
Conferences in Research and Practice in
Information Technology

Volume 48

Computer Science 2006

Australian Computer Science Communications, Volume 28, Number 1.

Computer Science 2006

Proceedings of the
29th Computer Science Conference (ACSC 2006),
Hobart, Australia, 16-19 January 2006

Vladimir Estivill-Castro and Gillian Dobbie, Eds.

Volume 48 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Proceedings of the Twenty-Ninth Australasian Computer Science Conference (ACSC 2006),
Hobart, Australia, 16-19 January 2006

Conferences in Research and Practice in Information Technology, Volume 48.

Copyright c©2006, Australian Computer Society. Reproduction for academic, not-for profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors: Vladimir Estivill-Castro
School of Computing and Information Technology
Nathan Campus
Griffith University
Brisbane 4111
QLD Australia
Email: v.estivill-castro@griffith.edu.au, estivill-castrov@acm.org

Gillian Dobbie
Department of Computer Science
University of Auckland
Auckland,
New Zealand
Email: gill@cs.auckland.ac.nz

Series Editor: John F. Roddick,
Conferences in Research and Practice in Information Technology
Flinders University,
PO Box 2100, Adelaide 5001
South Australia.
crpit@infoeng.flinders.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 48.
ISSN 1445-1336.
ISBN 1-920-68230-9.

Printed, November 2005 by Flinders Press, PO Box 2100, Bedford Park, SA 5042, South Australia.
Cover Design by Modern Planet Design, (08) 8340 1361.

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Twenty-Ninth Australasian Computer Science Conference
(ACSC 2006), Hobart, Australia, 16-19 January 2006

Preface . ix

Programme Committee . xi

Additional Referees . xii

Organising Committee . xiii

CORE - Computing Research and Education . xv

ACSW Conferences and the Australian Computer Science
Communications . xvi

ACSW and ACSC 2006 Sponsors . xix

Keynote Paper

Biomedical Computing and Visualization . 3
Chris R. Johnson and David M. Weinstein

Full Papers

Software Engineering and Formal Methods

Logic and Refinement for Charts . 13
Greg Reeve and Steve Reeves

Supporting Software Reuse by the Individual Programmer . 25
Min-Sheng (Peter) Hsieh and Ewan Tempero

Identifying Refactoring Opportunites by Identifying Dependency Cycles . 35
Hayden Melton and Ewan Tempero

Image and Speech Processing

Unsupervised band removal leading to improved classification accuracy of hyperspectral images 43
Ian Faulconbridge, Mark Pickering and Mike Ryan

On Compensating the Mel-Frequency Cepstral Coefficients for Noisy Speech Recognition 49
Eric H.C. Choi

Fault Tolerance and Security

Segregated Failures Model for Availability Evaluation of Fault-Tolerant Systems 55
Sergiy A. Vilkomir, David L. Parnas, Veena B. Mendiratta and Eamonn Murphy

On pedagogically sound examples in public-key cryptography . 63
Suan Khai Chong, Graham Farr, Laura Frost and Simon Hawley

Towards Security Labelling . 69
Chuchang Liu and Mehmet A. Orgun

Algorithms

Improvements of TLAESA Nearest Neighbour Search Algorithm and Extension to Approximation
Search . 77

Ken Tokoro, Kazuaki Yamaguchi and Sumio Masuda

Trust Network Analysis with Subjective Logic . 85
Audun Jøsang, Ross Hayward and Simon Pope

A Semantic Approach to Boost Passage Retrieval Effectiveness for Question Answering 95
Bahadorreza Ofoghi, John Yearwood and Ranadhir Ghosh

Artificial Intelligence

A Programming Paradigm for Machine Learning, with a Case Study of Bayesian Networks 103
Lloyd Allison

Rule Sets Based Bilevel Decision Model . 113
Z. Zheng, G. Zhang, Q. He, J. Lu and Z. Shi

CASO: A Framework for dealing with objectives in a constraint-based extension to AgentSpeak(L) . . 121
Aniruddha Dasgupta and Aditya K. Ghose

Communications and Networks

Modelling Layer 2 and Layer 3 Device Bandwidths using B-Node Theory . 127
S. Cikara, S.P. Maj and D.T. Shaw

Throughput fairness in k-ary n-cube networks. 137
Cruz Izu

A JMX Toolkit for Merging Network Management Systems . 147
Feng Lu and Kris Bubendorfer

Databases

A Framework for Visual Data Mining of Structures . 157
Hans-Jörg Schulz, Thomas Nocke and Heidrun Schumann

Shallow NLP techniques for Internet Search . 167
Alex Penev and Raymond Wong

Approximative Filtering of XML Documents in Publish/Subscribe Systems . 177
Annika Hinze, Yann Michel and Torsten Schlieder

Distributed Systems

Manufacturing Opaque Predicates in Distributed Systems for Code Obfuscation 187
Anirban Majumdar and Clark Thomborson

Pruning Subscriptions in Distributed Publish/Subscribe Systems . 197
Sven Bittner and Annika Hinze

The Challenge of Creating Cooperating Mobile Services: Experiences and Lessons Learned 207
Annika Hinze and George Buchanan

Graphics

Human Visual Perception of Region Warping Distortions . 217
Yang-Wai Chow, Ronald Pose, Matthew Regan and James Phillips

Rendering Multi-Perspective Images with Trilinear Projection . 227
Scott Vallance and Paul Calder

vi

Extensible Detection and Indexing of Highlight Events in Broadcasted Sports Video 237
Dian Tjondronegoro, Yi-Ping Phoebe Chen and Binh Pham

Human Computer Interaction

Using Formal Concept Analysis with an Incremental Knowledge Acquisition System for Web Docu-
ment Management . 247

Timothy J. Everts, Sung Sik Park and Byeong Ho Kang

Interaction Design for a Mobile Context-Aware System using Discrete Event Modelling 257
Annika Hinze, Petra Malik and Robi Malik

Constructing Real-Time Collaborative Software Engineering Tools Using CAISE, an Architecture for
Supporting Tool Development . 267

Carl Cook and Neville Churcher

Programming Languages

Plagiarism Detection across Programming Languages . 277
Christian Arwin and S.M.M. Tahaghoghi

Programming with Heterogeneous Structures: Manipulating XML data Using bondi 287
F.Y. Huang, C.B. Jay and D.B. Skillicorn

A Relational Account of Objects . 297
Clara Murdaca and C. Barry Jay

Security

Tracing Information Flow Through Mode Changes . 303
Colin Fidge and Tim McComb

SPiKE: Engineering Malware Analysis Tools using Unobtrusive Binary-Instrumentation 311
Amit Vasudevan and Ramesh Yerraballi

A Framework for Role-based group delegation in distributed environment . 321
Hua Wang, Jiuyong Li, Ron Addie, Stijn Dekeyser and Richard Watson

Author Index . 329

vii

viii

Preface

Edsger Dijkstra, was a pioneer of the field of Computer Science and a participant in 1977 in the first
Australasian Computer Science Conference later jovially named as ACSC-0. He is credited for indicating
that Computer science is no more about computers than astronomy is about telescopes. We understand now
that computer science is the accumulated knowledge through scientific methodology of data and information
manipulation by the use of the computer.

The 29th Australasian Computer Science Conference (ACSC-2006) was held at the School of Computing
at the University of Tasmania, Hobart, Tasmania, Australia from January 16th to 19th, 2006. It is part
of the Australasian Computer Science Week and brings several parallel conferences together. ACSC-06
represents a strong and reputable academic meeting addressing many research sub-disciplines in Computer
Science. It brings together the international community with a central location around Australia and
New Zealand. The meeting allows academics and researchers to discuss research topics as well as the
progress of the field and policies to stimulate its growth. It encourages the dissemination of ideas in an
inter-disciplinary and intra-disciplinary fashion. Researchers that have specialized in one direction find and
audience in others that have moved in orthogonal directions. Thus, the conference offers a forum for many
topics (over 40 general topics were listed in the Call for Papers). The International Program Committee
integrated expertise in all these areas as well as representation from most of the Australian and New
Zealand Higher Education institution members of the the Computing Research and Education Association
of Australasia, CORE. CORE is an association of university departments of Computer Science in Australia
and New Zealand.

The program committee integrated more than 40 highly regarded academics around the globe including
Brazil, Canada, Denmark, France, Germany, Japan, Mexico, Singapore and the US.

Following an international call for papers, we received 165 abstracts and 120 full papers. Each paper
was peer-reviewed in full by at least two independent reviewers, and in some cases three or four referees
produced independent reviews. The program committee was impressed by the quality of the submissions.
Only 35 papers were accepted. This means an acceptance rate of less than 30%. This is again slightly less
than the number of papers in previous years, with a more severe acceptance rate. A conscious decision was
made to select papers for which all reviews were positive and favorable. Although the Program Committee
made careful quantitative and qualitative assessments on the feedback from reviewers, it is remarkable that
all those accepted papers had a weighted score of 5 or above. (In a scale from 1 to 7, here

7 corresponds to Strong Accept [award quality],
6 corresponds to Accept [I will argue for this paper] and
5 corresponds to Weak Accept [I vote for this paper, but won’t object reject]).

While this challenged the determinations, and some high quality work may not have been included, we are
confident that the result is a very solid program and there is a strong contribution in each of the papers
reproduced in these proceedings.

Professor Chris R. Johnson from the University of Utah delivered the keynote address titled Biomedical
Computing and Visualization. Prof. Johnson’s research interests are in the area of scientific computing.
Particular interests include inverse and imaging problems, adaptive methods, problem solving environments,
numerical analysis, biomedical computing, and scientific visualization. This is very appropriate for the
diverse links between disciplines in Computer Science and the links to other sciences that the conference
is stimulating in this edition.

Based on the Guidelines on Research Practice in Computer Science by CORE, the conference awards
a best student paper award to a student author(s)/coauthor(s) provided that:

1. all other non-student co-authors confirm to the program chair(s) that the nominated author has had a
substantial participation into the paper and

2. the student academic supervisor confirm to the program chair that the contribution reflected in the
paper is the result of a major component from progress for a research higher degree.

The best student paper was awarded to Scott Vallance from Flinders University for his paper Render-
ing Multi-Perspective Images with Trilinear Projection The best paper was awarded to Hayden Melton
and Ewan Tempero, both from the University of Auckland, for their paper titled Identifying Refactoring
Opportunites by Identifying Dependency Cycles.

ix

We would like to thank Prof. John Roddick for his assistance in the production of the proceedings and
Kim Taylor for her help with the Conference Management System. We would also like to thank Prof. Jenny
Edwards for her support as president of CORE. Last but not least, we would like to thank the chair of the
local organizing committee Prof. Young J. Choi and his committee for their efforts in coordination.

Vladimir Estivill-Castro and Gillian Dobbie
ACSC 2006 Program Chairs

January, 2006

x

Programme Committee

Chairs

Vladimir Estivill-Castro, Griffith University, Queensland, Australia
Gillian Dobbie, University of Auckland, New Zealand

Members

Hussein A. Abbass, UNSW@ADFA, Australia
Michael H. Albert, University of Otago, New Zealand
Karin Becker, Pontificia Universidade Catolica do Rio Grande do Sul, Brazil
Andrew Bernat, Computing Research Association, USA
Stephane Bressan, National University of Singapore, Singapore
Fred Brown, University of Adelaide, Australia
Neville Churcher, University of Canterbury, NewZealand
Dominique Decouchant, C.N.R.S., France
Trevor Dix, Monash University, Australia
Gill Dobbie, University of Auckland, New Zealand
Jenny Edwards, University of Technology, Sydney, Australia
Vladimir Estivill-Castro, Griffith University, Australia
Mark Evered, University of New England, Australia
Mike Fellows, University of Newcastle, Australia
Colin Fidge, Queensland University of Technology, Australia
Ken Hawick, Massey University - Albany,, New Zealand
Annika Hinze, Waikato University, New Zealand
Jan Hoffmann, Humboldt-Universitüt zu Berlin, Germany
Nigel Horspool, University of Victoria, Canada
Michael Houle, National Institute for Informatics, Japan
Chris Johnson, Australian National University, Australia
Jyrki Katajainen, University of Copenhagen, Denmark
Paddy Krishnan, Bond University, Australia
Xuemin Lin, University of New South Wales, Australia
Bruce Litow, James Cook University, Australia
Bernard Mans, Macquarie University, Australia
Chris McDonald, University of Western Australia, Australia
Mirka Miller, University of Ballarat, Australia
Kara L. Nance, University of Alaska Fairbanks, USA
Philip Ogunbona, University of Wollongong, Australia
Michael Oudshoorn, Montana State University, USA
Alfredo Sanchez, Universidad de las Americas-Puebla, Mexico
Jin Song Dong, National University of Singapore, Singapore
Leon Sterling, University of Melbourne, Australia
Masahiro Takatsuka, University of Sydney, Australia
Bruce H. Thomas, University of South Australia, Australia
Andrew Turpin, RMIT, Australia
Alexandra Louise Uitdenbogerd, RMIT, Australia
Hua Wang, University of Southern Queensland, Australia
Geoff West, Curtin University of Technology, Australia
Graham Williams, Australian Taxation Office, Australia
Burkhard Wuensche, University of Auckland, New Zealand
Yanchun Zhang, Victoria University, Australia
Wanlei Zhou, Deakin University, Australia
Roger Zimmermann University of Southern California, LA, USA

xi

Additional Referees

Bernhard Aichernig Stephan Lynge
Brad Alexander Keith MacKenzie Frampton
Saeed Araban Petra Malik
Sakire Arslan Robi Malik
Eduardo Augusto Bezerra Teddy Mantoro
Jennifer Badham Kim Marshall
Ian Barnes Aloys Mbala
Cail Borrell Tim McComb
Ole Borup Sule Nair
Rhodes Brown Lee Naish
Ney Laert Vilar Calazans Andrew Paplinski
Phil Cook Ian Peake
Hai Dam Jovan Pehcevski
Graham Farr David Pereira
Yuzhang Feng Asad Pirzada
Jacob de Fine Skibsted Stephen Seidman
Tarik Hadzic Jialie Shen
Morten Halkjer Anthony Sloane
Jörgen Havsberg Seland Sie Teng Soh
Nicolas Henschel Jon Sporring
Claus Jensen Bala Srinivasan
Craig Jones Linda Stern
Andrei Josephsen Phil Stocks
Ed Kazmierczak Jun Sun
Mehrdad Khodai-Joopari Kuldar Taveter
Carlo Kopp Chris Thorne
Vladik Kreinovich Phil Vines
Susan K. Land Haojun Wang
Geoff Leach Ang Yang
Yuan Fang Li Yidong Yuan
Leslie S. Liu Xiuzhen Zhang
Qing Liu Hong Zhu
Beth Loga Uwe R. Zimmer

xii

Organising Committee

Welcome

On behalf of the Tasmanian Organising Committee of ACSW2006 I would like to welcome all the delegates
to the conferences of this busy and interesting week, in particular those coming from overseas.

The location of the various conferences and other events at the Wrest Point Hotel allows delegates to
move quickly from event to event, and to easily and comfortably gather in groups for those conversations
and interactions that are so important for the exchange of ideas and the promotion of cooperation, not to
mention social pleasure.

We trust you will have a thoroughly enjoyable time.

Professor Young Ju Choi
Chair, Organising Committee

January, 2006

General Chair

Professor Young Ju Choi, School of Computing, University of Tasmania, Australia

Organising Committee Members

Ms Nicole Clark
Dr Julian Dermoudy
Mr Tony Gray
Mr Neville Holmes
Mr Ian McMahon
Ms Julia Mollison
Professor Arthur Sale
Ms Soon-ja Yeom

xiii

xiv

CORE - Computing Research and Education

CORE welcomes all delegates to ACSW2006 in Hobart.
ACSW, the Australasian Computer Science Week continues to grow with new conferences becoming

entrenched in the week. As the premier annual Computer Science event in Australia and New Zealand,
it provides an unparalleled opportunity for the wide community of Computer Science academics and re-
searchers to meet, network, promote IT research and be exposed to the latest research in other areas of
IT. The research presented at each conference is of the highest standard and essential for the growth and
future of our region, in an ever more competitive world.

CORE is expanding its awards. The Distinguished Service Award first offered in late 2004 will be offered
every second year and next at the 2007 Conference. Along with the Chris Wallace Research Award, we are
offering an annual teaching award for the first time.

CORE has continued to play a part in the Federation of Australian Scientific and Technological Societies
and by participating in events such as Science Meets Parliament, CORE is becoming recognised by the
wider community and will continue to do so. A major contribution from many members in 2005 was a
submission to the RQF Forum with some of our ideas appearing in the draft. CORE and members of the
Executive have also been interviewed as representatives of the Computer Science community for several
other Government and industry inquiries and initiatives.

Thank you all for your contributions in 2005 and we look forward to an exciting 2006.

Jenny Edwards
President, Computing Research and Education

January, 2006

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2008. Communications Volume Number 30. Proposed Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACE. Australian/Australasian Conference on Computing Education.
ACSAC. Asia-Pacific Computer Systems Architecture Conference (previously Australian Computer Architecture

Conference (ACAC).
ACSC. Australian/Australasian Computer Science Conference.
ACSW. Australian/Australasian Computer Science Week.
ADC. Australian/Australasian Database Conference.
APBC. Asia-Pacific Bioinformatics Conference.
APCCM. Asia-Pacific Conference on Conceptual Modelling.
AUIC. Australian/Australasian User Interface Conference.
CATS. Computing - The Australian/Australasian Theory Symposium.

Note that various name changes have occurred, most notably the change of the names of conferences to reflect a

wider geographical area.

xvii

xviii

ACSW and ACSC 2006 Sponsors

We wish to thank the following sponsors for their contribution towards this conference. For an up-to-date
overview of sponsors of ACSW 2006 and ACSC 2006, please see http://www.comp.utas.edu.au/acsw06/.

University of Tasmania, Australia

Australian Computer Society

CORE - Computing Research and Education

Griffith University, Australia

University of Auckland, New Zealand

xix

Keynote Paper

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

1

CRPIT Volume 48

2

Biomedical Computing and Visualization

Chris R. Johnson and David M. Weinstein
Scientific Computing and Imaging Institute

School of Computing
University of Utah

50 S. Central Campus Drive, Salt Lake City, UT 84112, US
crj@sci.utah.edu, dmw@sci.utah.edu

Abstract

Computers have changed the way we live, work, and even
recreate. Now, they are transforming how we think about
and treat human disease. In particular, advanced techniques
in biomedical computing, imaging, and visualization are
changing the face of biology and medicine in both research
and clinical practice. The goals of biomedical computing,
imaging and visualization are multifaceted. While some
images and visualizations facilitate diagnosis, others help
physicians plan surgery. Biomedical simulations can help
to acquire a better understanding of human physiology.
Still other biomedical computing and visualization
techniques are used for medical training. Within
biomedical research, new computational technologies
allow us to “see” into and understand our bodies with
unprecedented depth and detail. As a result of these
advances, biomedical computing and visualization will
help produce exciting new biomedical scientific
discoveries and clinical treatments. In this paper, we give
an overview of the computational science pipeline for an
application in neuroscience and present associated research
results in medical imaging, modeling, simulation, and
visualization.1

Keywords: Biomedical computing, imaging, problem
solving environment, visualization.

1 Introduction

The next decade will see an explosion in the use and the
scope of biomedical computing and visualization.
Advanced, multimodal imaging and visualization
techniques, along with new computational methods, will
change the way many biomedical researchers and
clinicians do their work. The combination of biomedical
imaging and visualization with biomedical simulations
will produce information about anatomical structure that
is linked to functional data, in the form of electric and
magnetic fields, mechanical motion, and biochemistry,
and genetics. Such an integrated approach will provide

Copyright © 2006, Australian Computer Society, Inc.† This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia .
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and
Gill Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

comprehensive views of the human body in progressively
greater depth and detail. However, such integration will
require significant advances in biomedical computing
software infrastructures and corresponding advances in
multi-scale biomedical computing, imaging, and
visualization algorithms (Johnson 2004).

Over the past two decades, the techniques of computer
simulation and visualization have had a substantial
impact on the field of biomedicine, as they have on other
areas of science and engineering. Computer simulation
allows biomedical researchers to subject increasingly
sophisticated quantitative and qualitative conceptual
models of biological behavior to rigorous quantitative
simulation and analysis.

2 Neuroscience Application: Neural Source
Imaging

Many times each second, the brain sends electrical
impulses racing through the body's web of nerve cells to
the motor neurons, where they initiate the electrochemical
reactions that cause muscles to contract. Several decades
ago, scientists recognized that these excitation currents
produce an electrical field that can be detected as small
voltages on the scalp. In 1924, German psychiatrist Hans
Berger recorded the first electroencelphogram (EEG). The
EEG electrode measures the small electrical activity from
the brain and contains continuous trains of activity. The
practice through which one can infer the inter-cranial
sources that give rise to these measurements is termed the
neural source imaging or inverse EEG problem. Neural
source imaging is a fundamental problem in neuroscience.
Learning precisely which regions of the brain are active at
a particular time is a central problem in fields ranging
from cognitive science to neuropathology to surgical
planning.

While the modern technologies of electrode design and
electronic recording apparatus differ significantly from
their predecessors, the EEG waveforms are essentially the
same as those recorded by Berger. Even with the
substantial advances in EEG technology, most of the
machines in clinical use today provide relatively coarse
descriptions of the overall electrical activity of the heart
or brain. This limitation in resolution is primarily due to
the fact that standard EEG measurements represent the
cumulative electrical activity of the brain as a very small
number of simple point sources of bioelectricity.
Physicians uses these glimpses to help spot disorders by
comparing the patient's EEGs with an atlas of waveforms

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

3

that correspond to particular disease states. Compressing
all this information into a small number of features is
very efficient, but can lack the sensitivity and spatial
resolution required for diagnosing many illnesses.

In some difficult cases, physicians turn to other
techniques that are more invasive, costly, and painful and
in rare cases, to exploratory surgery. In some cases of
epilepsy, for example, physicians must establish whether
the source of this abnormal electrical activity is well
localized, and hence operable. At present, this diagnosis
may require the application of electrodes directly to the
surface of the brain.

Using computer modeling, imaging, simulation and
visualization, we are developing diagnostic tools that may
reduce the need for these cases of preoperative surgery, by
simulating and visualizing the electric fields emanating
from the brain. Using large-scale, three-dimensional
computer models of the head and brain, we can produce
more detailed visual representations of the electrical
activity within the brain than the currently used brain
snapshots from standard EEGs. A primary goal is to
develop these techniques based on painless, risk-free
voltage measurements from the head surface and gain
information that is now primarily available through
highly invasive diagnostic procedures.

3 Computational Science Pipeline
In order to solve the neural source imaging problem from
above, we must perform several steps that involve
elements of what we call the computational science
pipeline: experimental data acquisition (patient image
acquisition), mathematical modeling (physical equations
that describe bioelectric fields), geometric modeling
(segmentation, mesh generation), material modeling
(electrical conductivity and diffusion tensor), numerical
approximation (large-scale parallel finite element
analysis, linear solvers, nonlinear optimization),
visualization (of the geometric model, material model,
and solutions), and validation (of the models and
solutions).

Figure 1 schematically illustrates the “Inverse EEG
Pipeline” we have constructed for efficient and interactive
neural source imaging. In addition to creating efficient
algorithms for each task, it is also important to create
useful, integrated software, such as the SCIRun (Parker
1997, Weinstein 2005) software system described in the
next section. We now briefly describe the stages within
the inverse EEG pipeline.

Fig 1: The Inverse EEG Computational Pipeline.

3.1 MRI Volume Segmentation and Voxel
Classification

Our pipeline takes raw MRI data from a scan of a
patient's cranium as anatomic input. This stage of the
pipeline is accomplished using modules from the Insight
Toolkit (ITK) (Yoo 2002) within SCIRun, using, for
example a level set algorithm (Lefohn 2003), as shown in
Figure 2. The output from this process is a tagged
volume of voxels, each labeled with a tag to identify the
primary material contained within that voxel. For our
application, we are specifically interested in: air, skin,
bone, cerebro-spinal-fluid, grey matter and white matter.

Figure 2: Result of segmentation of the brain using a
level set algorithm.

3.2 Surface Construction

From the classified voxels we extract the set of boundary
surfaces via a flood-fill/seed-growing style algorithm.
Each boundary then corresponds to a discrete material
region. Unfortunately, because the segmentation process
can leave some noise in the data, we often have on the
order of 10,000 surfaces after this process is completed,
with many of these surfaces only bounding a single
voxel. To reduce the number of surfaces, we pre-process
the segmented volume with an assimilation algorithm
that annexes regions containing less than some threshold
number of voxels into the largest neighboring region.
This process has the positive effect of reducing the
complexity of the model (where fewer surfaces implies
lower complexity), but it can also be destructive if the
threshold is set too high. As a result, this was one of the
parameters we studied in this study. The surfaces that
result from this extraction have a characteristic “staircase”
jaginess, since they are composed of voxel faces. To
smooth out this data into more physiologically correct
(and numerically stable) surfaces, we apply a scanline
surface algorithm (Weinstein 2000) to these non-manifold
surfaces. The result is shown in the first frame of Figure
3.

CRPIT Volume 48

4

Figure 3: The result of surface construction and mesh
generation from segmented MRI data.

3.3 Scalp Co-registration and Boundary
Condition Application

In addition to the raw MRI data, we use two other
clinically obtained raw datasets in our pipeline. These
datasets are the basis for the functional data that will be
mapped onto the scalp surface and serve as Dirichlet
boundary conditions. The first of these datasets are the
potentials recorded through electrodes attached to the
patient's scalp. The second dataset is a list of point
locations in space, obtained with a pointing device and a
magnetic tracker. These points are used to spatially
locate the electrode positions on the MR dataset, and
consist of electrode positions and a cloud of points
digitized off the patient's scalp. The first step in the co-
registration process is to match the point cloud to the
scalp surface extracted in the surface construction stage.
This is done with a semi-automatic algorithm that applies
affine transformations to the point cloud to minimize the
summed squared distances from the points in the point
cloud to the surface. The second step of this process is to
apply the boundary conditions to the scalp surface. We
simply determine the closest scalp point to each of the
electrodes and assign it the corresponding potential with a
Dirichlet boundary condition.

3.4 Finite Element Mesh Construction

To construct our finite element mesh, we use a spatial
subdivision algorithm that subdivides space into uniform
cubic voxels and places a single mesh node in each voxel.
Voxels that correspond to air are not included in this
process. The placement of each node is chosen based on
two criteria: if a surface passes through the voxel, the
node is constrained to lie on the surface; nodes must
maintain a minimal distance from each other (a Poisson
disk constraint, applied between neighboring voxels is
used to guarantee this property). The edge lengths of
these cubic voxels will directly determine the number of
nodes generated. Since fewer nodes will result in less
accurate meshes geometrically, we varied this parameter
to evaluate the effect of geometric inaccuracies on the
cortical solution. After generating all of the nodes, we
use the CAMAL mesh generator (Sandia 2004) to
construct a tetrahedral mesh. Each element in the mesh is
tagged with a material/conductivity.

3.5 Finite element matrix construction

The finite element matrix is constructed by discretizing a
generalized Poisson equation,

!

" #$"% = &I
V

, where

!

" is the voltage,

!

" is the electrical conductivity tensor,
and

!

I
V

 is the electric current per unit volume. The
details of the finite element theory and implementation
are described in detail in (Johnson 1997). The result of
this algorithm is a sparse, symmetric, positive-definite
stiffness matrix that encodes all of the geometry and
electrical conductivity information of the problem.

3.6 Nonlinear Optimization

In order to solve the source localization problem, one
needs to use nonlinear optimization. This involves
solving the discretized Poisson equation above multiple
times in order to find the global minimum of a misfit
function defined as the difference between the measured
voltages on the surface of the scalp and the computed
solutions assuming a model neural source. We used both
a multi-restart simplex search and a simulated annealing
algorithm to find the global minimum of the misfit
function. Both algorithms recovered the same neural
sources, modeled as dipoles. The simplex search
algorithm was restarted eight times for each source in
order to improve the likelihood that we had localized the
global minimum. We validated our recovered minima
through an exhaustive search of the domain. Details of
the algorithm and implementation can be found in
(Weinstein 2000).

3.7 Visualization

Researchers at the SCI Institute and collaborators have
created several novel visualization techniques to visualize
scalar, vector, and tensor fields (Kniss 2005, Livnat 2005,
Scheuermann 2005, Whitaker 2005, Zhang 2005). As an
example of a new multi-field visualization technique, we
applied a combination of stream surface visualization
with simple tensor field visualization to look at the
effects of including anisotropy within a realistic head
model for the EEG source localization simulation.
Figures 4 and 5 illustrate the visualization of the effects
of white matter anisotropy using these techniques. We
can observe a correlation between the primary direction of
the conductivity structure of the white matter fiber
bundles and the direction of the return currents. The
visualization of return currents in bioelectric field
problems can reveal important details about the
distribution of sources, interactions at conductivity
boundaries, and the effect of geometric distortion on
bioelectric fields. By integrating the stream surfaces with
a visualization of the diffusion tensors representing the
white matter, we can better understand the structural,
spatial relationships (Wolters 2005).

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

5

Figure 4: Visualization of return current surfaces from an
EEG simulation using an isotropic conductivity model.

Figure 5: Visualization of return current surfaces from an
EEG simulation using an anisotropic conductivity model.

In Figure 6 we show the orientation of the anisotropic
white matter tracks from a diffusion tensor MR scan
using a novel application of super quadric glyphs
(Kindlmann 2004).

Figure 6: Visualization of half a brain DT-MRI volume
using super quadric glyphs. Red indicates left/right, green
indicates anterior/posterior, and blue indicates
superior/inferior.

4 SCIRun: Integrated Software System

The desire to understand biological systems drives
researchers to create ever-more sophisticated
computational models. While such sophistication is
essential to good research, the resulting complexity of the
scientific computing process has itself become a major
hindrance to further progress. Sources of this complexity
include the number of equations and variables required to
encapsulate realistic function, the size of the resulting
systems and data sets, and the diverse range of
computational resources (algorithms, databases, software,
and hardware) required to support significant advances.
Biomedical computing researchers gather multi-channel
and multi-modal data from real-time collection
instruments, access large distributed databases, and rely on
sophisticated simulation and visualization systems for
exploring biomedical systems.

Managing such large-scale computations requires
powerful hardware and efficient and transparent software
that frees the user to engage the complexity of the
scientific problem rather than of the tools themselves.
Unfortunately, such biomedical computing software does
not currently exist. The range of computational tools
available is growing so rapidly that navigating this large
set of possible options has become its own challenge.
The need to integrate software is especially acute when
scientists seek to create models that span spatial or
temporal scales or cross physical systems (e.g.
combining electrical with mechanical and biochemical
parameters). Integration is also necessary across the
various components of the modeling and simulation
process. No single researcher has the skills required to
master all the computational and biological knowledge
needed to successfully create geometric and mathematical

CRPIT Volume 48

6

models, map them to numerical algorithms, implement
them efficiently in modern computers, visualize the
results, and understand them as they pertain to the specific
biological system under investigation. To successfully
model such complex systems requires a multidisciplinary
team of specialists, each with complementary expertise
and an appreciation of the interdisciplinary aspects of the
system, and each supported by a software infrastructure
that can leverage specific expertise from multiple domains
and integrate the results into a complete software system.

Problem-solving environments (PSEs)2 provide a natural
platform to support integration and leverage
multidisciplinary expertise to create complete systems for
biomedical computing (Bramley 2000). Such systems
solve the challenges of interfacing disparate elements and
provide a level of functional abstraction that greatly
assists researchers dealing with complex software
systems.

PSEs also provide infrastructure for vertical integration of
computational knowledge. Specific elements that may be
incorporated into a comprehensive PSE include
knowledge of the relevant discipline(s); the best
computational techniques, algorithms and data structures;
the associated programming techniques; the relevant user
interface and human-computer interface design principles;
the applicable visualization and imaging techniques; and
methods for mapping the computations to various
computer architectures (Bramley 2000). A PSE can
consolidate knowledge from a range of experts in these
disparate areas into a system that offers the end user a
powerful set of computational tools.

Within the Scientific Computing and Imaging (SCI)
Institute at the University of Utah, we have a long
history of research in software architecture and creating
problem-solving environments for scientific computing,
such as SCIRun, BioPSE, and Uintah (SCIRun 2005).

The SCIRun PSE allows the interactive creation,
investigation, and steering of large-scale scientific
computations. SCIRun has been under development
since the mid 1990s, but it has been enhanced
significantly over the past five years due to the efforts of
two large research centers that have used SCIRun as their
core software system. These centers are 1) The Center for
the Simulation of Accidental Fires and Explosions (C-
SAFE), a Department of Energy ASHLI ASAP Level 1
Center; and 2) the NIH NCRR Center for Integrative
Biomedical Computing. Largely because of these efforts,

2 We note that there are a number alternative phrases for
what we mean by a problem solving environment
currently being used in the scientific software literature,
including software frameworks, toolkits, scientific
software environments, software workbenches, plus a
number of application specific names.

SCIRun has become a comprehensive software
environment for scientific computing applications.
SCIRun provides a component model, based on a
generalized dataflow paradigm, which allows different
computational components and visualization components
to be connected in a tightly integrated fashion. A
dataflow model implies the following: 1) data is sent to a
software component, 2) the component manipulates the
data in some manner, and 3) the new data is sent
downstream to the next component for further
manipulation.

SCIRun can be viewed as a computational workbench, in
which a scientist designs and modifies a simulation
interactively via a component-based visual programming
model. SCIRun also facilitates interactive debugging and
steering of large-scale, typically parallel, scientific
simulations by, for example, enabling a scientist to
modify geometric models and interactively change
numerical parameters and boundary conditions. As
opposed to the typical off-line simulation mode - in
which the scientist manually sets input parameters, then
computes results, and finally visualizes the results via a
separate visualization package, and then starts again at the
beginning - SCIRun closes the loop, combining each of
these phases of the scientific investigation of the chosen
problem.

While SCIRun provides the framework and software
support needed to provide the extensive functionality
discussed above, the actual science is done by individual
software components. The modules are stand-alone pieces
of software designed by various individuals or groups and
contributed to the system. It is through combining the
functionality of a number of modules that interesting
problems are solved.

SCIRun/BioPSE Example of EEG Simulation and
Visualization

An example electroencephalography (EEG) neural source
localization application is show in Figures 7 and 8.
Figure 7 contains the dataflow network that implements
an inverse EEG application. At the top of the network,
the input data files are loaded; these include the finite
element mesh that defines the geometry and conductivity
properties of the model and a precomputed lead-field
matrix that encodes the relationship between electric
sources in the domain and the resulting potentials that
would be measured at the electrodes. Further down in the
network, we have a set of modules that optimize the
dipole location in order to minimize the misfit between
the measured potentials from the electrodes and the
simulated potentials due to the dipole. Finally, we have
visualization and rendering modules, which provide
interactive feedback to the user.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

7

Figure 7: SCIRun/BioPSE modules combined for EEG
modeling (unstructured mesh generation), simulation
(finite element simulation, parallel linear system solves,
and inverse source localization), and visualization (mesh
visualization, isosurface extraction, and vector field
visualization.

Figure 8: Visualization of simulation results of an EEG
simulation localizing a neural source.

PowerApps

One of the major hurdles to SCIRun becoming a practical
tool for the scientists and engineers has been SCIRun's
dataflow interface. While visual programming is natural
for computer scientists and some engineers, who are
accustomed to writing software and building algorithmic

pipelines, it is overly cumbersome for application
scientists3. Even when a dataflow network implements a
specific application (such as the bioelectric field
simulation network provided with BioPSE and detailed in
the BioPSE Tutorial), the user interface (UI) components
of the network are presented to the user in separate UI
windows, without any semantic context for their settings.
For example, SCIRun provides file browser user
interfaces for reading in data. However, on the dataflow
network all of the file browsers have the same generic
presentation. Historically, there has not been a way to
present the filename entries in their semantic context, for
example to indicate that one entry should identify the
electrodes input file and another should identify the finite
element mesh file.

While this interface shortcoming has long been identified,
it has only recently been addressed. We recently
introduced PowerApps. A PowerApp is a customized
interface built atop a dataflow application network. The
dataflow network controls the execution and
synchronization of the modules that comprise the
application, but the generic user interface windows are
replaced with entries that are placed in the context of a
single application-specific interface window. Figure 9
shows the BioFEM PowerApp implementation of the
neural source localization application.

Figure 9: The BioFEM custom interface. Though the
application is functionality equivalent to the dataflow
version shown in Figure 7, this PowerApp version
provides an easier-to-use custom interface. Everything is
contained within a single window; the user is lead
through the steps of loading and visualizing the data with
the tabs on the right; and generic control settings have
been replaced with contextually appropriate labels; and
application-specific tooltips (not shown) appear when the
user places the cursor over any user interface element.

3 We note this statement is often true of software written
by computer science researchers being used by application
scientists and engineers.

CRPIT Volume 48

8

5 Next Generation Software Architecture:
SCIRun2

At the SCI Institute, we are beginning development of a

next-generation software architecture, called SCIRun2
(Zhang 2004). This system shares much of its software
code-base with SCIRun, and it is our intent to evolve
SCIRun into SCIRun2 over the next year.

SCIRun2 seeks to remove barriers to software component
reuse by employing a flexible component architecture that
enables a number of different styles of components (called
component models) to be used together simultaneously.
Thus far, we have been very successful in writing
component wrappers to allow software packages (such as
ITK, Teem, MATLAB, the CAMAL mesh generator, and
so forth) to be used as modules in SCIRun. All of these
undertakings have been successes: they have broadened the
applicability of SCIRun, improved its performance, and
have made it a more useful tool for our collaborators and
for the scientific community at large. In practice,
though, some of these efforts were very straightforward
while others required significant custom development to
overcome the technical hurdles.

SCIRun2, born of our experience developing SCIRun,
provides a new internal architecture that is specifically
designed to integrate component-based and object-based
software such as the libraries described above, making
this task of integration both simpler and more powerful.

The primary innovative design feature of SCIRun2 is a
meta-component model that facilitates integration of a
number of classes of tools from various, previously
incompatible systems. In the same way that components
plug into a traditional component-based PSE (such as the
original SCIRun), SCIRun2 will allow entire component
models to be incorporated dynamically. SCIRun2
facilitates the coupling of multiple component models,
each of which can bring together a variety of components.
In addition, the SCIRun2 architecture directly enables
features that we wish to add to SCIRun, such as support
for MPI-based components, a separation of the user
interface from the computational engine, improved
scripting support, and features for collaboration.

6 Acknowledgments

This work was supported, in part, by a grant from the
NIH NCRR 5P41-1RR12553-07 and from grants from
DARPA, DOE, and NSF. SCIRun, BioPSE, and
PowerApps software are all available as Open Source
from the SCI Institute website (www.sci.utah.edu).
SCIRun, BioPSE and the PowerApps are currently
supported on three different platforms: Linux, Macintosh
OSX, and SGI IRIX. A Windows port will be available
in early 2006.

7 Summary

Advanced biomedical computing techniques coupled with
advances in multi-modal imaging and visualization will
change the way many biomedical researchers and

clinicians do their work. The combination of biomedical
imaging, and visualization with biomedical simulations
will produce information about anatomical structure that
is linked to functional data, in the form of electric and
magnetic fields, mechanical motion, and biochemistry,
and genetics. Such an integrated approach will provide
comprehensive views of the human body in progressively
greater depth and detail. However, such integration will
require significant advances in biomedical computing
software infrastructures and corresponding advances in
multi-scale biomedical computing, imaging, and
visualization algorithms.

8 References
Johnson, C.R., MacLeod, R.S., Parker, S.G., and

Weinstein, D.M. (2004): Biomedical Computing and
Visualization Software Environments.
Communications of the ACM, 47 (11): 64-71.

Parker, S.G., Weinstein, D.M., and Johnson, C.R
(1997): The SCIRun Computational Steering Software
System. In Modern Software Tools in Scientific
Computing, 1-40. Arge, E., Bruaset, A.M. and
Langtangen, H.P. (eds). Birkhauser Press.

Weinstein, D.M., Parker, D.M., Simpson, J.,
Zimmerman, K., and Jones, G. (2005): Visualization
in the SCIRun Problem-Solving Environment. In The
Visualization Handbook, 615-632. Hansen, C.D. and
Johnson, C.R. (eds). Elsevier.

Yoo, T.S., Ackerman, M.J., Lorensen, W.E, Schroeder,
W., Chalana, V. Aylward, S., Metaxes, D., and
Whitaker, R. (2002): Engineering and Algorithm
Design for an Image Processing API: A Technical
Report on ITK - The Insight Toolkit. In Proc. of
Medicine Meets Virtual Reality, (586-592). Westwood,
J. (ed). IOS Press Amsterdam.

Lefohn, A.E., Cates, J.E., and Whitaker, R.T (2003):
Interactive, GPU-Based Level Sets for 3D
Segmentation. In Medical Image Computing and
Computer Assisted Intervention (MICCAI), 564-572.

Weinstein, D.M. (2000): Scanline Surfacing: Building
Separating Surfaces from Planar Contours. In
Proceeding of IEEE Visualization 2000, 283-289.

Sandia National Laboratories (2004): CAMAL - The
CUBIT Adaptive Meshing Algorithm Library -
http://cubit.sandia.gov/camal.html - Release 2.0.2.

Johnson, C.R. (1997): Computational and Numerical
Methods for Bioelectric Field Problems. In Critical
Reviews in BioMedical Engineering, 25(1):1-81.

Weinstein, D.M., Zhukov, L. and Johnson, C.R.
(2000): Lead-Field Bases for EEG Source Imaging.
Annals of Biomedical Engineering, 28(9):1059-1065.

Wolters, C.H., Anwander, A., Tricoche, X, Lew, S., and
Johnson, C.R. (2005): Influence of Local and Remote
White Matter Conductivity Anisotropy for a Thalamic
Source on EEG/MEG Field and Return Current

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

9

Computation. In International Journal of
Bioelectromagnetism (In Press).

Kindlmann, G. (2004): Superquadric Tensor Glyphs. In
Proceeding of The Joint Eurographics - IEEE TCVG
Symposium on Visualization 2004, (147-154).

Kniss, J.M., Kindlmann, G., Hansen, C.H. (2005):
Multidimentional Transfer Functions for Volume
Rendering. In The Visualization Handbook, (189-
210). Hansen, C.D. and Johnson, C.R. (eds). Elsevier.

Livnat, Y. (2005): Accelerated Isosurface Extraction
Approaches. In The Visualization Handbook, (39-55).
Hansen, C.D. and Johnson, C.R. (eds). Elsevier.

Scheuermann, G. and Tricoche, X (2005): Topological
Methods for Flow Visualization. In The Visualization
Handbook, (341-356). Hansen, C.D. and Johnson,
C.R. (eds). Elsevier.

Whitaker, R.T. (2005): Isosurfaces and Level-Sets. In The
Visualization Handbook, (97-123). Hansen, C.D. and
Johnson, C.R. (eds). Elsevier

Zhang, S., Laidlaw, D.H., and Kindlmann, G. (2005):
Diffusion Tensor MRI Visualization. In The
Visualization Handbook, (327-340). Hansen, C.D. and
Johnson, C.R. (eds). Elsevier

Bramley, R., Char B., Gannon, D. , Hewett, T.,
Johnson, C.R., and Rice, J. (2000): Enabling
Technologies for Computational Science: Frameworks,
Middleware, and Environments. In Workshop on
Scientific Knowledge, Information, and Computing,
(19-32). Houstis, E., Rice, J., Gallopoulos, E, and
Bramley, R. (eds). Kluwer Academic.

SCIRun, BioPSE, and PowerApp Software. Scientific
Computing and Imaging Institute.
http://www.sci.utah.edu/.

Zhang, K., Damevski, K., Venkatachalapathy, V.,
Parker, S. (2004): SCIRun2: A CCA Framework for
High Performance Computing, In Proceedings of The
9th International Workshop on High-Level Parallel
Programming Models and Supportive Environments.

CRPIT Volume 48

10

Full Papers

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

11

CRPIT Volume 48

12

Logic and Refinement for Charts

Greg Reeve Steve Reeves

Department of Computer Science,
University of Waikato,

New Zealand,
Email: {gregr,stever}@cs.waikato.ac.nz

Abstract

We introduce a logic for reasoning about and con-
structing refinements for µ-Charts, a rational simplifi-
cation and reconstruction of Statecharts. The method
of derivation of the logic is that a semantics for the
language is constructed in Z and the existing logic
and refinement calculus of Z is then used to induce
the logic and refinement calculus of µ-Charts, pro-
ceeding by a series of definitions and conservative ex-
tensions and hence generating a sound logic for µ-
Charts, given that the soundness of the Z logic has
already been established.

Keywords: Statecharts, reactive systems, Z, ZC , logic,
refinement

1 Introduction

The specification language µ-Charts is a rational sim-
plification and reconstruction of Statecharts (Harel
1987). As such, it can be considered to define the
core of the many Statechart-like languages: a family
of visual languages that are used for designing reac-
tive systems. It is simpler than the original State-
charts, the simplification being achieved by omitting
some of the more complicated and reportedly less-
used constructs. It is designed to have a more com-
prehensible semantics, without losing expressiveness.
One important contribution of this work, then, is a
semantics and logic for the core of Statecharts, pre-
sented independently of any particular tool or other
“operational” embodiment of semantics and logic.

In the past a formal semantics has been given to
µ-Charts using both a process algebraic, traces ap-
proach and denotationally using automata by Scholz
(1998), along with a logical treatment (Reeve &
Reeves 2000) using the specification language Z
(Spivey 1989),(13568 2002). While different as-
pects, and versions, of µ-Charts have been published
(Philipps & Scholz 1997a, Philipps & Scholz 1997b,
Scholz 1998), the definitive account (prior to the de-
velopment of the Z-based logic) was published by
Scholz (1998). Characteristic features of µ-Charts
are that transitions are instantaneous (and hence in-
put and output signals appear simultaneously); com-
munication using selected signals (feedback) between
charts is local (pairwise) rather than global and is
defined explicitly; and that charts may nondetermin-
istically choose between transitions.

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

The language semantics assumes a chaotic-
outside-of-defined-behaviour interpretation. The lan-
guage is also distinguished from process algebras
where the natural interpretation is often one where
transitions are triggered by the presence of required
signals. µ-Charts also allows transitions to be trig-
gered by the absence of designated signals. This is
facilitated by imagining there is a global clock whose
tick causes all transitions leaving the state of a chart
to evaluate their guards.

The aim of this paper is to present a partial
relations-based logic for µ-Charts and and then to
show how a refinement theory can be lifted from Z to
charts.

In this paper we view µ-Charts as a language for
specification, especially since we allow nondetermin-
ism. In a subsequent paper we will show how imple-
mentations can be built: the method will be to use
the language and notions of refinement presented here
to move our specification towards implementation by
gradually reducing nondeterminism and adjusting the
interfaces as required, and then using the program de-
velopment work by, e.g., Henson and Reeves (2003)
and the more recently by Henson et al. (2004) to
arrive at an implementation.

The derivation of the logic rules is somewhat sim-
plified due to space constraints: the interested reader
can consult work by Reeve (2005) for a more detailed
account. For similar reasons the formal semantics
given covers just one of the three language constructs.

We do not give examples of reasoning about any
particular chart: how to use a logic to reason is, we
assume, second nature to our audience and is straight-
forward. Rather, we use the logic for the far more am-
bitious and fundamental goal of deriving refinement
rules for charts.

Section 2 presents an introduction to the formal
treatment of µ-Chart’s semantics. This includes de-
scribing one of the language operators, giving the
general method of deriving a Z model for that op-
erator and the derivation of natural deduction-style
logic rules using the Z logic. We divide this section
into two: the first part shows how the semantics for
charts is given in Z; the second part shows how the Z
semantics is given a meaning and then how rules for
charts can be derived.

Section 3 shows how we use the existing and well-
investigated refinement notion of Z to derive a re-
finement notion for charts. This is concluded with a
discussion of what this refinement notion is in terms
of the more traditional process algebraic, trace de-
scription of chart behaviour. In Section 4 we consider
monotonicity of refinement in general, and in Sec-
tion 5 we show how the logic we have developed can
be used to investigate and prove monotonicity proper-
ties of µ-Charts. Finally, we present some conclusions
in Section 6.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

13

2 The µ-Charts Logic

This section provides an introduction to µ-Charts via
the definition its of semantics in Z. The logic and
semantics of Z itself is then used to induce a logic
and set-theoretic semantics for µ-Charts.

This process is divided into two natural phases:
we first use definitions to express the semantics of µ-
Charts in Z. These definitions define what we call the
transition model, which is essentially a function which
maps expressions from µ-Charts to Z, and which we
denote by J.K

Zt
. We then use the standard mapping

from Z into the underlying, core language ZC (Henson
& Reeves 2000). This mapping is denoted by J.K

ZC
.

The composition of these two semantic mappings then
gives us the semantics of µ-Charts in ZC . We then
use the logic of ZC together with the definitions that
go to make up J.K

Zt
to induce a logic for µ-Charts.

Since this logic has been constructed from the sound
logic for ZC by a series of conservative extensions (via
definitions), we know that the logic for µ-Charts is
sound too.

A µ-chart is either atomic or a combination of
charts using language operators. An atomic chart
is essentially a finite-state automaton where a transi-
tion in the chart is labelled with a pair, guard/action.
That the transition is taken (or triggered) is condi-
tional on the guard being satisfied by the current in-
put signals and leads to the action happening, mean-
ing that signals are output as required by that ac-
tion. Each chart has an input interface designating
signals that can trigger a transition and an output
interface designating signals that the chart can out-
put. A fundamental assumption is that time passes
in the control states of a chart, but the transitions
between these states occur instantaneously. A chart
reaction is therefore characterised by the input of a
set of signals from the environment and the instanta-
neous output of a set of signals to the environment.
This reaction is called a step or a tick of the clock,
but note that this does not mean that the intervals
between reactions must be equal.

A chart C has an input interface inC that typically
includes all of the signals that appear in its transition
guards and an output interface outC that typically
includes all of the signals that appear in its transition
actions.

In order to define large reactive systems, the
language has three structuring mechanisms: par-
allel composition, hierarchic decomposition and in-
put/output interface definition. In a parallel compo-
sition, each component chart reacts synchronously on
a global clock. A feedback mechanism between pairs
of charts makes output signals instantaneously avail-
able as input signals, which allows component charts
to communicate asynchronously on signals. A com-
position chart C = C1 | Ψ | C2, which composes charts
C1 and C2 with feedback on signals in the set Ψ, has
an input interface inC = inC1

∪ inC2
and an output

interface outC = outC1
∪ outC2

.
A further structuring mechanism means some of

the states of a chart need not be atomic, but rather
one chart may be embedded in another (“inside” one
of its states) as a sub-chart, using hierarchic decompo-
sition. Finally, the definition of the assumed context
of a chart via the explicit definition of the input and
output interfaces of a chart (of arbitrary structure)
allows signal hiding.

The full definition of the language semantics, via
the logic, treats each of these language operators sep-
arately. In this paper we will concentrate on just the
definition of atomic charts and the parallel composi-
tion operator.

S

A B
a / b

c / d

Figure 1: A simple atomic µ-chart

2.1 The transition model

The transition model essentially relates the current
configuration of a chart and input to a new configura-
tion and the resulting output. This relation describes
every possible step that a chart can take. In contrast,
a typical way to give a semantics for such languages
is to use sets of observable input/output traces, for
example the trace semantics given by Scholz (1998).
This abstracts on the control states by defining just
its reactions in an assumed context. The link be-
tween the logical semantics described here and a trace
semantics can be constructed by considering a chart
making one step after another and recording just the
input and resulting output. The resulting trace se-
mantics is considered fully by Reeve (2005).

2.1.1 Atomic charts

An atomic chart has the general textual form (Name,
State set, Start state, Feedback signals, transition
function). Consider the chart (S , {A, B},A, {}, δ)
(where δ is the appropriate transition description)
pictured in Figure 1. 1

Informally the behaviour that this chart captures
can be described as: the chart starts in state A; if
it is in state A and the signal a is input then signal
b is output and the chart changes to state B; and
similarly if it is in state B and c is input then d is
output and the new state is A.

The essence of the transition model for an atomic
µ-chart is the description of each of its transitions
using a separate Z operation schema. These opera-
tion schemas (one for each transition in the chart)
are combined using Z schema disjunction to give one
schema that describes the transition behaviour of the
chart. The Z state of the model has an observation
that indicates the current configuration of the chart.
The operation schemas describe each transition, that
is, how and when that configuration changes.

For an atomic chart (C , Σ, σ0, Ψ, δ) we introduce Z
axiomatic definitions (Figure 2) that model the set
of possible chart states, the input interface and the
output interface. The sets µState and µSignal contain
all allowable state and signal symbols.

The state schema ChartC records the current state
of the chart C using observation cC . The initial state
of the chart is modelled by the schema InitC .

A separate state schema called Cσ is given for
each state in the chart σ ∈ Σ.

Next we give an operation schema for each
chart transition. That is, for each transition
(Sf , St , guard/action) ∈ δ we define an operation schema
named δSf St .

We can see from this definition that each binding
in the set has five observations. The meanings of these
are:

• cS—the state of the chart before the transition
happens, in this case the state A

1We use the piece of text which is the name of the chart to
refer to both the chart itself and its name, allowing the context to
indicate which we mean. The fact that the name stands for itself
as a piece of text is used in the syntactic process of defining the Z
that a chart has as its semantics, as we shall see.

CRPIT Volume 48

14

statesC : P µState

inC : P µSignal

outC : P µSignal

Ψ : P µSignal

ChartC == [cC : statesC]

InitC
ChartC

cC = σ0

Cσ == [ChartC | cC = σ]

δSf St

CSf

CS ′
t

iC : P inC

act : P µState

o′

C
: P outC

C ∈ act

ρ(guard)
o′

C = action

Figure 2: The Z semantics, the transition model, for
an atomic chart

• iS—the set of input signals which are offered by
the environment that are in the input interface
of the chart

• act—a set that denotes all currently active charts

• c′S—the state of the chart after the transition
happens, in this case B

• o′

S—the output generated by the chart, in this
case the set containing the signal b

Note that part of the definition of atomic charts—
the observation act—is part of the mechanism that
allows for the definition of the hierarchic decomposi-
tion operator. As we will not be looking at the details
of this operator in this paper, it is sufficient to un-
derstand that a chart can be active or inactive, and
transitions happen only when an atomic chart is ac-
tive, which is recorded by having its name contained
in act. Hence the predicate C ∈ act is part of the
precondition of the operation schema δSf St .

The predicate ρ(guard), introduced in schema
δSf St , stands for the Z predicate that models the syn-
tactic guard of a chart transition. If we consider a
transition’s guard in general as a (possibly empty)
list of signal expressions, separated by the conjunc-
tion symbol &, then each of the elements in the list
can be classified into two categories: either a posi-
tive signal expression—simply the name of a signal;
or a negative signal expression—the signal name is
prefixed with a minus sign. A positive signal expres-
sion, say sig where sig ∈ inC , is denoted by the Z
expression sig ∈ iC ∪ (o′

C ∩ Ψ). A negative signal ex-
pression, say −sig, is denoted by the Z expression
sig 6∈ iC ∪ (o′

C ∩Ψ). The syntactic construction process
denoted by ρ determines the appropriate predicate
for each signal expression and connects them together
using the Z logical conjunction operator ∧. If the list
is empty the predicate (produced by the process ρ)
would be true. So, for the transition labelled a/b
in chart S in Fig.1 the predicate produced would be

a ∈ ic ∪ (o′
c ∩ Ψ) since the guard of this transition is

just a.
This general scheme for giving the Z for a transi-

tion defines the semantic function J.K
Zt

. For an arbi-
trary transition (Sf , St , guard/action) we have,

q
(Sf ,St , guard/action)

y
Zt

=def δSf St

The schema δSf St provides the Z semantics for the
transition.

Along with the schemas for each transition we also
need a single schema that models the behaviour of the
chart when it is inactive (Figure 3). Again this Z is
part of the general transition necessary to model the
entire language, in particular, including the decom-
position operator. Here it is enough to realise that an
inactive chart plays no part in output. For the gen-
eral atomic chart (C , Σ, σ0, Ψ, δ), we name the inactive
schema InactiveC .

Now, the entire transition model for an atomic
chart is given by Definition 2.12

Definition 2.1

J(C , Σ, σ0, Ψ, δ)K
Zt

=def (
W

{JtK
Zt

| t ∈ δ}) ∨ InactiveC

in a context containing the axiomatic definitions and ChartC ,
InitC and Cσ.

The complete transition model for chart S from
Figure 1 is defined as the disjunction of each of the
individual transition schemas, i.e. δS == δAB ∨ δBA ∨
InactiveS , and two of these schemas are given as ex-
amples in Figure 4.

2.1.2 The composition operator

The composition operator allows us to take two
µ-charts C1 and C2 and join them together to form
a new, more complex chart C1 | Ψ | C2 where Ψ
is a set of signals on which C1 and C2 can com-
municate. As mentioned, the charts run separately
but synchronously, i.e. in lock step with one another.
Their only medium of communication is asynchronous
via the multicast of those signals in the set Ψ. The
communication is asynchronous in that output is al-
ways enabled—a chart can always broadcast signals.
However, there is no guarantee that the other chart
in the composition is listening, that is, ready to react
on the signals broadcast. Signals persist only during
one step of the chart.

The transition model JC K
Zt

for the composed chart
C = C1 | Ψ | C2 contains a similar set of Z definitions
and schemas (Figure 5) as that for an atomic chart.
Here it is assumed that any entity subscripted with
C1 comes from the transition model of the chart C1

and similarly for C2.

2.1.3 Partial relations semantics

The step semantics of a chart is no more than the
transition model of the entire µ-chart specification

2We use the notation
W

X to denote the schema disjunction of
all the schemas in the set X .

InactiveC

ΞChartC
iC : P inC

act : P µState

o′

C
: P outC

C 6∈ act

o′

C = {}

Figure 3: Z semantics for Inactive

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

15

δAB

SA

SB ′

iS : P inS

act : P µState

o′

S : P outS

S ∈ act

a ∈ iS ∪ (o′

S ∩ {})
o′

S = {b}

InactiveS

ΞChartS
iS : P inS

act : P µState

o′

S
: P outS

S 6∈ act

o′

S
= {}

Figure 4: Z for the chart in Figure 1

with the active state machinery hidden. Given an
arbitrary µ-chart called C , the step behaviour of C

is defined by another schema which, by convention,
we call CSys (Figure 6).

The schema CSys (right) hides the active state
observation and specifies that the top-most chart of
any hierarchical structure is active.

So, JK
Zt

for an arbitrary chart C generates various
pieces of Z, depending on the structure of C , defining
the transition model. We then have to give a meaning
to the Z in order to generate logical rules, which we
now do.

2.2 The ZC model

From the transition model of a chart as given above
we move on to give a logic for charts by modelling the
transition model in ZC hence deriving introduction
and elimination rules that allow us to prove properties
about a chart’s transition model and hence about a
chart.

2.2.1 Atomic charts

Given the general method for constructing the Z se-
mantics of a chart (i.e. the transition model), we can
describe the meaning of the chart by describing the
meaning of the Z. To do so we rely on a reasonable
level of familiarity with the meta-language used in
the presentation of the kernel logic ZC in Henson
and Reeves (2000). Briefly, we: use the binding con-
catenation operator ?; restricted membership

.

∈; re-
stricted equality .

=; type meta-variables for example
T; αT as shorthand for all observations of the schema
type T; superscript type meta-variables to denote the
types of bindings and schemas; and the type union op-
erator g. For brevity, we suppress mention of types
(indicated by superscripts on terms) in all cases where
this is possible and rely on the unique of types that
ZC enjoys to assure ourselves of the well-formedness
(which includes well-typedness) of our terms.

Returning to the example chart of Figure 1, again,
the Z meaning of the transition from configuration A

to B is given by the schema δAB , whose meaning in
turn is given in the theory ZC as a set of bindings as
follows:

JδAB K
ZC

=def

{〈| cSVA, iSVi , act Vactive, c′SVB , o′
SV{b} |〉 |

i ⊆ inS ∧ active ⊆ µState • S ∈ active ∧ a ∈ i}

statesC : P µState

inC : P µSignal

outC : P µSignal

Ψ : P µSignal

statesC =
statesC1

∪ statesC2

inC = inC1
∪ inC2

outC = outC1
∪ outC2

ChartC
ChartC1

ChartC2

InitC
InitC1

InitC2

δC
∆ChartC
iC : P inC

act : P µState

o′

C : P outC

C1 ∈ act ⇔ C ∈ act

C2 ∈ act ⇔ C ∈ act

∃ iC1
, iC2

, oC1

′, oC2

′ : P µSignal •
iC1

= (iC ∪ (o′

C ∩ Ψ)) ∩ inC1
∧

iC2
= (iC ∪ (o′

C ∩ Ψ)) ∩ inC2
∧

o′

C = oC1

′ ∪ oC2

′ ∧ δC1
∧ δC2

Figure 5: Semantics for composition

CSys

∆ChartC
iC : P inC

o′
C : P outC

∃ act : P µState • C ∈ act ∧ δC

Figure 6: Top-level semantics

The second schema InactiveS describes the be-
haviour of the chart when it is inactive, and its mean-
ing is given as:

JInactiveS K
ZC

=def

{〈| cSVs, iSVi , act Vactive, c′SVs, o′

S V{} |〉 |
s ∈ {A, B} ∧ active ⊆ µState ∧ i ⊆ inS • S 6∈ active}

By definition of schema disjunction the set JδS K
ZC

,
which gives in ZC the meaning of the transition model
for the chart, contains all of the bindings from the sets
JδAB K

ZC
, JδBAK

ZC
and JInactiveS K

ZC
.

In order to make the logical rules we are working
towards slightly more readable, we define the predi-
cate Trans which captures what it means for a binding
of the transition model to characterise a transition of
the chart. Given an arbitrary transition of the form
t = (Sf , St , guard/action), from the chart C , we have,

Trans t zT =def

z .cC = t .Sf ∧ ρ(t .guard)[αT/z .αT]
∧ z .c′C = t .St ∧ z .o′

C = t .action

The terms t .Sf etc. are assumed to be defined in
the obvious way such that t .Sf gives the “from state”
of a transition, t .guard gives the guard component of
a transition, t .St gives the “to state” and t .action

CRPIT Volume 48

16

gives the action component. ρ is as defined above
and constructs a predicate from a guard.

Now we give the formal definition of the transition
model for charts directly in terms of the meaning of
the Z model.

Definition 2.2 For the arbitrary atomic chart
(C , Σ, σ0,Ψ, δ), we have:

JδC K
ZC

=def

{z | C 6∈ z .act ∧ z
.

∈ ΞChartC ∧ z .o′
C = {} ∨

C ∈ z .act ∧ ∃ t ∈ δ • Trans t z}

From this definition we finally derive introduction and
elimination rules.

Proposition 2.1 Given the atomic chart (C , Σ, σ0, Ψ, δ),
where for arbitrary binding z we have:

z
.

∈ δC actv C z t ∈ δ,Trans t z ` P

P
(Z −

t)

actv C z t ∈ δ Trans t z

z
.

∈ δC
(Z +

t)

assuming the usual conditions (due to the elimination of an
existential quantifier) for t and P , and where, for an atomic
chart C , the predicates actv C z and inactv C z are defined
as follows:

actv C z =def C ∈ z .act

inactv C z =def ¬ actv C z

2.2.2 Composition

We give the definition of the ZC model for composed
charts in terms of the meaning of the transition model
in:

Definition 2.3 Given an arbitrary composition C = C1 |
Ψ | C2 we have,

JδC K
ZC

=def

{z | C1 ∈ z .act ⇔ C ∈ z .act ∧
C2 ∈ z .act ⇔ C ∈ z .act ∧
∃ o1, o2 • z .o′

C = o1 ∪ o2 ∧

z ? 〈| iC1
V(z .iC ∪ z .o′

C ∩ Ψ) ∩ inC1
, oC1

′Vo1 |〉
.

∈ δC1
∧

z ? 〈| iC2
V(z .iC ∪ z .o′

C ∩ Ψ) ∩ inC2
, oC2

′Vo2 |〉
.

∈ δC2
}

The introduction and elimination rules for com-
posed charts shown in Figure 7 are derived from this
definition.

2.2.3 The step semantics

Now Definition 2.4 defines the step semantics for a
chart.

Definition 2.4 For arbitrary chart C with the associated
Z description CSys,

JCSysK
ZC

=def

{z | ∃ z1 • z1
.
= z ∧ actv C z1 ∧ z1 ∈ δC }

From this definition we derive introduction and
elimination rules given in Figure 8.

We often refer to the step semantics as the par-
tial relations semantics. This is because the meaning
of the schema CSys can be considered as a relation
that maps the “before” configuration of a chart and
input to its “after” configuration and output. This
relation is often partial because a µ-Chart specifica-
tion describes the reaction to some input events and
not others.

3 The µ-Charts Refinement Calculus

In Derrick and Boiten (2001) and Woodcock and
Davies (1996), a framework for considering Z spec-
ifications and Z refinement in terms of abstract data
types (ADTs) is introduced. The idea is to map a
“standard” Z specification, i.e. state schema, initial-
isation schema and operation schemas, into a rela-
tional ADT setting. Broadly a relational ADT is a
tuple of the form (X , xi , xf ,Ops) such that: X is a state
space; xi is an initialisation relation; xf is a corre-
sponding finalisation relation; and Ops is an indexed
set of relational operations. The initialisation and fi-
nalisation relations map a global observable state into
the ADT’s private state and vice versa. A program
of an ADT is defined as a particular sequence of the
indexed operations upon a data type, preceded by ini-
tialisation and ended by finalisation. This mapping is
used to derive a data refinement theory for Z specifi-
cations from the existing refinement notion for partial
relations ADTs.

Given that the partial relation semantics for µ-
Charts is defined via Z we can fit charts into the
same framework. Recall from Section 2 that the Z
model of a chart constitutes a state space, an initial-
isation schema and one operation schema, this oper-
ation schema being the description of every step that
the chart can take. If we view the Z model of a chart
in the ADT framework we can say that any program
allowed by the chart is an example of composing the
step operation together with itself again and again.
Of course, what we are really interested in is the se-
quences of inputs and outputs that result from such
programs. If we imagine running this program over
all possible input sequences and recording the result-
ing output sequences then we have exactly the trace
semantics of the chart. Because we are modelling re-
active systems we choose to consider the traces over
infinite sequences of input and output. Therefore, we
need to imagine composing the step operation with
itself indefinitely.

In the following we show how we can generalise the
Z/ADT results to charts. In particular we show that
the ADT view of a chart can be considered as giving
the trace semantics of that chart. Then we derive a
notion of partial relations refinement for charts based
on an existing notion of partial relation refinement for
Z.

We diverge from what may be considered the usual
way to give a refinement notion in a reactive systems
setting, that is, using the behavioural approach (as
Derrick and Boiten (2001) calls it) for completing par-
tial relations, and assume chaotic behaviour outside
of the preconditions of partial relations (which is the
more common-to-Z notion too, as it happens). The
resulting notion of refinement is particularly interest-
ing because it allows us to refine both the behaviour
of a reactive system and the context, via the system’s
interface, in which we assume that reactive system
will reside. This notion of refining both behaviour
and context is not new to this work. The notion of
“chaotic refinement” for specifications of reactive sys-
tems was suggested in the original definition of the
language µ-Charts (Scholz 1998). Of course, since a
behavioural interpretation is available in the Z frame-
work, we could also derive more traditional rules for a
reactive system if we wished to, as we typically would
when we move from a specification to an implemen-
tation.

3.1 Charts and ADTs

The usual account of ADT refinement makes the sim-
plifying assumption that the types of inputs and out-
puts associated with the abstract and concrete pro-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

17

Proposition 2.2 Given C = C1 | Ψ | C2, for the binding z and arbitrary sets o3 and o4, we have:

z
.

∈ δC

z .o′

C
= o1 ∪ o2,

z ? 〈| iC1
V(z .iC ∪ z .o′

C
∩ Ψ) ∩ inC1

, oC1
′Vo1 |〉

.

∈ δC1
,

z ? 〈| iC2
V(z .iC ∪ z .o′

C
∩ Ψ) ∩ inC2

, oC2
′Vo2 |〉

.

∈ δC2
,

actv C z ∨ inactv C z ` Q

Q
(| |−)

where the usual conditions, due to the elimination of existential quantifiers, hold between o1, o2 and Q .
The predicates actv C z and inactv C z are defined for the composed chart C = C1 | Ψ | C2 as:

actv C z =def actv C1 z ∧ actv C2 z ∧ C ∈ z .act

inactv C z =def inactv C1 z ∧ inactv C2 z ∧ C 6∈ z .act

Figure 7: Rules for composition

Proposition 2.3 For arbitrary chart C and binding z we have,

z
.

∈ CSys z ? za
.

∈ δC , actv C za ` Q

Q
(Z−

s)

∃ y • z ? y
.

∈ δC ∧ actv C y

z
.

∈ CSys
(Z+

s)

where the usual conditions (due to the elimination of an existential quantifier) hold between za and Q .

Figure 8: Rules for a step of the system

grams (the two n-operation programs Pn
a and Pn

c)
are the same. For our purposes this simplifying as-
sumption is too strict. We allow, under what turn
out to be rather strong provisos, the input and out-
put interface of a chart to be changed via refinement.
Weakening the assumption of equivalent typed input
and output for both abstract and concrete programs
is achieved using the respective initialisation and fi-
nalisation relations in conjunction with the notion of
an observable context for charts. We assume that
refinement is a judgement made in the broadest in-
put/output context.

We use the respective initialisation and finalisa-
tion relations to make the ADT’s global state model
the appropriate input/output context. The observ-
able behaviour of the ADT (i.e. the global state) is
given by the input and output sequences that range
over the signals of both charts. The initialisation rela-
tion maps the global input sequences into appropriate
input sequences for the respective charts. Similarly,
the finalisation relation maps the outputs from the
respective charts into the global output sequences.

From this we make a link between the semantics
for a chart C given by embedding the chart in an
ADT framework, denoted by JC Krω

d
, and an infinite

trace semantic definition of charts, i.e. JC K
ω

x
, as fol-

lows:3

Definition 3.1 For arbitrary chart C and sequences i ∈ Iω

and o ∈ Oω ,4

(i , o) ∈ JC Krω

d
=def (iB(inC), oB(outC)) ∈ JC Kω

x

Now we follow the well-known relational ADT ap-
proach (for example see Woodcock and Davies (1996)
and Derrick and Boiten (2001)) to derive refinement
rules for charts in terms of their partial relations se-
mantics. Note that Definition 3.1 allows us to relate
the resulting refinement notion back into the infinite
trace style semantics for charts as given in Scholz
(1998).

3We assume that I∗
c denotes the set of finite sequences ranging

over the type P Input . Similarly, O∗
c denotes all finite sequences

over the type P Output . The infinite sequences Iω

c and Oω

c are
similarly defined.

4The notation iB(inC) denotes the pointwise restriction of the

elements in the sequence i to the elements in the set inC and
similarly for outC .

3.2 Simulation and Corresponding States

Before we derive the refinement rules we briefly in-
troduce and discuss the concept of simulation. When
comparing two charts based on input and output
traces, that is, checking for or calculating trace re-
finements, the state information of the charts is al-
ready abstracted away. This is not the case, however,
when working with the partial relations semantics.
We need a way of relating the states of one chart
with those of another. This is exactly the task of sim-
ulations, sometimes also known as retrieve relations,
abstraction relations, or coupling invariants (Derrick
& Boiten 2001). Something as simple as changing the
names of the states from the abstract chart to the con-
crete requires that we have a simulation relation that
maps the abstract state names into the new concrete
state names.

In the standard ADT treatment, a simulation re-
lation encodes the relationship between the states of
the abstract specification and the states of the con-
crete specification. We usually think of the simulation
R as completing a series of commuting squares. This
allows us to prove the necessary refinement proper-
ties for each of the associated operations (in our case
there is only one) and use an inductive argument to
show that the refinement holds when we compose (in
an appropriate order) several operations together into
programs. We refer the reader to Derrick and Boiten
(2001) for a detailed description of the concepts of
data type refinement.

As discussed in Section 3.1, the initialisation and
finalisation relations are used to modify the observ-
able input and output sequences to allow refinement
to change the context (i.e. input/output interfaces)
of a chart. Reflecting this, we split the definition of
the simulation relation into two separate parts. The
first part is the simulation between configurations of
the respective abstract and concrete charts. We will
refer to this part of the simulation as the correspond-
ing relation or CorrA

C for a simulation between charts
A and C .

The Z schema CorrA
C (Figure 9) gives the gen-

eral scheme for the corresponding relation. The pred-
icate P defines the simulation relationship between
the states of the respective charts A and C , and will,
of course, depend on precisely what charts A and C
are.

The second part of the simulation relation allows
refinements that change the input/output interfaces

CRPIT Volume 48

18

CorrA
C

ChartA
Chart ′C

P

IOA
C

iA : inA

i ′C : inC

oA : outA
o′

C : outC

iA ∩ inC = i ′C ∩ inA

oA ∩ outC = o′
C ∩ outA

Figure 9: Semantics for simulation relation

of a chart. For arbitrary input interfaces inA and
inC , and output interfaces outA and outC , the schema
IOA

C is constructed so that
q
IOA

C

y
ZC

represents a rela-

tion between the inputs and outputs from the abstract
chart to the inputs and outputs of the concrete chart.
Importantly, when this relation is combined with the
corresponding relation we get a schema representing
the simulation relation between charts A and C that
has type P(T io

A gT io
C

′
) as follows:

Definition 3.2 For charts A and C we have,

RA
C

=def CorrA
C

∧ IOA
C

where
q
RA

C

y
ZC

has type P(T io
A gT io

C

′
).

Significantly, when using the refinement theory
presented the developer need only define the relation-
ship between states of the “refining” and “refined”
charts. The input/output relationship or interface
refinement is always constrained by the general rela-
tionship identified by the schema IO.

3.3 Partial Relation Refinement

Now we can derive partial relations refinement rules
for charts. The derivation of the different sets of
rules closely follows a similar treatment by Derrick
and Boiten (2001).

We embed the Z-based chart ADT presented so far
into a relational data type as follows.

Definition 3.3 For an arbitrary chart C and all sequences
si and so, the Z ADT semantics (ChartC , InitC , {CSys}) is
embedded in the relational data type
(CState, CInit , {CStep}, CFin), such that,

CState =def Iω

C ×O∗
C × UC

CInit =def {(si 7→ (siB(inC), 〈〉, z)) | z ∈ InitC }

CFin =def {(siB(inC), soB(outC), z) 7→ so | z ∈ ChartC }

CStep =def {(i asi , so, z1) 7→ (si , so ao, z2) |
z1 ? 〈| iC Vi , o′

C
Vo |〉 ? z ′2 ∈ CSys}

The embedding of the simulation R gives the simulation
relation S between the ADTs representing charts A and C .

For arbitrary sequences si and so, and bindings z1 and
z2 we have,

S =def {(siB(inA), soB(outA), z1) 7→

(siB(inC), soB(outC), z2) | z1 ? z ′2 ∈ CorrA
C
}

Notice that the relational simulation S is defined
just in terms of the corresponding relation CorrA

C .
This is because the pointwise restriction of the se-
quences si and so already model the same relation-
ship between input and output as the schema IOA

C .

3.4 Total Chaos Refinement

3.4.1 Forward Simulation

Here we derive rules for a total chaotic interpretation
of charts. Derrick and Boiten (2001) give five refine-
ment conditions that are necessary to show that a re-
lational data type C refines a relational data type A

using a forwards simulation S . They begin by lifting
(by introducing the special value ⊥) and totalising
the relations of the respective data types. Derrick
and Boiten refer to the total chaotic interpretation
as the contract approach. After giving the necessary
lifted totalised relations they show how the five re-
finement conditions, referred to as initialisation, fi-
nalisation, finalisation applicability, applicability and
correctness, can be simplified (“relaxed”) to remove
any reference to the introduced value ⊥. We give the
five relaxed conditions and refer to Woodcock and
Davies (1996) for their derivations.

Definition 3.4 Assuming data types

A = (AState, AInit , {AStep}, AFin)

and
C = (CState, CInit , {CStep}, CFin)

a forwards simulation S is a relation from AState to CState
satisfying the following conditions:

CInit ⊆ AInit o
9 S (init)

S o
9 CFin ⊆ AFin (fin)

ran((dom AFin) CS) ⊆ domCFin (fin app)

ran((dom AStep) CS) ⊆ domCStep (app)

((dom AStep) CS) o
9 CStep ⊆ AStep o

9 S (corr)

Now we use each of these conditions along with
the relational embedding defined in Definition 3.3 to
derive corresponding conditions expressed in Z.

For initialisation we have,

CInit ⊆ AInit o
9
S

⇔

∀ yc • yc

.

∈ InitC ⇒ ∃ t1 • t1
.

∈ InitA ∧ t1 ? y
′

c ∈ R

Unlike in the derivation provided by Derrick and
Boiten (2001), the finalisation condition does not hold
trivially for charts. This difference arises because
the derivation for Z refinement makes the assumption
that both the abstract and concrete ADTs have equiv-
alently typed input and output, whereas the deriva-
tions required here do not.

S o
9
CFin ⊆ AFin

⇔

outA ⊆ outC

Because the given finalisation relation is total over
all output sequences and states of the respective
charts, the finalisation applicability condition holds
trivially.
Now for the applicability condition we have:

ran((domAStep) C S) ⊆ domCStep

⇔

∀ ya , yc • Pre ASys ya ∧ ya ? y
′

c ∈ R ⇒ Pre CSys yc

And finally, for correctness we have:

((domAStep) C S) o
9
CStep ⊆ AStep o

9
S

⇔

∀ ya , yc , zc • (Pre ASys ya ∧ ya ?y
′

c ∈ R ∧ yc ?z
′

c

.

∈ CSys) ⇒

∃ t • ya ? t
′
.

∈ ASys ∧ t ? z
′

c ∈ R

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

19

The completion of these derivations gives us the
necessary conditions to show that a relation R is a
forwards simulation between two charts A and C un-
der the total chaotic interpretation of the partial re-
lations semantics. As we have shown, it follows that
chart C refines A in the total chaotic trace interpre-
tation for charts. In line with the natural deduction
style presentation that we have adopted, Figure 10
gives introduction and elimination rules for forwards
simulation total chaotic refinement.

Notice the rules for forward simulation refinement
presented here are, with the exception of the initiali-
sation and finalisation conditions, very similar to the
rules presented by Deutsch and Henson in Deutsch
and Henson (2003) for SF-refinement. A similar
method of derivation gives the corresponding rules
for the backwards simulation case.

4 Monotonicity results

As with any language that provides operators allow-
ing modular specifications and a refinement calculus
for step-wise development, the monotonicity proper-
ties of the µ-Charts operators needs to be considered.
These monotonicity properties are important for µ-
Charts because they show to what extent the lan-
guage supports modular development. Refinement is
considered monotonic with respect to a language op-
erator if a refinement of one part of a composite spec-
ification implies a refinement of the specification as
a whole, and having this result is clearly important
when we turn to using the logic on large specifica-
tions.

It turns out that we need quite strong, but very
easy to motivate, side-conditions to guarantee that re-
finement is monotonic with respect to the chart com-
position operator.

Even though the monotonicity side-conditions de-
scribed in Proposition 5.1 are presented before the
monotonicity result itself, the conditions were formu-
lated and refined from the proof of the monotonic-
ity property (which we omit here due to space con-
straints). That the process of proving the monotonic-
ity property allows us to state (and prove) these nec-
essary side-conditions is evidence that the method of
this paper has met some important goals. That is,
the formal framework presented allows us to formu-
late precise descriptions of general, and typically non-
obvious, language properties. In the case of the mono-
tonicity result presented here, the first of the three re-
quired side-conditions is particularly non-obvious and
at first reading may appear incorrect. However, the
proof of monotonicity and careful evaluation of what
this condition actually entails, makes clear the signif-
icance of the restriction.

5 Monotonicity of the µ-Charts composition
operator

We begin by showing that the composition operator of
µ-Charts is monotonic with respect to forward simula-
tion refinement only when appropriate side-conditions
hold. Like the investigation of Deutsch et al. (2003),
the monotonicity proof itself is used to establish the
necessary side-conditions. After ascertaining the re-
quired side-conditions an intuitive (in chart terms)
justification for their necessity is given.

Recall that, by definition 3.4, to show that a for-
ward simulation refinement holds between two charts
requires that we show that an appropriate simulation
exists between the charts. The proof of monotonicity

relies heavily on splitting the definition of the simu-
lation into two parts—the simulation between the re-
spective charts’ configurations using the correspond-
ing relation and the simulation between the allow-
able input and output signals using the relation IO .
This notion of splitting the simulation relation was
introduced in Section 3.2 where we define the corre-
sponding relation between two charts A and C as
CorrA

C and the input/output relation as IOA
C . Where

previously we have denoted (total chaotic) forward
simulation refinement between two charts C and A

as C w
τ f A, here we supplement the relation with an

explicit label that names the simulation required for
refinement. So, assuming that chart C refines chart
A using the simulation S , we will write C wS

τ f A.
Proposition 5.1 states the monotonicity result for

forward simulation refinement.

Proposition 5.1 If, for arbitrary charts A1, C2, and sig-
nal set Ψ, we have that,

[A1]Ψ wT
τ f [C2]Ψ

SC1

outA1
∩ Ψ = outC2

∩ Ψ
SC2

outA1
∩ outB = outC2

∩ outB
SC3

where T =def Corr
C2

A1
∧ IO

CΨ

AΨ
for CΨ = [C2]Ψ and AΨ =

[A1]Ψ, then for arbitrary chart B , we have the monotonicity
result,

C2 wR
τ f A1 SC1 SC2 SC3

(C2 | Ψ | B) wS
τ f (A1 | Ψ | B)

where S =def Corr
A1

C2
∧ CorrB

B ∧ IOA
C , and R =def

Corr
A1

C2
∧ IO

A1

C2
.

Despite the intricate appearance of the three side-
conditions required for monotonic refinement of com-
posed charts, these conditions are not unexpected
when described in terms of charts themselves.

First consider the following property that holds in
general for arbitrary charts A1 and C2, and feedback
set Ψ.

Lemma 5.2

C2 wR
τ f A1 outA1

∩ Ψ = outC2
∩ Ψ

[C2]Ψ wT ′

τ f [A1]
Ψ

where T ′ =def Corr
A1

C2
∧ IO

AΨ

CΨ

Given this property holds it follows that, in the
context of the monotonicity proof of Proposition 5.1,
i.e. where SC1 holds, the charts A1 and C2 are out-
put equivalent with respect to the signals in the set
Ψ, i.e. [C2]Ψ ≈O [A1]Ψ. In words, an environment that
reacts to just those signals in the set Ψ could not
tell the difference between the charts A1 and C2.
Therefore, we see that one of the properties required
to guarantee monotonic refinement (with respect to
composition) is that refining one part of the compo-
sition, say refining chart A1 into C2, cannot change
the behaviour of A1 with respect to the signals in Ψ
that are used to communicate with the other part of
the composition, e.g. chart B.

To explain the rôle of the side-condition SC1 more
specifically, with regard to the monotonicity proof,
we describe two distinct parts that SC1 plays in the
proof.

Firstly, SC1 enforces that the precondition of
the chart, i.e. the set of state/input pairs for which
the chart has explicitly defined behaviour, cannot be

CRPIT Volume 48

20

Proposition 3.1 For arbitrary charts A and C , and bindings ya , yc , and zc , we have,

` outA ⊆ outC

yc

.

∈ InitC ` t1
.

∈ InitA

yc

.

∈ InitC ` t1 ∗ y ′
c ∈ R

Pre ASys ya , ya ? y ′
c ∈ R ` Pre CSys yc

Pre ASys ya , ya ? y ′
c ∈ R, yc ? z ′c

.

∈ CSys ` ya ? t ′2
.

∈ ASys

Pre ASys ya , ya ? y ′
c ∈ R, yc ? z ′c

.

∈ CSys ` t2 ? z ′c ∈ R

C w
τ f A

(w+

τ f
)

C w
τ f A

outA ⊆ outC
(w−

τ f I
)

C w
τ f A yc

.

∈ InitC t1
.

∈ InitA, t1 ? y ′
c ∈ R ` P

P
(w−

τ f II
)

C w
τ f A Pre ASys ya ya ? y ′

c ∈ R

Pre CSys yc

(w−

τ f III
)

C w
τ f A Pre ASys ya ya ? y ′

c ∈ R yc ? z ′c
.

∈ CSys
ya ? t ′2

.

∈ ASys,
t2 ? zc ∈ R ` P

P
(w−

τ f IV
)

where the usual conditions hold, due to elimination of existential quantifiers, between t1, t2 and P .

Figure 10: Rules for chaotic refinement

weakened. Note that here we use the term weaken-
ing of the precondition in a very strict sense—side-
condition SC1 restricts any weakening of the precon-
dition within the domain defined by the input inter-
face of the abstract specification. Extending the do-
main of definition for a chart specification, i.e. in-
creasing the input interface and weakening the pre-
condition outside of the original domain, is still per-
mitted in general.

This first aspect of the side-condition SC1 is re-
quired for the part of the monotonicity proof re-
lated to the correctness property introduced in Sec-
tion 3.4.1.

Figure 11 presents a counter-example that illus-
trates why this part of side-condition SC1 is neces-
sary in terms of charts. Given the charts A and C

we clearly have that C2 w
τ f A1, yet it is not the case

that C w
τ f A. That is, even though C2 refines A1,

the composed chart C is not a valid refinement of
A. The defined reaction of chart A given input {a}
is to output {w , t}, i.e. the two left hand transitions
of chart A combine with respect to feedback to cre-
ate an overall chart transition triggered by just the
input {a}. However, chart C can nondeterministi-
cally choose to output {w , t} or {w , s} given input
{a}, i.e. both the respective left hand and right hand
transitions combine to give this nondeterministic be-
haviour. Therefore, C has additional nondeterminis-
tic behaviour to A and no valid refinement holds.

A1

Xa & t / w

B

Yw / t w / s

{w,t}

C2

X a & −t / wa & t / w

B

Yw / t w / s

{w,t}

Figure 11: SC1, partI : Charts A = (A1 | {w , t} | B) and
C = (C2 | {w , t} | B)

The second aspect of SC1 is that it insists that
the output behaviour, with respect to feedback, of
an abstract specification is not changed via refine-
ment. The property is required to prove the part
of the monotonicity result related to the applicability
condition.

In terms of charts, Figure 12 illustrates another
counter-example that demonstrates why this second
aspect of SC1 is a necessary requirement for mono-
tonic refinement. Note that the output interface of
the chart C2 is assumed to contain the signal w, i.e.
we assume C2 is a behavioural refinement of A1 rather
than an interface refinement. Again we have that the
composed chart C does not refine the chart A. This
is because A is defined for input {a} due to feedback
on w where chart C is not. Therefore chart C acts
chaotically for input {a} and the resulting additional
nondeterminism invalidates the refinement relation.

A1

Xa / w a /

B

Yw / t

{w}

C2

X a /

B

Yw / t

{w}

Figure 12: SC1 and SC2: Charts A = (A1 | {w} | B)
and C = (C2 | {w} | B)

The same charts from Figure 12 can be used to
demonstrate why the side-condition SC2 is required
for monotonicity. In this case, however, we assume
that the output interface of chart C2 is reduced to the
empty set of signals, that is, in this case C2 is an in-
terface refinement of A1 rather than a behavioural re-
finement as above. Given this assumption SC1 holds,
that is, [A1]Ψ is a valid refinement of [C2]

Ψ
. However,

from inspection it is obvious that SC2 does not hold
in this case, that is, outA1

∩ Ψ 6= outC2
∩ Ψ, specifi-

cally, {w}∩{w , t} 6= {}∩{w , t}. The side condition SC2

is required to prove monotonicity in relation to the
correctness condition.

Finally, the side-condition SC3 is required because
µ-Charts refinement allows the designer to change the
output context of a chart using interface refinement.
If an interface refinement of one chart in a composi-
tion extends the control that the chart has over the
environment using signals that were originally used

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

21

just by the other part of the composition, then there
is the possibility that this new behaviour, from both
charts, will be inconsistent when the charts are re-
combined in composition. For example, consider the
counter example illustrated by the charts of Figure 13.

A1

X a /

B

Yw / t −w / s

C2

X a / t

B

Yw / t −w / s

Figure 13: SC2(ii): Charts A = (A1 || B) and C =
(C2 || B)

Here the valid interface refinement C2 w
τ f A1

allows C2 to control its environment over signals pre-
viously dealt with by the chart B, i.e. the signal t.
The result is that the composed chart C can output
{s, t} for input {a} where chart A could only output
{s} for input {a}. Hence, chart C has new behaviour
that was not specified by chart A and therefore C is
not a valid refinement of A.

Similar arguments can be used to show that the
same side-conditions, SC1, SC2 and SC3, are sufficient
to guarantee monotonic refinement with respect to
the composition operator for charts in the backwards
simulation case.

5.1 The firing conditions interpretation of µ-
Charts

A requirement for monotonic refinement is that the
preconditions remain unchanged over the domain of
definition of a chart. This requirement may cause
an observant reader to question whether the total
chaotic and firing conditions notions of refinement
coincide in the case where refinements adhere to the
monotonicity conditions. In particular, the work of
Deutsch, Henson and Reeves (2002) shows that re-
finement based on a firing conditions approach can
be considered as a notion that insists on the stability
of the precondition. That is, refinement that allows
the reduction of nondeterminism but insists that the
precondition is neither strengthened nor weakened.

In fact, we can show that total chaotic refinement
is both sound and complete with respect to firing con-
ditions refinement when we insist that just the first
condition SC1, for monotonic refinement, is met. Any
(guaranteed) monotonic refinement that we can prove
using the total chaotic rules can also be proved using
the rules for firing conditions refinement.

This is expressed by Proposition 5.3 .

Proposition 5.3 For arbitrary charts A, C and signal
set Ψ we have,

C wS
τ f A [A]

Ψ
wT

τ f [C]
Ψ

C wS
fcf A

C wS
fcf A

C wS
τ f A

where S =def CorrA
C ∧ IOA

C and T =def CorrC
A ∧ IO

CΨ

AΨ
for

CΨ = [C]
Ψ

and AΨ = [A]
Ψ

.

Notice that the second aspect of the side-condition
SC1 and the conditions SC2 and SC3 are still a neces-
sary requirement to guarantee that firing conditions-
based refinements are monotonic with respect to com-
position.

Therefore, while it is the case that using wfcf for
chart refinement implies a “more monotonic” refine-
ment calculus, the difference in reality is slight.

The exact difference between the two notions of
refinement is that the total chaotic model allows a re-
finement to weaken the precondition over the abstract
domain of definition where the firing conditions model
does not. The choice of the appropriate model can
only be determined by the context of the refinement
application. We do point out, though, that the total
chaotic model provides the most general refinement
framework.

6 Conclusions

A logic for composition and refinement of µ-Charts
has been presented. The presented work has two sig-
nificant contributions. The first is the presentation
of a method for developing a logic for a StateCharts-
like specification language—another example of the
increasingly popular visual specification languages for
reactive systems. The second is an investigation of a
chaotic-based notion of refinement for the language
µ-Charts.

The logic is developed by modelling the µ-Charts
language in the more well-known and investigated
language of Z. Given the extensive body of work that
gives a logic to Z, we can specialise this logic and
thereby induce a logic for charts. (Also, we are able to
utilise existing tools for Z to reason about the model
of a reactive system, if we wish.)

The notion of refinement that we induce
for µ-Charts follows the chaotic-outside-of-defined-
behaviour approach that is typically associated with
Z-based ADT refinement or data refinement. As
with Z-based refinement, the chart refinement defined
maintains the principle of substitutivity (Derrick &
Boiten 2001). That is, the substitution of an imple-
mentation of the specification for an implementation
of a refinement of the specification will be indistin-
guishable in the context of the specification.

The notion of a chaotic semantics for µ-Charts was
first introduced by Scholz (1998). The implicit non-
determinism outside of defined behaviour can be con-
sidered an abstraction mechanism just as in Z specifi-
cations. As the design is refined the nondeterminism
is reduced, i.e. more decisions are made about unde-
fined behaviour.

The chaotic semantics also facilitates refinements
of both a reactive system’s specified behaviour, and
the specified context of the reactive system. These
two types of refinement are both defined in the one
notion of refinement presented. Refinement that
changes the context of a chart preserves substitutivity
because it is assumed that the context for a specified
chart is fully defined, i.e. the context both controls
and is controllable by just the signals in the respec-
tive input and output interfaces of the specification.
Note that hiding signals from one or other of the in-
terfaces is not in general a refinement.

The refinement rules presented give half (i.e. the
forward simulation case) of a simulation based refine-
ment calculus for µ-Charts. Unlike other theories of
refinement for reactive systems the calculus presented
allows the simulations to model a change in possible
states from abstract to concrete specification as well
as a change in the signals used to interact with the
environment, i.e. the context, of the specified reactive
system.

Of course, using the methods of this paper, as
much as required of the whole of StateCharts can
have a logic induced for it—once a semantics for a
given construct has been defined in Z it is an intri-
cate but conceptually straightforward task to induce

CRPIT Volume 48

22

logical rules for the construct from the ZC rules and
the definition. The same goes, also, for refinement
rules.

6.1 Future Work

Given the origins of µ-Charts (it is based on a sim-
plification of the more well-known StateCharts), we
typically take for granted that µ-Charts is a useful
engineering tool for specifying reactive systems. Not
surprisingly, to date most of the uses of the presented
logic for µ-Charts have been concerned with investi-
gating and proving properties of the language itself.
It remains to be shown whether or not such a logic
can be used practically to reason about and develop
reactive systems. It is clear however, that using the
formal logic for the practical development of reactive
systems will require significant tool support. Ideally,
this would be proof assistance, based specifically on
the logic rules for charts, perhaps using a more gen-
eral tool developed for the logic ZC . Other Z-based
validation tools such as animation may also provide
useful tools for investigating µ-Chart specifications.
Limited tool support for µ-Charts already exists in-
cluding a µ-Charts editor called AMuZed and a model
builder (i.e. a program that translates a chart into its
Z model) called ZooM (Z-lambda project 2005).

Another application of the logic that has not been
fully investigated is to use the form of the simulations
involved in refinement to suggest useful refinements
of reactive system specifications. That is, can the
form of proofs of refinements be used to indicate use-
ful development strategies for reactive systems? This
application of the logic closely follows Dijkstra’s no-
tion that “we develop program and correctness proof
hand-in-hand” (Dijkstra 1976).

References

13568, I. (2002), Information Technology—Z For-
mal Specification Notation—Syntax, Type Sys-
tem and Semantics, Prentice-Hall International
series in computer science, first edn, ISO/IEC.

Derrick, J. & Boiten, E. (2001), Refinement in
Z and Object-Z: Foundations and Advanced
Applications, Formal Approaches to Computing
and Information Technology, Springer.
URL: http://www.cs.ukc.ac.uk/pubs/2001/1200

Deutsch, M. & Henson, M. C. (2003), An analysis of
forward simulation data refinement, in D. Bert,
J. Bowen, S. King & M. Waldén, eds, ‘ZB 2003:
Formal Specification and Development in Z and
B / Third International Conference of B and Z
Users’, Vol. 2651 of Lecture Notes in Computer
Science, Springer-Verlag Heidelberg, pp. 148–
167.

Deutsch, M., Henson, M. C. & Reeves, S. (2002),
Six theories of operation refinement for partial
relation semantics, Technical Report CSM-363,
Department of Computer Science Department,
University of Essex.

Deutsch, M., Henson, M. C. & Reeves, S. (2003),
Operation refinement and monotonicity in the
schema calculus, in D. Bert, J. P. Bowen, S. King
& M. Walden, eds, ‘ZB 2003: Formal Specifica-
tion and Development in Z and B’, Vol. 2651
of Lecture Notes in Computer Science, Springer-
Verlag, pp. 103–126.

Dijkstra, E. W. (1976), A Discipline of Programming,
Prentice Hall.

Harel, D. (1987), ‘Statecharts: A visual formal-
ism for complex systems’, Science of Computing
pp. 231–274.

Henson, M. C., Deutsch, M. & Kajtazi, B. (2004),
The specification logic νZ, Technical Report
CSM-421, Department of Computer Science,
University of Essex.

Henson, M. C. & Reeves, S. (2000), ‘Investigating Z’,
Journal of Logic and Computation 10(1), 1–30.

Henson, M. C. & Reeves, S. (2003), ‘A logic for
schema-based program development’, Formal
Aspects of Computing Journal 15(1), 48–83.

Philipps, J. & Scholz, P. (1997a), Compositional spec-
ification of embedded systems with statecharts,
in M. Bidoit & M. Dauchet, eds, ‘TAPSOFT
’97: Theory and Practice of Software Develop-
ment’, number 1214 in ‘LNCS’, Springer-Verlag,
pp. 637–651.

Philipps, J. & Scholz, P. (1997b), Formal verifica-
tion of statecharts with instantaneous chain reac-
tion, in E. Brinksma, ed., ‘Tools and Algorithms
for the Construction and Analysis of Systems’,
Vol. 1217 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 224–238.

Reeve, G. (2005), µCharts-Investigating Refinement
(To appear), PhD thesis, Department of Com-
puter Science, University of Waikato.

Reeve, G. & Reeves, S. (2000), µ-Charts and Z:
Hows, whys and wherefores, in W. Grieskamp,
T. Santen & B. Stoddart, eds, ‘Integrated For-
mal Methods 2000: Proceedings of the 2nd.
International Workshop on Integrated Formal
Methods’, LNCS 1945, Springer-Verlag, pp. 255–
276.

Scholz, P. (1998), A refinement calculus for state-
charts, in E. Estesiano, ed., ‘Fundamental ap-
proaches to software engineering: First Inter-
national Conference, FASE’98’, Vol. 1382 of
Lecture Notes in Computer Science, Springer-
Verlag, Berlin, pp. 285–301.

Spivey, J. M. (1989), The Z notation: A reference
manual, Prentice Hall.

Woodcock, J. & Davies, J. (1996), Using Z: Specifi-
cation, Refinement and Proof, Prentice Hall.

Z-lambda project (2005).
URL: www.cs.waikato.ac.nz/Research/fm

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

23

CRPIT Volume 48

24

Supporting Software Reuse by the Individual Programmer

Min-Sheng (Peter) Hsieh
�
, Ewan Tempero �

Department of Computer Science
University of Auckland
Auckland, New Zealand�

mhsi005@ec.auckland.ac.nz
� e.tempero@auckland.ac.nz

Abstract

Despite its long history and its benefits, software reuse has yet to become
a common practise among software programmers. While there is much
ongoing research, it focuses on large-scale organisation-level techniques
and methodologies. There is very little research that considers reuse at
the personal level as an important factor. The lack of focus and tool sup-
port has limited the potential for developers to reuse their past efforts.
This paper introduces ICRT (Individual Code Reuse Tool), which pro-
vides support for an individual to efficiently reuse code fragments writ-
ten in the past. ICRT uses the CBR methodology to manage the code
fragments, and is integrated with the Eclipse IDE.

Keywords: Code Reuse, Case-Based Reasoning, Tool
Support

1 Introduction

Consider the following scenario: Chris has been given the
task of writing some code that creates a user interface
that requires a somewhat complex layout of its compo-
nent parts. As she begins writing the code, she realises
that what she is doing is similar to what she did for a pre-
vious project. She quickly finds the code she wrote for
that project, and confirms that large parts of it are relevant
to her current project. By judicious cutting, pasting, and
adaption, she is able to produce the code she needs much
more quickly than if she had continued developing it from
scratch.

Any programmers who have written code will be fa-
miliar with the above scenario. It is situations like this
that provide an opportunity for improved productivity by
avoiding writing that same code, if only the programmers
could quickly access their previous efforts to solve the
problem at hand. Such opportunities have been recog-
nised since the beginnings of software engineering, and
there has been much research in software reuse, that is, in
how to leverage such opportunities. Much of this research
has focused on how organisations can gain the benefits of
reuse. There have, however, been comparatively few ef-
forts that support the individual programmer reusing her
own past efforts.

In this paper, we present the results of our investigation
into providing reuse support for the individual program-
mer. Specifically, we discuss ICRT, an Individual Code
Reuse Tool. This tool stores code fragments developed by
the programmer’s past efforts and uses the case-base rea-
soning (CBR) methodology for retrieval of the most rele-
vant piece to the current effort. ICRT is integrated into the
Eclipse IDE with particular attention being paid to usabil-
ity so as to minimise the cost of its use to the programmer.

Copyright c
�

2006, Australian Computer Society, Inc. This paper ap-
peared at Twenty-Ninth Australasian Computer Science Conference
(ACSC2006), Hobart, Tasmania, Australia, January 2006. Conferences
in Research and Practice in Information Technology, Vol. 48. Vladimir
Estivill-Castro and Gill Dobbie, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

The paper is organised as follows. In the next section,
we introduce the important concepts, in particular what is
needed to develop a CBR-based system. We also discuss
other related research. In section 3, we present the moti-
vation for this work in more detail and discuss how that
affects the requirements for ICRT. Section 4 presents the
main concepts we use to develop a CBR-based system tar-
geted at reusing source code. We then give an overview
of ICRT in section 5. Section 6 presents an evaluation of
ICRT, and finally, we discuss future work and present our
conclusions.

2 Background and Related Work

2.1 Software Reuse

The idea of developing software by re-using existing soft-
ware has been around since the dawn of software engi-
neering as a discipline (McIlroy 1969). Since that time,
much research has been done to turn this idea into re-
ality, of which we can only touch on here (see surveys
such as (Mili, Mili & Mili 1995, Kim & Stohr 1998) for
more detail). For the most part this research has focused
on planned or systematic reuse, that is, how organisations
can, by using explicit processes and standards, get the
most benefit from reuse. Early efforts in this regard ex-
amined the design, development, and organisational use
of repositories of reusable assets (see (McClure 1997) for
example). Later efforts considered domain engineering
and domain analysis as promising avenues (see (Tracz,
Coglianese & Young 1993) for example), which led to
software product lines (Clements & Northrop 2001).

There has also been much work in tool support for
reuse. The early work concentrated on repository support.
Later work examined other aspects of supporting reuse,
such as the development of reusable assets and reducing
the cost of understanding them (for example, (Biddle &
Tempero 1998)). Other work has provided support for
non-code assets, for example design patterns (Mapelsden,
Hosking & Grundy 2002).

The tools developed in this kind of research, while
used by an individual, have been intended to support reuse
at the organisational level. In fact, most Software Reuse
researchers have ruled out supporting the kind of reuse
exemplified by our scenario, describing it as software sal-
vaging and in doing so implying it is not worth supporting
(Tracz 1995). However, as we (and many others) have
noted, reuse often occurs at the individual level, where an
individual leverages her own past work rather than use an
enterprise level repository.

For this kind of reuse, there appears to have been little
work done in developing tools to support it. One excep-
tion is work by Norton on “Reuse of personal software
assets”(Norton 2003). Norton observed that an individual
builds up her own personal collection of useful assets dur-
ing her career, and that it was feasible to provide support
to help manage that collection. He identified seven fea-
tures that a tool providing this support should have: pri-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

25

vacy, Internet accessibility, customisable meta-data, flexi-
ble browsing, support for a variety of asset types, support
for relationships between assets, and a natural language
query facility. We compare Norton’s work with ours in
more detail in section 6.

2.2 Case-based Reasoning (CBR)

CBR involves reasoning from prior experience: retain-
ing a memory of previous problems and their solutions,
and solving new problems by reference to that knowl-
edge. Generally, a CBR system will be presented with
a problem, either by a user or by a program or system.
The system then searches its memory of past cases (called
the “case-base”) and attempts to find a case that has the
same problem specification as the case under analysis. If
the reasoner cannot find an identical case in its case-base,
it will attempt to find a case or multiple cases that most
closely match the current problem (Pal & Shiu 2004).

Pal and Shiu discuss many advantages in adopting
CBR (Pal & Shiu 2004). In particular, a CBR system
can still function even if the underlying theory of domain
knowledge has not been quantified or understood entirely.
Availability is another key advantage of having CBR sys-
tems. Whereas artificial intelligence techniques require
full knowledge of the domain to be available, CBR can
be usefully used even then there is only a few cases in its
case-base.

Figure 1: The CBR cycle

The process involved in retrieving past experience can
be generalised into four consecutive steps, known as the
CBR Cycle, as shown in figure 1 (Watson 1997).

In order for cases stored in a case-base to be retrieved
during queries, each case must have a standard represen-
tation and it must be indexed properly.

Case representation is the first step in implementing a
CBR system. It is also the most important step because
the representation will reflect the knowledge stored in
each case. In many practical CBR applications, cases are
usually represented as two unstructured sets of attribute–
value pairs that represent the problem and solution fea-
tures (Gebhardt, Vob, Grather & Schmidt-Beltz 1997).
One of the advantages of CBR is that it allows flexibil-
ity in how an attribute can be represented. There is a range
of possible choices from simple boolean, numeric and text
data, to binary files, time-dependent data and relationships
between data.

It is not enough to just represent the cases, a struc-
ture representation for the case-base is required as well.
This structure will greatly influence how the index is con-
structed. There are two common structures used: flat or
hierarchical. A flat structure has the property that the in-
dexes are chosen to represent the important aspects of the
case and retrieval involves comparing the query case’s at-
tributes to the attributes of each case in the case-base. A

hierarchical structure, on the other hand, stores the cases
by grouping them into appropriate categories to reduce the
number of cases that have to be searched during a query
(Pal & Shiu 2004).

Case indexing is the second step of implementing
CBR. In this step cases are indexed for future retrieval and
comparison. The choice of indexes is important to en-
able retrieval of the right case at the right time because the
indexes will determine in which context a case will be re-
trieved in the future. Therefore it is critical that the indexes
reflect the important features of a case and the attributes
that influence the outcome of the case, and describe the
situations in which a case is expected to be retrieved in the
future (Pal & Shiu 2004). Although there are attempts at
making the process automatic, generally indexes are as-
signed by domain exports.

Case retrieval is the process of finding cases that are
closest to the current case. In order to carry out effective
case retrieval, there must be selection criteria that deter-
mine how a case is judged to be appropriate for retrieval
and a mechanism to control how the case-base is searched
(Pal & Shiu 2004).

Nearest neighbour retrieval (NNR) is a common selec-
tion technique applied in CBR systems. The algorithm
will retrieve a case when the weighted sum of its features
that match the current query is greater than other cases in
the case-base (Pal & Shiu 2004).

Once a case has been chosen, it will be modified or
adapted to fit into the current problem. If the underlying
domain of the cases is well understood, then sometimes
this step can be automated, but often case adaptation is
performed manually.

3 Requirements

The main motivation for the development of ICRT is to
support the reuse of code that a programmer has written
in the past. To understand that this means in terms of the
specific requirements for the design of ICRT, we need to
discuss in more detail what it means to provide this kind
of support, and what some of the consequences are.

As we mentioned in the introduction, the situation
ICRT is meant for is when a programmer thinks she is
about to write code that might similar to code she has writ-
ten in the past. The first point to note is that we are only
interested in source code, and not other artifacts that could
be considered useful for reuse. The next point to note is
that we are not just interested in reuse of “whole” pieces of
code, that is, semantically complete code such as classes,
modules or components, but also code fragments that may
not even be syntactically correct. This impacts the choice
of technology for representing and storing the artifacts we
wish to reuse.

Reusing code is only useful if the total cost of doing
so is less than the cost of creating the code from scratch.
So what is the cost of reuse? In the situation above, if the
programmer knows the exact location of code that will do
exactly what is needed, then reusing it will not cost much,
although there is still the cost of navigating to the location
and of integrating the code into the current context.

If there is uncertainty about the location or relevance of
the existing code, then reusing it becomes more expensive.
It does no good if the programmer has written exactly the
code she needs some time in the past, but it takes her two
hours to find it (she eventually discovers it has been moved
to an off-line archive) when she could have re-written it in
an hour. It also does no good if the programmer takes only
15 minutes to find the code she remembered, only to re-
alise it’s of no use and have to start from scratch anyway.
The greater the uncertainty of location or the relevance
of existing code, the less likely the programmer will even
attempt to try to reuse code. This leads to the primary re-
quirement for ICRT, to quickly identify the most relevant
existing piece of code to the problem at hand.

CRPIT Volume 48

26

JTable table = new JTable(15, 3) {
public Component prepareRenderer(TableCellRenderer renderer,

int row, int column)
{

Component c = super.prepareRenderer(renderer, row, column);
// We want renderer component to be transparent so background
// image is visible
if(c instanceof JComponent)

((JComponent)c).setOpaque(false);
return c;

}
};

// Use our version of JScrollPane
MyScrollPane sp = new MyScrollPane(table);

// Set the background image
ImageIcon image = new ImageIcon("codeguruwm.gif");
sp.setBackgroundImage(image);

Figure 2: A code fragment to be stored in ICRT

Another cost of reuse takes place after a relevant code
fragment has been identified, and that is the cost to adapt
and integrate it into the current context. This cost can be
reduced by initially writing the code code fragment to be
easy to reuse, however this makes the initial creation of the
fragment to be more expensive. Typically, there is a trade-
off between the development cost and the cost of adaption
and integration. If the code is reused several times, then
its up-front cost can be amortised over its lifetime. How-
ever, it is often difficult to predict whether code is going
to be reused, and so there is a risk that the cost of making
the code easier to reused will never be recovered because
the code is never reused. A way to reduce this cost is to
spread the cost of making the code easier to reuse over
its lifetime. Every time code is reused, it is improved in
a way that will (hopefully) make it easier to reuse in the
future, and the improved version is kept for future reuse
requirements. This leads to the requirement for ICRT of
providing support for retaining these improved versions.

We are proposing the use of a new tool to support code
reuse. This is in itself a cost. If the tool takes a long time
to learn or takes a significant amount of effort to use, then
it is unlikely to be actually used. This means that good
usability is an important consideration for ICRT. Usability
is now recognised as an important factor in the lack of use
of CASE tools (Iivari 1996). In particular, it must be easy
to store code in the tool when it is first created, easy to
search for relevant code, easy to integrate relevant code,
and easy to retain modified versions.

Finally, it must be kept in mind that the tool we’re
proposing is intended to support reuse at the level of the
individual. This has important implications in what as-
pects of the tool’s design are important. One is the us-
ability issue mentioned above. With systematic reuse, a
company’s reuse policy may get away with dictating the
use of a tool that no-one enjoys using, since there will be
external pressures (such as keeping one’s job) to ensure
the policy is followed. However if the individual is de-
ciding whether or not to use a tool, then that individual’s
experience with the tool will affect the decision.

Another consequence of providing individual support
is that there is no need to enforce any standard. In fact,
it is likely that the tool would be more acceptable if the
user could tailor its behaviour to suit her particular way of
working. Different people classify and remember things
in different ways, so we have concluded that, rather than
provide a rigid indexing structure, we should instead give
some control of the indexing to the user.

4 CBR in ICRT

In general, as others have noted, there are similarities be-
tween the CBR and reuse approaches (Tautz & Althoff
1997). However the CBR methodology seems a partic-
ularly good match to ICRT’s requirements. The artifacts
we wish to reuse, code fragments, have little useful struc-
ture on which to base a useful domain model. We expect
ICRT to be useful right from the start when there are only
a few fragments available. We want to be able to provide
support for retaining new versions of code created when
they are adapted for reuse, something that is explicit in the
CBR cycle.

The process of applying CBR as mentioned in section
2.2 can be simplified into four steps: case representation,
case indexing, case retrieval and case adaptation.

Starting with case representation, cases in ICRT con-
sist of attribute-value pairs, where the value is the code
fragment represented as a string, and the attribute de-
scribes the functionality as discussed below. We chose
to represent the code as unstructured strings, instead of,
for example, representing the semantics in some way, be-
cause unstructured strings don’t have to be even syntacti-
cally correct and yet can still be useful for our purposes.
Furthermore, from a usability perspective, operations such
as copy and paste are familiar to our user population, and
these operations are based on unstructured strings. It also
provides an opportunity for a simpler code fragment re-
trieval interface, as well as more efficient case indexing.
The cases are stored in a flat structure.

In existing CBR systems, the size of the index is the
same for each case. This is because each case is expected
to have a fixed set of features. The index for a case is then
based on the values of each feature for that case. How-
ever, in the case of indexing a code fragment there is no
standard or obvious feature set that can be used to describe
each fragment. Therefore we use a indexing mechanism
such that fragments can be assigned an arbitrary (but user
specified) number of features.

We call each feature/property pair a functionality card.
Currently the cards used in ICRT have a simple structure:�
Language — Feature — Property — Description � . For in-

stance, a code fragment that might be described as “Read-
ing a file from a given location” can be represented as:�
Java—I/O—Read—From a given location � . In this case,

the feature on the card also refers to the corresponding
Java IO package. This structure originated from Java Al-
manac (Chen 2002) and it has been modified to fit into the
purpose of the card design. The purpose of a functionality
card is to document functionality that is meaningful to the

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

27

user. This means that the card deck created by the user
will be unique to that user. It is possible to have repeated
cards between programmers but they may mean different
things depending on the users’ preferences.

The card approach has the benefit that it requires less
computation in case retrieval compared to text-based de-
scription because there is no need to perform text pro-
cessing to pick up the key words in both the input query
and within the cases. It also simplifies both the indexing
and retrieval process, which we believe improves usabil-
ity. Rather than learn and use a complex syntax or search
process, a user just picks out the cards the best represent
the functionality she is interested in (for retrieval) or best
represents the code fragment (for indexing).

For case retrieval, ICRT uses nearest neighbour re-
trieval. By default, cards have equal weights, but the
weights can be changed. Case adaptation in ICRT is cur-
rently performed manually.

To see how the cards work, consider the code fragment
presented in figure 2. The language is JAVA, and gener-
ally the code deals with user interface elements. However
some of it (JTable) is specific to the swing package,
whereas the last two statements are more general. When
indexing, the user might choose to separate these into sep-
arate features, such as SWING and GUI. The properties
provide more specific information about the code frag-
ment with respect to the identified features, and so the
cards that assigned to this fragment could as follows:

�
�
JAVA — SWING — Table — Java Swing Table re-

lated i.e., JTable �
�

�
JAVA — GUI — Background — Embed background

in GUI components �
�

�
JAVA — GUI — Image — GUI component relating

to Image �
This choice of cards is, in keeping with the comments

in section 3, completely up to the user. Another user may
have instead decided that the “image” aspect of the code
was not worth recording, and so left that card out, or that
the transparency of the cells was relevant, and so included
a card representing that information. Even the form of the
cards is up to the user. She might decide that managing the
background of a user interface was sufficiently important
that it become a feature, rather than a property.

5 Individual Code Reuse Tool (ICRT)

In this section, we demonstrate ICRT. As previously men-
tioned, ICRT is a plug-in for the Eclipse IDE, and con-
sequently uses parts of Eclipse, such as the SWT. Code
fragments are stored in HSQLDB (IBM 2005). Although
HSQLDB is not as feature rich as other database manage-
ment systems, it has the benefits that it can operate with-
out a separate database server having to be installed. ICRT
uses Hibernate provide the mapping between the relational
data model used in HSQLDB and the representation used
in ICRT (JBoss 2005).

Figure 3 shows ICRT as a user would see it. It is pre-
sented as an Eclipse View shown in the figure as one of
a set of tabbed panes in the frame at the bottom of the
interface. ICRT itself has a number of views, for code
retrieval and indexing, for card management, and for im-
proving code.

5.1 Procedures involved in Code Retrieval

There are four steps involved in retrieving a code frag-
ment:

1. Select appropriate functionality cards

2. Assign weights (or importance) on the selected cards,
if necessary

3. Select a code fragment from the fragment list and the
user can preview the fragment’s content in the code
preview field

4. Press the copy button to copy the fragment to clip-
board and the user can decide where to paste the frag-
ment

The fragment search is performed automatically when-
ever the user adds/removes a card to/from the selected card
list. All fragments that have the chosen card will be listed.

5.2 Sample Scenario

To see how ICRT would be used, consider the following
scenario. Chris is assigned with the task of placing her
company logo into a Java accounting application, which
consists mainly of Java swing tables. Chris vaguely re-
members that she has a code fragment stored in ICRT that
performs similar task and she believes that the same frag-
ment can be used here.

She starts off ICRT in her Eclipse IDE and begins her
code retrieval process. She will need to pick the cards
that are directly associated with the task, that is. embed-
ding background image in a JTable. She first picks the
Background card in the GUI category first as the diagram
shown in Figure 4.

After selecting the Background card, 5 code fragments
are shown in the result list. But with only the background
card selected, Chris finds it difficult to distinguish frag-
ments relating to background colour and background im-
age. Therefore she selects the Image card in the same cat-
egory, which in turn emphasises that she is more interested
in code fragments relating to background image. By doing
so, fragments relating to both Background and Image will
now have 100% similarity rate whereas those that relate
to Background and Colour will only have 50% similarity.
Note that a new code fragment (one that matches Image
but not Background) has also been added, but also only
with 50% similarity.

From the descriptions shown in Figure 5 Chris cannot
tell which fragment is for Java Swing tables, so she se-
lects the Table card in the Swing category as shown in Fig-
ure 6. Although adding the Table card results more code
fragments appearing in the fragment list (adding those for
Table), Chris only needs to investigate the fragments that
have the highest similarity percentage as they are more
likely to be the fragment she is interested in using. In this
case, Chris sees two possible solutions to her current prob-
lem, she could choose either the “scrollable” or the “non-
scrollable” background image solution.

This example illustrates how code retrieval is per-
formed in ICRT. As one can see that the user does not
need to type out her query, instead ICRT allows the user
to could simply choose the relevant cards. The additional
benefit of using cards is that there is no worry of possible
typos, which could cause no fragments found.

5.3 Other features supported in ICRT

Apart from the main code retrieval functionality, ICRT
also provides other features, such as code storing and new
functionality card creation. These features are essential to
how a user may retrieve her code fragment from ICRT.

5.3.1 Storing Code In ICRT

Code storage and retrieval are the two most important
functionalities that ICRT addresses. We have outlined
the procedures involved in code retrieval in the previous
section, therefore in this section we will discuss the pro-
cess involved in storing new code fragments into ICRT. A
screen shot of the interface is shown in Figure 7.

The process involved in storing a new code fragment
consists of six steps:

CRPIT Volume 48

28

Figure 3: ICRT as an Eclipse Plug-in

Figure 4: First card selected in code retrieval

Figure 5: Second card selected in code retrieval

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

29

Figure 6: Third card selected in code retrieval

Figure 7: Store new code fragment

Figure 8: Functionality Card Tree

CRPIT Volume 48

30

1. Copy the code fragment into the code field

2. Make necessary changes to the code, e.g. generalisa-
tion

3. Select the cards representing the functionalities of the
code from the card tree

4. Choose a project

5. Write two to three words describing the fragment

6. Press the “Save Fragment” button

In step five, we allow a developer to write two to
three words describing on the code fragment so that when
this fragment, along with other relevant fragments, is re-
trieved, she will be able to identify the fragment that she
has the most interest in quickly.

5.3.2 Card Management In ICRT

The Functionality card design plays a big role in ICRT. It
enables a developer to retrieve code quickly and to store
new code fragments easily by selecting the relevant cards.
One of the costs of the flexibility the user has in the choice
of cards is that wrong choices may be made. For example,
a user may initially decide that “background” is useful as
a feature, but later realise that it is much too narrow and
so would be better off as a property. This suggests there
needs to be support for the management of cards.

As shown in previous figures the cards are presented
in a tree structure. As shown in Figure 8 the first level of
tree nodes represents the Language category, followed by
Feature and the leaves of the tree represent the Properties.
Since a card is made up of Language, Feature and Prop-
erty, this structure allows a developer to quickly identify
the card she is looking for. When the developer leaves
her mouse on top of a selected node she will be able to
see a tool tip showing, which contains information about
selected node.

There is also the problem that it is very easy for a de-
veloper to fall into the trap of creating a new card for each
new code fragment stored. Therefore we designed the card
refactor interface to allow a user to “refactor” her card set
to reduce redundancies. Apart from the general create,
edit and delete functionalities, we provide three additional
features that will enable the developer to refactor her cards
more easily. They are:

� Copy functionality allows the developer to copy her
cards to another language category, which saves her
time and effort in creating them individually.

� Move functionality allows the developer to move her
cards to another location. Once this operation is com-
pleted, the original cards will be removed.

� Replace functionality allows the developer to replace
a selected card with other cards. This will allow the
user to “refactor” her cards for example, replacing a
specific card with other more general cards.

There are other aspects of ICRT. Of particular interest
is the decision to clear the selected cards once the user
presses the copy button. This behaviour was added after
observing incorrect use of the tool by users, as discussed
in the next section.

6 Evaluation and Discussion

We performed a formal evaluation of ICRT. The partic-
ipants were given a task to do involving simple string-
based manipulation of dates. While ICRT has been de-
signed with the idea that users add and organise code frag-
ments themselves, time constraints meant that we could
not simulate that in our study. Instead, the participants

2 code fragments from Java SQL package (e.g.
SQL date)

3 code fragments on Java String operations (e.g.
Split string)

2 code fragments on Java Swing (e.g. Frame)

3 code fragments on General Java operation (e.g.
main, and for loop)

3 code fragments on Debugging (e.g. print list)

6 code fragments on Date Calculations (e.g. get
particular day of week)

7 code fragments on Converting Object to another
(e.g. String to Date)

16 code fragments on Java I/O operations (e.g.
read in and write out)

Table 1: Code fragments for evaluation

One 2nd year undergraduate student

One 3rd year undergraduate student

One graduate student with a Bachelor of Engineer-
ing (4 year degree)

Two people from industry (both graduated more
than a year previously)

Table 2: Evaluation participants

where given ICRT already populated with 42 fragments
(Table 1), some of which were relevant to the task. There
were 5 participants with a variety of backgrounds (Table
2). At the end of the study, the participants filled in a ques-
tionnaire. We summarise the results of the most relevant
questions below.

Q 14 Do you think you can program faster without the
support of ICRT? Yes/No
All the participants selected “No”.

Q 15 How easy/hard is it for you to operate ICRT? Rank
from 1-5 (1 means very easy, 5 means very diffi-
cult) and what improvements would you like to see
in ICRT?
The responses were generally positive, although sev-
eral commented on the difficulty relating to not hav-
ing organised the code fragments themselves. This
confirms our belief that users prefer to do their own
organisation. The complete set of responses is shown
in Table 3.

Q 16 What do you think about the card-based searching?
Rank from 1-5 (1 means very easy, 5 means very dif-
ficult)? Could you write a few words explaining your
answer?
Again we saw comments that are related to the partic-
ipants not having organised the code fragments them-
selves. They also raised questions about how well
ICRT would work with many cards. This is some-
thing we would like to address in future studies. The
complete set of responses is shown in Table 4.

One aspect of ICRT that was noticed while observing
participants in the study was that they frequently left cards
they had used for previous queries selected when mak-
ing new queries. This meant that the effectiveness of the
search was reduced as they were mixing different func-
tionalities. As a consequence, we have changed ICRT to
clear the selected cards whenever a fragment is copied in
the buffer.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

31

Participant ID Rank Comments made by participants
1 2 It is something that would get better with time, i.e., contains more code.

I like it.
2 2 Enable the user to clear a particular code fragment that has been used
3 3 Handy if I have my own cards build up
4 1 I am not sure if ICRT dynamically updates the database as code is en-

tered. It is good functionality to have.
5 2 It would have been even easier had I organised the cards myself

Table 3: Q 15 on ICRT usability

Participant ID Rank Comments made by participants
1 3 Initially spend some time understanding what each card was for. It’s

due to experience with the tool
2 3 It is easy to find fragments using the cards provided. However in the

case where large numbers of cards are kept within the tree, it is best to
have functionalities such as key word search for the cards.

3 2 Because it increases my coding efficiency (i.e., less time involved in
searching for code fragment)

4 1 Convenient. But can get difficult to search if there are too many cards
5 2 (Refer to 15) Having text-based searches in addition to cards might be

quicker, especially if the persona using ICRT did not organise the cards

Table 4: Q 16 on ICRT Card design

ICRT differs from Norton’s PARSE system (Norton
2003) in several ways. In particular, ICRT only provides
support for reuse of code fragments, whereas, not only
does Norton provide support for multiple asset types, he
suggests that such support is a key feature of any personal
asset reuse support solution. We disagree. We believe it
is better to provide very good support for an asset type
that is commonly reuse, namely code fragments. In order
to provide very good support, we also focus much more
on usability. This focus has affected our decision as to
what assets are stored, and how users interact with them.
It also led to the decision to integrate ICRT with an exist-
ing IDE. ICRT has been designed with a view to minimise
the amount of time users spend searching, adding, and re-
trieving assets. To this end, ICRT uses CBR to manage
the reusability assets in the hope that this will yield high
quality search results.

Norton briefly touched on other currently available
software products that also store code fragments. Out of
19 tools he lists, Code Keeper (ICY 2005) is most similar
to ICRT in terms of functionality. This tool allows a user
to browse, search and store code fragments. There is one
major difference between ICRT and this tool is that ICRT
is integrated with an IDE, whereas Code Keeper is stand-
alone. It is also unclear how effective its search facilities
are.

7 Conclusions and Future Work

We have introduced ICRT, a plug-in to the Eclipse IDE in-
tended to support the individual programmer reusing code
she has written in the past. Specifically, ICRT provides
support for a task that many programmers currently do
anyway, namely finding and reusing code they have writ-
ten in the past.

The support provided by ICRT uses the CBR method-
ology. To do so we represent cases as fragments of code
together with a set of “cards”, which are feature/property
pairs. The cards provide a simple mechanism for index-
ing the fragments and the searching through the case base.
Matches are done using the nearest neighbour algorithm.
Usability is an important requirement of ICRT. The deci-
sions to restrict to supporting reuse of just code fragments,
the cards mechanism, and the integration with an IDE, are

all intended to meet this requirement. We have carried
out an evaluation of ICRT using a small but diverse set of
users. While the sample size was too small to draw statis-
tically significant conclusions, the feedback was positive
and provides useful direction for future work.

There is also an issue that we anticipate will require
further work. Currently, ICRT requires the user to choose
appropriate cards whenever a new fragment is added. This
takes some time, and poor choice can affect the effective-
ness of later searches. This will become more of an is-
sue as the number of cards increases. We would like to
explore either automated, or semi-automated card assign-
ment. Finally, the general question of whether or not ICRT
improves productivity is yet to be empirically answered.
Given that ICRT automates something programmers al-
ready do, there is good reason to believe it does and we
have some evidence to this effect, however more work has
to be done.

Acknowledgements

The authors would like to thank the participants in the ex-
periment for their time, and also the useful comments from
the referees.

References

Biddle, R. L. & Tempero, E. D. (1998), Towards tool
support for reuse, in ‘SEEP ’98: Proceedings of
the 1998 International Conference on Software En-
gineering: Education & Practice’, IEEE Computer
Society, p. 126.

Chen, P. (2002), Java(TM) Developers Almanac 1.4, Vol-
ume 1: Examples and Quick Reference, Addison-
Wesley Professional.

Clements, P. & Northrop, L. M. (2001), Software Product
Lines: Practices and Patterns, Addison Wesley.

Gebhardt, F., Vob, A., Grather, W. & Schmidt-Beltz,
B. (1997), Reasoning with Complex Cases, Kluwer
Academic, Norwell, MA.

CRPIT Volume 48

32

IBM (2005), ‘Eclipse and HSQLDB: Embed-
ding a relational database server into eclipse,
part 1’. http://www-106.ibm.com/
developerworks/opensource/library/
os-echsql/?ca=%lnxw09HSQLDB.

ICY (2005), ‘Code keeper 1.0’. http://www.
icynorth.com/codekeeper/.

Iivari, J. (1996), ‘Why are CASE tools not used?’, Com-
munications of the ACM 39(10), 94–103.

JBoss (2005), ‘Introducing hibernate’. http://www.
hibernate.org/4.html.

Kim, Y. & Stohr, E. A. (1998), ‘Software reuse: Survey
and research directions’, Journal of Management In-
formation Systems 14(4), 113–147.

Mapelsden, D., Hosking, J. & Grundy, J. (2002), De-
sign pattern modelling and instantiation using dpml,
in ‘CRPITS ’02: Proceedings of the Fortieth In-
ternational Confernece on Tools Pacific’, Australian
Computer Society, Inc., pp. 3–11.

McClure, C. (1997), Software Reuse Techniques, Prentice
Hall.

McIlroy, M. D. (1969), Mass produced software compo-
nents, in P. Naur & B. Randell, eds, ‘Proceedings
of NATO Software Engineering Conference’, Vol. 1,
NATO Science Committee, pp. 138–150. Presented
at the NATO conference on software engineering,
Garmisch, Germany, 7-11 October, 1968.

Mili, H., Mili, F. & Mili, A. (1995), ‘Reusing software:
Issues and research directions’, IEEE Transactions
on Software Engineering 21(6), 528–561.

Norton, R. J. (2003), Reuse of personal software assets:
Theories, practices and tools, Master’s thesis, The
Florida State University.

Pal, S. K. & Shiu, S. C. K. (2004), Foundations of Soft
Case-Based Reasoning, John Wiley & Sons.

Tautz, C. & Althoff, K.-D. (1997), Using case-based rea-
soning for reusing software knowledge, in ‘Second
International Conference on Case-Based Reasoning
Research and Development’, pp. 156–165.

Tracz, W. (1995), Confessions of a Used Program Sales-
man: Institutionalizing Software Reuse, Addison-
Wesley.

Tracz, W., Coglianese, L. & Young, P. (1993), ‘A domain-
specific software architecture engineering process
outline’, SIGSOFT Softw. Eng. Notes 18(2), 40–49.

Watson, I. (1997), Applying Case-based Reasoning Tech-
niques for Enterprise Systems, Calif.: Morgan Kauf-
mann.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

33

CRPIT Volume 48

34

Identifying Refactoring Opportunities by Identifying Dep endency Cycles

Hayden Melton, Ewan Tempero
Department of Computer Science

University of Auckland
Auckland, New Zealand

{hayden|ewan}@cs.auckland.ac.nz

Abstract

The purpose of refactoring is to improve the quality of a software sys-
tem by changing its internal design so that it is easier to understand or
modify, or less prone to errors and so on. One challenge in perform-
ing a refactoring is quickly determining where to apply it. We present
a tool (Jepends) that analyses the source code of a system in order to
identify classes as possible refactoring candidates. Our tool identifies
dependency cycles among classes because long cycles are detrimental to
understanding, testing and reuse. We demonstrate our tool on a widely-
downloaded, open-source, medium-sized Java program and show how
cycles can be eliminated through a simple refactoring.

1 Introduction

Refactoring is defined as “the process of changing a soft-
ware system in such a way that does not alter the exter-
nal behaviour of the code yet improves its internal struc-
ture” (Fowler 1999). Refactoring is most appropriate for
software systems whose existing (internal) design is hard
to understand, hard to modify and prone to errors and so
on. By refactoring such a software system we alter its
design to make it easier to understand, modify and less
prone to errors. As such, refactoring is regarded as an im-
portant technique for improving software quality during a
system’s maintenance phase.

There are several challenges in performing a refactor-
ing. One is to identify characteristics of a design that make
it hard to understand, modify or test etc. Fowler produces
a list of these characteristics which he refers to as ‘bad
smells in code’ or simply smells. Examples of smells in-
clude large classes, long parameter lists, feature envy and
data classes. Many of these smells have a large degree of
subjectivity in their interpretation. For instance, how large
is too large for a class? How do we justify (in the case of
the feature envy smell) if one method is ‘more interested’
in another class than in that which it is defined? This leads
us to the second challenge in performing a refactoring —
identifying where to perform it.

Since many smells have a large degree of subjectivity
or variety in their interpretation it is difficult to (reliably)
automatically detect where to apply a refactoring. Much
refactoring therefore relies upon the slow and tedious task
of manually inspecting code. It would be beneficial to
be able to reliably automatically detect where refactor-
ings could be applied. To this effect we have identified
a particular structure in a system’s source code that can be
automatically detected, and has a detrimental effect on the
system’s understandability, testability and reusability. The
structure we have identified is long dependency cycles be-
tween classes in the system.

Copyright c©2006, Australian Computer Society, Inc. This paper ap-
peared at Twenty-Ninth Australasian Computer Science Conference
(ACSC2006), Hobart, Tasmania, Australia, January 2006. Conferences
in Research and Practice in Information Technology, Vol. 48. Vladimir
Estivill-Castro and Gill Dobbie, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

Long cycles among classes in Java programs create
problems for developers because it is difficult to isolate
any class in the cycle. Anyone wanting to understand any
class in the cycle effectively has to understand every class
in the cycle. This has implications for the cost of mainte-
nance. Anyone wanting to test any class, effectively has
to test every class. And anyone wanting to lift a class
for reuse in another system, ends up having to lift every
class in the cycle. This suggests software with cycles in
the compilation dependency graph may be more costly to
maintain than those without, which gives motivation for
detecting and removing cycles.

Of course detecting and removing cycles would not be
so interesting if they did not exist in “real software”, or
they were “mostly harmless”. This leads into the contribu-
tions of this paper. One contribution is to show that cycles
do exist in real software. We have done this by examin-
ing several widely-downloaded, open-source Java appli-
cations. In order to determine the prevalence of cycles we
have built a tool to detect them — this is another contri-
bution. Since we detect cycles from source code and not
from byte code we have had to develop an algorithm for
computing name bindings that is of little burden to imple-
ment, unlike a fully fledged Java compiler that by its very
nature has to compute name-bindings and requires signifi-
cant effort to implement — another contribution. The final
contribution is showing how dependency cycles detected
by our tool can be used as the starting point for refactoring.

The paper is organised as follows. In section 2 we mo-
tivate our work by discussing in more detail why cycles
can create problems for software developers. We then dis-
cuss the literature related to our work in section 3. Section
4 presents the algorithm we use to create the compilation
dependency graph. Section 5 discusses Jepends and sec-
tion 6 shows the results of applying Jepends to a medium
sized open source Java application. Section 7 discusses
how the results of the analysis can be used to identify op-
portunities for refactoring, and finally section 8 presents
our conclusions.

2 Motivation

Cycles in compilation dependency graphs (CDGs) have
implications in understanding, testing, and reusing classes
in the cycle. But are they really so bad? The
simplest cycle is one involving two classes that de-
pend on each other. It is very easy to find exam-
ples of such cycles – considerjava.lang.Class and
java.lang.reflect.Method, from the Java API
for example. It is hard to argue this cycle is ‘bad’ be-
cause of the natural parent-child type relationship between
a class and its methods. This relationship is represented at
the source code level byClass providing aMethod[]
getDeclaredMethods() method andMethod pro-
viding a Class getDeclaringClass() method.
Breaking this cycle would involve terminating the parent’s
reference to its children or the children’s reference to its
parent, both of which are necessary relationships in order

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

35

to provide usableMethod andClass objects.
It would be tempting to simply declare 2-class cycles

“good” and everything else bad, but we suspect “good” 3-
class cycles can also be found, and so the question would
then be at what size do cycles become “bad”? The ‘nec-
essary relationship’ argument stated above is an appealing
criteria, and may be a correct one, however it has the prob-
lem, from our point of view, that it is difficult to detect
violations of it through mechanical analysis.

While it may be difficult to state categorically that a
cycle of a certain size is bad, we would argue that it would
be hard to argue that a large cycle, of size 50 for example,
is something to be entirely happy with. We feel certain
that it would be useful to know that cycles of that size (or
larger) exist in our software, since that would provide a
candidate for refactoring.

Large cycles in the CDG may indicate another prob-
lem. As we discuss in the next section, a number of au-
thors have suggested that cycles ofsubsystems(groups of
classes with coherent functionality) are bad. If we have a
group of closely related classes (and so coherent function-
ality) then we would tend to want to understand, test, and
reuse them as a unit. As we argued above, cycles within
such classes may not be such a problem. However cycles
between subsystems suggests that the subsystems are in
fact not so coherent, and so again may indicate candidates
for refactoring. The larger the cycle in a CDG, the larger
the likelihood that the cycles cross subsystem boundaries.
For example, if there is cycle of size 50, but all subsystems
have fewer than 50 classes, then it must be that there is a
cycle between subsystems.

Our goal then is to construct and analyse CDGs, and
identify cycles, in particular large cycles.

3 Background

There has been a considerable amount of work done in
analysing dependencies of different kinds. We mention
only the most directly relevant here.

Graphs are a natural representation of computer pro-
grams well-suited for program analysis and transforma-
tion. Existing work in graph representations of programs
is diverse. One dimension of this diversity is the context
in which program entities are considered. Program enti-
ties may be considered dynamically — from the runtime
state of the executing program, or statically — from the
source code or an intermediate representation of it. An-
other dimension of work in graph representation of pro-
grams is the purpose for which the graph is used. Pur-
poses include, but are not limited to, identifying violations
of design heuristics, change propagation analysis, reverse
engineering, reducing compilation time, and runtime per-
formance optimisation. The work most relevant to this
paper relates to identifying violations of design heuristics.

The earliest work in the area of runtime performance
optimisation using graphs is by Kuck. Kuck introduces
a program dependency graphin order to determine state-
ments that can be executed in parallel in a (Fortran-like)
program (Kuck, Muraoka & Chen 1972).

Program dependency graphs have also been used in or-
der to analyse change propagation. The term ‘ripple ef-
fect’ is often used describe how a change can propagate
(Black 2001). In essence, a change to the code of one
module can have an effect on the data that is passed into
other modules. This is of concern during software main-
tenance because a change to one module that may naively
seem isolated could cause a regression fault in another.

In terms of reducing compilation time the graph repre-
sentation typically comprises source files as vertices and
compilation dependencies as directed edges. Yu et al.
identify false dependencies as a cause of long compila-
tion times and use a ‘partitioning’ operation on the graph
in order to determine redundant#include statements
(Yu, Dayani-Fard & Mylopoulos 2003). Cockerham uses

a graph of dependencies amongst Ada source files in or-
der to infer those files that can be compiled in parallel
(Cockerham 1988). Assuming multiple processors are
available for the compilation, its time is reduced.

Lague et al. generate a graph of dependencies between
C/C++ source files through processing their#include
statements (Lague, Leduc, Le Bon, Merlo & Dagenais
1998). This graph is used for reverse engineering in the
sense that Lague et al. want to recover the layered ar-
chitecture of the telecommunications system under study
from its implementation (source files).

Several recent studies have profiled the overall char-
acteristics of dependencies among classes in object ori-
ented systems. Wheeldon et al. profiled the distributions
of 5 different types of dependencies (e.g. inheritance, ag-
gregation) in several large Java applications (Wheeldon &
Counsell 2003). Marchesi et al. profiled the distributions
of in-degrees and out-degrees for nodes in the class rela-
tionship graphs of 4 Smalltalk applications where the re-
lationship took into account potential method invocations
and superclasses (Marchesi, Pinna, Serra & Tuveri 2004).
The authors of both studies found power laws in these dis-
tributions. Furthermore they speculated that these distri-
butions are common across all large object oriented sys-
tems and that such distributions may be useful for predict-
ing design complexity as a system grows and measuring
the effects of refactorings on software quality. We also
consider relationship graphs, however we concentrate on
distributions related to the transitive closure of the rela-
tionships.

Work with compilation dependencies is usually asso-
ciated with incremental compilation. Determining what
needs to be recompiled when one source file is changed
is non-trivial in Java. Lagorio has developed an algorithm
for sound cascading recompilation in Java (Lagorio 2004)
that deals with these issues. Lagorio’s algorithm is sound
in that its output is guaranteed to have the same effect as
recompilation of the whole program. We have adapted
Lagorio’s algorithm to identify the relationships we are
interested in.

Discussion in the literature of the consequences of
dependency cycles is limited. Booch makes the obser-
vation that a CDG should be a directed acyclic graph
as early as 1984, but provides no justification for it
(Booch 1987, p.567). Szyperski also observes “. . . can in-
troduce cyclic dependencies and threaten organizational
structure” (Szyperski 1998, p.275).

In terms of dependency cycles between subsystems
Riel (Riel 1996) provides a heuristic that states the model
of the application should never be dependent on the user
interface of that application. Presumably this heuristic
aims to eliminate a dependency cycle between the model
and view of the application.

Martin gives the Acyclic Dependency Principle
(ADP), namely “the dependency structure betweenpack-
agesmust be a directed acyclic graph” (our emphasis)
where packages are defined similarly to subsystems but
with an emphasis on reusability (Martin 1996). As we ar-
gued in the previous section, long cycles in the CDG may
indicate that the ADP has been broken.

The most comprehensive discussion we found of de-
pendency cycles among subsystems in object oriented
software is given by Lakos. Lakos argues for the acyclic
property on the basis that cyclic dependencies inhibit un-
derstanding, testing and reuse: “once two components are
mutually dependent, it is necessary to understand both in
order to fully understand either” (Lakos 1996, p.185).

Hautus has developed a tool to detect cycles between
packages in Java applications and support removing them
(Hautus 2002). His tool differs from ours in that it as-
sumes classes are correctly organized into subsystems by
the use of Java packages. The metrics his tool computes
are far less comprehensive than ours and as far as we can
tell his tool does not prioritize classes based on some no-
tion of their need for refactoring.

CRPIT Volume 48

36

4 Algorithm

We have developed an algorithm for inferring compilation
dependencies between Java source files in an application.
While this may seem at first thought trivial, it is not. As
noted by Lagorio the rules for name binding (i.e. bind-
ing identifiers in Java source code to their corresponding
program entities such as classes, methods, variables) are
complicated. This is “because the dot notation is used
to name many different kinds of things (types, packages,
fields and so on), its semantics is context dependent and
tricky” (Lagorio 2004).

