
proaches to automatically preselect well-fitting meth-
ods can help to maintain a comprehensive overview
about the huge number of applicable graph algo-
rithms (section 3.4).

3.1 Structural measures

Structural measures can be computed locally (sepa-
rately for each node) or globally (for an entire graph
or subgraph). Local measures of interest are i.e. the

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

following centrality measures, which can be under-
stood as an index of how ”important” a node is (The
examples after the formal description of each measure
refer to figure 2):

- The node degree, that returns the number of
incident edges for a node v (i.e. deg(c) = 3).

- The size of the k-neighborhood |N(v)|, that
equals the number of nodes within distance < k
from a given node v (i.e. |Ni(c)| = 3,|Na(c)| =
5,|N3(c)| = 6).

- The summed up lengths of all shortest paths from
a node v to every other node yield the closeness
of that node
(ie. cls(c) =14+14+1+2+2+3=10).

- The maximum length of all shortest paths from
a node v to every other node equals its eccen-
tricity
(i.e. ecc(c) = max(1,1,1,2,2,3) = 3).

- The node betweenness centrality of a node
v, which is defined as the number of all shortest
paths that pass through v (i.e. for ¢: 4 from a
and b, 2 from d, e, f and g, that sums up to 16).

a c e g

b d f
Figure 2: An example graph G(V,E).

The following similarity measures on the other hand
can be used for graph clustering or within the lay-
out algorithm to position comparable nodes closer to-
gether:

- The connectivity of the nodes u and v is the
minimum number of edges that have to be re-
moved from the graph in order to separate both
nodes in a way that no path between them exists
(i.e. conn(a,b) = 2).

- The dependency of node u from node v returns
the number of shortest paths originating in u
and passing through v (i.e. dep(c,d) = 3 and
dep(d, c) = 2).

Since different concepts of centrality and similar-
ity stand behind those measures, their outcome of-
ten differs in many ways, as can be seen when
comparing connectivity (a symmetric measure, since
conn(u,v) = conn(v,u)) with dependency (usually
asymmetric, except for some graph classes like circles
or cliques). The user must be aware of these differ-
ences at all times and should choose the most suitable
and expressive measure to model his special goal of
analysis.

While these local measures are available only for
single nodes, the more general global measures give
an overall view of the structure. The simplest form
of a global measure is of course the average of a lo-
cal measures (i.e. the average node degree) that can
easily be computed. Other global measures are:

- The diameter diam(G) of a graph G(V,E),
which equals the largest eccentricity value, or the
radius, which equals the smallest eccentricity
value. (i.e. diam(G) = 4, rad(G) = ecc(d) = 2)

- The compactness or density of a graph that
provides information about how many of all pos-
sible edges are actually present. (i.e. G got 7 out
of 21 possible edges)

- A treelikeness-value can be computed to ob-
tain a measure for structural resemblance with
a tree (a graph without any induced circles).
Among many existent treelikeness measures, we
introduce an adaption of this term that is opti-
mized for the use within the visualization pro-
cess: a graph is called (p, k)-treelike, if it has
no more than k cross-edges and the fraction of
cross-edges with respect to all edges is less than
the percentage p.

Such global measures can be very useful for the de-
termination of an appropriate visualization method:
i.e. an underlying treelike structure with only a few
crossedges can be identified as such by its treelikeness-
value and hence laid out with a hybrid approach as
described in section 2. This approach generalizes the
ideas introduced in (Fekete et al. 2003), where a tree
visualization is extended in a similar way.

3.2 Graph clustering

Over the years different flavors of clustering have
been developed and evolved further. The cluster-
ing techniques that are most often used for the pur-
pose of VDM are the hierarchical clustering algo-
rithms. They do not only yield a clustering of a
desired granularity but also a way to explore the
data set via browsing the clustering’s dendrogram
(Herman, Marshall & Melangon 2000). Hierarchi-
cal clusterings can be computed either bottom-up by
combining similar elements (normalized-association-
method (Shi & Malik 1997), single- or average-
linkage-method,...) or top-down by separating el-
ements that differ (normalized-cut-method, edge-
betweenness-centrality-clustering,...). Hence for both
approaches, similarity or distance measures need to
be computed beforehand.

One way to circumvent this need is the use of
graph decompositions, which also results in a hi-
erarchical graph partition. They work directly on
the graph’s structure without any additional mea-
sures needed and can usually be computed in linear
time. Examples are: modular-decomposition, k-core-
decomposition (Batagelj, Mrvar & Zaversnik 1999) or
decomposition through distance-k cliques (Edachery,
Sen & Brandenburg 1999).

3.3 Graph matching

The search for special structures within the data set
is a tedious task that is difficult to automate. Several
different kinds of graph matching can be used:

- The exact graph matching searches for a sub-
graph that is identical to a specified pattern
(SUBGRAPH ISOMORPHISM PROBLEM)

- The inexact graph matching searches for a
subgraph that is as similar as possible to a spec-
ified pattern.

- The search for the largest given configuration,
i.e. the largest clique or the longest path.

- The detection of the most frequent subgraph of
given minimum size.

Since all of these matching problems are quite com-
plex from an algorithmic point of view, mostly heuris-
tic approaches are used to find approximate solutions
(Bunke 2000).

159

CRPIT Volume 48

160

3.4 Semi-automated selection

through metadata

technique

To achieve a certain mining goal, different algorithmic
methods can be applied. Usually some of them fit
a particular case better than others. To determine
suitable techniques, metadata describing the overall
structure can be used to derive helpful indications on
which method to employ.

An example would be the choice of fitting runtime-
efficient algorithms depending on the graph’s overall
structure. As already mentioned, many of the de-
scribed graph theoretical methods are painfully slow
due to their polynomial or even exponential runtime
complexity. An algorithm is usually considered to be
efficient on very large data sets, if its complexity is
subquadratic. The lack of efficient algorithms results
in intolerable high computation times and prevents
interactive techniques (time bottleneck). But in case
the data set fulfills certain structural constraints, ef-
ficient algorithms do exist for most of the above pre-
sented problems (graph matching, clustering, decom-
position, etc.) Since it is widely known that academic
worst-case-constructions occur rather seldom in real-
world-scenarios, some of the desired constraints are
virtually always fulfilled.

An example would be the sparseness of a graph,
which means that the number of edges is much less
than the possible number of edges within the graph.
Most graphs from different areas are sparse, e.g.:

- A biochemical molecule must be sparse, since ev-
ery atom can have only a small number of chem-
ical bonds.

- A social network is usually sparse, because a per-
son normally does not have some hundred ac-
quaintances.

- A large website rarely links from each hypertext
document to every other document, as well as
scientific papers do not cite every other paper in
their field and vice versa.

Therefore, algorithms can be optimized to take ad-
vantage of the sparseness and compute their re-
sults in less time. An example for such an op-
timized algorithm is the method to determine the
node-betweenness-centrality as described in (Brandes
2001). Another example is the k-core-clustering
(Batagelj et al. 1999) that decomposes the data set
within a linear timebound with respect to the number
of edges:

- In the worst case, the graph G(V, E) features all
of its possible edges |E| = |p2(V)| = & - V] -
([V| = 1) and has therefore a quadratic runtime
bound with respect to the number of nodes.

- In the average and more practical case, the graph
is usually sparse and contains only a small frac-
tion of its possible edges. So the runtime com-
plexity will be subquadratic (in terms of the size
of the node set) and thus acceptable.

Besides the already provided global structural
measures like density or treelikeness (see section 3.1),
other structural descriptors can be useful:

- Testing whether a directed graph is acyclic can
lead to very efficient algorithmic solutions to
many NP-complete graph problems that are hard
to solve on arbitrary graphs. This test runs in
linear time and tries to sort the data set topolog-
ically. If this succeeds, the resulting topological
ordering can be used as input for fast algorithms
that have been especially adapted for this case.

- Determining the data relationship (Bertin
1981) that gives an impression of how the overall
structure is organized: linear, circular, hierarchi-
cal, etc.

These descriptors can also be used to select and
parameterize an appropriate visualization technique
that can be especially suited to display exactly the
described kind of a structure. An example for this
method would be the graphs shown in figure 1: con-
trary to the right part of figure 1, the treelikeness-
value of the graph on the left side is obviously out of
the range and the MagicEyeView-technique actually
not applicable.

Additionally, certain graph classes can even be vi-
sualized in very special manners. For instance, if a
graph is detected to be an interval graph, it can be dis-
played as an intersection model consisting of intervals
on a straight line. To view a graph as such an inter-
section model is quite common in genetic engineering
and computational biology. Furthermore many algo-
rithmic problems can be efficiently solved on interval
graphs. Hence a set of detection-procedures for cer-
tain graph classes of interest could further yield useful
hints for the choice of a well-suited visualization and
speed up the mining process if tailor-made implemen-
tations for the detected graph class are provided.

4 A general framework for Visual Data Min-
ing in complex structures

4.1 Design criteria

Designing a visualization or VDM framework is a sen-
sible process. Many decisions made in early develop-
ment stages are complicated to redo. Furthermore,
a variety of backgrounds with varying data sets and
tasks require varying software architectures. In the
following, we list five main design criteria for a VDM
framework for structures:

- Generality

— Adaptability to different application
backgrounds (e.g. social networks, or-
ganic chemistry),

— Scalability to various users with varying
background knowledge,

— Modular design allowing to plug in any
kind of visualization techniques and mining
operators on structures

- Flexibility

— Flexible control mechanisms to select,
connect and parameterize measures, min-
ing algorithms and visualization techniques
on structures (e.g. using scripts, or interac-
tively using menus or data flow charts),

— Visual queries with a direct visual feed-
back,

— Support to derive additional data to
gain a deeper insight into data features (e.g.
by extracting relevant substructures)

- Usability

— Data abstraction to get easy access to dif-
ferent kinds of structure data sources inde-
pendent of their internal and external stor-
age format,

— Acceptable reply times of calculations
(approximation techniques might need to be
considered in case of unfavorable runtime
complexities or a low upper time bound
given by the user),

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

— Intuitive means of interacting with
even complex mining methods

- Efficiency
handle fairly large data sets and avoid screen,
storage space and temporal bottlenecks

— Memory Efficiency through smart data
structures as described in 4.3.

— Runtime Efficiency by decoupling the in-
teractive parts of the VDM-process from the
non-interactive ones as discussed in 4.2.

— Screen Efficiency to effectively apply the
whole screen space displaying large struc-
tures

- Task orientation
Can the user fulfill all tasks to gain the ex-
ploration target? This includes a variety of
paradigms, including the following:
— Focus+context
— Overview+detail
— Brushing
History (especially Undo and Redo)
Sorting and filtering
— Zooming.

However, it is not reasonable to design a VDM
framework that is applicable for all kinds of possi-
ble applications and tasks. Thus, we design a gen-
eral architecture for the VDM of structures that can
be easily extended by any measures and methods.
Therefore, in the following section, general modules
in the field of structure exploration and their process-
ing will be introduced in an abstract scheme. These
modules are containers for measures, visual and non-
visual mining methods as well as for units supporting
general tasks such as dynamic queries or history.

4.2 Conceptual foundation

In the following, we introduce our design of a VDM-
framework that consists of several different functional
modules:

- interfaces for user interaction before and after the
extensive mining operations,

- a preprocessing unit and a unit to compute struc-
tural descriptors,

- the algorithmic kernel that does the mining and
lays out the data for its graphical representation.

Thus it is possible to extract the complex algorithmic
kernel to do extensive calculations without the need
for user-input on different, eventually faster machines,
while the user interaction before and afterwards is
done within the framework itself. This is the only
way to efficiently process the needed graph theoretical
algorithms, since one cannot work around the funda-
mentals of complexity theory. A schematic overview
of the framework is depicted in figure 3, where the
several fragments are colored according to their func-
tion within the overall VDM-process. For its modular
design as required by the design criteria in section 4.1,
the fragments can be extended with different visual-
ization techniques and algorithmic modules, to realize
their function in detail. The fragments provide the
following functionality:

- During the initial interaction, the user speci-
fies additional properties of the structure that are
not explicitly included in the data set. Here the
user should also be able to roughly parametrize
upcoming algorithmic computations by setting
upper runtime bounds and the like.

Algorithmic Kernel
Prepro— Substructure Extraction
cessing
Calculating Structural
— ¥ Measures h Interaction/
Post—
processing
Clustering Visuali-
& N
Calculating g DEsaii= AN
Descriptors position

ﬁ Initial Interaction ll

Figure 3: Our general VDM-framework design.

- The preprocessing can be used for cleansing
and filtering the data.

- The calculation of descriptors tries to gather
enough metadata as discussed in section 3.4 en-
abling the user to determine fitting mining and
visualization techniques.

- The algorithmic kernel does the actual work
of calculating additional data, which is one of
the crucial features a VDM-framework must ful-
fill: computing measures (like those in section
3.1), extracting substructures, clustering or de-
composing the graph (see section 3.2) and finally
calculating a graphical layout for the resulting
data.

- The interaction on the gained graphical repre-
sentation is used for the actual visual exploration
of the data set. Here some post-processing can be
done to further manipulate and query the data
set interactively through the visualization and to
write back those changes to the data base.

For each of these computational steps, user defined
modules can be plugged into the framework and exe-
cuted in the given order. Usually, the VDM-process
based on this architecture starts off by determining
promising mining methods through analyzing the
automatically computed descriptors and taking the
user’s goals of analysis into account. Afterwards,
the chosen techniques will be employed upon the
data and their results will be stored for further
visual investigation later on. Depending on how
the results are structured, an appropriate visual-
ization technique is selected and used to generate
an interactive overview of the outcome that can be
graphically explored. As demanded by the design
criteria, a wide variety of navigational elements,
filtering and searching techniques can be provided
through a standardized user interface that applies
to all modules. Figure 4 shows a detailed view on
the framework with several representative modules
plugged-in to illustrate typical operations within the
different fragments. In detail, the modules shown
in figure 4 add the following functionalities to the
framework:

Modules for the initial interaction:

After starting-up the framework, these modules
provide a first possibility to augment the mining
process with additional information about the data,
the mining goals and any given constraint on the
mining process. For example by distinguishing
between wundirected and directed graphs, the user

161

CRPIT Volume 48

162

Database

Overview
+

Exact / Inexact
Data Scrubbing D A
x x

* ey

Detecting Frequent
Subgraphs 4

Shortest Path

Zoom,

3 Pan and
Rotate

Selection / Visual Query

Data Normalization t

B

1

Detail Vie

Data Selection

Global Structural Measures:

Density, Average Node Degree, etc.

----- *

g

Focus+Context

1

Content View

-ﬂ» Centrality Measures:
Data Relationship?

L

Closeness,
Eccentricity,
Betweenness, etc.

Edge Betweenness
Centrality Clustering

Similiarity and
Distance Measures:

Treelikeness?

Connectivity,
Dependency, etc.

tw(G) =...
(p,n) =...

Single Linkage
Clustering

Average Linkage
Clustering

=

Rearrangement

Navigation View

Annotation

I
=

=

k-Cores Decomposition

distance—k Clique Decomposition

Overview History: Undo / Redo
I v Roll Back all
Changes?
|| ™

SN
1

1F

Context?
§ Digraph? % %

Timeframe?

Goals of

Analysis’) Discovered Knowledge /

Resulting Image

®

2% =) |
27? 1!

Figure 4: Our VDM-framework design with representative modules. Greyed out Modules have not yet been
implemented or their implementation has not yet been adapted to be used within the framework.

indirectly influences the choice of applicable algo-
rithms. Sometimes, this can also be deduced directly
from the context of the data set —i.e. link structures
in hypertext documents always form a digraph.
Additional information that affects the selection of
appropriate algorithms can contain upper runtime
limits to insure acceptable reply times or explicitly
stated goals of analysis (Nocke & Schumann 2004).
These modules directly fulfill the design criteria for
adaptability to different application backgrounds
and scalability to users with varying background
knowledge.

Modules for the preprocessing:

The modules presented in this fragment are respon-
sible for data cleansing from measuring errors such
as dangling ends in the set of edges. Furthermore,
in the preprocessing phase a data selection and edge
weight normalization can be performed etc. Trans-
formations like these allow to define a standardized,
abstract data format to work with, which is an
essential design criteria.

Modules for the processing of structural
measures:

In case of a digraph structure, this fragment could
test a graph for acyclicity, which might again trig-

ger additional goals of analysis and a selection of
especially optimized algorithms in the algorithmic
kernel. Furthermore all of the discussed measures in
section 3.1 can either be calculated here, or at least
be approximated if the exact calculation would be
too time consuming.

Modules for the algorithmic kernel:

The functionalities of most of the modules shown in
this fragment have already been addressed in section
3. Appropriate graph-algorithmic and visualization
modules are selected via the calculated measures
as described in 3.4. Since there usually does not
exist a single optimal graphical representation of
every aspect of the data, we propose a fourfold
approach in the style of the ideas on multiple views
in (Scharl 2002). The data set’s inherent structures
that have been computed beforehand are presented
in a navigational view, that makes them accessible
in a hierarchical manner. Once a region of interest
has been selected in the navigational view, the sub
structure associated with it will be shown in a content
view. Selecting a node, an edge or a substructure
within the content view will again trigger a detailed
graphical representation of those in the detail view.
To prevent loosing the orientation within the data set
while visually exploring it, a rather static overview

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

should be provided to aid at keeping the global
mental map of the structure. It is further possible
to use multiple instances of each view that utilize
different visualization techniques. This view-concept
ensures a simple and uniform way to explore the data
while using the available screen space most effectively.

Modules for the
cessing:

This fragment contains the usual interactions and
manipulations upon the visualized data set, which
enable the user to carry out common exploration
tasks as stated by the design criteria. This includes
interactive annotation to add supplementary com-
ments to the presented clusters and substructures
and a similar history concept to the one we have
developed and presented in (Kreuseler, Nocke &
Schumann 2004).

interaction and postpro-

4.3 Implementation

The functional modules introduced in figure 4 have
been implemented in an interactive framework that
is based on C++ and the Qt-Library. White colored
modules are fully-integrated, and grey modules are
under development.

A major challenge developing this framework was
to implement an efficient storage concept for struc-
tures. In this context, a lot of different approaches
to store graphs have been discussed in literature. Be-
sides delegating storage issues to 3rd party products
like relational databases, in practice only three tech-
niques are widely used: adjacency matrices for
fairly small graphs, object-based data structures
for medium-sized graphs, that use objects for each
node and link them via pointers, and finally table-
based structures that contain the nodes and edges
along with their attributes in a simple linear order,
which is suited for large graphs. For its small mem-
ory overhead, most frameworks for processing large
graphs utilize the last approach. A popular exam-
ple is the Java-based implementation of such a lin-
ear storage for large graphs by the InfoVis ToolKit
(Fequete 2004) which extends the table-based ap-
proach with several additional features, like fields for
auxiliary metadata on each column and the abil-
ity of masking several nodes or edges within the list
by toggling certain selection-bits. Beside these, our
table-based data structure adds the following func-
tionality:

- Columns may contain permutations of the ta-
ble’s rows, i.e. a topological ordering or the se-
quence of a breadth-first-search. That allows to
store multiple orderings and eradicates the need
to shuffle around the table’s rows to sort them.

- Besides ordinary values, a cell of the table may
contain an entire list to efficiently store adja-
cency lists or even hypergraph structures
with a variable number of nodes per hyperedge
within the same data structure.

- Each column can exist as a placeholder only,
which will be filled in automatically when it is
used for the first time. This pushes file-reading
operations and computations as far back as pos-
sible and may save time and memory footprint
in an average use case.

To improve the speed of look-ups in huge lists, a sim-
ple caching layer is used which allows direct access
to the last couple of entries that where used. This
storage concept addresses mainly large and complex
structures that take up a lot of space in memory —
up to the point, where they just will not fit in there

anymore (memory bottleneck). It counters this case
through a layered set of predefined behaviors, from
which can be chosen automatically or interactively:

1. To push storage problems as far as possible, a
strong emphasize of the framework lies upon an
efficient storage of the data, that is painstaking
space-saving and still tries to maintain an accept-
able average access time. This is done by using
the before mentioned table-based approach that
can be augmented with supplementary data if
enough memory is available or if an algorithm
definitely needs it. Furthermore, the data set
can be split up in smaller subsets if the overall
structure has unconnected components that can
be computed separately.

2. In case the data still does not fit into the mem-
ory, unneeded attributes like edge weights or pre-
viously computed measures that are not vital to
run a specific algorithm, will not be loaded into
the memory unless the user explicitly says so
(placeholder columns).

3. If the memory’s sufficiency is of further concern,
all standard modules of the framework must be
exchangeable with external algorithms that are
especially optimized for this special case.

4. For those modules that do not provide a special
external version, a smart caching layer has to be
introduced to the frameworks I/O to minimize
memory swaps.

In most cases, the first layer that employs a de-
liberate usage of memory will be effective enough
to fit all data in. For larger data sets, the frame-
work has to utilize one of the latter layers until ev-
ery needed attribute can be accessed. Moreover, it
is imaginable to introduce additional intermediate
layers like certain garbage collection functionalities
or semi-external versions of frequently used modules
that make use of the situation where at least the
node set fits in the main memory. This would further
increase the chance to prevent the use of generally
slower external algorithms. Thus far, the first two
of the presented layers have been successfully imple-
mented.

4.4 Graphical user interface

Sometimes, when trying to visualize a set of data,
it turns out that the amount of data is just too
large to fit the output device, i.e. the data objects
that should be displayed outnumber the available pix-
els (screen bottleneck). To reduce the visual com-
plexity in order to circumvent this bottleneck, ad-
ditional time consuming clustering steps might thus
be needed. For the sole purpose of decreasing the
structural complexity through node-aggregation, we
propose the use of heuristics or graph decompositions
that have a linear runtime bound. Ideally this re-
duction produces a hierarchy that can be used to
filter the results interactively up to a desired level
of detail, like the mentioned k-core-clustering. Fig-
ure 5 presents yet another method to explore a po-
tentially overloaded and overdetailed graphical rep-
resentation. Since there is no visualization method,
that serves all demands equally well, different views
upon the data are generated as needed and function-
ally linked as described in section 4.2: The content
view is shown after the initial layout is calculated
by an appropriate visualization module (in depen-
dency of the treelikeness-value we use Fruchterman-
Reingold’s spring embedder method (Fruchterman &
Reingold 1991) for graphs and the MagicEyeView for

163

CRPIT Volume 48

164

trees and treelike graphs) and provides several possi-
bilities of interaction: zoom, rotation, selection, filter-
ing, etc. The output can be interactively constrained
to only those nodes that have a certain centrality mea-
sure within the range defined by the sliders at the
right. An additional navigation view is based upon
the dendrogram of a hierarchical clustering. We used
a subsequent display of MagicEyeViews (Kreuseler
& Schumann 2002) to visualize the huge hierarchi-
cal structure of the dendrogram, where each selected
cluster can itself be a root-node within a newly gen-
erated subview. As an example for a detailed view,
figure 5 shows the distribution of the k-neighborhood
from section 3.1 for K = 1...5. By selecting a certain
neighborhood through this display, the content view
can be adapted to show it for exploratory analysis.

4.5 Summary

The proposed framework architecture has a modular,
extensible design. It has a general underlying data
structure, and thus, can handle various structures
from different backgrounds. Explicitly integrating
the application context and user goals makes it scal-
able to various users from different domains. It offers
both automatic and interactive mechanisms to con-
trol measures and techniques in the algorithmic ker-
nel, especially enabling users to specify queries visu-
ally (for instance to select substructures). It enables
users to specify, derive and apply additional data
(metadata) which can be used for the semi-automatic
selection of suitable algorithms, lead users through
the exploration process and increase the user knowl-
edge about the handled structures. Furthermore, the
architecture supports to handle large data sets by
smart data structures and by a control mechanism
for long-lasting resp. interactive processable calcula-
tions. Interactive visualization techniques have been
integrated, even applicable for large data sets. There-
fore, they apply focus+context, overview+detail and
brushing+linking paradigms and support interactive
sorting, filtering as well as navigational support.

5 Case study

We successfully applied our framework to a variety
of data sets. This included a web link graph of our
institute internet pages (51497 nodes, 425247 edges),
a citation network (509 nodes, 1551 edges) and peer-
to-peer-networks with a few hundred nodes. For this
paper, we demonstrate the usefulness of our frame-
work design and present interesting insights for the
medium sized Edinburgh Associative Thesaurus data
set (short EAT, see http://www.eat.rl.ac.uk). For the
following exemplary analysis, we present the explo-
ration process closely related to the flow of the design
chart from figure 4, giving details about the depicted
modules and the arrows interrelating them.

The EAT data set consists of an empirical set
of word associations (Kiss, Armstrong, Milroy &
Piper 1973). Therefore, a list of 8.210 very frequently
used English words (stimuli) has been compiled and
the associative responses from test persons were gath-
ered. Since the responses themselves are not neces-
sarily stimuli, we eliminated these dangling ends in
a data scrubbing preprocess (fig. 4, arrow 1). The
resulting graph contains of 8.210 nodes (the stimuli)
connected via 261.453 weighted edges.

Then, in an initial interaction step, context knowl-
edge about type and history of the data set leads to
the specification of the graph as a digraph (arrow 2).
Based on this knowledge, a variety of descriptors can
be calculated for the preprocessed digraph (arrows 3
and 4). This includes to calculate the treelikeliness

which is relevant for the later selection of an appro-
priate visualization (as described in section 3.1). The
actual (p, k)-treelikeness of the given data set results
to (3.1%, 253244), which means that 253244 edges
would have to be deleted in order to convert the net-
work into a tree — only 3.1% of all edges would re-
main to form the spanning tree.

Based on these calculations and specifications, we
started the main exploration phase in the algorith-
mic kernel (arrows 5, 6 and 7). First, important
global structural measures have been calculated. For
instance, to estimate the graph connectivity, we cal-
culated an average node degree of 31.85, which means
that each stimulus-word is associated with approxi-
mately 32 other stimuli-words. Based on this medium
average node degree and due to a low treelikeness
value we concluded that the EAT graph is a medium
connected network and not suited to be laid out with
a tree visualization technique. Hence, we chose a net-
work visualization as content view (arrow 8). There-
fore, to get a first overview of 8.210 nodes (arrow 7
and 9), we actually used a 3D-spring-embedder net-
work visualization technique (Fruchterman-Reingold
(Fruchterman & Reingold 1991)). This computation
lasted about an hour (on an Intel PentiumM 1.4GHz
machine with 512 MByte RAM), and thus, was exe-
cuted non-interactively within the algorithmic kernel.

Then, to get more details about certain nodes, the
user can zoom, pan and rotate the graph layout, as
well as select certain nodes (arrows 9 and 10). Fur-
thermore, to filter the crowded representation (ar-
row 9), we calculated the associative neighborhoods
of chosen words based on the structural measure 1-
neighborhood. Then, using the two sliders depicted
on the right side of figure 5, the user can fade out all
nodes that do not have a I-neighborhood-size within
a certain range (arrows 8, 9 and 10). For instance, in
figure 5 we applied a 1-neighborhood-filter of 165 as
minimum and a value of 1106 neighbors as maximum.
Thus, the user can investigate a sparsely crowded
graph with the main associated stimuli, leaving out
all stimuli that are lesser associated. The maximum
value of 1106 belongs to the node of the word MAN;,
which is the most associated word in this data set.
The next heavily associated words are GOOD and
SEX (ca. 870 associative links to other words).

Further, the user can get details-on-demand about
these selected nodes (fig. 4, arrows 9, 10 and 11),
displaying the k-neighborhood-diagram of a selected
node in a Detail View (arrows 8 and 9). This gave
us another interesting insight: most nodes lie within
a distance of 3 (see in the k-neighborhood-diagram
in fig. 5). This is a further proof for the observed
medium to high density of the graph and indicates
that there are no isolated substructures.

Then, to get a grip at this highly interrelated
graph, we clustered the graph hierarchically using
a k-core-decomposition. This computation lasted
a couple of minutes, and was also executed within
the algorithmic kernel. Using the resulting dendro-
gram, the user can explore the whole graph in an
overview+detail manner, focusing on certain hierar-
chy levels (fig. 4, arrows 8, 9 and 17). Therefore, in a
navigation view, certain levels of the hierarchy are dis-
played in a MagicEyeView (see fig. 5), and the user
can interactively focus on certain clusters and hierar-
chy leaves of interest, still keeping the context visible
(fig. 4, arrows 9 and 10). Furthermore, clusters of
interest can be selected in the MagicEye View, to ex-
plore the subgraphs they induce within the content
view (arrows 9, 10 and 12). A brushing mechanism
displays these subgraphs. Examples for words that
have automatically been clustered together are:

- ITS, MUST HAVE, POSSESSIVE

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Il [Non-Commercial] - COLDSSUS structurarum {¥ersion: 2004-09-07) 18 x|
Fle \iew Help
| E—
Il [Non-Commercial] - colossus
MISTRUST
s ~ 1106
.
e ALY Il [Non-Commercial] - colo
BEAUTIFULLY
e
g208 8203 8209
4267
44
k=2 k=3 k=4 k=5
a =
@

Close

165

v

Figure 5: An overview of the framework’s GUL (1.) the content view showing a small part from a larger
data set, including a highlighted shortest path and a red colored, selected node; (2.) the navigational tree-
view [MagicEyeView (Kreuseler & Schumann 2002)] containing the browsable result of a hierarchical cluster
algorithm; (3.) the detailed view of the k-Neighborhood-distribution of the selected node from (1.) with its

1-Neighborhood being selected.

- CRUSHING, DESTRUCTIVE, DESTROYING
- ANTICIPATE, INSTRUCTIONS, AWAIT

Moreover, to establish interesting connections be-
tween two selected words, the user can interactively
select the words, and compute the shortest paths be-
tween them (arrows 9, 10 and 13). Then, this path
can be depicted and focused in the content view (see
fig. 5), showing a path between the words MIS-
TRUST and BEAUTIFULLY), keeping the rest of the
graph in the context applying alpha blending.

Summarizing, the user has a variety of possibili-
ties to interact with the provided modules. There-
fore, our framework delivers a variety of exploration
paths, to support various exploration contexts and
tasks. The user can refine the focus on the data
set and explore substructures (fig. 4, arrow 14), re-
fine exploration context (arrow 15), and then restart
the whole process. Thus, as an iterative process, the
framework supports alternative visual navigation and
mining paths to the desired result (arrow 16).

6 Conclusion and future work

In this paper, we investigated the tight integration of
methods from graph theory with visualization meth-
ods. Therefore, we introduced graph theoretical
methods and their applicability for a VDM of struc-
tures systematically. In particular, we described how
to apply these methods to design good visual rep-
resentations. Furthermore, we introduced a general,
modular and flexible design for a VDM framework for

structures, outlined its implementation details and
discussed its applicability based on a real-world ex-
ample.

We tested our framework with different data sets,
for instance a WWW-link-structure with 50.000+
web sites and approx. 425.000 links in between them.
The gained results where highly satisfying. Never-
theless, there are still challenges for future work. We
have to continue testing and evaluating the frame-
work’s usability and its scalability to even larger
structures. Additionally, more measures, algorithms
and visualization techniques need to be integrated.

Acknowledgements

The authors like to express their thanks to Prof. An-
dreas Brandstddt for helpful discussions as well as
Andreas Pohl and Clemens Nafe for testing, evalu-
ating and using the framework for their research on
peer-to-peer networks.

References

Abello, J., Finocchi, I. & Korn, J. (2001), Graph
Sketches, in ‘IEEE Symposium on Information
Visualization (InfoVis‘01), San Diego’, pp. 67—
72.

Abello, J. & van Ham, F. (2004), Matrix Zoom: A Vi-
sual Interface to Semi-external Graphs, in ‘IEEE
Symposium on Information Visualization (Info-
Vis‘04), Austin’, pp. 183-190.

165

CRPIT Volume 48

166

Ahlberg, C. (1996), ‘Spotfire: an information ex-
ploration environment’, SIGMOD Record (ACM

Special Interest Group on Management of Data)
25(4), 25-29.

Ankerst, M. (2001), Visual Data Mining with Pixel-
oriented Visualization Techniques, in ‘Proceed-
ings of ACM SIGKDD Workshop on Visual Data
Mining’01; San Francisco’.

Batagelj, V., Mrvar, A. & Zaversnik, M. (1999),
Partitioning Approach to Visualization of large
Graphs, in ‘Proceedings of the 7th International
Graph Drawing Symposium’, number LNCS
1731, pp. 90-97.

Bertin, J. (1981), Graphics and Graphic Information-
Processing, Walter de Gruyter.

Brandes, U. (2001), ‘A Faster Algorithm for Between-
ness Centrality’, Journal of Mathematical Soci-
ology pp. 163-177.

Brandes, U. & Corman, S. (2002), Visual Unrolling of
Network Evolution and the Analysis of Dynamic
Discourse, in ‘IEEE Symposium on Information
Visualization (InfoVis‘02), Boston’, pp. 145-151.

Brandes, U. & Wagner, D. (2003), visone - Analysis
and Visualization of Social Networks, in ‘Graph
Drawing Software’, Springer, pp. 321-340.

Bunke, H. (2000), Graph matching: Theoretical foun-
dations, algorithms, and applications, in ‘Proc.
Vision Interface 2000, Montreal’, pp. 82—88.

Edachery, J., Sen, A. & Brandenburg, F. (1999),
Graph Clustering using Distance-k Cliques, n
‘Proceedings of the 7th International Graph
Drawing Symposium’, number LNCS 1731,
pp- 98-106.

Fekete, J.-D., Wang, D., Dang, N., Aris, A. &
Plaisant, C. (2003), Interactive Poster: Overlay-
ing Graph Links on Treemaps, in ‘IEEE Sympo-
sium on Information Visualization (InfoVis‘03),
Seattle’.

Fequete, J.-D. (2004), The InfoVis Toolkit, in ‘IEEE
Symposium on Information Visualization (Info-
Vis‘04), Austin’, pp. 167-174.

Frischman, Y. & Tal, A. (2004), Dynamic Drawing
of Clustered Graphs, in ‘IEEE Symposium on
Information Visualization (InfoVis‘04), Austin’,
pp. 191-198.

Fruchterman, T. & Reingold, E. (1991), ‘Graph
drawing by force-directed placement’, Software
— Practice and Ezxperience 21(11), 1129-1164.

Gansner, E., Koren, Y. & North, S. (2004), Topologi-
cal Fisheye Views for Visualizing Large Graphs,
in ‘IEEE Symposium on Information Visualiza-
tion (InfoVis‘04), Austin’, pp. 175-182.

Girvan, M. & Newman, M. (2002), ‘Community
structure in social and biological networks’,
PNAS 99(12), 7821-7826.

Granitzer, M., Kienreich, W., Sabol, V., Andrews,
K. & Klieber, W. (2004), Evaluating a Sys-
tem for Interactive Exploration of Large, Hier-
archically Structured Document Repositories, in
‘IEEE Symposium on Information Visualization
(InfoVis‘04), Austin’, pp. 127-133.

Heer, J., Card, S. K. & Landay, J. A. (2005), Prefuse:
a Toolkit for Interactive Information Visualiza-
tion, in ‘CHI 2005, Human Factors in Computing
Systems’.

Herman, I., Marshall, M. & Melangon, G. (2000), Au-
tomatic generation of interactive overview dia-
grams for the navigation of large graphs, Tech-
nical Report INS-0014, Reports of the Centre for
Mathematics and Computer Sciences.

Kiss, G., Armstrong, C., Milroy, R. & Piper, J.
(1973), An associative thesaurus of English and
its computer analysis, in ‘The Computer and Lit-
erary Studies’, Edinburgh University Press.

Kreuseler, M., Nocke, T. & Schumann, H. (2004), A
History Mechanism for Visual Data Mining, in
‘IEEE Symposium on Information Visualization
(InfoVis‘04), Austin’, pp. 49-56.

Kreuseler, M. & Schumann, H. (2002), ‘A Flexible
Approach for Visual Data Mining’, IEEE Trans-

actions on Visualization and Computer Graphics
8(1).