Suppose we are presented with the dotted name (e.g.,
a.b.C in a Java source file. As stated in section 6.5 of
the Java Language Specification the following happens
to the name: “First, context causes a name syntactically
to fall into one of six categories: PackageName, Type-
Name, ExpressionName, MethodName, PackageOrType-
Name, or AmbiguousName. Second, a name that is ini-
tially classified by its context as an AmbiguousName or as
a PackageOrTypeName is then reclassified to be a Packa-
geName, TypeName, or ExpressionName. Third, the re-
sulting category then dictates the final determination of the
meaning of the name (or a compilation error if the name
has no meaning)”. There is a long set of rules for deter-
mining the name binding in each of the syntactic classifi-
cations. One option would be to implement all these rules
in a program to infer dependencies. The other option is to
find a heuristic based algorithm that is simpler to imple-
ment.

Fortunately there is a relatively simple (heuristic) al-
gorithm for inferring dependencies between Java source
files — it is described in Lagorio’s work in sound, cascad-
ing recompilation in Java (Lagorio 2004). Lagorio’s algo-
rithm actually detects a superset of the actual dependen-
cies of a source file. We have adapted Lagorio’s algorithm
so that it minimises the number of spurious dependencies
detected, and ignores some compilation dependencies that
are of little consequence to the developer’s view of the
system’s class. The final output of our algorithm is a CDG
whose vertices are source files and whose (directed) edges
are compilation dependencies. The CDG is built up by
processing the names, import statements and package dec-
laration in each source file in order to determine a set of
fully qualified type names to which that source filemay
refer. This set is subsequently used to infer dependencies
between source files by comparing the type names in it to
those declared by other source files in the application.

A simplified version of our algorithm can be expressed
as follows: Let the source files in the application be de-
notedS1, S2, S3, . . .Sn. The output of the algorithm is an
adjacency list representation of the program’s compilation
dependency graph of the formSi → R′

i whereR′

i is the
set of source files thatSi directly “refers-to”, that is, those
source files contain the declarations of types used inSi.

Firstly consider names in Java that are used to refer to
program entities such as methods, types, variables etc. A
name can be simple, that is consist of a single identifier,
or qualified, that is, consists of a sequence of 2 or more
identifiers delimited by “.” characters. We will express a
name in the forme1.e2.e3.e4.ek whereej represents
an identifier.

In order to constructR′

i we first computeRi by com-
bining, in a particular way, the names in the body ofSi that
might refer to types with those appearing in theSi’s pack-
age declaration and import statements.Ri is the set of
fully qualified class names to whichSi mayrefer. In Java
fully qualified type names uniquely identify types within
a program.

Let onDemands(Si) be the set of names used in
import-on-demand statements inSi, as well as the pack-
age name thatSi belongs to. Import-on-demand state-
ments are imports ending with a ‘.*’. LetsingleType(Si)
be the set of names used in single-type-import statements

in Si. Single-type-import statements are imports that do
not end with a ‘.*’. Letbody(Si) be the set of names that
could refer to types in the body ofSi. Then

Rbody
i = {e1 . . . ej |e1 . . . ej . . . ek ∈ body(Si),

1 ≤ j ≤ k}

Rondemand
i = {e1 . . . ej . . . ek|ej . . . ek ∈ Rbody

i ,

e1 . . . ej−1 ∈ onDemands(Si)}

Rsingle
i = {e1 . . . ej . . . ek|e1 . . . ej ∈

singleT ype(Si), ej . . . ek ∈ Rbody
i ∨

e1 . . . ek ∈ singleT ype(Si)}

and soRi = Rsingle
i ∪Rbody

i ∪Rondemand
i .

Let T be the set of all types declared inS1, . . . , Sn,
thenR′

i = declaringSources(Ri ∩ T) wheredeclaring-
Sourcestakes a set of type names and returns a set con-
taining the source files in which the types are declared.

This presentation of the algorithm has been simpli-
fied by not taking into account all of the issues due to
Java’s rules for shadowed names, obscured names, and
nested types. Lagorio discusses these issues in full detail
(Lagorio 2004).

We illustrate the algorithm using the following source
file.

1: //file S1
2: package a.b;
3: import x.*;
4: import y.Z;
5: class MyClass {
6: private A a = new A();
7: public void doStuff() {
8: B b = new C();
9: a.exec();

10: System.out.println();
11: }
12: }

The different sets in the algorithm are:

body(S1) = {A, B, C, System.out}

Rbody
1 = {A, B, C, System.out, System}

onDemands(S1) = {a.b, x}

Rondemand
1 = {a.b.A, a.b.B, a.b.C,

a.b.System.out,
a.b.System, x.A, x.B, x.C,
x.System.out, x.System}

singleT ype(S1) = {y.Z}

Rsingle
1 = {y.Z}

R = {A, B, C, System.out, a.b.A,
a.b.B, a.b.C, a.b.System.out,
a.b.System, x.A, x.B, x.C,
x.System.out, x.System, y.Z}

It is worth noting that there were names in the body
of the source that did not appear inbody(S1). Partic-
ularly a on line 6 does not appear because its context
makes it a variable name, thus its name cannot refer to
a type. Method declarations/calls such as.exec() (9),
doStuff() (7) and.println() (10) do not appear
because their context identifies them as methods. Thea
on line 9 does not appear because we can infer from the
source file that it cannot refer to a type: it is in the scope
of a declared field.

It is also worth noting that many of the names in each
source file’sR will identify types that are not declared in
the application’s other source files. Lagorio refers to these
names asghost dependencies. Since we are not interested
in ghost dependencies we cull them from each source file’s

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

37

R in order to get a new setR′. To know which names to
cull we build up a map from type to source file of all the
types declared across all the source files in the application.
This allowsdeclaringSourcesto be computed.

The key difference between our algorithm and Lago-
rio’s is in the construction of the refers to set,R. We
minimise the number of entries inR by resolving names
to variables and types inside a source file where allowed
by the Java Language Specification (JLS) (Gosling, Joy,
Steele & Bracha 2000, Chapter 6). We remove ghost de-
pendencies fromR. We do not add single-type-import
statements toR whose types are not used in the body of
the source file (contrary to the example above). While ig-
noring redundant single-type-imports is not sound in cas-
cading recompilation, it is a minor concern in program
analysis where we found it was causing many superfluous
dependencies between source files.

4.1 Benefits

It is in many ways beneficial to infer dependencies from a
system’s source files and not its compiled code (i.e. byte
code). While inferring a class’s dependencies from its byte
code is trivial (one can simply look at the fully qualified
class names appearing in the class file’s constant pool) the
process of compiling source files to byte code is seldom
straight-forward for a newly downloaded application. It
can involve having to track down external libraries, mod-
ify build scripts for the local environment and so on. Fur-
thermore if something is preventing the system from com-
piling (e.g. an unresolved reference or syntax error) then
no dependencies can be computed. Downloading the ap-
plication in its compiled form doesn’t help much either be-
cause it then becomes difficult to determine which classes
correspond to sources and which classes have originated
from external libraries.

A major benefit of our algorithm is that it is specifies a
simpler means of inferring dependencies between source
files than the way in which a compiler goes about inferring
these dependencies. For instance our algorithm is uncon-
cerned with statement reachability checking, type check-
ing and static context checking, whereas a compiler must
perform these steps. As a consequence of the omission
of such steps our algorithm should be faster at inferring
dependencies between Java source files than a compiler.
Even compared to the subsystem of a compiler whose pur-
pose is to compute name bindings our algorithm is supe-
rior in that the compiler’s subsystem is complicated to im-
plement because it must implement the pages upon pages
of rules discussed in section 6.5 of the Java Language
Specification. Furthermore, again unlike a compiler, our
algorithm does not require references to any external jar
files used by an application in order to infer dependencies
between sources.

Another benefit our algorithm is that it could be easily
adapted to infer compilation dependencies between source
files in other Java-like languages such as C#. The simplic-
ity of the algorithm is such that it can be implemented in a
few hundred lines of code assuming one starts with an off
the shelf parser for the target language.

4.2 Limitations

While the algorithm we have described avoids much of
the work performed by a compiler, which by its very na-
ture has to infer dependencies, there are situations where
it could detect spurious dependencies. Consider the fol-
lowing example in illustration of this.

1: package pack;
2: import x.*;
3: class Example {
4: A a = new A();
5: }

ComputingR for this source file yields{pack.A,
x.A}. Assume that in the application’s source files both
types are declared. The JLS states that the types are re-
solved using the implicit package import in preference to
import-on-demand statements (section 6.5.5) so in reality
Example only depends onpack.A. Our algorithm (in-
correctly) infers thatExample depends on bothpack.A
andx.A. We expected this type of situation would be very
rare. For a medium-sized Java application called Azureus
we detected this situation, where two classes had the same
simple name, and manually inspected all incidences of it
in offending source files’ texts. Of the 30 occurrences
of conflicting names none caused erroneous references.
In each case both classes were actually referenced in the
source file’s text: one using its fully qualified name and the
other using its simple name in conjunction with a single-
type-import.

Another way our algorithm could infer an erroneous
reference is if a variable name was interpreted as a class
name. This is analog to a potential problem stated in the
JLS where a variable name couldobscurea simple type
name. Fortunately the convention of naming classes with
an initial uppercase letter and naming variables with an
initial lowercase letter minimizes this type of conflict (see
JLS section 6.8). In all the systems we ran our tool on
during its development we casually observed source files
had obeyed this coding standard, almost certainly elimi-
nating all erroneous references that could be generated in
this way.

One final point to note is that in the general case our
algorithm does not infer a direct dependency between a
class that uses an inherited field or method, and the class
that defines that field/method. Consider a classA using
a field defined in its superclass’s superclassC. Our al-
gorithm detects an indirect dependency betweenA and
C throughA’s superclass. In this particular example a
Java compiler would infer a direct dependency fromA on
C, and this would be written toA’s binary class file (see
JLS 13.4.7). Briand et al’s framework for measuring cou-
pling more thoroughly addresses this issue (Briand, Daly
& Wüst 1999).

5 Jepends

An implementation of the algorithm described in section
4 has a number of practical benefits in terms of the kinds
of analysis we are interested in. In particular, it does not
require that the source code be in a deployable (or even
buildable) state. This avoids problems with source files
not being available or organised incorrectly, dealing with
external jar files or other subsystems, or configuration is-
sues.

We have implemented the algorithm as part of our tool
Jepends. Jepends uses the results of the algorithm to build
up the compilation dependency graph, and then analyses
the graph in various ways.

Jepends can compute a suite of sets for each of the
application’s source files:Refers-to — the R′ set i.e.,
the other sources referred to directly by the names in the
given source file;Refers-to-tc — the transitive closure
of refers-to;Referred-to-by — the inverse of refers-to;
Referred-to-by-tc — the transitive closure of referred-
to-by; Cycles-thru — a subset of all simple cycles (no
repeated vertices) that a given source file participates in.
The size of the refers-to and referred-to-by sets give the
out-degrees and in-degrees of the corresponding vertex in
the compilation dependency graph. The transitive closure
relations determine what source files either require or are
required by a given file during the compilation process.
Currently Jepends outputs dependency profiles as text files
that can be imported into tools such as Excel for sorting,
graphing and further analysis. Table 1 shows part of the
output, in this case the top four classes when sorted by
Cycles-thru. TheTC columns are the transitive-closure

CRPIT Volume 48

38

Class Referred-to-by TC Refers-to TC Cycles-thru
org....config.COConfigurationManager 164 1003 5 1373 3280
org....config.impl.ConfigurationDefaults 3 1003 10 1373 3279
com.....defaultplugin.StartStopRulesDefaultPlugin 3 1003 38 1373 3275
org....logging.LGLogger 107 1003 4 1373 3274
...

Table 1: Part of the output by Jepends. Class names have been elided.

version of the column to the left. The fact that the numbers
are the same for all classes in these columns is discussed
in the next section.

The fact that Cycles-thru is asubsetof all the simple
cycles a given source file participates in requires further
explanation. Efficiently finding all the simple cycles a
given node in a directed graph participates in is a diffi-
cult problem (Alon, Yuster & Zwick 1994). One approach
to finding all simple cycles (that is easily implemented in
Java) is to find all simple paths between each pair of nodes
the graph and determine which of these paths also corre-
spond to a simple cycle. A simple path corresponds to a
simple cycle if there exists an edge in the graph from the
terminal node in the path to the initial node in the path.
Several different paths can correspond to the same simple
cycle and this is easily detected by checking that the paths
contain the same nodes, and that these nodes occur in the
same order (when they are arranged into a cycle).

Unfortunately finding all simple paths between all
pairs of nodes is infeasible with respect to time for a graph
of any decent size. Our approach is to keep track of all
the simple cycles source files participate in that are en-
countered during the course of the depth first searches to
construct the Refers-to-tc set of each node. In this re-
gard Cycles-thru is a sample of the total cycles that pass
through a node. More importantly it shows that a given
node participates inat leastthis many simple cycles.

6 Results

In this section we demonstrate Jepends by using it on
Azureus, an open-source application that provides peer-
to-peer file sharing (Azureus 2005). Azureus is written in
Java 1.4 and release 2.3.0.0 comprises 1913 Java source
files with approximately 114000 lines of non-comment
source statements. Azureus are uses the Standard Wid-
get Toolkit for its user interface (like Eclipse), and has no
automated unit test suite.

We came across Azureus because it frequently appears
on Sourceforge’s top 10 lists for number of downloads and
development activity. Our end-user experience of Azureus
is that it is easy to use, stable and feature-rich. This is
atypical of our end-user experience with other peer-to-
peer file-sharing applications. It also raises the question
‘Is Azureus’s internal design indicative of its positive end-
user experience?’.

Figures 1 and 2 show the distribution of set sizes in the
referred-to-by and refers-to relations. In the figures, the
x-axis is the size of the sets and the y-axis is the number
of classes that have a given sized set. So figure 1 says
that about 1800 classes have refers-to-by sets of size be-
tween 0 and 19. Both distributions show that small values
are extremely common whereas large values are very rare.
This is reminiscent of the power law relationships found
by Marchesi et al (Marchesi et al. 2004).

Figures 3 and 4 respectively show the distributions of
the set sizes for refers-to-tc and referred-to-by-tc. The
distributions in figures 3 and 4 are of particular inter-
est. Both distributions show two distinct clusters: from
0-99 and 1000-1199 for referred-to-by-tc distribution, and
from 0-99 and 1300-1499 in the refers-to-tc distribution.
These seem to be very odd distributions — in the case of
referred-to-by-tc, this says that between 1000 and 1199
classes depend (transitively) on nearly 1400 other classes.

Figure 1: Azureus’ referred-to-by distribution

Figure 2: Azureus’ refers-to distribution

Figure 3: Azureus’ refers-to-tc distribution

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

39

Figure 4: Azureus’ referred-to-by-tc distribution

Furthermore, the distributions indicate no classes depend
on (for example) 500 other classes. It is very much that
classes depend on only a few classes (fewer than 100) or
most of the classes.

The question then is, is this distribution somehow
characteristic of all applications, or somehow peculiar to
Azureus. If it is peculiar to Azureus, then the presence of
such distributions may tell us something about the nature
of Azureus’ design. We used our tool to examine the dis-
tribution of these relations in other systems such as Tom-
cat 5.5.9, Eclipse 3.0 and Netbeans 3.6 and found some
clustering, but overall large valued clusters were less com-
mon than small valued clusters as exemplified by Tomcat’s
refers-to-tc distribution in Figure 5.

Now the question is, why does Azureus have such odd
distributions? Is it just some particular characteristic of
the application that is not related to the design, or is it
indicative of some, possibly bad, design characteristic?

In fact, such distributions indicate the possible pres-
ence of long cycles. To see this, consider the distribution
in Figure 3. The right-hand cluster indicates that of the
approximately 1900 source files in Azureus, about 1000
of them depend (either directly or transitively) on 1300
or more other source files. The left-hand cluster indicates
that the remaining 900 or so source files in the application
depend on between 0 and 99 other source files. In fact the
900 source files in the left-hand cluster cannot depend on
any in the right-hand cluster because of the transitivity. If
a source file in the left-hand cluster depended on one in the
right-hand cluster, it would depend on all the source files
the latter depended on, which we know is 1300 or more,
and so that source file should have been in the right-hand
cluster.

Files in the right-hand cluster can refer to files in the
left-hand cluster, but since there are at most 900 in the left-
hand cluster that meanseveryfile in the right-hand cluster
must refer to at leastone otherfile in the right-hand clus-
ter, meaning there must be cycles within the right-hand
cluster. The length of the cycles depends on the internal
structure of the CDG, however we get hints by looking at
the raw output of Jepends as shown in table 1. As noted
earlier, the values of theTC columns for the classes shown
are all the same. This means that with transitive closure
they all have the same set of classes that they depend on
or are depended on, which could be explained by all of the
classes belonging to a cycle.

It was the appearance of the odd distributions for
Azureus compilation dependencies and other applications
that led to our interest in cycles, and the introduction of
cycle profiling to Jepends. If we use Jepends to profile the
distribution of lengths of unique simple cycles we get the
graph as shown in Figure 6. Note that because vertices in
the graph can participate in more than one unique cycle,
the sum of the frequencies is greater than the number of
source files. The graph shows that there are a large num-

Figure 5: Tomcat’s refers-to-tc distribution

Figure 6: Azureus’ simple cycle length distribution

ber of long cycles in Azureus. Indeed 75% of the cycles in
involve more than 50 nodes. Now the question is how we
can use this information to identify possibilities for refac-
toring, which we discuss in the next section.

7 Refactoring

In this section we will explain how the analysis by Jepends
can be used to indicate starting points for refactoring and
measure the effect a refactoring on dependencies. The
data in table 1 comes from Azureus and, as mentioned
earlier, shows the top 4 classes when files are sorted by
the number of cycles in which they participate.

Based on this data, we surmise that breaking the cycles
throughCOConfigurationManager may greatly re-
duce the total number of (long) cycles in the sys-
tem. A technique for breaking all cycles through
COConfigurationManager would be to extract an
interface from it and replace all existing references to
its implementation with the extracted interface. In order
to avoid a dependency on the interface’s implementation,
we would have to further refactor the classes referencing
COConfigurationManager not to create a new in-
stance of, or statically depend on, its implementation.

While the ‘extract interface’ refactoring would defi-
nitely reduce the number of cycles in a system the over-
all effect on design quality by repeatedly performing this
refactoring is dubious. The repeated use of the refactor-
ing would dramatically increase the total number of source
files in the system and the existence of the interfaces de-
fined in these files would be justified on the basis of re-
ducing cycles alone.

A refactoring whose justification can be more strongly
argued is more subtly indicated by the data in table 1.
The nameCOConfigurationManager suggests that
its class is involved in something to do with configuration,
potentially belonging to a configuration subsystem. Upon
inspection of this class’s source we find that it is the Fa-
cade into the configuration subsystem. The configuration

CRPIT Volume 48

40

subsystem is responsible for loading and saving user con-
figurable parameters used throughout Azureus’s code (e.g.
the directory to which files download, and the maximum
download and upload rates). These parameters are saved
to flat text files so they can remain persistent between ex-
ecutions of Azureus.

It is hard to believe that functionality as primi-
tive as saving and reading properties from disk should
transitively depend on 1373 other classes. We think
that in a better design for the configuration subsys-
tem would depend only on the threading subsystem
and the logging subsystem. These two subsystems
are themselves primitive and probably should not de-
pend on any other source files in Azureus. By a
brief code inspection we identified 5 classes relating to
threading: AEMonitor, AEMonSem, AERunnable,
AESemaphore, AEThread. These classes were mixed
up with other utility-type classes in theorg.gudy.
azureus2.core3.util package. In the logging sub-
system (comprising its own package) we found 4 source
files: ILoggerListener, LGAlert-Listener,
LGLogger, LGLoggerImpl. Since the configuration
subsystem (again in its own package) contains 13 files we
would expectCOConfigurationManager to transi-
tively refer-to no more than 22 other files (=5+4+13). In
any case this is an order of magnitude less than its current
1373.

The point of this discussion is to support our claim that
the analysis provided by Jepends provided very valuable
insight into the current design of Azureus, and so provided
a useful starting point for the refactoring process.

8 Conclusions

In this paper we have discussed how data from the au-
tomated analysis of source code can be used to identify
opportunities for refactoring. We have developed an algo-
rithm based on work by Lagorio on incremental compila-
tion, that allows compilation dependency graphs to be cre-
ated for an application. We have implemented this algo-
rithm in Jepends, which also analyses the resulting graph.
We have provided canonical examples of refactorings in-
dicated by running Jepends over the open-source Java ap-
plication Azureus.

Many characteristics of the distributions of depen-
dencies we found in Azureus’ source are not unique to
Azureus. We have seen similar distributions in a number
of other applications that we have analysed. However we
have also seen different distributions (such as Tomcat’s).
The fact that different distributions are possible suggest
that it may be possible to get a sense of the quality of
the design by profiling these distributions. We are com-
pleting the analysis of these other applications to better
understand the relationship between different profiles and
design quality.

Jepends and the algorithm it is based on are Java spe-
cific. However the principles behind their development
are not language specific. We intend to widen the scope of
Jepends in order to carry out large-scale studies on com-
mercial software.

References

Alon, N., Yuster, R. & Zwick, U. (1994), Finding and
counting given length cycles,in ‘ESA ’94: Pro-
ceedings of the Second Annual European Sympo-
sium on Algorithms’, Springer-Verlag, London, UK,
pp. 354–364.

Azureus (2005), ‘Azureus project page’,http://
azureus.sourceforge.net. Sourceforge
project page for Azureus.

Black, S. (2001), ‘Computing ripple effect for soft-
ware maintenance’,Journal of Software Mainte-
nance13(4), 263–279.

Booch, G. (1987),Software components with Ada: Struc-
tures, tools, and subsystems, Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA.

Briand, L. C., Daly, J. W. & Wüst, J. K. (1999), ‘A uni-
fied framework for coupling measurement in object-
oriented systems’,IEEE Transactions on Software
Engineering25(1), 91–121.

Cockerham, B. (1988), Parallel compilation of Ada units,
in ‘TRI-Ada ’88: Proceedings of the conference on
TRI-Ada ’88’, ACM Press, New York, NY, USA,
pp. 147–164.

Fowler, M. (1999),Refactoring: improving the design of
existing code, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Gosling, J., Joy, B., Steele, G. & Bracha, G. (2000),The
Java(tm) Language Specification, Addison-Wesley.

Hautus, E. (2002), Improving java software through pack-
age structure analysis,in ‘The 6th IASTED Interna-
tional Conference Software Engineering and Appli-
cations’.

Kuck, D., Muraoka, Y. & Chen, S. (1972), ‘On the number
of operations simultaneously executable in fortran-
like programs and their resulting speedup’,IEEE
Transactions on Computers21(12).

Lagorio, G. (2004), ‘Capturing ghost dependencies
in java sources’,Journal of Object Technology
3(11), 77–95.
URL: http://www.jot.fm/issues/
issue_2004_12/article4

Lague, B., Leduc, C., Le Bon, A., Merlo, E. & Dagenais,
M. (1998), An analysis framework for understanding
layered software architectures,in ‘IWPC ’98: Pro-
ceedings of the 6th International Workshop on Pro-
gram Comprehension’, pp. 24–26.

Lakos, J. (1996),Large-scale C++ software design, Addi-
son Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA.

Marchesi, M., Pinna, S., Serra, N. & Tuveri, S. (2004),
Power laws in smalltalk,in ‘ESUG Conference 2004
Research Track’.
URL: http://www.iam.unibe.ch/
publikationen/techreports/2004/
iam-04-008/file/at_download

Martin, R. C. (1996), Granularity,in ‘The C++ Re-
port’. http://www.objectmentor.com/
resources/articles/granularity.pdf.

Riel, A. J. (1996),Object-Oriented Design Heuristics,
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Szyperski, C. (1998),Component software: beyond
object-oriented programming, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA.

Wheeldon, R. & Counsell, S. (2003), Power law distribu-
tions in class relationships,in ‘Third IEEE Interna-
tional Workshop on Source Code Analysis and Ma-
nipulation’, p. 45.

Yu, Y., Dayani-Fard, H. & Mylopoulos, J. (2003), Re-
moving false code dependencies to speedup soft-
ware build processes,in ‘CASCON ’03: Proceed-
ings of the 2003 conference of the Centre for Ad-
vanced Studies on Collaborative research’, IBM
Press, pp. 343–352.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

41

CRPIT Volume 48

42

Unsupervised band removal leading to improved classification
accuracy of hyperspectral images

R. Ian Faulconbridge, Mark R. Pickering and Michael J. Ryan
School of Information Technology and Electrical Engineering

UNSW@ADFA
Campbell, ACT, 2600

i.faulconbridge@adfa.edu.au

Abstract
Remotely-sensed images of the earth’s surface are used
across a wide range of industries and applications
including agriculture, mining, defence, geography and
geology, to name but a few. Hyperspectral sensors
produce these images by providing reflectance data from
the earth’s surface over a broad range of wavelengths or
bands. Some of the bands suffer from a low signal-to-
noise ratio (SNR) and do not contribute to the subsequent
classification of pixels within the hyperspectral image.
Users of hyperspectral images typically become familiar
with individual images or sensors and often manually
omit these bands before classification.

We propose a process that automatically determines the
spectral bands that may not contribute to classification
and removes these bands from the image. Removal of
these bands improves the classification performance of a
well-researched hyperspectral test image by over 10%
whilst reducing the size of the image from a data storage
perspective by almost 30%. The process does not rely on
prior knowledge of the sensor, the image or the
phenomenology causing the SNR problem.

In future work, we aim to develop compression
algorithms that incorporate this process to achieve
satisfactory compression ratios whilst maintaining
acceptable classification accuracies.

Keywords: Hyperspectral, classification, SNR.

1 Introduction and Context
Modern hyperspectral sensors are typically passive,
optical sensors that record spectral radiance from the
earth’s surface at fine spatial resolutions. These sensors
are capable of recording data across a wide range of
wavelengths resulting in a large number of spectral
channels or bands. The large number of contiguous
spectral bands associated with each image allows end-
users to differentiate and classify more accurately the
covering of the earth’s surface.

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

By matching the given spectral signatures to those of the
pixels in the image, the classification process is able to
determine the class or type of pixels in the image. Users
typically “train” the algorithm using areas within the
image that they know to be of a certain pixel type and
then allow the algorithm to classify the rest of the image
automatically. The data used to train the classification
algorithm is called “ground truth” data.

However, the spectral and spatial resolution of
hyperspectral images result in large data volumes causing
storage, transmission and archival challenges.
Additionally, the performance of the individual bands or
channels varies from channel to channel and sensor to
sensor resulting in variable signal-to-noise ratios (SNRs)
across the channels.

Analysts and researchers in the remote sensing field
typically become familiar with the individual sensor or
data they are using and manually remove or ignore bands
with low SNRs (see for example Shah,
Watanachaturaporn, Arora and Varshney 2003, and Tsai
and Philpot 2002). Removing these bands invariably
improves the quality of the data and enhances subsequent
processing, such as classification.

This paper proposes a process to identify the low SNR
spectral bands and remove automatically these bands
from the image during a pre-processing stage. The
process is purely statistical and does not rely on
knowledge of the phenomenology causing the SNR
problem. The context of the proposed pre-processing
stage is shown in Figure 1.

Figure 1 shows the original hyperspectral data moving
through a pre-processing stage which is where the
proposed process is implemented. Work on the data
compression stage is continuing and is not part of this
paper but is shown to assist with context. The compressed
data is then transmitted or archived. Users of the data
then decompress the data, manipulate it as required
before classifying the data. It is during end-user
manipulation that analysts currently (manually) select and
omit low-SNR spectral bands.

By automating the removal of these bands during the pre-
processing stage, the process becomes independent of
sensor, data set and user experience allowing it to be
employed even if the user is unfamiliar with the sensor
and its image characteristics. It also caters for changes in
sensor performance over time. The process improves the
subsequent classification accuracy of a test image and
reduces the image entropy (entropy being a probabilistic

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

43

Original
Data

Pre-processing

Data
Compression

Data
Decompression

End-user
Manipulation

& Classification

Transmission

Archival

Figure 1: Image pre-processing in context with overall process

measure of the number of bits per data point required to
encode and store the image).

The image used in this work is the 92AV3C image from
the NASA Jet Propulsion Laboratory (JPL) sensor called
the “Airborne Visible and Infrared Imaging
Spectrometer” (AVIRIS). The AVIRIS sensor is
typicallyflown on either an ER-2 jet aircraft which is a
modified U2, or a Twin Otter turboprop (see “AVIRIS –
General Overview”). Each pixel in an AVIRIS image
contains 224 spectral channels from 400 to 2500 nm. The
92AV3C image consists of 145 by 145 pixels at 224
spectral bands forming a “data cube” of over 4.5 million
data points. Four of the 224 spectral bands in the
92AV3C image contain zero values leaving a total of 220
non-zero bands (Shah, Arora, Robila and Varshney
2002).

This image was chosen for this work because it is freely
available courtesy of Purdue University (see “92AV3C”),
includes the necessary ground truth reference data needed
for classification and accuracy assessments, and has
become somewhat of an industry standard test image.

2 Method
The method used to identify the bands for removal is an
extension of previous work which investigated the effect
of compression-induced distortion on the classification of
the 92AV3C image (Faulconbridge, Pickering, Ryan and
Jia 2003). This worked showed that some bands are more
important than others in the 92AV3C image when it
comes to classification performance. The process
proposed here aims to identify the least important bands
contained in the image.

The first stage in our process is to normalise the image
using image mean and standard deviation to produce a
data cube with zero mean and unit variance. Normalising
the image prevents bands with large spectral returns from
dominating bands with smaller returns during subsequent
processing. We then perform an unsupervised clustering
of the image to group the pixels into statistically like

groups based on their spectral response. We use a simple
k-means clustering algorithm to do this (for an
explanation of k-means clustering, see Anderberg 1973).
Each pixel in the image is assigned to the closest k-means
vector using Euclidean distance as the measure of
“closeness”. Methods exist to determine the number of
clusters required for use in different applications (Hardy
and Lallemand 2002). Based on these methods and our
previous work, ten clusters are used in our process. Each
cluster can be characterised by its centroid (or mean
vector) and variance.

In this paper, we are looking for spectral locations where
all of the clusters are very close to one another. We use a
measure of statistical distance (or separability) between
clusters to determine these locations. Our thesis is that
spectral locations where there is very little statistical
separation between clusters will not be useful in
differentiating pixels of different class during user
classification. These are the locations we mark for
removal. On the other hand, locations where the clusters
are very distinct from one another will contribute to
differentiating pixels during classification and these are
the locations we retain.

Using first-order statistics only, such as cluster means, to
measure separability, has been shown to be weak in a
number of regards (Sweet 2003, and Shah, Arora, Robila
and Varshney 2002). To overcome the potential problems
associated with first order statistics, we use a well-
established measure called the Bhattacharyya distance
(Richards and Jia 1999) to quantify the separation
between clusters as follows:

() () ()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ΣΣ

Σ+Σ
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Σ+Σ
−=

−

2121

1 2
ln

2
1

28
1

ji

ji
ji

jiT
jiij CCCCB (1)

where Bij is the Bhattacharyya distance between cluster i
and cluster j, Ci is the centroid of cluster i, and Σi is the
covariance matrix associated with cluster i.

CRPIT Volume 48

44

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Histogram Bins - corresponding to pixel reflectance

P
ro

ba
bi

lit
y

(%
)

Maximum spread

Figure 2: Histogram showing 10 clusters in a well-separated spectral band (band 50 of 220)

Scalar measurements such as the Bhattacharyya distance
in Equation 1 provide no indication of where (spectrally)
the differences between the two clusters lie. As we are
looking to appreciate the separability of each cluster
(from each other cluster) as a function of spectral band,
we calculate a Bhattacharyya distance between each
cluster for each spectral band using the following
modified expression:

()
() ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +
+

+

−
=

njni

njni

njni

njni
nij

CC
B

,,

2
,

2
,

2
,

2
,

2
,,

, 2
ln

2
1

4 σσ

σσ

σσ
 (2)

where Bij,n is the Bhattacharyya distance between cluster i
and cluster j at band n, Ci,n is the centroid of cluster i at
band n and σi,n is the standard deviation of cluster i at
band n.

Using Equation 2 gives us n 1-dimensional Bhattacharyya
distances for each cluster pair, measuring the distance
between a given cluster and all of its neighbours as a
function of spectral band (in the case of the 92AV3C
image, n equals 220 as explained earlier).

As a next step, we look for spectral locations where the
separation between a cluster and its most-distant
neighbour is quite small. In other words, we are looking
for spectral locations where the maximum Bhattacharyya
distance or “spread” between all clusters is small.

Calculating the separation of the clusters in this way is
computationally inexpensive because each cluster is
simply represented by an n-dimensional mean vector and
an n-dimensional standard deviation vector. Calculations
are not performed on each pixel in the image.
Additionally, the calculations are performed during pre-
processing not during end-user classification which
further reduces the impact of the technique on the user
and their computational resources.

In a majority of the spectral bands, there is reasonably
clear separation between the individual clusters. Figure 2
shows a histogram using actual data from the 92AVC3

image at one of the well-separated bands. The concept of
maximum spread between these clusters is marked on
Figure 2 to illustrate the idea of separation. These
locations correspond to large Bhattacharyya distances and
it is bands like the one shown that facilitate accurate
classification processing.

However in other spectral locations, there is no
appreciable separation (see Figure 3) corresponding to
small maximum Bhattacharyya distances. These locations
therefore provide little or no assistance to classification
algorithms in differentiating and classifying pixels.

We identify the bands where the maximum
Bhattacharyya distance is less than a given threshold (BT)
and mark these bands for removal. The thresholds used
are discussed in Section 3. These locations coincide with
low-SNR bands in the image and we remove the bands
automatically during the pre-processing stage in Figure 1.
Removing the bands reduces the entropy (or size) of the
image and improves the classification process as detailed
in the Section 3.

3 Results
Our experimental process starts by measuring the entropy
and classification accuracies associated with the original
92AV3C image. These results become the baseline
against which we compare the results of our subsequent
pre-processing. We used Multispec© which is a freely
available application widely used in remote sensing
education, research and practice (see “Purdue/LARS
Multispec©”) to perform the classification. We use
maximum likelihood “leave one out” classification of the
training fields in the 92AV3C image. “Leave one out”
classification involves classification of each pixel in the
training fields based on class statistics calculated using
the remaining pixels in that class and provides an
unbiased assessment of classification accuracy compared
to the re-substitution method which produces optimistic
estimates of accuracy (Landgrebe and Biehl 2001).

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

45

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Histogram Bins - corresponding to pixel reflectance

P
ro

ba
bi

lit
y

(%
)

Figure 3: Histogram showing 10 clusters in a poorly-separated spectral band (band 105 of 220)

Although the ground truth data for 92AV3C shows that
the image contains 16 different classes of pixel, only 11
classes were used as 5 of the classes contain less than 220
pixels in the training set and cannot be used for
classification by Mulitspec© using maximum likelihood
classification (as the number of training samples is less
than the number of bands in the image). The original
92AV3C image has an entropy of 10.67 bits/data point
and an overall class accuracy of 70.5%.

We then start to remove bands from the 92AV3C image
where the maximum Bhattacharyya distance between
clusters is less than a given threshold and classify the
resulting image using Multispec©. Table 1 shows the
bands that our process removes from 92AV3C as a
function of Bhattacharyya distance threshold. Table 1
also notes the reduction in entropy (or size) of the
resultant image and the overall classification accuracy
following classification.

Table 1 shows that as we increase the Bhattacharyya
threshold (TB), we effectively remove more and more of
the bands in the image. It is important to emphasise that
the removal process described herein is performed
without a priori knowledge of either the AVIRIS sensor
or 92AV3C image and is therefore performed during pre-
processing in Figure 1.

The results are summarised in Figure 4 which shows
overall classification accuracy versus the Bhattacharyya
threshold.

Figure 4 shows that as TB is increased to 8 (and
corresponding bands are removed), the overall
classification accuracy of the image improves from
70.5% to 80.7%. Once TB is increased beyond 8, we start
to remove bands containing useful information and the
overall classification accuracy therefore starts to fall
away.

Table 2 shows the classification accuracy for each of the
11 classes in the original image compared to the
accuracies achieved following the band removal process

when a TB of 8 is used. In general, there have been
significant improvements in the classification accuracy of
individual classes including improvements of over 20%
for Corn-min, Grass/pasture, Soybeans-no till, and
Buildings.

Soybeans-min and Woods are exceptions in that they
suffer a minor reductions in classification accuracy but
remain classified at close to original accuracies. We hope
to investigate these exceptions in future work.

4 Conclusions and Future Work
During our investigations into the compression of the
92AV3C AVIRIS image, we have developed a technique
that automatically identifies and removes low SNR bands
from the image. The benefits of this technique are:

1. the user does not need to be familiar with the
image or the sensor in order to remove those
bands that do not contribute to classification
accuracy,

2. the removal of the bands improves the
classification performance from the image, and

3. the entropy (or size) of the image is reduced
because of the reduction in data contained
therein, resulting in faster processing times and
reduced storage requirements.

In the case of the 92AV3C image, we were able to
improve the overall classification accuracy of the image
from 70.5% to 80.7% whilst reducing the entropy of the
image from 10.67 bits/data point to 7.59 bits/data point.

We intend to test this technique further using alternative
measures of separability and clustering techniques, and
using different hyperspectral images. We also intend to
develop compression algorithms that incorporate this pre-
processing to achieve satisfactory compression ratios
whilst maintaining acceptable classification accuracies

.

CRPIT Volume 48

46

Bhattacharyya
Threshold (TB)

Number of
bands

removed

Bands
removed

Entropy
(bits/data point)

Classification
accuracy (%)

0 0 - 10.67 70.5
1 23 1, 104-109, 150-163, 219-220 9.80 75.4
2 27 1-2, 103-109, 149-164, 219-220 9.64 75.9
3 31 1-3, 95-96, 103-109, 149-164,

218-220
9.48 76.9

4 52 1-4, 36-37, 80-99, 103-109, 149-
164, 218-220

8.61 79.5

5 57 1-5, 36-37, 78-100, 103-110,
149-164, 218-220

8.40 79.8

6 63 1-7, 35-37, 78-110, 149-165,
218-220

8.19 80.0

7 67 1-9, 35-38, 77-110, 149-165,
218-220

8.01 80.3

8 76 1-17, 35-38, 77-110, 149-165,
217-220

7.59 80.7

9 87 1-18, 34-39, 60-65, 75-110, 149-
165, 217-220

7.04 79.7

10 102 1-19, 34-44, 60-110, 149-165,
217-220

6.28 79.6

11 121 1-21, 34-111, 149-165, 215, 217-
220

5.45 78.0

12 124 1-23, 34-111, 149-165, 215-220 5.31 77.4
13 129 1-25, 31, 33-112, 149-165, 215-

220
5.07 74.8

14 131 1-26, 31, 33-112, 148-165, 215-
220

4.97 74.6

15 137 1-112, 148-165, 214-220 4.72 71.1

Table 1: Progressive results as the Bhattacharyya distance is increased

0 5 10 15
70

72

74

76

78

80

82

Bhattacharyya Threshold

O
ve

ra
ll

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Figure 4: Overall classification accuracy vs Bhattacharyya threshold

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

47

Class Classification
Accuracy before band

removal (%)

Classification
Accuracy after band

removal (%)

Improvement
(%)

Corn-no till 78.5 82.8 4.3
Corn-min 40.6 70.1 29.5
Corn 0 2.5 2.5
Grass/pasture 58.2 90.3 32.1
Grass/trees 95.2 99.3 4.1
Hay-windrowed 99.6 100 0.4
Soybeans-no till 45.3 70.0 24.7
Soybeans-min 96.6 91.9 -4.7
Soybeans-clean 26.8 72.2 45.4
Woods 99.8 99.5 -0.3
Buildings etc 20.5 60.6 40.1

Table 2: Classification for each class before and after pre-processing (TB=8)

5 References
Shah, C. A., Watanachaturaporn, P., Arora, M. K. and

Varshney, P. K. (2003): Some Recent Results on
Hyperspectral Image Classification, IEEE Workshop on
Advances in Techniques for Analysis of Remotely
Sensed Data, Greenbelt, MD, USA.

Tsai, F. and Philpot, W.D. (2002): A Derivative-Aided
Hyperspectral Image Analysis System for Land-Cover
Classification, IEEE Transactions on Geoscience and
Remote Sensing, 40:2:416-425.

AVIRIS – General Overview, NASA
http://aviris.jpl.nasa.gov/. Accessed 27 Jul 2005.

Shah, C.A., Arora, M.K., Robila, S.A. and Varshney,
P.K. (2002): ICA Mixture Model based Unsupervised
Classification of Hyperspectral Imagery, 31st Applied
Imagery Pattern Recognition Workshop, Washington
DC, USA.

92AV3C: Hyperspectral Test Image Data Pack, Purdue
University
ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.
Accessed 31 July 2005.

Faulconbridge, R.I., Pickering, M.R., Ryan, M.J. and Jia,
X. (2003): A New Approach to Controlling
Compression-Induced Distortion of Hyperspectral
Images, Proceedings of The International Geoscience
and Remote Sensing Society Conference, Toulouse,
France, III:1830-1832.

Anderberg, M.R. (1973), Cluster Analysis for
Applications, Academic Press, New York.

Hardy, A. and Lallemand, P. (2002): Determination of the
Number of Clusters for Symbolic Objects Described by
Interval Variables. In Classification, Clustering and
Data Analysis, 311-316, Springer-Verlag, Berlin.

Sweet, J.N. (2003): The spectral similarity scale and its
application to the classification of hyperspectral remote
sensing data, IEEE Workshop on Advances in

Techniques for Analysis of Remotely Sensed Data, 92-
99, Greenbelt, MD, USA.

Richards, J.A. and Jia, X. (1999): Remote Sensing Digital
Image Analysis, Springer-Verlag, Berlin.

Purdue/LARS Multispec©, Remote Sensing Freeware
Software, Purdue Research Foundation,
http://dynamo.ecn.purdue.edu/~biehl/Multispec©/.
Accessed 27 Jul 2005.

Landgrebe, D. and Biehl, L. (2001): An Introduction to
Multispec, p133, Purdue Research Foundation, Indiana,
USA.

CRPIT Volume 48

48

On Compensating the Mel-Frequency Cepstral Coefficients
for Noisy Speech Recognition

Eric H. C. Choi
Interfaces, Machines and Graphic Environments (IMAGEN)

National ICT Australia
Locked Bag 9013, Alexandria, NSW 1435, Sydney, Australia

Eric.Choi@nicta.com.au

Abstract

This paper describes a novel noise-robust automatic
speech recognition (ASR) front-end that employs a
combination of Mel-filterbank output compensation and
cumulative distribution mapping of cepstral coefficients
with truncated Gaussian distribution. Recognition
experiments on the Aurora II connected digits database
reveal that the proposed front-end achieves an average
digit recognition accuracy of 84.92% for a model set
trained from clean speech data. Compared with the ETSI
standard Mel-cepstral front-end, the proposed front-end is
found to obtain a relative error rate reduction of around
61%. Moreover, the proposed front-end can provide
comparable recognition accuracy with the ETSI advanced
front-end, at less than half the computation load.

Keywords:. Speech recognition, noise robustness, front-
end processing, Mel-frequency cepstral coefficient.

1 Introduction

The proliferation of handheld computing devices has
been the driving force behind the growing needs of more
usable and natural user interfaces for ubiquitous
computing. Traditional user interfaces based on the use of
keyboard and mouse will not fulfill the needs of these
mobile users. Automatic speech recognition (ASR) plays
a critical role in providing more user-friendly user
interfaces for these handheld devices. However since a
handheld device can be used anywhere and in different
environments, the design of a speech recognition system
must take the potential noisy acoustic environments into
consideration.

Automatic speech recognition basically consists of two
stages (Rabiner and Juang 1993). The first stage, known
as front-end processing or feature extraction, is aimed at
extracting a time sequence of feature vectors which
represents the temporal evolution of the spectral
characteristics of a speech signal. The second stage is a

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

pattern matching process where actual search is carried
out to decode the spoken words by matching the sequence
of feature vectors against the acoustic and language
models stored in the recogniser. In state-of-the-art ASR
systems, the features extracted in front-end processing are
typically Mel-frequency cepstral coefficients (MFCC)
and the pattern matching is mostly based on hidden
Markov modelling (HMM) which requires relevant
speech samples to train the acoustic models beforehand.

State-of-the-art ASR systems work pretty well if the
training and usage conditions are similar and reasonably
benign. However, under the influence of noise, these
systems begin to degrade and their accuracies may
become unacceptably low in severe environments (Deng
and Huang 2004). To remedy this noise robustness issue
in ASR due to the static nature of the HMM parameters
once trained, various adaptive techniques have been
proposed. A common theme of these techniques is the
utilisation of some form of compensation to account for
the effects of noise on the speech characteristics. In
general, a compensation technique can be applied in the
signal, feature or model space to reduce mismatch
between training and usage conditions (Huang et al.
2001).

Signal-space methods, e.g. (Ephraim 1992), typically try
to enhance a noisy speech signal by improving its signal-
to-noise ratio (SNR). However, increase in SNR does not
always contribute to improvement in recognition
accuracy. Feature-space methods, e.g. (Hermansky 1990),
try to derive some kind of feature representation that is
potentially invariant to the change in environmental noise
conditions. This is often achieved by incorporating some
aspects of human auditory modelling. Alternatively, some
other feature-space methods (Sankar and Lee 1996; Choi
2004) try to understand and compensate the effects of
noise on a speech representation and correspondingly
reduce the mismatch. Model-space methods, e.g. (Yao et
al. 2001; Zhang and Furui 2004), try to adjust the
recognition model parameters to incorporate the effects of
noise on the acoustic models.

A few standards for ASR feature extraction are available
from the European Telecommunications Standards
Institute (ETSI). The standard WI007 Mel-cepstral front-
end (ETSI 2000) covers the processing of speech signal
into MFCCs. As this basic front-end is not that robust for
noisy speech recognition, another standard that is more
appropriate for noisy speech recognition has been
released. The WI008 advanced front-end (ETSI 2002)

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

49

utilises a two-stage Mel-warped Wiener filtering to
improve the signal-to-noise ratio of a speech utterance,
and then applies an SNR-dependent waveform processing
to the noise-reduced signal. The resultant speech signal is
further processed into MFCCs and after which a blind
equalisation is applied to the cepstral coefficients. While
the advanced front-end WI008 represents the state-of-art
in terms of recognition accuracy for noisy speech, its
main drawback is high computation load due to the use of
double Wiener filtering. There is a need for an alternative
front-end that is as robust as the WI008 advanced front-
end but has comparable computation to that of the WI007
standard front-end.

In this work, the main focus is on feature-space
compensation for a cepstral based front-end. It is
demonstrated that a general framework of Mel-filterbank
output compensation can be used together with
cumulative distribution mapping to compensate the
effects of noises. Here we extend our previous work
(Choi 2004) by adding log Mel-filterbank output
weighting and frame skipping to the proposed front-end
processing. We also benchmark the proposed front-end
against the ETSI front-ends for evaluation purpose.

The organisation of this paper is as follows. It will
describe the details of the proposed front-end in Section
2. Following this in Section 3 will be some recognition
experiments on the Aurora II digits database and the
corresponding discussion. Finally, a summary of the
conclusions will be presented in Section 4.

2 Front-end Processing

Typical ASR front-ends lack the ability to compensate the
effects of noise on feature extraction and if a speech
signal is noisy, they tend to extract more information
about the noise, instead of the speech itself. Therefore a
noise robust front-end needs to have knowledge about the
noise and accordingly adjust the processing to extract
only relevant information about the speech. To this end,
we have experimented with some novel noise
compensation techniques that not only account for the
effects of noise but also emphasise speech information
that is less susceptible to noise corruption. A high level
block diagram of the proposed front-end is shown in
Figure 1.

The development of the proposed front-end processing is
based on the ETSI standard Mel-frequency cepstral
coefficient front-end (ETSI 2000). Typically, the MFCCs
(Ci) of a frame of speech data are given by:

MNNi

Ymj
M

i
CosmC jej

M

j
ji

<=

=−=�
=

;,.....,2,1,0

);(log)];5.0([
1

π
(1)

where Yj is the output magnitude of the j-th Mel-
filterbank and M is the total number of Mel-filters in the
filterbank analysis. In processing an utterance, each frame
of speech data is 25ms wide and there is a 10ms time shift

between current frame and the next frame of speech data
(i.e. 15ms overlap between two consecutive frames).

Speech Signal y(t) Pre-processing and

FFT

Mel-frequency Filtering

Yj

Output Features

Discrete Cosine
Transform (DCT)

Mel-filterbank Output
Compensation

Cumulative
Distribution Mapping &

Frame Skipping

13MFCCs (C0~C12)

mj

Figure 1: Block diagram of the proposed front-end
(two novel processing blocks related to noise
compensation are highlighted)

In this work, two more processing blocks related to noise
compensation have been added to the ETSI standard
MFCC front-end. The Mel-filterbank output
compensation block incorporates noise spectral
subtraction, spectral flooring and log Mel-filterbank
output weighting into a single framework. Moreover,
noise robustness is further enhanced by applying
cumulative distribution mapping (CDM) with frame
skipping to the resultant cepstral coefficients. A detailed
description of this novel noise compensation framework
is presented as in the following sub-sections.

2.1 Mel-filterbank Output Compensation

The noise robustness of the proposed front-end is
enhanced by compensating the Mel-filterbank outputs
according to the noise spectral characteristics. In this
work, an enhanced log Mel-filterbank output is given by:

]}),ˆ[(1{l jjjjjejj YNYMAXogm γβα −+= (2)

where αj, βj, γj all ∈ (0,1) are parameters to adjust the

noise compensation, jN̂ is the noise magnitude estimate

of the j-th Mel-filterbank output and MAX[.] is a function
which returns the maximum value of its arguments.

Note that γj is used to control the degree of noise spectral
subtraction (Vaseghi 2000) and βj is used to adjust the
degree of spectral flooring (Choi 2004). Here, both γj and
βj are assumed to be independent of the Mel-filterbank
index j as we are more interested in the log Mel-filterbank

CRPIT Volume 48

50

output weighting and this assumption can simplify the
formulation. Also these two parameters are applied
globally in that they have the same values for all the
speech utterances.

The motivation to incorporate log Mel-filterbank output
weighting is to emphasise those filterbank outputs which
are found to be more reliable and less affected by the
actual noise spectral characteristics. One possible way to
measure the reliability of a filterbank output is the signal-
to-noise ratio (SNR). From the viewpoint of
psychoacoustics (Stevens 1957), these weighing factors
(αj) are related to the spectral compression process that
converts sound intensity into perceived loudness by
human. So far in the literature, each of the weighting
factors has been assumed to be dependent on its
individual output SNR only. However, in our case, a
weighting factor is also dependent on the SNRs of other
filterbank outputs and it is given by:

 �
� =

=

=
+

+

=
M

j
jM

k k

k
e

j

j
e

j

N

Y

N

Y

1

1

1;

)
ˆ

1(log

)
ˆ

1(log

αα (3)

The constant “1” is added to the log function to prevent it
from having negative values since there may be errors in
the noise estimates. In essence, αj is basically calculated
as the ratio of the SNR of a particular filterbank output to
the sum of the SNRs of all the filterbank outputs.
Moreover, in this case, all the weighing factors are
calculated frame-by-frame dynamically based on the
noise estimates from the first 10 frames of each speech
utterance.

While equation (2) provides a general framework to
perform the noise compensation, it is anticipated that
some kind of normalisation to the dynamic ranges of the
compensated cepstral coefficients would be beneficial.
For this purpose, we choose to apply cumulative
distribution mapping to the cepstral coefficients after
noise compensation.

2.2 Cumulative Distribution Mapping

The cumulative distribution mapping (CDM) method
described here is based on the use of histogram
equalisation (HE) originally developed for image
processing (Russ 1995). The use of the HE method for
noise compensation in front-end processing of speech can
also be found in (Dharanipragada and Padmanabhan
2000). The main idea of this method is to map the
distribution of a time sequence of noisy speech features
into a target distribution with a pre-defined probability
density function (PDF). In our case, it is assumed that for
a given feature value vo, the mapping relationship would
be:

 � �−∞= −∞=
=

o ov

v

z

z
dzzhdvvf)()(; or Fv(vo) = Fz(zo) (4)

where Fv(v) is the corresponding cumulative distribution
function (CDF) of a given set of noisy speech features
and Fz(z) is the target CDF, f(v) and h(z) are the
respective PDFs. From equation (4), we have

 zo = Fz
-1[Fv(vo)] (5)

Therefore the required mapping from a given speech
feature vo into the corresponding target feature zo is
represented by equation (5). Typically h(z) is assumed to
be a Gaussian as in the literature of histogram
equalisation.

On the other hand, there is no particular strong reason,
other than easier implementation, that one has to assume
h(z) to be Gaussian. In fact, we have observed that the left
tail region of the distribution of a normalised feature may
not be that useful as it represents mainly the range of
more noisy features. Based on this observation, we have
developed the novel use of a truncated Gaussian as target
distribution. Mathematically, the additional constraint is
given by:

10

;
,

)()],([1

<≤

��

�
�
� ≥=

−

th

thovovz
o

otherwiseSKIP

vFifvFF
z

θ

θ
 (6)

where θth is a constant that determines the fraction of
features to be discarded, and “SKIP” denotes a function
that skips the current frame of speech data and does not
output any feature value. In the current implementation,
we perform the skipping of a whole feature vector based
only on C0 (zeroth-order cepstral coefficient) as it
indicates the energy level of a frame of speech data.
Moreover, the h(z) is assumed to be a Gaussian with zero
mean and unity variance. In the experiments, CDM is
applied only to the static feature vector which consists of
13 MFCCs (C0 ~ C12) and each cepstral coefficient is
normalised individually.

3 Experimental Results

The proposed front-end has been evaluated on the Aurora
II database (Hirsch and Pearce 2000). This database
contains noisy connected digits, which were created by
adding various types of noises at different SNRs to the
original clean utterances (i.e. utterances with high SNRs).
There are three test sets in the database and they contain 8
types of additive noises. Each of the test sets A and B
contains about 28K utterances and the test set C is about
half that size. The test set C includes channel distortion as
well. The SNRs of the test data range from -5 dB to more
than 20 dB. The training data consist of another 8440
clean utterances.

3.1 Experimental Setup

All the pre-processing and Mel filtering of a speech
signal in the proposed front-end followed the ETSI
standard MFCC front-end. The static feature vector of our
front-end consisted of 13 MFCCs (C0 ~ C12). This static

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

51

feature vector was appended with their corresponding 1st-
order and 2nd-order time derivatives to form a resultant
vector with 39 coefficients for speech recognition at the
backend, as per the Aurora evaluation framework. Hidden
Markov modelling (HMM) (Rabiner and Juang 1993)
was used for the speech recognition experiments. Each
model was represented by a continuous density HMM
with left-to-right configuration. Digit models had 16
states with 3 Gaussians per state, while the silence model
had 3 states with 6 Gaussians per state. An inter-digit
silence model with 1 state was also used, and it was tied
with the middle state of the silence model.

3.2 Comparison of Accuracy and Robustness

We followed the official Aurora evaluation framework in
that average recognition accuracy for each test set is
calculated from the recognition results for those test data
with SNRs from 0 dB to 20dB only. In all the
experiments reported here, the spectral flooring parameter
βj and the spectral subtraction parameter γj for the
proposed front-end were set to 0.001 and 0.4 respectively,
as determined empirically in some preliminary
experiments. Note that the 1st-order and the 2nd-order time
derivatives of a static feature vector were generated after
the static features had been compensated and normalised.

The first set of experiments investigated the effect of the
frame skipping threshold (θth) on the recognition accuracy
of the proposed front-end. The experimental results
obtained with various values of the threshold are
summarised as shown in Table 1.

Table 1: Average digit accuracies (%) for Aurora test
sets, proposed front-end with various thresholds (θθθθth)
for skipping frames

θth Test A Test B Test C Avg.

0.00# 83.65 84.00 82.74 83.46

0.03 84.47 84.90 83.58 84.32

0.05 84.57 84.93 83.76 84.42

0.06 84.71 85.22 83.91 84.61

0.07 84.98 85.41 84.08 84.82

0.08 85.06 85.49 84.21 84.92

0.09 85.10 85.50 84.10 84.90

0.10 85.08 85.61 83.95 84.88

 # No frame skipping in this case

As observed from Table 1, the incorporation of frame
skipping in CDM does improve the accuracy of the
proposed front-end and the optimal threshold for
achieving the best average accuracy is found to be 0.08.
Since the frame skipping is applied to feature vectors
with smaller value of C0, this is equivalent to removing
speech segments which have lower frame energy.
Obviously, these segments are less reliable in
discriminating between different speech sounds, as they
can potentially contain more information about the noise
than the speech signal itself.

Furthermore, it may be observed from the table that the
optimal frame skipping threshold is different for different
test sets. It seems that some kind adaptive threshold
according to noise condition and characteristic would be
beneficial. Nevertheless, for the Aurora digit strings,
skipping about 10% of the feature vectors in an utterance
is seemed to be reasonable.

Table 2: Average digit accuracies (%) for Aurora test
sets, comparing proposed front-end (θθθθth=0.08) with
ETSI MFCC front-ends

Front-end Test
A

Test
B

Test
C

Avg. %
Improv*

ETSI std. 61.34 55.75 66.14 61.08 0.0

ETSI adv. 86.20 85.24 84.72 85.39 62.5

Proposed 85.06 85.49 84.21 84.92 61.3

*% Improvement is measured in terms of relative error rate
reduction reference to the ETSI standard front-end

The performances of the proposed front-end with
θth=0.08 were compared with those of the ETSI MFCC
front-ends and the results are shown in Table 2. From the
table, it can be observed that the proposed front-end
performs much better than the ETSI standard MFCC
front-end in terms of average recognition accuracy, while
it achieves comparable recognition accuracy with the
ETSI advanced front-end. Although for the test set B, the
proposed front-end seems to perform marginally better
than the advanced front-end (85.49% vs. 85.24%), the
difference in accuracy is found to be not statistically
significant. The fact that both the proposed front-end and
the advanced front-end have similar accuracy is
noteworthy since the proposed front-end requires only
about half the computation load of the advanced front-
end, as it will be shown later in Section 3.3.

0

10

20

30

40

50

60

70

80

90

100

Clean 20 15 10 5 0 -5
SNR (dB)

D
ig

it
 A

cc
ur

ca
y

(%
)

ETSI_std

ETSI_adv

Proposed

Figure 2: Average recognition results for Aurora test
sets, proposed front-end (θθθθth=0.08) compared with
ETSI MFCC front-ends by SNR

To get an insight on how the proposed front-end is
performing at different noise levels, a break-down of the

CRPIT Volume 48

52

recognition results according to individual SNRs and
averaged across all three test sets is shown in Figure 2.
Also shown in the figure are those corresponding results
for the ETSI MFCC front-ends.

As observed from Figure 2, both the proposed front-end
and the advanced front-end perform similarly at different
SNRs. On the other hand, both the proposed front-end
and the advanced front-end perform much better than the
ETSI standard MFCC front-end, particularly in the
noisier conditions. In some cases, more than double of the
recognition accuracy can be achieved by using the
proposed front-end (e.g. at 5dB SNR).

To illustrate the performances of the front-ends for
different noise types, the average recognition accuracy
over 0 to 20 dB SNRs obtained by each front-end for
each type of noisy speech data in test set A is plotted in
Figure 3. From the figure, it can be observed that the
proposed front-end achieves higher digit accuracy than
the ETSI advanced front-end for the babble-type noisy
speech (other people talking at background causing the
noises). The difference in accuracy (84.74% vs. 82.21%)
is found to be statistically significant (z=6.195, p<0.001,
two tailed). Overall, the advanced front-end is found to
achieve marginally better accuracy than the proposed
front-end for the other types of noisy speech.

30

40

50

60

70

80

90

Subway Babble Car Exhibition
Noise Type

D
ig

it
 A

cc
ur

ac
y

(%
)

ETSI_std Proposed ETSI_adv

Figure 3: Recognition results for Aurora test set A,
proposed front-end (θθθθth=0.08) compared with ETSI
MFCC front-ends by noise type

Similarly, the recognition results by noise type for test
sets B and C are also shown in Figure 4. Note that the (C)
following the name of a noise type in the figure denotes
speech data from test set C which also contains additional
channel distortion.

Again it can be observed from Figure 4 that the proposed
front-end performs as good as the advanced front-end for
all the noise types and the proposed front-end achieves a
better accuracy for the restaurant-type noisy speech. This
better accuracy (82.52% vs. 81.11%) is found to be
statistically significant (z=3.324, p<0.001, two tailed). It
seems that the proposed front-end is particularly effective

in handling background noises due to other people talking
at the same time.

Overall the previous two figures demonstrate that the
proposed front-end is much more consistent and robust
than the ETSI standard MFCC front-end in recognising
different types of noisy speech, and it is as noise robust as
the ETSI advanced front-end in most of the cases.

30

40

50

60

70

80

90

Res
tau

ran
t

St
ree

t

Airp
or

t

Trai
n S

tat
ion

Su
bw

ay
(C

)

St
ree

t(C
)

Noise Type

D
ig

it
 A

cc
ur

ac
y

(%
)

ETSI_std Proposed ETSI_adv

Figure 4: Recognition results for Aurora test sets B,
and C, proposed front-end (θθθθth=0.08) compared with
ETSI MFCC front-ends by noise type

3.3 Comparison of Computation Load

In order to estimate the computational complexity of the
proposed front-end processing, the ETSI standard, the
ETSI advanced and the proposed front-end were run on
the Aurora II multi-condition training data, and the
duration was recorded as shown in Table 3. No other
processes were running on the processor at the time. The
multi-condition training set contains utterances with 4
different noise types (subway, babble, car and exhibition)
and 5 SNRs (5 to 20dB and “clean”). In total, there are
8440 utterances in the training set (422 utterances per
condition).

Table 3: Comparison of running times on a 2.66 GHz
processor with 2 GB RAM for front-end processing of
Aurora multi-condition training set (8440 utterances)

Front-end ETSI std. Proposed ETSI adv.

Time (s) 132 158 325

On average, the computation load of the proposed front-
end was found to be about 20% more than that of the
ETSI standard MFCC front-end, but only about 49% that
of the ETSI advanced front-end. It took an average of
about 19ms for the proposed front-end to process an
utterance. The higher computational load of the ETSI
advanced front-end is expected, as the advanced front-end

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

53

applies Wiener filtering twice to a speech signal based on
time-domain convolution.

Compared with the ETSI advanced front-end, the much
lighter computation requirement of the proposed front-
end can be a distinguished advantage for applications
running on handheld devices. Moreover, the proposed
front-end is easier to be implemented on fixed-point
processors used by most handheld devices.

4 Conclusions

A new and noise robust front-end based on the combined
application of Mel-filterbank output compensation and
cumulative distribution mapping with frame skipping has
been proposed. Experimental results on the Aurora II
speech database have revealed the effectiveness of the
novel combination of these noise compensation methods.
The proposed front-end achieves an average digit
accuracy of 84.92% for the three test sets with clean
HMM training. Compared with the ETSI standard Mel-
cepstral front-end, the proposed front-end has been able
to provide a relative error rate reduction of more than
61%. Moreover, the proposed front-end can provide
comparable recognition accuracy with the ETSI advanced
front-end, at less than half the computation load. Possible
future extension work includes the use of dynamic noise
estimates to handle non-stationary noises, the
replacement of the simple spectral flooring with a more
advanced temporal masking algorithm and the use of
adaptive threshold for frame skipping.

5 References

Choi, E. (2004): Noise Robust Front-end for ASR using
Spectral Subtraction, Spectral Flooring and Cumulative
Distribution Mapping. Proc. 10th Australian Int. Conf.
on Speech Science and Technology, pp. 451-456.

Deng, Li. and Huang, X. (2004): Challenges in Adopting
Speech Recognition. Communications of the ACM,
Vol. 47, No.1, pp. 69-75.

Dharanipragada, S. and Padmanabhan, M. (2000): A
Nonlinear Unsupervised Adaptation Technique for
Speech Recognition. Proc. Int. Conf. on Spoken
Language Processing, Vol. 4, pp. 556-559.

Ephraim, Y. (1992): A Bayesian Estimation Approach for
Speech Enhancement Using Hidden Markov Models.
IEEE Trans. Signal Processing, Vol. 40, No. 4, pp.
725-735.

ETSI (2000): Speech Processing, Transmission and
Quality Aspects (STQ); Distributed Speech
Recognition; Front-end Feature Extraction Algorithm;
Compression Algorithms. ETSI standard document ES
201 108.

ETSI (2002): Speech Processing, Transmission and
Quality Aspects (STQ); Distributed Speech
Recognition; Advanced Front-end Feature Extraction
Algorithm; Compression Algorithm. ETSI standard
document ES 202 050.

Hermansky, H. (1990): Perceptual Linear Predictive
(PLP) Analysis of Speech. Journal Acoustical Society
of America (JASA), Vol. 87 (4), pp. 1738-1752.

Hirsch, H.G. and Pearce, D. (2000): The AURORA
Experimental Framework for the Performance
Evaluation of Speech Recognition Systems Under
Noise Conditions. Proc. ISCA ITRW ASR2000, pp.
181-188.

Huang, C., Wang, H. and Lee, C. (2001): An SNR-
Incremental Stochastic Matching Algorithm for Noisy
Speech Recognition. IEEE Trans. Speech and Audio
Processing, Vol. 9, No. 8, pp. 866-873.

Rabiner, L.R. and Juang, B.H. (1993): Fundamentals of
Speech Recognition. Prentice Hall, Englewood Cliffs,
New Jersey.

Russ, J.C. (1995); The Image Processing Handbook. 2nd
ed., CRC Press.

Sankar, A. and Lee, C.H. (1996): A Maximum
Likelihood Approach to Stochastic Matching for
Robust Speech Recognition. IEEE Trans. Speech and
Audio Processing, Vol. 4, pp. 190–202.

Stevens, S.S. (1957): On the Psychological Law.
Psychological Review, Vol. 64, pp. 153-181.

Vaseghi, S.V. (2000): Advanced Digital Signal
Processing and Noise Reduction. Wiley Press.

Yao, K., Paliwal, K.K. and Nakamura, S. (2001):
Sequential Noise Compensation by a Sequential
Kullback Proximal Algorithm. Proc. European Conf.
on Speech Communication and Technology, pp. 1139-
1142.

Zhang, Z. and Furui, S. (2004): Piecewise-linear
Transformation-based HMM Adaptation for Noisy
Speech. Speech Communication, Vol. 42, Issue 1, pp.
43-58.

CRPIT Volume 48

54

Segregated Failures Model for Availability Evaluation of
Fault-Tolerant Systems

Sergiy A. Vilkomir1 David L. Parnas1 Veena B. Mendiratta2

Eamonn Murphy3

1Software Quality Research Laboratory (SQRL), Department of Computer Science
and Information Systems, University of Limerick, Limerick, Ireland,

Email: Sergiy.Vilkomir@ul.ie David.Parnas@ul.ie
2Bell Laboratories, Lucent Technologies, Naperville, IL, USA,

Email: Veena@lucent.com
3Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland,

Email: Eamonn.Murphy@ul.ie

Abstract

This paper presents a method of estimating the avail-
ability of fault-tolerant computer systems with several
recovery procedures. A segregated failures model has
been proposed recently for this purpose. This pa-
per provides further analysis and extension of this
model. The segregated failures model is compared
with a Markov chain model and is extended for the
situation when the coverage factor is unknown and
failure escalation rates must be used instead. This
situation is illustrated in detail by estimating avail-
ability of a Lucent Technologies Reliable Clustered
Computing architecture. For this example, numeric
values are provided for availability indexes and the
contribution of each recovery procedure to total sys-
tem availability is analysed.
Keywords: software, fault-tolerance, availability, re-
liability, recovery, failures model.

1 Introduction

Some computer systems allow a variety of ways to re-
store service after a failure. We say such systems have
several recovery procedures. For example, recovery
procedure 1 can be a restart of a current application.
If the restart of the application does not succeed, the
computer can be restarted (recovery procedure 2). If
the computer is still down after the restart, a repair
or replacement is necessary (recovery procedure 3).

An example of an industrial computer system with
several recovery procedures is a Lucent Technolo-
gies Reliable Clustered Computing (RCC) applica-
tion (Hughes-Fenchel 1997). One of the basic recovery
procedures for RCC is a switchover to a spare com-
puter. Reliability and availability of systems with sev-
eral recovery procedures have been studied by Hoe-
flin & Mendiratta (1995), Lyu & Mendiratta (1999),
and Mendiratta (1998) for RCC products and by Ibe,
Howe & Trivedi (1989), Sun, Han & Levendel (2001),
and Sun, Han & Levendel (2003) for other systems.

Markov chains have been used as the most popular
approach to reliability and availability investigation of
systems with several recovery procedures (Ibe, Howe
& Trivedi 1989, Lyu & Mendiratta 1999, Mendiratta
1998, Sun, Han & Levendel 2003). In Vilkomir et
al. (2005), we have suggested a simpler analytical

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

method of availability evaluation as an alternative.
This method allows calculation of availability with-
out using special tools and yields an assessment of the
impact of every recovery procedure to system avail-
ability.

This paper continues the investigation started in
Vilkomir et al. (2005) and considers the further anal-
ysis and extension of a segregated failures model. The
paper is structured as follows. Section 2 presents a
brief review of the segregated failures model based on
Vilkomir et al. (2005) and then continues with new
analysis and an extension of this model. In section 3,
we compare our model with the Markov chain model.
Small examples show the difference of approaches to
availability evaluation for these two models and the
advantages of using the segregated failures model are
presented. We extend the model for the situation
when coverage factors are unknown and show how to
use rates of escalation instead. In section 4, a case
study of an RCC application is considered in order
to illustrate the extension of the segregated failures
model. Because the RCC application has been previ-
ously considered by Lyu & Mendiratta (1999) using
the Markov chain model, it provides an additional
chance to compare the two approaches.

2 Segregated failures model of a system with
several recovery procedures

Consider a system with n (n > 1) different recov-
ery procedures. For every procedure from 1 to n− 1,
the result of the recovery can be either successful or
unsuccessful. Level n recovery is always successful.
When a failure occurs, recovery procedures are ap-
plied sequentially starting from level 1. If the recov-
ery procedure at level 1 is unsuccessful, the level 2
procedure is applied, etc. However, if at any level
it is determined for a specific failure that the usage
of next recovery levels will not help, these levels can
be skipped and the procedure of the last level n can
be applied directly. Thus, there are three possibil-
ities when a failure recovery is attempted at level
i, 1 ≤ i < n:

• The recovery is successful.

• The recovery is unsuccessful and the next level
procedure will be applied (the failure is escalated
from level i to the next level i + 1).

• The recovery is unsuccessful and the highest level
procedure will be applied (the failure is escalated
to level n).

These possibilities reflect real Lucent Technologies
Reliable Clustered Computing applications as consid-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

55

ered below in the Case Study section. The model can
be extended to consider additional hypothetic possi-
bilities such as:

• Skipping some restoration levels but not all of
them.

• Using diagnostics that allows changing the order
of recovery procedures for every specific failure
depending on the nature of the failure.

We do not address these extensions in this paper but
they are straightforward.

The ability of the recovery procedure to success-
fully restore a failure is described by a coverage
factor. More precisely, a coverage factor prec,i of
the recovery level i is a conditional probability that
a failure is successfully recovered at level i given that
this failure is served at level i. In that way, a cover-
age factor prec,i is the probability of the first of three
mentioned above possibilities. Denote as pnext,i the
probability of second and as plast,i the probability of
the third possibility.

When a recovery procedure is successful, we as-
sume it provides full (not partial) recovery. This as-
sumption is valid for many practical situations includ-
ing the case study in section 4. Another assumption
is that recovery duration is a random variable. This
assumption is a traditional one and does not require
special explanations. We consider the same distribu-
tion of recovery time whether the procedure is suc-
cessful or not. To model it, we use restoration rate
µi or mean restoration time τi = 1/µi. These indexes
describe here only the duration of restoration, not its
result (successful or unsuccessful). To highlight it, we
will also use a term mean processing time for τi.

The main idea of the proposed approach is clas-
sifying processor failures into several types and eval-
uating the influence of each type of failure on the
availability of the whole system. We propose the fol-
lowing definition of failure of type i: a failure f is said
to be a failure of type i if and only if i is the lowest
level where this failure is successfully recovered.

The described division of failures into types and
the main parameters of the model are shown in Fig.
1, where λ is a system failure rate.

. . .

 type 1

type 2

type n

Level 1

Level 2

Level n

µ2

µ1

µn

All failures

plast,1

plast,2

prec,n

prec,1

prec,2

pnext,1

pnext,n-1

pnext,2

pnext,0

plast,0

Figure 1: Segregated failures model

In Vilkomir et al. (2005), we had proposed using
six main steps to evaluate availability according the
segregated failures model.

At step 1, different types of failures should be de-
termined corresponding to the recovery levels.

At step 2, probability ptypek
that a failure belongs

type k is evaluated for each type k. For type 1,

ptype1 = prec,1 × pnext,0 (1)

For types k, 1 < k < n,

ptypek
= prec,k ×

k−1∏

i=1

pnext,i × pnext,0 (2)

For type n,

ptypen = (plast,1 +
n−2∑

j=2

(plast,j ×
j−1∏

i=1

pnext,i)+

+
n−1∏

i=1

pnext,i)× pnext,0 + plast,0 (3)

At step 3, the failure rate λtypek
is evaluated for

failures of each type k:

λtypek
= λ× ptypek

(4)

where ptypek
are deternined by (1), (2), and (3) .

At step 4, the restoration rate µtypek
is evaluated

for failures of each type k. For failures of type k, the
mean restoration time τtypek

includes mean process-
ing time τk at level k and also time which has been
unsuccessfully spent on recovery at the previous lev-
els:

τtypek
=

k∑

i=1

τi (5)

The restoration rate is:

µtypek
=

1∑k
i=1

1
µi

(6)

where µi is restoration (service) rate for the recovery
procedure at level i.

At step 5, the availability is evaluated for failures
of each type k. The expected down time Tdk during
a fixed period of time T relative to failures of type k
is:

Tdk(T) = T (1−Ak) = T
λtypek

λtypek
+ µtypek

(7)

where Ak = µtypek
/(λtypek

+µtypek
) - availability fac-

tor.
When λtypek

¿ µtypek
, it is possible to use the

approximate value of the down time per year:

Tdk = λtypek
τtypek

(8)

calculating λtypek
in ‘failures per year’and τtypek

in
minutes.

At step 6, the down time of the whole system is
evaluated:

Td =
n∑

k=1

Tdk (9)

CRPIT Volume 48

56

3 Analysis and further extension of the
model

3.1 Comparison with a Markov chain model

In this section we illustrate similarities and differences
between the Markov chain model and the segregated
failures model. The Markov chain model for a sys-
tem with several recovery levels is illustrated in Fig.
2. Despite a certain similarity between Fig. 1 (Seg-
regated failures model) and Fig. 2 (Markov chain
model), they have different meanings.

. . .

FS1

Level 2

Level n

!1µ10

NS

FS2

FSn

Level 1

!2

µ12µ11

µ21 µ22

µ20

µn0

Figure 2: Markov chain model.

The circles in Fig. 2 represent states of a system:
one working state and several faulted states for every
recovery level. The arrows represent transitions be-
tween system states. In contrast, the circles in Fig.
1 represent sets of failures. The arrows represent re-
lationships between these sets, i.e., how one set of
failures is divided into other sets (with corresponding
probabilities). The two models use the same input
data and lead to the same results but use different
approaches to system availability evaluation.

The Markov chain model is a powerful mathemat-
ical approach and allows modelling of many aspects
of a system’s behaviour, not just availability. Us-
ing the Markov chain model, the probabilities of sys-
tem states are evaluated. Knowing the probability
of a normal (working) state, the system availabil-
ity can be evaluated. However, calculations based
on this model can be quite complicated (solving the
Chapman-Kolmogorov equations). Special tools are
often required for this type of analysis. The segre-
gated failures model is designed for a specific purpose
- availability evaluation of systems with several re-
covery procedures. System states are not considered
and an impact of different types of failures on system
availability is considered instead. In contrast to the
Markov chain model, calculations are very simple and
do not required of using any tools.

The segregated failures model is proposed not in-
stead of but in addition to the Markov chain model.
Taking into account the computational complexity of
the Markov chain model, we believe it is useful to have
a simple engineering analytical method of availability
evaluation. To illustrate this, consider an application
of both models to the following simple toy example:

• A system has two different recovery procedures.

• The probability that a failure is recovered by the
first procedure is 2/3.

• The mean restoration time for the first recovery
procedure is 30 times less then for the second
one.

Both models for this case are represented in Fig. 3,
where

• λ - system failure rate.

• µ - recovery rate for the second procedure.

• Pi, i = 0, 1, 2 - probabilities of system states.

a)

!

µ

30µ2/3

1/3

b)

20µ

10µ
µ

!

P0

P1

P2

Figure 3: System with two recovery procedures: a)
Segregated failures model and b) Markov chain model

Application of the segregated failures model for
this example is so simple that it requires only mental
calculations. Thus, the failure rates for failures of the
each type from (4) are

λtype1 =
2
3
λ; λtype2 =

1
3
λ (10)

The mean restoration times for failures of the each
type from (5) are

τtype1 =
1

30µ
; τtype2 =

1
30µ

+
1
µ

=
31
30µ

(11)

Finally, the system down time can be found using
(9):

Td =
2
3
λ

1
30µ

+
1
3
λ

31
30µ

=
11λ

30µ
(12)

Application of the Markov chain model is slightly
more complicated. We need to solve the following
simultaneous equations:

λP0 = 20µP1 + µP2 (13)

30µP1 = λP0 (14)

µP2 = 10µP1 (15)

P0 + P1 + P2 = 1 (16)

Transposing (14) for P1 and (15) for P2 and sub-
stituting P1 and P2 into (16) gives

P0 +
λ

30µ
P0 +

λ

3µ
P0 = 1 (17)

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

57

and

P0 =
30µ

11λ + 30µ
(18)

The system down time during time period T can
be expressed as

Td = (1− P0)T (19)

Considering down time during T = 1year and us-
ing (18) , we finally have

Td =
11λ

11λ + 30µ
(20)

In practice usually λtypek
¿ µtypek

and from (20)
the approximate value of the down time is

Td =
11λ

30µ
(21)

which completely coincides with result (12) of the
segregated failures model.

The following conclusions can be drawn from the
example:

• The segregated failures model provides the ap-
proximate values of the down time which are
very close to the accurate values. Thus, if λ =
10 per year and µ = 1 per hour, the accurate
value of Td according (20) is 219.91 min per year.
The approximate value of Td according to (12)
or (21) is 220.00 min per year. The difference
is only 0.04% and is negligible, especially taking
into account an approximation of the input data.

• The complexity of calculations according to the
Markov chain model increases when the number
of recovery procedures increases. At the same
time, the complexity of calculations according to
the segregated failures model changes insignifi-
cantly. Thus, the benefit of using the segregated
failures model increases when more recovery pro-
cedure are used.

• Both the Markov chain model and the segre-
gated failures model allow us to evaluate the sys-
tem down time. However, the segregated failures
model also provides a separate evaluation of the
down times for each recovery procedure. This
in turn allows us to analyze availability in more
detail and to find ways to improve availability.

3.2 Rates of escalation instead of the cover-
age factor

In this section we propose an extension of the segre-
gated failures model for the situation when the input
data are different from what was considered previ-
ously. As was mentioned in Section 2, we assumed
that some conditional (given that level i procedure is
applied) probabilities are known. Specifically, prob-
ability that a failure recovery is successful (prec,i) or
that a failure recovery is unsuccessful and that the
next recovery level is either level i + 1 (pnext,i) or
last level n (plast,i). For applications of the Markov
chain model, explicit rates of transitions between sys-
tem states are often used as input data instead of
these probabilities. This situation is also possible for
the segregated failures model. In this case, the input
data for the model are:

• µrec,i - successful failure recovery rate.

• µnext,i - rate of the escalation from level i to the
next level i + 1.

• µlast,i - rate of the escalation from level i to the
last level n.

These three possibilities are mutually exclusive
and exhaustive. So the failure processing rate µi at
level i (i.e. failure exit rate regardless of the results
of recovery) is a sum of rates for these possibilities:

µi = µrec,i + µnext,i + µlast,i (22)
The best way to evaluate availability in this sit-

uation is to express prec,i, pnext,i, and plast,i using
µrec,i, µnext,i and µlast,i and then to apply the ba-
sic segregated failures model described in Section 2.
Each probability is determined as a ratio of the cor-
responding rate to the failure processing rate of the
whole procedure:

prec,i =
µrec,i

µi
=

µrec,i

µrec,i + µnext,i + µlast,i
(23)

pnext,i =
µnext,i

µi
=

µnext,i

µrec,i + µnext,i + µlast,i
(24)

plast,i =
µlast,i

µi
=

µlast,i

µrec,i + µnext,i + µlast,i
(25)

To apply the model from Section 2, we also need
to express mean service (processing) time τi at level
i. For traditional systems with one recovery proce-
dure, the mean restoration time is a reciprocal value
of the failure restoration rate. For systems with sev-
eral recovery procedures, there are different rates for
each level, in particular, rates of successful failure re-
covery µrec,i and failure processing rate µi. Because
we assume that the mean processing time for a spe-
cific level is the same for all failures and independent
of restoration results, this time is a reciprocal value
of the failure processing rate, not of the successful
recovery rate. In other words,

τi =
1
µi

=
1

µrec,i + µnext,i + µlast,i
(26)

Using (23) - (26) allows us to evaluate availability
of a system with known explicit rates of escalation,
leading to the situation described in Section 2.

4 A Case Study: Describing recovery policy
by rates of escalation without the use of
coverage factor

4.1 A model

As an example of a model with rates of escalation
we consider a hypothetical RCC application, which
has been analyzed by Lyu & Mendiratta (1999) us-
ing a Markov chain model. We reuse notation and
inputs from Lyu & Mendiratta (1999) in our model
which allows us to compare different approaches to
availability evaluation.

The model has four recovery procedures:

• Fault Detection and Recovery. A small number
of hardware and software faults are detected by
the watchdog and recovery is fully automatic.
The internal data are not saved and the appli-
cation is restarted at the initial internal state.

• Volatile Data Recovery. Periodic checkpointing
is used and the critical volatile data are saved.
The process automatically restarts at the most
recent checkpointed internal state.

CRPIT Volume 48

58

• Persistent Data Recovery. Replication of the per-
sistent data on a backup disk is carried out. This
ensures data consistency when the application is
automatically recovered on the backup node.

• Manual Repair. For all hardware and software
faults when attempts of automatic recovery are
not successful, manual intervention is used. In
addition, a small set of faults is detected for man-
ual repair before applying procedures of the au-
tomatic recovery.

A diagrammatic representation of the model is
shown in Fig. 4.

 type 1

type 2

type 4

Fault Detection & Recovery

c

All failures

µ

µ1

µ2

type 3

Manual Repair

µ3

1c1

2c2

3

(1- c)

1(1- c1)

2(1- c2)
Persistent Data Recovery

Volatile Data Recovery

Figure 4: Segregated failures model with rates of es-
calation.

Model inputs are the following:

• λ - total failure rate.

• λi, i = 1, 2, 3 - level i to i + 1 escalation rate.

• µi, i = 1, 2, 3 - recovery rate at level i.

• µ - manual repair rate.

• c - fault detection coverage.

• ci, i = 1, 2 - level i to i + 1 coverage.

The values of input data are the following (Lyu &
Mendiratta 1999):
λ = 10, 20, 30 failures per year
λ1 = 30 exits per hour
λ2 = 1800 exits per hour
λ3 = 100 exits per hour
µ1 = 30, 60 recoveries per hour
µ2 = 1800, 3600 recoveries per hour
µ3 = 3600 recoveries per hour
µ = 0.25 repair per hour
c, c1, c2 = 0.9, 0.99

4.2 Availability evaluation

Step 1: The model has the following four failure types:

• Type 1: failures restored by the fault detection
and recovery procedure.

• Type 2: failures restored by the volatile data re-
covery procedure.

• Type 3: failures restored by the persistent data
recovery procedure.

• Type 4: failures restored by the manual repair
procedure.

Step 2: To turn from rates of escalation to cover-
age factors, let us calculate conditional probabilities
prec,i, pnext,i, and plast,i. The application of (23) -
(25) gives the following:

prec,i =
µi

µi + λi
, i = 1, 2, 3 (27)

pnext,i =
λici

µi + λi
, i = 1, 2 (28)

pnext,3 =
λ3

µ3 + λ3
(29)

plast,i =
λi(1− ci)
µi + λi

, i = 1, 2 (30)

Now we can calculate ptypei applying (1) - (3):

ptype1 =
cµ1

µ1 + λ1
(31)

ptype2 =
cλ1c1µ2

(µ1 + λ1)(µ2 + λ2)
(32)

ptype3 =
cλ1c1λ2c2µ3

(µ1 + λ1)(µ2 + λ2)(µ3 + λ3)
(33)

ptype4 = c× (
λ1(1− c1)
(µ1 + λ1)

+
λ1c1λ2(1− c2)

(µ1 + λ1)(µ2 + λ2)
+

+
λ1c1λ2c2λ3

(µ1 + λ1)(µ2 + λ2)(µ3 + λ3)
) + 1− c (34)

Step 3: use (4) and values of prec,i, pnext,i, and
plast,i (obtained at Step 2) for the calculation of
λtypei .

Step 4: For the evaluation of the mean restoration
time τtypei for failures of the every type i, we firstly
calculate the mean processing time τi for the every
level i using formulas τi = 1

µi+λi
, i = 1, 2, 3 and τ4 =

1
µ4

. Then we find τtypei using (5). The results of the
calculation are shown in Table 1.

Level/ Mean resto- µ1 = 30 µ1 = 60
Type ration time µ2 = 1800 µ2 = 3600

1 τ1 1.0 0.67
τtype1 1.0 0.67

2 τ2 0.02 0.01
τtype2 1.02 0.68

3 τ3 0.02 0.02
τtype3 1.03 0.7

4 τ4 240 240
τtype4 241.03 240.7

Table 1: Mean restoration time (minutes).

Step 5 - 6: The intermediate results and values
Tdi and Td of the down time according to (8) - (9)
are presented in Table 2 for µ1 = 30, µ2 = 1800 and
Table 3 for µ1 = 60, µ2 = 3600.

The comparison of these results with the results
from Lyu & Mendiratta (1999), where the same case
study has been analyzed using the Markov chain
model, shows that the values of the down time from

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

59

Type of Failure rate and ci = 0.99 ci = 0.9
failures down time λ = 10 λ = 20 λ = 30 λ = 10 λ = 20 λ = 30

1 λtype1 4.95 9.9 14.85 4.50 9.00 13.50
Td1 5.0 9.9 14.9 4.5 9.0 13.5

2 λtype2 2.45 4.9 7.35 2.03 4.05 6.07
Td2 2.5 5.0 7.5 2.1 4.1 6.2

3 λtype3 2.36 4.72 7.08 1.77 3.55 5.32
Td3 2.4 4.9 7.3 1.8 3.7 5.5

4 λtype4 0.24 0.48 0.72 1.7 3.40 5.11
Td4 57.9 115.7 173.6 410.2 820.5 1230.7

System down time Td 68 135 203 419 837 1256

Table 2: Failure rates (per year) and expected down time (minutes per year) for µ1 = 30, µ2 = 1800.

Type of Failure rate and ci = 0.99 ci = 0.9
failures down time λ = 10 λ = 20 λ = 30 λ = 10 λ = 20 λ = 305

1 λtype1 6.60 13.20 19.80 6.00 12.00 18.00
Td1 4.4 8.8 13.3 4.0 8.0 12.1

2 λtype2 2.18 4.36 6.53 1.80 3.60 5.40
Td2 1.5 2.9 4.4 1.2 2.4 3.7

3 λtype3 1.05 2.10 3.15 0.79 1.58 2.36
Td3 0.7 1.5 2.2 0.6 1.1 1.7

4 λtype4 0.17 0.34 0.52 1.41 2.82 4.24
Td4 41.6 83.3 124.9 339.9 679.7 1019.6

System down time Td 48 97 145 346 691 1037

Table 3: Failure rates (per year) and expected down time (minutes per year) for µ1 = 60, µ2 = 3600.

both models are practically the same. The difference
is on average less than 0.5%, which can be explained
by rounding off the decimal. Whereas results from
Lyu & Mendiratta (1999) provide only the system
down time values, Tables 2 and 3 also provide the
down time for each recovery procedure.

Two conclusions can be directly drawn from Tables
2 and 3:
• System down time is proportional to the value of

the total failure rate; that is also clear from the
formulas (4) and (8).

• Increasing the value of the fault detection cover-
age ci significantly decreases down time.

The value of the fault detection coverage ci deter-
mines the number of failures that are escalated from
the level i to the next level (not to last level directly).
Increasing ci from 0.9 to 0.99 decreases down time
several times (6.2 times from 419 min to 68 min for
µ1 = 30, µ2 = 1800; 7.2 times from 346 min to 48 min
for µ1 = 60, µ2 = 3600). However, the fault detec-
tion coverage value depends on the nature of software
failures and cannot always be changed by system de-
signers. Furthermore, systems with a bad diagnostic
subsystem (which cannot determine failures requiring
immediate manual repair) have a greater fault detec-
tion coverage value. But if some failures are eventu-
ally escalated (step by step) through all levels to the
last one, system down time will increase because of
the time lost at each level.

There are at least two ways for designers to im-
prove availability of a system:
• Change recovery strategy.

• Improve individual recovery procedures.
Changing the existing recovery strategy by creating
new recovery procedures can require significant effort
from designers. However, in some cases it is possi-
ble to improve availability just by changing the order
in which recovery procedures are applied. The segre-
gated failures model can be useful for studying such
changing.

An existing recovery procedure can be improved
by reducing mean recovery time for the procedure.
High recovery time for a specific procedure influences
system availability even when the number of failures
restored at this level is negligible. Thus, according to
Tables 2 and 3 for ci = 0.99, on average only 2.1%
of all failures are restored at level 4, i.e. by man-
ual repair. However, the contribution of this level
to system down time comes to 86% (85.1% for µ1 =
30, µ2 = 1800 and 86.7% for µ1 = 60, µ2 = 3600).
The reason is that, according to Table 1, the mean
restoration time for the manual repair is two hundred
times more than the mean restoration time for other
procedures.

Mean restoration time can be reduced by using
better diagnostic equipment, speeding up a delivery
of spare parts, etc. Thus, if the mean restoration
time for the manual repair is reduced by 20% (from
240 min to 192 min) then, according to (8) and (9),
system down time will be reduced on average by 18%.

5 Conclusion

In this paper, we considered fault-tolerant computer
systems with several recovery procedures. We contin-
ued the earlier investigations described in Vilkomir
et al. (2005) by investigating the segregated fail-
ures model for availability evaluation of such systems.
This model provides a simple analytical method of
evaluating system availability and can be used as an
alternative to Markov chain models. We analysed
both approaches and showed that the segregated fail-
ures model not only allows us to calculate down time
of a whole system but also gives the possibility, using
intermediate results of calculations, of evaluating the
impact of each recovery procedure on system avail-
ability. The model can also be used for the correc-
tion of a recovery strategy and improvement of system
availability.

We extended the segregated failures model for the
situation when the values of implicit rates of failures
escalation are known instead of coverage factors. As

CRPIT Volume 48

60

a case study, a Lucent Technologies Reliable Clus-
tered Computing architecture was considered. Dif-
ferent values of failure restoration rates were consid-
ered and their influence on down time was analysed.
The values of down time for every type of failures
as well as for the whole system were calculated. For
this specific case study, the main factor that impacted
system availability was the mean restoration time for
the manual repair. Thus, reducing this time is an
important practical task to improve availability.

The case study shows that the segregated failures
model provides a simple, convenient and practical ap-
proach for availability evaluation. In future work, we
will consider an application of this model to the anal-
ysis of different recovery strategies and selection of an
optimal strategy for any given system.

6 Acknowledgement

This work was supported by Science Founda-
tion Ireland under SFI Grants 01/P1.2/C009 and
03/CE3/1405.

References

Hoeflin, D.A. & Mendiratta, V.B. (1995), Elementary
Model for Predicting Switching System Outage
Durations, in ‘Proceedings of XV International
Switching Symposium’, Berlin, Germany, 23–28
April, 1995.

Hughes-Fenchel, G. (1997), A flexible clustered ap-
proach to high availability, in ‘Digest of Papers
of Twenty-Seventh Annual International Sym-
posium on Fault-Tolerant Computing’, FTCS-
27, Seattle, Washington, USA, 24–27 June 1997,
pp. 314–318.

Ibe O., Howe, R. & Trivedi, K. S. (1989), Approx-
imate Availability Analysis of VAXCluster Sys-
tems, IEEE Transactions on Reliability, Vol. 38,
No. 1, April 1989, pp. 146–152.

Lyu, M.R. & Mendiratta, V.B. (1999), Software fault
tolerance in a clustered architecture: techniques
and reliability modelling, in ‘Proceedings of the
1999 IEEE Aerospace Conference’, Volume 5,
Snowmass, CO, USA, 6–13 March 1999, pp. 141–
150.

Mendiratta, V.B. (1998), Reliability analysis of clus-
tered computing systems, in ‘Proceedings of the
Ninth International Symposium on Software Re-
liability Engineering’, Paderborn, Germany, 4–7
November 1998, pp. 268–272.

Sun, H., Han, J.J. & Levendel, H. (2001), A generic
availability model for clustered computing sys-
tems, in ‘Proceedings of 2001 Pacific Rim In-
ternational Symposium on Dependable Com-
puting’, Seoul, Korea, 17–19 December 2001,
pp. 241–248.

Sun, H., Han, J.J. & Levendel, H. (2003), Availabil-
ity requirement for a fault-management server in
high-availability communication systems, IEEE
Transactions on Reliability, Volume 52, Issue 2,
June 2003, pp. 238–244.

Vilkomir S., Parnas D., Mendiratta V. & Mur-
phy E. (2005), Availability evaluation of hard-
ware/software systems with several recovery pro-
cedures, in ‘Proceedings of the 29th IEEE An-
nual International Computer Software and Ap-
plications Conference’ (COMPSAC 2005), IEEE
Computer Society, Volume 1, Edinburgh, Scot-
land, 25–28 July 2005, pp. 473–478.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

61

CRPIT Volume 48

62

On pedagogically sound examples in public-key cryptography

Suan Khai Chong Graham Farr Laura Frost Simon Hawley

Clayton School of Information Technology
Monash University

Clayton, Victoria 3800
Australia

Email: {skcho5,gfarr,lauraf}@csse.monash.edu.au, sa hawley@yahoo.com.au

Abstract

Pencil-and-paper exercises in public-key cryptogra-
phy are important in learning the subject. It is de-
sirable that a student doing such an exercise does
not get the right answer by a wrong method. We
therefore seek exercises that are sound in the sense
that a student who makes one of several common
errors will get a wrong answer. Such exercises are
difficult to construct by hand. This paper considers
how to do so automatically, and describes software
developed for this purpose, covering several popular
cryptosystems (RSA, Diffie-Hellman, Massey-Omura,
ElGamal, Knapsack). We also introduce diagnostic
exercises, in which all error paths lead to different
answers, so that the answer given by the student may
suggest the nature of their error. These too can be
generated automatically by our software.

Keywords: sound example, diagnostic example, ex-
ample generator, public-key cryptography, RSA,
Diffie-Hellman, Massey-Omura, ElGamal, knapsack.

1 Introduction

Public-key cryptography is now taught in a large
number of courses around the world, in response to
the rapid development of the subject and its ap-
plications since the first papers in the area (Diffie
& Hellman 1976, Rivest, Shamir & Adleman 1978).
Countless textbooks, articles and lectures take stu-
dents through the principles and manipulations in-
volved in the best-known public-key cryptosystems
(such as the RSA (Rivest, Shamir & Adleman 1978),
ElGamal (ElGamal 1985) and Knapsack (Merkle &
Hellman 1978) systems) and their relatives (such as
the Diffie-Hellman key exchange scheme (Diffie &
Hellman 1976) and the Massey-Omura realisation
(Massey & Omura 1986) of the Shamir three-pass pro-
tocol). To learn how these systems work, it is helpful
for students to have exercises on them to do by hand.
These exercises will often use small numbers, so that
students can see the how the various steps work and
fit together without being lost in difficult computa-
tion. This is, of course, quite opposite to the demands
of practical applications, where large numbers must
be used in order to make cryptanalysis difficult.

If a student is to work through a particular exer-
cise themselves, it is important that, as far as possible,
they only get the right answer if they use the right
method. Students may often have access to the right
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

answer after doing the exercise (e.g., from their lec-
turer, or the back of a textbook), and if their answer
is the same, then their method of calculation is likely
to be reinforced in their minds.

In doing public-key cryptography exercises manu-
ally, certain errors crop up repeatedly. We enumer-
ate those that are most common in our experience in
§§3–4. Of course, it is not possible to give an exhaus-
tive list, and there is always the possibility that a
student may make an unpredictable arithmetic slip
or some conceptual error we have not anticipated.
Nonetheless, the most common and predictable errors
are worth taking some account of.

It is not altogether trivial to construct, by hand,
exercises with small numbers for which common er-
rors give a wrong answer. For example, suppose we
ask a student to do RSA cryptanalysis manually for
what is virtually the smallest possible example: p = 3
and q = 5, so that n = 15 and ϕ(n) = 8. We find that
every d ∈ ZZϕ(n) is its own multiplicative inverse. Any
exercise constructed with these numbers will have the
unfortunate property that a student who mixes up
the public and private exponents, and so encrypts in-
stead of decrypting, will still get the right answer.
The same problem occurs for (p, q) = (3, 7) or (5, 7),
and for other pairs (p, q) of small primes one may still
need to choose with care as self-inverse d are reason-
ably numerous.

With these concerns in mind, we have studied, for
the public-key cryptosystems mentioned above, and
for certain kinds of exercises based on these systems,
the set of exercises that are sound in the sense that
any set of errors from a given list will lead to a wrong
answer. We have constructed a program that gener-
ates sound exercises of the required sort, and enables
study of the set of possible exercises.

The program may be applied not only to help the
teacher construct better exercises, but as an on-line
tool for use by students. A student can ask for a sound
example to be generated, try to solve it by hand, enter
their answer, and be informed whether their answer
is right or not.

Applications of this sort suggest another, stronger
property of exercises. We say that an exercise is di-
agnostic if all of the methods considered — the right
one, and all the wrong ones we have allowed for —
give different answers. The idea here is that the an-
swer supplied by the student gives some evidence as
to the nature of the error(s) (if any) they may have
made (though the evidence is not absolutely conclu-
sive, since a student may make unpredictable arith-
metic slips or other errors we have not anticipated).
Diagnostic exercises may thus enable some useful on-
line feedback to the student. Our system can also
generate diagnostic exercises, where they exist, and
assist in study of the set of diagnostic exercises for a
given cryptosystem.

The exercises we consider are generally based on

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

63

carrying out the operations of encryption and decryp-
tion in the various public-key cryptosystems. We do
not cover all possible tasks that might be set for these
cryptosystems, but only ones that illustrate the main
manipulations involved in using the systems and for
which certain kinds of errors (discussed in §3) keep
coming up. The exercises generated by our system
can, in any case, often be used as the basis for other
exercises of slightly different character.

The concepts and software described here can also
be applied to exercises using larger numbers that are
designed to be solved with the aid of calculators or
mathematical software. Our emphasis is on pencil-
and-paper exercises, since students may have more
feel for manipulating smaller numbers. Also, exercises
with smaller numbers have a lower chance of being
sound or diagnostic if chosen at random, so there is
a clear role for automated assistance in constructing
such exercises.

We assume familiarity with public-key cryptogra-
phy, particularly the RSA, Diffie-Hellman, Massey-
Omura, ElGamal and Knapsack systems (see, e.g.,
(Welsh 1988)).

This work is based on Summer Studentship
projects by Chong (2003–04), Frost (2002–03)
and Hawley (2002–03), and especially on Chong’s
BCompSc Honours project (Chong 2003), all super-
vised by Farr at the School of Computer Science and
Software Engineering, Monash University.

The rest of this paper is organised as follows. In
the next section we give more formal definitions of the
concepts of sound and diagnostic examples. In §3 we
describe what seem to be the main kinds of error in
the systems we consider: these occur repeatedly in ex-
ercises on all the different systems. In §4 we describe
the exercise types themselves and, for each, the exact
set of errors we use. In §5 we give an overview of the
software, describing the main functionalities present
in the system. Some conclusions and suggestions for
further work are given in §6.

2 Definitions

In the cryptography exercises we consider, the stu-
dent is given some input and must calculate the corre-
sponding output. The inputs and outputs are numeric
rather than symbolic, and usually belong to finite al-
gebraic systems such as ZZn. Exercises are usually
of one of two types: encryption, where the student is
given the public key and the message and must calcu-
late the cypher (or any other information that is sent
between sender and receiver); and decryption, where
the student is given the public key and the cypher
(and anything else that is exchanged between sender
and receiver) and must work out the original message
(or any other secret information shared by sender and
receiver).

The aim of such a cryptography exercise is to get
the student to practise carrying out some algorithm
A0 for computing the desired output from the given
input. The algorithm A0 may be (slightly) nondeter-
ministic: there might be some flexibility in how the
student works out the answer.

We suppose that there is also a set of alternative,
incorrect algorithms A1, . . . , Ak that each might be
used, by some students, to try to solve the exercise.

An exercise X is sound if each of the alternative
algorithms produces an incorrect answer: Ai(X) 6=
A0(X) for all i = 1, . . . , k.

An exercise X is diagnostic if all of the algo-
rithms — correct or incorrect — give different an-
swers: Ai(X) 6= Aj(X) for all i, j ∈ {0, 1, . . . , k},
i 6= j.

We assume that the alternative algorithms
A1, . . . , Ak arise in the following way. Let E be the
assumed set of errors that a student might make in
executing A0. Let f : {0, 1, . . . , k} → 2E be a bijec-
tion with f(0) = ∅ and k = 2|E| − 1. Let algorithm
Ai be the algorithm obtained by trying to execute A0
but making precisely the errors from the set f(i) ⊆ E
while doing so. In this way, each algorithm is identi-
fied with some subset of the error set E, with A0 being
the correct algorithm in which no errors are made.

In what follows, the set of alternative algorithms
will be specified by giving the error set E.

3 Errors

For all the systems we consider, many of the same
basic errors recur, mostly involving choice of mod-
ulus, confusion between encryption and decryption,
and errors in carrying out the extended Euclidean al-
gorithm (EEA). (Recall that the EEA applied to co-
prime a and b produces a sequence of triples (δ, x, y)
where δ = ax + by, culminating in (1, u, v), where
v ≡ b−1 (mod a). A student might choose u as the
inverse instead of v; note that u ≡ a−1 (mod b). If
v < 0, the student might ignore the sign and use −v.
It is also possible that the student will take the ex-
tended Euclidean algorithm one step further, to the
triple (0,±b,∓a). This is useful as a check, but a stu-
dent might erroneously take one of ±b or ∓a as the
desired inverse of b, in effect treating the “0-triple” as
if it were the important “1-triple”.) Most errors seem
to arise through one or more of the following:
• confusion over whether to do a calculation mod

n or mod ϕ(n) or mod n−1 (even students doing
RSA, where n − 1 has no particular role, some-
times work mod n− 1 as they may recall seeing
p − 1 in other systems, e.g., ϕ(p) = p − 1 in the
Massey-Omura system);

• using a quantity itself instead of its inverse (e.g.,
e instead of d in RSA);

• taking the wrong element from the EEA calcula-
tion;

• ignoring the sign of the element taken from the
EEA calculation.

4 Exercises and error lists

In this section, we take five systems — RSA, Diffie-
Hellman, Massey-Omura, ElGamal and Knapsack —
and, for each, we describe one or two types of exercise
and the assumed error list for each exercise type. The
exercise types are usually encryption and decryption.

Our decryption exercises usually take the position
of a cryptanalyst attempting to recover the message
given the cyphertext and public keys. Sometimes we
use decryption exercises where the student is given
part of the private key as well. There are a couple
of reasons why this may be useful at times. Firstly,
if that part of the private key is not given, the exer-
cise may be of such a different kind that the errors
students make are quite different to the ones we con-
sider here. The exercise may still be worthwhile, but
falls outside the scope of the present work. Secondly,
pencil-and-paper exercises may use sufficiently small
numbers that some particular part of the private key
may be easy to guess in practice, so that the real
task only begins once that part of the private key is
known. (This does not mean that the lecturer nec-
essarily gives that part of the private key when pre-
senting the exercise to students. We treat the relevant
part of the private key as known only when designing
the exercise.)

CRPIT Volume 48

64

For each exercise type, we state, in turn: the infor-
mation assumed to be given to the student; what the
student must find ; the method (i.e., A0) the student
should use; and the set of possible errors we consider.
In our software (§5), the user selects which of these er-
rors belong to the assumed error set E. For the RSA
system, we give an example to illustrate the various
concepts we have introduced.

4.1 RSA

Encryption
Given: modulus n = pq, public exponent e ∈ ZZ∗ϕ(n),
and message m ∈ ZZn.
Find: cyphertext c = me mod n.
Method: find c = me mod n, preferably by fast
modular exponentiation.
Errors:
(a) use ϕ(n) instead of n as the modulus for expo-

nentiation;
(b) use n − 1 instead of n as the modulus for expo-

nentiation.

Decryption
Given: modulus n = pq, public exponent e ∈ ZZ∗ϕ(n),
and cyphertext c ∈ ZZn.
Find: m = cd mod n, where d = e−1 mod ϕ(n).
Method: factorise n, to find p and q; calculate
ϕ(n) = (p − 1)(q − 1); find d = e−1 mod ϕ(n) us-
ing the EEA; and find m = cd mod n, preferably by
fast modular exponentiation.
Errors:
(a) use n − 1 instead of ϕ(n) as the modulus when

finding e−1;
(b) use n instead of ϕ(n) as the modulus when find-

ing e−1;
(c) use e instead of d;

(d) negate the inverse e−1;

(e) swap the modulus and d when computing d−1

(so, with modulus ϕ(n), the student finds
ϕ(n)−1 mod d instead of d−1 mod ϕ(n));

(f) use ϕ(n) instead of n as the modulus for expo-
nentiation;

(g) use n − 1 instead of n as the modulus for expo-
nentiation.

Example
Suppose we want an RSA decryption exercise with

assumed error set set E = {(b), (c), (f)}. Let n = 77,
so that p = 7, q = 11. If d = 17, e = 53, m = 12, and
c = 45, then we could give a student the decryption
exercise (n, e, c) = (77, 53, 45). The correct method
A0 would find d = 53−1 mod 60 = 17 and then
m = 4517 mod 77 = 12. However, this same answer is
obtained if error (c) is made, but no others: putting
d′ = e = 53 yields m′ = 45d′ mod 77 = 12 = m.
This example is therefore unsound. A sound example
(for this error set) can be obtained by putting d = 17,
e = 53, m = 6, and c = 62. This example is not, how-
ever, diagnostic, since the incorrect answer m′ = 32 is
obtained either by making error (f) alone or by mak-
ing errors (c) and (f). The following example may be
shown to be diagnostic for E: n = 161, p = 7, q = 23,
d = 13, e = 61, m = 17, c = 80. Diagnostic examples
tend to be much harder to construct than ones that
only have to be sound.

4.2 Diffie-Hellman

Given: prime p, primitive root a ∈ ZZp, y1 = ax1 mod
p, y2 = ax2 mod p.
Find: K = ax1x2 mod p.
Method: either find x1 (i.e., solve the discrete log
problem y1 = ax1 mod p), then form K = yx1

2 mod p,
or find x2, then form K = yx2

1 mod p.
Errors:
(a) find discrete log mod p− 1 instead of mod p;
(b) do exponentiation mod p− 1 instead of mod p.

4.3 Massey-Omura

The Massey-Omura cryptosystem follows the Shamir
three-pass protocol.

Encryption
Given: prime p, x ∈ ZZ∗p−1, y ∈ ZZ∗p−1, m.
Find: mx mod p, mxy mod p, my mod p.
Method: calculate mx mod p, (mx)y mod p, and
then either calculate my mod p or find x−1 mod p−1
and calculate (mxy)x−1

mod p. (The latter is more
efficient, and is what the sender actually does when
using this system. The former is sometimes done by
students in exercises, and will still give the right an-
swer if done correctly, although it cannot be done in
practice since it involves the sender using information
known only to the receiver.)
Errors:
(a) do exponentiation mod p − 1 instead of mod p,

at any stage;
(b) find x−1 mod p instead of mod p− 1;

(c) negate the inverse x−1;

(d) swap the modulus and x when computing x−1

(so, with modulus p − 1, the student finds (p −
1)−1 mod x instead of x−1 mod p− 1);

(e) use x instead of x−1.

Decryption
Here we consider the somewhat artificial situation

in which the cryptanalyst is given (or has found) each
party’s private information, except the message, and
must only recover the message.
Given: p, x ∈ ZZ∗p−1, y ∈ ZZ∗p−1, mxy mod p.
Find: m.
Method: either find x−1 mod p − 1, calculate m =
(myx)x−1

mod p, find y−1 mod p − 1 and calculate
m = (my)y−1

mod p.
Errors:
(a) find inverse mod p instead of mod p− 1;

(b) use x instead of x−1 (or y instead of y−1);
(c) negate the inverse;

(d) swap the modulus and x when computing x−1

(or similarly when computing y−1);
(e) do exponentiation mod p− 1 instead of mod p.

4.4 ElGamal

Encryption
Given: prime p, primitive root a ∈ ZZp, y =
ax mod p, k ∈ ZZp−1, m ∈ ZZp.
Find: c = (ak mod p, Km mod p) where K = yk =
axk mod p.
Method: find ak mod p, K = yk mod p, form
Km mod p; c = (ak,Km) mod p.
Errors:

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

65

(a) do exponentiation ak mod p− 1 instead of p;

(b) do exponentiation yk mod p− 1 instead of p;
(c) do the final multiplication mod p − 1 instead of

mod p.

Decryption
Given: p, a, y = ax mod p, ak mod p, Km mod p
where K = yk mod p = axk mod p.
Find: m.
Method: find K as in Diffie-Hellman, find K−1 mod
p, find m = K−1(Km) mod p.
Errors:
(a) in Diffie-Hellman subproblem, to find K: find

discrete log mod p− 1 instead of mod p;
(b) in Diffie-Hellman: do exponentiation mod p − 1

instead of mod p;
(c) find K−1 mod p− 1 instead of mod p;

(d) use K instead of K−1 (i.e., as its own inverse);
(e) negate the inverse;

(f) swap the modulus and K when computing K−1;
(g) do the final multiplication mod p − 1 instead of

mod p.

4.5 Knapsack

The Knapsack cryptosystem is considered insecure,
but is still useful for teaching purposes. We only
consider decryption exercises. Encryption, while also
good for students to do, does not have much potential
for the kind of errors we consider.

Decryption
This exercise may seem somewhat artificial: the

cryptanalyst is assumed to know the private multi-
plier w. Without w, on the face of it the student just
has to solve an ordinary (nonsuperincreasing) subset
sum problem manually, which involves different kinds
of potential errors to the ones considered in this paper
(though it is a good exercise for them to do). Also,
for small manual exercises, w is often easily deduced
by guessing the smallest term or two of the private
superincreasing sequence and observing how they are
related to the corresponding terms of the public se-
quence.
Given: N , w ∈ ZZ∗N , public sequence (ai)n

i=1, cypher
block c =

∑n
i=1 aimi, where the mi are the message

bits.
Find: m = (mi)n

i=1.
Method: find w−1 mod N , find the private superin-
creasing sequence (xi)n

i=1 by xi = w−1ai mod N , find
w−1c mod N , and find the mi by solving the super-
increasing subset sum problem w−1c =

∑n
i=1 ximi.

Errors:
(a) find w−1 mod N − 1 instead of mod N ;

(b) use w instead of w−1;
(c) negate the inverse;

(d) swap the modulus and w when computing w−1;
(e) do the final multiplications (to obtain the xi)

mod N − 1 instead of mod N .

5 Software

We have written software for generating examples
with the properties discussed in §4 (Chong 2003).
This section describes the main features of the system
and related functionalities that give users control of
the system. We begin by describing the main modes

of operation which present different ways in which the
system can be used. We then briefly discuss the se-
lection of error paths in the system (discussed in §3)
and of how the information is displayed.

Source code for the software mentioned in this pa-
per includes C programs for the example generators
and Java programs for the web interface. The C files
for the example generators can be obtained from:

http://www.csse.monash.edu.au/~skcho5/
CryptoTools/generators.zip

and the Java interface files can be downloaded from:
http://www.csse.monash.edu.au/~skcho5/
CryptoTools/web.zip

The software can be run online by using any
browser that supports Java 1.1 or above1 on the web-
page

http://www.csse.monash.edu.au/~skcho5/
CryptoTools/Gui.html .

5.1 Modes of operation

Three main modes of operation are provided in the
system - Interactive mode, Random mode and Calcu-
late mode. Each of those modes is now described in
turn.

5.1.1 Interactive mode

Interactive mode provides the ability to check
whether an example supplied by the user is unsound,
sound or diagnostic. First, the user is required to
provide inputs that specify an example, typically the
public key values, private key values and the message.
The system then validates these inputs. For instance,
for an RSA example, the value of the exponent e must
be in ZZ∗ϕ(n), and the user is warned if a self-inverse
exponent is chosen.

After validation, the system can check which cat-
egory the examples falls into. This mode is useful as
a quick check for a manually generated example, for
instance, an exercise in a textbook. However, for au-
tomatic generation of examples, random mode should
be used instead.

5.1.2 Random mode

Random mode is the mode by which the system per-
forms its main function: automatic generation of ran-
dom sound or diagnostic examples. At each iteration,
random inputs are chosen. These must be small, and
must satisfy certain validity tests (as mentioned in
§5.1.1). The inputs together give a random exam-
ple, from which the set of paths is constructed. On
comparison of the paths, the system determines if the
example is sound or diagnostic. If the example gen-
erated is not of the desired type, another iteration is
attempted, and so on, until an example of the desired
type is found.

Other supplementary modes such as no-filtering
and target mode can be used with random mode.
No-filtering mode removes the restriction on input
sizes, so the example generated might use numbers
that are too large for pen and paper exercises (though
might still be suitable for exercises using calcula-
tors or mathematical software). It also increases the
chance of a generated example being sound or diag-
nostic. Target mode makes the system randomly gen-
erate examples with user specified target values for
some of the inputs. (The actual selected input will
be within 5% of the specified target.)

1Support for Macintosh browsers is currently limited to
Netscape versions only.

CRPIT Volume 48

66

5.1.3 Probability calculation mode

Probability mode enables the user to study how com-
mon sound or diagnostic examples are, among all pos-
sible examples. For each input, the program either
takes a value from the user or loops over all possi-
ble values. The proportions of sound and diagnostic
examples are tabulated and the probabilities of these
example types are shown. This capability allows us to
study what kinds of inputs give a higher proportion
of sound or diagnostic examples and also, the mini-
mum input sizes for constructing sound or diagnostic
examples.

5.2 Path selection

Path selection allows users to choose, from a list of
possible errors (being just those error lists given in
§4), which errors are to be included in the assumed
error set E. This reflects the observation that some
errors are more likely than others and that the error
set may need to be adapted to the different needs of
different groups of students.

5.3 Path display

In our implementation, a path is a sequence of num-
bers obtained by carrying out the successive steps of
an algorithm, where path i is the path obtained from
algorithm Ai (refer §2). A collection of paths gives us
a path table where the top row of the table will always
be the correct path and the remaining rows account
for all other paths corresponding to all the subsets of
E. An alternative path display is in the form of a path
tree where the paths displayed are grouped by simi-
lar error subsets, which enables the user to trace the
consequences of errors. The program allows the user
to choose either a path table or a path tree display.

5.4 Using the software

The programs can be run with a variety of command-
line options. Full details may be found in the man
pages or in our technical report (Chong, Farr, Frost
& Hawley 2004). We briefly describe the operation of
the program rsa, which generates examples for the
RSA system.

This program may be run in interactive mode us-
ing the command

rsa -e
It outputs a list of the available primes and prompts
the user for p and q. Subsequent interaction al-
lows the user to choose the other numbers used by
RSA, leading to a particular choice of public and pri-
vate keys, which the user may accept or reject (and
try for another). The user is advised which expo-
nents in ZZ∗ϕ(n) are self-inverse, but is not prevented
from choosing such a value. Once the problem is
fully specified, the program outputs all possible er-
ror paths for the decryption problem, advising the
user of whether or not the example chosen is sound.
Interactive mode allows study of the error paths of
any example, whether sound or unsound, but does
not generate examples for the user.

Random mode is the main mode of the program.
Suppose the user wants a randomly generated sound
example with n ' 77, using the same error set as in
our example in §4.1: E = {(b), (c), (f)}. Then the
user enters

rsa -g -t 77 -s0110010
The successive bits in the -s option are used to switch
on, or off, the corresponding errors from (a)–(g) in
§4.1. The program might then randomly choose the
sound example given in §4.1: p = 7, q = 11, d = 17,

e = 53, m = 6, c = 62. In this case the student would
be given the public key (n, e) = (77, 53) and the
cyphertext c = 62, and asked to find the message m.
The program’s output includes a table giving the re-
sults of all error paths under our assumed error set E:

Path | d phi_n mod m’

1 | 17 60 77 6
2 | 17 60 60 32
3 | 16 77 77 15
4 | 16 77 60 16
5 | 53 - 77 13
6 | 53 - 60 32

The first column here gives the path number. The
second gives the value of d used. This corresponds
to which, if any, of errors (b) and (c) are made, with
d = 17, 16 or 53 according as neither, (b) only, or (c)
only is made. Note that errors (b) and (c) will not
both be made, and that this column is not affected by
whether or not error (f) is made. The third column
gives the modulus used for finding d = e−1, which
should be ϕ(n) = 60, but will be n = 77 if error (b)
is made, and is inapplicable if error (c) is made. The
fourth column gives the modulus used for finding m =
cd, which should be n = 77, but will be ϕ(n) = 60 if
error (f) is made. The fifth column gives the message
found.

Path 1 in the above table is the correct path, and
the remaining paths correspond to different subsets
of the error set:

Path Errors made
1 none
2 (f)
3 (b)
4 (b), (f)
5 (c)
6 (c), (f)

The output concludes with a brief remark that
this example is not diagnostic and a summary of the
amount of searching done before this example was
found.

Generation of random diagnostic examples works
similarly, with option -d instead of -g. However, it
may be necessary to use larger values of n, or smaller
sets of possible errors, otherwise it may be too slow,
due to the rarity of such examples.

Probability calculation mode can be employed us-
ing

rsa -c
The user is prompted successively for values of n, e
and m. For each of these, the user may enter either a
number or the character ‘r’. If the latter, the program
will examine all possible values from some appropri-
ate range. Once all three entries have been made,
the program examines all possible examples with the
given values, or ranges of values, for n, e and m, and
determines the numbers of these examples that are
sound or diagnostic. By default, all errors in E are
permitted. If the user wants a more restricted set,
then these can be specified as above. For example, to
use the error set E = {(b), (c), (f)}, the user enters

rsa -c -s0110010
Suppose the user enters n = 77 and then enters ‘r’
for both e and c. The program reports that it exam-
ined 159 different values of m and 40 different val-
ues of e (equivalently, of d), and that of the exam-
ples thus determined, 1950 were unsound, 4410 were
sound, and 2220 were diagnostic, giving probabilities
of about 0.31, 0.69 and 0.35 respectively.

The programs may also be run using the web in-
terface mentioned in §5.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

67

6 Conclusions

We have investigated pedagogically sound examples
in public-key cryptography and constructed software
to generate and study such examples. Our tools aid
the task of constructing good exercises for students
by automatically generating examples that are sound
or diagnostic, where with the absence of such tools,
arbitrarily generated examples have a high chance of
being unsound.

Future extensions to the tools could include creat-
ing an error feedback learning tool for students. The
learning tool could use the ideas and software detailed
in this report to give effective feedback on errors that
students might make. The tool could also be extended
to collect answers submitted by students and so carry
out a more systematic study of errors that students
make.

Some errors are more likely than others. If some
estimates of the probabilities of the various errors
were known (perhaps from the work envisaged at the
end of the previous paragraph), it would be possi-
ble to generate exercises for which the probability of
getting the right answer by a wrong path is bounded
above by some small positive constant.

The ideas of this paper and their implementation
could also be applied to other cryptosystems and pos-
sibly other teaching problems.

References

Chong, S. K. (2003), Cryptographic teaching tools,
BCompSc Honours, Monash University, Clayton,
Australia.

Chong, S. K., Farr, G. E., Frost, L., & Haw-
ley, S. (2004), Pedagogically sound examples in
public-key cryptography, Technical Report No.
2004/155, School of Computer Science and Soft-
ware Engineering, Monash University.

Diffie, W. & Hellman, M. E. (1976), ‘New directions
in cryptography’, IEEE Trans. Inform. Theory
IT-22 (6) 644–654.

ElGamal, T. (1985), ‘A public key cryptosystem and
a signature scheme based on discrete logarithms’,
IEEE Trans. Inform. Theory IT-31 (4) 469–472.

Massey, J. L. & Omura, J. K. (1986), Method and
apparatus for maintaining the privacy of digital
messages conveyed by public transmission, U.S.
Patent number 4,567,600.

Merkle, R. C. & Hellman M. E. (1978), ‘Hiding infor-
mation and signatures in trapdoor knapsacks’,
IEEE Trans. Inform. Theory IT-24 (5) 525–530.

Rivest, R. L., Shamir, A., & Adleman, L. M. (1978),
‘A method for obtaining digital signatures and
public-key cryptosystems’, Communications of
the ACM 21 (2) 120–126.

Welsh, D. (1988), Codes and Cryptography, Oxford.