Lamping, J., Rao, R. & Pirolli, P. (1995), A fo-
cus—+context technique based on hyperbolic ge-
ometry for viewing large hierarchies, in ‘ACM

Proceedings of Computer-Human Interaction
(CHI95); Denver, Colorado, USA’, pp. 401-408.

Nocke, T. & Schumann, H. (2004), Goals of Analysis
for Visualization and Visual Data Mining Tasks,
in ‘CODATA Workshop Information, Presenta-
tion and Design (March 2004), Prague’.

Robertson, G., Mackinlay, J. & Card, S. (1991), Cone
trees: Animated 3d visualization of hierarchical
information, in ‘ACM Proceedings of Computer-
Human Interaction (CHI‘O1)’; pp. 189-194.

Roth, S. A., Lucas, P., Senn, J. A., Gomberg, C. C.,
Burks, M. B., Stroffolino, P. J., Kolojejchick,
J. A. & Dunmire, C. (1996), Visage: A User In-
terface Environment for Exploring Information,
in ‘IEEE Symposium on Information Visualiza-
tion (InfoVis‘96), San Francisco’, pp. 3-12.

Scharl, A. (2002), Adaptive Web Representation, in
‘Human Computer Interaction Development &
Management’, pp. 255-260.

Shi, J. & Malik, J. (1997), Normalized Cuts and Im-
age Segmentation, in ‘Proceedings of the IEEE

Conference on Computer Vision and Pattern
Recognition (CVPR’97)’, pp. 731-737.

Shneiderman, B. (1992), ‘Tree Visualization with
Treemaps: A 2D Space Filling Approach’, ACM
Transactions on Graphics 11(1), 92-99.

Stolte, C., Tang, D. & Hanrahan, P. (2002), ‘Polaris:
A system for query, analysis, and visualization
of multidimensional relational databases.’, IEEE
Trans. Vis. Comput. Graph. 8(1), 52-65.

Tollis, I., Eades, P. & di Battista, G. (1999), Graph
Drawing - Algorithms for the Visualization of
Graphs, Prentice Hall.

Valiente, G. (2002), Algorithms on Trees and Graphs,
Springer.

van Ham, F. & van Wijk, J. (2004), Interactive Vi-
sualization of Small World Graphs, in ‘IEEE
Symposium on Information Visualization (Info-
Vis‘04), Austin’, pp. 199-206.

Voigt, D. (2001), WWW-based Representation of
complex Information Structures (in German:
WWW-basierte Darstellung komplexer Informa-
tionsstrukturen), Master’s thesis, University of
Rostock, Department of Computer Science.

Zhang, P. (1994), Method of Mapping DNA Frag-
ments, United States Patent No. 5667970.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Shallow NLP techniques for Internet Search

Alex Penev

Raymond Wong

National ICT Australia and School of Computer Science and Engineering,
University of New South Wales, Sydney, NSW 2052, Australia
{alexpenev,wong}@Qcse.unsw.edu.au

Abstract

Information Retrieval (IR) is a major component in
many of our daily activities, with perhaps its most
prominent role manifested in search engines. Today’s
most advanced engines use the keyword-based (“bag
of words”) paradigm, which concedes some inher-
ent disadvantages. We believe that natural language
(NL) is a more user-oriented, context-preservative
and intuitive mechanism for web search.

In this paper, we explore shallow NLP techniques
to support a range of NL queries over an existing
keyword-based engine. We present JASE, a web ap-
plication enveloping the Google search engine, which
performs web searches by decomposing input NL
queries and generating new queries that are more
suitable for the search engine. By using some of
Google’s syntactic operators and filters, it creates
“clever” queries to improve precision.

A preliminary evaluation was conducted to test
JASE’s accuracy, and results have been encouraging.
We conclude that the NL model has potential to not
only rival the keyword-based paradigm, but substan-
tially surpass it.

Keywords: Information Retrieval, Natural Language
Processing, Google.

1 Introduction

At present, the holy grail of IR is embodied in the
World Wide Web—an ever-growing source of self-
updating information that is easy to access yet dif-
ficult to discover.

Today’s engines use the keyword-based paradigm,
by implicitly connecting given keywords with boolean
operators (and, or, not). This model concedes cer-
tain inherent disadvantages that are becoming in-
creasingly evident as the web continues to expand—
context is lost once keywords are isolated and treated
on an individual basis, and many words carry double-
meanings. Together, these deficiencies result in larger
recall which is filled with noise, frustrating the user.

We believe that natural (or everyday) language is
the ideal mechanism for information discovery—it is
user-oriented, because it is intuitive and requires no
training. It allows users to express a query in the way
that it is rationalized and constructed in their mind,
while both providing a context and helping to disam-
biguate word senses. But NL queries such as “german

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

or austrian composers born in the 1600s” and “na-
tive animals in australia, but not marsupials” show
that there is room for improvement in today’s en-
gines. More elaborate queries such as “700ml Johnnie
Walker Red Label, in Sydney for under $30” cannot
be answered at all, even when appropriate documents
are indexed by the engine.

Through practice and tribulation, users learn to
mentally cull their queries into a set of only the few
“most important” components, before sending a re-
quest to an engine. This structural rearrangement,
coupled with search engines’ treatment of keywords
as individuals, could be impeding their accuracy.

Furthermore, to become proficient at using a cer-
tain engine, users must learn its special operators.
These differ between each engine and render the
search mechanism to be unnatural, due to the in-
troduction of foreign modifiers into the query. Our
evaluation survey indicates that average Google users
are largely unaware of its operators and filters, and
rarely use them in practice.

There has been few significant advances in Inter-
net search for half a decade, and the shortcomings
of the keyword-based paradigm are likely to be glob-
ally costing millions of hours each year in labor for
wading through voluminous results. Meanwhile, the
Internet continues to grow and permeate our way of
life, and search results become larger and potentially
noisier. Therefore, we believe that NL will play a
principal role in web and media search in the near
future, because it is more intuitive and provides more
information than the current model.

In this paper, we explore shallow NLP techniques
to support NL queries over Google. We evaluate
the performance and accuracy of JASE, an applica-
tion enveloping Google, which decomposes NL queries
to form Google-friendly queries and reranks the re-
trieved results. We define a categorical classification
of searchable entities and highlight how they can be
used in conjunction with Google’s advanced operators
and filters. We propose heuristics that can be used
for the reranking step. Finally, we assess our system’s
performance for a set of keyword and NL queries.

The remainder of this paper is organized as fol-
lows; §2 provides an overview of search engines,
and defines our problem domain. §3 outlines the
algorithmically-disparate phases and data structures
of our system (explored in greater detail in §4 and
§5). We conduct a comparison of the accuracy of our
system against Google and “average Google users”
for a mix of keyword and NL queries in §6. §7 covers
related work, and §8 concludes this paper.

2 Background

As JASE is a wrapper for a search engine, it is vital
to understand how search engines work. This allows

167

CRPIT Volume 48

168

us to determine which subprocesses are to be imple-
mented by JASE and which are delegated to Google.

2.1 Search Engines

A search engine is an online program which, for a
given query, retrieves references to web documents
that match it. In theory, a search engine has four
components:

document processor indexes new documents. In-
dices are a mapping between words and what
documents they appear in. Most engines are
spider-based, so a crawl of the web for new doc-
uments and the updating of the index is auto-
mated.

query processor inspects a user’s query and trans-
lates it into something internally meaningful.

matching function uses the above internally mean-
ingful representation to extract documents from
the index.

ranking scheme positions the more-relevant docu-
ments on top, using some relevance measure.

Users communicate with the query processor, which
is the only visible component. It carries out several
tasks, usually (but not limited to):

e tokenizing of the query to remove invalid charac-
ters, and to recognize meta-keywords or special
syntactic operators.

e removal of stopwords; words which are too com-
mon and rarely help in the search (e.g. the, a,
of, to, which).

e stemming; a process designed to improve the per-
formance of IR systems, involving normalizing
semantically similar words to their root forms
(e.g. produce, produced, producer, producers,
produces and producing map to produc-).

e assigning a weight to each keyword/keyphrase,
to aid with ranking(Salton & Buckley 1988).

After results are retrieved by the matching function,
they are ranked by relevance based on some rank-
ing measure and set of heuristics (called the ranking
scheme). Often taken into account are:

term frequency how many times keywords appear
in the document(Luhn 1957).

inverted document frequency a value which
aims to determine how important a term
is in discriminating a document from
others(Salton 1989, Jones 1972).

semantic proximity words synonymous to a given
keyword may be matched, boosting the score of
the document.

term position keywords appearing in the title or
heading (rather than the body) should contribute
more to a document’s weight.

term proximity a document in which the query
terms are close together is considered more rele-
vant than one in which they are far apart.

cluster distance how far
matched terms are.

apart groupings of

percentage of query terms matched.

In our case, JASE implements the query proces-
sor and the ranking scheme, while Google provides
the document processor and matching function. Of
course, Google utilizes its own query processor and
ranking scheme for any query that it answers, and
therefore JASE’s results will be heavily influenced by
Google’s own relevance measure. We exercise some
indirect control over these components, since JASE’s
query processor is invoked before and JASE’s ranking
scheme is invoked after Google’s.

2.2 JASE

The initial design decisions for our system were that
JASE will be a web application into which a user en-
ters free text (preferably NL) in a query box, presses
a button, and views the corresponding search results.
It should implement the query processor and rank-
ing scheme components of a search engine, so that
it can influence what was being sent to Google, and
influence what was being relayed back to the user.

Behind the scenes, JASE would invoke Google via
an APIE Google is not designed to handle NL queries,
so JASE would have to manipulate the input to make
it Google-friendly. It would also take advantage of the
syntactic operators and filters to try and improve pre-
cision. JASE would display the same information that
Google displays—a title, URL and snippet for each
matched document. We had decided not to collect
any further information regarding documents, such
as a downloading of the actual source.

2.3 Google’s API

Google (the company) provides many online services,
most important of which is Google (the search en-
gine). This engine is useful for JASE because it:

e advertises a free API (over WSDL/SOAP), al-
lowing it to be remotely queried from many pro-
gramming languages and environments.

e provides the title, URL and snippet of matched
documents, which serve as a synopsis.

e has powerful operators and filters: +, -, =, OR,
intitle:, inurl:, site:, filetype:, numerical ranges,
timestamps, related:, link:, and some limited
wildcard matching.

e performs stemming.
e is case-insensitive.
e ignores most punctuation.

e uses sophisticated link- and structure-based anal-
ysis to determine the importance of documents
on both global (e.g. PageRank(Page, Brin, Mot-
wani & Winograd 1998)) and per-query scales
(e.g. anchor text, keyword proximity, and
whether or not keywords appear emphasized
with markup in the document).

Some limitations of the API are that a maximum of
10 terms can be sent per query, that languages other
than English are poorly supported, and that only 10
results can be retrieved per query. Case-insensitivity
is a pro because it allows users to be sloppy, but also
a con because acronyms and proper nouns will some-
times match unrelated documents. The API is still in
the beta stage, and its functionality may be altered
at any time.

These points affect the methods and messages that
JASE can use to communicate with Google. Obvi-
ously, we cannot, for example, perform web search

Ihttp: //www.google.com/apis

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

using regular expressions, because the engine does not
offer such functionality.

2.4 Problem Domain

One of the challenges of applying NLP over English is
that the language allows many syntactic variations of
sentences. Semantically identical questions can usu-
ally be worded in more ways than one: how old are
you?, what is your age?, which birthday did you cel-
ebrate this year?. Questions with logical constraints
can be permuted even further; for example, with com-
poser as subject, and logical constraints on a date of
birth and nationality, we can ask for “Which com-
posers were born in Germany or Austria between 1600
and 170077, or “What are the names of some German
or Austrian composers born in the 1600s?”, or “In the
17th century, what famous composers were born in
either Germany or Austria?”, and many others. The
wording of the query will differ between people, but
all of these will have somethings in common—a com-
poser, a nationality German/Austrian, and a year of
birth. These are the entities that we wish to extract,
whereby two variations on the same query will yield
the same decomposition.

It is important that we restrict the types of queries
we want to handle, as the general query domain is too
overwhelming. We focus on a subset of all possible
query structures, to roughly satisfy the grammar:

eP=(KI|Y|M)
where K = some keywords that form a phrase
Y = year phrase
M = money phrase

e PS = P (connective? P)+
Two or more disjoint runs of phrases. The con-
nectives will mostly be conjunctions, preposi-
tions or adverbs.

e (P | PS) negationt P
Things that the user does not want, e.g. “/Amer-
ican presidents] [except] [Bush]”. Negations are
usually negative coordinating/correlative con-
junctions or adverbs.

e (P | PS) ““in C’> (P | PS)7
where C is some location, e.g. “[composers born]
[in Germany]”. In general, words that follow
in will rarely be locations, so we must explicitly
provide a list of permissible matches. We can
use such matches to focus queries towards certain
domains, such as .de, for the given example.

Some typical examples of the atoms include:

K = jujitsu

Y = 1920, 500 BC, “during the 90s”

M = $60, “cheaper than $10”, “between $5 and $10”
PS = “[endangered animals] in [australia]”, “[com-
posers born] [during the 1600s]”.

The above is not intended as a formal gram-
mar, but as a guide to visualize possible queries.
JASE still perform a best-effort search, irregardless
of whether a query satisfies the above grammar.

3 System Overview

Our system is active at the beginning and end of the
search session and we follow a typical Service Oriented
Architecture, with a consumer (JASE) and provider
(Google). Consequently, we are able to partition the
functionality in two disparate phases.

Phase One JASE acts as the query processor. The
search query is parsed and decomposed. De-
composition involves tokenizing the text to dis-
cover structural objects, such as words, numbers
and punctuation. These must be stored as some
internally-meaningful representation, which we
call the SearchTerms. The contents of this con-
tainer are the seed for generating new queries.

Phase Two JASE acts as the ranking scheme. In
Phase One, variants of the input query are sub-
mitted using the API calls, and each retrieves up
to 10 results. This leaves us with many “best”
ranked documents, as each result set has its own
top match (note that some result sets are likely
to overlap). We must perform a reranking on
the results as a whole, based on some relevance
measure. We rerank by assigning a score to each
document and sorting. Our heuristics for calcu-
lating a document’s score are described in

3.1 SearchTerms, a link between Phases

At the beginning of Phase One, useful informa-
tion is extracted from the query, grouped and then
classified in the SearchTerms container. In Phase
Two, retrieved documents are compared against these
SearchTerms to receive a score. This container is the
connection between the phases, which are otherwise
independent. The container is composed of several
sets of “searchable entities”, which we define as:

input query as a unit phrase.

primary keyphrases extracted keywords and
keyphrases. Phrases are the most specific and
discriminatory part of queries, thus adjacent
keywords should be grouped as a phrase wher-
ever possible. A phrase may contain a singleton
word, if it happens to be bounded at both ends
by non-keywords. This set is never empty.

secondary keywords primary keyphrases are bro-
ken down into their individual atomic keywords,
each becoming a secondary keyword. This set
may be empty, since it will not contain keywords
that are already primary.

tertiary words any remainder terms from the orig-
inal query, which have not been categorized as
primary or secondary are inserted here. This set
will largely consist of stopwords.

synonyms/hyponyms/meronyms for singleton
primary /secondary words come from an external
source, such as WordNetﬂ

e synonyms are words with corresponding
meaning, e.g. alcohol/liquor.

e hyponyms are more-specific words, e.g.
dog/poodle.

e meronyms are parts of a larger whole, e.g.
dashboard/car.

exceptions are undesirable matches; things the user
does not want.

Two additional pieces of information are also
recorded. The first is a list of numerical upper and
lower bound tuples, used to apply numerical range
matching. As a proof-of-concept, JASE supports
dates and prices, but other ranges are possible to de-
tect and match. The second datum that we record is
a domain restriction, in order to restrict some queries
to a specific domain. At present, we handle mappings

2http://www.cogsci.princeton.edu/%7ewn/

169

CRPIT Volume 48

170

from the ISO 316d13_.| list, with a few obvious adjust-
ments (e.g. removal of .us).

3.2 Weighting

The SearchTerms sets are assigned base weights, rep-
resentative of the desirability of their inclusion. Each
document in a result set is assigned a score, which
is derived by comparisons against the SearchTerms.
When grading a document, we consider only the title,
URL and snippet—no extra information about docu-
ments is obtained. Using only the title/URL /snippet
allows us to evaluate JASE’s performance and accu-
racy using information which is made visible by the
search engine. Digging deeper and downloading the
source of documents may lead to more accurate scor-
ing, but is outside our scope.

As matching a phrase should be more desirable
than matching only one word of that phrase, one
would expect phrases to contribute more than words.
The location of the match (title/URL/snippet) also
affects its contribution. Table [defines the base
weights for the SearchTerms. These values are sub-

Entity title URL snippet
Input query | 3.0 3.0 1.2
Primary 1.0 1.0 0.4
Secondary 0.5 0.5 0.2
Synonym 0.3 0.3 0.12
Hyponym 0.3 0.3 0.12
Meronym 0.3 0.3 0.12
Tertiary 0.2 0.2 0.08
Exception -10 -10 -4

Table 1: Base weights of SearchTerms entities

ject to tweaking as there is no correct answer, but
they seem to work well in practice. Certain matches
may appear in more than one set, in which case the
higher weight is used. We also use stemming, case-
mismatch and term frequency (see .

4 Phase One

This phase involves the parsing and tokenizing of the
input query, to build the SearchTerms container. Ex-
tracting the most sensible keyphrases and keywords
from the user’s NL query is critical, as Google is a
keyword-based engine and its results will heavily fluc-
tuate depending on what terms are chosen. Our strat-
egy is to create “clever” Google-specific queries, which
contain several of:

keywords are important and discriminatory words.
Keywords can be directly sent to Google.

keyphrases are sequences of keywords, where order
is important. JASE detects them by looking for
phrasal boundaries. Keyphrases must be quoted
to be recognized by Google, e.g. “vampire bats”.

exceptions are terms the user does not want, often
explicitly stated. Both word and phrase excep-
tions must be preceded with a minus, e.g. “pets
-dogs” .

domain restriction concentrates a search on a par-
ticular domain, e.g. “national park site:nz”.

synonymy refers to terms which are related to a key-
word, but they need not be specified by the user.
We are only interested in three categories: syn-
onyms, hyponyms and meronyms. Others cat-
egories exist (such as hyper/anto/pertai/holo-
nyms), but are not useful for this task. Google

3http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

will look for some synonyms if a word is pre-
ceded by a tilde; for example, the search “ “movie
-movie” matches video, film, dvd, mpeg, cinema,
soundtrack and trailer. JASE does not perform
query expansion using synonymy, but it does
look for them when scoring a document.

numerical ranges place a constraint for lower and
upper bound matches. Ranges of the form lo..[hi]
are supported by the engine, and some units are
also recognized (e.g. “beethoven symphony 8..7,
“$50..60” for price and “100..200 kg” for weight).

One of the advantages of automating web search
is the ability to fire off many different queries and se-
lecting only the best results. JASE emits between two
and twenty new queries for a given search, depend-
ing on the complexity of the query, and how many
of the SearchTerms sets are utilized. Some previous
work (e.g. (Kwok, Etzioni & Weld 2001, Agichtein,
Lawrence & Gravano 2001)) has empirically shown
that such an immediate increase in recall, despite its
overhead, is a very effective. This strategy, however,
raises a few issues. Different queries must be sent each
time, prompting the need for a mechanism to formu-
late slightly variant queries, using the SearchTerms
as a seed. Each query will also have its own top re-
sult, so an equitable reranking mechanism is needed.
Finally, some documents are likely to be returned by
several queries, therefore must be clustered as one.
JASE addresses each of these points.

4.1 Detecting Keywords and Keyphrases

Known techniques for locating phrases in written
text tend to use vector-space weighting algorithms,
naive Bayesian classifiers, inverse document frequency
(IDF) tables, lexical chains, or other statistical
means. However, these are all intended to be applied
to whole documents, and are trained on a specific
corpus. In contrast, we are dealing with a single line
of input, ranging from one to maybe fifteen words.
Such confined input makes it difficult to use statisti-
cal models, especially since many phrases will contain
proper nouns and not be found in any corpora. From
these, we feel that an IDF table is the only suitable
approach.

Another NLP technique is to deduce the parts of
speech using a Part Of Speech tagger. These can be
rule-based(Brill 1992, Brill 1995) and follow patterns,
unigram or n-gram based, or Hidden Markov Model
based(Charniak 1994, Charniak 1997, Collins 1996)
and follow probability. The tagger can be used to
detect phrases by collecting disjoint runs of nouns
and adjectives. Many taggers exist, but JASE does
not use one. Instead, JASE guesses the location of
phrasal boundaries by splitting on stopwords, using
our own custom 99-word list (a hybrid of Google’s
and Snowball’sﬂ, with additions). Since stopwords
are those with a poor IDF, this strategy emulates the
use of an IDF table to some degree.

This means that the “naturality” of the language
used is important for adequately deducing phrases.
On par with previous NL systems that we have played
with, it is not difficult to construct complicated but
unnatural-sounding queries to confuse JASE. For our
evaluation (§6[), we used sensibly-worded queries. Our
shallow NLP approach works well for many of the
TREC queries, and using deeper NLP will only serve
to improve accuracy.

“http://www.snowball.tartarus.org

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

4.2 Detecting a domain restriction and nu-
merical ranges

JASE pattern matches the user’s query for countries.
If preceded by in, in the, from or from the, it will
focus approximately half of the generated queries to-
wards that country’s domain. Most country domains
have some web pages written in English, so it not
unreasonable to carry out such searches.

JASE also pattern matches year and monetary
phrases, to demonstrate how numerical ranges can be
extracted. It handles many cases, best illustrated by
some examples (Table . Date matching is capped
at year 9999. If a lower or upper bound of a mon-
etary range is not specified, JASE assumes 10% for
the lower bound and a string of nines to one more
significant figure for the upper bound.

Phrase Range
Rock stars in the 60s 1960..1969
Rock stars in their 60s 60..69
Rock stars before the 60s 0..1959
Wars before 1066 0..1065
Wars during 1066 1066..1066
Roman emperors before 20 BC 21..99

A Kodak camera cheaper than $200 $20..200
A Kodak camera, over $60000 $60000..999999
$49.99 Playstation controller N/A

$49 Playstation controller $49..50
Playstation controller between $49 and 60 | $49..60

Table 2: Some examples of handled ranges

5 Phase Two

This phase deals with the reranking of all query
results, wusing relevance heuristics against the
SearchTerms constructed in Phase One.

All documents are assigned a numerical score (or
weight) based on the relevance measure. The docu-
ments are sorted, and only the top 20 are displayed to
the user. As mentioned previously, JASE only uses
the synopsis of a document (title/URL/snippet) to
weigh a document.

Two morphological processes are carried out be-
fore documents are inspected—folding case and stem-
ming. The original synopsis is used for case com-
parison; case-insensitive match is performed on the
lower-case version, and stem matching is performed
on the stemmed version. As Google uses stemming,
it is possible to encounter a partial match in the doc-
ument synopsis, which needs to be rewarded. We use
a Porter stemmer(Porter 1980).

5.1 Relevance Measure and Heuristics

Upon meeting a document in the result set, its synop-
sis scanned for entities within the SearchTerms sets.
As described in certain sets are more important
than others and contribute different base weights,
and the location of a match also affects the contri-
bution. It is furthermore influenced by the nature of
the match:

e if a term is indirectly matched via stemming, its
contribution is penalized by 25%.

e if case agrees, its contribution is boosted by ei-
ther 25% if it appears in the title/URL, or 10%
otherwise.

e if a term is matched via some numerical range,
its contribution is penalized by 25%.

e if every primary and secondary term is matched
at least once, the overall document score is
boosted by 50%.

These figures are subjective and there is no correct
answer, but they work well in practice.

5.2 Overall Score of a Document

A naive algorithm to determine the total score for
a document would be to sum all individual contri-
butions for all SearchTerms entities. If an entity is
matched, it contributes its base weight less penalties
plus bonuses, and if it is not matched, it contributes
nil. This approach suffers the problem that repeti-
tive matching of a single entity, while matching few
or even none of the others, results in a score that
unfairly represents the document. This weakness be-
comes more evident with small result sets like JASE’s,
as they are more volatile to fluctuations in rating.
JASE cannot get an “averaging out” effect without
retrieving far larger results sets, and the snippet only
partially communicates the content of a document.

Clearly, such a biased boost due to multiple match-
ing of a single entity is inappropriate. But at the same
time, we do not want to ignore recurring matches en-
tirely, because it is desirable for every match to con-
tribute “something”. To deflate the volatility of re-
current matches, we use a recessive geometric sum to
calculate the score of a document:

1 en J w;
G + ZZQi—l

e=ey 1=1

score(doc) =

where {ej..e,} are the n searchable entities in the
SearchTerms. The set of weights {ws..w;} represent
the contributions by the j occurrences of entity e
matched in doc’s synopsis. This set of weights is
sorted in descending order to maximize the overall
result.

Such a summation guarantees that every occur-
rence of a matched entity e contributes to the
document, but no entity can contribute more than
twice its highest individual match to the overall
document score (recall Y7, 5+ = 2). This satisfies
our above desiderata that superfluous entity fre-
quency should not bias a document “too much”, but
that every occurrence of any entity should contribute.

Furthermore, the reciprocal of Google’s suggested
rank, G, is augmented to a document score. This
bonus contributes as much as 1.0 point for Google’s
topmost result, and is worth the same as a match-
ing of a primary keyphrase in the title. Because this
bonus diminishes for lower ranks in Google’s list, it
is a means of discriminating between documents that
receive similar scores against the SearchTerms, but
appear in different ranks in the original results.

5.3 Reranking Documents

The previous section describes how a score is assigned
to a document. However, some queries may overlap
and documents may be met more than once. We do
not wish to display the same document several times
over, so the scores for a certain document must be
accumulated. Possibilities include a running total, an
average, or a recessive geometric sum like the previ-
ous section. We use the geometric sum because it is
a middle ground between the running total and the
average—two methods which work well in most cases,
but spectacularly fail for some scenarios.

Once documents are reordered, the top 20 are dis-
played to the user.

171

CRPIT Volume 48
6 Evaluation

This section serves as a summary of our system’s ac-
curacy and performance. All results in this section
were carried out during Oct 2004.

6.1 Accuracy

An evaluation survey was prepared, and answered by
8 volunteers. All were fluent in English, and all con-
firmed that they use Google at least once per week,
with more than half using it daily. Participants were
of mixed age (18-49), mixed gender and mixed na-
tionalities (USA, Australia, UK, France and Switzer-
land). One participant had a computer science back-
ground. We feel that this sample represents “average”
Google users to a reasonable degree.

Participants were first asked about their searching
prowess, shown in Table

Question Yes No

Do you know of operators: +, -, “”7 5% 25%
Do you use them? 38% 73%
Do you know of filters: site, inurl, intitle? - 100%
Do you know of indirect matchers: 7, x..y? - 100%

Table 3: Supplementary questions answered by par-
ticipants

While most knew of the plus, minus and
quotes operators—used for inclusion, exclusion and
phrases—only half of those admitted to actually us-
ing them in practice. A small proportion were famil-
iar with the site: filter only, but none of the other
operators.

Our survey contained 14 query topics in roughl
increasing complexity, which are listed in Table
Some queries consisted of only keywords, while others
were written in NL. We opted to avoid relying on the
TREC test set, because many web documents explic-
itly quote the TREC queries in the context of TREC,
yet are unrelated to the topic at hand. Only q6—q9
are TREC queries.

Id | Query

ql | microsoft

q2 | belgian comic strip characters

q3 | endangered animals in australia

g4 | what happened at the final in the 2002 world cup?
@5 | German or Austrian composers born in the 1600s
g6 | what is the treatment for alzheimer’s?

q7 | how much sugar does Cuba export and which coun-
tries import it?

g8 | the consequences of implantation of silicone gel
breast devices

q9 | what diseases have hair loss as a symptom?

ql0 | important discoveries in medicine during the 1600s
qll | A used Toyota Camry 1998 model, in Sydney be-
tween $5000 and $10000

ql2 | 700ml Johnnie Walker Red Label in Sydney for un-
der $30

ql3 | Famous people born on May 1 between 1900 and
1950

ql4 | T want to do Artificial Intelligence in the best uni-
versity in Australia

Table 4: Base weights of SearchTerms sets

A scale from 1 to 5 was defined (1 being poor, 5

being excellent). For each query, the top ten Googhﬂ

results were provided. Participants were asked to rate
the result set based on their impressions and opinions

Shttp://www.google.com

172

in regard to accuracy. Participants were then asked to
perform their own search using the search engine, and
could rewrite the query in any way using any tactics
they wished. Their goal was to find relevant docu-
ments that satisfied the query. They then proceeded
to rate their own results. Finally, participants rated
JASE’s results for the original query. In all cases,
participants were encouraged to view the actual doc-
uments retrieved by visiting the hyperlinks.

JASE received favorable ratings, outperforming
Google for some queries, while being approximately
equal for the remainder. This result was not
unexpected—for simple keyword queries, JASE dis-
plays almost exactly what Google does, but for more
complex queries, its Google-optimized queries and
reranking appeared to improve accuracy.

But as one of the aims of this work was to show
that NL queries can be used to improve the precision
of web searches, we were more interested in how JASE
would fare against the participants themselves. Fig-
ure [1) shows how each of Google, the participants and
JASE performed for each query. A 95% confidence
interval is provided, using the t¢-distribution.

Google’s Accuracy

This form of web search represents “unskilled”
searching. Participants rated the Google’s raw
search results for each verbatim query. Simple
keyword-only queries received high scores, but
ratings gradually fell as queries became more
complex and involved NL. This behavior was ex-
pected.

Participants’ Accuracy

This form of web search represents “semi-skilled”
searching. Participants used the given query to
create their own new query based on their expe-
rience and knowledge of the search engine, and
evaluated the results. Observed tactics included
phrasal search, domain restrictions, and query
expansion. As expected, participants were able
to slightly outperform the “unskilled” search.

JASE’s Accuracy

This form of web search represents “skilled”
searching. Participants rated JASE’s search re-
sults for each verbatim query. JASE kept up
with both unskilled and semi-skilled searches for
the simpler queries—which were mostly keyword-
based to test the accuracy of JASE’s reranking—
but maintained a lead for the second half of
queries, which were written in NL and high-
lighted JASE’s advantage of dispatching multi-
ple queries and usage of an engine’s filters and
operators.

One observation is that JASE’s confidence interval
does not overlap the others for some of the NL queries.
According to the t-test, this is a statistically signifi-
cant result. The queries that caused this (g5, ql10,
ql2 and q13) highlight JASE’s advantage of using
Google’s filters and operators (the ones used here were
“ 4+, ~ and numerical range). These queries shared
in common a need to match text which was implied,
but not explicitly stated. Most other queries did not
have such implications, and relied on direct keyword-
matching. JASE received high ratings there too, most
likely due to its increase in recall by retrieving results
from multiple queries, and subsequent reranking of
results. This conclusion is consistent with previous
works (see .

The results indicate that JASE outperformed the
users themselves for this query set, which involved
queries of various difficulty. This suggests that NL
queries may be used to improve the accuracy of web
search, through shallow NLP systems such as JASE.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

[Google
[Participants
N JASE

|_| T

ol2

o5 o4 ol0 ol o3 old

Guery

Figure 1: Mean rating per query, with 95% CIs

While expert users may be able to match or surpass
the precision of such a system, the system should be
beneficial to average users, who are unfamiliar with
the esoteric art of accurate web search.

6.2 Performance

As a synchronous wrapper around Google, JASE is
inherently slower than Google. There are three sep-
arate time periods involved from the moment a user
inputs their query for processing until the moment
the results are displayed:

GT Google time, consumed by the search engine in
answering our queries. It is conveniently re-
ported by the API methods.

CT Communication time (round trip time - GT).
Timing begins with the invocation and return
from the SOAP library routines.

JT JASE time, time during which JASE’s code is
active, including bootstrapping of any libraries
and classes.

The time periods are mutually exclusive, and the total
time taken is TT = JT + CT + GT. Depending on the
complexity of the input, JASE emits up to about 20
queries in total.

Our empirical tests indicated that JT ~ 0.11 TT,
GT =~ 0.21 TT and CT ~ 0.68 TT. The biggest per-
formance cost, CT, represents networking and com-
munication. The tests suggested that our prototype
was not inefficient, as the bulk (89%) of loading time
was consumed externally. Our prototype took just
under 20 seconds to load for the more complicated
queries, because we submitted queries serially. This
value may be greatly decreased by issuing queries in
parallel, but speed was not our goal.

Participants in our evaluation were asked their
opinions on search response times. All agreed that
an extra 5 seconds wait on top of Google’s average
response time (which is between 0-0.5s) in order to
produce more accurate results is admissible. In fact,
75% agreed that even 20s was admissible. Such an
answer hints at web users’ desideration for a system
such as JASE.

7 Related Work

Many NLP search systems have been made to date.
In particular, a form of NL search called Question-
Answering Systems have been well-explored (e.g.

(Katz 1991, Kwok et al. 2001, Prager, Brown, Coden
& Radev 2000, Ravichandran & Hovy 2002)).

QAS accept wh-questions (who, when, where,
what, why) and return a definitive answer. QAS are
related to search engines because they retrieve infor-
mation from a source based on a query. Unlike search
engines, QAS provide an answer, rather than a list of
top “hits”. To do this, QAS need to have at least some
idea of what the user is searching for. As such, QAS
usually extract knowledge from the query itself—is
the user asking for a person, a date, a location, an
object, or what? On the other hand, search engines
use whatever input they have been given with mini-
mal restrictions on format and structure. QAS have
much stronger restrictions on the structure of the in-
put, in order to make it possible to determine what
the user is looking for.

START (Katz 1991) was the first online QAS,
and focused entirely on geography and MIT-specific
knowledge. It used subject-relation-object tuples to
extract the subject, relation and object from a given
query, and then performed a pattern match for the tu-
ple in its knowledge base (KB). The knowledge base
was built from a similar process of detecting tuples
from scanned documents. START’s KB was highly-
edited, and non-scalable, and the system could not
provide an answer to a query if it failed to match the
tuple. Future work(Katz & Lin 2000) found ways to
automate the expansion of the KB, but the process
was impractically slow.

Search engines, on the other hand, provide refer-
ences to documents, irregardless if they answer the
user’s questions or not, and rarely try to “under-
stand” the query.

Ionaut(Abney, Collins & Singhal 2000) was an in-
teractive NL search engine, and used a local cache
of documents for its KB with a small coverage. Its
most interesting feature was to list related hyperlinks
to a given query to branch into different queries, as
a means of an iterative search. From experience with
it, we feel that its accuracy was lacking, but the in-
teractivity feature was its best asset.

Limited KB coverage is a hurdle that can be over-
come. In 1993, MURAX(Kupiec 1993) used boolean
searching over an online encyclopaedia, by formulat-
ing queries based on the phrasal content of the input
wh-question. Noun-phrase hypotheses were extracted
from the retrieved results, and new queries were in-
dependently made to confirm the hypotheses. Its ac-
curacy was poor, but the concepts of multiple queries
and formulating different queries inspired some future

173

CRPIT Volume 48

174

works.

Tritusﬂ was an NL search engine(Agichtein et al.
2001) that could use either Google or Altavista as
its KB. It handled simple wh-questions that matched
specific templates, but used the engines’ syntactic
operators to improve precision. The authors per-
formed comparisons between different engines, and
argued that Google was superior to both Jeeves and
Altavista, and that Tritus’ Google-optimized queries
outperformed raw Google. We consider their testing
to be inconclusive, as it is unfair to pipe direct NL
queries to a keyword-based engine. An evaluation of
this type must involve the users of the engine them-
selves, who know better than to submit NL queries;
the users’ employment of the engine should be the
real competitor. One further difference between Tri-
tus and JASE is that our work attempts to handle a
broader range of input (by not using templates), and
that JASE received no training.