CRPIT Volume 48

68

���������
	���
�������������������� ��!"!#�"$�%

&�'
(*)+'*,.-*/10324(65 798�';:18=<?>�@3ACBD/E(;-6F
GIHKJMLONQPIRTSVUIWXNDJZY�[\U^]6NQPI_+`bacWXd+We`fWgNQJ

a�[#LO[#J=h#[jiMh\Wg[#Jkh\[�SlJ=m�n.["h�opJ=NQqgNQrQsutcPIrDSQJpWe`vSlUvWgNQJ
w tyx6N{zC|{}l~Q~=�M�*mMWgJ+�p�pPIrQo��=iM��}p|Q|D|Q�M���=`fUvP�SlqgWeS
�Q�+���{�=�l�M�6�^���"�=���k�V�M���^�M�Q�M�l���Q���K�+�D�;�^�Q�

� ac[#�kSlPvUvR�[#J�U�NlL��;NQR��p�MUIWXJ=r=�=�CSDh#���=SQPvWg[3 �JpWgdQ[#P�`vW¡U^s
i+sMmMJ=[#sQ�kYci+¢¤£M|¥~Q¦p�M���=`^UIPISQqXWeS
§ �Q� § �D�p�k�D�+�¨� §�© �f���Q�6�f�l�

ª¬«¨­#®"¯{°=±l®
²#³f´^µ{¶¸· ¹»º½¼¿¾�Àl³^¼ÂÁÃ¾�¶Ä³E¾�Å{Å{¼Â·Â³^ÆbÇgÈÉ¶�Ê"µ{Ë½³^¶¸ÈÉµ{Á�¶¸³v¾�Á¸ÈÉÊ{ÁvÌ"·ÂÊ{´^¼Âµ{Æ{·ÂÊ¥Í�¹¸Î{³Î{¾�Ê{Æ{¼Â·ÂÊ{ÍjÈ�ÇEÆ{¾I¹4¾�´^ÈÉË½Ë6µ{Ê{·Â´f¾I¹¸³^ÆTÀQ³K¹»ÏÃ³^³^Ê¬ÈÉÅl³fÊ¬ÁÐº¥ÁÐ¹Ä³^Ë½ÁvÑÓÒ�Î{³·ÂÊ"ÇgÈÉ¶¸Ë�¾I¹Ä·ÂÈÉÊÓ´fÈÉÊ\¹Ä¾�·ÂÊ{³^Æ�ÏÔ· ¹¸Î{·ÂÊT¾�ÁÄ³^´^µ{¶Ä· ¹»ºÕ¼¿¾�Àl³f¼Ã´f¾�ÊTÀl³�µ¥¹Ä·Â¼Â·ÂÁ¸³^Æ¹¸È
Ål³^¶¸ÇXÈÉ¶ÄËÖ¾�´^´^³^ÁÄÁk´fÈÉÊ\¹¸¶ÄÈÉ¼VÆ{³^´^·ÂÁÄ·ÂÈÉÊ{ÁfÌ\ÁÄÅl³^´^· ÇXº*Å{¶¸È�¹Ä³^´K¹Ä· ×\³ÔË½³f¾�ÁÄµ{¶¸³ÉÌ¾�Ê¥Æb¾�·ÂÆ6·ÂÊ�¹¸Î{³ÃÆ{³K¹Ä³^¶¸Ë½·ÂÊV¾I¹Ä·ÂÈÉÊ;È�ÇQ¾�Æ{Æ{· ¹¸·ÂÈÉÊV¾�¼{ÎV¾�Ê¥Æ{¼Â·ÂÊ{Í¨¶¸³fÁÐ¹Ä¶¸·Â´K¹Ä·ÂÈÉÊ{Á¶¸³^Ø"µ{·Â¶¸³^Æ�À\º½¾�´^ÈÉË½Ë6µ{Ê¥·Â´v¾I¹¸·ÂÈÉÊ{Á�Á¸³^´fµ¥¶Ä· ¹»ºbÅlÈÉ¼Â·Â´Kº\Ñ=ÒÔÎ¥·ÂÁ�ÅV¾�Ål³^¶Ã´fÈÉÊ"Ù´^³^¶ÄÊ¥Á;¹¸Î{³�·ÂÁÄÁÄµ¥³fÁ*¶Ä³^Í\¾�¶¸Æ{·ÂÊ{Í�ÁÄ³^´^µ{¶¸· ¹»ºÕ¼¿¾�Àl³^¼Â¼Â·ÂÊ{ÍÚ·ÂÊÓÈÉÅQ³^Ê�ÁÐº¥ÁÐ¹Ä³^Ë½ÁfÑ
Û ³cÅ{¶ÄÈÉÅlÈÉÁÄ³c¾�ÁÄ³^´^µ{¶Ä· ¹»ºÕ¼¿¾�Àl³f¼Â¼Â·ÂÊ¥Í�ÇX¶4¾�Ë½³KÏÃÈÉ¶¸Ü�ÇgÈÉ¶;ÁÄµ{´4ÎTÁÐº¥ÁÐ¹Ä³^Ë½ÁfÝ¾�Ê¥ÆjÇXµ{¶¸¹¸Î{³^¶vÌDÀV¾�Á¸³fÆ�ÈÉÊ�¹ÄÎ¥·ÂÁ¨Çg¶Ä¾�Ë½³^Ï�ÈÉ¶ÄÜlÌVÏÃ³bÆ{³K×\³^¼ÂÈÉÅÕ¾�Ë½³^´4ÎV¾�Ê{· Ù´f¾�¼Â¼ º*´4Î{³^´4ÜI¾�À{¼Â³ÔË½È"Æ{³^¼#ÇgÈÉ¶=ÁÄ³^´^µ{¶Ä· ¹»º*¼¿¾�Àl³^¼Â¼Â·ÂÊ{Í¨ÁÐº¥ÁÐ¹Ä³^Ë½Á=¾�Ê{Æ6Æ¥·ÂÁÄ´^µ{ÁÄÁ· ¹¸Á½·ÂË½Å{¼Â³^Ë½³^Ê#¹Ä¾I¹¸·ÂÈÉÊT·ÂÁÄÁÄµ¥³fÁfÑ�ÒÔÎ¥·ÂÁbË½È"Æ¥³f¼�Å{¶¸Èv×"·ÂÆ{³^Á�¾�ÇXµ{Ê{´K¹¸·ÂÈÉÊV¾�¼À{¾�ÁÄ³.ÇXÈÉ¶�ÇXµ¥¹¸µ{¶Ä³ÔÆ{³^ÁÄ·ÂÍÉÊ�¾�Ê{Æ�·ÂË½Å{¼Â³^Ë½³^Ê#¹Ä¾I¹¸·ÂÈÉÊbÈ�ÇMÁÄ³^´^µ{¶¸· ¹»ºb¼¿¾�Àl³^¼Â¼Â·ÂÊ{ÍÁÐº¥ÁÐ¹Ä³^Ë½ÁfÑ
Þ;ßfàÉá�âÉãÐäÉå^æ ÈÉÅl³^Ê�Á¸º"Á¸¹¸³^Ë½ÁvÌ.ÁÄ³^´^µ{¶Ä· ¹»ºuÅlÈÉ¼Â·Â´Kº#ÌEÁÄ³^´^µ{¶Ä· ¹»ºZ¼¿¾�Àl³f¼Â¼Â·ÂÊ¥Í{Ì
¼¿¾�Àl³^¼�×�¾�¼Â·ÂÆV¾I¹Ä·ÂÈÉÊDÑ

ç è#é ®#¯Vê�ëEì.±Q®"íÐê é
nbop[�`vs+`fUv["RT`*h\NDJ=`vWgmM["Pv[¥mÕop[#PI[�SlPI[�h#SQqXqg["m�ND�k["J¬`fsM`fUv[#RT`"î
��JÕNQ��[#Jj`vsM`^UI[#RyWe`Ôd+Wg[#]6["mjSD`.Sc`f[#UENQL=NQJ=[*NQPER�NQPI[;h#NQRÕï
�p�MUv["PI`"�¨SQ`I`fNMh\WeSVUI["m]½WXUvo�`vNlL»U^]bSlPI[Q����[#PIWX�=op[#P�Slqe`#�.Uv["PvR�WXï
J=Slqe`#�;o+�pRTSlJðND�k["PISlUvNDPI`"�¨�po+s+`vWeh#Slqb�pPINMh\[¥`v`v["`"�
WXJpLONQPIR�Slï
UvWgNQJCUIPISQJ=`fLO[#P�R�[¥SlJ=`"�¨ñ#òKó"ôg��UIo=SVUcLONQPIR�`3SlJCSQ�MUvNDJpNQR�ND�=`
]½opNQqg[Ch#SQ�=Sl�pqg[�NlL��pPINMh\["`I`vWXJprÖSlJkmkõ{NDP�UvP�SlJ=`fLO[#PIPvWgJpr WXJpï
LONQPIR�SlUvWgNQJ�î��öPv[¥Slq3NQ��[#J1`vsM`^UI[#R÷h\NDR��pqXWg["`u]½WXUvo1h#[#Pvï
UISlWgJøPv[¥�D�=WXPI[#R�[#J�U�`�WgJ1WXUI`�h#NQR�Rj�pJ=Wgh"SVUvWgNQJ1]½W¡UIo1NQUvop["P
`fsM`fUv[#RT`"îbtc��[#J?i+sM`fUv["RùHKJ�Uv["PIh#NQJpJp[¥hÉUIWXNDJ��*J+d�WgPINQJpR�[#J�U
ú tÚi+H^��LONQP�`vopNDPfUÉû;h"SlJZ�k[ÚPI[#r�SlP�mM["muSQ`½SlJ�Sl�k`^UIPISDhÉUbPv["�MïPv[¥`f["JDU�SVUIWXNDJ�NlLpUIop[6`v[\UENlLkh#NQJ=h#[#�MU�`#�{["qX["RÕ["J�UI`"�{LO�pJ=hÉUIWXNDJ=`"�
`f["Pvd+Weh\["`"�¥�pPvNQUvNMh\NDqg`"�Mñ\òKó"ôg�lSD`.mp[\ü=Jp[¥m��+s�UIop[bx6SD`fWeh�ý½[#LO[#Pvï
[#J=h#[b�CN+mp[#qM�pPINQ��ND`v["mj��sjHfi=t ú Uvop[½HKJ�Uv["PvJkSVUvWgNQJkSlqptcPvr�SVïJpWXþ¥SVUIWXNDJ�LONQP
i�UISQJ=mpSQPImMWgþ"SlUvWgNQJkû ú Hfi=t�õVH^�6�Öÿ���¦��Vï�|½|"¦D¦��+ûÉ�SlJ=m�UIopND`v[c`v��["h\WXükhc`^U�SlJ=mpSQPIm=`*mM["PvWgdQ[¥m�LOPvNDR HfiktÓ�D]½opWeh�o
[#J=SQ�pqX[�h#NQR�Rj�=JpWgh"SVUIWXNDJ=`bSlR�NQJpr�ND�k["JZ`vsM`^UI[#RT`#î
i+[¥h\�pPIW¡U^sjqgSQ�k["qXqgWXJ=r�SQ`¨SlJ�[#qg[#R�["JDU
NQLkUIop[ctÚi+H^� Wg`
NDJp[

NlLÃR�["h�o=SQJpWg`vRT`
UIo=SVU*�=PvNVd+WemM[�mpSVU�S�`f[¥h\�pPIWXU^sQî¨acSlUIS�`v["h#�Mï
PvWXU^sTWg`*Uvo=[Ú`v[\U6NlLÔR�[¥SQ`v�pPv[¥`�U�Sl_D[#JTUINÓ�pPINlUI["h\U6mpSlUISjLOPvNDR
�pJ=Sl�pUvopNDPvWgþ#[¥m¬NQP6SQh"h\WemM[#J�UISQqkR�NMmMWXükh#SlUvWgNQJ��MmM[¥`^UIPv�khÉUvWgNQJÔ�
NQPÓmpWg`Ih\qgND`v�pPI[QîCi+["h#�pPIW¡U^s qgSQ�k["qXqgWgJprC�pqeS{sM`�SlJ�WgR��kNDPfU�SlJ�U
PvNDqX[ÓWXJ [#JMLONDPIh#WXJprZ`f[¥h\�pPIWXU^sZ��NQqgWeh\Wg["`"î���NV];["dQ["P"��];[ÓJpNlUI[
Uvo=SlUE`v["h\�=PvWXU^s�qeSl��[#qgqXWgJpr�WXUI`v[#qXL=mMN+["`ÔJpNlU.�pPvNVd+WemM[�`v���¬h\Wg[#J�U
mpSVU�Su`v["h#�pPvWXU^sQ��WXU3J=[#["m=`�UINu��[�h\NQR��pqg[#R�["JDUI["m?��s�NQUvop["P
`f[¥h\�pPIW¡U^s�RÕ[¥h�o=SlJ=Wg`vRT`#î
i+[¥h\�pPIW¡U^sðqgSQ�k["qg` ú HKJDUI[#PIJp[\Uu�;H w i=t ¢ NQPI_+WXJpr
	3PINQ�p�|"¦Q¦��Dû�SQ�p�pqgWX[¥myWXJyND�k["J `vs+`fUv["RT`?h\NDJ+dQ[#s1WXJpLONQPIR�SlUvWgNQJ

�ÈÉÅ\º¥¶¸·ÂÍÉÎ#¹ ´��������� Ì��Eµ{ÁÐ¹Ä¶Ä¾�¼Â·¿¾�Ê�
�ÈÉË½Å{µ¥¹¸³f¶Ô²#È"´^·Â³K¹»º\Ì��»Ê{´ÉÑ=Ò�Î{·ÂÁ�ÅV¾IÙÅl³^¶�¾�Å¥ÅQ³f¾�¶¸³fÆ�¾I¹=¹¸Î{³.ÒÃÏÃ³^Ê\¹»º"Ù��.·ÂÊ\¹ÄÎ��.µ{Á¸¹¸¶4¾�¼¿¾�Á¸·¿¾�Ê�
�ÈÉË½Å{µ¥¹¸³^¶Ã²"´^· Ù³^Ê{´^³�
�ÈÉÊ¥Çg³^¶¸³fÊ¥´f³�����
�²�
 �������! Ì#".ÈÉÀV¾�¶Ð¹vÌ.Òp¾�ÁÄË�¾�Ê¥·¿¾¥Ì��.µ{Á¸¹¸¶4¾�¼Â·¿¾¥Ì$ ¾�Ê#µV¾�¶¸º ������� Ñ%
�ÈÉÊ¥ÇX³^¶Ä³^Ê{´^³^Á
·ÂÊ'&Ô³^Á¸³v¾�¶¸´4Î�¾�Ê{Æ'(k¶4¾�´K¹Ä·Â´^³;·ÂÊ��»Ê¥ÇXÈÉ¶¸ÙË�¾I¹¸·ÂÈÉÊ3ÒM³^´4Î¥Ê{ÈÉ¼ÂÈÉÍ�º\Ì�)kÈÉ¼eÑ+*!,¥Ñ+)E¼¿¾�Æ{·ÂË½·Â¶.-�ÁÐ¹Ä· ×"·Â¼Â¼ Ù/
Ã¾�Á¸¹¸¶ÄÈ6¾�Ê{Æ'0E·Â¼Â¼1 ÈÉÀ{À{·Â³ÉÌ2-�Æ�Ñ3&�³^Å{¶ÄÈ#Æ{µ{´K¹¸·ÂÈÉÊZÇXÈÉ¶�¾�´v¾�Æ¥³fË½·Â´ÉÌ�Ê{È�¹ÐÙeÇXÈÉ¶�Å{¶ÄÈ54{¹�Å{µ¥¶¸ÙÅlÈÉÁ¸³fÁÔÅl³^¶ÄË½· ¹Ð¹Ä³^Æ3Å¥¶ÄÈv×"·ÂÆ{³^Æc¹¸Î{·ÂÁ�¹Ä³76#¹E·ÂÁ�·ÂÊ{´^¼Âµ{Æ¥³fÆDÑ

�=`v["mð�+s��pPINlUvNMh#NQqb[#J�UvWXUvWg["`ÓUINÖmp[\Uv["PvR�WgJp[�opNV] UIN okSlJMï
mMqg[?mpSlUISÖUIPISQJ=`fLO[#PIPv[¥m���[\U^]6[#["J `fsM`fUv["R�`"î HKJMLONQPIRTSVUIWXNDJ
h#NQJ�UISQWXJp[¥m�]½WXUvopWgJ S `v["h#�pPIW¡U^s qeSl��[#q�h"SlJð��[��MUvWgqgWg`v["m�UvN
h#NQJ�UvPINQq6SQh#h#["`I`#�;`f��["h#W¡LOs �pPINlUI["h\UvWgdQ[�R�[¥SQ`v�pPv[¥`#�;SlJ=m�mM[\ï
UI[#PIRÕWgJp[�SDmpmMWXUvWgNQJ=SQq;okSlJ=mMqgWgJprCPI["`fUvPIWgh\UvWgNQJ=`jPv[¥�D�=WXPI["mÖ�+s
S h\NQR�RÓ�pJpWeh#SVUIWXNDJ�`v["h#�pPvWXU^sÖ�kNDqXWeh\sDî�i+[¥h\�pPIW¡U^s qeSl��[#qgqgWXJpr
`vopNQ�=qgm ��[`f�=�p�kNDPfUI["m ��s UIop[#WgP��pPvNQUvNMh\NDqg`uWgJ1h\NDR�Rj�Mï
JpWeh#SlUvWgNQJ=`ZSlR�NDJprðND�k["J1`vs+`fUv["RT`#î HKJømpSVU�S�h#NQR�Rj�pJ=W¡ï
h"SVUvWgNQJ �pPINlUINMh\NQqe`"�Ú`v["h#�pPIW¡U^s1qgSQ�k["qg`��=PvNVd+WemM[S `f�=�p�kNDPfU
UIN¬Uvo=[Ó�pPINlUINMh\NQq.�pPIN+h#["`I`fWgJprTLONDP3h#NQPIPv[¥hÉUIqXsZo=SlJkmMqXWgJpr�Uvop[
mpSlUISbUIPISQJ=`fLO[#PIPv[¥mc��[\U^]6[#["J�U^]6N�`fsM`fUv[#RT` ú ��NQ�=`vqX["sÓ|¥¦Q¦��DûÉî��[#PI[;o=SQJ=mMqgWXJ=rcR�["SQJ=`ÔUvop[½SQh\UvWgd+W¡UIWX[¥`.��[#PvLONQPIR�["mjNQJÓm=SVUIS
`v�=h�o SQ`uh\NQqgqg["hÉUIWXJ=r=�b�pPIN+h#["`I`fWgJprk�;UIPISQJ=`fLO[#PIPvWgJpr=�½`fUvNDPvWgJpr=�
PI[\UIPvWg[#d+WgJpr=�MmMWe`v`v[#R�WgJ=SVUIWXJ=r=�pSlJkmZh#NQJ�UvPINQqgqgWXJprkî
acSlUIS�`v["h#�pPvWXU^s3WXJ=h#qX�kmM["`EmpSVU�S½WgJDUI[#rDPvWXU^s3SQJ=m�mpSlUIS�h#NQJMï

ükmp[#J�UvWeSlqgW¡U^sDîønbo=[?mpSVU�S WgJDUI[#rDPvWXU^sðWe`¬Sl��NQ�pU��pPINlUv[¥hÉUIWXNDJ
LOPINQR R�NMmMWXükh#SlUvWgNQJ���mp["`fUvPI�=hÉUIWXNDJ���SlJ=m mMWe`vh#qXN�`f�=Pv[Dî9HKJ
h#NQR��p�MUI[#P
`fsM`fUv["R�`"�{Uvo=Wg`¨We`E�pPvNQUv[¥hÉUvWgNQJjLOPvNDRy]½PvWXUvWgJpr�SlJkm
mM["qX[#UvWgJpr=î½¢ WXUvo mpSVU�STWXJ�UI[#rQPIWXU^sQ�kx6Wg�=S ú x;Wg�=S?|"¦�ÿDÿlû6�pPINlï��ND`v["mÓS�R�NMmM[#q�UIo=SVU
WgJ=h\qg�=mM[¥`E`v["h#�pPIW¡U^s�qeSl��[#qe`#îEnbop[½x6WX�=S
R�NMmM[#qÓ`f��["h#W¡ü=[¥`�PI�pqX[#ïÄ�kSQ`v["møh\NQJ�UIPvNDqg`uLONQP?]½PvWXUvWgJpr SlJkm
mM["qX[#UvWgJpr?J=["h\[¥`v`ISlPIsCUIN?�pPI["`v[#PIdQ[¬m=SVUIS?WXJ�UI[#rQPIWXU^sQ�
SlJ=m�W¡U
SQqg`vN?`v�k[¥h\WXü=["`ÓPv�=qX[#ïÄ�=SD`f[¥m h\NDJDUIPvNDqg`�LONQPÕPv[¥SQmMWgJpr�UIN?�pPI[\ï
dD[#J�U�S�opWgrQo1WXJ�Uv["rQPIW¡U^s �pPINMh\[¥`v`�LOPvNDR÷Pv["qXs+WgJpr NQJ1m=SVUIS
UIo=SVU�okSQ`Tqg["`I`TWgJDUI[#rDPvWXU^s�UIo=SlJ UIop[C�pPINMh\["`I`"î1nbop[?m=SVUIS
h#NQJMükmp[#J�UvWeSlqgW¡U^sjWg`
SQ�kND�MU��pPINlUv[¥hÉUIWXNDJjLOPINQR mpWg`Ih\qgND`v�pPI[QîÔHKJ
h#NQR��p�MUI[#P�`fsM`fUv["R�`"�cUvopWe`�Wg`Z�pPINlUI["h\UvWgNQJ LOPINQR Pv[¥SQmMWgJpr=î
¢ WXUvo m=SVUIS�h\NDJMükmM["JDUIWgSQqXWXU^sQ�cx;["qXq3SlJ=m98ÔS w SDmM�pqeS ú x6[#qgq
: 8.S w SQmp�pqgSC|"¦�ÿ�;Dû�mM[\ü=J=["m?SuR�NMmM[#qEUvokSVU�WXJkh\qg�=mM["`Ú`v[\ïh#�pPvWXU^sÚqgSQ�k["qg`"î.nbo=[6x6[#qgqXï<8.S w SQmp�pqgSbR�NMmM["q+`v��["h\WXü=[¥`.PI�pqg[\ï�=SD`f[¥m�h#NQJ�UvPINQqe`;LONQP½PI["SQmpWXJprÕJp[¥h\["`I`ISlPIsÓUIN��pPv[¥`f["PvdD[3m=SVUIS
h#NQJMükmp[#J�UvWeSlqgW¡U^sD��SQJ=m�WXUb`v�k[¥h\WXü=["`;PI�pqX[#ïÄ�kSQ`v["mTh\NDJ�UvPINQqe`¨LONQP
]½PIW¡UIWXJ=r?UIN ["J=`f�=Pv[uUvo=SlU¬mpSVU�S?We`�JpNlUTh\ND�pWg["mðUvNÖS h#NQJMï
U�SlWgJp[#PT]½op["Pv[�h#NQJMükmp[#J�UvWeSlqgW¡U^s�h#SlJ JpNQU¬�k[�rD�=SlP�SlJ�Uv["["mÃî
HKJ���NlUIo�Uvop[Õx;Wg�=S¬SQJ=mZUvo=[jx6[#qgq¡ï78ÔS w SQmM�pqeSÕR�N+mp[#qe`#�=Uvop[`v["h#�pPvWXU^s qgSQ�k["q3We`ZSlJ1SlUfUIPvWg�p�MUI[?NlLjUvop[ÖmpSVU�Spî HKJ rD[#JMï
["PISQq¸�EUvo=[Z`v["h#�pPvWXU^sÖqgSQ�k["q½SQ`I`fNMh\WeSVUI["mÖ]½WXUvoðUvop[�mpSVU�SCPI[\ï
RTSlWgJ=`�h#NQJ=`fUISQJ�U"î=��ND�=`fqg[#s ú ��NQ�=`vqX["s�|¥¦Q¦��Dû3h\NDJ=`fWemM["Pv[¥mUIop[��pPINQ�=qX["R NQL�Pv["qgSQ�k["qXqgWgJprj]½opWeh�o¬NQL»Uv[#JuSl�p��["SQPI`;SQ`*Uvop[
PI["`v�pqXU3NQL6`vNQR�[Ó["J�UvWXU^s�o=SlJ=mpqXWgJprZUvop[TmpSlUISZSlR�NQJ=r�NQ��[#J
`vsM`^UI[#RT`#î
nbop[T`f[¥h\�pPIW¡U^s�qeSl��[#q;SQ`ÚSlJÖSVUvUvPIWX�p�pUv[TNlLbmpSVU�S�`fopND�pqem

��[���NQ�pJ=møUIN Uvo=[�mpSlUISpî ¢ op["J�mpSVU�S R�NVdQ[¥`CSlR�NQJ=r
ND�k["J `fsM`fUv["R�`"�½UIop[WgJ�Uv["rQPIW¡U^s `f[¥h\�pPIWXU^s `v[#PId+Wgh#[CWe`�rD[#JMï
["PISQqXqgs �k`f[¥mÖUvNÖSQh"h\NQR��pqgWe`foÖUIopWg`Õ�pWgJ=mMWgJprkî H4L�UIop[�h\NQRÕï
RÓ�pJpWeh#SVUIWXNDJ=`;[#J+d+WXPINQJpR�["JDU6mMN+["`6JpNlU6WXJkh\qg�=mM[ÚSj�pPINlUINMh\NQq
�pPINVd+WgmpWXJprÖUIop[?WgJ�Uv["rQPIW¡U^s `f[¥h\�pPIWXU^s `v[#PId+Wgh#[�UvNð�=WXJ=m Uvop[
`v["h#�pPvWXU^s�qeSl��[#q
UINuUIop[¬mpSlUISp��Uvop["J UIop[Th\NDRÕRÓ�pJpWeh#SlUvWgNQJ=`
["J�d+WgPvNDJpR�[#J�U
`fopND�pqemjWgJ=h\qg�=mM[½NQUvop["P
R�["h�o=SQJpWg`vRT`EUvNÚ�pPI[\ï
`v[#PIdQ[cUvopWe`½�pWgJ=mMWgJprkî
nbop[ùJpNQUvWgNQJ NQL `f[¥h\�pPIWXU^s qeSl��[#q Slqe`vN�Sl�p��["SQPI` WXJ

`v["h#�pPvWXU^s�ï¸U^s+��["m qeSlJprD�=SlrD["`"�6]½o=Wgh�o o=S{dD[�Pv[¥h\["JDUIqXs ��[#[#J
�pPINQ��ND`v["m�UvN3[#JMLONDPIh#[½`f[¥h\�pPIW¡U^s��=PvND�k["PfUIWX[¥`.WgJ=h#qX�=mpWXJpr�h#NQJMï
ükmp[#J�UvWeSlqgW¡U^s SlJ=m WgJ�Uv[#rDPvWXU^s��+s�U^s+��[Ch�op["h�_+WgJpr ú ��[#WgJDUIþ#[

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

69

: ý½WX[¥h�_Q[C|¥¦Q¦��p�Ô��sD[#P�` : 8ÔWg`v_QNVdÖ£l~Q~D~p��>ÃmpSlJ=h#[#]½Weh?ñ#ò
?A@ îÔ£Q~Q~p|{ûÉî3HKJ `v["h#�pPvWXU^s�ï¸U^s+��["m�qeSlJ=rQ�=SQrQ["`"�kU^s���["`ÚSQPv[Ó[\z+ïUv[#JkmM["m]½W¡UIo `v["h\�=PvWXU^s1qeSl��[#qe`?UvN ["JMLONQP�h\[�WXJpLONQPIR�SlUvWgNQJ
B NV] h\NDJDUIPvNDq¸�½�=�MU�UIop[`vNQPvUuNQL�qgSQ�k["qg`uSlPI[C�=`v�=SlqgqXs SQ�Mï�pqXWg["m NDJpqXsCUvN�mM[#J=NlUv[T`v["h#�pPvWXU^s?h#qgSD`v`v["`ÚSQ`I`vN+h#WgSlUv[¥mC]½WXUvo
�=`f["PI`�SlJ=muUvo=[�Pv[¥`fND�pPIh#["`;UvokSVU��pPINQrDPISQRT`6SDh#h#["`I` ú >�op["Jpr
: ��sD[#P�`½£l~Q~���û\înbop[¬`v["h#�pPvWXU^sCqeSl��[#qe`�]6[�SQPv[Th#NQJ=h#[#PIJpWXJ=rZWgJ UvopWe`��=Slï
�k["P¬SlPI[�rQ["Jp[#PIWehlîði+�=h�o�qgSQ�k["qg`Õo=S{dD[uS `^U�SlJ=m=SlP�mÖLONQPIR��
`f�=h�ouSQ`*Uvop[3NQJp[cNlLÃUIop[3`fUISQJ=mpSQPIm¬`v["h#�pPIW¡U^sÕqgSQ�k["qÃmM[\ü=J=["m
WXJ ú/C H w i�|D���ð|¥¦Q¦��+ûÉ��]½o=Wgh�o Wg`T`v��["h\WXükh"SlqgqXsðSQ�p�pqgWX[¥m�LONDPWXJMLONDPvRTSlUvWgNQJ UvP�SlJ=`fLO[#PIPIWXJprkî ¢ [C[#JkmM["S{dDNQ�pP�UIN �pPvNVd+WemM[
SÖLONQPIRTSlq�R�[#UvopNMmMNDqXNDrQs�LONDP�R�NMmM[#qgqgWXJpr `f[¥h\�pPIWXU^sðqeSl��[#qe`
SlJ=m?qgSQ�k["qXqgWXJ=ru`vs+`fUv["RT`#îÚnbop[jR�[#UvopNMmMNDqXNDrQsZ];ND�pqgm?`f�p�pï
�kNDPfU½UIop[�mM["`vWXrDJZSQJ=mZWXR��pqg[#R�["JDU�SVUIWXNDJuNQL¨`v�=h�o�`fsM`fUv[#RT`"î
¢ [�mMNÕJpNQUbWgJ�Uv["J=muUvN�mMWg`Ih\�k`v`½SÓ�pP�SQhÉUIWgh"Slq�qeSl��[#qgqXWgJprT`fsM`fï
Uv[#R��
�p�pUjUvo=[�R�[\UIopNMmp`ÓSQJ=mÖUI["h�opJpWe���p["`�LONQPÓRÕNMmM["qXqgWgJpr
`f[¥h\�pPIW¡U^sÓqgSQ�k["qg`*SlJ=m�`v[#dQ["PISQqMWXR���NQPvUISQJDU�We`I`f�p[¥`¨Pv["rDSQPImMWgJpr
Uvop[�WgR��pqX["R�[#J�UISlUvWgNQJZNlLESÕqeSl��[#qgqXWgJpr�`fsM`fUv["R]½WXqgqÃ��[��pPv[#ï
`f["JDUI["mÃî�tc�pP�LONDPvRTSQq¨mp["`Ih\PIWX�MUIWXNDJ�LONQP�`v["h#�pPvWXU^s�qgSQ�k["qXqgWgJpr
mMN+["`6JpNlU�mMWe`Ih\�=`I`;Uvop[Ú�po+sM`fWeh#SQqkqeSl��[#qgqgWXJprÕNlLEWXJpLONQPIR�SlUvWgNQJ
NQP
`^UINQP�SlrD[*R�["mMWeS3SlJ=mjWXJMLONDPvRTSlUvWgNQJÓmpWg`v�pqeS{sQ["mjNQJÕSch#NQRÕï
�p�MUv["Pc`Ih\PI[#["J�NQP�NQUvop["P���[#PIWX�po=[#P�Slqe`#îE8ÔSQ�k["qXqgWXJ=r¬NlL
WgJMLONQPvï
R�SlUvWgNQJ�`^UINQPI["muWXJZWgJDUI[#PIJ=SlqÃR�["RÕNDPvs¬SQJ=mZ`^UINQP�SlrQ[cR�["mMWeS
ú [Qî r=î¨o=SQPIm�mMWe`v_+`"�+h\NQR��=SDhÉU;mpWg`v_M`#�DR�SQrQJp[#UvWehbUISQ�k[¥`#��[\U�hlîÂûWg`ZSlqe`fNðNQ�MU�`fWemM[?NQL�Uvop[`vh#NQ��[?NQL�UvopWe`��kSl��[#P�SlqXUvopND�prQo
`fWgR�WXqeSlP�Uv["h�o=JpWg���p[¥`�h"SlJ���[ÓSl�=�pqXWg["m�î�nbop[j�pPINlUI["h\UvWgNQJ�NlL
mpSVU�SjWgJ�UIPISQJ=`vW¡U�SlJkmTUvo=[#WgP�SQ`I`fNMh\WeSVUI["mTqeSl��[#qe`bSlqgNQJprÕ]½WXUvo
Uvop[��=WXJ=mpWXJprj�k[#U^];["[#J�Uvo=[�mpSVU�S�SlJ=mÕUIop[�qeSl��[#qe`
We`
Uvo=[�Pv[#ï
`f��NQJ=`vWg�pWXqgWXU^s�NlLkUvop[½h\NDR�Rj�pJpWeh#SlUvWgNQJ=`E�pPINlUINMh\NQqe`EWXJ+dDNQqgdQ["m
WXJ�Uvop[�UvP�SlJ=`fLO[#P6SlJ=m�UIop[#PI[\LONDPv[�JpNlUbmMWg`Ih\�k`v`v["mTWgJTUIopWg`6�=Slï
�k["P"î¨��qXUvopND�prQoÕWgJÓUIop[½mMWe`vh#�=`v`vWgNQJÓ`v["h\UvWgNQJÕ];[6rQWgdQ[bSÚh\NDJMï
`fWemM[#P�SVUIWXNDJ UvN�UIopPv[¥SVU�`jSlJkm `fNDRÕ[�UI["h�opJ=Wgh"Slq;mpWg`Ih\�=`I`vWXNDJ=`
NQJð�=Pv["dQ[#J�UIWXJpr SVUvUISQh�_M`"�¨Uvop[�h\NDR��pqXWeSlJkh\[�]½WXUvo NQ�=PÕSQ�Mï
�pPvN�SQh�oÖmMN+["`�J=NlUj�pPINVd+Wgmp[�SD`v`v�pP�SlJ=h#[ÓNQLbUvop[¬`v�pWXUISl�=WXqgW¡U^s
NlL�SlJðWXR��pqg[#R�[#J�U�SVUvWgNQJ�LONQP�UIop[Z�pPvNQUv[¥hÉUvWgNQJ NQL�mpSVU�SCSQh\ï
h\NQP�mMWgJprÓUvNT`f��["h#W¡ü�h�`f[¥h\�pPIW¡U^sT��NQqgWeh\Wg["`"î¨nbokSVU�SQ`I`v["`I`fR�[#J�U
Rj�=`fUÔ��[*RTSQmM[�UvopPINQ�prDo3Uvop[6Sl�p�pPINQ�=PvWeSVUI[E["dVSlqg�=SVUIWXNDJÚSQJ=m
h\[#PvUvWXükh"SVUvWgNQJZ�pPINMh\["`I`v["`"î
HKJ UvopWe`Ú�=SQ�k["P"��]6[Õü=P�`^U�mMWe`vh#�=`I`�S¬LOP�SlR�[#]6NQPI_�NlLb`f[#ï

h\�pPIW¡U^s qeSl��[#qgqXWgJpr=�¨WgJ]½opWeh�o�`f[¥h\�pPIW¡U^sÖmMNDR�SQWXJk`#�¨`f[¥h\�pPIWXU^s
NQ��F^[¥hÉUI`"�
`f[¥h\�pPIWXU^s h#qgSD`v`vW¡ü�h#SVUIWXNDJ=`"�.h#S{dD["SlUI`"�ESQJ=m Uvop[Z`f[#ï
h\�pPIW¡U^s?�kNDqXWeh\s?SD`3Uvop[T�kSQ`vWghÕ[#qg[#R�["JDU�`ÚWXJ+dDNQqgdQ["m?WXJ `v["h#�Mï
PvWXU^s qgSQ�k["qXqgWgJpr SlPI[¬LONQPIRTSlqgqXs�mp[\ü=Jp[¥mÃî�nbo=[#J��;�=SQ`v["mðNQJ
Uvop[ZLOP�SlR�[#]6NQPI_��E]6[��=PvND�kN�`f[ZSCR�NMmM[#q6LONQPT`v["h#�pPvWXU^sÖqgSlï
�k["qXqgWXJ=r=�¨]½opWeh�o Wg`�R�[¥h�o=SlJpWeh#SQqXqgs h�o=["h�_VSl�pqg[¬SlJkm h"SlJ ��[
["SQ`vWgqXs¬okSlJ=mMqg["m�î
¢ [�mMWe`vh#�=`I`bWXR��pqg[#R�[#J�U�SVUvWgNQJZWe`v`v�p["`6LONDP
UvopWe`ÔR�NMmM["q¸�VWgJ=h\qg�=mMWgJpr�S�Pv["�pPI["`v[#J�UISlUvWgNQJÚNlLpSl�k`^UIPISDhÉU.`vs+JMï
UISVz�LONDP�Su`v["h#�pPvWXU^s�qeSl��[#qgqXWgJpr�`fsM`fUv[#R��Ã]½opWeh�o?rDWXdD["`3`f�=W¡Uvï
Sl�pqg[�`fs+J�UISDhÉUIWghÚh\NDJ=`fUvPI�=hÉU�`6LONQP�h\NDJ+dQ[#s+WgJpr�`f[¥h\�pPIW¡U^s�qgSQ�k["q
WXJMLONDPvRTSlUvWgNQJ��=SQJ=m�Uvop[��kSQ`vWgh3[#qg[#R�["JDU�` ú R�[¥h�o=SlJpWe`vR�`�û;NlLUvop[T`vs+`fUv["R�î3¢ [�Slqe`fNu�pPvND�kN�`f[ÕS¬R�[\UIopNMmCLONDP�UIop[ÕqgSQ�k["q
d{SQqXWempSlUvWgNQJC�=SD`f[¥m�NQJ�UIop[jR�NMmM["q¸î3nbop[jR�NMmM[#qE�pPINQ��ND`v["m
WXJTUIopWe`��=SQ�k["P*�pPINVd+WgmM[¥`�S3LO�pJ=h\UvWgNQJ=SQqk�kSQ`v[bLONQP�LO�pUv�pPI[�mM[#ï
`fWgrQJ�SQJ=mÚWXR��pqg[#R�["JDU�SVUIWXNDJ�NlLp`v["h\�=PvWXU^scqeSl��[#qgqgWXJprc`fsM`fUv[#RT`"î
H4U
h"SlJÓ�k[6["SD`fWgqXs�R�NMmMWXü=["mÓSQh"h\NQP�mMWgJpr�UIN3`v��["h\WXükh6`f[¥h\�pPIWXU^s
Pv[¥�D�=WXPI[#R�[#J�U�`#î
tc�pP
Sl�p�pPINDSDh�o�Wg`.UIop[#PI[\LONDPv[;dQ[#PIs�rQ["Jp[#P�SlqÄ�
W¡U�]6NQ�pqemÓ�k[½�=`v[\LO�=qMLONQP
rD�pWgmpWXJpr3UIop[�mM[#dD[#qgNQ��[#PEUvNV]bSlP�mp`¨S
mM["`vWXrDJ?NQL;S�qeSl��[#qgqgWXJpr�`vs+`fUv["R SlJ=m?W¡U�`3WXR��pqg[#R�[#J�U�SVUvWgNQJÔ�
SlJ=mÕWXU�R�S{sÓSlqe`fNÚop["qX�ÕUvo=[½�=`f["P¨UvNÚ�pJ=mp[#P�`^U�SlJ=m�SlJkmÓSQJ=SlqXï
s+`v[*]½o=[\Uvo=[#P¨`f�=h�oÓS�`vs+`fUv["Ry`vSlUvWe`^ü=[¥`Ô`v["h#�pPvWXU^s3�pPvND�k["PfUIWX[¥`
Pv[¥�D�=WXPI["mÃî
nbop[Ó�=Sl��[#PcWg`3`^UIPv�khÉUv�=Pv[¥m�SQ`½LONDqXqgNV]�`"î�i+["h\UvWgNQJ?£¬mpWg`fï

h\�=`I`f[¥`�`v[#dQ["PISQq��pPv["qXWgR�WXJkSlPIs¬JpNlUIWXNDJ=`bPI[#qeSVUv[¥m¬UIN¬`f[¥h\�pPIWXU^s
Wg`I`f�=["`�NlLÚNQ��[#J `vsM`^UI[#RT`#î i+[¥hÉUIWXNDJG� �pPINQ��ND`v["`TSÖ`v["h#�Mï
PvWXU^s¬qeSl��[#qgqXWgJprÕLOPISQR�[#]6NQPI_ÓLONDP½`f�=h�o�`vs+`fUv["RT`#î¨HKJ�i+["h\UvWgNQJ
�=��];[Ó�pPI["`v[#J�U3S�RÕNMmM["qELONQPÚ`f[¥h\�pPIW¡U^sZqeSl��[#qgqXWgJpr�`fsM`fUv[#RT`"î
i+["h\UvWgNQJ }ÖmMWe`vh#�=`v`v["`�WgR��pqg[#R�[#J�UISlUvWgNQJ We`v`v�p["`�]½WXUvo UIopWe`
RÕNMmM["q¸î¨i+["h\UvWgNQJH;½h#NQJ�UISQWXJ=`Ô`fNDRÕ[¨LO�=PfUIop[#PEh\NQJk`fWemM[#P�SVUIWXNDJ=`
LONQP½NQ�=P½RÕNMmM["q¸�kSlJ=m�i+["h\UvWgNQJ?ÿÓh\NDJ=h\qg�=mM[¥`6Uvop[��=SQ�k["P"î

I J ¯AKML¸í/N�í é °p¯�OQP�êk®"í¸ê é ­
�;NDJ=`fWemM["PvWgJpruUvopN�`f[T["qX["RÕ["J�UI`ÚUIo=SVUjSQPv[�["`I`v[#J�UvWeSlq¨UIN�Uvop[
`v["h#�pPvWXU^s�qeSl��[#qgqXWgJpruLONQP�NQ��[#J `fsM`fUv["R�`"��]6[Õü=PI`fUÚrQWgdQ[ÓUvop[
LONDqXqgNV]½WXJ=r ú WXJMLONDPvRTSQqeûbmM[#ü=JpWXUvWgNQJ=`DR
SUT K+±Qì.¯VíO®5OWV*êXLÐí¸±�O R�� `v[\U�NlL�h\PIW¡UI[#PIWgScLONDP¨Uvop[½�pPINVd+W¡ï`vWgNQJCNQL6`v["h\�=PvWXU^s�`f["Pvd+Weh\["`"��]½opWeh�o mM[#ü=Jp["`ÚSQJ=m?h#NQJMï
`fUvP�SlWgJ=`�Uvop[�SQh\UvWgd+W¡UIWX[¥`*NQL.SjmpSlUISj�pPvNMh#["`I`fWgJpr�LÐSDh\WgqXWXU^s
WgJCNDPImM["P�UIN¬RTSlWgJDU�SlWgJ?`v["h\�=PvWXU^sZh#NQJ=mpW¡UIWXNDJ=`�LONDPc`vsM`^ï
UI[#RT`½SlJkmZm=SVUIS=î

SUT K+±Qì.¯VíO®5OYLZKM[+K\L R � opWg[#P�SlP�h�opWeh#SlqÃWgJ=mMWeh#SlUvNDP½NlLEUvop[mp[#rQPI[#[NlLÓ`v[#Jk`fWXUvWgd+W¡U^s UIN S h\["PfU�SlWgJ Uvo=Pv[¥SVU"î ��J+s
�kSlPvUvWeh\�pqeSlP�`v["h#�pPvWXU^sjqg[#dD[#qkWXR��pqgWX[¥`*S�`v�k[¥h\WXükh½qg[#dD[#qpNQL
�=PvNQUv["h\UvWgNQJ¬SDh#h\NDPImpWXJpr�UvN�UIop[Ú`f[¥h\�pPIW¡U^sÕ��NQqgWgh#sÕ��[#WgJpr
["JMLONQP�h\[¥mÃî

SUT K+±Qì.¯VíO®5OøëEêXN�°pí é R � h#NQqgqX[¥hÉUIWXNDJ NQL6["JDUIW¡UIWX[¥`#�.UvN]½o=Wgh�o Sl�=�pqXWg["`uS `fWgJprDqX[C`v["h#�pPvWXU^sð��NQqgWeh\sð[#zM["h\�pUv["m
�+s�S¬`vWXJprDqX[ÓSl�MUIopNQPIW¡U^su]½op[#PI[jSQJ�[#J�UvWXU^sZh"SlJ���[jPI[\ï
r�SlP�mM["m�SD`ÔSH]5^`_/a#ñ�ó\ò+NDP.SlJÓSQhÉUIWXdD[?Db ñdc=ò ú Sc�k["PI`vNQJÔ�{Sh#NQR��p�MUI[#P½NDP�`fNDRÕ[#UvopWgJpr�[#qe`v[¥û;WXJ�SQJuND�k["J�`vsM`^UI[#R�î

SUT K+±Qì.¯VíO®5O�í é�e ê=¯AN�°p®"íÐê é êk«.fDK+±Q® R � Pv[¥`fND�pP�h\[Q�
UIN+NQqÄ�cNDPuR�["h�okSlJpWe`fR÷�k`f[¥m UIN RTSQWXJ�UISQWXJøS�h#NQJ=mpW¡ï
UIWXNDJ NQL;`v["h\�=PvWXU^s�WXJÖS�h\NDRÕ�=�MUv["PvWgþ#[¥mC[#J+d+WgPvNDJpR�[#J�U"î
nbo=[�h\qeSQ`I`�NlL½ND��F^["h\UI`jSQPv[¬mp[\ü=Jp[¥m WgJÖUv[#PIRT`�NQL½SlUfï
UIPvWg�p�MUI["`uUvo=[#s �kN�`v`v["`I`"��NQ��[#P�SVUIWXNDJ=`TUIop[#s ��[#PvLONQPIR
NDP*SlPI[���[#PvLONQPIR�["m�NQJ�UIop[#R��MSlJkmÕUvop["WXP;Pv["qgSlUvWgNQJ=`vopWg�
]½WXUvo�NQUvop["P½NQ��F^[¥hÉUI`"î
i+["h#�pPvWXU^s qgSQ�k["qg`Zh\NDJ�UISlWgJ `v["h#�pPvWXU^s UISQrD`uNQPuUISlr `f[#UI`

UIN�h"SlPIPvs `f[¥h\�pPIW¡U^s�ï4Pv["qgSlUv[¥mCWgJMLONQPIRTSVUvWgNQJÖSl�=�pqXWg["m LONDPÚUvop[
�pPINlUI["h\UvWgNQJ NlL�WgJMLONQPIRTSVUIWXNDJ [\zph�o=SlJ=rQ["m SQRÕNDJpr NQ��[#J
`vsM`^UI[#RT`#î ��h#h#NQP�mMWgJpr UvN ú H^n½ �ï4n ý½[¥h\NQR�R�[#JkmpSVUIWXNDJ
g î ���=|u£Q~Q~Q~�ûÉ�EUvo=[ZSD`f��["h\UI`ÓNlLc`v["h#�pPvWXU^s [\zM�pPI["`I`f[¥m �+sÖS`v["h#�pPvWXU^s��kNDqXWeh\sD��WgJ=mMWeh#SVUI["m WXJ S�`f[¥h\�pPIW¡U^s�qeSl��[#qÄ��WgJ=h\qg�=mM[
UIop[TqX["dQ["q
NlLb�pPvNQUv[¥hÉUvWgNQJ UINZ��[¬rDWXdD[#J UvNCmpSlUIS�`^UINQPI["m WXJ
SÓ`fsM`fUv[#R��M]½opNÕWe`6SQ�MUvo=NQPIWXþ"["mTUINÕSDh#h#["`I`;mpSlUIS=���=PvNMh\[¥`v`v["`
NDP;PI["`vNQ�pP�h\[¥`#��`f[¥h\�pPIWXU^sTR�SQPv_+WgJprD`;`fo=NV]½J�NQJZSlJ+sTmMWe`f�pqeS{s
NDPc�pPIWgJDUÚNlL*Uvop[�RTSVUI[#PIWgSQq¸��PINQ�MUIWXJpr�SlJkmC[#Jkh\Wg�pop[#PIWgJpr�PI[\ï
���pWgPv["R�[#J�UI`ELONDP*mpSVU�S3UvP�SlJ=`vR�W¡UvUv[¥mÓ��[\U^]6[#["J¬`fsM`fUv["R�`"�lPI[\ï
���pWgPv["R�[#J�UI`3LONDP��pPINlUv[¥hÉUIWXNDJ SQrDSlWgJ=`fU��pJ=Sl�pUvopNDPvWgþ#[¥m h#NQ�Mï
WgJpr=�cSlJ=m `vN�NDJ�î ¢ o=[#J mpSlUISðop[#qem NDJ SlJ `vsM`^UI[#R NQP
]½op["J�WXUjUvP�SlJk`fR�WXUfUv[¥m [#qg["h\UvPINQJpWeh#SQqXqgs?��[\U^]6[#["Jð`vs+`fUv["RT`#�
UIop[mpSlUIS�SQPv[?qgSQ�k["qXqg["m UIN�WgJ=mMWeh#SVUI[CUIop[`v["h#�pPvWXU^s h\NQRÕï
�=SQPfUIR�[#J�U¬UvN�]½opWeh�o Uvop[mpSVU�S���[#qgNQJpr�`�SlJkm Uvo+�=`uopNV]
UIop[3m=SVUISjUvNÕ��[co=SQJ=mMqg["m¬LONQP½`f[¥h\�pPIWXU^sQî
nbo+�=`#�+]6[�LO�=PfUIop[#P
Jp["["m�UvN¬mM[#ü=Jp[
S �h]#ñIód^�i�j»òlk�ò ?db Wg`3SlJCWgJMLONDPvRTSVUIWXNDJC�pJpWXU3h#NQJ�UISQWXJ=WXJprS�Pv["�pPv[¥`f["J�UISVUIWXNDJ�NlL�h\["PfU�SlWgJ¬`f[¥h\�pPIW¡U^s�ï4Pv["qgSlUv[¥mÓWgJMLONDPfï
RTSlUvWgNQJ ú [Dî rkîX��STPI["`fUvPIWgh\UvWgdQ[�SVUvUvPIWX�=�MUv[��=W¡U�RTSQ�kûÉî��JkSlR�["m ò ?db]\ñ#ò6Wg`ÓUvo=[�ü=["qgm�h\NDJDU�SlWgJpWgJpr?Snm ?DbAo ñ\òlpq ?Ar ñ¨SlJ=mjW¡U�`
SQ`I`fNMh#WgSlUv["mj`f[#U¨NQL�`v["h#�pPvWXU^s3UISQrD`"î.nbop[m ?db�o ñ#ò q ?Ar ñ¨h#SQJj��[bJ��=RÕ["PvWeh;WgmM["J�UvWXü=[#P�SD`v`vNMh\WeSVUv[¥m]½WXUvo�S�`v[\U�NlL¨`f[¥h\�pPIWXU^sTUISQrD`"î

S �s]#ñ�ó!^�i�j»òlk @�? _�ñ @ �.h\NQJk`fWe`^UIWXJ=r�NlL�NDJp[jNDPcR�NDPv[Õ`f[¥h\�MïPIWXU^s U�SlrÖ`f[#UI`"��We`ÕS RTSlPI_+WXJpr �kND�pJ=m�UvN S?`v["h#�pPvWXU^s
WgJMLONDPvRTSVUIWXNDJ NQ��F^[¥hÉUDt3WXUuJ=SQRÕ[¥`¬NDP�mM["`vWgrQJ=SlUv["`TUvop[
`v["h#�pPIW¡U^s¬SlUfUvPIWg�p�MUv[¥`½NlL.Uvo=SlU�NQ��F^[¥hÉU¥î

S �u]#ñ�ód^�i�j»òZk @�? _Iñ @�@ j�c b]�k�]ÉòKñ r We`�S�`fsM`fUv["R ú NDP�`fNQL»Ufï]bSlPI[¥û��=`v["m?UvN�rD[#Jp["PISlUv[�`f[¥h\�pPIW¡U^s�qeSl��[#qe`3LONQP�WgJMLONDPfï
RTSlUvWgNQJZNQ��F^[¥hÉUI`6UIo=SVU�J=[#["muUINÕ��[�qeSl��[#qgqX[¥mÃî

C NQPIR�SQqMmM[\ü=J=W¡UIWXNDJÓLONDP¨Uvop[¥`f[½J=NlUvWgNQJk`¨]½WXqgqM�k[½rDWXdD[#JÕqgSlUv["P"î

v T K+±DìÔ¯VíO®5OGw*°M«xKMLZLÐí ézy|{ ¯V°}NQKM~jêk¯��
�c`v`v�pR�[�UIo=SVU.Uvop["Pv[*SQPv[*�pPvNQUv[¥hÉUv[¥m�mMNMh\�=RÕ["J�UI`.]½opWgh�o�SQPv[
PI[#r�SlP�mM["muSQ`½`v["h\�=PvWXU^s¬WgJMLONQPIRTSVUvWgNQJZNQ�}F^["hÉU�`½SlJ=mZJp["["muUvN

CRPIT Volume 48

70

�k[�Sl�=�pPvND�pPIWgSlUv[#qgsÕqgSQ�k["qXqg["mZ`f�kh�o¬UvokSVUb["SQh�oZmMNMh\�pR�["JDUbWe`
h\NQPIPI["hÉUIqXsTmMWe`I`f["RÕWgJ=SlUv["mu�MUIWXqgWg`vWgJprÕ`v["h#�pPIW¡U^sTR�["h�okSlJpWe`fRT`"î
 �`v�=SlqgqXsD��S qeSl��[#qgqXWgJprð`vsM`^UI[#R Wg`�[#R��pqgNVsQ["m UIN���[#PvLONQPIR
`f�=h�o?UISD`f_M`"îÚnbo=[ÓqeSl��[#qgqXWgJpr�`fsM`fUv["R WXJ rQ[#J=[#P�Slq¨mM[#��[#J=m=`
NQJ�UIop[�`f[¥h\�pPIW¡U^sÖqeSl��[#qgqXWgJpr?LOPISQRÕ["];NDPv_��¨]½opWeh�oðWe`Õ�=SQ`v["m
NQJÖ`f[¥h\�pPIW¡U^sCmpNQRTSlWgJ=` ú `v�p��F^[¥hÉU�`Iû\�.`v["h\�=PvWXU^s�WXJpLONQPIR�SlUvWgNQJNQ��F^[¥hÉUI` ú NQP�`vWXR��pqgs ND��F^["h\UI`�ûÉ�¬`v["h#�pPvWXU^s h#qgSD`v`vW¡ü�h#SVUIWXNDJ��h#S{dQ[¥SVU�`#��SQJ=m `v["h\�=PvWXU^s �kNDqXWeh\Wg["`"î C NQPIRTSlqgqXsD��];[mM[\ükJp[Uvop[ÚLONDqXqgNV]½WXJ=rÕJ=NlUISlUvWgNQJ=`DR
�Y���A�����d�d�D�d�5�D����� SjükJpW¡UI[�]�^`_�a#ñ�ó#òÔ`f[#UDt
������� � �D�d�d�D���A�X��� SÓü=JpWXUv[���_�a#ñ�ó#ò.`v[\UDt
�Y�����/���d�D�d�!�����A��� Uvop[�`v[\U�NQL#]#ñ�ó!^�i�j»òlk @ ñd�{ñ @]b]½W¡UIoZUvop[�=SlPvUvWeSlqÃNDPImp[#P��d���ÕmM[\ükJp["m.t
�=�n�� D���D�d�D�d�� D¡D�¢� UIop[�`v[\U½NlL�ó ? �Vñ ? ò/] ú PI[#qeSVUI["m�UvN`f[¥h\�pPIWXU^sTUISQrD`�û�tpSlJkm
£ �n��¤.���d�D�d�d�Z¤X¥���� Uvo=[�¦}� @ jÐó!k�]\ñ#òÄî
HKJ�Pv[#LO[#PI[#J=h#[6UvN�`v["h\�=PvWXU^s�qg[#dQ["qg`"�Qh"S{dQ["SlUI`¨SlJkmjUIop[½��NQqXï

Wgh#s¬`f[#U"�+R�NQPI[�mM[\U�SlWgqg`bSQPv[�rDWXdD[#JTLONDP*LO�=PfUIop[#PbmMWe`vh#�=`v`vWgNQJ=`"î
nbop[T`v[\U�NlLb`f[¥h\�pPIW¡U^s�qg[#dD[#qe`#� � ��Wg`�SD`v`vNMh\WeSVUI["m�]½WXUvo S�=SlPvUvWeSlqkNQP�mM[#PIWXJ=r3PI[#qeSVUIWXNDJ��`��îE¢ [ch#SQqXq ú �¢� ��û
S�]#ñ�ód^�i�j»òZkó @�?]5]5j §6ó ? òlj/�Ac¨]�k�]Éò4ñ r î ú ��� ��û½We`�h#SQqXqg["m�S¬qXWgJp["SQP�opWg[#P�SlPvïh�o�s h\qeSQ`I`fWXükh"SVUvWgNQJÖ`vs+`fUv["RöWXL^�.LONQPjSQqXq ��©ª����«=¬Y� � ��© � ��«]½op[#J®­��Y¯kî�� `f��["h#W¡ükhjqXWgJp[¥SlP3opWX["PISQPIh�o+s�h\qeSQ`I`fWXükh"SVUvWgNQJ

`fsM`fUv[#R We`j`vopNV]½J WgJ C WXrD�pPv[?| ú S�ûÉ�¨]½opWeh�o Wg`Õh\NDR�RÕNDJpqgs�=`f[¥muSQJ=m�h#NQJ=`vWe`^U�`*NQLÔü=dD[3`v["h#�pPvWXU^s�qX["dQ["qg`6]½WXUvouUvop[3Pv["qgSlï
UvWgNQJ Uvo=SlU�^�c�ó @�?]5]�j §;ñ5°²±�³A´ �Dµ ³�­ �µ ´�¶¨± ó5��cD§x°Dñ!ckòZj ?�@ ±]\ñ�ódivñ#ò·±øò7��¦]#ñ�ódivñ\ò#î
nbop[3h\qeSQ`I`fWXükh#SlUvWgNQJT`vs+`fUv["R ú ��� ��û
RTS{sj��[�LONDPvR�["mTSD`S ú ükJpW¡UI[¥û*qgSlUfUIWgh#[Qî¨HKJ¬`f�kh�o�S�h#SD`f[D�QUIop[#PI[�[#z+We`fUI`6S��pJpWe���p[[#qg[#R�[#J�U"��`IS{s �¹¸ ��`v�=h�o�Uvo=SlU�LONDPcSlqgq2­ ���¹¸ � � © ��SQJ=mÃ��`fs+RÕïRÕ[#UvPIWgh"SlqgqXsD��Uvop["Pv[c[\zMWg`fUI`bSj�pJpWe�D�=[c["qX["RÕ["J�U"�M`vS{s � � �p`v�=h�oUvo=SlU�LONQP�SQqXq%­ ����© � ��� î�nbo+�=`"� � ¸ SlJkm ��� SQPv[Th#SQqXqg["m UIop[RÕWgJpWgRj�pR ["qX["RÕ["J�U3SlJkmZUvop[ÓR�SlzMWXRÓ�pR ["qX["R�[#J�UcNQLEUIopWe`

qgSlUfUvWeh\[�PI["`v�k[¥hÉUIWXdD[#qgs NDP"�;SQh#h#NQP�mMWgJprQqgsQ�¨UIop[uqgNV]6["`fU�`v["h#�Mï
PvWXU^s�qX["dQ[#q¨SlJkm�Uvo=[ÓopWgrQo=["`fU3`v["h\�=PvWXU^s�qX["dQ[#qENlL
UIop[�h\qeSQ`I`fWXï
ükh#SlUvWgNQJð`vsM`^UI[#R�îÖH4UÕWe`jJ=NlUTmMWº�¬h#�pq¡UÕUvN `fo=NV]�Uvo=SlUÓUIop[
U^];N�`v["h#�pPvWXU^sÓh#qgSD`v`vWXükh#SlUvWgNQJ�`fsM`fUv[#RT`
WgJ C WXrD�pPv[�|�SQPv[½qeSVUvïUvWeh\["`"î C NQPT��NlUIo NlL3Uvop[C`vsM`^UI[#RT`#�6UIop[�qXNV]6["`fU¬`f[¥h\�pPIWXU^sqX["dQ[#q;Wg`�^�c�ó @�?]5]�j §;ñ5° SQJ=m Uvo=[�opWgrQop[¥`^UÕ`f[¥h\�pPIW¡U^s qX["dQ["q*We`ò<�5¦]#ñ�ó!iIñ\òÉî
¢ [?SlPIrQ�p[ZUIo=SVU�WXU�RTS{s���[C��ND`I`fWg�pqg[�UvN�WgR��pqX["R�[#J�U

S¬`fWgJprDqX[�`v["h#�pPvWXU^s�qeSl��[#qgqgWXJpr¬`vsM`^UI[#R9]½opWeh�o�[#J=h#NQR��=SQ`I`v["`
Rj�pqXUvWg�pqg[Öh#qgSD`v`vWXükh#SlUvWgNQJ1`vsM`^UI[#RT`Z�=SQ`v["m NQJ Uvop[ÖqeSVUfUIWgh#[
h\qeSQ`I`fWXükh#SlUvWgNQJ�R�[\UIopNMmÃî¨HKJ�LÐSQhÉU¥�Q]½op["J�Uvop[c`f[¥h\�pPIW¡U^sÕh\qeSQ`fï
`fWXükh#SlUvWgNQJ�`fsM`fUv["RyWg`
S3qeSVUfUIWgh#[Q�QSQJ+s��=SVUIojLOPINQRyUIop[bqXNV]6["`fU
`f[¥h\�pPIW¡U^sÓqX["dQ["qpUvNÚUIop[�o=WXrDop["`fU�qX["dQ["qpLONQPIRT`�S�`vWXJ=rQqg[½qXWgJp["SQP
opWX["PISQPIh�o+s¬h#qgSD`v`vW¡ü�h#SVUIWXNDJu`vsM`^UI[#R��p`f["[C WXrD�pPv[�| ú �kû\î

(a)

(b)

Unclassified

Restricted

Confidential

Secret

Unclassified

Restricted

Confidential

Secret

Protected

Highly−Sensitive

Top−Secret Top−Secret

SensitiveA

SensitiveB

C WgrQ�=Pv[�|�R�i+[¥h\�pPIWXU^sZ�;qgSD`v`vWXükh#SlUvWgNQJ�i+sM`^UI[#RT`
� h#S{dD["SlUESl�=�k[¥SlPIWXJprcWXJTScqgSQ�k["qph\NDJDU�SlWgJ=`EWXJpLONQPIR�SlUvWgNQJ

Pv["qgSlUv["mZUINu`v["h#�pPvWXU^suUISlr¬U^s���[Q��U�Slr¬J=SQR�["`�SQJ=mC`Ih\ND�k[�UIN

]½opWeh�o¬UIop[ÚNQ��F^[¥hÉU½RTSlPI_Q[¥mT]½W¡UIoZUvop[ÚqeSl��[#q�];ND�pqem���[�mM[\ï
qgWXdD[#PI["mÃî¨�1qgSQ�k["qkLONDP6Sj�=SlPvUvWeh\�=qgSQP*NQ�}F^["hÉUbRTS{s�o=S{dQ[�`v[#d�ï
["PISQq*h#S{dD["SVU�`#î�ac�p[¬UINCUIop[uSD`v`v�pR��MUvWgNQJ]6[¬o=S{dD[¬RTSQmM[
UIo=SVUÕ["SQh�o ND��F^["h\UÓo=SD`jNDJpqgs NDJp[�qeSl��[#qÄ�
W¡L3S?h#S{dD["SlUjSl�Mï
��["SQPI`;WXJZSjqeSl��[#q�NQL.SlJuNQ��F^[¥hÉU"�+]6[cRTS{sT`vWXR��pqgs¬`vS{sÕUIo=SVU
UIop[uND��F^["h\UÓo=SD`�UIop[�h#S{dQ[¥SVU¥î?HKJ�h#NQJ�UvP�SQ`fU"�¨WXLcS?`v�p��F^[¥hÉU
We`uh#NQJ�UISQWXJ=["m]½WXUvopWgJ UIop[`Ih\ND�k[NlLjSðh"S{dQ[¥SVU"�b]6[?RTS{s
`IS{s�UvokSVU�UIop[¬`f�=��F^["h\Uj�k["qXNDJprD`�UvN�Uvo=[�h#S{dD["SVU¥î C �=PfUIop[#PmMWe`Ih\�=`I`fWgNQJZSl��NQ�MU�h"S{dQ[¥SVUI`6]½WgqXqÃ��[�rQWgdQ["JuqeSVUI[#P¥î
w NQqgWgh#WX[¥` ¤X©ª� ­ � | �d�D�d�!�5» ��SlPI[mM[\ükJp["m SQ`���N+NQqg["SQJLO�pJkhÉUvWgNQJk`#�=`v�=h�o�SQ`DR
³A´�¼\¶ ¶M´�½.¾¿R �ÁÀ3��ÂÃ�Dµ ³�ÄX´ �5Å ¼ �l� ´ �

H4U�We`�S��=Pv[¥mMWgh"SVUI[�mM[\ü=J=["m�NVdD[#P �9ÀW� î·³A´�¼\¶ ¶M´�½.¾ ú ����� ûR�["SQJ=`3UvokSVU�UIop[�`v�p��F^["h\U � We`�JpNQUjSlqgqXNV]6["m?UvN?Pv[¥SQm?Uvop[ND��F^["h\U � ú NQP¥��Uvop[3Pv[¥���p["`fU6NQL � LONQP6PI["SQmpWXJpr � We`bmM[#JpWg["mkûÉîY�NlUI[¬UIo=SVU¥�*SlqXUvopND�prQoÖUIop[�`f[¥h\�pPIW¡U^sÖqg[#dD[#qe`�o=S{dD[�h\PI[\ï
SlUv["m�Uvop[b��ND`I`fWg�pWgqXWXU^s�NlL�SlqgqXNV]½WgJprc`vNQR�[6NQ��F^[¥hÉUEUvNÚ��[6_D[#�MU
`v["h#Pv[#U½LOPvNDR9`vNQR�[�`v�p��F^["h\UI`"�pUIop[j�=SQPfUIWgh#�pqeSlP½��NQqgWgh#suRTS{s
h"Sl�=`v[ZSQJ�SQ�pJpNQPIRTSlqbh#SD`f[Z]½op[#PI[uUvop[�`v�p��F^["h\UTRj�=`fUT�k[
_D[#�MU*ND�MU�LOPINQR�`fNDR�[�NQ��F^[¥hÉU ú `�û¨UvokSVU*]6NQ�pqem���[cmM["qXWgdQ["Pv[¥mUIN�W¡U¨WgJ�Uvop[;�=`v�=Slq�h#SQ`v[Qî C NDPÔWgJ=`^U�SlJ=h#[Q�VSQ`I`v�pR�[
Uvo=SlU.¯ ��Æ ½SQJ=mHÇÈ¼M³�¾�okS{dQ[�UIop[½`vSQR�[6`v["h#�pPvWXU^sÚqX["dQ["qXiIñ�]Éòli�jÐó\òKñ5°V�l�=`v�Mï
SQqXqgsÓ��NlUIo�NQLÃUvop["R R�S{s���[cSQqXqgNV];[¥mÕUvNÕSQh#h#["`I`�PI["`fUvPIWgh\Uv[¥m
mMNMh#�pR�[#J�UI`"îz��NV];["dQ[#P¥�¥W¡U¨Wg`E��ND`I`fWg�pqg[�UIo=SVUEUvop["Pv[;Wg`ES3`f��[\ï
h#W¡ükh���NQqgWeh\s ��s]½opWeh�oÖSCPv[¥`^UIPvWehÉUI["m mMNMh\�pR�[#J�UÉ¶?Wg`�JpNlU
SQqXqgNV];[¥mÓUvNj��[cmp[#qgWXdD[#PI["mÕUvN�¯ ��Æ ½��p�MU·ÇÊ¼M³�¾Th#SQJ¬Pv[¥h\["WXdD[WXU"î
¢ [ÖJpNV]ö�pPvND�kN�`f[Uvo=[LOP�SlR�["];NDPv_ LONQPC`v["h#�pPIW¡U^s qeSVï

��[#qgqXWgJprTSQ`6LONDqXqgNV]�`"î
Ë KMÌ é íO®¥íÐê é çÎÍ j��Vñ!c ? c
�5¦pñdc¨]�k�]Éò4ñ rhÏ�Ð�@ ñ\ò � _�ñÕò�Ñpñ
]�^`_/a#ñIó#òÒ]#ñ#ò Ð � ò�Ñpñ���_/a#ñIó#òx]\ñ#ò Ð ú ��� ��û�ò�ÑpñH]#ñIód^�i�j»òlk�ó @�?]�p]�j §;ó ? òZj/��c²]�k�]Éò4ñ rÔÓ j»ò�Ñ�j�c Ï�Ð � ò�Ñ=ñ�]#ñ#ò��ÖÕ�ó ? �Vñ ? òZ]3×Z]#ñ�ñ_�ñ @ � Ó Õ!�Aijò�ÑpñØ°Dñ/§#c`j»òlj/�AcQ�ªÕ�ó ? �Vñ ? òZ]lÙ Ð�? c¿° £ ò�Ñ=ñ�¦}� @ jÐó!k]#ñ#ò4ôGm¿Ñpñdc Ó ñ�ó ?A@�@#Ú ���5��� ú ��� ��û �ª�%� £ ��ÛHÜ ò�Ñpñ�]#ñIód^�i�j»òlk
@�? _�ñ @�@ j�c b Õ5i ?�r ñ Ó �Ai�Ý�Õ!�AiZò�Ñ=ñÞ]5k�]ÉòKñ rßÏ�Ð'Ó Ñ=ñ!ivñ Û j¹] ?¦ ? j�i ú Å�àª��Å�á û�]5^=ó5Ñ�ò�Ñ ? ò ÅAà j¹] ? ò<�lò ?�@ Õ5^�c�ó#òlj/�Ac¢Õ5i�� r �Hâ��ò7� � ? cX° Å á j¹] ? ò<�lò ?�@ Õ5^�c�ó#òlj/�AcÉÕ5i�� r �®âÈ� ò7��£Aã.ä
Å à ä �®â=�åÂÔ� ô
Å á ä �®â=�åÂ £�ã�ô

HKJ�Uv�=W¡UIWXdD[#qgsQ�pWgJZUvopWe`�mM[#ü=JpWXUvWgNQJ Å�à ú/æ ûbWe`bUvo=[jh\qeSQ`I`^ü�h#SVUIWXNDJqg[#dD[#q�SQ`I`fWgrQJp[¥m�UvNÓUvo=[cND��F^["h\U6NDP6`v�p��F^[¥hÉU æ �pSlJkm Å á ú�æ û6Wg`UIop[3`v[\U½NQL.h#S{dD["SVU�`�]½opWeh�o æ ú SQ`bSlJuNQ��F^[¥hÉU�û;��ND`I`f[¥`v`v["`*NQP
æ�ú SQ`½S�`f�=��F^["h\U�û6��[#qgNQJpr�`6UvN=î

ç ªéè�ê�ë�KML e ê=¯ T K+±Qì.¯VíO®5OYw;°M«#K\L/L¸í é�y T O�­"®DK\N�­
i+[¥h\�pPIWXU^s�qeSl��[#qgqXWgJpr�`vsM`^UI[#RT`�SlPI[��=`v["mZUIN¬rQ["Jp[#P�SVUI[�`f[¥h\�Mï
PIW¡U^suqgSQ�k["qg`½LONQP½UIop[�NQ�}F^["hÉU�`bUvokSVU�Jp["["muUvN��k[�qeSl��[#qgqg["mZWXJ
ND�k["J�`fsM`fUv["R�`"î¨HKJ¬UIopWg`b`v["h\UvWgNQJ��+]6[��pPI["`v[#J�U6SjR�N+mp[#q�LONQP
`v["h#�pPvWXU^sjqeSl��[#qgqgWXJprk��Uvop["J�mMWe`vh#�=`v`*WXR��pqg[#R�["JDU�SVUIWXNDJ¬Wg`I`v�p["`
]½WXUvoZUvo=Wg`½R�NMmM["qÃWXJZUvo=[�Jp[\z+U�`v["hÉUIWXNDJ�î

çzêÐç w*°M«#K\L { êk¯AN�°M®
C NQP�`vWXR��pqgW¡ü�h#SVUIWXNDJÖNlLbNQ�pPjmpWg`Ih\�=`I`vWXNDJ��Ô]6[¬SQ`I`f�=RÕ[ÕUIo=SVU[¥SQh�o�ND��F^["h\U6]½WgqgqÃ�k[�NDJpqXs¬SD`v`vWgrQJp[¥m¬NQJ=[cqeSl��[#q�SQJ=m�["dQ["Pvs
qeSl��[#q�okSQ`ÚNQJ=qXs NQJp[�U�Slr�`f[#U"î¬HKJ �=PISDhÉUvWeh\[D�ÔS�qeSl��[#q�RTS{s
h#NQJ�UISQWXJÓWXJMLONDPvRTSlUvWgNQJÕPv["rDSlP�mMWgJprc`v["h#�pPIW¡U^s�qeSl��[#q=WgmM["J�UvWXü=[#P
SQJ=m�`f[¥h\�pPIWXU^s�qeSl��[#qEqX["JprlUIo�[\UIhQî�¢ WXUvopND�MUcqgND`I`½NlL�rD[#Jp["Pfï
SQqXWXU^sQ�+]6[Úmp[\ü=Jp[3UIo=SVU�SÕqgSQ�k["q�o=SQ`6UIop[3LONQqgqXNV]½WgJprÓLONQPIR�SlUDR

ëíì � @ jÐó!kdî�ï ��ð @�?]5]5j §6ó ? òlj/�Ac ��ð ? �Vñ ? òZ]Añ
nbopWe`ÚLONDPvRTSVU�h#NQR��pqgWX[¥`�]½W¡UIo g î ���k|�`fUvPI�=h\Uv�pPI["` ú H^n½ ½ïKný½[¥h\NDRÕR�["J=mpSVUIWXNDJ g î ���=|Z£Q~Q~D~DûÉîQ��[#PI[�UIop[Zü=[#qem ì � @ j�pódkdîÖï9We`ÓUvop[�NQ�}F^["hÉUTWemM[#J�UIW¡ü=["P�LONQPÕUvo=[Z��NQqgWeh\s�]½opWeh�o Wg`
SQ�p�pqgWX[¥mÃ�QUIop[cü=[#qem ð @�?]5]�j §;ó ? òZj/��cÕWe`
UIop[Ú`f[¥h\�pPIW¡U^sÕqg[#dQ["q=NQLUIop[¬NQ�}F^["hÉU�UINC��[¬qgSQ�k["qXqg["m��¨SQJ=m Uvo=[Tü=[#qem ð ? �Vñ ? òZ]ÚWe`jS`v["���p["J=h\[6NlL�h#S{dQ[¥SVU�`#îE� h"S{dQ[¥SVU¨o=SQ`¨ScLONQPIRTSVU�SQ`.LONQqgqgNV]�`dR

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

71

ú�ò ¼�ó ò ¾ ¤ ´ � ò ¼�ó�ô3¼MÇÈ´ � û
]½op[#PI[�� ��Wg`ES½ük[#qem�SQ`I`fNMh#WgSlUv["mÚ]½WXUvoÕn.SQrDYcSlR�[*SlJkm�RTS{s
�k[¬�k`f[¥m?UINCh\NDJDU�SlWgJ h"S{dQ[¥SVU����=SlqgW¡ük[#P�`#îTH4LbJpNC���=SlqgWXü=[#P�`
SlPI[cPI["���pWgPv[¥mÃ��Uvop["J�UIopWe`bWg`bmM["[#R�["mu�+sTUvop[�`v�k[¥h\WXükh#SlUvWgNQJ
UvNTo=S{dD[�UIop[�dVSlqg�p[=�vYc �828z�pî
HKJ g î ���k|Q�*Uvop["Pv[CSQPv[Zü=dD[Z�kSQ`vWgh�`v["h#�pPvWXU^s U�Slr U^s+�k[¥`WXJ�UvPINMmM�=h#["m SQJ=m �=`v["m LONQPZqgSQ�k["qXqgWgJpr�`vsM`^UI[#RT`dRõiIñ�]Éòli�jÐó!p

òZj��Vñ¨_!j»ò r�? ¦ ú ý��;iMn�û\�Eö·c+^ r ñdi ? ò4ñ5° ú �*Y� c�?ûÉ�E÷ ? c b ñú ý��cY¢	�ûÉ�}¦pñdi r j¹]�]�j��Vñ�_!j»ò r�? ¦ ú w �;ý��?û\�pSlJ=m=î�c�Õ!�Ai rØ? pòZj��Vñ ú H^Y C tÚû\î*nbop[�ükPI`fU�LONQ�pPTU^s+��["`¬h#NQJ�UISQWXJ�Uvo=[�U^s+�k[D�NQJp[�NDP�R�NQPI[�JpNDJMïÄJ=[#rDSlUvWgdQ[ÚWgJDUI[#rD[#P�`�SlJ=m��=LONDP�Uvo=[�U^s+�k[¥`
ý��;iMnÖSQJ=m w �;ý�� �#SQqg`vN�S½�pWXUE`fUvPIWgJpr=îEnbop[�JpNDJMïÄJ=[#rDSlUvWgdQ[WXJ�Uv["rQ["PÕh#NQJ+dQ["s+`ÓS?`v["h#�pPvWXU^sÖqX["dQ["q¸îÖnbop[¬U^s+��[uH^Y C tÓ�
SLOPv["[
LONQPIR U^s+��[Q�{Wg`�WXJ�Uv["J=mM[¥m�SQ`�Sb]½WgqgmMï4h"SlP�m�U�SlrbU^s+��[
Uvo=SlU
R�S{s�h#SQPvPIsuSQJ+su�=`v[#PvïKmM[\ü=J=["mZU^s+�k[jNlL*mpSlUIS¬SQ�p�pPINQ�pPIWgSlUv[
LONQP3�=`f[Ó]½W¡UIoCUIop[Ó�=PvNQUvNMh\NDqÔo=SQJ=mMqgWXJpr�Uvop[ÕqeSl��[#qe`#îÚnbop["`v[
UISlrZU^s+��["`�SQPv[Õ�=`v["m UvN�RTSlWgJ�UISlWgJÖh\NQR��=SlUvWg�pWgqXWXU^s?]½WXUvo S
qgSQ�k["qXqgWXJ=rj`vh�o=[#R�[½LONQP;JpNQJpï^tÚi+H¨h\NDR�Rj�pJpWeh#SlUvWgNQJ¬`vsM`^UI[#RT`
ú HKJ�Uv["PvJp[#U¬�;H w i=t9¢ NQPI_+WXJpr¨	3PvND�p� |¥¦Q¦���ûÉîÖnbop[#PI[\LONDPv[D�WXJ�NQ�=P½qgSQ�k["qÃLONQPIRTSVU"�xm ?db m}k�¦pñ�Wg`bNDJp[�NlL.Uvop[Úü=dD[3U^s���["`"înbop[�ü=[#qemYm ?db q ?�r ñ*rQWgdQ[¥`
Uvo=[�J=SQRÕ[cNlLÃUIop[�U�SlrÓ`v�=h�oSQ`"�+LONQP½[\zpSQRÕ�=qX[D�`ø%´�½ù¶ ò � �MSQJ=mÞú�´ ¤+µÖû ½ � ¾�î
nbop[�R�["SQJMïWXJpr�`6NlLÔUIop["`v[3J=SlR�["`bSQPv[crQWgdQ[#JuWXJZSQmMdVSQJ=h\[ÚSVU6Uvop[�`fUISQrQ[
NlL�UIop[Õmp["`vWXrDJ�LONQPÚS�qeSl��[#qgqgWXJprZ`fsM`fUv["RZ��LONDPcWgJ=`fUISlJkh\[Q�Ã]6[
SQ`I`f�pR�[
UIo=SVU%ø%´�½ù¶ ò � `fUISQJ=mp`ÃLONDP��^UIopWe`.mMNMh#�pR�[#J�UÔWe`Ô`v[#J�UUvN���SlJ=m9ú�´ ¤`µÖû ½ � ¾�LONQPY��tcJ=qXs mM["�=SlPvUvR�[#J�UZRÕ["Rj��[#P�`h#SlJ�SQh"h\[¥`v`*UvopWe`½mMNMh\�=RÕ["J�U��pî
nb]6NÕh"S{dQ[¥SVUI`6SQ`6[#zMSQR��pqX[¥`
SlPI[3rDWXdD[#J�SQ`6LONDqXqgNV]�`dR

ü ¼MýM´�¼ µ���� úZþ'ÿ���� � ø%´�½ù¶ ò �\�!�������D�d�D�!��� � � û
ü ¼MýM´�¼ µ��¢� ú	��ÿ ø ò � ú�´ ¤`µÖû ½ � ¾ � û
C �=PfUIop[#P
WgJ+dQ["`fUvWgrDSlUvWgJprch"S{dQ[¥SVUI`"�{];[6JpNQUv[6Uvo=SlU"�VLONDP¨[\z+ïSlR��pqg[Q�VWXL=h#S{dQ[¥SVU ü ¼Mý\´�¼ µ � Wg`Eh\NDJ�UISlWgJp[¥m�WXJÓS�qeSl��[#q��kND�pJ=mUvNÚSlJjND��F^["h\U"�{UIop[#JÓW¡U¨WXJjLÐSQh\UEWgR��pqXWg["`.UIo=SVU¥�l�=SQ`v["m�NQJ�UIopWe`

h#S{dQ[¥SVU
UINQrQ[#Uvop["P�]½WXUvo�Uvo=[�h\NDJ=`fWemM["PISlUvWgNQJ�NlL�Uvo=[�`f[¥h\�pPIWXU^s
qX["dQ[#q ú `IS{s�
6û¨rQWgdQ["JTWXJ¬Uvop[cqgSQ�k["q¸�DUvopWe`;NQ��F^[¥hÉU;h"SlJT��[cmM[#ïqXWgdQ["Pv[¥mðUIN NQJpqgs�UIopND`v[?SQrQ[#J�U�`�WXJ �������D�d�D�!��� � �]½opND`v[`f[¥h\�pPIW¡U^s1qX["dQ["qjWe`C["���=SQq�UvNk��NQP?opWXrDop[#PCUvo=SQJ���
�î ¢ [
h#Slqgq½UIop[?`v[\U�h\NDJ=`vWg`fUvWgJpr NlL�Slqgq½UIopND`v[CSlrD[#J�UI`ÕUIop[¨]#ó��5¦pñ
NlL�UIop[Zh"S{dQ[¥SVU ü ¼Mý\´�¼ µ �]½W¡UIo

��
NDPÕ`vWgRÕ�=qXsD�
Uvop[�`Ih\NQ��[NlL ü ¼�ý\´�¼ µ�� �=mp[#JpNQUv["m=ø d�5¤ ´�� ú ü ¼MýM´�¼ µ�� ûÉî6iMWXR�WgqgSQPvqgsQ�p]6[R�S{suo=S{dQ[Hø d�5¤ ´�� ú ü ¼MýM´�¼ µ � ûbUvo=SlUch\NDJ=`fWe`fUI`bNlL�SQqXqÃUIopND`v[mM[#�=SQPfUIR�[#J�U;R�[#RÓ�k["PI`*]½opND`v[�`v["h\�=PvWXU^sÓqg[#dD[#qkWg`*["���=Slq=UvNk�
NQP½opWgrQop["PbUvo=SQJ���
�î
HKJ�UvopWe`Õd�Wg[#]���LONQPTSlJ+s rQWgdQ["Jð`vWXJprDqX[�h#S{dD["SlU"�¨];[�SlPI[

Sl�pqg[TUvN�WemM["JDUIW¡LOsÖWXUI`�`Ih\ND�k[��=SQ`v["m NQJ UIop[TLONQPIR ú mM[#ü=JpWXïUvWgNQJkû;NlLÃUIop[�h#S{dD["SVU*UvNQrD[\UIop[#P6]½W¡UIo�UIop[Úh\NQJk`fWemM[#P�SVUIWXNDJTNlL
Uvop[C`v["h#�pPvWXU^s qg[#dQ["qbrQWgdQ[#J WgJðUIop[�qgSQ�k["q¸î nbo+�=`"�*]6[�h"SlJ
Pv[¥h\�pP�`fWgdQ["qXs�mM[\ü=J=[CUvo=[?`vh#NQ��[CNlL�S `v["���p["J=h\[CNQL�`fWgJprQqg[
h#S{dQ[¥SVU�`#�MSQ`6LONDqXqgNV]�`DR
ø !�5¤ ´�� ú ü ¼Mý\´�¼ µÖ� û � ø !�5¤ ´�� ú ü ûÉ�2j Õ ü ¼Mý\´�¼ µÖ��� ü t=SQJ=mø !�5¤ ´ � ú ü ¼Mý\´�¼ µÖ� û � ø !�5¤ ´ � ú ü � û��Èø !�5¤ ´ � ú ü��%�d�D��ü·� û �j Õ ü ¼Mý\´�¼ µÖ���Áü��dü � �D�d�5ü � î
]½op[#PI[ü���ü·© ú ­ � | �D�d�D�!� ½Ôû6SlPI[�`fWgJprDqX[�h#S{dD["SlUI`"î

ç2ê�I ��� K3èåK+± � ° é í¸±Q°}LZL�O�� � K+±��p°M«�LZK3è�ê�ë�K\L
x6SD`f[¥m3NQJÚUvo=[*`f[¥h\�pPIWXU^s�qeSl��[#qgqXWgJpr½LOP�SlR�[#]6NQPI_��\]6[�rQWgdQ[¨UIop[
LONQPIR�SQq�mp[\ü=JpWXUvWgNQJuNlL.SÓ`f[¥h\�pPIWXU^sÓqeSl��[#qgqXWgJpr�`fsM`fUv["R R�NMmM["q
SQ`6LONQqgqgNV]�`dR
Ë KMÌ é íÐ®"íÐê éÁI�� ñ#ò�� � Ú �����Ø� ú ��� ��û �Ö� � £ ��ÛHÜ _�ñ ?]#ñ!pó!^�i�j»òlk @�? _Iñ @�@ j�c b Õ5i ?Ar ñ Ó �Ai�ÝEÕ!��i ?�b j��Vñ!c3�5¦pñdc�]�k�]ÉòKñ rnÏ ô�]#ñ�ód^�i�j»òZk @�? _�ñ @�@ j�c b]5k�]ÉòKñ rÎr ��°Qñ @ _ ?]\ñ5°��Ac�ò�Ñpñ%Õ5i ?Ar ñ!p
Ó �Ai�Ý®j¹] ? ¦ ? j�i ú � ��� û Ð�Ó Ñpñdivñ � j¹]uó ?A@�@ ñ5° ò�Ñpñ @�? _�ñ @�@ j�c bÕ5^�c�ó#òZj/��c ò�Ñ ? ò ?]�]�j b c}] ?Ê@�? _�ñ @ ò<��ñ ? ó�Ñ
��_�a#ñ�ó#ò4ô
m¿Ñ ? ò�j¹] Ðj�cZò�Ñ\j¹] r ��°Qñ @íÐ Õ!�Ai ? c`k���_/a#ñ�ó\ò �É¬W� Ð Ó ñ�Ñ ? �VñÚò�Ñpñ¢]#ñ�ó!^�pi�j»òZk @�? _�ñ @ � ú � û � ë þ �
 ��ü�� �D�d��üE¥ ñ�_5�A^�c¿°uò<�uò�ÑpñØ��_/a#ñ�ó\ò Ð
Ó Ñpñdivñ þ ¬ £ Ð
 � Å�à ú � û Ð�? cX° �Aü � �d�D�d�!�5ü ¥ � ��Å�á ú � û Ð! ñØ]5j r ¦ @ k?ó ?�@�@ ú � ��� û ?]\ñ�ód^�i�j»òZk @�? _�ñ @�@ j�c b]�k�]ÉòKñ r Õ!�Ai
ò�Ñ=ñ']�k�]Éò4ñ r Ï ô

HKJ�Uv�=W¡UIWXdD[#qgsQ�ÓS `f[¥h\�pPIW¡U^søqeSl��[#qgqXWgJpr `vsM`^UI[#R LONQP S rQWgdQ["J
ú NQ��[#JkûE`vs+`fUv["R�h\NDJ=`fWe`fUI`.NlL=UIop[b`f[¥h\�pPIW¡U^s�qeSl��[#qgqgWXJprcLOP�SlR�[\ï]6NQPI_�LONQPbUIo=SVU�`vsM`^UI[#R SQJ=mZS�qgSQ�k["qXqgWXJ=rÓLO�=J=hÉUIWXNDJCh\NQJk`fWe`^ï
UI[#J�UZ]½WXUvo UvopWe`uLOPISQR�[#]6NQPI_�î HKJ NQUvop["Pu]6NQP�mp`"�½Uvo=[qeSVï
��[#qgqXWgJprÕ`fsM`fUv[#R We`;mM[#Uv["PvR�WgJp["mT�+sÓUvop[Ú`v["h\�=PvWXU^sÓqeSl��[#qgqgWXJpr
LOP�SlR�[#]6NQPI_ðSQJ=m S�qeSl��[#qgqXWgJpr LO�=J=hÉUIWXNDJ h\NDJ=`fWe`fUv[#J�U�]½WXUvo
UIopWg`6LOP�SlR�["];NDPv_�î
HKJCNQ�pPcR�N+mp[#qÄ�=UIop[Óh#NQR��kNDJp[#J�U�`�NlL
UIop[jqeSl��[#qE��NQ�pJ=m

UINCSlJÖNQ��F^[¥hÉUjSQPv[TmM[#ü=JpWXUv[#qgs mp[\Uv["PvR�WgJp["m�î C WXP�`fUvqgsQ�"
 Wg`[#z+�=qXWeh\WXUvqgsÕmp[\ü=Jp[¥mT�+sÕUvop[�LO�pJ=hÉUIWXNDJ Å à NQL�UIop[�LOP�SlR�["];NDPv_
�ÓîE¢ [3JpNV] h#NQJ=`vWgmp[#P*o=NV] UvNÕNQ�MU�SlWgJ¬NlUIop[#P;U^];NÓh\NQR���Nlï
Jp["J�UI`�NQLÃUvop[cqgSQ�k["q=LONDP;S�rDWXdD[#JTND��F^["h\U"î%8ÔSQ�k["qg`6SlqgNQJp[�SQPv[
JpNQU¬`f���¬h#WX["JDU�UIN [#J=`v�pPI[�UIop[C`f[¥h\�pPIWXU^s�NlL3WXJMLONDPvRTSlUvWgNQJ�î
nbop[C`v["h#�pPIW¡U^s���NQqgWeh\s�SD`�];["qXqcSQ`ÕUvo=[?h#S{dD["SVU�`ÓUvo=SlU�Sl�Mï
�pqgWg["`;UvNÕUvo=[3WgJMLONDPvRTSVUIWXNDJ�Jp["["mp`6UIN��k[Ú[#JpLONQP�h\["m�WXJZNQ��[#J
`vsM`^UI[#RT`Ú]½opWgqX[�UIop[TqgSQ�k["qXqg["m WgJMLONQPIRTSVUIWXNDJ We`�]½WXUvopWgJ Uvop[
`Ih\ND�k[ÚNlL.Uvop["WXPch\NQJ�UIPvNDq¸î¨��qgqÃUvo=[�NQPIrDSlJ=WXþ¥SVUvWgNQJk`#��WXJkmMWXd+Wem+ï
�=SQqg`TSQJ=m H^n `vsM`^UI[#RT`�UIo=SVU¬�pPINMh\[¥`v`TSQJ WXUv["R NQL3WgJMLONDPfï
RTSVUIWXNDJ¬SlPI[½�pPI["`v�pR�["mÕUvNj_�J=NV]�UIop[c`v["h#�pPIW¡U^sÓ�kNDqXWeh\sTSlJkm
UIop[¬h#S{dD["SVU�`cLONQPÚUvokSVU�WgJMLONQPIRTSVUvWgNQJÔî¬��J+sQNDJp[�]½opN�]6SQJDU
UINu[#zMh�okSlJprD[jWgJMLONQPIRTSVUvWgNQJ]½W¡UIo NQUvop["PI`cJp["["mp`3UINu[¥`^U�Sl�Mï
qgWg`vo UvPI�=`fU�WXJ NDJp[CSlJpNQUvop["PTUvN ��[?`ISVUIWg`fü=["m�UIo=SVU�WgJMLONDPfï
RTSVUIWXNDJ]½Wgqgq
�k[To=SQJ=mMqg["m SQh"h\NQP�mMWgJpr¬UINCSlrDPv["["mC`v["h#�pPvWXU^s
��NQqgWgh#WX[¥`#îunbopWg`�UvPI�=`^UÓWg`��k`f�=SQqXqgsC[¥`^U�Sl�pqgWg`vop[¥m?UIopPINQ�prDoÖS
LONDPvRTSlqpSQrQPI[#["RÕ["J�U"î.nbo=[#PI[\LONQPI[Q�lLONQP�SlJ+sÓWXJMLONDPvRTSlUvWgNQJÕNQ�Mï
F^[¥hÉU"�V]½o=Wgh�o�`v["h#�pPvWXU^s3�kNDqXWeh\sÚWe`.SQ�p�pqgWX[¥m�SlJ=mÚ]½okSVUEh"S{dQ[¥SVUI`
Jp["["m�UINu��[ÕR�SQPv_D["m�WgJCUIop[ÓqeSl��[#q¨NQL
UvopWe`3NQ��F^[¥hÉU�`fopND�pqem
��[�mMWgPv[¥hÉUvqgs�mM["PvWgdQ[¥m¬LOPINQR `f�=h�o�SlrDPv["[#R�[#J�U�`#î
nbopWg`3We`ÚS¬R�["h�o=SQJpWeh#Slqgqgs�h�o=["h�_VSl�pqg[jR�NMmM["q¸î�HKJ NlUIop[#P

]6NQP�mp`"�=rQWgdQ["J�Uvop[Õh\NDPvPI["h\UvJp[¥`v`½NQL
Uvop[�`v["h\�=PvWXU^suqeSl��[#qgqgWXJpr
LOP�SlR�[#]6NQPI_�LONDPZS�`fsM`fUv["RZ��Uvop[Öh\NDJ=`fWe`fUv[#Jkh\s NlL�Uvo=[qeSVï
��[#qgqXWgJprøLO�pJ=h\UvWgNQJ�UIN1UIop[LOP�SlR�[#]6NQPI_yWg`�RÕ[¥h�o=SlJ=Wgh"SlqgqXs
h�op[¥h�_VSl�pqg[�=SD`f[¥m NQJùUvopWe` RÕNMmM["q¸î nbop[øh\NDJ=`fWe`fUv[#Jkh\s
h�op[¥h�_+WXJpr�h#SQJ�WXJZLÐSQh\U��k[�[¥SQ`vWXqgs¬��[#PvLONQPIR�["muUvopPINQ�=rQouUvop[
qeSl��[#qEdVSlqgWgmpSlUvWgNQJC�=PvNMh\[¥`v`"î�¢ [j]½WgqgqErDWXdD[jS�mp[\UISQWXqg["m mMWe`^ï
h#�=`v`vWgNQJ�NDJ�qgSQ�k["qÃd{SQqXWempSlUvWgNQJ�WXJuUvo=[�Jp[\z+U�`v["hÉUIWXNDJ�î

çzê v # K\N�°M¯���­�°M«*ê�ìÔ®Õ® � K3è�êÔëzK\L
H4L�S qgSQ�k["qXqgWXJ=rÖ`vsM`^UI[#R mpN�[¥`TJpNQU��=PvNVd+WemM[Z`vNQ�=J=m qgSQ�k["qg`
UIo=SVU
`vSlUvWe`^LOs�S3h\["PfU�SlWgJÓ`v["h#�pPvWXU^sÚ�pPINQ��[#PvU^sQ�¥Uvop["JÓWXU�h#SQJpJpNlU
��[�Pv["rDSQPImM[¥m�SD`�S�h\NQPIPI["hÉU�`vsM`^UI[#R�î�HKJ��=SQPfUIWgh#�pqgSQP"�+WXL¨Uvop[
`v["h#�pPvWXU^s �kNDqXWeh\s]½W¡UIopWgJ1S qeSl��[#q3Wg`uJpNQUu`vSlUvWe`^ük["mÃ�½UIop[#J
UIop[�qeSl��[#qÔWe`��k`f["qX[¥`v`"î C NQP�dQ[#PIWXLOs�WgJprT]½op[#Uvop["P�NDP�JpNlU�Uvop[`v["h#�pPvWXU^s �kNDqXWeh\s We`�`vSlUvWe`^ü=[¥m]½WXUvopWgJ1qeSl��[#qe`"��Uvo=[#PI[?We`ZS
Jp["["m�UINj�pPINVd+Wgmp[�S�R�["SD`f�=Pv["RÕ["J�U;R�[\UIopNMm¬�+s�]½opWgh�o¬Uvop[
`ISVUIWg`fLÐSQh\UvWgNQJ�NQL¨SÕ��NQqgWgh#s�We`b["SD`fs�ïKh�op["h�_VSl�=qX[Dî
¢ [JpNV] rQWgdQ[S LONQPIRTSlqÚmM[\ükJpW¡UIWXNDJ NQL�Uvop[U]#ñIód^�i�j»òlk

°�� rØ? j�c�SD`6LONQqgqXNV]�`DR
Ë KMÌ é íO®¥íÐê éYv$� ñ\ò ¤ _�ñ ? ¦}� @ jÐó!k ? cX° � ? c ��_�a#ñ�ó#ò Ðò�ÑpñdcÖò�Ñ=ñÉ]\ñ�ód^�i�j»òZkÈ°�� r�? j�c
ivñ @ ? òKñ�°Zò7� ¤ ? cX° � Ð °QñdcX�lò4ñ5°ø%ú ú ¤2��� û Ð j¹]�°QñZ§Òc�ñ5°�_dk�ø%ú ú ¤z��� û �����&% ¤ ú ����� û ���
¢ W¡UIo�UIop[�SQh"h\["`I`�h\NDJDUIPvNDqb�kNDqXWeh\sD�*LONDPT[\zpSlR��pqg[Q�*Uvop[

`v["h#�pPvWXU^s�mMNQRTSlWgJC[#z+�=qXWeh\WXUvqgs�NQP�WgR��pqgWgh#W¡UIqXs�rDWXdD["`½UIop[�mMNlï
RTSlWgJ¬UIo=SVU�h#NQJ�UISQWXJ=`bSQqXqÃWgJ=mMWgd+WgmM�kSlqe` ú `v�p��F^["h\UI`�û;]½opNÕSQPv[SQqXqgNV];[¥m UvN SQh"h\[¥`v`uUvo=[ND��F^["h\U � �pJ=mM["PZUvop[Ö��NQqgWgh#s ¤ î¢ opWgqg[cUIop[�`v["h\�=PvWXU^s¬qeSl��[#qÃ��NQ�pJ=muUIN�SQJuND��F^["h\U½�pPvNVd+WemM["`
UIop[*SQh\Uv�=SQqQmMNDR�SQWXJ3UIo=SVU.h#NQJ�UISQWXJk`�UvopN�`f[
WgJ=mMWgd+Wgmp�=Slqe`�]½opN
RTS{sTü=JkSlqgqXsZ�k[ÓSl�pqg[ÚUvNTUINQ�=h�o ú NQP�o=S{dD[¥û;UIop[�NQ�}F^["hÉU�SDhÉïh#NQP�mMWXJ=rcUIN�Uvo=Wg`*qgSQ�k["q¸î�i+�=h�o¬SQJTSQhÉUI�=Slq�mMNQRTSQWXJTmM["�k["J=mp`
NDJ�UIop[�qgSQ�k["qÃ�kND�pJ=muUvN�UIop[�NQ�}F^["hÉU¥î C NDPvRTSlqgqgsQ�+];[�okS{dQ[
Ë KMÌ é íO®¥íÐê éUç'� ñ\ò)(Ã_�ñ ò�Ñ=ñ @ ? _�ñ @ _5�A^�cX°�ò<� ? c ��_dp
a#ñ�ó#ò � ô m¿Ñ=ñøò<��^=ó�Ñu°�� r�? j�c �ªÕ ò�Ñ=ñn��_/a#ñIó#ò � _ ?]\ñ5°��c*(Ð °Dñ!c¿�VòKñ�° ò ú ú (��� û Ð j¹]|°QñZ§Òc�ñ�°õ_dk ò ú ú (��� û ��A�+% ¼M½ Æ ¼Mý\´ ú ����� û�,!¼ � ´�¶ � ½�(� Ð�Ó Ñpñdivñ ¼M½ Æ ¼Mý\´ ú ����� û
r ñ ? c}]�ò�Ñ ? òbò�Ñ=ñÉ]5^`_/a#ñ�ó\ò � rØ? k�§Òc ?�@�@ kÊ_�ñ ? _ @ ñÕò7��ò<��^=ó�Ñ×ª�Ai¢Ñ ? �Vñ7Ù¬ò�ÑpñÉ��_/a#ñ�ó\ò � ô
C �pPfUIop[#PIR�NQPI[Q�+]6[Úh"SlJ�rQWgdQ[

CRPIT Volume 48

72

Ë KMÌ é íÐ®"íÐê é.-�� ñ#ò/(� ë þ �
 �5ü � �d�d�5ü ¥ ñ²_Iñ ?�@�? _�ñ @_���^�cX°Zò7� ? c²��_/a#ñ�ó\ò � Ó j»ò�Ñ\j�c ò�Ñpñ r ��°Qñ @ °QñZ§Òc�ñ5° ? _5���{ñ Ð
Ó ñØ] ? k�ò�Ñ ? ò�ò�Ñpñ @ ? _�ñ @ (å��j/� @�? ò4ñ!]¬ò�Ñ=ñ�¦`� @ jÐódk þ j Õ�ò�Ñ=ñ!iIñ
j¹] ? ó5�Ac�0·jÐó\òÞ_�ñ#ò Ó ñ�ñdcyò�Ñ=ñ|]#ñ�ó!^�i�j»òlkG°�� rØ? j�c øÒú ú/þ ��� û
? cX° ò�ÑpñZò7�A^=ó5ÑY°�� r�? j�c ò ú ú (��� û"ô
î�cõ�Vò�Ñpñdi Ó ��i�°�] Ð j Õò�Ñ=ñ!ivñðñ�1�j¹]Éò/] ��¬ ò ú ú (��� û
_!^Mò Ð j�c��Vò�Ñpñdi3Ñ ? c¿° Ð Õ!�Ai�p
r ^ @�?32 ¼M½ Æ ¼MýM´ ú ����� û;ó ? cØ_�ñ�°Dñ!i�j��Vñ5° Õ5i�� r ò�Ñpñ¿Õ ? ó\òÃò�Ñ ? òø%ú ú/þ ��� û�j¹]Tò�Ñpñ�]#ñIód^�i�j»òlk=°�� rØ? j�cYivñ @�? òKñ5°�ò7� þ ? c¿° � Ðò�Ñ=ñ!c ò�Ñ=ñ @�? _�ñ @ (9��j/� @�? ò4ñ!]�ò�Ñpñ�¦}� @ jÐó!k þ ô
��` SQJ [\zpSlR��pqg[Q�9qg[\U �=`öh#NQJ=`vWemM[#PöUvop[�kNDqXWeh\s

,�´ � ´ ³A´ µ SlJ=m S�ükqX[�¶k|Q�
SD`v`v�pR�[�ø%ú ú ,�´ � ´ ³A´ µ�� ¶k|¥û �
���&% ,!´ � ´ ³A´ µ ú ��� ¶k|¥û � h\NDJ=`fWe`fUI` NQL�SQqXquWXJkmMWXd+WemM�=SQqg`�]½opNRj�=`fU��k[�_D[#�MU�NQ�pU�LOPvNDR Uvop[�ü=qg[Ø¶=|DîT��`I`f�pR�[� ú ¶=|{û �
ë þ �
 ��ü��%�d�d��ü·¥ ñ]½op[#PI[þ We` Uvop[��NQqgWgh#s4,�´ � ´ ³�´ µSlJ=m ò ú ú � ú ¶k|¥û � ¶=|{û�h#NQJ�UISQWXJ=`3SlJ [#qg[#R�[#J�U3�k["qXNDJprQWgJpr¬UINø%ú ú ,!´ � ´ ³A´ µ�� ¶k|¥û\�QUIop[#J�Uvop["Pv[3Wg`6Sjh#NQJ B Wgh\UbSQJ=mÃ��Uvop["Pv[#ïLONQPI[Q� � ú ¶=|{ûbd+WXNDqgSlUv["`;UIop[��kNDqXWeh\s þ î
Ë KMÌ é íÐ®"íÐê é�5 Í j��Vñdc ?²r �D°Dñ @ ú � ��� û Ð�Ó ñW] ? k�ò�Ñ ? ò ?
@�? _�ñ @ � ú � û � ë þ �
 ��ü � �d�d��ü ¥ ñ�j¹]�]\ñ�ód^�i�j»òZkAp7� ?A@ j/° Ð j Õ � ú � û°��¥ñ�]Hc¿�Vò#��j/� @ ? òKñjò�Ñpñ�¦`� @ jÐódk þ ô
��`I`v�pR�[ÕSQrQ[#J�U�`�]½opN�h\NDJ�UvPINQq.SuqeSl��[#q
SQ`c];["qXq
SD`�UIop[

NQ��F^[¥hÉU�UvNÖ]½opWeh�oðUIop[�qeSl��[#q½We`��kND�pJ=m Slqg]6S{sM`ÕopNQJ=["`fUvqgs
SlJ=m h\NDPvPI["h\Uvqgs�Sl�p�=qXsðUvop[�qeSl��[#q½UINÖo=SlJ=mpqX[�UIop[�NQ��F^[¥hÉU¥�
Uvop["J¬Uvo=[�LONQqgqgNV]½WXJpr�LONQPIRj�pqeS�`vopNQ�pqemT��[�UIPv�p[�RÔLONDP6S�qgSQ�k["q
� ú � û � ë þ �
 ��6 � �d�D�76 ¥ ñÄ�=];[Úo=S{dD[

ò ú ú � ú � û ��� û � ø !�5¤ ´ � ú 6 � �d�D��6 ¥ û ú �3û
Ë KMÌ é íÐ®"íÐê é.8 � r ��°Qñ @ ú � ��� û|j¹]Öó5Ñpñ�ó5Ý ? _ @ ñ²j 9 ò�Ñ=ñ!iIñj¹] ? c ?A@ b �Ai�j»ò�Ñ r Ó Ñ\jÐó5Ñ�ó ? c _�ñ ? ¦�¦ @ jÐñ5° ò<�Á°Dñ\òKñdi r j�c�ñ
Ó Ñpñ#ò�Ñ=ñ!iÉ��i'cX�lò ? c`k @�? _Iñ @ j¹]']#ñ�ó!^�i�j»òlkAp7� ?A@ j/°Dô
tcJ UIopWe`ud+Wg[#]��cNQ�pPZR�N+mp[#qÚWg`ZR�["h�okSlJpWeh#SQqXqgs h�o=["h�_�ï

Sl�pqg[Qî�HKJ LÐSDhÉU¥�E�kSQ`v["mÖNQJ�mp[\ü=JpWXUvWgNQJk`��?SQJ=m�}�SQJ=m LONQPvï
Rj�pqeS ú �3ûÉ�EWXJ NDPImp[#P�UIN?h�op["h�_]½op[\UIop[#PÕS�qeSl��[#q � ú � û �ë þ �
 ��ü � �d�d��ü ¥ ñÔWe`�`v["h\�=PvWXU^s�ïÄdVSlqgWemÃ�M]½o=SVUc];[�Jp["["mZUIN¬mMNWg`"�*LONDP¬Slqgq �Q¬ ø d�5¤ ´�� ú 6����d�D�76�¥ û\�*UINÖh�o=["h�_]½op[#Uvop["P
� Wg`�J=NlUCSlqgqXNV]6["m UvN UvND�=h�o ú o=S{dQ[{û�Uvop[ÖNQ�}F^["hÉU � ��SQh\ïh\NQP�mMWgJprZUvN�UIop[¬`f[¥h\�pPIWXU^s?mMNQRTSQWXJQø%ú úZþ ��� û\î��;NQJk`fWemM[#PvïWXJpr3UIo=SVUxø%ú ú/þ ��� û¨SQJ=m�ø !�5¤ ´�� ú 6��%�d�d�76Ø¥ û¨SlPI[6SQqXqph#NQRÕï�p�MUISQ�pqg[Q��Uvop["Pv[cWg`;JpNjmpWº�¬h\�=q¡U^sÕUvNÕh\NDJ=`^UIPv�khÉU6`v�=h�o¬SQJ�SlqXï
rQNQPIWXUvopR Sl�p�=qXWg["mZUINumM[#Uv[#PIR�WXJ=[�]½op[\UIop[#PcNQPcJpNlUcS¬qgSQ�k["q
Wg`�`v["h#�pPIW¡U^s�ï4d{SQqXWem ú `f["[ji+["h\UvWgNQJ�}Mî ��û\î

- è N
V�LZK\NQK é ®"°M®¥íÐê é�è ­¥­"ì�K+­
nbop[�WXR��pqg[#R�["JDU�SVUIWXNDJZNQL¨S�qeSl��[#qgqgWXJpr¬`vsM`^UI[#R]½WXUvo=WXJ�ND�pP
RÕNMmM["q�WgJ�dDNQqgdQ[¥`*RTSlJ+sTUI["h�opJ=Wgh"Slq�SQ`v��["hÉU�`#�+WgJ=h\qg�=mMWgJpr�UIop[
Pv["�pPv[¥`f["J�UISVUIWXNDJÖNlL�`vs�J�U�SVzÃ�ÔUIop[¬UI["h�opJ=Wg���p[¥`�LONQPÓ�pWgJ=mMWgJpr
`f[¥h\�pPIW¡U^sTqeSl��[#qe`;UvN�NQ�}F^["hÉU�`#�MSQJ=mTUIop[3Uv["h�o=JpWg���p[¥`bSl�p�pqgWg["m
LONQPjPI["SD`fNDJpWgJpr=�.["`v�k[¥h\WeSlqgqXs?LONQPjqeSl��[#q;dVSlqgWgmpSlUvWgNQJ��½ñ#ò4ó#î�H4U
Slqe`fNCPI[#qgs?NDJ Uvo=[�S{dVSlWgqgSQ�pWXqgWXU^s?NlL�SCPv["rQWe`^UIPISlUvWgNQJÖ`f["Pvd+Weh\[
UvN SQ`I`fWgrQJ ò ¼�ó�ø%´ µ ô3¼MÇÈ´�SQJ=mð`v[#PIdQ[ZSQ`ÓUvop[�PI[#��ND`vW¡UINQPIsNlLÃUvo=[3`v[#RTSlJ�UIWgh"`#�+`f��["h#WgSQq=o=SQJ=mMWgJprjPI�pqg["`"��SQJ=mTNQUvop["P;mM[#ï
UISlWgqe`�PI["���pWgPv[¥m LONQP�Uvop[�=`v[?NQLj`f[¥h\�pPIW¡U^s ��NQqgWgh#s�ï4`v�k[¥h\WXükh
qgSQ�k["q�`f[#UI`"îE¢ o=[#J�`f[¥h\�pPIW¡U^sTqeSl��[#qe`bSlPI[3`v��["h\WXükhcUvN�SÓ�=SlPvï
UvWeh\�pqeSlP�SQ�p�pqgWgh"SVUvWgNQJÔ�lW¡U
RTS{s�Slqe`vNc��[½Pv["qgSlUv[¥m�UvN�SÚ`v�k[¥h\WXükh
Sl�p�pqgWeh#SVUIWXNDJ��pPINlUvNMh#NQqÄî½HKRÕ�=qX["RÕ["J�UvWgJpruST�=PISDhÉUvWeh#SQq.`v["h#�Mï
PvWXU^sÓqeSl��[#qgqgWXJprÕ`fsM`fUv["R We`*J=NlU;WgJTUIop[c`Ih\ND�k[�NQLÃUvopWe`;�=Sl��[#P¥î
HKJ=`^UI["SDmÃ�
];[uNQJpqgsÖmMWg`Ih\�k`v`Õ`f["dQ["PISQq
Uv[¥h�opJpWeh#Slq6�pPINQ�pqg[#RT`"�
SlJ=m?�kNDWXJ�UÚUvN�`fNDR�[j["`I`v[#J�UvWeSlqE[#qg[#R�[#J�U�`�LONDPÚWXR��pqg[#R�[#J�Uvï
WXJpr¬`v�=h�o�`fsM`fUv["R�`"î
HKJ UvopWe`�`f[¥hÉUIWXNDJ���]6[jü=P�`fUÚWgJ�UvPINMmM�=h\[ÓUvo=[¬`fs+J�UISlz�SQJ=m

UvopN�`f[C�kSQ`vWgh�R�["h�okSlJpWe`fRT`�Jp[#[¥mM["m LONDP¬WXR��pqg[#R�["JDUIWXJ=r�S
`f[¥h\�pPIW¡U^s�qeSl��[#qgqgWXJpr�`vsM`^UI[#R��VUvo=[#J�mMWg`Ih\�k`v`.U^]6N3`v�k[¥h\WXükhbSQ`fï
�k[¥hÉUI` � �pWgJ=mMWgJpr?`v["h\�=PvWXU^sCqeSl��[#qe`ÚUvNCND��F^["h\UI`"�.SQJ=m qgSQ�k["qd{SQqXWempSlUvWgNQJ�î

-ùêÐç ª¬«¨­#®"¯{°=±l® T O é ®"°;:
xbSQ`v["mZNDJZND�pP�R�NMmM[#q.rQWgdQ["J�SQ�kNVdD[Q�=S�PI[#�=Pv[¥`f["JDU�SVUIWXNDJuNQL
SQ�=`^UIPISDhÉU�`fs+J�UISlz LONDPjUIop[�qgSQ�k["qXqgWgJpr `vsM`^UI[#R h"SlJð��[ZNQ�Mï
U�SlWgJp["mZSQ`6LONDqXqgNV]�`dR

x¼;,�´ � R�R � ë þ�< ú ��ü��l����ü ¼Mý µÖ� ñ
þ�< ú R�R � ¤¿�=%\�D�d�>%5¤>?
ü��Z� R�R � � � %\�d�D�>%A� �

ü ¼Mý µÖ� R�R � ü ¼�ý\´�¼ µ3%�ü ¼Mý\´�¼ µ�ü ¼Mý µÖ�
ü ¼�ý\´�¼ µ R�R � ú�ò ¼�ó ò ¾ ¤ ´ � ò ¼�ó�ô3¼MÇÊ´ � ú � ÇÊ¼M­<½Ôû

ò ¼�ó ò ¾ ¤ ´ R�R � ý��;iMn % w �*ý�� % �*Yc �� %\�D�d�
ò ¼�ó�ô3¼MÇÊ´ R�R � i+[#J=m=nÔN % ac[#�pUÉtcJpqgs %\�d�D�ú � ÇÊ¼M­<½ R�R � % ø%Ä@, � ´ µ�% ø Ä@, � ´ µ ú � ÇÊ¼M­<½ø ÄA,!ø%´ µ R�R � � ø ÄA,ª¯M´ �µ5��% ø Ä@, � ´ µ¿â=� ø Ä@,Ö¯�´ �µ5�ø ÄA,ª¯M´ �µ R�R � � � %��d�d�B%�� ���[#PI[Î� ü ¼MýM´�¼ µ|ü ¼Mý µÖ� �yWg` Uvop[PI["`v�pqXUv[¥m `v["���p["J=h\[NQL�p�pUfUvWgJpr ü ¼Mý\´�¼ µ UvNÖUvo=[�LOPvNDJDUTNQL�Uvo=[C`f[¥�D�=[#J=h#[ü ¼Mý µÖ�SD` UIop[ü=P�`^U ["qX["RÕ["J�U�NQL UIop[Jp[#] `f[¥���p[#J=h#[Q�ySlJkm
UIop[�`ISlR�[[\zM�pqeSlJ=SlUvWgNQJ÷`vopNQ�pqem Slqe`fN ��[RTSQmp[LONQP
�5ø Ä@, � ´ µ ú � ÇÈ¼M­<½ù�pî

-ùê¹I C °p­¥íÐ±ÈèåK+± � ° é í¸­DNð­
HKJ�Uv�=W¡UIWXdD[#qgsQ�+]½W¡UIopWgJ�SÕ`v["h\�=PvWXU^s�qgSQ�k["qXqgWXJ=r�`vsM`^UI[#R���Uvop[ÚqeSVï
��[#qgqXWgJprTLO�=J=hÉUIWXNDJCSQh#h#[#�MU�`�SlJ�ND��F^["h\U�SQ`½WgJp�p�pU"��SlJ=m�ND�MUfï
�p�pUI`bSÓ`v["h#�pPIW¡U^sTqeSl��[#qÄ�M]½opWeh�o�]½WgqXqÃ��[c��NQ�=J=m¬UINjUIopWe`bNQ�Mï
F^[¥hÉU"î
HKJ�NDPImM["PbUvN�WgRÕ�=qX["RÕ["J�U�Uvop[�`vsM`^UI[#R��pNDJp[ÚJp[#[¥mp`bUvN
�p�=WXqem�ScJ+�pRÓ�k["P
NlL�RÕ[¥h�o=SlJ=Wg`vRT`EUvNÚ�k["PfLONDPvR ScdVSQPvWg[\U^s�NQL
LO�pJkhÉUvWgNQJk`#îÓHKJ ND�pPcR�NMmM["q¸�ÃUIop[T`f[¥h\�pPIWXU^s�qgSQ�k["qXqgWXJ=r�LO�pJkhÉï
UIWXNDJ�Wg`c�k["PfLONDPvR�[¥m���suUvo=Pv["[�RTSAF^NQPcR�["h�o=SQJpWg`vRT`#î�nbo=[#s
SQPv[�R
S w H^� ú w NDqXWeh\sÕH^mM["JDUIW¡ü�h#SVUIWXNDJ���[¥h�o=SlJpWe`vRTû!RESjR�["h�oMïSQJpWe`fR9UvNZmM[\UI[#PIR�WXJp[Õ]½opWeh�oC��NQqgWgh#s�Wg`3Sl�p�=qXWg["m�UINZS
`v��["h\WXükh3NQ�}F^["hÉU�t

S i}8 C � ú iM["h\�=PvWXU^sõ8�[#dD[#q C WgJ=mMWgJpr ��["h�o=SQJpWe`fR¬û�R�SR�[¥h�o=SlJpWe`vR1UIN�ü=Jkm�Uvo=[;`v["h\�=PvWXU^sÚqX["dQ[#qDLONQP¨SlJ+s3rQWgdQ["J
ND��F^["h\UbUvN��k[�qeSl��[#qgqg["m.t

S �½�6� ú �6S{dD["SlUj�;o=N�N�`fWgJpr���["h�okSlJpWe`fR¬û!R�SuR�[¥h�o=SVïJ=Wg`vRøUvN�mM[#Uv["PvR�WgJp[*]½o=SlUEh"S{dQ["SlUI`ÃRTS{s3NQPE`fopND�pqemÚ�k[
h�o=ND`v[#J¬LONDP�h\NDJ=`^UIPv�khÉUvWgJprÕUvo=[�qgSQ�k["qÃLONQP�SQJuND��F^["h\UDt

��qXq
UIop["`v[¬R�["h�okSlJpWe`fRT`ÚND�k["PISlUv[T�=SD`f[¥m NDJ Uvop[¬`v["h#�pPvWXU^s
qeSl��[#qgqXWgJpr�LOP�SlR�["];NDPv_��l]½opWeh�o¬h\NDJ=`vWg`fUI`
NQL�UvopPI[#[�R�NMmM�pqg["`"�
i=t3a ú i+�p��F^[¥hÉUI` : tc�}F^["hÉU�`ÖacSlUISl�kSQ`v[¥ûÉ� w � ú w NDqXWeh\s�CSQJ=SlrD[#R�[#J�UÉûÉ�MSlJ=m�n½ý ú nESlr�`bý½[#rDWg`fUvP�SVUIWXNDJkûÉît�Uvop["P�U^]6N?WgRÕ��NQPvUISQJ�UÓh\NDRÕ��NQJ=[#J�UI`Õh\NDJDU�SlWgJp["mÖWgJ�S
qeSl��[#qgqXWgJprT`vs+`fUv["RùSlPI[�R
SED ý�� ú D SQqXWempSlUvWgNQJ : ý�["SQ`vNQJ=WXJpr��*JprQWgJp[{û�RÃSbPv[¥SQ`vNQJMïWgJprÓ[#JprDWXJp[3�=`v["m�UINÕh�o=["h�_ÕUvop[Úh\NDJ=`vWg`fUv["J=h\s�NlLE`f[¥h\�Mï
PIWXU^s qgSQ�k["qg`��pPINMmM�=h#["mÃî H4U¬mMWXPI["h\Uvqgsðh\NDJpJp[¥hÉUI`�]½WXUvo
UIop[�qg[#��[#qgqXWgJprÖLOP�SlR�[#]6NQPI_�SQ`T]6[#qgq�SD`ÕUvop[C`v["h#�pPvWXU^s
qeSl��[#qgqgWXJprÕLO�pJkhÉUvWgNQJÔî

S 8.xb� ú 8.Sl��[#q�x6WgJ=mMWgJprT��["h�o=SQJpWe`fR¬û�R
SÓR�["h�o=SQJpWg`vRSQ�p�pqgWX[¥m¬UINT�pWgJ=m�SÓdVSQqXWemZqgSQ�k["q�UvN¬SlJZNQ�}F^["hÉU¥î
C WgrQ�=Pv[£ð`vopNV]�`�SlqgqÚUvo=["`v[R�[¥h�o=SlJpWe`vR�`�SQJ=m R�NMm+ï�pqg["`"�M]½opWeh�o¬LONDPvR RTSQWXJ�h\NDRÕ��NQJ=[#J�UI`6NlL¨SÕqgSQ�k["qXqgWXJ=rÕ`vsM`^ï

UI[#R��
SlJ=mÖUIop[#WgPÓh#NQJpJ=["hÉUIWXNDJ=`"îCY�NlUI[¬UIo=SVUjWgJ�R�ND`fUÓ`vsM`^ï
UI[#RT` w H^� �¥i�8 C � �"SQJ=mj�½�6� PI["���pWgPv[
o+�pRTSlJ�WgJp�p�pUESlJkmF^�=mprQ[#R�["JDU¥î

-ùê v C í é ëEí é�y ° T K+±Qì.¯{íÐ®5OYw;°M«#K\L*®¥ê ° éGF «.f�K+±l®
C NQPÚ�pWgJ=mMWgJprZUvop[T`v["h\�=PvWXU^s�qgSQ�k["q¨UvN�SlJ WXJpLONQPIR�SlUvWgNQJ NQ�MïF^[¥hÉU"��]6[jRTS{suNDP�RTS{sZJpNlU3�=`f[ÓS�h\PIs+�MUvNDrQP�Sl�po=Wgh�`v[#PId+Wgh#[
ú H^n½ ½ïKn ý½["h#NQR�R�[#J=mpSlUvWgNQJ g î ���=|c£Q~Q~Q~�ûÉîEnbop[�R�[\UIopNMmp`SQPv[ÚSQ`6LONDqXqgNV]�`dR

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

73

PIM SLFM CCM

Security Labelling Function

VRE

LBM
(valid label)

o

v(o)obound tov(o)

SOD TR

Security Labelling Framework

PM

C WgrQ�pPI[�£�R
�CSQWXJ�h\NDR��kNDJp[#J�UI`bNQLES�qeSl��[#qgqXWgJprT`vs+`fUv["R

S � r ñ#ò�Ñ`�D° Ó j»ò�Ñ}��^Mò
ò�Ñ=ñ�^\]\ñ'�ÖÕ ? ódi�k�¦�ò7� b i ? ¦}Ñ\jÐó']#ñ!i�p�DjÐó�ñ¥ôyHKJ UIopWg`�R�[\Uvo=N+m���S�h\ND��sðNlLÚUvop[mpSVU�S ú ND�MïF^["h\U � û�SQJ=mTS�h#NQ�+sjNQL�UIop[c`v["h#�pPIW¡U^sÓqgSQ�k["q ú � ú � ûfû;SlPI[`^UINQPI["m?UvNDrQ[\UIop[#P¥��SQ`ÚS�mpSlUISuPv[¥h\NQP�mÃ�ÃWgJ=`vWgmM[ÕUIop[¬`f[#ï
h\�pPI[���NQ�=J=mpSlPIs�NlL�UIop[c`vsM`^UI[#R�î¨HKJ¬UIop[3h"SQ`v[Q��];[3SQ`fï
`f�=RÕ[6UIo=SVU¨Uvo=[6`vsM`^UI[#R�We`¨h#Sl�kSl�pqg[;NQL=�pPINlUI["hÉUIWXJ=r�UIop[
WXJ�UI[#rQPIWXU^s?NlL6Uvo=[�`f[¥h\�pPIWXU^s?qeSl��[#q;SQJ=m Uvop[�WXJ�Uv["rQPIW¡U^sD�
SQ`*];["qXq�SQ`
��ND`I`fWg�pqgsjUIop[�`v["h#Pv[¥h\sQ�DNlL�Uvo=[�mpSVU�SpîE¢ W¡UIo
UvopWe`��pWgJ=mMWgJpr�R�[\UIopNMmÃ�ÔJpN�h#Pvs+�MUINQrQP�Sl�=opWgh�LO�pJ=h\UvWgNQJ
Wg`�Jp[#[¥mM["muLONQPbUIop[��pWgJ=mMWgJpr=î

S � r ñ\ò�Ñ}��° Ó j»ò�Ñ�ò�Ñpñ�^\]#ñ¢�ÖÕ ? ódi�k�¦�ò7� b i ? ¦}Ñ\jÐó�]\ñdi���jÐóIñ¥ô �`vWXJ=rÚSÚmMWgrQWXUISQqp`fWgrQJkSVUv�=Pv[bSlqgrQNDPvWXUvopR ú ø ­ló �¢� ópûÔSQJ=mUvop[3�pPIWXdVSlUv[�_D[#s úIH ¡ û�NlL�S��=�p�pqgWgh�_Q[#s�SlqgrQNDPvWXUvo=RZ�+SmMWgrQWXUISlq�`fWgrQJkSVUv�=Pv[#ø ­ló ��� ó ú	H ¡D��J ú � û �K� ú � ûfûÔWe`�rQ["Jp[#PvïSVUI["mÃ�{]½op["Pv[J We`ÔS��p�p�pqgWgh
LO�pJ=hÉUIWXNDJj`v�=h�oÚUvo=SlU J ú � ûmMN+["`*JpNlU�PI[#dD["Slq=WXJMLONDPvRTSlUvWgNQJTSl��NQ�MU � î¨HKJ�UIop[�h#SD`f[D�Uvop[mMWgrQWXUISQq�`vWgrQJ=SlUv�pPI[Uø ­ló ��� ó úIH ¡ �KJ ú � û �K� ú � ûfû We``^UINQPI["möUvNDrQ[#Uvop["P�]½W¡UIo � SlJ=m � ú � ûyWgJ S mpSlUISPv[¥h\NDPIm.t�Uvo=[yrQ[#J=[#P�SVUv[¥m mpWXrDW¡U�Slq?`vWXrDJ=SVUI�pPI[ø�=WXJ=m=`
� ú � û�UvN � îu¢ W¡UIoÖUvopWe`��pWgJ=mMWgJprCR�[\UIopNMmÃ� � ú � û�SQJ=mø ­ló �¢� ó úIH ¡D�KJ ú � û �K� ú � ûfû
J=[#["mÕJpNQU��k[c`^UINQPI["mÓWXJ=`vWemM[Uvop[�`v["h\�=Pv[Ó�kND�pJ=mpSQPvsZNlL
UIop[Õ`vsM`^UI[#R�î3H4L*S�h\PIs+�MUvNQï
rQP�Sl�po=Wgh6`f["Pvd+Weh\[bWe`¨WXJ+dQND_Q[¥m�]½WXUvo�SlJÕWXJ=h#NQPIPv[¥hÉU¨dVSlqg�p[
NlL � ú � ûÉ� � NDP�ø ­ló �¢� ó úIH ¡D�KJ ú � û �K� ú � ûfûÉ�EUIop[¬WgJ=h\NDJMï`fWe`fUv[#Jkh\s�Wg`3mM[#Uv["h\Uv[¥mÃî�nbopWg`cWe`cSDh#h\NDR��pqXWe`vop["m��k`fWgJpr
Uvop[��p�p�pqgWgh¬_Q[#s?NlLbUvop[T�=�p�pqgWghT_D[#s SlqgrQNQPIWXUvopR�SD`�S
dQ["PvWXükh#SlUvWgNQJZ_Q["s�UvNTdQ["PvWXLOsTUIop[�`fWgrQJkSVUv�=Pv[Dî

-.ê ç w;°M«#K\LML�°}L¸íÐëE°M®"í¸ê é
i+["h#�pPvWXU^s�qeSl��[#qe`�SQPv[ÚrQ["Jp[#P�SVUI["mu�+s¬Uvo=[�qgSQ�k["qXqgWXJ=r¬`fsM`fUv[#R
�=SQ`v["m�NQJ¬UIop[Ú`fs+J�UISlzTSQ�kNVdD[cSQJ=m¬WgJ�Uv[#JkmM["muSQ`bSlJ¬[#z+Uv[#Jpï
`fWgNQJÖUINC[#J=mð`fsM`fUv[#R qeSl��[#qe`#î�H4UÓWe`�J=["h\[¥`v`ISlPIsCUINC[#Jk`f�pPI[
Uvop[6WXJ�UI[#rQPIWXU^scNQLMUvop[6qgSQ�k["qg`ESlJkmÚUvop["WXPE�pWgJ=mMWgJprcUvN�UIop[bh\NQPvï
Pv[¥`f��NQJ=mpWXJprTND��F^["h\UI`"î;nbo=SlU�Wg`"�=WXU�We`�WgRÕ��NQPvUISQJ�U½UvN¬h�op[¥h�_
]½op[\UIop[#P;Uvop[cqgSQ�k["q=RTSlPI_Q[¥m�NQJ¬SQJTNQ��F^[¥hÉU*We`*dVSQqXWemT��[\LONQPI[
Uvop[�qeSl��[#q�We`6UvNT��[��=`v["m�LONQP�`v["h#�pPIW¡U^sT�p�=Pv��ND`v[Qî
	3WgdQ[#JTSÚR�NMmM[#q è � ú Ú ���5��� ú ��� ��û �ª�%� £ ��ÛHÜ���� ûÉ��qX[#U� ú � û � ë þ �
 ��6 � �d�d��6 ¥ ñÄîÕ¢ W¡UIopWgJ UIop[�qgSQ�k["q
dVSlqgWgmpSlUvWgNQJ�pPvNMh#["mM�pPI[Q��Uvop[R�S�F^NQP�UISQ`v_ Wg`�UvN h�op["h�_]½op[#Uvop["P�UIop[

qgSQ�k["q � ú � ûcd+WXNDqgSlUv["`�Uvo=[Ó��NQqgWgh#s þ î3¢ [Õ[#R��pqgNVsuUIop[ÕLONQqXïqXNV]½WgJprTSlqgrQNDPvWXUvopR�UIN¬h�op["h�_¬Uvop[�dVSlqgWemMW¡U^s�NlL � ú � û!R
|QîbH4L½Uvop["Pv[T[#zMWg`fUI` �3¬ ø !�5¤ ´�� ú 6����d�D��6�¥ û�`v�=h�oÖUvo=SlU
Å à ú � û�±N
���Uvo=[#JCUIop[�h�op["h�_+WgJpr¬�pPINMh\["`I`�Uv[#PIR�WXJkSVUv[¥`SlJ=mZND�MUv�p�pUI` � ú � û6Wg`�WXJ+dVSlqgWgmùtpNlUIop[#PI]½Wg`v[Q�

£MîbH4L Uvop["Pv[[\zMWe`^U�` � ¬ ø !�5¤ ´�� ú 6����D�d��6Ø¥ û�SQJ=m
2 ¼M½ Æ ¼Mý\´ ú ����� û?Wg` mM["PvWgdQ[¥m �=SQ`v["m NDJ ø%ú úZþ ��� ûÉ�

UIop[#J Uvop[Öh�op["h�_+WgJpr��pPINMh\[¥`v`¬Uv[#PIR�WXJkSVUv[¥`uSQJ=m ND�MUfï
�=�MUI` � ú � û6We`½WXJ+dVSlqgWem.tMNlUIop[#PI]½Wg`v[Q�

�=î6H4L�Slqgq�["qX["RÕ["J�UI`TWgJÁø !�5¤ ´ � ú 6 � �D�d��6 ¥ ûÕo=S{dQ[���[#[#Jh�o=["h�_Q[¥m SlJ=m Uvop[�h�op["h�_+WgJprC�pPINMh\[¥`v`ÓmMN+["`ÕJpNlUÓUv["Pfï
R�WgJ=SVUI[�SVU�`fUv["� |�NQP�`fUv[#�?£p�MUvo=[#J�Uvo=[��pPIN+h#["`I`6Uv["Pfï
R�WgJ=SVUI["`½SQJ=mZNQ�MUI�p�MUI` � ú � ûbWe`½dVSlqgWgm�î
nbop[½�kNDqXWeh\sÓWgmp[#J�UvWXü=["mÕUIN���[½�=`f[¥mÕLONQP�RTSQ_�WgJpr�SÚqeSl��[#q

RÓ�=`^U�JpNQU��k[�d+WgNQqeSVUv[¥m?�+s�UIop[TqeSl��[#q�WXUI`v[#qXL^î�HKJ UIop[TdQ["Pfï
WXükh#SlUvWgNQJ��pPINMh\[¥mM�pPI[Q�=WXUÚWg`�WXR���NQPvUISlJ�UcUvNuh�o=["h�_Z]½op[\UIop[#P
UIop[��kNDqXWeh\s�Wg`�`vSlUvWe`^ü=[¥mÃî HKJ i�UI[#�y|�NQL3ND�pP�SlqgrQNDPvWXUvo=RZ�
STdD[#PIsu`vWXR��pqg[Óh#NQJ=mpW¡UIWXNDJCWg`��=`v["m�UIN�SQ`I`f[¥`v`½Uvop[ÕdVSlqgWgmMWXU^s
`fUISlUv�=`cNlL*SuqgSQ�k["q¸îÚY�NQUv[ÓUvo=SlU=
 � Å�à ú � ûcWgJCNQ�=PcR�NMmM[#qÄ�UIop[�h\NDJ=mMWXUvWgNQJ�h#SlJZ��[�`^U�SVUv[¥m�SQ`6LONQqgqgNV]�`dR
S nbo=[Ú`v["h#�pPIW¡U^s¬qg[#dD[#qÃNQLÔUvo=ND`v[Ú`v�p��F^[¥hÉU�`#�MUIN�]½opWgh�o�SQJND��F^["h\UÓqeSl��[#qgqX[¥m�We`jWgJ�Uv["J=mM["m�UvN �k[�mM["qXWgdQ["Pv[¥mÃ��h#SQJ
J=NlU½�k[�qg["`I`6UvokSlJZUvop[�`v["h#�pPIW¡U^s¬qg[#dD[#qÃNQLÔUvo=[�NQ��F^[¥hÉU"î

i+WgR�WXqeSlPIqgs¬UvN¬UvopWe`ch#NQJ=mpW¡UIWXNDJ��pUIop[�LONDPvRÓ�pqgS Å à ú � û¢� Å à ú � ûo=SD`3�k["[#J �=`f[¥mCLONDPÚR�SQJ=mpSlUvNQPIsCSQh"h\[¥`v`3h\NDJDUIPvNDq
`fsM`fUv[#RT`
ú �C���bûÉ�=`v[#[ú i+�=Slqg_VSp���;PI[#R�["PI` : 8Ô[#opR�qg[#Pc£Q~Q~D~DûÉî
i�Uv["� £ÖWg`¬UvNðh�o=["h�_]½op[\UIop[#P�Uvop["Pv[CWe`�SQJ+s�h\NDJ B WehÉU��[\U^]6[#["J¬Uvo=[Ú`v["h#�pPIW¡U^s¬mMNDRTSlWgJÊø%ú úZþ ��� û6SlJkm¬UIop[3UvNQ�kh�omMNDRTSlWgJ ò ú ú � ú � û ��� ûÉî nbop[?WgJ�Uv�pWXUvWgdQ[CR�[¥SlJpWgJpr�NQL�Uvop[h#NQJ=mMWXUvWgNQJZ[#R��pqgNVsQ[¥m�WgJuUvopWe`�`fUv[#��We`dR
S H4L � Wg`¨��ND`I`fWg�pqgs�UINQ�=h�op[¥mj�+s � �p�MU 2 ¼M½ Æ ¼Mý\´ ú ����� ûh"SlJ���[�mM[#PIWXdD["mÓLOPINQR�UIop[½LÐSDhÉU�UIo=SVUxø%ú ú/þ ��� û�Wg`
Uvop[`v["h#�pPIW¡U^sjmpNQRTSlWgJTPv["qgSlUv[¥mjUIN þ SlJ=m � �DUvop["J�Uvop["Pv[�Wg`S�h#NQJ B WehÉU¥�M]½opWeh�oZqg["SDmp`6UvNÕUIo=SVU � ú � ûbWe`½WXJ+dVSlqgWemÃî

C NQP�[#zMSQR��pqX[D�DWXL þ Wg`�Uvop[c�kNDqXWeh\sÕPv["�pPI["`v[#J�Uv[¥mÕSD`¨LONQqgqgNV]�`dR
úPO ´'R J ûQ,�´ � ´ ³A´ µ ú ´ ��� ûÉ�

]½opWeh�o¬R�["SQJ=`
UIo=SVU � Rj�k`^U6�k[3_Q["�MU6`v["h#Pv[#U�LOPvNDR Slqgq�`v�p�MïF^[¥hÉUI`bWgJ J î�nbop["Pv[#LONQPI[Q�+];[�RÓ�=`fUbokS{dQ[
úPO ´'R J û ú ´ R¬ ø d�5¤ ´ ú 6��z�d�D�76�¥ ûvûÉî

5 Ë í¸­"±Dì.­¥­¥íÐê é ° é ë T K�±DìÔ¯VíÐ®�O.�Óê é ­¥íÐë�KD¯V°M®¥íÐê é ­
¢ WXUvo `v["h#�pPvWXU^sðqeSl��[#qgqgWXJprk�½`fNDRÕ[��pPINQ�=qX["R�`¬o=S{dQ[CSQPvWe`f["J
UIopPvND�prQoð�pPISDhÉUIWgh"Slq½Sl�p�=qXWeh#SlUvWgNQJ=`"î�¢ [�mpWg`Ih\�=`I`�`fNDR�[uNQL
UIop["`v[�`vNQPvUI`�NQL��pPINQ�pqg[#RT`���[#qgNV]���]½opWgh�o�Jp[#[¥m�UvNÓ�k[3h#SlPI[\ï
LO�pqgqgsZh#NQJ=`vWgmp[#PI["muWXJ�UIop[jmM[¥`fWgrQJ�SlJkm�WXR��pqg[#R�[#J�U�SVUvWgNQJ�NQL
SÕqeSl��[#qgqXWgJprT`fsM`fUv["RZî

52êÐç ��� ¯AK+°M®¥­
i+[¥h\�pPIWXU^suqeSl��[#qe`�SQPv[�WgR��pqg[#R�[#J�Uv[¥m�]½WXUvopWgJC��NlUvo?rQNVdQ["PvJpï
R�[#J�U*SQrQ[#Jkh\Wg["`
SlJkmÕh#NQR�R�[#P�h\WeSlqM["JDUIW¡UIWX[¥`#�QUvN��pPINlUI["h\U�J=SVï
UIWXNDJ=Slq�SlJ=mÓh\NQR�R�[#P�h\WeSlqDWXJpLONQPIR�SlUvWgNQJ��{PI["`v�k[¥hÉUIWXdD[#qgsQîÔnbopWe`
`v["h\UvWgNQJ¬We`*J=NlU;WgJ�Uv["J=mM["m¬UvNÓ�k[ÚS�UIopPv[¥SVUbSlJ=SQqXsM`vWg`"�DP�SVUIop[#P
WXUcopWgrQo=qXWgrQo�UI`�Uvop[ÕmMWe`^UIWXJ=h\UvWgNQJC��[\U^]6[#["J�Uvo=Pv[¥SVUI`cSVUÚ`f[¥h\�Mï
PIW¡U^scqX["dQ["qg`.SlJ=mÚ��[\U^]6[#["J�h\qeSQ`I`fWXükh#SlUvWgNQJÚ`fsM`fUv["R�`"îÔH4U.Wg`ÔWXRÕï
��NQPvUISQJDU�UvN�J=NlUv[jUvo=SlUÚmpWTS�[#PI[#J�U�UIopPI["SVU�`cSUS�[¥hÉUÚmMWTS�[#PI[#J�U
U^s+��["`6NlLÔWgJMLONDPvRTSVUIWXNDJ�îEHKJuNDPImM["P�UINÓ�pPINlUI["h\U6WgJMLONQPIRTSVUIWXNDJ
SDmM["���=SlUv[#qgsÓiMh�o=Jp[#Wg[#P ú iMh�opJ=[#Wg[#P;£Q~Q~Q~�û.JpNlUI["`
UIop[�WgR��kNDPfïU�SlJ=h#[;NQLk�pJ=mp[#P�`^U�SlJ=mMWgJpr3Uvo=[6PI["SQq�UvopPI["SlUI`.UvN3Uvo=[�`fsM`fUv[#R��
SQJ=m�[#J=`v�pPIWXJ=rTUvo=SlU�UIop[Óh#NQ�pJ�Uv["PvR�[¥SQ`v�pPv[¥`½WgRÕ�=qX["RÕ["J�Uv["m
�pPINlUI["h\U½SQrDSQWXJ=`fU½SlJ=m�`vNQqgdQ[cUvop[�PIWXrDo�U6UIopPI["SVU�`#î
	3NVdQ[#PIJpR�[#J�U¨SlrQ["J=h\Wg["`EPI["h#NQrQJ=Wg`v[�LONDPv["WXrDJjWgJDUI[#qgqXWgrQ["J=h\[

`v[#PId+Wgh#["`"�VUv["PvPINQPIWg`fU
NQPIrDSQJpWg`ISVUIWXNDJ=`"�{SQJ=mTmMWe`frDPv�=JDUIqX[¥mjWgJ=mMWXï
d+WemM�=Slqe`*SD`���NlUI[#J�UvWeSlq�`fND�pP�h\["`�NlLÃUvo=Pv[¥SVUI`"î¨nbopWg`;We`*JpNQU6SQJ
[#z+okSl�=`fUvWgdQ[�qgWe`^U¥�lR�[#PI[#qgsÚSQJ�[\zpSQRÕ�=qX[;NlL=��ND`I`fWg�pqg[�UIopPv[¥SVU�`#î
C NQP�[#zMSQR��pqX[�SDmMdQ["PI`ISlPIsTJ=SlUvWgNQJ�`^U�SVUI["`½RTS{s�okS{dQ[�S{dVSlWgq¡ïSQ�pqX[bUINÚUvop["R SÚqeSlPIrQ[bPI["`vNQ�pP�h\[6��N�NDq¸��WgJÕ��NlUIo¬S3ü=J=SQJ=h\WeSlq
SQJ=m h"Sl�=SQ�pWgqXWXU^s `v[#J=`v[QîTHKJ�h#NQJAF^�=J=hÉUIWXNDJ]½WXUvo UIop[�h#SQ�=SVï
�pWgqgW¡UIWX[¥`�UIN¬�k["PfLONDPvR SQJCSVUfU�SQh�_��kUvop["Pv[�]6NQ�=qgmCSQqg`vN¬��[ÓSQJ
WgJ�Uv[#PI["`fU*WgJ�Uvop[cWXJpLONQPIR�SlUvWgNQJT�pPINVd+WgmpWXJpr�SÚR�NQUvWgd{SlUvWgNQJ�î
�
��ND`I`fWg�pqg[TSVUfU�SQh�_�LOPINQR `f�kh�o SZUIopPv[¥SVU�]6NQ�pqem �k[�UIo=SVU�NQL

CRPIT Volume 48

74

h\NQR�RÓ�pJpWeh#SVUIWXNDJCWgJDUI[#P�h\["�MUvWgNQJ]½W¡UIo SZh\PIs��pUISlJkSlqgs+`vWe`�SVUvï
UISQh�_�î���`�SQJ SVUvUISDh�_�NlL*UIopWe`ÚJ=SVUI�pPv[Th#NQJ=`fUvWXUv�MUI["`�SuopWgrQo
UvopPI["SlU;UIop[�`^UIPv["JprlUIo�NlLEh\NQ�=JDUI[#PIR�["SQ`v�pPI[�SlJkmTUvo=[3R�[¥h�oMï
SlJpWe`fRT`bWgJ+dQNQqgdQ[¥m�]6NQ�=qgmu�k[�PI["���pWgPI["mTUINT�k[�`fUvPINQJ=r=î
HKJ h\NDJDUIPISD`^U h\NDR�RÕ["PIh#WgSQqTWXJpLONQPIR�SlUvWgNQJ `fopND�pqem �=PvWXï

R�SQPvWgqgsu��[��pPINlUI["hÉUI["mZLOPINQR mMWe`frDPv�pJ�UIqX[¥murDPvND�p�=`½NDP�WgJ=mMWXï
d�WemM�=SQqg`"�bSlqgNQJpr]½W¡UIo WXJ�Uv["Pv[¥`^UTWgJ �pPvND�pPIWX[#UISlPIsÖWXJpLONQPIR�Slï
UvWgNQJøLOPvNDR÷�kNQUvoyh\NDR�RÕ["PIh#WgSQq�h\NQR���[\UIW¡UINQP�`�SlJ=møh\PIWXR�WXï
J=Slq�rDPvND�p�=`"îÁ��NV]6[#dD[#PÕUvop[CUvopPI["SlUÕLOPINQR LONQPI[#WgrQJ WXJ�UI[#qXï
qXWgrQ["J=h\[`v[#PId�Weh\[¥`�okSQ`�JpNQUZ��[#["Jø[#zph\qg�=mM["m��cR�[#PI[#qgs mM[#ï
[#R��po=SD`fWe`f[¥mÃî nbop[UvopPI["SlUI`uUvo=SlU�];ND�pqgm1��[NQLÓ�pPIWgJ=h\WXï
�=Slq�h#NQJ=h#[#PIJ];ND�pqem JpNQU�rD[#Jp["PISQqXqgs h\NDRÕ[WgJ UIop[LONQPIR
NlL�h\PIs+�MUISQJ=SlqgsM`fWe`#�pUvop["Pv[#LONQPI[jSlqgqXNV]½WgJpr�qg["`I`�`fUvPIWXJprD[#J�U�[#Jpï
h\PIs��pUvWgNQJ R�[\UIopNMmp`TUIN �k[[#R��pqgNVsQ["m�î1HKJ UIopWg`uh\WgPIh#�pRÕï
`^U�SlJ=h#[*SVUvUISQh�_M`�LOPvNDR1]½WXUvopWgJ�UIop[*NDPvr�SlJpWe`vSlUvWgNQJÚNQP.SlrQ["J=h\sD�
];ND�pqgm���[jh#NQJ=`vWgmp[#PI["muUvN¬��ND`v[�S¬`vWXrDJpWXükh#SQJDU½UIopPI["SVU¥î½��J
[\zpSlR��pqg[TNlL;UvopWe`�RTS{sCWgJ=h\qg�=mM[TWgJ�Uv["PvJ=SQq
�=`v[#P�`�SVUfUI[#R��MUvï
WXJprjUvN�r�SlWgJT�pJ=SQ�MUvopNDPvWe`v["mTSQh"h\[¥`v`�UvNjmpSlUIS=î¨nbo=[½ü=J=mMWgJpr�`
NlLÚUvop[Ö£l~D~D£ ���=`fUvP�SlqgWeSlJ1�;NQR��p�pUv[#P��;PvWgR�[CSlJ=m iM["h\�pï
PvWXU^s i+�pPIdQ["s ú ���=`É�;[#PvU�£Q~Q~�£Qûc`fopNV] Uvo=SlUj}��Z�k["PIh#[#J�U�NlLPv[¥`f��NQJ=mp[#J�UI`3WemM[#J�UvWXü=[¥m mpWg`vrQPI�pJ�Uvqg["m?[#R��pqgNVsQ[#[¥`3NQP�h\NDJMï
UvP�SQhÉUINQP�`
SQ`EUIop[½R�ND`fU�qXWg_Q["qXsj`vNQ�=PIh#[6NQL�SlUfU�SQh�_M`#�Q�pPv[¥h\[¥mM["m
NQJpqgs?�+s?WgJ=mM["�k["J=mM["JDU�okSQh�_Q["PI` ú ÿA�+VÕû\î�nbopWe`�RTS{s?[#dD[#J[\z+Uv["J=m UvN�SlJ [#R��pqgNVsQ["[Ó��[#WgJpr��pPIWX��["m NQP�`v[#qgqXWgJpr�WgJMLONQPvï
R�SlUvWgNQJ�UIN�SlJ�[#z�UI[#PIJ=Slq.`fND�pPIh#[Qîbnbop[#PI[\LONDPv[ÚUIop[jWgJ�Uv["PvJ=SQq
`f[¥h\�pPIW¡U^s?�kNDqXWeh\sC]6NQ�=qgm �pPINVd�WemM[TS�mM[#rDPv["[ÓNQL6�=PvNQUv["h\UvWgNQJ
SlrDSQWXJk`^U�`v�=h�oZSÓUIopPv[¥SVU¥î
C NDP�SlqgqÃNQPIrDSQJpWg`ISVUIWXNDJ=`
UIo=SVU½o=S{dD[c�=�p�pqgWgh�h#NQJpJp[¥hÉUIWXNDJ=`UvNÚUvo=[½HKJDUI[#PIJp[\U¨UIop[#PI[½Wg`*S3`vWgrQJpWXükh#SQJ�UEUIopPI["SVU¨LOPINQR�okSQh�_�ï

[#P�`�SVUvUISQh�_+WgJprbUvo=[*`fsM`fUv["R LOPINQR1Uvop[*[\z+Uv["PvJ=SQql��NQWgJDU�`#�¥]6[#�
h\NQJ=Jp["h\UvWgNQJ=`�SlJkmðNDPvr�SlJpWe`vSlUvWgNQJ=SQq*]6[#���=SlrD["`"î²��SDh�_Q[#P�`
NQ��[#P�SVUvWgJprZ]½W¡UIo WgJ=mM["�k["J=mM["JDU�R�NQUvWgd{SlUvWgNQJ=`�SQPv[ÕmMW��Th#�pqXU
UvN��=Pv[¥mMWgh\U"�VopNV]6[#dD[#PÔS��pPINDSQh\UvWgdQ[�SQ�p�pPINDSQh�o�We`ESlqg]6S{sM`�UIop[
�k[¥`^U¥�pLONQqgqgNV];[¥mu�+sZ�D�=Wgh�_uPv[¥`f��NQJ=`v["`6UIN¬SlqgqX["d+WgSlUv[�d+�pqgJp[#Pvï
Sl�pWgqXWXUvWg["`"î

5ùê�I J ¯VíÐêk¯VíO®¥íÐ­�K�ë ª�±D±�K+­¥­W�jê é ®#¯VêXLEè�ê�ë�KML¸­
tcJp[��pPINQ�pqg[#R]½W¡UIoT�pPI[#d+WXND�=`�SQ�p�pPINDSQh�o=["`EUvN�SDh#h#["`I`�h\NDJMï
UvPINQq
��NQqgWgh#s?Sl�p�=PvN�SQh�op[¥`#��We`ÚUvo=SlUÚUvop["s SlPI[Õ�=SQ`v["m NQJ SlJ
WgmM[¥SlqgWg`ISVUIWXNDJ¬NlLÔUvop[3UvPI�p[c�pPvND�pqg[#R�î
nbop[#sT�pPINVd+Wgmp[cS�ükPI`fU
Sl�p�pPIN{zMWXRTSlUvWgNQJùR¬RTS{sÖNQP�RTS{sÖJpNlUTS `f�p�}F^["hÉU¬SDh#h\[¥`v`ÕS
rQWgdQ[#J?NQ��F^[¥hÉU�X nbopWe`c�pWXJkSlPIsQ��qXNDrQWeh#SlqÔLO�pJ=h\UvWgNQJ?We`�Uvop[Õ["`fï
`f["JDUIWgSQq
`^U�SlPvUvWgJpr���NQWgJ�U"���p�pUÚWe`3rQ["Jp[#P�SlqgqXs�WgJ=`v���¬h\Wg[#J�UcUIN
rQ�pWemM[�Uvo=[¬o=SlP�mÖmM["h#Wg`vWgNQJ=`3UIo=SVUÓSQPv[�PI["���pWgPv[¥m WXJÖWgRÕ�=qX[#ï
RÕ["J�UISVUIWXNDJ�î n.N��pPINVd+Wgmp[`v�=h�o rQ�=WgmpSQJ=h\[ï�NQPuUvN �pPvNQï
d�WemM[�["dVSlqg�=SVUIWXdD[bh#PvWXUv["PvWeS3�+sj]½opWeh�o¬SQmM[¥���=SQh#s�NlLÃ`f[¥h\�pPIWXU^s
SlP�h�opW¡UI["h\Uv�pPI["`;RTS{sT�k[�SQ`I`v["`I`f[¥m¬SlJ=mZh\NDR��=SlPI["m�ï�Sjü=Jp[#ï
rQP�SlWgJ�`^U�SVUv["R�[#J�U.NQLMUvop[*LO�pqXq+SQh"h\[¥`v`.h\NQJ�UIPvNDqlPv[¥���pWXPI[#R�["JDU�`
Wg`½PI["���pWgPI["mÃî
HKJ�Uvo=[j��ND`vW¡UIWXdD[�h#SQ`v[ZY]½o=[#PI[jSQh"h\["`I`6UvN¬Uvop[�ND��F^["h\U

Wg`jrQP�SlJ�Uv[¥m/Y Uvop["Pv[¬okSQ`���[#["J�S�];NDPv_ WXJ PI[\ü=J=WXJpr�UIopWe`
�kNDqXWeh\sÕ`^U�SVUv["R�[#J�U"î
��N�`^U
NlL�UIopWg`�Pv[#ü=Jp[#R�["JDU�okSQ`¨��[#[#JTWgJ
Uvop[3SlPI["SÚNlL�UIop[=[c�=SQqXWXU^sjNQL.i+[#PId+Wgh#[ú [cN+ipûÉî+��`;`f�=h�o�UIopWe`mMN+["`�J=NlUÓmMWgPI["hÉUIqXs Pv[#LO[#P�UIN�Uvo=[�`f[¥h\�pPIWXU^s?NlLbUIop[�SQh"h\[¥`v`"�
SlqXUvopND�prQo\[cN�i?RTS{s?WgJ=h\qg�=mM[¬S{dVSQWXqeSl�pWgqgW¡U^s?SQJ=m WXJ�UI[#rQPIWXU^s
SQ`v�k[¥hÉUI`"î
H4U�We`bopNV]6[#dQ["PbWXJZUvo=[�Jp[#r�SVUvWgdQ[�h"SQ`v[]Y]½op[#PI[�SQh#h#["`I`

Wg`ÕmM[#J=WX[¥m^Y Uvo=SlUÓUIop[#PI[�We`�UIop[�R�N�`^UÕJp[#[¥mÖUvN �pPvNVd+WemM[
SQmpmMWXUvWgNQJkSlq½[#qeSl��NQP�SVUIWXNDJðUIN S `v["h#�pPIW¡U^s���NQqgWeh\s LONDPvRÓ�pqgSlï
UvWgNQJ�î���q¡UIopNQ�prDoðWXUTWg`ÕJpWeh\[uUvN WXRTSQrQWgJp[¬UIo=SVU�]½op[#J=[#dQ["P
S `v["h#�pPIW¡U^s���NQqgWeh\sðSD`f_M`ÓLONQP¬SDh#h\[¥`v`ÕUINÖ�k[CmM["JpWg["mÃ�;Uvo=SlU
UvopWe`�h#SQJu��[�["SD`fWgqgs¬[#JMLONDPIh#["muWXJ�SÕ�pJpWXLONQPIR�qXsu`^UIPvNDJprÕSQJ=m
`f[¥h\�pPI[c]bS{sQ�+WgJuPI["SQqXWXU^s�Uvo=Wg`bh#SQJuP�SlPI[#qgs��k[�SDh�opWX["dQ[¥mÃî.HKJpï
`^UI["SQm���[!�¬h\Wg[#J�U��=`v[�NlLbS�ükJpW¡UI[¬`f[¥h\�pPIWXU^s��p�=mMrD[\U�R�["SQJ=`
Uvo=SlUÓ�pPIWXNDPvWXUvWe`ISVUvWgNQJ Jp["["mp`�UvNC��[�Sl�=�pqXWg["mÖWgJÖUvo=[¬�=`v[¬NlL
SQh#h#["`I`uh#NQJ�UvPINQq3[#JpLONQP�h\[#R�["JDUZR�["h�o=SQJpWg`vRT`#î H4U�h#SQJ ��[
SlPIrQ�p[¥m�UIo=SVU3STqgSQPvrD[Ú�=SlPvU�NlL¨Uvo=[jdVSlqg�p[�NlL�STrDN+N+m�`v["h#�Mï
PvWXU^s SQPIh�opWXUv[¥hÉUI�pPv[ÕWe`�WXJ UIop[T]6S{s�WgJÖ]½opWeh�o WXU�[!�¬h#WX["JDUIqXs
h\NQRÓ�pWgJp["`�`v["h\�=PvWXU^s SlJ=mðNlUvo=[#PÕ[#qg[#R�[#J�UI`ÓUIN WgR��pqX["R�[#J�U
`f[¥h\�pPIW¡U^sÖ��NQqgWgh#sÖ]½W¡UIo�Sl�=�pPvND�pPIWgSlUv[T�pPINlUI["hÉUIWXNDJ=`jSQrDSQWXJ=`fU
Uvop[ÚUIopPv[¥SVU�`#î

��NV] We`6UvopWe`b�pPIWXNDPvWXUvWe`ISVUvWgNQJ¬UvN��k[�SDh�opWX["dQ[¥mÃ��SQJ=muopNV]
We`ÚW¡UjUvN��k[u`f��["h#W¡ü=[¥m�XyH4U�We`�h#qX[¥SlPIqXsCWgJMLO[¥SQ`vWX�pqg[�LONQP�["dQ["J
SZR�NMmM[#P�SVUI[�`vsM`^UI[#R UINC`f��["h#W¡LOs?Uvop[TPI["���pWgPI["m?U^s���[¬SlJkm
qg[#dD[#qENlL�[#JpLONQP�h\[#R�["JDUÚPI["���pWgPv[¥m��k[#U^];["[#J?[¥SQh�o ú `f�=��F^["h\U"�ND��F^["h\U�û
�kSlWgP*LONDP;]½opWeh�ouSDh#h#["`I`�We`6mp[#JpWg["mÃî
YcSVUv�=PISQqXqgsÕUvop[
h#NQJ=h#[#�MUÕNlL�rDPvND�p�pWgJpr?`v�p��F^["h\UI` ú SQJ=m���ND`I`vWX�pqgs NQ�}F^["hÉU�`IûSD`brQ[#J=[#P�SlqgqXs¬�k`f[¥m�WXJ�SQh"h\[¥`v`½h#NQJ�UvPINQqÃ��NQqgWgh#WX[¥`#�kWg`�S��kNV]bï
["PfLO�pqER�["h�o=SQJpWe`fR9UvokSVU�h#SlJ?�k[�SQmMND�MUv[¥m�op["Pv[D���=�MU3J=NlUv[
UIo=SVUcUvop[ÕrQPINQ�p�=WXJpr�`½UIo=SVUÚSlPI[j�=`v[\LO�pq.LONQP3��ND`vW¡UIWXdD[Ó`fUISVUI[\ï
R�[#J�U�`;rDPISQJ�UvWgJprjSQh"h\[¥`v`"�MSlPI[��pJpqgWg_Q[#qgs�UvNÕ��[3PI[#�k`vSQ�pqX[�LONQP
`fUISlUv[#R�["JDU�`jSQ�kND�MUÓSQh"h\[¥`v`j[#JMLONDPIh#[#R�[#J�U"î C NQPÓ[\zpSlR��pqg[Q�SZh\NDPv��NQP�SVUIWXNDJ�_ `c���6a C R�S{s���[��=SQ`v["m?NQJ?WXUI`Ú�=�=`fWgJp[¥`v`�pJ=W¡U�` ú �=PvNMmM�=h\UvWgNQJ��Eü=JkSlJ=h#[Q�
`vSQqX[¥`�[#UIhlîÂû1]½opWgqX[�Uvop[u[#JMïLONDPIh#[#R�[#J�U¨�kNDqXWeh\sÓR�S{s�rDPvND�p�Ó`v�p��F^[¥hÉU�`
�+s�qXNMh"SVUvWgNQJjU^s+�k[
ú op["SDm�N��Th#[Q�+ü=["qgm�SQrQ[#J�U¥�MNVdQ[#P�`v["SQ`6`fUISVUIWXNDJ��M[\U�hlîÂûnÔN¬mM[#Uv["PvR�WgJp[��pPIWXNDPvWXUvWe`vSlUvWgNQJ=`"�MWgJuUIop[#NDPvsZSlqgqÃUvo=[�Pv["q¡ï
["d{SQJ�U6PIWg`v_M`bSlJ=mZh\N�`^U�`6SD`v`vNMh\WeSVUI["m¬]½WXUvoZRTSlJ=SQrQWgJpr�`f[¥h\�Mï
PIW¡U^sÖh\ND�pqem���[Zh"Sl�MUI�pPv[¥m�SlJkm�h\NDRj�pWgJp["m UvN?�=PvNVd+WemM[uSQJ
WgJ�Uv[#rDPISlUv[¥mCh\N�`^U3RÕNMmM["q¸�Ã[`S�[¥hÉUIWXdD[#qgs�Pv[¥mM�=h\WgJpr�Uvop[Õ�pPINQ�Mï
qg[#R�UvN?S�`fUISQJ=mpSlP�m PvWe`v_põV["h#NQJpNDRÕWehÓNQ�MUIWXR�We`vSlUvWgNQJÖ�pPINQ�Mï
qg[#R�î.Y�NlUI[�UvokSVU¨]½W¡UIoÓ`v["h\�=PvWXU^s�UIopWe`ÔWe`¨h\NQJk`fWemM[#P�Sl�=qXscRÕNDPv[
h#NQR��pqg[\z�UIo=SlJ�]½WXUvoTR�NQPI[6UvP�SQmMWXUvWgNQJ=SQqMPvWe`v_�RTSlJ=SQrQ[#R�["JDU
SQPv[¥SQ`"��`fWgJ=h#[UIop[ÖUvo=Pv[¥SVUI`�SQPv[Pv[¥`f��NQJk`fWgdQ[SlJ=m1�pPI["mMWehÉï
UIWXdD[�RÕW¡U�[#J�Uv["PI`�Uvop[�SlPI["S�NQL�	ÚSQR�["`Õnbop[#NDPvs ú �Ch{�6Sl��[Q�ý�SD`v`v[#J�UIW : i+R�WXUvo |"¦Q¦�;Dû\î HKJ1SQJ+s h"SQ`v[Q��`v�=h�o S�ü=Jp[qg[#dD[#q�NQL�mM[\U�SlWgq*We`jSlr�SlWgJÖ�pJpRTSlJ=SQrQ[¥Sl�pqg[¬SlJ=mÖ�=J=SQh�opWg[#d�ï
SQ�pqX[Dî¨HKJ=`^UI["SDmuSQ�p�pPINQ�pPIWgSlUv[ÚSl�=`fUvP�SQh\UvWgNQJ=`;Rj�k`^U���[Ú�=`f[¥mÃî
HKJ�NQ�pP Sl�p�=PvN�SQh�oy]6[�RTSl_Q[`fNDR�[ð`fWgR��pqgW¡LOs+WgJpr1SD`^ï

`v�pR��MUvWgNQJk`¬PI[#rDSQPImpWXJpr opNV]9UvN�mM[#PIWXdD[�Uvop[Sl�p�pPINQ�=PvWeSVUI[
U^s+��[�SQJ=m�qX["dQ[#q½NQLc�pPINlUI["h\UvWgNQJ�î ¢ [uLONMh#�=`TNQJ�U^]6N _D[#s
SD`f��["h\UI`DR�Uvo=[Ê� ?A@ ^=ñcUvNZ�=`3NlL;_D[#["�pWXJ=r¬Uvo=[�`v�p��F^[¥hÉUÚLOPINQRSDh#h\[¥`v`vWgJpr Uvop[CND��F^["h\UDt�SQJ=m Uvo=[? _dj @ j»òlk�NlL3Uvop[?`v�p��F^[¥hÉUUIN h"SlPIPvsÖNQ�pU�SQJ�SVUvUISDh�_�î�nbo=[Z��NQqgWeh\sÖUvo=[#J `^U�SVUv[¥`ÓUvop[
`fUvPI[#JprQUvo�UINu]½o=Wgh�oC]6[�mM["`vWXPI[�UIN��pPI[#dD[#J�Uc�=J=Sl�MUIopNQPIWe`f[¥m
SDh#h\[¥`v`v["`bSDh\PIND`I`�UIop[�PISQJprQ[3NlL
mMWaS�["Pv["J�U�SVUfU�SQh�_M`"î
�;NQJ=`vWgmp[#P½SÓLO�pJ=hÉUIWXNDJ

ýM¼ � R �ÁÀ=�åÂcb
]½op["Pv[b PI[#�pPI["`v[#J�UI`½Uvop[Ód{SQqX�=[�UvNu�=`�NQL��pPv["dQ["JDUIWXJ=r�Uvop[`v�p��F^[¥hÉU�UINÓSQh"h\[¥`v`�Uvo=SlU;NQ�}F^["hÉU¥î C NQP*UvopWe`;�=Sl��[#P¥�D]6[�h#NQJMï`vWgmp[#P D Slqg�p[�SQ` �
 ��dH� � ´�¶ ��J ­Zó Æù� �Q�=�MU�RTS{sT�k[�PI[#�pPI[\ï`v[#J�Uv[¥m��+sZSlJ+s�`Ih#Slqg[ÚNlL¨dVSlqg�p["`bUIo=SVU�R�WgrQo�U���[�WXJ��=`v[ÚNQP
�pJkmM[#P�`^UIN+N+m��+s�SjrDWXdD[#JuNQPIrDSlJ=Wg`ISVUIWXNDJ ú [Qî r=î�mpNQqgqgSQP6dVSQqX�p[NQL�WgJ�Uv["qXqg["h\Uv�=SQqk�pPINQ��[#PvU^sjPI[#dD["SQqX[¥mÃ�QNDP
Uvop[3h\N�`^U�UINjWgJ=`v�pPv[
SQrDSlWgJ=`fU6qgND`I` ú ý�[#WXUv[#P : i+Uv�p�p�=qX["�pWXJ=[¬|"¦D¦�ÿlûvûÉînbop[;`v["h#NQJ=m�SD`f��["h\UÔ];[;]½Wg`vo�UIN½LONQPIRTSlqgWg`v[�We`�UIop[�LO[¥SQ`vW¡ï
�pWgqgW¡U^sTNQLESÓopND`fUvWgqX[�`v�p��F^[¥hÉU½h#SlPIPIs�WgJprÓNQ�MU�mMWaS�["Pv["J�U6U^s+��["`
NQL;SVUvUISQh�_M`"î�i+�=h�oÖmMWTS�[#PI[#Jkh\["`3PI[B [¥hÉUÚRTSlJ+sZLÐSQhÉUINQP�`#�ÃWgJMïh#qX�=mpWXJprÕh\N�`^U¥�DUIWXR�[D�+Uv["h�o=JpWgh"Slq�Sl�pWgqgW¡U^sD��ND�p��NQPvUv�pJpWXU^sQ�+PIWg`v_
S{dD[#P�`fWgNQJCqg[#dD[#qÄ�ÔSlJkm `fUvPI[#J=rlUvo NlL½mM[¥`fWgPv[ÕUIN�rDSlWgJÖSQh#h#["`I`#î
¢ [�h\NQJk`fWemM[#P�mMWaS�["Pv["J�UÕU^s+��["`�NQL3SVUvUISDh�_ÖUvNÖh\NQR�[ZLOPINQR
Su`f�=SDh\[�e �ÃSlJ=mCUvop[ÓLO["SD`fWg�pWgqXWXUvWg["`3NQL*SVUfU�SQh�_ZLOPINQR S�`v[\U
f � � ÿ ¼ � ¾ ���� DÆ ­7´�ýM¼;, � ´ ��J ¼M³A¶ � îT��rDSQWXJÔ�ÔR�NQPI[T�D�kSlJMïUIW¡U�SVUvWgdQ[TR�[¥SQ`v�pPv[¥`#�E`f�kh�oÖSD`��pPINQ�=SQ�pWgqXWe`^UIWgh�qgWg_Q[#qgWgopN+N+m NQL
`v�=h#h#["`I`^LO�=q;SVUvUISDh�_ ��[#PÕsQ[¥SlP¥�¨h#NQ�pqem ��[��=`v["m LONQPÓSlUfU�SQh�_
LO[¥SQ`vWX�pWgqgW¡UIWX[¥`#î C NDPÚ["SQh�o �=SQWXP ú ��� ¼+û3]6[TmM[\ükJp[ÕUvop[�LO[¥SQ`vW¡ï�pWgqgW¡U^s¬NQL¨`v�p��F^[¥hÉU¢ø�h#SQPvPIs+WXJprÕNQ�pU½SlUfU�SQh�_�¼XR

Å ´�¼ � R �ÁÀ e Â f
¢ [�h"SlJZJpNV] ��[#rDWXJ�NQ�=P½RÕNMmM["q�NlL
SÕPv[#ü=Jp[¥mu`v["h#�pPvWXU^s

��NQqgWgh#sQî C WXP�`^UIqXs�]6[ÓJ=[#["m�UvN�mM["h#WgmM[Ó]½o=SVUÚdVSlqg�p[jND��F^["h\UI`RÓ�=`^U���[��pPINlUI["h\Uv["m�SQrDSlWgJ=`fU½]½o=SVU�LO[¥SQ`vWX�=WXqgW¡U^suNlL�SVUvUISDh�_+`
ïÚUvo=Wg`¬mp[\ü=Jp[¥`ÕUvop[���NQqgWgh#sQî a�[#ü=Jp[CS �pPI["mMWeh#SlUv[þ �A�g�
b|À f �D`v�=h�o�UIo=SVU þ �A� ú ý ��Å û
opNQqemp`
]½op["Jp[#dD[#P;];[�PI["���pWgPI[UIo=SVU¨Slqgq+SlUfU�SQh�_M`�NQLMLO["SQ`vWg�pWXqgWXU^s Å SlrDSQWXJk`^UÔND��F^["h\UI`.NlL=dVSQqX�p[ý3SlPI[��pPI[#dQ["J�Uv["m�î.i+N=�{rDWXdD[#J�SlJ�WgR��pqg[#R�[#J�UISlUvWgNQJ�`v["h#�pPvWXU^s
SQPIh�opWXUv[¥hÉUI�pPv[ÕUIo=SVU�mM[\LO["J=mp`�ND��F^["h\U � LOPINQRöSlUfU�SQh�_¨¼?�+s`v�p��F^[¥hÉU �]½op[#J=[#dQ["P � ³ dÆ ú �����\� ¼MûÕopNDqgm=`#�;];[�`vS{s UIo=SVUUIopWg`½SQPIh�o=W¡UI["hÉUI�pPI[Ú`ISVUIWg`fü=[¥`6Uvop[���NQqgWgh#s¬WXLªR
O �����\� ¼ØR þ �A� ú ý\¼ � ú ����� û ��Å ´�¼ � ú ��� ¼Mûfû Âh� ³ dÆ ú �����\� ¼+û

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

75

5ùê�I.ê¸ç i :�°}N
V L/K J êXLÐí¸±�O
¢ [3JpNV] h\NDJ=`vWgmM["P6SÓ`fWgR��pqgW¡ü=[¥m�SQJ=mTRjs�UIopWgh"Slq�dQ["PI`vWXNDJTNlL
Uvop[?`v["h#�pPIW¡U^s��kNDqXWeh\s WXR��pqg[#R�["JDUI["m LONDP�SQ	3NVdQ["PvJpR�["JDU¥î
C NQP3NQ�=P3`vWXR��pqg[Õ[\zpSlR��pqg[Q��]6[Õh"SlJ?mM[¥`vh#PvWg��[�U^]6N�opN�`^UIWXqg[`f�p�}F^["hÉU�`dRkjÊ] o ¦Xk�SlJ=mlj=i�mùi ? ^`°l�=PI[#�pPI["`v[#J�UvWgJprÕUvo=[�`f�p�pïF^["hÉU��l�k`f["P���h#NQR�Rj�pJ=W¡UIWX[¥`*NQL��kNQUv[#J�UIWgSQqXqgsÓo=ND`fUvWgqX[cJ=SVUIWXNDJMï
`^U�SVUv[¥`#�kSlJ=mu]½opWXUv[\ïKh\NDqXqeSlP½h#PvWgR�[Q�pPI["`v�k[¥hÉUIWXdD[#qgsQî
¢ [�SQqg`vNuh#NQJ=`vWemM[#PcU^];N�mMWaS�["Pv["J�UcU^s+��["`3NlLbSVUfU�SQh�_¿R�WXU

�;Pvs+�MU���J=SQqXsM`vWg`"�ÔSlJkm^n�i�j/_�ñ�î!c}]�j/°QñdiÉî�nbop[Õü=P�`^U�PI[#qgWX[¥`3NQJ
h\NQqgqg["hÉUIWXJ=r h#NQR�Rj�pJ=Wgh"SVUvWgNQJk`#��SQJ=m mp["h\PIs+�MUvWgJpr�W¡U�WXLjPv[#ï
�D�=WXPI["mÃî
nbop[�`v["h#NQJ=muSVUfU�SQh�_TWgJ+dQNQqgdQ[¥`�r�SlWgJpWXJ=rjUIop[�h\NQJpüpï
mM[#J=h#[�NlLÃSÚqg[#rQWXUvWgRTSVUI[�`f�=��F^["h\U
LONQP*SDh#h\[¥`v`vWgJpr3Uvop[�mp["`vWXPI["m
NQ��F^[¥hÉU"�;]½opN �pPvNVd+WemM["`�S h\ND��sDî�¢ [ZJ=NV] qXN+ND_�SVU�["`fUvWXï
R�SlUv[¥m�LO[¥SQ`vWX�=WXqgW¡UIWX[¥`½NlL¨SVUvUISQh�_M`DR

Å ´�¼ � úo� � ø ¤ ¾ ��ü ³�¾ ¤`µ�� ½ù¼ � ¾ � ­ � û �G�� DÆ ­7´�ýM¼;, � ´
Å ´�¼ � úo� � ø ¤ ¾ ��p ³�­�,�´ < ½ � ­<¶M´�³lû �G�� dÆ ­7´�ýM¼;, � ´
Å ´�¼ � ú	� ³ Û ³A¼MÄX¶ ��ü ³�¾ ¤`µ�� ½ù¼ � ¾ � ­ � û �.J ¼M³�¶
Å ´�¼ � úo� ³ Û ³A¼MÄ¿¶ �Kp ³�­�,�´ < ½ � ­7¶�´�³lû � ÿ ¼ � ¾

8�[#U?�=`CSQqg`vN h\NQJk`fWemM[#P�UIop[�dVSlqg�p[NQLÕdVSlPIWgNQ�=`�mMNMh\�pï
RÕ["J�UI`"î i+�=�p�kN�`f[�]6[Co=S{dD[ZU^];N�mMNMh#�pR�[#J�UI` ú NQ��F^[¥hÉU�`Iû!R
mÒj b Ñ+òKñdi ð ��c=òli ? ó#òÄ��SlJ=m.m#j b ÑMò4ñdi o ¦=ñ�ó�]Éî H4L�j=i�m.i ? ^`°�ND�MïUISlWgJp[¥m¬Sjh#NQ�+sÓNQL�Uvop[ÚmMP�SVL»U;h#NQJ�UvP�SQh\U"�DUvop["J�`f["dQ["Pv[½qgND`I`f[¥`
UvN¬UIop[Óh#NQJ�UvP�SQh\UvNDP"�=ac[\LO["J=h\[D�ÃSlJ=mZUIop[�U�SVzM�=S{sQ["P�]½WgqXqEPv[#ï
`f�pqXU"î*H4LqjÈ] o ¦¿k3ND�MUISQWXJk`6Uvop[Úü=rDo�Uv[#PbUI["h�opJ=Wgh"SlqÔ`v�k[¥h\WXükh#SlïUvWgNQJ��.J=SVUIWXNDJ=Slq�`v["h#�pPvWXU^s�RTS{sC��[T[#J=mpSQJprQ["Pv[¥mÃî C NQPÚUIopWe`�=Sl��[#P¥�l]6[6h#NQJ=`vWgmp[#PE�kNQUvoÓUvop[¥`f[6NQ�MU�h\NDRÕ[¥`E["���=Slqgqgs�mM[\UIPvWXï
RÕ["J�UISlqÄî D SQqX�=["`TNQL3_D[#[#�=WXJpr mMNMh#�pR�[#J�UI`¬LOPvNDR dVSlPIWXND�=``f�p�}F^["hÉU�`�h#SQJ�UIo+�=`½��[�Pv["�pPv[¥`f["J�Uv["muSQ`6LONDqXqgNV]�`dR

ý\¼ � ú	� � ø ¤ ¾ ��Û ­ló Æ`µ ´�³�ø ¤ ´ d� û �.J ­ló Æý\¼ � úo� � ø ¤ ¾ ��Û ­ló Æ}µ ´�³ ü�� ½ µ ³A¼ !µ û �
 ��dýM¼ � ú	� ³ Û ³A¼�Ä¿¶ ��Û ­ló Æ`µ ´�³ ü�� ½ µ ³�¼ �µ û �.J ­ló Æ
Y�NV] UIop[`f[¥h\�pPIW¡U^s ��NQqgWgh#syh#SlJ �k[Pv["�pPI["`v[#J�Uv[¥m ��s

SuPI[#qeSVUIWXNDJ WgJÖ]½opWeh�o þ �A� ú J ­ló Æù�K�� dÆ ­7´Dý\¼;, � ´Vûbo=NQqemp` ú `vNSQh�opWg[#dVSl�=qX[�SQJ=m [¥SQ`vs SlUfUISDh�_M`jSlr�SlWgJ=`fU J ­ló Æ dVSlqg�p[�ND�MïF^["hÉU�`�Rj�k`^U���[T�pPI[#dQ["J�Uv["mkûÉîÕ¢ [¬h"SlJ Uvop["JÖmp["mM�=h#[�Uvo=SlU
LONQP
SlJ�SlP�h�opWXUv["h\Uv�pPI[�UINÚRÕ["[\U¨Uvo=Wg`¨��NQqgWgh#s�W¡U
RÓ�=`^U
�pPI[#dD[#J�U
� � ø ¤ ¾@_ ` ü ³�¾ ¤`µ�� ½ù¼ � ¾ � ­ � NQP p ³�­r,!´ < ½ � ­7¶�´�³ SlUfU�SQh�_M`SlrDSQWXJk`^U Û ­ló Æ}µ ´�³�ø ¤ ´ D� �VSQJ=m � ³ Û ³A¼�Ä¿¶>_ ` p ³�­�,�´ < ½ � ­7¶M´D³SVUfU�SQh�_ÕSlrDSQWXJk`^U Û ­ló Æ ´�³ ü�� ½ µ ³A¼ !µ î¨Y�NlUI[bUvo=SlU*�pJpqg["`I`
UIop[�kNDqXWeh\syWe`?R�NDPv[�PI["`fUvPIWehÉUvWgdQ[�Uvo=SQJ sQ[#U `fUISlUv["m��ÓWXUÖmpN�[¥`
JpNlU¬Jp["["m UIN �pPvNQUv[¥hÉU¬Slr�SlWgJ=`^U ü ³�¾ ¤`µ�� ½ù¼ � ¾ � ­ � SlUfU�SQh�_M`SlrDSQWXJk`^U Û ­ló Æ`µ ´�³ ü�� ½ µ ³A¼ �µ �6`fWgJ=h\[� ³ Û ³A¼�Ä¿¶ mMN+["`ÕJpNQUü=J=m `f�kh�oøSlUfUISDh�_@_ `ZdQ["Pvs LO[¥SQ`vWX�=qX[D�3]½o=WXqg[ÖUvop["Pv[ÖWe`�qXNV]
d{SQqX�=[ÚUvN�_Q["[#�uUvo=SlU�mMNMh\�pR�[#J�U½LOPINQR � � ø ¤ ¾�î

8 �Óê é ±�LÐìE­"í¸ê é
� R�[¥h�o=SlJpWeh#SQqXqgs h�op["h�_VSQ�pqX[uR�N+mp[#qbo=SQ`Õ��[#["Jð�pPINQ��ND`v["m
LONQP�`f[¥h\�pPIWXU^sZqeSl��[#qgqgWXJprZWgJ SQJ?NQ��[#J `fsM`fUv["RZîÓnbop[ÓR�NMmM["q
`f�p�=�kNDPfU�`�UIop[cmM[¥`fWgrQJ¬SQJ=mTWgR��pqX["R�[#J�UISlUvWgNQJ¬NQLÔS�`f[¥h\�pPIWXU^s
qgSQ�k["qXqgWXJ=rj`fsM`fUv["RZî¨� �=SD`fWe`¨LONDP�qgSQ�k["q=dVSlqgWempSVUIWXNDJÕ]bSQ`
SQqg`vN
h\NQJk`fWemM[#PI["m��lopNV]6[#dQ["P.]6[½mMWemÓJ=NlU
�pPINVd�WemM[bmM[\U�SlWgqg`"�l]½opWeh�o
];ND�pqgmu��[�WXJ=h#qX�kmM["m�WgJ�LO�pUv�pPI[�];NDPv_�î
C �pUv�pPI[�]6NQPI_CRTS{s WgJ=h#qX�=mp[�SlJ [#z�UI[#J=mp["m mMWe`vh#�=`I`fWgNQJNQJ�Uvo=[jmMs+J=SlR�WehÚRTSlJ=SQrQ[#R�["JDU�NQL¨`v["h#�pPIW¡U^su�kNDqXWeh\Wg["`�SQJ=m

W¡U�`bWXR��pqg[#R�[#J�U�SVUvWgNQJÔî�nbop[�SlWgR];ND�pqem¬��[ÚUvN�mMWg`Ih\�k`v`6UIop[
h\NQRÓ�pWgJ=SVUIWXNDJÓNQL�`v["h\�=PvWXU^s�qeSl��[#qe`
SlJ=mÕSQ`I`fNMh#WgSlUv["mÓ`f[¥h\�pPIWXU^s
RÕ[¥h�o=SlJ=Wg`vRT`ZUvN SQh�opWg[#dD[?UIop[Pv[¥���pWXPI["m1`f[¥h\�pPIWXU^s rQNDSQqg`"î
C �pPvUvop["P�SlJ=SQqXsM`vWg`cNlL�UIopPI["SVU�`ÚSlJ=m SVUfU�SQh�_M`�Uvo=SlUÚmMWgPI["hÉUIqXsSsS�["hÉU�`v["h#�pPvWXU^s�qeSl��[#qe`3SQJ=m qgSQ�k["qXqgWXJ=rZ`vsM`^UI[#RT`3R�S{sCSQqg`vN
�k[�h#NQJ=`vWgmp[#PI["mÃî

ª�±�� é ê\~ØLZK�ë y KMN²K é ®¥­
�CSlJ+s�UIo=SlJp_M`ÚUIN�a�P¥î¬�CSlPIWe`jtcþ#NQqe`cLONQP�op["qX�pLO�pq;mMWe`Ih\�=`fï
`fWgNQJ=`"�MdVSlqg�=Sl�=qX[�h#NQR�R�[#J�UI`½SQJ=mu`v�prDrQ["`fUvWgNQJk`#î
nbop[�]6NQPI_
�pPv[¥`f["J�Uv["m WgJ Uvo=Wg`ÓSlPvUvWeh\qg[To=SQ`���[#["J�`f�=�p�kNDPfUI["mÖWgJ �=SlPvU
��sZSlJ����=`fUvP�SlqgWeSlJ�ý½["`v["SQPIh�o��;NQ�pJ=h#WXq ú ��ý��bûbacWg`Ih\NVdD[#PIs
w PIN�F^["h\U½rQP�SlJ�U"î

K e K�¯AK é ±�K�­
C H w i w �x |����=î ú |"¦Q¦�� ûÉ� o ò ? cX° ? i�° o ñ�ód^�i�j»òZk � ? p_�ñ @ Õ!��i¨î!cDÕ!��i r�? òZj/��cÔm�i ? c}]�Õ\ñdiÉî ��d{SQWXqeSl�=qX[LOPINQR

t&t&t ���{��u��4�����V�6�K�M�D��vQ�k�xw���wD�&y��zvQ����wA{�|+|��4�+� § î
Hfi=t�õVH^�6� ÿ��D¦��Vï�| ú |"¦D¦��CûÉ�Wî!cDÕ!�Ai rØ? òlj/�Ac�mkñ�ó�Ñ�cX� @ � b k~}� ¦=ñ!c o k�]Éò4ñ r]Òî!c=òKñ!iIó���c`c�ñIó#òlj/�Ac�}�n ?]�jÐó·÷cñ/Õ\ñdivñdc�ó�ñjW��°Qñ @ äØmXÑ=ñ]n ?]�jÐóZjW�D°Dñ @ îÔHfi=t ú UIop[3HKJDUI[#PIJ=SVUIWXNDJ=SlqtcPIrDSQJpWXþ¥SVUIWXNDJ¬LONQP�i+UISlJkmpSlP�mMWgþ"SVUIWXNDJkû6SlJ=mZH^�b� ú Uvop[HKJ�Uv["PvJkSVUvWgNQJkSlq���qg["h\UvPINlUI["h�opJpWeh#SQqÃ�;NDR�RÕWe`I`fWgNQJkû\î
���=`��;["PfU¥�
a�["qXNDW¡UvUv[un.NQ�kh�op[un.NQopRTSlUI`v��î ú £l~Q~�£�ûÉ� ���k`^ïUIPISQqXWeSlJ �;NDR��p�MUv["P �;PIWgRÕ[SlJkm i+["h#�pPIW¡U^s�i+�pPIdQ["sQî

�M�+�+w���v&v t&t+t �f�Q�����Q�����;�^���+�*�f�l��v��¥�p����� § �D���l�V�>v�����+�l���+� �"�p�M�;v+�+�&�&�=�+�E��wp�+� î
x6[#qgqÄ��aÓîÃ��î : 8ÔS w SQmM�=qgS=�+8�îA�kî ú |"¦+ÿA;�û\�ji+["h#�pPI[��;NQRÕï�p�pUv[#P�i+sM`fUv["RÊRE �JpWXü=[¥m�[\zM��ND`vW¡UIWXNDJÓSQJ=m����pqXUvWeh#`¨WgJMï

UI[#PI�pPv[#UISlUvWgNQJ�î=�?n½ýbïK£Q¦Q¦+ÿ+�V��H^n½ý����lx;[¥m+LONQP�mÃ�Q�?��î
x6Wg�=Sp����î��=î ú |"¦+ÿQÿZûÉ��HKJ�Uv["rQPIW¡U^sÖ�;NQJ=`vWgmp[#P�SVUvWgNQJ LONQPÕi+[\ïh#�pPv[Ó�;NDR��p�MUv["P3i+sM`fUv["R�`"îb�Cn½ýbï7�p|¥}��p�pnbop[Ó��W¡UIPv[

�;NDPv��NQP�SVUIWXNDJ�î
HKJ�Uv["PvJ=[\UÕ�;H w ikt ¢ NQPI_+WXJ=rW	3PvND�p��î ú |"¦Q¦��CûÉ� ð � rÉr �Acî ì o ñ�ód^�i�j»òZk � ¦�òlj/�Ac��kñdi5]5j/��c���ô��Qî*HKJ�Uv["PvJ=[\U�a�P�SVL»U¥î
��[#WgJDUIþ#[D�pY�î : ý½Wg["h�_Q[D���=î`	Õî ú |"¦D¦���ûÉ��nbop[�`vqeSlRùh"Slqeh\�Mïqg�=`DR w PvNDrQP�SlR�R�WXJ=r�]½W¡UIoZ`v["h#Pv[¥h\sTSlJkm¬WgJDUI[#rDPvWXU^sQî�HKJì i��"ó�ñ�ñ5°Aj�c b]��ÖÕZ�+�Vò�Ñ � ð j o k r ¦`��]�j�^ r �Ac ì i�j�c�ódj�p¦ @ ñ�]��ÖÕ ì i�� b i ?Ar�r j�c b � ? c b ^ ?Db ñ!]=× ì � ì � ÙV���=SQrQ["`��;D} � ��ÿDÿ+�MiMSlJ�a�Wg[#rDN=�k�6SQqXWXLONQPIJpWeSpî
��NQ�=`vqX["sQ�+ý�î ú |"¦D¦���û\� o ñ�ód^�i�j»òZk � ? _�ñ @ j�c b mùi ?Ar ñ Ó ��i�ÝEÕ!�Aiò�Ñpñ�î�ckò4ñdc�ñ#ò¸î¨HKJ�Uv["PvJ=[\U�ý C ��|d�+}DÿM�+�?S{sC|"¦D¦��pî
H^n½ �ï4nøý½["h#NQR�R�[#J=m=SVUvWgNQJ g î ���k| ú £Q~Q~Q~�ûÉ�Eî�c�Õ!�Ai rØ? òlj/�AcòKñ�ó�Ñ�cX� @ � b kQp o ñ�ód^�i�j»òZk9mkñ�ó�Ñ�c`jI�d^=ñ�]3p o ñ�ód^�i�j»òZk
j�c+pÕ!��i r�? òZj/��c¨��_�a#ñ�ó#ò/]#Õ!��i ? ó�ó�ñ�]5]jó5�Ac=òli�� @ î
�Ch{�6Sl��[Q�&��îX�+ý�SD`v`v[#J�UvWÄ��iÃî : i+R�WXUvo�� D î ú |¥¦Q¦�;�ûÉ�z	ÚSQRÕ[UIop[#NDPvs SlJkm PI["h\Wg�pPINMh\WXU^s WgJ1`vNQR�[[\z+Uv["J=`vWXdD[CLONQPIR

[#z+��[#PIWgRÕ["J�UISlqkrDSQRÕ[¥`#î ì i��¥ó�ñ�ñ�°�j�c b �ÖÕ�m¿Ñ=ñ q ? òlj/�Ac ?A@� ó ? °Qñ r kÞ�ªÕ o ó!jÐñdc�ó�ñ#�=¦��`RX|�����£p| � |D���+£��=î
��sD[#P�`#�l�jîD�cî : 8ÔWg`v_QNVd��lx3î ú £Q~Q~Q~3ûÉ� w PINlUv[¥hÉUIWXJpr3�pPIWXdVSDh\s�=`vWgJpr½Uvo=[;mM[¥h\[#J�UIPISQqXWgþ#[¥mÚqgSQ�k["qQR�NMmM[#qÄî � ð j m}i ? c}]�p

? ó\òlj/�Ac`]Þ�Ac o �ªÕ�ò Ó#? ivñ�ö·c b j�c�ñIñdi�j�c b|? c¿°/j?ñ#ò�Ñ`�D°�� @ p� b kV��¦ ú ��û�R �=|¥~ � ����£pî
ý½["W¡UI[#P¥��� î ��î : i�Uv�p�=�pqX["�pWgJp[Q�Úi�î 	Õî ú |¥¦Q¦+ÿ�ûÉ� nÔNV]bSlP�mSDh#h\["�MUISQ�pqg[RÕ[#UvPIWgh"`�NlLTSl�pUvop["JDUIWgh"SVUIWXNDJ�î HKJ ì i���pó�ñ�ñ5°Aj�c b]��ªÕ6ò�Ñ=ñÒî�ö#öÒö o k r ¦}�A]�j�^ r �Ac o ñ�ó!^�i�j»òlk ? cX°ì i�j�� ? ódkVî
iMh�o=Jp[#Wg[#P¥�=x3î ú £l~D~Q~�ûÉ� o ñ�ó!iIñ\òZ] ? cX° � jÐñ!]�}�ï�j b j»ò ?�@ùo ñ�ód^�pi�j»òlkØj�c ? q ñ#ò Ó ��i�ÝQñ5° ! ��i @ °VîM�DNQo=Ju¢ WgqX["s : i+NQJ=`"î
i+�kSlqg_{S=����îg�3�;PI[#R�[#P�`"����î x3î : 8Ô[#opR�qg[#P¥����î ú £Q~Q~Q~�ûÉ�

w PvNQUv["h\UvWgJpr h#NQJMükmp[#J�UvWeSlqgW¡U^s Slr�SlWgJ=`fUCUvPIN�FfSQJ�opNQP�`v[�pPINQrDPISQRT`�WgJ mMWe`vh#Pv[#UvWgNQJ=SQPvs SDh#h\[¥`v` h#NQJ�UvPINQq�`vsM`^ï
UI[#R�î HKJ ì i��¥óIñ�ñ5°Aj�c b] �ÖÕ ò�ÑpñN�Vò�Ñ � ^\]Éòli ?A@ ?]�j ? cð �Ac�Õ\ñ!iIñ!c�óIñ���c�î�c�Õ!�Ai rØ? òlj/�Ac o ñ�ód^�i�j»òZk ? cX° ì i�j�� ? ó!k× � ð î o ì �+���z�5ÙV��dQNDqX�=RÕ[�|����=|ÚNQL � ñ�ó\òl^�ivñ q �VòKñ�]'j�cð � r ¦X^MòKñdi o ódjÐñ!c�óIñ#�p�=SQrQ[¥`Ú| � |Vÿ+îpi+�pPIWgJprQ["P"î

>�m=SlJ=h#[#]½Wehl�Mi�î`>�op[#J=r=�\8�îg�+Y�sM`^UIPvNDRZ�+Y�î : ��sD[#P�`#�+��î¿�cî
ú £l~Q~=|ðûÉ� �J�UvPI�=`^UI["myo=ND`fUI`?SQJ=m�h#NQJMükmp[#J�UvWeSlqgW¡U^s¿Ri+[¥h\�pPI[¬�pPINQrDPISQR��=SQPfUIW¡UIWXNDJpWgJpr=î�HKJ ì i��"ó�ñ�ñ5°Aj�c b]Þ�ªÕò�Ñpñ=�U�Qò�Ñ � ð j o k r ¦`��]�j�^ r �Ac � ¦=ñdi ? òlj�c b�o k�]ÉòKñ r]ì i�j�c�ó!j ¦ @ ñ!]�× o � o ì ÙV�M�=SQrQ[¥`c| � |D�=�MxbSlJ;S¨���6SlJkSQmpS=î

>�o=[#Jprk�z8�î : ��sQ["PI`"�.�jîÂ�cî ú £l~D~��+ûÉ��a�s+J=SQRÕWeh¬`v["h#�pPvWXU^sqeSl��[#qe`;SQJ=m¬J=NQJpWgJ�Uv[#PvLO[#PI[#Jkh\[QîÃHKJ ì i��¥óIñ�ñ5°Aj�c b]H�ªÕcò�Ñpñ��cX°�î!c=òKñ!i�c ? òlj/�Ac ?�@ ! ��i�Ý�]�Ñ`��¦9�Aclmz�Ai rØ?A@ �]Z¦=ñ�ó\òZ]j�c o ñ�ó!^�i�j»òlk ? c¿°Þm}i�^\]Éò#×Im � o m}Ù{�ln.NQ�=qXND�=`f[D� C P�SlJ=h#[Qî

CRPIT Volume 48

76

Improvements of TLAESA Nearest Neighbour Search Algorithm
and Extension to Approximation Search

Ken Tokoro Kazuaki Yamaguchi Sumio Masuda

Kobe University,
1-1, Rokkodai, Nada-ku, Kobe 657-8501 Japan,

Email: ky@kobe-u.ac.jp

Abstract

Nearest neighbour (NN) searches and k nearest neigh-
bour (k-NN) searches are widely used in pattern
recognition and image retrieval. An NN (k-NN)
search finds the closest object (closest k objects) to a
query object. Although the definition of the distance
between objects depends on applications, its compu-
tation is generally complicated and time-consuming.
It is therefore important to reduce the number of dis-
tance computations. TLAESA (Tree Linear Approx-
imating and Eliminating Search Algorithm) is one of
the fastest algorithms for NN searches. This method
reduces distance computations by using a branch and
bound algorithm. In this paper we improve both the
data structure and the search algorithm of TLAESA.
The proposed method greatly reduces the number of
distance computations. Moreover, we extend the im-
proved method to an approximation search algorithm
which ensures the quality of solutions. Experimental
results show that the proposed method is efficient and
finds an approximate solution with a very low error
rate.

Keywords: Nearest Neighbour Search, k Nearest
Neighbour Search, TLAESA, Approximation Search,
Distance Computaion.

1 Introduction

NN and k-NN searches are techniques which find the
closest object (closest k objects) to a query object
from a database. These are widely used in pattern
recognition and image retrieval. We can see exam-
ples of their applications to handwritten character
recognition in (Rico-Juan & Micó 2003) and (Micó
& Oncina 1998), and so on. In this paper we consider
NN (k-NN) algorithms that can work in any metric
space. For any x, y, z in a metric space, the distance
function d(·, ·) satisfies the following properties:

d(x, y) = 0⇔ x = y,

d(x, y) = d(y, x),
d(x, z) ≤ d(x, y) + d(y, z).

Although the definition of the distance depends on
applications, its calculation is generally complicated
and time-consuming. We particularly call the calcu-
lation of d(·, ·) a distance computation.

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

For the NN and k-NN searches in metric spaces,
some methods that can manage a large set of ob-
jects efficiently have been introduced(Hjaltason &
Samet 2003). They are categorized into two groups.
The methods in the first group manage objects with
a tree structure such as vp-tree(Yianilos 1993), M-
tree(Ciaccia, Patella & Zezula 1997), sa-tree (Navarro
2002) and so forth. The methods in the second group
manage objects with a distance matrix, which stores
the distances between objects. The difference be-
tween two groups is caused by their approaches to
fast searching. The former aims at reducing the com-
putational tasks in the search process by managing
objects effectively. The latter works toward reducing
the number of distance computations because gen-
erally their costs are higher than the costs of other
calculations. In this paper we consider the latter ap-
proach.

AESA (Approximating and Eliminating Search
Algorithm)(Vidal 1986) is one of the fastest algo-
rithms for NN searches in the distance matrix group.
The number of distance computations is bounded by
a constant, but the space complexity is quadratic.
LAESA (Linear AESA)(Micó, Oncina & Vidal 1994)
was introduced in order to reduce this large space
complexity. Its space complexity is linear and its
search performance is almost the same as that of
AESA. Although LAESA is more practical than
AESA, it is impractical for a large database be-
cause calculations other than distance computations
increase. TLAESA (Tree LAESA)(Micó, Oncina &
Carrasco 1996) is an improvement of LAESA and re-
duces the time complexity to sublinear. It uses two
kinds of data structures: a distance matrix and a bi-
nary tree, called a search tree.

In this paper, we propose some improvements
of the search algorithm and the data structures of
TLAESA in order to reduce the number of distance
computations. The search algorithm follows the best
first algorithm. The search tree is transformed to a
multiway tree from a binary tree. We also improve
the selection method of the root object in the search
tree. These improvements are simple but very effec-
tive. We then introduce the way to perform a k-NN
search in the improved TLAESA. Moreover, we pro-
pose an extension to an approximation search algo-
rithm that can ensure the quality of solutions.

This paper is organized as follows. In section 2,
we describe the details of the search algorithm and
the data structures of TLAESA. In section 3, we pro-
pose some improvements of TLAESA. In section 4,
we present an extension to an approximation search
algorithm. In section 5, we show some experimental
results. Finally, in section 6, we conclude this paper.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

77

Figure 1: An example of the data structures in
TLAESA.

2 TLAESA

TLAESA uses two kinds of data structures: the dis-
tance matrix and the search tree. The distance matrix
stores the distances from each object to some selected
objects. The search tree manages hierarchically all
objects. During the execution of the search algorithm,
the search tree is traversed and the distance matrix
is used to avoid exploring some branches.

2.1 Data Structures

We explain the data structures in TLAESA. Let P
be the set of all objects and B be a subset consisting
of selected objects called base prototypes. The dis-
tance matrix M is a two-dimensional array that stores
the distances between all objects and base prototypes.
The search tree T is a binary tree such that each node
t corresponds to a subset St ⊂ P . Each node t has
a pointer to the representative object pt ∈ St which
is called a pivot, a pointer to a left child node l, a
pointer to a right child node r and a covering radius
rt. The covering radius is defined as

rt = max
p∈St

d(p, pt). (1)

The pivot pr of r is defined as pr = pt. On the other
hand, the pivot pl of l is determined so that

pl = argmax
p∈St

d(p, pt). (2)

Hence, we have the following equality:

rt = d(pt, pl). (3)

St is partitioned into two disjoint subsets Sr and Sl
as follows:

Sr = {p ∈ St|d(p, pr) < d(p, pl)},
Sl = St − Sr.

(4)

Note that if t is a leaf node, St = {pt} and rt = 0.
Fig. 1 shows an example of the data structures.

2.2 Construction of the Data Structures

We first explain the construction process of the search
tree T . The pivot pt of the root node t is randomly
selected and St is set to P . The pivot pl of the left
child node and the covering radius rt are defined by
Eqs. (2) and (3). The pivot pr of the right child node
is set to pt. St is partitioned into Sr and Sl by Eq.
(4). These operations are recursively repeated until
|St| = 1.

The distance matrix M is constructed by selecting
base prototypes. This selection is important because

Figure 2: Lower bound.

base prototypes are representative objects which are
used to avoid some explorations of the tree.

The ideal selection of them is that each object is
as far away as possible from other objects. In (Micó
et al. 1994), a greedy algorithm is proposed for this
selection. This algorithm chooses an object that max-
imizes the sum of distances from the other base pro-
totypes which have already been selected. In (Micó &
Oncina 1998), another algorithm is proposed, which
chooses an object that maximizes the minimum dis-
tance to the preselected base prototypes. (Micó &
Oncina 1998) shows that the latter algorithm is more
effective than the former one. Thus, we use the later
algorithm for the selection of base prototypes.

The search efficiency depends not only on the se-
lection of base prototypes but also on the number
of them. There is a trade-off between the search
efficiency and the size of distance matrix, i.e. the
memory capacity. The experimental results in (Micó
et al. 1994) show that the optimal number of base
prototypes depends on the dimensionality dm of the
space. For example, the optimal numbers are 3, 16
and 24 if dm = 2, 4 and 8, respectively. The exper-
imental results also show that the optimal number
does not depend on the number of objects.

2.3 Search Algorithm

The search algorithm follows the branch and bound
strategy. It traverses the search tree T in the depth
first order. The distance matrix M is referred when-
ever each node is visited in order to avoid unnecessary
traverse of the tree T . The distance are computed
only when a leaf node is reached.

Given a query object q, the distance between q and
the base prototypes are computed. These results are
stored in an array D. The object which is the closest
to q in B is selected as the nearest neighbour candi-
date pmin, and the distance d(q, pmin) is recorded as
dmin. Then, the traversal of the search tree T starts
at the root node. The lower bound for the left child
node l is calculated whenever each node t is reached if
it is not a leaf node. The lower bound of the distance
between q and an object x is defined as

gx = max
b∈B
|d(q, b)− d(b, x)|. (5)

See Fig. 2. Recall that d(q, b) was precomputed be-
fore the traversals and was stored in D. In addition,
the value d(b, x) was also computed during the con-
struction process and stored in the distance matrix
M . Therefore, gx is calculated without any actual
distance computations. The lower bound gx is not ac-
tual distance d(q, x). Thus, it does not ensure that the
number of visited nodes in the search becomes mini-
mum. Though, this evaluation hardly costs, hence it
is possible to search fast. The search process accesses
the left child node l if gpl

≤ gpr
, or the right child

node r if gpl
> gpr

. When a leaf node is reached,
the distance is computed and both pmin and dmin are
updated if the distance is less than dmin.

CRPIT Volume 48

78

q

pmin

p t

r t

S t

Figure 3: Pruning Process.

procedure NN search(q)

1: t← root of T
2: dmin =∞, gpt

= 0
3: for b ∈ B do
4: D[b] = d(q, b)
5: if D[b] < dmin then
6: pmin = b, dmin = D[b]
7: end if
8: end for
9: gpt = max

b∈B
|(D[b]−M [b, pt])|

10: search(t, gpt
, q, pmin, dmin)

11: return pmin

Figure 4: Algorithm for an NN search in TLAESA.

We explain the pruning process. Fig. 3 shows the
pruning situation. Let t be the current node. If the
inequality

dmin + rt < d(q, pt) (6)

is satisfied, we can see that no object exists in St
which is closer to q than pmin and the traversal to
node t is not necessary. Since gpt

≤ d(q, pt), Eq. (6)
can be replaced with

dmin + rt < gpt
. (7)

Figs. 4 and 5 show the details of the search
algorithm(Micó et al. 1996).

3 Improvements of TLAESA

In this section, we propose some improvements of
TLAESA in order to reduce the number of distance
computations.

3.1 Tree Structure and Search Algorithm

If we can evaluate the lower bounds g in the ascending
order of their values, the search algorithm runs very
fast. However, this is not guaranteed in TLAESA
since the evaluation order is decided according to the
tree structure. We show such an example in Fig. 6.
In this figure, u, v and w are nodes. If gpv

< gpw
,

it is desirable that v is evaluated before w. But, if
gpv

> gpu
, w might be evaluated before v.

We propose the use of a multiway tree and the
best first order search instead of a binary tree and
the depth first search. During the best first search
process, we can traverse preferentially a node whose
subset may contain the closest object. Moreover, we
can evaluate more nodes at one time by using of the
multiway tree. The search tree in TLAESA has many
nodes which have a pointer to the same object. In the
proposed structure, we treat such nodes as one node.
Each node t corresponds to a subset St ⊂ P and has
a pivot pt, a covering radius rt = max

p∈St

d(p, pt) and

pointers to its children nodes.

procedure search(t, gpt , q, pmin, dmin)

1: if t is a leaf then
2: if gpt

< dmin then
3: d = d(q, pt) {distance computation}
4: if d < dmin then
5: pmin = pt, dmin = d
6: end if
7: end if
8: else
9: r is a right child of t

10: l is a left child of t
11: gpr = gpt

12: gpl
= max

b∈B
|(D[b]−M [b, pt])|

13: if gpl
< gpr then

14: if dmin + rl > gpl
then

15: search(l, gpl
, pmin, dmin)

16: end if
17: if dmin + rr > gpr

then
18: search(r, gpr , pmin, dmin)
19: end if
20: else
21: if dmin + rr > gpr then
22: search(r, gpr

, pmin, dmin)
23: end if
24: if dmin + rl > gpl

then
25: search(l, gpl

, pmin, dmin)
26: end if
27: end if
28: end if

Figure 5: A recursive procedure for an NN search in
TLAESA.

Figure 6: A case in which the search algorithm in
TLAESA does not work well.

We show a method to construct the tree structure
in Fig. 7. We first select randomly the pivot pt of
the root node t and set St to P . Then we execute the
procedure makeTree(t, pt, St) in Fig. 7.

We explain the search process in the proposed
structure. The proposed method maintains a priority
queue Q that stores triples (node t, lower bound gpt

,
covering radius rt) in the increasing order of gpt − rt.
Given a query object q, we calculate the distances be-
tween q and base prototypes and store their values in
D. Then the search process starts at the root of T .
The following steps are recursively repeated until Q
becomes empty. When t is a leaf node, the distance
d(q, pt) is computed if gpt

< dmin. If t is not a leaf
node and its each child node t′ satisfies the inequality

gpt
< rt′ + dmin, (8)

the lower bound gpt′ is calculated and a triple
(t′, gpt′ , rt′) is added to Q. Figs. 8 and 9 show the
details of the algorithm.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

79

procedure makeTree(t, pt, St)

1: t′ ← new child node of t
2: if |St| = 1 then
3: pt′ = pt and St′ = {pt′}
4: else
5: pt′ = argmax

p∈St

d(p, pt)

6: St′ = {p ∈ St|d(p, pt′) < d(p, pt)}
7: St = St − St′
8: makeTree(t′, pt′ , St′)
9: makeTree(t, pt, St)

10: end if

Figure 7: Method to construct the proposed tree
structure.

procedure NN search(q)

1: t← root of T
2: dmin =∞, gpt

= 0
3: for b ∈ B do
4: D[b] = d(q, b)
5: if D[b] < dmin then
6: pmin = b, dmin = D[b]
7: end if
8: end for
9: gt = max

b∈B
|(D[b]−M [b, pt])|

10: Q← {(t, gpt , rt)}
11: while Q is not empty do do
12: (t, gpt

, rt)← element in Q
13: search(t, gpt , q, pmin, dmin)
14: end while
15: return pmin

Figure 8: Proposed algorithm for an NN search.

3.2 Selection of Root Object

We focus on base prototypes in order to reduce node
accesses. The lower bound of the distance between a
query q and a base prototype b is

gb = max
b∈B
|d(q, b)− d(b, b)|

= d(q, b).

This value is not an estimated distance but an actual
distance.

If we can use an actual distance in the search pro-
cess, we can evaluate more effectively which nodes
are close to q. This fact means that the search is effi-
ciently performed if many base prototypes are visited
in the early stage. In other words, it is desirable that
more base prototypes are arranged in the upper part
of the search tree. Thus, in the proposed algorithm,
we choose the first base prototype b1 as the root ob-
ject.

3.3 Extension to a k-NN Search

LAESA was developed to perform NN searches and
(Moreno-Seco, Micó & Oncina 2002) extended it so
that k-NN searches can be executed. In this section,
we extend the improved TLAESA to a k-NN search
algorithm. The extension is simple modifications of
the algorithm described above. We use a priority
queue V for storing k nearest neighbour candidates
and modify the definition of dmin. V stores pairs
(object p, distance d(q, p)) in the increasing order of

procedure search(t, gpt , q, pmin, dmin)

1: if t is a leaf then
2: if gpt

< dmin then
3: d = d(q, pt) {distance computation}
4: if d < dmin then
5: pmin = pt, dmin = d
6: end if
7: end if
8: else
9: for each child t′ of t do

10: if gpt
< rt′ + dmin then

11: gpt′ = max
b∈B
|(D[b]−M [b, pt′])|

12: Q← Q ∪ {(t′, gpt′ , rt′)}
13: end if
14: end for
15: end if

Figure 9: A procedure used in the proposed algorithm
for an NN search.

procedure k-NN search(q, k)

1: t← root of T
2: dmin =∞, gpt

= 0
3: for b ∈ B do
4: D[b] = d(q, b)
5: if D[b] < dmin then
6: V ← V ∪ {(b,D[b])}
7: if |V | = k + 1 then
8: remove (k + 1)th pair from V
9: end if

10: if |V | = k then
11: (c, d(q, c))← kth pair of V
12: dmin = d(q, c)
13: end if
14: end if
15: end for
16: gpt

= max
b∈B
|(D[b]−M [b, pt])|

17: Q← {(t, gpt , rt)}
18: while Q is not empty do
19: (t, gpt

, rt)← element in Q
20: search(t, gpt , q, V, dmin, k)
21: end while
22: return k objects ← V

Figure 10: Proposed algorithm for a k-NN search.

d(q, p). dmin is defined as

dmin =
{∞ (|V | < k)

d(q, c) (|V | = k) (9)

where c is the object of the kth pair in V .
We show in Figs. 10 and 11 the details of the k-

NN search algorithm. The search strategy essentially
follows the algorithm in Figs. 8 and 9, but the k-NN
search algorithm uses V instead of pmin.

(Moreno-Seco et al. 2002) shows that the optimal
number of base prototypes depends on not only the
dimensionality of the space but also the value of k and
that the number of distance computations increases
as k increases.

4 Extension to an Approximation Search

In this section, we propose an extension to an ap-
proximation k-NN search algorithm which ensures the

CRPIT Volume 48

80

procedure search(t, gpt
, q, V, dmin, k)

1: if t is a leaf then
2: if gpt

< dmin then
3: d = d(q, pt) {distance computation}
4: if d < dmin then
5: V ← V ∪ {(pt, d(q, pt))}
6: if |V | = k + 1 then
7: remove (k + 1)th pair from V
8: end if
9: if |V | = k then

10: (c, d(q, c))← kth pair of V
11: dmin = d(q, c)
12: end if
13: end if
14: end if
15: else
16: for each child t′ of t do
17: if gpt < rt′ + dmin then
18: gpt′ = max

b∈B
|(D[b]−M [b, pt′])|

19: Q← Q ∪ {(t′, gpt′ , rt′)}
20: end if
21: end for
22: end if

Figure 11: A procedure used in the proposed algo-
rithm for a k-NN search.

quality of solutions. Consider the procedure in Fig.
11. We replace the 4th line with

if d < α · dmin then

and the 17th line with

if gt < rt′ + α · dmin then

where α is real number such that 0 < α ≤ 1. The
pruning process gets more efficient as these conditions
become tighter.

The proposed method ensures the quality of solu-
tions. We can show the approximation ratio to an
optimal solution using α. Let a be the nearest neigh-
bour object and a′ be the nearest neighbour candi-
date object. If our method misses a and give a′ as
the answer, the equation

g(q, a) ≥ α · d(q, a′) (10)

is satisfied. Then a will be eliminated from targeted
objects. Since g(q, a) ≤ d(q, a), we can obtain the
following equation:

d(q, a′) ≤ 1
α

d(q, a). (11)

Thus, the approximate solution are suppressed by 1
α

times of the optimal solution.

5 Experiments

In this section we show some experimental results and
discuss them. We tested on an artificial set of random
points in the 8-dimensional euclidean space. We also
used the euclidean distance as the distance function.
We evaluated the number of distance computations
and the number of accesses to the distance matrix in
1-NN and 10-NN searches.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100 110 120

Nu
m

be
r o

f D
ist

an
ce

 C
om

pu
ta

tio
ns

Number of Base Prototypes

TLAESA(1-NN)
TLAESA(10-NN)
Proposed(1-NN)

Proposed(10-NN)

Figure 12: Relation of the number of distance com-
putations to the number of base prototypes.

1-NN 10-NN
TLAESA 40 80
Proposed 25 60

Table 1: The optimal number of base prototypes.

5.1 The Optimal Number of Base Prototypes

We first determined experimentally the optimal num-
ber of base prototypes. The number of objects
was fixed to 10000. We executed 1-NN and 10-NN
searches for various numbers of base prototypes, and
counted the number of distance computations. Fig.
12 shows the results. From this figure, we chose the
number of base prototypes as shown in Table. 1.

We can see that the values in the proposed method
are fewer than those in TLAESA. This means that
the proposed method can achieve better performance
with smaller size of distance matrix. We used the
values in Table. 1 in the following experiments.

5.2 Evaluation of Improvements

We tested the effects of our improvements described
in 3.1 and 3.2. We counted the numbers of distance
computations in 1-NN and 10-NN searches for various
numbers of objects. The results are shown in Figs.
13 and 14. Similar to TLAESA, the number of the
distance computations in the proposed method does
not depend on the number of objects. In both of 1-NN
and 10-NN searches, it is about 60% of the number of
distance computations in TLAESA. Thus we can see
that our improvements are very effective.

In the search algorithms of TLAESA and the pro-
posed methods, various calculations are performed
other than distance computations. The costs of the
major part of such calculations are proportional to
the number of accesses to the distance matrices. We
therefore counted the numbers of accesses to the dis-
tance matrices. We examined the following two cases:

(i) TLAESA vs. TLAESA with the improvement of
selection of the root object.

(ii) Proposed method only with improvement of tree
structure and search algorithm vs. proposed
method only with the improvement of selection
of the root object.

In the case (i), the number of accesses to the distance
matrix is reduced by 12% in 1-NN searches and 4.5%
in 10-NN searches. In the case (ii), it is reduced by
6.8% in 1-NN searches and 2.7% in 10-NN searches.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

81

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2000 4000 6000 8000 10000Nu
m

be
r o

f D
ist

an
ce

 C
om

pu
ta

tio
ns

Number of Objects

TLAESA
Proposed

Figure 13: The number of distance computations in
1-NN searches.

 0
 30
 60
 90

 120
 150
 180
 210
 240
 270
 300

 0 2000 4000 6000 8000 10000Nu
m

be
r o

f D
ist

an
ce

 C
om

pu
ta

tio
ns

Number of Objects

TLAESA
Proposed

Figure 14: The number of distance computations in
10-NN searches.

Thus we can see that this improvement about selec-
tion of the root object is effective.

5.3 Evaluation of Approximation Search

We tested the performance of the approximation
search algorithm. We compared the proposed method
to Ak-LAESA, which is the approximation search al-
gorithm proposed in (Moreno-Seco, Micó & Oncina
2003). Each time a distance is computed in Ak-
LAESA, the nearest neighbour candidate is updated
and its value is stored. When the nearest neighbour
object is found, the best k objects are chosen from the
stored values. In Ak-LAESA, the number of distance
computations of the k-NN search is exactly the same
as that of the NN search.

To compare the proposed method with Ak-
LAESA, we examined how many objects in the ap-
proximate solutions exist in the optimal solutions.
Thus, we define the error rate E as follows:

E[%] =
|{xi|xi /∈ Opt, i = 1, 2, · · · , k}|

k
× 100 (12)

where {x1, x2, · · · , xk} is a set of k objects which are
obtained by an approximation algorithm and Opt is
a set of k closest objects to the query object.

Fig. 15 shows the error rate when the value of α is
changed in 10-NN searches. Fig. 16 also shows the re-
lation of the number of distance computations to the
value of α in 10-NN searches. In the range α ≥ 0.5,
the proposed method shows the lower error rate than

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

Er
ro

r R
at

e
Ε[

%
]

α

Ak-LAESA
Proposed

Figure 15: Error rate in 10-NN searches.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 0.2 0.4 0.6 0.8 1

Nu
m

be
r o

f d
ist

an
ce

 c
om

pu
ta

tio
ns

α

Ak-LAESA
Proposed

Figure 16: Relation of the number of distance com-
putations to the value of α in 10-NN searches.

Ak-LAESA. In particular, the error rate of the pro-
posed method is almost 0 in range α ≥ 0.9. From two
figures, we can control the error rate and the number
of distance computations by changing the value of α.
For example, the proposed method with α = 0.9 re-
duces abount 28.6% of distance computations and its
error rate is almost 0.

Then we examined the accuracy of the approx-
imate solutions. We used α = 0.5 for the pro-
posed method because the error rate of the proposed
method with α = 0.5 is equal to the one of Ak-
LAESA. We performed 10-NN searches 10000 times
for each method and examined the distribution of kth
approximate solution to kth optimal solution. We
show the results in Figs. 17 and 18. In each figure,
x axis represents the distance between a query ob-
ject q and the kth object in the optimal solution. y
axis shows the distance between q and the kth ob-
ject in the approximate solution. The point near the
line y = x represents that kth approximate solution is
very close to kth optimal solution. In Fig. 17, many
points are widely distributed. In the worst case, some
appriximate solutions reach about 3 times of the op-
timal solution. From these figures, we can see that
the accuracy of solution by the proposed method is
superior to the one by Ak-LAESA. We also show the
result with α = 0.9 in Fig. 19. Most points exist near
the line y = x.

Though Ak-LAESA can reduce drastically the
number of distance computations, its approximate so-
lutions are often far from the optimal solutions. On
the other hand, the proposed method can reduce the
number of distance computations to some extent with

CRPIT Volume 48

82

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 0.2 0.4 0.6 0.8

Di
st

an
ce

 to
 th

e
k t

h
Ap

pr
ox

im
at

e
So

lu
tio

n

Distance to the k th Optimal Solution

Figure 17: The distribution of the approximate solu-
tion by Ak-LAESA to the optimal solution.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 0.2 0.4 0.6 0.8

Di
st

an
ce

 to
 th

e
k t

h
Ap

pr
ox

im
at

e
So

lu
tio

n

Distance to the k th Optimal Solution

Figure 18: The distribution the approximate solution
by the proposed method with α = 0.5 to the optimal
solution.

very low error rate. Moreover, the accuracy of its ap-
proximate solutions is superior to that of Ak-LAESA.

6 Conclusions

In this paper, we proposed some improvements of
TLAESA. In order to reduce the number of distance
computations in TLAESA, we improved the search
algorithm to best first order from depth first order
and the tree structure to a multiway tree from a bi-
nary tree. In the 1-NN searches and 10-NN searches
in a 8-dimensional space, the proposed method re-
duced about 40% of distance computations. We then
proposed the selection method of root object in the
search tree. This improvement is very simple but is
effective to reduce the number of accesses to the dis-
tance matrix. Finally, we extended our method to an
approximation k-NN search algorithm that can en-
sure the quality of solutions. The approximate so-
lutions of the proposed method are suppressed by 1

α
times of the optimal solutions. Experimental results
show that the proposed method can reduce the num-
ber of distance computations with very low error rate
by selecting the appropriate value of α, and that the
accuracy of the solutions is superior to Ak-LAESA.
From these viewpoints, the method presented in this
paper is very effective when the distance computa-
tions are time-consuming.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 0.2 0.4 0.6 0.8

Di
st

an
ce

 to
 th

e
k t

h
Ap

pr
ox

im
at

e
So

lu
tio

n

Distance to the k th Optimal Solution

Figure 19: The distribution the approximate solution
by the proposed method with α = 0.9 to the optimal
solution.

References

Ciaccia, P., Patella, M. & Zezula, P. (1997), M-tree:
An efficient access method for similarity search
in metric spaces, in ‘Proceedings of the 23rd
International Conference on Very Large Data
Bases (VLDB’97)’, pp. 426–435.

Hjaltason, G. R. & Samet, H. (2003), ‘Index-driven
similarity search in metric spaces’, ACM Trans-
actions on Database Systems 28(4), 517–580.

Micó, L. & Oncina, J. (1998), ‘Comparison of fast
nearest neighbour classifiers for handwritten
character recognition’, Pattern Recognition Let-
ters 19(3-4), 351–356.

Micó, L., Oncina, J. & Carrasco, R. C. (1996), ‘A
fast branch & bound nearest neighbour classi-
fier in metric spaces’, Pattern Recognition Let-
ters 17(7), 731–739.

Micó, M. L., Oncina, J. & Vidal, E. (1994), ‘A new
version of the nearest-neighbour approximating
and eliminating search algorithm (AESA) with
linear preprocessing time and memory require-
ments’, Pattern Recognition Letters 15(1), 9–17.

Moreno-Seco, F., Micó, L. & Oncina, J. (2002),
‘Extending LAESA fast nearest neighbour algo-
rithm to find the k-nearest neighbours’, Lecture
Notes in Computer Science - Lecture Notes in
Artificial Intelligence 2396, 691–699.

Moreno-Seco, F., Micó, L. & Oncina, J. (2003), ‘A
modification of the LAESA algorithm for ap-
proximated k-NN classification’, Pattern Recog-
nition Letters 24(1-3), 47–53.

Navarro, G. (2002), ‘Searching in metric spaces
by spatial approximation’, The VLDB Journal
11(1), 28–46.

Rico-Juan, J. R. & Micó, L. (2003), ‘Comparison
of AESA and LAESA search algorithms using
string and tree-edit-distances’, Pattern Recogni-
tion Letters 24(9-10), 1417–1426.

Vidal, E. (1986), ‘An algorithm for finding nearest
neighbours in (approximately) constant average
time’, Pattern Recognition Letters 4(3), 145–157.

Yianilos, P. N. (1993), Data structures and algo-
rithms for nearest neighbor search in general
metric spaces, in ‘SODA ’93: Proceedings of the
fourth annual ACM-SIAM Symposium on Dis-
crete algorithms’, pp. 311–321.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

83

CRPIT Volume 48

84

Trust Network Analysis with Subjective Logic

Audun Jøsang1 Ross Hayward1 Simon Pope2

1School of Software Engineering and Data Communications∗
Queensland University of Technology, Brisbane, Australia

Email: {a.josang, r.hayward}@qut.edu.au

2CRC for Enterprise Distributed Systems Technology (DSTC Pty Ltd)†
The University of Queensland, Brisbane, Australia

Email: skjpope@gmail.com

Abstract

Trust networks consist of transitive trust relationships
between people, organisations and software agents con-
nected through a medium for communication and inter-
action. By formalising trust relationships, e.g. as rep-
utation scores or as subjective trust measures, trust be-
tween parties within the community can be derived by
analysing the trust paths linking the parties together. This
article describes a method for trust network analysis using
subjective logic (TNA-SL). It provides a simple notation
for expressing transitive trust relationships, and defines
a method for simplifying complex trust networks so that
they can be expressed in a concise form and be computa-
tionally analysed. Trust measures are expressed as beliefs,
and subjective logic is used to compute trust between ar-
bitrary parties in the network. We show that TNA-SL is
efficient, and illustrate possible applications with exam-
ples.

1 Introduction

Modern communication media are increasingly removing
us from the familiar styles of interacting that traditionally
rely on some degree of pre-established trust between busi-
ness partners. Moreover, most traditional cues for assess-
ing trust in the physical world are not available through
those media. We may now be conducting business with
people and organisations of which we know nothing, and
we are faced with the difficult task of making decisions
involving risk in such situations. As a result, the topic
of trust in open computer networks is receiving consid-
erable attention in the network security community and
e-commerce industry [1, 4, 13, 18, 19, 23, 26]. State
of the art technology for stimulating trust in e-commerce
includes cryptographic security mechanisms for provid-
ing confidentiality of communication and authentication
of identities. However, merely having a cryptographi-
cally certified identity or knowing that the communication
channel is encrypted is not enough for making informed
decisions if no other knowledge about a remote transac-
tion partner is available. Trust therefore also applies to
the truthfulness of specific claims made by parties who re-
quest services in a given business context as described in

∗Support from the ARC Research Network Secure Australia acknowledged.
†The work reported in this paper has been funded in part by the Co-operative

Research Centre for Enterprise Distributed Systems Technology (DSTC) through
the Australian Federal Government’s CRC Programme (Department of Education,
Science, and Training).
Copyright c©2006, Australian Computer Society, Inc. This paper ap-
peared at Twenty-Ninth Australasian Computer Science Conference
(ACSC2006), Hobart, Tasmania, Australia, January 2006. Conferences
in Research and Practice in Information Technology, Vol. 48. Vladimir
Estivill-Castro and Gill Dobbie, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

the WS-Trust specifications [26], and trust between busi-
ness partners regarding security assertions as described in
the Liberty Alliance Framework [18, 19]. Trust also ap-
plies to the honesty, reputation and reliability of service
providers or transaction partners, in general or for a spe-
cific purpose. In this context, the process of assessing trust
becomes part of quality of service (QoS) evaluation, deci-
sion making and risk analysis.

Being able to formally express and reason with these
types of trust is needed not only to create substitutes for
the methods we use in the physical world, like for instance
trust based on experiences or trust in roles, but also for cre-
ating entirely new methods for determining trust that are
better suited for computerised interactions. This will facil-
itate the creation of communication infrastructures where
trust can thrive in order to ensure meaningful and mutually
beneficial interactions between players.

The main contribution of this paper is a method for
discovering trust networks between specific parties, and a
practical method for deriving measures of trust from such
networks. Our method, which is called TNA-SL (Trust
Network Analysis with Subjective Logic), is based on
analysing trust networks as directed series-parallel graphs
that can be represented as canonical expressions, com-
bined with measuring and computing trust using subjec-
tive logic. We finally provide a numerical example of how
trust can be analysed and computed using our method.

2 Trust Transitivity

Trust transitivity means, for example, that if Alice trusts
Bob who trusts Eric, then Alice will also trust Eric. This
assumes that Bob actually tells Alice that he trusts Eric,
which is called a recommendation.

It can be shown that trust is not always transitive in real
life [2]. For example the fact that Alice trusts Bob to look
after her child, and Bob trusts Eric to fix his car, does not
imply that Alice trusts Eric for looking after her child, or
for fixing her car. However, under certain semantic con-
straints [15], trust can be transitive, and a trust system can
be used to derive trust. In the last example, trust transitiv-
ity collapses because the scopes of Alice’s and Bob’s trust
are different.

We define trust scope1 as the specific type(s) of trust
assumed in a given trust relationship. In other words, the
trusted party is relied upon to have certain qualities, and
the scope is what the trusting party assumes those qualities
to be.

Let us assume that Alice needs to have her car ser-
viced, so she asks Bob for his advice about where to find
a good car mechanic in town. Bob is thus trusted by Alice
to know about a good car mechanic and to tell his honest

1The terms “trust context” [6], “trust purpose” [13] and “subject matter” [20]
have been used in the literature with the same meaning.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

85

,QGLUHFW�IXQFWLRQDO�WUXVW

'LUHFW�IXQFWLRQDO�WUXVW'LUHFW�UHIHUUDO�WUXVW

EricBobAlice

5HFRPPHQGDWLRQ

1 1

2

3

Figure 1: Transitive trust principle

opinion about that. Bob in turn trusts Eric to be a good car
mechanic. This situation is illustrated in Fig.1, where the
indexes indicate the order in which the trust relationships
and recommendations are formed.

It is important to separate between trust in the ability to
recommend a good car mechanic which represents refer-
ral trust, and trust in actually being a good car mechanic
which represents functional trust. The scope of the trust is
nevertheless the same, namely to be a good car mechanic.
Assuming that, on several occasions, Bob has proved to
Alice that he is knowledgeable in matters relating to car
maintenance, Alice’s referral trust in Bob for the purpose
of recommending a good car mechanic can be considered
to be direct. Assuming that Eric on several occasions has
proved to Bob that he is a good mechanic, Bob’s func-
tional trust in Eric can also be considered to be direct.
Thanks to Bob’s advice, Alice also trusts Eric to actually
be a good mechanic. However, this functional trust must
be considered to be indirect, because Alice has not directly
observed or experienced Eric’s skills in car mechanics.

Let us slightly extend the example, wherein Bob does
not actually know any car mechanics himself, but he
knows Claire, whom he believes knows a good car me-
chanic. As it happens, Claire is happy to recommend the
car mechanic named Eric. As a result of transitivity, Alice
is able to derive trust in Eric, as illustrated in Fig.2, where
the indexes indicate the order in which the trust relation-
ships and recommendations are formed. The prefix “dr-”
denotes direct referral trust, “df-” denotes direct functional
trust, and “if-” denotes indirect functional trust.

dr-trust df-trust

rec.
Alice Bob Claire Eric

1

2

3
derived if-trust

dr-trust

rec.

1

2

1

Figure 2: Transitive serial combination of trust arcs

Defining the exact scope of Alice’s trust in Bob is more
complicated in the extended example. It is most obvious
to say that Alice trusts Bob to recommend somebody (who
can recommend somebody etc.) who can recommend a
good car mechanic. The problem with this type of formu-
lation is that the length of the trust scope expression be-
comes proportional with the length of the transitive path,
so that the trust scope expression rapidly becomes impen-
etrable. It can be observed that this type of trust scope has
a recursive structure that can be exploited to define a more
compact expression for the trust scope. As already men-
tioned, trust in the ability to recommend represents refer-
ral trust, and is precisely what allows trust to become tran-
sitive. At the same time, referral trust always assumes the
existence of a functional trust scope at the end of the tran-

sitive path, which in this example is about being a good
car mechanic.

The “referral” variant of a trust scope can be consid-
ered to be recursive, so that any transitive trust chain, with
arbitrary length, can be expressed using only one trust
scope with two variants. This principle is captured by the
following criterion.

Definition 1 (Functional Trust Derivation Criterion)
Derivation of functional trust through referral trust,
requires that the last trust arc represents functional trust,
and all previous trust arcs represent referral trust.

In practical situations, a trust scope can be charac-
terised by being general or specific. For example, knowing
how to change wheels on a car is more specific than to be
a good car mechanic, where the former scope is a subset
of the latter. Whenever a given trust scope is part of all the
referral and functional trust scopes in a path, a transitive
trust path can be formed based on that trust scope. This
can be expressed with the following consistency criterion.

Definition 2 (Trust Scope Consistency Criterion) A
valid transitive trust path requires that there exists a trust
scope which is a common subset of all trust scopes in the
path. The derived trust scope is then the largest common
subset.

Trivially, every arc in a path can carry the same trust
scope. Transitive trust propagation is thus possible with
two variants (i.e. functional and referral) of a single trust
scope.

Specifying the two scope variants separately can be
omitted in case it is difficult to separate between them in
a given application. Although trust scopes are always ex-
pressed with the two variants in all the descriptions and
example of this paper, it is perfectly possible to assume
the same descriptions and examples without specifying the
two variants.

A transitive trust path stops with the first functional
trust arc encountered when there are no remaining out-
going referral trust arcs. It is, of course, possible for a
principal to have both functional and referral trust in an-
other principal, but that should be expressed as two sepa-
rate trust arcs.

The examples above assume some sort of absolute trust
between the agents along the transitive trust path. In re-
ality trust is never absolute, and many researchers have
proposed to express trust as discrete verbal statements, as
probabilities or other continuous measures. One observa-
tion which can be made from an intuitive perspective is
that trust is diluted through transitivity. Revisiting the ex-
ample of Fig.2, it can be noted that Alice’s trust in the car

CRPIT Volume 48

86

mechanic Eric through the recommenders Bob and Claire
can be at most as confident as Claire’s trust in Eric.

It could be argued that negative trust in a transitive
chain can have the paradoxical effect of strengthening the
derived trust. Take for example the case where Bob dis-
trusts Claire and Claire distrusts Eric, whereas Alice trusts
Bob. In this situation, Alice might actually derive positive
trust in Eric, since she relies on Bob’s advice, and Bob
says: “Claire is a cheater, do not rely on her”. So the fact
that Claire distrusts Eric might count as a pro-Eric argu-
ment from Alice’s perspective. The question boils down
to “is the enemy of my enemy my friend?”. However this
question relates to how multiple types of untrustworthi-
ness, such as dishonesty and unreliability, should be inter-
preted in a trust network, which is outside the scope of this
study.

3 Parallel Trust Combination

It is common to collect advice from several sources in or-
der to be better informed when making decisions. This can
be modelled as parallel trust combination illustrated in
Fig.3, where again the indexes indicate the order in which
the trust relationships and recommendations are formed.

Alice

Bob

David

Eric

dr-tru
st1

3

Claire

df-trust
1

dr-trust
1

dr-trust

1

dr-tru
st1

2
rec.

2
rec.

2
rec.

2
rec.

derived if-trust

Figure 3: Parallel combination of trust paths

Let us assume again that Alice needs to get her car
serviced, and that she asks Bob to recommend a good car
mechanic. When Bob replies that Claire, a good friend of
his, recommended Eric to him, Alice would like to get a
second opinion, so she asks David whether he has heard
about Eric. David also knows and trusts Claire, and has
heard from her that Eric is a good car mechanic. Alice who
does not know Claire personally, is unable to obtain a first
hand recommendation about the car mechanic Eric, i.e.
she does not directly know anybody with functional trust
in Eric. Intuitively, if both Bob and David recommend
Claire as a good advisor regarding car mechanics, Alice’s
trust in Claire’s advice will be stronger than if she had only
asked Bob. Parallel combination of positive trust thus has
the effect of strengthening the derived trust.

In the case where Alice receives conflicting recom-
mended trust, e.g. trust and distrust at the same time, she
needs some method for combining these conflicting rec-
ommendations in order to derive her trust in Eric. Our
method, which is described in Sec.6, is based on subjec-
tive logic which easily can handle such cases.

4 Structured Notation

Transitive trust networks can involve many principals, and
in the examples below, capital letters A, B, C, D and E
will be used to denote principals instead of names such as
Alice and Bob.

We will use basic constructs of directed graphs to rep-
resent transitive trust networks. We will add some nota-
tion elements which allow us to express trust networks in
a structured way.

A single trust relationship can be expressed as a di-
rected arc between two nodes that represent the trust
source and the trust target of that arc. For example the
arc [A, B] means that A trusts B.

The symbol “:” will be used to denote the transitive
connection of two consecutive trust arcs to form a tran-
sitive trust path. The trust relationships of Fig.2 can be
expressed as:

([A, E]) = ([A, B] : [B, C] : [C, E]) (1)

where the trust scope is implicit. Let the trust scope e.g.
be defined as σ: “trust to be a good car mechanic”. Let
the functional variant be denoted by “fσ” and the refer-
ral variant by “rσ”. A distinction can be made between
initial direct trust and derived indirect trust. Whenever
relevant, the trust scope can be prefixed with “d” to indi-
cate direct trust (dσ), and with “i” to indicate indirect trust
(iσ). This can be combined with referral and functional
trust, so that for example indirect functional trust can be
denoted as “ifσ”. A reference to the trust scope can then
be explicitly included in the trust arc notation as e.g. de-
noted by [A, B, drσ]. The trust network of Fig.2 can then
be explicitly expressed as:

([A, E, ifσ]) =

([A, B, drσ] : [B, C, drσ] : [C, E, dfσ])
(2)

Let us now turn to the combination of parallel trust
paths, as illustrated in Fig.3. We will use the symbol “�”
to denote the graph connector for this purpose. The “�”
symbol visually resembles a simple graph of two parallel
paths between a pair of agents, so that it is natural to use
it for this purpose. Alice’s combination of the two parallel
trust paths from her to Eric in Fig.3 is then expressed as:

([A, E, ifσ]) = ((([A, B, drσ] : [B, C, drσ]) �

([A, D, drσ] : [D, C, drσ])) :

[C, E, dfσ])

(3)

In short notation, the same trust graph is expressed as:

([A, E]) = ((([A, B] : [B, C]) �

([A, D] : [D, C])) : [C, E])
(4)

It can be noted that Fig.3 contains two paths. The
graph consisting of the two separately expressed paths
would be:

([A, E]) = ([A, B] : [B, C] : [C, E]) �

([A, D] : [D, C] : [C, E])
(5)

A problem with Eq.(5) is that the arc [C, E] appears
twice. Although Eq.(4) and Eq.(5) consist of the same
two paths, their combined structures are different. Some
computational models would be indifferent to Eq.(4) and
Eq.(5), whereas others would produce different results de-
pending on which expression is being used. When im-
plementing the serial “:” as binary logic “AND”, and the
parallel “�” as binary logic “OR”, the results would be
equal. However, when implementing “:” and “�” as prob-
abilistic multiplication and comultiplication respectively,
the results would be different. It would also be different in

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

87

the case of applying subjective logic operators for transi-
tivity and parallel combination which will be described in
Sec.6 below. In general, it is therefore desirable to express
graphs in a form where an arc only appears once. This will
be called a canonical expression.

Definition 3 (Canonical Expression) An expression of a
trust graph in structured notation where every arc only
appears once is called canonical.

With this structured notation, arbitrarily large trust net-
works can be explicitly expressed in terms of source, tar-
get, and scope, as well as other attributes such as measure
and time whenever required.

A general directed trust graph is based on directed trust
arcs between pairs of nodes. With no restrictions on the
possible trust arcs, trust paths from a given source X to
a given target Y can contain cycles, which could result in
inconsistent calculative results. Cycles in the trust graph
must therefore be controlled when applying calculative
methods to derive measures of trust between two parties.
Normalisation and simplification are two different control
approaches. Our model is based on graph simplification,
and a comparison with normalisation methods used in e.g.
PageRank proposed by Page et al. (1998) [21], and in
EigenTrust proposed by Kamvar et al. (2003) [17] is pro-
vided in [10].

5 Network Simplification

Simplification of a trust network consists of including as
many arcs as possible from the original trust network,
while still maintaining a canonical expression. Graphs
that can be represented as canonical expressions with our
structured notation are known as directed series-parallel
graphs (DSPG) [5]. A DSPG can be constructed by se-
quences of serial and parallel compositions that are de-
fined as follows [5]:

Definition 4 (Directed Series-Parallel Composition)

• A directed series composition consists of replacing an
arc [A, C] with two arcs [A, B] and [B, C] where B
is a new node.

• A directed parallel composition consists of replacing
an arc [A, C] with two arcs [A, C]1 and [A, C]2.

The principle of directed series and parallel composi-
tion are illustrated in Fig.4.

A C

A B C

A C

A C

a) Series graph composition b) Parallel graph composition

Figure 4: DSPG composition.

By successively applying the principles of series and
parallel composition, arbitrarily large DSPGs can be con-
structed.

We will first describe an algorithm for determining all
practical trust paths from a given source to a given target,
and secondly algorithms for determining near-optimal or
optimal DSPGs.

5.1 Finding Paths

The first step is to determine the possible directed paths
between a given pair of agents called the start source and
the final target. The pseudo-code in Fig.5 represents an
algorithm for finding all practical directed paths between a
given start source and a given final target, where no single
path contains cycles.

Pseudo-Constructor for a trust arc between two parties:

Arc(Node source, Node target, Scope scope, Variant variant){
this.source = source;
this.target = target;
this.scope = scope;
this.variant = variant;

}

Pseudo-code for a depth-first path finding algorithm:
After completion, ‘paths’ contains all possible paths between source
and target.

void FindPaths(Node source, Node target, Scope scope) {
SELECT arcs FROM graph WHERE (

(arcs.source == source) AND
(arcs.target NOT IN path) AND
(arcs.scope == scope))

FOR EACH arc IN arcs DO {
IF (

(arc.target == target) AND
(arc.variant == ‘functional’) AND
(Confidence(path + arc) > Threshold)) {

paths.add(path + arc);
}
ELSE IF (

(arc.target != target) AND
(arc.variant == ‘referral’) AND
(Confidence(path + arc) > Threshold)) {

path.add(arc);
FindPaths(arc.target, target, scope);
path.remove(arc);

}
}

}

Pseudo-code for method call:
The global variables ‘path’ and ‘paths’ are initialized.

Vector path = NEW Vector OF TYPE arc;
Vector paths = NEW Vector OF TYPE path;
FindPaths(StartSource, FinalTarget, scope);

Figure 5: Path finding algorithm

In the pseudocode of Fig.5, the conditional
IF (Confidence(path + arc) > Threshold)

represents a heuristic rule for simplifying the graph anal-
ysis, where the path is only retained as long as the condi-
tional is TRUE. By removing paths with low confidence,
the number of paths to consider is reduced while the in-
formation loss can be kept to an insignificant level. For a
given application, the threshold can be defined as the low-
est level for which a trust relationship is meaningful. The
mathematical interpretation of confidence is described in
Sec.6.1.

5.2 Finding Directed Series-Parallel Graphs

Ideally, all the possible paths discovered by the algorithm
of Fig.5 should be taken into account when deriving the
trust value. A general directed graph will often contain
cycles and dependencies. This can be avoided by exclud-
ing certain paths, but this can also cause information loss.

CRPIT Volume 48

88

Specific selection criteria are needed in order to find the
optimal subset of paths to include.

Fig.6 illustrates an example of a non-DSPG with de-
pendent paths, where it is assumed that A is the source
and E is the target. While there can be a large number of
possible distinct paths, it is possible to use heuristic rules
to discard paths, e.g. when their confidence drops below a
certain threshold.

A

B

C E

D

Figure 6: Dependent paths

With n possible paths, there are 2n − 1 different com-
binations for constructing graphs, of which not all neces-
sarily are DSPGs. Of the graphs that are DSPGs, only one
will be selected for deriving the trust measure.

In Fig.6 there are 3 possible paths between A and E:

φ1 = ([A, B] : [B, C] : [C, E]),
φ2 = ([A, D] : [D, C] : [C, E]),
φ3 = ([A, B] : [B, D] : [D, C] : [C, E]).

(6)

This leads to the following 7 potential combina-
tions/graphs.

γ1 = φ1, γ4 = φ1 � φ2, γ7 = φ1 � φ2 � φ3.
γ2 = φ2, γ5 = φ1 � φ3,
γ3 = φ3, γ6 = φ2 � φ3,

(7)

The graph represented by γ7 contains all possible paths
between A and E. The problem with γ7 is that it can
not be represented as a canonical expression, i.e. where
an arc can only appear once. In this example, one path
must must be removed from the graph in order to have a
canonical expression. The expressions γ4, γ5 and γ6 can
be canonicalised, and the expressions γ1, γ2 and γ3 are
already canonical, which means that all the expressions
except γ7 can be used as a basis for constructing a DSPG
and for deriving A’s trust in E.

The optimal DSPG is the one that results in the highest
confidence level of the derived trust value. This principle
focuses on maximising certainty in the trust value, and not
e.g. on deriving the most positive or negative trust value.
The interpretation of confidence can of course have differ-
ent meanings depending on the computational model, and
our approach is based on he classic confidence value of
probability density functions.

There is a trade-off between the time it takes to find
the optimal DSPG, and how close to the optimal DSPG a
simplified graph can be. It is possible to use a relatively
fast heuristic algorithm to find a DSPG close to, or equal
to the optimal DSPG. It is also possible to use a relatively
slow exhaustive algorithm that is guaranteed to find the
optimal DSPG.

5.2.1 Heuristic Search for Near-Optimal DSPGs

Fig.7 represents a heuristic algorithm for finding a near-
optimal DSPG. It constructs the DSPG by including new
paths one by one in decreasing order of confidence. Each
new path that potentially could turn the graph into a non-
DSPG and break canonicity is excluded. This is detected
by analysing each new potential branch with the method:

dspg.sep subgraph(branch.source,branch.sink)

Pseudo-code search algorithm for a near optimal DSPG:
After completion, ‘dspg’ contains a near-optimal trust graph

void FindNearOptimalDSPG(Vector paths) {
paths.sort according to confidence;
dspg = paths(0);
paths.remove(0);
FOR EACH path IN paths DO {

end of path = FALSE;
branch = EMPTY;
WHILE NOT end of path DO {

next arc = path.next;
end of path = path.no more arcs;
IF (next arc.sink NOT IN dspg) {

branch.add(next arc);
}
ELSE IF ((next arc.sink IN dspg) AND

(branch != EMPTY)) {
branch.add(next arc);
IF (dspg.sep subgraph(branch.source,branch.sink) {

dspg.add(branch);
branch = EMPTY;

}
ELSE {

end of path = TRUE;
}

}
}

}
}

Pseudo-code for method call:
The global variables ‘dspg’ and ‘paths’ are initialized.

Vector dspg = NEW Vector OF TYPE arc;
Vector paths = NEW Vector OF TYPE path;
FindNearOptimalDSPG(paths);

Figure 7: Heuristic algorithm for a near-optimal DSPG

which returns TRUE if the new branch can be added, and
FALSE if not. More precisely, it verifies that the subgraph
between the nodes where the new branch is to be added is a
separate sub-DSPG, so that a clean parallel graph compo-
sition according to Fig.4 is possible when adding the new
branch. While this subgraph analysis can be computation-
ally intensive, efficiency can be improved by caching these
intermediate results, so that in case several new branches
between the same nodes must be added, the analysis of the
corresponding subgraph only needs to be done once.

This method only requires the computation of the trust
value for a single DSPG, with computational complexity
Comp = lm, where m is average number of paths in the
DSPGs, and l is the average number of arcs in the paths.

The heuristic method produces a DSPG with overall
confidence in the trust level equal or close to that of the
optimal DSPG. The reason why this method can not guar-
antee to produce the optimal DSPG, is that it could ex-
clude two or more paths with relatively low confidence
levels because of conflict with a single path with high con-
fidence level previously included, whereas the low confi-
dence paths together could provide higher confidence than
the previous high confidence path alone. In such cases it
would have been optimal to exclude the single high confi-
dence path, and instead include the low confidence paths.
However, only the exhaustive method described below can
guarantee to find the optimal DSPG in such cases.

5.2.2 Exhaustive Search for the Optimal DSPG

The exhaustive method of finding the optimal DSPG con-
sists of determining all possible DSPGs, then deriving the
trust value for each one of them, and finally selecting the

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

89

DSPG and the corresponding canonical expression that
produces the trust value with the highest confidence level.

For brevity, we have not included the pseudocode al-
gorithm for the exhaustive search algorithm, because it
would be similar to the heuristic search algorithm. The
main difference is that all 2n − 1 possible orders of in-
cluding the paths are tried one by one, potentially leading
to 2n − 1 different DSPGs that must be evaluated. Nor-
mally, the DSPG that produces the highest confidence is
finally selected.

The computational complexity of the exhaustive
method is Comp = lm(2n − 1), where n is the number
of possible paths, m is the average number of paths in the
DSPGs, and l is the average number of arcs in the paths.

6 Trust Derivation with Subjective Logic

Subjective logic represents a practical belief calculus that
can be used for calculative analysis trust networks. TNA-
SL requires trust relationships to be expressed as beliefs,
and trust networks to be expressed as DSPGs in the form
of canonical expressions. In this section we describe how
trust can be derived with the belief calculus of subjective
logic. A numerical example is given in Sec.7.

6.1 Subjective Logic Fundamentals

Belief theory is a framework related to probability the-
ory, but where the probabilities over the set of possible
outcomes do not necessarily add up to 1, and the remain-
ing probability is assigned to the union of possible out-
comes. Belief calculus is suitable for approximate reason-
ing in situations of partial ignorance regarding the truth of
a given proposition.

Subjective logic [7] represents a specific belief calcu-
lus that uses a belief metric called opinion to express be-
liefs. An opinion denoted by ωA

x = (b, d, u, a) expresses
the relying party A’s belief in the truth of statement x.
When a statement for example says “Party X is honest
and reliable regarding σ”, then the opinion about the truth
of that statement can be interpreted as trust in X within
the scope of σ. Here b, d, and u represent belief, disbe-
lief and uncertainty respectively, where b, d, u ∈ [0, 1] and
b + d + u = 1. The confidence parameter used in the
pseudocode of Fig.fig:find-path can be defined as equal to
(1− c), i.e. the confidence of a trust value is equivalent to
the certainty of the corresponding opinion. The parameter
a ∈ [0, 1] is called the base rate, and is used for comput-
ing an opinion’s probability expectation value that can be
determined as E(ωA

x) = b + au. More precisely, a deter-
mines how uncertainty shall contribute to the probability
expectation value E(ωA

x). In the absence of any specific
evidence about a given party, the base rate determines the
a priori trust that would be put in any member of the com-
munity.

The opinion space can be mapped into the interior
of an equal-sided triangle, where, for an opinion ωx =
(bx, dx, ux, ax), the three parameters bx, dx and ux deter-
mine the position of the point in the triangle representing
the opinion. Fig.8 illustrates an example where the opin-
ion about a proposition x from a binary state space has the
value ωx = (0.7, 0.1, 0.2, 0.5).

The top vertex of the triangle represents uncertainty,
the bottom left vertex represents disbelief, and the bot-
tom right vertex represents belief. The parameter bx is
the value of a linear function on the triangle which takes
value 0 on the edge which joins the uncertainty and dis-
belief vertexes and takes value 1 at the belief vertex. In
other words, bx is equal to the quotient when the perpen-
dicular distance between the opinion point and the edge
joining the uncertainty and disbelief vertexes is divided by

a

ω = (0.7, 0.1, 0.2, 0.5)x

x

xω

xE()

0.5 00

1

0.5 0.5

Disbelief1 Belief10
0 1

Uncertainty

Probability axis

Example opinion:

Projector

Figure 8: Opinion triangle with example opinion

the perpendicular distance between the belief vertex and
the same edge. The parameters dx and ux are determined
similarly. The base of the triangle is called the probability
axis. The base rate is indicated by a point on the probabil-
ity axis, and the projector starting from the opinion point
is parallel to the line that joins the uncertainty vertex and
the base rate point on the probability axis. The point at
which the projector meets the probability axis determines
the expectation value of the opinion, i.e. it coincides with
the point corresponding to expectation value E(ωA

x).
Opinions can be ordered according to probability ex-

pectation value, but additional criteria are needed in case
of equal probability expectation values. We will use the
following rules to determine the order of opinions [7]:

Let ωx and ωy be two opinions. They can be ordered
according to the following rules by priority:

1. The opinion with the greatest probability expectation
is the greatest opinion.

2. The opinion with the least uncertainty is the greatest
opinion.

3. The opinion with the least base rate is the greatest
opinion.

The probability density over binary event spaces can
be expressed as beta PDFs (probability density functions)
denoted by beta (α, β) [3]. Let r and s express the num-
ber of positive and negative past observations respectively,
and let a express the a priori or base rate, then α and β can
be determined as:

α = r + 2a , β = s + 2(1 − a) . (8)
The following bijective mapping between the opinion

parameters and the beta PDF parameters can be deter-
mined analytically [7, 14].










bx = r/(r + s + 2)
dx = s/(r + s + 2)
ux = 2/(r + s + 2)
ax = base rate of x

⇐⇒











r = 2bx/ux

s = 2dx/ux
1 = bx + dx + ux
a = base rate of x

(9)

This means for example that a totally ignorant opinion
with ux = 1 and ax = 0.5 is equivalent to the uniform
PDF beta (1, 1) illustrated in Fig.9.

It also means that a dogmatic opinion with ux = 0
is equivalent to a spike PDF with infinitesimal width and
infinite height expressed by beta (bxη, dxη), where η →
∞. Dogmatic opinions can thus be interpreted as being
based on an infinite amount of evidence.

CRPIT Volume 48

90

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1
pProbability

Pr
ob

ab
ili

ty
 d

en
si

ty
 B

et
a(

| 1

,1
)

p

Figure 9: A priori uniform beta(1,1)

After r positive and s negative observations in case of
a binary state space (i.e. a = 0.5), the a posteriori distri-
bution is the beta PDF with α = r + 1 and β = s + 1.
For example the beta PDF after observing 7 positive and
1 negative outcomes is illustrated in Fig.10, which also is
equivalent to the opinion illustrated in Fig.8

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty
 d

en
si

ty
 B

et
a(

| 8

,2
)

p

pProbability

Figure 10: A posteriori beta(8,2) after 7 positive and 1
negative observations

A PDF of this type expresses the uncertain probability
that a process will produce positive outcome during future
observations. The probability expectation value of Fig.10
is E(p) = 0.8. This can be interpreted as saying that the
relative frequency of a positive outcome in the future is
somewhat uncertain, and that the average value is 0.8.

The variable p is a probability variable, so that for a
given p the probability density beta(α, β) represents sec-
ond order probability. The first-order variable p represents
the probability of an event, whereas the density beta(α, β)
represents the probability that the first-order variable has
a specific value. Since the first-order variable p is con-
tinuous, the second-order probability beta(α, β) for any
given value of p ∈ [0, 1] is vanishingly small and therefore
meaningless as such. It is only meaningful to compute
∫ p2

p1

beta(α, β) for a given interval [p1, p2], or simply to
compute the expectation value of p. The expectation value
of the PDF is always equal to the expectation value of the
corresponding opinion. This provides a sound mathemati-
cal basis for combining opinions using Bayesian updating
of beta PDFs.

6.2 Determining Trust with Reputation Systems

The trust representation of subjective logic is directly
compatible with the reputation representation of Bayesian
reputation systems [12, 13, 25, 24]. This makes it possi-
ble to use reputation systems to determine trust measures.
The method for doing this is briefly described below.

Bayesian reputation systems allow agents to rate
other agents, both positively and negatively, by arbitrary

amounts, for a single transaction. This rating takes the
form of a vector:

ρ =

[

r
s

]

, where r ≥ 0 and s ≥ 0. (10)

A simple binary rating system can e.g. be implemented
by using ρ+ = [1, 0] for a satisfactory transaction and
ρ− = [0, 1] for an unsatisfactory transaction [11].

A particular rating can be denoted as:

ρX
Z,tR

(11)

which can be read as X’s rating of Z at time tR. When-
ever not relevant, these super- and subscripts can be omit-
ted.

6.2.1 Aging Ratings

Agents (and in particular human agents) may change their
behaviour over time, so it is desirable to give greater
weight to more recent ratings. This can be achieved by
introducing a longevity factor λ, which controls the rate at
which old ratings are ‘forgotten’:

ρX,t
Z,tR

= λt−tRρX
Z,tR

(12)

where 0 ≤ λ ≤ 1, tR is the time at which the rating was
collected and t is the current time.

6.2.2 Aggregating Ratings

Ratings may be aggregated by simple addition of the com-
ponents (vector addition).

For each pair of agents (X, Z), an aggregate rating
ρt(X, Z) can be calculated that reflects X’s overall opin-
ion of Z at time t:

ρt(X, Z) =
∑

ρX,t
Z,tR

, where tR ≤ t . (13)

Also, Z’s aggregate rating by all agents in a particular
set S can be calculated:

ρt(Z) =
∑

X∈S

ρt(X, Z). (14)

In particular, the aggregate rating for Z, taking into ac-
count ratings by the entire agent community C, can be
calculated:

ρt(Z) =
∑

X∈C

ρt(X, Z). (15)

6.2.3 The Reputation Score

Once aggregated ratings for a particular agent are known,
it is possible to calculate the reputation probability distri-
bution for that agent. This also takes into account the base
rate reputation score a of all agents in the community. The
reputation score is then expressed as:

beta(ρt(Z)) = beta(r + 2a, s + 2(1− a)), (16)
where

ρt(Z) =

[

r
s

]

.

However probability distributions, while informa-
tive, cannot be easily interpreted by users. A simpler
point estimate of an agent’s reputation is provided by
E[beta(ρt(Z))], the expected value of the distribution.
This provides a score in the range [0, 1], which can be
scaled to any range (including, for example, ‘0% reliable
to 100% reliable’).

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

91

Definition 5 (Reputation Score) Let ρt(Z) = [r, s]′ rep-
resent target Z’s aggregate ratings at time t. Then the
function Rt(Z) defined by:

Rt(Z) = E[beta(ρt(Z))] =
r + 2a

r + s + 2
(17)

is called Z’s reputation score at time t.

The reputation score Rt(Z) can be interpreted as a
probability measure indicating how a particular agent is
expected to behave in future transactions.

The base rate a is particularly useful for determining
the reputation score of agents for which the aggregated
ratings have low confidence, e.g. because the agents have
been idle for longer periods, or because they are new en-
trants to the community. It is interesting to note that in a
community where the base rate a is high, a single negative
rating will influence the reputation score more than a sin-
gle positive rating. Similarly, in a community where the
base rate a is low, a single positive rating will influence the
reputation score more than a single negative rating. This
nicely models the intuitive observation from everyday life
where “it takes many good experiences to balance out one
bad experience”.

6.3 Trust Reasoning

Subjective logic defines a number of operators [7, 22, 16],
where some represent generalisations of binary logic and
probability calculus operators, whereas others are unique
to belief theory because they depend on belief ownership.
Here we will only focus on the discounting and the con-
sensus operators. The discounting operator can be used to
derive trust from transitive paths, and the consensus oper-
ator can be used to derive trust from parallel paths. These
operators are described below.

• Discounting [7] is used to compute transitive trust.
Assume two agents A and B where A has refer-
ral trust in B, denoted by ωA

B = (bA
B , dA

B , uA
B, aA

B).
In addition B has functional trust in C, denoted by
ωB

C = (bB
C , dB

C , uB
C , aB

C). A’s indirect functional trust
in C can then be derived by discounting B’s trust in
C with A’s trust in B. The derived trust is denoted
by ωA:B

C = (bA:B
C , dA:B

C , uA:B
C , aA:B

C). By using the
symbol ‘⊗’ to designate this operator, we can write
ωA:B

C = ωA
B ⊗ ωB

C .































bA:B
C = bA

BbB
C

dA:B
C = bA

BdB
C

uA:B
C = dA

B + uA
B + bA

BuB
C

aA:B
C = aB

C .

(18)

The effect of discounting in a transitive path is to in-
crease uncertainty, i.e. to reduce the confidence in the
expectation value.

• Consensus [7, 8, 9] is used to fuse two (possibly con-
flicting) beliefs into one. Let ωA

C = (bA
C , dA

C , uA
C , aA

C)
and ωB

C = (bB
C , dB

C , uB
C , aB

C) be trust in C
from A and B respectively. The opinion
ωA�B

C = (bA�B
C , dA�B

C , uA�B
C , aA�B

C) is then
called the consensus between ωA

C and ωB
C , denoting

the trust that an imaginary agent [A, B] would have
in C, as if that agent represented both A and B. By
using the symbol ‘⊕’ to designate this operator, we

can write ωA�B
C = ωA

C ⊕ ωB
C .

Case I: uA
C + uB

C − uA
CuB

C 6= 0











































bA�B
C =

bA

C
uB

C
+bB

C
uA

C

uA

C
+uB

C
−uA

C
uB

C

dA�B
C =

dA

C
uB

C
+dB

C
uA

C

uA

C
+uB

C
−uA

C
uB

C

uA�B
C =

uA

C
uB

C

uA

C
+uB

C
−uA

C
uB

C

aA�B
C = aA

C

Case II: uA
C + uB

C − uA
CuB

C = 0































bA�B
C = (γA/B bA

C + bB
C)/(γA/B + 1)

dA�B
C = (γA/B dA

C + dB
C)/(γA/B + 1)

uA�B
C = 0

aA�B
C = aC .

where the relative weight γA/B = lim(uB
C/uA

C)

The effect of the consensus operator is to reduce un-
certainty, i.e. to increase the confidence in the expec-
tation value. In case the subjective opinions are prob-
ability values (u = 0), Case II produces the weighted
average of probabilities.

The discounting and consensus operators will be used
for the purpose of deriving trust measures in the example
below.

7 Example Derivation of Trust Measures

Transitive trust graphs can be stored and represented in a
computer system in the form of a list of directed trust arcs
with additional attributes.

This numerical example is based the trust graph of
Fig.3. Table 1 specifies trust measures expressed as opin-
ions. The DSTC Subjective Logic API2 was used to com-
pute the derived trust values.

Table 1: Direct trust measures of Fig.3

Arc Variant Measure Time

[A, B] r (0.9, 0.0, 0.1, 0.5) τ1

[A, D] r (0.9, 0.0, 0.1, 0.5) τ1

[B, C] r (0.9, 0.0, 0.1, 0.5) τ1

[C, E] f (0.9, 0.0, 0.1, 0.5) τ1

[D, C] r (0.3, 0.0, 0.7, 0.5) τ1

[A, B]′ r (0.0, 0.9, 0.1, 0.5) τ2

A parser based on the algorithms of Fig.5 and Fig.7
can go through the arcs of Table 1 to construct the trust

2Available at http://security.dstc.com/spectrum/

CRPIT Volume 48

92

network of Fig.3, and the corresponding canonical expres-
sion of Eq.(4). By applying the discounting and consensus
operators to the expression of Eq.(4), a derived indirect
trust measure can be computed.

• Case a:

First assume that A derives her trust in E at time τ1,
in which case the first entry for [A, B] is used. The
expression for the derived trust measure and the nu-
merical result is given below.

ωA
E = ((ωA

B ⊗ ωB
C) ⊕ (ωA

D ⊗ ωD
C)) ⊗ ωC

E

= (0.74, 0.00, 0.26, 0.50)
(19)

The derived trust measure can be translated into a
beta PDF according to Eq.(9) and visualised as a den-
sity function as illustrated by Fig.11

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty
 d

en
si

ty

Probability

Figure 11: ωA
E ≡ beta(6.7, 1.0)

• Case b:

Let us now assume that based on new experience at
time τ2, A’s trust in B suddenly is reduced to that
of the last entry for [A, B] in Table 1. As a result
of this, A needs to update her derived trust in E and
computes:

ω
′A
E = ((ω

′A
B ⊗ ωB

C) ⊕ (ωA
D ⊗ ωD

C)) ⊗ ωC
E

= (0.287, 0.000, 0.713, 0.500)
(20)

Fig.12 below visualises the derived trust measure.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty
 d

en
si

ty

Probability

Figure 12: ω
′A
E ≡ beta(1.8, 1.0)

It can be seen that the trust illustrated in Fig.11 is rel-
atively strong but that the trust in Fig.12 approaches the
uniform distribution of Fig.9 and therefore is very uncer-
tain. The interpretation of this is that the distrust intro-
duced in the arc [A, B] in case (b) has rendered the path

([A, B] : [B, C] : [C, E]) useless. In other words, when
A distrusts B, then whatever B recommends is completely
discounted by A. It is as if B had not recommended any-
thing at all. As a result A’s derived trust in E must be
based on the path ([A, D] : [D, C] : [C, E]) which was
already weak from the start.

8 Discussion and Conclusion

We have presented a notation for expressing trust net-
works, and a method for trust network analysis based on
graph simplification and trust derivation with subjective
logic. This approach is called Trust Network Analysis
with Subjective Logic (TNA-SL).

Our approach is different from trust network analysis
based on normalisation, as e.g. in PageRank and Eigen-
Trust. The main advantage of normalisation is that large
highly connected random graphs can be analysed while
still taking all arcs into account. The main disadvan-
tages of normalisation is that it is difficult to express
negative trust, and that it makes trust measures relative,
which prevents them from being interpreted in any abso-
lute sense like e.g. statistical reliability. Neither PageRank
nor EigenTrust can handle negative trust.

Trust network simplification with TNA-SL produces
networks expressed as directed series-parallel graphs. A
trust arc has the three basic attributes of source, target and
scope, where the trust scope can take either the functional
or the referral variant. This makes it possible to express
and analyse fine-grained semantics of trust. Additionally,
we have incorporated the attributes of measure and time
into the model in order to make it suitable for deriving
indirect trust measures through computational methods.

One advantage of TNA-SL is that negative trust can
be explicitly expressed and propagated. In order for dis-
trust to be propagated in a transitive fashion, all interme-
diate referral arcs must express positive trust, with only
the last functional arc expressing negative trust. Another
advantage is that trust measures in our model are equiv-
alent to beta PDFs, so that trust measures can be directly
interpreted in statistical terms, e.g. as measures of reliabil-
ity. This also makes it possible to consistently derive trust
measures from statistical data. Our model is for exam-
ple directly compatible with Bayesian reputation systems
[12, 25], so that reputation scores can be directly imported
as trust measures. This rich way of expressing trust sep-
arates between the nominal trust value (positive/negative)
and the confidence level (high/low), and also carries infor-
mation about the baseline trust in the community.

The main disadvantage of TNA-SL is that a complex
and cyclic network must be simplified before it can be
analysed, which can lead to loss of information. While the
simplification of large highly connected networks could
be slow, heuristic techniques can significantly reduce the
computational effort. This is done by ignoring paths for
which the confidence level drops below a certain thresh-
old, and by including the paths with the strongest confi-
dence level first when constructing a simplified network.
This also leads to minimal loss of information.

The approach to analysing transitive trust networks de-
scribed here provides a practical method for expressing
and deriving trust between peers/entities within a commu-
nity or network. It can be used in a wide range of appli-
cations, such as monitoring the behaviour of peers and as-
sisting decision making in P2P communities, providing a
quantitative measure of quality of web services, assessing
the reliability of peers in Internet communities, and eval-
uating the assurance of PKI certificates. Combined with
subjective logic, TNA-SL allows trust measures to be effi-
ciently analysed and computed, and ultimately interpreted
by humans and software agents.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

93

References

[1] Matt Blaze, Joan Feigenbaum, and Jack Lacy. De-
centralized trust management. In Proceedings of
the 1996 IEEE Conference on Security and Privacy,
Oakland, CA, 1996.

[2] B. Christianson and W. S. Harbison. Why Isn’t Trust
Transitive? In Proceedings of the Security Protocols
International Workshop. University of Cambridge,
1996.

[3] M.H. DeGroot and M.J. Schervish. Probability and
Statistics (3rd Edition). Addison-Wesley, 2001.

[4] C. Ellison et al. RFC 2693 - SPKI Certifi-
cation Theory. IETF, September 1999. url:
http://www.ietf.org/rfc/rfc2693.txt.

[5] P. Flocchini and F.L. Luccio. Routing in Series
Parallel Networks. Theory of Computing Systems,
36(2):137–157, 2003.

[6] T. Grandison and M. Sloman. A Survey of Trust in
Internet Applications. IEEE Communications Sur-
veys and Tutorials, 3, 2000.

[7] A. Jøsang. A Logic for Uncertain Probabili-
ties. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 9(3):279–311, June
2001.

[8] A. Jøsang. The Consensus Operator for Combin-
ing Beliefs. Artificial Intelligence Journal, 142(1–
2):157–170, October 2002.

[9] A. Jøsang, M. Daniel, and P. Vannoorenberghe.
Strategies for Combining Conflicting Dogmatic Be-
liefs. In Xuezhi Wang, editor, Proceedings of the
6th International Conference on Information Fusion,
2003.

[10] A. Jøsang, E. Gray, and M. Kinateder. Simplifi-
cation and Analysis of Transitive Trust Networks
(to appear). Web Intelligence and Agent Systems,
00(00):00–00, 2005.

[11] A. Jøsang, S. Hird, and E. Faccer. Simulating the
Effect of Reputation Systems on e-Markets. In
P. Nixon and S. Terzis, editors, Proceedings of the
First International Conference on Trust Manage-
ment (iTrust), Crete, May 2003.

[12] A. Jøsang and R. Ismail. The Beta Reputation Sys-
tem. In Proceedings of the 15th Bled Electronic
Commerce Conference, Bled, Slovenia, June 2002.

[13] A. Jøsang, R. Ismail, and C. Boyd. A Survey of
Trust and Reputation Systems for Online Service
Provision (to appear). Decision Support Systems,
00(00):00–00, 2006.

[14] A. Jøsang and S. Pope. Normalising the Consensus
Operator for Belief Fusion. In Proceedings of the
18th Australian Joint Conference on Artificial Intel-
ligence, Sydney 2005.

[15] A. Jøsang and S. Pope. Semantic Constraints for
Trust Tansitivity. In S. Hartmann and M. Stumpt-
ner, editors, Proceedings of the Asia-Pacific Confer-
ence of Conceptual Modelling (APCCM) (Volume 43
of Conferences in Research and Practice in Infor-
mation Technology), Newcastle, Australia, February
2005.

[16] Audun Jøsang, Simon Pope, and Milan Daniel. Con-
ditional deduction under uncertainty. In Proceedings
of the 8th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncer-
tainty (ECSQARU 2005), 2005.

[17] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina.
The EigenTrust Algorithm for Reputation Manage-
ment in P2P Networks. In Proceedings of the
Twelfth International World Wide Web Conference,
Budapest, May 2003.

[18] Liberty-Alliance. Liberty ID-FF Archi-
tecture Overview. Version: 1.2-errata-v1.0.
http://www.projectliberty.org/specs/liberty-idff-
arch-overview-v1.2.pdf, 2003.

[19] Liberty-Alliance. Liberty Trust Models Guide-
lines. http://www.projectliberty.org/specs/liberty-
trust-models-guidelines-v1.0.pdf, Draft Version 1.0-
15 edition, 2003.

[20] G. Mahoney, W. Myrvold, and G.C. Shoja. Generic
Reliability Trust Model. In A. Ghorbani and
S. Marsh, editors, Proceedings of the 3rd An-
nual Conference on Privacy, Security and Trust,
St.Andrews, New Brunswick, Canada, October
2005.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd.
The PageRank Citation Ranking: Bringing Order to
the Web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[22] Simon Pope and Audun Jøsang. Analsysis of com-
peting hypotheses using subjective logic. In Pro-
ceedings of the 10th International Command and
Control Research and Technology Symposium (IC-
CRTS). United States Department of Defense Com-
mand and Control Research Program (DoDCCRP),
2005.

[23] Ronald L. Rivest and Butler Lampson. SDSI – A
simple distributed security infrastructure. Presented
at CRYPTO’96 Rumpsession, 1996.

[24] R. Wishart, R. Robinson, J. Indulska, and A. Jøsang.
SuperstringRep: Reputation-enhanced Service Dis-
covery. In Proceedings of the 28th Australasian
Computer Science Conference (ACSC2005), 2005.

[25] A. Withby, A. Jøsang, and J. Indulska. Filtering Out
Unfair Ratings in Bayesian Reputation Systems. The
Icfain Journal of Management Research, 4(2):48–
64, 2005.

[26] WS-Trust. Web Services Trust Language (WS-Trust).
ftp://www6.software.ibm.com/software/developer/
library/ws-trust.pdf, February 2005.

CRPIT Volume 48

94

A Semantic Approach to Boost Passage Retrieval Effectiveness
for Question Answering

Bahadorreza Ofoghi
John Yearwood
Ranadhir Ghosh

Centre for Informatics and Applied Optimization

School of Information Technology and Mathematical Sciences
University of Ballarat

PO Box 663, Ballarat, Victoria 3353, Australia
bofoghi@students.ballarat.edu.au

{j.yearwood, r.ghosh}@ballarat.edu.au

Abstract
In the current state of the rapid growth of information
resources and the huge number of requests submitted by
users to existing information retrieval systems; recently,
Question Answering systems have attracted more
attention to meet information needs providing users with
more precise and focused retrieval units. As one of the
most challenging and important processes of such systems
is to retrieve the best related text excerpts with regard to
the questions, we propose a novel approach to exploit not
only the syntax of the natural language of the questions
and texts, but also the semantics relayed beneath them via
a semantic question rewriting and passage retrieval task.
The semantic structure used to address the surface
mismatch of the semantically related passages and queries
is FrameNet which is a lexical resource for English
constituted based on frame semantics. We have run our
proposed approach on a subset of the TREC 2004 factoid
questions to retrieve passages containing correct answers
from the AQUAINT collection and we have obtained
promising results.

Keywords: Passage Retrieval, FrameNet, Question
Answering, Semantic Boosting.

1 Introduction
In recent1years, Question Answering (QA) systems have
evolved out of the field of Information Retrieval (IR) to
better understand and more precisely cope with
information requests. Unlike simple and popular
keyword-based information retrieval systems (e.g. Web
search engines), QA systems aim to communicate directly
with users through a natural language which brings more
convenience and comprehension to users who submit
their information needs. Having received natural
language questions, such systems perform various
processes to return actual direct answers to the requests

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

eliminating the burden of query formulation and reading
lots of irrelevant documents to reach the desired answer
by users. This is due to the fact that a user usually wants
not whole documents but brief answers to the specific
questions like: “How old is the President? Who was the
second person on the moon? When was the storming of
the Bastille?” (Hovy, Gerber et al. 2001).

In a typical architecture of a question answering system,
there are four main procedures; i) question analysis and
query formulation, ii) document retrieval, iii) passage
retrieval, and iv) answer extraction. The task of analysis
of a question contains different sub-procedures based on
the general view of the question answering system. In an
ontology-based system, this consists of finding related
ontology nodes for the submitted question in order to
carry out further related processes (Hejazi, Mirian et al.
2003), while in most other systems the procedure of
question analysis tries to find named entities and/or to
recognize the answer category of the question (Moschitti
and Harabagiu 2004), to take into account the temporal
issues of the question (Saquete, Martinez-Barco et al.
2004), and to formulate the best representative keyword-
based query to boost the retrieval precision in the tasks of
document and passage retrieval (Brill, Dumais et al.
2002). Obviously, none of these goals could be achieved
before precise and sophisticated natural language
processing on the question. In the next step the question
answering system is supposed to find the best textual
documents from inside the collection which is the answer
resource of the system. Such documents should contain
passages relevant to the topic of the question. The task of
document retrieval, which could be automated using the
best known search engines, is bypassed in some question
answering systems as they retrieve best passages directly
from inside the whole collection. However, the main idea
of retrieving the most relevant text snippets to the
question is commonly accepted by all question answering
systems, When it comes to answering specific
information needs of users, the successful extraction of
candidate and actual answers could be achieved only on
the part of the text which is most similar to the queries
formulated based on the original questions. The idea of
how to find candidate and actual answers of a question is
mostly dependent on the syntactic or semantic structure
that is used by the question answering system. START

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

95

tries to extract such short amounts of information based
on ternary expressions matching (Katz 1997). There is a
proposed idea for modelling documents based on
recognizing Named Entities (Pérez-Coutiño, Solorio et al.
2004) which leads to finding corresponding named
entities already recognized inside the text using the
SUMO ontology. One of the sophisticated approaches to
extract answers has been developed based on frame
semantics and sentence annotation using the English
lexicon resource, FrameNet, which performs frame and
frame element matching and makes inferences inside the
related parts of the conceptual graph of FrameNet
(Narayanan and Harabagiu 2004).

While working on a question answering architecture, we
realized that the precision of best known passage retrieval
algorithms could not go higher than a low pick due to
some inconsistencies between the questions and the
contents of the documents. Having considered that the
passage retrieval task is one of the necessary sub-
processes in a question answering system (Clarke and
Terra 2003), it is worthy to work more on this step to
boost the current state-of-the-art of the existing best-
known passage retrieval algorithms. Hence, we propose
and explore a novel approach on boosting the
effectiveness of the passage retrieval task in the context
of question answering in a large collection of text so that
the system could cope with different types of syntactical
mismatch between formulated queries and the texts. We
justify our approach based on the results we obtained for
a subset of the TREC 2004 factoid questions and the
AQUAINT collection using the MultiText (Clarke,
Cormack et al. 1997) passage retrieval algorithm and
Lemur’s passage retrieval engine. Our idea, which
exploits Intra-Frame relations between different English
terms inside the frames of FrameNet (Baker, Fillmore et
al. 1998), has been developed on the basis of poor
coverage of the two above-mentioned passage retrieval
techniques on the answers of the questions. It has shown
impressive results, even though the idea requires that the
question (rewritten question) be submitted to the passage
retrieval engine more than once.

This paper is organised as follows. Section 2 describes
what we mean by passage retrieval for question
answering, and also introduces the two passage retrieval
algorithms that we have used. In section 3 the main idea
of Intra-Frame analysis in FrameNet in order to rewrite
the questions and retrieve semantically related passages,
as well as the methodology of judging the passages, are
described. Section 4 explains the experimental issues and
finally, in section 5 we conclude the paper.

2 Passage Retrieval for Question Answering
There are different reasons for a question answering
system to perform either well or poorly on the basis of the
precision of the answers it provides to submitted
questions. We are convinced that in order to find
candidate answers that can be used to decide about the
actual answer, such systems should be provided with one
or more text snippets each of which may contain one or
more sentences. This is a crucial sub-process of an end-
to-end question answering system. It is also clear that in

case there is no candidate or actual answer present inside
retrieved passages, then there is no chance for the system
to return a correct answer.

There have been many efforts on different passage
retrieval algorithms (Tellex, Katz et al. 2003) for
dissimilar purposes with diverse points of view on the
definition of the word “passage”. As mentioned in
(Callan 1994) and (Kaszkiel and Zobel 1997) and also
referred to in (Kaszkiel, Zobel et al. 1999), the most
effective and reliable definition of passage is what
includes a fixed-length sequence of words starting and
ending anywhere in the document. However, it is not
clear that they have tried all well-known algorithms
including MultiText algorithm (Clarke, Cormack et al.
1997) which, in our experiments, outperforms Lemur’s
passage retrieval engine (using its best retrieval model)
that will be discussed further later. All of the Lemur’s
passage retrieval models take into account fixed-size
passages to be indexed and retrieved.

The output of the passage retrieval task is very dependent
on the query formulation of the original question, and
certainly, the query formulation process could not be
established before accurate knowledge about the index
structure (e.g. if phrase indexing is supported, and if
stemmed terms are indexed) of the texts inside the
collection. In the next sections, we explore the two
passage retrieval methods that we used as well as the
specific settings necessary for each. The selection of
these two passage retrieval algorithms is strongly based
on the fact they cover both fixed-size and dynamic-size
passages which is of important characteristics of such
algorithms.

2.1 MultiText Algorithm
One of the best-known passage retrieval algorithms is the
MultiText algorithm exploited for document ranking and
retrieval purposes as well. This algorithm interprets all
documents as a series of continuous words and also
interprets passages as any number of words starting and
ending anywhere inside the documents of a collection
(Clarke, Cormack et al. 1997). These passages, which are
initially identified by covers, start with one of the query
keywords and end with another one, not overlapping the
boundaries of documents which constitute the unique
string of the words. Experiments performed in (Tellex,
Katz et al. 2003) show that this algorithm has shown
quite high performance; the third highest MRR (Main
Reciprocal Rank) in documents retrieved by the PRISE
search engine and the highest MRR in those retrieved by
the Lucene search engine. The results are obtained among
the eight passage retrieval algorithms investigated by the
authors. This high performance, as well as the frequent
participation of MultiText in TREC (Clarke, Cormak et
al. 2000), were the main reasons for choosing MultiText
as one of our passage retrieval algorithms.

CRPIT Volume 48

96

2.2 Lemur’s Retrieval Engine
Lemur is a toolkit designed to facilitate research in
language modelling and information retrieval2. It includes
a well-designed and supported implementation of
different functionalities for text parsing, indexing,
retrieval, summarization, and clustering. We have used
the indexing and passage retrieval functions of Lemur.
Focusing on passage retrieval, Lemur has seven retrieval
models each of which could be applied for both document
and passage retrieval tasks; i) the tf/idf model, ii) the
Okapi bm25 model, iii) KL-divergence language model
based method, iv) the CORI model, v) CORI collection
selection model, vi) Cosine similarity model, and vii)
Indri structured query language. After comparing the
retrieval efficiency of these different models, the CORI
collection selection model showed the best performance
in retrieving the most related passages for the TREC 2004
factoid questions in the AQUAINT collection. The task
of passage retrieval is performed based on fixed-size
passages inside the documents, while passages have
overlaps equal to half of the size of the passages.

3 Exploiting Intra-Frame Term-Level
Relations inside FrameNet

As most passage retrieval algorithms are dependent on
the occurrences of exact matches of surface features
inside the queries and textual documents, even their state-
of-the-art precision of retrieval could not go beyond the
limitations which are formed by mentioned syntactic
structures. In other words, there is little chance for any
such passage retrieval algorithm to return a passage
which contains the word “spot” in response to a query
containing the keyword “discover”, for instance. This is
because of the fact that there could not exist any type of
syntactic similarity between the two words, though they
share similar meaning. The problem could be still more
complex to solve, in a state of common concepts rather
than meanings. For example, in a scenario of a passage
where the word “son” is mentioned, there is no syntactic
clue to relate any query containing the word “father” to
the passage. Such types of mismatch between query
keywords and those which may occur inside the texts lead
us to resolve the issue by moving towards the semantics
underlying the text. Initially, we have found a solution to
this sort of query and passage mismatch by using
FrameNet data in a Question Rewriting and re-retrieval of
passages inside the collection.

3.1 FrameNet Lexicon Resource
FrameNet is a lexicon resource for English (Baker,
Fillmore et al. 1998) whose infrastructure is based on
Frame Semantics (Lowe, Baker et al. 1997) which is
different with Marvin Minsky’s frames. FrameNet
contains two main entities to completely model and
conceptualize the scenarios and the target words which
could be realized in the scenarios. Frames, in the highest
level of abstraction within FrameNet, encode the base
definitions necessary to understand the semantics and the

2 http://www.lemurproject.org/lemur/overview.html

scene of each contained word. In other words, real-world
knowledge about the scenarios and their related
properties are encoded inside the Frames (Lowe, Baker et
al. 1997). To address this, each Frame contains some
Frame Elements as representatives of the different
semantic and syntactic roles (valences) regarding a target
word inside the Frame. The semantic roles are usually
common among all of the words that are inherited from a
Frame. This ensures a suitable generalization over the
English words which either have similar meanings or
share the context and/or the scenario in which they could
occur in the sentences of the language.

FrameNet is different from WordNet as it contains not
only words with similar meanings, but also higher level
concepts of similar scenarios of usage in the real-world.
On the other hand, these scenarios are related to each
other to model an end-to-end scenario containing some
smaller sub-scenarios. The different relation types
existing between Frames cover this overview of the
different events all of which could be realized by
FrameNet.

In addition, FrameNet has more than what are formulated
by the Predicate-Argument Structure (Surdeanu,
Harabagiu et al. 2003), considering the fact that
predicates in the Predicate-Argument structure normally
are the verbs of the language and the arguments are
formed based on dissimilar roles that the predicate could
play in the sentences of the language. Target words of
FrameNet are nouns, verbs, and even adjectives of the
language.

Given the above considerations, FrameNet is well suited
for our proposed idea on the resolution of the passage-
query syntactical mismatches.

3.2 Passage-Query Mismatch Resolution
The generalization over conceptual scenarios and their
related properties is the main characteristic of FrameNet
that we have been interested in for resolving the problem
of poor passage retrieval performance in the context of
question answering due to the syntactic mismatch
between the words inside the collection and the keywords
of the queries formulated based on original questions.
The semantic generalization applied by FrameNet is
playing the role of the lost chain for retrieving
semantically related passages in response to the queries.

It should be noticed that, in the context of question
answering, not all types of semantic query expansion is of
interest regarding the fact that a question answering
system has to be capable of answering exact questions
with actual direct answers. For instance, it is not realistic
to change the original query, formed based on the original
question, using WordNet semantic relations which has
performed well for document retrieval tasks (Voorhees
1994). It causes the retrieval of more indirectly related
passages to the question leading to extracting answers
which may not be of interest. This argument does not
include the systems which try to identify online relations
between concepts of different abstraction levels (e.g.
(Moldovan, Harabagiu et al. 2002)) that may result in a
beneficial semantic matching of the text of the questions

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

97

and passages. On the other hand, applying ontology
relations between entities or using fuzzy inclusion
relations (Akrivas, Wallace et al. 2002) could result in
irrelevant passages to come up in the final ranking of
retrieved passages. We argue that these methods are not
suitable for answering direct factoid questions; however,
they have performed well in different contexts.

In what is called generalization over conceptual scenarios
and their related properties, the actual procedure of our
proposed idea contains a joint generalization-
specialization action which evokes a Frame and then
considers one of the related terms that is inherited from
the Frame. This generalization-specialization method
guarantees the query remains at the same semantic
abstraction level of the original question.

While these sorts of passages either could not be retrieved
or have a very low similarity measure with the query, the
way to boost the performance of the retrieval is to
substitute the target word of the question with
semantically related ones. This is what we call Intra-
Frame Term-Level relation, as the substitution is
performed based on the target Frame inside FrameNet
and the lexical units (terms) covered by the Frame. Figure
1 depicts what happens in a cycle of boosting the passage
retrieval effectiveness via question rewriting in the
context of question answering.

Figure 1: The main cycle of boosting passage retrieval
effectiveness in the context of question answering

It should be noticed that the passage retrieval algorithm
that is mainly used in this architecture is a modified
version of MultiText passage retrieval algorithm whose
modifications will be discussed further in the next
sections.

The cycle of passage retrieval starts with submitting a
question to the system already developed for this purpose.
Initially, the question is subject to natural language
processing in order that the main keywords to formulate
the representative query are known and some other
information related to other tasks of question answering is
extracted. Then, the query will be sent to the passage
retrieval engine to find the best match text excerpts. If the
top-ranked passages, based on the manual analysis

performed by the passage analysis module, contain the
real answer, then no further process is performed at this
stage; otherwise, the system tries to identify semantically
related text snippets, which are missed due to a syntactic
mismatch, after the Intra-Frame analysis on the Frame
from which the current target word inherits. The
alternative word is one which is also inherited from the
evoked Frame by the initial target word and in addition, it
has the same part-of-speech (e.g. verb) as that of the
initial target. In order to better explain the idea, we
consider Example 1.

Example 1: A question from the question list of TREC
2004 is considered (the question id is 3.1 and the target id
is 3). The question is fed to the system and the retrieval
cycle is as follows;

Question “When was the comet discovered?” (TREC
Target: Hale Bopp comet)  Query “comet discover
Hale Bopp”  No Answer in Retrieved Passages 
Corresponding Frame Call Evokes the Frame
“BECOMING_AWARE”  Intra-Frame Analysis and
Alternative Predicate Finding “Spot”  Question
Rewriting Using Alternative Predicate “ When was the
comet spotted” (TREC Target: Hale Bopp comet) 
Query “comet spot Hale Bopp”  Answer Found in the
Second Passage.

Inside the AQUAINT collection for TREC 2004, there
are some passages containing similar passages to the
original question 3.1; however, none of them contains the
answer. The top-most passage which is returned by the
modified MultiText at the first cycle is:

<PASSAGE no=1 score= 1.0>
Hale-Bopp, a newly-discovered extraordinarily large
comet in the solar system, has been recently observed for
the first time in China.
</PASSAGE>

which is very similar to the query formulated as
mentioned above. However, because of the fact that the
real answer has not been mentioned using the same
predicate “discover”, the passage retrieval algorithm
could not either bring the container of the real answer to
the top ranks or even retrieve it, as it is the case in this
example.

After finding the alternative semantically related
predicate “Spot” from inside the corresponding Frame
“BECOMING_AWARE”, the rewrite question and the
respective query will come up with a passage like below
at the second rank;

<PASSAGE no=2 score= 0.96209>
The comet, one of the brightest comets this century, was
first spotted by Hale and Bopp, both astronomers in the
United States, on July 23, 1995.
</PASSAGE>

which contains the correct answer to the question,
although it still needs some context resolution and actual
answer extraction processes to be performed.

This example clearly shows what happens in the passage
retrieval process for question answering systems which
could not extract correct answers for those questions
which have not a syntactically direct match inside the
collection. In contrast, the proposed idea for re-
submitting rewrite questions based on Intra-Frame Term-

Question Analysis &
Query Formulation

question

answer passage

yes

no

Passage Analysis

query

passages

Passage
Retrieval

alternatives

Answer
Found?

Intra-Frame
Analysis

Question Rewriting

PASSAGE RETRIEVAL BOOSTER

CRPIT Volume 48

98

Level analysis shows promising resolution over the
problem.

3.3 Evaluating Passages
As discussed in (Kaszkiel, Zobel et al. 1999) there are
usually two ways to measure the retrieval performance of
a text retrieval system (e.g. a passage retrieval system).
The first way is to measure the efficiency which is based
on the usage of the resources like disk, time, and
memory. In the second manner, the effectiveness of the
system is measured with regard to the value of
satisfaction of users by retrieved texts.

In the context of the question answering systems, the
effectiveness of the passages are more important
especially to the extent that they potentially deliver
correct actual answers to the question submitted by a
user.

In focussing on a QA task and using the TREC QA track,
our judgment of the passages is based on whether the
retrieved passages satisfy the reported correct answer
patterns by TREC for each question. In standard passage
retrieval, passages are judged for relevance or `aboutness’
but in this instance we are assessing passages on whether
or not they contain the correct answers. This is a more
stringent requirement than relevance. Consequently many
highly similar passages, in this context, will not have the
actual answer.

The justification of the passages in passage analysis
module of the boosting cycle, in further experiments, is to
be based on complicated judgements on the candidate
answers in the context of a question answering system,
although in our first experiments, as mentioned earlier,
this has been done manually with regard to the answer
patterns reported by TREC. The manual justification of
the passages is subject to further study and work with
respect to the features of the answer extraction process in
an end-to-end question answering system.

In addition, we are concerned about a reasonable method
that could extract such answers from inside the
potentially correct passages. We do not cover these issues
here as they are part of our work in the question
answering architecture and the subject of our current and
next study.

4 Experimental Issues
We discuss our experimental results with regard to the
three aspects of the research study that is being
undertaken for semantically answering factoid questions.

4.1 Data
The dataset that has been used for this research study is
the TREC 2004 question list and its corresponding text
collection of AQUAINT3. This collection contains news
articles from New York Times News Service (1998-
2000), Xinhua News Service (1996-2000), and

3 http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31/

Associated Press Worldstream News Service (1998-
2000).

The question list contains 65 targets and 230 factoid
questions (the total number of all type of the questions is
351). We have tried our proposed idea on a subset of this
track which contains 20 targets out of 65 and 65 factoid
questions out of 230 which is equal to 28.26% of the total
number of factoid questions in the TREC 2004 QA track.
However, there are 5 questions out of these 65 factoid
questions for which no answer could be found in the
AQUAINT collection, as a subset of NIL answers
reported by TREC (Voorhees 2004). Therefore, we
consider a total of 60 questions in our experiments.

4.2 Procedure
In order that a passage retrieval task is performed, in most
question answering systems, there is a document retrieval
process prior to the passage retrieval task, as mentioned
earlier. This should be the case, especially when
manipulating a huge-sized collection of text on which a
direct passage retrieval task is very complex and time-
consuming. Therefore, we used the top-ranked documents
reported by TREC for each target4 to escape the need of
the implementation of a document retrieval engine. This
ensures that we are convinced of the necessity of a
document retrieval stage, although we have not
implemented it and benefited from the results from the
PRISE information retrieval system via the TREC
reports.

We ran two passage retrieval algorithms on the dataset;
modified MultiText, which we implemented, and
Lemur’s passage retrieval engine, where we used the
APIs.

In modified MultiText, we create a feature vector for both
the passage and the query. Afterwards, we use the Cosine
similarity function to measure the similarity value
between passages and the query. To find the feature
values of the feature vector for the passages we use
Equation 1 and to measure the similarity value between
the two feature vectors of the query and the passage
Equation 2 is applied, which is composed of the well-
known Cosine Similarity Function and the effect of the
term coverage of the passage.

i
ij

i
i weight

tfgthpassageLen
tf

vec *
)log(+

= (1)

hqueryLengt

erage
pqpqSim jcov

*),cos(),(= (2)

In Equation 1, tfi is the raw term frequency of the query
term i inside the passage, weighti is the weight of this
term which is assigned based on two considerations; i)
the part-of-speech of the term (i.e. the verbs have higher
weights than nouns, adjectives, and so on), and ii) the
terms which occur inside the TREC target of the question
gain a bonus on their weights to increase up to 1.0. The
value coveragej, in Equation 2, contains the unique

4 http://trec.nist.gov/data/qa.html

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

99

number of the query terms that a passage covers and
queryLength is the total number of the terms inside the
query.

While running Lemur’s passage retrieval algorithm, we
used the passage size of 160 words. Authors in (Kaszkiel,
Zobel et al. 1999) have mentioned that this could be in
the optimum value range for the passage retrieval
algorithms which take into account a fixed size for the
passages to be retrieved. Also, we tried different retrieval
methods of Lemur and decided that the CORI-Collection
Selection method outperforms the other supported models
in the context of our work.

4.3 Results
We developed a software platform to test the two above-
mentioned passage retrieval algorithms and also to
perceive the increase on the output results based on the
evaluation methodology explained at the section 3.3.

As shown in Table 1, the highest retrieval effectiveness
for Lemur’s retrieval engine, which has been acquired by
the CORI-Collection Selection retrieval model, was
58.2%, while this percentage went up to 70% for the
same questions using the modified MultiText algorithm.

Retrieval Method

Questions with
Answers in

Top 10
Passages

No. of
Questions

Lemur’s PR %58.3 60

Modified MultiText %70 60

Modified MultiText
along with Semantic
Resolution

%75 60

Table 1: Retrieval effectiveness of the three runs of
passage retrieval

The results have been obtained by considering the top 10
passages for each retrieval task. Whenever the answer
was recognized inside one of the top 10 passages
retrieved for any question the score for that question was
considered 1; otherwise 0. In the end, the percentage was
calculated as the average value of over all scores.

Because of the higher performance of the MultiText
algorithm on the dataset that we are working on, we
chose to apply the proposed idea of semantic question
rewriting and semantic mismatch resolution on the
modified version of the MultiText algorithm. We
obtained an effectiveness of 75% on the same subset of
factoid questions and their representative queries. A
promising increase in effectiveness is gained on a subset
of the TREC questions. We expect that this performance
may go even higher either on a bigger subset or on the
total number of the questions in the track.

5 Conclusion
Due to the poor coverage of the best-known passage
retrieval algorithms on the actual answers related to a
question answering task of TREC 2004, we have
developed an idea to retrieve passages which are not
syntactically matched to the keywords of representative
queries of the original questions. As long as deep
semantic relations are not considered by the passage
retrieval process, it can not cope with syntactically
mismatched passages which at the same time contain
semantically related elements to the question. The
proposed idea tries to rewrite the questions which come
up in such situations using alternative related terms from
inside the evoked Frame of FrameNet by the original
target predicate. This rewriting and re-submit cycle is
protective of the original semantic abstraction level of the
questions and does not cause any unnecessary
generalization over the concepts which exist in the
questions to avoid retrieving irrelevant passages. We have
developed our idea on a subset of the TREC 2004
questions and the AQUAINT collection and have
achieved impressive improvement on the state-of-the-art
of two best-known passage retrieval algorithms.

6 References
Akrivas, G., M. Wallace, et al. (2002): Context-Sensitive

Semantic Qquery Expansion. Proceedings of the 2002
IEEE International Conference on Artificial
Intelligence Systems (ICAIS’02).

Baker, C. F., C. J. Fillmore, et al. (1998): The Berkeley
FrameNet Project. International Conference On
Computational Linguistics 1: 86 - 90.

Brill, E., S. Dumais, et al. (2002): An Analysis of the
AskMSR Question-Answering System. Proceedings of
2002 conference on empirical methods in natural
language processing (EMNLP 2002).

Callan, J. P. (1994): Passage-Level Evidence in
Document Retrieval. Proceedings of the 17th annual
international ACM SIGIR conference on Research and
development in information retrieval: 302-310.

Clarke, C., G. Cormack, et al. (1997): Relevance Ranking
for One to Three Term Queries. Proceedings of RIAO-
97, 5th International Conference ``Recherche
d'Information Assistee par Ordinateur'': 388-400.

Clarke, C. L. A., G. V. Cormak, et al. (2000): Question
Answering By Passage Selection (MultiText
Experiments for TREC-9). Ninth Text REtrieval
Conference (TREC 9).

Clarke, C. L. A. and E. L. Terra (2003): Passage Retrieval
vs. Document Retrieval for Factoid Question
Answering. Proceedings of the 26th annual
international ACM SIGIR conference on Research and
development in informaion retrieval: 427 - 428.

Hejazi, M. R., M. S. Mirian, et al. (2003): TeLQAS: A
Telecommunication Literature Question Answering
System Benefits from a Text Categorization
Mechanism. IKE03.

CRPIT Volume 48

100

Hovy, E., L. Gerber, et al. (2001): Question Answering in
Webclopedia. Proceedings of the TREC-9 Conference.

Kaszkiel, M. and J. Zobel (1997): Passage Retrieval
Revisited. Proceedings of the 20th annual international
ACM SIGIR conference on Research and development
in information retrieval: 178-185.

Kaszkiel, M., J. Zobel, et al. (1999): Efficient passage
ranking for document databases. ACM Transactions on
Information Systems (TOIS) 17(4): 406-439.

Katz, B. (1997): Annotating the World Wide Web using
Natural Language. Proceedings of the 5th RIAO
Conference on Computer Assisted Information
Searching on the Internet (RIAO '97).

Lowe, J. B., C. F. Baker, et al. (1997): A Frame-Semantic
Approach to Semantic Annotation. SIGLEX Workshop
on Tagging Text with Lexical Semantics: Why, What,
and How?

Moldovan, D., S. Harabagiu, et al. (2002): LCC Tools for
Question Answering. Proceedings of the eleventh Text
REtrieval Conference (TREC 2002).

Moschitti, A. and S. Harabagiu (2004): A Novel
Approach to Focus Identification in
Question/Answering Systems. In proceedings of the
Workshop on Pragmatics of Question Answering at
HLT-NAACL 2004.

Narayanan, S. and S. Harabagiu (2004): Question
Answering Based on Semantic Structures.
International Conference on Computational Linguistics
(COLING 2004).

Pérez-Coutiño, M., T. Solorio, et al. (2004): Toward a
Document Model for Question Answering Systems.
Second International Atlantic Web Intelligence
Conference, AWIC 2004: 145-154.

Saquete, E., P. Martinez-Barco, et al. (2004): Splitting
Complex Temporal Questions for Question Answering
systems. Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics: ACL
2004: 566-573.

Surdeanu, M., S. Harabagiu, et al. (2003): Using
predicate-argument structures for information
extraction. Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics 1: 8-15.

Tellex, S., B. Katz, et al. (2003): Quantitative Evaluation
of Passage Retrieval Algorithms for Question
Answering. Proceedings of the 26th annual
international ACM SIGIR conference on Research and
development in informaion retrieval: 41 - 47.

Voorhees, E. M. (1994): Query Expansion Using Lexical-
Semantic Relations. Annual ACM Conference on
Research and Development in Information Retrieval:
61-69.

Voorhees, E. M. (2004): Overview of the TREC 2004
Question Answering Track. The Thirteenth Text
REtrieval Conference Proceedings (TREC 2004).

 Fillmore, Charles J. (1976): Frame semantics and the
nature of language. In Annals of the New York
Academy of Sciences: Conference on the Origin and
Development of Language and Speech 280: 20-32.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

101

CRPIT Volume 48

102

� ����������	�
�
�
�������	���	���
���
 ������� 	�����
����! "�#	��$��
����&%�'(
*)��+	�,-	�./�
0)21���34���657	#3��#.2
8	��:9;�<)='>����?@.