Also in 2001, MULDER(Kwok et al. 2001) tried
to scale QA to the Web, using Google as back-end.
Like MURAX and Tritus, it generated multiple new
queries from the input, to increase recall. Query
generation was achieved by rearranging the input
wh-question to match the potential phrasing of its
answer—when asked “what is the capital of Sudan”,
it would look for documents containing “the capital of
Sudan is”. MULDER worked on the assumption that
the Web is host to more truths than falsities, there-
fore wh-questions could be answered by collating the
results and clustering them. The largest cluster was
considered as the correct answer, due to the original
assumption. MULDER used deep NLP, but imposed
structural limitations on its input queries. We have
not had the opportunity to test it, as it has not been
available for several years. We believe that MUL-
DER would have performed well for trivia questions
because they are frequently cited online, but that it
would have had difficulty in answering more elaborate
queries such as those in the introduction, for which
a rearrangement of the query is unlikely to appear in
any online documents.

AskJeevesEI is advertised as a QAS, but its menu-
driven dialogue is more inherent to search engines. It
allows searching for both keywords and wh-questions.
To answer a NL question, the text must match one
its question templates; otherwise, web results are
retrieved from Teom If a template is matched,
AskJeeves provides links to authoritative sites which
are known to answer that question. This strategy
requires human editors to map the templates to the
authoritative sites, and does not scale well. It takes
little effort to formulate a NL wh-query which fails
to match a template, yet is competently answered by
a raw Google search. (Kwok et al. 2001) empirically
argues that AskJeeves is limited and awkward to use,
and performs poorer than Google.

Intermezzo(Flank 1998) used NLP techniques to
retrieve images from an image database based on NL
queries, achieving a precision of almost 90%. The con-
tent of each image was identified via captions, which
were manually written. Omne of Intermezzo’s inter-
esting features was using WordNet to match related
terms in the caption to increase the score of an im-
age. This strategy proved effective as the images show
physical objects, which have large collections of ap-
plicable hypo/hypernyms and mero/holonyms. Such
a strategy of boosting term weights using WordNet’s
synsets is less effective for web queries over large docu-
ment collections, since matching hyper- and holonyms
is less appropriate.

Shttp://tritus.cs.columbia.edu
"http://www.ask.com
Shttp://www.teoma.com

Keyword-extraction has a long history and is a
component in most IR fields. Several recent ap-
proaches to deducing the keyphrases in a piece of text
exist (Turney 1999, Turney 2000, Munoz 1996, Frank,
Paynter, Witten, Gutwin & Nevill-Manning 1999).
However, these methods are intended to extract
phrases from entire documents by employing holis-
tic statistical models, while we are interested with
extracting useful words and phrases from a single-
sentence query. Hence, the algorithms from such
works do not apply.

JASE shares the ideas of many of these previous
works, such as using an NL wrapper around a boolean
data source, and the submission of multiple queries.
Because it is not a QAS, it is fundamentally different
to MURAX and MULDER in that it imposes less re-
strictions on input, but therefore cannot use the query
structure to its advantage. Tritus was a hybrid, re-
trieving hyperlinks like a search engine, but handling
wh-questions and using the structure of the input to
its advantage like a QAS.

Our work aims to be a search engine, but without
being able to significantly rely on the structure of
the query. The work presented in this paper is most
closely related to MULDER and Tritus.

8 Conclusions

This paper has outlined some simple strategies to
support NL queries over a keyword-based engine
(Google). We have presented an evaluation of a
search engine wrapper, JASE, that handles both key-
word and NL queries. We parse, tokenize and ex-
tract searchable entities from the query, and catego-
rize them into weighted sets. We dispatch multiple
queries, and then use the sets against our ranking
heuristics to weigh and rerank the retrieved results.
Although only shallow NLP techniques were used,
they seem work well for many cases, as indicated by
our evaluation. Our evaluation survey furthermore
revealed that our participants were all willing to sacri-
fice a large amount of performance in lieu of accuracy,
therefore the submission of multiple queries is a jus-
tifiable strategy, and may be incorporated in current
engines.

Future expansions that we are exploring include
deep NLP—a tagger(Brill 1992, Brill 1995) coupled
with an IDF table will greatly improve phrase bound-
ary detection. Geographical locations can be detected
using a gazetteer, allowing domain restrictions to be
used more liberally. Finally, collecting multiple snip-
pets for the top few documents should help improve
reranking. This is our preferred way of expanding
a document’s summary (as opposed to downloading
the entire document from the Google Cache), and is
achieved by using a combination of site:, allinurl: and
allintitle:, coupled with an extra keyword to variate
the snippet.

The process of parsing and tokenizing the input
to detect important searchable entities is obvious, as
these are tasks that the human mind perform when
presented with a query topic. But strategies such as
submitting multiple queries and reranking of large re-
sult sets are only fit for computers. Our evaluation
survey revealed that average Google users seldom use
its operators and filters, which could be adding noise
to their searches and costing them time. It there-
fore appears beneficial to provide a transparent sys-
tem that utilizes the power of such strategies behind
the scenes, rather than educate everyone to become
an expert user. Such a system could accept NL as in-
put, because it is the most intuitive “query language”
and provides more information to the engine than the
current paradigm.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Our experiments show that the users were able to
make use of their own experience of the engine, their
awareness of its idiosyncrasies and/or some trial and
error to formulate a better query than a given NL
topic, and slightly improve on precision. Yet they
still favored JASE’s results in many cases, which em-
phasizes an automaton’s advantage of redundant and
monotonous computation, and use of an engine’s syn-
tactic operators and filters.

We believe our results indicate that NL search sys-
tems such as JASE can have practical use in society,
and that the NL paradigm can be used to improve
the precision of web search.

References

Abney, S., Collins, M. & Singhal, A. (2000), Answer
extraction, in ‘Proceedings of the Sixth Applied
Natural Language Processing Conference’, Mor-
gan Kaufmann, pp. 296-301.

Agichtein, E., Lawrence, S. & Gravano, L. (2001),
Learning search engine specific query transfor-
mations for question answering, in ‘World Wide
Web’, pp. 169-178.

Brill, E. (1992), A simple rule-based part of speech
tagger, in ‘Proceedings of the Third Conference
on Applied Natural Language Processing’.

Brill, E. (1995), ‘Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging’, Computational
Linguistics 21(5), 543-565.

Charniak, E. (1994), Statistical language learning, in
‘Language and Computers 12°, The MIT Press.

Charniak, E. (1997), ‘Statistical techniques for natu-
ral language parsing’, AI Magazine 18(4), 33-44.

Collins, M. J. (1996), A new statistical parser based
on bigram lexical dependencies, in ‘Proceed-
ings of the 34th conference on Association for
Computational Linguistics’, Morgan Kaufmann,
pp. 184-191.

Flank, S. (1998), A layered approach to nlp-based in-
formation retrieval, in ‘Proceedings of the 36th
ACL and 17th COLING’, Morgan Kaufmann,
pp. 397-403.

Frank, E., Paynter, G., Witten, I., Gutwin, C.
& Nevill-Manning, C. (1999), Domain-specific
keyphrase extraction, in ‘Proceedings of the Six-
teenth International Joint Conference on Artifi-
cial Intelligence’, Morgan Kaufmann, pp. 668—
673.

Jones, K. S. (1972), ‘A statistical interpretation of
term specificity and its application to retrieval’,
Journal of Documentation 28(1), 11-21.

Katz, B. (1991), ‘Text processing with the start natu-
ral language system’, Text, ConText, and Hyper-
Text: writing with and for the computer pp. 55—
76.

Katz, B. & Lin, J. (2000), Rextor: A system for gen-
erating relations from natural language, in ‘Pro-
ceedings of the ACL 2000 Workshop on Natural
Language Processing and Information Retrieval’.

Kupiec, J. (1993), Murax: a robust linguistic ap-
proach for question answering using an on-line
encyclopedia, in ‘Proceedings of the 16th an-
nual international ACM SIGIR conference on
Research and development in information re-
trieval’, ACM Press, pp. 181-190.

Kwok, C., Etzioni, O. & Weld, D. (2001), Scaling
question answering to the web, in ‘World Wide
Web’, pp. 150-161.

Luhn, H. P. (1957), ‘A statistical approach to mech-
anized encoding and searching of literary infor-

mation’, IBM Journal of Research and Develop-
ment, 4(4), 600-605.

Munoz, A. (1996), Compound key word generation
from document databases using a hierarchical
clustering ART model. IDA, Amsterdam.

Page, L., Brin, S., Motwani, R. & Winograd, T.
(1998), ‘The pagerank citation ranking: Bring-
ing order to the web’, Stanford Digital Library
Technologies Project.

Porter, M. (1980), An algorithm for suffix stripping,
in ‘Program’, Vol. 14, pp. 130-137.

Prager, J., Brown, E., Coden, A. & Radev, D. (2000),
Question-answering by predictive annotation, n
‘Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval’, ACM Press,
pp. 184-191.

Ravichandran, D. & Hovy, E. (2002), Learning sur-
face text patterns for a question answering sys-
tem, in ‘Association for Computational Linguis-
tics Conference’.

Salton, G. (1989), Automatic Text Processing: the
Transformation, Analysis, and Retrieval of In-
formation by Computer, Addison-Wesley Long-
man Publishing Co., Inc.

Salton, G. & Buckley, C. (1988), ‘Term-weighting
approaches in automatic text retrieval’, Infor-
mation Processing and Management 24(5), 513~
523.

Turney, P. (1999), ‘Learning to extract keyphrases
from text’, Technical Report ERB-1057, Na-
tional Research Council, Institute for Informa-
tion Technology.

Turney, P. (2000), ‘Learning algorithms for keyphrase
extraction’, Information Retrieval 2(4), 303-336.

175

CRPIT Volume 48

176

8.1 Appendix: Sample

Figure [2] is a screenshot of our prototype for q13, with the corresponding Google results in Figure [3] Both

images date to the time of our evaluation (Oct 2004).

In June 2005, we revisited the top Google hits for this query. The top 10 hits were different to before,
perhaps due to PageRank fluctuations and new documents being introduced. JASE’s results were, in turn,
equally affected. We inspected each of Google’s top 20 hits and decided that 3 were relevant, but only one of
them appeared in the top 10. JASE managed to extract 8 relevant documents, of which 6 were in its top 10.
We were able to identify four times as many “famous people” (to answer the query) from JASE’s top 10 hits

than from Google’s top 20 hits.

Find: [famous people bom on may 1 between 1900 and 1950 | Gl

1. vWho2 Index: Famous People Born On 1 May 8.051 recessive
bt e wvhio2 corbirtholay M meny bt tot: 16.453; avg: 4.113)

Wyho2, Click Here. 1 May Famous People Born On 1 May. Fleming, Art 1924 Paar, Jack 1918 Woo, John 1946 Index of all days. State R s
=oogle s entries

2. Celebrity Birthdays - famous people whose bithday iz 1 May TA20recessive

Bltg: iy fundbirthday s combirthdayay 1 bl (tot: 9.226; avy: 4613)

... Famousg People born on May 1 =t 1945 Rita Coolidge singer 1967 Tim McGrawe singer Disclaimer: Birth dates are thought to be

cotrect, butthere iz a ... Google's entries

3. Famous People 1 - The German Way 5.511 recessive
Ftg: Sy sy QEFmEan-yeay .Comigermanfamous him| (tot: 9167, avy, 3.056)

...in Chile, he died there of liver cancer on May 23, 1934 . Born on 15 December 1928 in Yienna as Friedrich Stovwasser,

Google's ertries
Hundettwasser provoked ... MEXT Famous People 2. ... CErples srifies

4. Dead People Server - Celebrities and Famous People 'Who Died in the .. 5.095 recessive
http: Midpsinfo.comidps2004 html (tot: 6.571; svg: 3.286)

Dead People Server. Celebritiez and Famous People Ywho Died in the Year 2004, Site Map. January. . Died January 27, 2004. Born

Googls's entries
May 1, 1918 Early talk showe host. .. Google's entries

Figure 2: JASE’s top results for q13

Web |mages Groups Mews Froogle more 2

‘ 0 ngle I'fa.mous people bormn on may 1 between 1900 and 19 Search | W

"on" iz a very commaon word and was not included in your search. [details]
The "AND" operator is unnecessary - we include all search terms by default. [details]

Web Results 1 - 10 of about 34,100 for famous people born on may 1 between 1900 and 1950. (0.34 seconds)

Famous People (2) = The German Way

... Karl May phato; Karl May YWeb links ... Friedrich Mistzsche (1844-1900) | The German
philogopher and writer, born in Saxony in eastern Germany ... NEXT > Famous People 2b. ...
whany, german-way. comfigermanfamous?. html - 27k - Cached - Similar pages

Profiles 4: Film People = German-Hollywood Connection

... Born in %ienna, Oswald hecame one of Germany's most pralific ... he hecame the ?Ecediscoverer?€?
of many film people, some later to become famous in Hollywood ...

wny. germanhollywood. comfalphindx_4.html - 27k - 25 Oct 2004 - Cached - Similar pages

GANGSTERS INCORPORATED - PUPARO MIDDLE EAST TERROR PART 1
... Sheikh Pierre Gemayel was born in Bikfaiya on November & ... In 1320 gat France from

the People State Bund as ... Orde Charles Wingate hecame famous during YW when he ..
gangstersinc.tripod. com/PupTerrarl html - 22k - Cached - Sirmilar pages

Gdansk

... The city's Latin narme may be given as any of Gedania, Gedanum or Dantiscum; the

variety ... Famous people born in Gdansk. ... Famous people living or working in Gdansk. ...
wanwy brainyencyclopedia comd encyclopedia/g/gd/gdansk. html - Bak - Cached - Similar pages

Celie

... Famous Celje citizens or people born in Celja. ... 1944) - postess, author and
gchoalmistress,; Thea Gammelin (1906 - 1938) - paintress, (born in Braunshaupten),; ...
waany. hrainyencyclopedia. comiencyclopediaicfce/celje html - 23k - Cached - Similar pages

Figure 3: Google’s top results for q13

[»]

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Approximative Filtering of XML Documents
in a Publish/Subscribe System

Annika Hinze!

Yann Michel?

Torsten Schlieder

!University of Waikato, New Zealand
2Freie Universitaet Berlin, Germany
a.hinze@cs.waikato.ac.nz
ymichel@inf.fu-berlin.de
torsten.schlieder@gmx.net

Abstract

Publish/subscribe systems filter published documents
and inform their subscribers about documents match-
ing their interests. Recent systems have focussed on
documents or messages sent in XML format. Sub-
scribers have to be familiar with the underlying XML
format to create meaningful subscriptions. A service
might support several providers with slightly differ-
ing formats, e.g., several publishers of books. This
makes the definition of a successful subscription al-
most impossible. This paper proposes the use of an
approximative language for subscriptions. We intro-
duce the design of our ApproXFilter algorithm for
approximative filtering in a publish /subscribe system.
We present the results of our performance analysis of
a prototypical implementation.

1 Introduction

The recent years have seen a new generation of ap-
plications based on the principle of publish/subscribe
(pub/sub): distribution of stock quotes, news articles,
or library alerts. A publish/subscribe system is a (dis-
tributed) middleware implementing the event-based
communication paradigm: A source or publisher pub-
lishes event messages that announce the occurrence
of events, i.e., the occurrence of something of interest
within the system. Examples are the publication of a
new book or CD. Subscribers can subscribe to events
that are of interest to them; these subscriptions are
called profiles. The system filters the incoming mes-
sages according to the profiles and forwards matched
messages to their subscribers.

Publish/susbscribe systems have their origin in
alerting services for digital libraries (Salton 1968). In
the first generation of alerting systems, event mes-
sages contained the full text of documents, such as a
newly published scientific paper (e.g., in SIFT (Yan
& Garcia-Molina 1995)). A profile would equal a sim-
ple Information Retrieval (IR) query using keywords.
Note that the concept of filtering documents against
a set of profiles has been explored earlier in infor-
mation filtering by the Information Retrieval com-
munity. However, the focus there is on information
quality, whereas we are looking at efficiency for large
scale settings with high numbers of profiles. The fo-
cus of publish/subscribe systems lies more on the ef-
ficient filtering of structured data sets. Thus, earlier
pblish/subscribe systems supported either attribute-

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

value pairs (e.g., in Siena (Carzaniga 1998)) or SQL-
like queries (e.g., in CQ (Liu, Pu & Tang 1999)).

Recently, XML-based messages or documents have
been used to encode the event messages (e.g., in Ni-
agaraCQ (Chen, DeWitt, Tian & Wang 2000), XFil-
ter (Altinel & Franklin 2000)). Applications are
eBusinesses such as online catalogs or digital libraries.
Here, a profile is a XML query expressed in XML-
QL (NiagaraCQ) or Xpath (XFilter); the definition
of which is a rather demanding task for a user who
is not familiar with XML query languages. In ad-
dition, almost all existing systems assume that the
users are well informed about the structure of the
event messages and that they are therefore able to
create meaningful profiles.

The task of creating a meaningful profile is even
more demanding if the system supports different
providers of information, e.g., different publishers of
music CDs or books, which may use slightly differing
catalogue structures. Currently, no system supports
filtering over varying structures. In addition, current
filter mechanisms detect only documents that con-
tain the exact values a subscription specifies, but it
is not possible to detect documents that contain syn-
onymous values.

Typical solutions for this kind of searches in
digital libraries are extensions or replacements of
search terms with synonyms using a thesaurus or
a dictionary (e.g., in the DejaVu system (Gordon
& Domeshek 1998)). Other techniques that have
been used to explore semantic relationships between
terms include user feedback and enriched search inter-
faces (Rao, Pedersen, Hearst, Mackinlay, Card, Mas-
inter, Halvorsen & Robertson 1995). For substruc-
tured data, the problem of approximative results has
been extensively addressed for XML search queries
(e.g., in (Schlieder 2003, Theobald & Weikum 2002)).

For publish /subscribe systems, the problem of how
to extend the profiles and how to efficiently filter using
approximations remains open. Note that the issue
of how to create thesauri or cost-enriched term lists
remains the same problem as for searching. We see
this as a separate problem that is not addressed. In
this paper, we focus on an efficient filter algorithm for
approximate publish/subscribe. We show later that
also for algorithms, inspiration may be found in IR
solutions, but it is not possible to simply copy these
algorithms.

In this paper, we propose an approximative filter-
ing algorithm ApproXFilter to address the problem
of approximate filtering. The main challenge for filter
algorithms in a publish/subscribe context is efficient
filtering of large numbers of profiles. We introduce
two forms of an approximative algorithms for filter-
ing XML documents: a time optimized version and a
space optimized version. We present a performance
analysis of our prototypical implementation and show
the usefulness of our approach.

177

CRPIT Volume 48

178

This paper is structured as follows: Section 2 in-
troduces an example scenario that is used to illustrate
the concepts throughout the paper and discusses re-
lated approaches. In Section 3, we propose the de-
sign of an approximative filter and illustrate the de-
sign by example. Two implementation variants are
introduced in Section 4. We give details about our
prototypical implementation in Section 5. Section 6
presents and discusses the results of our analysis of
the algorithms and shows the usefulness of our ap-
proach. In Section 7, we discuss complementary ap-
proaches. The final section summarizes the contribu-
tions and indicates future work.

2 Motivation

This section introduces an illustrative example sce-
nario. We show that existing approaches in pub-
lish/subscribe systems are not sufficient and discuss
related approaches from information retrieval. We ex-
plain why the principles of approximative IR cannot
be simply copied for filtering.

Assume an online warehouse offers a pub-
lish/subscribe mechanism for its books. A user may
know in advance that author Smith will publish a
book in the near future. But unfortunately, nothing
about the final title or other information is known
other than it deals with XML.

Publish/subscribe systems supporting keyword
subscriptions (e.g., SIFT) would notify about all doc-
uments that contain at least one of the values “XML”
and “Smith”. The user cannot specify that she prefers
books with the title “XML” over books containing a
chapter title “XML”. Similarly, the user cannot prefer
the author Smith over the editor Smith. Current sys-
tems supporting structured XML queries (e.g., XFil-
ter) would result in the contrary: Only exactly match-
ing documents are considered. The XPath query

/catalog/book[title = “X M L” and author = “Smith”]

will neither allow for books with a chapter title
“XML” nor books of the category “XML” nor books
edited by “Smith”, nor other media formats than
books (e.g., articles or tutorials) with the appropriate
information.

Of course, the user can create a subscription that
exactly matches the cases mentioned, but she must
know that similar results may exist and how they are
represented. Since all results of her expanded query
are treated equally, the user still cannot express her
preferences. It is important to note that different to
a search query, a user of a publish/subscribe system
cannot simply reformulate their subscription query
until it gives the desired results - false negatives will
occur and the subscriber misses information without
being aware of it.

For search engines, solution have been proposed to
cope with the approximative searches. For example,
ApproXQL (Schlieder 2003) is an approximative filter
language with corresponding search algorithm. While
common query languages will only match on exact
values that were requested, ApproXQL also supports
the matching on similar values or structures. This is
achieved by skipping or rewriting parts of the query
using synonyms. ApproXQL supports hierarchical,
Boolean-connected query patterns. The interpreta-
tion of ApproXQL queries is founded on cost-based
query transformations: The total cost of a sequence
of transformations measures the similarity between a
query and the data and is used to rank the results.
All results of an ApproXQL query can be computed
in polynomial time with respect to the database size.

Here, we will follow the concept of ApproXQL and
re-use the syntax of its language for filtering purposes.

Similar to the case of searching, we follow the ap-
proach of using cost-based query transformation. For
publish/subscribe systems, we have to develop a new
filter algorithm; it is not possible to use the under-
lying approximative search algorithm: The concept
of filtering is the reverse to the concept of searching.
In searching, a set of documents forms the founda-
tion; they are indexed and the incoming search query
is compared to the index keys. In filtering, a set of
subscription queries exists; they are indexed and the
incoming document is compared to the indexed query
keys. Similarly, the concept of ranking does not have
an exact equivalent in filtering. For filtering, the doc-
uments are sent to the user or not.

3 The ApproXFilter Algorithm

This section describes the principle of the ApproX-
Filter algorithm. We start by describing the concept
of the algorithm and then move on to discuss each of
its steps.

ApproXFilter supports the matching of similar
values or structures in addition to direct matches.
This is achieved by profile query transformations us-
ing skipping, inserting, or renaming parts of the query
using synonyms. Whenever a profile query is rewrit-
ten for a certain document, each of these transforma-
tions may create costs. We introduce the concept of
costs to judge the quality of a document regarding
a given query. A cost of zero means highest quality,
i.e., the document exactly matches the profile query
as defined by the subscriber. The greater the costs,
the lower the matching quality of a document.

Document filtering may be seen as a comparison
of the document tree to the set of profile query trees
(which are combined in a single directed acyclic graph
(DAG)). The more similar a document tree is to a
given profile tree, the better the match. That is, the
better the match the lower the costs. If all possible
transformations are supported for a query, each doc-
ument will match. The costs describe the amount of
transformation necessary to reach that match (simi-
lar to relevance in Information Retrieval). If only se-
lected transformations are allowed, not all documents
will match a given profile. The costs can be seen as a
(reverse) measure for the similarity between the docu-
ments and the matched profiles. For profiles that are
not matched using transformations, and for profiles
that are matched creating high costs, the similarity
between the profiles and the document is low.

We now introduce the overall structure of the al-
gorithm. Subsequently, we illustrate the algorithm by
using our example scenario.

Step 1 - Normalization: After the definition of
the subscriptions, transform all ApproXFilter
subscriptions into their conjunctive normal form
(i.e., Boolean disjunctions combined by conjunc-
tions)

Step 2 - Profile Extension: Extend all subscrip-
tions using the allowed predefined transforma-
tions (renaming, skipping, insertion)

Step 3 - Tree-building: Build a subscription
match DAG containing all extended subscrip-
tions

Step 4 - Filtering: For each incoming document:
Go sequentially through document; concurrently
traverse the match DAG depth-first; whenever
moving upwards in the match DAG accumulate
the costs

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

ApproXFilter Query:

book [title ["XML"] and author ["Smith"]]

Query Tree:
"XML"
"Smith"

_— title

book O—. author

Figure 1: ApproxFilter sample profile query and its
query tree (Query 1)

Step 5 - Notification: If the accumulated costs for
the matching document are less than a prede-
fined threshold, inform the subscriber about the
document

We will now illustrate these steps by applying the
algorithm to our example scenario introduced in Sec-
tion 2. We will use two example subscriptions and
one incoming XML document to show the principle
of the filtering algorithm.

Normalization Consider the warehouse’s pub-
lish /subscribe service from the previous section: Our
user is still interested in works about XML by author
Smith. Based on her interest, she builds the following
subscription written in ApproXFilter:

Query 1 :book|title[" X ML"|
and author[" Smith"]]

The subscription query and its query tree repre-
sentation are shown in Figure 1. Another user is inter-
ested in all database books that also consider XML,
are published in 2005. He defines the following query:

Query 2 : book|[title[" DB" and”" X M L")
and year["2005"]]

ApproxFilter’s syntax is introduced in detail in
Section 4. Note that in this paper, we refer to “XML”,
“Smith”, and “2005” as values and to ‘book’, ‘title’,
‘year’ , and ‘author’ as structures; both structures
and values are referred to as terms in a subscription
query. Both subscription queries are already normal-
ized.

Profile Extension Using ApproXQL, it is possi-
ble to define synonyms or renamings, deletions or
skippings, and insertions. For example, the admin-
istrators of the warehouse’s system may have defined
sets of possible transformations for queries regarding
print media. In addition, experienced users may de-
fine possible transformations. For simplicity, we use
very basic transformations as given in Table 1 for pro-
file extensions in our example Query 1.

Method \ Changes \ Costs ‘
book — article 4
Rename title — abstract 4
LLXML” — (LRDF?? 7
. title 10
Skip “XML” 20
Insert optional 0

Table 1: Example profile transformations for Query 1

Match DAG: "DB"

abstract
/ \b ~"RDF"
! title “"XML™

= %

7 article

K'\ book

h

author "Smith"

year "2005"

Query Trees; .
"XML"

1 "book

@ T author "Smith”
title - b

@ book ML
year —— "2005"

Figure 2: Concept of Match DAG and original query
tree. Solid lines for normal edges (cost = 0) and
dashed lines for additional edges (cost > 0)

Tree-building The match graph is built as a di-
rected acyclic graph (DAG) for the user profiles as
shown in Figure 2. For simplicity, the mapping be-
tween the match DAG and the queries is shown only
for Query 1; all data regarding Query 2 is shown in a
lighter colour. Every term (values and structures) in
the extended query is interpreted as a graph vertex.

Figure 2 shows the original profile query (at the
bottom) which was extended using the transforma-
tions from Table 1: Solid lines between query tree
and match DAG represent normal edges, i.e., direct
copies from the query tree into the match DAG with
no additional costs. Dashed lines represent additional
edges, i.e., references created by synonymous struc-
tures (e.g., article instead of book) or values (“RDF”
instead of “XML”) as defined in the transformations
table (see Table 1). Additional edges might carry
additional costs for the filtering, e.g., as defined as
‘Insert” in Table 1. Note that the cost values are
chosen arbitrarily. We are aware of the implications
of choosing costs, either as a requirement for the
user/administrator as well as the challenge of auto-
matic cost assignments. Here, we focus on the per-
formance issues of our approach. In our future work,
we plan to address the issues of cost functions and
quality.

Note the asterisks in the match DAG in Figure 2:
these denote possible skippings of vertices, e.g., the
structure ‘title’ or the value “XML” might be skipped
in the filtering. By default, any vertex in the match
DAG may be skipped except the root. Skipping ver-
tices may also result in additional costs. The costs
for transformations may be defined by system ad-
ministrators (who should be domain experts) or sub-
scribers.

Filtering Event messages passed into the system
are assumed to be well-formed XML documents, such
as the simple one in Figure 3. Author Smith has
named his book “Storing RDF models in Databases”,
which is a book about XML technology. The word
“XML” does not appear in the title. Conventional
publish/subscribe systems would not be able to no-
tify about the book. However, ApproXFilter supports
approximative matches and can therefore cover this
book by using the appropriate synonyms for values
and structures.

The filter algorithm parses the document sequen-
tially and traverses the match DAG in depth-first or-

179

CRPIT Volume 48

180

1) <doc>

2 <book>

3) <abstract> RDF ... XML </abstract>
4) <author> Smith </author>

(5) <year> 2005 </year>

(6) <title> Storing RDF ... DB </title>
@) </book>

(8) <article>

9) <year> 2005 </year>

(10) <title> RDF ... DB ... </title>

(11) <author> Smith </author>

(12) <comment> ... XML </comment>
(13) </article>

(14)| </doc>

Figure 3: Example document submitted to the pub-
lish /subscribe system for filtering

der. Every difference to the original query is scored
with additional costs. For simplicity, the costs are not
shown in the example DAG but only in Table 1. For
each visited node in the match DAG, the correspond-
ing costs are calculated.

The assignment of costs to each filter step and the
final computation of the costs is a non-trivial task.
Subsequently, we therefore explain the filtering algo-
rithm and its cost assignments in detail using the
example document shown in Figure 3 and the two
subscriptions defined earlier that have been processed
into the match DAG in Figure 2.

The filter starts parsing the example document
(see Figure 3) following the XML tree structure. Each
found tag is compared to the match DAG (see Fig-
ure 2). Recognizing the tag <book> in Line 2 it finds
the first matching tag in its internal match DAG (in-
troduced to the DAG by Query 1). It also finds the
term ‘article’ in the DAG as possible renaming for
‘book’ (introduced by Query 2); here we mainly con-
centrate on the matchings of Query 1. It then finds
the tag <abstract> and since this is allowed as a re-
naming of ‘title’, it follows this route. Note that the
renaming costs (4) are not yet added up but noted
in the DAG. In the next step, it compares the words
“RDF ... XML” of the abstract to the ones speci-
fied in the query for title. First, the filter detects a
match of “RDF” and notes the additional costs (7)
for this level. When continuing comparing the words,
the algorithm detects that “XML” matches the same
vertex but with no additional cost (0).

A document is successfully parsed if the profile
query (using allowed transformation) was completely
executed. An unsuccessful document could have, for
example, a mismatching root node such as CD instead
of book or article in our example. After a document is
successfully parsed, its costs are evaluated by ascend-
ing the match graph. Whenever two branches meet,
i.e., whenever a forest of subgraphs finds a common
root, the lowest branch-cost is taken as the cost to
be accumulated upwards. Therefore, the algorithm
always takes the “best sub-match” to compute the
match-quality of the parsed sub-document for a given
query.

After finishing the comparison for the abstract
and reaching the closing tag </abstract>, the al-
gorithm moves upwards in the DAG, calculating the
costs as the sum of insertions, deletions and renam-
ings (i+d+r): On the leaf level (Level 3) it computes
the minimum of the costs for “RDF” (0+0+7) and
“XML” (0+0+0) as (min(7;0)) and decides on the
match of “XML”. On Level 2 of the DAG, the ab-
stract is now closed and the algorithm moves forward
to the next tag in the document.

Next, the two tags <author> and <year> are

processed. They do not add additional costs for
Queries 1 or 2 because both terms are matched, re-
spectively. We do not go into detail for these tags
but concentrate on the subsequent tag <title> in
Line 6. The filter algorithm follows the tag <title>
as requested in the profile and tests the title content.
As when filtering the abstract, it computes the costs
for the “RDF”. The occurrence of “DB” is consid-
ered for Query 2, but we will not go into detail for
that query. The costs for the leaf level for Query 1
are only the renaming costs for “RDF” =040+ 7.
Moving upwards in the DAG, two branches meet on
the next level: ‘abstract” and ‘title’. Their costs are
calculated as the sum of their individual costs and
the costs of their children resulting in 0+ 0+ 4 + (0)
for ‘abstract’ and in 04+ 04 0 4 (7) for ‘title’. The
algorithm computes the minimum costs for Level 2
(min(4;7)) and decides on the match of ‘abstract’
(Level 2) followed by “XML” (Level 3). On detect-
ing the close-tag </book>, the overall costs regarding
Query 1 for the book structure in the given document
are summarized as 4. The costs for Query 2 are also
calculated now.

The XML document in this example contains ref-
erences to two works, i.e., two events are published.
This is not necessarily required but it is allowed. The
filter algorithm continues parsing the document, now
concentrating on the article (starting in Line 8). By
detecting the close-tag </article>, the overall costs
regarding Query 1 for the article structure in the given
document are calculated as 4 + 7 = 11 (renaming
‘book’, renaming “XML").

Notification A threshold should be defined by the
subscriber or a domain expert for limiting the costs
that are allowed for results regarding a given profile.
Let’s assume a threshold of 10 for our example. Doc-
uments with costs lower than the threshold are then
forwarded to the subscriber of the profile. In our case
of Query 1, the reference for the book (cost 4) is se-
lected and the reference for the article (cost 11) is
discarded. Consequently, subscriber for Query 1 will
receive a notification about Smith’s book.

4 Technical Design

In this section, we propose two alternative implemen-
tations for the ApproXFilter algorithm: a time op-
timized and a space optimized variant (in Sects. 4.1
and 4.2).

4.1 Time-optimized Algorithm

This variant of the algorithm’s implementation aims
at minimizing the time for filtering a given document.
To optimize query evaluation, a permutation of all
possible vertex compositions is created (see Figure 4).
This includes composition of missing vertices as well
as the full query structure as defined by the user’s
profile. Any vertex may be missing except the root
vertex.

Each block of boxes in the figure represents a hash
set. For each level in the graph, several hash sets can
exist. Each hash set but the root has at least one
incoming solid arrow (e.g., book and article point to
the middle hash-set). The origins of these arrows are
all on the same level, which we refer to as the ‘current
level’. So, for the middle hash-set, the current level
equals the root level. A hash-set directly below the
current level contains all combinations of terms that
can be found anywhere below the current level in the
match DAG (when starting from the points of origins
of the solid arrows). For our example, the middle
hash-set has its origins in the root node; from Figure 2

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Match DAG Implementation:

Query Tree:

Figure 4: Implementation structure for time-
optimized filter algorithm. Solid lines for normal
edges (cost = 0) and dashed lines for additional edges
(cost > 0). Dotted lines for skippings of hash sets;
Costs greater zero given in circles.

Match DAG Implementation:

Query Tree:

book
"Smith"

Figure 5: Implementation structure for space-
optimized filter algorithm. Solid lines for normal
edges (cost = 0) and dashed lines for additional edges
(cost > 0). Dotted lines for skippings of hash sets

we see that below the root node, 6 terms may occur.
That means, that the skipping of the title tag has
been directly encoded by offering all possibilities of
the lower levels also on this level. For this reason, the
key “XML” on the middle level carries a cost of 10.

Considering the second level as the current level,
below ‘abstract’ and ‘title’ in the match DAG, two
possible terms can occur (“RDF” or “XML”) or the
term could be skipped. The skipping has to be made
explicit here on the leaf level; the costs for skipping
are denoted as 20 as defined.

The dashed arcs in Figure 4 are references to
the profile’s vertices providing transformation costs
whereas the full arcs represent zero costs. Taking
our example from above, the arrow pointing from key
“RDF” (in the middle hash-set) is annotated with
costs for renaming “XML” to “RDF” (7).

Using the structure shown here, the time for evalu-
ating a document is O(n); the space required is O(n?)
where n is the number of vertices in the match DAG
as shown in Figure 2. The number of vertices in the
DAG could vary considerably depending on the num-
ber of profiles p and the number of terms, structures,
synonyms. A good estimate would be to assume that
n is in the same order of p.

4.2 Space-Optimized Algorithm

This version of the algorithm aims at optimizing space
consumption by using smaller data structures. As in
the time optimized version, we use hashes to repre-

sent the extended query graph. This time, no redun-
dant node entries are allowed in the structure (see
Figure 5). Therefore, each hash key is put into the
graph only once and in the exact position for repre-
senting the original profile structure. All costs are
encoded only once.

To skip nodes, we provide wildcard keys (shown as
“*” in the dotted box in Figure 5). These keys must
be traversed if no hash value matches (using transitive
traversal if necessary). For example, the arrow leav-
ing the lowest key in the middle hash-set (with key
“*7) and pointing to the right upper hash-set (i.e., the
hash set with all possible values in title) is annotated
with costs for deleting ‘title’. If also the author tag
would be allowed for deletion, the arrow would also
refer to the hash set with the possible author values.