ACBED=F$G>HIBJBJKEL�DNM
OQPSRUTWVYX[Z�\^]*_`XaX[PbX[c/deZ^cfXWgihjR�ViklX[Z�monp]*_`Z`X[PlX[qWT[r

s XWZtR[ui_�v#Z`klw[nxgYuikyVzTWr
{ kS]|ViXWgikSR`r

}#~ uzVYgYR[P�kSR��[�[�W�`�
VYn�PE�l�J���`�U�Q�j�W�[�����[�[�W�`r

� hjR�klPE�`�^���W�^�Q�J�t�a�t�����[�t���p�^�a�W�a�t U¡¢�f£=�[�t¤^�U¡¢�z�W�W¥¦�e¤[¥
¡^����§¦¨i©a©«ªaªaª¦�* ��a�[���¬£��[�`¤`�U¡¢�­�[�W¥¦�e¤[¥t©a®��a���[�a�^©[�¯�«�W�a�[°�±t©t²W²[©

³@´2µ�¶x·U¸t¹�¶
deZtº ~]8Viklw[n¼»tgiXWq[g*R�h�h�k�Z`q½kSu¾R½Z`nx¿;hjR[]*_`klZ`nÀPlnxR�gYZ`klZ`q
»tR�g*R[º^klq[hÁ¿<_tkl]*_>]8XWh�Â`klZ`nxuÃc ~ Zt]|VYk�XWZtR�Pj»`gYX[qWgYR[h�hÄklZ`q
cfX[g#¿<gYkyVYk�Ztq�u­VYR�VikSuzVYkl]xR�Pbh�X^º^n�PSu#R[Ztº&k�Z^cfXWgihjR�ViklX[ZÅVi_`nxX[gYT
ViX"»`gYn�wWn�Z�VjX«w[nxg­Æ`ViViklZ`qt��m�Ta»=n8Çe]8PSR[uYu­npuÄui»=nx]8k�cfTÈq[n�Ztn�g*R�P
»`giXW»�nxg­VYk�npu�VY_tR«V�h�X^º^nxPlu�h ~ u­V�_tRUwWn[� s R[Z�TIu­VYR«VYklu­VikS]�R[P
hÄX^º^nxPluxr�nxu­ViklhjR«VYX[g*u�R[ZtºÀX[»=n�g*R«VYX[g*u�_tRUwWn@»�XWP�Tah�X[gY»`_`kS]
VzT�»=nxux�ÉvÊu­n�c ~ PCX[»=n�g*R«VYX[g*u@]8XWh�Â`klZ`n¾h�X^º^nxPluxrËR�Z�º½nxu­Vik�Ç
h�R�ViXWgYuxr[VYX�cfXWgih>Z`nx¿ÌX[Z`npu�Í^Î ~ Zt]|VYk�XWZtR�P¯»`gYX[qWgYR[h�hÄklZ`q�Ï u
]8X[h�»=XWuikyVYk�XWZtR�P=uzVzTaPlnËX[c¯»tgiXWq[g*R�h�h�k�Z`q�kSu¢R�q[gYnxR�VQR[º^w«R[Z^Ç
VYR�qWnÐklZÀVi_tklu�º^XWh�R[k�Zo�IOQX[h�»`Pln�h�nxZWVYk�Ztq�Vi_tkluxr�k�Z`cfX[gYh�R�Ç
ViklX[ZÑVi_`nxX[gYT�»`giX«wakSº^nxu�R&]8X[h�»=XWuikyVYk�XWZtR�P/h�nxRWu ~ gYn�X[c�VY_`n
]8X[h�»`Pln8Ò^k�VzT@X�c�RÄh�Xaº`n�PbcfgYX[h7k�VYu#»tR�giVYux�
deZtº ~]|Viklw[n½»`gYX[qWgYR[h�hÄklZ`qÓkSuIklP�P ~ u­Vig*R«VinpºÔÂaTÔRÕ]�R[uin

uzV ~ º^T@X[c/Ö¦RUT[npu­kSR�Z@Ztn8Vz¿¢X[gY×aux�2Ø#n8Vz¿¢X[gY×^uQR[gin�Â ~ klP�V<cfgiXWh
]8PSR[uYu­k�Æ�]�R�ViklX[Z^Ç��Ùº^nx]�kluik�XWZ^Çz�ÊVigYn�nxux�@mNginxnxu�R�gYn�Â ~ klPyV�cfgiXWh
»tR�giVik�ViklX[Z`klZ`qÚc ~ Zt]|VYk�XWZtu¼R[Ztº>h�Xaº`n�PSu"X[Z7ºtR«VYR�ÇJui»tRW]8nxux�
mogYn�npu�r2R�ZtºÃ_`nxZt]8nÐZ`n8Vz¿¢X[gY×^u�r/R�gYnÄqWn�Z`nxgYR[P�R[u�R�ZtR«V ~ gYR[P
]8X[Z�u­npÛ ~ n�Zt]�n�X�c/Vi_`n�h�n�Vi_`X^ºb�¢ÜËkSui]�gin�Vin�R[Ztº�]8X[Z�VYk�Z ~ X ~ u
wUR[gikSR�ÂtP�npu�r^R�Z�º@h�kluYuik�Z`qÄw«R�P ~ nxu<R[ginÊ_tR�Z�º^P�npºÐÂaT�VY_`nCZ`n8ViÇ
¿QXWgi×^ux�ÊÎ/k�Z�R�PlP�T&Vi_tnÄÖ¦RUT[npu­kSR�Z�Z`n�Vz¿QXWgi×^uÊR�gYn�R�»`»tP�klnxº�VYX
Rj]*_tR�PlP�nxZ`q[klZ`q�º`R«V*R�u­n�V¦XWZ�P�X�uzV<»=n�g*u­XWZtu��
Ý n�Ta¿QXWgYºtu��Åk�Ztº ~]|VYk�wWn&klZ^cfnxginxZt]8nWr$c ~ Zt]8ViklX[ZtR[P<»`gYX[q[g*R�hÄÇ
hÄklZ`q�rNÞËRWu­×Wn�PlPÙrohÄklZ`klh ~ hßP�nxZ`q�VY_ÑnxZt]8X^º^klZ`q�rNu­VYR«VYklu­VikS]�R[P
hÄX^º^nxPluxrtÖ¦RUT[npu­kSR�ZÐZ`n8Vz¿¢X[gY×^u��

à á�â ¶�·«ãåä/æN¹[¶xç¬ã â
m¦_`nÀ»tR�»=n�g�º^npui]�giklÂ=nxuIèêé=ë�ìtí8îEèêï«ð&ñ=òYóiô[òiõ«öÄöÄèêé�ôÌ�¬dz÷Q��R
Z`n�¿ø»tR[gYRWº^klq[hùcfXWg�Û ~ kS]*×aP�TÑ¿<gik�ViklZ`q¾u ~]�]�k�Z�]|VÄuiX[P ~ VYk�XWZtu
ViX�k�Z�º ~]|VYk�wWn�klZ^cfnxginxZt]8n�»`gYX[Â`Pln�hjuËcfgiXWh�hjR[]*_`klZ`nÄP�npR�gYZ^Ç
k�Z`q���\aX[P ~ VYk�XWZtu¢VYR[×[n�Vi_`n�cfXWgihúX�c�û|îeõ«îEèSû|îÙè¬í*õ«üoö�ópë[ð�üýû¢R[Ztº
Vi_`nxk�g�npuzVYk�hjR«VYX[g*u��Cþ�k�wWn�ZÃ»tR�giVikS] ~ PlR[gCºtR«VYRtrbk�Z`cfn�g�R�ôWð�étÿ
ð8òiõ�ü<h�Xaº`n�P�cfgYX[h�Vi_`n"º`R�VYRtÍ�VY_`n"º`R�VYR½R�gYnIk�Zaw«R�gYklR[Â`PlT
Z`X[kSu­TW�½dz÷ ~ u­npuÄc ~ Zt]|VYk�XWZtR�PË»`giXWq[g*R�h�h�k�Ztq�ViXI»`gYX[qWgYR[h
hÄX^º^nxPluQR�Ztº�npuzVYk�hjR�ViX[g*uxr[R�ZtºÄVY_`n#klZ^cfX[gYhjR«VYk�XWZ�Vi_`nxX[gYn8VikS]
]8gYkyVYn�gYk�XWZår$h�k�Ztk�h ~ h h�nxuYuiR[q[n@Pln�Ztq�Vi_ � s¾s�� �8r2ViXÃ»`gin�Ç
w[n�Z�V#X«wWn�giÇÙÆ`ViViklZ`qt�
s ~]*_&gYnxuinxR�g*]*_�k�Z&hjR[]*_`klZ`n�P�npR�gYZ`klZ`q�klZaw[X[Plw[npu�º^nxwaklu­Ç

k�Z`qÄR�Z`nx¿Ì×ak�Ztº@X�cou­VYR«VYklu­VikS]�R[P�h�X^º^nxP=R[ZtºjklhÄ»tP�nxhÄnxZ�ViklZ`q
RC»`giXWq[g*R�h VYX�P�npR�gYZ&�¬k�Z^cfnxgxr[Æ`Vxr�nxu­ViklhjR«VYnp�2RCh�X^º^n�P`qWk�wWn�Z
º`R«V*R`��m¦_`nÅginpu ~ P�ViklZ`q�u­VYR[ZtºaÇeR�PlX[Z`nj»`gYX[qWgYR[hju�R�gYnjX�cêVYn�Z
_tR�g*º ViXÀh�X^º^kycfTÈR�Ztº VYX"]8X[h�Â`klZ`n�¿<kyVY_ÌX�VY_`n�g*uÄViXÀklhÄÇ
»`P�nxh�n�Z�V�Z`nx¿-u­VYR�VikSuzVYkl]xR�P�h�X^º^n�PSu��ÅmoX�RWº`º^gYnxuYu�Vi_`kSu�r/dz÷
º^n8ÆtZtnxu�VzTa»=nxuQR�Ztºj]�PlRWuiuinxu2X[cbu­VYR�VikSuzVYkl]xR�P`h�X^º^nxPluQR�ZtºÄVY_`n
»`giXW»�nxg­VYk�npu�VY_tR«V�k�Z�uzV*R�Zt]�nxuxrNVY_tR«V�kSu�»tR[g­VYkl] ~ PlR[g�h�X^º^n�PSuxr
h ~ u­V#_tRUw[nCR�Z�ºÅ»tgiX«wakSº^nxu¦RÄP�klÂ`g*R�gYT@X�c2u ~]*_ÅklZtu­VYR�Z�]8nxux�
�����	��

�������������������������� ��
� "!��# "$%����&'� � �
()
+*�� � ��(,�-� ��. $ ��/10 ��� � �2 43
�5(6
7 "���5() "
�(689 4� 07: (6$	�-�;3=<+��$��
� ����� ��
� "!# � �# "$%����&'� � �
(6
>* � ��(6$ � (
����$�?@(6
�(6$ � (BA � �>*�� �������	C,�ED ��F2 "
G� � 0 � &H "$��# �I�I��� �

J "!��# �IK "$�3
� "

� ������� / �7��$;?L(6
�(6$ � (� ��$NM+(� (O "
 � �P "$�8RQS
J � �
� � (T��$. $�?L��

&H 43
�
����$ 0 (� ��$���!����"� �>U ��! /WV	X�/ U !# "8���&'��
ZY � �
� [���!�! 3G�7 � ��

�P "$�8]\���!�!
^ ��F�F���(� YS8 / M>(6��
���8 � � �
����$_?@��
H � "8�()&'� � � $��"�G3`?@��
H��
��"a��%� �

3
�5� � (� �5(6
�&'� �G��(68b��
��O[;��8�(689�
��� � ��(,c���� � ��$ � ! � 8�()8 /

þ�k�wWn�Z Vi_tn¼_ ~ q[n¼wUR[gikln8VzT�X�c@»`gYX[ÂtP�nxh�u�k�ZÔqWn�Z`nxgYR[PyÇ
» ~ gi»=XWuin&]�X[h�» ~ VYk�Ztqtr$VY_`n�]*_tR�Z�]8nxuÄX[cÊ_tRUwaklZ`qÑRÃgYnxR[º`TWÇ
hjR[º`n�»`gYX[q[g*R�h Vi_tR�V&R�PlgYnxR[º`T¼u­XWP�wWnxu@uiX[h�n�Ztn�¿(»`gYX[Â^Ç
Pln�h kSu�u­hjR[P�PE�úm¦_`klZ`q�u&R[ginÑZ`XÌº^k@d=nxginxZWV�klZ�klZtº ~]8Viklw[n
klZ^cfn�gYn�Z�]8nÀu­XÈk�V�klu ~ uin8c ~ P�ViX½_tRUwWnÃRÈ¿¦RUTÌX�cj]8gYnxR«VYk�Ztq
Z`nx¿Úu­XWP ~ VYk�XWZtuxr�Û ~ kS]*×�PlT�R�Ztº�npR[uik�PlT[�<÷$gYX[qWgYR[h�hÄklZ`q�PSR�Z^Ç
q ~ R�qWnxu�n�Ò^klu­VÑVYX�hjR[×[n¼k�VInxR[uikln�gÑViXÕ¿<gik�Vin Z`n�¿!uiX[P ~ Ç
VYk�XWZtuËklZ¾qWn�Z`nxgYR[PN]�X[h�» ~ VYk�Z`q��NeÊZ`n�]�X ~ PSº�º^nxw�kSuin�R&u­»=n8Ç
]�klR[Po» ~ gY»=XWuin�»`gYX[q[g*R�h�h�klZ`q�PlR[Z`q ~ R[q[nCcfXWgËklZtº ~]8Viklw[n�klZ^Ç
cfnxginxZt]8nÐR[ZtºÀn�Ò^R[h�»`P�npu�n�ÒakSu­Vxr$uiX[h�n8VYk�h�nxuÄR[u�RgfYui]�gikl»^V­Ç
klZ`qihÐPlR[Z`q ~ R�q[n�R[u�º^klu­ViklZt]8V�cfgYX[h VY_`n�h�R[k�Zjf­klh�»`P�nxh�n�Z^Ç
V*R«ViklX[ZkhjPlR[Z`q ~ R�q[n�klZ¾R@ºtR«VYRÅR�ZtR[P�T^uiklu#»`PlR�V­cfXWgih�u ~]*_�R[u
l �EO l } Ø ���[�nm��ÐR�ZtºÕ\�ÇJ÷�P ~ uÃ�JOQgYRU¿<Pln�TÓ�[�[�W�W�|�7Ö ~ V
u ~]*_ÔuY]8gYk�»^VYk�ZtqÌPlR[Z`q ~ R[q[npu�R�gYnÀX�cêVYn�ZÔklZ�Vin�gY»`gYn8VYnxºÚR�Z�º
PSR[]*×�]8XWhÄ»tk�Pln8ÇEViklh�n�VzTa»=nÄ]*_`np]*×ak�Z`q��ÊdeZ�uzVYnxR[º¾dz÷ ~ uinxuCR[Z
n�ÒakSu­ViklZ`qÊqWn�Z`nxgYR[Pa» ~ gY»�X�u­nQc ~ Zt]8ViklX[ZtR[P^»`giXWq[g*R�h�h�k�ZtqËPSR�Z^Ç
q ~ R�qWnËVY_tR«V#kSu#]8XWh�»`k�Plnxº&R�Z�ºÅ_�R[u<R�uzVYgiXWZ`qÄVzTa»�n�uiT^uzVYn�h
o ÞËRWu­×Wn�PlP¯�Ù÷2n�T�ViXWZ^Ç,p[XWZ`nxuNn8V$R�Pb�p�[�W�W�|�NÞËR[ui×[nxP�P^kSu�RÊq[XaX^º]*_`XWkl]�n�� } PlP�kSu­XWZ&�[�[�W�W�/cfX[g¢VY_`n�º`X[hjR�klZÐÂ=nx]xR ~ uinÊk�V¦klu¢n8ÒaÇ
»`gYnxuYuik�wWn&R[Ztº¼_�R[ujRÃ»�X«¿¢n�gic ~ P#uiT^uzVYn�h!X[cÊ»=X[PlTahÄXWgi»t_`kl]
VzTa»=nxu�R[ZtºÑVzT�»=n8Çe]8PSR[uYuinxuxÍok�V�klu�q[XaX^ºÑ»tgiXWq[g*R�h�h�k�Z`q&PSR�Z^Ç
q ~ R�qWnjVinp]*_`Z`X[PlX[qWT[�ÀÎ ~ Zt]|VYk�XWZtR�P¦»`gYX[qWgYR[hÄh�klZ`q�nxZt]8X ~ g­Ç
R[q[nxu�Vi_`nÀí*ó«öËñ`ó«û|èêîÙè¬ó�éÀX�c<c ~ Zt]8ViklX[ZtuxrQR[ZtºÀ»=X[PlTahÄXWgi»t_`kl]
VzTa»=nxuCPlnxR[º¾ViX�qWn�Z`nxgYR[P�u­XWP ~ VYk�XWZtuxÍåVi_tklu�hjR[×[nxuÊcfXWg�u­_`XWg­V
R[Ztº�qWn�Z`nxgYR[Pa»`giXWq[g*R�hjux�7qÑn#uin�n¢Vi_tnxuin¢Â=n�Ztn8Æ`V*u�g ~ Â`Â`klZ`q�Ç
Xnd X[Z"u­VYR�VikSuzVYkl]xR�PQhÄX^º^nxPlu�¿<_`n�Z"Vi_`nxTÃR[ginjVYgYR[Ztu­cfX[gYhÄnpº
R[ZtºÅ]�X[h�»=XWuinxºb�
÷$gYn�wak�X ~ uj¿¢X[gY× XWZÓdz÷ � } PlP�kSuiX[Z��[�[�[���j]8gYnxR�Vinpº½ÂtR«Ç

uikl]#Â ~ V ~ u­n�c ~ P=u­VYR�VikSuzVYkl]xR�P�hÄX^º^nxPluxr�nxu­Viklh�R�ViXWgYuQR�ZtºÄc ~ Z�]|Ç
VYk�XWZtu��<m¦_`n�»`ginpu­nxZ�VË»tR�»=n�g�u­_tX«¿#u<_`X«¿�Vi_`nxT�]xR�Z�Â=n�n8ÒaÇ
VYn�Ztº^npºbr¯]8X[h�»=XWuinxº�R[Ztº&VYR[k�PlX[gYnxº�Û ~ kS]*×�PlTÅViXÐu ~ k�V�R�Z`nx¿
»`gYX[ÂtP�nxh&r�R[Ztº ~ uinxº¼R[u�»tR�giVYu�X�cËR�Ztn�¿7h�X^º^n�PE� s R�ZaT
h�X^º^n�PSu�R[ZtºÀR[uYu­X^]�klR�VinxºÑc ~ Z�]|ViklX[Z�u�R�gYnj»=X[PlT�h�XWgi»`_tkl][Í2R
qWX�X^º�VzTa»�n#R[Ztº�]8PSR[uYu�u­T^u­Vin�hÉginxw[npR�PSuoVY_`n�klg�VYg ~ n<qWn�Z`nxgYR[PyÇ
k�VzT[�<\�VYR�VikSuzVYkl]xR�PNhÄX^º^nxPluËR�Ztº&c ~ Z�]|ViklX[Z�u#X[Z&VY_`n�h�]�R[Z�Â�n
wWn�gYTÑqWn�Z`nxgYR[P o R[Z�TÀ]�X[h�» ~ V*R�Â`PlnÐh�X^º^n�P¢klZ^cfn�gYginpºIcfgYX[hR[P�h�XWu­V#R�ZaT�VzTa»�n�X[c2ºtR«VYRÄÂaTÐR[Z&R[giÂ`k�Vig*R�gYT@R�Plq[XWgik�Vi_th&�

eÊw[n�giÇEÆ`V­VYk�Z`q�kSuÄR�¿¢n�PlPQ×aZ`X«¿<ZÀ»`gYX[ÂtP�nxh klZ"hjR[]*_tk�Z`n
PlnxR[giZ`klZ`q��rqÌklPlP�kSR�h X[c�e�]�]xR�h R[giq ~ nxºÌPlX[Ztq R�qWX"VY_tR«V
R[Z�n�Òa»tPlR[ZtR«VYk�XWZ�ui_`X ~ PlºÄÂ=n<×[nx»^V�u­klh�»`Pln ~ Z`PlnxuYu�Z`nx]�nxuYu­k�VzT
º^kS]|V*R«VYnxuNX�Vi_tn�gY¿<kluin[� }]�X[h�» ~ VYn�g/»`giXWq[g*R�hÕº^X[klZ`qËklZtº ~]|Ç
VYk�wWnQklZ^cfn�gYn�Z�]8n¦h ~ u­V$R[º`º`ginpuiu/h�X^º^n�P`]�X[h�»`Pln8Ò^kyVzT�klZ�u­XWhÄn
¿¦RUT[�/deZ�»tR�giVikS] ~ PSR�gprakyc�u ~ Â^ÇJhÄX^º^nxPlu<R[gin�VYXÄÂ=n�]8XWh�»�X�u­npº
VYX�hjR�×[nÊZ`n�¿Ìh�X^º^nxPluxr[VY_`nC]8X[h�»`Pln8Ò^k�VzT�X[cbVi_`nÊ»tR�giVYu¢R�Z�º
VY_`nË¿<_`XWP�nÊh ~ u­VQÂ=nÊº`nxR�P�VQ¿<k�Vi_o� � R«VYn�g¢¿Qn#¿<klPlP=uin�nÊÂtR[uikl]
h�X^º^n�PSu ~ u­npºj¿<k�Vi_`klZÐh�X^º^n�PSu¢X�cåh�kSuiuik�Ztq�º`R�VYR�¿<_tkl]*_ÐR[gin
~ uinxºÄ¿<k�Vi_`klZ@]8PSR[uYuikyÆ�]xR«VYk�XWZ�VYginxnxu�¿<_`kS]*_�k�Z�V ~ gYZ�R[gin ~ uinxº
¿<k�Vi_`klZ�Ö¦RUT[npu­kSR�Z�Z`n�Vz¿QXWgi×^ux�>qÌkyVY_�k�VYu/]8X[h�»=XWuikyVYk�XWZtR�P[ZtR«Ç
V ~ ginWråh�k�Ztk�h ~ hßh�npuiuYR�qWn�Pln�Z`q[Vi_½� s�ss� �j�Ùu­np]|ViklX[ZÀ�^�l�p�
klZ^cfn�gYn�Z�]8nÐ�GqÃR[P�PSR[]�nNtÉÖ¢X ~ PyVYX[ZÀ�p�[�[�truqÃR[P�PSR[]�n����W�W�W�¢klu
R�ZtR«V ~ g*R�Pb»tR[g­VYZ`n�g¢cfX[g¦c ~ Zt]|VYk�XWZtR�Pb»`gYX[qWgYR[h�hÄklZ`q�k�Z�hjR«Ç
]*_`klZ`nCPlnxR�gYZ`klZ`qt�
m¦_`n¾Û ~ nxu­ViklX[Z�ujVi_�R«VÅR[gin�g*R�kSuinxºbr<R�Z�ºÈVi_tR�V&R�gYn�Â=n8Ç

klZ`q¾R[Ztu­¿¢n�gYnxºÀRWu�dz÷�º^n�wWn�PlX[»tuxr2k�Zt]�P ~ º^n[�@¿<_�R«VÄR[gin@Vi_`n
VzTa»=nxu�R[ZtºÀ]8PSR[uYu­npuCX�c#u­VYR«VYklu­VikS]�R[P�h�X^º^n�PSuxrN¿<_tR�V�]�R[ZIÂ�n
º^XWZ`n�ViXÄVi_tn�h�rtR�Z�ºÐ_`X«¿Õ]�R[ZÐVY_`n�TÅÂ�n�Vig*R�Z�uzcfXWgih�nxº&R�Z�º

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

103

M; D|M

TransmitterReceiver

ÎNklq ~ gin��[� s npuiuYR�qWn�÷�R[gYRWº^klq[h

]8X[h�Â`klZ`nxº��7ÜËnx»�nxZtº^klZ`q¾XWZÃXWZ`n[Ï u�Â�R[]*×aq[gYX ~ Z�ºÑR[ZtºIk�Z`Ç
]8Plk�ZtR�ViklX[Zår¦dz÷>]�R[Z½Â�n�uin�nxZ½RWujRÀu­X[cêVz¿¢R[gin&n�Ztq[klZ`n�nxgiklZ`q
R�ZtR[P�T^uiklu�X�c¢hjR[]*_`klZ`n�P�npR�gYZ`klZ`qtroRWuCR&]�X[h�»=XWuikyVYk�XWZtR�P�º^n�Ç
Z`X�V*R«ViklX[Z�R�P$uin�hjR�Z�VikS]�uCX[c¢u­VYR�VikSuzVYkl]xR�P�h�X^º^n�PSu�r/R[u�R[ZÃR[»^Ç
»`P�kS]�R�ViklX[ZjX[c=c ~ Zt]|VYk�XWZtR�P�»`giXWq[g*R�h�h�k�Ztqtr«X[gQR[u�R[Z�n�h�Â=nxº^Ç
º^nxºÄPSR�Z`q ~ R�qWn��¬wUR[ZÄÜÊn ~ gYuin�Zår � klZWV t { kSuiuin�g��[�[�W�W�|�Nm¦_`n
ÞËR[ui×[nxP�P�]8X^º^n<»`gYX^º ~]8npº�]�X ~ PSº�R�PSu­XCÂ=nËuin�n�ZjRCg*R�»`kSº�»`giX[Ç
ViX�VzTa»=nCcfX[g<X[Vi_`nxg#º`R«V*RÄR[ZtR�PlT^u­kSu¢»`PSR«V­cfXWgihjux�
m¦_`n�Z`n�ÒaVËu­np]|ViklX[Z�]8X«wWn�g*u¢ÂtR[]*×aq[gYX ~ Ztº@hjR«VYn�gYklR[PÙ� } cêÇ

Vin�g¢VY_tR«V¦k�Z�º ~]|VYk�wWnC»`giXWq[g*R�h�h�k�ZtqÐ�fdz÷¢�$kSu¢k�PlP ~ uzVYgYR�Vinxº@Â�T
RÈ]xR[uinÃu­V ~ º^TÓX�c�Ö¦RUT[nxuikSR�ZÓZ`n�Vz¿QXWgi×^ux�úm¦_`nÀÖ¦RUT[npu­kSR�Z
Z`n8Vz¿¢X[gY×^u�R�gYn�Vi_`nxZ"R�»`»tP�klnxºÃVYX¾R�º`R�VYR�uin8V�X[c¦PlXWu­V�»=n�giÇ
u­XWZtuÐ� Ý X�npuzVYn�g����[�t�p�8��dJV�kSu�RÑ]*_tR�PlP�nxZ`q[klZ`q�º`R�VYR�uin8VÄX�c
�[�[��ginp]8XWgYº`uQR�Ztº¾�p��wUR[gikSR�ÂtP�npu�r�_tR�P�coX[cåVi_`nxhøh�kluYu­klZ`q�X[Z
RUw[n�g*R�qWn[�¦dJV�ui_`X«¿#u¦VY_`n�×aklZtº�X[c$»`giXWÂ`Pln�húVi_tR�VËVzTa»`kS]�R�PlPlT
»�XW»tu ~ »Ð¿<k�Vi_ÅginpR�P¯º`R«V*R`r�kycNR[ZaT�ºtR«VYR�u­n�V¦]xR�Z@Â=nCuiR[klº�VYX
Â�nCVzTa»`kS]�R[PÙ�
Ö¦RUT[npu­kSR�Z½Z`n�Vz¿QXWgi×^ujcfXWgih R¼]xR[uin¾u­V ~ º^T¯ÍCVY_`n¾hjR�klZ

R�klh X�c�Vi_tnÃ»�R�»=n�g&kluÐViX½u­_tX«¿�_`X«¿ùR"Z`nx¿ u­VYR«VYklu­VikS]�R[P
hÄX^º^nxP^]�R�Z�Â�n¢»`gYX[qWgYR[hÄh�npº�Û ~ kS]*×aP�TCVYXÊu ~ k�V2RËZ`n�¿"»tgiXWÂ^Ç
P�nxh&��dJV�n8Ò^»`PlX[gYnxu�dz÷ËÏ u�n8Ò^»`gYnxuYuik�wWn�Z`npuiuÊZ`X�VCVY_`njuzV*R«VikSu­Vik�Ç
]�R�P�»�nxg­cfXWgihjR[Zt]8n¦X�cåR[Z�T�»tR�giVikS] ~ PlR[g�hÄX^º^nxPE�ÙuY�8�2dJc¯dz÷ÀR[Ztº
u­XWhÄnËX�Vi_tn�g�uiT^uzVYn�h�_�RUw[n<nxÛ ~ klw«R�Pln�Z�V�h�X^º^n�PSu2VY_`n�ZjVY_`XWuin
hÄX^º^nxPlu2¿<klPlPÙr�klZ�»`gYk�Zt]�k�»tP�nWr�Â�nx_tRUw[n¢gYX ~ qW_`P�TCnpÛ ~ k�w«R�Pln�Z�VYP�TW�
l R«VY_`n�g�Vi_`nÅ»�XWk�Z�V�kSu�VYXÑui_`X«¿É_tX«¿-dz÷Ú]xR�ZÀÂ=n ~ uinxºÃVYX
]8gYnxR«VYn�R�é¯ð��Àh�X^º^n�PNViX&u ~ kyVCRjZ`n�¿ÚklZ^cfnxginxZt]8n�»`giXWÂ`Pln�h�r
R[u<XW»`»�X�u­npº@VYX f­hjR[uYuYR�q[klZ`q h�Vi_tn�»`giXWÂ`Pln�h7VYX@u ~ kyVËuiX[h�n
n8Ò^klu­ViklZ`qjh�X^º^n�PE�
} PlPQ]�X^º^n@u­_tX«¿<ZÃkSu�ÞÊR[ui×[n�PlP�ÇJ�W�Ñ�Ù÷2n�T�ViXWZ^ÇJpWX[Ztnxu�n8V�R[P

�x�[�W�W�ok�ZÄVY_`n¦k�Z�VinxginpuzV*u2X�c¯uzV*R�Ztº`R[gYº`k��pR«ViklX[ZÄR�Ztº�_tRWu2Â�nxn�Z
]8X[h�»`klPlnxº ~ Ztº`n�g�VY_`nÅþ�PSR[uiq[X«¿-ÞËR[ui×[nxP�P¦OQX[h�»`klP�nxgxr/q[_t][r
w[n�g*uik�XWZÅ�`� �`�l�[�

� � ¸`¹	��
�·Uã=æ â ä
Î`X[gø]�X[h�»`Pln8VinxZ`nxuYuxrÓVi_tkluøuinx]8ViklX[Z!Âtgikln��tT;klZ�VigYX^º ~]8npu
s�s�� R�Z�ºÅdz÷ËÏ u¢hjR�klZ&VzTa»�n�ÇJ]�PlRWuiuinxux�

��
Ùà �����
s k�Ztk�h ~ h hÄnpuiuYR�qWn2P�nxZ`q�VY_@� s�s�� �$�GqÃR[P�PSR[]�n tÈÖ¢X ~ PyVYX[Z
�x�[�W�`riqÃR[P�PSR[]�n����W�W�W��Â ~ klPSº`u¢X[ZÅ\a_�R�Z`Z`XWZåÏ u�hjR«VY_`n�hjR�Vik�Ç
]�R�PtVi_`nxX[gYT�X[cå]8X[h�h ~ Z`kS]�R«VYk�XWZ��z�p�5mW���|rW_`n�Zt]�n�� hÄnpuiuYR�qWn[Ïlr
R�Ztº&X[Z�Ö¦RUT[npu�Ï uQVi_`nxX[gYn�h �ÙÖ¢RUTWnxu������[���|�
±����������! #"6±������! /�J±������%$&�! '"Ó±����(�! /�e±��)���%$*�!
£o�,+^�^���-��.! /"10a���2+��i±����(.! �
£o�,+^�^���-�������3 4" £o�,+^�^���-���! ,5U£o�,+^�^�������%$6�!

" £o�,+^�^���-���! ,5U£o�,+^�^�������%$6�!
¿<_`n�gYn s klu�RÑh�Xaº`n�P��êVY_`n�XWgiTWr$_aT�»=X�VY_`nxuikSu�r$»�R�g*R�h�n8VYn�g
nxu­Viklh�R�VinU�¦X�c2»`gYk�XWg¢»tgiXWÂtR�Â`klPlkyVzTÐ÷�gp� s �¢X«w[nxg<u­XWhÄn�ºtR«VYRtr
Ü�r[R[Ztº � klu�R[Z�nxw[n�Z�V�X�c¯»`gYX[ÂtR[Â`klP�k�VzT�÷$gU� � �|� s uiq � n�Zo� � �
klu�Vi_tnÅPln�Z`q[Vi_ X�cÊR¾hÄnpuiuYR�qWn[r2klZ R�Z X[»^VYk�hjR[P¢]�Xaº`n[r�R[Z^Ç
Z`X ~ Z�]8klZ`q � ÍoVY_`n ~ Z`kyV*u�R�gYn�étèêîÙûCcfX[gÄZtR«V ~ gYR[PQPlX[q�u�r%7�èêî¬û
cfX[g<ÂtRWu­n��ÄPlX[qWux�
s�s�� Z`X[ViklX[ZtR[P�PlTÄ]�X[ZtuikSº^n�g*u�RÐîÙòiõ�é`û|öÄèêîÙîeð8ò$uin�Z�º^k�Ztq�R

Vz¿QX[ÇE»tR[g­V�hÄnpuiuYR�qWnjViXÃR"òið*í*ð�èêïUð�òÅ�fÆtq ~ gYn¾�U�|�Im¦_`n@Æ�gYu­V
»tR�giVxr/X�c<Pln�Z`q[Vi_Àhju­q � nxZo� s �8rNu­VYR�Vinxu�R�h�Xaº`n�P�¿<_tkl]*_IkSu
R�ZÓR�Z�u­¿¢n�gjVYX¼uiX[h�n�k�Z`cfn�gYn�Zt]�n�»`gYX[Â`Pln�h��Úm¦_`n¾uinx]�X[Ztº
»tR�giVxr�hju­q � n�ZN�¬Ü98 s �8r�u­VYR�Vinpu�Vi_tnÊº`R�VYR�nxZt]8X^º^npº@R[u�kycbVY_`n
R�Ztui¿Qnxgxr s rtkSu<VYg ~ n[Í=Z`X�VYn�Vi_tR�VËVY_`n�gYnx]8nxk�wWn�gË]xR�Z`ZtX�VËº^n�Ç
]8X^º^nCVi_tn�u­np]8X[Z�ºÅ»�R�giV¦¿<k�Vi_tX ~ V#VY_`nCÆtg*uzV#»�R�giVx�$m¦_`nxginCkSu
RjVig*R[º`n8ÇJX5dÑÂ=n8Vz¿¢n�nxZ�VY_`n�]�X[h�»`Pln8Ò^kyVzT�X[c�Vi_`nÄh�Xaº`n�PEr s r

Function−
−Model

Model

Super−
−Model

Time−
−Series

Î/klq ~ gYn��^�QOQPSR[uYu­npu¦R�Ztº�OQX[Zaw[nxgYuiklX[Ztu

R[Ztºjk�VYuQÆ`V¢ViX�Vi_`nCº`R«V*R`r^Ü98 s � } uik�h�»`PlnÊh�X^º^nxP�kSu¦]*_`nxR[»
VYXÃu­VYR�Vin&Â ~ VjhjRUTÀZ`X�V�Æ`V�Vi_tn�ºtR«VYRÑ¿¢n�PlPÙ� }]�X[h�»`Pln8Ò
h�X^º^n�PWhjRUT#Æ`VNVi_`n�ºtR«VYR#Â�n�V­VinxgoÂ ~ VNkSuåh�X[gYn�n8Ò^»=n�Ztuik�wWn�ViX
u­VYR�VinË�Eþ�n�X[gYq[n�d t qIR�PlPlRW]8n#�p�[�5ma�|�bdeZ�uiX[h�n�uiklhÄ»tP�n¢]�R[uinxu
s�ss� kSu�npÛ ~ k�w«R�Pln�Z�V�ViX¾hjR�Òaklh ~ h R�»=XWu­Vin�gYklX[gYkË� s } ÷Q�
npuzVYk�hjR«VYk�XWZÅÂ ~ V#Vi_tklu<kSu¦Z`X[V<Vig ~ n�k�Z�qWn�Z`nxgYR[P2�GqÃR[P�PSR[]�nRt
Îtginxn�hjR�Z��x�W���^r[ÎtR[gig t qIR�PlPlRW]8nÊ�[�[���[�|�/Î`XWg$n8Ò`R�h�»`Pln[r�k�c
XWZ`nËXWgQh�X[gYnÊ]�X[Z�ViklZ ~ X ~ u�»tR[gYR[h�n8VinxgYuQR�gYnËklZaw[X[Plw[npºÄVi_`nxT
h ~ uzVQÂ�nËu­VYR�VinpºÄViX;:�étèêîeð8r�X[»^VYk�hjR[Pt»`gYnx]�kluik�XWZår[R[Ztº s�s��
ui_`X«¿#u<_`X«¿ÕVYXÐº^X@VY_`kSu��ËØËX�VYn�Vi_�R«VÊRÐX[Z`n�ÇE»tR[g­V#h�npuiuYR�qWn
]xR�Z�Â=n�wWn�gYT&uiPlk�qW_WVYP�T�h�X[gYn�n=<@]8kln�Z�V�klZ�VYgYR[ZtuihÄk�V­VYk�ZtqÅÜ
Â ~ V#kyVÊº`X�npu¦Z`X�V#Xnd=nxgËR�Z"ð?>8ñ=ü�õ�é=õ«îEè¬ó«éÐX�c�Ü�Í`k�VÊº^Xanpu¦Z`X�V
u­VYR�Vin�R�Z�R�Ztui¿¢n�g¢ViX@R[ZÅklZ^cfn�gYn�Z�]8n�Û ~ nxu­ViklX[Zo�
s�s�� �=qIR�PlPlRW]8njt ÖQX ~ P�ViX[Z �x�[�W�W�"klu ginxPlR�VinpºøViX

VY_`n h�k�Ztk�h ~ h º`nxuY]8gYk�»^VYk�XWZ P�nxZ`q�VY_ � s Ü � �ù»`giklZt]�kyÇ
»`PlnÌ� l kSuYuiR[Z`n�Z-�x���«�W�8�úm¦_`nÃcfXWgih�n�g�R[k�hju&ViXÌuin�Plnx]8V�R
»tR[gYR[h�n8Vinxgik@��npºÃhÄX^º^nxP o Vi_`n&»tR�g*R�h�n�Vin�g*u�Â=n�klZ`qÑu­VYR�VinpºVYX�X[»^VYk�hjR[PQ»`gYnx]�kluiklX[Z o R[ZtºÀnxh�Â`g*R[]�nxu�n�Ò^»`P�kS]8k�V�»tgiklX[g*u��m¦_`n&PSR«V­VYn�g�R�klhju�VYXÃuin�Plnx]8V�RÑh�X^º^n�P�ÇJ]�PlRWuiu�R�Ztº"c¬RUw[X ~ gYu
~ Ztk�wWn�g*uiR[P�º`klu­VigYk�Â ~ ViklX[Ztu¼R�Ztº-klhÄ»tP�kS]8k�V¼»`gYk�XWgYux� s�s��
R[Ztº s Ü � _�RUw[nÐÂ=n�nxZ"cfnpR«V ~ ginpº"klZ"Vi_tn_pWX ~ gYZtR[P�X�cËVi_`n
l X«T�R�PQ\aVYR«VYklu­VikS]�R[P¢\aX^]�k�n�VzT½�GqÃR[P�PSR[]�n t(Î`gYn�nxh�R[ZÌ�x�W���ar
l kSuYuiR[Z`n�Z@�p�[�����åR[Ztº�k�ZÄRÊui»�np]8kSR�PakSuiu ~ n¦X�c`VY_`nËOQX[h�» ~ VYn�g
pWX ~ gYZtR[P�X[Z Ý XWP�h�XWq[X[gYX«w7]8XWh�»`P�n�Ò^kyVzT;�ÙþCR[h�hÄnxgihjR[Z
t { X«w�×ú�x�W�[�W�8� eÊP�klw[nxg"R�Ztº>Ö¦R«ÒaVYn�g6�­�x�[�nmtrj»å�Ä�2m��
hjR[º`n�RIº^klgYnx]|V@]�X[h�»tR�gYkSu­XWZ R�Z�ºÈ]�X[Zt]�P ~ º^nxº¼Vi_tR�V@X[Z`PlT
s�ss� �GqÃR[P�PSR[]�n_tùÎtginxn�hjR�Z��x�W������_tR[º R�PlP¢Vi_`n�º^nxuiklg­Ç
R[Â`P�nÄ»`gYX[»=n�giViklnxu�X�cQk�Zaw«R�gYklR[Zt]8n ~ Ztº`n�gCZ`X[Z`ÇEPlk�ZtnxR�g�VYgYR[ZtuzÇ
cfXWgihjR«VYk�XWZtuåX[c`»tR�g*R�h�n�Vin�g*uxr�X�ctR[»`»`Plkl]xR�Â`klPlkyVzT�ViXÊPlR[giqWn�R�Z�º
uihjR�PlP/uYR�h�»`Plnxu��fZtX�VCX[Z`PlT�R[uiTahÄ»`ViX�VYkl]p�|rbR�Z�º�X�cQh�R[×ak�Z`q
R�º^n�ÆtZ`k�Vin�klZ^cfn�gYn�Zt]�n[�
\�VigYkl]8V s�s�� �Ù\ s¾s�� �¢gYn�Plk�npu¢X[ZÅVi_`n�º^npu­klq[ZÅX�c/R�c ~ PlP

XW»^ViklhjR�PË]�Xaº`n�Â�XaX[×¯�6vËZ^cfX[giV ~ ZtR«VYn�PlTÈ\ s�ss� klu@k�Z^cfnpR«Ç
uik�ÂtP�nÃcfX[g¾hÄX�uzV�klZ^cfn�gYn�Z�]8nÀ»`gYX[Â`Pln�hjuÀ�ÙÎtR�gYg�t qIR�PlPSR[]8n
�[�[�W�W�|�/Î`X[giV ~ ZtR«VYn�PlT�Vi_`nxgin�R�gYnËn�<@]�k�nxZWVpr`R[]x] ~ g*R«VYn s�s��
R[»`»`gYXUÒaklhjR«VYk�XWZtuÊcfX[g�hjR�ZaT ~ u­n�c ~ P�»tgiXWÂ`P�nxhju�R�ZtºIh�X^ºaÇ
nxPlu��GqÃR[P�PSR[]�n��[�[���[�|�
s�s�� kSu<R�Z�R«V ~ gYR[P�íYó�ö#ñtóUû|èêîEè¬ó«é¯õ«üt]�gik�VinxgiklX[Z&Â�np]�R ~ u­n

VY_`n&]�X[h�»`Pln8Ò^k�VzTÀX�cÊº`R�VYRtr$h�Xaº`n�PSuÄR[Ztº¼u ~ Â^ÇJh�X^º^n�PSu�R[gin
R[P�P¦h�nxRWu ~ gYnxº"k�Z Vi_`n�uYR�h�n ~ Z`k�VYux� fBA dJV�kluÄ»=XWuYu­klÂ`Pln�C<ViX
~ uinDA hÄnpuiuYR�qWn�CbPln�Z`q[Vi_�ViX@uin�Plnx]8VËR�h�X[Ztq�]�X[h�»=n8ViklZ`q@u ~ Â^Ç
VY_`n�XWgiklnxuÅR«VÅuiX[h�n¾PlX«¿(P�nxw[nxPËX�c�R[Âtu­Vig*R[]|VYk�XWZår¦¿<_`kS]*_Ók�Z
V ~ giZÑ]�R�Z¾cfX[gYh Vi_`nÄÂtR[uikSu��¬kÙ� n[�lr¯Vi_`nE�ýº`R«V*R`Ïý�<cfXWgËVY_`n�XWgiklnxu
R�VjRI_tk�qW_`n�gjPln�wWn�P#X[cCR[ÂtuzVYgYRW]|VYk�XWZå�Óm¦_`n�gYn�klu@Z`XÀq ~ R[g­Ç
R[ZWVYn�nÑVi_tR�V¾u ~]*_ÕR[ZÕR[»`»`gYXWR[]*_6¿<k�PlP�P�npR[º6ViXÈVi_tnÀÂ�npuzV
qWP�XWÂtR�PNVi_`nxX[gYT[r¯Â ~ V�k�V�klu�gYnxR[uiX[Z�R�Â`Pln�ViX�n�Òa»=nx]8V�klZÃhÄX�uzV
ZtR�V ~ g*R�Pbº^XWhjR�klZtu¢Vi_tR�V<Vi_`n�gYnxu ~ P�ViklZ`q�q[PlX[ÂtR[P=Vi_`nxX[gYT@¿<k�PlP
R�V¢PlnxRWuzV¦Â�nCZ`npR�giÇEXW»^ViklhjR�P`hÐ�GqÃR[P�PSR[]�nbt�þ�nxX[gYq[n�dI�p�[�W�W�|�
s�ss� Ï u#]8XWhÄ»=XWuik�ViklX[ZtR[PbZtR«V ~ gin�kSu#R�qWX�X^ºÅÆ`V#¿<k�Vi_�c ~ Z�]|Ç
VYk�XWZtR�P�»`gYX[q[g*R�h�h�klZ`qtÏ uå]8XWh�»�X�u­k�ViklX[ZtR[PWu­VzTaP�nQX�ct»`gYX[qWgYR[hÄÇ
h�klZ`qt�/m¦_`klu2kSu/k�PlP ~ uzVYgYR�Vinpº�klZ�VY_`n<Ö¦RUT[nxuikSR�Z�Z`n�Vz¿QXWgi×�]�RWu­n
u­V ~ º`T@X�c2u­np]|ViklX[Z��`� s�ss� _tR[u¢Â=n�n�Z ~ uinxºÐViXjRWuiuinxuYuQVi_`n
]�X[h�»`Pln8Ò^kyVzT�X�cb]8X[h�Â`klZ`nxº�h�Xaº`n�PSu�X�cbu­XWh�n¦ui»=nx]8k�Æ�]¦VzTa»=nxu
�¬n[� qt� } PlPlkluiX[Z½n8VÐR[P��z�p�[�W�W� R[Ztº½÷2X«¿QnxP�P¦n�VÐR�P��Ù�[�[�nm��­�

CRPIT Volume 48

104

 [��¤t�a�7�a�a� � ¥�§t� ���`�W�^�^�Ó�,�a�`� ªa¡t� �`�§ �¯��� � ¨a¨��,�^�`� 0��½±��`���t¤��b�[�`�U�a�
£o�,+�� ¨a¨��,�^�`� 0�� �`�t���[¤ +`���a�[� +a��¡
£N�	�a��¥��`�ú¨a¨Ó�a�a��£
�Ú�,�^�`� 0��Õ�,�^�^�
�a�a�
 [��¤t�a� �`���a�^�I£=�`�Èªa¡t� �^�
§ � ¨a¨ �J£=�`�½�^¤[�`¤ � §t¤` [� #0��

�^¤W�`¤ � §t¤t [� 0��½±��`���t¤��b�[�t�U���
���[±���¨a¨ �J£=�`�½�^¤[�`¤ � §t¤` [� #0��

�^¤W�`¤ � §t¤t [� 0�� �`�t�a�[¤2+`���^�[��+a��¡
£o�,+ ¨a¨6�a�a� �J£=�^�Ì�a¤W�`¤ � §`¤t [� /0��

� �^¤[�`¤ � §t¤` [��
 0�� �`�`�a�[¤ +`�W�^�[� +a�W¡
£o�,+�� ¨a¨ �J£=�`�½�^¤[�`¤ � §t¤` [� #0��

� �^¤W�^¤ � §t¤t ���
 0�� �`�`�a�[¤ +`�W�^�[� +a�W¡
�a�a�
 [��¤t�a�¼°�¥a�= «�¯���[���`���^�^�À�«£ ªa¡t� �^�
 [�[�`���^���^�^�7¨�¨ �Y�U£ø�x� � §t¤t ��Ì�[§ � §t¤` [� 0��

�p� � §t¤t [� 0�� �^���^�^������§t�½�[§ � §t¤t [�
�a�a�

�i�a�a�|Ï2u­VYR[Ztº`u¢cfXWg<X[h�kyViVinpº&º`n8VYR[k�PSuxr��i¨a¨|Ï/cfX[g � _tR[u¢VzTa»=n[Ïlr
� � ��
=ÏacfX[g � P�kSuzV#X[c/R�VzTa»�n��¯Ïlr`R�Ztº � 0��`ÏacfXWg¦c ~ Zt]8ViklX[Z&VzTa»�nW�

Î/k�q ~ gYnC�t�QOQPlRWuiuinxu¢X[c�\�V*R«VYklu­VikS]�R[P s X^º^n�P

Â ~ V�k�VYu�c ~ P�P$ñ=òióYô[òiõ«öÄö�èêéaô@»=X�VYn�Z�VikSR�P�_tR[u�XWZ`PlT¾gYnx]8nxZ�ViPlT
uzV*R�giVinxºÈVYX¼Â=nÑu­V ~ º`k�npºÔ� } P�PlkluiX[ZÕ���[�W�W�8� } c ~ Zt]8ViklX[ZtR[P
»`giXWq[g*R�h�h�k�ZtqÑPSR�Z`q ~ R�qWn�¿<kyVY_ÓRI»tR�g*R�h�n8VYgikS]Å»�XWP�Tah�X[giÇ
»`_`kS]�VzTa»�nÃu­T^u­Vinxh kSu&R"u­X ~ ZtºÈcfX ~ Ztº`R�ViklX[ZÌcfXWgÅu ~]*_6R
uzV ~ º^T[�

��
 � ������� µj¸ â ä����Ù¸`µpµ � µ�ã
���å¶x¸`¶xç¬µx¶xçÙ¹[¸�� � ãoä � �¬µ
qÑnI¿¦R�Z�VÐVYX Â=nÀR�Â`Pln�VYX »`gYX[qWgYR[h RWu&PlR[giqWnÑR[uÅ»=XWuYu­k�Ç
Â`P�njR&u­n�V�X�c$VY_`k�ZtqWu�Vi_�R«V�»�nxX[»`Pln�]�R�PlP¢û|îJõ�îÙèSû|îEè¬íYõ�ü�ö�ópë[ð�üýû
R�ZtºÐT[n8V¦_tRUwWnËVY_`n�uin8V<]8PlnxR[Zår^X[giVi_tX[q[XWZtR�P=R�ZtºÐÂ ~ klPyV<XWZÅR
u­hjR�PlP�cfX ~ Z�º`R«VYk�XWZå�/ÎtX[g�uik�h�»`Plkl]�kyVzTWr�¿¢n¢R[PluiXÊ¿¦R�Z�V2R�uihjR�PlP
]8X[PlPlnx]|VYk�XWZ�X�c! ~ u­V#Vi_`nxk�gËnxuYu­nxZWVYklR[Pb»`gYX[»=n�giViklnxux�QÞ#nxgin�u­VYR�Ç
VikSuzVYkl]xR�Pbh�X^º^n�P¯kSu¢VYR�×Wn�ZÐViX�]8X«w[nxg$VY_`k�ZtqWu¢Vi_�R«V#R[uYu­klq[ZÐn8ÒaÇ
»`P�kS]8k�VC»`giXWÂtR�Âtk�PlkyVYk�npu<VYXÅº`R�VYR`��ÞËRWu­×Wn�PlPåVzTa»�n�ÇJ]�PlRWuiuinxu��êÆtq[Ç
~ ginpu��^r#�W� �`���a�^�tr#°�¥a�¯ U�¯���[� �^���^�^�IR�Z�º"�¯�8£=� � � �¯�«�t�
¿Qnxginj»`gYn�waklX ~ uiPlT¾º^n8Æ�Z`nxºÓ� } PlP�kSuiX[Z"���W�[�`r } P�PlkSu­XWZ¼���[���[�
cfX[g<ÂtRWu­kS]Ëh�X^º^nxPluC�¬º`klu­VigYk�Â ~ ViklX[Ztu*�|r`c ~ Zt]|VYk�XWZ^ÇJhÄX^º^nxPlu��¬gin�Ç
q[gYnxuYu­klX[Ztu*�ÄR�Ztº VYk�h�n8Çeuin�gYk�npu�hÄX^º^nxPluxÍ#VY_`n�Ætg*u­VjVz¿QXÀR�gYn
~ u­npº&k�Z&Vi_tnCcfX[PlP�X«¿<klZ`q�]�R[uin�uzV ~ º^TW�
} ÂtR[uikS] �`���^�^�`r8£=�`���êÆtq ~ gin<���|r�]�R[Z�gYn8V ~ gYZ�Vi_tn¢»tgiXWÂ^Ç

R�Â`klP�k�VzT[rt§ �=r�R�ZtºÅVi_tn�Z`n�q�R«VYk�wWn�PlX[q�»`gYX[Â�R�Â`klP�k�VzT[r`�t�[±��¯r^X�c
R"º`R«V ~ h cfgiXWh!k�VYu&º`R«V*R«Çeu­»tRW]8nW�6dJVÅ]xR�ZÌR�PSu­X"]�X[h�» ~ VYn
Vi_`n�uinx]�X[ZtºaÇJ»tR[g­VprN£o��+���r�R[Ztº"VY_`n�ViX[VYR[P¦Vz¿QX[ÇE»tR[g­V�h�nxu­Ç
uiR[q[nCP�nxZ`q�VY_årW£o�,+��¬uinx]8ViklX[Z��^�l�p�8r^cfX[g#R�º`R�VYRjuin8Vx� qÃn�R�gYn
X[Z`PlT¼]8XWZt]8nxgiZtnxº"¿<k�Vi_ÈVY_`n�hÄX�uzVjklh�»�XWg­V*R�Z�Vj»`giXW»�nxg­VYk�npu
`n�gYn[ÍoRÅuzV*R«VYklu­VikS]�R[P/h�X^º^nxP/h�klq[�VCÂ�n�R�Â`Pln�ViXÅº`X&uin�wWn�g*R�P
X�Vi_tn�g¦Vi_tk�Z`q�u��
Ø#X[VinÃVi_�R«V�k�ZÕÞËRWu­×Wn�PlP���0���¥Óº^n�Z`X[VinpuÐVY_`nÃc ~ Zt]8ViklX[Z

VzT�»=nÐ¿<k�Vi_ k�Zt» ~ V�VzTa»=nÐ�ÀR�Z�ºÀX ~ VY» ~ V�VzT�»=n@¥b� } º`R�VYR
u­n�V�X«w[nxg�R�ºtR«VYR�ÇJui»tRW]8nÐ����_tR[u�Vi_`nÐVzTa»�n � �t��
=rNVi_tR�V�kSu
� Plklu­V�X�c����^��Ï�ÎtX[gÅn8Ò`R�h�»`Pln[r<VY_`nÑ§��ÈX[»=n�g*R«VYX[g@X[c�]8PSR[uYu
�^���^�^�À�fÆtq ~ gYnÅ����_tRWu�VY_`n@VzTa»=n �J£=�`�½�^¤W�^¤ � §t¤t �� #0��
�a¤W�`¤ � §`¤t [� 0��½±��`���t¤��b�[�`�U�a�¯�åm¦_tR«V¦kSu�raq[klw[nxZÐR�h�X^º^nxP
X«w[n�gNVi_tn¦�^¤W�`¤ � §t¤t [�#R[Ztº�R�º`R�V ~ hÚcfgYX[h VY_`n<�^¤[�`¤ � §t¤` [�gin�V ~ gYZÐVY_`n�»`gYX[ÂtR[Â`klP�k�VzT@X�c/Vi_tn�º`R«V ~ h��
} c ~ Zt]|VYk�XWZ^ÇJhÄX^º^nxPQ_�R[uÄR�Z"klZ`» ~ ViÇJui»tRW]8nÑ�¬n8Ò^X[qWn�Z`X ~ u

wUR[gikSR�ÂtP�npuY�ÀR[ZtºøR�ZøX ~ Vi» ~ VÈui»tR[]�n��fnxZtº^XWq[n�ZtX ~ uÀw«R[gik�Ç
R�Â`Plnxu*�|�"dJV*u�»`gYk�Zt]�k�»�R�P¦R�Â`klP�k�VzT"kSu�ViXÃgin�V ~ gYZ RÑh�Xaº`n�P¦X�c
kyV*u�X ~ Vi» ~ V�ui»tRW]8n@]8XWZtº^k�ViklX[ZtR[PÙr� [���`���`���a�^�tr¯X[ZÀR&w«R�P ~ n
cfgiXWh7Vi_tn�k�Z`» ~ VËu­»�R[]8nW�
} u ~ »=n�giÇe]8PSR[uYu�r � ¥a§`� ���`���a�^�tr�u­VYR�VinxuoVi_�R«V/R[Z�klZtuzV*R�Zt]�nX�c�X[Z`n�X�c/Vi_`n�wUR[giklX ~ u<u ~ Â`ÇJ]�PlRWuiuinxu¦h ~ uzVÊgin�V ~ gYZ�kyV*u#X«¿<Z

»`giklX[g¦»`gYX[Â�R�Â`klP�k�VzTjR�ZtºÅh�nxuYuiR[q[nÊP�nxZ`q�VY_år[£o��+��WraR�ZtºÐVi_tR�V
kyV�h ~ u­V�Â�nIR�Â`Pln�VYX"cfXWgih h�kyÒaV ~ ginpu�Í�k�V�h ~ u­V&R[PluiX¼Â=n
k�ZIVY_`nÐu­VYR�Z�º`R�g*ºÑ]�PlRWuiu � ¡t�[ªÑuiX�Vi_tR�V�¿Qn@]xR�ZI»`gYk�Z�V�VY_`n
R�Ztui¿QnxgYuQVYXjk�Z^cfnxginxZt]8nC»`gYX[ÂtP�nxh�ux�

@0 @1

@2

@3

@4

ÎNklq ~ gin mt� � Ò`R�h�»`Pln�ØËn8Vz¿¢X[gY×=�

\aX[h�n�VzTa»=nxuÐR[gin�»tgiX«wakSº^nxº cfX[gÅh�Xaº`n�PSujViX¼Â�nÑÂ ~ klPyV
klZ�uzV*R�ZtºtR�g*º�¿¢RUT^ux�QmQT�»=n �`���^�^���a��§t�ÄkluÊR�Z�klZtu­VYR�Z�]8n�X[c
VzTa»=n8Çe]8PSR[uYu)�`�W�^�^�tr[R�Z�ºÄVzT�»=nxu�°�¥��¯ «�¯����� �`���^�a���a��§t�#R�Z�º
���`���$�a��§t�¾�Ù]8PSR[uYu­k�Æ�]�R�ViklX[ZÑVigYn�n�VzTa»=np��R[gin�klZtuzV*R�Zt]�nxuCX[c
VzTa»=n8Çe]8PSR[uYuQ°�¥a�¯ «�=���[� �`�W�^�^�t�

eÊ»�nxgYR�ViX[g*u#R[ginÄº^n8ÆtZtnxº�VYXÅklh�»`Pln�h�n�Z�V�c¬R�h�k�PlkSR�g�PlRU¿#u
X[c2»tgiXWÂtR�Â`klPlkyVzTW�ËÎ`XWgËn8Ò`R[hÄ»tP�nWr¯RWuiu ~ h�klZ`qjVi_�R«VÊw«R[gikSR�Â`Plnxu
X«wWn�g�Vi_`n¾ºtR«VYR�ÇJui»tRW]8nxuÄ���%��R�ZtºÈ�����ÀR�gYn�k�Ztº`n�»=n�Ztº^nxZ�Vxr
�b�	&`¤2�¯��¤W�`�Ñ£'�¾£!�ËcfX[gYhju2R#h�X^º^n�PaX�ctVi_`n¢»`gYXaº ~]|V�º`R«V*R«Ç
ui»tR[]�n[r)�Y�t�%��(������ �rWcfgYX[h�£'�Wr�R�h�Xaº`n�PbX�c/�t�%�WraR�ZtºÄ£)��r
RÀh�X^º^nxPÊX[c���������Î`XWg@VY_`nÑ]xR[uin�¿<_`n�gYn¾�����ÀkSuÅ]�X[Ztº`kyÇ
VYk�XWZtR�PlP�TÃº^n�»=n�Z�º^n�Z�V�XWZ"�����WrQ [���`�=�U�¯�«�[�¼£'�"�«£IcfXWgihju
RÈh�X^º^n�P�X�c#�i���%��(������� IcfgYX[h £'�[r�R½h�X^º^nxP�X�c@���%�[r
R[ZtºÌ�«£or<RIc ~ Zt]|VYk�XWZ^ÇEh�X^º^nxP#cfgYX[h �t�%��ViX¼�������Õm¦_`nxgin
R[gin�ginxPlR�VinpºÅXW»�nxgYR�ViXWgYu¢X[Z&nxu­ViklhjR«VYX[g*u o �t�«��*b�+&`¤ �¯��¤[�`��r�t�«� # �[�`�=�U�=���[�<R�Ztº�uiX<X[Zå� s R�ZaTÊX�caVi_`npu­n�X[»=n�g*R«ViXWgYubR[gin
»=X[PlTahÄXWgi»t_`kl]$k�Z�VY_tR«VNVi_`nxk�gNVzTa»�npuN]�X[Z�VYR[k�Z�VzT�»=n�w«R[gikSR�Â`Plnxu
u ~]*_�R[u<���%�CR�Ztº������t�
vËuin8c ~ P^u­VYR«VYklu­VikS]�R[PWh�X^º^nxPluxr«k�Z�]8P ~ º^klZ`qÊh ~ P�Vik�ÇJu­VYR�Vin[r«klZ^Ç

VYn�q[nxgxrxZ`X[gYhjR�P�R[ZtºCh ~ P�Vik�ÇJwUR[gikSR«VYn�º^klu­VigYklÂ ~ ViklX[Z�u�rph�kyÒaV ~ gin
h�X^º^n�PSuxr s R[gi×WX«w@h�Xaº`n�PSu�r�ÆtZ`k�Vin�c ~ Zt]|VYk�XWZ^ÇJhÄX^º^nxPlu��¬]�X[Z^Ç
º^k�ViklX[Z�R�P�»`gYX[ÂtR[Â`klP�k�VzTÌVYR[Â`Plnxu*�ÅR[Ztº]8PSR[uYu­k�Æ�]xR«ViklX[Z6VigYn�npu�r
tRUwWn�Â=n�nxZÃº^n�ÆtZ`npºÑR[Ztº¾hjRWº^n�klZtu­VYR[Zt]8npuÊX[c�VY`njR�»`»`gYX�Ç
»`gYkSR«Vin&]8PSR[uYu­npu��ÀÖ¢n�PlX«¿�r2Vi_tnxuinÅÂ ~ k�PSº^klZ`qIÂ`P�X^]*×^uÄR�gYnÐn8ÒaÇ
VYn�Ztº^npºbrbVYnxu­VinxºIR[Ztº ~ u­npº¾klZÃR�]xR[uinÄu­V ~ º`T�X�c<Ö¦RUT[nxuikSR�Z
Z`n�Vz¿QXWgi×^u�ViXjn�Òa»tP�XWginCR�Ztº&klP�P ~ u­Vig*R«VYn�dz÷2�

, ��¸`µ �$- �b¶pæNä �/.�� ¸ �
� µpç¬¸ â"01� ¶32�ã�·��åµ
} Ö¢RUTWnxuiklR[Z Ztn8Vz¿¢X[gY×Õ� Ý X[gYÂgt ØËkl]*_tX[PSu­XWZ6���[�nm��ÄkSuÅR
qWX�X^º�ViXaX[PtViX�klZaw[nxu­ViklqWR�Vin<gYn�PSR«VYk�XWZtu­_tk�»tu�R[h�X[Z`q�Vi_tn#w«R�gYkyÇ
R[Â`P�npu¢X�c�RÄºtR«VYR�uin8Vp� } Ö¦RUTWnxuiklR[Z@Z`n8Vz¿¢X[gY×jkSu#R�º^k�gYnx]8Vinpº
RW]8T^]8Plkl]Ëq[g*R�»`_o� } Z`X^º^n�ginx»`ginpu­nxZ�VYu�R�w«R�gYklR[Â`P�nW� } ZÐnpº^q[n
gYn�»`gYnxuin�Z�V*u#R@º^klginp]|VC]8X[Z�º^kyVYk�XWZtR�P/º^n�»=n�Z�º^n�Zt]�n�X[c�RÃí54^èêü�ë
XWZIRÅñtõ«òYð8é�îQR�Z�ºbrNklZ"R�u ~ kyV*R�Â`PlnÐ]�X[Z�Vin�Ò�VprN_�R[u�R�]xR ~ uYR�P
klZ�Vin�gY»`gYn8V*R«ViklX[Zo�/OQginpR«VYk�Z`q�R�Ztº�R�»`»`PlTak�ZtqÊR�Z�nxu­ViklhjR«ViXWgoX[c
VY_`njuzVYg ~]8V ~ gYn�R�Ztº¾»tR�g*R�h�n8VYn�g*uËX[cQR&Ö¢RUTWnxuiklR[Z�Z`n�Vz¿QXWgi×
cfXWgihju�X ~ g�]�RWu­n@u­V ~ º`T¾VYX�k�PlP ~ uzVYgYR�Vinjdz÷ o R�Z`n�Vz¿QXWgi×ÑkluRÃZ`XWZ^ÇÙVYgiklwaklR[P¢ViXaX[P#R[ZtºÈk�h�»`Pln�h�n�Z�VYk�Z`qÀXWZ`n�»`gYX«w�kSº^npuÄR
qWX�X^ºÄVYnxu­V¢X[coR�uiTau­Vinxh�Ï uQn8Ò^»`gYnxuYu­klw[n<»=X«¿¢n�gp� } Ö¦RUT[nxuikSR�Z
Z`n�Vz¿QXWgi×ÀkSu�klZ½]�PlRWuiu9�`���^�^�¼�Ùu­np]|VYk�XWZÌ�`� �W�ÄR�ZtºÈ]�R[ZÈRWuzÇ
uik�qWZ6R"»tgiXWÂtR�Â`klPlkyVzTÈViXÈR ºtR«VYR"V ~ »tP�nWÍ�Â�nxP�kln8c ~ »=ºtR«ViklZ`q
¿¦R[u�ZtX�VQgYnxÛ ~ klgYnxºÄÂaT�VY_`nÊR[»`»`Plkl]xR«ViklX[Z@R[Ztºj_tRWu$Z`X[V�Â=n�n�Z
klh�»`P�nxh�n�Z�Vinpºb�ÀÎNklq ~ ginWmÑui_`X«¿#u�R[Z"n8Ò`R[hÄ»tP�n�Ö¦RUT[nxuikSR�Z
Z`n�Vz¿QXWgi×�klZI¿<_`kS]*_Ãw«R[gikSR�Â`Pln@�Åklu�R�]*_tk�PSº¾X[c¢w«R[gikSR�Â`Plnxu��
R[Ztº6��R[Ztº¼kSujRÃ»tR�gYn�Z�VjX�cbmtr¢w«R�gYklR[Â`P�n��Ã_tR[u�ZtXÃgYn�PSR«Ç
VYk�XWZtu­_tk�»�VYX�Vi_`nËX�Vi_tn�g�w«R[gikSR�Â`Plnxuxr[R[Ztºju­X�X[Zå�/dJV�_tR[»`»�nxZtu
VY_tR«V�w«R[gikSR�Â`Plnxu���R�Ztº�m�R�gYn#]8X[Z�VYk�Z ~ X ~ u$R�Z�º�wUR[gikSR�ÂtP�npu<�[r
�ÄR�Z�ºÅ��R�gYn�º^kSui]�gin�Vin[�
Î`gYk�npº^hjR�ZÑR[ZtºIþ�X[PSº`u(�xh�klºaV@�­�x�[�W�W�ÉÆtg*u­V�u ~ qWq[nxu­Vinpº

~ uiklZ`q�º^nx]�kluiklX[Z^ÇEVigYn�npu@�¬]�PlRWuiuikyÆ=]�R«VYk�XWZ¾VYginxnxu*�|r2klZÀ»`PlRW]8njX[c
VY_`nÐc ~ P�P#]�X[Ztº^k�ViklX[Z�R�P¦»`gYX[ÂtR[Â`k�Plk�VzTÑV*R�Â`Plnxu��JO¢÷�m<u*��X[cêVin�Z
~ uinxº&¿<k�Vi_`klZ&Vi_`n�Z`X^º^nxu¦X[c/Z`n�Vz¿QXWgi×^u¦X«wWn�g<º^kSui]�gin�VinCw«R�gYkyÇ

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

105

R�Â`PlnxuxÍ�OQX[h�Pln�T@R�Z�ºÅÜÊX«¿Qn��Ù�[�[�W�W�È_tRUwWnÊR�PSuiX ~ uinxºÐVigYn�npu
¿<kyVY_`k�Z�Vi_`nQZ`X^º^nxuoX�c`Z`n�Vz¿QXWgi×^ux� }]�PlRWuiuikyÆ=]�R«VYk�XWZ�VigYn�nQ]xR�Z
f­Â=nx]8XWh�n;h�R�c ~ P�P#O¢÷�m-klZÀVi_`nÅP�klh�kyVÄÂ ~ V�]�R�ZÀÂ=nÐh ~]*_
hÄXWgin<np]8XWZ`X[h�kS]�R�PEr�VY_tR«VQklu�PlnxuYu�]�X[h�»`Pln8Òbr[klZjhjR�ZaT�]xR[uinxux�
dJV�_tR�»t»�nxZtuÅVi_tR�V&»`gYn�waklX ~ uÅ¿¢X[gY×½]�ginpR«VYnxº6R¼gYR�Vi_`nxg

q[n�Ztn�g*R�P@]8PSR[uYuikyÆ�]xR«VYk�XWZÔVigYn�nÌR[P�qWX[gYkyVY_`h � } P�PlkSu­XWZø�[�[�W�`r
} PlP�kSu­XWZ¾���W�W�[�8�¢m¦_tn�VigYn�nWÏ u#VzT�»=n�kSuËR[Z�k�Ztu­VYR[Zt]8n�X�c$]8PSR[uYu
°W¥a�¯ «�¯�«�[� �`���a�^�t�<\ ~]*_¾R@VigYn�n�]xR�Z�VYnxu­V�R[giÂ`k�Vig*R�gYTÐw«R[gik�Ç
R�Â`Plnxu o º^kSui]�gin�VinWr[]8XWZWVYk�Z ~ X ~ uxr«h ~ P�Vik�ÇEw«R[gikSR«VYn[r[uinxÛ ~ nxZt]8n ocfgiXWh7kyV*u¦k�Zt» ~ VËui»tR[]�n�R[ZtºÐ]xR�Z&_tRUw[nCR�gYÂ`k�Vig*R�gYTÄº^kSu­VigYk�Â ~ Ç
ViklX[Ztu�X«wWn�g�kyV*u�X ~ »^V ~ V�ui»tRW]8n[roX[g�n�wWn�ZÑc ~ Zt]8ViklX[Z^ÇJh�Xaº`n�PSu
�fgYn�q[gYnxuYuik�XWZtuY�8r^k�Z&VY_`n�P�npRUw[npu��$m¦_`npu­n�»=XWuYuik�Â`klPlkyVYk�npu¦cfX[PlP�X«¿
ZtR«V ~ gYR[P�PlT�cfgYX[hÔdz÷ËÏ u/n�Òa»tP�XWkyV*R«ViklX[ZÄX�c¯ÞËRWu­×Wn�PlPÙÏ u/»�XWP�Tah�X[giÇ
»`_`kS]�VzTa»�nÃu­T^u­Vinxh&�Ôm¦_tn¾]8PSR[uYu­k�Æ�]xR«ViklX[ZÈVYginxn¾kSu@gYn ~ uinxº
`n�gYn�R[u#Vi`n�ÂtR[uikSu#X�c�X ~ gËZ`nx¿ÚÖ¢RUTWnxuiklR[Z�Z`n8Vz¿¢X[gY×^u�ÍtR[PluiX
u­nxn�u­np]|ViklX[Z��t� �^� � RW]*_&]�PlRWuiuik�Æ�]�R�ViklX[ZÅVigYn�n�]8XWZtuiklu­VYu<X[c2R�V
P�npR[u­VÄXWZ`nÐPlnxR�cêÇEZ`X^º^nWr # �t�W�a¤��=r�R�Ztº¼»�X�uiuik�ÂtP�TÀR�PSuiX�cfX[gY×�Ç
Z`X^º^nxuxr # �^�^� � � �Ðm¦_tnxuin�VigYn�n8ÇJZ`X^º^npu�R�gYn�é=ó�îÊîeó 7*ð&íYó�étÿ
�*ìaû8ð*ë�¿<kyVY_�Vi_`n�Z`n8Vz¿¢X[gY×¯Ï u#Z`X^º^nxuxÍtVY_`n�gYn�kSu#XWZ`n�VigYn�n�»�nxg
Z`n8Vz¿¢X[gY×¾Z`X^º^nW��m¦_`nÐ]8PSR[uYuikyÆ�]xR«VYk�XWZÑVYginxn�VzTa»�nÅklu�R�ZIk�Z`Ç
uzV*R�Zt]�nÐX�c<VY_`nÅ]�PlRWuiu�°�¥��¯ «�¯����� �`���^�a�Ñ�Ùu­np]|ViklX[ZÈ�^�ý�[�|� }
cfX[gY×ÓVinpuzV*u¾R½»tR[ginxZ�V¼�fklZ`» ~ V|��w«R�gYklR[Â`PlnÀwUR[P ~ n[� } P�npR«c
hÄX^º^nxPluQVY_`n�R[»`»`gYX[»`gYkSR«Vin�]*_`klPlºÑ�fX ~ Vi» ~ V|�QwUR[gikSR�ÂtP�nW�/mQTa»^Ç
kl]xR�PlP�T�VY_`n�h ~ P�Vik�ÇJu­VYR�Vin�º^kSuzVYgiklÂ ~ VYk�XWZårt£ � �`¤W�`��r�h�X^º^n�PSu�R
º^kluY]8gYn8VYnËw«R�gYkSR�Â`Pln[raR�ZtºjVi_`n�Z`X[gYhjR�P¯º^kSuzVYgiklÂ ~ VYk�XWZ@h�Xaº`n�PSu
R&]�X[Z�ViklZ ~ X ~ uËw«R�gYkSR�Â`Pln�Â ~ V�X�VY_`n�g�º^kSuzVYgiklÂ ~ VYk�XWZtuC]�R[ZÑÂ=n
~ u­npº�kyc�º^npu­klginpº&Â�np]�R ~ u­nCVY_`nCVigYn�n�npuzVYk�hjR«VYX[g#kSu<»tR[gYR[h�n8Ç
Vin�gYk@��nxº�Â�TÅVi_tn�PlnxR«c�npuzVYk�hjR«VYX[gp� s�s�� q[klw[nxuËR�Vig*R[º^n�ÇEXnd
Â�n�Vz¿Qnxn�ZÈVi_`n�]�X[h�»`Pln8Ò^k�VzT¼X�cCRÃVigYn�n�R�Z�º k�VYujÆ`VjViXIVY_`n
º`R«V*R�R�ZtºjVi_`kSu�kSu ~ u­npºÄViX�]�X[Z�VigYX[P`Vi_`n�u­npR�g*]*_å�NØËX�VinËVi_tR�V
¿<_`n�Z ~ uinxº&¿<k�Vi_`klZ�R�Z`X^º^n�klZ�R�Ö¢RUTWnxuiklR[ZÅZtn8Vz¿¢X[gY×=r^XWZ`n
X[gCh�X[gYn�VYnxu­VYu�X[ZÃRÐ»tR[ginxZ�V�w«R�gYkSR�Â`Pln�klZÃRÐVigYn�nÄklZtº^kS]�R«VYn
R�»tR[ginxZWViÇJ]*_tk�PSº"º^nx»�nxZtº^n�Z�]8T[rQR�Z"npº^q[nWr$R«V�VY_`n&Z`n8Vz¿¢X[gY×
P�nxw[n�PE�
m¦_`n�cfX[PlP�X«¿<klZ`qÐuinx]8ViklX[Ztu�º^nxuY]8gYklÂ�n�VY_`n�R�»`»`PlkS]�R«VYk�XWZ�X�c

Ö¢RUTWnxuiklR[ZCZ`n8Vz¿¢X[gY×^u=ViXËPlXWu­Vo»=n�g*u­XWZ�º`R«V*R`� } uNR[Z�n8Ò`R�h�»`Pln
X�cQdz÷�k�V�ui_`X«¿#uÊVi_tn�]�X[h�»=XWuikyVYk�XWZ¾X�c¢uzV*R«VikSu­VikS]�R�P2h�X^º^n�PSux�
s ~ P�Vik�ÇJu­VYR�Vin�R�Z�º"Z`XWgihjR�P#º`klu­VigYk�Â ~ ViklX[Ztu�¿<k�Vi_tk�ZÈh�Xaº`n�PSu
X�c�h�kSuiuiklZ`q º`R�VYR ¿<kyVY_`klZÕ]�PlRWuiuikyÆ=]�R«VYk�XWZÌVigYn�npu&¿<kyVY_`k�Z R
Ö¢RUTWnxuiklR[Z"Z`n�Vz¿QXWgi×¯�¼\aXWhÄn�Z`nx¿ qWn�Z`nxgikS]jcfnpR«V ~ ginpu�¿¢n�gYn
ginpÛ ~ k�gYnxºIVYXÑ_�R�Ztº^Pln@VY_`kSuÄºtR«VYRÃuin8Vx� } Z�TÀX[c<Vi_`X�u­nÅcfnxR�Ç
V ~ gYnxu�h�RUTÄn8Ò^kSuzV¢k�Z@uiX[h�n#X[Vi_`nxgQº`R�VYR�R[ZtR�PlT^u­kSu$»tPlR�V­cfX[gYh�r
»�nxgi_tR[»tuÊVi_`kSuCkSuËVYg ~ n�X[c¢R�PlP2X�c$VY_`n�h�råÂ ~ V�kyV�kSu ~ Z`P�kl×[nxP�T
Vi_tR�VQVY_`n�T@R[P�P¯n8Ò^kSuzV¦klZ@Vi_tn�uYR�h�nË»tPlR�V­cfX[gYh�r^R�Ztº ~ Z`P�kl×[nxP�T
Vi_tR�VÐu ~]*_ÈRÃ»`PlR�V­cfXWgih!]�X ~ PSº Â�n�R[uÄnpR[uik�PlT¼R[ºtR�»^VYnxºÀVYX
c ~ g­VY_`n�g<Ztn�¿ÌcfnpR«V ~ ginpu���m¦_`nC»=X[klZWV<kSuQViX�k�ZawWnxu­ViklqWR«VYnË_`X«¿
nxR[uiT�k�V/kSu/ViXCR[º`R[»^V2dz÷�ViX�RÊZ`n�¿"VYR[ui×¯�Nm¦_`kSu/klu2klh�»�XWg­V*R�Z�V
Â�np]�R ~ u­n<k�V$X�cêVYn�Z@uin�n�hju/VY_tR«V�nxw[nxgiT�º`R�VYR�uin8V$_tRWu�k�VYu�X«¿<Z
Xaºtº^kyVYk�npu#R[u¦XWZ`nCq[n�VYu¢ViXj×aZ`X«¿�kyVp�

,�
Ùà ³ � � �¬çÙ¹[¸^¶pç¬ã â ã
� � ¸ �
� µpç¬¸ â 01� ¶32�ãt·��åµ . � ã�µx¶
� � ·«µpã â

Ý X�npuzVYn�gpÏ u&�Ù�[�[�t�p��PlXWu­V�»�nxgYuiX[Z¼ºtR«VYRÑu­n�VÄ_�R[u�Â�nxn�ZÈn8ÒaÇ
R�h�k�ZtnxºÑk�ZÀO¦\`\ � r s X[ZtRWu­_¼�Ùm¦¿¢R[gYº`T¾���[���^r=m¦¿¢R[gYº^T�t
Þ#X[»=n����[�nm��8�ÃÞËn�gYnÐk�VÄ»`gYX«waklº`nxuÄR�Z¼R[»`»`Plkl]xR«ViklX[Z¼X�c#VY_`n
Ö¢RUTWnxuiklR[ZÅZtn8Vz¿¢X[gY×Ð]�RWu­n�u­V ~ º`T[�<m¦_`n�gYn�R[gin��[�W��ginp]8XWgYº`uxr
R�Ztº&�p��w«R[gikSR�Â`Plnxuxr«Z ~ h�Â=n�gYnxº���ÇY�;mt� } »`»`gYXUÒ^k�hjR«VYn�PlT�_tR[Pyc
X�c�VY_`njw«R�gYklR[Â`Pln�w«R�P ~ npu�R�gYn�h�kSuiuik�Ztq&X«wWn�g*R�PlPÙ� } V­VinxZ�ViklX[Z
klu�uiX[h�n8VYk�h�npu�ginpuzVYgikS]|VYnxºÌVYXÈVi_`nIÆtg*u­V�nxk�qW_�V&w«R�gYkSR�Â`PlnxuxÍ
X[Z`n<R�klhÚkSu/ViXC»`gYnxº^kS]|V$º^kSuzV*R�Zt]�n�VYgYRUwWn�PlP�npºbr,�¯���U�¯²U±a±Êw«R[gik�Ç
R�Â`Pln��^r[cfgYX[høw«R[gikSR�Â`Plnxu-��nxgiX�ViX�uik�Ò¯�2deZÅq[n�Ztn�g*R�PErW¿¢X[gY×[nxgYu
¿¢R[ZWV�ViX�_�RUw[n#R�Z fin8Ò^»`PSR�ZtR�ViklX[Z1hCX[c¯Vi_`n�º`R«V*R`ÍWVi_`n�uzVYg ~]8Ç
V ~ gYn�R�ZtºÅ»tR[gYR[hÄn�VinxgYu¢X�c�RÄZ`n8Vz¿¢X[gY×@R�gYn�RÄq[XaX^ºÅu­VYR[g­Vp�

,�
 � � � µx¹[·Uç¬´/ç â
Ã¶�� ��� ¸^¶p¸
m¦_`nCÆtg*uzV#u­Vin�»�klZ&Vi_`n�R[»`»`Plkl]xR«ViklX[Z&kSu¢ViXjº^n8Æ�Z`nCVi_`n�w«R[gik�Ç
R�Â`Pln�VzT�»=nxu#k�ZÅVi_`n�PlXWu­V<»�nxgYuiX[Z�º`R�VYR�u­n�VxÍ`klZ�ÞËR[ui×[nxP�P¯VY_`kSu
klu#º`X[Z`n�Û ~ k�Vin�ZtR�V ~ g*R�PlP�TÅR[ux�
�a¤W�`¤ �¯�p§t� "Ó�t���W¡`���8£¯� ���-$ # ¡¯�[�W� $ �`�`�U§t�[�`�a�[�^�%$

	 � � �2�%$�
[��¡t�2�%$
�`�W�`¤ �a�^��� $±=�«�= p¡t�W�¯�� À�^� �¯�	&=�p� + �a���
����§t�½��+`� " �`�[¥��t���

�^¤W�`¤��`¤` [� " �a���
�^¤W�`¤��^���`�^� � "��a�a�
�^¤W�`¤ �`��§t� +��`¤�§a¡^� " �`�[¥��^�`¤��p�=�-$�±¯���W�«£¯�[�^� $

�¯�«�a�[ªt¤W�`�2�
�^� �=�	&¯�p� + ��
2�^� (.���¥[£ (*t�[¥��`�^��� (^�a�a�

�^¤W�`¤�� �$�t¤[� "���¥ �`¤^� $ � ¥��a¥����t¤[� $�� ���`¤[�
�^� �=�	&¯�p� + ��
2�^� (.���¥[£ (*t�[¥��`�^��� (^�a�a�

�a��§t� 	 �����a� " �`��¥������ 0�0 ¡t�[¥ �=�"�t�[�¯�«�=���W�
�a��§t� �¯�W�«�¯²U±a± " �`��¥������ 0�0½�=���«�`¤��¯ [�
�a�a�
�a��§t� �¯�W�a�^�p� +�±`� �=�[��� "

���^¤W���t� �¯�x§t�/(�`¤W���`�Ì��+`�/(6�a�a�
m¦_`n�ÞËRWu­×Wn�PlP�×Wn�Ta¿QXWgYº �ý�^� �=�	&¯�p� +=Ï�º`k�gYnx]8VYu�Vi_`nC]8XWhÄ»tk�Pln�g
VYX�RWº`º�R�Z`n�¿ º`R�VYR�VzTa»�nWr`cfX[g<n�Ò`R�h�»`Pln �^�[§t� +��^¤[§a¡^�¯r�ViX
u­VYR[Ztº`R�g*º&ÞËR[ui×[nxP�PN]8PSR[uYu­npu#u ~]*_�RWu�
2�^�¾�fXWgYº`n�gYnxºt�8r .���¥[£
�¬n�Z ~ h�n�g*R«VYnxºt�¢R�Z�º *t�[¥a�`�a���=�
s kluYuik�Z`q¼wUR[P ~ nxu&R�gYn¾R�ZÓkSuYu ~ nÃR�Ztº6R�gYn¾gYn�»`gYnxuin�Z�Vinpº

ÂaT �`¤[���t�½��¿<_`nxgin �^¤W���t�½� "��`�[��¡b�p� + $���¥¯�U�6��klu
RIu­VYR�Z�º`R�g*º¼ÞÊR[ui×[n�PlP¦VzTa»�n�¿<k�Vi_½»tR[gYR[h�n8VinxgÄVxÍ#R�PSuiXIuin�n
uinx]8ViklX[Z��`� �`�
} ºtR«V ~ h&r/RÐPlXWu­V�»�nxgYuiX[ZoråkluCRÅV ~ »`P�njX[c�VY_`nj]8X[h�»=X�Ç

Z`nxZ�V�wUR[gikSR�ÂtP�npu��&ÞËR[ui×[nxP�PEÏ u�uzV*R�ZtºtR�g*ºÃ÷�ginxP ~ º^n��¬÷2nxTWVYX[Z^Ç
pWX[Z`npuËn�VCR[P¦�x�[�W�W�#k�Ztu­VYR[Z�VikSR«VinpuÊV ~ »`Plnxuxr ~ »ÑViX �pÇEV ~ »tP�npu�r
klZ¾]8PSR[uYuinxu��`�a¤��ÅR[Ztº � ¡`�[ªbr�uiX@VY_`nÐ�U�UÇEV ~ »tP�npu#_`nxgin�Ztn�nxºVYX¾Â=nÐhjR[º^nÅk�Z�uzV*R�Zt]�nxu�X�c<Vi_tXWuinÐ]8PSR[uYu­npu�cfXWg�klZ`» ~ VjR�Z�º
X ~ Vi» ~ V�gYnxui»�np]|Viklw[nxP�TW�Ãm¦_tklu�klu�R[Z"nxRWu­TWr/k�c#VYnxº^klX ~ uxr! zX[Â
R[Ztºø]8X ~ Plº>klZ7»`gYklZt]8kl»`PlnÓÂ�nÕR ~ VYX[hjR«VYnxº>klZøVinxh�»`PlR�Vin
ÞÊR[ui×[n�PlP��Ù\a_tnxR�g*º]t�÷2nxTWVYX[Z^Ç,pWX[Z`npu¢�[�[�W�W�|r^uYRUT[�

,
 , � ãåä � � �¬ç â
¾¶�� ��� ¸^·«ç¬¸^´'� � µ
m¦_`nÌÛ ~ npuzVYk�XWZ-X[c&¿<_tkl]*_øº^kSuzVYgiklÂ ~ VYk�XWZårÐR[ZtºÔVY_`n�gYn8cfXWgin
¿<_`kS]*_�npuzVYk�hjR«VYX[gprtVYX ~ uin�cfXWgÊnpR[]*_�w«R�gYkSR�Â`Pln�Z`X«¿ÔR[gikSu­npu��
m¦_`nÀu­VYR[Ztº`R�g*ºÌnpuzVYk�hjR«VYX[g&cfX[g�VY_`nIZ`X[gYhjR�Pj�ÙþCR ~ uYu­kSR�Z��
º^kSu­VigYk�Â ~ ViklX[Z ~ uinxuQR ~ ZtkycfXWgih>»`gYk�XWg$X[Z@Vi_`nÊhÄnpR�ZÐR[Ztº@R[Z
klZaw[n�g*uin�»`gYk�XWg�XWZ�VY_`nÄu­VYR[Ztº`R[gYºÑº^n�wakSR«ViklX[ZÃR�Ztº¾ginpÛ ~ k�gYnxu
VY_`n�klg@g*R�Z`qWnxuxr¦R[ZtºÌR�PSuiXÑVY_`nÑºtR«VYRIh�npR[u ~ ginxh�n�Z�VÐR[]x] ~ Ç
g*R[]�T[��Ø#X[VinjVY_tR«V�Vi_`nÅh ~ P�Vik�ÇJu­VYR�VinÐº`klu­VigYk�Â ~ ViklX[Z¼R[ZtºIk�VYu
npuzVYk�hjR«VYX[gjR�gYn&»�XWP�Tah�X[gY»`_`kS]�rQÂ�nxk�Z`qÀR[»`»`Plkl]xR�Â`Pln&ViXÀR�ZaT
Â=X ~ Z�º^nxº&n�Z ~ h�nxgYR�Vinxº&º`R�VYR«Çeui»tR[]�n��êVzTa»=np�8�
�! " �t�U���`���^�a�2�`¤W���`� �t�U����¥��[�=� � �`¤W�^� 0�0 �¯�p§`�
�!�/" �t�U���`���^�a�2�`¤W���`� �*�`�U�"�`� �U£¯¤a�# �$! �&%! � ��('�
�a�a�
Î ~ Zt]|VYk�XWZ �t�«���`���^�^� �`¤W���t�Ð¿¦R[uÄÛ ~ kS]*×�PlTI]8gYnxR«VYnxºIVYXÑR[PyÇ
PlX«¿ÌcfX[gËhÄkSuYu­klZ`q�w«R�P ~ nxu¦klZ�R�w«R[gikSR�Â`Pln[Í^k�V#kSu<º^kluY] ~ uiuinxºÅk�Z
uinx]8ViklX[Z��`� �`�
ÎNklZtR[P�PlT6VY_`nÈk�Ztº`k�wakSº ~ R�PÄnxu­ViklhjR«VYX[g*u�R�gYn¼R[uYuin�h�ÂtP�npº

klZ�ViXÈ�t�«���¯�W�a�^�p� +�±`� �=�[���¯r�RÈ]8XWhÄ»=XWuik�Vin�VY_tR«V�hjR«V*]*_`nxu
R�º`R�VYR�V ~ »tP�nW�

,
*) � ¸^·U¶xç¬¶xçÙã â ç â
 � ¸`¶x¸ � � ¸`¹ � µ . � �¬¸`µpµ � � �¬ç¬¶xµ
}]�PlRWuiuik�Æ�]�R�ViklX[ZÅVigYn�n[r=R[u ~ u­npºÅklZ�RjZ`X^º^n�X�c�R@Ö¦RUT[nxuikSR�Z
Z`n�Vz¿QXWgi×¯r^XW»�nxgYR�Vinxu#Â�T¾ûEñ=ü èêîEîÙèêéaô�r�Vi_�R«VËkSu#»tR[g­VYkyVYk�XWZ`klZ`qtrtR
º`R�VYRÅu­n�VÊcfgYX[h�k�VYu�klZ`» ~ V�u­»�R[]8n�ÂaT�Vinxu­VYu�XWZ¾klZ`» ~ VCw«R�gYkyÇ
R[Â`P�npu�ÍbR � §t�t�U�a�`�2�Ð»tR�giVik�ViklX[Ztu�RÐºtR«VYR&uin8Vx�CdeZ¾Vi_`kSu�¿¢RUT
VY_`nQº`R�VYR#R[ginQº^k�gYnx]8VinpºCk�Z�ViX�u ~ Â^VigYn�npuoR�Z�º�n�wWn�Z�V ~ R[P�PlT�k�Z�ViX
PlnxRUwWnxuQ¿<_`n�gYnËVY_`n�X ~ Vi» ~ V<w«R�gYkSR�Â`PlnW�ÙuY�¢]�R[ZÐÂ=n�¿QnxP�Pbh�X^ºaÇ
nxP�Plnxºb�2Î ~ Zt]|VYk�XWZÅ�U§��t�U���<X[c=]8PSR[uYu � §t�t�U�=��� } PlPlkluiX[Z@���W�[���
»`gYX[»=XWuinxuxr�k�ZøXWgYº`n�gIX�c�º^nx]�ginpR[uik�ZtqÕ»tgiklX[gI»`gYX[ÂtR[Â`klP�k�VzT[r
� §��t�p�a�`� �=�jcfX[g ~ u­nÅÂaTÑVY_`n�]8PSR[uYu­k�Æ�]�R�ViklX[ZIVYginxnÐnxu­ViklhjR«Ç
VYX[gprt�`�«� # ���^�a���
 W��¤t��� � §��t�U���¼��� ª�¡t� �`�
�p§��t�U�=�ø¨�¨ � �t��
 0�� � � §��t�p�a�`� �Ì�t��

m¦_`n�] ~ gigYn�Z�V-VigYn�n(nxu­ViklhjR«VYX[g ~ uinxuøR u­klh�»`Pln ��n�gYX�Ç
PlXaX[×«R�_`npR[º R�Plq[XWgik�Vi_th�klZÚVi_tn uinxR�g*]*_ÕViX�ÂtR�PSR�Zt]�nÀVigYn�n
]�X[h�»`Pln8Ò^kyVzTÑ��£o�,+��U�QR�q�R�klZtuzV¦Æ`V<VYXÄVi_`n�º`R�VYR���£o�,+��a�|�
} h ~ PyVYkyÇJw«R�gYklR�Vin�klZ`» ~ V�ui»tRW]8n¾kSuxr#ÂaTÓº^n8c¬R ~ PyVprÊui»`PlkyV

ÂaT¼ui»`PlkyViViklZ`qÀX[ZÈX[Z`n�X[c�k�VYuj]�X[h�»=X[Z`nxZWV@w«R[gikSR�Â`Plnxux�ÌmoX
klh�»`P�nxh�n�Z�VQVY_`kSu�r�Vi_tnÊ¿¦RUT^u$X�coui»`PlkyViViklZ`q�Vi_`nC]8XWhÄ»=X[Ztn�Z�VYu
R[gin�k�Z�VYn�gYP�npRUw[nxº@cfX[g#]�X[Ztuiklº`n�g*R«ViklX[ZÅk�Z&V ~ giZo�

CRPIT Volume 48

106

}]8XWZ�ViklZ ~ X ~ u¦XWgYº^nxginpº¾�
 �^�^�Qw«R�gYklR[Â`P�nWr^u ~]*_�R[u¦��+`��r
klu�ui»`PlkyVÑX[Z Â�nxk�Ztq � XWg��ßuiX[h�nÀw«R�P ~ n[� Ö¢T�º^n�c¬R ~ P�V
�p§��t�U�=�
2�^��»tgiXW»�X�u­npu$w«R�P ~ nxu¦RWu$cfXWP�PlX«¿#u�� s npº^klR[Zår^Û ~ R�giÇ
ViklP�npu�r`X^]8ViklP�npu�rtR[Ztº&u­X�X[ZI�=qIR�PlPSR[]8nRtÉ÷�R«VYgikS]*×��x�W�[�W�8�
} º`kluY]8gYn8VYn[r�*t�[¥a�`�a���=r�nxZ ~ hÄnxgYR�Vinpº&�&.���¥[£¯�|rWw«R�gYklR[Â`P�nWr

u ~]*_ÃR[u �^�[�^�^� �¯r�X[cQRÅ×WÇJw«R�P ~ nxº�VzTa»�n�kSu�]�X[Zaw[nxZ�ViklX[ZtR[P�PlT
u­»`Plk�V�klZWVYX¾×I»tR[g­V*u�r2R[u�º^n8ÆtZtnxº"klZÀVY_`nÐXWÂ�waklX ~ u�¿¢RUTÑÂ�T
c ~ Zt]|VYk�XWZ¼�U§��t�U���	* .¯�`Þ#X«¿¢n�wWn�g��`�[§t� +��`¤[§a¡^�ÐR�Ztº � ���t¤[�
R�gYnQklZtu­VYR�Z�]8nxu/X[c`Vi_`n<u­VYR[Ztº`R�g*º�ÞÊR[ui×[nxP�P^]8PSR[uYuinxu *`�[¥a�`�^�W�=r
.W�a¥[£Ã�fnxZ ~ hÄnxgYR�Vinpºt��R[Ztº@R[PluiX

2�^���fX[g*º^nxginpºt�|r^R[u¢]�R[ZÐÂ=n
u­nxn�Z�cfgYX[h�Vi_`nxk�g/º^n8Æ�Z`kyVYk�XWZtuxr�u­X#¿¢n�R[PluiX<_tRUw[n$Vi_`nQX[»^VYk�XWZtu
X�cQui»`PlkyViViklZ`qÅnpR[]*_�X[c$Vi_`nxh�k�Z�VYX@Vz¿¢XÐ»tR[g­V*uËXWZ�Vi_`nÄÂtRWu­kSu
X�c2X[g*º^n�gpr^R[u<]8X«wWn�gYnxºÐÂ�T��p§��t�U�=�
2�^�=�
�x�¯�«�`¤[�= [� � §��t�p�=� �¯�p§t�Èªa¡`� �`�
�U§��`�U�=� "Ô�p§��t�U�=�+* .

���a�
�x�¯�«�`¤[�= [� � §��t�p�=� �`�[§t�2+��`¤[§a¡a� ªa¡t�2�`�
�U§��`�U�=� "Ô�p§��t�U�=�+* .
0�0Ó� �Õ¤^�[�`� �W�t¤W�¯�	&^�^�[� "Ô�p§��t�U�=�
2�^�

�x�¯�«�`¤[�= [� � §��t�p�=� � ���t¤��Ìªa¡t� �`��U§��`�U�=� "Ô�p§��t�U�=�+* .
0�0Ó� �Õ¤^�[�`� �W�t¤W�¯�	&^�^�[� "Ô�p§��t�U�=�
2�^�
� n8V<R�ZtX�Vi_tn�g�R[PyVYn�gYZtR«VYk�wWn#¿¢RWu$R�PSuiX�k�h�»`Pln�h�nxZWVYnxº@R[Ztº

Vinxu­Vinpº½cfX[gÅP�X�uzV@»=n�g*uiX[Ztux� �¯�p§t�I_tRWuÐuin�w[nxZÌw«R�P ~ nxu@R[Ztº
`k�qW^ÇeR�gYkyVzTWr ~ Z`ÇEXWgYº^nxginpºbr¦º^kluY]8gYn8VYn�VzTa»�npujPlk�×Wn �¯�x§t�À]xR�Z
]�R ~ u­nÃº^k <@] ~ PyVYk�npuÅViX"c ~ Zt]|VYk�XWZ^ÇEh�X^º^nxPluÅÂ�np]�R ~ u­nÑX�c�VY_`n
PlR[giqWnÐZ ~ h�Â=n�g�X[cÊ]�RWu­npuÄR[ZtºÀVY_`nÅcfn�¿úºtR«VYRÑklZ uiX[h�nÅXWg
R�PlP$X�c¢Vi_`nxh��ÐdJc#u­XWh�n@]�R[uinxu�R[ginÄVY_`X ~ qW_�V�ViX�Â=n�_tRUwWnÄklZ
u­klh�k�PSR�g/¿¢RUT^uåVi_`nxZår�g*R«Vi_tn�gåVY_tR�Z ~ uik�Z`q��U§t�t�U�=�	*�.¯r8w«R[P ~ npu
]�R�Z½Â=n�q[gYX ~ »=nxºÈklZ�ViXÀZ`XWhÄklZtR�Vinxº½u ~ Â^Çeu­n�VYu��ÙR�Ztº Vi_tn�klg
]8X[h�»`Pln�h�nxZWV|��R[]�]�X[g*º^klZ`q[PlT[��m¦_`kSu�X[Z`PlT¾R5d=np]|VYuCui»`PlkyViViklZ`q
X[Z��¯�p§t��rxZ`X[VNh�X^º^n�PlPlk�Z`q�X�c`k�Vx� } c ~ Zt]|VYk�XWZ�VYXÊklh�»`P�nxh�n�Z�V
Vi_`kSuC�[�W� � §��t�U���CX[»`ViklX[Z&klu' ~ uzVËR�cfn�¿ÕPlk�Z`npu��
���W� � §��`�U�=�½�[�[�=� �
 " �

���W� � §��`�U�=�½�[�[�=� �=� "
���W�Ó�¢¨e�=� " £¯¤[§ �J£¯�U£��t� �=�U¡¯�p§¯�¼�[�W�=� �=�
�p�-�U��¤a�a� ���?"�"3 À�! ¼�=� ��¡t�[� �
 0�0[���¯�	&=��¤^�
�a�`�[� � �[�W� � §��t�U���`� �Ó�[�W�=��

�x�¯�«�`¤[�= [� � §��t�p�=� �¯�p§t�Èªa¡`� �`� 0�0Ì��� +¢�Ó�a�a�
�U§��t�U��� "Ô�[�[� � §��t�p�=� ��� �`���W¡t���|£¯� �=��
/(� # ¡¯�[�[��
$

dJc � ×¯Ï[u ~ Â^ÇJuin8V*u�R�gYn<u­»=nx]�kyÆtnpºbr�VY_`n�klg�]�X[h�»`Pln�h�n�Z�V�klu�VYR�×Wn�Z
ViX�Â=n<Vi_`n��¬×t���p�zu­Vx�2Ø#X[Vin<VY_tR«V�VY_`n#»`gYX[qWgYR[h�hÄnxg/º`nx]8kSº^npu
`X«¿ÕViX@qWgiX ~ »&Vi`n�wUR[P ~ nxu#klZ1�¯�p§`�@_`n�gYn[�¦deZ�»`gYklZt]8kl»`Pln�R
»`giXWq[g*R�h7]�X ~ PSº�u­npR�g*]*_@Vi_tgiX ~ q[_ÅVi_`n�»=XWuYuik�Â`klPlkyVYk�npu¦Â ~ VËk�V
¿QX ~ Plºår`X�c2]8X ~ gYuin[r`RWº`º@VYXÄVi_`n�X«wWn�g*R�PlP¯uinxR[gY]*_ÐViklh�n[�
dJV@kSujRÃuiklhÄ»tP�n�hjR«ViVinxgjk�ZÈdz÷ÉViXÀklhÄ»tP�nxhÄnxZ�V�n�ÒaVin�Z`Ç

u­klX[Ztuxr[u ~]*_�RWuQ���W� � §��`�U�=�^r8VYX�h�X^º^nxPlu/VYX�u ~ k�V�R�»`gYX[ÂtP�nxh
R�Ztº&k�VYu#º`R�VYRt�

,�
�� � � � � ¹�¶pç â
 �oæN´ - � � ¸`¹ � µ . � ·Uã�� � ¹�¶xçÙã â µ
deZ@R�VzT�»tkl]xR�P�R[»`»`Plkl]xR«VYk�XWZÄX[c¯R�]8PSR[uYu­k�Æ�]�R�ViklX[Z�VigYn�nWr�Vi_tn#k�Z`Ç
» ~ VCwUR[gikSR�ÂtP�npuËR�Z�º�Vi_`n�X ~ VY» ~ VCw«R�gYklR[Â`P�n�R�gYn�Æ`Ò^nxºb��Ö ~ V
`n�gYn[r/k�Z R�Ö¢RUTWnxuiklR[ZÑZtn8Vz¿¢X[gY×=roVi`n&u­nxP�np]|VYk�XWZÃX[c<»tR�gYn�Z�V
�fklZ`» ~ V|��R�ZtºÈ]*_`klPlº��fX ~ Vi» ~ V|�Äw«R�gYklR[Â`P�npu�h ~ u­VÄÂ=n ~ Ztº^nxg
»`giXWq[g*R�h]8X[Z�VYgiXWPoX[Z�RÐZ`X^º^n�ÂaT�Z`X^º^n�ÂtR[uikluxÍ�Vi_`kSuË»tgiXW»^Ç
n�giVzT�hjRWº^n$VY_`n¢]xR[uinQu­V ~ º`T�»tR�giVikS] ~ PSR�gYPlTÊklZ�Vin�gYnxu­ViklZ`qËcfgiXWh
Vi_`n�dz÷-»=X[klZWV@X[cÊwakln�¿��6OQPlRWuiu�±��`���a�` «�¯r$R[u�klZ¼ñ=òió
	�ðYí�ÿ
îÙè¬ó�étr=¿¢RWuË]8gYnxR�VinpºÐcfXWg#VY_`kluÊ» ~ gY»=XWuin[�#\aX[h�nÄu ~]*_�h�np]*_^Ç
R�Z`kSu­høkSuQZ`n�npº^nxº@cfX[g¢_`n8VYn�gYX[q[nxZ`n�X ~ u$w«R[gikSR�Â`Pln#VzTa»=nxu¢klZÅR
uzVYgiXWZ`q[PlT�VzTa»�npºÅPSR�Ztq ~ R[q[n[Í�VY_`n�Z`n8Vz¿¢X[gY×jnxu­ViklhjR«VYX[g��¬uinx]8Ç
ViklX[ZÓ�`� ���Äº^XanpujZ`X�V fY]�R[gin�h¾¿<_tR�VjVzTa»�npu�Vi_`nÑº`R«V*RÃR[Ztº
u ~ Â`ÇEnpuzVYk�hjR«VYX[g*u2_tRUw[nWr«»`gYX«w�kSº^npº�XWZ`P�T�Vi_tR�V�Vi_`nxT�R�gYn<]8XWZ^Ç
u­kSuzVYn�Z�Vx� } Z@k�Z�uzV*R�Zt]�n[rWVzT�»=n#�¯r�X�cå]8PSR[uYu$±��`�����t «��kSu�uiX[h�n
h ~ P�Vik�ÇJº`k�h�n�Z�u­klX[ZtR[P�VzT�»=nÃcfX[g&¿<_`kS]*_ÕR P�kSu­V&X[c�Ö¢X�XWP�npR�Z
��R�q�u�]�R[ZÃÂ=n ~ uinxºÃVYX�ginpuzVYgikS]|V��¯Ï u�R[]8ViklwakyVYk�npuCViX¾]�n�giVYR[k�Z
u­nxP�np]|Vinpº�º^klh�n�ZtuiklX[Ztux�Nm¦_`n¢Z`XWZ^ÇJuin�Plnx]8Vinpº�º^klh�n�Ztuik�XWZtuNÂ�n�Ç
_tRUw[n#klZÐRCVYgiklwaklR[PÙrIf­kSº^n�Z�VYkyVzTuh�hjR�ZtZ`n�gpr[VY_tR«V¢kluQR�»`»tgiXW»`gik�Ç
R«Vin�VYXÃVzT�»=n�Vxr¦k�cÊVY_`n�TÈR�gYn�n�w[nxg@]�R[P�Plnxº ~ »=X[Zå�ÓdeZÈVY_`n

�t�«�!�^�W��ªt� � � §t� �«£��`�«�����Ó�^¤[�`¤ � �W� "
���[�
�1" �|���[� +���¡��Ñ���^�[�t�a� ��*�t�«����� �
3
���a¤ �= U¡�
 �
 " �
 0�0Ì�^�[�t�
���a¤ �= U¡Ì§=� �� /¨* a� #"
0�0�§t¤2�`�[�^�=�Ã§¯� (Ã U¡b�[�W� �`�[� 2¨Y a�
���W�
�[§^°`��¤ + "Ô�p�^�=�����`��¤ +�� � �
Ì� 0�0` p¡b�[�W�
�p§^°`��¤ +=� "Ô�p�^�=�����`��¤ +��Ã§¯� � 0�0�§`¤ �`�[�^���
 ���^�a� " �t�U� # ���`���

�*�t�«�����`� � �a���t «�È�t�«�����Õ��§^°t��¤ +3
���U§��`�U� � �^�W�t «�6�p§^°t��¤2+=�
�^¤W�`¤ � �W�Ì�^¤[�`¤ � �W�

�p�� ���`�a� ¨ ���[�a¤2�= U¡ �� /¨J§¯� Ì a�
���`�a�t� "Ú�[�a¤2�= U¡ �
Ì§t� ��£ 0�0��`�W��ªt� � �£å�,+^�^�[� "Ú�U¥[£ �J£=¤[§È£o�,+��I���`���t� 0�0[�^�W�`¤^�I£o��+��
�t�[±6�^¤W��¥[£ "Ú�U¥[£
�J£¯¤[§����[� 0��Õ [�[�`���t�[±��½���^¤W�W¥[£Ú�^¤W��¥[£ À���`�a�t��

�p�
������±��¼£o�,+^�a�[�Ó���[± 0�02�`�[��¥ ���6¤ �`���a�^�

��� �B 0������`�[�¢¨��	5�5 ���U¡t�[ª ���`���t� �

Î/klq ~ gYn��^��Ø#n�Vz¿QXWgi×jnpuzVYk�hjR«VYX[gp�

]xR[uin@X�cËR �`���^�^�&Vi_tkluÄÂ=n�_tRUwaklX ~ g�kSu�ViX¾gYn8V ~ gYZ#��nxgiX�klZ^Ç
cfXWgihjR«VYk�XWZår«»`gYX[ÂtR[Â`klP�k�VzT�X[Ztn[r«cfXWg�Z`X[Z^Çeuin�Plnx]|VYnxº�w«R�gYklR[Â`P�npu�r
kE� nW�¯Vi_`nxTÑR[ginÄVYR[×[nxZ¾VYX&Â=n@R�PlgYnxR[º`T�×�ZtX«¿<ZåråX[gCVYX�Â�n�X[c
Z`X�klZ�Vin�gYnxu­Vx�
 W��¤t���"±��`���a�` «�Ì�6ª�¡t� �`�
���^���t «�(¨�¨ � *`�a�^�$
 0��È� 0��È�
���a�
} u�º^kSui] ~ uYu­npº6klZÕuinx]8ViklX[Z �`� mtrC]8PSR[uYu � §��t�U�=�In�Ò^klu­VYu

cfXWg�»tR�giVik�ViklX[Z`klZ`qÓº`R�VYR�ÇJui»tR[]�nxu o º^kSui]�gin�VinWrC]�X[Z�ViklZ ~ X ~ u�rh ~ PyVYkyÇJw«R�gYklR�Vin¦X[g�¿<_�R«Vinxw[nxg�X�Vi_tn�g�º`R�VYR�ÇJui»tR[]�nxu2R�gYn<hjR[º^n
klZtu­VYR�Z�]8nxuÅX�c�kyVp� } Z`n�¿]�PlRWuiu � §��`�U�=����r<k�Ztui»`klginpºÓÂaT
±��`�����t «�¯rU¿¢RWu�º^n8ÆtZtnxº��fk�VQ]�X ~ PSº�»�nxgi_�R�»tu2Â=n<cfX[PSº^npº�k�Z�ViX
]�PlRWuiu � §t�t�U�=�[�NViX�R�PlP�X«¿Óui»`PlkyViViklZ`q�XWZÐXWZ`P�T@uin�Plnx]8Vinpºjw«R�gYkyÇ
R[Â`P�npu��
 W��¤t��� � §��t�U�����½���¼ªa¡t� �`�
�p§��t�U� � �^���t «� ¨a¨ � *t�a�^��
 0�� � �t��
 0�� � � §��^�U���`� �È�t��

,
�� � ¸ â ä �¬ç â
 � çÙµxµpç â
 � ¸^¶p¸
m¦_`njPlXWu­V�»=n�g*u­XWZÀº`R«V*R�u­n�V�klu�º^k <@] ~ PyVÄk�ZI_tRUwaklZ`q�hjR�ZaT
h�kSuiuik�ZtqÐw«R�P ~ nxux� s X�uzV�º`R«V*RÐ_�RUw[n�R�V�PlnxRWuzV�X[Z`nÄh�kluYuik�Z`q
w«R�P ~ nWr`R�ZtºÅu­XWhÄnC_tRUwWnÊuin�wWn�g*R�PE� � w[n�gYT�w«R�gYklR[Â`P�n�kSu¦hÄkSuYuzÇ
klZ`q�k�Z�u­XWh�nQº`R�V ~ h���ÞËRWu­×Wn�PlP�R[P�gYnxRWº^TC_tR[uNVi_tn¢kSº^npR�P�VzTa»�n
VYX�ginx»`gYnxuin�Z�V�»=XWuYu­klÂ`PlT�h�kSuiuik�Ztq�w«R�P ~ nxux� �`¤W���t�t�/Ø#nx¿ÌX[»^Ç
nxgYR�ViX[g*u¦¿¢n�gYn�k�h�»`Pln�h�n�Z�VYnxº�VYX@n8ÒaVinxZtº�R[giÂ`k�Vig*R�gYTÐu­VYR�VikSuzÇ
VYkl]xR�P¯h�Xaº`n�PSu�VYXÄ]�X«w[nxgQ»=XWuYu­klÂ`PlTjh�kluYu­klZ`qÄw«R�P ~ nxux� l R«VY_`n�g
VY_tR�ZÚ]8PlnxR[Z`klZ`qÈVi_`n"º`R�VYR o º^nxP�n�ViklZ`qÓº`R«V*R½¿<kyVY_ hÄkSuYuzÇklZ`q�w«R�P ~ npu o XWg�k�h�» ~ ViklZ`q �¬ginx»`PlRW]8klZ`q���hÄkSuYu­klZ`q�w«R�P ~ npu�rh�kSuiuik�Ztq�ÇJZ`nxuYu¢klu¦Â ~ k�P�VËklZWVYX�X ~ g<h�X^º^n�PE�Î ~ Zt]8ViklX[Z�£¯���^�a�2�`¤W���`�Ã£'�¾£!�Úh�klq[_�V¼Â=n6]�R[P�PlnxºøR
fi_`k�qW_^ÇJX[g*º^n�g"h&c ~ Zt]8ViklX[Z½X[Z hÄX^º^nxPlu�Â=nx]xR ~ uin&kyV@R[]8VYu�XWZh�X^º^n�PSu@¿<_tkl]*_6R[ginWr<kyc�Z`X�VÐPlk�Vin�g*R�PlPlT c ~ Zt]|VYk�XWZtu�rË»`giklZt]�kyÇ»tR[P�PlT&h�RWº^n ~ »¾X�c�Vi_tn�h��#dJVËV ~ gYZtuÊR[Z¼õ«ò=7�èêîÙòYõ«ò���h�X^º^n�PEr£!��r«X�c=Z`X[Z^ÇJh�kluYuik�Z`qCº`R�VYR�X�c�VzT�»=n¦��klZWVYX�Vi_`n<]8XWgigYnxui»=X[ZtºaÇklZ`qÀh�X^º^n�PÊX�c �^¤W���t�½�¯��dJVÅginpÛ ~ k�gYnxujRIh�X^º^n�PEr�£'�WrQX[c
*t�a�^�`rWcfX[g<¿<_tn8Vi_tn�g¦Vi_tnCºtR«VYR�kSu¦»`ginpu­nxZ�V��Ùmog ~ nU��XWg¦hÄkSuYuzÇ
klZ`q��¬Î�R�PSu­nU�|�
���������! �"$#$%��&�(')�+*&,
�$�$-
.��$/�0���/�1�2�354�687!-:9+;<,=.>��1�2?�('<@�2$6��:A&.>��1�2&�+*&9
.��$/�0���/�1�2CB���-$D�EF.�/G,=.>��1�2?�('IH�"���7��
EF.: �.>��1�2J3K�L7!/+'M�('<AN�L7!/+'M�+*8;I.��$/�0���/�1�2

O�O�O 7PD>�!Q=�+�$-$D>���R�F�(E
-�-��$�
�����[±��ÑkluÄR¾]�X[Ztu­Vig ~]8ViX[g�cfX[g�R�VzTa»=nÅklZ¼]8PSR[uYu �^���^�^�tÍ�kyV
V*R�×[npuNRËh�nxuYuiR[q[n�Pln�Ztq�Vi_or[R#Z`nxqWR�Viklw[n�PlX[qÊP�kl×[nxP�kl_`XaX^º�c ~ Z�]|Ç
VYk�XWZår`R�Ztº�R�º^npui]�gikl»^ViklX[Z&¿<_`kS]*_&ui_`X«¿#u¢VY_`n�h�Xaº`n�PE�

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

107

m¦_`n�gYn�PSR«VYnxº _`k�qW_^ÇJX[g*º^n�g�c ~ Zt]8ViklX[Zår#�t�«���`���^�^� �`¤W���t�
R[]|V*uIX[ZÉnxu­Viklh�R�ViXWgYuxÍ�kyVIV ~ giZtuÀR[ZÉnpuzVYk�hjR�ViX[gIX[cÅZ`XWZ^Ç
hÄkSuYu­klZ`q@º`R�VYR�klZWVYXjVi_tn�]8XWgigYnxui»�XWZtº^klZ`qÄnxu­Viklh�R�ViXWg#¿<_`n�gYn
Vi_`n�º`R�VYRÄhjRUT@klZt]8P ~ º^n�h�kSuiuik�ZtqÄw«R[P ~ npu��
�`�«���`���a�^�2�`¤W�$�t�È�t�U���`���^�a� �^¤W�`¤ � �W� "
���W�
§ �`�`�[�[�^� ���«¥¯�«��
� " ���W¥t�
§ �`�`�[�[�^���`�[��¡b�p� + "�°`¤a�`�[�
£'�#"Ó¥��b�«�^� �«£ �`���^�a�!
W�$*t���a�
£!� "Õ�`�«���`���a�^� �J£¯¤[§ ��� ����¥¯�«� �! 20����3

�Y�=�[���`� �È§ �^�t�[�[�^�Ó�a¤W�`¤ � �[�! �
�p�Ì£=���^�^�2�^¤W���t�Ñ£'�Ñ£)�
m¦_`klu#klu¦Z`X[V<Vi_`n�uYR�h�n�R[u ~ u­VË]8X^º^klZ`qjh�kSuiuik�Ztq�ÇJZ`nxuYu¦R[u<R
fiui»�np]8kSR�P`hÅw«R[P ~ nÐÂ�np]�R ~ u­n�k�V�klu�Z`X�V�npuzVYk�hjR�VinxºÃ¿<k�Vi_IVY_`n
q[klw[n�Z�º^n�ÆtZ`k�ViklX[Z�X�cå£'�[�
deZ&Vi_`n�»tginpu­nxZWV#R[»`»`Plkl]xR«ViklX[ZÅVi_tn�hÄkSuYu­klZ`q�ÇJZ`npuiu¢X�c2w«R�P�Ç

~ nxuÐklu@]�n�giVYR[k�Z`PlT¼ZtX[Z^ÇJgYR[Ztº^XWh;cfX[gÐuiX[h�n�w«R�gYkSR�Â`Plnxuxr�cfXWg
n8Ò`R�h�»`Pln���+`�ÃkSu�X�cêVYn�ZÈZ`X�VjgYnx]8XWgYº`nxº"ÂaT¼uinxR[gY]*_¼VinpR�hju
cfX[gË]xR[uinxu<X[c 	 � � �2�¢¨a¨ �¯�x§t���2Þ#X«¿¢n�w[nxg<¿Qn�R[ginCZ`X[VËklZWVYn�giÇnxu­Vinxº�klZ�h�X^º^n�PlPlk�Z`qjh�kSuiuiklZ`q�ÇJZ`nxuYu<klZ�Vi_`kSuÊ»`giXWÂ`Pln�h�Ítk�VËkSu
]8X[h�h�X[ZÀ×aZ`X«¿<Plnxº`q[n[�&Þ#nxZt]8nÐR&ÆtÒanpº ~ ZaÂ`kSR[uinxºÃh�Xaº`n�PEr
£ �WråkSu ~ uinxºÃR�Â=X«w[n�ViX f­»tginpº^kl]8V4hÅh�kluYu­klZ`qÀ� �`�W��¡b�x� +`�<XWg
»`ginpu­nxZ�V�� �«¥¯�«�¯���l�ý�|��m¦_tn�cfXWP�PlX«¿<k�Ztq&º^n�ÆtZ`k�ViklX[ZÃX�c�£ ��]xR�Z
Â�n ~ uinxºÐk�Ztu­VinpR[ºÐkyc/kyV<kSuQZtnx]8npuiuYR�gYTÄViXÄnxu­ViklhjR«Vin�h�kluYuik�Z`q[Ç
Z`nxuYu��
£'�#"Õ�`�«����¥����¯� � �`¤[�`� �J£=¤[§Ó§ �`�t�[���^�Ì�^¤W�^¤ � �W�!
deZjR[º`º`kyVYk�XWZ�VYX�h�X^º^nxP�Plk�Ztqtr�h�kSuiuik�Ztq�w«R[P ~ npu�R�PSu­XCR2d¯nx]8V

u­»`Plk�VYuxr¯Vi_tR�VCkSuÊ»tR�giVik�ViklX[Ztu�X[c$Vi_`n�º`R�VYRÃ�¬uinx]|VYk�XWZ¾�`� m��8� }
u­klh�»`P�n<u­Vig*R«VYn�q[T�kSuocfXWg/Vi_`n¦w«R�gYklR[Â`Pln$ViX�Â=n¢ui»`PlkyV$R[uocfX[g/VY_`n
~ Ztº^nxgiPlTak�Z`q�VzTa»�nCÂ ~ V#¿<kyVY_&R[ZÐn8ÒaVYgYR�X[»^VYk�XWZÐcfXWg¦hÄkSuYu­klZ`q
� �`�W�W¡b�p� +`�C]�R[uinxux� eËVY_`n�gÄu­»tP�k�V­VYk�Z`qIu­Vig*R«Vinxq[klnxuxr2Z`X�VÄn8ÒaÇ
R�h�k�ZtnxºC_`nxginWrp]�X ~ PSºÊVigYTËVYX<»`ginpº^kS]|VoklZ�w«R�gYk�X ~ u¯¿¢RUT^u¯¿<_tR�V
Vi_`n#h�kSuiuiklZ`q�w«R�P ~ n[rWX[g$k�VYu$º`klu­VigYk�Â ~ ViklX[Zår�gYnxR�PlPlT�klu�R�Ztº�R[]8V
X[ZÈVi_tR�Vx�Óm¦_`nxgin�R[gin�RÃq[gYnxR�V�hjR[Z�T¼»�X�uiuik�Âtk�PlkyVYk�npujR�Ztºår
Vi_`kSu�Â=n�klZ`qÃR�ZÀn8Ò`R[hÄ»tP�nWr/¿¢n ~ u­V�qWk�wWn@X[Ztn@ginpR[uiX[ZtR[Â`Pln[r
u­klh�»`P�n�R[»`»`gYXWR[]*_@Vi_tR�V¦kSu<u ~ <@]8kln�Z�V¦cfX[g¦Vi_tnCR[»`»`Plkl]xR«VYk�XWZå�

,�
 � � ç�� � ä � ¸ �
� µxçÙ¸ â 01� ¶32�ãt·��åµÀ¸ â äø¶�� � � ã�µx¶
� � ·«µpã â 01� ¶32�ã�·��

m¦_`njc ~ Zt]8ViklX[Zår��t�«�"�`�W��ªt�2� � �êÆ�q ~ gYnÐ�[�8rocfXWg�k�Z`cfn�gYgiklZ`q�RÖ¢RUTWnxuiklR[Z�Z`n8Vz¿¢X[gY×ÐkSuËqWk�wWn�Z�Rj»=n�gYh ~ VYR«VYk�XWZår¯R�ViX[VYR�PNX[giÇ
º^n�gYk�Ztqtr2X�c¦Vi_tnÅuin�Plnx]|VYnxºÀw«R[gikSR�Â`Plnxu�Vi_tR�VÄR�gYnjVYX�Â�n&]8XWZ^Ç
u­kSº^n�gYnxºåÍ¯RÐw«R�gYklR[Â`P�n�hjRUT�Â=n�º^nx»�nxZtº^n�Z�VCX[Z�Z`XWZ`n[rbuiX[h�n
X[gIR�PlPÄX[cjVi_`n½w«R�gYkSR�Â`Plnxu¾»`ginp]8npº^k�Ztq6k�VÃklZÔVY_`n½»�nxgih ~ Ç
VYR«VYk�XWZå�Ém¦_tn ~ uin¾X[c�ViX�V*R�PÊX[gÐ»�R�giVikSR�PËXWgYº`n�g*u@X[ZÌw«R[gik�Ç
R�Â`Plnxu¾klu¾Z`X�V ~ Z�]8X[h�h�X[ZÚklZÚZ`n�Vz¿QXWgi×�P�npR�gYZ`n�g*uÀ� Ý XWgiÂ
t Ø#kS]*_`XWPluiX[Z½���[�nm��8�ÀdJV�kSuju ~ <@]8kln�Z�V�cfX[gÄVi_`kSujR�»t»`P�kS]�R�Ç
ViklX[Z"Â=nx]xR ~ uinÅR�»tPlR ~ u­klÂ`PlnÐXWgYº^nxgiklZ`q�X[c<Vi_`n&w«R�gYklR[Â`P�npu�kSu
c¬R�klgiPlT�X[ÂawaklX ~ u�Â ~ VprNklZÃ»`giklZt]�k�»`Pln[rNkyV�¿¢X ~ PlºÑÂ�nj»=XWuYuik�Â`Pln
ViX uinxR[gY]*_½X«wWn�g@»=n�gYh ~ V*R«VYk�XWZtu��-\ ~]*_6R"uinxR[gY]*_Ì¿¢X ~ Plº
tRUw[n¦VYX�Â�nË`n ~ gYkSuzVYkl]<k�c¯Vi_`nxginË¿Qnxgin<hjR�ZaT�wUR[gikSR�ÂtP�npu�r[R[Ztº
k�Z^cfXWgihjR�ViklX[Z&Vi_`nxX[gYTÐº^XanxuËu ~ qWq[npuzV<u­XWh�n�_`n ~ gYkSuzVYkl]xu�r`Â ~ V
Vi_`nËuiklhÄ»tP�nËR[P�qWX[gYkyVY_`h�º^Xanpu�Z`X�V¢º^XCVi_`kSu$R[ZtºÄVi_`nË»�nxgih ~ Ç
VYR«VYk�XWZ�klu<] ~ gigYn�Z�VYP�TjV*R�×Wn�ZÅViX�Â�n�]�X[h�h�X[Z&×aZ`X«¿<P�npº^q[nW�
deZ�VinxgiZtR[P�PlTj�`�«�!�`�W�Wªt� � � ~ uinxu�Vi_`nÊnxu­Viklh�R�ViXWg$cfX[g¢]8PSR[u­Çu­k�Æ�]�R�ViklX[ZÅVigYn�npu�� } PlP�kSuiX[Z����W�[�W�8ra�t�«� # ���`�a��r[VYXjº^X�h ~]*_X�c�Vi_tnÑ¿¢X[gY×¯�Ôm¦_`n¾gYn�hjR�klZtº^nxgÅ]�X[Ztuiklu­VYuÐX�c�XWgiq�R�Z`kSu­klZ`q

u­nxP�np]|ViXWgD��R[qWu��Ùu­np]|VYk�XWZÓ�`�ý�[�j]�X[gYginpu­»=X[Ztº`k�Z`qÃVYXÀVi_`nÃR�P�Ç
P�X«¿¢nxºÐ»tR�gYn�Z�VYu�cfX[gQVi_tnC]*_tk�PSº@klZÐVY_`nC] ~ gYginxZ�V¢Z`X^º^nW��Ø#X�VYn
Vi_tR�VÐVi_tnÃ�^¤W�`¤ � �W�¼uin�nxh�u@ViX Â�nÑ»tR[uYu­npºÈViX �t�«� # ���`�a�
Vz¿<kl]�n[rQRWuÄÂ�X[Vi_ Vi_`n�klZ`» ~ V@R�Z�º¼X ~ Vi» ~ V�w«R[gikSR�Â`Plnxu o kyV*uVi_`klgYºÈR�Z�ºÀcfX ~ g­VY_¼»tR[gYR[hÄn�VinxgYux�"Ö ~ VÄk�VYuÄÆ�gYu­V�R[Ztº¼uinx]8Ç
X[Ztº�»tR�g*R�h�n�Vin�g*u ~ u­nIu­Vig*R�klq[_�V­cfXWgi¿¦R�g*ºÌR ~ Ò^klP�kSR�gYTÈc ~ Zt]8Ç
ViklX[ZtuÄ�p�^�������`��¤2+=�^rt�t�«�����`� � �a���t «�@R�Ztº"�U§t�t�U� � �a���t «�¯rViX ��R[qjVi_tn�]*_`klPlºÀ�¬X ~ VY» ~ V*�<ViX@Â=n�»tginpº^kl]8Vinpº�Â�TÅVi_tn�P�npR«c
nxu­Viklh�R�ViXWg2R[Ztº�Vi_`n¦»tR[ginxZWV*u¦�fklZ`» ~ V|�NViXCÂ�n ~ uinxº�cfX[g�ui»`PlkyViÇ
ViklZ`q@R[u<R[»`»`gYX[»`gYklR�VinCR«V<nxRW]*_ÅZtXaº`n�k�Z&Vi_tn�Z`n8Vz¿¢X[gY×¯�
Î`XWg�PlXWu­V�»�nxgYuiX[Ztuxråw«R�gYkSR�Â`Plnxu���VYX��trN��+`��r �`¤t ���R[Ztº

�a�[�`�^� �"]�R�ZtZ`X�VprQklZÓRI]�R ~ uiR[P#u­nxZtu­nWr¢º`n�»=n�Ztº½XWZÈX[Vi_`nxg
wUR[gikSR�ÂtP�npu�R�Ztº ui_`X ~ PSº]8XWhÄnÃÆtg*u­Vxr�klZ uiX[h�nÀR�gYÂ`k�Vig*R�gYT
X[g*º^n�gpr�uiRUT Ay�Wr �`r � CE� �¯�p§t�È»`gYX[ÂtR[Â`P�TÕº^n�»=n�Z�º`u�XWZÕXWZ`n

Age

Urban

HrsNt

GenderRace

Topog’

Tipe

DistIPP	

Î/klq ~ gYn��`� � X�uzVË÷2nxgYuiX[ZÅØ#n8Vz¿¢X[gY×��W�

XWg@h�X[gYn�X�cCVi_tn�h�r<cfX[gÅn8Ò`R�h�»`Pln�Vi_tn�gYnÑR�gYn�cfn�¿�TWX ~ Ztq
} P��x_`n�klh�n�g*uj]�R[uinxux� �`�[§`� +��`¤[§�¡^�IR�Ztº&� ���t¤��¼]xR�ZÌuin�Z^Ç
uik�ÂtP�TI]8XWhÄnÐZ`n8ÒaVxr�R[ZtºIX[Z`nÐn8Ò^»�np]|V*u�R�gYn�PSR«VYk�XWZtu­_tk�»IÂ=n8Ç
Vz¿¢n�nxZ�Vi_`nxh���m¦_tR«VCP�npRUw[npu 	 �=� �a��R�Ztº�ÆtZtR[P�PlT �=���«�¯²U±�±VYX�h�R[×[n ~ »ÅRC»`PlR ~ uik�Â`Pln#XWgYº^nxgiklZ`q�r�Ay�Wr��`rW�`r��`r mtra�^rW�tr���CEr
X[c`Vi_`nQÆtg*uzV2n�klq[_�V2w«R�gYklR[Â`P�npu��/m¦_`n�gYn¢klu2R�PSuiXÊRÊZtR«V ~ gYR[PWZ ~ PlP
aTa»�X[Vi`npu­kSu2¿<_`kS]*_jh�Xaº`n�PSu2Vi_`nËwUR[gikSR�ÂtP�npu2k�Ztº`n�»=n�Ztº^nxZ�ViPlT[�
m¦_`n�]�Xaº`nCViX�g ~ ZÅVY_`n�klZ^cfn�gYn�Zt]�nCklu<ui_`X«¿<Z&Â�nxP�X«¿��
�^¤W�`¤ � �W� " �`�a¤�� ���^�a¤���°¯����� ��¡t�2�`¤W�`¤W°=�[���

¨a¨ � �¯���a�a�p� +a±`�2�=�[�[��
 0�0t�x�a§a¥^�
�aª " �t�U�!�`�W��ª`� � � � ��(5�/(��'(/(���('/(��/(%�

�`�«���¯�����^�p� +a±^� �=�[�[� �^¤[�`¤ � �W� 0�0p£=���^�^�
�a¥��a� �`���^�^�#" �t�U���¯���a�a�p� +a±`�2�=�[���È�^¤W�^¤ � �W�

ÎNklq ~ gin��jui_`X«¿#u¢Vi_tn�Ætg*uzV#Z`n�Vz¿QXWgi×Ðk�Z^cfnxgigYnxºÅcfXWg#w«R�gYkyÇ
R[Â`P�npu���ViX �aÍWVi_tn<Z`X^º^n<»tR�g*R�h�n�Vin�g*u2R�gYn¦k�Z^cfnxgigYnxºÄÂ ~ V$Z`X�V
ui_`X«¿<Zå�

�=�p§t��º^n�»=n�ZtºtuQu­VigYX[Z`qWP�T�XWZ@��+^��R�Z�º@R�PSu­X�X[Z �^�[�`�^�2�
R[Ztº �`¤t ���� } uÈn8Ò^»=nx]|VYnxºbr�� ���t¤��>kSuÈº`n�»=n�Ztº^nxZ�VÈXWZ
�`�[§t�2+��`¤[§a¡a�¯�;m¦_`nxgin kluÃu­XWh�n º^klginp]|VÀº^n�»=n�Z�º^n�Zt]�n¼X[c
�¯���«�=²U±a±ÌX[Z 	 �=�����¯r�R�Z�º X�c�Vi_`n¼PlR�V­Vinxg�X[ZÚ��+`��r�Â ~ VVY_`n�gYnQuin�nxh�uåViXÊÂ�n¢Z`XÊu­VigYX[Ztq#»`gYnxº^kS]|VYX[goX[c �¯�W�«�¯²U±a±#cfgYX[h
X[Vi_`nxg<wUR[gikSR�ÂtP�npu��2m¦_`n�h�X^º^n�PbkSu#uik�qWZ`kyÆ=]�R�Z�V<¿<k�Vi_�R�ViX�V*R�P
Vz¿¢X�ÇJ»tR�giVQh�npuiuYR�qWnÊPln�Z`q[Vi_år`cfX[g¦Vi_tnÊÆ�gYu­V#n�klq[_�V<w«R�gYklR[Â`P�npu�r
X[c¦�[�`�p�@Z`kyV*u�R�q�R�klZtuzV��[�[�[�ÐZ`k�VYu ~ Ztº`n�gCVi_tnjZ ~ P�P�h�X^º^n�PE�
eËVY_`n�g�R�ZtR[P�T^uinxu�¿QnxginÐVigYk�npºbr�cfX[gÄn8Ò`R[hÄ»tP�n&R�PlP�X«¿<klZ`q¾XWg­Ç
º^nxginpºÅ�
2�a�^�/ui»`P�k�VYu2XWZ �^�[§t� +��^¤[§a¡^�ÊR[Ztº � ���t¤[�¯r«klZ�»`PSR[]8n
X[c�*`�[¥a�`�^�W� .��a¥[£Ðui»`PlkyV*u�Í�VY_`n�]�X[Zt]�P ~ u­klX[Ztu�¿QnxginÊÂ`gYXWR[º`P�T
uik�h�klPlR[gx�

qÌ_`n�Z �¯�x§t� ¿¦R[u+R�PlPlX«¿Qnpº ViX ui»`PlkyV R[]x]8XWgYºaÇ
klZ`q ViX �[�W� � §��t�U��� ��� �t� �W¡t���8£=� �=��
 (� # ¡¯�[�W��
�

�Ùu­np]|ViklX[Z �`� m��8r Vi_`n klhÄ»tP�kS]8k�V]8XWhÄ»tP�nxhÄnxZ�V+Â=n�klZ`q
� �`�t�p§t�[�`�^���^�¢�a�a�
�rNVi_`n�Plk�Zt×ÀcfgiXWh!��+`�ÑViX 	 �=�����I¿¦R[ugYn�»`PSR[]�nxº¼Â�T RIP�klZ`×ÀcfgYX[h �¯�p§t�½�f¿<_`kS]*_½kyV*u­nxPyc�º^nx»�nxZtº`u
u­VigYX[Z`qWP�T&X[ZÑ��+^�a�<cfX[gCRÅuYRUwak�Z`qÐX�cQ�ÅZ`k�VYu�X[Z¾Vi_`nÄh�Xaº`n�P
R[qWR�klZtu­V"R P�X�uiuIX[c��t� ��Z`k�VYu"X[Z-Vi_`n�º`R«V*Rø�êÆtq ~ gin �[�|�
ÞËX«¿Qnxw[n�g�VY_`klu�u­hjR�PlP�Z`n�V�qWR[k�ZIu­_tX ~ PSºÃÂ�n�V*R�×[nxZÑ¿<k�Vi_"R
Â`klqj»`klZt]*_�X�c$uYR�P�VËR�Ztº&hjRUTÐ¿¢n�PlPoÂ=n�º ~ n�ViXjVY_`n�»tR�V­VYn�gYZ
X[cNh�kluYuik�Z`qjº`R�VYR�R[u¦h ~]*_�R[u<R[Z�T�VY_`k�Ztqt�
} u�R�Æ�ZtR�P�n8Ò`R�h�»`Pln[rWhÄX^º^nxP�PlklZ`q�R�PlPo�U��w«R�gYklR[Â`P�npu2qWRUwWn

VY_`n<Z`n8Vz¿¢X[gY×�ui_`X«¿<Z�klZÄÆtq ~ gin¦�`ÍWwUR[gikSR�ÂtP�n �¯�p§`��_�R[u2Â=n�n�Z
º ~ »`P�kS]�R�Vinpº�cfXWg�nxR[uinÄX�c¢º`gYRU¿<klZ`qt�Äm¦_`n�n8ÒaVig*R&w«R�gYklR[Â`P�npu�r
��ViX��;mtr`R�gYn[�
���`¤t �
W�a�����W�&�¬]8XWZ�ViklZ ~ X ~ u*�|r
	 �a¤^����¡ "	�`�^�a� 8 	 ¥ �a� 8 �`�a¤��=r

�¥^�= ��U£¯� "Ó°¯�p�`��8 � ¥¯�U§`�[�`�^��� 8�²p��&`¤^�t�«��r
°¯�p�`���`�t�#"����`�[¥��`��8<�=��� 8<�^�` [¤^� 8<�^¤[ª 8 �^� +¯r

CRPIT Volume 48

108

Race Gender

Tipe

Age

DistIPP

Urban

HrsNt

Topog’

ÎNklq ~ gin �a� � XWu­V#÷2n�g*u­XWZÐØ#n�Vz¿QXWgi×Å�`�

°=�p�`�a�^�` ""* �W¥¯�U¡ 8 �t�a�����18<°¯���^�[� $ �t¤[�`� � $
���p�t�a¤ � $ ��¡b�p��+¯r
	 �=�«°¯�p�^���Ù]8X[Z�VYk�Z ~ X ~ uY�8r
	 �=� �`���¬]�X[Z�ViklZ ~ X ~ u*�|�m¦_`nxuin�n8ÒaVig*R�wUR[gikSR�ÂtP�npu<]�R�Z�R�PlPbÂ=n�hÄkSuYu­klZ`qt�

,�
�� ��ã�� � ¸`·UçÙµxã â µ
qÑnx×UR��GqÌkyViVin�Z tÔÎtgYR[Z`×��x�W�[����¿<_`kS]*_ÅkSu¢ÂtR[uinxºÐX[Z]pWRUw«R
klu&»=n�gY_tR�»tuÅVY_`nÃuiT^uzVYn�h]�P�X�u­npuzV&ViX Vi_`nÃ»`gYnxuin�Z�V�¿QXWgi×¯�
qÑnx×URtÏ uËÖ¢RUTWnxuiklR[ZÐZ`n�Vz¿QXWgi×^u fiRWuiu ~ h�n�Vi_tR�VËR�PlPbw«R�gYklR[Â`P�npu
R�gYnQº^kSui]�gin�Vin�h��ÙÖQX ~]*×«R�nxg­V����[�nm��¯»o�[�[�#R[Ztº�fYR#Plk�h�k�VYR�ViklX[Z
X�c$VY_`nÄ] ~ gYginxZWV�]8PSR[uYu­npu#kSuËVY_tR«VÊVi_`nxT�R[uYu ~ hÄn�Vi_tR�VËVY_`n�gYn
R�gYn�Z`X"h�kluYuik�Z`qÀw«R[P ~ npuOh6�¬Ö¢X ~]*×«R[n�giV@�[�[�nm��Ä»å�¦���`�ÕdeZ
qÑnx×URtr�]8X[Z�VYk�Z ~ X ~ uCw«R�gYklR[Â`P�npu�h ~ uzV�Â=nÐº^kSui]�gin�Vik@��npº¾Æ�gYu­V
R�Ztº&_`X«¿ÌVY_`kSu<klu<º`X[Z`nChjRUTÐR2d¯nx]8V<Vi_`n�ÆtZ�R�PågYnxu ~ P�Vx��ÜËkSu­Ç
]8gYn8Vik@�xR�ViklX[ZÄklu ~ Z`Z`np]8nxuYuYR�gYT�k�ZÄdz÷ÃcfX[g�h�X^º^n�PlPlk�Z`q�R[Ztºbr�cfXWg
u­»`Plk�V­ViklZ`q�r�kSuQ»tR�giVQX[cbVi_`n�Z`n8Vz¿¢X[gY×ÄX[»^VYk�h�k@�xR«VYk�XWZÐR[uQR�ÂaT�Ç
»`giX^º ~]|V<X�c ~ u­klZ`qÄX ~ g<]8PSR[uYuikyÆ�]xR«VYk�XWZjVigYn�npuÊ�Ùu­np]|ViklX[Z��`�ý�[�8�
s kluYuik�Z`q[ÇEZtnxuYu2¿¢RWuNÂ ~ k�P�V�klZ�ViX�Vi_`n<h�X^º^nxP`¿<_`n�Z�Z`np]8npuiuYR�gYT
�¬uinx]|VYk�XWZ��`� �W�|�
m¦_`nxginjR�gYnjº^kSuzV*R�Z�V�u­klh�k�PSR�gYkyVYk�npuCÂ�n�Vz¿Qnxn�ZÃdz÷ R�ZtºÑk�Z`Ç

º ~]|VYk�wWn PlX[qWkl] »`gYX[qWgYR[hÄh�klZ`q��¬d � ÷Q�8��m¦_`n�gYn¼_tRWuÃÂ�nxn�Z
u­XWhÄnQk�Z�VYn�gYnxu­V/klZ�VY_`n ~ u­n¢X�ct]�X[h�»`Pln8Ò^kyVzT�ÇJÂtR[uinxº�hÄnpR[u ~ gYnxu
k�Z�d � ÷Õ�JOQX[Z`×aPlk�Z t qÌkyViVinxZÀ�x�[�nmtr`\agYk�Ztk�w«R[uYR�Zor s ~ q[qWP�n�Ç
ViX[Z_tÚÖ¦R�klZ��x�[�nm��2Â ~ VQVY_`kSu¢RWu­»=nx]8VQX[cåd � ÷"kSuQP�npuiu¢º^n�wWn�P�Ç
X[»=nxº�Vi_�R�Z�¿¢X[gY×#X[Z s�s�� �xm¦_`n�»tgiXWq[g*R�h�h�n�g¯kluok�ZawWX[Plw[nxº
k�Z�VY_`n�º^npu­klq[Z�X[c/VY_`n�uinxR[gY]*_�R�Plq[XWgik�Vi_`h �¬uinx]8ViklX[Z��`� ���¢klZ
dz÷ÚViXIR�qWginpR«VYn�g�n�Ò�VYn�Z�VÄVi_tR[Z"k�Z d � ÷2rNVzTa»`kl]xR�PlP�TIklZ¼º^n�Ç
u­klq[Z`klZ`q�Z`nx¿6h�X^º^n�PSu<R�ZtºÅnxu­ViklhjR«VYX[g*u�Íak�V¦kSu¦klZ^cfnxRWu­klÂ`PlnÊVYX
_tRUw[n&R�w[nxgiTÃq[nxZ`n�g*R�P¢u­npR�g*]*_ÀX«w[nxg�ViXaXÑPlR[giqWnÅR¾]�PlRWuiu�X�c
]8X[h�» ~ VYR�ÂtP�n�u­VYR�VikSuzVYkl]xR�Pbh�X^º^n�PSu��
} h�X^º^n�P�klZÑdz÷2rb»�R�giVikS] ~ PSR�gYP�T�XWZ`nÄVi_tR�VCkSu ~ uinxºÃR[u�R