The filter time for this variant is O(n?), where n
refers to the number of vertices. The space required
is O(n).

5 Implementation

This section describes the prototype implementation
of ApproXFilter. We briefly sketch the prototype’s
architecture as well as its modules and internal data
structures. In addition, we discuss the ApproXFilter
language and explain its use for creating a profile.

5.1 Components

The prototype of ApproXFilter is written in Java. We
use Xerxes' for parsing XML documents. There are
three main modules in our implementation as shown
in Figure 6:

Profile Service The profile service receives and
parses the user-defined profiles that are incom-
ing via the network. It then creates an internal
data structure for storing the incoming profiles.
The profile service consists of the profile server
and the profile worker. When a connection to the
profile server is established, a new profile worker
is started. The profile processing incorporates
the following steps: worker initialization, pro-
file parsing, profile extension, profile storage, and
worker termination.

The profile worker receives and parses the incom-
ing profiles (see upper part in Figure 6). The pro-
file is added to the profile repository. The profile
queries are expressed using ApproXFilter; these
are translated into an internal profile represen-
tation. The profile server manages the list of al-
lowed transformations and their assigned costs.
Out of profiles and transformations, the profile
server creates the profile match DAG for filter-
ing the profiles.

Document Service The document server receives
and parses XML documents; it filters them ac-
cording to the users’ profiles. If profiles match,
the profile owners are notified. The central docu-
ment server dispatches the incoming documents
to (distributed) worker threads. The server pro-
cess is responsible for establishing the connection
and passing the work to a dedicated thread.

We regard the matching data structure of profiles
as relatively static2. Therefore, every document
worker obtains a local copy of the global data
structure. This copy is only updated when the
global profile match DAG changes, i.e, whenever

Lhttp://xml.apache.org/xerces2- j

2This is a viable assumption, e.g., for digital libraries where user
profiles describe more long-lived user interests, such as research
topics and colleagues.

181

CRPIT Volume 48

182

profile
service

profile
profiles server

profile
worker
transformations|

and costs

,'///\‘\ ,‘// o N -

! - match profile

: << DAG repository

document document
service
document server
document

worker

==

notifications

Figure 6: Components of the ApproXFilter engine
and their interactions for a set of profiles and a single
incoming XML document

the local time-stamp of the match DAG differs
from the global time-stamp due to changes by
any profile workers. The event processing incor-
porates the following steps: worker initialization,
document parsing, profile evaluation, and worker
recycling.

While traversing the incoming XML document,
the local data structure is updated with the
found vertices and values. The costs of the de-
tected vertices are calculated using local copies of
all profiles. To reduce the performance load for
updating or initialization, we use time-stamps to
detect if the vertex was matched during the cur-
rent process. If so, we recalculate the costs for
this vertex, i.e., we only update the vertex if the
new costs are less than the current ones. At last,
the complete document costs are calculated by
summarizing the costs of all vertices processed in
this sequence, i.e., affected by the current docu-
ment. If a requested vertex was not found in
the current sequence, additional costs are added.
Additional costs are calculated for insertions as
required (i.e., for vertices found in the document
that are not mentioned in the profiles). After fil-
tering the document and calculating the costs of
the document for all profiles, the costs are com-
pared to the thresholds set for the profiles. Noti-
fications are sent to those subscribers where the
document costs are lower than the profile thresh-
old.

Internal Data Structures Effective internal data

structures are important for efficient filtering. As
seen in Figure 6, a number of internal data struc-
tures are held: compact profile trees (bottom), a
match structure for filtering document structures
(left), and a content-synonym set (top). For the
structural matches, we implemented a simplified
version of the space optimized DAG; see Figure 7.
For the value synonyms (e.g., “RDF” instead of
“XML”) we use an additional content-synonym
set. For simplicity, in this proof-of-concept im-
plementation we support stricter filtering than
the two versions introduced in Section 4 (i.e.,
fewer skippings). Consequently, the algorithm
is more efficient.

For the match-DAG, we maintain a list of all ver-
tices and their synonyms and a compact profile
tree structure (see left and bottom in Figure 7).

T
[amce], EmEETa
book @
title
"
! title
¥ ML L
book
author
"Smith"

Figure 7: Implemented data structure for matching
profile queries; top: value renamings, left: structural
renamings, bottom: profile

Each of the vertices refers to all respective profile
vertices. For example, ‘article’ and ‘book’ both
refer to the profile term ‘book’. This structure
facilitates an efficient document parsing process.
In addition, every profile-vertex can automati-
cally detect whether it was filtered via the orig-
inal path or via a transformed one. The latter
case results in additional costs.

The profile vertices (bottom of Figure 7) store
the profile-defined values within the same ver-
tex (e.g., ‘title’ and “XML” together), and not
in a separate vertex as initially proposed in Sec-
tion 4.2. This merging of content vertices with
their parent structural vertices prevents false
positives. In our example, the profile would oth-
erwise also match documents containing “Smith”
in arbitrary vertices and not only in the ones
specified directly in profiles and by allowed trans-
formations. Renamings of values are supported
by using the additional content-synonym set
(shown in the upper part of Figure 7).

The implemented data structure requires less
space than the structure for the space-optimized al-
gorithm version (due to more densely stored profiles);
and it’s performance is between the performance of
the space-optimized and the time-optimized version.
The performance is O(m? +p) and the space require-
ment is O(m+p) where m is the number of structural
vertices in the match DAG (i.e., structures ad their
synonyms) and p is the number of value vertices in
the match DAG (i.e., values and their synonyms).

] Element \ Content \
query lexpr
expr lexpr (AND lexpr)* -
content (AND content)*
lexpr label LPAREN expr RPAREN
label LNAME
content LITERAL
LPAREN | |
RPAREN]
LNAME (a2 A7)
(‘a.fz- AL 0-00..9)
LITERAL A

Table 2: ApproXFilter profile definition language

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

5.2 ApproXFilter Language

As already described, we use a subset of the Ap-
proXQL query language for expressing subscriptions
in ApproXFilter. Our profile language defines a tree-
shaped query string. In our current implementation,
we only support conjunctive expressions. The lan-
guage components used in our implementation are
shown in Table 2 as the abstract syntax tree that we
used for creating the profile parser using ANTLR 2.

Every profile query consists at least of a labelled
expression, “lexpr”, having a expression “expr”,
which is a “content” element. Labels define struc-
tural filters, where the label name may consists of any
combination of alphanumeric values (see LNAME).
“Content” refers to value filters, where a value may
be any string enclosed in inverted commas without
containing the inverted commas itself (LITERAL).

Translated into our graph profile representation,
this describes a single vertex with some content. The
query language supports the specification of query
strings in which at least one vertex‘'s content-element
has to be specified, whereas the parent vertices may
be described as simple containers. That is, at least
one value filter has to be defined; an arbitrary number
of structural filters is allowed.

6 Evaluation of ApproXFilter

In this section, we present the results of the evaluation
of our implementation of the ApproXFilter algorithm.
We performed functional and quantitative analyses,
which are discussed the next two sections.

It is beyond the scope of this paper to reason
about the quality of the filter results using struc-
tural and/or term-based synonyms; this would reach
far into a discussion of IR methodologies and cri-
teria. Therefore, we like to refer instead to simi-
lar work done for approximative querying on XML:
the quality of the results is the same, since only the
filter direction is changed (documents on profiles vs
queries on documents). For an extensive discussion
see (Schlieder 2003).

The quantitative tests have been performed on a
local installation. For a distributed approach, we refer
to the multitude of literature for routing algorithms
for publish/subscribe, which could be applied here,
such as the profile and event forwarding strategies
proposed in (Carzaniga 1998).

6.1 Functional Analysis

The functional analysis evaluated the influence of the
use of renamings and skippings on the size of the re-
sult set. In the first version of the evaluation, the
match-DAG was build using the original profiles as
defined by the users. In the second version, the pro-
files were extended using the mentioned transforma-
tions.

We tested with a cost-setting for structural con-
servation, i.e., structural changes cause higher costs
then value changes. The costs for this test were de-
fined as follows: skip structure — 15, skip value — 5,
rename — 1, insertions — 0. Note that these values are
arbitrarily chosen and variable. The results for the fil-
tering of a selection of 50 test documents (using both
test versions) are shown in Figure 8. The document
IDs appear on the x-axis; the percentage of matched
profiles for each document is shown on the y-axis.

The solid boxes represent the proportion of
matched profiles for a certain document without
transformations. The patterned boxes show the
match benefit due to the use of transformations, i.e.,

Shttp ://www.antlr.org/doc/index.html

25 T T T T T T T T
matchings without transformations messss
dditional i with i EXXR

20+ —

match [percentage]

0 L L L L L
0 5 10 15 20 25 30 35 40 45 50 55

document number

Figure 8: Functional evaluation of the ApproXFilter
prototype, matchings with and without transforma-
tions

the patterned boxes show the added percentage of
matched documents based on transformations. Most
documents find more matches after profile transfor-
mations. Thus, more users are notified about these
documents.?

Note that some documents are not matched by
any profiles when evaluated strictly, but are matched
when approximate matches are allowed (e.g., Docu-
ments 15 — 17). These documents originally do not
trigger any notifications. On the other hand, for some
documents the results are not affected by filter trans-
formations, such as Documents 1 — 3. This means
that the similarity between these documents and the
profiles was not changed by extending the profiles.
Some documents are not matched at all (Documents
37 — 41). For these documents, the similarity be-
tween the documents and original profile queries is
extremely low, and no similarity is gained by ex-
tending the profiles. The algorithms output matched
the profile specifications (for details see (Michel &
Hinze 2005)). The results of the functional analysis
show that the algorithm works as designed: increas-
ing the number of profile matches using approximate
filtering.

6.2 Quantitative Analysis

The quantitative analysis evaluates the influence of
varying profile numbers on the performance and the
space requirements of the algorithm. We present here
initial results from a series of tests run on ApproXFil-
ter. This information will assist comparison of later
implementations of approximative XML filtering en-
gines.

The test setting used here was similar to that in
the qualitative test as described above. For every set
of profiles tested, 1000 unique documents were cre-
ated and filtered. Figure 9 shows both the space us-
age and performance of our implemented prototype.
The left hand side of the figure shows a scale for the
time and the right hand side a scale for the space. As
argued in Section 5, the space requirement directly
depends on the number of vertices in the match DAG.
For our test setting, that means that it directly de-
pends on the number of profiles.

For each profile set, we show the mean value for
the filter time for one document. The maximum and
minimum values indicated show the variation between
documents. Note that the variations are stronger for
small profile sets. This is due to the stronger influ-
ence of single terms on the the filter outcome: both

4The stepwise pattern in the results is due to the selection of
documents and not inherent to the algorithm.

183

CRPIT Volume 48

184

500

T T T
time for profile evaluation ———
space for internal data structures -------

450 d {

- 300
400

350
300 -

250

time [msec]
space [MB]

200

150

100

50

0 L L L L L 0
0 5000 10000 15000 20000 25000

profile count

Figure 9: Quantitative evaluation of the ApproXFil-
ter prototype, performance and space requirements
depending on number of profiles

documents’ structures and profile queries interact to
determine the time taken for a filter on one document.
Larger samples dampen the effect of this variation.

The performance-related results shown in Figure 9
support our theoretical hypothesis that the algo-
rithm’s performance is related to the square of the
number of structural vertices.

7 Related Work

Research that is directly related to our approach has
been discussed in Section 2. In this section, we look at
areas of research that are related but complementary
to our work. These areas are flexible queries for semi-
structured data, information-retrieval extensions for
XML query languages, and filter algorithms for XML
documents.

The problem of similarity between keyword queries
and text documents has been investigated in informa-
tion retrieval (Baeza-Yates & B.Ribeiro-Neto 1999).
We believe, these models cannot be directly applied
to XML documents, since they (1) mostly ignore the
structure of XML documents and may therefore lower
the retrieval precision, and (2) use models based on
term distribution that are of little use for data-centric
XML documents. For a discussion of these aspects,
see (Fuhr, Lalmas, Malik & Szlavik 2005).

As discussed in Section 2, XML query languages
incorporate the document structure and are there-
fore well suited for applications that query and trans-
form XML documents (Bonifati & Ceri 2000). Al-
most all query languages for XML support regu-
lar path expressions, which allow to specify alter-
native paths through the data graph and to skip
certain subgraphs. Although regular path expres-
sions give some additional flexibility, they also re-
quire a considerable knowledge about the data. The
user must at least know that some subgraphs must
be skipped, that alternative paths exist, and how
they look like. Consequently, the user needs sub-
stantial knowledge of the data structure to for-
mulate queries. XML query languages that sup-
port result ranking are XXL (Theobald & Weikum
2002), ELIXIR (Chinenyanga & N.Kushmerick
2002), XIRQL (Fuhr & Grofjjohann 2000), Ap-
proXQL (Schlieder 2003).

For event notification systems, we distinguish
event centered approaches from document-centered
approaches. An example for an event-centered sys-
tem is A-mediAS (Hinze 2003). In document-centered
systems, the events are the publication of a new doc-
ument. Some publish/subscribe systems use XML-
encoded the documents, e.g., NiagaraCQ (Chen et al.

2000) and XFilter (Altinel & Franklin 2000). Pro-
files are expressed using XML query languages such as
XML-QL or Xpath. None of these systems supports
approximative filtering of XML documents based on
similarity measures.

To the best of our knowledge, the only pub-
lish /subscribe system addressing approximate match-
ings is A-ToPSS (Liu & Jacobsen 2002). Its approach
is in sharp contrast to our own. A-ToPSS supports
approximate matching for attribute-values pairs us-
ing probabilistic measures for both documents and
profiles. For each attribute, a possibility distribution
may be used to express the confidence that the at-
tribute has a given value. This approach is funda-
mentally different to the one proposed in this paper.
We believe it would be of only limited suitability for
text-centered structures; the definition for probability
distributions for texts is questionable; it would need
substantial knowledge and would unnecessarily bur-
den the users. This approach would map particularly
poorly onto XML documents, e.g., because structural
changes are not supported and the system works on
numerical values only.

8 Discussion and Future Work

Recent publish/subscribe systems increasingly focus
on documents send in XML format; subscribers to
these systems have to be familiar with the underlying
XML format to create meaningful subscriptions. In
this paper, we proposed the use of an approximative
language for subscriptions.

We introduced the design our ApproXFilter
algorithm for approximative filtering in a pub-
lish/subscribe system. We discussed two implemen-
tation variations that optimized the space usage and
the filter performance, respectively. We implemented
a proof of concept ApproXFilter prototype that we
subjected to qualitative and quantitative testing. The
results of our analyses have shown the effectiveness of
our approach. To the best of our knowledge, no other
filter algorithm for approximative filtering of XML
documents exists.

Having proven the concept of approximative filter-
ing, we have a number of open challenges to address:
The definition of cost values is a non-trivial problem.
Although there are only five cost-related parameters
in our prototype, the adjustments have to be done
very carefully. The importance of a missing term de-
pends on the filter application. Using low structure-
costs results in a more content-based filtering, while
lowering the value-cost parameters will result in a
more structural filter. We plan to explore the use
of user relevance feedback to adjust the costs. A sim-
ilar dependence on the application domain exists for
the definition of synonyms. For this, we would like to
explore the use of domain ontologies and personalised
ontologies.

One of the next steps will be an extension of our
prototype to also support disjunctions. We plan to
further analyse and refine the proposed algorithms.
In the future, we would like to explore how ApproX-
Filter could be used in the context of digital library
software (internally using XML document represen-
tations). It would also be worthwhile to explore a
combination of ApproXQL with the Lucene search en-
gine® for querying XML documents with subsequent
ongoing filtering queries using the ApproXFilter al-
gorithm.

Shttp://jakarta.apache.org/lucene/docs/index.html

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

References

Altinel, M. & Franklin, M. (2000), Efficient filtering
of XML documents for selective dissemination
of information, in ‘Proceedings of International
Conference on Very Large Data Bases (VLDB
’00)’, Cairo, Egypt.

Baeza-Yates, R. & B.Ribeiro-Neto (1999), Modern In-
formation Retrieval, Addison-Wesley.

Bonifati, A. & Ceri, S. (2000), ‘Comparative analy-
sis of 5 XML query languages’, SIGMOD Record
29(1), 68-79.

Carzaniga, A. (1998), Architectures for an Event
Notification Service Scalable to Wide-area Net-
works, PhD thesis, Politecnico di Milano, Mi-
lano, Italy.

Chen, J., DeWitt, D., Tian, F. & Wang, Y. (2000),
NiagaraCQ: A scalable continuous query system
for internet databases, in ‘Proceedings of ACM
SIGMOD’, Dallas, Texas.

Chinenyanga, T. & N.Kushmerick (2002), ‘An expres-
sive and efficient language for XML information
retrieval’, JASIST 53(6), 438-453.

Fuhr, N. & Grofjohann, K. (2000), XIRQL: An exten-
sion of XQL for Information Retrieval, in ‘Pro-
ceedings of ACM SIGIR Workshop On XML and
Information Retrieval’, Athens, Greece.

Fuhr, N., Lalmas, M., Malik, S. & Szlavik, Z., eds
(2005), Advances in XML Information Retrieval:
Third International Workshop of the Initiative
for the FEwvaluation of XML Retrieval, INEX
2004, Germany, December 6-8, 2004, Vol. 3493
of LNCS.

Gordon, A. S. & Domeshek, E. A. (1998), Deja Vu: a
knowledge-rich interface for retrieval in digital li-
braries, in ‘Proceedings of 3rd International Con-
ference on Intelligent User Interfaces (IUI ’98),
San Francisco, California, United States.

Hinze, A. (2003), A-MEDIAS: Concept and Design of
an Adaptive Integrating Event Notification Ser-
vice, PhD thesis, Freie Universitat Berlin.

Liu, H. & Jacobsen, H.-A. (2002), A-topss - a pub-
lish/subscribe system supporting approximate
matching, in ‘Proceedings of International Con-
ference on Very Large Data Bases (VLDB’02)’,
Hong Kong, China.

Liu, L., Pu, C. & Tang, W. (1999), ‘Continual queries
for internet scale event-driven information deliv-
ery’, IEEFE Tranactions on Knowledge and Data
Engineering 11(4), 610-628. Special issue on
Web Technologies.

Michel, Y. & Hinze, A. (2005), ApproxFilter - an Ap-
proximative XML-based Filter Engine, Techni-
cal Report CS-06/2005, University of Waikato,
New Zealand.

Rao, R., Pedersen, J. O., Hearst, M. A., Mackinlay,
J. D., Card, S. K., Masinter, L., Halvorsen, P.-K.
& Robertson, G. G. (1995), ‘Rich interaction in
the digital library’, Communications of the ACM
38(4), 29-39.

Salton, G. (1968), Automatic Information Organiza-
tion and Retrieval, McGraw-Hill, New York.

Schlieder, T. (2003), Fast Similarity Search in XML
Data, PhD thesis, Freie Universitat Berlin.

Theobald, A. & Weikum, G. (2002), The index-based
XXL search engine for querying XML data with
relevance ranking, in ‘Proceedings of Advances
in Database Technology (EDBT ’2002)’, Prague,
Czech Republic.

Yan, T. W. & Garcia-Molina, H. (1995), SIFT -
a tool for wide-area information dissemination,
in ‘Proceedings of the USENIX"1995’, New Or-
leans, Louisiana, USA.

185

CRPIT Volume 48

186

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Manufacturing Opaque Predicates in Distributed Systems for Code
Obfuscation

Anirban Majumdar

Clark Thomborson

Secure Systems Group, Department of Computer Science
The University of Auckland,
Private Bag 92019, Auckland, New Zealand.
Email: {anirban|cthombor}@cs.auckland.ac.nz

Abstract

Code obfuscation is a relatively new technique of soft-
ware protection and it works by deterring reverse
engineering attempts by malicious users of software.
The objective of obfuscation is to make the logic em-
bedded in code incomprehensible to automated pro-
gram analysis tools used by adversaries. Opaque
predicates act as tool for obfuscating control flow
logic embedded within code. In this position paper,
we address the problem of control-flow code obfusca-
tion of processes executing in distributed computing
environments by proposing a novel method of com-
bining the open problems of distributed global state
detection with a well-known hard combinatorial prob-
lem to manufacture opaque predicates. We name this
class of new opaque predicates as distributed opaque
predicates. We demonstrate our approach with an
illustration and provide an extensive security analy-
sis of code obfuscated with distributed opaque predi-
cates. We show that our class of opaque predicates
is capable of withstanding most known forms of au-
tomated static analysis attacks and a restricted class
of dynamic analysis attack that could be mounted by
adversaries.

Keywords: Code obfuscation, opaque predicates,
distributed predicate detection, software protection, mo-
bile code protection, and distributed systems security.

1 Introduction

Software obfuscation is a protection technique for
making code unintelligible to automated program
comprehension and analysis tools. It works by per-
forming semantic preserving transformations such
that the difficulty of automatically extracting com-
putational logic out of the code is increased. The
first formal definition of obfuscation was given by
Barak et al. (2001) where an obfuscator was defined
in terms of a compiler that takes a program as in-
put and produces an obfuscated program as output.
Two important conditions that need to be preserved
while making this transformation are (a) functional-
ity: the obfuscated program should have the same
functionality (input/output behaviour) as the input
program, and (b) unintelligibility: the obfuscated pro-
gram should be unintelligible to the adversary in some
sense. Barak et al. defined an obfuscation method as
a failure if there exists at least one program that can-
not be completely obfuscated by this method, that is,

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

if any adversary could learn something from an ex-
amination of the obfuscated version of this program
that cannot be learned (in roughly the same amount
of time) by merely executing this program repeatedly.
Their negative result established that every obfusca-
tor will fail to completely obfuscate some programs.

Since Barak’s landmark paper on the impossibility
of obfuscation, focus has shifted to finding obfuscat-
ing transforms that are difficult (but not necessarily
impossible) for an adversary to reverse engineer. The
goal of such research is to find sufficiently difficult
transforms such that the resources required for undo-
ing them are too expensive to be worth the while of
adversaries. Following this line of research, we pro-
pose in this contribution, an obfuscation technique
derived from the combination of an instance of a hard
combinatorial problem and the difficult problem of
global state detection in distributed systems.

Depending on the size of software and the com-
plexity of transforms, a human adversary may find
the obfuscated code difficult to comprehend. How-
ever, as Thomborson et al. (2004) noted, software
that is simple and manageable enough to be com-
pletely analysed by human adversaries could presum-
ably be redeveloped from scratch by attackers at rea-
sonable cost. It is up to the software developer to
decide against using complicated obfuscation trans-
forms that might overwhelm the performance of his
simple efficient software. We will not address issues
related to performance/security tradeoffs in this con-
tribution; nevertheless, the purpose of making such
observation at the beginning of this paper is to jus-
tify the focus of this paper on an obfuscation method
that increases the difficulty of analysing complex pro-
grams.

Distributed computing obfuscation could be use-
ful in a number of practical scenarios where it is nec-
essary to maintain code confidentiality. In the first
example, consider a distributed electronic commerce
bidding scenario where the bidders download seller’s
code for bidding. The seller’s code may contain priv-
ileged information such as reserve price and priori-
tized selection list of bidders (such as frequent bid-
ders may have higher rating than first time bidders).
The seller would like to keep such information con-
fidential to the bidders, especially when their pro-
grams are executing on hosts owned by bidders, at
least for the duration of the auction. Code obfusca-
tion would serve as an appropriate tool in achieving
this objective. Secondly, consider a grid computing
scenario, like the SETI@home (2005) setup, where
scientific computation codes are downloaded on un-
trusted personal computers connected to the global
network of loosely-coupled machines. These machines
are owned by users willing to contribute a portion of
their machine’s processing power and time for helping
the project compute a section of its scientific result
by executing the downloaded code. Here too, it may

187

CRPIT Volume 48

188

Adversary decides on a
strategy

Opaque predicates
prevent this branch
of attacks

,s\

Incorrect , Spying out \

execution of l code/control
code ! flow \
Denial of Masquerading | I
execution of host ‘ '
Y A
Returning ‘ Manipulation /
wrong results \ of code/ ,
of system control flow
calls \ ,
N /
-

Figure 1: The attack tree. The class of attacks marked
with the dotted oval are specifically addressed by
control-flow obfuscation using opaque predicates.

be desirable that scientific computation logic be kept
obscure to the owner of the host. Lastly, distributed
obfuscation would be most useful in hiding watermark
construction code (Palsberg et al. 2000, Nagra &
Thomborson 2004) which are used for proving own-
ership of software. Note that ownership proofs are
most important during the economic lifetime of the
software product. In all three scenarios, obfuscation
need not be perfect in the sense of Barak. Instead,
obfuscation is useful if it delays the release of confi-
dential information for a sufficiently long time (Hohl
1998). Secondly, any obfuscation technique would in-
crease the confidence of the code-sender, but might
decrease the confidence of a code-executer because it
would make it harder to understand what the code is
doing.

Control-flow obfuscation by means of opaque pred-
icates was introduced by Collberg et al. (1998). An
opaque predicate is a construct with true/false out-
come. The opaqueness property of predicates is at-
tributed by the fact that though their outcome is
known at obfuscation time, it is hard for a deobfusca-
tor to deduce from automated program analysis trace.
These constructs are specifically useful for addressing
attacks originating out of spying the control-flow as
illustrated in the attack tree of Figure 1. This branch
confidentiality is achieved by obscuring the real con-
trol flow of behaviours behind irrelevant statements
that do not contribute to the actual computations.
An adversary with no semantic understanding of cor-
rect control-flow of the code will also find it hard to
do purposeful manipulation of the code.

The rest of the paper is structured as follows: In
section 2, we introduce notation for discussing dis-
tributed opaque predicates. Section 3 illustrates with
an example how distributed opaque predicates could
be constructed in distributed systems. In section 4,
we present a security analysis of our technique. We
conclude our paper with a summary and discussion
of future work in section 5.

2 The concept of distributed opaque predi-
cates and global states in distributed sys-
tems

We define a distributed opaque predicate (®) as an
opaque predicate which depends on local states of
multiple processes spread across the distributed sys-
tem for its evaluation. The activity of each process is
modeled as execution of a sequence of events. Com-

munication in distributed systems is accomplished
through the communication primitive events send(m)
and receive(m), where m denotes the message. In
asynchronous message-passing systems, information
may flow from one event to another either because
the two events belong to the same process, and thus
may access the same local state, or because the two
events are of different processes and they correspond
to the exchange of a message.

Without a global clock, events can be ordered only
based on the notion of causality which states that
two events are constrained to occur in a certain or-
der only if the occurrence of the first may affect the
outcome of the second. In distributed systems, we
use a happened-before relation, — between states to
denote this causality (Lamport 1978). The happened-
before relation can be formally stated as: a — b if and
only if: a occurs before b in the same process or the
action following a is a send of a message and the ac-
tion preceding b is a receive of that message. Two
states for which the happened-before relation does
not hold in either direction are said to be concurrent.
The concurrency relation [/, can be formally stated
as: a||b= (a /A bAb+ a). A set of states is called
a consistent cut if all states are pairwise concurrent.

Palsberg et al. (2000) defined the concept of dy-
namic opaque predicates as a possible improvement
over static opaque predicates defined originally by
Collberg et al. (1998). Their dynamic opaque pred-
icates were constant over a single program run but
varied over different program runs. We extend their
concept of dynamic opaque predicates by designing
distributed opaque predicates to be temporally unsta-
ble. A temporally unstable distributed opaque predi-
cate can be evaluated at multiple times at different
program points (¢1,t2,...) during a single program
execution such that the values (v1,vg,...) observed
to be taken by this predicate are not identical, that
is, there exists %,j such that v; # v;. There are a
couple of advantages of making distributed opaque
predicates temporally unstable. The first one con-
cerns its reusability; one predicate can be reused
multiple times to obfuscate different control flows.
The second one relates to its resilience against static
analysis attacks. As will be explained later in de-
tails, distributed opaque predicate values (v;) depend
on predetermined embedded message communication
pattern between different processes participating in
maintaining the opaque predicate. The communica-
tion pattern serves as an invariant for maintaining the
consistency of local states updates and these in turn
make the predicate go true or false at desired program
locations. It is hard for the attacker to statically de-
duce predicate values because this pattern is:

e distributed over the processes.

e generated on-the-fly only when processes exe-
cute.

Structurally, we design distributed opaque predi-
cates to be relational in nature and of the form:

O:[(a+b+c+...+n) R K]

where (a,b,c,...,n) are integers whose values are set
by individual processes (this forms the local state of
the process, as explained in the next section), # de-
notes an equality (inequality) operator such as ‘=’
(“1=") and K is a constant. Opaque predicates that
are structurally relational are stealthy in the follow-
ing sense: an adversary who discovers a relational
construct in a program cannot conclude with abso-
lute certainty that it is a distributed opaque pred-
icate since common conditional constructs appear-
ing in programs are often relational in nature. But

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

the most important purpose of making distributed
opaque predicates structurally relational lies in the
difficulty of detecting this class of predicates in the
context of distributed global state monitoring. Re-
lational predicates cannot be written as a Boolean
expression of local predicates and therefore presents
foremost difficulty in distributed global state detec-
tion (Chase & Garg 1995). Our rationale will be fur-
ther clarified in section 4, where we provide a full
security analysis for our class of distributed opaque
predicates. A detailed discussion on the difficulty
of distributed global state monitoring is outside the
scope of this contribution and the reader is encour-
aged to see Chase & Garg (1995) and the references
contained therein.

In the next section, we will illustrate how dis-
tributed opaque predicates can be generated from
an instance of a hard combinatorial problem in dis-
tributed systems. An obfuscator will automatically
embed distributed opaque predicates in a distributed
systems program and insert send/receive primitives
for generating a predetermined communication invari-
ant. The communication invariant, in turn, maintains
the consistency of local states, that is, the value of
each component in the predicate (®) so that the pred-

icate holds true (®7) or false (®f") at predetermined
control-flows decided by the obfuscator and we will
argue that to an attacker, predicate value at every

obfuscated control-flow seems unknown (®7).

3 Generation of distributed opaque predi-
cates for distributed systems

We present here different design issues an obfuscator
needs to deal with and a step-by-step approach for
generating distributed opaque predicates in the con-
text of distributed computing obfuscation.

3.1 Selecting/spawning guard processes

Let us assume that a distributed computing system
consisting of a set of n inter-communicating processes,
denoted by {Pi, Py, Ps, ..., P, }, executes on multiple
heterogeneous hosts. Assuming that the control-flow
of process P; is to be obfuscated using distributed
opaque predicates, the obfuscator selects or spawns a
certain number of guard processes to aid in the ob-
fuscation of P;. Since processes in distributed sys-
tems typically collaborate through message exchanges
to achieve a particular task, the set of guards could
be those processes P; frequently communicates with.
The actual number of guards employed in the ob-
fuscation of a single process may depend dynami-
cally on the availability of processes. However, the
obfuscator may spawn dummy processes to serve as
guards if there are not enough processes in the sys-
tem to do this task. The basic idea is to distribute
the local states formed in the construction of dis-
tributed opaque predicate in P; amongst the guards
and embed a communication pattern in the form of
send/receive calls that will update respective local
states of processes to previously known values. The
local state update rules and communication pattern
embedding are described in the following subsections.

We illustrate the process interaction architecture
in Figure 2. For the demonstration to follow, we have
selected two processes, P, and Ps, to serve as guards
for P;. Local state for each process i is denoted by
the variable p;.v. P; could, in turn, serve as a guard
process for helping in obfuscating any other process
within the system but we have excluded that possi-
bility for the sake of keeping this illustration simple.

send/receive.

Guard P,
Local State
p2.v

Guard P;
Local State
pP3.v

Process P4
Local State
P1.v

send/receive

send/receive

Figure 2: The protected process P; with local state
p1.v and two guards P, and P3 with local states ps.v
and p3.v respectively.

Figure 3: The doubly circular linked-list configura-
tions of Py, P, and Pj initialised with elements from
set S. Each copy of the list is also initialised with an
initial pointer location (p;.v, p2.v, or ps.v) respective
to the process it is sent.

3.2 Adapting a Knapsack problem instance
for distributed computing obfuscation

We now consider an instance of a hard combinatorial
problem called Knapsack problem (Garey & Johnson
1979) and show that it can be adapted for manufac-
turing distributed opaque predicates. The original
0/1-Knapsack problem can be stated as follows:
Given a set S = {aj,as,...,a,} of positive inte-
n

gers and a sum T = inai where each x; € {0,1},

1=

find z;. This decision problem has been shown to
be NP-complete. In adapting this problem for man-
ufacturing distributed opaque predicate, the obfusca-
tor selects the set S of positive integers and x;’s ac-
cording to some predetermined sum 7. An adversary
through careful static analysis and reverse engineering
may come to learn about set S and sum 7. However,
given an arbitrarily large set, the hard problem for
him is to not only decide if a solution vector z exists
but to also to determine the vector at precisely the
program points (ty,ts,...) where distributed opaque
predicates are used to obscure the control-flow of Py.
This is hard since the distributed opaque predicates
are constructed from local states (the values range
in set S) of guard processes and P; and local states
dynamically change depending on the interaction pat-
tern between processes. This underlying concept will
gradually evolve as we describe our methodology.

For our illustration, we select an arbitrary set as:

S ={11,9,18,2,12,5,17,19,4,7,1,33}

After dynamically selecting/spawning the guards,
process P; and the guards are each initialised by pass-
ing a dynamic data structure, such as a doubly circu-
lar linked-list, initialised with the elements of the set
S. This is illustrated in Figure 3.

In addition to initialising the linked lists with el-
ements of set S, each copy is also initialised with an
initial pointer location respective to the process the

189

CRPIT Volume 48

190

list is sent. Node values corresponding to the pointer
locations form the local state of that particular pro-
cess. For our illustration with three processes, the
list is initialised with three pointers: pi.v for Py, pa.v
for P, and p3.v for process P3. Messages are ex-
changed between the guards {P,, Ps} and P; accord-
ing to an embedded communication pattern. Gener-
ation of this predetermined communication pattern
will be discussed shortly. Considering an arbitrary
sum for our illustration as T' = 27, the corresponding
solution vector x for the sum T is:

z = {0,0,1,0,0,1,0,0,1,0,0,0}

For our three process illustration, this solution vec-
tor corresponds to py.v = 18, po.v = 5, and p3.v = 4.
The distributed opaque predicate (®) thus formed in
this case would be:

D:pr.v+pov+prv=27

In the following subsections, we will explain how to
coordinate the local state update values between pro-
cesses by controlling their interaction pattern such
that @ is satisfied at precisely the program points
where the obfuscator decides. We note that there
could be other possible solution vectors for set S and a
similar approach for constructing distributed opaque
predicates could be used with different sets of guards
and the same sum 7.

3.3 Defining the local state update rules

The local state update rules defined on inter-process
message communication events are defined as follows:

receive(m) = pointer shifted right of the
current node

send(m) = pointer shifted left of the
current node

Thus, if the local state of Py, defined by p;.v, is 9
at a certain point in P;’s execution and if P; receives
a message, the local state will change to 18. Simi-
larly, if P, sends a message, the local state changes
to 11. Since the distributed opaque predicate is con-
structed by composing the local states of individual
processes and each local state value (corresponding to
the pointer location) fluctuates when processes send
or receive messages, the predicate will alternate be-
tween true/false outcomes throughout the run.

3.4 Selection of communication pattern and
message types

As stated earlier, local state update of individual pro-
cesses take place according to an embedded invariant
communication pattern. This predetermined pattern
is generated when the embedded send/receive calls
in processes P;, P5, and P3 get executed. The calls
could be embedded by the obfuscator by tracing
and annotating the processes with send/receive
primitives, much in the same way dynamic water-
marking algorithms annotate programs for inserting
watermark building code (Nagra & Thomborson
2004). However, there are a couple of problems with
adopting this approach for embedding the communi-
cation pattern. First of all, embedded send/receive
calls will generate an arbitrary pattern for each
run of the program unless they are controlled in
some way. Secondly, because of the nondeterminism
and latency associated with asynchronous message
passing, there is no guarantee of causal delivery
of messages. Thus, we have to ensure message
exchanges satisfy FIFO (First-in-first-out) delivery.