]8X[h�»=X[Z`nxZ�V�X�c¦X�VY_`n�g�h�X^º^nxPlu@�fÆtq ~ gin@���|r/h ~ u­V�Â=nÐR�Â`Pln
ViXÄ_tR�Ztº`P�nÊn8ÒaVigYn�h�nCº`R«V*R�uin8VYux��Î`XWgQn�Ò^R[h�»`P�n�R�Ö¦RUT[npu­kSR�Z
Z`n8Vz¿¢X[gY×�h�RUT@]�X[Z�VYR[k�Z&u­nxw[nxgYR[P`VigYn�npu¦R�ZtºÐnxR[]*_ÐVigYn�n�hjRUT
]8X[Z�V*R�klZ�uin�w[nxgYR[PCP�npR«c�º^kSu­VigYk�Â ~ ViklX[Ztux� eÊZtnÑXWg&h�XWginÃX�c
Vi_`X�u­n¢P�npR«c¯º^klu­VigYklÂ ~ ViklX[Z�uNhjRUTCÂ=n¢qWk�wWn�ZÄRËu ~ Â^Çeu­n�V/X[c=º`R�VYR
Vi_tR�VQkSuRf ~ Z ~ u ~ R[PLh o »=n�gY_tR[»tu$]8XWZtuiklu­ViklZ`q�X�c� ~ u­V¢R�u­klZ`q[PlnkyVYn�h�� s�s�� klZtuiklu­VYu�Vi_tR�V�n�w[nxgiT�h�X^º^nxP$n	d¯nx]8VYu�R&w«R�Plklºår
º^nx]�XaºtR�Â`Plnjh�nxuYuiR[q[n��fklZÀ»`giklZt]�k�»`Plnp�CuiX�Vi_tn�gYn�]xR�ZIÂ=njZ`X
~ Ztº^nxgYu­VYR�ViklZ`qCX�c=R�h�X^º^n�PEÏ u�]8X[h�»`Pln8Ò^k�VzT[� } �¬u ~ Â^Çz�oh�X^º^nxP
h ~ u­VËq ~ R�g*R�Z�VinxnËVY_`kluxr`XWgËR«V<VY_`n�w[nxgiT@PlnxRWuzV#g*R�kSuinCR[Z�n8ÒaÇ
]8n�»`ViklX[ZÐk�cok�V¦]xR�Z`ZtX�Vx��m¦_`kSuQ»`giklZt]�k�»`Pln�×[n�nx»tu ~ uNfi_`X[Ztnxu­V4h
R�Ztº¾n�Ztu ~ gYnxuÊVi_tR�VÊVY_`n�ViX[»`ÇEPln�wWn�P2h�Xaº`n�PEÏ uC]8XWh�»`P�n�Ò^kyVzT�kSu
wUR[P�kSºb�

Age Race

Tipe

HrsNt

FindLoc

Health

TrackOf’

Topog’

Urban

Tipe

Gender

FindRes

DistIPP

Outcome

HrsFind

HrsTo

Î/klq ~ gYn��`� } PlP$�U� { R[gikSR�ÂtP�npu��

) ��ã â ¹��ÙæNµpç¬ã â µ
deZtº ~]|VYk�wWnÐ»`gYX[qWgYR[hÄh�klZ`q¼�¬dz÷Q� ~ u­npu�VY_`nÅ]�X[h�»=XWuikyVYk�XWZtR�P
R[Â`k�Plk�Viklnxu2X�c=c ~ Zt]8ViklX[ZtR[P`»`gYX[qWgYR[hÄh�klZ`qtr�ÞÊR[ui×[nxP�P`R[Ztº�h�klZ^Ç
klh ~ h h�nxuYuYR�q[n�Pln�Ztq�Vi_Å� s�s�� �åklZ^cfnxginxZt]8nW�NÞËRWu­×Wn�PlPÙÏ ubcfnpR«Ç
V ~ ginpu$_tRUwWnËR�Z ~ h�Â�nxg�X[coR[º^w«R�Z�V*R�q[npu�klZÐklZtº ~]8Viklw[nËklZ^cfnxg­Ç
nxZt]8nW� s R[»`»`klZ`qÐRjº`R�VYRjuin8Vpr=u ~]*_�R[u<PlXWu­VË»=n�g*u­XWZtuxr`X[Z�ViX
VY_`n�ÞËRWu­×Wn�PlPQVzTa»=n�u­T^u­Vinxh!kSujR ~ u­n�c ~ P#n�ÒanxgY]�kluin&k�Z½q[n�V­Ç
VYk�Z`qÅViX&×aZ`X«¿ÚVY_`njº`R«V*RÐwWn�gYT&»tginp]8kSu­nxP�T¯ÍåR&º`R«V*R«ÇeR�ZtR[P�T^u­V
¿<klP�PQ¿QXWgi×Ñk�Z"Vi_`kSu�ui»tRW]8njcfXWg�uiX[h�n�Viklh�n[�¾m¦_`nÅZ`n�npºIViX
º^n�ÆtZ`nÐR�wUR[gikSR�ÂtP�nWÏ u�»tgiXW»�nxg­VYk�npu�rNn[� qt�
2�^��XWg�Z`X[Vxr�R ~ VYX�Ç
hjR«VYkl]xR�PlP�T�u ~ q[qWnxu­VYuÊ¿<_tR«VCkSuÊ»=XWuYuik�Â`Pln[rbu ~]*_ÑRWu�¿<_`n8VY_`n�g
VYX¼u­»tP�k�V �`�[§t�2+��`¤[§a¡a�ÀRWuÐº^kSui]�gin�Vin�XWgÅRWu@X[g*º^nxginpºÈºtR«VYR
�Ùu­np]|ViklX[ZÃ�`�ý�[�8��m¦_`npu­n�Vi_`klZ`q�u�]�R�ZtZ`X�VCÂ�nÄcfXWgiqWX�V­VYn�ZåÍåVi_`n
VzTa»=nCR[ZtºÐ]�PlRWuiu¦uiT^uzVYn�h7Â`gYklZ`qWuQVi_tn�høVYXÄTWX ~ g<R�V­VinxZ�ViklX[Zå�
m¦_`n¼dz÷ß]8X^º^n ui_`X«¿<ZÚkSuÑu­VYR[Ztº`R[gYºÔÞÊR[ui×[nxP�P�ÇJ�W�½Â ~ V

X[Vi_`nxgËn8Ò^»=n�gYk�h�nxZWV*u�� } PlP�kSuiX[ZÑ�[�[�5ma�<º^XÐui_`X«¿ VY_tR«VCu­XWhÄn
ÞÊR[ui×[n�PlP2VzTa»�njn�ÒaVin�Z�u­klX[Ztu�]�R�ZIÂ=n ~ uin8c ~ PQk�ZÀuiX[h�njX�VY_`n�g
»`gYX[ÂtP�nxh�ux� deZ^ÇEÂ ~ k�P�VÈu ~ »`»=X[giV"cfXWg"¿<klº`nÓV ~ »`P�npu�r ��(= �r
¿¢X ~ PSº&hjR�×[n�k�VËnpR[uik�nxg<ViX@º^npR�PN¿<kyVY_�PlR[giqWn�h ~ P�Vik�ÇEw«R�gYkSR«Vin
º`R�VYR(uin8VYuxr½R�P�Vi_`X ~ q[_ßVinxhÄ»tPlR�Vin7ÞËRWu­×Wn�PlPÓ�Ù\a_tnxR�g*º t
÷2nxTWVYX[Z^Ç,pWX[Z`npu¢�[�[�W�W�$kSu<RÄ»�X�uiuiklÂ`P�n�uiX[P ~ VYk�XWZå�
Þ#klq[_^ÇJX[g*º^n�g¯c ~ Zt]|VYk�XWZtu�rUu ~]*_�R[uo�t�«���`�W�^�^�2�`¤[���t�#�Ùu­np]|Ç

VYk�XWZÄ�t� ���|r[R[gin¦klZ�w«R[P ~ R[Â`Pln¢klZj]8gYnxR�ViklZ`qÊZtn�¿È¿¢RUT^u/X�c ~ uik�Z`q
õ�ò=78èêîEòiõ«ò���u­VYR�VikSuzVYkl]xR�P<h�X^º^n�PSu���m¦_`n�»�XWP�Tah�X[gY»`_`kS]ÅVzTa»�n
uiT^uzVYn�h n�Ztu ~ gYnxujVY_tR«VÅVi_`n ~ uinxuÐR[gin¾Â�X[Vi_ÓqWn�Z`nxgYR[PÊR�Z�º
VzTa»=n8ÇeuiR�cfn[�øÞËRWu­×Wn�PlPÙÏ u@VzTa»=nÑklZ^cfnxginxZt]8nIR�Plq[XWgik�Vi_`h X[cêVin�Z
ÆtZ�º`u¦R�h�XWginÊq[n�Ztn�g*R�P=VzTa»�nÊcfX[g#R�c ~ Zt]8ViklX[ZÅVi_tR[ZÅk�VYu¦»`gYX�Ç
qWgYR[hÄh�nxgËº^kSº¾R�Z�º�Vi_`kSuC]�R[Z�R�PSu­XÅÂ�n�Vi_`n�]�RWu­n�¿<k�Vi_ÃuzV*R«Ç
VYklu­VikS]�R[Poh�X^º^n�PSuËR[Ztº&Vi_`nxk�gÊnxu­ViklhjR«ViXWgYux�<m¦_`n�gYn�kSu#»=X�VinxZ^Ç
VYklR[P`cfX[gQR�Zjn8ÒaVYn�Ztuik�wWn<P�klÂ`g*R�gYT�X�cbXW»�nxgYR�ViX[g*u2X[Z@u­VYR�VikSuzVYkl]xR�P

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

109

classification tree

Bayesian network

modelMaybe

normal multiState

Î/klq ~ gYn��`� s X^º^nxP � RUT[nxgYu

hÄX^º^nxPluËR�ZtºÐVi_`nxk�gËnxu­Viklh�R�ViXWgYux�
� R2��T n�w«R[P ~ R�ViklX[ZÔh�npR�Ztuxr�cfXWgIn8Ò`R�h�»`Pln[r�Vi_tR�VÃXWZ`PlT

hÄX^º^nxPluÓX�cÃuin�Plnx]8Vinpº w«R�gYkSR�Â`PlnxuÈX�cÃP�X�uzVÌ»=n�g*u­XWZtuÚ�¬uinx]8Ç
ViklX[ZÑ�t� �W�ËR[gin�n�w«R�P ~ R«VYnxºb��\^n�Plnx]|VYk�XWZtu�R�gYn�hjR[º^nÄX[Z�]8n�R�V
Vi_`n�VYX[»�Pln�wWn�PEÍph�X�uzVåX[c�VY_`n$R�Plq[XWgik�Vi_th�uoº^X<Z`X�VHfY]8XWZtu­kSº^nxg4h
Vi_`n�hjR«ViVinxgËR«V#R�PlPE�
OQX[h�» ~ ViklZ`qÀh�Xaº`n�PË]�X[h�»`Pln8Ò^kyVzT¼Â�T¼hÄklZ`klh ~ h h�nxu­Ç

uiR[q[n�P�nxZ`q�VY_Ô�¬uinx]8ViklX[ZÓ�^�l�p�ÄkSu@RIq[XaX^ºÈhjR«VY]*_½¿<k�Vi_½VY_`n
]8X[h�»=XWuikyVYk�XWZtR�P2u­VzT�PlnÄX�c$c ~ Z�]|ViklX[Z�R�P2»`gYX[q[g*R�h�h�klZ`qt��m¦_`n
ginpR[º^nxg�hjRUT�_tR[gYº`P�TÕ_tRUw[nÀZtX�VikS]8npºÚR�ZaTÕn8Ò^»`Plkl]�kyV s nxu­Ç
uiR[q[nÌPln�Z`q[Vi_]xR�PS] ~ PSR«VYk�XWZtuÀÂ ~ V Vi_`nxTøR�gYnÌ_tR�Ztº`P�npº>Â�T
£=���^�^�2�^¤W���t�Ó�Ùu­np]|ViklX[ZÕ�`� �W�ÐR�Ztº�X�VY_`n�gÅc ~ Zt]8ViklX[Ztuxr�R[Ztº
R�gYn�]8XWh�Â`klZ`nxº�k�Z�VY_`n�]�X[h�»`Pln8Ò^k�VzTÅX[c�Vi_`nÄÖ¢RUTWnxuiklR[Z�Z`n8ViÇ
¿QXWgi×¼�Ùu­np]|VYk�XWZI�t���jR[ZtºÑÆtq ~ gYnj�W�CR[Ztº¾k�VYu�]8PSR[uYu­k�Æ�]xR«ViklX[Z
VigYn�nxu��fÆtq ~ gin��W�QVYX�k�Z^cfXWgih Vi_`n�uinxR[gY]*_o�
} ui»�np]8k�Æ�]Ch�Xaº`n�Po]xR�Z&Â�n�]�ginpR«VinpºÐÛ ~ kS]*×aP�TjcfXWg#RÄZ`n�¿

»`giXWÂ`Pln�h VY_tR�Zt×au&VYXÓÞËRWu­×Wn�PlPÙÏ u�n8Ò^»`gYnxuYu­klw[nÃ»=X«¿Qnxgx� eËc
]8X ~ gYuinÐk�V@]�R�ZtZ`X�VÄT[n8V�Â=n�]�PlR[k�h�npºÀVi_�R«VÄVi_`nÅVzTa»�npuÄR[Ztº
]8PSR[uYu­npuo]8gYnxR�Vinpº�R�gYn�Vi_`n¢Â=nxu­VN»=XWuYu­klÂ`PlnQº^npu­klq[ZtuocfX[g/RË]�X[hÄÇ
»�X�u­k�ViklX[ZtR[P�º^n�Z`X[VYR�ViklX[ZtR[P2uin�hjR[ZWVYkl]xu�X�cQu­VYR�VikSuzVYkl]xR�P2h�Xaº^Ç
n�PSu���ÎtX[gÅn8Ò`R�h�»`Pln[r#R"]xR[uin¾]�R[ZÌÂ�nÑhjR[º^n�cfXWgÅui»�np]8k�cfT�Ç
k�Z`q&VY_`njZ`X�VYk�XWZÑX[c¢RIë[õ�îJõ�û8ð�îEÍN»=n�gY_tR�»�u�ºtR«VYRÅVYgYRUwWn�g*uiR[PÙr
º`R«V*R�h�npR[u ~ ginxh�n�Z�V¦RW]�] ~ gYRW]8T@R[ZtºÅºtR«VYR�¿¢n�klq[_�VYu¦ui_`X ~ PSº
Â�n�¿<g*R�»`»=nxº ~ » klZ u ~ k�VYR�ÂtP�nÅVzTa»�npuÄR[Ztº¼]�PlRWuiuinxux� eÊZ`PlT
hÄXWgin¢n8Ò^»=n�gYk�nxZt]8n¦R�Z�º�VYk�h�n¦¿<k�PlPaP�n�V ~ u�u­n�V­VYP�n¦X[Z�Vi_`n¦Â=nxu­V
Vig*R[º^n�ÇEXndIÂ=n8Vz¿¢n�nxZ¾qWn�Z`nxgYR[P�k�VzT[r ~ uYR�Â`klP�k�VzT�R�Z�º�n�<@]�k�nxZt]8TWr
Â ~ VËn�Òa»=n�gYkln�Zt]�nÊVYXjº`R«VYn�klu¦»=XWuikyVYk�wWn[�
m¦_`n�Ö¦RUTWnxuiklR[ZËZ`n�Vz¿QXWgi×Ênxu­Viklh�R�ViXWgxrU�`�«�!�`�W�Wªt� � � r*R[ZtºR[uYu­X^]8kSR«VYnxºj]�PlRWuiuinxu�±��`���a�` «��R[Ztº � §��t�p�=���j�Ùu­np]|ViklX[ZÅ�`�ý�[�

ViXaX[×�XWZ`njº`RUT�ViX�]�ginpR«VinW�Äm¦_tnÄPlXWu­V�»�nxgYuiX[ZIR�»t»`P�kS]�R�ViklX[Z
�¬uinx]|VYk�XWZ@�`�ý�[�2]xR�h�n#R�PlX[Z`q�uiX[h�n<¿¢n�nx×au$PlR�Vin�gQR�Ztº�k�V$ViXaXW×
X[Z`n¦R�Ztº�RË_tR[Pyc=º`RUT^uåVYXÊ]8gYnxR�Vin¢RË¿¢X[gY×ak�Z`qËhÄX^º^nxPÙr«klZt]�P ~ º^Ç
k�Z`qÃ_`X«¿>VYXÑ_tR[Ztº^PlnÅh�kSuiuiklZ`qÃºtR«VYR �¬uinx]8ViklX[Z �t� ����¿<_`kS]*_
tR[ºÈ»`gYn�waklX ~ uiP�T¼Â�nxn�ZÌklZ½Vi`n4� h ~ u­V@VY_`k�Zt×ÈR[Â�X ~ VjVi_tR�V
X[Z`n@º`RUT¯Ïo]xR«VYn�q[XWgiTW� } ZaTÃR�h�X ~ Z�V�X[cQc ~ giVi_tn�g�VYk�h�nÐ]xR�Z
Â�n&u­»=n�Z�V�»`PSRUTak�Ztq�¿<kyVY_IVi_`nÐºtR«VYR�X[Zt]�n@R�h�Xaº`n�PQR[ZtºÀR
»`giXWq[g*R�hùn�Ò^klu­Vxr2R�P�Vi_`X ~ q[_ÑVi_tn�gYn@klu�R&ÆtZ`n@Plk�ZtnjÂ�n�Vz¿Qnxn�Z
º`R«V*R�n�Ò^»`P�XWgYR�ViklX[Z�R�ZtºÐÆ�ui_`klZ`qt�

)
Ùà ³Å¹B� â ã�2 � � ä
 � �aâ ¶pµ

dJV2kSu�RÊ»`P�npR[u ~ gYn$ViXÊVi_�R�Z`×ÄOQ_�R�gYP�npuNm¦¿¦R�g*º^T[r } Z`Z�Ø#kS]*_`X[P�Ç
u­XWZ R�Ztº Ý n�waklZ Ý X[gYÂ�cfX[gÕq[nxZ`n�gYX ~ u6º^kSui] ~ uYu­klX[Ztu6X�c
Ö¢RUTWnxuiklR[Z Ztn8Vz¿¢X[gY×aux� OQ_�R�gYP�npu@m¦¿¢R[gYº`T R�PSuiX"º^kluY] ~ uiuinxº
hÄkSuYu­klZ`qC»�nxX[»`Pln#R�Z�º�_`n<]�X[klZ`nxº�Vi_tnQVYn�gYh � k�Z�º ~]|VYk�wWn¦»`giX[Ç
q[g*R�h�h�k�Z`q�Ï��ÑOQ_tgikSuRqIR�PlPlRW]8n¾�­�x�W�[� o ���W�5m��ËR�Pl¿¢RUT^u�q�RUw[nh ~]*_j_`nxP�»@R[Ztº�¿¦R[u$R[Zjk�Ztui»`klgYR�ViklX[ZåÍW_`n#kSu�uYR[º^PlT�h�kSuiuinxºå�
m¦_`n�ÜËnx»tR�giVih�n�Z�V¦X�c$OQX[h�» ~ VYn�g#\^]8kln�Z�]8n�R«V¢Vi_`n�vËZ`k�wWn�giÇ
u­k�VzT¼X[c9qIR�Plnxu } Â=n�gYT^uzVz¿<T�VY_år¢R[Ztº Vi_`n�ÜÊn�»�R�giVih�n�Z�VjX�c
OQX[h�» ~ VYn�g�\^]8kln�Zt]�n¾R�Z�º½Vi_`nÃ÷$gYX[qWgYR[hÄh�klZ`q � R[Z`q ~ R[q[n
R�ZtºÔ\aT^u­Vinxh�u l nxuinxR[gY]*_Úþ�gYX ~ »ÔR�V�Vi_`n v#Z`klw[nxgYuikyVzT�X�c
� X[gY×@¿QnxginCwWn�gYTj_`XWui»`k�VYR�ÂtP�n�º ~ gYklZ`qjh�T@wakSu­k�VYu¦klZ����W�5mt�

� � � � · �aâ ¹ � µ
} P�PlkluiX[Zor � �[�Ù�[�[�[���|rpm�Ta»=nxuoR[ZtºC]8PSR[uYu­npu¯X�c^hjR[]*_`klZ`n�PlnxR[giZ^Ç

klZ`q�R[Ztº@º`R�VYR�h�klZ`klZ`qtr¯èêéj���«VY_ }#~ u­Vig*R�PSR[uikSR�ZÅOQX[hÄÇ
» ~ Vin�gË\`]8kln�Zt]�n�OQX[Z^cfnxginxZt]8nj� } O¦\�O¦�|r`»`»o������� o �`�p�`�

} P�PlkluiX[Zor � � �Ù�[�[�5ma�|r deZtº ~]8Viklw[n klZ^cfn�gYn�Zt]�n �[�l�[r
m l �[�[�nm��a�U���trÚ\`]*_`XaX[PÕX�c-OQX[h�» ~ Vin�g�\^]�k�nxZt]8n
R[ZtºÕ\^X�cêVz¿¦R�gYn � Ztq[klZ`n�nxgiklZ`qtr s X[Z�R[ui_�v#Ztk�wWn�g*u­k�VzT[�
���G�
��� ��� :>:+: / � ��� (/ &'��$2 � � / (68 � / � ����!�!��O�;8��O�
��!�8�(
	1Q�� .
. �

} P�PlkluiX[Zor � �I�Ù���W�W�W�|r � s X^º^nxPlu6cfX[gÕhjR[]*_`klZ`nÉP�npR�gYZ`k�Ztq
R[ZtºÉºtR«VYR�h�k�Ztk�Z`qÚklZÉc ~ Zt]|VYk�XWZtR�Pj»tgiXWq[g*R�h�h�k�Z`q�Ï�r
��
�� ì^é=í�îEè¬ó«é=õ�ü��¦òióiô[òiõ�ö�öÄèêé�ô à � �­�p�8r�»`»o�j�p� o �W�`r
8�������� � / � � ������* ������� � ��� X � V ��������� � /

} P�PlkluiX[Zor � ��ra÷2X«¿QnxP�PEr[Ü�� t ÜÊkyÒbr^mC�[d|�¯�z�p�[�W�W�|r�� OQXWh�»`ginpuzÇ
uik�XWZ�R[Ztº�R[»`»`gYXUÒaklhjR«VYn$hjR«VY]*_tk�Z`q�Ï�r���� �!�$ó«öËñ=ì^îeð�ò
��
)!� �z�U�|r^»`»å�o� o �p�`�

Ö¦R«ÒaVYn�gpr l � } �nt eÊPlk�wWn�gprnp��npt�`�­�x�W�5m��8r s Ü � R�Ztº s�ss� �
\aklh�k�PSR�gYk�Viklnxu"R[Ztº>º^k d¯n�gYn�Z�]8nxuxrÅm l �[���^r@ÜËnx»tR�giV­Ç
h�n�Z�V�X[cÊOQX[h�» ~ VYn�g�\^]�k�nxZt]8nWr s X[ZtRWu­_Àv#Ztk�wWn�g*u­k�VzT[�
� } h�n�Ztº`nxºÃ�x�W�W�^�ý�

Ö¦RUT[npu�råmC�$�­�����[�W�8r)� } ZInxuYuiRUT&VYX«¿¢R[gYº`uCuiX[Plwak�Z`q�R&»`gYX[Â^Ç
Pln�hßk�ZIVY_`nÐº^X^]|VYgiklZ`njX[c¦]*_tR[Zt]8npu�Ïlr"��4aèêü
$# òiõ�é`û
 ó �
î 4`ð�%Ëó��[õ�ü"�¯ópí
 ó(��&oó�é=ë[ó�é �%, rb»`»å�N���«� o m��x�`r¯R�Z�ºgYn�»`gYklZWVYnxºÌklZ'�#è¬ó«öjð8îEò|è)(Wõ) � �¬����m��8r<»`»å�#���W� o �`�p�`r�p�W���t�

Ö¢X ~]*×UR[n�giVxr l � l �¯�Ù�[�[�nm��|rWÖ¢RUTWnxuiklR[Z�Z`n8Vz¿¢X[gY×^u�k�Z qÌnx×«R`r
m l ��m����[�[�5m�raOQXWhÄ»o�t\^]8kE�tÜÊn�»^Vp���=v��`X[cIqIR�kl×UR�ViX��

OQXWhÄPln�TWr p�� t ÜËX«¿¢n[rÄÜ��j�E���[�W�W�8r�þ�nxZ`n�g*R�P�Ö¦RUT[nxuikSR�Z
Z`n�Vz¿QXWgi×^uÕR�ZtºßR[uiTahÄh�n�VigYkl]�PlR[Z`q ~ R[q[npu�rÌèêéù�«Z�º
ÞÊRU¿¢R[k�kÃdeZ�Vx�ÑOQX[Z`cz�&XWZ \�V*R«VYklu­VikS]�u R�Z�º l nxPlR�Vinxº
Î/kln�PSº`u��¬ÞËdiO¦\�Çz�[�|�

OQXWZ`×aP�klZårUÜ���t qÌkyViVin�Zor«d|�pÞ��W�z�p�[�nm��|r�OQX[h�»`Pln8Ò^k�VzT�ÇEÂtRWu­npº
klZtº ~]8ViklX[Zår�*¾õ[í34aèêé¯ð+&NðYõ�ò|étèêéaô à � �Ù�W�|rU»`»o�p���W� o �[�[�`�

OQg*RU¿<P�nxT[r s � pt���Ù���W�W�W�|r��=îJõ�îÙèSû|îEè¬íYõ�ü,�$ó«öËñ=ì^îEèêé�ô$-jõ«é/.|é�ÿ
îEòiópë«ìtí�îÙè¬ó�éÅîeó10�õ�îJõ12Êé=õ�ü �Uû|èSûËìaû|èêé�ô���ÿ3�¦ü ìaû|rnqÌklP�nxT[�

Î�R�gYgxr2þÄ� � ��t qIR�PlPlRW]8nWr2OÊ�/\b�Q�Ù�[�[���[�|r-� m¦_tn@]8X[h�»`Pln8ÒaÇ
k�VzT@X�c/uzVYgikS]|V<h�k�Ztk�h ~ h7h�nxuYuiR[q[n�P�nxZ`q�VY_ÐklZ^cfn�gYn�Z�]8n[Ïlr
��� �4�$ó«öËñ=ì^îeð8ò ��
) � �¬���|r^»`»o������� o �[�W�`�

Îtgiklnxº^hjR[ZårÄØ�� t�þ�X[PSº`u���h�klº^Vxr s �j�z�p�[�[���|r � npR�gYZ`k�Ztq
Ö¦RUT[npu­kSR�ZIZ`n�Vz¿QXWgi×^u�¿<k�Vi_¼P�X^]�R[P¢u­Vig ~]8V ~ gYn[r¦èêéÑvËZ^Ç
]�n�giVYR�klZ�VzTjk�Z } � d|�lr`»`»å�=�[�[� o �[�W�^�

þCR[hÄh�nxgihjR�Zor } � t { X«wa×¯r { �=�¬nxº`u*�Ê�z�x�W�[���|r�\^»�np]8kSR�P=dzuzÇ
u ~ n�X[Z Ý XWP�h�X[qWX[gYX«wÐOQX[h�»`Pln8Ò^kyVzTWr���� �5�$ó«öËñ=ì^îeð�ò
��
)!� �=ma�|�

þ�nxX[gYq[n	d2r s �2÷2��t qIR�PlPlRW]8nWrQOÊ��\b�¢�­�x�[�nm��8r } q[nxZ`n�g*R�P
uin�Plnx]8ViklX[Z@]8gYk�Vin�gYklX[Z�cfX[g¢klZtº ~]8Viklw[nËklZ^cfnxginxZt]8nWr�èêé � ~ Ç
gYX[»=nxR[Z�OQX[Z^cz�pX[Z } g­VYkyÆ=]8kSR�P�deZWVYn�PlP�klq[nxZt]8n�� � O } dz�5ma�|r
÷�kluYR`ra»`»å�1m��«� o m��W�^�

Ý Xanxu­Vinxgxr l �2p����E���W�`�p�8r�� { k�gYq[klZ`kSRËº`R�VYR[uin8V/X[Z�P�X�uzViÇE»=n�g*u­XWZ
Â=n�_tRUwaklX ~ gpÏlr R ~ Vi_`XWgxÏ u uik�Vin _�ViVi»å�6�7�«¿<¿<¿�� º^Â�uzÇ
uYR�gp�]�X[h8�a�

Ý XWgiÂår Ý ��Ö�� tÚØ#kS]*_`X[PSuiX[Zår } � � �¯�Ù�[�[�5ma�|r9�ËõL�[ð|û|è¬õ�é:2Êò|ÿ
îEè :Qí�è¬õ«ü�.|étîeð�üêü èyôWð�é=í*ð�r=OQ_tR[»`hjR�Z�R�Ztº�ÞËR[P�P;��O l OÊ�

÷2nxTWVYX[Z^Ç,pWX[Z`npu�r#\¯�¦n8V�R�PEr��­�x�[�W�W�8r<%Ëðeñ`ó�ò|î@ó«é î 4tð=�¢òió�ÿ
ô[òiõ«öÄöÄèêé�ô>&Nõ«éaô�ìtõxôWð@?�õUû�([ð�üêü ÿ
A�B�r } w«R[k�PSR�Â`Pln7R«V
_�V­VY»å�6�7�U¿<¿<¿�� _tRWu­×Wn�PlPÙ� X[gYq��^�

÷2X«¿¢n�PlPÙrÑÜ�� l ��r } P�PlkluiX[Zor � � t+ÜËk�ÒbrÃmC�Åd|�Ñ�Ù�[�[�nm��|r
s X^º^nxP�PlklZ`q@R�Plk�qWZ`h�n�Z�V#cfXWg#Z`X[Z`ÇEg*R�Ztº`X[h uinxÛ ~ nxZt]8npu�r
èêé��,�pVi_ } O¦\ }#~ uzVYgYR[P�kSR�Z p[XWk�Z�VÕOQXWZ^cz�@X[Z } g­Ç
VYkyÆ�]�klR[PÑdeZ�VYn�PlP�klq[nxZt]8n � } d­�[�[�nm��|r¼\^»`giklZ`qWn�giÇ { nxgiPSR�q�r
� Ø�O¦\C� � Ø } d { XWPÙ�`�W�[�W�`ra»`»å���[�[� o �^�;mt�

CRPIT Volume 48

110

l r wUR[giklX ~ u R ~ Vi_`XWgYuxr �E���W�5m��8r �yO l } Ø�� m¦_`n
OQX[h�»`gYn�_`nxZtuik�wWn l } g*]*_`klw[n Ø#n�Vz¿QXWgi×¯Ïlr
_�V­Vi»o�����UPlk�Âå� u­VYR«Vp�]�h ~ � nxº ~ � l �WO l } Ø1�a�

l kluYuYR�Z`nxZår pt�¦�z�p���«���|r � s X^º^n�Plk�Ztq�ÂaTIui_`XWg­VYnxu­V�º`R«V*R�º^n�Ç
ui]�gikl»^VYk�XWZåÏ�r 2Êì^îeó«öjõ«îEè¬í*õ à") r`»`»å�um��W� o m��^�[�

l kluYuYR�Z`nxZår p����­�x�W�����8r � \�ViX^]*_tRWuzVYkl]#]�X[h�»`Pln8Ò^k�VzT=Ïlr ��
 %Ëó��[õ�ü
��îeõ«îEèSû|îÙè¬í*õ«ü+�¯ópí8è¬ð�î5��û�ð8ò|è¬ð8û �
)�� �¬���|r�»`»o�2�W��� o ���W�R�Ztº��[�W� o ���W�`�

\a_tR�ZtZ`X[ZårCOÊ� � ���­�x�5m��W�8r � } h�R�Vi_`nxhjR«VikS]�R[P#VY_`n�XWgiTÈX�c
]8XWhÄh ~ Z`kS]�R�ViklX[ZåÏlr�ÖQnxP�P�\aT^uzVp�ËmNnx]*_`Z`kS]�R[PNpWgiZ`PE� � �
»`»å�t���«� o m��[��R�Z�ºÐ»`»o�t�W�[� o �����t�

\a_`nxR[gYºår¾mC�Bt4÷2n�T�VYX[Z^Ç,p[XWZ`nxuxr�\¯���Ù�[�[���[�|r�mNn�h�»`PSR«VYn
h�n8VYR�ÇE»tgiXWq[g*R�h�h�k�Z`q�cfXWgjÞËR[ui×[nxP�PEr<èêéÀ÷$gYX^]��/X�c#VY_`n
qÑXWgi×^ui_`X[»ÅX[Z�ÞËRWu­×Wn�PlPÙr } O s rt»`»å�å� o �x�t�

\agiklZ`klw«R[uYR�Zår } �lr s ~ q[qWP�n�ViXWZårU\b�;t½Ö¦R�klZår s ���­�x�[�nm��8r �ým¦_`n
 ~ u­Vik�Æ�]�R�ViklX[Z-X�cÅPlX[qWkl]xR�PÄVi_tn�X[gYklnxuÃÂtR[uinxºÉX[Z>º`R�VYR
]8XWhÄ»tginpuiuik�XWZåÏlr+*¾õ[í34aèêé¯ð .|é�îJð�üêü èyô�ð8é¯í*ð à�, r2»`»o�2��� o�p�`�[�

m¦¿¢R[gYº^TWr�OÊ� l ���Ù���W�W�W�|r � \ } l 7*õ��[ð8û[�Ó÷$gYnxº^kS]|VYk�ZtqÈPlXWu­V
»�nxgYuiX[Z¾Â�nx_tRUwak�XWgxÏlr¯»`ginpu­nxZ�Vinxº�ViX�ØËR�ViklX[ZtR[P } uiuiX^]8k�Ç
R«VYk�XWZ&X[c�\anxR[gY]*_�R�Z�º l nxuY] ~ nÐ�ÙØ } \ } l �8r=RUw«R[k�PSR�Â`Pln
R«V<_�V­VY»å�����«uYR�gYÂtRUT[npu�� X[gYq��«ZtR[uYR�gx� »¯ºacz�

m¦¿¢R[gYº^TWr/OÊ� l �ItúÞËX[»=n[r � ���Ù�[�[�nm��|r�� s kSuYu­klZ`q�º`R«V*R&X[Z
h�kluYu­klZ`qÓ»=n�g*uiX[ZtuxÏ�rÄ\^]*_`XaX[P�X[c&OQX[h�» ~ VYn�gI\^]8kln�Zt]�n
R�ZtºÕ\aX�cêVz¿¦R�gYn � Z`qWk�Z`nxn�gYk�Ztqtr s X[ZtRWu­_Õv#Z`klw[nxgYuikyVzTWr
»�nxgYuiX[Z�R�Pb]8XWhÄh ~ Z`kS]�R�ViklX[Zå�

wUR[Z�ÜËn ~ g*u­nxZår } ��r � k�Z�Vxr«÷2��t { kluYu­nxgxr�p��[�Ù�[�[�[���|rUÜËXWhjR�klZ^Ç
u­»=nx]�kyÆ=]ÅPSR�Ztq ~ R[q[nxux� } ZÈR[Z`Z`X�V*R«VYnxº Â`k�ÂtP�klX[qWgYR[»`_aT[r
èêé } O s \^d­þC÷ � } ØÚØ#X[VikS]8nxu , � �¬�W�8r`»`»å�=��� o �[�t�

qÃR[P�PSR[]�n[rËOÊ�¢\¯���Ù�[�[�W�W�|r<��îeõ«îEèSû|îÙè¬í*õ«ü�õ«é=ë .|é¯ë«ìtí�îÙèêï«ð:.|étÿ
�8ð8òYð8é¯íYð 7��:*�èêétèêöÄì^ö *¾ð|û*û�õ�ô�ð�&Nð�é�ô[î 4^rN\a»`gYk�Ztq[n�giÇ
{ n�gYPlR[qt�

qÃR[P�PSR[]�n[r�OÊ�W\b�nt6Ö¢X ~ PyVYX[Zår[Ü�� s ���z�x�W�[���|r�� } Z�k�Z`cfX[gYh�R�Ç
ViklX[Z"h�npR[u ~ gin@cfX[g�]�PlRWuiuik�Æ�]�R�ViklX[ZåÏlr+��� �@�$ó«öËñ=ì^îeð8ò
��
 à=à �E�[�|rt»`»å�å�p�W� o �x�nmt�

qÃR[P�PSR[]�n[r¯OÊ�¯\¯�kt-Î`gYn�nxhjR�Zår=÷2� l �N�­�x�W�����8r�� � u­Viklh�R�ViklX[Z
R�ZtºÐk�Z`cfn�gYn�Zt]�n�ÂaTÐ]�X[h�»tRW]|V#]8X^º^klZ`qtÏlr ��
 %Ëó��[õ�ü ��îeõ«ÿ
îÙèSû|îEè¬í*õ«ü �bóxí�è¬ð8î5��û�ð8ò|è¬ð8û �
)�� �Ù�W�8r`»`»å���5mW� o �����^�

qÃR[P�PSR[]�n[rQOÊ��\¯� tùþ�n�X[gYq[n�d/r s ��÷2�¦�z�p�[�[���|r } q[n�Ztn�g*R�P
X[Â� znp]|VYk�wWnjcfX[g�k�Ztº ~]|VYk�wWnÐklZ^cfn�gYn�Zt]�n[r$m l ���^r2ÜËnx»^Vx�
X�c$OQX[h�» ~ VYn�gË\^]�k�nxZt]8nWr s X[Z�R[ui_&vËZ`k�wWn�g*u­k�VzT[�

qÃR[P�PSR[]�n[r=OÊ��\b�1t�÷�R�VigYkl]*×¯rupt��Ü��o�­�x�W�[�W�8r!� OQX^º^klZ`qjº^np]8k�Ç
u­klX[ZÅVigYn�npu�Ïlr�*¾õ[í34aèêé¯ð1&Nð*õ«ò|é�èêé�ô à=à r^»t»å�3� o �[�`�

qÌkyViVin�Zor�d|�¦Þ��%t ÎtgYR[Z`× � ���z�p�[�W�W�|r�Ø ~ V*u�R�Ztº�Â=X[P�VYux�
s R[]*_tk�Z`nÃPlnxR�gYZ`klZ`qÌR�Plq[XWgik�Vi_`hju&klZ p�RUw«R`rÄèêé½Ü�R«V*R
s klZ`k�Ztqt��÷$g*R[]|VYkl]xR�P s RW]*_`klZ`n � npR�gYZ`klZ`q�moXaXWPlu�R[Ztº
monp]*_`Z`kSÛ ~ nxu¦¿<k�Vi_ p�RUwURÄdeh�»`Pln�h�n�Z�V*R«ViklX[Z�u�r s X[gYqWR�Z
Ý R ~ cfhjR[Z`Zår^»`»å�=���W� o �����`�

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

111

CRPIT Volume 48

112

Rule Sets Based Bilevel Decision Model

Zheng Z.*#, Zhang G.*, He Q. #, Lu J.*, Shi Z.#
* Faculty of Information Technology, University of Technology, Sydney

PO BOX 123, Broadway, NSW 2007, Australia
Key Laboratory of Intelligent Information Processing, Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China
Corresponding Author Email: jielu@it.uts.edu.au

Abstract
Bilevel decision addresses the problem in which two
levels of decision makers, each tries to optimize their
individual objectives under constraints, act and react in an
uncooperative, sequential manner. Such a bilevel
optimization structure appears naturally in many aspects
of planning, management and policy making. However,
bilevel decision making may involve many uncertain
factors in a real world problem. Therefore it is hard to
determine the objective functions and constraints of the
leader and the follower when build a bilevel decision
model. To deal with this issue, this study explores the use
of rule sets to format a bilevel decision problem by
establishing a rule sets based model. After develop a
method to construct a rule sets based bilevel model of a
real-world problem, an example to illustrate the
construction process is presented..

Keywords: Bilevel programming, Decision making,
Decision model, Rough set, Rule set.

1 Introduction
Organizational decision making often involves two
levels. In general, the decision maker at the upper level
will influence, control or induce the behavior of the
decision maker at the lower level but not completely
control his action. In addition, the lower level decision
maker gains his objective under a given region, although
his decision is in a subordinate position. In such a bilevel
decision situation, decision maker at each level has
individual payoff function, and the upper level the
decision maker is at, the more important and global his
decision is. Therefore, a bilevel decision model intends to
reach certain goals, which reflect the upper level decision
makers’ aims and also consider the reaction of the lower
level decision makers on the final decisions. Such a
decision problem is called as a bilevel decision problem.
The decision maker at the upper level is known as the
leader, and at the lower level, the follower.

Bilevel decision problems have been introduced by Von
Stackelberg in the context of unbalanced economic
markets in the fifties of the 20th century [Stackelberg

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australian Institute of
Computer Ethics Conference (AICE2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

1952]. After that moment a rapid development and
intensive investigation of these problems begun both in
theoretical and in applications oriented directions [Chen
and Gruz 1972] [Candler and Norton 1977] [Bialas and
Townsley 1982] [Bard and Falk 1982] [Bard and Moore
1992] [Bard 1998] [Dempe 2002]. Contributions to this
field have been delivered by mathematicians, economists
and engineers and the number of papers within this field
is ever growing rapidly. This interest stems from the
inherent complexity and consequent challenge of the
underlying mathematics, as well as the applicability of
the bilevel decision model to many real-world situations.

From its inception, bilevel decision problems have been
introduced to the optimization community. Most of the
efforts concentrated on theoretical or applied
development for the linear or nonlinear version of the
problem, such as K-Best approach [Bialas and Karwan
1984] or Kuhn-Tucker approach [Bard and Falk 1982] for
solving linear bilevel programming problems, and
Penalty function approach [White and Anandalingam
1993] or stability based approach [Liang and Sheng 1992]
for solving nonlinear bilevel programming problems.
However, bilevel decision making may involve many
uncertain factors in a real world problem. Therefore it is
hard to determine the objective functions and constraints
when build a bilevel decision model. In addition, even if
all the functions are linear, the resultant model may be
difficult to be solved by the methods of optimization
[Bard 1998]. To handle the two issues, it therefore needs
to explore establishing a bilevel model by using uncertain
information processing techniques.

Our previous work presented a new definition of solution
and related theorem for linear bilevel programming, thus
solved a fundamental deficiency of existing linear bilevel
programming theory [Shi et al 2005]. We also developed
an extended Kuhn-Tucker approach [Shi et al 2005a] and
an extended Kth-best approach [Shi et al 2005b] for
solving linear bilevel decision problems. As a new
exploration to model and solve a bilevel decision
problem, this paper first formulates a bilevel decision
problem using decision rule sets. It then applies the
methods of rough set to reduce the models. With the
methods of value reduction in rough set theory, simpler
decision rule sets are extracted from decision rule sets
(decision tables) to represent the evaluation methods of
the objectives or the constraints. Besides, attribute
importance degree based rule trees are used to solve
uncertain problems and get the final decision. The
structures can be extended beyond two levels with the
realization that attending behavioral and operational

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

113

relations become much more difficult to conceptualize
and describe. The paper is divided into five sections.
Section 2 introduces the preliminaries of this paper,
including some notions about decision tables and decision
rules. Section 3 proposes the model of the rule sets based
bilevel decision problem, and then the algorithm of
modelling. In Section 4, an example is presented. The last
section includes the conclusion and future work.

2 Preliminary
For the convenience of description, we introduce some
basic notions of decision tables and decision rules.
Besides, we also develop some related definitions that
will be useful in this paper.

2.1 Decision Tables
A decision table is commonly viewed as a functional
description, which maps inputs (conditions) to outputs
(actions) without necessarily specifying the manner in
which the mapping is to be implemented [Lew and
Tamanaha 1976]. The formal definition is as follows.

Definition 2.1[Wang 2001] (Decision tables): A decision
table is defined as

S=<U, R, V, f >,

where U is a finite set of objects; R=C∪D is a finite set
of attributes, C is the condition attribute set and D is the
decision attribute set; set of its values Va is associated for
every attribute a∈R, and V=∪r∈RVr; and each attribute
has a determine function f: U×R→V, and f determines the
attribute value of each object x.

A decision table is as a special and important knowledge
expression system. It shows that, when some conditions
are satisfied, decisions, actions, operations or controls can
be made. Decision attributes in a decision table can be
unique or not. In the latter case, the decision table can be
converted to one with unique decision attribute [Wang
2001]. So, we suppose that there is only one decision
attribute in decision tables in this paper.

2.2 Decision Rules
Definition 2.2[Wang 2001] (Decision rules): Let S = <U,
R, V, f > be a decision table, and B⊆C. Then a decision
rule dr is generated from B and D with the form

dr: ∧{(a, va)}⇒ (d, vd),
where a∈B, va∈Va, d∈D, vd∈Vd, and Va, Vd is defined
by Def. 2.1; ∧{(a, va)} is called as the precondition of a
decision rule (denoted as Condr) and (a, va) is called as an
element in the precondition; (d, vd) is called as the
decision of a decision rule (denoted as Desdr).

It is obvious that objects in decision tables can be
expressed by decision rules.

In order to describe the rule sets based bilevel decision
model clearly, we present some notions related with
decision rules as follows.

Definition 2.3 (Father decision rules): Decision rule dr1
is said to be the father rule of decision rule dr2, if each
element in Condr1 is also an element in Condr2 and there is
at least one element in Condr2 that is not an element in
Condr1. Here, dr2 is said to be the son rule of dr1.

Definition 2.4 (Objects which are consistent with a
decision rule): A object o is said to be consistent with
decision rule dr: ∧ {(a, va)}⇒ (d, vd) (a∈B, d∈D), if for
∀ a∈(B ∪D), oa=va is satisfied, where oa is the value of
o on attribute a. Given a decision table S, the set of all
objects in S that are consistent with decision rule dr is
denoted as [dr]S.

Definition 2.5 (Objects which are conflict with a
decision rule): A object o is said to be conflict with
decision rule dr:∧{(a, va)}⇒ (d, vd) (a∈B, d∈D), if for
∀ a∈B, we have oa=va, and od≠vd. Given a decision table
S, the set of all objects in S that are conflict with decision
rule dr is denoted as [dr]S.

Definition 2.6 (Rules which are consistent with a
decision table): A decision rule dr is said to be consistent
with a decision table S, if there isn’t any object in S that is
conflict with dr.

Definition 2.7 (Rule inclusion): Decision rule dr1 is said
to be including decision rule dr2, if all objects which are
consistent with dr2 are also consistent with dr1, denoted
as Incl(dr1, dr2). In this case, if the number of the
elements in dr1’s precondition is the same as that in dr2’s
precondition, then dr1 is said to be equal to dr2.

Definition 2.8 (Rule conflict): Decision rule dr1 is said
to be conflict with decision rule dr2, if all objects satisfied
dr2 are conflict with dr1, which is denoted as Conf(dr1,
dr2). In this case, if the number of the elements in dr1’s
precondition is the same as that in dr2’s precondition, then
dr1 is said to be completely conflict with decision rule
dr2, else dr1 is said to be partly conflict with dr2.

Definition 2.9 (Rule length): Rule length is the number
of elements in the rule’s precondition.

Decision rule set RS is the set of decision rules. It can be
divided into the following two categories (Def 2.10 and
Def. 2.11) according to whether there are conflicts among
its rules.

Definition 2.10 (Consistent decision rule sets): A
decision rule set RS is said to be consistent, if there isn’t
any rule in the rule set conflicting with other rules in the
rule set, that is to say, ∀ dr1, dr2∈RS (┐Conf(dr1, dr2)).

Definition 2.11 (Inconsistent decision rule sets): An
decision rule set RS is said to be inconsistent, if there is
some rule in the rule set conflicting with at least one

CRPIT Volume 48

114

another rule in the rule set, that is to say, ∃ rule1∈RS
(∃ rule2∈RS (Conf(rule1, rule2))).

Definition 2.12 (Simplest decision rule sets): Suppose
dr is a random decision rule in a consistent decision rule
set RS, if dr is replaced by one of its father rules fdr and
the resultant decision rule set is still consistent, then RS is
said to be a redundant decision rule set, otherwise, it is
said to be a simplest decision rule set.

3 Rule Sets Based Bilevel Decision Problem
Modelling

When solving a bilevel decision problem, which objective
functions and constraints related are expressed by linear
or nonlinear functions, optimization approaches can be
used. However, some real-world problems can’t be easily
formulated or approximated as linear or nonlinear
programs. To handle the issue, new models for bilevel
decision problems are needed.

A decision table can be used to lay out in a tabular form
all possible situations where a decision may encounter
and to specify which action to take in each of these
situations. They can be used in projects to clarify
complex decision making situations. Decision tables are
commonly thought to be restricted in applicability to
procedures involving sequencing of tests, nested-IFs, or
CASE statements. In fact, a decision table can implement
any computable function. It was observed that any Turing
Machine program can be “emulated” by a decision table
by letting each Turing Machine instruction of the form
(input, state) + (output, tape movement, state) be
represented by a decision rule (or an object in a decision
table) where (input, state) are conditions and (output, tape
movement, state) are actions. From a more practical point
of view, it can also be shown that all computer program
flowcharts can be emulated by decision tables [Lew and
Tamanaha 1976].

Therefore, in theory, after emulating all possible
situations in a domain, constraints of a decision problem
can be transformed to a decision table, named as a
constraint decision table. In a similar way, objective
functions can also be transformed to a decision table,
named as objective decision table. That is to say, a bilevel
decision problem can be transformed into a set of
decision tables, where decision variables are represented
by the objects in these decision tables.

Rule sets are more general knowledge generated from
decision table and they had stronger knowledge
expressing ability than decision table. Rule sets overcome
the following disadvantages of decision tables:

1) For complex situations, decision tables may

become extremely large;

2) The objects in decision tables lack of

adaptability. They can’t adapt any new situations
and one object can only record a situation.

So, we use rule sets to describe the objectives and
constraints. The bilevel decision problem, which
objectives and constraints of both leader and follower are
described by rule sets, is called as a rule sets based bilevel
decision model. And the bilevel decision model based on
decision tables is a special case of rule sets based decision
model.

3.1 Decision Rule Set Function
To present the model of rule sets based bilevel decision
model, the definition of decision rule set function is
needed.

Given a decision table S=<U, R, V, f >, where R=C∪D
and D={d}. Suppose x and y are two variables, where
x∈X and X=Va1×…×Vam, y∈Y and Y=Vd. Vr is the set of
attribute r’s values and ai∈C, i=1 to m and m is the
number of condition attributes. RS is a decision rule set
generated from S.

Definition 3.1 (Decision rule set function): A decision
rule set function rs from X to Y is a subset of the cartesian
product X × Y, such that for each x in X, there is a unique
y in Y generated with RS such that the ordered pair (x, y)
is in rs. RS is called as the decision rule set related with
the function, x is called as the condition variable, y is
called as the decision variable, X is the definitional
domain and Y is the value domain.

Calculating the value of a decision rule set function is to
make decisions for undecided objects with decision rule
sets, where undecided objects are objects without
decision values. In order to present the method of
calculating the value of a decision rule set function, we
first introduce a definition.

Definition 3.2 (Undecided objects matching a decision
rule): An undecided object o is said to be matching a
decision rule dr: ∧{(a, va)}⇒ (d, vd) , where a∈B,
d∈D, if for each a∈B, oa=va is satisfied, where oa is
object o’s value on attribute a.

Given a decision rule set RS, all rules in RS that is
matched by object o is denoted as o

RSMR .

With the definitions, a brief method of calculating the
result of a decision rule set function is showed as follows:

Step 1: Calculate o

RSMR ;

Step 2: Select a decision rule dr from o

RSMR , where
dr :∧{(a, va)}⇒ (d, vd);

Step 3: The value of rs(o) is set to be vd, that is,

rs(o)=vd.

Complete

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

115

It is obvious that there may be more than one rule in
o
RSMR . In this case, when decision values of the rules in
o
RSMR are different, the result could be various according

to above method, which is called as the uncertainty in a
decision rule set function. Methods of selecting the final
rule from o

RSMR are very important, and they are said to
be the uncertainty solution methods.

The elimination of uncertainty is a process of selection.
We can select a rule rightly only when some information
is known. In other words, we are said to be informed only
when we can select rightly and definitely. In this paper,
we present a rule tree based model to deal with the
uncertainty in Section 3.2.

3.2 Rule Trees
Rule tree is a compact and efficient structure expressing a
rule set. We first introduce the definition of rule tree,
which is developed in our previous work [Zheng and
Wang 2004]. Based on the definition of rule tree, we
improve the rule tree structure with two constraints.

Definition 3.3 (Attribute importance degree based rule
tree): Attribute importance degree based rule tree is a
rule tree, and it satisfies the following two conditions:

1) The attribute expressed by the upper level is
more important than that expressed by any lower
level;

2) Among the branches with the same start node,

the value represented by the left branch is more
(or better) than the value represented by any
right branch. And every possible value is more
(better) than the value “*”.

Definition 3.4 (Comparison of rules): Rule dr1:∧{(ai,
va1i)}⇒ (d1, vd1) is better than rule dr2:∧{(ai,
va2i)}⇒ (d2, vd2), if va1k is better than va2k or the value of
ak is deleted from rule dr2, where attribute ai is more
important than ai+1, and for each j<k, va1j=va2j.

Theorem 3.1: The rule expressed by the lefter branch in
an attribute importance degree based rule tree is better
than the rule expressed by the righter branch.

It is obvious that the theorem holds from Def. 3.4.

Theorem 3.2: After transformed to an attribute
importance degree based rule tree, the rules in a rule set
are total order, that is to say, every two rules can be
compared.

It is obvious that the theorem holds from Def. 3.4 and
Theorem 3.1.

3.3 Rule Sets Based Bilevel Decision Model
In the following, the mathematical model of rule sets
based bilevel decision model is presented. Here, we
suppose there are one leader and one follower. Besides,
we suppose that, if x is the undecided object of the leader
and y is the undecided object of the follower, then x⊕ y
is the combined undecided object of the leader and the
follower together.

Definition 3.5 (Model of rule sets based bilevel
decision):

)(yxfmin L
x

⊕

s.t.)(yxgL ⊕ ≥0

)(yxfmin F
y

⊕

 s.t.)(yxgF ⊕ ≥0, (3.1)

where x and y are undecided objects of the leader and the
follower respectively. fL and gL are the objective decision
rule set function and constraint decision rule set function
of the leader respectively, fF and gF are the objective
decision rule set function and constraint decision rule set
function of the follower respectively. FL, GL, FF and GF
are the corresponding decision rule sets of above decision
rule set functions respectively.

3.4 Modelling Algorithm of Rule Sets Based
Bilevel Decision Model

In the following, we present the modelling algorithm of
rule sets based bilevel decision model.

Algorithm 3.1 (Modelling Algorithm of Rule Sets Based
Bilevel Decision Model)

Input: A bilevel decision problem with its objectives and
constraints of both the leader and the follower;

Output: A rule sets based bilevel decision model;

Step 1: Transform the problem with decision rule sets;

Step 2: Preprocess FL, such as delete reduplicate rules
from the rule sets, eliminate noisy and etc.;

Step 3: If FL need to be reduced,

then using reduction algorithm to reduce FL;

Step 4: Preprocess GL, such as delete reduplicate rules
from the rule sets, eliminate noisy and etc.;

Step 5: If GL need to be reduced,

then using reduction algorithm to reduce GL;

CRPIT Volume 48

116

Step 6: Preprocess FF, such as delete reduplicate rules
from the rule sets, eliminate noisy and etc.;

Step 7: If FF need to be reduced,

then using reduction algorithm to reduce FF;

Step 8: Preprocess GF, such as delete reduplicate rules
from the rule sets, eliminate noisy and etc.;

Step 9: If GF need to be reduced,

then using reduction algorithm to reduce GF;

Complete

Step 1 is the key step of the modeling process. The users
can complete the step by lay out all possible situations,
that is, transform the problem to decision tables. When
the users know the general knowledge (rules) under the
problem, they can directly transform the problem to some
simpler decision rule sets. In general, the realization of
the step depends on the characters of the problem and the
users’ knowledge related with the problem.

In Step 2, Step 4 and Step 6, the four rule sets are
preprocessed. The process is very important, because
incomplete, noisy and inconsistency are the common
characters of huge and real data. So, we should use some
techniques to eliminate these problems in data before
modeling. In [Han and Kamber 2001], the issue is
discussed in detail.
In Step 5, Step 7, and Step 9 of Alg. 3.1, rule set is
reduced by some reduction algorithm. To reduce a
decision rule set or extract decision rules from a decision
table, the methods based on rough set theory are popular
and efficient. Many rough set based decision rule
extraction algorithms, named as value reduction
algorithms, are developed in rough set theory [Pawlak
1991] [Hu and Cercone 1995] [Mollestad and Skowron
1996] [Wang 2001] [Zheng and Wang 2004]. And the
algorithms made successful applications in many fields
[Kiak 2001] [Pawlak and Slowinski 1986] [Kiak 2001]
[Carlin et al 1998]. Besides, there are some rough set
based systems, such as ROSETTA [ROSETTA], RIDAS
[Wang et al 2002], RSES [Jan et al 2002] and so on, can
be used to extract decision rule sets from decision tables.
So, we use rough set theory based methods to reduce the
rule sets based models in this paper.
Based on rough set theory, various value reduction
algorithms can be developed. Value reduction is a process
to find a subset of values in decision rule set which
satisfies that removing any value in this subset will
definitely cause new inconsistency. There are many value
reduction algorithms [Wang 2001] [Hu and Cercone
1995] [Mollestad and Skowron 1996] [Zheng and Wang
2004]. A simplest decision rule set (Def. 2.12) can be
extracted from a rule set or decision table with the
reduction algorithms of rough sets.

In the following section, we use an example to illustrate
the modelling process.

4 Example
Suppose there is a factory with two levels in its staff
management. The upper level is the factory executive
committee and the lower is a workshop management
committee. Now, the factory wants to recruit new
workers. The factory executive committee should
consider the overall objectives, and the workshop
management committee considers its own needs, so the
objectives for the two levels may be different. The
executive committee of factory could ask the workshop to
calculate and submit an optimal production plan as
though it were operating in isolation. Once the plans are
submitted, they are modified with the overall objective of
the factory in mind. An output plan ultimately emerges
that is optimal for the factory as a whole.

When decide whether a person could be recruited, the
factory executive committee considers the following two
factors, which are team spirit and organizational ability of
the person; and the workshop management committee
considers two factors, which are age and eyesight of the
person. Suppose the condition attributes in ascending
order according to the importance degree are “Team
Spirit”, “Organizational Ability”, “Age”, “Eyesight”.

The two committees can’t express the conditions of the
workers they want recruit to linear or nonlinear functions.
But they have a base recorded the worker’s information
having been recruited. So, we can transform the base to
two decision tables (Table 4.1, 4.2), which are the
objective rule sets of the leader and the follower. The
objects of the decision tables represent workers. The
condition attributes of the decision tables are the factors;
the decision attributes of the two decision tables are both
the accept grade of the worker represented by the
condition attribute values. The constraints of the two
committees are expressed by simple rule sets (Equation
4.1, 4.2), which define the constraint region.

Then, we use Alg. 3.1 to transform the problem to rule
sets based bilevel model.

Alg. 3.1-Step 1: Transform the problem with decision
rule sets. Table 4.1 represents the objective rule set of the
leader, Table 4.2 represents the objective rule set of the
follower, Equation 4.1 represents the constraint rule set of
the leader and Equation 4.2 represents the constraint rule
set of the follower.

Table 4.1 Objective rule set of the leader

Team
Spirit

Organizational
Ability Age Eyesight Accept

Grade

Poor Middle Middle Middle 2

Good Middle Middle Middle 1

Good Fine Old Middle 1

Middle Poor Young Poor 3

Poor Poor Middle Middle 3

Middle Poor Old Poor 3

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

117

Good Middle Middle Good 1

Good Fine Middle Middle 1

Middle Fine Old Poor 2

Good Fine Old Good 1

Good Poor Old Good 3

Good Fine Young Good 1

Good Poor Young Middle 3

The constraint rule set of the leader:

GL= { (Team Spirit, Good) ⇒ (pc, 1)

(Team Spirit, Middle)⇒ (pc, 1)

} (4.1)

Table 4.2 Objective decision table of the follower

Organizational
Ability Age Eyesight Accept

Grade

Fine Young Poor 2

Poor Old Good 2

Fine Young Good 1

Fine Old Middle 1

Poor Young Middle 3

Middle Middle Poor 2

Poor Middle Poor 3

Poor Old Poor 3

Fine Old Good 1

Poor Young Good 2

Middle Young Middle 2

Poor Middle Good 2

Fine Old Good 1

Middle Middle Good 2

Fine Middle Poor 2

The constraint rule set of the follower:

GF= {(Eyesight, Poor) ⇒ (pc, 0)} (4.2)

Because the scale of the data is very small, the preprocess
steps(Step 2, Step 4, Step 6 and Step 8) are not needed.
Besides, the constraint rule sets of the leader and the
follower are very brief, so the reduction steps of GL and
GF (Step 5 and Step 9) are not needed.

In the constraint rule sets, we suppose that, if the decision
of a rule is (pc, 0), any undecided objects consistent with
the rule are not in the constraint region; if the decision

value of a rule is (pc, 1), any undecided objects consistent
with the rule are in the constraint region. We can also use
some other formats of the constraint rule to express the
constraint region.

Alg. 3.1-Step 3 and Step 7: Reduce the objective rule
sets of the leader and the follower.

After reducing the decision tables based on rough set
theory, we can get reduced objective rule sets of the
leader and the follower (4.3, 4.4). Here, we use the
decision matrices based value reduction algorithm
[Ziarko et al 1996] in RIDAS system [Wang et al 2002].

The reduced objective rule set of the leader:
FL={(Team Spirit, Poor)∧(Organizational Ability,

Middle)⇒ (Accept Grade, 2)

(Team Spirit, Good) ∧(Age, Middle)⇒ (Accept
Grade, 1)

(Team Spirit, Good)∧(Organizational Ability,
Fine) ⇒ (Accept Grade, 1)

(Organizational Ability, Poor)⇒ (Accept Grade, 3)

(Team Spirit, Middle)∧(Organizational Ability,
Fine)⇒ (Accept Grade, 2)

} (4.3)

The reduced objective rule set of the follower:
FF={(Organizational Ability, Fine) ∧(Eyesight,

Poor)⇒ (Accept Grade, 2)

(Organizational Ability, Poor) ∧(Eyesight,
Good)⇒ (Accept Grade, 2)

(Organizational Ability, Fine) ∧(Eyesight,
Good)⇒ (Accept Grade, 1)

(Organizational Ability, Fine)∧(Age,
Old)⇒ (Accept Grade, 1)

(Organizational Ability, Poor) ∧(Eyesight,
Middle)⇒ (Accept Grade, 3)

(Organizational Ability, Middle)⇒ (Accept Grade,
2)

(Organizational Ability, Poor) ∧(Eyesight,
Poor)⇒ (Accept Grade, 3)

} (4.4)

CRPIT Volume 48

118

With above steps, we get the rule sets based bilevel
decision model of the problem, that is

)(yxfmin L
x

⊕

s.t.)(yxgL ⊕ ≥0

)(yxfmin F
y

⊕ (4.5)

 s.t.)(yxgF ⊕ ≥0,

where fL, fF, gL, gF are the corresponding decision rule set
functions of FL, FF, GL, GF.

5 Conclusion and Future Work
In this paper, we explore the use of rule set approach to
format a bilevel decision problem by establishing a rule
sets based model. We have seen that the common features
of bilevel decision problems are:

a) Interactive decision making units exist within a
predominantly hierarchical structure;

b) The lower level executes its policies after, and in

view of, decisions made at the upper level;

c) Each unit independently maximizes net benefits

(minimizes net costs), but is affected by the
actions of other units through externalities;

d) Extramural effects enter a decision maker’s

problem through his objective function and
feasible strategy set.

Rule sets based bilevel decision problems incorporate
above features. From these features, it is obvious that to
solve a rule sets based bilevel problem should be based
on the solving method of rule sets based multiple
objectives decision problems. Besides, we can divide the
algorithms solving rule sets based decision problems into
three categories, that is, forward algorithms, reverse
algorithms and mixed algorithms. These issues would be
discussed in our future work.

6 Acknowledgments
The work presented in this paper was supported by
Australian Research Council (ARC) under discovery
grants DP0557154 and DP0559213, and University of
Technology, Sydney (UTS) under grant

7 References
Bard, J.F. (1998), Practical Bilevel Optimization:

Algorithms and Applications, Kluwer Academic
Publishers, USA.

Bard, J.F. and Falk, J.E. (1982), An Explicit Solution to
the Multi-Level Programming Problem, Computers &
Operations Research 9, 77-100.

Bard, J.F. and Moore, J.T. (1992), An Algorithm for the
Discrete Bilevel Programming Problem, Naval
Research Logistics 39, 419-435.

Bialas, W. F. and Karwan, M. H. (1982), On Two-Level
Optimization, IEEE Trans Automatic Control AC-26,
211-214.

Bialas, W. and Karwan, M. (1984), Two-Level Linear
Programming, Management Science 30, 1004–1020.

Candler, W. and Norton, R. (1977), Multilevel
Programming and Development Policy, World Band
Staff Work No. 258, IBRD, Washington, D.C..

Carlin, U. S., Komorowski, J. and Ohrn, A. (1998),
Rough set analysis of patients with suspected of acute
appendicitis, Proc. IPMU’98, Paris, France, 1528–
1533.

Chen, C.I. and Gruz, J.B. (1972), Stackelberg Solution
for Two Person Games with Biased Informtaion
Patterns, IEEE Trans. On Automatic Control AC-17,
791-798.

Dempe, S. (2002), Foundations of Bilevel Programming,
Kluwere Academic Publishers.

Han, J. and Kamber, M. (2001), Data Mining Concepts
and Techniques, Morgan Kaufmann Publishers.

Hu, X.H. and Cercone, N. (1995), Learning in relational
database: a rough set approach, Computational
Intelligence, 11, 323-338.

Kiak, A. (2001), Rough Set Theory: A Data Mining Tool
For Semiconductor Manufacturing, IEEE Transaction
on Electronics Packaging Manufacturing, 24, 44-50.

Jan, G. B., Marcin, S. S. and Jakub, W. (2002), A New
Version of Rough Set Exploration System, Rough Sets
and Current Trends in Computing, Publisher? 397-404.

Lew, A. and Tamanaha, D. (1976), Decision table
programming and reliability,
Proc. 2nd Intl. Conf. Software Engineering, San
Francisco, 345-349.

Liang, L. and Sheng S.H. (1992), The Stability Analysis
of Bilevel Decision and Its Application, Decision And
Decision Support System 2, 63-70.

Mollestad, T. and Skowron, A. (1996), A rough set
framework for data mining of propositional default
rules. Proc. Foundations of Intelligent Systems of the
9th International Symposium, 448-457, Springer-
Verlag.

Pawlak, Z. (1991), Rough sets Theoretical Aspects of
Reasoning about Data, Boston, Kluwer Academic
Publishers.

Pawlak, Z. and Slowinski, K. (1986), Rough
Classification of Patients After Highly Selective
Vagotomy Duodenal Ulcer, International Journal of
Man-Machine Studies 24, 413-433.

Pooch, U.W. (1974), Translation of decision tables, ACM
Computing Survey 6, 125-151.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

119

ROSETTA: The ROSETTA Homepage,
http://www.rosettaproject.org/.

Schlimmer, J. C. and Fisher, D A. (1986), Case study of
incremental concept induction, Proceedingsof the
Fifth National Conf. on Artificial Intelligence, 1, 496-
501.

Shan, N., Ziarko, W., Hamilton, H. J., and Cercone, N.
(1995), Using rough sets as tools for knowledge
discovery, Proc. 1st Int. Conf. Knowledge Discovery
Data Mining, Menlo Park, CA, 263–268.

Shi, C., Lu, J. and Zhang, G. (2005a), An extended Kuhn-
Tucker approach for linear bilevel programming,
Applied Mathematics and Computation 162, 51-63.

Shi, C., Lu, J. and Zhang, G. (2005b), An extended Kth-
Best approach for linear bilevel programming, Applied
Mathematics and Computation 164, 843-855.

Shi, C., Zhang, G. and Lu, J. (2005), On the definition of
linear bilevel programming solution, Applied
Mathematics and Computation 160, 169-176.

Stackelberg, H. V.(1952), The Theory of Market
Economy, Oxford, Oxford University Press.

Skowron, A. and Polkowski, L. (1998), Rough Sets in
Knowledge Discovery, Physica Verlag, Heidelberg.

Wang, G.Y. (2001), Rough set theory and knowledge
acquisition, Press of Xi’an Jiaotong University (In
Chinese).

Wang, G. Y., Zheng, Z. and Zhang, Y. (2002), RIDAS-A
Rough Set Based Intelligent Data Analysis System,
Proceedings of the First International Conference on
Machine Learning and Cybernetics, 646~649.

White, D. and Anandalingam, G. (1993), A Penalty
Function Approach For Solving Bi-Level Linear
Programs, Journal of Global Optimization 3, 397–419.

Zheng, Z. and Wang, G.Y. (2004), RRIA:A Rough Set
and Rule Tree Based Incremental knowledge
Acquisition Algorithm, Fundamenta Informaticae 59,
299-313.

Ziarko, W., Cercone, N. and Hu, X. (1996): Rule
Discovery from Databases with Decision Matrices, 9th
Int. Symposium on Foundation of Intelligent Systems,
653-662.

CRPIT Volume 48

120

CASO: A Framework for dealing with objectives in a
constraint-based extension to AgentSpeak(L)

Aniruddha Dasgupta Aditya K. Ghose

Decision Systems Lab
School of IT and Computer Science

University of Wollongong,
Wollongong, NSW 2522,

Email: ad844@uow.edu.au, aditya@uow.edu.au

Abstract

Incorporating constraints into a reactive BDI agent
programming language can lead to better expres-
sive capabilities as well as more efficient computa-
tion (in some instances). More interestingly, the
use of constraint-based representations can make it
possible to deal with explicit agent objectives (as
distinct from agent goals) that express the things
that an agent may seek to optimize at any given
point in time. In this paper we extend the pre-
liminary work of Ooi et.al in augmenting the pop-
ular Belief-Desire-Intention (BDI) language AgentS-
peak(L) with constraint-handling capabilities. We
present a slightly modified version of their proposal,
in the form of the language CAS (Constraint AgentS-
peak). We then extend CAS to form the language
CASO (Constraint AgentSpeak with Objectives) to
incorporate explicit objectives (represented as objec-
tive functions) and present techniques for performing
option selection (selecting the best plan to use to deal
with the current event) as well as intention selection.
In both cases, we present parametric look-ahead tech-
niques, i.e., techniques where the extent of look-ahead
style deliberation can be adjusted.

1 Introduction

The concept of using constraints has been introduced
by Ooi et al. (1999) where it has been shown that the
integration of constraints in a high-level agent specifi-
cation language yields significant advantages in terms
of both expressivity and efficiency. The BDI frame-
work employed in the multi agent broker system is
implemented with an improvised computation strat-
egy - a synergy of unification and constraint solving.
The improvisation applies constraint directed solving
on the context section of a BDI agents plan specifi-
cation in order to determine an application plan to
fire. The constraint system introduced into the BDI
framework maintains a constraint store that collects
a set of constraints that augment the beliefs of an
agent.
In this paper we extend the work one by Ooi et
al. (1999) by incorporating explicit objectives beside
the constraints. We also describe some efficient plan
and intention selection methods which would result
in better expressibility and more efficient computa-
tion which has not been addressed in either Agents-
peak(L) introduced by Rao (1996) or by Ooi et al.

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology, Vol. 48.
Vladimir Estivill-Castro and Gillian Dobbie, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

(1999). This type of selection mechanisms are par-
ticulary useful in many real world applications which
require the use of intelligent agents to perform some
critical tasks. This paper extends the preliminary
work presented by Dasgupta et al. (2005).
The remainder of this article is organized as follows.
Section 2 gives an example which is used throughout
the rest of the paper. Section 3 introduces the lan-
guage CASO and section 4 discusses its operational
semantics and describes the algorithms for efficient
plan and intention selection. Finally, concluding re-
marks and comparisons are presented in the last sec-
tion.

2 Motivation

In this section we give an example of detailed
reasoning behind the adoption of CASO. We begin
by outlining a specific scenario of using CASO
by a truck in order to deliver goods one location
to another. The roads that the truck would take
consists of several roads with choices available at
various important points to follow one of the many
paths. For simplicity, let us assume that the truck
can either take the city road or the highway and
both runs in parallel and the truck can at exit from
the highway into a city road or enter the highway
from city road from the important points.

Let us assume that there following tasks that
need to be achieved.
G1. Deliver a parcel X to location B from the current
location A.
G2. Fill up the tank whenever there is less than a
quarter of petrol in the tank.

The following objectives may also be supplied to
the truck driver.
O1. Choose the shortest path for delivery of the
parcel.
O2. Minimize the amount of petrol required.

A constraint the truck driver may be supplied
with might be the following.
C1. Parcel must be delivered by 5p.m.

Let us also assume the following ground beliefs.
B1. Petrol consumption rate in highways is 10
k.m./litre.
B2. Petrol consumption rate in city roads is 8
k.m./litre.

The two goals above are fairly independent of each
other. Within an agent context the above tasks may
be represented as a set of goals that need to be ful-
filled. In order to fulfil each goal, the truck driver
needs to execute a sequence of actions (i.e. to exe-
cute a plan). There might be a number of plans for

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

121

achieving the same task. As an example, for achiev-
ing the first goal there might be two possible plans:
Plan P1: 1. From location A take H1. 2. Deliver
the parcel X at B.
Plan P2: 1. From location A take city road R1. 2.
Deliver the parcel X at B.
Note that each of the plans above may have subplans
which would describe the exact route to be followed.
Both the above plans achieve the same result of de-
livering the parcel. However, the difference that exist
are the time and petrol needed. In case of plan P1,
the time taken is less as there is less traffic and for
plan P2, the amount of fuel required is less whereas
time taken is more.

3 Agent Programming with CASO

Informally, an agent program in CASO consists of a
set of beliefs B, a set of constraints C, an objective
function O, a set of events E, a set of intention I, a
plan library P, a constraint store CS, an objective
store OS and three selection functions SE , SP , SI to
select an event , a plan and an intention respectively
to process and np and ni are the two parameters
which denote the number of steps to look-ahead for
plan and intentions selection respectively.

Definition 1:
An agent program is a tuple {B, P,E,
I,C,O,SO, SE , SI , np, ni,CS,OS} where
B is a set of Beliefs.
P is agent plan repository, a library of agent plans.
E is set of events (including external and internal).
I is a set of intentions.
C is a set of constraints.
O is an objective function.
SE is a selection function which selects an event to
process from set E of events.
SO is a selection function which selects an applicable
plan to a trigger t from set P of plans.
SI is a selection function which selects an intention
to execute from set I of intentions.
CS is a constraint store which stores constraints
which come as events.
OS is an objective store which stores the objective
function which comes as an event.
np is an integer which denotes the number of steps
required to look-ahead for plan selection.
ni is an integer which denotes the number of steps
required to look-ahead for intention selection.

In CASO, a constraint directed improvisation is
incorporated into the computation strategy employed
during the interpretation process. Constraint logic
programming (CLP) combines the flexibility of
logic with the power of search to provide high-level
constructs for solving computationally hard problems
such as resource allocation.
Formally, a language CLP(X) is defined by a con-
straint domain X, a solver for the constraint domain
X and a simplifier for the constraint domain X.

Definition 2:
A CASO plan p is of the form t : b1 ∧ b2 ∧ · · · ∧ bn ∧
c1 ∧ c2 ∧ · · · ∧ cm ← sg1, sg2, · · · , sgk where t is the
trigger; each bi refers to a belief; each ci is an atomic
constraint; each sg is either an atomic action or a
subgoal.
For brevity we will use BContext(p) to denote the
belief context of plan.
Thus BContext(p) ≡ b1 ∧ b2 · · · ∧ bn
Similarly, we will use CContext(p) to denote the
constraint context of plan p.
Thus CContext(p) ≡ c1 ∧ c2 · · · ∧ cm

In our trucking example the beliefs and plans
could be given as follows where TF refers to ’Tank
Full’, FC to ’Full Capacity of tank’ and CL to
’Current Level’ :

Beliefs
TF = false.
FC = 60.

Plans
+!fill-tank(CL):
TF = false&FC = 60&CL < 0.25 × FC ← (stop-to-
fill(gas-station)); delay(5).

The above plan simply states that in order to
achieve the goal of filling the tank, the tank has to
be quarter full and the actions to be taken would to
stop at a gas station and fill up the tank and this
would have a delay of Transition of agent program
to process events depends on the event triggers. An
event trigger, t, can be addition(+) or removal(-) of
an achievement goal(±gi) or a belief (±bi).

4 Operational Semantics of CASO

The CASO interpreter manages a set of events,
a constraint store, a objective store and a set of
intentions with three selection functions. Intentions
are particular courses of actions to which an agent
has committed in order to handle certain events.
Each intention is a stack of partially instantiated
plans. Events, which may start off the execution of
plans that have relevant triggering events, can be
external when originating from perception of the
agents environment (i.e., addition and deletion of
beliefs based on perception are external events) ; or
internal, when generated form the agents own execu-
tion of a plan (i.e., as subgoal in a plan generates an
event of the type addition of an achievement goal).
In the latter case, the event is accompanied with the
intention which generated it (as the plan chosen for
that event will be pushed on top of that intention).
External events create new intentions, representing
separated focuses of attention for the agents acting
on the environment.
The constraint store is initialized by the relevant
constraints whenever a trigger contains a constraint
in its context. At every cycle of the interpreter, the
constraint store is enhanced with new constraints
when applicable selected plan is executed. These
incremental constraints collecting process eventually
leads to a final consistent constraints set. Constraint
solving is applied to the context of each plan to
determine applicable plans as well as to generate
solutions for subsequent actions. Similarly, the
objective store contains the set of objective functions
that need to be maximized (or minimized) which are
part of the event context and is similarly updated at
each cycle.
In the following sections we explain the basics of how
CASO interpreter works. At every interpretation
cycle of an agent program, CASO updates a list of
events, which may be generated from perception of
the environment, or from the execution of intentions
(when subgoals are specified in the body of plans). It
is assumed that beliefs are updated from perception
and whenever there are changes in the agents beliefs,
this implies the insertion of an event in the set of
events.

CRPIT Volume 48

122

4.1 Plan selection

After SE has selected an event, CASO has to unify
that event with triggering events in the heads of
plans. This generates a set of all relevant plans. The
constraints (if any) that are included in the constraint
part of the context are put in the constraint store.
The context part of the plans is unified against the
agents beliefs. Constraint solving is now performed
on these relevant plans to determine whether the
constraint(s) in the context of the plan is (are)
consistent with the constraints already collected
in the constraint store . This results in a set of
applicable plans(plans that can actually be used at
that moment for handling the chosen event).
The objective store maintains a set of objective
function which may be present in the event context.
At each interpreter cycle, the objective store is also
updated with an objective function for maximizing
(or minimizing).

Definition 3:
Given plans p1 and p2 in the plan library,
and given a current constraint store C and a
current objective store O, p1 ≤opt p2 if and
only if: OptSol(C ∪ CContext(p1), OS) ≥
OptSol(C ∪ CContext(p2), O) where Opt-
Sol(Constraints,Objective) denotes the value of
the objective function when applied to the optimal
solution to the problem denoted by the pair (Con-
straints, Objective).
We assume of course that C ∪ CContext(p1) and
C ∪ CContext(p2) are solvable.

Optimization techniques are then applied by the
optimizer to each of the applicable plan to determine
an optimal solution. In effect we are solving a ’Con-
straint Satisfaction Optimisation Problem’ (CSOP)
which consists of a standard ’Constraint Satisfaction
Problem’ (CSP) and an optimisation function that
maps every solution (complete labelling of variables)
to a numerical value. SO now chooses this optimal
solution from that set, which becomes the intended
means for handling that event, and either pushes
that plan on the top of an existing intention (if the
event was an internal one), or creates a new intention
in the set of intentions (if the event was external,
i.e., generated from perception of the environment).
Thus plan selection is defined as follows:

Definition 4:
Given a trigger t and a set of applicable plans
AppPlans(t) for t, a plan p ∈ AppP lans(t) is referred
to as an O-preferred plan if and only if: p ≤opt pi for
all pi ∈ AppP lans(t).

The agent program is also responsible for making
sure that the objective store is consistent at any
point of time. During each cycle of the interpreter,
new objectives are added into the objective store
and hence a consistency checker is used to maintain
consistency. Formally a consistent objective store is
defined as below.

Definition 5:
Given an objective store OS and a new objective f,
the result of augmenting OS with f, denoted by OS∗

f

, is defined as γ(MaxCons(OS ∪ f)) where γ is a
choice function and MaxCons(X) is the set of all
x ⊆ X such that
1. x is consistent and
2. there exists no x’ such that x ⊂ x′ ⊆ X and x’ is
consistent.
It is to be noted here that the triggering event

can be the removal of an objective function
also. The new objective store is now given by
γ(MaxCons(OS ∪ O) ∩ OS where γ is the choice
function, OS is the objective store and O is the
negation of the objective O.

Selection of O-preferred plan can be further
enhanced by using np the lookahead parameter
form plan selection. In case np=0, no look-ahead
is performed and maximizing the objective function
on the set of applicable plans would result in an
O-preferred plan as described earlier. However, if
np > 0 then a look-ahead algorithm (similar to the
one used for choosing the next move in a two-player
game) is performed to select the O-preferred plan.
We assume that the agent is trying maximize its
objective function and the environment may change
in the worst possible way which would minimize the
objective function. The goal of the agent would be
to select a plan which would maximize the minimum
value of the objective function resulting from the
selection of plans which may occur due to the set
of new possible events that may come from the
environment.
We follow the definition of goal-plan tree given by
Thangarajah (2004) to decompose the set of plans
into a tree structure. In CASO, goals are achieved
by executing plans and each goal has at least one
plan, if not many, that can be used to satisfy the
goal. Each plan can include sub-goals, but need not
have any. The leaf nodes of the tree are plan-nodes
with no children (i.e., no sub-goals).

Definition 6:
The relationship between a top level goal, its plans
and subgoals defines a tree structure for each top-level
goal, which is termed the goal-plan tree for that goal.

Each goal-plan tree consists of - a number
of ’AND’ nodes which are subgoals that must
be executed sequentially for the goal to succeed;
and a number of ’OR’ nodes which are subgoals any
one of which must be executed for the goal to succeed.

In our trucking example,there are two important
criteria, which the user may want to satisfy:
1. the vehicle should go from the starting point to
the destination point as fast as possible
2. the vehicle should go from the starting point to
the chosen destination by maximum fuel saving.
The cost function for one length unit of a road Ri
may look as: Cu(Ri) = K×Fu(Ri)+1 where Cu(Ri)
is the cost of one length unit (for example one meter)
of the road Ri, Fu(Ri) is fuel consumption for one
length unit of the road Ri, and K denotes the degree
of compromise (it must be a number equal or greater
then zero). If K = 0 then the fuel consumption will
be ignored and only the number of length units will
be important the algorithm will find the shortest
way to the destination. If the K parameter is a high
number, the fuel saving will be very important for
the optimization algorithm. The (global) cost of N
used roads will then be the sum of N road costs:
TC =

∑
(L(Ri) × Cu(Ri)). TC is the total cost of

plan for the optimization algorithm and L(Ri) is the
used length of a road Ri.

Given a set of applicable plans, the truck agent
would always try to achieve this objective at every
decision step. However, there could be unforeseen
road blocks and other situations which may result
in the truck from changing its route at any of these
decision points. This may result in the truck in
spending more fuel than that what it would have

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

123

used. Thus the strategy for the agent is to compute in
advance the worst case scenario that may occur due
to the change in the highly dynamic environment.
Let us consider that the example of two applicable
plans p1 and p1 each having one subgoal.

Plan p1
+!location(truck, D1, k) : location(truck, R1)&k ≥
0←!follow(A,F1, L1, k)

Plan p2
+!location(truck, D1, k) : location(truck, R1)&k ≥
0←!follow(B,F2, L2, k)

p1 suggests that if truck is at location R1 and it
needs to go to destination D1 then it can follow route
A. p2 suggests an alternate route of going to D1 from
R1 given by B. F1 and F2 are the fuel consumption
per kilometer of distance and L1 and L2 are the
lengths of the two roads and k is the fuel compromise
factor as described earlier. Let us assume that plan
p1 and p2 have the following possible subplans.

Plan p1.1
+!follow(A,F, L, k) : F = 3&L = 3&(timeleft <
1)&k ≥ 0&k ≤ 2← +!drive(A)

Plan p1.2
+!follow(A,F, L, k) : F = 1.5&L = 3&(timeleft >
1)&k ≥ 2← +!drive(A)

Plan p2.1
+!follow(B,F,L, k) : F = 3&L = 2&(timeleft <
1)&k ≥ 0← +!drive(B)

Plan p2.2
+!follow(B,F,L, k) : F = 0.5&L = 2&(timeleft <
1)&k ≥ 2← +!drive(B)

Plan p1.1 suggest that if current time left to reach
destination is less than 1 hr. then, the value of
k should lie between 0 and 2. Similarly, plan p1.2
suggests k should be greater than 2 if more than 1
hr. of time is left. Plan p2.1 and p2.2 suggest similar
plans for route B.

Since the objective is to maximize the value of TC
shown earlier, let the constraint solving yields the
value of k=0 from plan p1.1 and k=2 for plan p1.2.
Similarly, for plan p2, the values for k are 0 and 2
respectively. Figure 1 shows the tree decomposition
for plan p depicting all possible choices. The num-
bers corresponding to the leaf nodes are the values
of the optimization function TC which we are try-
ing to maximize. Thus choosing plan p1.1 and p1.2
would give values 3 and 12 respectively; similarly for
plans p2.1 and p2.2 the corresponding values would
be 2 and 4. Using the LookAheadPlanSelection algo-
rithm shown below, we obtain the value of 3 at the
root node which suggest that the agent should follow
plan p1.

Following the above algorithm, the truck agent
would choose the p1.

4.1.1 Incremental Resolving of CSOPs

A single decision with such a strategy has O(bn)
time complexity where b is the branching factor
of the decision tree being explored and n is the
number of steps to look ahead which is passed on
as a parameter. The efficiency of plan selection
can be greatly improved if we do not solve the
CSOPs at every step from the beginning of n-step
look-ahead at each decision point but instead apply

Figure 1: Plan Tree

Algorithm 1 LookAheadPlanSelection(int n, state
S, ObjectiveStore OS, ConstraintStore CS)

1: Generate goal-plan tree up to n levels from cur-
rent state S comprising of subgoals of AND and
OR nodes with subplans.

2: Start from the root node.
3: Let constraint store at node p = cp
4: Let op denote the value of objective function at

node p.
5: For each node p in the goal plan tree set cp ← CS
6: if node p has child nodes p1, p2 · · · , pk in an AND

structure then
7: Apply constraint solving at each pi with the

current constraint store cpi and the set of con-
straints for pi to obtain opi.

8: Set cpi+1 ← cpi for all i ≥ 1.
9: Initialize constraint store for all child nodes of

each pi with cpi.
10: end if
11: if node p has child nodes p1, p2 · · · , pk in an OR

structure then
12: Compute the objective function and update the

constraint store for each pi.
13: Initialize constraint store for all child nodes of

each pi with cpi.
14: end if
15: while n 6= 1 do
16: Propagate minimum value of objective function

up to each parent node starting from the leaf
node.

17: n = n− 1
18: end while
19: Propagate the maximum value of its children for

state S.
20: At state S, the best plan is the child with the

maximum value.

some heuristic for incrementally resolving the CSOPs.

A heuristic similar to Look Back schemas like back-
tracking that are often used for consistency check
in CSPs can be employed for resolving the CSOPs.
Without any look-ahead, the CSOP for the given plan
P is solved and the solution along with the set of con-
straints in the constraint store at that point is stored.
In order to solve the CSOP for each step of look-
ahead, the new set of constraints that are associated
with each of the subplans at each decision point for
plan P is added to the currently solved CSOP set -

CRPIT Volume 48

124

if this new set of constraints violate the current value
of the objective function, then backtracking is per-
formed to the most recently instantiated variable that
still has alternatives available and the new CSOP is
solved with the new value of the instantiated variable.

4.2 Intention Selection and Execution

Once a plan is chosen the next stage is to execute
a single intention in that cycle. The SI function
selects one of the agents intentions (i.e., one of the
independent stacks of partially instantiated plans
within the set of intentions). Look-ahead technique
using decision tree is similarly employed here which
could help in selecting an intention which would
give the optimal solution. The parameter ni denotes
the number of steps for required to look ahead. In
case of Intention selection, this merely becomes the
number of items to be evaluated at the top of the
intention stack. If there are more than one intention
stacks present, then look-ahead procedure pops the
top ni elements of the stack from each intention
and computes the optimal solution based on the
constraint and the objective store.
Let us assume that in case of our truck agent, there
are currently two intention stacks (I1 and I2) each
corresponding to the two independent goals. The
first one is to follow plan p1 (described earlier) and
the other one is to follow plan p3 which describes the
goal of picking up a parcel P2 from location C.

1. Take route A to location D1 from R1 (plan p1).
2. Pick up parcel P2 from location C (plan p3).

Both the above constitute a set of plans which are
in the intention stack ready to be executed. The de-
liberation process of the truck agent is to decide which
intention stack to pursue at a given point in time. For
our example, let us assume that plan p1 has subplan
p11 in the intention stack (i.e. SO has selected plan
p11 to be executed). Let us also assume that the body
of plan p3 consists of the subplan p31 followed by sub-
plan p32 followed by action a1 (i.e. p31; p32; a1).

The intention selection mechanism with one step
look ahead would be to enumerate each of the above
plans p1 and p3 with respect to the set of constraints
associated with each plan and objective function (i.e.
Maximize TC) to determine the best intention to ex-
ecute. A two-step look-ahead mechanism would look
at maximizing the value of TC by enumerating plans
p11 and p31 with the set of constraints associated with

1. plan p1 along with subplan p11 on intention stack
I1;

2. plan p3 along with subplan p31 on intention stack
I2.

Thus depending on ni, the number of steps given
by the programmer, the prioritization of intention is
determined by the value of the objective function up
to ni levels in the intention stack for each intention.
The one which yields the maximum value of the objec-
tive function would the the intention selected by SI .
In this case the tree generated is called the intention
tree as shown in Figure 2 below where I1, I2, · · · In are
the set of intention stacks.

The algorithm for selecting new intention using
look-ahead is given below.

On the top of the selected intention there is a plan,
and the formula in the beginning of its body is taken
for execution. This implies that either a basic action
is performed by the agent on its environment, an in-
ternal event is generated (in case the selected formula

Figure 2: Intention Tree

Algorithm 2 LookAheadIntentionSelection(int n,
ObjectiveStore OS, ConstraintStore CS))

1: Generate intention tree for all Intention Stacks.
2: Let constraint store at node p = cp
3: Compute the value of objective function at the

leaf nodes starting from left to right for each in-
tention stack up to n nodes (i.e. n elements from
top of Intention Stack) each by taking objectives
and constraints from the objective store and the
constraint store.

4: The best intention to execute is the intention
stack which has the maximum value of the ob-
jective function at node n from the left.

is an achievement goal denoted by !gi), or a test goal
is performed (which means that the set of beliefs has
to be checked). If the intention is to perform a basic
action or a test goal denoted by ?gi, the set of in-
tentions needs to be updated. In the case of a test
goal, the belief base will be searched for a belief atom
that unifies with the predicate in the test goal. If that
search succeeds, further variable instantiation will oc-
cur in the partially instantiated plan which contained
that test goal (and the test goal itself is removed from
the intention from which it was taken). In the case
where a basic action is selected, the necessary updat-
ing of the set of intentions is simply to remove that
action from the intention (the interpreter informs to
the architecture component responsible for the agent
effectors what action is required). When all formulae
in the body of a plan have been removed (i.e., have
been executed), the whole plan is removed from the
intention, and so is the achievement goal that gener-
ated it (if that was the case).
This ends a cycle of execution, and CASO starts all
over again, checking the state of the environment af-
ter agents have acted upon it, generating the relevant
events, and so forth.

5 Comparison and Conclusion

We now briefly summarize some of the work related
to AgentSpeak(L) and BDI framework below.
Chalmers et al.(2001) constraint logic programming
and data model approach is used within BDI agent
framework. However, this work speaks of BDI agents
in general and does not integrate with any BDI pro-
gramming language. AgentSpeak(XL) programming
language as described by Bordinin et al.(2002) inte-
grates AgentSpeak (L) with the TAEMS scheduler in
order to generate the intention selection function. It
also describes a precise mechanism for allowing pro-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

125

grammers to use events in order to handle plan fail-
ures which is not included in AgentSpeak(L). This
work, however, adds priority to the tasks. Some re-
lated theoretical work on selecting new plans in the
context of existing plans is presented by Horty et
al.(2001). Another related work on detecting and re-
solving conflicts between plans in BDI agents is pre-
sented by Thangarajah et al.(2003). The degree of
boldness of an agent, as defined by Schut et al.(2000),
represents he maximum number of plan steps the
agent executes before re-considering its intentions.
However in this case it is assumed that the agent
would backtrack if the environment changes after it
has started executing the plans.
In this paper we have presented a general overview
and informal discussion of the concept of incorporat-
ing constraints and objectives functions to AgentS-
peak(L) as well as describe a means of how to design
the option selection function for selecting a plan or an
intention by using parametric look ahead mechanism.
In future we would be extending CASO to incorporate
inter-agent constraints in a multi-agent environment
where agents may need to negotiate with each other.

References

Ooi, B. Hua & Ghose, A. K. (1999), Constraint-Based
Agent Specification for a Multi-agent Stock Bro-
kering System, in ‘Multiple Approaches to In-
telligent Systems:Proceedings of the 12th Inter-
national Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Ex-
pert Systems’, Vol. 1611, Springer-Verlag Lec-
ture Notes in Computer Science, pp. 409–419.

Jaffar, J. & Maher, M.J. (1994), Constraint logic pro-
gramming: A survey., in ‘Journal of Logic Pro-
gramming’ pp. 503–581

Kinny, D. & Georgeff, M. (1997), Modeling and design
of multi-agent systems, Intelligent Agents III,
Lecture Notes in Artificial Intelligence Springer,
Berlin.

Morley., D. (1996), Semantics of BDI agents and their
environment., in ‘Tech. Rep. 74, Australian Ar-
tificial. Intelligent Institute, Melbourne’.

Rao, A.S. (1996), AgentSpeak(L): BDI agents speak
out in a logical computable language, in ‘Agents
Breaking Away: Proceedings of the 7th Euro-
pean WS on Modelling Autonomous Agents in a
Multi-Agent World’, LNAI Vol 1038, pp. 42–55,
Springer Verlag: Heidelberg, Germany.

Rao, A.S. & Georgeff, M. (1995), BDI Agents: from
theory to practice., in ‘Proceedings of First In-
ternational Conference on Multi-Agent Systems’,
ICMAS-95, pp 312–319, San Francisco, CA.

Schut, M. & Wooldridge, M. (2000), Intention recon-
sideration in complex environments, in ‘Proceed-
ings of International Conference on Autonomous
Agents’, Barcelona, Spain.

Bordini, R.H., Bazzan, A.L.C., Jannone, R.O., Basso,
D.M., Vicari, R.M. & Lesser, V.R. (2002),
AgentSpeak(XL):Efficient intention selection in
BDI agents via decisiontheoretic task schedul-
ing, in Castelfranchi C. & Johnson, W.L. eds,
‘Proceedings of the 1st International Joint Con-
ference on Autonomous Agents and Multi-Agent
Systems’, ACM Press, pp 1294–1302, New York,
USA.

Horty, J. & Pollack, M. (2001), Evaluating new op-
tions in the context of existing plans., Artifical
Intelligence, Vol. 127, pp 199–220.

Machado, R. & Bordini, R.H. (2002), Running
AgentSpeak(L) agents on SIMAGENT in Meyer
J. & Tambe, M., eds.,‘pre-proceedings of the
8th International Workshop on Agent Theories,
Architectures and Languages’, LNCS Vol. 2333,
Springer Verlag: Berlin, Germany.

Lin, Z.-N., Hsu, H.-J. & Wang, F.-J. (2005), Inten-
tion Scheduling for BDI agents, in ‘International
Conference on Infomration Technology: Coding
and Computing’,ITCC-05, Vol-II.

Thangarajah, J., Padhgam, L. & Winikoff, M. (2003),
Detecting and Avoiding Interference Between
Goals in Intelligent Agents, in ‘Proceedings of
the 18th International Joint Conference on Arti-
ficial Intelligence’,IJCAI 2003, pp. 721–726, Aca-
pulco, Maxcio.

Thangarajah, J. (2004), Managing the Concurrent
Execution of Goals in Intelligent Agents, Ph.D.,
RMIT, Australia.

Chalmers, S. & Gray, P.M.D. (2001), BDI agents and
constraint logic, AISB Journal Special Issue on
Agent Technology Vol. 1, pp. 21–40.

Dasgupta, A. & Ghose, A.K. (2005),Dealing with
Objectives in a Constraint-Based Extension to
AgentSpeak(L), in ‘Eighth Pacific Rim Work-
shop on Multi-Agent Systems’, PRIMA 2005.

CRPIT Volume 48

126

Modelling Layer 2 and Layer 3 Device Bandwidths using B-Node
Theory

S Cikara, S P Maj and DT Shaw
School of Computer and Information Science

Edith Cowan University
2 Bradford St Mount Lawley, Perth 6050, Western Australia

scikara@gmail.com; p.maj@ecu.edu.au; alidades@iinet.net.au

Abstract
Modern computer networks contain an amalgamation of
devices and technologies, with the performance exhibited
by each central to digital communications. Varieties of
methods exist to measure and/or predict these
performance characteristics. “Rule-of-Thumb” is
subjective and based on prior experience, typically
offering little mathematical rigour. Benchmarks use
different scales and units, with comparative results
possibly requiring further interpretation. Stochastic
modelling uses complex mathematics which can be
problematic and difficult to understand and conceptualise
to the typical network administrator. As such, the specific
technique employed depends on the problem domain and
the cost of getting it wrong.

Bandwidth-Nodes (B-Nodes) are a high-level bandwidth-
centric abstraction used to de-couple and control the
complexity of a particular technology from the underlying
implementation. Devices and/or technologies can be
modelled as an individual node or as a collection of
nodes, describing the overall function and interactions
between both the sub-systems and the operating
environment.

This paper uses a simple, common measurement method
to calculate the theoretical maximum bandwidth of a
single and/or collection of B-Nodes. It demonstrates that
the efficiency of B-Nodes can be decomposed and shown
as a product of all efficiencies contained within that node.
Sub-optimal operation and device efficiency and its effect
on bandwidth is also introduced. These are empirically
validated and incorporated into the B-Node formula,
allowing the bandwidth of a network to be calculated to a
first approximation for a variety of devices and
technologies. Hence, the anticipated performance of a
network given a technical specification can be easily and
quickly determined.

Keywords: modelling, B-Nodes, bandwidth, performance.

1 Introduction
A wide range of methods, terms, units and metrics are

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Society Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

used to describe the performance of a network system. In
conjunction with other factors such as price, they are used
as an aid to selection (Maj and Veal 2001). In order to be
of any practical value, they should be easy to understand
and therefore be based on user perception of performance
and as such, be simple and use reasonably sized units
(Maj, Veal et al. 2000). Many of the results of these
methods may require further interpretation and pose
additional questions themselves. Others involve the use of
complex mathematics and modelling, such as queuing
theory, which can be problematic to analyse and difficult
to understand and conceptualise to the typical network
administrator.

Bandwidth-Nodes (B-Nodes) are a conceptually simple
model used to control the detail of a system by the use of
abstraction (Maj and Veal 2001). Details of the technical
implementation are deliberately hidden as the specific
technological execution may change rapidly and vary
from device to device.

B-Nodes use a simple formula to determine the
anticipated performance of individual components and
networks as a whole. Recursive decomposition allows the
performance of a node to be assessed by a simple,
common measurement- bandwidth. Sub-optimal operation
of B-Node efficiencies, including multiple compounded
efficiencies, can also be introduced into an existing
system, allowing the efficiency of a single or multiple B-
Node(s) to be incorporated and evaluated right down to
the device, protocol or technology level if so desired.

B-Node experimentation has shown the use of tools such
as PING and File Transfer Protocol (FTP) to ascertain the
bandwidth of a given configuration (Veal, Kohli et al.
2005). Work to date has not addressed the addition and
subtraction of protocols and/or services to a specific
device or configuration. This research will focus on
empirically validating these variables and modelling each
as its own individual sub-B-Node that impacts network
performance, either positively or negatively.

Therefore, it is proposed that the anticipated performance
of a network given a technical specification can be easily
and quickly determined using B-Node modelling.

2 Network Performance
Network Performance is an amalgamation of terms, units
and metrics used to characterise and quantify parameters
such as delay, packet loss and bandwidth (Coccetti and
Percacci 2002). As such, these cannot be simply
expressed by a single parameter, and consequently there

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

127

mailto:scikara@gmail.com
mailto:.maj@ecu.edu.au

are numerous metrics and measurement methodologies
employed to express such quantities.

As different applications place different requirements on
a network, common criteria must be designed to
maximise accurate common understanding by end users
and service providers of the performance and reliability
both of end-to-end paths and of specific ‘IP clouds’
(Paxson, Almes et al. 1998). For example, Voice over IP
(VoIP) is an application that is sensitive to delay but
requires relatively small bandwidth, and bulk data
transfers that are insensitive to delay but require large
bandwidth. As such, different metrics are used to measure
the different quantities- delay is typically measured using
packet loss and round trip time (Coccetti and Percacci
2002), (Padmanabhan, Qui et al. 2002), (Lai and Baker
2000), and bandwidth is typically measured by capacity,
throughput and available bandwidth (Strauss, Katabi et al.
2003), (Lai and Baker 1999), (Prasad, Dovrolis et al.
2003), (Jain and Dovrolis 2002). Benchmarks can be used
as an aid to answering these questions, however results
may require further interpretation and additional
questions may arise (Maj and Veal 2000).

Performance metrics must use concrete and well defined
metrics, be repeatable, exhibit no bias for IP clouds using
identical technology, exhibit fair and understood bias for
IP clouds using non-identical technologies, avoid
introducing artificial performance goals and be useful to
users and providers in understanding the performance
they experience or provide (Paxson, Almes et al. 1998).

Bandwidth, in a network-centric context, quantifies the
data rate at which a network link or network path can
transfer information (Prasad, Dovrolis et al. 2003). It
must address the impact of application data plus
overheads required to transport the data, all in a coherent
and easily understood manner. Applications that depend
on network capacity to transfer significant quantities of
data over a single congestion-aware transport connection
rely on the Bulk Transfer Capacity (BTC) of the network.
BTC is defined as the long term average data rate over
the path in question (Mathis and Allman 2001) and is
hence defined as:

Therefore, the performance as perceived by the user, is
constrained by the overall elapsed time an application
takes to be executed over the underlying network (Mathis
and Allman 2001).

BTC is an active measurement technique that directly
probes network properties by generating the traffic
required to make the measurement (Claffy and McCreary
1999). This active and direct method of analysis has the
undesirable effect of the measurement traffic having a
negative impact (saturation) on the performance of other
traffic on the link (Coccetti and Percacci 2002), (Claffy
and McCreary 1999).

As networks consist of heterogeneous devices and
technologies (Maj and Kohli 2002) including computer
nodes or hosts, network connection media, protocols,
infrastructure and applications, interchanging any of these
variables may vary network performance as each of these

technologies have differing overheads. Subsequently,
there exists a need for unbiased, empirical performance
analysis that is simple, easy to use and conceptualise and
be based on user perception of performance.

3 B-Nodes
Generally, any performance analysis or benchmark
should provide a coherent conceptual model (Maj and
Veal 2000). As such, the measurement standard used
must be easy to understand, be based on user perception
of performance, be simple, and utilize reasonably sized
units (Maj, Veal et al. 2000).

Bandwidth Nodes, or B-Nodes, are a bandwidth-centric
concept that uses high level abstraction to de-couple and
hide the complexity of a particular technology from the
underlying implementation (Maj and Veal 2001). They
allow B-Nodes to be modelled as individual nodes
(Figure 1) or as a sequence of nodes linked together
(Figure 2).

Bx

Figure 1 : B-Node

ByBx

Figure 2: Interconnected B-Nodes

They also allow recursive decomposition to permit a
device to be modelled as a collection of B-Nodes (Figure
3). A B-Node can also permit full or partial system or
device overlap (Figure 4) (Maj, Veal et al. 2001).

 Bx

Bx2Bx1 Bx4Bx3

 timeelapsed
sentdataBTC _

_=

Figure 3: Recursive Decomposition

Bx

Bx2Bx1 Bx4Bx3 By

Hardware Device BHardware Device A

Figure 4: Partial device overlap

Furthermore, “…each node … can now be now be treated
as a quantifiable data source/sink … with associated
transfer characteristics (Frames/s or Mbytes/s). This
approach allows the performance of every node and data
path to be assessed by a simple, common measurement-
bandwidth. Where Bandwidth = Clock Speed x Data Path

CRPIT Volume 48

128

Width with the common units of Frames/s (Mbytes/s) …
(Maj, Veal et al. 2000).

Operational constraints, including but not limited to
processing capacity and interactions between slower
nodes, typically influence B-Nodes to perform sub-
optimally (Maj, Veal et al. 2001), (Maj and Veal 2001).
As such, Maj et. al. has modified the simple bandwidth
formula to incorporate sub-optimal operation using an
“efficiency” multiplier. Therefore, the bandwidth of a B-
Node is defined as:

Bandwidth = Clock Rate x Data Path Width x Efficiency
or

EDCB ××=

Equation 1: B-Node formula showing sub-optimal
operation

This formula can be applied to the theoretical maximum
Bulk Transfer Capacity (and hence bandwidth) for
TCP/UDP payloads over 100BASE-TX (100Mbps)
Ethernet. All efficiency calculations within this paper are
based on this reference protocol. Using the highest level
of abstraction, 100BASE-TX has the following
transmission characteristics:

Example 1: Bandwidth = ?

Clock Speed = 100 MHz

Data Path = B8
1 (converting bits into

bytes), and

Efficiency = 1 (no transport overheads)
Hence:

18
1100 ××= BMHzB

sMBB /5.12=

Using a lower level of abstraction, 100BASE-TX data
encoding uses 4B/5B block coding which means that a
100Mb/s data stream requires 125Mb/s on the media (a
25% speedup resulting in 20% overhead or non-data bits
transmitted) (Kaplan and Noseworthy 2000).

Example 2: Clock Speed =125 MHz (25% speedup)

Data Path = B8
1 , and

Efficiency = 5
4 (20% overhead for

non-data bits transmitted)
And so:

5
4

8
1125 ××= BMHzB

sMBB /5.12=

Alternately, viewing the same problem from an even
lower level of abstraction (after MLT-3 coding) the same
formula now becomes:

Example 3: Clock Speed = MHz4
125

MHz25.31= (frequency
is reduced to ¼) (Kaplan
and Noseworthy 2000)

Data Path = B8
1 , and

Efficiency= 2.345
4 =× (20%

overhead for non-data bits transmitted)

By reducing the carrier frequency without reducing the
data rate, the efficiency is increased by a factor of 4.
When it is demodulated at the other end, the efficiency is
reduced by the same factor (4 times). So:

2.38
125.31 ××= BMHzB

sMBB /5.12=

From this we can see that the regardless of the level of
abstraction, the formula still yields the same result- that
being the maximum bandwidth of Ethernet is 12.5MB/s.
For simplicity, all further calculations and assumptions
are based on Example 1.

This high level abstraction only deals with 100BASE-TX
and its effect on bandwidth. It does not address the
subsequent reduction in efficiency additional network
protocols and their associated overheads incur, in
particular TCP/IP (hence referred to in this document as
Ethernet).

4 The Internet Protocol (IP)
Internet Protocol version 4 (IPv4), developed in the
1980’s (Information Sciences Institute 1981), is the most
commonly used protocol in today’s networks, and forms
the integral basis for what we know as the Internet. As
new and powerful applications using the Internet are
developed, the underlying protocols operating in the
lower layers of the OSI model (the networking protocol
stack itself) remain unchanged (Xie 1999).

IPv4 is a network layer protocol that has provision for a
32-bit address space. Modern networks have surpassed
IPv4’s capabilities (Tanenbaum 1996). In order to address
these and other shortcomings, Internet Protocol Version 6
(IPv6) has been developed (Deering and Hinden 1998)
and is slowly being integrated into existing IPv4
infrastructure (Tanenbaum 1996).

IPv6 has a new simplified header format, including a 128-
bit address space, which is designed to keep overhead to a
minimum. The non-essential and optional fields have
moved to extension headers that are placed after the IPv6
header. This reduces the common-case processing cost of
packet handling and to limit the bandwidth cost of the
new header (Deering and Hinden 1998) allowing for
more efficient processing. IPv4 headers are not
interoperable with IPv6 headers and hosts must
implement both protocols in order to recognize and
process both types of headers.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

129

4.1 IP Overhead
By breaking down the various headers, we can analyse
and predict the BTC performance degradation incurred
between IPv4 and IPv6. By elaborating on Raicu and
Zeadally’s table (Raicu and Zeadally 2003), we can
calculate the Total Bytes of the Frame on the Wire for an
individual packet, as shown in Table 1 (grey rows denote
new fields introduced by the authors).

Packet
Component

IPv4 TCP
(B)

IPv6 TCP
(B)

IPv4 UDP
(B)

IPv6 UDP
(B)

Preamble 7 7 7 7
Start of Frame

Delimiter 1 1 1 1

Ethernet
Header 14 14 14 14

IP Header 20 40 20 40
TCP/UDP

Header 20 20 8 8

TCP/UDP
Payload 1460 1440 1472 1452

Checksum 4 4 4 4
Interframe Gap 12 12 12 12

Total Overhead 78 98 66 86

Total Bytes of
Frame on Wire 1538 1538 1538 1538

Efficiency (%) 94.93 93.63 95.71 94.41

Table 1: IPv4 and IPv6 header overhead showing both
TCP and UDP

Using the Total Bytes of Frame on Wire, we can calculate
the theoretical maximum single packet efficiency using
the maximum data payload via Equation 2:

on Wire Frame of Bytes Total

Payload TCP/UDP (%) EfficiencyPacket Single =

Equation 2: Theoretical maximum efficiency of a single
packet

To evaluate the Bulk Transfer Capacity (bandwidth) of
100BASE-TX using these efficiency values, we get the
results in Table 2:

No
Ethernet
Protocol

Overhead
(Example)

IPv4
TCP

IPv6
TCP

IPv4
UDP

IPv6
UDP

Maximum Line
Speed (Mb/s) 100 100 100 100 100

Maximum Line
Speed (MB/s) 12.5 12.5 12.5 12.5 12.5

Efficiency of
Ethernet (%) 100 94.93 93.63 95.71 94.41

Max Bulk
Transfer
Capacity
(MB/s)

12.50 11.87 11.70 11.96 11.80

Table 2: Bulk Transfer Capacity of IPv4 and IPv6

Using the efficiency percentages from Table 1, we obtain
the efficiency of a specific protocol (EEthernet) and from
this, the computed theoretical maximum BTC for a single

protocol (or B-Node) is calculated for 100BASE-TX
(Table 2). However, the simple B-Node formula
(Equation 1) does not address multiple B-node
efficiencies. It must be extrapolated further to combine
the effects of multiple efficiencies and their influence on
node bandwidth.

5 B-Node Efficiency Decomposition
By further decomposing Equation 1, the efficiency of the
B-Node (E) can be shown as a product of all efficiencies
(ei) contained within the B-Node (Equation 3).

i

n

i
eE

1=
∏=

Equation 3: B-Node efficiency product formula

For each B-Node, there is the absolute efficiency, which
is the ratio of input to output of each individual B-node,
and a relative efficiency which compares the reference
value to the output of the B-Node. An example is shown
in Figure 5.

Figure 5: B-Node decomposition example

The component efficiencies (ei) can further be divided
dependent on whether the additional overhead contains
Control Packet information or Data Packet overheads.

Data Packet overheads are defined as overheads that are
directly added to packets that are transmitting application
data. One such example includes Virtual Local Area
Network (VLAN) tags. Therefore, ei, to a first
approximation now becomes:

CRPIT Volume 48

130

)1(niii eeeE +∆×−×=

where
payload Data

 OverheadPacket Data Additional = e ni+∆

Equation 4: Data packet efficiency equation

Control Packet information is defined as entirely
additional packets used to control link flow. They carry
no user data and can typically be viewed as packets that
reduce the bandwidth of a link, without transmitting any
real application data. Some examples include Spanning-
Tree Protocol (STP), Routing Information Protocol (RIP),
Enhanced Interior Gateway Routing Protocol (EIGRP)
and Open Shortest Path First (OSPF). In this situation,
ei+n to a first approximation becomes:

()nini ee ++ −= α1

where
secondper speedLink

 secondper sizepacket Control = e ni+α

Equation 5: Control packet efficiency equation

The original B-Node formula remains the same, however
the ei+n parameter can be interchanged with as many
Control Packet or Data Packet efficiencies as required to
be added.

To remove an efficiency from a already calculated B-
Node, this can simply be achieved by multiplying the B-
Node efficiency with the inverse of the efficiency to be
removed (Equation 6):

nie +

1

Equation 6: Efficiency removal equation

This can be applied to both Control and Data Packet
efficiencies.

For example, using a B-Node with 5 sub-nodes as defined
below:

e1 is Ethernet Efficiency

e2 and e5 are Data Packet efficiencies

e3 and e4 are Control Packet Efficiencies

The B-Node formula (Equation 1) now becomes:

(54321 eeeeeDCB ××××××=)

()()() () () ()())1111(21432111 eeeeeeeeDCB ∆×−×−×−×∆×−××××= αα

As all devices are not created equally, each with their
own technological constraints, the B-Node formula does
not cater for individual device efficiencies. As such, it
must be further expanded to account for these variations
in device implementations.

5.1 Device Sub-Optimal operation and its effect
on Bandwidth

In an ideal system, an intermediary device such as a
switch, router or bridge would have little or no impact on
bandwidth. However, this is not always the case. A
device itself can introduce latency or processing
overheads within a link and hence reduce bandwidth.
This may be particularly pronounced in computationally
intensive operations such data encryption and decryption.

It is envisaged that there is no one single figure (eDi) for
an entire device, rather a figure for each process the
device purports to undertake. For example, a router might
be particularly fast at switching IPv4 packets, but not
very fast at IPv4 encryption using Advanced Encryption
Standard (AES) with 256 bit keys. As such, these must be
addressed individually. The Efficiency parameter now
becomes:

Dii

n

i
eeE

1=
∏=

Equation 7: B-Node efficiency formula with device sub-
optimal operation

The B-Node formula is extrapolated again to take into
account this device sub-optimal operation:

()niDniDD eeeeeeDCB ++×××××=2211

Equation 8: Extrapolated B-Node equation

Using empirically derived results, eDi for an individual
process on a particular device can be evaluated.

6 Empirical Validation

6.1 Initial Benchmarking
The initial test bed consisted of two identical 800MHz
Celeron dual-stack IBM-compatible PCs with Windows
2003 Enterprise operating system installed. The Intel Pro
100S network interface cards of each machine were
directly connected to each other via a crossover cable.
This setup (Figure 6) forms the benchmark baseline.

To empirically measure the Bulk Transfer Capacity of a
link (and hence evaluate B-Nodes), there was a
requirement for a single program that could perform
IPv4, IPv6, TCP and UDP measurements. In addition to
this, it was identified that the performance of a BTC
program is often limited by the speed of a disk drive
(Spurgeon 2000). Furthermore, the program had to
account for this by performing memory-to-memory data
transfers. Iperf (NLANR Distributed Application Support
Team 2003) was initially evaluated, however erroneous
results for IPv6 UDP transfers rendered the program
inadequate for the purposes of this experimentation. As
such, nuttcp (Fink and Scott 2004) was assessed to meet
all the aforementioned requirements. The program’s
documentation describes “…its most basic usage is to
determine the raw TCP (or UDP) network layer
throughput by transferring memory buffers from a source

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

131

system across an interconnecting network to a destination
system, either transferring data for a specified time
interval, or alternatively transferring a specified number
of buffers.”

T
he

or
et

ic
al

 M
ax

im
um

(M

B
/s

) (
fr

om
 T

ab
le

 2
)

O
up

ut
 a

t m
ea

su
ri

ng

po
in

t (
M

B
/s

)

D
iff

er
en

ce
 (M

B
/s

)

M
ax

 c
al

cu
la

te
d

E
th

er
ne

t E
ff

ic
ie

nc
y

(%
)

A
ct

ua
l e

nt
ir

e
B

-N
od

e
E

ff
ic

ie
nc

y
(%

)

 A
ct

ua
l E

ff
ic

ie
nc

y
(E

d)

of
 In

tr
od

uc
ed

 B
-N

od
e

(%
)

IPv4 TCP 11.87 11.84 0.03 94.93 94.75 99.78
IPv4 UDP 11.96 11.83 0.13 95.71 94.66 98.93
IPv6 TCP 11.70 11.68 0.02 93.63 93.43 99.82
IPv6 UDP 11.80 11.62 0.18 94.71 92.96 98.48

6.1.1 Initial Benchmark Results (PC to PC)

Using the above method, the efficiency of any introduced
or removed system can be calculated and validated. In
this case, the efficiency of a BTC test between two
identical PCs connected via a cross-over cable was to be
assessed. This relative measurement for a minimalistic
system was important as it demonstrated the maximum
transfer characteristics of an “unloaded” node. All other
measurements are calculated relative to these values,
either directly or indirectly.

Figure 6 shows the experimental setup consisting of three
B-Nodes. The centre node consists of the two identical
PCs, the second most inner node is made of Ethernet
efficiency (which has already been calculated in Table 2),
and the outer B-Node, which is the overall efficiency of
the node in relation to the input (reference point) and the
output (measuring point). This measured value, in
conjunction with Ethernet efficiency, allows the empirical
calculation of the inner node, and the node efficiency for
that specific hardware setup.

Figure 6: Initial experiment test-bed setup showing B-
Node decomposition

From the results (Table 3), it can be concluded that both
IPv4 and IPv6 TCP have almost optimal (or 100%)
efficiencies compared to the calculated value, with both
being above 99.78%. Both UDP transfers perform
slightly worse than their TCP counterparts (at best almost
1% less) with IPv6 UDP (98.48%) approximately a
further 0.5% less than IPv4 UDP (98.93%).

Table 3: Bulk Transfer Capacity of IPv4 and IPv6
showing actual efficiency of introduced B-Node.

6.2 Layer 2 Device Measurement
6.2.1 Single Switch Experiments

To calculate specific device efficiencies, the experiment
was further elaborated to incorporate both unmanaged
(DLink DES1008D) and managed (Cisco 2950 and 3550
series) switches. The equipment was set up as shown in
Figure 7.

As managed switches have more features available than
unmanaged switches, the opportunity to individually test
the efficiencies of these was investigated. Initially, a
Cisco default switch configuration was tested. In this
case, the PCs were in Virtual Local Area Network 1
(VLAN 1), and Spanning-Tree Protocol (STP) was
enabled. Various combinations of these were then
evaluated including:

1. PCs in VLAN 1 and STP disabled
2. PCs in VLAN 1 and STP enabled (Cisco default

configuration)
3. PCs in VLAN 10 and STP disabled
4. PCs in VLAN 10 and STP enabled

Note: On a switch, access ports or non-trunking ports
have no VLAN information passed on them. The VLAN
tags are not passed through to the PC (and hence do not
occupy any time on the wire) and as such, should not
impact bandwidth.

It should also be noted that the experiments were
conducted using a stable and settled STP network with
hello timers set to the default of 2 seconds. Using these
parameters, we obtain a calculated maximum efficiency
for an STP B-Node to be 99.999663%. This should have
negligible impact on BTC.

The experimental setup (Figure 7) in this instance
consists of four B-Nodes, but with a variable number of
ei+n sub-nodes shown in the switch. These variable
numbers of sub-nodes in the switch pertain to device
specific functionality, such as VLANs and STP. Building
up on the methodology introduced in Section 6.1.1, the
measured output allows the empirical derivation of the
ei+n sub-nodes, and hence, the specific node efficiency for
a particular hardware setup, as well as a particular
protocol or configuration activated and operating on that
device.

From the results obtained, we can see that the introduced
B-Node efficiency for both managed and unmanaged
switches, regardless of protocols used, was overall fairly

CRPIT Volume 48

132

constant and close to optimal efficiency (with the
minimum being 99.58%, the average being 99.89%).
There were instances where the efficiency was greater
than 100% (the maximum being 100.6%), but to a first
approximation, these can be accounted for in
measurement, rounding errors and uncertainties. As such,
it can be determined that the addition of a switch within a
B-node will have negligible or no effect on Bulk Transfer
Capacity.

Analysing the switch sub-node efficiencies also
demonstrated that regardless of the VLAN or if STP was
enabled or disabled, the result was a negligible impact on
bandwidth. The sub-node efficiencies ranged from
99.66% to 100.17%, with an average of 99.97%.

Figure 7: Single switch experiment setup

6.2.2 Dual Switch Experiments

The experiment was then further extended to incorporate
two unmanaged (DLink DES1008D) or two managed
(Cisco 2950 and 3550 series) switches. The equipment
was set up as shown in Figure 8.

The additional features that were tested are listed below:
1. PCs in VLAN 1, using 802.1Q encapsulation

and STP disabled
2. PCs in VLAN 1, using 802.1Q encapsulation

and STP enabled (default configuration)
3. PCs in VLAN 10, using 802.1Q encapsulation

and STP disabled
4. PCs in VLAN 10, using 802.1Q encapsulation

and STP enabled

5. Same combinations as above, but using Inter-
Switch Link (ISL) for encapsulation

The experimental setup (Figure 8) again shows four B-
Nodes, and a variable number of ei+n sub-nodes. The
variable numbers of sub-nodes are setup-specific
functionality, such as VLANs and STP and encapsulation
type. The specific node efficiency for a particular
hardware setup as well as a particular protocol or
configuration activated and operating on that device was
then evaluated.

From the results, excluding IPv6 TCP on the 3550
(reasons explained further on), we can see that introduced
B-Node efficiency is overall fairly constant for both dual
managed and unmanaged switches for the features tested
(average of 99.92%).

Figure 8: Dual switch experiment setup

On the Cisco 3550 using IPv4 TCP with ISL
encapsulation, the efficiency also varies the greatest with
respect to the reference value (96.84% and 98.99%). IPv4
and IPv6 UDP with VLAN tagging and ISL
encapsulation also had an efficiency that is greater than
what can be accounted for in measurement, rounding
errors and uncertainties (101.76% to 101.86%). This
indicates that the use of these protocols increases the
efficiency of the B-Node. Possible explanations for this
may include the Cisco implementation of these protocols.
Further research is required to investigate this
phenomena.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

133

IPv6 TCP bandwidth for the Cisco 3550 was significantly
lower than for the Cisco 2950 switch (average of 81.62%
with approximate 1% deviation from minimum to
maximum). Further research is required to explain this,
however one possible solution is the software
implementation of this particular Internetworking
Operating System (IOS) of this switch and its interaction
with the congestion control algorithms of IPv6 TCP. This
demonstrates that the device efficiency (eDi) for a Cisco
3550 switch using IPv6 TCP is significantly lower than
for any of the other devices tested.

The sub-node efficiencies (ei+n) showed also that
regardless of VLAN, encapsulation or if STP was enabled
or disabled, the result was an insignificant effect on
bandwidth. The sub-node efficiencies ranged from
99.16% to 101.95%, with an average of 100.22%.

It can be seen from these results that the device (eDi) in
conjunction with the protocol used (eEthernet) has the
greatest effect on Bulk Transfer Capacity. Ancillary
protocols or features (such as STP, encapsulation type
and VLANs) have little or no effect on bandwidth. This
information would be particularly valuable to a network
administrator evaluating and planning network
infrastructure.

6.3 Layer 3 Devices

6.3.1 Single Router Experiments
The effect of Layer 3 devices on bandwidth was next to
be investigated and empirically evaluated. The device
assessed in these experiments was a 2621XM Cisco
router, and setup as in Figure 7 (but with the switch
replaced with the router). The results are shown in Table
4.

T
he

or
et

ic
al

 M
ax

im
um

(M

B
/s

)

O
ut

pu
t a

t m
ea

su
ri

ng

po
in

t (
M

B
/s

)

D
iff

er
en

ce
 (M

B
/s

)

M
ax

 E
th

er
ne

t E
ffi

ci
en

cy

(%
)

A
ct

ua
l E

nt
ir

e
B

-N
od

e
E

ff
ic

ie
nc

y
(%

)

E
ff

ic
ie

nc
y

of
 In

tr
od

uc
ed

B

-N
od

e
(%

)

E
ff

ic
ie

nc
y

of
 In

tr
od

uc
ed

su

b-
B

-N
od

e
(e

i+
n)

IP
v4

TC

P
N

oC
EF

11
.8

7

7.
91

3.
96

94
.9

3

63
.2

8

66
.7

9

R
ef

.
V

al

IP
v4

TC

P
C

EF

11
.8

7

7.
92

3.
95

94
.9

3

63
.3

6

66
.8

7

10
0.

13

IP
v4

U

D
P

N
oC

EF

11
.9

6

7.
01

4.
95

95
.7

1

56
.0

8

59
.2

4

R
ef

.
V

al

IP
v4

U

D
P

C
EF

11
.9

6

7.
04

4.
92

95
.7

1

56
.3

2

59
.5

0

10
0.

43

IP
v6

TC

P
N

oC
EF

11
.7

0

2.
5

9.
20

93
.6

3

20
.0

0

21
.4

1

R
ef

.
V

al

IP
v6

 T
C

P
C

EF

11
.7

0

7.
39

4.
31

93
.6

3

59
.1

2

63
.2

8

29
5.

60

IP
v6

U

D
P

N
oC

EF

11
.8

0

1.
27

10
.5

3

94
.7

1

10
.1

6

10
.9

3

R
ef

.
V

al

IP
v6

U

D
P

C
EF

11
.8

0

7.
07

4.
73

94
.7

1

56
.5

6

60
.8

4

55
6.

69

Table 4: Single Router Bandwidths

The effect the router has on bandwidth is much more
pronounced than a switch. With the exception of IPv6
without using Cisco Express Forwarding (CEF), average
TCP bandwidth (65.65%) is consistently higher than UDP
(59.86%), with IPv4 TCP (average of 66.83%) having a
greater efficiency than IPv6 TCP (63.28%) by
approximately 3.5%. Conversely to this, IPv4 UDP
(59.37%) is lower than IPv6 UDP (60.84%) by about
1.5%.

Disabling CEF and using IPv6 has the greatest effect on
overall router bandwidth. With IPv6 TCP, the efficiency
was reduced to 21.41%. IPv6 UDP was approximately
51% less efficient than IPv6 TCP with 10.93%

More pronounced is the effect sub-nodes have on IPv6
router efficiency. By enabling CEF on IPv6 TCP, the
efficiency is almost trebled to 295.60%. The result of
enabling CEF on IPv6 UDP Bulk Transfer Capacity is
even more significant, at 556.69%. Less distinctive is the
effect of CEF on IPv4, with the sub-node contributing
less than a 0.5% increase in efficiency.

6.3.2 Dual Router Experiments
To quantify the effect of multiple layer 3 devices,
2621XM Cisco routers were paired up and the results
noted as follows. In addition, a single Access Control List
statement (ACL) was applied to the in and out direction
of the ingress interface of Router 1 and egress interface of
Router 2. Experimental setup was as in Figure 8, with the
switches replaced with routers. Table 5 displays the
results.

Average IPv4 TCP performance using dual routers
(67.12%) compared favourably with single routers
(66.84%), as did IPv4 UDP (dual routers 60.19%) and
single routers (59.37%).

Excluding the results obtained from using no CEF, and
ACL statements, IPv6 TCP dual routers (DR) were
approximately lower by 10.5% than with single routers
(SR), to 52.74%.

IPv6 TCP with no CEF was also fairly comparable (DR
20.12% compared to SR 21.41%), as was IPv6 UDP with
no CEF (DR 11.10% to SR 10.93%).

Single ACL statements also have significant impact on
IPv6 efficiencies. For IPv6 TCP, the statement reduces
bandwidth by 13.27% to 39.47%. With IPv6 UDP, this
was only reduced by 8% to 52.41%. IPv4 ACL
statements improved efficiency by less than 0.6%, which
can be accounted for in errors and rounding.

The sub-node efficiencies (ei+n) for IPv4 demonstrated
that CEF or an ACL statement does not have an
appreciable effect on bandwidth. IPv6 TCP showed that
with the introduction of two routers with CEF enabled,
efficiency increased to 262.13%, but the addition of an
ACL statement reduced this by almost 66% to 197.17%.
IPv6 UDP with CEF enabled increased to 544.19% and
an ACL statement reduced this by 72.1% to 472.09%

From the results it can be seen that the device sub-nodes
(ei+n) in conjunction with the protocol used (eEthernet) has a
significant effect on Bulk Transfer Capacity in routers.

CRPIT Volume 48

134

T
he

or
et

ic
al

 M
ax

im
um

(M

B
/s

)

M
ea

su
re

d
(M

B
/s

)

D
iff

er
en

ce
 (M

B
/s

)

M
ax

 E
th

er
ne

t
E

ffi
ci

en
cy

 (%
)

A
ct

ua
l E

nt
ir

e
B

-N
od

e
E

ff
ic

ie
nc

y
(%

)

E
ffi

ci
en

cy
 o

f
In

tr
od

uc
ed

 B
-N

od
e

(%
)

E
ffi

ci
en

cy
 o

f
In

tr
od

uc
ed

 su
b-

B
-

N
od

e
(e

i+
n)

IP
v4

 T
C

P
N

oC
EF

11
.8

7

7.
93

3.
94

94
.9

3

63
.4

4

66
.9

5

R
ef

. V
al

IP
v4

TC

P
C

EF

11
.8

7

7.
92

3.
95

94
.9

3

63
.3

6

66
.8

7

99
.8

7

IP
v4

 T
C

P
C

EF
 A

C
L

11
.8

7

8.
00

3.
87

94
.9

3

64
.0

0

67
.5

5

10
0.

88

IP
v4

U

D
P

N
oC

EF

11
.9

6

7.
05

4.
91

95
.7

1

56
.4

0

59
.9

4

R
ef

. V
al

IP
v4

U

D
P

C
EF

11
.9

6

7.
07

4.
89

95
.7

1

56
.5

6

60
.1

1

10
0.

28

IP
v4

U

D
P

C
EF

A

C
L

11
.9

6

7.
12

4.
84

95
.7

1

56
.9

6

60
.5

3

10
0.

99

IP
v6

 T
C

P
N

oC
EF

11
.7

0

2.
35

9.
35

93
.6

3

18
.8

0

20
.1

2

R
ef

. V
al

IP
v6

 T
C

P
C

EF

11
.7

0

6.
16

5.
54

93
.6

3

49
.2

8

52
.7

4

26
2.

13

IP
v6

 T
C

P
C

EF
 A

C
L

11
.7

0

4.
61

7.
09

93
.6

3

36
.8

8

39
.4

7

19
6.

17

IP
v6

 U
D

P
N

oC
EF

11
.8

0

1.
29

10
.5

1

94
.7

1

10
.3

2

11
.1

0

R
ef

. V
al

IP
v6

 U
D

P
C

EF

11
.8

0

7.
02

4.
78

94
.7

1

56
.1

6

60
.4

1

54
4.

19

IP
v6

 U
D

P
C

EF
 A

C
L

11
.8

0

6.
09

5.
71

94
.7

1

48
.7

2

52
.4

1

47
2.

09

Table 5: Dual Router Bandwidths

6.4 B-Node Network Performance Analysis
A fictitious network administrator has been given the task
to analyse the network shown in Figure 9, and to use B-
Node methodology to predict the performance of the
topology. The technical specification is detailed as below:

1. PC 1, 2 and 3 are all identical 800MHz PCs

2. Switch 1 is a DLINK DES1008D switch

3. Switch 2 and 3 are Cisco 3550 switches

4. Router 1, 2 and 3 are Cisco 2621XM routers

Figure 9: Fictitious network

Assuming no competing transfers, the administrator wants
to evaluate the anticipated performance between PC 1 and

PC 2 using IPv6 UDP. Router 1 does not use CEF. The B-
Nodes for this configuration are:

1. IPv6 UDP Ethernet

2. PC to PC

3. DLink DES 1008D switch, and

4. Cisco 2621XM with no CEF (and hence no sub-
nodes)

The B-Node formula hence becomes:

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×

××
××=

CEFNoRouterDLink

PCtoPCEthernetUDPIPv

ee

ee
B

1

6

8
1100

Using the empirically derived results from this research,
we get:

)16.1060.1009848.09441.0(8
1100 ×××××=B

sMBB /19.1=

The anticipated bandwidth of this configuration is
1.19MB/s. The experimental result obtained was
1.23MB/s which compares favourably with the predicted
result.

The network administrator now wants to evaluate the
bandwidth between PC 1 and PC 3 using IPv4 TCP
transfers, again assuming no competing transfers. Switch
2 and 3 use VLANs, ISL encapsulation but no STP.
Router 2 and 3 use CEF. The B-Nodes now are:

1. IPv4 TCP Ethernet

2. PC to PC

3. DLink DES 1008D switch

4. Router to Router (Cisco 2621XM) with a CEF
sub-node, and

5. Dual 3550 switches and ISL encapsulation with
the sub-node VLANs

The B-Node formula becomes:

() ()()
() (()⎟⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

×

×××

××=

++ VLANsDualionencapsulatISLDual

CEFRoutertoRouterRoutertoRouter

DLinkPCtoPCEthernetTCPIPv

ee

ee

eee

B

35503550

4

8
1100

)
Using the empirically derived results from this research,
we get:

() ()95.1019701.09987.06695.0

9988.09978.09493.0(8
1100

×××

×××××=B

sMBB /82.7
)

=

The anticipated calculated bandwidth of this configuration
between PC1 and PC3 is 7.82MB/s. Results obtained
experimentally compared well to the calculated figure to a
first approximation, with a 7.92MB/s bandwidth obtained.

From this, we can see that for a given technical network
specification and using B-node analysis, the expected
bandwidth for non competing transfers can be calculated
to a first approximation.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

135

6.5 Conclusion
B-Nodes may provide a simple, easy to use diagrammatic
tool that can be used to hide the complexity of devices
and technologies and the performance exhibited by them.
Through the use of abstraction, the complexity of a
particular technology and its implementation can be
decoupled and controlled, allowing them to be modeled as
an individual node, or as a collection of nodes showing
the overall system structure.

Using the B-Node methodology and its empirical
validation, specific technology and device efficiencies
have been evaluated and calculated. By decomposing the
elements within a configuration and using this
information, the simple B-Node formula allows the
bandwidth of a network to be calculated to a first
approximation, down to the individual components if so
desired. Each network communication device, computer
nodes or hosts, network connection media and protocols,
may be evaluated as required and using this information,
the anticipated network performance, given a technical
specification, can be easily and quickly determined using
the simple B-Node formula, however further investigation
and empirical validation of a wider variety of protocols
and hardware platforms is required.

7 References
Claffy, K. C. and S. McCreary: (1999): Internet

measurement and data analysis: passive and active
measurement,
http://www.caida.org/outreach/papers/1999/Nae4hans
en/Nae4hansen.html

Coccetti, F. and R. Percacci (2002). Bandwidth
Measurement and Router Queues. Trieste, Sezione de
Trieste.

Deering, S. and R. Hinden: (1998): RFC 2460 Internet
Protocol Version 6 (IPv6) Specification,
http://www.rfc-editor.org

Fink, B. and R. Scott: nuttcp, v5.1.11
ftp://ftp/lcp.nrl.navy.mil/pub/nuttcp/ 2004

Information Sciences Institute: (1981): RFC 791 Internet
Protocol, http://www.rfc-editor.org

Jain, M. and C. Dovrolis (2002). End-to-end Available
Bandwidth: Measurement Methodology, Dynamics,
and Relation with TCP Throughput. SIGCOMM,
Pittsburgh, Pennsylvania, USA.

Kaplan, H. and B. Noseworthy: (2000): The Ethernets:
Evolution from 10 to 10,000 Mbps- How it all
Works!, http://www.iol.unh.edu/training/ethernet.html

Lai, K. and M. Baker (1999). Measuring Bandwidth. 18th
Annual Joint Conference of the IEEE Computer and
Communications Societies.

Lai, K. and M. Baker (2000). Measuring Link Bandwidth
Using a Deterministic Model of Packet Delay. Proc.
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication, Stockholm, Sweden, ACM Press.

Maj, S. P. and G. Kohli (2002). Modelling Global IT
Structures using B-Nodes. 3rd Annual GITM World
Conference, New York, USA.

Maj, S. P. and D. Veal (2000). Architecture Abstraction
as an Aid to Computer Technology Education. ASEE
Computers in Education Division, St Louis, Missouri,
USA.

Maj, S. P. and D. Veal (2001). B-Nodes: A proposed new
method for modelling information system technology.
International Conference on Computing and
Information Technologies, Montclair State University,
NJ, USA.

Maj, S. P. and D. Veal (2001). Controlling Complexity in
Information Technology: Systems and Solutions.
IASTED Conference on Computers and Advanced
Technology in Education (CATE), Banff, Canada.

Maj, S. P., D. Veal and P. Charlesworth (2000). Is
Computer Technology Taught Upside Down? 5th
Annual SIGCSE/SIGCUE Conference on Innovation
and Technology in Computer Science Education,
Helsinki, Finland.

Maj, S. P., D. Veal and R. Duley (2001). A Proposed
New High Level Abstraction for Computer
Technology. ACM Special Interest Group for
Computing Science Education (SIGCSE) 2nd
Technical Symposium in Computer Science
Education, Charlotte, North Carolina, USA.

Mathis, M. and M. Allman: (2001): RFC: 3148 A
Framework for Defining Empirical Bulk Transfer
Capacity Metrics, www.rfc-editor.org

NLANR Distributed Application Support Team: Iperf,
http://dast.nlanr.net 2003

Padmanabhan, V. N., L. Qui and H. J. Wang (2002).
Technical Report MSR-TR-2002-39: Server Based
Inference of Internet Performance, Microsoft
Research, Microsoft Corporation: Redmond, WA.

Paxson, V., G. Almes, J. Mahdavi and M. Mathis: (1998):
RFC 2330 Framework for IP Performance Metrics,
www.rfc-editor.org

Prasad, R., C. Dovrolis, M. Murray and K. C. Claffy
(2003). Bandwidth Estimation: Metrics, Measurement
Techniques, and Tools. IEEE Network. 17: 27- 35.

Raicu, I. and S. Zeadally (2003). Impact of IPv6 on End-
User Applications. IEEE International Conference on
Telecommunications (ICT), Tahiti, French Polynesia.

Spurgeon, C. E. (2000). Ethernet: The Definitive Guide,
Library of Congress Cataloguing-in-Publication Data.

Strauss, J., D. Katabi and F. Kaashoek (2003). A
Measurement Study of Available Bandwidth
Estimation Tools. Proc. ACM SIGCOMM Conference
on Internet Measurement, Miami Beach, FL.

Tanenbaum, A. S. (1996). Computer Networks. Upper
Saddle River, N.J, Prentice Hall.

Veal, D., G. Kohli, S. P. Maj and J. Cooper (2005). A
Framework for a Bandwidth Based Network
Performance Model for CS Students. 2005 ASEE
Annual Conference and Exposition "The Changing
Landscape of Engineering and Technology Education
in a Global World", Portland, Oregon.

Xie, P. P. (1999). Network Protocol Performance
Evaluation of IPv6 for Windows NT. San Luis
Obispo, California Polytechnic State University.

CRPIT Volume 48

136

http://www.caida.org/outreach/papers/1999/Nae4hansen/Nae4hansen.html
http://www.caida.org/outreach/papers/1999/Nae4hansen/Nae4hansen.html
http://www.rfc-editor.org/
ftp://ftp/lcp.nrl.navy.mil/pub/nuttcp/
http://www.rfc-editor.org/
http://www.iol.unh.edu/training/ethernet.html
http://www.rfc-editor.org/
http://dast.nlanr.net/
http://www.rfc-editor.org/

Throughput fairness in k-ary n-cube networks

Cruz Izu
School of Computer Science
The University of Adelaide

Adelaide 5001, South Australia
cruz@cs.adelaide.edu.au

Abstract
The performance of an interconnection network is

measured by two metrics: average latency and peak
network throughput. Network throughput is the total
number of packets delivered per unit of time.
 Most synthetic network loads consist of sources injecting
at the same given rate, using traffic patterns such as
random, permutations or hot spot, which reflect the
distribution of packet destinations in many parallel
applications. The network is assumed to be fair: all source
nodes are able to inject at the same rate. This work will
show such assumption is unfounded for most router
proposals. All router designs exhibited significant
network unfairness under non-uniform loads. Some
routers are also unfair under random traffic patterns. At
loads above saturation, if the channel utilization is
uneven, the injection matrix will become uneven: packet
at low used areas will be accepted at a higher rate that
those at the busy areas.
As synthetic traffic does not reflect the coupled nature of
the traffic generated by parallel applications, the impact
of this unfairness on application performance could not be
measured. New synthetic loads need to be developed to
better evaluate network response beyond saturation.