This delivery order ensures for all messages m and m/':

send;(m) — send;(m’) = deliver;j(m) — deliver;(m”)

In distributed systems, the notion of global clock
is absent. We propose using vector clocks (Mattern
1989) for solving these two problems. Using vector
clock, event orderings based on increasing clock val-
ues are guaranteed to be consistent with causal prece-
dence. Before going into a detailed discussion on its
usage for constructing the predetermined communi-
cation pattern, we briefly provide a general overview
of vector clocks.

Vector clock of a system of n processes is an array
of n logical clocks, one per process. A local copy of the
vector clock is kept in each process P;, contributing a
local state in the construction of distributed opaque
predicate. A mnotation of VC?[i] denotes the logical

clock value of P; at send/receive event b. VC?[j] de-
notes the time VC{[j] of last event a at P; that is

known to have happened before its local event b. The
vector clock algorithm update rules could be specified
as:
e If a and b are successive events in P;, then
VCPli) = VO2i] + 1.
e Also, if b denotes receive(m) by P, with

a vector timestamp t,, then VCP[k] =
max{VCek], tm[k]}, for all k # .

Three obfuscation-specific message classes are
used for message exchanges between process P; and
the guards P> and P3. These message classes help in
maintaining consistency of vector clock values and lo-
cal state updates. Each class is identified by a special
tag. The first class is identified by the tag SYSTEM.
Messages of this class may originate in either P;, P or
Ps3 and carry vector timestamp in them. Also, when a
process participates in a send/receive event of SYSTEM
type messages, it updates its vector clock and local
state according to the state update rules specified in
the previous subsection. The second class, REQUEST,
type message may only originate at P; since it is used
to request local state values for the guards. This class
also carries vector timestamp and causes vector clock
updates but does not cause any change in local state
when received by the guards. The third type of mes-
sage is identified by tag RESPONSE. This type is identi-
cal to the second class of messages with the exception
that these originate at guards and are received by P;.
RESPONSE messages are used by guards to send lo-
cal state values back to P; against incoming REQUEST
messages.

An example of predetermined communication pat-
tern is illustrated with processes P;, P>, and Ps in the
event-time diagram of Figure 4. An event-time dia-
gram maps each event against time and state changes
are effected by exchange of messages. The embedded
send/receive calls in processes Py, Py, and P generate
this communication pattern. The vector clock value
for each participating process is indicated within the
square brackets and the value of local state is indi-
cated in variable p;.v, where i denotes the process
number. Thick arrows in the figure denote SYSTEM
type messages. Thin arrows denote REQUEST type
messages and dashed arrows represent RESPONSE type
messages.

As evident from Figure 4, asynchrony of message
passing induces concurrency within the system. Be-
cause of this concurrency, an adversary will find it
difficult to monitor local state changes occurring be-
tween the processes from outside and determine if dis-
tributed opaque predicate (®) is satisfied at a partic-
ular program location in a particular run. Along the

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

P [0,1,0] [0,2,1] [2,3,1][2,4,1] [6,5,3] [7,6,3] [7,7,3] >
p2.v = 5 ‘ "\ P2.V= 17‘ "\
ps.v=4 [3,1,2]\\,‘ 13,1,3] [8,4,4] \'\ [8,4,5] -
7 ! 4 { |
p piv=9 P1-v =18 \‘v \" pP1.v=9 \‘v \"
1
q)F [1,1,0] [2,1,0] [3,1,0] [4.4,1] [5,4,3]¢?[6,4,3] [7,4,3] [8,4,3] q)F [9,7,3]1[10,7,5]

CUT 1

Figure 4: The invariant in the form of a predetermined nondeterministic communication pattern is embedded
by the obfuscator into P;, P, and Ps;. The update pattern of local states can be traced from Figure 3. Thick
arrows denote SYSTEM type messages, thin arrows denote REQUEST type messages, and dashed arrows denote

RESPONSE type messages.

timeline of process P;, we have labeled the value of
predicate (®) between two successive events distin-
guished by vector clock values. A (®T) label implies
that the predicate is guaranteed to hold true within
that event interval (successive events) for that partic-

ular run. Similarly, (®%') implies that the predicate
is guaranteed to be false within that interval for that
particular run. A label denoted by (®7) along the
timeline implies that the predicate value is unknown
since @ is not guaranteed to hold.

Moreover, in Figure 4, it seems that (®) would
be satisfied at CUT1 since the local states p;.v = 18,
p2.v = 5, p3.v = 4 add up to 27. However, note that
there is no guarantee of ® being satisfied at CUT1.
This guarantee cannot be made because of the fol-

lowing two special cases that could arise out of non-
determinism:

3.4.1 No guarantee on message delivery or-
der

Consider the case from Figure 4 where the message
(henceforth referred to as message a) originating from
P5 at vector clock value [0,0,1] reaches before the
message (henceforth referred to as message b) origi-
nating at vector clock value [0,1,0] of P, is sent by
process P,. This situation is depicted in Figure 5.
When message a reaches guard process Ps, the
vector clock value changes to [0,1,1] and P»’s local
state, ps.v, changes from 5 to 17 (refer to Figure 3).
Guard process Ps’s local state, ps.v, changes from 7
to 5. However, after P, sends message b at vector
clock [0,2,1], its local state reverts to 5. When the
probe messages (REQUEST) are sent by P; after the
vector clock state [1,2,1], the local state values re-
turned from processes P, and P3 are p;.v = 5 and
p3.v = 4 respectively. By the time the probe mes-
sages are sent to P» and Pj5, process P; has already
changed its local state value, p;.v, to 18. The local
state values of processes Py, P>, and P3 add up to 27
and the distributed opaque predicate (®) is satisfied
at CUT1.

3.4.2 No guarantee on message delivery

Now consider the case where after the first receive
of message b at [1,1,0] by process P;, it cannot be

P [0,1,1] [0,2,1] -
2 pv=5 Ap,v=17\ pv=5
-]
P, psv=7 p;v=4 “ >
[0,0,1]
_ V=18
pl.V =9 pl v
Py
o e

Figure 5: No guarantee on message delivery order.

Messages a and b are swapped and (®) is satisfied at
CUT1.

guaranteed that the message a from guard process Ps
originating at [0,0, 1] has reached guard process Ps.
This guarantee cannot be made because of the nonde-
terministic nature of asynchronous message-passing.
This situation is depicted in Figure 6.

As seen from the figure, since guard process Ps
changes its local state to ps.v = 12, the local state
values of processes Py, P, and P53 do not add up to 27.
Consequently, the distributed opaque predicate (®) is
not satisfied at CUT1. In yet another specialization of
this case, message b may reach process P; even before
message a originates from guard process P3. In this
case, guard process P; will maintain its local state
value at p3.v = 7. Thus, the predicate value will also
not be satisfied in this case since the sum of the local
state values of processes does not add up to 27.

Thus, we can generally observe, from the non-
deterministic communication pattern of Figure 4,
that while designing the communication invariant,
crossover message-passing patterns will cause nonde-
terminism within the system and this property could
be utilized by the obfuscator to confuse attackers into
falsely believing that a distributed opaque predicate
will be guaranteed to hold true or false at a particular

191

CRPIT Volume 48

192

P, [0.1.0] >
p2.v=>5 p2.v =12
>
P, psv=17 ps.v=4 o >
[0,0,1]
P piv=9 pi-v=18
1
oF o

Figure 6: No guarantee on message delivery. Message
a is in transit while message b reaches process P;. The
predicate (@) is not satisfied at CUT1.

program location.

On the other hand, deterministic communication
patterns would produce guaranteed results for dis-
tributed opaque predicates. An example of determin-
istic cyclic communication pattern is shown in Fig-
ure 7. This event-time diagram is a continuation of
the one shown in Figure 4 and the vector clock ticks
are continued along the timelines of processes Py, P,
and Ps. At [14,10,9], process P; is ready to evaluate
the distributed opaque predicate (®). Interestingly
at this point, it can be guaranteed that there are no
messages in transit and hence the predicate must hold
true (®T) at CUT2. For all other event intervals, (®)

is guaranteed to be false (®).

3.5 Distributed opaque predicate embedding
and guarded commands for maintaining
local state consistency

Just as nondeterminism and asynchrony can be used
as tools against the adversary, these could also cause
problems to the obfuscator since uncontrolled con-
currency will update states in an unpredictable way.
If local states of processes are updated in an uncon-
trolled way, then distributed opaque predicates can-
not be used effectively for control-flow obfuscation.

The problem associated with unpredictable local
state update can be brought under control if the com-
munication pattern generating code (specifically the
send/receive primitives) can be guarded; i.e., a mes-
sage contributing to a deterministic communication
pattern is only sent from a process if it is guaranteed
that the vector clock value of the process issuing this
send is up-to-date. Alternatively, this means that the
process should have completed all the message com-
munication events (send/receive) before issuing an-
other send. We show an abstract pseudo-code for con-
trolled message passing and predicate evaluation for
process P; in Figure 8. We have used blocking receive
to ensure that the local state of process P, is consis-
tent before it issues a send message (i.e., the process
busy-waits on all outstanding messages it has not yet
received). To make it more flexible, non-blocking re-
cetwe with guarded sends could be used to maintain
consistency of local states. This can be implemented
by making sure that before each send primitive, the
vector clock from last receive is up-to-date (by com-
paring it against an expected timestamp value). If
the clock is not up-to-date, the process blocks the
send call for outstanding receives.

Figure 8 shows pseudo-code snippets for nondeter-
ministic (CUT1) and deterministic (CUT2) evaluation
of the predicate ®. At CUT1, ® is unknown and hence
dummy actions are inserted in branches correspond-
ing to both ‘true’ and ‘false’ paths. However, at
CUT2, the obfuscator knows that ® holds true (be-
cause it knows when it participates in deterministic
and nondeterministic message-passing) and hence in-
serts real actions in the path corresponding to the
‘true’ branch of the control statement. Pseudo pro-
cess interaction codes for guard processes are similar
to P;’s code and have been excluded from this con-
tribution because of space limitations.

During obfuscation phase of P;, the obfuscator
may embed many distributed opaque predicates at
different control-flow points in the program corre-
sponding to, for example, the construction of water-
marking code. Any arbitrary nesting of distributed
opaque predicates can be used for obfuscating the
control-flows. A different set of guard processes could
also participate in different communication invariants
involving other local state update rules.

4 Security analysis of obfuscation using dis-
tributed opaque predicates

In this section, we comment on the obfuscatory
strength of the proposed technique by arguing that
known forms of static analysis attacks and a restricted
class of dynamic analysis attack are intractable from
an adversary’s perspective. For each class of attack,
we also present our assumptions on technical limita-
tions of the adversary.

4.1 Static analysis attacks

We argued in section 2 that static analysis of tempo-
rally unstable distributed opaque predicates will not
reveal their outcome since the invariant communica-
tion pattern which influences their outcome is gener-
ated from the embedded send/receive primitives on-
the-fly. We did not, however, comment on the difficult
issues an attacker needs to address in order to stat-
ically find these distributed opaque predicates from
the process codes.

In order to statically analyse the obfuscated code,
an adversary must depend on static slicers to slice
parts of the process code which could affect the
value of distributed opaque predicates at obfuscated
control-flow points. Slicing of distributed programs
is a major challenge due to the timing related inter-
dependencies among processes. Moreover, to find the
slicing criterion of the slicer, the analyser must rely
on alias analysis (Horowitz 1997, Hind et al. 1999) to
determine the kind of structure the local state of pro-
cesses points-to (this information he could get from
the message parameters), and if the pointer corre-
sponding to the variables used in the construction of
distributed opaque predicates refer to the same dy-
namic data structure in the guards at some program
location (where the distributed opaque predicates are
used in P;). To achieve this, static analysers must
use inter-process escape alias analysis to determine
the objects that can be referenced in processes sepa-
rate from the ones in which they are allocated.

Though much research work on intra- as well as
inter-procedural alias analysis and inter-procedural
thread escape analysis have been done in the last
few years (Rugina & Rinard 1999, Salcianu & Ri-
nard 2001, Whaley & Rinard 1999), we have been
unsuccessful in finding a technique that can perform
alias analysis by considering asynchronous message-
passing of distributed processes as escape points. We
believe the reason why this problem has not yet been

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

P [7,8,3] [11,9,7][11,10,7] [15,11,9]
2 pa—) pav =17
P, PV=T7 1887] [1288] | [12.89] -
[8,8,6] pav=4 Lo
p1-v= 18 p1-v=9
P F [10.8.7][11.8 7][12:8 71 [13 1‘0 7][1‘4 10,9] ~.T [15,10,9] F >
Q s) s) s) 9 9 9 9 Q 9 9 @

CUT 2

Figure 7: The invariant in the form of a predetermined deterministic communication pattern is shown in this
figure. As before, thick arrows denote SYSTEM type messages, thin arrows denote REQUEST type messages, and

dashed arrows denote RESPONSE type messages.

addressed by the program analysis community is be-
cause we do not have efficient, precise and scalable
algorithms for performing simpler cases of alias anal-
ysis in sequential multi-threaded programs and asyn-
chronous concurrent systems present problems that
are much greater in magnitude.

4.2 Dynamic analysis attacks

Dynamic analysis attacks assume that the adversary
has most (if not all) of the static analysis information
available since he has to monitor the local state value
changes of individual processes (an assumption we ar-
gued in the previous subsection as quite intractable).
Moreover, in order to mount a dynamic analysis at-
tack, the adversary needs to learn about the structure
of the distributed opaque predicate so that he can
identity which processes are contributing in building
the global state (i.e. the guard processes along with
process P;). We need to make the restriction that
an adversary cannot possess sufficient static analy-
sis information in order to insert debugging probes
at obfuscated control-flow points of P;. If an adver-
sary is able to do this, he can quite easily determine
the outcome of distributed opaque predicates by just
checking probe values during execution of process P;.
If we fail to make this restriction, the use of opaque
predicates in any form of program obfuscation would
be trivial. We, however, make the relaxation that
the adversary can monitor the communication events
using sniffer processes in order to monitor individ-
ual local states formed by process P; and the guards.
This scenario is depicted in Figure 9.

We now show proceed to show that the problem of
global state monitoring is hard even if the adversary
manages to collect all necessary static analysis infor-
mation. The problem of distributed opaque predicate
evaluation, from the adversary’s perspective, can be
stated as evaluating predicate ® as a function of the
global state of a distributed system. It is problematic
to detect unstable distributed opaque predicates since
the condition encoded by the predicate may not per-
sist long enough for it to be true when the predicate is
evaluated by the adversary. The domain of such pred-
icates is a Boolean valued function formed on the set
of all possible cuts from all possible executions of the
distributed system. Therefore, the predicate detec-
tion problem can also be defined as identifying a cut

Local State Local State

Process P,
Local State

Monitor
Process

Figure 9: A typical dynamic analysis attack scenario
by actively monitoring state changes to detect dis-
tributed opaque predicate .

in which the predicate evaluates to true. The diffi-
culty associated with detection is the fact that the
number of states from any execution may be expo-
nential in the number of processes.

Let {X;,Xo,...,X,} define a sequence of cuts,
where for all i, X; < X;y1. A sequence of cuts is
called an observation if and only if for all 7, X; and
X;41 differ by exactly one state. The adversary has
to detect a consistent observation O of the distributed
computation such that ® holds in a global state of O.
Now, this is a decision problem in the form of:

Given: an execution Y of n processes, an initial cut
X <Y, and the predicate ®.

Determine: if there existsacut W : X < W <Y
such that ®(W) is true.

Chase & Garg (1995) proved that this detection
problem is NP-complete by showing that the detec-
tion of general global predicate is intractable even for
simple distributed computation where the local states
are restricted to take only true or false values and
no messages are exchanged within the system.

In the subsections to follow, we model a dynamic
analysis distributed monitoring attack by discussing
in details the three types of available algorithms an
adversary may choose to dynamically evaluate the
outcome of ¢ and the technical limitations these al-
gorithms possess.

193

CRPIT Volume 48

194

Process P;:
initialize(VectorClock); //Initialize Vector Clock
...//Start nondeterministic predicate eval uation
/lget SYSTEM message
while(!receive(VectorClockTimeStamp,SYSTEM,buffervVa

probe(ReceivePort); //Check for message by polling

increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto
shift_right(p .-V); llpoint to the right node

/lprobe for local states from guard processes
increment(VectorClock); // Vector Clock value [2,1,

send(P ,,REQUEST); //probe for p ,-V value
increment(VectorClock); // Vector Clock value [3,1,
send(P ,,REQUEST); //probe for p .-V value

/lget RESPONSE messages
while(!receive(VectorClockTimeStamp,RESPONSE,buffer
probe(ReceivePort); //Check for message by polling

}

p,.v = bufferval;

increment(VectorClock);

setMax(VectorClock, VectorClockTimeStamp); // Vecto

while(receive(VectorClockTimeStamp,RESPONSE,buffer
probe(ReceivePort); //Check for message by polling

}

p,.v = bufferval,

increment(VectorClock);

setMax(VectorClock, VectorClockTimeStamp); // Vecto

/I evaluate distributed opaque predicate
if(p ,.v+p ,.v+p ,.v==27) {// CUT1: Predicate Value Unknown
/ Dummy watermark building code

else {
/ Dummy watermark building code

...I/Start determ nistic predicate evaluation

/lget SYSTEM message
while(receive(VectorClockTimeStamp,SYSTEM ,bufferva
probe(ReceivePort); //Check for message by polling

increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto
shift_right(p ,-V); llpoint to the right node

/Iprobe for local states from guard processes
increment(VectorClock); // Vector Clock value [11,8

send(P ,,REQUEST); //probe for p ,-v value
increment(VectorClock); // Vector Clock value [12,8
send(P ,,REQUEST); //probe for p .-V value

/lget RESPONSE messages
while(!receive(VectorClockTimeStamp,RESPONSE,buffer
probe(ReceivePort); //Check for message by polling

}

p,.v = bufferval,

increment(VectorClock);

setMax(VectorClock, VectorClockTimeStamp); // Vecto

while(receive(VectorClockTimeStamp,RESPONSE,buffer
probe(ReceivePort); //Check for message by polling

p,.v = bufferVal;
increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto

/I evaluate distributed opaque predicate
if(p ,.v+p ,.v+p ,.v==27){ [/ CUT2: Predicate Value True
/I Real watermark building code

else {
/ Dummy watermark building code
}

to [0,0,0]

DX

r Clock value [1,1,0]

0]
0]

Val){

r Clock value [4,4,1]
Val)){

r Clock value [5,4,3]

DX

r Clock value [10,7,8]

7]
7]

vah){

r Clock value [13,10,7]
Val)){

r Clock value [14,10,9]

Figure 8: Pseudo-code showing the obfuscation of control-flow in P; using distributed opaque predicate ®.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

4.2.1 Active monitoring by taking snapshot

The first option the adversary has is to solve the
global predicate evaluation problem through active
monitoring. In this strategy, the adversary uses a
monitor process which sniffs the communication be-
tween process P; and the guards at some predeter-
mined periodic intervals and then combines all the
local states obtained to build the global state. This
strategy is called ‘snapshot’ approach and Chandy &
Lamport (1985) describe an algorithm to construct
consistent global states using snapshots of individual
local states. Since communication within distributed
systems incurs latency, the consistent global states
thus constructed can only reflect some past state of
the system. By the time the snapshots are obtained,
conclusions drawn about the system by evaluating
the distributed opaque predicate may have no bearing
to the present. Therefore, the snapshot algorithm is
suitable for monitoring predicates that do not change
value throughout the entire program run and since
our method uses temporally unstable predicates, the
adversary will not be able to deduce a correct reason-
ing about the predicate’s behaviour using this algo-
rithm - the predicate may have held even if it is not
detected.

4.2.2 Passive monitoring by constructing
state lattice

Through the second approach, due to Cooper &
Marzullo (1991), the adversary can collect all local
state values from individual processes and check for
consistent observation O using passive monitoring. In
order to implement this algorithm, the adversary’s
monitoring process must sniff the guard processes and
P, for portions of their local states that are referenced
in ®. The monitor maintains sequences of these lo-
cal states, one sequence per process, and uses them
to construct the global state. This procedure is based
on incrementally constructing the lattice of consistent
global states associated with the distributed compu-
tation. The state lattice formed is linear in the num-
ber of global states, and the number of global states
formed is O(e™) where e is the maximum number of
events monitored and n is the number of processes
in the system. For every global state in the lattice,
there exists at least one run that passes through it.
Hence, if any global state in the lattice satisfies ®, the
distributed opaque predicate is detected.

The problem with this type of monitoring is that
the adversary may end up incorrectly including spu-
rious local state changes in case he erroneously con-
siders processes that are interacting with guards and
P, during construction of the lattice or if he includes
spurious message communication events (by failing
to distinguish between message classes that only up-
date the vector clock values and not the local state
of processes). Hence, if the number of guards in the
system is large and a considerable amount of mes-
sage exchange takes place, the adversary will face the
problem of state explosion while trying find a consis-
tent cut by ‘walking-through’ the lattice thus formed.
Moreover, if the adversary fails to monitor some of
the process interactions, the amount of concurrency
in the form of local state changes will increase and
this will, in turn, increase the states of the lattice.
Increase in the number of guards in the system will
increase the dimension of the lattice proportionately.
Furthermore, the adversary has to repeat this passive
monitoring process to detect the outcome of each dis-
tributed opaque predicate used to obfuscate control-
flow points in process P;. The complexity will further
increase if such predicates are nested and guards are
spawned dynamically during P;’s execution.

4.2.3 Active monitoring by exploiting predi-
cate structure

In the final approach, the adversary can use Garg
& Waldecker’s (1994) method for detecting unstable
global predicates. Their method exploits the struc-
ture of predicate by decomposing the predicate into
a conjunction of local predicates and independently
detecting the outcomes of these local predicates.
It also requires the use of explicit token passing
messages between the monitor process and the
processes which contribute states in the construction
of distributed opaque predicates. This approach
works well for predicates that are conjunctive in
nature. However, for relational distributed opaque
predicates, their method yields no feasible solution
because relational predicates cannot be broken
down into conjunction of predicates formed on local
states. Moreover, it requires processes participating
in maintaining the distributed opaque predicate to
cooperate with adversary’s monitor process by main-
taining snapshots (evaluating their component of the
predicate) and passing the result and dependence
information to the adversary’s monitoring process.
This requirement quite unrealistic under reasonable
practical assumptions.

We conclude by observing that out of these three
available approaches, the adversary has to resort to
using only the second approach because the other two
available approaches are only suitable for detecting
either predicates that do not change their value dur-
ing the entire program run or predicates that can
be broken down into a conjunction of local predi-
cates. Moreover, the second approach will be in-
tractable if a large number of guard processes are
used or are spawned dynamically during execution
of the obfuscated process P;. Also, in the absence of
precise static analysis methodologies, spurious events
and state changes would be erroneously taken into
consideration by the adversary and this would make
the detection process incorrect and intractable. Un-
der pragmatic assumptions, we believe practical dis-
tributed systems will employ a large number of pro-
cesses as guards and hence processes obfuscated with
distributed opaque predicates will be resilient to pas-
sive monitoring dynamic analysis attacks.

5 Conclusion

In this contribution, first of its kind, we have ad-
dressed the problem of code obfuscation in soft-
ware executing in distributed computing environ-
ments. Specifically, we have addressed control-flow
obfuscation and have extended the original concept of
opaque predicates proposed by Collberg et al. (1998)
to the domain of distributed computing. We have
demonstrated that hard combinatorial problems can
be tuned with open problems related to distributed
systems state monitoring to manufacture a new class
of resilient opaque predicates; which we defined in this
contribution as distributed opaque predicates. We
have also demonstrated through a detailed security
analysis that our class of distributed opaque predi-
cates is resilient to known static analysis attacks and
passive monitoring dynamic analysis attack from ad-
versaries.

The following salient points could be noted regard-
ing this new class of opaque predicates:

e Stealth: The relational structure of distributed
opaque predicates will make these unobvious
to an attacker since predicates of this nature
appear as conditional expressions in most pro-
grams. Moreover, guard processes, along with

195

CRPIT Volume 48

196

the process to be obfuscated, maintain the dis-
tributed opaque predicate invariant through an
embedded communication pattern. This pat-
tern is generated by send/receive calls embedded
within process code. Processes in loosely-coupled
distributed systems, as such, communicate using
message-passing and hence the presence of addi-
tional guards and their interactions with the host
process will, we believe, be unsuspecting from the
perspective of an adversary.

e Performance: Distributed systems are inher-
ently loosely-coupled in nature and do not en-
force hard timing requirements on task comple-
tion. Hence, the overall slowdown in system ef-
fectuated by additional guard processes and mes-
sage exchanges might be acceptable to developers
having stringent security requirements.

As part of our future work, we will concentrate
on automatic embedding of distributed opaque pred-
icates at selected control-flow locations in distributed
computing processes through program annotation.
We would also come up with a model of making the
obfuscated system, consisting of the obfuscated pro-
cess and cooperating guards, more fault-tolerant such
that the system can function in case one or more
guards are accidentally lost or purposefully killed by
an adversary. Our present model is rigid in the sense
that the loss of guard processes will make the obfus-
cated program go into an incorrect state, thus adding
some form of tamper-proofing. But, this notion is
weak since the guards and messages may be lost in
the system accidentally. We will also investigate into
new classes of distributed opaque predicates and in-
stances of hard combinatorial problems for generating
them in the future.

References

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S.,
Sahai, A., Vadhan, S., & Yang, K. (2001), On
the (Im)possibility of Obfuscating Programs, In
the proceedings of CRYPTO-2001. LNCS Vol-

ume 2139, Springer-Verlag. Santa Barbara, CA,
USA

Chow, S., Gu, Y., Johnson, H. & Zakharov, V.A.
(2001), An Approach to the Obfuscation of
Control-Flow of Sequential Computer Programs.
In the proceedings of 4" International Con-
ference on Information Security, LNCS Volume
2200. Springer-Verlag. Malaga, Spain.

Garey, M. R. & Johnson, D. S. (1979), A guide to the
theory of NP-completeness. W.H. Freeman and
Company.

Thomborson, C., Nagra, J., Somaraju, R. & He, C.
(2004), Tamper-proofing software watermarks.
In the proceedings of 2"? workshop on Aus-
tralasian information security, Data Mining and
Web Intelligence, and Software Internationaliza-
tion. Volume 32. Dunedin, New Zealand. ACM
Digital Library.

SETI@home (2005), http://setiathome.ssl.berkeley.edu/

(accessed July 15 2005).

Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D.,
Shao, Q. & Zhang, Y. (2000), Experience with
software watermarking. In the proceedings of
16" IEEE Annual Computer Security Applica-
tions Conference (ACSAC’00). IEEE Press. New
Orleans, LA, USA.

Nagra, J. & Thomborson, C. (2004), Threading Soft-

ware Watermarks. In the proceedings of 6! In-
ternational Workshop on Information Hiding,
LNCS Volume 3200, Springer-Verlag. Toronto,
ON, Canada.

Hohl, F. (1998), Time limited blackbox security: Pro-
tecting mobile agents from malicious hosts. In
the proceedings of 2" International Workshop
on Mobile Agents, LNCS Volume 1419, Springer-
Verlag. Stuttgart, Germany.

Collberg, C., Thomborson, C. & Low, D. (1998),
Manufacturing Cheap, Resilient, and Stealthy
Opaque Constructs. In the proceedings of 1998
ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’98).
San Diego, CA, USA.

Lamport, L. (1978), Time, clocks and the ordering of
events in a distributed system. In Communica-
tions of the ACM, 21(7):558-565.

Chase, C. & Garg, V.K. (1995), Detection of global
predicates: Techniques and their limitations. In
the Journal of Distributed Computing, Volume
11, Issue 4, pages 191 - 201. Springer-Verlag.

Mattern, F. (1989), Virtual time and global states of
distributed systems. In the proceedings of Work-
shop on Parallel and Distributed Algorithms, El-
sevier Science Publication, pages 215-226.

Horowitz, S. (1997), Precise Flow-insensitive may-
alias in NP-hard. In ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS),
Vol. 19 No. 1.

Hind, M., Burke, M., Carini, P. & Choi, J.D. (1999),
In ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), Vol. 21 No. 4.

Rugina, R. & Rinard, M. (1999), Pointer analysis
for multithreaded programs. In the proceedings
of 1999 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation
(PLDI ’99). Atlanta, GA, USA.

Salcianu, A. & Rinard, M. (2001), Pointer and escape
analysis for multithreaded programs. In the pro-
ceedings of 2001 ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming

(PPOPP '01), Snowbird, UT, USA.

Whaley, J. & Rinard, M. (1999), Compositional
pointer and escape analysis for Java programs. In
the proceedings of 1999 ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA ’99), Den-
ver, CO, USA.

Chandy, K.M. & Lamport, L. (1985), Distributed
Snapshots: Determining global states of dis-
tributed systems. In ACM Transactions on Com-
puter Systems, pages 63-75.

Cooper, R. & Marzullo, K. (1991), Consistent de-
tection of global predicates. In the proceedings
of 1991 ACM/ONR Workshop on Parallel and
Distributed Debugging (PADD ’91). Santa Cruz,
CA, USA.

Garg, V. K. & Waldecker, B. (1994), Detection
of weak unstable predicates in distributed pro-
grams. In IEEE Transactions on Parallel and
Distributed Systems, pages 299-307, Volume 5,
No. 3.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Pruning Subscriptions in Distributed Publish/Subscribe Systems

Sven Bittner

Annika Hinze

Department of Computer Science
University of Waikato,
Private Bag 3105, Hamilton, New Zealand,
Email: {s.bittner, a.hinze}@cs.waikato.ac.nz

Abstract

Publish/subscribe systems utilize filter algorithms to
determine all subscriptions matching incoming event
messages. To distribute such services, subscriptions
are forwarded to several filter components. This
approach allows for an application of routing algo-
rithms that selectively forward event messages to only
a subset of filter components. Beneficial effects of
this scheme include decreasing network and compu-
tational load in single filter components.

So far, we can find routing optimizations that ex-
ploit coverings among subscriptions or utilize sub-
scription merging strategies. Generally, such opti-
mizations aim at reducing the amount of subscrip-
tions forwarded to filter components, which decreases
their computational load. This might in turn result
in an increasing number of event messages routed
through the network.

However, current optimization strategies only
work on restrictive conjunctive subscriptions and can-
not be extended to efficiently support arbitrary sub-
scriptions. Furthermore, it is not possible to apply
covering and perfect merging strategies in all appli-
cation scenarios due to the strong dependency of these
approaches on actually registered subscriptions.

In this paper, we present a novel optimization ap-
proach, subscription generalization, to decrease the
filtering overhead in publish/subscribe systems. Our
approach is based on selectivities of subscriptions and
can be utilized for all kinds of subscriptions includ-
ing arbitrary Boolean and conjunctive subscriptions.
We propose a simple subscription generalization al-
gorithm and show an evaluation of the results of a
first series of experiments proving the usefulness of
our approach.

Keywords: Distributed publish/subscribe, event fil-
tering, subscription tree pruning

1 Introduction

Publish/subscribe systems use a push-based approach
to access information that is published in the form
of event messages. This means these systems con-
tinuously filter and actively deliver information to
interested parties, which register their interests by
the help of subscriptions. We can effectively ap-
ply publish/subscribe systems for several applica-
tions, e.g., facility management (Hinze 2003), me-
teorology (Mathieson, Dance, Padgham, Gorman &

Copyright ©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

Winikoff 2004), healthcare (Jung & Hinze 2005) and
electronic commerce (Cilia & Buchmann 2002).

To achieve large-scale publish /subscribe solutions,
these systems have to be realized as distributed ser-
vices (Miihl 2002). They consist of several broker
components dividing the filter load and thereby col-
laboratively performing the overall filtering task.

We have illustrated such a distributed pub-
lish /subscribe system in Figure 1: In the simplest case
broker components B, are connected by an acyclic
(overlay) network structure. Clients, i.e., publishers
P, subscribers S, and clients acting as both parties,
connect to an arbitrary broker. This broker is called
local broker and hides the distributed nature of the
system, e.g., Bs is local broker for P; in Figure 1.
Subscriptions s, are registered at the respective lo-
cal brokers; event messages e, are published to them.
Matching event messages are delivered to subscribers
by their local broker by the help of notifications 7.

B, - Broker e, - Event message ——«
S, - Subscriber s, - Subscription .~ ~\
P, - Publisher n, - Notification .- "«

Figure 1: Distributed publish/subscribe system

In most application areas for publish/subscribe
systems, the frequency of event messages is much
higher than the frequency of registering and dereg-
istering subscriptions. Thus, a profile forwarding
scheme (Bittner & Hinze 2004) should be utilized to
reduce the amount of event messages forwarded to
brokers: Subscriptions are forwarded from local bro-
kers to neighbor brokers. Then, brokers only deliver
event messages to neighbor brokers that fulfil their
subscriptions (which could again have been registered
with another broker component). This forwarding of
event messages and subscriptions is also referred to
as event and subscription routing, respectively.

To minimize the amount of forwarded subscrip-
tions, current approaches utilize coverings among sub-
scriptions or merge several subscriptions. The main
drawbacks of these methods are that their efficacy
strongly depends on registered subscriptions and that
they are applicable to conjunctive subscriptions only.

Especially in advanced application areas (e.g., e-

197

CRPIT Volume 48

198

commerce) the constraint of conjunctive subscriptions
is too restrictive and does not allow for the definition
of subscriptions required to specify user interests.

In Figure 2, we present an example subscription
s1 from an e-commerce setting, in particular from on-
line book auctions (letters in the figure describe the
name of nodes). We will use s; as a running exam-
ple throughout this paper: A subscriber is interested
in books whose title contains the phrase ”Harry Pot-
ter”. According to the condition of the copy of the
book (new, used), she wants to pay a different price
(at most NZ$15.0 or NZ$10.0, respectively). To avoid
unnecessary notifications, the subscriber will be noti-
fied not earlier than one day before the auction ends.

We can represent subscriptions as subscription
trees as shown in Figure 2. Inner nodes repre-
sent Boolean operators; leaf nodes specify predi-
cates, i.e., attribute-operator-value triples (Bittner &
Hinze 2005b).

G
AND
titlelike "Harry Potter" OR endingWithin < 1 day
A H F
| / \ J
AND AND

SN N

condition = NEW price< 15.0 price < 10.0 condition = USED
B c D E

Figure 2: Example of a Boolean subscription s;

Next to this requirement for more expressive than
pure conjunctive subscriptions, it has been shown
that publish/subscribe systems supporting more ex-
pressive subscription languages retain the efficiency
properties of systems only offering conjunctive lan-
guages. In fact, the utilization of more expressive lan-
guages increases the scalability properties of brokers
performing event filtering (Bittner & Hinze 2005a).

These beneficial characteristics of systems sup-
porting arbitrary Boolean subscriptions (including
conjunctive subscriptions) lead to the necessity of de-
veloping routing optimizations that are applicable to
such services. Since we cannot use current covering
and merging approaches in conjunction with expres-
sive subscription languages, in this paper we design
a novel routing optimization approach, subscription
generalization, working on arbitrary subscriptions.

Subscription generalization is based on selectivi-
ties of subscriptions and aims at reducing subscrip-
tion complexity to relieve resources in filtering broker
components. Thus, it decreases their computational
load as well as their memory requirements. This, in
turn, results in increasing efficiency and scalability
properties in broker components themselves.

However, this beneficial effect is counteracted by
increased network load when applying subscription
generalization. This behavior originates in the de-
crease of selectivities of subscriptions due to general-
izations. Hence, more event messages are forwarded
to neighbor brokers.