Keywords: Interconnection Networks, network
throughput, fairness, channel utilization.

1 Introduction
Massively Parallel Processors (MPPs) are built by
connecting a large number of common microprocessors
with off-the shelf interconnect technologies such as
Myrinet or Quadrics (Pretini et al, 2002) or custom
designed network such as those built into the BlueGene
(Blomrich et al 2003) or the Cray XT3. In addition of
managing message traffic for parallel applications, the
interconnection network (IN) provides support for data
distribution, periodic check-pointing, input/output
handling and results storage.

Copyright © 2006, Australian Computer Society, Inc.
This paper appeared at the Twenty-Ninth Australasian
Computer Science Conference (ACSC2006), Hobart,
Australia. Conferences in Research and Practicein
Information Technology (CRPIT), Vol. 48. Vladimir
Estivill-Castro and Gill Dobbie, Eds. Reproduction for
academic, not-for profit purposes permitted provided this
text is included.

The first step to design an interconnection network is to
choose the network topology. Low degree networks are
popular as they map easily into the plane, which
facilitates implementation. Besides, if we are bandwidth
limited, lower node degree results in wider physical
channels that reduce message transmission time. K-ary n-
cube networks of degree 2 or 3 are a popular choice
(Duato, Yalamanchili and Ni, 1997) as they provide a
regular symmetric direct network with the advantages this
entails.

The IN should provide low latency and high throughput,
and avoid any network anomalies such as deadlock,
livelock or starvation. There is a large body of result in
dealing with deadlock issues either by deadlock
avoidance or deadlock recovery. Most of the solutions are
based on restricting routing to eliminate cyclic
dependencies (Duato, Yalamachili and Ni, 1997) or to
break the possible cycles by mapping messages to
separate virtual channels (Dally and Seitz, 1987). Once
we achieve a deadlock-free network design it is easy to
increase adaptivity by applying Duato's theory (Duato,
1996). Deadlock recovery strategies rely on the fact that
deadlock occurrences are rare when the router provides
high levels of adaptivity (Anjan and Pinkston, 1997).
Instead of using many resources (i.e. virtual channels) to
avoid deadlock, we will need lesser resources per router
to forward deadlocked messages. However, deadlock
detection is not a trivial problem and poor performance
may result from either low detection rates or false
deadlocks. Misrouting can also be used to avoid deadlock
as well as to increase fault tolerance and circumvent
congestion areas. However, any non-minimal routing
introduces a livelock risk, as a message that is misrouted
may be prevented from reaching its destination in a
bounded time.

Finally, most router designs avoid starvation by providing
a fair arbitration scheme that guarantees a bounded
waiting time for any packet requesting an output channel.
Note that starvation is the worst-case scenario of network
unfairness in which a particular computation node
remains unable to access the network resources for an
unbounded time limit. Lesser cases of network unfairness
will allow different network nodes to inject packets at
different rates, resulting in some of the nodes
experiencing saturation while other nodes are still able to
inject at their full rates. Dally and Towles (2004) stated
that network unfairness is caused by unfair arbitration.
They cite the chaos router as an example: its arbiter gives
priority to packets queued at the router over incoming
packets. When routing arbitration is fair, it is expected

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

137

that the whole network will also be fair in terms of
throughput. Thus, the only metric used for measuring
network throughput is the number of packets (of flits)
delivered per unit of time.

Recent work on limited injection mechanisms has
highlighted the presence of network unfairness for non-
uniform loads (Izu, Miguel-Alonso and Gregorio, 2005).
Such loads caused a non-uniform use of network
resources beyond saturation. This paper extends that
evaluation by showing network unfairness is present in
most router proposals at loads beyond saturation,
regardless of their flow control, routing strategy or
arbitration policy. Furthermore, we will see that some
networks exhibit throughput unfairness even under
uniform loads. Such findings question the validity of
reported network performance under heavy loads.
Furthermore, this work restates the need for better
synthetic loads that reflect the behaviour of parallel
applications at saturation (Chien and Konstantinidou,
1994).

2 Interconnection Network design
In this section we will briefly describe the main router
proposals for k-ary n-cube networks (Duato,
Yalamanchili and Ni, 1997). As we aim to prove that
network unfairness occurs in most routers, we need to
consider a representative set of k-ary n-cube routers,
including both oblivious and adaptive routers. In most
cases, deadlock management has a significant impact on
router architecture and channel utilization. Thus, we will
cover the full range of deadlock avoidance methods.

2.1 Static routers

Dimensional order routing (DOR) in a k-ary n-cube
network forwards packets in dimensional order: the path
from a source node A with coordinates (a1, .., an) to a
destination node B = (b1, .., bn) will travel in the first
dimension to node (b1,a2, ..an), then on the second
dimension to read the node with coordinates (b1,b2 …an)
and so for until reaching the destination node. This
strategy is also called oblivious or static routing.

A torus can be seen as a collection of uni-dimensional
rings (each row or column in a 2D torus). As nodes travel
dimensions in a fix order, it is not possible to form
deadlock cycles over multiple rings. However, it is
possible to reach a deadlock configuration inside one of
these rings.

The channel dependency graph (Dally and Seitz 1987) of
any unidirectional ring has a cycle as shown in figure
1.(a). This represents a network in which each node in
one ring (for example, row 2 in the +X direction) has full
input and output buffers and none of those messages have
reached their destination yet. As the next node’s buffer is
also full, no message will be forwarded; all of them will
continue to wait for the next input buffer to become
available.

2.1.1 DOR-2vc router

The DOR-2vc router is an oblivious router that divides
each physical channel into two virtual channels to avoid
deadlock, as illustrated in figure 1(b). Messages that cross
the wrap-around link must change from using virtual
channel 0 to using virtual channel 1. This eliminates the
cyclic dependencies in each unidirectional ring as shown
in the channel dependency graph of figure 1(c).

Figure 1. Breaking the channel dependency cycle using
virtual channels

This method was initially proposed for wormhole torus
networks (Dally and Seitz 1987) and it has been used
extensively as it was the only proven method to avoid
deadlock in wormhole networks. Note that this deadlock
avoidance method is also applicable to virtual cut-through
networks.

2.1.1 DOR-Bubble router

Bubble flow control (BFC) is an extension of VCT flow
control that prevents the network interface from filling up
its router buffer capacity (Carrion et al, 1997). If the ring
is not full, deadlock cannot occur. Figure 2 illustrates the
use of bubble flow control in a unidirectional ring.

Packets (shaded queue units) are allowed to move
(shaded arrows) from one queue to another inside the ring
as per virtual cut-through switching. However, packet
injection is only allowed at a given router if there are at
least two empty packet buffers in the local queue on top
of the VCT restriction. By doing so, we guarantee that,
even when multiple nodes inject simultaneously, there
will always be at least an empty packet buffer in the ring.
That free buffer acts as a bubble, allowing at least one
packet to progress. Both packet injection and packet
turning from an X ring to a Y ring are subject to BFC.
Packets inside a ring move as per VCT.

CRPIT Volume 48

138

BB

Injection

0

BB BB BB BB

Injection

1

Injection

2

Injection

3

Injection

4

Figure 2.- Deadlock avoidance in a ring using Bubble Flow control.

2.2 Minimal Adaptive routers

Fully adaptive routers allow packets to select any
minimal path between source and destination, based on
the network status. The packet travels along a default path
(probably DOR) but if its next output channel is busy it
will change dimension of travel. A packet will block
when it cannot progress in any dimension. Thus, latency
is reduced at medium loads.

As packets may turn in any direction, fully adaptive
routing increases the risk of deadlock. Fortunately,
Duato’s theory (1996) provides a framework on how to
built deadlock free fully adaptive networks: it is possible
to combine a fully adaptive virtual network with a
deadlock-free virtual network so that the latter provides
escape paths for any potentially deadlocked packet in the
fully adaptive sub-network.

2.2.1 Duato4vc
This router is built by adding two more fully adaptive
virtual channels to the DOR-2vc router. Note we can add
any number of fully adaptive channels. Adding more
virtual lanes may reduce even further head-of-line
blocking but at the cost of higher arbitration and crossbar
complexity.

This network is similar to that use in some commercial
systems such as the Alpha 21364 (Mukherjee et al, 1997)
or the Cray T3E (Scott and Thorson, 1996).

2.2.2 Adap-Bubble
This router is built by adding two more fully adaptive
virtual channels to the DOR-bubble router. Thus, it uses 3
virtual channels per physical link. There is no restriction
to inject packets in the adaptive sub-network and packet
can move form escape to adaptive channels as required.
Changing from an adaptive channel to an escape one
must meet the bubble flow control conditions; for a full
description see (Puente et al, 2001). This router design
has been implemented in the torus network of the
BlueGene/L supercomputer (Blumrich et al, 2003)

2.2.3 Disha4vc

This fully adaptive wormhole router implements a
deadlock recovery strategy that forwards a deadlocked
packet using a dedicated central buffer per router as
described in (Anjan and Pinkston 1997).

Disha is reminiscent of Duato’s approach used in the
other router as it has two virtual networks -- one
susceptible to deadlocks (possibly adaptive) and the other
that provides escape routes. However, there are
significant differences. Escape paths in Duato’s scheme
use two virtual channels as per DOR-2vc. However, the
escape channel in Disha is a single Deadlock Buffer
central to the router. This buffer is shared between
neighbouring nodes and, unlike edge buffers, is not
dedicated to any path. A packet is assumed to be
deadlocked after its blocking time at the node reaches a
threshold. The selection of a proper time-out interval is
important to obtaining optimum performance. Deadlock
feeds upon itself in that if cycles are not broken quickly,
more and more

2.3 Non-Minimal adaptive routers

A non-minimal adaptive router allows packet to select
output channels that will taken further away from their
destination. This allows packets to circumvent faults
and/or avoid minimal path congested areas. On the other
hand, each packet uses more network resources so that
network throughput may be reduced.

2.3.1 The Chaos router

The chaos router is a fully adaptive virtual cut-through
router that instead of using virtual channels to avoid
deadlock, it relies on misrouting of the blocked packets.

In the absence of congestion packet follow non-minimal
paths. The router has one buffer per input channel, and a
central queue to store blocked packets, which have not
being able to cut-through while the rest of the packet was
transmitted. Once the central queue is full, and a packet is
blocking the input channel, misrouting is triggered at one
of the queued packets is forced to use the available output

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

139

channel. The packet at the input can then be queued so
that the input channel is ready to accept another packet.
Thus, a packet whose destination is in a congested area
may be forced to take non-minimal paths once or more
times. The chaos router solves livelock by randomising
the selection of the packet to be misrouted, so it is most
unlikely for a given packet to be repeatedly misrouted.
For more details please refer to (Bolding, Fulham and
Snyder, 1997).

3 Evaluation methodology
Evaluations of architectural proposals need to be carried
out during all design stages. Simple functional simulators
help us assessing routing algorithms, deadlock avoidance
mechanisms, fault-tolerance, etc during the early stages.
These simulators do not incorporate all the details
required in an actual, hardware-implemented system;
however, the most relevant aspects of the design are
there, allowing us to check the viability of a proposal—or
its drawbacks. In subsequent stages, more detailed
simulators or even hardware prototypes can be used to
refine the design.

Network performance is reported using two figures:
latency (time from packet generation until its delivery)
and throughput, which is measured as the number of
packets delivered in a given time interval divided by the
interval length and the network size. In other words, this
is the average load accepted by the network (i.e., the
network throughput), which is expected to be even
amongst the network nodes. Chien advocated in (Chien
and Konstantinidou, 1994) that other throughput
measures are needed to reflect relevant throughput
characteristic such as fairness and guarantee of
throughput. However, most network studies kept on
reporting only peak throughput at saturation.

In order to evaluate network fairness we have modified
the three simulators described below, so they now
measure the number of packets injected per processing
node. Using this injection matrix we can calculate not
only the average network throughput but also the
minimum and maximum throughput per node as
suggested in (Dally and Towles, 2004).

3.1 Network simulators

In most comparative studies, the same network simulator
is used to compare two or more design alternatives. As
the goal of this paper is not to compare routers but to
estimate the network unfairness or each router proposal,
we have use a range of functional simulators whose
source has been made available by their authors, and
which are representative of the state of the art in
interconnection network simulation. In particular, the
chaos router is evaluated using the chaos simulator,
Duato4vc and Disha4vc are evaluated using flexsim 1.2
(2005) and the static and adaptive bubble routers are
simulated with FSIN (2005). This reflect the way network
throughput was measured in the state of the art literature,
and provides a wider choice of router implementation
details, as per router proposal, instead of the uniformity
provided by a single simulator.

All simulators emulate the pipeline stages of a network
router each cycle: reception of phits, header decoding and
generation of channel request, arbitration and crossbar
transmission, virtual channel arbitration and phit
transmission. Each simulator has its own set of
parameters that allows us to compare different design
alternatives, such as input buffer size, the number of
virtual channels, the routing policy etc. For example,
flexsim emulates a range of wormhole routers including
dor-2vc, disha and duato. FSIN emulates VCT routers
and chaos emulates oblivious wormhole, oblivious cut-
through and chaos. In most cases we have use the default
parameter values assumed by the simulator. All of them
allow us to choose the network size, which we set to a
16x16 torus network (with full-duplex links). We set the
packet length to be 16 flits (or phits if it is a VCT router1)
and in most cases the input buffer capacity is for two
packets (except chaos which has single-packet buffers).

For practical reasons, most performance studies of
interconnection networks are carried out using synthetic
traffic. Each processing node is modelled as an
independent traffic source, which generates packet
following a Bernoulli (or sometimes Poisson) distribution
with a parameter that depends on the applied load. All
simulators provide standard destination functions such as
random, a range of permutations (transpose, bit reversal,
perfect shuffle etc) and random with hot-spots.

4 Network Evaluation

This section presents throughput results under both
uniform and non-uniform loads for each of the routers
under consideration. This results complement the average
throughput values reported in the literature.

4.1 Random Load

Figures 3 and 4 show the range on node throughput
values versus load for a range of router designs. Under
random traffic most networks exhibit minor variations
between the minimum and maximum throughput
experience by any given node. These variations are
probably due to the minor traffic fluctuation which
impact on their injection rates. Note that random traffic
makes an even use of the physical channels. In most
routers, channel utilization is balanced amongst the VCs,
as packets are free to move from one virtual channel or
lane to another.

Both DOR-Bubble and Chaos give preference to transit
packets over new injections, so that they cause starvation.
However, under random traffic they seem to be
reasonably fair at very high loads. On the contrary, both
DOR-2vc and Duato4vc exhibit significant network
unfairness for load beyond saturation. The main
difference for this type or routers is their unbalanced use
of the oblivious virtual channels as reported in (Bolding,
1992).

1 Flit stands for FLow control unIT, which in VCT is a
packet; phit is the physical unit sent in one cycle.

CRPIT Volume 48

140

Figure 3. Minimum, maximum and average node
throughput versus offered load for a range of deadlock-

free minimal 16x16 torus networks under random traffic.

Figure 4. Minimum, maximum and average node
throughput versus offered load for a Chaos (top) and a

Disha (bottom) 16x16 torus network under random
traffic.

As flexsim 1.2 does not provides virtual channel
utilization maps we did run the equivalent DOR-2vc
under FSIN, selecting an optimised version on Dally’s
deadlock-free routing function so that packets not
crossing the wrap-around link are injected in any of the
virtual channels. Figure 5 shows the channel utilization
map for the channel +X for both Dor-Bubble and DOR-
2vc under 10% of the maximum network load.

We could see that the Bubble router exhibits a balanced
used of the network channels while the Dor-2vc router
exhibits, in spite of the optimisation, a quite unbalanced
use of its two virtual channels. This is because by
selecting a fixed link as the wrap-around that limits
virtual channel utilization, the network symmetry is
broken: nodes close to the link are forced to use VC0.

 Note that a high loads many packets will blocked and
resort to use the escape sub-network, including new
packet at the injection ports. In other words, a packet at
injection will encounter different channel utilization (for
the VC selected by the routing function) depending of its
network location. The Adaptive Bubble router is slightly
fairer that its oblivious counterpart, as the additional
virtual channels do not disadvantage new packets. Disha
is quite fair as well but suffers significant degradation at
loads beyond saturation.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

141

Figure 5. Channel utilization for the two oblivious routers under 10% random offered load.

4.2 Non-Uniform Loads
All permutation patterns made a very unbalanced
usage of network resources under DOR routing.
Adaptive routing addresses this issue by exploiting
multiple paths but most patterns still exhibit uneven
channel utilization. For example, the transpose pattern
builds congestion amongst the network diagonals and
the bit-reversal permutation does put pressure on the
network bisection. In this section we will limit the
discussion to the transpose permutation, but throughput
unfairness is significant for any non-uniform traffic
pattern.

Router Minimum Average Maximum

DOR-2vc 0.0014 0.14218 0.59792

DOR-Bubble- 0.0001 0.1334 0.4630

Duato4vc 0.0017 0.2557 0.7065

Adap-Bubble 0.0988 0.2339 0.6508

Chaos 0.0008 0.2067 0.4796

Disha4vc 0.0019 0.2752 0.6632

Table 1. Minimum, maximum and average node
throughput (flits/cycle) for a 16x16 tours network with
transpose permutation pattern at 0.8 flits/cycle/node
offered load.

4.1.1 Transpose
Table 1 summarizes the average, minimum and
maximum node throughput in flits/cycle. We can see
all networks exhibit high levels of throughput
unfairness. To explain these values we need to look at
the channel utilization for each router. We will start
first showing the values for the chaos router, which is
simpler as it does not have virtual channels.

Figure 6 shows the distribution of X+ channel
utilization in the Chaos router both below and above
saturation. At loads below saturation, the injection
matrix is flat as all nodes are able to inject their
packets. Note that the nodes in the diagonal don’t send
messages through the network as the destinations are
their own nodes, hence their value is zero. Any other
node is injecting approximately 800 packets. This
matrix is similar regardless of the router design chosen,
provided the load is below its saturation point.

For loads above saturation we observe there is a
noticeable change in the channel utilization, which is
due to the use of misrouting. At high loads, the routers
around the congested diagonal will fill their central
queues and force many packets to misroute. This
causes the increase in channel utilization close to the
diagonal.

The injection matrix shows a direct co-relation
between high utilization channels and low number of
injected packets. In other words, a peak in channel
utilization results in a valley in the injection matrix.

CRPIT Volume 48

142

Figure 6. Channel utilization (left) and distribution of the injection rates for a 16x16 chaos network under transpose

traffic pattern for a 0.8 flits/cycle/node offered load.

Figure 7. Injection matrix for a 16x16 network under transpose traffic (0.8 flits/cycle/node offered load) with a range

of router alternatives.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

143

Similarly, a valley in the channel distribution graph turns
into a peak in the injection matrix. Note that some nodes
inject well above the theoretical limit of 0.5 flits/cycle as
they are in low utilization areas, so they are able to inject
at their wish. This additional traffic increases congestion
in the diagonal and further reduces the injection rates of
the nodes close to the diagonal.

This relation occurs in all routers, although the injection
matrix varies depending on the ability of the router to
distribute the packets amongst its set of virtual channels.
Figure 7 shows the injection matrix distribution at 80%
load for other network alternatives. All of them exhibit
large levels of unfairness, as described in Table 1, Note
that all the wormhole routers have a similar unfairness
pattern, which is related by the default paths and
arbitration used in the flexsim simulator. Is out of the
scope of this paper to analyse the differences amongst
them.

We could see that the router architecture has a negligible
impact on network fairness. In fact, the chaos router
proves to be one of the more fair alternatives for the
transpose traffic pattern. Besides, design choices such as
increasing the buffer size or the number of virtual
channels do increase peak throughput but do not alter the
channel utilization patterns.

All the above results link network fairness to the balanced
usage of the network resources and not to the arbitration
policy as suggested in (Dally and Towles, 2004). Similar
uneven figures are obtained for other permutation
patterns such as bit-reversal and perfect shuffle.

5 Summary

This paper has shown that network throughput seen by
each computing node at saturated loads varies with node
location. This indicates that reported values of average
network performance at heavy loads, beyond its
saturation point, are to not be relied upon.

All network designs exhibit significant network
unfairness under non-uniform loads. Furthermore,
duato4vc, a popular router design implemented in many
commercial systems, exhibits unfairness under uniform
random traffic. We can conclude that fair arbitration is
not sufficient to guarantee network fairness; in that case,
the node injection rate depends on the level of activity of
its router. Thus, network fairness relies on the ability of
the network to balance channel utilization amongst its
routers.

Network unfairness is not desirable in terms of
application performance. A tightly coupled application in
which there is a high level of data exchange amongst the
nodes will keep them working at the same pace. A
loosely coupled application may allow some nodes to
race ahead of the pack, only to wait later at some
synchronization barrier, reducing the overlap between
computation and communication. Further work is needed

to explore if network fairness will bring significant gains
to application performance.

6 Acknowledgements
I would like to thank my colleagues Jose and J.A. whose
collaborative work lead us to consider fairness as an issue
for the adaptive bubble router.

Thanks also to the three network research groups for
making their simulation code available to others, so that I
could save many hours on writing code to emulate their
proposals.

7 References

K. V. Anjan, Timothy Mark Pinkston: An Efficient, Fully
Adaptive Deadlock Recovery Scheme: DISHA.
Proceedings of the 22nd Annual International
Symposium on Computer Architecture, ISCA '95 pp.
201-210,

Anjan K.V. and T.M. Pinkston (1997). An Efficient, Fully
Adaptive Deadlock Recovery Scheme: Disha.
Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 201--
210,

N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik,
C.L. Seitz, J.N. Seizovic, and W. Su. Myrinet: A
Gigabit-per-second Local Area Network. IEEE
Micro, 15(1):29-36, February 1995

Kevin Bolding (1992). Non-Uniformities Introduced by
Virtual Channel Deadlock Prevention, University of
Washington, Technical Report UW-CSE-92-07-07.

Bolding, M. L. Fulgham, L. Snyder, The Case for
Chaotic Adaptive Routing. IEEE Trans. Computers
46(12): 1281-1291 (1997).

M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa,
P. Heidelberger, S. Singh, B. Steinmacher-Burrow,
T. Takken, P. Vranas. Design and Analysis of the
BlueGene/L Torus Interconnection Network IBM
Research Report RC23025 (W0312-022) December
3, 2003.

C. Carrión, R. Beivide, J.A. Gregorio and F. Vallejo
(1997), A Flow Control Mechanism to Prevent
Message Deadlock in k-ary n-cube Networks,
Proceedings of the Fourth International Conference
on High Performance Computing (HiPC'97).
Bangalore, India.

A. A. Chien and M. Konstantinidou (1994) "Workload
and performance metrics for evaluating parallel
interconnects," IEEE Computer Architecture
Technical Committee Newsletter, Summer-Fall 1994
pp. 23 - 27,

Chaos simulator (1996) from the Chaos Project group
http://wotug.ukc.ac.uk/parallel/simulation/communic
ations/chaos/

W.J. Dally, B. Towles (2004). Principles and Practices of
Interconnection Networks. Morgan-Kaufmann, 2004.

CRPIT Volume 48

144

W.J. Dally, C.L. Seitz (1987): The Torus Routing Chip
Distributed Computing 1:187-196.

J. Duato (1996). “A Necessary and Sufficient Condition
for Deadlock-Free Routing in Cut-Through and
Store-and-Forward Networks”. IEEE Trans. on
Parallel and Distributed Systems, 7: 841-854.

J. Duato, S. Yalamanchili and L. Ni (1997)
Interconnection Networks: an engineering Approach,
IEEE Computer Society Press.

FSIN (2005) functional simulator for interconnection
networks from the Parallel Technology Group at
http://www.sc.ehu.es/acwmialj/ptech/index.html

C. Izu, J. Miguel-Alonso and J.A. Gregorio (2005),
Evaluation of Interconnection Network Performance
Under Heavy Non-uniform Loads, ICA3PP 2005,
LNCS 3719, pp. 396 –405, 2005.

Konstantinidou S. and Snyder L.(1990) The chaos router:
A practical application of randomization in network
routing. 2nd Ann. Symp. on Parallel Algorithms and
Architectures SPAA'90 pp. 21-30.

S. Mukherjee, P. Bannon, S. Lang, A. Spink and David
Webb (1997), “The Alpha 21364 Network
Architecture”, IEEE Micro 21:26-35.

F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E.
Frachtenberg (2002) The quadrics network: High-
performance clustering technology. IEEE Micro,
22(1):46—57.

Pinkston T. M. and Warnakulasuriya S (1997) On
Deadlock in Interconnection Networks. Proceedings
24th Int. Symposium Computer Architecture,
ISCA'97, Denver.

V. Puente, C. Izu, J.A. Gregorio, R. Beivide, and F.
Vallejo (2001), The Adaptive Bubble router, Journal
on Parallel and Distributed Computing, 61(9) 1180-
1208.

FlexSim1.2, from the SMART group at the U. of
Southern California., accessed 22 August 2005,
http://ceng.usc.edu/smart/FlexSim/flexsim.html

S. L. Scott and G. Thorson (1996), The Cray T3E
networks: adaptive routing in a high performance 3D
torus, Proc. of Hot Interconnects IV.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

145

CRPIT Volume 48

146

A JMX Toolkit for Merging Network Management Systems

Feng Lu Kris Bubendorfer

School of Mathematical and Computing Sciences
Victoria University of Wellington,

P. O. Box 600 Wellington, New Zealand,
Email: Feng.Lu@mcs.vuw.ac.nz, kris@mcs.vuw.ac.nz

Abstract

The ever increasing size of networks has resulted in
a corresponding escalation of administration costs
and lengthy deployment cycles. Clearly, more scal-
able and flexible network management systems are
required to replace existing centralised services. The
work described in this paper forms part of a new
network management system that fuses dynamic ex-
tensibility, Java Management Extension (JMX), and
mobile agents. The primary focus is on integra-
tion with the many widely deployed legacy SNMP-
based network management systems. One of the pri-
mary contributions is the design of a generic SNMP
adaptor to enable JMX compliant agents to be ac-
cessed by SNMP-based management applications. A
set of SNMP APIs have been developed to support
the development of the SNMP adaptor. A number
of other tools have been developed to support the
SNMP adaptor, these include: a Management Infor-
mation Base (MIB) compiler that automatically gen-
erates MBeans representing a given SNMP MIB; and
a SNMP proxy service to allow non-SNMP manage-
ment applications to access the SNMP agent using a
variety of protocols.

Keywords: JMX, Network Management, SNMP

1 Introduction

Traditional network management (NM) approaches,
such as SNMP (Simple Network Management Proto-
col) and CMIP (Common Management Information
Protocol), are based on a static centralised manage-
ment platform: a centralised manager acting as client
controls the entire network through agents which re-
side in each network node acting as server. Agents
are responsible for monitoring and controlling man-
aged objects in the network. The manager has the
responsibility of collecting data from agents, inter-
preting that data and directing the agents (Yemini
et al. 1991). However, with the rapid growth of net-
works, such approaches are no longer suitable as the
increasing complexity of these systems results in high
administration costs and long deployment cycles. The

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobiie, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

need for more scalable and flexible network manage-
ment approaches is leading to greater decentralisa-
tion (Simoes 1999).

Dynamic extensibility is one of the solutions that
has been used to support the distributed network
management model. The extensible agent can add
or delete managed objects and management services
at run time upon requests by other management en-
tities. Recently, Sun Microsystems introduced a set
of standards to equip Java with an extensible agent
model for distributed management, known as Java
Management Extension (JMX).

JMX aims to achieve the goal of scalable, dis-
tributed network management (JMX1.2 2002). Its
support for mobile code enables the transfer of
lightweight applications to management agents at
runtime, delegates the management tasks from a cen-
tralised manager to management agents distributed
around the network, and place the management tasks
closer to the management data. This reduces network
traffic and increases scalability (Lange et al. 1999).
Also, the JMX component based architecture allows
each JMX resource or service to be plugged into or re-
moved from the management agent dynamically, de-
pending on the runtime network requirements. This
means that a JMX based implementation can scale
from small handhold devices to large telecommunica-
tions switches.

However, legacy management systems are still
widely deployed. Network managers have to rely on
the legacy management protocol to access the net-
work resources in the heterogeneous network envi-
ronment. Therfore, a JMX based solution needs to
coexist with and integrate with traditional network
management systems, like SNMP, instead of replac-
ing them. It is attractive and cost-efficient to develop
and deploy a distributed management system using
JMX that can cooperate with deployed legacy sys-
tem. This interoperability can be achieved by equip-
ping the JMX-based solution with SNMP capability.
Without it, the JMX-based solution will not become a
general solution for distributed network management.

The research efforts presented in this paper fo-
cus on the the integration of JMX with traditional
SNMP-based network management systems. One of
the primary contributions is the design of a generic
SNMP adaptor to enable JMX compliant agents to be
accessed by SNMP-based management applications.
A set of SNMP APIs have been developed to support
the development of the SNMP adaptor. A number
of other tools have been developed to support the
SNMP adaptor, these include: a Management Infor-
mation Base (MIB) compiler that automatically gen-
erates MBeans representing a given SNMP MIB; and
a SNMP proxy service to allow non-SNMP manage-
ment applications to access the SNMP agent using a
variety of protocols.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

147

2 Background

The majority of deployed network management sys-
tems utilise a centralised approach, where the man-
agement application periodically accesses the data
collected by a set of software modules on network
devices. The software modules on network devices
are mainly concerned with information gathering and
simple calculation, while the management application
handles decision making and higher level functions.
The centralised approach is driven by two assump-
tions (Goldszmidt 1993):

• Network devices lack resources to execute com-
plex computational tasks.

• Management data and functions are relatively
simple.

The Simple Network Management Protocol is the
dominant protocol in existing managed systems. The
protocol is designed to be an easily implemented,
basic network management tool. The SNMP set of
standards defines an information management model
along with a protocol for the exchange of the informa-
tion between a managed device with an SNMP agent
and an SNMP manager. International Standard Or-
ganisation (ISO10165-1 1993) presents another gen-
eral management information model of OSI systems
management information. The ISO model has a sim-
ilar approach to the SNMP management model, but
differs in the way it operates.

The rapid expansion of networks has resulted in
real network management problems that can’t be ad-
equately addressed (Meyer et al. 1995). Also, the
computational capability of network devices has in-
creased. The increase in the capability of managed
devices has made it possible to distribute complex
computations and significant duties to the managed
devices (Puliafito et al. 2000). Research on the de-
centralised approaches to network management be-
gan as early as SNMPv1’s RMON (Remote Network
Monitoring) MIB. The core of RMON are the re-
mote monitors, that take responsibility for the col-
lection and analysis of statistical information on net-
work traffic and device status on sub-networks. The
remote monitors report only significant information
to the SNMP managers. The enhanced SNMPv2 pro-
vides a manager-to-manager (M2M) MIB to support
a hierarchical management architecture. Similar to
the RMON, the M2M allows a sub-manager to func-
tion as a remote monitor for a sub-network. The lat-
est SNMPv3 management framework makes it possi-
ble to develop a set of distributed entities, composed
of several interacting modules. However, the SNMP
management framework does not specifically address
distribute network management. Instead, the IETF
DIAMAN working group proposes a distributed man-
agement architecture based on the SNMP manage-
ment framework (DISMAN 1996).

On the other hand, Yemini and Gold-
szmidt (Yemini et al. 1991) proposed the Management
by Delegation (MbD) model for distributed network
management. The fundamental idea behind this
approach is to dynamically distribute management
functions amongst management entities. The MbD
model is based on the technology ”code mobility”.
It moves the code, describing management functions,
closer to the data they process. Moving code is
more efficient if the amount of data that needs to be
transferred is larger, and reduces the total amount
of network management traffic (Schonwalder 1997).
The MbD model consist of three parts: a delegation
protocol, a delegation language and an agent. The
delegation protocol is used to communicate between
managers and agents. The delegation protocol

enables the manager to transfer the delegation code,
to control the behaviour of the delegation code
(execute, suspend and stop etc.), and to retrieve the
results of the execution. The delegation language
is used to write management functions, that can
be executed at runtime. Several different languages
have been in different research prototypes ranging
from high-level interpreted languages to low-level
stack-oriented languages (Schonwalder 1997). A
MbD agent acts in both an agent role and a manager
role. To managers requesting information from the
MbD Manager, it is an agent, while to those agents
it queries, it is a manager. The MbD agent provides
the services to parse and execute received delegation
code. It also provides the interfaces that enable
the remote manager to control the execution of the
delegation and retrieve the results. In addition, the
MbD agent can delegate its management functions
to other MbD agents.

Dynamic extensibility has been used to support
the MbD model for distributed network management.
Extensible agents are MbD agent that can dynami-
cally add or delete managed objects upon the requests
from other management entities. The early extensible
agent model is based on the SNMP framework with
a distributed MIB consisting of a static MIB resid-
ing in the master agent and several temporary MIB
dynamically registered by subagents.

This paper relates our experience in designing
and implementing a JMX based network management
toolkit.

3 JMX Architecture

The JMX specification provides a framework for a
distributed management model based on manage-
able resources, dynamically extensible agents and dis-
tributed management services as shown in Figure 1.
The JMX architecture is separated into three layers:
the instrumentation level, the agent level and the dis-
tributed services level.

PAC C

Agent Level

Instrumentation
Level

Distributed
Services Level

MBean
Server

Agent
Services

Resources
(MBeans)

JMX−compatible
Management Application

JMX ManagerOther Management
Applications

C − Connector
PA − Protocol Adaptor

Figure 1: JMX Architecture

3.1 Instrumentation Level

The instrumentation level provides a specification for
implementing JMX manageable resources. A resource
can be an application, a device, or the implemen-
tation of a service. A JMX manageable resource
must comply with the MBean standard defined in the
JMX specification, and may be dynamically added
to or removed from the JMX agent. MBeans encap-
sulate manageable objects as attributes and opera-
tions through their public methods, and utilise de-

CRPIT Volume 48

148

sign patterns to expose them to management appli-
cations (JMX1.2 2002).

There are two kind of MBean. Standard MBeans
provide a static management interface, which is fixed
at compile time and is invoked by reflection. The
standard MBeans’ interfaces are made up of the meth-
ods for reading and writing attributes and for invok-
ing operations. The design pattern followed by a stan-
dard MBean is derived from the JavaBeans compo-
nent model (JavaBeans 1999). In this design pattern,
attributes are exposed through the getter and setter
methods in the MBeans’ interface. Attributes may be
read-only, write-only or read-write. The return value
or arguments of methods for attributes must conform
to the data type of attributes. Operations are ex-
posed by the methods other than getter and setter in
the MBeans’ interface. They can be defined with any
number of arguments with any data types.

public interface DynamicMBean {

 public Object getAttribute(String attribute)
 throws AttributeNotFoundException, MBeanException, ReflectionException;

 public AttributeList getAttributes(String[] attributes);

 public MBeanInfo getMBeanInfo();

 public Object invoke(String actionName, Object[] params, String[] signature)
 throws MBeanException, ReflectionException;

 public void setAttribute(Attribute attribute)
 throws AttributeNotFoundException,InvalidAttributeValueException,
 MBeanException, ReflectionException;

 public AttributeList setAttributes(AttributeList attributes);
}

Figure 2: DynamicMBean Interface

Dynamic MBeans conform to a specific interface
that exposes the management interface at runtime.
Unlike standard MBeans, dynamic MBeans do not
have getter or setter methods for each attribute and
operation. Instead, the DynamicMBean interface is
defined to provide generic method for getting or set-
ting an attribute and for invoking an operation. As
shown in Figure 2, the getMBeanInfo method defined
in the DynamicMBean interface returns an object
which contains meta information about the MBean’s
attributes, operations and notifications that may be
emitted by the MBean.

Using this meta information, management appli-
cations can access the MBean’s attributes and invoke
the MBean’s operations through generic methods de-
fined by the DynamicMBean interface. Compared
with standard MBeans, dynamic MBeans provide a
more flexible way to instrument resources and make
it simple to instrument existing JMX incompatible
resources (legacy management resources, etc.).

Dynamic MBeans can be further refined into two
useful specialisations:

• An open MBean is a dynamic MBean that relies
on a small, predefined set of universal Java Types
to describe managed objects. It is useful where a
management application and agent do not share
application-specific data types.

• The model MBean, is a generic configurable man-
agement template for managed resources. Model
MBeans can be used to instrument almost any
resources rapidly.

3.2 Agent Level

The agent level provides a specification for imple-
menting the JMX agents that control the MBean re-
sources and make them available to management ap-
plications. A JMX agent consists of a MBean server, a
set of agent services, and at least one communication
protocol adaptor or connector, see section 3.3. The

MBean server acts as a central registry for MBeans
managed by the agent. Only registered MBeans may
be accessed from outside of the MBean server. The
MBean server provides a set of interfaces to manip-
ulate MBeans. All management requests are han-
dled by the MBean server, which dispatches them to
the appropriate MBean. Through the MBean server,
management applications may: register or deregis-
ter MBeans, browse and query MBeans, discover the
management interface of MBeans, read or write the
values of MBeans’ attributes, invoke the operations
exposed by MBeans, and register and deregister no-
tification listeners for MBeans.

JMX agent services are also MBeans that provide
services for other MBeans or management applica-
tions. There are four standard services defined in the
JMX specification: Dynamic Loading Service, Mon-
itoring Service, Timer Service and Relation Service.
Dynamic Loading Service allows the agent to instan-
tiate MBeans using Java classes and native libraries
dynamically downloaded from the network. Monitor-
ing Service notifies its listeners on certain conditions
or events. Timer Service sends notifications at prede-
termined intervals and acts as a scheduler. Relation
Service defines associations between MBeans.

3.3 Distributed Services Level

The distributed services level defines management in-
terfaces and components that allow remote manage-
ment applications to perform operations on agents
through different protocol adaptors and connectors.
Both protocol adaptors and connectors use the ser-
vices of the MBean server to apply the management
operations they receive to the target MBeans, and
to forward notifications, such as an attribute change
notification, to management applications. Both pro-
tocol adaptors and connectors should preferably be
implemented as MBeans. This offers greater flexibil-
ity to their operation as they can be activated or de-
activated through any of the other available adaptors
or connectors.

There are two main differences between protocol
adaptors and connectors, though they are similar in
terms of functionality:

• Management applications that connect to proto-
col adaptors access the JMX agent through oper-
ations defined by the given protocol, and the op-
erations are then received by protocol adaptors
and are mapped to those of the MBean server
through protocol adaptors; whereas connectors
provide a higher level view for the JMX agent
through the local representation of the MBean
server. The remote management applications us-
ing connectors may access the JMX agent as if it
were local.

• Management applications that connect to proto-
col adaptors are usually tied to a given proto-
col, whereas management applications which use
connectors may use different protocols as long as
corresponding connectors are provided.

4 SNMP Adaptor

The SNMP adaptor makes the JMX agent accessible
from legacy SNMP managers. The SNMP adaptor
emulates the standard SNMP agent, and is configured
dynamically to provide mappings between SNMP and
MBeans and JMX Notifications via XML mapping
files. As shown in Figure 3, the SNMP adaptor con-
sists of a SNMP protocol engine and a MIB registry.
The SNMP protocol engine is used to receive and

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

149

parse SNMP messages to determine the type of re-
quest and the Object Identifier (OID) of the MIB
object. The engine queries the MIB registry and gets
the proxy for the MBean object identified by the OID.
The engine then invokes the appropriate access func-
tion on the proxy, which will forward the invocation
to the appropriate MBean object registered with the
MBean server. The notification listener receives the
notifications, which the SNMP adaptor is interested
in, and forwards them to the SNMP protocol engine.
The SNMP protocol engine generates the correspond-
ing SNMP trap message.

SNMP Protocol
Engine

MIB Registry

M
B

ean S
erver

MBean m1

MBean m2

SNMP Adaptor

look up
SNMP Request

Notification
Listener

SNMP Trap
Dynamical Proxies

m1 proxy

m2 proxy

Figure 3: SNMP Adaptor

4.1 SNMP Protocol Engine

The SNMP protocol engine is built on top of the JoeS-
NMP API (OpenNMS 2002) and supports SNMP
protocol versions V1, V2c. It consists of several com-
ponents: transport layer, message dispatcher, mes-
sage handler and trap generator. These components
interact with each other to facilitate communications
between the SNMP manager and the SNMP adaptor.
Figure 4 describes how the SNMP message is handled
by the SNMP engine.

Message Dispatcher

Message Handler

SNMPv1 Handler

SNMPv2c Handler

Trap Generator
SNMP Engine

MIB

Transport Layer

SNMP
Message

Figure 4: SNMP Protocol Engine

1. The SNMP request message is received by the
transport layer, and then is forwarded to the
message dispatcher. The current transport layer
supports UDP.

2. The message dispatcher parses the SNMP mes-
sage to determine the SNMP version and to ex-
tract the Protocol Data Unit (PDU) from the
message. Then, it forwards the extracted PDU
to the appropriate message handler.

3. There are two message handlers, the SNMPv1
handler and SNMPv2c handlers which are re-
sponsible for the corresponding version’s SNMP
message. The message handler parses the PDU
to determine the PDU type and the OIDs of the
required MIB objects. The message handler then
looks up the MIB Registry to get the required
MIB objects.

4. The message handler invokes the appropriate ac-
cess method on the MIB objects, and then con-
structs a response message with the new values
of the MIB objects.

5. The response message is returned back to the
message dispatcher and then is forwarded to the
transport layer.

6. The transport layer returns the response mes-
sage. The transport layer also forwards SNMP
trap messages to registered SNMP managers.

4.2 MIB Registry

The MIB registry organises MBean proxies into a
SNMP OID tree structure. Figure 5 shows the class
hierarchy for the MIB objects in the MIB registry.
These objects are organised as several MIBGroup ob-
jects. A MIBGroup object can not contain other
MIBGroup objects. The managed objects in the
MIBGroup are represented as MIBLeafProxy objects
or MIBTableProxy objects in terms of the node type.

x

y1 y2 y3

z1 z2 z3 z4

r1 r2

(tabular)

Figure 6: MIBGroup Example

For instance in Figure 6, the node x has three child
nodes: y1, y2 and y3. The node y1 is a leaf node. The
node y2 has two child nodes: z1 (tabular node) and
z2 (leaf node). The node y3 also has two child nodes:
z3 (leaf node) and z4 (leaf node). This OID tree can
be represented as follows:

• MIBGroup x contains MIBLeafProxy y1

• MIBGroup y2 contains MIBTableProxy z1 and
MIBLeafProxy z2

• MIBGroup y3 contains MIBLeafProxy z3 and
MIBLeafProxy z4

Referring back to Figure 5, the MIBEntry abstract
class describes the basic structure for a managed ob-
ject. It contains the attribute oid which is used to
identify the managed object. It also defines three ab-
stract methods getRequest, getNextRequest and setRe-
quest to handle three primitive SNMP actions: GET,
GETNEXT and SET. Both the MIBLeaf class and
the MIBTable class are sub class of the MIBEntry
abstract class.

A MIBLeaf class represents a scalar type managed
object, but it also can represent a columnar object of
a SNMP table. A columnar object defines the be-
haviour of managed object instances in a particular
column of a SNMP table (Agent++ 2000). The MI-
BLeaf object contains an attribute value which rep-
resents the instance of the managed object. The MI-
BLeafProxy class extends the MIBleaf class with two
additional attributes: mbeanName and attribute. The
mbeanName represents the object name of the target
MBean object, and the attribute represents one of the
attributes of this MBean object. With these two at-
tributes, the MIBLeafProxy object acts as a proxy
for the MBean object, and maps the SNMP actions
to the appropriate methods on the JMX agent. For
instance, when the methods getValue or setValue is
invoked, the MIBLeafProxy object invoke the method

CRPIT Volume 48

150

MIBEntry

oid : SnmpObjectId

+ getOID() : SnmpObjectId

+ getRequest(req : Request, index : int) : void

+ getNextRequest(req : Request, index : int) : void

+ setRequest(req : Request, index : int) : void

MIBLeafProxy

oid : SnmpObjectId

value : SnmpSyntax

attribute : ModelMBeanAttributeInfo

mbeanName : ObjectName

+ getOID() : SnmpObjectId

+ getValue() : SnmpSyntax

+ setValue(value : SnmpSyntax) : void

+ getRequest(req : Request, index : int) : void

+ getNextRequest(req : Request, index : int) : void

+ setRequest(req : Request, index : int) : void

+ setAttribute(attribute : ModelMBeanAttributeInfo) : void

+ setMBeanName(name : ObjectName) : void

MIBRegistry

groups : SortedSet

+ addGroup(group : MIBGroup) : void

+ find(oid : SnmpObjectId) : MIBEntry

+ findNext(oid : SnmpObjectId) : MIBEntry

+ findPrev(oid : SnmpObjectId) : MIBEntry

MIBGroup

content : SortedSet

+ add(item : MIBEntry) : void

+ remove(oid : SnmpObjectId) : void

+ getContent() : SortedSet

MIBLeaf

oid : SnmpObjectId

value : SnmpSyntax

+ getOID() : SnmpObjectId

+ getValue() : SnmpSyntax

+ setValue(value : SnmpSyntax) : void

+ getRequest(req : Request, index : int) : void

+ getNextRequest(req : Request, index : int) : void

+ setRequest(req : Request, index : int) : void

MIBTableProxy

oid : SnmpObjectId

rows : SortedSet

columns : MIBTableRow

mbeanName : ObjectName

mbeanInfo : ModelMBeanInfo

updateListener : NotificationListener

+ getOID() : SnmpObjectId

+ addColumn(column : MIBLeaf) : void

+ addRow(index : SnmpObjectId) : void

+ getRequest(req : Request) : void

+ getNextRequest(req : Request, index : int) : void

+ setRequest(req : Request, index : int) : void

+ setMBeanInfo(mbeanInfo : ModelMBeanInfo) : void

+ setMBeanName(name : ObjectName) : void

MIBTable

oid : SnmpObjectId

rows : SortedSet

columns : MIBTableRow

+ getOID() : SnmpObjectId

+ addColumn(column : MIBLeaf) : void

+ addRow(index : SnmpObjectId) : void

+ getRequest(req : Request, index : int) : void

+ getNextRequest(req : Request, index : int) : void

+ setRequest(req : Request, index : int) : void

MIBTableRow

index : SnmpObjectId

items : SortedSet

+ getIndex() : SnmpObjectId

+ setIndex(index : SnmpObjectId) : void

+ addItem(item : MIBLeaf) : void

+ getItem(index : int) : MIBLeaf

Figure 5: MIB Registry Class Hierarchy Diagram

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

151

getAttribute or setAttribute on the JMX agent with
the mbeanName and the attribute as parameters to
access the attribute of the target MBean object.

A MIBTable class represents a SNMP table (tab-
ular type managed object). A SNMP table may
have multiple rows, and each row consists of multi-
ple columnar objects. The MIBTableRow class is de-
fined to represent a row of a SNMP table. It provides
the methods to add MIBLeaf objects, which repre-
sent columnar objects in the row, and methods to get
and remove them. The MIBTable object may contain
multiple MIBTableRow object. The MIBTable con-
tains a group of MIBLeaf objects named meta colum-
nar object, which describe the structure information
for the row. This group of MIBLeaf objects is or-
ganised as a MIBTableRow object named columns.
When a new row is added, MIBTable will clone the
MIBTableRow object to create a new MIBTableRow
object. Each columnar object in the new row is the
copy of the meta columnar object of its column, but
with a different value. The MIBTable class provides
the methods to manipulate columnar objects.

The MIBTableProxy class is a sub class of the
MIBTable class. It acts as the proxy for a special kind
of MBean object, which has a TabularData type at-
tribute. TabularData is defined in the JMX specifica-
tion and describes a table structure with an arbitrary
number of rows that can be indexed by any number
of columns (JMX1.2 2002). Each row is a Composite-
Data object, which is a hash map with multiple data
items. The CompositeType object is used to describe
the CompositeData object. All rows in a TabularData
object must be associated with the same Composite-
Type object. This special kind of MBean object is
automatically generated from the SNMP table by the
MIB compiler (see Section 4.3).

The MIBTableProxy class supports a cache mech-
anism for efficiency. When a MIBTableProxy object
initialised, MIBTableProxy queries the MBean (iden-
tified by the MIBTableProxy’s two attributes: mbean-
Name and MBeanInfo), and stores the MBean ob-
ject’s TabularData type attribute in the cache. The
MIBTableProxy object also registers a notification
listener for the MBean object. When the MBean’s
TabularData object is changed, the MIBTableProxy
object will receive a notification and will query the
MBean to update the cache. The cache mecha-
nism is more efficient because the MIBTableProxy
object does not need to contact the MBean when
a SNMP management application performs GET or
GETBULK actions on it. Only SET actions cause
the MIBTableProxy object to update the MBean’s
TabularData object.

4.2.1 Generating Dynamic MBean Proxies

Both the MIBLeafProxy and MIBTableProxy objects
act as proxies for a MBean. The SNMP operations
performed on them are mapped to the accessor meth-
ods on the appropriate MBean objects, and then are
forwarded to the MBean server. The MBean server
finds the target MBean object, invokes the method
on it and then returns the result or raises the excep-
tion. Proxies are dynamically generated from XML
mapping files and are added into the MIB Registry.
The mapping files define the mapping relationship be-
tween the MIB and MBean objects. Figure 7 provides
an example of the mapping of a MBean object into
the MIB.

The RMIConnectorServer is implemented as a
MBean so that it can also be managed through proto-
col adaptors or connectors. There must be a relation-
ship between the RMIConnectorServer and the nodes
in the MIB; otherwise the SNMP adaptor has no idea
how to map a SNMP request to the operations on

the RMIConnectorServer. The RMIConnectorServer
exposes four methods defined in the interface JMX-
ConnectorServerBean, see Figure 7. Two of them,
isActive and getAddress, are the get methods of the
attributes active and address, and other two are op-
erations according to design pattern described in the
JMX 1.2 specification. Our prototype only supports
the mapping of MBean attributes as SNMP does not
support objects. The file MBeansToMIB.xml is used
to describe how to map MBeans into the MIB. The
mapping file assigns the OID ”1.3.6.1.4.9876.1.1” to
the MBean RMIConnectorServer, and describes the
MBean’s ObjectName so that the SNMP adaptor can
locate the RMIConnectorServer instance through the
MBean server. It also assigns the OID respectively to
the attributes active and address.

The mapping file also maps the Java data type
of the MBean attributes to the MIB data type. In
this case, the SNMP adaptor loads the mapping file,
and generates a MIBGroup object with two MIBLeaf-
Proxy objects which respectively represent the at-
tributes address and active.

4.3 MIB Compiler

As described in Section 4.2.1, existing MBeans can be
mapped into the MIB using the MBeansToMIB.xml
file. However, JMX manageable resources must follow
the design patterns and interfaces defined in the JMX
1.2 specification. Any incompatible resources must be
instrumented as MBeans so that they can be managed
by a JMX agent.

Our MIB compiler automatically generates
MBeans representing a given SNMP MIB. The MIB
compiler consist of two components: a MIB parser
and a code generator. The MIB parser imports a MIB
file and generates an intermediate representation.
The code generator generates the Java source code
and the XML file. The generated code is based on the
JMX’s model MBean specification (JMX1.2 2002)
and can be used to create a model MBean on the fly.
The generated XML is used to dynamically configure
the model MBean. The model MBean provides
management interfaces for non JMX compatible re-
sources. This significantly reduces the programming
burden and means that a developer can instrument
existing resources according to the JMX specification
as little as three or five lines of code.

4.3.1 MIB Parser

The MIB file is a normal text file written in Abstract
Syntax Notation One (ASN.1) (ISO8824 1990) lan-
guage, a formal language used to define abstract syn-
taxes of application data.

Rather than having single ASN.1 compiler with a
lexer, a parser and a code generator, we utilise dele-
gating compiler objects (DCO) (Bosch 1996), a novel
approach to compiler construction that provides mod-
ular and extensible implementation of compilers. In
DCO compilation is achieved through the coopera-
tion of a group of compiler objects. A compiler ob-
ject is only responsible for a particular part of the
syntax, and has its own lexer and parser. The pro-
gramming language is decomposed into a set of struc-
ture. Each structure is compiled by its associated
compiler object. As shown in Figure 8, a MIB file
can be decomposed into ten modules. The TypeAs-
signment module is used to define a new data type.
The new data type can be Simple Type, Structured
Type or Subtype. The ValueAssignment module is
used to assign a value to a variable. In the MIB file,
the ValueAssignment module is mostly used to assign
a value to the Object Identifier variable. The Im-
port module is used to import the types and variable

CRPIT Volume 48

152

vuw (9876)

mjmx (1)

active (1) address (2)

public interface JMXConnectorServerMBean {
 public void start() throws IOException;

 pubic void stop() throws IOException;

 public boolean isActive();

 public String getAddress();
}

public class RMIConnectorServer
 implements JMXConnectorServerMBean {
 ...
}

RMIConnectorServer (1)

<MBeanMapping>
 <MBean name="nz.ac.vuw.mjmx.remote.rmi.RMIConnectorServer"
 objectName="jmx:Connectors:type=RMIConnector" oid="1.6.3.1.4.1.9876.1.1">
 <attribute name="active" type="java.lang.Boolean" oid="1" getMethod="isActive" mibType="INTEGER"/>
 <attribute name="address" type="java.lang.String" oid="2" getMethod="getAddress" mibType="DisplayString"/>
 </MBean>
</MBeanMapping>

iso (1)

internet (1)

directory (1) mgmt (2)

mib−2 (1)

experimental (3) private (4)

enterprises (1)

 org (3)

dod (6)

Figure 7: Mapping a MBean into the MIB

declared by other MIB files. The other seven mod-
ules, including ModularIdentity, ObjectType, Textual-
Convention, ObjectGroup, NotificationType, Notifica-
tionGroup and ModuleComppliance, represent seven
macros defined in the MIB specifications. Our MIB
compiler utilises a separate compiler object for each
of the ten MIB modules. Each compiler object has a
its own lexer and parser.

MIB compilation firstly eliminates all unneeded in-
formation in the MIB file (such as comments) and
then passes the stream through the ten DCO com-
piler objects. Each DCO compiler performs its lexi-
cal analysis and then its parser provides the syntactic
analysis. The entire syntactic analysis of the MIB
file is the result of the collaboration of the different
DCO parsers. Since only a very small subset of ASN.1
syntax is used in each DCO, the complexity of the im-
plementation of DCO parser is significantly reduced.
The output of DCO parsers are module objects rep-
resenting the different modules. Module objects are
divided into two groups: type groups and variable
groups. Objects in the type group represent a data
type, and objects in variable group represent an in-
stance with type and value. Then, the module ob-
jects go through semantic analysis to check if objects
are legal and meaningful (for instance, the values are
valid, the types are defined, the compulsory attributes
are set, and so on). The final step is to organise the
objects as a MIB tree in terms of the OID value of
each object. An optional XML file is also generated
to represent the MIB file in the XML format.

4.3.2 Code Generator

The code generator walks through the MIB tree ex-
ported by the MIB parser and generates the instru-
mentation code and configuration files for the vari-
ables in the MIB tree. The code generator generates
a Java class for each MIB group node. Every leaf node
in the MIB group is represented by an attribute of the
Java class. The corresponding accessor methods, such
as getX or setX are defined in the Java class. In this

case, X denotes the attribute name. Also, the code
generator generates the Java class for each SNMP ta-
ble. The methods to access the rows in the SNMP
table are defined in this Java class. In addition, each
generated Java class is associated with a XML config-
uration file that describes the mapping relationship
between the Java class and the MIB. However, the
generated instrumentation code only define the inter-
faces and provide skeleton code to describe how JMX
incompatible resources can be accessed. The remain-
ing manual tasks are to complete the skeleton code
and implement the defined interfaces.

The generated Java classes can not be accessed di-
rectly by the JMX agent and must be wrapped into
the model MBeans. The model MBean provides a set
of interfaces which allow the JMX agent to perform
the management operations on the resources wrapped
in the model MBean object. The wrapping process
starts by extracting the information for attributes,
operations and notifications from the XML file asso-
ciated with each Java class and then added this in-
formation to the model MBean. The whole process
is done in one line code as follow. The method con-
vertXmlToMBeanInfo converts the xml file into the
MBeanInfo object which describes custom attributes,
operations and notifications information, and then
the RequiredModelMBean constructor use these in-
formation to construct a customised model MBean in-
stance. The wrapping process is done automatically.
The users can edit the file JMXModelMBeanInfo.xml
to add the configuration file location and name for
resources they want to wrap. When a JMX agent
is initialzied, it checks out the file JMXModelMBean-
Info.xml and then generates the model MBean for the
resources.

new RequiredModelMBean(convertXmlToMBeanInfo(xml));

4.3.3 A Code Generation Example

A code generation example for a MIB group is shown
in Figure 9. The system group describes a set of ob-
jects common to all managed systems. It consists

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

153

ModularIdentity Module Parser

Import Module Parser

ObjectType Module Parser

TypeAssisnment Module Parser

ValueAssignment Module Parser

TextualConvention Module Parser

ObjectGroup Module Parser

NotificationType Mudule Parser

NotificationGroup Module Parser

ModuleCompliance Module Parser

Lexical Analysis

Type Table MIB Tree

XML

MIB

Variable
Table

TypeAssisnment Module Lexer

ValueAssignment Module Lexer

Import Module Lexer

ModularIdentity Module Lexer

ObjectType Module Lexer

TextualConvention Module Lexer

ObjectGroup Module Lexer

NotificationType Mudule Lexer

NotificationGroup Module Lexer

ModuleCompliance Module Lexer

Syntactic Analysis

Semantic Analysis

Figure 8: MIB Parser

of eight scalar objects and a table object with four
columns. The MIB compiler compiles the system
group MIB file and generates five files:

• System.java: a Java class representing the whole
system group except the table object sysORTable

• System.xml: a configuration file describing the
mapping relationship between the System class
and the system group in the MIB file

• SystemORTable.java: a Java class representing
the table object sysORTablein the MIB file

• SystemOREntry.java: a Java class represent-
ing four column objects in the table object
sysORTable

• SystemORTable.xml: a configuration file de-
scribing the mapping relationship between the
sysORTable class and the sysORTable object in
the MIB file

The System class in Figure 9 contains eight at-
tributes that represent the eight scalar objects in the
system group. The accessor methods for these at-
tributes are also included. The System class does
not include any OID information, but the configu-
ration file System.xml describes the mapping relation
between the attributes of the System class and the
scalar objects of the system group. When the System
class is wrapped into a model MBean and is registered
within a JMX agent, a proxy object is dynamically
generated from the System.xml file and is registered
within the MIBRegistry in the SNMP adaptor (see
Section 4.2.1). This proxy object will call the System
class’s get and set method upon Get and SET SNMP
request.

The SysORTable class contains the attribute
sysORTable which represents the table object of the
system group. The row of the sysORTable is repre-
sented by the SysOREntry class. The SysOREntry
class contains four attributes that represent four col-
umn objects. The access methods for these attributes
are also defined. The SysORTable class defines the
methods to manipulate the table object. The get-
SysORTable method is used to retrieve all rows in
the table. The updateEntry method is used to up-
date an existing row or add a new row in the table,
and the deleteEntry is used to delete a row from the
table. Similar to the System class, a proxy object is
also generated from the SysORTable.xml and is asso-
ciated with the SysORTable class.

4.4 SNMP Proxy

The SNMP adaptor makes JMX resources accessi-
ble to legacy SNMP managers. However, non-SNMP
management applications can not access SNMP re-
sources directly since they do not support the SNMP
protocol. We have designed and developed a SNMP
proxy to address this interoperability issue. As
shown in Figure 10, the MIB supported by a re-
mote SNMP agent is represented by multiple model
MBeans. These model MBeans are registered within
the MBean server and can be accessed by multiple
protocols, such as Java RMI. These model MBeans
act as proxies and the operations on them are for-
warded to the appropriate remote SNMP agents
through the SNMP proxy.

SNMP Agent

SNMP Agent

SNMP Manager

SNMP Proxy

Model MBean

Model MBean

Model MBean

M
B

ean S
erver

Connector

Connector

Adaptor

JMX Agent

Mapping FileMapping FileMapping File

JMXSNMPProxyConf.xml

Figure 10: SNMP Proxy

To create proxy objects representing the remote
SNMP agent’s MIB, the MIB compiler is used to
generated instrumentation code and xml configura-
tion files from the remote SNMP agent’s MIB file.
However, only xml configuration files are used to
create proxy objects. The instrumentation code is
simply discarded. The JMX implementation used
in this project provides two basic model MBeans:
RequiredModelMBean and JMXSNMPProxyModelM-
Bean. The RequiredModelMBean is used to in-
strument MBean incompatible managed resources.
The operations on the RequiredModelMBean are for-
warded to the managed resource. The JMXSNMP-
ProxyModelMBean does not instrument any managed
resources, but forwards the operations on it to the
SNMP proxy. Generating a JMXSNMPProxyMod-
elMBean instance using the toolkit is a single line of
code (as shown below).

CRPIT Volume 48

154

<ModelMBean name="example.System" group="1.3.6.1.2.1.1">
 <attributes>
 <attribute name="sysDescr" type="java.lang.String" oid="1"
 getMethod="getSysDescr" mibType="DisplayString"/>
 <attribute name="sysObjectID" type="java.lang.Long" oid = "2"
 getMethod="getSysObjectID" mibType="OBJECT IDENTIFIER"/>
 ...
 </attributes>
 <operations>
 ...
 </operations>
</ModelMBean>

public class System {
 String sysDescr;
 String sysObjectID;
 Long sysUptime;
 String sysContact;
 String sysName;
 String sysLocation;
 Integer sysServices;
 Long sysORLastChange;

 public System() {...}

 public String getSysDescr() {...}
 public void setSysDescr(String value) {...}
 ...
}

public class SysORTable extends JMXAbstractTable {
 String[] indexNames;
 HashMap sysORTable;
 NotificationListener listener;

 public SysORTable() {...}

 public String[] getIndexNames() {...}
 public TabularData getSysORTable() {...}
 public void updateEntry(Object[] indexObjects, CompositeData entry) {...}
 public void deleteEntry(Object[] indexObjects) {...}
 public void addNotificationListener(NotificationListener listener) {...}
 public void remoteNotificationListener(NotificationListener listener) {...}
}

class SysOREntry {
 Integer sysORIndex;
 String sysORID;
 String sysORDescr;
 Long sysORUpTime;

 public Integer getSysORIndex() {...}
 public void setSysORIndex(Integer value) {..}
 ...
}

<ModelMBean name="example.SysORTable" group="1.3.6.1.2.1.1">
 <attributes>
 <attribute name="SysORTable" type="javax.management.openmbean.TabularData"
 getMethod="getSysORTable" oid="9" mibType="table">
 <columnAttribute name="sysORIndex" type="java.lang.Integer oid="1.1" mibType="INTEGER"/>
 <columnAttribute name="sysORID" type="java.lang.String" oid="1.2" mibType="OBJECT IDENTIFIER"/>
 <columnAttribute name="sysORDescr type="java.lang.String" oid="1.3" mibType="DisplayString"/>
 <columnAttribute name="sysORUpTime" type="java.lang.Long" oid="1.4" mibType="TimeStamp"/>
 </attributes>
 <operations>
 ...
 </operations>
</ModelMBean>

System.java

System.xml

SysORTable.java & SysOREntry,java

SysORTable.xml

system OBJECT IDENTIFIER ::= { mib−2 1}

sysDescr OBJECT−TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read−only
 STATUS current
 ::={ system 1 }

sysObjectID OBJECT−TYPE
 SYNTAX OBJECT IDNETIFIER
 ACCESS read−only
 STATUS current
 ::= { system 2 }

sysUpTime OBJECT−TYPE
 SYNTAX TimeTicks
 ACCESS read−only
 STATUS current
 ::= { system 3}

−− system group includes other five leaf nodes
−− sysContact ::= { system 4 }
−− sysName ::= { system 5 }
−− sysLocation ::= { system 6 }
−− sysServices ::= { system 7 }
−− sysORLastChange ::= {system 8}

sysORTable OBJECT−TYPE
 SYNTAX SEQUENCE OF SysOREntry
 ACCESS not−accessible
 STATUS current
 ::= { system 9 }

sysOREntry OBJECT−TYPE
 SYNTAX SysOREntry
 ACCESS not−accessible
 STATUS current
 INDEX { sysORIndex }
 ::= { sysORTable 1 }

SysOREntry ::= SEQUENCE {
 sysORIndex INTEGER,
 sysORID OBJECT IDENTIFIER,
 sysORDescr DisplayString,
 sysORUpTime TimeStamp
}

sysORIndex OBJECT−TYPE
 SYNTAX INTEGER (1..2147483647
 ACCESS not−accessible
 STATUS current
::= { sysOREntryEntry 1 }

sysORID OBJECT−TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read−only
 STATUS current
 ::= { sysOREntry 2 }

sysORDescr OBJECT−TYPE
 SYNTAX DisplayString
 ACCESS read−only
 STATUS current
 ::= { sysOREntry 3 }

sysORUpTime OBJECT−TYPE
 SYNTAX TimeStamp
 ACCESS read−only
 STATUS current
 ::= { sysOREntry 4 }

System group MIB

M
IB

 C
om

pi
le

r

Figure 9: A Code Generation Example

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

155

new JMXSNMPProxyModelMBean(objectName, SNMPProxyRef,
convertXmlToMBeanInfo(xml));

The objectName represents the name of the model
MBean object and the SNMPProxyRef is a reference
to the SNMP Proxy. The convertXmlToMBeanInfo
method converts the xml file into the MBeanInfo ob-
ject that describes custom attributes, operations and
notification information.

When a method of the JMXSNMPProxyModelM-
Bean object is invoked, the JMXSNMPProxyMod-
elMBean object forwards the invocation and ob-
ject name to the SNMP proxy. The SNMP proxy
checks the file JMXSNMPProxyConf.xml that de-
scribes the relationship between JMXSNMPProx-
yModelMBean objects and remote SNMP agents.
For instance, an JMXSNMPProxyModelMBean ob-
ject with object name ”jmx:snmpagent:type=system”
represents the System group of the MIB supported by
a SNMP agent. This SNMP agent resides in the host
”130.195.106.3” and listens on the port ”161”. After
locating the SNMP agent, the SNMP proxy converts
the invocation to a SNMP PDU, and sends it to the
target SNMP agent.

5 Related Work

There are some commercial toolkits that provide
broadly similar functionality to the work presented
in this paper, such as Sun’s JDMK toolkit (JDMK
1999). However, these are proprietary designs and
their details are not available in the public domain.
None-the-less, there are a number of important dif-
ferences that we have been able to identify. For
example, ordinary MBeans (those not generated by
the JDMK’s MIB compiler) can’t be accessed by
SNMP managers, whereas our toolkit enables ordi-
nary MBeans to be accessible to SNMP managers
via the ”MBean-To-MIB” configuration file. Another
difference is that JDMK generated MBeans are di-
rectly bound to the SNMP adaptor, whereas our
MBean proxies are generated and bound at run time
via the MBean Server. This is a cleaner more flexi-
ble solution, and conforms to the hourglass protocol
model (Shanmugam et al. 2002).

6 Conclusions

The growing number of applications and services im-
plemented in Java has increased the demand for Java
based network management solutions. JMX provides
a standard way to enable manageability for any Java
based application, service or device (JMX1.2 2002).
However, most existing management systems can not
be managed directly via JMX compliant implementa-
tions. In this paper we present a toolkit that allows
the rapid development of JMX agents, and that can
interoperate with legacy SNMP-based network man-
agement systems. The core of this toolkit is a generic
SNMP adaptor to enable JMX compliant agents to be
accessed by SNMP-based management applications.
A set of SNMP APIs have been developed to sup-
port the development of the SNMP adaptor. Several
other tools have been developed to support the SNMP
adaptor, these include: a MIB compiler that automat-
ically generates MBeans representing a given SNMP
MIB; and a SNMP proxy service to allow non-SNMP
management applications to access the SNMP agent
using a variety of protocols. A simple example is also
given to illustrate the MBean generation process for
a given SNMP MIB.

References

A. Puliafito & O. Tomarchio(2000), Using Mobile
Agents to implement flexible Network Man-
agement strategies, Computer Communication
Journal, 23(8):708–719.

Danny B. Lange & Mitsuru Oshima (1999), Seven
Good Reasons for Mobile Agents, Communica-
tion of ACM, volume 42.

Frank Fock (2000), Agent++, An Object Oriented
Application Programmers Interface for Devel-
opment of SNMP Agents Using C++ and
SNMP++, http://www.agentpp.com.

German Goldszmidt(1993), On Distributed Sys-
tem Management, In Processings of the Third
IBM/CAS Conference.

IETF DIMAN Working Group (1999), Dis-
tributed Management (DISMAN) Charter,
http://www.ietf.org/html.charters/disman-
charter.html.

International Organization for Standardization
(1990), Information Technology- Open Systems
Interconnection - Specification of Abstract
Syntax Notation One (ASN.1).

International Organization for Standardization
(1993), ISO 10165-1: Information Process-
ing System - Open Systems Interconnection
- Structure of Management Information -
Part1:Management Inforamation Model.

Jan Bosch (1996), Delegating Compiler Objects:
Modularity and Reusability in Language Engi-
neering, Nordic Journal of Computing.

J. Schonwalder(1997), Network Management by Del-
egation - From Research Prototypes Towards
Standards, In Processings of 8th Joint European
Networking Conference.

K. Meyer, M. Erlinger, J. Betser, C. Sunshine, G.
Goldszmidt & Y. Yemini(1995), Decentralising
Control and Intelligence in Network Manage-
ment, In Processings of International Sympo-
sium on Integrated Network Management.

OpenNMS (2002), joeSNMP API,
http://sourceforge.net/projects/joesnmp/.

Paulo Simoes (1999), Enable Mobile Agent Technol-
ogy For Legacy Network Management Frame-
works, Technical Report, University of Coimbra.

Sun Microsystem Inc. (2002), Java Management Ex-
tensions Instrumentation and Agent Specifica-
tion, v1.2

Sun Microsystem Inc. (1999), Java Dynamic Manage-
ment Kit, http://java.sun.com/products/jdmk/.

Sun Microsystem Inc. (1999), JavaBeans Specification
1.0.1, http://java.sun.com/products/jdmk/.

R. Shanmugam, R. Padmini, S. Nivedita. (2002), Spe-
cial Edition: Using TCP/IP, 2nd Edition, Que.

Y. Yemini, G. Goldszmidt & Mitsuru Oshima (1991),
Network Management by Delegation, Interna-
tional Symposium on Integrated Network Man-
agement.

CRPIT Volume 48

156

A Framework for Visual Data Mining of Structures

Hans-Jörg Schulz Thomas Nocke Heidrun Schumann

Department of Computer Science,
University of Rostock,

18051 Rostock, Germany,
Email: {hjschulz, nocke, schumann}@informatik.uni-rostock.de

Abstract

Visual data mining has been established to effectively
analyze large, complex numerical data sets. Espe-
cially, the extraction and visualization of inherent
structures such as hierarchies and networks has made
a significant leap forward. However, it is still a chal-
lenging task for users to explore explicitly given large
structures. In this paper, we approach this task by
tightly coupling visualization and graph-theoretical
methods. Therefore, we investigate if and how visu-
alization can benefit from common graph-theoretical
methods – mainly developed for the investigation of
social networks – and vice versa. To accomplish this
close integration, we introduce a design of a general
framework for visual data mining of complex struc-
tures. Especially, this design includes an appropriate
processing order of different mining and visualization
algorithms and their mining results. Furthermore, we
discuss some important implementation details of our
framework to ensure fast structure processing. Fi-
nally, we examine the applicability of the framework
for a large real-world data set.

1 Introduction

Visual data mining (VDM) has been proven to be
an effective method to explore large data sets. It
combines automated mining algorithms with visual-
ization techniques. A variety of powerful methods
and tools (e.g. the InfoVis (Fequete 2004) and the
Prefuse (Heer, Card & Landay 2005) Toolkit and
the systems Polaris (Stolte, Tang & Hanrahan 2002),
Spotfire (Ahlberg 1996) or Visage (Roth, Lucas,
Senn, Gomberg, Burks, Stroffolino, Kolojejchick &
Dunmire 1996)) have been developed in the last few
years. These tools combine linked views on the data
with a high amount of interactivity, enabling users to
switch quickly between automated and visual meth-
ods. Therefore, they integrate mining methods to ex-
plore numerical data from a variety of research areas,
for instance AI, statistics and KDD. These methods
can extract structures that are inherent in the data
(e.g. hierarchical clustering). Furthermore, a number
of visualization methods have been developed and in-
tegrated to visualize such abstract data as well as
structures, gathered by the VDM process or already
given with the data set. Examples for such structures
are web link graphs and chemical molecule bonds.
Another prominent example for such structures are

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

social networks that apply methods to analyze social
structures, i.e. to identify central nodes that can be
understood as essential for the entire data set.

In this paper we want to discuss the question, if
and how calculation methods from graph theory can
be employed to essentially enrich VDM tools to ex-
plore structures. Our intention is to design a uniform
framework that integrates a variety of well-known
graph-theoretical and visualization methods for struc-
tures. For this purpose, dependencies of such meth-
ods have to be considered to design an appropriate
control flow.

Up to now, the integration of graph-theoretical
methods into VDM environments has not been in the
research focus. A main reason for this is the high
complexity of these algorithms that does not allow
an interactive linking and brushing in VDM environ-
ments. To achieve this goal, special effort needs to be
done.

Ankerst classifies current visual data mining ap-
proaches into three categories (Ankerst 2001). Meth-
ods in the first group apply visualization techniques
independent of data mining algorithms. The second
group uses visualization in order to represent patterns
and results from mining algorithms graphically. The
third category tightly integrates mining and visual-
ization algorithms in such a way that intermediate
steps of the mining algorithms can be visualized. In
our approach we focus at the second level, separating
the mining process into two parts:

1. execute time-consuming (automatic) algorithms
and store their results, and then

2. enable users to do an interactive exploration
of the structures in real-time, combining differ-
ent visualization and less time-consuming graph-
theoretical measures.

Although separating the time consuming execu-
tion of certain algorithms from the VDM process, per-
formance issues are still of high relevance. Thus, ef-
ficient data structures and access mechanisms - man-
aging both graphs and trees - are of high benefit for
the interactive VDM (see e.g. (Fequete 2004)). In
our framework implementation, we developed mecha-
nisms that allows efficient storage of both structures
and structural measures and algorithm results.

The paper is organized as follows: first we outline
the background of graph-theoretical algorithms, vi-
sualization methods for structures and inspiring ap-
plication areas (section 2). Afterwards, we discuss
graph-theoretical methods suited for VDM, which es-
pecially includes their interaction with visualization
techniques in section 3. Then, in section 4, we in-
troduce our framework for VDM of structures. This
includes the development of a general design and
the discussion of internal data structures and their
performance for different graph theoretical measures
and algorithms. Afterwards, we discuss challenges of

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

157

our approach and demonstrate its application to real-
world data sets in section 5. Finally, we conclude the
paper and discuss future work in section 6.

2 Background

On the one hand, in the last few years visual-
ization of large structures, especially of trees and
graphs, has been remarkably improved. Visualiza-
tion techniques enable users to interactively explore
complex structural relationships between the infor-
mation objects. Well-known examples for hierarchy
representations are (Lamping, Rao & Pirolli 1995),
(Robertson, Mackinlay & Card 1991), (Shneiderman
1992), (Granitzer, Kienreich, Sabol, Andrews &
Klieber 2004) and for networks examples are (Tollis,
Eades & di Battista 1999) and (Brandes & Corman
2002).

A major challenge in this context is an intu-
itive navigation through large data sets to quickly
find interesting patterns while preserving orientation.
Therefore, focus+context techniques on structures
have been developed (see e.g. (Gansner, Koren &
North 2004), (van Ham & van Wijk 2004)).

A further challenge is the amount of data to be
processed. Methods to explore and visualize huge
structures that do not even fit in memory have been
developed (e.g. (Abello, Finocchi & Korn 2001),
(Abello & van Ham 2004)). Here, to ensure inter-
active data exploration, mechanisms that decide to
precompute long-lasting algorithms needed to be de-
veloped.

On the other hand, there is a variety of auto-
matic methods introduced by graph theory to explore
structures. General work has been done to determine
the complexity of graph-theoretical algorithms and to
estimate their efficiency and effectivity for practical
data sets (e.g. (Valiente 2002)). Furthermore, these
methods have been applied and refined for practical
application fields, such as social sciences (e.g. to de-
tect community structures within social and biologi-
cal networks (Girvan & Newman 2002)) and biotech-
nology (e.g. the usage of generalized interval graphs
to solve the physical mapping problem that occurs
when sequencing fragments of DNA (Zhang 1994)).

Moreover, there are a few approaches to apply
graph-theoretical measures to parameterize visualiza-
tion and vice versa. For instance, van Ham and van
Wijk (van Ham & van Wijk 2004) use hierarchical
clustering on graphs and represent nodes in the fo-
cus in another hierarchy level than nodes in the con-
text. Other examples are (Abello & van Ham 2004),
(Frischman & Tal 2004) and (Gansner et al. 2004).

However, a systematic approach that integrates
measures and algorithms of graph theory with inter-
active visualization methods is still missing. In fact,
this can be very helpful to support VDM of struc-
tures, for instance to select and parameterize tree and
graph visualization by graph measures. Therefore,
nodes of high connectivity or of other specific values
of interest can be laid out into the focus. Moreover,
a tree visualization technique resp. a graph visualiza-
tion technique can be chosen to represent a structure
in dependency of its similarity to a tree. If there
are only a few edges to be deleted from a graph to
form a tree, a tree visualization technique can be a
good choice to visualize this graph, representing the
non-tree edges in another way (see figure 1 right and
(Fekete, Wang, Dang, Aris & Plaisant 2003)). If, on
the other hand, the graph is less similar to a tree,
tree visualization techniques are not appropriate (see
figure 1 left), and a default graph-drawing technique
is the better choice.

Figure 1: Networks represented by the tree visual-
ization technique MagicEyeView (Kreuseler & Schu-
mann 2002) with a large (left) and a small (right)
number of non-tree edges [images taken from (Voigt
2001)].

3 Algorithmic mining techniques for complex
structures

Even though the visualization is a powerful and im-
portant part within the concept of VDM, each visu-
alization technique has its limits on how much data
it can possibly display. This most critical problem
occurs rather often when analyzing real-world data,
but it can be overcome to some extent by appro-
priate information-hiding, brushing or focus+context
techniques embedded within the visualization used.
To parameterize those techniques, further informa-
tion about the given data set can be computed by a
thorough algorithmic pre-processing:

- irrelevant data, like statistical outliers that can
be hidden

- somehow ”important” data that needs to be em-
phasized

- bits of data that are very similar and can be clus-
tered

The field of graph theory already provides a wide vari-
ety of such mining techniques (i.e. finding maximum
cliques, shortest paths or calculating modular decom-
positions). Different domains, like the theory of so-
cial networks, the so-called web structure mining that
is used by search engines throughout the WWW or
the bio-chemical analysis of protein structures, supply
further methods for analyzing large amounts of struc-
tured data. Roughly, these methods can be divided
in three categories which can be subtle interrelated or
simply used one by one if needed:

- structural measures that capture important at-
tributes of the graph (the list in section 3.1 is
based upon an overview given in (Brandes &
Wagner 2003)),

- clustering algorithms to decompose large struc-
tures,

- methods for graph matching to identify and lo-
cate substructures of interest.

Additionally to these three categories, efficient ap-
proaches to automatically preselect well-fitting meth-
ods can help to maintain a comprehensive overview
about the huge number of applicable graph algo-
rithms (section 3.4).

3.1 Structural measures

Structural measures can be computed locally (sepa-
rately for each node) or globally (for an entire graph
or subgraph). Local measures of interest are i.e. the

CRPIT Volume 48

158

following centrality measures, which can be under-
stood as an index of how ”important” a node is (The
examples after the formal description of each measure
refer to figure 2):

- The node degree, that returns the number of
incident edges for a node v (i.e. deg(c) = 3).

- The size of the k-neighborhood |Nk(v)|, that
equals the number of nodes within distance ≤ k
from a given node v (i.e. |N1(c)| = 3, |N2(c)| =
5, |N3(c)| = 6).

- The summed up lengths of all shortest paths from
a node v to every other node yield the closeness
of that node
(i.e. cls(c) = 1 + 1 + 1 + 2 + 2 + 3 = 10).

- The maximum length of all shortest paths from
a node v to every other node equals its eccen-
tricity
(i.e. ecc(c) = max(1, 1, 1, 2, 2, 3) = 3).

- The node betweenness centrality of a node
v, which is defined as the number of all shortest
paths that pass through v (i.e. for c: 4 from a
and b, 2 from d, e, f and g, that sums up to 16).

b

c

d

e

f

ga

Figure 2: An example graph G(V,E).

The following similarity measures on the other hand
can be used for graph clustering or within the lay-
out algorithm to position comparable nodes closer to-
gether:

- The connectivity of the nodes u and v is the
minimum number of edges that have to be re-
moved from the graph in order to separate both
nodes in a way that no path between them exists
(i.e. conn(a, b) = 2).

- The dependency of node u from node v returns
the number of shortest paths originating in u
and passing through v (i.e. dep(c, d) = 3 and
dep(d, c) = 2).

Since different concepts of centrality and similar-
ity stand behind those measures, their outcome of-
ten differs in many ways, as can be seen when
comparing connectivity (a symmetric measure, since
conn(u, v) = conn(v, u)) with dependency (usually
asymmetric, except for some graph classes like circles
or cliques). The user must be aware of these differ-
ences at all times and should choose the most suitable
and expressive measure to model his special goal of
analysis.

While these local measures are available only for
single nodes, the more general global measures give
an overall view of the structure. The simplest form
of a global measure is of course the average of a lo-
cal measures (i.e. the average node degree) that can
easily be computed. Other global measures are:

- The diameter diam(G) of a graph G(V, E),
which equals the largest eccentricity value, or the
radius, which equals the smallest eccentricity
value. (i.e. diam(G) = 4, rad(G) = ecc(d) = 2)

- The compactness or density of a graph that
provides information about how many of all pos-
sible edges are actually present. (i.e. G got 7 out
of 21 possible edges)

- A treelikeness-value can be computed to ob-
tain a measure for structural resemblance with
a tree (a graph without any induced circles).
Among many existent treelikeness measures, we
introduce an adaption of this term that is opti-
mized for the use within the visualization pro-
cess: a graph is called (p, k)-treelike, if it has
no more than k cross-edges and the fraction of
cross-edges with respect to all edges is less than
the percentage p.

Such global measures can be very useful for the de-
termination of an appropriate visualization method:
i.e. an underlying treelike structure with only a few
crossedges can be identified as such by its treelikeness-
value and hence laid out with a hybrid approach as
described in section 2. This approach generalizes the
ideas introduced in (Fekete et al. 2003), where a tree
visualization is extended in a similar way.

3.2 Graph clustering

Over the years different flavors of clustering have
been developed and evolved further. The cluster-
ing techniques that are most often used for the pur-
pose of VDM are the hierarchical clustering algo-
rithms. They do not only yield a clustering of a
desired granularity but also a way to explore the
data set via browsing the clustering’s dendrogram
(Herman, Marshall & Melançon 2000). Hierarchi-
cal clusterings can be computed either bottom-up by
combining similar elements (normalized-association-
method (Shi & Malik 1997), single- or average-
linkage-method,...) or top-down by separating el-
ements that differ (normalized-cut-method, edge-
betweenness-centrality-clustering,...). Hence for both
approaches, similarity or distance measures need to
be computed beforehand.

One way to circumvent this need is the use of
graph decompositions, which also results in a hi-
erarchical graph partition. They work directly on
the graph’s structure without any additional mea-
sures needed and can usually be computed in linear
time. Examples are: modular-decomposition, k-core-
decomposition (Batagelj, Mrvar & Zaveršnik 1999) or
decomposition through distance-k cliques (Edachery,
Sen & Brandenburg 1999).

3.3 Graph matching

The search for special structures within the data set
is a tedious task that is difficult to automate. Several
different kinds of graph matching can be used:

- The exact graph matching searches for a sub-
graph that is identical to a specified pattern
(Subgraph Isomorphism Problem)

- The inexact graph matching searches for a
subgraph that is as similar as possible to a spec-
ified pattern.

- The search for the largest given configuration,
i.e. the largest clique or the longest path.

- The detection of the most frequent subgraph of
given minimum size.

Since all of these matching problems are quite com-
plex from an algorithmic point of view, mostly heuris-
tic approaches are used to find approximate solutions
(Bunke 2000).

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

159

3.4 Semi-automated technique selection
through metadata

To achieve a certain mining goal, different algorithmic
methods can be applied. Usually some of them fit
a particular case better than others. To determine
suitable techniques, metadata describing the overall
structure can be used to derive helpful indications on
which method to employ.

An example would be the choice of fitting runtime-
efficient algorithms depending on the graph’s overall
structure. As already mentioned, many of the de-
scribed graph theoretical methods are painfully slow
due to their polynomial or even exponential runtime
complexity. An algorithm is usually considered to be
efficient on very large data sets, if its complexity is
subquadratic. The lack of efficient algorithms results
in intolerable high computation times and prevents
interactive techniques (time bottleneck). But in case
the data set fulfills certain structural constraints, ef-
ficient algorithms do exist for most of the above pre-
sented problems (graph matching, clustering, decom-
position, etc.) Since it is widely known that academic
worst-case-constructions occur rather seldom in real-
world-scenarios, some of the desired constraints are
virtually always fulfilled.

An example would be the sparseness of a graph,
which means that the number of edges is much less
than the possible number of edges within the graph.
Most graphs from different areas are sparse, e.g.:

- A biochemical molecule must be sparse, since ev-
ery atom can have only a small number of chem-
ical bonds.

- A social network is usually sparse, because a per-
son normally does not have some hundred ac-
quaintances.

- A large website rarely links from each hypertext
document to every other document, as well as
scientific papers do not cite every other paper in
their field and vice versa.

Therefore, algorithms can be optimized to take ad-
vantage of the sparseness and compute their re-
sults in less time. An example for such an op-
timized algorithm is the method to determine the
node-betweenness-centrality as described in (Brandes
2001). Another example is the k-core-clustering
(Batagelj et al. 1999) that decomposes the data set
within a linear timebound with respect to the number
of edges:

- In the worst case, the graph G(V, E) features all
of its possible edges |E| = |℘2(V)| = 1

2 · |V | ·
(|V | − 1) and has therefore a quadratic runtime
bound with respect to the number of nodes.

- In the average and more practical case, the graph
is usually sparse and contains only a small frac-
tion of its possible edges. So the runtime com-
plexity will be subquadratic (in terms of the size
of the node set) and thus acceptable.

Besides the already provided global structural
measures like density or treelikeness (see section 3.1),
other structural descriptors can be useful:

- Testing whether a directed graph is acyclic can
lead to very efficient algorithmic solutions to
many NP-complete graph problems that are hard
to solve on arbitrary graphs. This test runs in
linear time and tries to sort the data set topolog-
ically. If this succeeds, the resulting topological
ordering can be used as input for fast algorithms
that have been especially adapted for this case.

- Determining the data relationship (Bertin
1981) that gives an impression of how the overall
structure is organized: linear, circular, hierarchi-
cal, etc.

These descriptors can also be used to select and
parameterize an appropriate visualization technique
that can be especially suited to display exactly the
described kind of a structure. An example for this
method would be the graphs shown in figure 1: con-
trary to the right part of figure 1, the treelikeness-
value of the graph on the left side is obviously out of
the range and the MagicEyeView-technique actually
not applicable.

Additionally, certain graph classes can even be vi-
sualized in very special manners. For instance, if a
graph is detected to be an interval graph, it can be dis-
played as an intersection model consisting of intervals
on a straight line. To view a graph as such an inter-
section model is quite common in genetic engineering
and computational biology. Furthermore many algo-
rithmic problems can be efficiently solved on interval
graphs. Hence a set of detection-procedures for cer-
tain graph classes of interest could further yield useful
hints for the choice of a well-suited visualization and
speed up the mining process if tailor-made implemen-
tations for the detected graph class are provided.

4 A general framework for Visual Data Min-
ing in complex structures

4.1 Design criteria

Designing a visualization or VDM framework is a sen-
sible process. Many decisions made in early develop-
ment stages are complicated to redo. Furthermore,
a variety of backgrounds with varying data sets and
tasks require varying software architectures. In the
following, we list five main design criteria for a VDM
framework for structures:

- Generality

– Adaptability to different application
backgrounds (e.g. social networks, or-
ganic chemistry),

– Scalability to various users with varying
background knowledge,

– Modular design allowing to plug in any
kind of visualization techniques and mining
operators on structures

- Flexibility

– Flexible control mechanisms to select,
connect and parameterize measures, min-
ing algorithms and visualization techniques
on structures (e.g. using scripts, or interac-
tively using menus or data flow charts),

– Visual queries with a direct visual feed-
back,

– Support to derive additional data to
gain a deeper insight into data features (e.g.
by extracting relevant substructures)

- Usability

– Data abstraction to get easy access to dif-
ferent kinds of structure data sources inde-
pendent of their internal and external stor-
age format,

– Acceptable reply times of calculations
(approximation techniques might need to be
considered in case of unfavorable runtime
complexities or a low upper time bound
given by the user),

CRPIT Volume 48

160

– Intuitive means of interacting with
even complex mining methods

- Efficiency
handle fairly large data sets and avoid screen,
storage space and temporal bottlenecks

– Memory Efficiency through smart data
structures as described in 4.3.

– Runtime Efficiency by decoupling the in-
teractive parts of the VDM-process from the
non-interactive ones as discussed in 4.2.

– Screen Efficiency to effectively apply the
whole screen space displaying large struc-
tures

- Task orientation
Can the user fulfill all tasks to gain the ex-
ploration target? This includes a variety of
paradigms, including the following:

– Focus+context
– Overview+detail
– Brushing
– History (especially Undo and Redo)
– Sorting and filtering
– Zooming.

However, it is not reasonable to design a VDM
framework that is applicable for all kinds of possi-
ble applications and tasks. Thus, we design a gen-
eral architecture for the VDM of structures that can
be easily extended by any measures and methods.
Therefore, in the following section, general modules
in the field of structure exploration and their process-
ing will be introduced in an abstract scheme. These
modules are containers for measures, visual and non-
visual mining methods as well as for units supporting
general tasks such as dynamic queries or history.

4.2 Conceptual foundation

In the following, we introduce our design of a VDM-
framework that consists of several different functional
modules:

- interfaces for user interaction before and after the
extensive mining operations,

- a preprocessing unit and a unit to compute struc-
tural descriptors,

- the algorithmic kernel that does the mining and
lays out the data for its graphical representation.

Thus it is possible to extract the complex algorithmic
kernel to do extensive calculations without the need
for user-input on different, eventually faster machines,
while the user interaction before and afterwards is
done within the framework itself. This is the only
way to efficiently process the needed graph theoretical
algorithms, since one cannot work around the funda-
mentals of complexity theory. A schematic overview
of the framework is depicted in figure 3, where the
several fragments are colored according to their func-
tion within the overall VDM-process. For its modular
design as required by the design criteria in section 4.1,
the fragments can be extended with different visual-
ization techniques and algorithmic modules, to realize
their function in detail. The fragments provide the
following functionality:

- During the initial interaction, the user speci-
fies additional properties of the structure that are
not explicitly included in the data set. Here the
user should also be able to roughly parametrize
upcoming algorithmic computations by setting
upper runtime bounds and the like.

Initial Interaction

Visuali−
zation

Clustering
&

Decom−
position

Result

Calculating
Descriptors

 Prepro−
cessing

Data−
base

Algorithmic Kernel

Substructure Extraction

Calculating Structural
Measures Interaction/

Post−
processing

Figure 3: Our general VDM-framework design.

- The preprocessing can be used for cleansing
and filtering the data.

- The calculation of descriptors tries to gather
enough metadata as discussed in section 3.4 en-
abling the user to determine fitting mining and
visualization techniques.

- The algorithmic kernel does the actual work
of calculating additional data, which is one of
the crucial features a VDM-framework must ful-
fill: computing measures (like those in section
3.1), extracting substructures, clustering or de-
composing the graph (see section 3.2) and finally
calculating a graphical layout for the resulting
data.

- The interaction on the gained graphical repre-
sentation is used for the actual visual exploration
of the data set. Here some post-processing can be
done to further manipulate and query the data
set interactively through the visualization and to
write back those changes to the data base.

For each of these computational steps, user defined
modules can be plugged into the framework and exe-
cuted in the given order. Usually, the VDM-process
based on this architecture starts off by determining
promising mining methods through analyzing the
automatically computed descriptors and taking the
user’s goals of analysis into account. Afterwards,
the chosen techniques will be employed upon the
data and their results will be stored for further
visual investigation later on. Depending on how
the results are structured, an appropriate visual-
ization technique is selected and used to generate
an interactive overview of the outcome that can be
graphically explored. As demanded by the design
criteria, a wide variety of navigational elements,
filtering and searching techniques can be provided
through a standardized user interface that applies
to all modules. Figure 4 shows a detailed view on
the framework with several representative modules
plugged-in to illustrate typical operations within the
different fragments. In detail, the modules shown
in figure 4 add the following functionalities to the
framework:

Modules for the initial interaction:
After starting-up the framework, these modules
provide a first possibility to augment the mining
process with additional information about the data,
the mining goals and any given constraint on the
mining process. For example by distinguishing
between undirected and directed graphs, the user

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

161

Text

Text

Digraph?

Context?

distance−k Clique Decomposition

k−Cores Decomposition

Edge Betweenness
Centrality Clustering

Average Linkage
Clustering

Single Linkage
Clustering

Centrality Measures:

Closeness,
Eccentricity,

Betweenness, etc.

Similiarity and
Distance Measures:

Connectivity,

Dependency, etc.

Global Structural Measures:

Density, Average Node Degree, etc.

Goals of
Analysis?12

3

6

9

Timeframe?

dag?

Shortest Path

Data Relationship?

(p,n) =...
tw(G) =...

Treelikeness?

Exact / Inexact
Graph Matching

Detecting Frequent
Subgraphs

Overview

Detail View

Content View

Navigation View

Database

X

Y

Z

Discovered Knowledge /
Resulting Image

?
?

? !
!

!

Selection / Visual Query

Overview
+

Detail

Zoom,
Pan and
Rotate

A

Focus+Context

Brushing

History: Undo / Redo

Yes No

Roll Back all
Changes?

Annotation
A

B

C

DE

Rearrangement

Data Scrubbing

?
?

?

Data Normalization

Data Selection

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

Figure 4: Our VDM-framework design with representative modules. Greyed out Modules have not yet been
implemented or their implementation has not yet been adapted to be used within the framework.

indirectly influences the choice of applicable algo-
rithms. Sometimes, this can also be deduced directly
from the context of the data set – i.e. link structures
in hypertext documents always form a digraph.
Additional information that affects the selection of
appropriate algorithms can contain upper runtime
limits to insure acceptable reply times or explicitly
stated goals of analysis (Nocke & Schumann 2004).
These modules directly fulfill the design criteria for
adaptability to different application backgrounds
and scalability to users with varying background
knowledge.

Modules for the preprocessing:
The modules presented in this fragment are respon-
sible for data cleansing from measuring errors such
as dangling ends in the set of edges. Furthermore,
in the preprocessing phase a data selection and edge
weight normalization can be performed etc. Trans-
formations like these allow to define a standardized,
abstract data format to work with, which is an
essential design criteria.

Modules for the processing of structural
measures:
In case of a digraph structure, this fragment could
test a graph for acyclicity, which might again trig-

ger additional goals of analysis and a selection of
especially optimized algorithms in the algorithmic
kernel. Furthermore all of the discussed measures in
section 3.1 can either be calculated here, or at least
be approximated if the exact calculation would be
too time consuming.

Modules for the algorithmic kernel:
The functionalities of most of the modules shown in
this fragment have already been addressed in section
3. Appropriate graph-algorithmic and visualization
modules are selected via the calculated measures
as described in 3.4. Since there usually does not
exist a single optimal graphical representation of
every aspect of the data, we propose a fourfold
approach in the style of the ideas on multiple views
in (Scharl 2002). The data set’s inherent structures
that have been computed beforehand are presented
in a navigational view, that makes them accessible
in a hierarchical manner. Once a region of interest
has been selected in the navigational view, the sub
structure associated with it will be shown in a content
view. Selecting a node, an edge or a substructure
within the content view will again trigger a detailed
graphical representation of those in the detail view.
To prevent loosing the orientation within the data set
while visually exploring it, a rather static overview

CRPIT Volume 48

162

should be provided to aid at keeping the global
mental map of the structure. It is further possible
to use multiple instances of each view that utilize
different visualization techniques. This view-concept
ensures a simple and uniform way to explore the data
while using the available screen space most effectively.

Modules for the interaction and postpro-
cessing:
This fragment contains the usual interactions and
manipulations upon the visualized data set, which
enable the user to carry out common exploration
tasks as stated by the design criteria. This includes
interactive annotation to add supplementary com-
ments to the presented clusters and substructures
and a similar history concept to the one we have
developed and presented in (Kreuseler, Nocke &
Schumann 2004).

4.3 Implementation

The functional modules introduced in figure 4 have
been implemented in an interactive framework that
is based on C++ and the Qt-Library. White colored
modules are fully-integrated, and grey modules are
under development.

A major challenge developing this framework was
to implement an efficient storage concept for struc-
tures. In this context, a lot of different approaches
to store graphs have been discussed in literature. Be-
sides delegating storage issues to 3rd party products
like relational databases, in practice only three tech-
niques are widely used: adjacency matrices for
fairly small graphs, object-based data structures
for medium-sized graphs, that use objects for each
node and link them via pointers, and finally table-
based structures that contain the nodes and edges
along with their attributes in a simple linear order,
which is suited for large graphs. For its small mem-
ory overhead, most frameworks for processing large
graphs utilize the last approach. A popular exam-
ple is the Java-based implementation of such a lin-
ear storage for large graphs by the InfoVis ToolKit
(Fequete 2004) which extends the table-based ap-
proach with several additional features, like fields for
auxiliary metadata on each column and the abil-
ity of masking several nodes or edges within the list
by toggling certain selection-bits. Beside these, our
table-based data structure adds the following func-
tionality:

- Columns may contain permutations of the ta-
ble’s rows, i.e. a topological ordering or the se-
quence of a breadth-first-search. That allows to
store multiple orderings and eradicates the need
to shuffle around the table’s rows to sort them.

- Besides ordinary values, a cell of the table may
contain an entire list to efficiently store adja-
cency lists or even hypergraph structures
with a variable number of nodes per hyperedge
within the same data structure.

- Each column can exist as a placeholder only,
which will be filled in automatically when it is
used for the first time. This pushes file-reading
operations and computations as far back as pos-
sible and may save time and memory footprint
in an average use case.

To improve the speed of look-ups in huge lists, a sim-
ple caching layer is used which allows direct access
to the last couple of entries that where used. This
storage concept addresses mainly large and complex
structures that take up a lot of space in memory –
up to the point, where they just will not fit in there

anymore (memory bottleneck). It counters this case
through a layered set of predefined behaviors, from
which can be chosen automatically or interactively:

1. To push storage problems as far as possible, a
strong emphasize of the framework lies upon an
efficient storage of the data, that is painstaking
space-saving and still tries to maintain an accept-
able average access time. This is done by using
the before mentioned table-based approach that
can be augmented with supplementary data if
enough memory is available or if an algorithm
definitely needs it. Furthermore, the data set
can be split up in smaller subsets if the overall
structure has unconnected components that can
be computed separately.

2. In case the data still does not fit into the mem-
ory, unneeded attributes like edge weights or pre-
viously computed measures that are not vital to
run a specific algorithm, will not be loaded into
the memory unless the user explicitly says so
(placeholder columns).

3. If the memory’s sufficiency is of further concern,
all standard modules of the framework must be
exchangeable with external algorithms that are
especially optimized for this special case.

4. For those modules that do not provide a special
external version, a smart caching layer has to be
introduced to the frameworks I/O to minimize
memory swaps.

In most cases, the first layer that employs a de-
liberate usage of memory will be effective enough
to fit all data in. For larger data sets, the frame-
work has to utilize one of the latter layers until ev-
ery needed attribute can be accessed. Moreover, it
is imaginable to introduce additional intermediate
layers like certain garbage collection functionalities
or semi-external versions of frequently used modules
that make use of the situation where at least the
node set fits in the main memory. This would further
increase the chance to prevent the use of generally
slower external algorithms. Thus far, the first two
of the presented layers have been successfully imple-
mented.

4.4 Graphical user interface

Sometimes, when trying to visualize a set of data,
it turns out that the amount of data is just too
large to fit the output device, i.e. the data objects
that should be displayed outnumber the available pix-
els (screen bottleneck). To reduce the visual com-
plexity in order to circumvent this bottleneck, ad-
ditional time consuming clustering steps might thus
be needed. For the sole purpose of decreasing the
structural complexity through node-aggregation, we
propose the use of heuristics or graph decompositions
that have a linear runtime bound. Ideally this re-
duction produces a hierarchy that can be used to
filter the results interactively up to a desired level
of detail, like the mentioned k-core-clustering. Fig-
ure 5 presents yet another method to explore a po-
tentially overloaded and overdetailed graphical rep-
resentation. Since there is no visualization method,
that serves all demands equally well, different views
upon the data are generated as needed and function-
ally linked as described in section 4.2: The content
view is shown after the initial layout is calculated
by an appropriate visualization module (in depen-
dency of the treelikeness-value we use Fruchterman-
Reingold’s spring embedder method (Fruchterman &
Reingold 1991) for graphs and the MagicEyeView for

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

163

trees and treelike graphs) and provides several possi-
bilities of interaction: zoom, rotation, selection, filter-
ing, etc. The output can be interactively constrained
to only those nodes that have a certain centrality mea-
sure within the range defined by the sliders at the
right. An additional navigation view is based upon
the dendrogram of a hierarchical clustering. We used
a subsequent display of MagicEyeViews (Kreuseler
& Schumann 2002) to visualize the huge hierarchi-
cal structure of the dendrogram, where each selected
cluster can itself be a root-node within a newly gen-
erated subview. As an example for a detailed view,
figure 5 shows the distribution of the k-neighborhood
from section 3.1 for k = 1 . . . 5. By selecting a certain
neighborhood through this display, the content view
can be adapted to show it for exploratory analysis.

4.5 Summary

The proposed framework architecture has a modular,
extensible design. It has a general underlying data
structure, and thus, can handle various structures
from different backgrounds. Explicitly integrating
the application context and user goals makes it scal-
able to various users from different domains. It offers
both automatic and interactive mechanisms to con-
trol measures and techniques in the algorithmic ker-
nel, especially enabling users to specify queries visu-
ally (for instance to select substructures). It enables
users to specify, derive and apply additional data
(metadata) which can be used for the semi-automatic
selection of suitable algorithms, lead users through
the exploration process and increase the user knowl-
edge about the handled structures. Furthermore, the
architecture supports to handle large data sets by
smart data structures and by a control mechanism
for long-lasting resp. interactive processable calcula-
tions. Interactive visualization techniques have been
integrated, even applicable for large data sets. There-
fore, they apply focus+context, overview+detail and
brushing+linking paradigms and support interactive
sorting, filtering as well as navigational support.

5 Case study

We successfully applied our framework to a variety
of data sets. This included a web link graph of our
institute internet pages (51497 nodes, 425247 edges),
a citation network (509 nodes, 1551 edges) and peer-
to-peer-networks with a few hundred nodes. For this
paper, we demonstrate the usefulness of our frame-
work design and present interesting insights for the
medium sized Edinburgh Associative Thesaurus data
set (short EAT, see http://www.eat.rl.ac.uk). For the
following exemplary analysis, we present the explo-
ration process closely related to the flow of the design
chart from figure 4, giving details about the depicted
modules and the arrows interrelating them.

The EAT data set consists of an empirical set
of word associations (Kiss, Armstrong, Milroy &
Piper 1973). Therefore, a list of 8.210 very frequently
used English words (stimuli) has been compiled and
the associative responses from test persons were gath-
ered. Since the responses themselves are not neces-
sarily stimuli, we eliminated these dangling ends in
a data scrubbing preprocess (fig. 4, arrow 1). The
resulting graph contains of 8.210 nodes (the stimuli)
connected via 261.453 weighted edges.

Then, in an initial interaction step, context knowl-
edge about type and history of the data set leads to
the specification of the graph as a digraph (arrow 2).
Based on this knowledge, a variety of descriptors can
be calculated for the preprocessed digraph (arrows 3
and 4). This includes to calculate the treelikeliness

which is relevant for the later selection of an appro-
priate visualization (as described in section 3.1). The
actual (p, k)-treelikeness of the given data set results
to (3.1%, 253244), which means that 253244 edges
would have to be deleted in order to convert the net-
work into a tree — only 3.1% of all edges would re-
main to form the spanning tree.

Based on these calculations and specifications, we
started the main exploration phase in the algorith-
mic kernel (arrows 5, 6 and 7). First, important
global structural measures have been calculated. For
instance, to estimate the graph connectivity, we cal-
culated an average node degree of 31.85, which means
that each stimulus-word is associated with approxi-
mately 32 other stimuli-words. Based on this medium
average node degree and due to a low treelikeness
value we concluded that the EAT graph is a medium
connected network and not suited to be laid out with
a tree visualization technique. Hence, we chose a net-
work visualization as content view (arrow 8). There-
fore, to get a first overview of 8.210 nodes (arrow 7
and 9), we actually used a 3D-spring-embedder net-
work visualization technique (Fruchterman-Reingold
(Fruchterman & Reingold 1991)). This computation
lasted about an hour (on an Intel PentiumM 1.4GHz
machine with 512 MByte RAM), and thus, was exe-
cuted non-interactively within the algorithmic kernel.

Then, to get more details about certain nodes, the
user can zoom, pan and rotate the graph layout, as
well as select certain nodes (arrows 9 and 10). Fur-
thermore, to filter the crowded representation (ar-
row 9), we calculated the associative neighborhoods
of chosen words based on the structural measure 1-
neighborhood. Then, using the two sliders depicted
on the right side of figure 5, the user can fade out all
nodes that do not have a 1-neighborhood-size within
a certain range (arrows 8, 9 and 10). For instance, in
figure 5 we applied a 1-neighborhood-filter of 165 as
minimum and a value of 1106 neighbors as maximum.
Thus, the user can investigate a sparsely crowded
graph with the main associated stimuli, leaving out
all stimuli that are lesser associated. The maximum
value of 1106 belongs to the node of the word MAN,
which is the most associated word in this data set.
The next heavily associated words are GOOD and
SEX (ca. 870 associative links to other words).

Further, the user can get details-on-demand about
these selected nodes (fig. 4, arrows 9, 10 and 11),
displaying the k-neighborhood-diagram of a selected
node in a Detail View (arrows 8 and 9). This gave
us another interesting insight: most nodes lie within
a distance of 3 (see in the k-neighborhood-diagram
in fig. 5). This is a further proof for the observed
medium to high density of the graph and indicates
that there are no isolated substructures.

Then, to get a grip at this highly interrelated
graph, we clustered the graph hierarchically using
a k-core-decomposition. This computation lasted
a couple of minutes, and was also executed within
the algorithmic kernel. Using the resulting dendro-
gram, the user can explore the whole graph in an
overview+detail manner, focusing on certain hierar-
chy levels (fig. 4, arrows 8, 9 and 17). Therefore, in a
navigation view, certain levels of the hierarchy are dis-
played in a MagicEyeView (see fig. 5), and the user
can interactively focus on certain clusters and hierar-
chy leaves of interest, still keeping the context visible
(fig. 4, arrows 9 and 10). Furthermore, clusters of
interest can be selected in the MagicEyeView, to ex-
plore the subgraphs they induce within the content
view (arrows 9, 10 and 12). A brushing mechanism
displays these subgraphs. Examples for words that
have automatically been clustered together are:

- ITS, MUST HAVE, POSSESSIVE

CRPIT Volume 48

164

Figure 5: An overview of the framework’s GUI: (1.) the content view showing a small part from a larger
data set, including a highlighted shortest path and a red colored, selected node; (2.) the navigational tree-
view [MagicEyeView (Kreuseler & Schumann 2002)] containing the browsable result of a hierarchical cluster
algorithm; (3.) the detailed view of the k-Neighborhood-distribution of the selected node from (1.) with its
1-Neighborhood being selected.

- CRUSHING, DESTRUCTIVE, DESTROYING

- ANTICIPATE, INSTRUCTIONS, AWAIT

Moreover, to establish interesting connections be-
tween two selected words, the user can interactively
select the words, and compute the shortest paths be-
tween them (arrows 9, 10 and 13). Then, this path
can be depicted and focused in the content view (see
fig. 5), showing a path between the words MIS-
TRUST and BEAUTIFULLY), keeping the rest of the
graph in the context applying alpha blending.

Summarizing, the user has a variety of possibili-
ties to interact with the provided modules. There-
fore, our framework delivers a variety of exploration
paths, to support various exploration contexts and
tasks. The user can refine the focus on the data
set and explore substructures (fig. 4, arrow 14), re-
fine exploration context (arrow 15), and then restart
the whole process. Thus, as an iterative process, the
framework supports alternative visual navigation and
mining paths to the desired result (arrow 16).

6 Conclusion and future work

In this paper, we investigated the tight integration of
methods from graph theory with visualization meth-
ods. Therefore, we introduced graph theoretical
methods and their applicability for a VDM of struc-
tures systematically. In particular, we described how
to apply these methods to design good visual rep-
resentations. Furthermore, we introduced a general,
modular and flexible design for a VDM framework for

structures, outlined its implementation details and
discussed its applicability based on a real-world ex-
ample.

We tested our framework with different data sets,
for instance a WWW-link-structure with 50.000+
web sites and approx. 425.000 links in between them.
The gained results where highly satisfying. Never-
theless, there are still challenges for future work. We
have to continue testing and evaluating the frame-
work’s usability and its scalability to even larger
structures. Additionally, more measures, algorithms
and visualization techniques need to be integrated.

Acknowledgements

The authors like to express their thanks to Prof. An-
dreas Brandstädt for helpful discussions as well as
Andreas Pohl and Clemens Nafe for testing, evalu-
ating and using the framework for their research on
peer-to-peer networks.

References

Abello, J., Finocchi, I. & Korn, J. (2001), Graph
Sketches, in ‘IEEE Symposium on Information
Visualization (InfoVis‘01), San Diego’, pp. 67–
72.

Abello, J. & van Ham, F. (2004), Matrix Zoom: A Vi-
sual Interface to Semi-external Graphs, in ‘IEEE
Symposium on Information Visualization (Info-
Vis‘04), Austin’, pp. 183–190.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

165

Ahlberg, C. (1996), ‘Spotfire: an information ex-
ploration environment’, SIGMOD Record (ACM
Special Interest Group on Management of Data)
25(4), 25–29.

Ankerst, M. (2001), Visual Data Mining with Pixel-
oriented Visualization Techniques, in ‘Proceed-
ings of ACM SIGKDD Workshop on Visual Data
Mining’01; San Francisco’.

Batagelj, V., Mrvar, A. & Zaveršnik, M. (1999),
Partitioning Approach to Visualization of large
Graphs, in ‘Proceedings of the 7th International
Graph Drawing Symposium’, number LNCS
1731, pp. 90–97.

Bertin, J. (1981), Graphics and Graphic Information-
Processing, Walter de Gruyter.

Brandes, U. (2001), ‘A Faster Algorithm for Between-
ness Centrality’, Journal of Mathematical Soci-
ology pp. 163–177.

Brandes, U. & Corman, S. (2002), Visual Unrolling of
Network Evolution and the Analysis of Dynamic
Discourse, in ‘IEEE Symposium on Information
Visualization (InfoVis‘02), Boston’, pp. 145–151.

Brandes, U. & Wagner, D. (2003), visone - Analysis
and Visualization of Social Networks, in ‘Graph
Drawing Software’, Springer, pp. 321–340.

Bunke, H. (2000), Graph matching: Theoretical foun-
dations, algorithms, and applications, in ‘Proc.
Vision Interface 2000, Montreal’, pp. 82–88.

Edachery, J., Sen, A. & Brandenburg, F. (1999),
Graph Clustering using Distance-k Cliques, in
‘Proceedings of the 7th International Graph
Drawing Symposium’, number LNCS 1731,
pp. 98–106.

Fekete, J.-D., Wang, D., Dang, N., Aris, A. &
Plaisant, C. (2003), Interactive Poster: Overlay-
ing Graph Links on Treemaps, in ‘IEEE Sympo-
sium on Information Visualization (InfoVis‘03),
Seattle’.

Fequete, J.-D. (2004), The InfoVis Toolkit, in ‘IEEE
Symposium on Information Visualization (Info-
Vis‘04), Austin’, pp. 167–174.

Frischman, Y. & Tal, A. (2004), Dynamic Drawing
of Clustered Graphs, in ‘IEEE Symposium on
Information Visualization (InfoVis‘04), Austin’,
pp. 191–198.

Fruchterman, T. & Reingold, E. (1991), ‘Graph
drawing by force-directed placement’, Software
– Practice and Experience 21(11), 1129–1164.

Gansner, E., Koren, Y. & North, S. (2004), Topologi-
cal Fisheye Views for Visualizing Large Graphs,
in ‘IEEE Symposium on Information Visualiza-
tion (InfoVis‘04), Austin’, pp. 175–182.

Girvan, M. & Newman, M. (2002), ‘Community
structure in social and biological networks’,
PNAS 99(12), 7821–7826.

Granitzer, M., Kienreich, W., Sabol, V., Andrews,
K. & Klieber, W. (2004), Evaluating a Sys-
tem for Interactive Exploration of Large, Hier-
archically Structured Document Repositories, in
‘IEEE Symposium on Information Visualization
(InfoVis‘04), Austin’, pp. 127–133.

Heer, J., Card, S. K. & Landay, J. A. (2005), Prefuse:
a Toolkit for Interactive Information Visualiza-
tion, in ‘CHI 2005, Human Factors in Computing
Systems’.

Herman, I., Marshall, M. & Melançon, G. (2000), Au-
tomatic generation of interactive overview dia-
grams for the navigation of large graphs, Tech-
nical Report INS-0014, Reports of the Centre for
Mathematics and Computer Sciences.

Kiss, G., Armstrong, C., Milroy, R. & Piper, J.
(1973), An associative thesaurus of English and
its computer analysis, in ‘The Computer and Lit-
erary Studies’, Edinburgh University Press.

Kreuseler, M., Nocke, T. & Schumann, H. (2004), A
History Mechanism for Visual Data Mining, in
‘IEEE Symposium on Information Visualization
(InfoVis‘04), Austin’, pp. 49–56.

Kreuseler, M. & Schumann, H. (2002), ‘A Flexible
Approach for Visual Data Mining’, IEEE Trans-
actions on Visualization and Computer Graphics
8(1).

Lamping, J., Rao, R. & Pirolli, P. (1995), A fo-
cus+context technique based on hyperbolic ge-
ometry for viewing large hierarchies, in ‘ACM
Proceedings of Computer-Human Interaction
(CHI95); Denver, Colorado, USA’, pp. 401–408.

Nocke, T. & Schumann, H. (2004), Goals of Analysis
for Visualization and Visual Data Mining Tasks,
in ‘CODATA Workshop Information, Presenta-
tion and Design (March 2004), Prague’.

Robertson, G., Mackinlay, J. & Card, S. (1991), Cone
trees: Animated 3d visualization of hierarchical
information, in ‘ACM Proceedings of Computer-
Human Interaction (CHI‘91)’, pp. 189–194.

Roth, S. A., Lucas, P., Senn, J. A., Gomberg, C. C.,
Burks, M. B., Stroffolino, P. J., Kolojejchick,
J. A. & Dunmire, C. (1996), Visage: A User In-
terface Environment for Exploring Information,
in ‘IEEE Symposium on Information Visualiza-
tion (InfoVis‘96), San Francisco’, pp. 3–12.

Scharl, A. (2002), Adaptive Web Representation, in
‘Human Computer Interaction Development &
Management’, pp. 255–260.

Shi, J. & Malik, J. (1997), Normalized Cuts and Im-
age Segmentation, in ‘Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR’97)’, pp. 731–737.

Shneiderman, B. (1992), ‘Tree Visualization with
Treemaps: A 2D Space Filling Approach’, ACM
Transactions on Graphics 11(1), 92–99.

Stolte, C., Tang, D. & Hanrahan, P. (2002), ‘Polaris:
A system for query, analysis, and visualization
of multidimensional relational databases.’, IEEE
Trans. Vis. Comput. Graph. 8(1), 52–65.

Tollis, I., Eades, P. & di Battista, G. (1999), Graph
Drawing - Algorithms for the Visualization of
Graphs, Prentice Hall.

Valiente, G. (2002), Algorithms on Trees and Graphs,
Springer.

van Ham, F. & van Wijk, J. (2004), Interactive Vi-
sualization of Small World Graphs, in ‘IEEE
Symposium on Information Visualization (Info-
Vis‘04), Austin’, pp. 199–206.

Voigt, D. (2001), WWW-based Representation of
complex Information Structures (in German:
WWW-basierte Darstellung komplexer Informa-
tionsstrukturen), Master’s thesis, University of
Rostock, Department of Computer Science.

Zhang, P. (1994), Method of Mapping DNA Frag-
ments, United States Patent No. 5667970.

CRPIT Volume 48

166

Shallow NLP techniques for Internet Search

Alex Penev Raymond Wong

National ICT Australia and School of Computer Science and Engineering,
University of New South Wales, Sydney, NSW 2052, Australia

{alexpenev,wong}@cse.unsw.edu.au

Abstract

Information Retrieval (IR) is a major component in
many of our daily activities, with perhaps its most
prominent role manifested in search engines. Today’s
most advanced engines use the keyword-based (“bag
of words”) paradigm, which concedes some inher-
ent disadvantages. We believe that natural language
(NL) is a more user-oriented, context-preservative
and intuitive mechanism for web search.

In this paper, we explore shallow NLP techniques
to support a range of NL queries over an existing
keyword-based engine. We present JASE, a web ap-
plication enveloping the Google search engine, which
performs web searches by decomposing input NL
queries and generating new queries that are more
suitable for the search engine. By using some of
Google’s syntactic operators and filters, it creates
“clever” queries to improve precision.

A preliminary evaluation was conducted to test
JASE’s accuracy, and results have been encouraging.
We conclude that the NL model has potential to not
only rival the keyword-based paradigm, but substan-
tially surpass it.

Keywords: Information Retrieval, Natural Language
Processing, Google.

1 Introduction

At present, the holy grail of IR is embodied in the
World Wide Web—an ever-growing source of self-
updating information that is easy to access yet dif-
ficult to discover.

Today’s engines use the keyword-based paradigm,
by implicitly connecting given keywords with boolean
operators (and, or, not). This model concedes cer-
tain inherent disadvantages that are becoming in-
creasingly evident as the web continues to expand—
context is lost once keywords are isolated and treated
on an individual basis, and many words carry double-
meanings. Together, these deficiencies result in larger
recall which is filled with noise, frustrating the user.

We believe that natural (or everyday) language is
the ideal mechanism for information discovery—it is
user-oriented, because it is intuitive and requires no
training. It allows users to express a query in the way
that it is rationalized and constructed in their mind,
while both providing a context and helping to disam-
biguate word senses. But NL queries such as “german

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

or austrian composers born in the 1600s” and “na-
tive animals in australia, but not marsupials” show
that there is room for improvement in today’s en-
gines. More elaborate queries such as “700ml Johnnie
Walker Red Label, in Sydney for under $30” cannot
be answered at all, even when appropriate documents
are indexed by the engine.

Through practice and tribulation, users learn to
mentally cull their queries into a set of only the few
“most important” components, before sending a re-
quest to an engine. This structural rearrangement,
coupled with search engines’ treatment of keywords
as individuals, could be impeding their accuracy.

Furthermore, to become proficient at using a cer-
tain engine, users must learn its special operators.
These differ between each engine and render the
search mechanism to be unnatural, due to the in-
troduction of foreign modifiers into the query. Our
evaluation survey indicates that average Google users
are largely unaware of its operators and filters, and
rarely use them in practice.

There has been few significant advances in Inter-
net search for half a decade, and the shortcomings
of the keyword-based paradigm are likely to be glob-
ally costing millions of hours each year in labor for
wading through voluminous results. Meanwhile, the
Internet continues to grow and permeate our way of
life, and search results become larger and potentially
noisier. Therefore, we believe that NL will play a
principal role in web and media search in the near
future, because it is more intuitive and provides more
information than the current model.

In this paper, we explore shallow NLP techniques
to support NL queries over Google. We evaluate
the performance and accuracy of JASE, an applica-
tion enveloping Google, which decomposes NL queries
to form Google-friendly queries and reranks the re-
trieved results. We define a categorical classification
of searchable entities and highlight how they can be
used in conjunction with Google’s advanced operators
and filters. We propose heuristics that can be used
for the reranking step. Finally, we assess our system’s
performance for a set of keyword and NL queries.

The remainder of this paper is organized as fol-
lows; §2 provides an overview of search engines,
and defines our problem domain. §3 outlines the
algorithmically-disparate phases and data structures
of our system (explored in greater detail in §4 and
§5). We conduct a comparison of the accuracy of our
system against Google and “average Google users”
for a mix of keyword and NL queries in §6. §7 covers
related work, and §8 concludes this paper.

2 Background

As JASE is a wrapper for a search engine, it is vital
to understand how search engines work. This allows

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

167

us to determine which subprocesses are to be imple-
mented by JASE and which are delegated to Google.

2.1 Search Engines

A search engine is an online program which, for a
given query, retrieves references to web documents
that match it. In theory, a search engine has four
components:

document processor indexes new documents. In-
dices are a mapping between words and what
documents they appear in. Most engines are
spider-based, so a crawl of the web for new doc-
uments and the updating of the index is auto-
mated.

query processor inspects a user’s query and trans-
lates it into something internally meaningful.

matching function uses the above internally mean-
ingful representation to extract documents from
the index.

ranking scheme positions the more-relevant docu-
ments on top, using some relevance measure.

Users communicate with the query processor, which
is the only visible component. It carries out several
tasks, usually (but not limited to):

• tokenizing of the query to remove invalid charac-
ters, and to recognize meta-keywords or special
syntactic operators.

• removal of stopwords; words which are too com-
mon and rarely help in the search (e.g. the, a,
of, to, which).

• stemming; a process designed to improve the per-
formance of IR systems, involving normalizing
semantically similar words to their root forms
(e.g. produce, produced, producer, producers,
produces and producing map to produc-).

• assigning a weight to each keyword/keyphrase,
to aid with ranking(Salton & Buckley 1988).

After results are retrieved by the matching function,
they are ranked by relevance based on some rank-
ing measure and set of heuristics (called the ranking
scheme). Often taken into account are:

term frequency how many times keywords appear
in the document(Luhn 1957).

inverted document frequency a value which
aims to determine how important a term
is in discriminating a document from
others(Salton 1989, Jones 1972).

semantic proximity words synonymous to a given
keyword may be matched, boosting the score of
the document.

term position keywords appearing in the title or
heading (rather than the body) should contribute
more to a document’s weight.

term proximity a document in which the query
terms are close together is considered more rele-
vant than one in which they are far apart.

cluster distance how far apart groupings of
matched terms are.

percentage of query terms matched.

In our case, JASE implements the query proces-
sor and the ranking scheme, while Google provides
the document processor and matching function. Of
course, Google utilizes its own query processor and
ranking scheme for any query that it answers, and
therefore JASE’s results will be heavily influenced by
Google’s own relevance measure. We exercise some
indirect control over these components, since JASE’s
query processor is invoked before and JASE’s ranking
scheme is invoked after Google’s.

2.2 JASE

The initial design decisions for our system were that
JASE will be a web application into which a user en-
ters free text (preferably NL) in a query box, presses
a button, and views the corresponding search results.
It should implement the query processor and rank-
ing scheme components of a search engine, so that
it can influence what was being sent to Google, and
influence what was being relayed back to the user.

Behind the scenes, JASE would invoke Google via
an API1. Google is not designed to handle NL queries,
so JASE would have to manipulate the input to make
it Google-friendly. It would also take advantage of the
syntactic operators and filters to try and improve pre-
cision. JASE would display the same information that
Google displays—a title, URL and snippet for each
matched document. We had decided not to collect
any further information regarding documents, such
as a downloading of the actual source.

2.3 Google’s API

Google (the company) provides many online services,
most important of which is Google (the search en-
gine). This engine is useful for JASE because it:

• advertises a free API (over WSDL/SOAP), al-
lowing it to be remotely queried from many pro-
gramming languages and environments.

• provides the title, URL and snippet of matched
documents, which serve as a synopsis.

• has powerful operators and filters: +, -, ˜, OR,
intitle:, inurl:, site:, filetype:, numerical ranges,
timestamps, related:, link:, and some limited
wildcard matching.

• performs stemming.

• is case-insensitive.

• ignores most punctuation.

• uses sophisticated link- and structure-based anal-
ysis to determine the importance of documents
on both global (e.g. PageRank(Page, Brin, Mot-
wani & Winograd 1998)) and per-query scales
(e.g. anchor text, keyword proximity, and
whether or not keywords appear emphasized
with markup in the document).

Some limitations of the API are that a maximum of
10 terms can be sent per query, that languages other
than English are poorly supported, and that only 10
results can be retrieved per query. Case-insensitivity
is a pro because it allows users to be sloppy, but also
a con because acronyms and proper nouns will some-
times match unrelated documents. The API is still in
the beta stage, and its functionality may be altered
at any time.

These points affect the methods and messages that
JASE can use to communicate with Google. Obvi-
ously, we cannot, for example, perform web search

1http://www.google.com/apis

CRPIT Volume 48

168

using regular expressions, because the engine does not
offer such functionality.

2.4 Problem Domain

One of the challenges of applying NLP over English is
that the language allows many syntactic variations of
sentences. Semantically identical questions can usu-
ally be worded in more ways than one: how old are
you?, what is your age?, which birthday did you cel-
ebrate this year?. Questions with logical constraints
can be permuted even further; for example, with com-
poser as subject, and logical constraints on a date of
birth and nationality, we can ask for “Which com-
posers were born in Germany or Austria between 1600
and 1700?”, or “What are the names of some German
or Austrian composers born in the 1600s?”, or “In the
17th century, what famous composers were born in
either Germany or Austria?”, and many others. The
wording of the query will differ between people, but
all of these will have somethings in common—a com-
poser, a nationality German/Austrian, and a year of
birth. These are the entities that we wish to extract,
whereby two variations on the same query will yield
the same decomposition.

It is important that we restrict the types of queries
we want to handle, as the general query domain is too
overwhelming. We focus on a subset of all possible
query structures, to roughly satisfy the grammar:

• P = (K | Y | M)
where K = some keywords that form a phrase

Y = year phrase
M = money phrase

• PS = P (connective? P)+
Two or more disjoint runs of phrases. The con-
nectives will mostly be conjunctions, preposi-
tions or adverbs.

• (P | PS) negation+ P
Things that the user does not want, e.g. “[Amer-
ican presidents] [except] [Bush]”. Negations are
usually negative coordinating/correlative con-
junctions or adverbs.

• (P | PS) ‘‘in C’’ (P | PS)?
where C is some location, e.g. “[composers born]
[in Germany]”. In general, words that follow
in will rarely be locations, so we must explicitly
provide a list of permissible matches. We can
use such matches to focus queries towards certain
domains, such as .de, for the given example.

Some typical examples of the atoms include:
K = jujitsu
Y = 1920, 500 BC, “during the 90s”
M = $60, “cheaper than $10”, “between $5 and $10”
PS = “[endangered animals] in [australia]”, “[com-
posers born] [during the 1600s]”.

The above is not intended as a formal gram-
mar, but as a guide to visualize possible queries.
JASE still perform a best-effort search, irregardless
of whether a query satisfies the above grammar.

3 System Overview

Our system is active at the beginning and end of the
search session and we follow a typical Service Oriented
Architecture, with a consumer (JASE) and provider
(Google). Consequently, we are able to partition the
functionality in two disparate phases.

Phase One JASE acts as the query processor. The
search query is parsed and decomposed. De-
composition involves tokenizing the text to dis-
cover structural objects, such as words, numbers
and punctuation. These must be stored as some
internally-meaningful representation, which we
call the SearchTerms. The contents of this con-
tainer are the seed for generating new queries.

Phase Two JASE acts as the ranking scheme. In
Phase One, variants of the input query are sub-
mitted using the API calls, and each retrieves up
to 10 results. This leaves us with many “best”
ranked documents, as each result set has its own
top match (note that some result sets are likely
to overlap). We must perform a reranking on
the results as a whole, based on some relevance
measure. We rerank by assigning a score to each
document and sorting. Our heuristics for calcu-
lating a document’s score are described in §3.2.

3.1 SearchTerms, a link between Phases

At the beginning of Phase One, useful informa-
tion is extracted from the query, grouped and then
classified in the SearchTerms container. In Phase
Two, retrieved documents are compared against these
SearchTerms to receive a score. This container is the
connection between the phases, which are otherwise
independent. The container is composed of several
sets of “searchable entities”, which we define as:

input query as a unit phrase.

primary keyphrases extracted keywords and
keyphrases. Phrases are the most specific and
discriminatory part of queries, thus adjacent
keywords should be grouped as a phrase wher-
ever possible. A phrase may contain a singleton
word, if it happens to be bounded at both ends
by non-keywords. This set is never empty.

secondary keywords primary keyphrases are bro-
ken down into their individual atomic keywords,
each becoming a secondary keyword. This set
may be empty, since it will not contain keywords
that are already primary.

tertiary words any remainder terms from the orig-
inal query, which have not been categorized as
primary or secondary are inserted here. This set
will largely consist of stopwords.

synonyms/hyponyms/meronyms for singleton
primary/secondary words come from an external
source, such as WordNet2.

• synonyms are words with corresponding
meaning, e.g. alcohol/liquor.

• hyponyms are more-specific words, e.g.
dog/poodle.

• meronyms are parts of a larger whole, e.g.
dashboard/car.

exceptions are undesirable matches; things the user
does not want.

Two additional pieces of information are also
recorded. The first is a list of numerical upper and
lower bound tuples, used to apply numerical range
matching. As a proof-of-concept, JASE supports
dates and prices, but other ranges are possible to de-
tect and match. The second datum that we record is
a domain restriction, in order to restrict some queries
to a specific domain. At present, we handle mappings

2http://www.cogsci.princeton.edu/%7ewn/

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

169

from the ISO 31663 list, with a few obvious adjust-
ments (e.g. removal of .us).

3.2 Weighting

The SearchTerms sets are assigned base weights, rep-
resentative of the desirability of their inclusion. Each
document in a result set is assigned a score, which
is derived by comparisons against the SearchTerms.
When grading a document, we consider only the title,
URL and snippet—no extra information about docu-
ments is obtained. Using only the title/URL/snippet
allows us to evaluate JASE’s performance and accu-
racy using information which is made visible by the
search engine. Digging deeper and downloading the
source of documents may lead to more accurate scor-
ing, but is outside our scope.

As matching a phrase should be more desirable
than matching only one word of that phrase, one
would expect phrases to contribute more than words.
The location of the match (title/URL/snippet) also
affects its contribution. Table 1 defines the base
weights for the SearchTerms. These values are sub-

Entity title URL snippet
Input query 3.0 3.0 1.2
Primary 1.0 1.0 0.4
Secondary 0.5 0.5 0.2
Synonym 0.3 0.3 0.12
Hyponym 0.3 0.3 0.12
Meronym 0.3 0.3 0.12
Tertiary 0.2 0.2 0.08
Exception -10 -10 -4

Table 1: Base weights of SearchTerms entities

ject to tweaking as there is no correct answer, but
they seem to work well in practice. Certain matches
may appear in more than one set, in which case the
higher weight is used. We also use stemming, case-
mismatch and term frequency (see §5.1).

4 Phase One

This phase involves the parsing and tokenizing of the
input query, to build the SearchTerms container. Ex-
tracting the most sensible keyphrases and keywords
from the user’s NL query is critical, as Google is a
keyword-based engine and its results will heavily fluc-
tuate depending on what terms are chosen. Our strat-
egy is to create “clever” Google-specific queries, which
contain several of:
keywords are important and discriminatory words.

Keywords can be directly sent to Google.

keyphrases are sequences of keywords, where order
is important. JASE detects them by looking for
phrasal boundaries. Keyphrases must be quoted
to be recognized by Google, e.g. “vampire bats”.

exceptions are terms the user does not want, often
explicitly stated. Both word and phrase excep-
tions must be preceded with a minus, e.g. “pets
-dogs”.

domain restriction concentrates a search on a par-
ticular domain, e.g. “national park site:nz”.

synonymy refers to terms which are related to a key-
word, but they need not be specified by the user.
We are only interested in three categories: syn-
onyms, hyponyms and meronyms. Others cat-
egories exist (such as hyper/anto/pertai/holo-
nyms), but are not useful for this task. Google

3http://en.wikipedia.org/wiki/ISO 3166-1 alpha-2

will look for some synonyms if a word is pre-
ceded by a tilde; for example, the search “˜movie
-movie” matches video, film, dvd, mpeg, cinema,
soundtrack and trailer. JASE does not perform
query expansion using synonymy, but it does
look for them when scoring a document.

numerical ranges place a constraint for lower and
upper bound matches. Ranges of the form lo..[hi]
are supported by the engine, and some units are
also recognized (e.g. “beethoven symphony 8..”,
“$50..60” for price and “100..200 kg” for weight).

One of the advantages of automating web search
is the ability to fire off many different queries and se-
lecting only the best results. JASE emits between two
and twenty new queries for a given search, depend-
ing on the complexity of the query, and how many
of the SearchTerms sets are utilized. Some previous
work (e.g. (Kwok, Etzioni & Weld 2001, Agichtein,
Lawrence & Gravano 2001)) has empirically shown
that such an immediate increase in recall, despite its
overhead, is a very effective. This strategy, however,
raises a few issues. Different queries must be sent each
time, prompting the need for a mechanism to formu-
late slightly variant queries, using the SearchTerms
as a seed. Each query will also have its own top re-
sult, so an equitable reranking mechanism is needed.
Finally, some documents are likely to be returned by
several queries, therefore must be clustered as one.
JASE addresses each of these points.

4.1 Detecting Keywords and Keyphrases

Known techniques for locating phrases in written
text tend to use vector-space weighting algorithms,
näıve Bayesian classifiers, inverse document frequency
(IDF) tables, lexical chains, or other statistical
means. However, these are all intended to be applied
to whole documents, and are trained on a specific
corpus. In contrast, we are dealing with a single line
of input, ranging from one to maybe fifteen words.
Such confined input makes it difficult to use statisti-
cal models, especially since many phrases will contain
proper nouns and not be found in any corpora. From
these, we feel that an IDF table is the only suitable
approach.

Another NLP technique is to deduce the parts of
speech using a Part Of Speech tagger. These can be
rule-based(Brill 1992, Brill 1995) and follow patterns,
unigram or n-gram based, or Hidden Markov Model
based(Charniak 1994, Charniak 1997, Collins 1996)
and follow probability. The tagger can be used to
detect phrases by collecting disjoint runs of nouns
and adjectives. Many taggers exist, but JASE does
not use one. Instead, JASE guesses the location of
phrasal boundaries by splitting on stopwords, using
our own custom 99-word list (a hybrid of Google’s
and Snowball’s4, with additions). Since stopwords
are those with a poor IDF, this strategy emulates the
use of an IDF table to some degree.

This means that the “naturality” of the language
used is important for adequately deducing phrases.
On par with previous NL systems that we have played
with, it is not difficult to construct complicated but
unnatural-sounding queries to confuse JASE. For our
evaluation (§6), we used sensibly-worded queries. Our
shallow NLP approach works well for many of the
TREC queries, and using deeper NLP will only serve
to improve accuracy.

4http://www.snowball.tartarus.org

CRPIT Volume 48

170

4.2 Detecting a domain restriction and nu-
merical ranges

JASE pattern matches the user’s query for countries.
If preceded by in, in the, from or from the, it will
focus approximately half of the generated queries to-
wards that country’s domain. Most country domains
have some web pages written in English, so it not
unreasonable to carry out such searches.

JASE also pattern matches year and monetary
phrases, to demonstrate how numerical ranges can be
extracted. It handles many cases, best illustrated by
some examples (Table 2). Date matching is capped
at year 9999. If a lower or upper bound of a mon-
etary range is not specified, JASE assumes 10% for
the lower bound and a string of nines to one more
significant figure for the upper bound.

Phrase Range
Rock stars in the 60s 1960..1969
Rock stars in their 60s 60..69

Rock stars before the 60s 0..1959
Wars before 1066 0..1065
Wars during 1066 1066..1066

Roman emperors before 20 BC 21..99
A Kodak camera cheaper than $200 $20..200
A Kodak camera, over $60000 $60000..999999

$49.99 Playstation controller N/A
$49 Playstation controller $49..50

Playstation controller between $49 and 60 $49..60

Table 2: Some examples of handled ranges

5 Phase Two

This phase deals with the reranking of all query
results, using relevance heuristics against the
SearchTerms constructed in Phase One.

All documents are assigned a numerical score (or
weight) based on the relevance measure. The docu-
ments are sorted, and only the top 20 are displayed to
the user. As mentioned previously, JASE only uses
the synopsis of a document (title/URL/snippet) to
weigh a document.

Two morphological processes are carried out be-
fore documents are inspected—folding case and stem-
ming. The original synopsis is used for case com-
parison; case-insensitive match is performed on the
lower-case version, and stem matching is performed
on the stemmed version. As Google uses stemming,
it is possible to encounter a partial match in the doc-
ument synopsis, which needs to be rewarded. We use
a Porter stemmer(Porter 1980).

5.1 Relevance Measure and Heuristics

Upon meeting a document in the result set, its synop-
sis scanned for entities within the SearchTerms sets.
As described in §3.2, certain sets are more important
than others and contribute different base weights,
and the location of a match also affects the contri-
bution. It is furthermore influenced by the nature of
the match:

• if a term is indirectly matched via stemming, its
contribution is penalized by 25%.

• if case agrees, its contribution is boosted by ei-
ther 25% if it appears in the title/URL, or 10%
otherwise.

• if a term is matched via some numerical range,
its contribution is penalized by 25%.

• if every primary and secondary term is matched
at least once, the overall document score is
boosted by 50%.

These figures are subjective and there is no correct
answer, but they work well in practice.

5.2 Overall Score of a Document

A näıve algorithm to determine the total score for
a document would be to sum all individual contri-
butions for all SearchTerms entities. If an entity is
matched, it contributes its base weight less penalties
plus bonuses, and if it is not matched, it contributes
nil. This approach suffers the problem that repeti-
tive matching of a single entity, while matching few
or even none of the others, results in a score that
unfairly represents the document. This weakness be-
comes more evident with small result sets like JASE’s,
as they are more volatile to fluctuations in rating.
JASE cannot get an “averaging out” effect without
retrieving far larger results sets, and the snippet only
partially communicates the content of a document.

Clearly, such a biased boost due to multiple match-
ing of a single entity is inappropriate. But at the same
time, we do not want to ignore recurring matches en-
tirely, because it is desirable for every match to con-
tribute “something”. To deflate the volatility of re-
current matches, we use a recessive geometric sum to
calculate the score of a document:

score(doc) =
1
G

+
en∑

e=e1

j∑
i=1

ωi

2i−1

where {e1..en} are the n searchable entities in the
SearchTerms. The set of weights {w1..wj} represent
the contributions by the j occurrences of entity e
matched in doc’s synopsis. This set of weights is
sorted in descending order to maximize the overall
result.

Such a summation guarantees that every occur-
rence of a matched entity e contributes to the
document, but no entity can contribute more than
twice its highest individual match to the overall
document score (recall

∑∞
i=1

1
2i−1 = 2). This satisfies

our above desiderata that superfluous entity fre-
quency should not bias a document “too much”, but
that every occurrence of any entity should contribute.

Furthermore, the reciprocal of Google’s suggested
rank, G, is augmented to a document score. This
bonus contributes as much as 1.0 point for Google’s
topmost result, and is worth the same as a match-
ing of a primary keyphrase in the title. Because this
bonus diminishes for lower ranks in Google’s list, it
is a means of discriminating between documents that
receive similar scores against the SearchTerms, but
appear in different ranks in the original results.

5.3 Reranking Documents

The previous section describes how a score is assigned
to a document. However, some queries may overlap
and documents may be met more than once. We do
not wish to display the same document several times
over, so the scores for a certain document must be
accumulated. Possibilities include a running total, an
average, or a recessive geometric sum like the previ-
ous section. We use the geometric sum because it is
a middle ground between the running total and the
average—two methods which work well in most cases,
but spectacularly fail for some scenarios.

Once documents are reordered, the top 20 are dis-
played to the user.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

171

6 Evaluation

This section serves as a summary of our system’s ac-
curacy and performance. All results in this section
were carried out during Oct 2004.

6.1 Accuracy

An evaluation survey was prepared, and answered by
8 volunteers. All were fluent in English, and all con-
firmed that they use Google at least once per week,
with more than half using it daily. Participants were
of mixed age (18–49), mixed gender and mixed na-
tionalities (USA, Australia, UK, France and Switzer-
land). One participant had a computer science back-
ground. We feel that this sample represents “average”
Google users to a reasonable degree.

Participants were first asked about their searching
prowess, shown in Table 3.

Question Yes No
Do you know of operators: +, -, “”? 75% 25%
Do you use them? 38% 73%
Do you know of filters: site, inurl, intitle? - 100%
Do you know of indirect matchers: ˜, x..y? - 100%

Table 3: Supplementary questions answered by par-
ticipants

While most knew of the plus, minus and
quotes operators—used for inclusion, exclusion and
phrases—only half of those admitted to actually us-
ing them in practice. A small proportion were famil-
iar with the site: filter only, but none of the other
operators.