The rest of this paper is structured as follows: In
Section 2 we present related work including routing
optimization and selectivity estimation algorithms.
The overall idea behind subscription generalization
is elaborated in Section 3. There we also outline
two specific generalization approaches, subscription
pruning (Section 3.2) and predicate replacement (Sec-
tion 3.3). Section 4 presents our proposal to estimate
selectivities of subscriptions. Then, we continue with

an automatic generalization algorithm in Section 5.
Section 6 presents a series of experiments we have
undertaken to evaluate our approach as well as the
evaluation of their results. Finally, we conclude and
present future work in Section 7.

2 Current Optimization Approaches

We can classify most current routing optimization ap-
proaches into covering-based and merging-based so-
lutions. These approaches are presented in the fol-
lowing subsections. We discuss current proposals on
estimating selectivity in Section 2.4.

2.1 Subscription Covering

The definition of coverings among subscriptions, e.g.,
so and sz, is based on analyzing the sets of event
messages fulfilling them. These sets of fulfilling event
messages are referred to as E(sg) and E(s3), respec-
tively. If it holds E(s2) 2 E(s3) then subscription s,
covers s3 (Miihl & Fiege 2001).

Coverings have been investigated in the pub-
lish/subscribe systems SIENA (Carzaniga, Rosen-
blum & Wolf 2001) and REBECA (Mihl & Fiege
2001). Both systems only support conjunctive sub-
scriptions. Furthermore, (Miihl & Fiege 2001) re-
stricts subscriptions to contain at most one predicate
per attribute; (Carzaniga et al. 2001) does not present
algorithms to compute coverings at all.

Also XML-based publish/subscribe systems, e.g.,
XROUTE (Chand & Felber 2003), utilize subscrip-
tion covering. However, these systems restrict their
subscription languages to conjunctive forms, too.

For general database systems, research also ad-
dresses a problem similar to covering: query rewrit-
ing (Halevy 2000). Since, in contrast to pub-
lish/subscribe systems, database systems can effec-
tively utilize queries in canonical forms (Bittner &
Hinze 2005b), research for database systems only
targets these cases. Finding the required rewrit-
ing for general conjunctive database queries is NP-
complete (Halevy 2000).

Generally, the utilization of coverings among sub-
scriptions heavily depends on these registered sub-
scriptions, i.e., we can only optimize by the help
of coverings if subscriptions cover each other. The
amount of optimization achievable by coverings is de-
termined by the covering properties of subscriptions.
So far, there is no research evaluating these properties
in real-world applications.

2.2 Subscription Merging

Another optimization technique is subscription merg-
ing. There a set of subscriptions S, is merged into a
smaller set of subscriptions Ss with |Ss| > |S5| and
Us,es, E(54) € Uy, s, E(s5). In case of set equality
we refer to this as perfect merging; for a proper subset
relation it is denoted as imperfect merging.

Perfect merging does not increase the network traf-
fic for event routing compared to originally registered
subscriptions (Wang, Qiu, Verbowski, Achlioptas,
Das & Larson 2004). However, we cannot always find
such a merging; its applicability depends on the kind
of registered subscriptions. REBECA (Miihl 2001)
supports perfect merging for restricted conjunctive
queries as described above. The work in (Crespo,
Buyukkokten & Garcia-Molina 2003) analyzes several
merging strategies for geographic queries, i.e., simple
two-predicate conjunctive queries.

As pointed out in (Wang et al. 2004), perfect merg-
ing may not optimize the overall system through-
put. Therefore, this work utilizes imperfect merg-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

ing. It clusters subscriptions according to similarity
to achieve a compact summary (merging) of them and
evaluates several clustering techniques. Again, only
conjunctive subscriptions are supported.

A general objection to subscription merging is its
benefit when applying to subscriptions converted into
conjunctive forms (arbitrary Boolean subscriptions
might be converted into disjunctive normal forms of
exponential size). Considering imperfect merging, we
do not face the sole dependency on registered sub-
scriptions as in the covering approach. However, the
most possibilities to perform merging might result out
of converted subscriptions, i.e., subscriptions previ-
ously converted and split into conjunctive elements
are merged into a more general (conjunctive) sub-
scription. This questions the usefulness of canonical
conversions in respect to routing optimizations in ad-
dition to their drawbacks of decreasing scalability in
broker components (Bittner & Hinze 2005a).

2.3 Other Optimization Approaches

Several approaches, e.g., the proposal in (Guimaraes
& Rodrigues 2003), target the routing in pub-
lish /subscribe systems as a multicast mapping prob-
lem: Similar subscriptions are clustered in the same
multicast group. Event messages are only sent to
those groups that may contain matching subscrip-
tions. However, such approaches are also restricted
to conjunctive subscription languages.

The routing scheme in (Carzaniga, Rutherford
& Wolf 2004) mentions subscription simplification,
which is a similar approach to subscription merging
(perfect as well as imperfect). However, the work
presents no computation algorithms. It supports sub-
scriptions in disjunctive normal form and thus re-
quires the same conversions as conjunctive approaches
if it is utilized in applications involving more expres-
sive than conjunctive subscriptions.

2.4 Selectivity Estimation

Estimating the selectivity of queries has been
researched in the context of database systems,
e.g., (Poosala & loannidis 1997, Chen, Koudas, Korn
& Muthukrishnan 2000). However, such approaches
require either conjunctive queries or conversions of
queries into disjunctive or conjunctive normal forms.
Apart from the time complexity required for these se-
lectivity estimations and the memory consumption of
involved data structures, canonical conversions lead
to exponential space complexity that is not applicable
in the context of publish/subscribe systems (Bittner
& Hinze 2005a). These solutions are applicable to
database systems that do not have to deal with a
large number of continuous queries (another term
used for subscriptions) and thus can convert queries
into canonical forms.

3 Subscription Generalization

The overall idea of generalizing subscriptions is to
decrease the computational effort for event filtering
required in broker components. In the next subsec-
tion, we outline our general approach and its effect
on event filtering. Afterwards, we present two sim-
ple subscription generalization methods, pruning sub-
scription trees and replacing predicates by more gen-
eral ones, i.e., covering predicates. We describe these
methods in Section 3.2 and Section 3.3, respectively.

We discuss subscription generalization if utiliz-
ing one-dimensional index structure-based filter algo-
rithms, e.g., (Bittner & Hinze 20055, Fabret, Jacob-
sen, Llirbat, Pereira, Ross & Shasha 2001, Hanson,

Chaabouni, Kim & Wang 1990, Pereira, Fabret, Llir-
bat & Shasha 2000, Yan & Garcia-Molina 1994). Such
approaches utilize one-dimensional indexes to index
predicates and propose different structures to index
subscriptions. Event filtering works in two steps: In
predicate matching, all predicates matching incoming
event messages are determined. Then, subscription
matching computes all matching subscriptions (based
on matching predicates). Since we focus on Boolean
subscriptions, we particularly consider the algorithm
in (Bittner & Hinze 2005b) that uses tree structures
as subscription indexes.

3.1 Purpose of Subscription Generalization

As stated before, most application areas for pub-
lish/subscribe systems can effectively apply a sub-
scription forwarding scheme. That is, subscriptions
are forwarded to neighbor brokers of the local broker
they have been registered with. This allows broker
components to determine the set of neighbor brokers
each incoming event message e, should be forwarded
to. In case of acyclic network structures this set in-
cludes all neighbors with registered subscriptions that
are fulfilled by e, except the neighbor forwarding e,.

Subscription generalization aims to decreasing the
complexity of forwarded subscriptions. Whenever
such subscriptions require too many memory re-
sources, broker components start to heuristically gen-
eralize registered subscriptions in order to minimize
their size and thus the size of indexing structures. We
do not generalize subscriptions registered by clients to
avoid false notifications; only subscriptions forwarded
by neighbor brokers are suitable for generalizations.

The generalization of subscriptions decreases both
the memory usage and the computational effort re-
quired in brokers to determine matching subscrip-
tions: The complexity of subscriptions is decreased,
i.e., subscriptions consist of less predicates and oper-
ators, which directly decreases the memory required
for subscription index structures. Furthermore, when
indexes become smaller, we can determinate matching
subscriptions more efficiently: In one-dimensional in-
dexing approaches the predicate matching step works
on smaller numbers of predicates; subscription match-
ing filters on less complex subscriptions.

However, this advantageous behavior increases
network load due to the forwarding of more event
messages to neighbor brokers (subscriptions are more
general now). This property is consistent with imper-
fect merging, which, similar to subscription general-
ization, does not depend on registered subscriptions
like the proposals of perfect merging and covering.
Thus, subscription generalization does always lead to
decreasing memory requirements and increasing effi-
ciency in broker components. We analyze the correla-
tion between memory usage and network load in our
experiments in Section 6.

A subscription generalization method for pub-
lish/subscribe systems should be easy to compute
to allow for an efficient registering and deregister-
ing of large numbers of subscriptions. Furthermore,
it should require little additional memory to retain
scalability properties of broker components.

In the next subsections, we describe two particu-
lar subscription generalization methods, subscription
tree pruning and predicate replacement.

3.2 Generalization by Pruning

Pruning subscription trees reduces the number of
predicates a broker has to filter on in the predicate
matching step. Furthermore, it reduces the complex-
ity of subscriptions that need to be evaluated in sub-
scription matching. This characteristic is obtained by

199

CRPIT Volume 48

200

pruning certain branches of subscription trees. Notice
that we do not prune subscriptions in local brokers
(cf. Section 3.1).

An arbitrary pruning of subscription trees does
not necessarily lead to more general subscriptions.
A subscription s, is more general than subscription

if E(sy) 2 E(sy). This definition conforms with
tﬁe definition of covering for conjunctive subscriptions
known from literature, e.g., (Miihl & Fiege 2001).

Excluding the case of removing the root node in
a subscription tree, there is only one kind of pruning
leading to a more general subscription:

Remove a child of a conjunctive node in a sub-
scription tree.

An example is given in Figure 3. There we have
illustrated the same subscription s; as in Figure 2
when removing node D that is a child of conjunctive
node J. This pruning operation leads to sg, which, in
contrast to original subscription s;, describes inter-
est in all used books conforming to the other criteria
(Title and Ending Within).

G
AND

T

titlelike "Harry Potter" OR endingWithin < 1 day
A H

NG

AND AND

SN N

condition = NEW price< 15.0 price < 10.0 condition = USED
B c D E

Figure 3: Valid pruning of s; leading to sg

Removing a child of a disjunction is not a valid
pruning as shown in Figure 4(a). There we show sub-
scription s; (cf. Figure 2) when removing node J,
the child of a disjunction. After restoring the general
subscription tree properties (subsuming consecutive
operators and eliminating unary operators (Bittner
& Hinze 2005b)), the new subscription s7 consists of
only one conjunction as shown in Figure 4(b). How-
ever, it holds E(s7) 2 E(s1), e.g., any event message
describing used books does not fulfil s; but s;. Thus,
this removal of node J does not lead to a more general
subscription and is invalid.

However, our valid pruning option includes remov-
ing a complete disjunction in subscription trees: Dis-
junctions are always (except if they are a root node)
the child of a conjunction due to our subsuming of
consecutive operators. Hence, this option of removing
a disjunction is included in our single pruning rule.

Furthermore, we can apply subscription tree prun-
ing to pure conjunctive subscriptions. We are able to
perform pruning in all cases, which makes our ap-
proach beneficial compared to current covering pro-
posal that strongly depend on registered (conjunc-
tive) subscriptions.

3.3 Generalization by Replacement

Our second proposal to generalize subscriptions is to
replace predicates p, by more general predicates py,
i.e., p; is covered by predicate p,. The determination
of coverings among predicates is relatively easy to cal-
culate and depends on the permitted operators. Some
examples are given in (Miithl 2001). However, the
overall approach of subscription covering (Miihl 2001)
is not applicable to arbitrary Boolean subscriptions.

The replacement of predicates results in decreas-
ing numbers of predicates to filter on in the predicate

s

titlelike "Harry Potter" OR endingWithin < 1 day
H

N

AND AND

SN

condition = NEW prlce< 15.0 price < 10.0 condition = USED
B D E

(a) Example of invalid prumng before restoration

AND
titlelike "Harry Potter"/ \ end|ngW|th|n <1day

condmon NEW pr|ce< 15.0

(b) Example of invalid pruning after restoration

Figure 4: Invalid pruning of s; leading to s7

matching step. However, it does not relieve subscrip-
tion matching since subscriptions retain their com-
plexity.

An example for the exploitation of coverings
(based on s; that is given in Figure 2) is the replace-
ment of predicate D by price < 15.0 leading to sg.

Replacements might also allow us to further mod-
ify resulting subscriptions. However, such modifica-
tions involve semantic knowledge (e.g., for subscrip-
tion sg books are always new or used), which we ne-
glect in our approach out of computational complex-
ity and space efficiency aspects that are crucial in
publish/subscribe systems (Bittner & Hinze 2005a).

We also do not focus on standard transformation
rules, e.g., the integration of predicate price < 15.0
of sg into the conjunctive root node G. We could in-
tegrate such transformations into our approach but
abstract from them in this paper to evaluate the ef-
fect of generalizations themselves.

3.4 Interconnection between Pruning and
Replacement

A more generalized view on the presented pruning
and replacement methods reveals their interconnec-
tion: Pruning could be seen as a replacement of pred-
icates or whole subtrees by the most general predicate
P+, which is fulfilled by each event message.

In a conjunctive node we can omit a child p,, which
is fulfilled by all event messages, without changing
the set of events fulfilling this conjunctive expression.
This behavior is described by our pruning rule.

If a child of a disjunctive node is the most general
predicate p,, the whole disjunction is fulfilled by all
event messages. Thus, we can replace this disjunctive
node by p,. In turn, we are able to remove p, since it
is child of a conjunctive node (if it is not a root itself).
This describes the removal of a disjunctive node.

However, in this paper we distinguish between
pruning and replacement because the computational
effort required for their calculation is rather different
(Section 5).

After this introduction to subscription generaliza-
tion and two particular generalization methods, we
introduce our method of estimating the selectivity of
subscriptions in the next section. This estimation is
an integral part of our automatic generalization algo-
rithm, which is presented afterwards in Section 5.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

4 Estimated Selectivity

Our later proposal for automatic subscription gener-
alization (Sect. 5) is merely based on the selectivity
of predicates. Predicate selectivity allows us to suc-
cessively estimate the selectivity of a subscription.

4.1 Calculation of Estimated Selectivity

We can calculate the selectivity of predicates based on
historical information: For each predicate we main-
tain a counter that is increased whenever this partic-
ular predicate is fulfilled by an incoming event mes-
sage'. Dividing this counter by the total number of
filtered event messages leads to the selectivity of pred-
icates. For newly registered subscriptions involving
unused predicates we can estimate their selectivity,
e.g., as presented in (Guimaraes & Rodrigues 2003).
Thus, for predicates p, we can compute their selec-
tivity sel(p,) both space and time efficiently.

The calculation of the selectivity sel(s,) of general
Boolean subscriptions s, would involve a huge com-
putational effort requiring the analysis of all incoming
event messages in respect to all registered subscrip-
tions. Hence, we should focus on a simple method to
estimate the selectivity sel™(s;) of subscriptions s,.

Our selectivity estimation sel™(s,) for a subscrip-
tion s, consists of three easily computable values de-
scribing the minimal possible sel™" (s,), the average
sel®™9(s,,) (assuming a uniform distribution of all pos-
sible event messages and independent attribute val-
ues as well as predicates) and the maximal possible
sel™® (s,) selectivity:

52) = (5el™"(s,), 5el"9(s,), se

For all predicates p, we can calculate their selectivity
as described at the beginning of this subsection (count
fulfilling event messages) and it holds

selmin(pz) = 5el%9(py) = sel™ (p,) = sel(ps)

We can recursively compute our selectivity estimation
based on Boolean operators. For a binary conjunction
the calculation works as follows

Selmin(a Ab) = Inin(O7 selmm(a) + Selmm(b) — 1)
Selavg(a A b) = gel®V9 (a) * Sel(wg(b)
sel™*(anb) = min(sel™*(a), sel™* (b))

sel™("™ (s2))

A binary disjunction leads to

max(sel™"(a), sel™" (b))
sel®(a) + sel®9(b) —
sel®9(a) x sel®9(b)

min(1, sel™*(a) 4+ sel™**(b))

sel™"(a V b)
sel®(aVb) =

sel™™(aVb) =

Our filtering approach for Boolean subscrip-
tions (Bittner & Hinze 2005a, Bittner & Hinze 2005b)
subsumes consecutive binary operators in subscrip-
tion trees to n-ary ones. We can generalize the
former calculations for the binary case to work with
n-ary operators.

Calculating the described estimations for all sub-
trees of a subscription tree of s, finally leads to the
required selectivity estimate sel™(s;). We have illus-
trated the estimate for our example subscription s;
in Figure 5. Selectivities are rounded in the figure;
we have given the selectivity of predicates only once
(they are derived from our experiments whose setup
is described in Section 6.1).

LFor shared predicates this is done only once.

G: (0.0, 7.7e=4, 0.01)
AND

title like "Harry Potter" OR endingWithin < 1 day
A:0.01 H:(0.7,0.77, 1.0) F:0.1

I: (0.13, 0.19, 02) / \1(07072 0.8)

condition = NEW price < 15.0 price < 10.0 condition = USED
B: 0.2 C:0.93 D: 0.9 E: 0.8

Figure 5: Example of estimating selectivity for s;

4.2 Meaning of Estimated Selectivity

Our selectivity measure sel™(s,) is an estimate of the
real selectivity sel(s,) of s,. It holds for all distribu-
tions of values in event messages and for all depen-
dencies among attributes.

The value sel™**(s,) always describes the case
that F(s,) is maximal: In case of a binary conjunc-
tion, the smaller set of event messages fulfilling a
subexpression is a subset of the larger set of fulfill-
ing event messages. For a binary disjunction, both
sets are disjoint.

On the contrary, se sz) describes the case of
a minimal F(s,): For a binary conjunction, the sets
of fulfilling event messages of subexpressions exclude
each other to the maximal possible extend. In case
of a binary disjunction, the smaller set is included in
the larger one.

Finally, sel®9(s,) assumes that all possible event
messages are equiprobable and subexpressions of sub-
scriptions do not depend on each other: For a binary
conjunction, the selectivity of one subexpression holds
for event messages fulfilling the other subexpression.
The same is true for the disjunctive case.

The real selectivity sel(s;) of s, is always located
between the two estimated extremes sel”™"(s,) and
sel™* (s,). The average case sel®¥(s,) describes
which extreme is more likely if assuming independent
predicates. For the subtree rooted in the disjunctive
node H in Figure 5, it holds

lmin(

sel®(H) = (0.7,0.77,1.0)
Thus, the described average case is nearer to the esti-
mated minimal than to the maximal selectivity value.
Our selectivity measure allows us to develop an
automatic generalization algorithm targeting at the
generalization of subscriptions according to the esti-
mated effect on selectivity. This directly influences
the increase in network traffic for event routing. We
present this algorithm in the next section.

5 Automatic Generalization Algorithm

Our optimization algorithm targets an automatic gen-
eralization of subscriptions. Our goal is to decrease
the computational costs of event filtering without in-
creasing the network traffic to a large extend.

To achieve this goal, we generalize subscriptions s,
to sy, which, in turn, might degrade their real selec-
tivity as well as our estimated selectivity. We require
a measure for this degradation that allows us to qual-
ify the effect of generalizations. Such a measure is
presented in the next subsection. Since the real se-
lectivity of subscriptions is too hard to calculate (cf.
Section 4) and thus its degradation A(s,, s,), we uti-
lize its estimated counterpart to derive an estimated
degradation A®(s,,s,).

201

CRPIT Volume 48

202

5.1 Selectivity Degradation

There are two options to describe the degradation
AR (sg,s,) of our estimated selectivity between an
original subscription s, and a generalized one s,:

1. Absolute selectivity degradation

2. Relative selectivity degradation

Here we focus on the absolute degradation because
it describes the real influence of generalizations on
network traffic. Our absolute measure describes the
change in selectivity as the maximal difference be-
tween the components of our estimation:

A (sz,8,) = max(sel™"(s,) — sel™™(s,),
sel™(sy) — sel™(sy),

sel™ % (sy) — sel™(s;))

Its advantage compared to a relative measure is
that degradation is expressed by its real change, i.e.,
AR (sg, s,) comprises the expected additional number
of event messages fulfilling the generalized subscrip-
tion s, compared to s,.

A relative measure would, e.g., handle a decrease
in selectivity in a leaf node p, when generalizing to
py from sel(p;) = 0.4 to sel(p,) = 0.8 in the same
way as a decrease from sel(p,) = 0.04 to sel(py) =
0.08. Thus, it does not reflect the real influence of
generalization on network traffic.

5.2 Weak Points of Selectivity Degradation

We are aware about the difference between the esti-
mated A® (s, s,) and the real degradation A(sg,sy).

Our estimated measure only describes the degra-
dation in the minimal possible, average and maximal
possible selectivity. The real selectivity might change
more or less depending on dependencies among at-
tributes. When generalizing a subscription s, to s,
the worst case real degradation is

A(sz,8y) = sel™(s,) — sel™™(s,)

However, calculating the real degradation would be
costly in both computational and memory resources.
In publish/subscribe systems these resources are very
scarce due to large subscription numbers to handle
and high frequencies of incoming event messages.

Our generalization approach with its estimated se-
lectivity degradation has still several advantages com-
pared to existing covering and perfect merging tech-
niques, e.g., (Mihl & Fiege 2001): Our approach
might not find the optimal generalization in respect to
real selectivity degradation, but it is always decreas-
ing the size of index structures in brokers. Covering
and perfect merging target a reduction of subscrip-
tion numbers, which heavily depends on registered
subscriptions and is not possible in all cases. Our
approach works for all subscriptions, its optimization
potential is merely depending on actual dependencies
among attributes in event messages.

5.3 Automatic Pruning

Automatic pruning is done in broker components
whenever subscriptions forwarded from neighbor bro-
kers require too many resources. In order to ex-
ecute subscription updates according to estimated
degradations, we utilize a priority queue storing
(A™(sg,8y),85) tuples. For each incoming subscrip-
tion s, we calculate the best pruning leading to s,.
Note that we only need to calculate A¥(s,,s,) and
not to determine s,,.

To perform pruning in case of exhausted resources,
we generally

1. Extract the first element containing subscription
sz out of our priority queue

Perform the best pruning of s, leading to s,
Remove s, from index structures

Insert s, into index structures

AR S

Insert (A™(sy,s.),sy) into the priority queue,
whereas s, states the best pruning of s,

This process is executed as long as enough memory
resources have been freed?.

The selectivity sel(p,) of predicates p, might
change over time. To incorporate this changing into
our pruning process, we have to compare the actual
estimated degradation of a pruning operation of sub-
scription s, to the value stored in the priority queue.
If it has changed to a large extend (or is not near
the minimum anymore), we can skip pruning s, and
reinsert s, into the queue associated with the newly
calculated degradation.

In case of shared predicates p, our pruning ap-
proach is likely to remove p, in all subscriptions con-
taining this predicate within a short time. This is
due to the general tendency of removing general be-
fore more selective predicates. Thus, all of these little
selective predicates should be removed early in the
pruning process and also relieve predicate indexes.

5.4 Automatic Replacement

Automatic replacement involves the determination of
coverings among predicates. Generally, we can re-
place predicates p, by all covering predicates p,. The
less selective p, (chosen to replace p,), the more our
estimated selectivity degradation changes.

However, to effectively decrease memory usage,
we need to remove a predicate from predicate index
structures®. Otherwise, we do not save memory re-
sources because, in contrast to pruning, subscriptions
retain their complexity. Thus, the size of subscription
index structures remains the same.

Since predicates p, might be shared among sub-
scriptions, a removal of p, from predicate index struc-
tures is only possible if all subscriptions involving p,
replace its occurrence with p,. This involves compu-
tations of selectivity degradation for all subscriptions
involving p, in order to find the best overall replace-
ment option (thatwhich should be performed first).

This property shows that the computational ef-
fort required for predicate replacement is much higher
than the one required for subscription tree pruning.
Additionally, pruning subscription trees leads to re-
leasing more memory resources. Hence, subscription
tree pruning should be preferred over predicate re-
placement as long as it does not degrade selectivity
to a large extend.

6 Experiments and Evaluation

In this section, we present an evaluation and analysis
of the automatic subscription tree pruning approach
presented in Section 5.3. We focus on this general-
ization method due to its advantages compared to
predicate replacement as shown in Section 5.4.

In the next subsection, we present our experimen-
tal setup. We show and analyze our experimental
results in Section 6.2 and Section 6.3, respectively.

2We should execute Step 3 and Step 4 in batch to allow for a
more efficient pruning.

SWe might be able to save memory in subscription indexes due
to implementation-specific memory overhead. Generally, we would
remove one entry in the predicate subscription association table for
a covered predicate, but reinsert one for the covering predicate.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

6.1 Experimental Setup

In several application areas requiring pub-
lish/subscribe mechanisms, e.g., healthcare (Jung
& Hinze 2005) and electronic commerce (Cilia &
Buchmann 2002), more expressive than purely
conjunctive subscription languages are required.
In our experiments we focus on the popular ap-
plication of online auctions, which particularly
need active functionalities for an efficient dissem-
ination of process-related information (Cilia &
Buchmann 2002).

6.1.1 Event Messages

To obtain realistic data for our experiments we have
analyzed auctions of fiction books offered on eBay*
on 8 July 2005. Our analysis focused on attributes
shown in Table 1.

Table 1: Overview of attributes for book auctions

Attribute Example Values

Category Fantasy 22

Format Hardcover 4

Special Attribute Signed 2

Condition New, used 2

Ending Within 1 hour 0 sec...10 days
Price $0.99 $0.01...%$1000.00
Buy It Now Yes, no 2

Bids 1 0...100

We have been able to determine the exact number
of books for all combinations of Category®, Format,
Special Attribute and Condition. Furthermore,
we extracted the number of books in all categories
for 2 values of Buy It Now, 15 ranges of Price and
16 ranges of Bids (based on the search functionali-
ties offered by eBay). For actual values in these two
ranges we assume a uniform distribution, e.g., prices
of all fantasy books between $5.00 and $6.00 (ap-
proximately 7% of all fantasy books) are uniformly
distributed in this range.

For prices and bids we compared the distribution
of completed and active auctions and realized only
minor differences®. Thus, we used the distribution
derived from active listings in our experiments. For
the attribute Ending Within we assume a random
distribution between 1 minute and 10 days.

We further assume 5 times less authors than books
and 10% of all authors have published books in more
than one category. The probability of multiple book
titles is assumed as 1%. We expect authors and book
titles to be given correctly in event messages (e.g., as
achievable by utilizing a book database when offering
items). We also experimented with other assumptions
leading to similar results as presented later.

6.1.2 Subscriptions

Subscriptions in our online auction scenario poten-
tially cover a wide range of user interests. In our eval-
uation we assume three different subscription classes:

4http://www.ebay.com/
5We only looked at the first level of categories.
6Slightly increased bids and prices in completed auctions.

Subscription class 1. Users are interested in a cer-
tain book title. According to the condition (new,
used) of the copy of the book, they want to pay
a different price. To avoid unnecessary notifica-
tions, users want to be notified one day before
the end of the auction.

Subscription class 2. Again, users are interested
in a certain book title and want to be notified
one day before an auction ends. The difference to
subscription class 1 is that users further distin-
guish between different formats, i.e., hardcover
and softcover.

Subscription class 3. A collector is interested in
books of a certain category, but also of a par-
ticular author. He wants to be notified one hour
before the end of an auction offering a signed
book copy without any bids. Furthermore, he
wants notifications about signed books conform-
ing his interests if they are Buy It Now items.

Similarly to event messages, we assume that authors
are given correctly in subscriptions. To model sub-
scriptions involving only parts of a book title, we re-
duce the number of possible titles and assume 100
times less titles than active auction items. We also
experimented with other assumptions leading to sim-
ilar results as presented later.

6.2 Experimental Results

In our experiments we analyze the interconnection be-
tween memory usage and network traffic when per-
forming subscription tree pruning. To describe mem-
ory requirements, we use the measure of the total
number of predicates registered with the system.

We present this measure in a relative manner, i.e.,
we show the portion of predicates compared to the
original situation without applying subscription gen-
eralization. Analyzing the number of predicates al-
lows us to directly derive the behavior of the total
memory requirements for subscription index struc-
tures: For each predicate we can remove one entry
from the predicate subscription table. Furthermore,
subscription trees do not store removed predicates
anymore’. Thus, memory requirements for subscrip-
tion index structures at least decrease in the same
manner as predicate numbers.

We neglect the memory for predicate index struc-
tures in our analysis due to their high dependency
on utilized data types, supported operators and the
variety of implementation variants.

For the description of network traffic we utilize the
total selectivity of registered subscriptions. This mea-
sure directly implies the number of matching events,
which in turn implies the network traffic created in
event routing.

We separately analyze the three types of subscrip-
tions described in Section 6.1.2 by randomly creating
subscriptions conforming to the respective structure.
Additionally, we present a setting with randomly cho-
sen subscriptions out of all three classes.

Our results are presented in Figure 6 to Figure 9.
Abscissae show the portion of performed pruning op-
erations. Thereby the maximal possible pruning (1.0)
describes the case that a further pruning removes a
complete subscription, i.e., a subscription either con-
tains of only one predicate or of a disjunction.

Left ordinates in the figures describe the relative
decrease in predicates compared to the original situa-
tion without any pruning (0.0); right ordinates show
the total selectivity of registered subscriptions.

7Subscription trees are actually reduced even more, since inner
nodes might be deleted when removing predicates.

203

CRPIT Volume 48

204

In our experiments we used 10,000 subscriptions
and created 1,000,000 event messages conforming to
the derived distribution in online book auctions (Sec-
tion 6.1.1). The determination of initial selectivities
was based on 100, 000 created event messages.

We do not show individual measuring points in
our figures due the large number of performed prun-
ing operations (30,000 to almost 84,000 in our dif-
ferent settings) leading to the same amount of single
measurements.

09 — —_—— 0.8
—— Predicates (| eft ordinate)

g 08 — Selectivity (right ordinate) 1 07
5 o7 il
8 /o
5 06 >
= 105 3
w05t
: los &
e o4t
g 103 £
g 03] g
B 02 ’ {102
m ’/
c oyl ! o1
0 : ! ' : L L L I L

0
0 010203040506070809 1
Relative pruning

Figure 6: Subscription class 1 - influence of pruning

The behavior of subscription class 1 is given in Fig-
ure 6. Looking at the total selectivity of predicates,
we realize a slight increase followed by a sharp bend
and a fast increase. The bend occurs when approxi-
mately 75% of possible pruning operations have been
performed (40,000 in total). At this point, the total
selectivity of registered subscriptions has changed by
0.009; relative to their original selectivity (0.065) this
is an increase by 14.3%.

Looking at memory requirements, we realize an
always increasing behavior. Different gradients result
out of pruning different subtrees. Due to the same
pattern in subscriptions, similar subtrees are pruned
one after the other before proceeding with another
one. When reaching the sharp bend, nearly 77% of
the predicates, i.e., memory for subscription indexes,
have been removed. Thus, a reduction of subscription
indexes to 23% of their original size has resulted in a
relative increase of selectivity by only 14.3%.

1 T T T T T T T 1
—— Predicates (Ieft ordinate)
R 09 | e Selectivity (right ordinate) ’
5 o8 4 08
8 07t -
c 06 r] 0.6 E
g . j) :
05 : k)
g 04 r ! 104 go
© / s)
g 03} =
5] /
3 02 [qo02
01 b /
0 I I I I I I I I I

0
0 010203040506070809 1
Relative pruning

Figure 7: Subscription class 2 - influence of pruning
The behavior of subscription class 2 is depicted in

Figure 7. We realize a similar behavior as for sub-
scription class 1: The sharp bend occurs after nearly

88% of performed pruning operations (80,000 in to-
tal). At this point selectivity has increased by 0.012
(13.3%). Memory requirements of subscriptions in-
dexes could be reduced to 17% of their original size.

Compared to subscription class 1, the sharp bend
in the selectivity curve occurs after a larger amount of
pruning operations has been performed. This directly
results in greater savings of main memory resources
compared to subscription class 1 before selectivity de-
creases sharply.

0.8 \ \ ; ‘ : 1
—— Predicates (leftord.)

@ 07 Selectivity (right ord.) / 4 0.9

1 08
3 j 107 5
c 05¢ i 106 =
g o4l { 05 %
S ”,’ i ﬁ
8 o3l 04 I
o ‘ 103 F

T i 1 0.2

= olr 101

[CAmseee e W— ' | L L L 0

0 010203040506070809 1
Relative pruning

Figure 8: Subscription class 3 - influence of pruning

Subscription class 3 shows a faster decreasing to-
tal selectivity than the two previous classes of sub-
scriptions. This is depicted in Figure 8: The sharp
bend in selectivity occurs after performing almost
53% of pruning operations (30,000 in total). Up to
this point, selectivity increased by 0.016; memory for
subscription indexes could be reduced by 37%.

From data in Figure 8, we observe that the gradi-
ent of the selectivity curve increases in steps. These
steps result from the inaccuracy of our selectivity
measure in combination with the real distribution of
event messages: A small amount of pruning opera-
tions abruptly increases total selectivity to a large
extend (large gradients in curve). Succeeding prun-
ing operations stick to the predicted small decrease
in selectivity until the next step occurs.

In this particular class of subscriptions, the rea-
son for this effect is the uneven distribution of signed
copies among different categories of books.

09 T T T T T T T 1
—— Predicates (left ordinate) ;

g 08| —— Selectivity (right ordinate) /7 09

8 o7t 7 qo8

2 o6l S RV
c 106 =2
2 05 g
g {os 3
= 04

g [o4 3
g 03 r ;‘ 103 =
3 02y 102

o 01 R 101

0 —_— 0
0 010203040506070809 1
Relative pruning

Figure 9: All classes - influence of pruning

In Figure 9 we illustrate the behavior of selectivity
and memory usage in a setting with randomly cre-
ated subscriptions conforming to our three subscrip-
tion classes. There the sharp bend in the selectivity

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

curve occurs after performing 77% of possible prun-
ing operations (approx. 50,000 in total). Up to this
point, selectivity increases by 0.026 (29%). We realize
a strong decrease in memory requirements: subscrip-
tion indexes could be reduced to 34% of their size.

These results of random subscriptions behave bet-
ter than expected when considering the results of the
three single runs (Figure 6 to Figure 8). This is due to
the larger number of pruning operations that are pos-
sible for subscriptions of class 1 and class 2 compared
to subscriptions of class 3 .

6.3 Discussion of Experimental Results

An overview of our results is given in Table 2. We
present our four settings in columns 2 to 5 of the
table; rows show six parameters we could derive:

e Overall possible number of pruning operations
e Original selectivity of registered subscriptions

e Relative number of pruning operations at sharp
bend compared to possible pruning operations

e Relative increase in selectivity at sharp bend
compared to original selectivity

e Total selectivity increase at sharp bend com-
pared to original selectivity

e Relative decrease in predicates at sharp bend
compared to original number of predicates

Table 2: Overview of results for our four test settings
(the last two parameters describe changes in selectiv-
ity and memory at sharp bends)

Parameter Class 1 Class 2 Class 3 All
Number prunings 40,000 80,000 30,000 50,117
Original selectivity 0.065 0.089 0.006 0.089
Rel. prunings 0.75 0.875 0.525 0.771
Rel. sel. increase 0.143 0.133 2.589 0.29
Total sel. increase 0.009 0.012 0.016 0.026
Rel. predicates 0.667 0.833 0.368 0.663

Our results show that subscription pruning is an effec-
tive way of decreasing the memory required for sub-
scription indexes without increasing the selectivity of
subscriptions to a large extend: For random subscrip-
tions in our book auction application, we could reduce
subscription indexes by 66% (34% of their original
size) with increasing their selectivity by only 29%.

The applied pruning algorithm is straightforward
and does solely depend on selectivity of predicates.
This makes our optimization method efficient and
does not require a large amount of memory.

The efficacy of subscription pruning depends on
the structure of subscriptions and the selectivity of
their predicates. Especially in cases of combining
highly selective and more general predicates in sub-
scriptions, subscription pruning leads to very good
results. That is, we can remove various predicates
without largely decreasing overall selectivity (which
implies network load). Generally, little selective pred-
icates are pruned early without affecting overall se-
lectivity to a large extend. This especially holds if
they are located in higher levels of subscription trees.
However, the effect of pruning also depends on the
structure of subscriptions, i.e., the usage of operators.

Consequently, subscriptions of class 1 and class 2
show better results than subscriptions of class 3. This
is because predicates regarding Ending Within and
Title are quite restrictive. Most of the other parts
of subscription trees can be pruned without affecting
selectivity to a large extend. Subscriptions of class 2
contain more little selective predicates than those of
other classes leading to relatively more pruning oper-
ations before the sharp bend in selectivity.

For subscriptions mainly involving little selective
predicates (e.g., those of class 3), subscription tree
pruning can be used, too. Then, the correlation be-
tween saved memory resources and increased network
usage is not that beneficial as in the former case, but
pruning still results in memory requirements decreas-
ing by 37% before strongly affecting selectivity. A se-
lectivity of 1.0 is reached in this case after all possible
prunings, because remaining subscription trees query
for category that is a relatively general predicate.

We also ran experiments using different settings
than presented in Section 6.1. They resulted in
other magnitudes of selectivity but similarly develop-
ing curves. Especially the assumption of high selec-
tivities for book titles results in increased selectivity.

Several application scenarios normally require sub-
scriptions involving both highly selective and rela-
tively general predicates: Subscriptions in our auction
setting involve predicates regarding Author or Title
(high selectivity) but also predicates on Bids, Buy It
Now or Format (low selectivity).

Healthcare applications often require notifications
in case of critical circumstances, e.g., abnormal blood
pressure parameters or, more general, emergencies
in intensive care units. These circumstances occur
rarely, i.e., specifying predicates are highly selective.
Other predicates, e.g., describing identifiers of mon-
itored patients or names of medical conditions, are
more general.

We can also find the same pattern in subscriptions
for facility management purposes, e.g., when mon-
itoring buildings to detect burglaries. Such events
happen rarely (implying highly selective predicates
describing, e.g., breakage of glass) whereas ordinary
measurements from sensors arrive periodically and
are leading to a low selectivity of predicates speci-
fying, e.g., identifiers of certain buildings.

This shows that the structure of subscriptions in
various application areas beneficially influences the ef-
fect of our subscription generalization approach. Con-
sequently, subscription generalization is a valuable
mechanism to increase scalability and efficiency in dis-
tributed publish/subscribe systems.

7 Conclusions and Future Work

In this paper we have proposed a novel routing opti-
mization approach for distributed publish/subscribe
systems. Our approach, subscription generalization,
works on arbitrary Boolean subscriptions in com-
bination with the well-known distribution scheme
subscription forwarding. Subscription generalization
aims at decreasing the complexity of subscriptions
and thus at reducing the memory requirements in fil-
tering broker components. In turn, the selectivity of
subscriptions is decreased. In contrast to previous
approaches, our proposal works on all kinds of reg-
istered subscriptions independent of their similarity
and operators used in subscriptions.

We have presented two particular subscription
generalization methods: pruning subscription trees
and predicate replacement. Our pruning option
relieves more memory resources than replacement
whereas predicate replacement affects selectivity less
than pruning. For subscription pruning, we have pro-

205

CRPIT Volume 48

206

posed an algorithm automatically determining the or-
der of pruning operations based on selectivities.

In order to calculate selectivities of subscriptions,
we proposed a simple estimation approach focussing
on the minimal, maximal and expected average selec-
tivity of subscriptions. Our estimation is easily com-
putable and requires little additional memory, which
is an important quality criteria in publish/subscribe
systems due to the large number of subscriptions.

To evaluate subscription generalization, we ran a
series of experiments and evaluated our results: In
an online auction scenario, subscription tree pruning
is an effective way to decrease memory usage in bro-
ker components. For a typical set of subscriptions for
online auctions, we could decrease memory require-
ments by 66% while increasing selectivity (and thus
network traffic) by only 29%.

Subscription generalization leads to particularly
beneficial results when combining highly selective and
more general predicates in subscriptions. We can find
subscriptions conforming these criteria in several ap-
plications, e.g., e-commerce, healthcare and facility
management. Thus, subscription generalization is a
valuable mechanism to increase scalability and effi-
ciency in distributed publish/subscribe systems.

In the future we plan to integrate subscription gen-
eralization as routing optimization in a distributed
publish/subscribe service. Then, we want to run
an advanced series of experiments directly evaluating
network traffic, memory requirements and efficiency.

References

Bittner, S. & Hinze, A. (2004), Classification and
Analysis of Distributed Event Filtering Algo-
rithms, #n ‘Proceedings of the 12th Interna-
tional Conference on Cooperative Information
Systems’, Agia Napa, Cyprus, pp. 301-318.

Bittner, S. & Hinze, A. (2005a), Investigating the
Memory Requirements for Publish/Subscribe
Filtering Algorithms, Technical Report 03/2005,
Computer Science Department, University of
Waikato.

Bittner, S. & Hinze, A. (2005b), On the Benefits
of Non-Canonical Filtering in Publish/Subscribe
Systems, in ‘Proc. of the 25th IEEE Inter-
national Conference on Distributed Computing
Systems Workshops’, USA, pp. 451-457.

Carzaniga, A., Rosenblum, D. S. & Wolf, A. L.
(2001), ‘Design and Evaluation of a Wide-Area
Event Notification Service’, ACM Transactions
on Computer Systems (TOCS) 19(3), 332-383.

Carzaniga, A., Rutherford, M. J. & Wolf, A. L.
(2004), A Routing Scheme for Content-Based
Networking, in ‘Proc. of the 23rd IEEE Confer-
ence on Computer Communications’, China.

Chand, R. & Felber, P. A. (2003), A Scalable Proto-
col for Content-Based Routing in Overlay Net-
works, in ‘Proceedings of the Second IEEE Inter-
national Symposium on Network Computing and
Applications’, Cambridge, USA, pp. 123-130.

Chen, Z., Koudas, N., Korn, F. & Muthukrishnan,
S. (2000), Selectively Estimation For Boolean
Queries, in ‘Proc. of the 19th Symp. on Prin-
ciples of Database Systems’, USA, pp. 216-225.

Cilia, M. & Buchmann, A. P. (2002), ‘An Active
Functionality Service For E-Business Applica-
tions’, ACM SIGMOD Record, Special Issue on
Data Management Issues in FElectronic Com-
merce 31(1), 24-30.

Crespo, A., Buyukkokten, O. & Garcia-Molina, H.
(2003), ‘Query Merging: Improving Query Sub-
scription Processing in a Multicast Environ-
ment’, IEEE Transactions on Knowledge and
Data Engineering 15(1), 174-191.

Fabret, F., Jacobsen, A., Llirbat, F., Pereira, J.,
Ross, K. & Shasha, D. (2001), Filtering Algo-
rithms and Implementation for Very Fast Pub-
lish/Subscribe Systems, in ‘Proc. of the 2001
ACM SIGMOD International Conference on
Management of Data’, USA, pp. 115-126.

Guimaraes, M. & Rodrigues, L. (2003), A Genetic
Algorithm for Multicast Mapping in Publish-
Subscribe Systems, in ‘Proc. of the 2nd IEEE
International Symposium on Network Comput-
ing and Applications’, USA, pp. 67-74.

Halevy, A. Y. (2000), ‘Theory of Answering Queries
Using Views’, ACM Special Interest Group on
Management of Data Record 29(4), 40-47.

Hanson, E. N., Chaabouni, M., Kim, C.-H. & Wang,
Y.-W. (1990), A Predicate Matching Algorithm
for Database Rule Systems, in ‘Proc. of the
1990 ACM SIGMOD International Conference
on Management of Data’, USA, pp. 271-280.

Hinze, A. (2003), A-MEDIAS: Concept and Design of
an Adaptive Integrating Event Notification Ser-
vice, PhD thesis, Freie Universitat Berlin, Insti-
tute of Computer Science.

Jung, D. & Hinze, A. (2005), A Mobile Alerting Sys-
tem for the Support of Patients with Chronic
Conditions, in ‘Proc. of the 1st Euro Conference
on Mobile Government’, UK, pp. 264-274.

Mathieson, I., Dance, S., Padgham, L., Gorman, M.
& Winikoff, M. (2004), An Open Meteorological
Alerting System: Issues and Solutions, in ‘Proc.
of the 27th Australasian Computer Science Con-
ference’, Dunedin, New Zealand, pp. 351-358.

Miihl, G. (2001), Generic Constraints for Content-
Based Publish/Subscribe Systems, in ‘Proc. of
the 6th International Conference on Cooperative
Information Systems’, Italy, pp. 211-225.

Miihl, G. (2002), Large-Scale Content-Based Pub-
lish/Subscribe Systems, PhD thesis, Technische
Universitdat Darmstadt.

Miihl, G. & Fiege, L. (2001), ‘Supporting Cov-
ering and Merging in Content-Based Pub-
lish/Subscribe Systems: Beyond Name/Value
Pairs’, IEEE Distributed Systems Online 2(7).

Pereira, J., Fabret, F., Llirbat, F. & Shasha, D.
(2000), Efficient Matching for Web-Based Pub-
lish/Subscribe Systems, in ‘Proceedings of the
7th International Conference on Cooperative In-
formation Systems’, Eilat, Israel, pp. 162-173.

Poosala, V. & Toannidis, Y. (1997), Selectivity Es-
timation Without the Attribute Value Indepen-
dence Assumption, in ‘Proceedings of the 23rd
International Conference on Very Large Data
Bases (VLDB)’, Athens, Greece, pp. 486-495.

Wang, Y.-M., Qiu, L., Verbowski, C., Achlioptas,
D., Das, G. & Larson, P. (2004), ‘Summary-
based Routing for Content-based Event Distri-
bution Networks’, ACM SIGCOMM Computer
Communication Review 34(5), 59-74.

Yan, T. W. & Garcia-Molina, H. (1994), ‘Index Struc-
tures for Selective Dissemination of Information
Under the Boolean Model’, ACM Transactions
on Database Systems (TODS) 19(2), 332-364.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

The Challenge of Creating Cooperating Mobile Services:
Experiences and Lessons Learned

Annika Hinze!

George Buchanan?

!Department of Computer Science, University of Waikato, New Zealand
hinze@cs.waikato.ac.nz
2UCL Interaction Centre, London, United Kingdom
g.buchanan@cs.ucl.ac.uk

Abstract

In this paper, we present a mobile infrastructure for
cooperating information services. This infrastructure
is demonstrated through the example of a Tourist
Information Provider (TIP) system. TIP delivers
context-sensitive information from a variety of ser-
vices to the user. The underlying communication is
event-based to support continually changing informa-
tion.

We demonstrate two examples of the use of
context-sensitive services in TIP: first, the presen-
tation of sight information using a Zoomable Map
service which links into a detailed information ser-
vice; second, the exploitation of contextual informa-
tion to deliver targeted recommendations to the user.
Through these examples, we demonstrate the require-
ments for mobile multi-service systems that support
flexible cooperating services.

1 Introduction

Complex information systems are increasingly re-
quired to support the delivery of information to mo-
bile devices. Studies of these devices in use have
demonstrated that the information displayed to the
user needs to be limited in size and focussed in con-
tent (Buchanan & Jones 2000). Furthermore, the pre-
sented information is often dynamic — even changing
continuously. Event-based communication provides
strong support for selecting relevant information for
dynamic information delivery. Therefore, an event-
based system meets many requirements for mobile
information systems.

In this paper, we present a mobile infrastructure
for cooperating information services. The infrastruc-
ture uses an event-based communication layer to sup-
port continually changing information. This new in-
frastructure extends and enriches our earlier core sys-
tem by providing cooperating services, and additional
information and features to the mobile user. The ser-
vices had to be modular and loosely coupled to en-
able users to choose different services depending on
their travel context (e.g., displaying data on a map
or in textual form). This novel approach differs from
existing mobile information systems in its support
for open, componentised and cooperating information
services and its use of an event-based communications
that better support the supply of up-to-date data in
a fluid information environment.

Copyright (©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

The work reported here builds on our first-
generation stationary TIP 1.0 system, which was re-
ported in (Hinze & Voisard 2003, Hinze, Loeffler &
Voisard 2004). Previous work focussed on the in-
terplay of different event/information sources and
the event-based information delivery. The system
evolved through several versions undergoing consid-
erable changes; we refer to the new TIP version that
is introduced here as TIP 2.9.

This paper is structured as follows: In Section 2,
we demonstrate the core TIP system in use to high-
light the functional demands and constraints for the
design. We identify the challenges of cooperating
modular services, and define the focus of this paper.
In Section 3, we introduce our new conceptual design
for TTP 2.9. We discuss in detail two services coop-
erating with the TIP core system: the map service
and the recommendation services incorporated into
the second-generation TIP. This will be followed by
a technical examination of TIP 2.9, considering the
software’s implementation details (Section 4). Sub-
sequently, we discuss the issues identified and lessons
learned for inter-operating and cooperating services
in a mobile context (Section 5). In Section 6, we
review previous work in the field, and clarify the con-
tributions of the new TIP. The paper closes with a
summary and discussion of future work (Section 7).

2 TIP: The Core System

In this section, we briefly re-visit the TIP 1.0 system
in use (for more details on the early versions of TIP
see (Hinze et al. 2004, Hinze & Voisard 2003)). We
demonstrate the general principles of the TIP system
first in a usage scenario and then as conceptual ar-
chitecture. We conclude the section by highlighting
the challenges we faced when integrating cooperating
services into the TIP system.

2.1 TIP Usage Scenario

For clarity, we will explore the simple example of a
visitor Peter coming to New Zealand. Peter is a vis-
iting researcher from London. He has his own TIP-
enabled PDA, and uses it as an interactive guide to
assist his choice of where to visit. Peter is keen to
visit some historic buildings in New Zealand and is
generally interested in architecture. In our example
scenario, Peter is visiting the campus of the Univer-
sity of Waikato.

Peter has set up his profiles in TIP: choosing the
sight types of museums and campus buildings (in his
sight profile) with information topics of ’history’ and
"architecture’ (in his topic profile). The TIP system
will prioritize the display of sights of interest relevant
to his interests expressed in the sight profile. TIP
will only give general introductory information and

207

CRPIT Volume 48

208

-~ — -
ernet Explore 9:07 €3 ernet Explore 01 €3
http:ffherring.cs. wakato.ac iz 102 | @ http:ffherring.cs.walkato.acnz: 102 | @
The University of Waikato - i =

| General ____Imore..] i
This University is among = The Edurcational Library is ==
opened 24 hours, It

provides wide resource for
Education School

students.

New Zealand's fastest
growing ones. It has
almast 11,00 students,

architecture more...

Itz carnpus has three B
beautiful lakes.

history more...
=

Tho vinivercity hac hoon

view Tools @] 4§ % E|‘

The library is a modern 2
building; it has three
storeys, =

view Tools < € & o2 E|‘

(a) current location, (b) distant location,
with darker colour scheme with lighter colour scheme

Figure 1: TIP information delivery based on the
user’s location, interests, and travel history: (a) De-
livering information about user’s current location, (b)
Browsing for information about a distant location

information pertinent to the topics that Peter selected
in his topic profile.

When standing at the entrance to the University,
Peter’s TIP display gives general information about
the University. The display is shown in the screenshot
in Figure 1(a), which features our new mobile inter-
face of TIP. Peter can also browse for places that he
may want to visit but that are not directly at his cur-
rent location (see screenshot in Figure 1(b)). Peter
can obtain further travel possibilities, either further
away or on different themes by interacting with his
TIP display. On revisiting places Peter has been to
before, the system displays the latest information that
was given to Peter on his last visit.

2.2 TIP Core Concepts

TIP’s information delivery is based on the user’s con-
text: their location, personal profile describing inter-
est in (semantic) sight groups and topics, and the
user’s travel history. The system also considers a
sight’s context, such as its location and its member-
ship in predefined semantic groups of sights.

The TIP core system is implemented using an
event-based infrastructure combined with a location-
based service. See Figure 2 for a conceptual archi-
tecture of the TIP core system. The heart of the
system is the filter engine cooperating with the loca-
tion engine. The filter engine selects the appropri-
ate information from the different source databases
based on the user and sight context. Changes in
the user’s location are transmitted to the TIP server
(Steps O and O), where they are treated as events
that have to be filtered. For the filtering, the sight
context (Step 0) and the user context (Step) are
taken into account. The location engine provides geo-
spatial functions, such as geocoding, reverse geocod-
ing, and proximity search (Step O). For places that
are currently of interest to the user, the system deliv-
ers sight-related information (Step O).

In addition, notification about scheduled events,
such as opening hours of museums and theater pro-
gram information are offered by the system. Notifi-
cations about external events may also be given to
the users, e.g., about changed starting time for a the-
ater performance. Note that these kinds of events
are handled similar to the location events but follow
different characteristics: scheduled events occur infre-
quently compared to user-driven location events.

Information about sights and other spatial data

TIP — Server

opening user profiles
hours | Events DB Profile DB | system profiles

[Location Engine }:{ Filter Engine '7
Data Information
Collection Dissemenation
‘ Interface
i i User -
Mobile Devices Sight &
. . Locat
with TIP Clients ;3:,:?" ®© @ event

Informatio

Figure 2: Conceptual architecture of the TIP core
system: Component interactions

are stored in the spatial database; event-related infor-
mation is stored in the event database. The operations
of the filter engine are controlled by user profiles and
system profiles (stored in the profile database). TIP
uses information about users’ preferences and user-
sight-relations (such as delivered information and vis-
ited sights) for it’s information delivery. System pro-
files enable a flexible integration of different applica-
tions; this aspect of the system is described in more
detail in Section 3.1.

The system is implemented as a client-server ar-
chitecture, supporting desktop clients (as reported
in earlier publications) as well as mobile clients on
a hand-held device with appropriate interfaces (pre-
sented in this paper for the first time).

2.3 Challenges of Cooperating
Mobile Services

As described above, TIP delivers context-sensitive in-
formation to mobile users. Having developed the
TIP core, we discovered interesting additional fea-
tures with which we wished to enhance the sys-
tem. Considering the traveller application, one may
want to deliver and display the sight related infor-
mation in different forms. Options are, for exam-
ple, on map displays (Jones, Jones, Marsden, Patel
& Cockburn 2005) or using audio guides (Warren,
Jones, Jones & Bainbridge 2005). Often, travellers
would also like to interact with the system to plan
their journey or be inspired to visit new places. One
could envision using travel planners as pre-travel aids
and recommendations as interactive support during
journeys (Hinze & Junmanee 2005).

The challenges we identified for these enhance-
ments are threefold; the additional features should
be:

1. modular services that can be used in addition to
the core system, allowing the users to use differ-
ent services for similar purposes interchangeably
(e.g., for displaying guidance information using
maps or textual representation).

2. cooperating services that exchange context data
and information for the benefit of the system’s
user.

3. mobile services that can be used on typical hand-
held devices; preferably with little or no installa-
tion and maintenance overhead for the user.

In this paper, we demonstrate two examples of the
use of context-sensitive services in TIP: first, the pre-
sentation of sight information using a Zoomable Map

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

/\;

time & location time & location %
—
i Events Sight User]
Data Data Data 8
filtering |
: c
1 i ¢ ¢ o
: e
program logic ‘ event-based communication S %
\ E-
< interfaces H H H 3
sy | D] [] []
profiles | - ®
GPS location map-based recommendation g ‘q;
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, service display service service 53
n

Figure 3: Extended conceptual design of the TIP system: A mobile infrastructure for cooperating information

services

service which links into a detailed information ser-
vice; second, the exploitation of contextual informa-
tion to deliver targeted recommendations to the user.
We will analyse and demonstrate the requirements for
mobile multi-service systems, discuss the benefits of
the TIP approach and the lessons learned.

3 TIP Service Architecture — Design

In this Section, we first describe the conceptual de-
sign of the extended TIP system (in Section 3.1).
Then, we illustrate the functionality and interactions
of two services cooperating with TIP: a map service
(in Section 3.2) and a recommendation service (in Sec-
tion 3.3).

3.1 TIP Extended Conceptual Design

To support modular cooperating information services
in a mobile TTP environment, we developed a layered
conceptual architecture as shown in Figure 3.

As before, the heart of TIP still lies in the event
filter engine (for filtering) cooperating with the loca-
tion engine (for geocoding) (shown in the dashed area
on the left in Figure 3). The system profiles deter-
mine the interaction patterns and the functionality
of the system. Supporting variable system profiles
will enable a flexible integration of different applica-
tions — the TIP infrastructure could then be used for
a variety of differing applications, such as a museums
guide, an electronic learning environment, or a mobile
support for patients with chronic conditions (as sug-
gested in (Jung & Hinze 2005)). Details about the
design of system profiles can be found in (Hinze &
Voisard 2003).

For the Communication Layer, the inherent!
event-based communication of the core TIP system
design has to be modularized and extended into an
event-based communication infrastructure. All com-
munication is based on event messages that are for-
warded to the respective components or services. The
communication is either direct and unfiltered (e.g.,
forwarding of parameters), or controlled by the fil-
tering logic (e.g., selection of appropriate information
or service). Note that the event-based communica-
tion infrastructure will have support frequent location
events from a high number of users.?

! The origin and core of the filter engine is an event notification
service that is employed here to filter location-dependent events.

2We are currently evaluating these requirements of performance
and scalability for the event-based communication. Another issue
to consider is security and privacy. Both are currently addressed
on the application level as well as on the communication level.

The Data Layer holds user-related data as well as
data regarding the sights and information about ex-
ternal and scheduled events. User data and event data
are related to sight data by (often time-dependent)
references in location. For example, users visit
sights (i.e., locations) at certain times, which is then
recorded in their travel history. The opening hours of
a museum are described as scheduled events; similarly
the list of performances at a theater.

The Service Layer provides interfaces to different
types of services. Communication among services as
well as communication between the TIP core and
the services are channelled via the communication
layer. One basic service is a location service, here
shown as GPS-based service. Using the layer struc-
ture, it will be possible to interchangeably use differ-
ent location services that provide information about
the user’s current location: the service implementa-
tion and technical details (e.g., using GPS or wireless
LAN) are transparent to the other parts of the sys-
tem.

3.2 Cooperating Services: Maps in TIP

For users navigating in physical locations, maps can
provide vital information about the surrounding area.
On small physical devices, the display of detailed
maps within the confines of a limited screen area can
be problematic. We wished to assist the user’s con-
ception of their own context by supplementing the
existing TIP system with an interactive map. We
used a third-party Zoomable Map display tool that is
tailored for use on small displays (Jones et al. 2005).

We adapted the map display tool to be used as a
service in TIP. An example display of the Zoomable
Map interface in TIP is shown in Figure 4(a): the
sight at the current location is indicated by a colored
circle, which can be seen at the center of the screen-
shot. The Zoomable Map interface can also support
indicators for several locations, which would then ap-
pear as rings at the edges of the screen to indicate
nearby sights that are just off the visible map (for
clarity, we omit this feature in Figure 4(a)).

Here, we will focus upon the conceptual integra-
tion of the tourist information service inside TIP and
the additional Map service. The core TIP system
runs on a web server, whilst the Zoomable Map ser-
vice for PDAs runs as a thick client on mobile devices
themselves.

The TIP display application runs as a separate ap-
plication (thin client) on the PDA. Referring to our
Conceptual Design in Figure 3, the TIP display appli-
cation is a service for which the map service provides
an alternative display service.

209

CRPIT Volume 48

210

‘.;2’?";" Funky Map Brow § +F fZa1s o

students,

asschool of
Maori & Pacific {4
Nevalopment?,

| storeys.

Educational Library -

The Educational Library is »> Lo
opened 24 hours, It
provides wide resource for
Education School

|___architecture __more.. |

The library is a modern
building; it has three

_.?’.*"}' Internet Explo ¢ &3 41045 W " erne el 9 X
http://herring. cs.walkato.ac nzi102 | @

http:/fherring. cs.wakato.acnz:102 | @

Recormmended sights near by are:

| _name | description __|
Dept of k1 == detais

Camputer
Srience

Schoaol of

The
University
of

2> Waikato

- -

Tools Halos Waypoints Evaluation E‘A
T T

view Tools ¢ € @f % E|‘

View Tools ¢ @ o e E|-

(a) map display for current lo-
cation
Libraray)

il L:

(b) TIP sight information for (c) recommendations for inter-
current location

(Educational esting sights near by

Figure 4: Interplay of services: The central screenshot (b) shows the TIP core interface at the current location
of the Educational Library; (a) shows a screenshot of the map interface at the same location; (c) shows a
screenshot of the recommendation service interface at this location

Location information on the PDA is obtained
through a GPS receiver (running as another service
with a thick client on the mobile device), and is de-
livered via the event-based communication layer to
the TIP core system and to other interested services.
In this case, the information is passed on to the
Zoomable Map application to give the current "home’
location (centering the map).

At the TIP core, the information is processed and
corresponding sight information is passed back to the
services. This information on sights retrieved from
the TIP server needs to be forwarded to the TIP
client software on the PDA. In addition, the TIP
client then needs to pass its sight/user information
onto the sight display module of the Zoomable Map
application. The sight display module is responsible
for drawing the sight circles over the underlying map.
Note that indicating sights on the map depends not
only in the current location (obtained from the lo-
cation service) but also the user’s interest (obtained
from the TIP system) — only sights that are judged
as being of interest for the user are pointed out.

3.3 Cooperating Services:
Recommendations in TIP

TIP presents information based on user and sight con-
text, as described in Section 2. In addition, recom-
mendations suggest new sights that he user might be
interested in. In the earlier TIP version, the sight
recommendations delivered to the users only reacted
to the current context of the user.

In TIP 2.9, we have supplemented the original
presentation with a recommendation component that
utilises the user’s known preferences and the current
context of user and sights. User preferences are de-
termined not only based on the user’s current profiles
(regarding sight groups and topics), but depending on
information from previous user sessions: the user’s
previous context (travel history) and their feedback
about the sights they visited. In addition, we use
information about other users.

Part of the wider goals of the TIP project is to
evaluate the different methods for providing user rec-
ommendations. Therefore, our recommender compo-
nent needed to support modular recommendation ser-
vices that could be combined, added and removed as
required. In addition, the provision of recommenda-
tions requires a separation of logic at different lev-
els: As we wished to have a candidate test rig for

exploring the different options, a modular approach
was required for the services. In the presentation of
the results, the service also needed to abstract from
any given display method (textual or map-based) and
from any particular recommendation algorithm. In
this section, we will discuss both the functionality of
the recommendation services and considerations for
the affected components of the TIP architecture.

As described in Section 2, TIP uses detailed infor-
mation about sights and users to tailor the presented
tourist information. As an example, Figure 4(b)
shows tailored information about the Educational Li-
brary as it is presented to our visitor Peter, who is
interested in campus buildings, architecture and his-
tory. To present personalised recommendations, we
can use the same base data. In addition, the rec-
ommendation service needs to extend the data held
about the users: each user’s feedback about the vis-
ited sights is recorded.

We implemented three different recommendation
services RS1-RS3 that utilize different information
as basis for the recommendations: (RS1) user prefer-
ences and sight context, e.g., interest and proximity,
respectively; (RS2) the user’s travel history and their
feedback; (RS3) feedback and preferences of similar
users. For a given situation, the user can interac-
tively choose between the different recommendation
services. Figure 4(c) shows a screenshot of the recom-
mendation interface presented to our traveller at the
Educational Library; here we used the recommender
service RS1.

Our services explored various data combinations
as input for recommendations comparatively to ex-
plore the viability of each option, and the quality of
recommendations that could be achieved in different
usage scenarios. The service RS1 can be used immedi-
ately after entering the TIP system for the first time.
Earlier user feedback is utilized to compute personal
and user-specific recommendations in RS2. Informa-
tion about similar users is helpful to discover new
sights a user might not have been aware of (in RS3).
Different information, such as proximity or personal
interest, is utilized to prioritize the display of material
to the traveller. For further details about the design
and evaluation of the travel recommendation services,
see (Hinze & Junmanee 2005).

As can be seen from these considerations, a strong
server-side cooperation with the existing data and
core services is necessary. We therefore implemented
the recommendation services as server-based services

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

[S—
—
JDBC
-XM,_ Apache)
.) Serviet Tomcat 3
el]
Jakarta Struts l:|
TCP/IP
Client Broker Process | ‘q'::
| Tsoap l T 5
. Qo
optional . " =
SOAP application—specific Browser 8
wrapper | run-time environment =
Thick Client Thin Client

Figure 5: TIP 2.9 Architecture: Implementation details

with thin clients. Details about the implementation
of the server—client communication are given in the
next section.

4 TIP Service Architecture — Realization

This section discusses the implementation of the TIP
architecture. An earlier implementation of TIP 1.0
is described in (Hinze et al. 2004), where we con-
trast two implementations using a relational database
model and a semantic web RDF model, respectively.
Here, we focus on the interplay of the TIP core archi-
tecture, the mobile clients, and the cooperating ser-
vices. We first introduce the technical details of the
TIP architecture and then discuss the implications of
two differently structured services cooperating with
TIP.

4.1 Architecture of TIP: Technical Details

The technical details of the TIP architecture are
shown in Figure 5; we demonstrate the TIP server
and its interaction with both a thick and a thin client,
respectively. TIP supports both client architectures,
since different services cooperating with TIP might
require either thin or thick clients (such as those re-
quired for the recommendation services and the map
service, respectively).

On the server side, the TIP software has a
database back-end using a PostgreSQL database
with PostGIS extensions for the geographic data.
The server software is implemented using Apache’s
Jakarta Struts framework as a flexible control layer.
Supported by the Struts framework, TIP’s architec-
tures is based on the Model-View-Controller (MVC)
design paradigm. It supports three separate modules:
one for the application model with its data represen-
tation and business logic (java files), the second for
views that provide data presentation and user input
(JSP files and tag library JSTL), and the third for a
controller to dispatch requests and control flow (XML
files). A servlet manages the execution of the JSP
files and their corresponding java files. The Struts
framework is also used for the internationalization of
TIP (i.e., separate storage of text and application) by
supporting different language interfaces (German and
English). For more details on the Struts layers of TIP
see (Ottlinger 2004).

The TIP core architecture requires only a thin
client for the delivery of sight information and the

client interfaces for registration and profile defini-
tion. TIP provides a desktop interface (for standard
browsers) and a mobile interface (standard bowser or
TIP browser, depending on the mobile device).

Services cooperating with TIP may require thin
or thick clients. Thin clients may use the mo-
bile TIP browser or a web browser for displaying
HTML/JavaScript.

Thick clients are application specific; they oper-
ate in their own run-time environment. Communi-
cation with the TIP server is typically managed via
TCP/IP. Services may also interact (cooperate) with
each other: Interaction between services is performed
via the TIP server, since only the server holds the
necessary interface definitions.

For multi-process management on the mobile de-
vice, an additional broker process is needed. We
experimented with various arrangements of multi-
process service management (which we will discuss
in Section 4.3). The arrangement shown in Figure 5
seems to overcome most shortcomings. The broker
process manages the client services as sub-processes
and, thus, emulates task management and allows for
inter-process communication.

4.2 Cooperating with the
(Thick Client)

The basic communication with a thick client is com-
plicated by the limitations of the available protocols
on the PocketPC platform (or the similar restrictions
of alternatives such as PalmOne). Any truly mo-
bile application must be developed within these con-
straints. For example, even simple technologies such
as 'pipes’ between processes are not supported by the
existing APIs. The new generation of ’smartphones’
shares some similarities to PDA systems, but often
have even fewer communication options. Naturally,
one key challenge in designing and implementing a
complete mobile infrastructure for cooperating ser-
vices is the delivery of the required service function-
alities with such limitations.

Furthermore, the system must support service
modularity and cooperation both within the frame-
work (e.g., the TIP client) and to services outside
the framework (e.g., Zoomable Map). It is critical to
also support TIP services which primarily exist within
other applications and services (e.g., the sight display
module).

In this subsection, we consider the arrangement for
cooperation between TIP, the map service and TIP

Map Service

211

CRPIT Volume 48

212

sub-services. Cooperation with other client services
is discussed in Section 4.3. Cooperation between the
TIP core and the map service is managed via TCP /TP
(socket-based) communication, either directly or via
the TIP client broker. We planned to use the map
service to display sight-related information on maps,
such as current position, current sight, and sights near
by. The original Zoomable Map software supported
positioning of a number of halos (circles to identify
locations) by the user, and a zoom-feature in respect
to the given halos.

In order to display TIP’s information, we needed
to extend the Zoomable Map software by an addi-
tional service; the sight display module (SDM). The
sight display module is planned to support both the
geographical positioning of halos and the indication
of different semantics (e.g., ’home’ and ’other place’).
Semantic information may be either displayed explic-
itly (e.g., a sight name), or communicated to the user
through subtle cues such as the use of different shapes
or colours. The current implementation only supports
the display of visually similar halos at coordinates
of sights known to the the core TIP system. The
sight display module runs as a separate sub-service of
the Zoomable Map (i.e., as a sub-process). This al-
lows for direct communication between the two pro-
cesses without server interaction, and readily over-
comes some difficulties with communication within
the PocketPC API. This approach delegates part of
the display decisions and context away from the core
TIP server, allowing greater interactivity. Processing
a long feedback loop via the server to obtain informa-
tion whilst the user scrolls across the map would be
wasteful and potentially error-prone, and may cause
delays in providing the user with accurate informa-
tion.

Clearly, this obliges the 'on-board’ storage of some
sight information. Handheld devices have sufficient
storage to cache simple sight information (e.g., loca-
tion, name) intelligently within a local context, and
the initial download at a location typically consists of
only a few seconds. Such data could also be cached in
advance. Further detailed information is obtained on
a simple on-demand basis. The Zoomable Map sys-
tem further supports a hybrid thick/thin client ap-
proach, wherein the recommendation service (see fol-
lowing subsection) can be viewed through a browser
sub-process. Thus, in implementing the Zoomable
Map, we have probed thick, thin and hybrid clients,
and also some simple caching requirements. All of
these operate within the extended TIP framework.
Services are mutually aware, and communicate with
the underlying TIP databases through abstracted
APIs that hide platform-specific and protocol-specific
implementation details.

4.3 Cooperating with the Recommender Ser-
vice (Thin Client)

We consider the communication both between the rec-
ommendation service and the server, and in between
services. The basic communication of TIP with thin
clients or between thin clients is simple and does not
differ from interactions and cooperation using a desk-
top computer. Communication is performed directly
via TCP/IP using HTTP.

The cooperation between and management of ser-
vices that involve mixed clients, e.g., between the map
service with its own interface and the recommender
services using a browser-based interface, is more chal-
lenging. It is not sufficient to have independent client
processes running on the mobile device. When using
this type of task management, it is not possible to
flexibly change between the different interfaces and
to support a guided and controlled user interaction

with the TIP system. The services would act as in-
dependent applications.

We therefore propose to employ a TIP client bro-
ker process using the following set-up: Each TIP ser-
vice runs as a separate process and the independent
client broker process is utilized for the management
of processes. Thus, the TIP service processes have to
be instantiated by the broker service. This allows for
flexile management of tasks, e.g., to switch between
interfaces. To enable loose coupling, the communica-
tion between the broker process and its sub-services
should utilize the SOAP protocol, if supported by the
respective services. For third party services, SOAP
wrappers may have to used; otherwise the service’s
interface definition has to be directly implemented
into the broker interface. This would result in tight
coupling of services which is contrary to the desired
modularity of TIP services.

5 Discussion:
Issues Identified and Lessons Learned

This paper presented a number of difficulties and
challenges for creating an event-based communication
framework for mobile systems. In this section, we
will summarize the experience and lessons learned to
date (early impressions of our experiences were given
in (Hinze & Buchanan 2005)).

e Firstly, communication protocols themselves are
problematic, given the limited range of inter-
process communication techniques available be-
tween processes running on the same mobile de-
vice, and the various options available when com-
municating between a mobile device and the core
(TIP) server. A global framework is obliged to
hide such implementation details from the dif-
ferent components of the system, to provide a
consistent framework both at the present time
and over the changes that one can readily antic-
ipate in the future. Therefore, the TIP frame-
work must abstract over TCP/IP, SOAP, Win-
dows Messaging and other APIs to support seam-
less communication between service components.

e Secondly, an apparently simple final service pro-
vided to the user (e.g., a tourist guide with
map, sight data and recommendations) is in
fact a composition of a variety of services. Of-
ten, these services need to communicate together
both within the same machine and between com-
puters, using thick- and thin-client scenarios,
and occasionally in hybrid approaches. A sound
framework must also support this range of re-
quirements. Unlike a monolithic approach, often
seen in existing mobile information systems, a
modular, service-oriented approach allows for the
exploration of alternatives, e.g., of communica-
tion (c.f. Zoomable Map) or implementation (c.f.
recommendations). This is important where even
fundamental services such as location can be pro-
vided in different ways — e.g., GPS or 3G wireless
telephony. Furthermore, new services can add
entirely new features to the framework without
requiring the re-implementation of or changes to
existing services.

e The frequent development of stand-alone mobile
services has, we believe, resulted in higher de-
velopment costs for mobile information systems,
reducing the rate of new research. Substantial ef-
fort is required to provide a basic communication
infrastructure. By providing a common frame-
work, this substantial front-loaded implementa-
tion cost can be dramatically reduced. The use

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

of a modular, service-oriented approach in the
related field of digital libraries (e.g., (Bainbridge
& Witten 2004)) has demonstrated the advan-
tages of this approach both practically and for
research.

e We have successfully created a framework in
which mobile services cooperate. This can al-
ready be seen in the communication between the
map and sight information services to provide
sight location halos in the Zoomable Map. In
future, further forms of cooperation and compo-
sition are needed. For example, we wish to ex-
tend the display module in the Zoomable Map
system to support different halo cues (e.g., for
sight type or recommendation) and this requires
inter-process communications that may in turn
require further development of our framework.

e However, implementation details, particularly is-
sues of standardisation, continue to be relevant.
For example, in the case of the Map system,
different mapping scales and notations are used
by different map and information providers, and
further services must be introduced to mediate
between systems that function in different nota-
tional standards.

e With the trend of information systems moving
onto mobile devices or supporting mobile clients,
the challenges identified in this paper will become
more pronounced. Client devices will provide a
number of pre-installed services and users will
add their own selections. Consequently, we be-
lieve that even stronger decoupling and modular-
ization may be needed: A mobile infrastructure
for mobile information services needs to flexibly
support existing, changing or new services. The
next design step in the TIP project will there-
fore see the completion of re-designing TIP into
a Service-Oriented Architecture (SOA) using web
services (TIP 3.0).

6 Related Work

TIP is not the first mobile tourist information system.
However, it is the first to use a modular, event-based
communication architecture.

In the first part of this section, we discuss the ex-
isting systems against which TIP can be compared,
identify the system requirements recorded in the ex-
isting literature, and compare the TIP Service Ar-
chitecture and existing implementations against these
needs. We conclude the section with a discussion of
the requirements that we have met, and the outstand-
ing issues for the TIP architecture.

In the second part of this section, we discuss
related approaches from other fields, such as web
services, agents, ubiquitous computing and context-
aware systems.

Mobile Tourist Information Guides From our
own studies and based on the pertinent literature,
we identify the following requirements for a mobile
infrastructure for cooperating services in the area of
tourist information. We group the requirements into
three groups: architecture, application, modelling.
We reported results of an extensive study about
modelling requirements in previous work (Hinze &
Junmanee 2005, Hinze et al. 2004); here we therefore
concentrate on architecture and application. Archi-
tectural requirements are support for modular, co-
operating, mobile services, mobile services and sup-
port for both thin and thick clients (as discussed in
Section 2.3) Application requirements are support of

personalization, of user location guidance (e.g., maps
or music), and of recommendations. We consider only
systems that provide location-based sight information
(see Table 1).

Most research in the area of electronic guides has
focussed on indoor user. Two of the most widely doc-
umented systems for outdoor use are CyberGuide and
Guide. We additionally included systems that had
similar objectives for comparison.

AccessSights (Klante, Krsche & Boll 2004) is a
multi-modal location-aware mobile tourist informa-
tion system that provides tourist information to both
normally sighted users and visually impaired people.
Both visual display and auditory information is given
to users; the system uses loudness to indicate distance
between users’ current location and attraction spots.

The CATIS (Pashtan, Blattler & Heusser 2003)
system is a web-based system that recommends
restaurants based on the users preference and travel
history. The system also considers the current con-
text such as the location and time of the day as well as
means of travel and speed and direction of travel (to
determine the restaurants that can be reached within
a reasonable time). The system uses an architectures
based on web services; it provides different XSLT style
sheets to support display on for PC, PDA, and mobile
phone.

CRUMPET (Poslad, Laamanen, Malaka, Nick,
Buckle & Zipf 2001) is a mobile system that provides
personalized and location-aware services to tourists.
To interact with the system, a user first provides per-
sonal information; the system learns more specific
user preferences during the user interactions with the
system. CRUMPET provides tourist information ac-
cording to the user’s location. Crumpet uses an ar-
chitecture based on agents; it provides interfaces for
displaying on laptop, PDA, and mobile phone.

CyberGuide (Abowd, Atkeson, Hong, Long,
Kooper & Pinkerton 1997) is a mobile system that
assists a visitor in a tour of Georgia Tech Lab; it
was extended to also support outdoor use. The sys-
tem mainly focuses on investigating context-sensitive
computing so that only limited support for tourist
information is provided. The project consists of a
family of prototypes with several independent com-
ponents.

Guide (Cheverst, Mitchell & Davies 2002) is a
mobile context-aware tourist guide facilitating visi-
tors while they are travelling the city of Lancaster.
The user has access to different functions, such as
retrieval web information based on their current lo-
cation, booking a a restaurant for dinner, and mes-
sage sending. The Guide system offers a personalised
‘Nearby Attractions’ page on which it recommends
sights that are near by the users current location. The
system uses interactive dialogues for personalization.

Gulliver’s Genie (O’Hare & O’Grady 2003) is a
mobile context-aware service for tourist information.
It delivers travel information depending on the users
location and context. Gulliver’s Genie uses an agent-
based approach: It supports the deployment of in-
telligent agents to flexibly assemble multi-media pre-
sentations that are displayed on a PDA. The authors
point out that the system is rather demanding in re-
spect to the quality and size of the client device.

The TIP core system (Hinze et al. 2004, Hinze &
Voisard 2003) provides rich location-based informa-
tion depending on user context; support for modu-
lar services and flexible client configuration are poor.
Due to the web-based approach, the system has only
few requirements regarding the client device.

As we see from the comparison presented here
that existing systems fall short in respect to the re-
quirements and the aim reported in this paper. The
TIP 2.9 system is the first one to address the problem

213

CRPIT Volume 48

214

Architecture Application
System modular thin/thick persona- location recommen-
services clients lization guide dations

AccesSights + - - + -
CATIS + o + - +
CRUMPET - + ? -
CyberGuide o ? — + —
Guide - - o - +
Gulliver’s Genie o} - + + +
TIP core - 0 + - 0
TIP 2.9 + + + + +

Table 1: Comparison of selected traveller information systems. (Symbols: + supported feature, — not supported

feature, o supported in part, ? no information)

of modular incorporation of and cooperation between
various (existing) services. TIP satisfies existing and
new requirements regarding modelling, architecture,
and application domain. The proposed architecture
can be realized in a number of ways; we tried to built
on standard technologies as far as possible. We evalu-
ated several implementation variations and reported
our lessons learned and discussed the issues requiring
further research.

Related Approaches from Other Areas For the

coordination of web services, Alvarez at al. (Alvarez,
Banares & Muro-Medrano 2003) propose an exten-
sion of service-oriented architectures with a coordi-
nator role that allows more flexible relationships be-
tween service providers and requestors than the one
provided by the client-server model. This new role
has a similar function to our client-broker/ENS mid-
dleware. A component for coordinating changes in
web services has been proposed in (Hinze 2005); this
is similar to the coordinating role of the ENS in our
architecture.

Similar issues as the ones discussed here have
been addressed in the area of agent-based systems
(e.g., in (Zlotkin & Rosenschein 1989)). Coopera-
tion and coordination between multiple agents is a
fundamental question that has been dealt with in
a wide variety of research, such as telecommunica-
tions (Magedanz, Rothermel & Krause 1996), for
trading (Chavez & Maes 1996), and dynamic net-
work configuration (Minar, Kramer & Maes 1999).
The central focus lies on the theory of agent com-
munication and negotiation, drawing from such areas
as artificial intelligence and game theory. The differ-
ence to our approach is that cooperating agents are
inherently designed for communication and coopera-
tion, whereas the services in our application field are
mainly designed to be executed on their own or to
be cooperating with dedicated services. The cooper-
ation and management has to be provided by aux-
iliary components in the architecture (similar to the
management of web services).

General context-aware systems in ubiquitous
computing have already been discussed in earlier
works (Schilit, Adams & Want 1994). There, con-
text refers to individuals that interact with comput-
ers, keyboards and mice. As a whole, they are seen
as a reconfigurable system that is driven by context
information. Complex cooperation of concurrent ser-
vices has not been in the focus of this work. An
overview about approaches to context aware system
can be found in (Chen & Kotz 2000). Context is
mainly the location of the user; more complex con-
cepts such as the user interests are rarely considered.

7 Conclusion

In this paper, we have introduced a mobile infras-
tructure for cooperating information services, demon-
strated through the example of a mobile Tourist Infor-
mation Provider (TIP) system. TIP delivers context-
sensitive information to the system’s users. The in-
frastructure uses an modular approach combined with
an event-based communication layer to support con-
tinually changing information.

We identified a number of the challenges for cre-
ating the infrastructure for mobile systems, namely
the support of modular, cooperating, mobile services
for the information delivery to mobile users. We pre-
sented the conceptual design and implementation de-
tails of our mobile tourist information service TTP 2.9.

We presented details of two service types (map ser-
vice and recommender services) that required differ-
ent client implementations. We highlighted the chal-
lenges of supporting services that require thin and
thick clients on a single device. These services need
to communicate with each other on the mobile de-
vice and with the central TIP server. This paper
reported on our exploration of various process man-
agement structures to achieve flexible cooperation be-
tween these services. We illustrated how our modular,
service-oriented approach allows for the exploration
of alternatives in process communication and imple-
mentation. The conceptual architecture given in Sec-
tion 3.1 has proven effective in delivering the require-
ments we introduced at the beginning of this paper,
providing a framework for both modularity and co-
operation.

This paper presented our TIP 2.9 prototype of a
mobile tourist information system that implements
our design of a mobile infrastructure for cooperat-
ing information services. In our comparison of our
TIP 2.9 system to related existing systems, we have
shown that none of the other systems fully address
the problems of modular incorporation of and coop-
eration between various (existing) services in a mo-
bile information delivery system. This is exemplified
in the case of recommender systems; our implemen-
tation of recommendation support is able to provide
a much wider set of options than any existing sys-
tem, and does so through exploiting our inter-service
communication capacity. When a particular recom-
mendation approach cannot function — e.g., through
the lack of availability of appropriate data — its peers
can continue to provide the same service type through
a different implementation.

In future work, we wish to extend the co-operation
(and thus communication) between the provided ser-
vices. We also plan to incorporate new services, such
as access to external information sources, e.g., in dig-
ital libraries. This may lead to further exploration

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

of sophisticated context-models which can be used
for standardized communication between the services.
We wish to support even more flexible service utiliza-
tion: services may register and unregister depending
on availability and capability of the mobile device.
The next step in the TIP design will therefore be the
completion of the re-design into a Service-Oriented
Architecture (SOA) using web services in TIP 3.0.

Acknowledgements This work was valuably as-
sisted by our colleagues Dr. Matt Jones, Dr. Steve
Jones and Bruce Bowering who created the original
Zoomable Map Interface. The Royal Society of New
Zealand supported this work through an ISAT grant
award.

References

Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper,
R. & Pinkerton, M. (1997), ‘Cyberguide: A mo-
bile context-aware tour guide’, ACM Wireless
Networks 3, 421-433.

Alvarez, P., Banares, J. A. & Muro-Medrano, P. R.
(2003), An architectural pattern to extend the
interaction model between web-services: The
location-based service context., in ‘First Inter-
national Conference on Service-Oriented Com-
puting’, Trento, Italy.

Bainbridge, D. & Witten, I. H. (2004), Greenstone
digital library software: current research, in
‘JCDL ’04: Proceedings of the 4th ACM /IEEE-
CS Joint Conference on Digital libraries’, Tus-

con, AZ, USA.

Buchanan, G. & Jones, M. (2000), Search interfaces
for handheld web browsers, n ‘Poster Proceed-
ings of the 9th World Wide Web Conference’,
Amsterdam, Netherlands.

Chavez, A. & Maes, P. (1996), Kasbah: An agent
marketplace for buying and selling goods, in
‘First International Conference on the Practi-
cal Application of Intelligent Agents and Multi-
Agent Technology (PAAM’96)’, London, UK.

Chen, G. & Kotz, D. (2000), A survey of context-
aware mobile computing research, Technical Re-
port TR2000-381, Dept. of Computer Science,
Dartmouth College.

Cheverst, K., Mitchell, K. & Davies, N. (2002), ‘The
role of adaptive hypermedia in a context-aware
tourist guide’, Communications of the ACM
45(5), 47-51.

Hinze, A. (2005), Supporting change-aware semantic
web services., in ‘Proceedings of the First Work-
shop on Service Oriented Computing’, Leicester,
UK.

Hinze, A. & Buchanan, G. (2005), Cooperating Ser-
vices in a Mobile Tourist Information System,
in ‘Proceedings of the Conference on Coopera-
tive Information Systems (CooplS)’, Agia Napa,
Cyprus.

Hinze, A. & Junmanee, S. (2005), Providing recom-
mendations in a mobile tourist information sys-
tem, in ‘Information Systems Technology and
its Applications, 4th International Conference
(ISTA 2005)’, Palmerston North, New Zealand.

Hinze, A., Loeffler, K. & Voisard, A. (2004), Con-
trasting object-relational and RDF modelling in
a tourist information system, in ‘Proceedings of
the 10th Australian World Wide Web Confer-
ence’, Gold Coast, Australia.

Hinze, A. & Voisard, A. (2003), Location- and time-
based information delivery in tourism, in ‘Con-
ference in Advances in Spatial and Temporal
Databases (SSTD 2003)’, Vol. 2750 of LNCS,
Santorini Island, Greece.

Jones, S., Jones, M., Marsden, G., Patel, D. & Cock-
burn, A. (2005), ‘An evaluation of integrated
zooming and scrolling on small-screens’, Inter-
national J. Human Computer Studies . In Press.

Jung, D. & Hinze, A. (2005), A mobile alerting system
for the support of patients with chronic condi-
tions, in ‘Proceedings of the 1st Euro Conference
on Mobile Government mGov’2005’, Brighton,
UK.

Klante, P., Krsche, J. & Boll, S. (2004), AccesSights
— a multimodal location-aware mobile tourist in-
formation system, in ‘Proceedings of the 9th In-
ternational Conference on Computers Helping
People with Special Needs (ICCHP’2004)’, Paris,
France.

Magedanz, T., Rothermel, K. & Krause, S. (1996),
Intelligent agents: An emerging technology for
next generation telecommunications?, in ‘INFO-

COM’96’, San Francisco, CA, USA.

Minar, N., Kramer, K. H. & Maes, P. (1999), Co-
operating mobile agents for mapping networks,
in ‘Proceedings of the First Hungarian National
Conference on Agent Based Computation’.

O’Hare, G. & O’Grady, M. (2003), ‘Gulliver’s genie:
A multi-agent system for ubiquitous and intel-
ligent content delivery’, Computer Communica-
tions 26(11), 1177-1187.

Ottlinger, P. (2004), Design and Implementation of
an extensible Software architecture for Distribut-
ing context-sensitive Information (in German),
Master’s thesis, Freie Universitaet Berlin, De-
partment of Computer Science.

Pashtan, A., Blattler, R. & Heusser, A. (2003), Catis:
A context-aware tourist information system, in
‘Proceedings of the 4th International Workshop
of Mobile Computing’, Rostock, Germany.

Poslad, S., Laamanen, H., Malaka, R., Nick, A.,
Buckle, P. & Zipf, A. (2001), CRUMPET: Cre-
ation of user-friendly mobile services person-
alised for tourism, in ‘Proc. 3G2001 Mobile Com-
munication Technologies’, London, U.K.

Schilit, B., Adams, N. & Want, R. (1994), Context-
aware computing applications, in ‘IEEE Work-
shop on Mobile Computing Systems and Appli-
cations’, Santa Cruz, CA, USA.

Warren, N., Jones, M., Jones, S. & Bainbridge, D.
(2005), Navigation via continuously adapted mu-
sic, in ‘CHI 05 extended abstracts on Human
factors in computing systems’, Portland, OR,
USA.

Zlotkin, G. & Rosenschein, J. S. (1989), Negotiation
and task sharing among autonomous agents in
cooperative domains, in N. S. Sridharan, ed.,
‘Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence’, Morgan
Kaufmann, San Mateo, CA, pp. 912-917.

215

CRPIT Volume 48

216

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

Human Visual Perception of Region Warping Distortions

Yang-Wai Chow', Ronald Pose’, Matthew Regan*, James PhillipsTT

School of Computer Science and Software Engineering’ / Department of Psychology '
Monash University
Clayton, Victoria 3800, Australia

{yang.wai.chow, rdp, regan}@csse.monash.edu.au,

Abstract

Interactive virtual reality requires at least 60 frames per
second in order to ensure smooth motion. For a good
immersive experience, it is also necessary to have low
end-to-end latency so that user interaction does not suffer
from perceptible delays in images presented to the eyes.
The Address Recalculation Pipeline (ARP) architecture
reduces end-to-end latency in immersive Head Mounted
Display (HMD) virtual reality systems. By using the ARP
in conjunction with priority rendering, different sections
of the scene are updated at different rates. This reduces
the overall rendering load and allows for more complex
and realistic scenes. Large object segmentation in
conjunction with priority rendering further reduces the
overall rendering load. However, scene tearing artefacts
potentially emerge and region warping was devised to
alleviate this. In compensating for the tearing, region
warping introduces slight distortions to the scene.

Immersive virtual reality systems have humans as integral
parts of the system. While researchers do thorough
measurements and evaluation of hardware and software
performance, the human experience and perception of the
system is often neglected. This paper addresses this
important issue. We describe our human visual perceptual
experimental methodology in detail and present some
initial results. Initial experiments in human visual
perception of region warping distortions show interesting
characteristics which lead us to propose further
experimental investigations to clarify their significance.

Keywords: Address Recalculation Pipeline, object
segmentation, priority rendering, region warping, tearing
artefacts, visual perception.

1 Introduction

The ultimate goal of virtual reality is to present the user
with an illusion of reality within a virtual environment.
One of the main aspects involved in the portrayal of a
believable virtual environment is the presentation of
computer generated 3D imagery to the user. In order to
maintain the illusion of reality, virtual reality systems
must continually display images from the user’s vantage

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

jim.phillips@med.monash.edu.au

point in real time. Interactive virtual reality requires at
least 60 updates per second to achieve good immersion.

Latency is a well recognized problem in virtual reality
and teleoperation technology (Ellis et al. 2004). Latency
is the lag or time delay between when a user performs an
action and when the system responds to that action or
when that action is represented by the system. A
particular issue in virtual reality is that of the latency
between a user moving his/her head, thus changing the
user’s viewpoint, and that change being reflected in
updated images before the user’s eyes. Excessive system
latency or delays in virtual reality makes the system hard
to use and in severe cases this can lead to adverse side
effects such as user disorientation, motion sickness, and
etc. Even with the fast graphics accelerators available
today that can render over 100 frames per second (fps),
latency still remains a factor that has to be addressed
(Meehan et al. 2003). This is because on conventional
systems the update cycle is bound by the need to obtain
user head position orientation information before
rendering can commence.

A hardware architecture known as the Address
Recalculation Pipeline (ARP) was designed to reduce
user head rotational latency in immersive Head Mounted
Display (HMD) virtual reality by detaching user head
orientation from the rendering process (Regan and Pose
1993). Priority rendering was developed for use in
conjunction with the ARP system in order to reduce the
overall rendering load by concentrating rendering power
on sections of the scene that appear to change the most.
Using priority rendering, different sections of the scene
can be updated at different rates. This allows for the
rendering of more complex and realistic scenes (Regan
and Pose 1994).

Large object segmentation and region priority rendering
were introduced to manage objects in the virtual
environment as well as to further reduce the overall
rendering load (Chow et al. 2005a). However, tearing
problems can emerge as a result of updating different
segments of the same object at different rates. This
problem was overcome by using region warping. Region
warping involves the perturbation of object vertices in
model space in order to force these vertices to align,
thereby hiding scene tearing artefacts. This however
introduces slight distortions in the computer generated
graphics.

The quality of frames produced by implementing the
region warping technique has previously been
investigated using mathematical analysis (Chow et al.
2005b). However while mathematical analysis gave an

217

CRPIT Volume 48

218

indication of the level of distortion caused by region
warping, it did not incorporate the human visual
perception of the distortions. It is therefore essential to
conduct perception experiments in order to fully
understand the characteristics of region warping
distortions with respect to human visual perception.
Virtual reality and interactive systems involve humans as
integral parts of the systems. All too often researchers
thoroughly test and measure the performance of the
hardware and software while ignoring the fundamental
issue of how humans might perceive and react to the
system. This paper addresses this issue by presenting the
experimental methodology and results of an experiment
investigating the human perception of region warping
distortions.

The results and insights gained in the research presented
in this paper are also relevant in other areas and
applications of computer graphics. There are a number of
other perceptually based computer graphics techniques
that attempt to optimize a system’s performance taking
advantage of the limitations in the human visual system.
Some of these applications are provided in the related
work section of this paper.

2 Previous Work

In order to describe the basis for region warping, this
section first provides some background of priority
rendering and the Address Recalculation Pipeline system.
For more information please refer to Pose and Regan
(1994), Regan and Pose (1993, 1994), Chow et al.
(2005a).

2.1 The Address Recalculation Pipeline and
Priority Rendering

The Address Recalculation Pipeline (ARP) graphics
display architecture reduces the end-to-end latency
perceived by the user during user head rotations, by
implementing a concept known as delayed viewport
mapping. In delayed viewport mapping, the scene that
encapsulates the user’s head is pre-rendered into display
memory. Viewport orientation mapping is then performed
only when required by mapping relevant sections of the
scene already residing in display memory, and is
therefore fairly independent of scene complexity and is
based on the most up-to-date user head orientation
information. Unlike conventional systems where user
head orientation has to be obtained prior to rendering, the
ARP system effectively detaches user head orientation
from the rendering process. Thus in the ARP system,
latency is no longer bound by the usually lengthy
rendering process.

A rendering technique known as priority rendering was
designed to be used in conjunction with the ARP system.
Priority rendering takes advantage of the fact that in the
ARP system, the scene surrounding the user’s head has to
be rendered into display memory. In a scene that
surrounds the user’s head, only dynamically animated
objects might constantly be changing, when the user
rotates his/her head. Most other objects in the scene will
remain the same. When a user translates through a scene,

sections of the scene that are closer to the user will appear
to change faster than sections that are further away from
the user. This difference in the speed of movement for
near and far objects is known as motion parallax
(Goldstein 1999). Therefore by using multiple display
memories and multiple renderers, different sections of the
scene can be rendered onto separate display memories
that can be updated individually at different rates. The
images on the different display memories can then be
composited to form an image of the whole scene.

Priority rendering is demand driven rendering, in that an
object is not updated until its image in display memory
has changed above a tolerable amount. This concentrates
rendering power on sections of the scene that are
changing the most. In this manner, priority rendering
reduces the overall rendering load, thus potentially
allowing for the rendering of more complex and realistic
scenes. A threshold which defines the minimum feature
size of the virtual environment has to be pre-determined.
This threshold takes the form of an angle, 6,. Priority
rendering attempts to keep the image in display memory
accurate to within this threshold. Figure 1 shows a
priority rendering translational validity period estimation.
The translational validity period is an estimate of how
long the image of an object in display memory will
remain valid before requiring an update, based on the
user’s relative translational speed. The translational
validity period estimation was used in the experiment by
varying the value of 6, for the different scenes.

Object's

Distance. / bounding sphere.

Maximum
translation
distance
Users
eye.

x> = d* + d* — 2d*d*cos(8))
x> = 2d*(1-cos(6)))
x = d*sqrt(2(1-cos(6,))) where d = distance, and

X = max. trans. distance

translational validity period = x / relative_speed

Figure 1: Translational validity period estimation.

2.2 Large Object Segmentation and Region
Priority Rendering

Region priority rendering was introduced to assist object
management in the virtual environment for priority
rendering. In region priority rendering, objects in the
virtual world are spatially divided and grouped into
different regions. Using this technique, entire regions of
objects can then be assigned to the separate display
memories based on the region that they are located in.
This avoids having to calculate individual object validity

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

periods and sort objects based on these validity periods
before assigning individual objects to the separate display
memories. Figure 2 shows a top-down example of region
to display memory allocations for region priority
rendering. This allocation strategy was employed for the
virtual environment used in the experiment.

I'Jp'da'te Rate
Display Memory 0 Regions Fast
Display Memory 1 Regions

Display Memory 2 Regions l

Display Memory 3 Regions Slow

User

Figure 2: 2D top-down view of example region to
display memory allocations.

Large object segmentation was devised to further reduce
the overall rendering load in priority rendering. Large
virtual world objects were segmented so that different
segments of these objects could be updated on separate
display memories at different update rates. In this
manner, if the image of a section of a large object became
invalid in display memory and required an update, only
this section of the object would have to be updated
instead of having to re-render the whole object.

2.3 Tearing and Region Warping

The implementation of large object segmentation with
region priority rendering however causes an adverse
visual artefact, a form of scene tearing. Scene tearing
artefacts occur along the shared vertices of objects’
segments. User head rotations will not cause the scene
surrounding the user’s head to appear to change much.
The problem occurs when the user translates through the
scene. Tearing artefacts emerge as a result of
discrepancies between the shared vertices of an object’s
segments that are updated on separate display memories
at different update rates, whilst the user is translating
through the scene. This tearing problem can destroy the
illusion of reality that the virtual reality system attempts
to present to the user. An example of scene tearing
artefacts is shown in figure 3 (the white lines in the
scene).

Region warping was devised in order to alleviate the
tearing problem. Region warping involves the

perturbation of shared object vertices in order to force
these vertices to align, thereby eliminating any
discrepancy between the vertices during user translations.
Two methods of interpolation for region warping were
introduced in Chow et al. (2005b), linear interpolation
and quadratic interpolation. Before warping could be
performed, the exact amount of perturbation had to be
known. Vertices in the regions had to be normalized
based on their distance from the user’s region. This is
illustrated in figure 4.

Figure 3: Example of scene tearing artefacts.

Tearing

10

Overlapping .y

05
[0.15
Display
Memory 0
Regions
Display ™ 0.0
Memory 1
Regions

« Current User Position

Figure 4: 2D top-down view illustrating the
normalization of region vertices.

Normalization was performed using what can be seen as
concentric squares, centered on the circumference of the
square based region the user was located in. Interpolation
of vertex perturbations could then be conducted with
these normalized values. In linearly interpolated region
warping, these normalized values were used without any
alteration, whereas in quadratic interpolation the square
of the normalized values was used. Both linear and
quadratic region warping methods were tested in this
experiment. In Chow et al. (2005b) it was concluded that
the distortions in the frames generated using quadratic
region warping were concentrated further away from the
user and were more similar to normally rendered frames,
compared to frames rendered using linear region warping.
This conclusion however was based on mathematical
comparisons and did not reflect human visual perception
of the distortions.

219

CRPIT Volume 48

220

3 Related Work

Similar concepts of using multiple renderers and/or
multiple display memories have also been designed and
developed by other researchers.

NVIDIA Corporation’s Scalable Link Interface (SLI)
technology combines the rendering power of two
Graphics Processing Units (GPUs) in a single system
(NVIDIA 2005). The SLI system has a rendering mode
called Split Frame Rendering (SFR) which allows a frame
to be divided into two portions (top and bottom) and
rendered separately on each GPU. Software drivers are
used to dynamically share and balance the load between
the two GPUs. Each GPU then renders one of the two
sections, before the sections are digitally composited to
form the whole frame. By clipping the scene into 2
portions, the system attempts to avoid the processing of
all the vertices in a frame on both GPUs.

A 3D graphics and multimedia hardware architecture
codenamed Talisman was designed by researchers at
Microsoft Corporation (Toburg and Kajiya 1996). One of
the main uses of the Talisman architecture was in
multimedia applications such as interactive animation. In
smooth animated sequences, most of the display remains
the same from frame-to-frame and it would be wasteful to
have to re-render the entire frame. The Talisman
architecture takes advantage of temporal and spatial
similarities between sequential frames, by allowing
individually animated objects to be rendered onto
independent image layers before being composited
together to form the final display (Barkans 1997). In this
way, only changing image layers have to be modified or
re-rendered.

3D warping techniques in computer graphics have also
been looked into by a number of other researchers. Mark
et al. (1997) have experimented on what they termed,
post-rendering 3D warping, on adjacent frames in order
to avoid re-rendering entire frames by exploiting frame-
to-frame coherence. The purpose of this warping was to
increase the frame rate of a graphics system. This was
done by warping the images of existing frames in order to
extrapolate for new viewpoints of future frames. Thus,
less rendering had to be performed for the derived frames
resulting in an increase in the rendering frame rate. They
have also suggested that the priority rendering technique
for the ARP system, and also the Talisman architecture,
would benefit from the implementation of 3D warping
techniques.

In light of the fact that the human visual system can only
perceive a limited amount of detail, perceptually
orientated graphics techniques have been designed to
optimize a system’s performance. For example, Level of
Detail (LOD) management techniques attempt to remove
or reduce less perceptible details from the computer
graphics (Reddy 1997). Watson et al. (1997) have
experimented on the effects of degrading the peripheral
detail of a scene in a HMD virtual reality system’s
display with respect to user performance. Visual
perception experiments using visual attention models
have also been conducted to predict where a user will
look in a scene and to selectively concentrate

computational effort on those sections of the scene
(Chalmers et al. 2003).

4 Psychophysics Experiment

The aim of this experiment was to measure the threshold
where a human can perceive the distortions caused by
region warping. Other goals of the experiment were to
determine whether different display devices and/or region
warping methods might affect the human perception of
these distortions. Psychophysical methods of testing were
therefore employed for the experiment. Psychophysics is
a branch of psychology that deals with the measurement
of perception. It is the scientific study of the relation
between stimulus and sensation (Gescheider 1985).

4.1 Method

The method used for the experiment was a variation of
the method of limits known as an adaptive staircase Two
Alternative Forced Choice (2AFC) method. An adaptive
procedure means that the stimulus of a trial is determined
by the preceding stimuli and responses (Levitt 1971). The
advantage of using this procedure is that trials will be
concentrated around the area of interest, i.e. near the
threshold, and therefore presents an efficient method for
measuring threshold.

The staircase 2AFC technique has been widely used in a
variety of different fields to measure threshold of
perception. Experiments using similar methodologies
have also been conducted in the field of virtual reality and
computer graphics by other researchers, for example, to
measure perception of latency in virtual reality (Regan et
al. 1999, Ellis et al. 2004, Mania et al. 2004), and in
perception of modulated Level-of-Detail (LOD) in
computer graphics (Reddy 1997).

In a 2AFC discrimination task, two stimuli are presented
to the participant - a standard (S) and a comparison (C)
(Ulrich and Miller 2004). The participant is then required
to choose which of these two alternatives, contained (or
did not contain) the signal. The comparison stimulus
presented for each trial varies in signal strength, and the
number of different strength values is usually 5 or 7
(Farell and Pelli 1999).

The forced-choice method was chosen for the experiment
over yes/no or same/different methods, as these other
methods contain an internal subjective criterion (Farell
and Pelli 1999). In a yes/no or same/different experiment,
for each trial the participant would be asked whether they
could discern a difference between the two stimuli or
whether the stimuli were the same or different. This
might introduce a certain bias to the experiment, for
example, the participant’s responses might be influenced
if he/she knew the purpose of the experiment beforehand.
The 2AFC method attempts to eliminate this bias, by
forcing the participant to choose between the two
alternatives.

The staircase or up-down method used for the experiment
followed a 2-Down 1-Up (2D-1U) approach, where two
correct responses reduced the signal strength whereas an
incorrect response increased or augmented the signal

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

strength. This method gives a 70.7% correct response
threshold (Levitt 1971). Descending and ascending
staircases were used in the experiment. A descending
staircase is one which starts at a high/strong signal
strength, and the signal strength is typically reduced
depending on the participant’s responses. An ascending
staircase starts at a low/weak signal strength, and the
signal strength is typically increased based on the
participant’s responses (Gescheider 1985). An example of
ascending and descending staircases can be seen in figure
7, in the results and discussions section below.

4.2 Design

For this experiment, the standard stimulus was the scene
rendered using normal rendering while the comparison
stimulus was the scene rendered using the region warping
technique, and containing varying levels of distortion. For
each trial, the two scenes, scene A and scene B, were
presented sequentially one after the other. This is known
as temporal-forced choice (Gescheider 1985). The order
of the two scenes (i.e. the standard and comparison
stimulus) presented to the participants was pair-wise
randomized. Participants were then forced to choose
which of the scenes appeared better, in other words,
which scene did not contain distortions (the standard
stimulus). Participants used a 2 button mouse to input
their forced-choice feedback.

There were 2 parts to the experiment. Each part required
the participant to carry out the experimental tasks on a
different display device. The two display devices used
were: a 17 inch computer monitor and a Head Mounted
Display (HMD). The HMD used for the experiments was
a Virtual Research V8 HMD, which has a 640x480
resolution and a 60Hz refresh cycle. The other display
device was a 17 inch computer monitor set to a resolution
of 640x480 and a 60Hz refresh cycle, in order to match
the HMD’s resolution and refresh rate. In view of the fact
that the other device used was a computer monitor, the
HMD was used in monoscopic mode. The wide angle
lens optical distortion of the V8 HMD was corrected
using a technique proposed by Watson and Hodges
(1995).

Display Device

Region Warping Method

Staircase

HMD > Linear Ascending
Warping B Staircase

Computer Quadratic Descending
Monitor [] Warping Staircase

Figure 5: Overview of experimental design.

A pair of staircases (one ascending, one descending) was
used for each region warping technique (i.e. linear and

quadratic), giving a total of four staircases. Both
ascending and descending staircases were used in this
experiment in order to comprehensively test the
participants’ responses to the full range of distortion
levels. All four staircases were randomly interleaved
based on a pre-randomized script. This was done so that
participants would not know which warping method was
being presented during each trial and also to minimize the
chances of the participant anticipating or predicting the
signal strength of the next trial. For example, if the
participant realized that he/she was on an ascending or
descending staircase he/she would be able to anticipate
whether successive trials would increase or reduce in
signal strength. Figure 5 depicts the overall experimental
design. The entire experiment was automated on the
computer.

Fixed-step staircases with 7 signal strengths (distortion
levels) were used. The signal strengths corresponded to
the level of region warping distortions. Each staircase
would end after 6 reversals or a maximum of 25 trials,
whichever came first. A reversal refers to a change in the
direction of a staircase. In a 2D-1U staircase approach, a
reversal would mean 2 correct responses after 1 (or more)
incorrect responses or an incorrect response after 2 (or
more) correct responses. An example of this is shown in
figure 7, where the ascending staircase ended after 6
reversals while the descending staircase ended after 25
trials. This meant that each part of the experiment would
finish after a maximum of 100 trials. It is important to
note that unlike experimental simulations that can be
done purely on a computer, in experiments involving
humans one must design the experi