Our survey contained 14 query topics in roughly
increasing complexity, which are listed in Table 4.
Some queries consisted of only keywords, while others
were written in NL. We opted to avoid relying on the
TREC test set, because many web documents explic-
itly quote the TREC queries in the context of TREC,
yet are unrelated to the topic at hand. Only q6–q9
are TREC queries.

Id Query
q1 microsoft
q2 belgian comic strip characters

q3 endangered animals in australia
q4 what happened at the final in the 2002 world cup?
q5 German or Austrian composers born in the 1600s

q6 what is the treatment for alzheimer’s?
q7 how much sugar does Cuba export and which coun-

tries import it?

q8 the consequences of implantation of silicone gel
breast devices

q9 what diseases have hair loss as a symptom?

q10 important discoveries in medicine during the 1600s
q11 A used Toyota Camry 1998 model, in Sydney be-

tween $5000 and $10000
q12 700ml Johnnie Walker Red Label in Sydney for un-

der $30

q13 Famous people born on May 1 between 1900 and
1950

q14 I want to do Artificial Intelligence in the best uni-

versity in Australia

Table 4: Base weights of SearchTerms sets

A scale from 1 to 5 was defined (1 being poor, 5
being excellent). For each query, the top ten Google5

results were provided. Participants were asked to rate
the result set based on their impressions and opinions

5http://www.google.com

in regard to accuracy. Participants were then asked to
perform their own search using the search engine, and
could rewrite the query in any way using any tactics
they wished. Their goal was to find relevant docu-
ments that satisfied the query. They then proceeded
to rate their own results. Finally, participants rated
JASE’s results for the original query. In all cases,
participants were encouraged to view the actual doc-
uments retrieved by visiting the hyperlinks.

JASE received favorable ratings, outperforming
Google for some queries, while being approximately
equal for the remainder. This result was not
unexpected—for simple keyword queries, JASE dis-
plays almost exactly what Google does, but for more
complex queries, its Google-optimized queries and
reranking appeared to improve accuracy.

But as one of the aims of this work was to show
that NL queries can be used to improve the precision
of web searches, we were more interested in how JASE
would fare against the participants themselves. Fig-
ure 1 shows how each of Google, the participants and
JASE performed for each query. A 95% confidence
interval is provided, using the t-distribution.

Google’s Accuracy
This form of web search represents “unskilled”
searching. Participants rated the Google’s raw
search results for each verbatim query. Simple
keyword-only queries received high scores, but
ratings gradually fell as queries became more
complex and involved NL. This behavior was ex-
pected.

Participants’ Accuracy
This form of web search represents “semi-skilled”
searching. Participants used the given query to
create their own new query based on their expe-
rience and knowledge of the search engine, and
evaluated the results. Observed tactics included
phrasal search, domain restrictions, and query
expansion. As expected, participants were able
to slightly outperform the “unskilled” search.

JASE’s Accuracy
This form of web search represents “skilled”
searching. Participants rated JASE’s search re-
sults for each verbatim query. JASE kept up
with both unskilled and semi-skilled searches for
the simpler queries—which were mostly keyword-
based to test the accuracy of JASE’s reranking—
but maintained a lead for the second half of
queries, which were written in NL and high-
lighted JASE’s advantage of dispatching multi-
ple queries and usage of an engine’s filters and
operators.

One observation is that JASE’s confidence interval
does not overlap the others for some of the NL queries.
According to the t-test, this is a statistically signifi-
cant result. The queries that caused this (q5, q10,
q12 and q13) highlight JASE’s advantage of using
Google’s filters and operators (the ones used here were
“”, +, ˜ and numerical range). These queries shared
in common a need to match text which was implied,
but not explicitly stated. Most other queries did not
have such implications, and relied on direct keyword-
matching. JASE received high ratings there too, most
likely due to its increase in recall by retrieving results
from multiple queries, and subsequent reranking of
results. This conclusion is consistent with previous
works (see §7).

The results indicate that JASE outperformed the
users themselves for this query set, which involved
queries of various difficulty. This suggests that NL
queries may be used to improve the accuracy of web
search, through shallow NLP systems such as JASE.

CRPIT Volume 48

172

Figure 1: Mean rating per query, with 95% CIs

While expert users may be able to match or surpass
the precision of such a system, the system should be
beneficial to average users, who are unfamiliar with
the esoteric art of accurate web search.

6.2 Performance

As a synchronous wrapper around Google, JASE is
inherently slower than Google. There are three sep-
arate time periods involved from the moment a user
inputs their query for processing until the moment
the results are displayed:
GT Google time, consumed by the search engine in

answering our queries. It is conveniently re-
ported by the API methods.

CT Communication time (round trip time - GT).
Timing begins with the invocation and return
from the SOAP library routines.

JT JASE time, time during which JASE’s code is
active, including bootstrapping of any libraries
and classes.

The time periods are mutually exclusive, and the total
time taken is TT = JT + CT + GT. Depending on the
complexity of the input, JASE emits up to about 20
queries in total.

Our empirical tests indicated that JT ≈ 0.11 TT,
GT ≈ 0.21 TT and CT ≈ 0.68 TT. The biggest per-
formance cost, CT, represents networking and com-
munication. The tests suggested that our prototype
was not inefficient, as the bulk (89%) of loading time
was consumed externally. Our prototype took just
under 20 seconds to load for the more complicated
queries, because we submitted queries serially. This
value may be greatly decreased by issuing queries in
parallel, but speed was not our goal.

Participants in our evaluation were asked their
opinions on search response times. All agreed that
an extra 5 seconds wait on top of Google’s average
response time (which is between 0–0.5s) in order to
produce more accurate results is admissible. In fact,
75% agreed that even 20s was admissible. Such an
answer hints at web users’ desideration for a system
such as JASE.

7 Related Work

Many NLP search systems have been made to date.
In particular, a form of NL search called Question-
Answering Systems have been well-explored (e.g.

(Katz 1991, Kwok et al. 2001, Prager, Brown, Coden
& Radev 2000, Ravichandran & Hovy 2002)).

QAS accept wh-questions (who, when, where,
what, why) and return a definitive answer. QAS are
related to search engines because they retrieve infor-
mation from a source based on a query. Unlike search
engines, QAS provide an answer, rather than a list of
top “hits”. To do this, QAS need to have at least some
idea of what the user is searching for. As such, QAS
usually extract knowledge from the query itself—is
the user asking for a person, a date, a location, an
object, or what? On the other hand, search engines
use whatever input they have been given with mini-
mal restrictions on format and structure. QAS have
much stronger restrictions on the structure of the in-
put, in order to make it possible to determine what
the user is looking for.

START(Katz 1991) was the first online QAS,
and focused entirely on geography and MIT-specific
knowledge. It used subject-relation-object tuples to
extract the subject, relation and object from a given
query, and then performed a pattern match for the tu-
ple in its knowledge base (KB). The knowledge base
was built from a similar process of detecting tuples
from scanned documents. START’s KB was highly-
edited, and non-scalable, and the system could not
provide an answer to a query if it failed to match the
tuple. Future work(Katz & Lin 2000) found ways to
automate the expansion of the KB, but the process
was impractically slow.

Search engines, on the other hand, provide refer-
ences to documents, irregardless if they answer the
user’s questions or not, and rarely try to “under-
stand” the query.

Ionaut(Abney, Collins & Singhal 2000) was an in-
teractive NL search engine, and used a local cache
of documents for its KB with a small coverage. Its
most interesting feature was to list related hyperlinks
to a given query to branch into different queries, as
a means of an iterative search. From experience with
it, we feel that its accuracy was lacking, but the in-
teractivity feature was its best asset.

Limited KB coverage is a hurdle that can be over-
come. In 1993, MURAX(Kupiec 1993) used boolean
searching over an online encyclopaedia, by formulat-
ing queries based on the phrasal content of the input
wh-question. Noun-phrase hypotheses were extracted
from the retrieved results, and new queries were in-
dependently made to confirm the hypotheses. Its ac-
curacy was poor, but the concepts of multiple queries
and formulating different queries inspired some future

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

173

works.
Tritus6 was an NL search engine(Agichtein et al.

2001) that could use either Google or Altavista as
its KB. It handled simple wh-questions that matched
specific templates, but used the engines’ syntactic
operators to improve precision. The authors per-
formed comparisons between different engines, and
argued that Google was superior to both Jeeves and
Altavista, and that Tritus’ Google-optimized queries
outperformed raw Google. We consider their testing
to be inconclusive, as it is unfair to pipe direct NL
queries to a keyword-based engine. An evaluation of
this type must involve the users of the engine them-
selves, who know better than to submit NL queries;
the users’ employment of the engine should be the
real competitor. One further difference between Tri-
tus and JASE is that our work attempts to handle a
broader range of input (by not using templates), and
that JASE received no training.

Also in 2001, MULDER(Kwok et al. 2001) tried
to scale QA to the Web, using Google as back-end.
Like MURAX and Tritus, it generated multiple new
queries from the input, to increase recall. Query
generation was achieved by rearranging the input
wh-question to match the potential phrasing of its
answer—when asked “what is the capital of Sudan”,
it would look for documents containing “the capital of
Sudan is”. MULDER worked on the assumption that
the Web is host to more truths than falsities, there-
fore wh-questions could be answered by collating the
results and clustering them. The largest cluster was
considered as the correct answer, due to the original
assumption. MULDER used deep NLP, but imposed
structural limitations on its input queries. We have
not had the opportunity to test it, as it has not been
available for several years. We believe that MUL-
DER would have performed well for trivia questions
because they are frequently cited online, but that it
would have had difficulty in answering more elaborate
queries such as those in the introduction, for which
a rearrangement of the query is unlikely to appear in
any online documents.

AskJeeves7 is advertised as a QAS, but its menu-
driven dialogue is more inherent to search engines. It
allows searching for both keywords and wh-questions.
To answer a NL question, the text must match one
its question templates; otherwise, web results are
retrieved from Teoma8. If a template is matched,
AskJeeves provides links to authoritative sites which
are known to answer that question. This strategy
requires human editors to map the templates to the
authoritative sites, and does not scale well. It takes
little effort to formulate a NL wh-query which fails
to match a template, yet is competently answered by
a raw Google search. (Kwok et al. 2001) empirically
argues that AskJeeves is limited and awkward to use,
and performs poorer than Google.

Intermezzo(Flank 1998) used NLP techniques to
retrieve images from an image database based on NL
queries, achieving a precision of almost 90%. The con-
tent of each image was identified via captions, which
were manually written. One of Intermezzo’s inter-
esting features was using WordNet to match related
terms in the caption to increase the score of an im-
age. This strategy proved effective as the images show
physical objects, which have large collections of ap-
plicable hypo/hypernyms and mero/holonyms. Such
a strategy of boosting term weights using WordNet’s
synsets is less effective for web queries over large docu-
ment collections, since matching hyper- and holonyms
is less appropriate.

6http://tritus.cs.columbia.edu
7http://www.ask.com
8http://www.teoma.com

Keyword-extraction has a long history and is a
component in most IR fields. Several recent ap-
proaches to deducing the keyphrases in a piece of text
exist (Turney 1999, Turney 2000, Munoz 1996, Frank,
Paynter, Witten, Gutwin & Nevill-Manning 1999).
However, these methods are intended to extract
phrases from entire documents by employing holis-
tic statistical models, while we are interested with
extracting useful words and phrases from a single-
sentence query. Hence, the algorithms from such
works do not apply.

JASE shares the ideas of many of these previous
works, such as using an NL wrapper around a boolean
data source, and the submission of multiple queries.
Because it is not a QAS, it is fundamentally different
to MURAX and MULDER in that it imposes less re-
strictions on input, but therefore cannot use the query
structure to its advantage. Tritus was a hybrid, re-
trieving hyperlinks like a search engine, but handling
wh-questions and using the structure of the input to
its advantage like a QAS.

Our work aims to be a search engine, but without
being able to significantly rely on the structure of
the query. The work presented in this paper is most
closely related to MULDER and Tritus.

8 Conclusions

This paper has outlined some simple strategies to
support NL queries over a keyword-based engine
(Google). We have presented an evaluation of a
search engine wrapper, JASE, that handles both key-
word and NL queries. We parse, tokenize and ex-
tract searchable entities from the query, and catego-
rize them into weighted sets. We dispatch multiple
queries, and then use the sets against our ranking
heuristics to weigh and rerank the retrieved results.
Although only shallow NLP techniques were used,
they seem work well for many cases, as indicated by
our evaluation. Our evaluation survey furthermore
revealed that our participants were all willing to sacri-
fice a large amount of performance in lieu of accuracy,
therefore the submission of multiple queries is a jus-
tifiable strategy, and may be incorporated in current
engines.

Future expansions that we are exploring include
deep NLP—a tagger(Brill 1992, Brill 1995) coupled
with an IDF table will greatly improve phrase bound-
ary detection. Geographical locations can be detected
using a gazetteer, allowing domain restrictions to be
used more liberally. Finally, collecting multiple snip-
pets for the top few documents should help improve
reranking. This is our preferred way of expanding
a document’s summary (as opposed to downloading
the entire document from the Google Cache), and is
achieved by using a combination of site:, allinurl: and
allintitle:, coupled with an extra keyword to variate
the snippet.

The process of parsing and tokenizing the input
to detect important searchable entities is obvious, as
these are tasks that the human mind perform when
presented with a query topic. But strategies such as
submitting multiple queries and reranking of large re-
sult sets are only fit for computers. Our evaluation
survey revealed that average Google users seldom use
its operators and filters, which could be adding noise
to their searches and costing them time. It there-
fore appears beneficial to provide a transparent sys-
tem that utilizes the power of such strategies behind
the scenes, rather than educate everyone to become
an expert user. Such a system could accept NL as in-
put, because it is the most intuitive “query language”
and provides more information to the engine than the
current paradigm.

CRPIT Volume 48

174

Our experiments show that the users were able to
make use of their own experience of the engine, their
awareness of its idiosyncrasies and/or some trial and
error to formulate a better query than a given NL
topic, and slightly improve on precision. Yet they
still favored JASE’s results in many cases, which em-
phasizes an automaton’s advantage of redundant and
monotonous computation, and use of an engine’s syn-
tactic operators and filters.

We believe our results indicate that NL search sys-
tems such as JASE can have practical use in society,
and that the NL paradigm can be used to improve
the precision of web search.

References

Abney, S., Collins, M. & Singhal, A. (2000), Answer
extraction, in ‘Proceedings of the Sixth Applied
Natural Language Processing Conference’, Mor-
gan Kaufmann, pp. 296–301.

Agichtein, E., Lawrence, S. & Gravano, L. (2001),
Learning search engine specific query transfor-
mations for question answering, in ‘World Wide
Web’, pp. 169–178.

Brill, E. (1992), A simple rule-based part of speech
tagger, in ‘Proceedings of the Third Conference
on Applied Natural Language Processing’.

Brill, E. (1995), ‘Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging’, Computational
Linguistics 21(5), 543–565.

Charniak, E. (1994), Statistical language learning, in
‘Language and Computers 12’, The MIT Press.

Charniak, E. (1997), ‘Statistical techniques for natu-
ral language parsing’, AI Magazine 18(4), 33–44.

Collins, M. J. (1996), A new statistical parser based
on bigram lexical dependencies, in ‘Proceed-
ings of the 34th conference on Association for
Computational Linguistics’, Morgan Kaufmann,
pp. 184–191.

Flank, S. (1998), A layered approach to nlp-based in-
formation retrieval, in ‘Proceedings of the 36th
ACL and 17th COLING’, Morgan Kaufmann,
pp. 397–403.

Frank, E., Paynter, G., Witten, I., Gutwin, C.
& Nevill-Manning, C. (1999), Domain-specific
keyphrase extraction, in ‘Proceedings of the Six-
teenth International Joint Conference on Artifi-
cial Intelligence’, Morgan Kaufmann, pp. 668–
673.

Jones, K. S. (1972), ‘A statistical interpretation of
term specificity and its application to retrieval’,
Journal of Documentation 28(1), 11–21.

Katz, B. (1991), ‘Text processing with the start natu-
ral language system’, Text, ConText, and Hyper-
Text: writing with and for the computer pp. 55–
76.

Katz, B. & Lin, J. (2000), Rextor: A system for gen-
erating relations from natural language, in ‘Pro-
ceedings of the ACL 2000 Workshop on Natural
Language Processing and Information Retrieval’.

Kupiec, J. (1993), Murax: a robust linguistic ap-
proach for question answering using an on-line
encyclopedia, in ‘Proceedings of the 16th an-
nual international ACM SIGIR conference on
Research and development in information re-
trieval’, ACM Press, pp. 181–190.

Kwok, C., Etzioni, O. & Weld, D. (2001), Scaling
question answering to the web, in ‘World Wide
Web’, pp. 150–161.

Luhn, H. P. (1957), ‘A statistical approach to mech-
anized encoding and searching of literary infor-
mation’, IBM Journal of Research and Develop-
ment, 4(4), 600-605.

Munoz, A. (1996), Compound key word generation
from document databases using a hierarchical
clustering ART model. IDA, Amsterdam.

Page, L., Brin, S., Motwani, R. & Winograd, T.
(1998), ‘The pagerank citation ranking: Bring-
ing order to the web’, Stanford Digital Library
Technologies Project.

Porter, M. (1980), An algorithm for suffix stripping,
in ‘Program’, Vol. 14, pp. 130–137.

Prager, J., Brown, E., Coden, A. & Radev, D. (2000),
Question-answering by predictive annotation, in
‘Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval’, ACM Press,
pp. 184–191.

Ravichandran, D. & Hovy, E. (2002), Learning sur-
face text patterns for a question answering sys-
tem, in ‘Association for Computational Linguis-
tics Conference’.

Salton, G. (1989), Automatic Text Processing: the
Transformation, Analysis, and Retrieval of In-
formation by Computer, Addison-Wesley Long-
man Publishing Co., Inc.

Salton, G. & Buckley, C. (1988), ‘Term-weighting
approaches in automatic text retrieval’, Infor-
mation Processing and Management 24(5), 513–
523.

Turney, P. (1999), ‘Learning to extract keyphrases
from text’, Technical Report ERB-1057, Na-
tional Research Council, Institute for Informa-
tion Technology.

Turney, P. (2000), ‘Learning algorithms for keyphrase
extraction’, Information Retrieval 2(4), 303–336.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

175

8.1 Appendix: Sample

Figure 2 is a screenshot of our prototype for q13, with the corresponding Google results in Figure 3. Both
images date to the time of our evaluation (Oct 2004).

In June 2005, we revisited the top Google hits for this query. The top 10 hits were different to before,
perhaps due to PageRank fluctuations and new documents being introduced. JASE’s results were, in turn,
equally affected. We inspected each of Google’s top 20 hits and decided that 3 were relevant, but only one of
them appeared in the top 10. JASE managed to extract 8 relevant documents, of which 6 were in its top 10.
We were able to identify four times as many “famous people” (to answer the query) from JASE’s top 10 hits
than from Google’s top 20 hits.

Figure 2: JASE’s top results for q13

Figure 3: Google’s top results for q13

CRPIT Volume 48

176

Approximative Filtering of XML Documents
in a Publish/Subscribe System

Annika Hinze1 Yann Michel2 Torsten Schlieder

1University of Waikato, New Zealand
2Freie Universitaet Berlin, Germany

a.hinze@cs.waikato.ac.nz
ymichel@inf.fu-berlin.de
torsten.schlieder@gmx.net

Abstract

Publish/subscribe systems filter published documents
and inform their subscribers about documents match-
ing their interests. Recent systems have focussed on
documents or messages sent in XML format. Sub-
scribers have to be familiar with the underlying XML
format to create meaningful subscriptions. A service
might support several providers with slightly differ-
ing formats, e.g., several publishers of books. This
makes the definition of a successful subscription al-
most impossible. This paper proposes the use of an
approximative language for subscriptions. We intro-
duce the design of our ApproXFilter algorithm for
approximative filtering in a publish/subscribe system.
We present the results of our performance analysis of
a prototypical implementation.

1 Introduction

The recent years have seen a new generation of ap-
plications based on the principle of publish/subscribe
(pub/sub): distribution of stock quotes, news articles,
or library alerts. A publish/subscribe system is a (dis-
tributed) middleware implementing the event-based
communication paradigm: A source or publisher pub-
lishes event messages that announce the occurrence
of events, i.e., the occurrence of something of interest
within the system. Examples are the publication of a
new book or CD. Subscribers can subscribe to events
that are of interest to them; these subscriptions are
called profiles. The system filters the incoming mes-
sages according to the profiles and forwards matched
messages to their subscribers.

Publish/susbscribe systems have their origin in
alerting services for digital libraries (Salton 1968). In
the first generation of alerting systems, event mes-
sages contained the full text of documents, such as a
newly published scientific paper (e.g., in SIFT (Yan
& Garćıa-Molina 1995)). A profile would equal a sim-
ple Information Retrieval (IR) query using keywords.
Note that the concept of filtering documents against
a set of profiles has been explored earlier in infor-
mation filtering by the Information Retrieval com-
munity. However, the focus there is on information
quality, whereas we are looking at efficiency for large
scale settings with high numbers of profiles. The fo-
cus of publish/subscribe systems lies more on the ef-
ficient filtering of structured data sets. Thus, earlier
pblish/subscribe systems supported either attribute-

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

value pairs (e.g., in Siena (Carzaniga 1998)) or SQL-
like queries (e.g., in CQ (Liu, Pu & Tang 1999)).

Recently, XML-based messages or documents have
been used to encode the event messages (e.g., in Ni-
agaraCQ (Chen, DeWitt, Tian & Wang 2000), XFil-
ter (Altinel & Franklin 2000)). Applications are
eBusinesses such as online catalogs or digital libraries.
Here, a profile is a XML query expressed in XML-
QL (NiagaraCQ) or Xpath (XFilter); the definition
of which is a rather demanding task for a user who
is not familiar with XML query languages. In ad-
dition, almost all existing systems assume that the
users are well informed about the structure of the
event messages and that they are therefore able to
create meaningful profiles.

The task of creating a meaningful profile is even
more demanding if the system supports different
providers of information, e.g., different publishers of
music CDs or books, which may use slightly differing
catalogue structures. Currently, no system supports
filtering over varying structures. In addition, current
filter mechanisms detect only documents that con-
tain the exact values a subscription specifies, but it
is not possible to detect documents that contain syn-
onymous values.

Typical solutions for this kind of searches in
digital libraries are extensions or replacements of
search terms with synonyms using a thesaurus or
a dictionary (e.g., in the DejaVu system (Gordon
& Domeshek 1998)). Other techniques that have
been used to explore semantic relationships between
terms include user feedback and enriched search inter-
faces (Rao, Pedersen, Hearst, Mackinlay, Card, Mas-
inter, Halvorsen & Robertson 1995). For substruc-
tured data, the problem of approximative results has
been extensively addressed for XML search queries
(e.g., in (Schlieder 2003, Theobald & Weikum 2002)).

For publish/subscribe systems, the problem of how
to extend the profiles and how to efficiently filter using
approximations remains open. Note that the issue
of how to create thesauri or cost-enriched term lists
remains the same problem as for searching. We see
this as a separate problem that is not addressed. In
this paper, we focus on an efficient filter algorithm for
approximate publish/subscribe. We show later that
also for algorithms, inspiration may be found in IR
solutions, but it is not possible to simply copy these
algorithms.

In this paper, we propose an approximative filter-
ing algorithm ApproXFilter to address the problem
of approximate filtering. The main challenge for filter
algorithms in a publish/subscribe context is efficient
filtering of large numbers of profiles. We introduce
two forms of an approximative algorithms for filter-
ing XML documents: a time optimized version and a
space optimized version. We present a performance
analysis of our prototypical implementation and show
the usefulness of our approach.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

177

This paper is structured as follows: Section 2 in-
troduces an example scenario that is used to illustrate
the concepts throughout the paper and discusses re-
lated approaches. In Section 3, we propose the de-
sign of an approximative filter and illustrate the de-
sign by example. Two implementation variants are
introduced in Section 4. We give details about our
prototypical implementation in Section 5. Section 6
presents and discusses the results of our analysis of
the algorithms and shows the usefulness of our ap-
proach. In Section 7, we discuss complementary ap-
proaches. The final section summarizes the contribu-
tions and indicates future work.

2 Motivation

This section introduces an illustrative example sce-
nario. We show that existing approaches in pub-
lish/subscribe systems are not sufficient and discuss
related approaches from information retrieval. We ex-
plain why the principles of approximative IR cannot
be simply copied for filtering.

Assume an online warehouse offers a pub-
lish/subscribe mechanism for its books. A user may
know in advance that author Smith will publish a
book in the near future. But unfortunately, nothing
about the final title or other information is known
other than it deals with XML.

Publish/subscribe systems supporting keyword
subscriptions (e.g., SIFT) would notify about all doc-
uments that contain at least one of the values “XML”
and “Smith”. The user cannot specify that she prefers
books with the title “XML” over books containing a
chapter title “XML”. Similarly, the user cannot prefer
the author Smith over the editor Smith. Current sys-
tems supporting structured XML queries (e.g., XFil-
ter) would result in the contrary: Only exactly match-
ing documents are considered. The XPath query

/catalog/book[title = “XML” and author = “Smith”]

will neither allow for books with a chapter title
“XML” nor books of the category “XML” nor books
edited by “Smith”, nor other media formats than
books (e.g., articles or tutorials) with the appropriate
information.

Of course, the user can create a subscription that
exactly matches the cases mentioned, but she must
know that similar results may exist and how they are
represented. Since all results of her expanded query
are treated equally, the user still cannot express her
preferences. It is important to note that different to
a search query, a user of a publish/subscribe system
cannot simply reformulate their subscription query
until it gives the desired results - false negatives will
occur and the subscriber misses information without
being aware of it.

For search engines, solution have been proposed to
cope with the approximative searches. For example,
ApproXQL (Schlieder 2003) is an approximative filter
language with corresponding search algorithm. While
common query languages will only match on exact
values that were requested, ApproXQL also supports
the matching on similar values or structures. This is
achieved by skipping or rewriting parts of the query
using synonyms. ApproXQL supports hierarchical,
Boolean-connected query patterns. The interpreta-
tion of ApproXQL queries is founded on cost-based
query transformations: The total cost of a sequence
of transformations measures the similarity between a
query and the data and is used to rank the results.
All results of an ApproXQL query can be computed
in polynomial time with respect to the database size.

Here, we will follow the concept of ApproXQL and
re-use the syntax of its language for filtering purposes.

Similar to the case of searching, we follow the ap-
proach of using cost-based query transformation. For
publish/subscribe systems, we have to develop a new
filter algorithm; it is not possible to use the under-
lying approximative search algorithm: The concept
of filtering is the reverse to the concept of searching.
In searching, a set of documents forms the founda-
tion; they are indexed and the incoming search query
is compared to the index keys. In filtering, a set of
subscription queries exists; they are indexed and the
incoming document is compared to the indexed query
keys. Similarly, the concept of ranking does not have
an exact equivalent in filtering. For filtering, the doc-
uments are sent to the user or not.

3 The ApproXFilter Algorithm

This section describes the principle of the ApproX-
Filter algorithm. We start by describing the concept
of the algorithm and then move on to discuss each of
its steps.

ApproXFilter supports the matching of similar
values or structures in addition to direct matches.
This is achieved by profile query transformations us-
ing skipping, inserting, or renaming parts of the query
using synonyms. Whenever a profile query is rewrit-
ten for a certain document, each of these transforma-
tions may create costs. We introduce the concept of
costs to judge the quality of a document regarding
a given query. A cost of zero means highest quality,
i.e., the document exactly matches the profile query
as defined by the subscriber. The greater the costs,
the lower the matching quality of a document.

Document filtering may be seen as a comparison
of the document tree to the set of profile query trees
(which are combined in a single directed acyclic graph
(DAG)). The more similar a document tree is to a
given profile tree, the better the match. That is, the
better the match the lower the costs. If all possible
transformations are supported for a query, each doc-
ument will match. The costs describe the amount of
transformation necessary to reach that match (simi-
lar to relevance in Information Retrieval). If only se-
lected transformations are allowed, not all documents
will match a given profile. The costs can be seen as a
(reverse) measure for the similarity between the docu-
ments and the matched profiles. For profiles that are
not matched using transformations, and for profiles
that are matched creating high costs, the similarity
between the profiles and the document is low.

We now introduce the overall structure of the al-
gorithm. Subsequently, we illustrate the algorithm by
using our example scenario.

Step 1 - Normalization: After the definition of
the subscriptions, transform all ApproXFilter
subscriptions into their conjunctive normal form
(i.e., Boolean disjunctions combined by conjunc-
tions)

Step 2 - Profile Extension: Extend all subscrip-
tions using the allowed predefined transforma-
tions (renaming, skipping, insertion)

Step 3 - Tree-building: Build a subscription
match DAG containing all extended subscrip-
tions

Step 4 - Filtering: For each incoming document:
Go sequentially through document; concurrently
traverse the match DAG depth-first; whenever
moving upwards in the match DAG accumulate
the costs

CRPIT Volume 48

178

book [title ["XML"] and author ["Smith"]]

title

author

"XML"

"Smith"
book

ApproXFilter Query:

Query Tree:

Figure 1: ApproxFilter sample profile query and its
query tree (Query 1)

Step 5 - Notification: If the accumulated costs for
the matching document are less than a prede-
fined threshold, inform the subscriber about the
document

We will now illustrate these steps by applying the
algorithm to our example scenario introduced in Sec-
tion 2. We will use two example subscriptions and
one incoming XML document to show the principle
of the filtering algorithm.

Normalization Consider the warehouse’s pub-
lish/subscribe service from the previous section: Our
user is still interested in works about XML by author
Smith. Based on her interest, she builds the following
subscription written in ApproXFilter:

Query 1 : book[title[′′XML′′]
and author[′′Smith′′]]

The subscription query and its query tree repre-
sentation are shown in Figure 1. Another user is inter-
ested in all database books that also consider XML,
are published in 2005. He defines the following query:

Query 2 : book[title[′′DB′′ and ′′XML′′]
and year[′′2005′′]]

ApproxFilter’s syntax is introduced in detail in
Section 4. Note that in this paper, we refer to “XML”,
“Smith”, and “2005” as values and to ‘book’, ‘title’,
‘year’ , and ‘author’ as structures; both structures
and values are referred to as terms in a subscription
query. Both subscription queries are already normal-
ized.

Profile Extension Using ApproXQL, it is possi-
ble to define synonyms or renamings, deletions or
skippings, and insertions. For example, the admin-
istrators of the warehouse’s system may have defined
sets of possible transformations for queries regarding
print media. In addition, experienced users may de-
fine possible transformations. For simplicity, we use
very basic transformations as given in Table 1 for pro-
file extensions in our example Query 1.

Method Changes Costs

Rename
book → article 4
title → abstract 4

“XML” → “RDF” 7

Skip
title 10

“XML” 20
Insert optional 0

Table 1: Example profile transformations for Query 1

"2005"

book

article

*

title

abstract

"XML"

Match DAG:

book
author

title "XML"

"Smith"

Query Trees:

*

"RDF"

author "Smith"

(1)

(2)

"DB"

"2005"year

book

title
"DB"

"XML"

year

Figure 2: Concept of Match DAG and original query
tree. Solid lines for normal edges (cost = 0) and
dashed lines for additional edges (cost > 0)

Tree-building The match graph is built as a di-
rected acyclic graph (DAG) for the user profiles as
shown in Figure 2. For simplicity, the mapping be-
tween the match DAG and the queries is shown only
for Query 1; all data regarding Query 2 is shown in a
lighter colour. Every term (values and structures) in
the extended query is interpreted as a graph vertex.

Figure 2 shows the original profile query (at the
bottom) which was extended using the transforma-
tions from Table 1: Solid lines between query tree
and match DAG represent normal edges, i.e., direct
copies from the query tree into the match DAG with
no additional costs. Dashed lines represent additional
edges, i.e., references created by synonymous struc-
tures (e.g., article instead of book) or values (“RDF”
instead of “XML”) as defined in the transformations
table (see Table 1). Additional edges might carry
additional costs for the filtering, e.g., as defined as
‘Insert’ in Table 1. Note that the cost values are
chosen arbitrarily. We are aware of the implications
of choosing costs, either as a requirement for the
user/administrator as well as the challenge of auto-
matic cost assignments. Here, we focus on the per-
formance issues of our approach. In our future work,
we plan to address the issues of cost functions and
quality.

Note the asterisks in the match DAG in Figure 2:
these denote possible skippings of vertices, e.g., the
structure ‘title’ or the value “XML” might be skipped
in the filtering. By default, any vertex in the match
DAG may be skipped except the root. Skipping ver-
tices may also result in additional costs. The costs
for transformations may be defined by system ad-
ministrators (who should be domain experts) or sub-
scribers.

Filtering Event messages passed into the system
are assumed to be well-formed XML documents, such
as the simple one in Figure 3. Author Smith has
named his book “Storing RDF models in Databases”,
which is a book about XML technology. The word
“XML” does not appear in the title. Conventional
publish/subscribe systems would not be able to no-
tify about the book. However, ApproXFilter supports
approximative matches and can therefore cover this
book by using the appropriate synonyms for values
and structures.

The filter algorithm parses the document sequen-
tially and traverses the match DAG in depth-first or-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

179

(14) </doc>
(13)

<doc>

 <author> Smith </author>

 <book>

 <year> 2005 </year>

 </book>
 <article>

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

 <abstract> RDF ... XML </abstract>

 <title> Storing RDF ... DB </title>

 <year> 2005 </year>
 <title> RDF ... DB ... </title>
 <author> Smith </author>

 </article>
 <comment> ... XML </comment>

Figure 3: Example document submitted to the pub-
lish/subscribe system for filtering

der. Every difference to the original query is scored
with additional costs. For simplicity, the costs are not
shown in the example DAG but only in Table 1. For
each visited node in the match DAG, the correspond-
ing costs are calculated.

The assignment of costs to each filter step and the
final computation of the costs is a non-trivial task.
Subsequently, we therefore explain the filtering algo-
rithm and its cost assignments in detail using the
example document shown in Figure 3 and the two
subscriptions defined earlier that have been processed
into the match DAG in Figure 2.

The filter starts parsing the example document
(see Figure 3) following the XML tree structure. Each
found tag is compared to the match DAG (see Fig-
ure 2). Recognizing the tag <book> in Line 2 it finds
the first matching tag in its internal match DAG (in-
troduced to the DAG by Query 1). It also finds the
term ‘article’ in the DAG as possible renaming for
‘book’ (introduced by Query 2); here we mainly con-
centrate on the matchings of Query 1. It then finds
the tag <abstract> and since this is allowed as a re-
naming of ‘title’, it follows this route. Note that the
renaming costs (4) are not yet added up but noted
in the DAG. In the next step, it compares the words
“RDF ... XML” of the abstract to the ones speci-
fied in the query for title. First, the filter detects a
match of “RDF” and notes the additional costs (7)
for this level. When continuing comparing the words,
the algorithm detects that “XML” matches the same
vertex but with no additional cost (0).

A document is successfully parsed if the profile
query (using allowed transformation) was completely
executed. An unsuccessful document could have, for
example, a mismatching root node such as CD instead
of book or article in our example. After a document is
successfully parsed, its costs are evaluated by ascend-
ing the match graph. Whenever two branches meet,
i.e., whenever a forest of subgraphs finds a common
root, the lowest branch-cost is taken as the cost to
be accumulated upwards. Therefore, the algorithm
always takes the “best sub-match” to compute the
match-quality of the parsed sub-document for a given
query.

After finishing the comparison for the abstract
and reaching the closing tag </abstract>, the al-
gorithm moves upwards in the DAG, calculating the
costs as the sum of insertions, deletions and renam-
ings (i+d+r): On the leaf level (Level 3) it computes
the minimum of the costs for “RDF” (0+0+7) and
“XML” (0+0+0) as (min(7; 0)) and decides on the
match of “XML”. On Level 2 of the DAG, the ab-
stract is now closed and the algorithm moves forward
to the next tag in the document.

Next, the two tags <author> and <year> are

processed. They do not add additional costs for
Queries 1 or 2 because both terms are matched, re-
spectively. We do not go into detail for these tags
but concentrate on the subsequent tag <title> in
Line 6. The filter algorithm follows the tag <title>
as requested in the profile and tests the title content.
As when filtering the abstract, it computes the costs
for the “RDF”. The occurrence of “DB” is consid-
ered for Query 2, but we will not go into detail for
that query. The costs for the leaf level for Query 1
are only the renaming costs for “RDF” = 0 + 0 + 7.
Moving upwards in the DAG, two branches meet on
the next level: ‘abstract’ and ‘title’. Their costs are
calculated as the sum of their individual costs and
the costs of their children resulting in 0 + 0 + 4 + (0)
for ‘abstract’ and in 0 + 0 + 0 + (7) for ‘title’. The
algorithm computes the minimum costs for Level 2
(min(4; 7)) and decides on the match of ‘abstract’
(Level 2) followed by “XML” (Level 3). On detect-
ing the close-tag </book>, the overall costs regarding
Query 1 for the book structure in the given document
are summarized as 4. The costs for Query 2 are also
calculated now.

The XML document in this example contains ref-
erences to two works, i.e., two events are published.
This is not necessarily required but it is allowed. The
filter algorithm continues parsing the document, now
concentrating on the article (starting in Line 8). By
detecting the close-tag </article>, the overall costs
regarding Query 1 for the article structure in the given
document are calculated as 4 + 7 = 11 (renaming
‘book’, renaming “XML”).

Notification A threshold should be defined by the
subscriber or a domain expert for limiting the costs
that are allowed for results regarding a given profile.
Let’s assume a threshold of 10 for our example. Doc-
uments with costs lower than the threshold are then
forwarded to the subscriber of the profile. In our case
of Query 1, the reference for the book (cost 4) is se-
lected and the reference for the article (cost 11) is
discarded. Consequently, subscriber for Query 1 will
receive a notification about Smith’s book.

4 Technical Design

In this section, we propose two alternative implemen-
tations for the ApproXFilter algorithm: a time op-
timized and a space optimized variant (in Sects. 4.1
and 4.2).

4.1 Time-optimized Algorithm

This variant of the algorithm’s implementation aims
at minimizing the time for filtering a given document.
To optimize query evaluation, a permutation of all
possible vertex compositions is created (see Figure 4).
This includes composition of missing vertices as well
as the full query structure as defined by the user’s
profile. Any vertex may be missing except the root
vertex.

Each block of boxes in the figure represents a hash
set. For each level in the graph, several hash sets can
exist. Each hash set but the root has at least one
incoming solid arrow (e.g., book and article point to
the middle hash-set). The origins of these arrows are
all on the same level, which we refer to as the ‘current
level’. So, for the middle hash-set, the current level
equals the root level. A hash-set directly below the
current level contains all combinations of terms that
can be found anywhere below the current level in the
match DAG (when starting from the points of origins
of the solid arrows). For our example, the middle
hash-set has its origins in the root node; from Figure 2

CRPIT Volume 48

180

"XML"

abstractarticle

book

"RDF"

"XML"

*

"Smith"

"Smith"

7

4 4

7

10

10

20

book
author

title "XML"

"Smith"

Query Tree:

Match DAG Implementation:

"RDF"

author

title

Figure 4: Implementation structure for time-
optimized filter algorithm. Solid lines for normal
edges (cost = 0) and dashed lines for additional edges
(cost > 0). Dotted lines for skippings of hash sets;
Costs greater zero given in circles.

Match DAG Implementation:

article

book

abstract

author

title

"RDF"

"XML"

*

"Smith"

4

4
10

20

7

book
author

title "XML"

"Smith"

Query Tree:

*

Figure 5: Implementation structure for space-
optimized filter algorithm. Solid lines for normal
edges (cost = 0) and dashed lines for additional edges
(cost > 0). Dotted lines for skippings of hash sets

we see that below the root node, 6 terms may occur.
That means, that the skipping of the title tag has
been directly encoded by offering all possibilities of
the lower levels also on this level. For this reason, the
key “XML” on the middle level carries a cost of 10.

Considering the second level as the current level,
below ‘abstract’ and ‘title’ in the match DAG, two
possible terms can occur (“RDF” or “XML”) or the
term could be skipped. The skipping has to be made
explicit here on the leaf level; the costs for skipping
are denoted as 20 as defined.

The dashed arcs in Figure 4 are references to
the profile’s vertices providing transformation costs
whereas the full arcs represent zero costs. Taking
our example from above, the arrow pointing from key
“RDF” (in the middle hash-set) is annotated with
costs for renaming “XML” to “RDF” (7).

Using the structure shown here, the time for evalu-
ating a document is O(n); the space required is O(n2)
where n is the number of vertices in the match DAG
as shown in Figure 2. The number of vertices in the
DAG could vary considerably depending on the num-
ber of profiles p and the number of terms, structures,
synonyms. A good estimate would be to assume that
n is in the same order of p.

4.2 Space-Optimized Algorithm

This version of the algorithm aims at optimizing space
consumption by using smaller data structures. As in
the time optimized version, we use hashes to repre-

sent the extended query graph. This time, no redun-
dant node entries are allowed in the structure (see
Figure 5). Therefore, each hash key is put into the
graph only once and in the exact position for repre-
senting the original profile structure. All costs are
encoded only once.

To skip nodes, we provide wildcard keys (shown as
“*” in the dotted box in Figure 5). These keys must
be traversed if no hash value matches (using transitive
traversal if necessary). For example, the arrow leav-
ing the lowest key in the middle hash-set (with key
“*”) and pointing to the right upper hash-set (i.e., the
hash set with all possible values in title) is annotated
with costs for deleting ‘title’. If also the author tag
would be allowed for deletion, the arrow would also
refer to the hash set with the possible author values.

The filter time for this variant is O(n2), where n
refers to the number of vertices. The space required
is O(n).

5 Implementation

This section describes the prototype implementation
of ApproXFilter. We briefly sketch the prototype’s
architecture as well as its modules and internal data
structures. In addition, we discuss the ApproXFilter
language and explain its use for creating a profile.

5.1 Components

The prototype of ApproXFilter is written in Java. We
use Xerxes1 for parsing XML documents. There are
three main modules in our implementation as shown
in Figure 6:

Profile Service The profile service receives and
parses the user-defined profiles that are incom-
ing via the network. It then creates an internal
data structure for storing the incoming profiles.
The profile service consists of the profile server
and the profile worker. When a connection to the
profile server is established, a new profile worker
is started. The profile processing incorporates
the following steps: worker initialization, pro-
file parsing, profile extension, profile storage, and
worker termination.
The profile worker receives and parses the incom-
ing profiles (see upper part in Figure 6). The pro-
file is added to the profile repository. The profile
queries are expressed using ApproXFilter; these
are translated into an internal profile represen-
tation. The profile server manages the list of al-
lowed transformations and their assigned costs.
Out of profiles and transformations, the profile
server creates the profile match DAG for filter-
ing the profiles.

Document Service The document server receives
and parses XML documents; it filters them ac-
cording to the users’ profiles. If profiles match,
the profile owners are notified. The central docu-
ment server dispatches the incoming documents
to (distributed) worker threads. The server pro-
cess is responsible for establishing the connection
and passing the work to a dedicated thread.
We regard the matching data structure of profiles
as relatively static2. Therefore, every document
worker obtains a local copy of the global data
structure. This copy is only updated when the
global profile match DAG changes, i.e, whenever

1http://xml.apache.org/xerces2-j
2This is a viable assumption, e.g., for digital libraries where user

profiles describe more long-lived user interests, such as research
topics and colleagues.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

181

document

service
profile

service

profile

profile
repository

worker

document
worker

profile
server

document
server

match
DAG

document

notifications

profiles

transformations
and costs

Figure 6: Components of the ApproXFilter engine
and their interactions for a set of profiles and a single
incoming XML document

the local time-stamp of the match DAG differs
from the global time-stamp due to changes by
any profile workers. The event processing incor-
porates the following steps: worker initialization,
document parsing, profile evaluation, and worker
recycling.
While traversing the incoming XML document,
the local data structure is updated with the
found vertices and values. The costs of the de-
tected vertices are calculated using local copies of
all profiles. To reduce the performance load for
updating or initialization, we use time-stamps to
detect if the vertex was matched during the cur-
rent process. If so, we recalculate the costs for
this vertex, i.e., we only update the vertex if the
new costs are less than the current ones. At last,
the complete document costs are calculated by
summarizing the costs of all vertices processed in
this sequence, i.e., affected by the current docu-
ment. If a requested vertex was not found in
the current sequence, additional costs are added.
Additional costs are calculated for insertions as
required (i.e., for vertices found in the document
that are not mentioned in the profiles). After fil-
tering the document and calculating the costs of
the document for all profiles, the costs are com-
pared to the thresholds set for the profiles. Noti-
fications are sent to those subscribers where the
document costs are lower than the profile thresh-
old.

Internal Data Structures Effective internal data
structures are important for efficient filtering. As
seen in Figure 6, a number of internal data struc-
tures are held: compact profile trees (bottom), a
match structure for filtering document structures
(left), and a content-synonym set (top). For the
structural matches, we implemented a simplified
version of the space optimized DAG; see Figure 7.
For the value synonyms (e.g., “RDF” instead of
“XML”) we use an additional content-synonym
set. For simplicity, in this proof-of-concept im-
plementation we support stricter filtering than
the two versions introduced in Section 4 (i.e.,
fewer skippings). Consequently, the algorithm
is more efficient.
For the match-DAG, we maintain a list of all ver-
tices and their synonyms and a compact profile
tree structure (see left and bottom in Figure 7).

author

book

"Smith"
author

title
"XML"

4

4

"XML"
7

"RDF"article

book

abstract

title

Figure 7: Implemented data structure for matching
profile queries; top: value renamings, left: structural
renamings, bottom: profile

Each of the vertices refers to all respective profile
vertices. For example, ‘article’ and ‘book’ both
refer to the profile term ‘book’. This structure
facilitates an efficient document parsing process.
In addition, every profile-vertex can automati-
cally detect whether it was filtered via the orig-
inal path or via a transformed one. The latter
case results in additional costs.
The profile vertices (bottom of Figure 7) store
the profile-defined values within the same ver-
tex (e.g., ‘title’ and “XML” together), and not
in a separate vertex as initially proposed in Sec-
tion 4.2. This merging of content vertices with
their parent structural vertices prevents false
positives. In our example, the profile would oth-
erwise also match documents containing “Smith”
in arbitrary vertices and not only in the ones
specified directly in profiles and by allowed trans-
formations. Renamings of values are supported
by using the additional content-synonym set
(shown in the upper part of Figure 7).

The implemented data structure requires less
space than the structure for the space-optimized al-
gorithm version (due to more densely stored profiles);
and it’s performance is between the performance of
the space-optimized and the time-optimized version.
The performance is O(m2 + p) and the space require-
ment is O(m+p) where m is the number of structural
vertices in the match DAG (i.e., structures ad their
synonyms) and p is the number of value vertices in
the match DAG (i.e., values and their synonyms).

Element Content
query lexpr
expr lexpr (AND lexpr)* -

content (AND content)*
lexpr label LPAREN expr RPAREN
label LNAME
content LITERAL
LPAREN [
RPAREN]
LNAME (‘a’..‘z’-‘A’..‘Z’)

(‘a’..‘z’-‘A’..‘Z’-‘ ’-‘0’..‘9’)
LITERAL ‘ ” ’ (∼ ‘ ” ’)* ‘”’

Table 2: ApproXFilter profile definition language

CRPIT Volume 48

182

5.2 ApproXFilter Language

As already described, we use a subset of the Ap-
proXQL query language for expressing subscriptions
in ApproXFilter. Our profile language defines a tree-
shaped query string. In our current implementation,
we only support conjunctive expressions. The lan-
guage components used in our implementation are
shown in Table 2 as the abstract syntax tree that we
used for creating the profile parser using ANTLR 3.

Every profile query consists at least of a labelled
expression, “lexpr”, having a expression “expr”,
which is a “content” element. Labels define struc-
tural filters, where the label name may consists of any
combination of alphanumeric values (see LNAME).
“Content” refers to value filters, where a value may
be any string enclosed in inverted commas without
containing the inverted commas itself (LITERAL).

Translated into our graph profile representation,
this describes a single vertex with some content. The
query language supports the specification of query
strings in which at least one vertex‘s content-element
has to be specified, whereas the parent vertices may
be described as simple containers. That is, at least
one value filter has to be defined; an arbitrary number
of structural filters is allowed.

6 Evaluation of ApproXFilter

In this section, we present the results of the evaluation
of our implementation of the ApproXFilter algorithm.
We performed functional and quantitative analyses,
which are discussed the next two sections.

It is beyond the scope of this paper to reason
about the quality of the filter results using struc-
tural and/or term-based synonyms; this would reach
far into a discussion of IR methodologies and cri-
teria. Therefore, we like to refer instead to simi-
lar work done for approximative querying on XML:
the quality of the results is the same, since only the
filter direction is changed (documents on profiles vs
queries on documents). For an extensive discussion
see (Schlieder 2003).

The quantitative tests have been performed on a
local installation. For a distributed approach, we refer
to the multitude of literature for routing algorithms
for publish/subscribe, which could be applied here,
such as the profile and event forwarding strategies
proposed in (Carzaniga 1998).

6.1 Functional Analysis

The functional analysis evaluated the influence of the
use of renamings and skippings on the size of the re-
sult set. In the first version of the evaluation, the
match-DAG was build using the original profiles as
defined by the users. In the second version, the pro-
files were extended using the mentioned transforma-
tions.

We tested with a cost-setting for structural con-
servation, i.e., structural changes cause higher costs
then value changes. The costs for this test were de-
fined as follows: skip structure – 15, skip value – 5,
rename – 1, insertions – 0. Note that these values are
arbitrarily chosen and variable. The results for the fil-
tering of a selection of 50 test documents (using both
test versions) are shown in Figure 8. The document
IDs appear on the x-axis; the percentage of matched
profiles for each document is shown on the y-axis.

The solid boxes represent the proportion of
matched profiles for a certain document without
transformations. The patterned boxes show the
match benefit due to the use of transformations, i.e.,

3http://www.antlr.org/doc/index.html

Figure 8: Functional evaluation of the ApproXFilter
prototype, matchings with and without transforma-
tions

the patterned boxes show the added percentage of
matched documents based on transformations. Most
documents find more matches after profile transfor-
mations. Thus, more users are notified about these
documents.4

Note that some documents are not matched by
any profiles when evaluated strictly, but are matched
when approximate matches are allowed (e.g., Docu-
ments 15 – 17). These documents originally do not
trigger any notifications. On the other hand, for some
documents the results are not affected by filter trans-
formations, such as Documents 1 – 3. This means
that the similarity between these documents and the
profiles was not changed by extending the profiles.
Some documents are not matched at all (Documents
37 – 41). For these documents, the similarity be-
tween the documents and original profile queries is
extremely low, and no similarity is gained by ex-
tending the profiles. The algorithms output matched
the profile specifications (for details see (Michel &
Hinze 2005)). The results of the functional analysis
show that the algorithm works as designed: increas-
ing the number of profile matches using approximate
filtering.

6.2 Quantitative Analysis

The quantitative analysis evaluates the influence of
varying profile numbers on the performance and the
space requirements of the algorithm. We present here
initial results from a series of tests run on ApproXFil-
ter. This information will assist comparison of later
implementations of approximative XML filtering en-
gines.

The test setting used here was similar to that in
the qualitative test as described above. For every set
of profiles tested, 1000 unique documents were cre-
ated and filtered. Figure 9 shows both the space us-
age and performance of our implemented prototype.
The left hand side of the figure shows a scale for the
time and the right hand side a scale for the space. As
argued in Section 5, the space requirement directly
depends on the number of vertices in the match DAG.
For our test setting, that means that it directly de-
pends on the number of profiles.

For each profile set, we show the mean value for
the filter time for one document. The maximum and
minimum values indicated show the variation between
documents. Note that the variations are stronger for
small profile sets. This is due to the stronger influ-
ence of single terms on the the filter outcome: both

4The stepwise pattern in the results is due to the selection of
documents and not inherent to the algorithm.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

183

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000
 0

 50

 100

 150

 200

 250

 300

 350

tim
e

[m
se

c]

sp
ac

e
[M

B
]

profile count

time for profile evaluation
space for internal data structures

Figure 9: Quantitative evaluation of the ApproXFil-
ter prototype, performance and space requirements
depending on number of profiles

documents’ structures and profile queries interact to
determine the time taken for a filter on one document.
Larger samples dampen the effect of this variation.

The performance-related results shown in Figure 9
support our theoretical hypothesis that the algo-
rithm’s performance is related to the square of the
number of structural vertices.

7 Related Work

Research that is directly related to our approach has
been discussed in Section 2. In this section, we look at
areas of research that are related but complementary
to our work. These areas are flexible queries for semi-
structured data, information-retrieval extensions for
XML query languages, and filter algorithms for XML
documents.

The problem of similarity between keyword queries
and text documents has been investigated in informa-
tion retrieval (Baeza-Yates & B.Ribeiro-Neto 1999).
We believe, these models cannot be directly applied
to XML documents, since they (1) mostly ignore the
structure of XML documents and may therefore lower
the retrieval precision, and (2) use models based on
term distribution that are of little use for data-centric
XML documents. For a discussion of these aspects,
see (Fuhr, Lalmas, Malik & Szlavik 2005).

As discussed in Section 2, XML query languages
incorporate the document structure and are there-
fore well suited for applications that query and trans-
form XML documents (Bonifati & Ceri 2000). Al-
most all query languages for XML support regu-
lar path expressions, which allow to specify alter-
native paths through the data graph and to skip
certain subgraphs. Although regular path expres-
sions give some additional flexibility, they also re-
quire a considerable knowledge about the data. The
user must at least know that some subgraphs must
be skipped, that alternative paths exist, and how
they look like. Consequently, the user needs sub-
stantial knowledge of the data structure to for-
mulate queries. XML query languages that sup-
port result ranking are XXL (Theobald & Weikum
2002), ELIXIR (Chinenyanga & N.Kushmerick
2002), XIRQL (Fuhr & Großjohann 2000), Ap-
proXQL (Schlieder 2003).

For event notification systems, we distinguish
event centered approaches from document-centered
approaches. An example for an event-centered sys-
tem is A-mediAS (Hinze 2003). In document-centered
systems, the events are the publication of a new doc-
ument. Some publish/subscribe systems use XML-
encoded the documents, e.g., NiagaraCQ (Chen et al.

2000) and XFilter (Altinel & Franklin 2000). Pro-
files are expressed using XML query languages such as
XML-QL or Xpath. None of these systems supports
approximative filtering of XML documents based on
similarity measures.

To the best of our knowledge, the only pub-
lish/subscribe system addressing approximate match-
ings is A-ToPSS (Liu & Jacobsen 2002). Its approach
is in sharp contrast to our own. A-ToPSS supports
approximate matching for attribute-values pairs us-
ing probabilistic measures for both documents and
profiles. For each attribute, a possibility distribution
may be used to express the confidence that the at-
tribute has a given value. This approach is funda-
mentally different to the one proposed in this paper.
We believe it would be of only limited suitability for
text-centered structures; the definition for probability
distributions for texts is questionable; it would need
substantial knowledge and would unnecessarily bur-
den the users. This approach would map particularly
poorly onto XML documents, e.g., because structural
changes are not supported and the system works on
numerical values only.

8 Discussion and Future Work

Recent publish/subscribe systems increasingly focus
on documents send in XML format; subscribers to
these systems have to be familiar with the underlying
XML format to create meaningful subscriptions. In
this paper, we proposed the use of an approximative
language for subscriptions.

We introduced the design our ApproXFilter
algorithm for approximative filtering in a pub-
lish/subscribe system. We discussed two implemen-
tation variations that optimized the space usage and
the filter performance, respectively. We implemented
a proof of concept ApproXFilter prototype that we
subjected to qualitative and quantitative testing. The
results of our analyses have shown the effectiveness of
our approach. To the best of our knowledge, no other
filter algorithm for approximative filtering of XML
documents exists.

Having proven the concept of approximative filter-
ing, we have a number of open challenges to address:
The definition of cost values is a non-trivial problem.
Although there are only five cost-related parameters
in our prototype, the adjustments have to be done
very carefully. The importance of a missing term de-
pends on the filter application. Using low structure-
costs results in a more content-based filtering, while
lowering the value-cost parameters will result in a
more structural filter. We plan to explore the use
of user relevance feedback to adjust the costs. A sim-
ilar dependence on the application domain exists for
the definition of synonyms. For this, we would like to
explore the use of domain ontologies and personalised
ontologies.

One of the next steps will be an extension of our
prototype to also support disjunctions. We plan to
further analyse and refine the proposed algorithms.
In the future, we would like to explore how ApproX-
Filter could be used in the context of digital library
software (internally using XML document represen-
tations). It would also be worthwhile to explore a
combination of ApproXQL with the Lucene search en-
gine5 for querying XML documents with subsequent
ongoing filtering queries using the ApproXFilter al-
gorithm.

5http://jakarta.apache.org/lucene/docs/index.html

CRPIT Volume 48

184

References

Altinel, M. & Franklin, M. (2000), Efficient filtering
of XML documents for selective dissemination
of information, in ‘Proceedings of International
Conference on Very Large Data Bases (VLDB
’00)’, Cairo, Egypt.

Baeza-Yates, R. & B.Ribeiro-Neto (1999), Modern In-
formation Retrieval, Addison-Wesley.

Bonifati, A. & Ceri, S. (2000), ‘Comparative analy-
sis of 5 XML query languages’, SIGMOD Record
29(1), 68–79.

Carzaniga, A. (1998), Architectures for an Event
Notification Service Scalable to Wide-area Net-
works, PhD thesis, Politecnico di Milano, Mi-
lano, Italy.

Chen, J., DeWitt, D., Tian, F. & Wang, Y. (2000),
NiagaraCQ: A scalable continuous query system
for internet databases, in ‘Proceedings of ACM
SIGMOD’, Dallas, Texas.

Chinenyanga, T. & N.Kushmerick (2002), ‘An expres-
sive and efficient language for XML information
retrieval’, JASIST 53(6), 438–453.

Fuhr, N. & Großjohann, K. (2000), XIRQL: An exten-
sion of XQL for Information Retrieval, in ‘Pro-
ceedings of ACM SIGIR Workshop On XML and
Information Retrieval’, Athens, Greece.

Fuhr, N., Lalmas, M., Malik, S. & Szlavik, Z., eds
(2005), Advances in XML Information Retrieval:
Third International Workshop of the Initiative
for the Evaluation of XML Retrieval, INEX
2004, Germany, December 6-8, 2004, Vol. 3493
of LNCS.

Gordon, A. S. & Domeshek, E. A. (1998), Deja Vu: a
knowledge-rich interface for retrieval in digital li-
braries, in ‘Proceedings of 3rd International Con-
ference on Intelligent User Interfaces (IUI ’98)’,
San Francisco, California, United States.

Hinze, A. (2003), A-MEDIAS: Concept and Design of
an Adaptive Integrating Event Notification Ser-
vice, PhD thesis, Freie Universität Berlin.

Liu, H. & Jacobsen, H.-A. (2002), A-topss - a pub-
lish/subscribe system supporting approximate
matching, in ‘Proceedings of International Con-
ference on Very Large Data Bases (VLDB’02)’,
Hong Kong, China.

Liu, L., Pu, C. & Tang, W. (1999), ‘Continual queries
for internet scale event-driven information deliv-
ery’, IEEE Tranactions on Knowledge and Data
Engineering 11(4), 610–628. Special issue on
Web Technologies.

Michel, Y. & Hinze, A. (2005), ApproxFilter - an Ap-
proximative XML-based Filter Engine, Techni-
cal Report CS-06/2005, University of Waikato,
New Zealand.

Rao, R., Pedersen, J. O., Hearst, M. A., Mackinlay,
J. D., Card, S. K., Masinter, L., Halvorsen, P.-K.
& Robertson, G. G. (1995), ‘Rich interaction in
the digital library’, Communications of the ACM
38(4), 29–39.

Salton, G. (1968), Automatic Information Organiza-
tion and Retrieval, McGraw-Hill, New York.

Schlieder, T. (2003), Fast Similarity Search in XML
Data, PhD thesis, Freie Universität Berlin.

Theobald, A. & Weikum, G. (2002), The index-based
XXL search engine for querying XML data with
relevance ranking, in ‘Proceedings of Advances
in Database Technology (EDBT ’2002)’, Prague,
Czech Republic.

Yan, T. W. & Garćıa-Molina, H. (1995), SIFT -
a tool for wide-area information dissemination,
in ‘Proceedings of the USENIX’1995’, New Or-
leans, Louisiana, USA.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

185

CRPIT Volume 48

186

Manufacturing Opaque Predicates in Distributed Systems for Code
Obfuscation

Anirban Majumdar Clark Thomborson

Secure Systems Group, Department of Computer Science
The University of Auckland,

Private Bag 92019, Auckland, New Zealand.
Email: {anirban|cthombor}@cs.auckland.ac.nz

Abstract

Code obfuscation is a relatively new technique of soft-
ware protection and it works by deterring reverse
engineering attempts by malicious users of software.
The objective of obfuscation is to make the logic em-
bedded in code incomprehensible to automated pro-
gram analysis tools used by adversaries. Opaque
predicates act as tool for obfuscating control flow
logic embedded within code. In this position paper,
we address the problem of control-flow code obfusca-
tion of processes executing in distributed computing
environments by proposing a novel method of com-
bining the open problems of distributed global state
detection with a well-known hard combinatorial prob-
lem to manufacture opaque predicates. We name this
class of new opaque predicates as distributed opaque
predicates. We demonstrate our approach with an
illustration and provide an extensive security analy-
sis of code obfuscated with distributed opaque predi-
cates. We show that our class of opaque predicates
is capable of withstanding most known forms of au-
tomated static analysis attacks and a restricted class
of dynamic analysis attack that could be mounted by
adversaries.

Keywords: Code obfuscation, opaque predicates,
distributed predicate detection, software protection, mo-
bile code protection, and distributed systems security.

1 Introduction

Software obfuscation is a protection technique for
making code unintelligible to automated program
comprehension and analysis tools. It works by per-
forming semantic preserving transformations such
that the difficulty of automatically extracting com-
putational logic out of the code is increased. The
first formal definition of obfuscation was given by
Barak et al. (2001) where an obfuscator was defined
in terms of a compiler that takes a program as in-
put and produces an obfuscated program as output.
Two important conditions that need to be preserved
while making this transformation are (a) functional-
ity: the obfuscated program should have the same
functionality (input/output behaviour) as the input
program, and (b) unintelligibility: the obfuscated pro-
gram should be unintelligible to the adversary in some
sense. Barak et al. defined an obfuscation method as
a failure if there exists at least one program that can-
not be completely obfuscated by this method, that is,

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

if any adversary could learn something from an ex-
amination of the obfuscated version of this program
that cannot be learned (in roughly the same amount
of time) by merely executing this program repeatedly.
Their negative result established that every obfusca-
tor will fail to completely obfuscate some programs.

Since Barak’s landmark paper on the impossibility
of obfuscation, focus has shifted to finding obfuscat-
ing transforms that are difficult (but not necessarily
impossible) for an adversary to reverse engineer. The
goal of such research is to find sufficiently difficult
transforms such that the resources required for undo-
ing them are too expensive to be worth the while of
adversaries. Following this line of research, we pro-
pose in this contribution, an obfuscation technique
derived from the combination of an instance of a hard
combinatorial problem and the difficult problem of
global state detection in distributed systems.

Depending on the size of software and the com-
plexity of transforms, a human adversary may find
the obfuscated code difficult to comprehend. How-
ever, as Thomborson et al. (2004) noted, software
that is simple and manageable enough to be com-
pletely analysed by human adversaries could presum-
ably be redeveloped from scratch by attackers at rea-
sonable cost. It is up to the software developer to
decide against using complicated obfuscation trans-
forms that might overwhelm the performance of his
simple efficient software. We will not address issues
related to performance/security tradeoffs in this con-
tribution; nevertheless, the purpose of making such
observation at the beginning of this paper is to jus-
tify the focus of this paper on an obfuscation method
that increases the difficulty of analysing complex pro-
grams.

Distributed computing obfuscation could be use-
ful in a number of practical scenarios where it is nec-
essary to maintain code confidentiality. In the first
example, consider a distributed electronic commerce
bidding scenario where the bidders download seller’s
code for bidding. The seller’s code may contain priv-
ileged information such as reserve price and priori-
tized selection list of bidders (such as frequent bid-
ders may have higher rating than first time bidders).
The seller would like to keep such information con-
fidential to the bidders, especially when their pro-
grams are executing on hosts owned by bidders, at
least for the duration of the auction. Code obfusca-
tion would serve as an appropriate tool in achieving
this objective. Secondly, consider a grid computing
scenario, like the SETI@home (2005) setup, where
scientific computation codes are downloaded on un-
trusted personal computers connected to the global
network of loosely-coupled machines. These machines
are owned by users willing to contribute a portion of
their machine’s processing power and time for helping
the project compute a section of its scientific result
by executing the downloaded code. Here too, it may

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

187

Adversary decides on a

strategy

Spying out

code/control

flow

Manipulation

of code/

control flow

Masquerading

of host

Denial of

execution

Incorrect

execution of

code

Returning

wrong results

of system

calls

Opaque predicates

prevent this branch

of attacks

Figure 1: The attack tree. The class of attacks marked
with the dotted oval are specifically addressed by
control-flow obfuscation using opaque predicates.

be desirable that scientific computation logic be kept
obscure to the owner of the host. Lastly, distributed
obfuscation would be most useful in hiding watermark
construction code (Palsberg et al. 2000, Nagra &
Thomborson 2004) which are used for proving own-
ership of software. Note that ownership proofs are
most important during the economic lifetime of the
software product. In all three scenarios, obfuscation
need not be perfect in the sense of Barak. Instead,
obfuscation is useful if it delays the release of confi-
dential information for a sufficiently long time (Hohl
1998). Secondly, any obfuscation technique would in-
crease the confidence of the code-sender, but might
decrease the confidence of a code-executer because it
would make it harder to understand what the code is
doing.

Control-flow obfuscation by means of opaque pred-
icates was introduced by Collberg et al. (1998). An
opaque predicate is a construct with true/false out-
come. The opaqueness property of predicates is at-
tributed by the fact that though their outcome is
known at obfuscation time, it is hard for a deobfusca-
tor to deduce from automated program analysis trace.
These constructs are specifically useful for addressing
attacks originating out of spying the control-flow as
illustrated in the attack tree of Figure 1. This branch
confidentiality is achieved by obscuring the real con-
trol flow of behaviours behind irrelevant statements
that do not contribute to the actual computations.
An adversary with no semantic understanding of cor-
rect control-flow of the code will also find it hard to
do purposeful manipulation of the code.

The rest of the paper is structured as follows: In
section 2, we introduce notation for discussing dis-
tributed opaque predicates. Section 3 illustrates with
an example how distributed opaque predicates could
be constructed in distributed systems. In section 4,
we present a security analysis of our technique. We
conclude our paper with a summary and discussion
of future work in section 5.

2 The concept of distributed opaque predi-
cates and global states in distributed sys-
tems

We define a distributed opaque predicate (Φ) as an
opaque predicate which depends on local states of
multiple processes spread across the distributed sys-
tem for its evaluation. The activity of each process is
modeled as execution of a sequence of events. Com-

munication in distributed systems is accomplished
through the communication primitive events send(m)
and receive(m), where m denotes the message. In
asynchronous message-passing systems, information
may flow from one event to another either because
the two events belong to the same process, and thus
may access the same local state, or because the two
events are of different processes and they correspond
to the exchange of a message.

Without a global clock, events can be ordered only
based on the notion of causality which states that
two events are constrained to occur in a certain or-
der only if the occurrence of the first may affect the
outcome of the second. In distributed systems, we
use a happened-before relation, → between states to
denote this causality (Lamport 1978). The happened-
before relation can be formally stated as: a → b if and
only if: a occurs before b in the same process or the
action following a is a send of a message and the ac-
tion preceding b is a receive of that message. Two
states for which the happened-before relation does
not hold in either direction are said to be concurrent.
The concurrency relation ‖, can be formally stated
as: a ‖ b ⇒ (a 6→ b ∧ b 6→ a). A set of states is called
a consistent cut if all states are pairwise concurrent.

Palsberg et al. (2000) defined the concept of dy-
namic opaque predicates as a possible improvement
over static opaque predicates defined originally by
Collberg et al. (1998). Their dynamic opaque pred-
icates were constant over a single program run but
varied over different program runs. We extend their
concept of dynamic opaque predicates by designing
distributed opaque predicates to be temporally unsta-
ble. A temporally unstable distributed opaque predi-
cate can be evaluated at multiple times at different
program points (t1, t2, ...) during a single program
execution such that the values (v1, v2, ...) observed
to be taken by this predicate are not identical, that
is, there exists i, j such that vi 6= vj . There are a
couple of advantages of making distributed opaque
predicates temporally unstable. The first one con-
cerns its reusability; one predicate can be reused
multiple times to obfuscate different control flows.
The second one relates to its resilience against static
analysis attacks. As will be explained later in de-
tails, distributed opaque predicate values (vi) depend
on predetermined embedded message communication
pattern between different processes participating in
maintaining the opaque predicate. The communica-
tion pattern serves as an invariant for maintaining the
consistency of local states updates and these in turn
make the predicate go true or false at desired program
locations. It is hard for the attacker to statically de-
duce predicate values because this pattern is:

• distributed over the processes.

• generated on-the-fly only when processes exe-
cute.

Structurally, we design distributed opaque predi-
cates to be relational in nature and of the form:

Φ : [(a + b + c + . . . + n) < K]

where (a, b, c, . . . , n) are integers whose values are set
by individual processes (this forms the local state of
the process, as explained in the next section), < de-
notes an equality (inequality) operator such as ‘=’
(‘!=’) and K is a constant. Opaque predicates that
are structurally relational are stealthy in the follow-
ing sense: an adversary who discovers a relational
construct in a program cannot conclude with abso-
lute certainty that it is a distributed opaque pred-
icate since common conditional constructs appear-
ing in programs are often relational in nature. But

CRPIT Volume 48

188

the most important purpose of making distributed
opaque predicates structurally relational lies in the
difficulty of detecting this class of predicates in the
context of distributed global state monitoring. Re-
lational predicates cannot be written as a Boolean
expression of local predicates and therefore presents
foremost difficulty in distributed global state detec-
tion (Chase & Garg 1995). Our rationale will be fur-
ther clarified in section 4, where we provide a full
security analysis for our class of distributed opaque
predicates. A detailed discussion on the difficulty
of distributed global state monitoring is outside the
scope of this contribution and the reader is encour-
aged to see Chase & Garg (1995) and the references
contained therein.

In the next section, we will illustrate how dis-
tributed opaque predicates can be generated from
an instance of a hard combinatorial problem in dis-
tributed systems. An obfuscator will automatically
embed distributed opaque predicates in a distributed
systems program and insert send/receive primitives
for generating a predetermined communication invari-
ant. The communication invariant, in turn, maintains
the consistency of local states, that is, the value of
each component in the predicate (Φ) so that the pred-
icate holds true (ΦT) or false (ΦF) at predetermined
control-flows decided by the obfuscator and we will
argue that to an attacker, predicate value at every
obfuscated control-flow seems unknown (Φ?).

3 Generation of distributed opaque predi-
cates for distributed systems

We present here different design issues an obfuscator
needs to deal with and a step-by-step approach for
generating distributed opaque predicates in the con-
text of distributed computing obfuscation.

3.1 Selecting/spawning guard processes

Let us assume that a distributed computing system
consisting of a set of n inter-communicating processes,
denoted by {P1, P2, P3, ..., Pn}, executes on multiple
heterogeneous hosts. Assuming that the control-flow
of process P1 is to be obfuscated using distributed
opaque predicates, the obfuscator selects or spawns a
certain number of guard processes to aid in the ob-
fuscation of P1. Since processes in distributed sys-
tems typically collaborate through message exchanges
to achieve a particular task, the set of guards could
be those processes P1 frequently communicates with.
The actual number of guards employed in the ob-
fuscation of a single process may depend dynami-
cally on the availability of processes. However, the
obfuscator may spawn dummy processes to serve as
guards if there are not enough processes in the sys-
tem to do this task. The basic idea is to distribute
the local states formed in the construction of dis-
tributed opaque predicate in P1 amongst the guards
and embed a communication pattern in the form of
send/receive calls that will update respective local
states of processes to previously known values. The
local state update rules and communication pattern
embedding are described in the following subsections.

We illustrate the process interaction architecture
in Figure 2. For the demonstration to follow, we have
selected two processes, P2 and P3, to serve as guards
for P1. Local state for each process i is denoted by
the variable pi.v. P1 could, in turn, serve as a guard
process for helping in obfuscating any other process
within the system but we have excluded that possi-
bility for the sake of keeping this illustration simple.

Guard P2
Local State

p2.v

Guard P3
Local State

p3.v
Process P1
Local State

p1.v

send/receive

send/receive

send/receive

Figure 2: The protected process P1 with local state
p1.v and two guards P2 and P3 with local states p2.v
and p3.v respectively.

11

9

18 2

12 5

17 19

4 7

1

33

p1.v p2.v
p3.v

Figure 3: The doubly circular linked-list configura-
tions of P1, P2 and P3 initialised with elements from
set S. Each copy of the list is also initialised with an
initial pointer location (p1.v, p2.v, or p3.v) respective
to the process it is sent.

3.2 Adapting a Knapsack problem instance
for distributed computing obfuscation

We now consider an instance of a hard combinatorial
problem called Knapsack problem (Garey & Johnson
1979) and show that it can be adapted for manufac-
turing distributed opaque predicates. The original
0/1-Knapsack problem can be stated as follows:

Given a set S = {a1, a2, . . . , an} of positive inte-

gers and a sum T =
n∑

i=1

xiai where each xi ∈ {0, 1},
find xi. This decision problem has been shown to
be NP-complete. In adapting this problem for man-
ufacturing distributed opaque predicate, the obfusca-
tor selects the set S of positive integers and xi’s ac-
cording to some predetermined sum T . An adversary
through careful static analysis and reverse engineering
may come to learn about set S and sum T . However,
given an arbitrarily large set, the hard problem for
him is to not only decide if a solution vector x exists
but to also to determine the vector at precisely the
program points (t1, t2, ...) where distributed opaque
predicates are used to obscure the control-flow of P1.
This is hard since the distributed opaque predicates
are constructed from local states (the values range
in set S) of guard processes and P1 and local states
dynamically change depending on the interaction pat-
tern between processes. This underlying concept will
gradually evolve as we describe our methodology.

For our illustration, we select an arbitrary set as:

S = {11, 9, 18, 2, 12, 5, 17, 19, 4, 7, 1, 33}
After dynamically selecting/spawning the guards,
process P1 and the guards are each initialised by pass-
ing a dynamic data structure, such as a doubly circu-
lar linked-list, initialised with the elements of the set
S. This is illustrated in Figure 3.

In addition to initialising the linked lists with el-
ements of set S, each copy is also initialised with an
initial pointer location respective to the process the

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

189

list is sent. Node values corresponding to the pointer
locations form the local state of that particular pro-
cess. For our illustration with three processes, the
list is initialised with three pointers: p1.v for P1, p2.v
for P2, and p3.v for process P3. Messages are ex-
changed between the guards {P2, P3} and P1 accord-
ing to an embedded communication pattern. Gener-
ation of this predetermined communication pattern
will be discussed shortly. Considering an arbitrary
sum for our illustration as T = 27, the corresponding
solution vector x for the sum T is:

x = {0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0}
For our three process illustration, this solution vec-

tor corresponds to p1.v = 18, p2.v = 5, and p3.v = 4.
The distributed opaque predicate (Φ) thus formed in
this case would be:

Φ : p1.v + p2.v + p2.v = 27

In the following subsections, we will explain how to
coordinate the local state update values between pro-
cesses by controlling their interaction pattern such
that Φ is satisfied at precisely the program points
where the obfuscator decides. We note that there
could be other possible solution vectors for set S and a
similar approach for constructing distributed opaque
predicates could be used with different sets of guards
and the same sum T .

3.3 Defining the local state update rules

The local state update rules defined on inter-process
message communication events are defined as follows:

receive(m) =⇒ pointer shifted right of the
current node

send(m) =⇒ pointer shifted left of the
current node

Thus, if the local state of P1, defined by p1.v, is 9
at a certain point in P1’s execution and if P1 receives
a message, the local state will change to 18. Simi-
larly, if P1 sends a message, the local state changes
to 11. Since the distributed opaque predicate is con-
structed by composing the local states of individual
processes and each local state value (corresponding to
the pointer location) fluctuates when processes send
or receive messages, the predicate will alternate be-
tween true/false outcomes throughout the run.

3.4 Selection of communication pattern and
message types

As stated earlier, local state update of individual pro-
cesses take place according to an embedded invariant
communication pattern. This predetermined pattern
is generated when the embedded send/receive calls
in processes P1, P2, and P3 get executed. The calls
could be embedded by the obfuscator by tracing
and annotating the processes with send/receive
primitives, much in the same way dynamic water-
marking algorithms annotate programs for inserting
watermark building code (Nagra & Thomborson
2004). However, there are a couple of problems with
adopting this approach for embedding the communi-
cation pattern. First of all, embedded send/receive
calls will generate an arbitrary pattern for each
run of the program unless they are controlled in
some way. Secondly, because of the nondeterminism
and latency associated with asynchronous message
passing, there is no guarantee of causal delivery
of messages. Thus, we have to ensure message
exchanges satisfy FIFO (First-in-first-out) delivery.

This delivery order ensures for all messages m and m′:

sendi(m) → sendi(m′) ⇒ deliverj(m) → deliverj(m′)

In distributed systems, the notion of global clock
is absent. We propose using vector clocks (Mattern
1989) for solving these two problems. Using vector
clock, event orderings based on increasing clock val-
ues are guaranteed to be consistent with causal prece-
dence. Before going into a detailed discussion on its
usage for constructing the predetermined communi-
cation pattern, we briefly provide a general overview
of vector clocks.

Vector clock of a system of n processes is an array
of n logical clocks, one per process. A local copy of the
vector clock is kept in each process Pi, contributing a
local state in the construction of distributed opaque
predicate. A notation of V Cb

i [i] denotes the logical
clock value of Pi at send/receive event b. V Cb

i [j] de-
notes the time V Ca

j [j] of last event a at Pj that is
known to have happened before its local event b. The
vector clock algorithm update rules could be specified
as:
• If a and b are successive events in Pi, then

V Cb
i [i] = V Ca

i [i] + 1.

• Also, if b denotes receive(m) by Pi with
a vector timestamp tm, then V Cb

i [k] =
max{V Ca

i [k], tm[k]}, for all k 6= i.
Three obfuscation-specific message classes are

used for message exchanges between process P1 and
the guards P2 and P3. These message classes help in
maintaining consistency of vector clock values and lo-
cal state updates. Each class is identified by a special
tag. The first class is identified by the tag SYSTEM.
Messages of this class may originate in either P1, P2 or
P3 and carry vector timestamp in them. Also, when a
process participates in a send/receive event of SYSTEM
type messages, it updates its vector clock and local
state according to the state update rules specified in
the previous subsection. The second class, REQUEST,
type message may only originate at P1 since it is used
to request local state values for the guards. This class
also carries vector timestamp and causes vector clock
updates but does not cause any change in local state
when received by the guards. The third type of mes-
sage is identified by tag RESPONSE. This type is identi-
cal to the second class of messages with the exception
that these originate at guards and are received by P1.
RESPONSE messages are used by guards to send lo-
cal state values back to P1 against incoming REQUEST
messages.

An example of predetermined communication pat-
tern is illustrated with processes P1, P2, and P3 in the
event-time diagram of Figure 4. An event-time dia-
gram maps each event against time and state changes
are effected by exchange of messages. The embedded
send/receive calls in processes P1, P2, and P3 generate
this communication pattern. The vector clock value
for each participating process is indicated within the
square brackets and the value of local state is indi-
cated in variable pi.v, where i denotes the process
number. Thick arrows in the figure denote SYSTEM
type messages. Thin arrows denote REQUEST type
messages and dashed arrows represent RESPONSE type
messages.

As evident from Figure 4, asynchrony of message
passing induces concurrency within the system. Be-
cause of this concurrency, an adversary will find it
difficult to monitor local state changes occurring be-
tween the processes from outside and determine if dis-
tributed opaque predicate (Φ) is satisfied at a partic-
ular program location in a particular run. Along the

CRPIT Volume 48

190

[0,0,1]

[0,1,0]

[1,1,0]

P2
p2.v = 5

p3.v = 7

p2.v = 5

CUT 1

P3

P1
F ?

p2.v = 12 p2.v = 17

p3.v = 4

p1.v = 9 p1.v = 18

F

p1.v = 9

[2,1,0] [3,1,0]

[0,2,1] [2,3,1][2,4,1]

[4,4,1]

[3,1,2] [3,1,3]

[10,7,5][6,4,3]

[6,5,3]

[7,4,3]

[7,6,3]

[8,4,3]

[8,4,4]

[7,7,3]

[9,7,3][5,4,3]

[8,4,5]

Figure 4: The invariant in the form of a predetermined nondeterministic communication pattern is embedded
by the obfuscator into P1, P2 and P3. The update pattern of local states can be traced from Figure 3. Thick
arrows denote SYSTEM type messages, thin arrows denote REQUEST type messages, and dashed arrows denote
RESPONSE type messages.

timeline of process P1, we have labeled the value of
predicate (Φ) between two successive events distin-
guished by vector clock values. A (ΦT) label implies
that the predicate is guaranteed to hold true within
that event interval (successive events) for that partic-
ular run. Similarly, (ΦF) implies that the predicate
is guaranteed to be false within that interval for that
particular run. A label denoted by (Φ?) along the
timeline implies that the predicate value is unknown
since Φ is not guaranteed to hold.

Moreover, in Figure 4, it seems that (Φ) would
be satisfied at CUT1 since the local states p1.v = 18,
p2.v = 5, p3.v = 4 add up to 27. However, note that
there is no guarantee of Φ being satisfied at CUT1.
This guarantee cannot be made because of the fol-
lowing two special cases that could arise out of non-
determinism:

3.4.1 No guarantee on message delivery or-
der

Consider the case from Figure 4 where the message
(henceforth referred to as message a) originating from
P3 at vector clock value [0, 0, 1] reaches before the
message (henceforth referred to as message b) origi-
nating at vector clock value [0, 1, 0] of P2 is sent by
process P2. This situation is depicted in Figure 5.

When message a reaches guard process P2, the
vector clock value changes to [0, 1, 1] and P2’s local
state, p2.v, changes from 5 to 17 (refer to Figure 3).
Guard process P3’s local state, p3.v, changes from 7
to 5. However, after P2 sends message b at vector
clock [0, 2, 1], its local state reverts to 5. When the
probe messages (REQUEST) are sent by P1 after the
vector clock state [1, 2, 1], the local state values re-
turned from processes P2 and P3 are p2.v = 5 and
p3.v = 4 respectively. By the time the probe mes-
sages are sent to P2 and P3, process P1 has already
changed its local state value, p1.v, to 18. The local
state values of processes P1, P2, and P3 add up to 27
and the distributed opaque predicate (Φ) is satisfied
at CUT1.

3.4.2 No guarantee on message delivery

Now consider the case where after the first receive
of message b at [1, 1, 0] by process P1, it cannot be

b

a

[0,0,1]

[0,1,1]

[1,2,1]

P2
p2.v = 5

p3.v = 7

p2.v = 5

P3

P1
F

p2.v = 17

p3.v = 4

p1.v = 9
p1.v = 18

[0,2,1]

Figure 5: No guarantee on message delivery order.
Messages a and b are swapped and (Φ) is satisfied at
CUT1.

guaranteed that the message a from guard process P3
originating at [0, 0, 1] has reached guard process P2.
This guarantee cannot be made because of the nonde-
terministic nature of asynchronous message-passing.
This situation is depicted in Figure 6.

As seen from the figure, since guard process P2
changes its local state to p2.v = 12, the local state
values of processes P1, P2, and P3 do not add up to 27.
Consequently, the distributed opaque predicate (Φ) is
not satisfied at CUT1. In yet another specialization of
this case, message b may reach process P1 even before
message a originates from guard process P3. In this
case, guard process P3 will maintain its local state
value at p3.v = 7. Thus, the predicate value will also
not be satisfied in this case since the sum of the local
state values of processes does not add up to 27.

Thus, we can generally observe, from the non-
deterministic communication pattern of Figure 4,
that while designing the communication invariant,
crossover message-passing patterns will cause nonde-
terminism within the system and this property could
be utilized by the obfuscator to confuse attackers into
falsely believing that a distributed opaque predicate
will be guaranteed to hold true or false at a particular

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

191

b

a

[0,0,1]

[0,1,0]

[1,1,0]

P2
p2.v = 5

p3.v = 7
P3

P1
F

p2.v = 12

p3.v = 4

p1.v = 9
p1.v = 18

Figure 6: No guarantee on message delivery. Message
a is in transit while message b reaches process P1. The
predicate (Φ) is not satisfied at CUT1.

program location.
On the other hand, deterministic communication

patterns would produce guaranteed results for dis-
tributed opaque predicates. An example of determin-
istic cyclic communication pattern is shown in Fig-
ure 7. This event-time diagram is a continuation of
the one shown in Figure 4 and the vector clock ticks
are continued along the timelines of processes P1, P2,
and P3. At [14, 10, 9], process P1 is ready to evaluate
the distributed opaque predicate (Φ). Interestingly
at this point, it can be guaranteed that there are no
messages in transit and hence the predicate must hold
true (ΦT) at CUT2. For all other event intervals, (Φ)
is guaranteed to be false (ΦF).

3.5 Distributed opaque predicate embedding
and guarded commands for maintaining
local state consistency

Just as nondeterminism and asynchrony can be used
as tools against the adversary, these could also cause
problems to the obfuscator since uncontrolled con-
currency will update states in an unpredictable way.
If local states of processes are updated in an uncon-
trolled way, then distributed opaque predicates can-
not be used effectively for control-flow obfuscation.

The problem associated with unpredictable local
state update can be brought under control if the com-
munication pattern generating code (specifically the
send/receive primitives) can be guarded; i.e., a mes-
sage contributing to a deterministic communication
pattern is only sent from a process if it is guaranteed
that the vector clock value of the process issuing this
send is up-to-date. Alternatively, this means that the
process should have completed all the message com-
munication events (send/receive) before issuing an-
other send. We show an abstract pseudo-code for con-
trolled message passing and predicate evaluation for
process P1 in Figure 8. We have used blocking receive
to ensure that the local state of process P1 is consis-
tent before it issues a send message (i.e., the process
busy-waits on all outstanding messages it has not yet
received). To make it more flexible, non-blocking re-
ceive with guarded sends could be used to maintain
consistency of local states. This can be implemented
by making sure that before each send primitive, the
vector clock from last receive is up-to-date (by com-
paring it against an expected timestamp value). If
the clock is not up-to-date, the process blocks the
send call for outstanding receives.

Figure 8 shows pseudo-code snippets for nondeter-
ministic (CUT1) and deterministic (CUT2) evaluation
of the predicate Φ. At CUT1, Φ is unknown and hence
dummy actions are inserted in branches correspond-
ing to both ‘true’ and ‘false’ paths. However, at
CUT2, the obfuscator knows that Φ holds true (be-
cause it knows when it participates in deterministic
and nondeterministic message-passing) and hence in-
serts real actions in the path corresponding to the
‘true’ branch of the control statement. Pseudo pro-
cess interaction codes for guard processes are similar
to P1’s code and have been excluded from this con-
tribution because of space limitations.

During obfuscation phase of P1, the obfuscator
may embed many distributed opaque predicates at
different control-flow points in the program corre-
sponding to, for example, the construction of water-
marking code. Any arbitrary nesting of distributed
opaque predicates can be used for obfuscating the
control-flows. A different set of guard processes could
also participate in different communication invariants
involving other local state update rules.

4 Security analysis of obfuscation using dis-
tributed opaque predicates

In this section, we comment on the obfuscatory
strength of the proposed technique by arguing that
known forms of static analysis attacks and a restricted
class of dynamic analysis attack are intractable from
an adversary’s perspective. For each class of attack,
we also present our assumptions on technical limita-
tions of the adversary.

4.1 Static analysis attacks

We argued in section 2 that static analysis of tempo-
rally unstable distributed opaque predicates will not
reveal their outcome since the invariant communica-
tion pattern which influences their outcome is gener-
ated from the embedded send/receive primitives on-
the-fly. We did not, however, comment on the difficult
issues an attacker needs to address in order to stat-
ically find these distributed opaque predicates from
the process codes.

In order to statically analyse the obfuscated code,
an adversary must depend on static slicers to slice
parts of the process code which could affect the
value of distributed opaque predicates at obfuscated
control-flow points. Slicing of distributed programs
is a major challenge due to the timing related inter-
dependencies among processes. Moreover, to find the
slicing criterion of the slicer, the analyser must rely
on alias analysis (Horowitz 1997, Hind et al. 1999) to
determine the kind of structure the local state of pro-
cesses points-to (this information he could get from
the message parameters), and if the pointer corre-
sponding to the variables used in the construction of
distributed opaque predicates refer to the same dy-
namic data structure in the guards at some program
location (where the distributed opaque predicates are
used in P1). To achieve this, static analysers must
use inter-process escape alias analysis to determine
the objects that can be referenced in processes sepa-
rate from the ones in which they are allocated.

Though much research work on intra- as well as
inter-procedural alias analysis and inter-procedural
thread escape analysis have been done in the last
few years (Rugina & Rinard 1999, Sălcianu & Ri-
nard 2001, Whaley & Rinard 1999), we have been
unsuccessful in finding a technique that can perform
alias analysis by considering asynchronous message-
passing of distributed processes as escape points. We
believe the reason why this problem has not yet been

CRPIT Volume 48

192

[7,8,3]
P2

p2.v = 5

CUT 2

P3

P1
FT

p2.v = 17

p3.v = 4

p3.v = 7

p1.v = 18 p1.v = 9

[8,8,6]

[8,8,7]

[10,8,7][11,8,7][12,8,7]

[11,9,7][11,10,7]

[12,8,8] [12,8,9]

[13,10,7][14,10,9] [15,10,9]

[15,11,9]

F

Figure 7: The invariant in the form of a predetermined deterministic communication pattern is shown in this
figure. As before, thick arrows denote SYSTEM type messages, thin arrows denote REQUEST type messages, and
dashed arrows denote RESPONSE type messages.

addressed by the program analysis community is be-
cause we do not have efficient, precise and scalable
algorithms for performing simpler cases of alias anal-
ysis in sequential multi-threaded programs and asyn-
chronous concurrent systems present problems that
are much greater in magnitude.

4.2 Dynamic analysis attacks

Dynamic analysis attacks assume that the adversary
has most (if not all) of the static analysis information
available since he has to monitor the local state value
changes of individual processes (an assumption we ar-
gued in the previous subsection as quite intractable).
Moreover, in order to mount a dynamic analysis at-
tack, the adversary needs to learn about the structure
of the distributed opaque predicate so that he can
identity which processes are contributing in building
the global state (i.e. the guard processes along with
process P1). We need to make the restriction that
an adversary cannot possess sufficient static analy-
sis information in order to insert debugging probes
at obfuscated control-flow points of P1. If an adver-
sary is able to do this, he can quite easily determine
the outcome of distributed opaque predicates by just
checking probe values during execution of process P1.
If we fail to make this restriction, the use of opaque
predicates in any form of program obfuscation would
be trivial. We, however, make the relaxation that
the adversary can monitor the communication events
using sniffer processes in order to monitor individ-
ual local states formed by process P1 and the guards.
This scenario is depicted in Figure 9.

We now show proceed to show that the problem of
global state monitoring is hard even if the adversary
manages to collect all necessary static analysis infor-
mation. The problem of distributed opaque predicate
evaluation, from the adversary’s perspective, can be
stated as evaluating predicate Φ as a function of the
global state of a distributed system. It is problematic
to detect unstable distributed opaque predicates since
the condition encoded by the predicate may not per-
sist long enough for it to be true when the predicate is
evaluated by the adversary. The domain of such pred-
icates is a Boolean valued function formed on the set
of all possible cuts from all possible executions of the
distributed system. Therefore, the predicate detec-
tion problem can also be defined as identifying a cut

Guard P2
Local State

p2.v

Guard P3
Local State

p3.v
Process P1
Local State

p1.v

send/receive

send/receive

send/receive

Adversary’s

Monitor

Process

s
n
iffs s

n
if
fs

Figure 9: A typical dynamic analysis attack scenario
by actively monitoring state changes to detect dis-
tributed opaque predicate Φ.

in which the predicate evaluates to true. The diffi-
culty associated with detection is the fact that the
number of states from any execution may be expo-
nential in the number of processes.

Let {X1, X2, . . . , Xn} define a sequence of cuts,
where for all i, Xi < Xi+1. A sequence of cuts is
called an observation if and only if for all i, Xi and
Xi+1 differ by exactly one state. The adversary has
to detect a consistent observation O of the distributed
computation such that Φ holds in a global state of O.
Now, this is a decision problem in the form of:

Given: an execution Y of n processes, an initial cut
X ≤ Y , and the predicate Φ.

Determine: if there exists a cut W : X ≤ W ≤ Y
such that Φ(W) is true.

Chase & Garg (1995) proved that this detection
problem is NP-complete by showing that the detec-
tion of general global predicate is intractable even for
simple distributed computation where the local states
are restricted to take only true or false values and
no messages are exchanged within the system.

In the subsections to follow, we model a dynamic
analysis distributed monitoring attack by discussing
in details the three types of available algorithms an
adversary may choose to dynamically evaluate the
outcome of Φ and the technical limitations these al-
gorithms possess.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

193

Process P1:

initialize(VectorClock); //Initialize Vector Clock to [0,0,0]

… //Start nondeterministic predicate evaluation

//get SYSTEM message
while(!receive(VectorClockTimeStamp,SYSTEM,bufferVa l)){

probe(ReceivePort); //Check for message by polling
}
increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [1,1,0]
shift_right(p 1.v); //point to the right node

//probe for local states from guard processes
increment(VectorClock); // Vector Clock value [2,1, 0]
send(P 2,REQUEST); //probe for p 2.v value
increment(VectorClock); // Vector Clock value [3,1, 0]
send(P

3
,REQUEST); //probe for p

3
.v value

//get RESPONSE messages
while(!receive(VectorClockTimeStamp,RESPONSE,buffer Val)){

probe(ReceivePort); //Check for message by polling
}
p2.v = bufferVal;
increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [4,4,1]
while(!receive(VectorClockTimeStamp,RESPONSE,buffer Val)){

probe(ReceivePort); //Check for message by polling
}
p3.v = bufferVal;
increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [5,4,3]

// evaluate distributed opaque predicate
if (p

1
.v+p

2
.v+p

3
.v==27) {// CUT1: Predicate Value Unknown

 // Dummy watermark building code
}
else {

 // Dummy watermark building code
}

… //Start deterministic predicate evaluation

//get SYSTEM message
while(!receive(VectorClockTimeStamp,SYSTEM,bufferVa l)){

probe(ReceivePort); //Check for message by polling
}
increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [10,7,8]
shift_right(p

1
.v); //point to the right node

//probe for local states from guard processes
increment(VectorClock); // Vector Clock value [11,8 ,7]
send(P

2
,REQUEST); //probe for p

2
.v value

increment(VectorClock); // Vector Clock value [12,8 ,7]
send(P 3,REQUEST); //probe for p 3.v value

//get RESPONSE messages
while(!receive(VectorClockTimeStamp,RESPONSE,buffer Val)){

probe(ReceivePort); //Check for message by polling
}
p

2
.v = bufferVal;

increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [13,10,7]
while(!receive(VectorClockTimeStamp,RESPONSE,buffer Val)){

probe(ReceivePort); //Check for message by polling
}
p

3
.v = bufferVal;

increment(VectorClock);
setMax(VectorClock, VectorClockTimeStamp); // Vecto r Clock value [14,10,9]

// evaluate distributed opaque predicate
if (p

1
.v+p

2
.v+p

3
.v==27) { // CUT2: Predicate Value True

 // Real watermark building code
}
else {

 // Dummy watermark building code

}

Figure 8: Pseudo-code showing the obfuscation of control-flow in P1 using distributed opaque predicate Φ.

CRPIT Volume 48

194

4.2.1 Active monitoring by taking snapshot

The first option the adversary has is to solve the
global predicate evaluation problem through active
monitoring. In this strategy, the adversary uses a
monitor process which sniffs the communication be-
tween process P1 and the guards at some predeter-
mined periodic intervals and then combines all the
local states obtained to build the global state. This
strategy is called ‘snapshot’ approach and Chandy &
Lamport (1985) describe an algorithm to construct
consistent global states using snapshots of individual
local states. Since communication within distributed
systems incurs latency, the consistent global states
thus constructed can only reflect some past state of
the system. By the time the snapshots are obtained,
conclusions drawn about the system by evaluating
the distributed opaque predicate may have no bearing
to the present. Therefore, the snapshot algorithm is
suitable for monitoring predicates that do not change
value throughout the entire program run and since
our method uses temporally unstable predicates, the
adversary will not be able to deduce a correct reason-
ing about the predicate’s behaviour using this algo-
rithm - the predicate may have held even if it is not
detected.

4.2.2 Passive monitoring by constructing
state lattice

Through the second approach, due to Cooper &
Marzullo (1991), the adversary can collect all local
state values from individual processes and check for
consistent observation O using passive monitoring. In
order to implement this algorithm, the adversary’s
monitoring process must sniff the guard processes and
P1 for portions of their local states that are referenced
in Φ. The monitor maintains sequences of these lo-
cal states, one sequence per process, and uses them
to construct the global state. This procedure is based
on incrementally constructing the lattice of consistent
global states associated with the distributed compu-
tation. The state lattice formed is linear in the num-
ber of global states, and the number of global states
formed is O(en) where e is the maximum number of
events monitored and n is the number of processes
in the system. For every global state in the lattice,
there exists at least one run that passes through it.
Hence, if any global state in the lattice satisfies Φ, the
distributed opaque predicate is detected.

The problem with this type of monitoring is that
the adversary may end up incorrectly including spu-
rious local state changes in case he erroneously con-
siders processes that are interacting with guards and
P1 during construction of the lattice or if he includes
spurious message communication events (by failing
to distinguish between message classes that only up-
date the vector clock values and not the local state
of processes). Hence, if the number of guards in the
system is large and a considerable amount of mes-
sage exchange takes place, the adversary will face the
problem of state explosion while trying find a consis-
tent cut by ‘walking-through’ the lattice thus formed.
Moreover, if the adversary fails to monitor some of
the process interactions, the amount of concurrency
in the form of local state changes will increase and
this will, in turn, increase the states of the lattice.
Increase in the number of guards in the system will
increase the dimension of the lattice proportionately.
Furthermore, the adversary has to repeat this passive
monitoring process to detect the outcome of each dis-
tributed opaque predicate used to obfuscate control-
flow points in process P1. The complexity will further
increase if such predicates are nested and guards are
spawned dynamically during P1’s execution.

4.2.3 Active monitoring by exploiting predi-
cate structure

In the final approach, the adversary can use Garg
& Waldecker’s (1994) method for detecting unstable
global predicates. Their method exploits the struc-
ture of predicate by decomposing the predicate into
a conjunction of local predicates and independently
detecting the outcomes of these local predicates.
It also requires the use of explicit token passing
messages between the monitor process and the
processes which contribute states in the construction
of distributed opaque predicates. This approach
works well for predicates that are conjunctive in
nature. However, for relational distributed opaque
predicates, their method yields no feasible solution
because relational predicates cannot be broken
down into conjunction of predicates formed on local
states. Moreover, it requires processes participating
in maintaining the distributed opaque predicate to
cooperate with adversary’s monitor process by main-
taining snapshots (evaluating their component of the
predicate) and passing the result and dependence
information to the adversary’s monitoring process.
This requirement quite unrealistic under reasonable
practical assumptions.

We conclude by observing that out of these three
available approaches, the adversary has to resort to
using only the second approach because the other two
available approaches are only suitable for detecting
either predicates that do not change their value dur-
ing the entire program run or predicates that can
be broken down into a conjunction of local predi-
cates. Moreover, the second approach will be in-
tractable if a large number of guard processes are
used or are spawned dynamically during execution
of the obfuscated process P1. Also, in the absence of
precise static analysis methodologies, spurious events
and state changes would be erroneously taken into
consideration by the adversary and this would make
the detection process incorrect and intractable. Un-
der pragmatic assumptions, we believe practical dis-
tributed systems will employ a large number of pro-
cesses as guards and hence processes obfuscated with
distributed opaque predicates will be resilient to pas-
sive monitoring dynamic analysis attacks.

5 Conclusion

In this contribution, first of its kind, we have ad-
dressed the problem of code obfuscation in soft-
ware executing in distributed computing environ-
ments. Specifically, we have addressed control-flow
obfuscation and have extended the original concept of
opaque predicates proposed by Collberg et al. (1998)
to the domain of distributed computing. We have
demonstrated that hard combinatorial problems can
be tuned with open problems related to distributed
systems state monitoring to manufacture a new class
of resilient opaque predicates; which we defined in this
contribution as distributed opaque predicates. We
have also demonstrated through a detailed security
analysis that our class of distributed opaque predi-
cates is resilient to known static analysis attacks and
passive monitoring dynamic analysis attack from ad-
versaries.

The following salient points could be noted regard-
ing this new class of opaque predicates:

• Stealth: The relational structure of distributed
opaque predicates will make these unobvious
to an attacker since predicates of this nature
appear as conditional expressions in most pro-
grams. Moreover, guard processes, along with

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

195

the process to be obfuscated, maintain the dis-
tributed opaque predicate invariant through an
embedded communication pattern. This pat-
tern is generated by send/receive calls embedded
within process code. Processes in loosely-coupled
distributed systems, as such, communicate using
message-passing and hence the presence of addi-
tional guards and their interactions with the host
process will, we believe, be unsuspecting from the
perspective of an adversary.

• Performance: Distributed systems are inher-
ently loosely-coupled in nature and do not en-
force hard timing requirements on task comple-
tion. Hence, the overall slowdown in system ef-
fectuated by additional guard processes and mes-
sage exchanges might be acceptable to developers
having stringent security requirements.

As part of our future work, we will concentrate
on automatic embedding of distributed opaque pred-
icates at selected control-flow locations in distributed
computing processes through program annotation.
We would also come up with a model of making the
obfuscated system, consisting of the obfuscated pro-
cess and cooperating guards, more fault-tolerant such
that the system can function in case one or more
guards are accidentally lost or purposefully killed by
an adversary. Our present model is rigid in the sense
that the loss of guard processes will make the obfus-
cated program go into an incorrect state, thus adding
some form of tamper-proofing. But, this notion is
weak since the guards and messages may be lost in
the system accidentally. We will also investigate into
new classes of distributed opaque predicates and in-
stances of hard combinatorial problems for generating
them in the future.

References

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S.,
Sahai, A., Vadhan, S., & Yang, K. (2001), On
the (Im)possibility of Obfuscating Programs, In
the proceedings of CRYPTO-2001. LNCS Vol-
ume 2139, Springer-Verlag. Santa Barbara, CA,
USA

Chow, S., Gu, Y., Johnson, H. & Zakharov, V.A.
(2001), An Approach to the Obfuscation of
Control-Flow of Sequential Computer Programs.
In the proceedings of 4th International Con-
ference on Information Security, LNCS Volume
2200. Springer-Verlag. Malaga, Spain.

Garey, M. R. & Johnson, D. S. (1979), A guide to the
theory of NP-completeness. W.H. Freeman and
Company.

Thomborson, C., Nagra, J., Somaraju, R. & He, C.
(2004), Tamper-proofing software watermarks.
In the proceedings of 2nd workshop on Aus-
tralasian information security, Data Mining and
Web Intelligence, and Software Internationaliza-
tion. Volume 32. Dunedin, New Zealand. ACM
Digital Library.

SETI@home (2005), http://setiathome.ssl.berkeley.edu/
(accessed July 15 2005).

Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D.,
Shao, Q. & Zhang, Y. (2000), Experience with
software watermarking. In the proceedings of
16th IEEE Annual Computer Security Applica-
tions Conference (ACSAC’00). IEEE Press. New
Orleans, LA, USA.

Nagra, J. & Thomborson, C. (2004), Threading Soft-
ware Watermarks. In the proceedings of 6th In-
ternational Workshop on Information Hiding,
LNCS Volume 3200, Springer-Verlag. Toronto,
ON, Canada.

Hohl, F. (1998), Time limited blackbox security: Pro-
tecting mobile agents from malicious hosts. In
the proceedings of 2nd International Workshop
on Mobile Agents, LNCS Volume 1419, Springer-
Verlag. Stuttgart, Germany.

Collberg, C., Thomborson, C. & Low, D. (1998),
Manufacturing Cheap, Resilient, and Stealthy
Opaque Constructs. In the proceedings of 1998
ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’98).
San Diego, CA, USA.

Lamport, L. (1978), Time, clocks and the ordering of
events in a distributed system. In Communica-
tions of the ACM, 21(7):558-565.

Chase, C. & Garg, V.K. (1995), Detection of global
predicates: Techniques and their limitations. In
the Journal of Distributed Computing, Volume
11, Issue 4, pages 191 - 201. Springer-Verlag.

Mattern, F. (1989), Virtual time and global states of
distributed systems. In the proceedings of Work-
shop on Parallel and Distributed Algorithms, El-
sevier Science Publication, pages 215-226.

Horowitz, S. (1997), Precise Flow-insensitive may-
alias in NP-hard. In ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS),
Vol. 19 No. 1.

Hind, M., Burke, M., Carini, P. & Choi, J.D. (1999),
In ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), Vol. 21 No. 4.

Rugina, R. & Rinard, M. (1999), Pointer analysis
for multithreaded programs. In the proceedings
of 1999 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation
(PLDI ’99). Atlanta, GA, USA.

Sălcianu, A. & Rinard, M. (2001), Pointer and escape
analysis for multithreaded programs. In the pro-
ceedings of 2001 ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPOPP ’01), Snowbird, UT, USA.

Whaley, J. & Rinard, M. (1999), Compositional
pointer and escape analysis for Java programs. In
the proceedings of 1999 ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA ’99), Den-
ver, CO, USA.

Chandy, K.M. & Lamport, L. (1985), Distributed
Snapshots: Determining global states of dis-
tributed systems. In ACM Transactions on Com-
puter Systems, pages 63-75.

Cooper, R. & Marzullo, K. (1991), Consistent de-
tection of global predicates. In the proceedings
of 1991 ACM/ONR Workshop on Parallel and
Distributed Debugging (PADD ’91). Santa Cruz,
CA, USA.

Garg, V. K. & Waldecker, B. (1994), Detection
of weak unstable predicates in distributed pro-
grams. In IEEE Transactions on Parallel and
Distributed Systems, pages 299-307, Volume 5,
No. 3.

CRPIT Volume 48

196

Pruning Subscriptions in Distributed Publish/Subscribe Systems

Sven Bittner Annika Hinze

Department of Computer Science
University of Waikato,

Private Bag 3105, Hamilton, New Zealand,
Email: {s.bittner, a.hinze}@cs.waikato.ac.nz

Abstract

Publish/subscribe systems utilize filter algorithms to
determine all subscriptions matching incoming event
messages. To distribute such services, subscriptions
are forwarded to several filter components. This
approach allows for an application of routing algo-
rithms that selectively forward event messages to only
a subset of filter components. Beneficial effects of
this scheme include decreasing network and compu-
tational load in single filter components.

So far, we can find routing optimizations that ex-
ploit coverings among subscriptions or utilize sub-
scription merging strategies. Generally, such opti-
mizations aim at reducing the amount of subscrip-
tions forwarded to filter components, which decreases
their computational load. This might in turn result
in an increasing number of event messages routed
through the network.

However, current optimization strategies only
work on restrictive conjunctive subscriptions and can-
not be extended to efficiently support arbitrary sub-
scriptions. Furthermore, it is not possible to apply
covering and perfect merging strategies in all appli-
cation scenarios due to the strong dependency of these
approaches on actually registered subscriptions.

In this paper, we present a novel optimization ap-
proach, subscription generalization, to decrease the
filtering overhead in publish/subscribe systems. Our
approach is based on selectivities of subscriptions and
can be utilized for all kinds of subscriptions includ-
ing arbitrary Boolean and conjunctive subscriptions.
We propose a simple subscription generalization al-
gorithm and show an evaluation of the results of a
first series of experiments proving the usefulness of
our approach.

Keywords: Distributed publish/subscribe, event fil-
tering, subscription tree pruning

1 Introduction

Publish/subscribe systems use a push-based approach
to access information that is published in the form
of event messages. This means these systems con-
tinuously filter and actively deliver information to
interested parties, which register their interests by
the help of subscriptions. We can effectively ap-
ply publish/subscribe systems for several applica-
tions, e.g., facility management (Hinze 2003), me-
teorology (Mathieson, Dance, Padgham, Gorman &

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

Winikoff 2004), healthcare (Jung & Hinze 2005) and
electronic commerce (Cilia & Buchmann 2002).

To achieve large-scale publish/subscribe solutions,
these systems have to be realized as distributed ser-
vices (Mühl 2002). They consist of several broker
components dividing the filter load and thereby col-
laboratively performing the overall filtering task.

We have illustrated such a distributed pub-
lish/subscribe system in Figure 1: In the simplest case
broker components Bx are connected by an acyclic
(overlay) network structure. Clients, i.e., publishers
Px, subscribers Sx, and clients acting as both parties,
connect to an arbitrary broker. This broker is called
local broker and hides the distributed nature of the
system, e.g., B2 is local broker for P1 in Figure 1.
Subscriptions sx are registered at the respective lo-
cal brokers; event messages ex are published to them.
Matching event messages are delivered to subscribers
by their local broker by the help of notifications nx.

Bx - Broker
Sx - Subscriber
Px - Publisher

ex - Event message
sx - Subscription
nx - Notification

n1

e1

e2

s1

s2

n2

P1

P2

S1

S2

B2

B1

B3

B4

B5

B6

Figure 1: Distributed publish/subscribe system

In most application areas for publish/subscribe
systems, the frequency of event messages is much
higher than the frequency of registering and dereg-
istering subscriptions. Thus, a profile forwarding
scheme (Bittner & Hinze 2004) should be utilized to
reduce the amount of event messages forwarded to
brokers: Subscriptions are forwarded from local bro-
kers to neighbor brokers. Then, brokers only deliver
event messages to neighbor brokers that fulfil their
subscriptions (which could again have been registered
with another broker component). This forwarding of
event messages and subscriptions is also referred to
as event and subscription routing, respectively.

To minimize the amount of forwarded subscrip-
tions, current approaches utilize coverings among sub-
scriptions or merge several subscriptions. The main
drawbacks of these methods are that their efficacy
strongly depends on registered subscriptions and that
they are applicable to conjunctive subscriptions only.

Especially in advanced application areas (e.g., e-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

197

commerce) the constraint of conjunctive subscriptions
is too restrictive and does not allow for the definition
of subscriptions required to specify user interests.

In Figure 2, we present an example subscription
s1 from an e-commerce setting, in particular from on-
line book auctions (letters in the figure describe the
name of nodes). We will use s1 as a running exam-
ple throughout this paper: A subscriber is interested
in books whose title contains the phrase ”Harry Pot-
ter”. According to the condition of the copy of the
book (new, used), she wants to pay a different price
(at most NZ$15.0 or NZ$10.0, respectively). To avoid
unnecessary notifications, the subscriber will be noti-
fied not earlier than one day before the auction ends.

We can represent subscriptions as subscription
trees as shown in Figure 2. Inner nodes repre-
sent Boolean operators; leaf nodes specify predi-
cates, i.e., attribute-operator-value triples (Bittner &
Hinze 2005b).

OR

AND AND

E

endingWithin < 1 day
H

I J

D

A

condition = USEDprice < 10.0
B

F

condition = NEW price < 15.0
C

AND
G

title like "Harry Potter"

Figure 2: Example of a Boolean subscription s1

Next to this requirement for more expressive than
pure conjunctive subscriptions, it has been shown
that publish/subscribe systems supporting more ex-
pressive subscription languages retain the efficiency
properties of systems only offering conjunctive lan-
guages. In fact, the utilization of more expressive lan-
guages increases the scalability properties of brokers
performing event filtering (Bittner & Hinze 2005a).

These beneficial characteristics of systems sup-
porting arbitrary Boolean subscriptions (including
conjunctive subscriptions) lead to the necessity of de-
veloping routing optimizations that are applicable to
such services. Since we cannot use current covering
and merging approaches in conjunction with expres-
sive subscription languages, in this paper we design
a novel routing optimization approach, subscription
generalization, working on arbitrary subscriptions.

Subscription generalization is based on selectivi-
ties of subscriptions and aims at reducing subscrip-
tion complexity to relieve resources in filtering broker
components. Thus, it decreases their computational
load as well as their memory requirements. This, in
turn, results in increasing efficiency and scalability
properties in broker components themselves.

However, this beneficial effect is counteracted by
increased network load when applying subscription
generalization. This behavior originates in the de-
crease of selectivities of subscriptions due to general-
izations. Hence, more event messages are forwarded
to neighbor brokers.

The rest of this paper is structured as follows: In
Section 2 we present related work including routing
optimization and selectivity estimation algorithms.
The overall idea behind subscription generalization
is elaborated in Section 3. There we also outline
two specific generalization approaches, subscription
pruning (Section 3.2) and predicate replacement (Sec-
tion 3.3). Section 4 presents our proposal to estimate
selectivities of subscriptions. Then, we continue with

an automatic generalization algorithm in Section 5.
Section 6 presents a series of experiments we have
undertaken to evaluate our approach as well as the
evaluation of their results. Finally, we conclude and
present future work in Section 7.

2 Current Optimization Approaches

We can classify most current routing optimization ap-
proaches into covering-based and merging-based so-
lutions. These approaches are presented in the fol-
lowing subsections. We discuss current proposals on
estimating selectivity in Section 2.4.

2.1 Subscription Covering

The definition of coverings among subscriptions, e.g.,
s2 and s3, is based on analyzing the sets of event
messages fulfilling them. These sets of fulfilling event
messages are referred to as E(s2) and E(s3), respec-
tively. If it holds E(s2) ⊇ E(s3) then subscription s2
covers s3 (Mühl & Fiege 2001).

Coverings have been investigated in the pub-
lish/subscribe systems SIENA (Carzaniga, Rosen-
blum & Wolf 2001) and REBECA (Mühl & Fiege
2001). Both systems only support conjunctive sub-
scriptions. Furthermore, (Mühl & Fiege 2001) re-
stricts subscriptions to contain at most one predicate
per attribute; (Carzaniga et al. 2001) does not present
algorithms to compute coverings at all.

Also XML-based publish/subscribe systems, e.g.,
XROUTE (Chand & Felber 2003), utilize subscrip-
tion covering. However, these systems restrict their
subscription languages to conjunctive forms, too.

For general database systems, research also ad-
dresses a problem similar to covering: query rewrit-
ing (Halevy 2000). Since, in contrast to pub-
lish/subscribe systems, database systems can effec-
tively utilize queries in canonical forms (Bittner &
Hinze 2005b), research for database systems only
targets these cases. Finding the required rewrit-
ing for general conjunctive database queries is NP-
complete (Halevy 2000).

Generally, the utilization of coverings among sub-
scriptions heavily depends on these registered sub-
scriptions, i.e., we can only optimize by the help
of coverings if subscriptions cover each other. The
amount of optimization achievable by coverings is de-
termined by the covering properties of subscriptions.
So far, there is no research evaluating these properties
in real-world applications.

2.2 Subscription Merging

Another optimization technique is subscription merg-
ing. There a set of subscriptions S4 is merged into a
smaller set of subscriptions S5 with |S4| > |S5| and⋃

s4∈S4
E(s4) ⊆

⋃
s5∈S5

E(s5). In case of set equality
we refer to this as perfect merging; for a proper subset
relation it is denoted as imperfect merging.

Perfect merging does not increase the network traf-
fic for event routing compared to originally registered
subscriptions (Wang, Qiu, Verbowski, Achlioptas,
Das & Larson 2004). However, we cannot always find
such a merging; its applicability depends on the kind
of registered subscriptions. REBECA (Mühl 2001)
supports perfect merging for restricted conjunctive
queries as described above. The work in (Crespo,
Buyukkokten & Garcia-Molina 2003) analyzes several
merging strategies for geographic queries, i.e., simple
two-predicate conjunctive queries.

As pointed out in (Wang et al. 2004), perfect merg-
ing may not optimize the overall system through-
put. Therefore, this work utilizes imperfect merg-

CRPIT Volume 48

198

ing. It clusters subscriptions according to similarity
to achieve a compact summary (merging) of them and
evaluates several clustering techniques. Again, only
conjunctive subscriptions are supported.

A general objection to subscription merging is its
benefit when applying to subscriptions converted into
conjunctive forms (arbitrary Boolean subscriptions
might be converted into disjunctive normal forms of
exponential size). Considering imperfect merging, we
do not face the sole dependency on registered sub-
scriptions as in the covering approach. However, the
most possibilities to perform merging might result out
of converted subscriptions, i.e., subscriptions previ-
ously converted and split into conjunctive elements
are merged into a more general (conjunctive) sub-
scription. This questions the usefulness of canonical
conversions in respect to routing optimizations in ad-
dition to their drawbacks of decreasing scalability in
broker components (Bittner & Hinze 2005a).

2.3 Other Optimization Approaches

Several approaches, e.g., the proposal in (Guimarães
& Rodrigues 2003), target the routing in pub-
lish/subscribe systems as a multicast mapping prob-
lem: Similar subscriptions are clustered in the same
multicast group. Event messages are only sent to
those groups that may contain matching subscrip-
tions. However, such approaches are also restricted
to conjunctive subscription languages.

The routing scheme in (Carzaniga, Rutherford
& Wolf 2004) mentions subscription simplification,
which is a similar approach to subscription merging
(perfect as well as imperfect). However, the work
presents no computation algorithms. It supports sub-
scriptions in disjunctive normal form and thus re-
quires the same conversions as conjunctive approaches
if it is utilized in applications involving more expres-
sive than conjunctive subscriptions.

2.4 Selectivity Estimation

Estimating the selectivity of queries has been
researched in the context of database systems,
e.g., (Poosala & Ioannidis 1997, Chen, Koudas, Korn
& Muthukrishnan 2000). However, such approaches
require either conjunctive queries or conversions of
queries into disjunctive or conjunctive normal forms.
Apart from the time complexity required for these se-
lectivity estimations and the memory consumption of
involved data structures, canonical conversions lead
to exponential space complexity that is not applicable
in the context of publish/subscribe systems (Bittner
& Hinze 2005a). These solutions are applicable to
database systems that do not have to deal with a
large number of continuous queries (another term
used for subscriptions) and thus can convert queries
into canonical forms.

3 Subscription Generalization

The overall idea of generalizing subscriptions is to
decrease the computational effort for event filtering
required in broker components. In the next subsec-
tion, we outline our general approach and its effect
on event filtering. Afterwards, we present two sim-
ple subscription generalization methods, pruning sub-
scription trees and replacing predicates by more gen-
eral ones, i.e., covering predicates. We describe these
methods in Section 3.2 and Section 3.3, respectively.

We discuss subscription generalization if utiliz-
ing one-dimensional index structure-based filter algo-
rithms, e.g., (Bittner & Hinze 2005b, Fabret, Jacob-
sen, Llirbat, Pereira, Ross & Shasha 2001, Hanson,

Chaabouni, Kim & Wang 1990, Pereira, Fabret, Llir-
bat & Shasha 2000, Yan & Garćıa-Molina 1994). Such
approaches utilize one-dimensional indexes to index
predicates and propose different structures to index
subscriptions. Event filtering works in two steps: In
predicate matching, all predicates matching incoming
event messages are determined. Then, subscription
matching computes all matching subscriptions (based
on matching predicates). Since we focus on Boolean
subscriptions, we particularly consider the algorithm
in (Bittner & Hinze 2005b) that uses tree structures
as subscription indexes.

3.1 Purpose of Subscription Generalization

As stated before, most application areas for pub-
lish/subscribe systems can effectively apply a sub-
scription forwarding scheme. That is, subscriptions
are forwarded to neighbor brokers of the local broker
they have been registered with. This allows broker
components to determine the set of neighbor brokers
each incoming event message ex should be forwarded
to. In case of acyclic network structures this set in-
cludes all neighbors with registered subscriptions that
are fulfilled by ex except the neighbor forwarding ex.

Subscription generalization aims to decreasing the
complexity of forwarded subscriptions. Whenever
such subscriptions require too many memory re-
sources, broker components start to heuristically gen-
eralize registered subscriptions in order to minimize
their size and thus the size of indexing structures. We
do not generalize subscriptions registered by clients to
avoid false notifications; only subscriptions forwarded
by neighbor brokers are suitable for generalizations.

The generalization of subscriptions decreases both
the memory usage and the computational effort re-
quired in brokers to determine matching subscrip-
tions: The complexity of subscriptions is decreased,
i.e., subscriptions consist of less predicates and oper-
ators, which directly decreases the memory required
for subscription index structures. Furthermore, when
indexes become smaller, we can determinate matching
subscriptions more efficiently: In one-dimensional in-
dexing approaches the predicate matching step works
on smaller numbers of predicates; subscription match-
ing filters on less complex subscriptions.

However, this advantageous behavior increases
network load due to the forwarding of more event
messages to neighbor brokers (subscriptions are more
general now). This property is consistent with imper-
fect merging, which, similar to subscription general-
ization, does not depend on registered subscriptions
like the proposals of perfect merging and covering.
Thus, subscription generalization does always lead to
decreasing memory requirements and increasing effi-
ciency in broker components. We analyze the correla-
tion between memory usage and network load in our
experiments in Section 6.

A subscription generalization method for pub-
lish/subscribe systems should be easy to compute
to allow for an efficient registering and deregister-
ing of large numbers of subscriptions. Furthermore,
it should require little additional memory to retain
scalability properties of broker components.

In the next subsections, we describe two particu-
lar subscription generalization methods, subscription
tree pruning and predicate replacement.

3.2 Generalization by Pruning

Pruning subscription trees reduces the number of
predicates a broker has to filter on in the predicate
matching step. Furthermore, it reduces the complex-
ity of subscriptions that need to be evaluated in sub-
scription matching. This characteristic is obtained by

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

199

pruning certain branches of subscription trees. Notice
that we do not prune subscriptions in local brokers
(cf. Section 3.1).

An arbitrary pruning of subscription trees does
not necessarily lead to more general subscriptions.
A subscription sx is more general than subscription
sy if E(sx) ⊇ E(sy). This definition conforms with
the definition of covering for conjunctive subscriptions
known from literature, e.g., (Mühl & Fiege 2001).

Excluding the case of removing the root node in
a subscription tree, there is only one kind of pruning
leading to a more general subscription:

Remove a child of a conjunctive node in a sub-
scription tree.

An example is given in Figure 3. There we have
illustrated the same subscription s1 as in Figure 2
when removing node D that is a child of conjunctive
node J. This pruning operation leads to s6, which, in
contrast to original subscription s1, describes inter-
est in all used books conforming to the other criteria
(Title and Ending Within).

OR

AND

E

endingWithin < 1 day
H

I J

D

A

condition = USEDprice < 10.0
B

F

price < 15.0
C

AND
G

condition = NEW

AND

title like "Harry Potter"

Figure 3: Valid pruning of s1 leading to s6

Removing a child of a disjunction is not a valid
pruning as shown in Figure 4(a). There we show sub-
scription s1 (cf. Figure 2) when removing node J,
the child of a disjunction. After restoring the general
subscription tree properties (subsuming consecutive
operators and eliminating unary operators (Bittner
& Hinze 2005b)), the new subscription s7 consists of
only one conjunction as shown in Figure 4(b). How-
ever, it holds E(s7) + E(s1), e.g., any event message
describing used books does not fulfil s7 but s1. Thus,
this removal of node J does not lead to a more general
subscription and is invalid.

However, our valid pruning option includes remov-
ing a complete disjunction in subscription trees: Dis-
junctions are always (except if they are a root node)
the child of a conjunction due to our subsuming of
consecutive operators. Hence, this option of removing
a disjunction is included in our single pruning rule.

Furthermore, we can apply subscription tree prun-
ing to pure conjunctive subscriptions. We are able to
perform pruning in all cases, which makes our ap-
proach beneficial compared to current covering pro-
posal that strongly depend on registered (conjunc-
tive) subscriptions.

3.3 Generalization by Replacement

Our second proposal to generalize subscriptions is to
replace predicates px by more general predicates py,
i.e., px is covered by predicate py. The determination
of coverings among predicates is relatively easy to cal-
culate and depends on the permitted operators. Some
examples are given in (Mühl 2001). However, the
overall approach of subscription covering (Mühl 2001)
is not applicable to arbitrary Boolean subscriptions.

The replacement of predicates results in decreas-
ing numbers of predicates to filter on in the predicate

OR

AND

E

endingWithin < 1 day
H

I J

D

A

condition = USEDprice < 10.0
B

F

price < 15.0
C

AND
G

condition = NEW

AND

title like "Harry Potter"

(a) Example of invalid pruning before restoration

title like "Harry Potter"

condition = NEW

endingWithin < 1 day
A

B

F

G
AND

price < 15.0
C

(b) Example of invalid pruning after restoration

Figure 4: Invalid pruning of s1 leading to s7

matching step. However, it does not relieve subscrip-
tion matching since subscriptions retain their com-
plexity.

An example for the exploitation of coverings
(based on s1 that is given in Figure 2) is the replace-
ment of predicate D by price < 15.0 leading to s8.

Replacements might also allow us to further mod-
ify resulting subscriptions. However, such modifica-
tions involve semantic knowledge (e.g., for subscrip-
tion s8 books are always new or used), which we ne-
glect in our approach out of computational complex-
ity and space efficiency aspects that are crucial in
publish/subscribe systems (Bittner & Hinze 2005a).

We also do not focus on standard transformation
rules, e.g., the integration of predicate price < 15.0
of s8 into the conjunctive root node G. We could in-
tegrate such transformations into our approach but
abstract from them in this paper to evaluate the ef-
fect of generalizations themselves.

3.4 Interconnection between Pruning and
Replacement

A more generalized view on the presented pruning
and replacement methods reveals their interconnec-
tion: Pruning could be seen as a replacement of pred-
icates or whole subtrees by the most general predicate
p∗, which is fulfilled by each event message.

In a conjunctive node we can omit a child p∗, which
is fulfilled by all event messages, without changing
the set of events fulfilling this conjunctive expression.
This behavior is described by our pruning rule.

If a child of a disjunctive node is the most general
predicate p∗, the whole disjunction is fulfilled by all
event messages. Thus, we can replace this disjunctive
node by p∗. In turn, we are able to remove p∗ since it
is child of a conjunctive node (if it is not a root itself).
This describes the removal of a disjunctive node.

However, in this paper we distinguish between
pruning and replacement because the computational
effort required for their calculation is rather different
(Section 5).

After this introduction to subscription generaliza-
tion and two particular generalization methods, we
introduce our method of estimating the selectivity of
subscriptions in the next section. This estimation is
an integral part of our automatic generalization algo-
rithm, which is presented afterwards in Section 5.

CRPIT Volume 48

200

4 Estimated Selectivity

Our later proposal for automatic subscription gener-
alization (Sect. 5) is merely based on the selectivity
of predicates. Predicate selectivity allows us to suc-
cessively estimate the selectivity of a subscription.

4.1 Calculation of Estimated Selectivity

We can calculate the selectivity of predicates based on
historical information: For each predicate we main-
tain a counter that is increased whenever this partic-
ular predicate is fulfilled by an incoming event mes-
sage1. Dividing this counter by the total number of
filtered event messages leads to the selectivity of pred-
icates. For newly registered subscriptions involving
unused predicates we can estimate their selectivity,
e.g., as presented in (Guimarães & Rodrigues 2003).
Thus, for predicates px we can compute their selec-
tivity sel(px) both space and time efficiently.

The calculation of the selectivity sel(sx) of general
Boolean subscriptions sx would involve a huge com-
putational effort requiring the analysis of all incoming
event messages in respect to all registered subscrip-
tions. Hence, we should focus on a simple method to
estimate the selectivity sel≈(sx) of subscriptions sx.

Our selectivity estimation sel≈(sx) for a subscrip-
tion sx consists of three easily computable values de-
scribing the minimal possible selmin(sx), the average
selavg(sx) (assuming a uniform distribution of all pos-
sible event messages and independent attribute val-
ues as well as predicates) and the maximal possible
selmax(sx) selectivity:

sel≈(sx) = (selmin(sx), selavg(sx), selmax(sx))

For all predicates px we can calculate their selectivity
as described at the beginning of this subsection (count
fulfilling event messages) and it holds

selmin(px) = selavg(px) = selmax(px) = sel(px)

We can recursively compute our selectivity estimation
based on Boolean operators. For a binary conjunction
the calculation works as follows

selmin(a ∧ b) = min(0, selmin(a) + selmin(b)− 1)
selavg(a ∧ b) = selavg(a) ∗ selavg(b)
selmax(a ∧ b) = min(selmax(a), selmax(b))

A binary disjunction leads to

selmin(a ∨ b) = max(selmin(a), selmin(b))
selavg(a ∨ b) = selavg(a) + selavg(b)−

selavg(a) ∗ selavg(b)
selmax(a ∨ b) = min(1, selmax(a) + selmax(b))

Our filtering approach for Boolean subscrip-
tions (Bittner & Hinze 2005a, Bittner & Hinze 2005b)
subsumes consecutive binary operators in subscrip-
tion trees to n-ary ones. We can generalize the
former calculations for the binary case to work with
n-ary operators.

Calculating the described estimations for all sub-
trees of a subscription tree of sx finally leads to the
required selectivity estimate sel≈(sx). We have illus-
trated the estimate for our example subscription s1
in Figure 5. Selectivities are rounded in the figure;
we have given the selectivity of predicates only once
(they are derived from our experiments whose setup
is described in Section 6.1).

1For shared predicates this is done only once.

G: (0.0, 7.7e−4, 0.01)

OR

F: 0.1

AND AND

price < 10.0
E: 0.8

H: (0.7, 0.77, 1.0)

I: (0.13, 0.19, 0.2)

endingWithin < 1 day
A: 0.01

condition = USEDcondition = NEW
B: 0.2

price < 15.0

AND

J: (0.7, 0.72, 0.8)

D: 0.9C: 0.93

title like "Harry Potter"

Figure 5: Example of estimating selectivity for s1

4.2 Meaning of Estimated Selectivity

Our selectivity measure sel≈(sx) is an estimate of the
real selectivity sel(sx) of sx. It holds for all distribu-
tions of values in event messages and for all depen-
dencies among attributes.

The value selmax(sx) always describes the case
that E(sx) is maximal: In case of a binary conjunc-
tion, the smaller set of event messages fulfilling a
subexpression is a subset of the larger set of fulfill-
ing event messages. For a binary disjunction, both
sets are disjoint.

On the contrary, selmin(sx) describes the case of
a minimal E(sx): For a binary conjunction, the sets
of fulfilling event messages of subexpressions exclude
each other to the maximal possible extend. In case
of a binary disjunction, the smaller set is included in
the larger one.

Finally, selavg(sx) assumes that all possible event
messages are equiprobable and subexpressions of sub-
scriptions do not depend on each other: For a binary
conjunction, the selectivity of one subexpression holds
for event messages fulfilling the other subexpression.
The same is true for the disjunctive case.

The real selectivity sel(sx) of sx is always located
between the two estimated extremes selmin(sx) and
selmax(sx). The average case selavg(sx) describes
which extreme is more likely if assuming independent
predicates. For the subtree rooted in the disjunctive
node H in Figure 5, it holds

sel≈(H) = (0.7, 0.77, 1.0)

Thus, the described average case is nearer to the esti-
mated minimal than to the maximal selectivity value.

Our selectivity measure allows us to develop an
automatic generalization algorithm targeting at the
generalization of subscriptions according to the esti-
mated effect on selectivity. This directly influences
the increase in network traffic for event routing. We
present this algorithm in the next section.

5 Automatic Generalization Algorithm

Our optimization algorithm targets an automatic gen-
eralization of subscriptions. Our goal is to decrease
the computational costs of event filtering without in-
creasing the network traffic to a large extend.

To achieve this goal, we generalize subscriptions sx
to sy, which, in turn, might degrade their real selec-
tivity as well as our estimated selectivity. We require
a measure for this degradation that allows us to qual-
ify the effect of generalizations. Such a measure is
presented in the next subsection. Since the real se-
lectivity of subscriptions is too hard to calculate (cf.
Section 4) and thus its degradation ∆(sx, sy), we uti-
lize its estimated counterpart to derive an estimated
degradation ∆≈(sx, sy).

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

201

5.1 Selectivity Degradation

There are two options to describe the degradation
∆≈(sx, sy) of our estimated selectivity between an
original subscription sx and a generalized one sy:

1. Absolute selectivity degradation

2. Relative selectivity degradation
Here we focus on the absolute degradation because
it describes the real influence of generalizations on
network traffic. Our absolute measure describes the
change in selectivity as the maximal difference be-
tween the components of our estimation:

∆≈(sx, sy) = max(selmin(sy)− selmin(sx),
selavg(sy)− selavg(sx),
selmax(sy)− selmax(sx))

Its advantage compared to a relative measure is
that degradation is expressed by its real change, i.e.,
∆≈(sx, sy) comprises the expected additional number
of event messages fulfilling the generalized subscrip-
tion sy compared to sx.

A relative measure would, e.g., handle a decrease
in selectivity in a leaf node px when generalizing to
py from sel(px) = 0.4 to sel(py) = 0.8 in the same
way as a decrease from sel(px) = 0.04 to sel(py) =
0.08. Thus, it does not reflect the real influence of
generalization on network traffic.

5.2 Weak Points of Selectivity Degradation

We are aware about the difference between the esti-
mated ∆≈(sx, sy) and the real degradation ∆(sx, sy).

Our estimated measure only describes the degra-
dation in the minimal possible, average and maximal
possible selectivity. The real selectivity might change
more or less depending on dependencies among at-
tributes. When generalizing a subscription sx to sy
the worst case real degradation is

∆(sx, sy) = selmax(sy)− selmin(sx)

However, calculating the real degradation would be
costly in both computational and memory resources.
In publish/subscribe systems these resources are very
scarce due to large subscription numbers to handle
and high frequencies of incoming event messages.

Our generalization approach with its estimated se-
lectivity degradation has still several advantages com-
pared to existing covering and perfect merging tech-
niques, e.g., (Mühl & Fiege 2001): Our approach
might not find the optimal generalization in respect to
real selectivity degradation, but it is always decreas-
ing the size of index structures in brokers. Covering
and perfect merging target a reduction of subscrip-
tion numbers, which heavily depends on registered
subscriptions and is not possible in all cases. Our
approach works for all subscriptions, its optimization
potential is merely depending on actual dependencies
among attributes in event messages.

5.3 Automatic Pruning

Automatic pruning is done in broker components
whenever subscriptions forwarded from neighbor bro-
kers require too many resources. In order to ex-
ecute subscription updates according to estimated
degradations, we utilize a priority queue storing
(∆≈(sx, sy), sx) tuples. For each incoming subscrip-
tion sx we calculate the best pruning leading to sy.
Note that we only need to calculate ∆≈(sx, sy) and
not to determine sy.

To perform pruning in case of exhausted resources,
we generally

1. Extract the first element containing subscription
sx out of our priority queue

2. Perform the best pruning of sx leading to sy

3. Remove sx from index structures

4. Insert sy into index structures

5. Insert (∆≈(sy, sz), sy) into the priority queue,
whereas sz states the best pruning of sy

This process is executed as long as enough memory
resources have been freed2.

The selectivity sel(px) of predicates px might
change over time. To incorporate this changing into
our pruning process, we have to compare the actual
estimated degradation of a pruning operation of sub-
scription sx to the value stored in the priority queue.
If it has changed to a large extend (or is not near
the minimum anymore), we can skip pruning sx and
reinsert sx into the queue associated with the newly
calculated degradation.

In case of shared predicates px our pruning ap-
proach is likely to remove px in all subscriptions con-
taining this predicate within a short time. This is
due to the general tendency of removing general be-
fore more selective predicates. Thus, all of these little
selective predicates should be removed early in the
pruning process and also relieve predicate indexes.

5.4 Automatic Replacement

Automatic replacement involves the determination of
coverings among predicates. Generally, we can re-
place predicates px by all covering predicates py. The
less selective py (chosen to replace px), the more our
estimated selectivity degradation changes.

However, to effectively decrease memory usage,
we need to remove a predicate from predicate index
structures3. Otherwise, we do not save memory re-
sources because, in contrast to pruning, subscriptions
retain their complexity. Thus, the size of subscription
index structures remains the same.

Since predicates px might be shared among sub-
scriptions, a removal of px from predicate index struc-
tures is only possible if all subscriptions involving px
replace its occurrence with py. This involves compu-
tations of selectivity degradation for all subscriptions
involving px in order to find the best overall replace-
ment option (thatwhich should be performed first).

This property shows that the computational ef-
fort required for predicate replacement is much higher
than the one required for subscription tree pruning.
Additionally, pruning subscription trees leads to re-
leasing more memory resources. Hence, subscription
tree pruning should be preferred over predicate re-
placement as long as it does not degrade selectivity
to a large extend.

6 Experiments and Evaluation

In this section, we present an evaluation and analysis
of the automatic subscription tree pruning approach
presented in Section 5.3. We focus on this general-
ization method due to its advantages compared to
predicate replacement as shown in Section 5.4.

In the next subsection, we present our experimen-
tal setup. We show and analyze our experimental
results in Section 6.2 and Section 6.3, respectively.

2We should execute Step 3 and Step 4 in batch to allow for a
more efficient pruning.

3We might be able to save memory in subscription indexes due
to implementation-specific memory overhead. Generally, we would
remove one entry in the predicate subscription association table for
a covered predicate, but reinsert one for the covering predicate.

CRPIT Volume 48

202

6.1 Experimental Setup

In several application areas requiring pub-
lish/subscribe mechanisms, e.g., healthcare (Jung
& Hinze 2005) and electronic commerce (Cilia &
Buchmann 2002), more expressive than purely
conjunctive subscription languages are required.
In our experiments we focus on the popular ap-
plication of online auctions, which particularly
need active functionalities for an efficient dissem-
ination of process-related information (Cilia &
Buchmann 2002).

6.1.1 Event Messages

To obtain realistic data for our experiments we have
analyzed auctions of fiction books offered on eBay4

on 8 July 2005. Our analysis focused on attributes
shown in Table 1.

Table 1: Overview of attributes for book auctions

Attribute Example Values

Category Fantasy 22
Format Hardcover 4
Special Attribute Signed 2
Condition New, used 2
Ending Within 1 hour 0 sec . . . 10 days
Price $0.99 $0.01 . . . $1000.00
Buy It Now Yes, no 2
Bids 1 0 . . . 100

We have been able to determine the exact number
of books for all combinations of Category5, Format,
Special Attribute and Condition. Furthermore,
we extracted the number of books in all categories
for 2 values of Buy It Now, 15 ranges of Price and
16 ranges of Bids (based on the search functionali-
ties offered by eBay). For actual values in these two
ranges we assume a uniform distribution, e.g., prices
of all fantasy books between $5.00 and $6.00 (ap-
proximately 7% of all fantasy books) are uniformly
distributed in this range.

For prices and bids we compared the distribution
of completed and active auctions and realized only
minor differences6. Thus, we used the distribution
derived from active listings in our experiments. For
the attribute Ending Within we assume a random
distribution between 1 minute and 10 days.

We further assume 5 times less authors than books
and 10% of all authors have published books in more
than one category. The probability of multiple book
titles is assumed as 1%. We expect authors and book
titles to be given correctly in event messages (e.g., as
achievable by utilizing a book database when offering
items). We also experimented with other assumptions
leading to similar results as presented later.

6.1.2 Subscriptions

Subscriptions in our online auction scenario poten-
tially cover a wide range of user interests. In our eval-
uation we assume three different subscription classes:

4http://www.ebay.com/
5We only looked at the first level of categories.
6Slightly increased bids and prices in completed auctions.

Subscription class 1. Users are interested in a cer-
tain book title. According to the condition (new,
used) of the copy of the book, they want to pay
a different price. To avoid unnecessary notifica-
tions, users want to be notified one day before
the end of the auction.

Subscription class 2. Again, users are interested
in a certain book title and want to be notified
one day before an auction ends. The difference to
subscription class 1 is that users further distin-
guish between different formats, i.e., hardcover
and softcover.

Subscription class 3. A collector is interested in
books of a certain category, but also of a par-
ticular author. He wants to be notified one hour
before the end of an auction offering a signed
book copy without any bids. Furthermore, he
wants notifications about signed books conform-
ing his interests if they are Buy It Now items.

Similarly to event messages, we assume that authors
are given correctly in subscriptions. To model sub-
scriptions involving only parts of a book title, we re-
duce the number of possible titles and assume 100
times less titles than active auction items. We also
experimented with other assumptions leading to sim-
ilar results as presented later.

6.2 Experimental Results

In our experiments we analyze the interconnection be-
tween memory usage and network traffic when per-
forming subscription tree pruning. To describe mem-
ory requirements, we use the measure of the total
number of predicates registered with the system.

We present this measure in a relative manner, i.e.,
we show the portion of predicates compared to the
original situation without applying subscription gen-
eralization. Analyzing the number of predicates al-
lows us to directly derive the behavior of the total
memory requirements for subscription index struc-
tures: For each predicate we can remove one entry
from the predicate subscription table. Furthermore,
subscription trees do not store removed predicates
anymore7. Thus, memory requirements for subscrip-
tion index structures at least decrease in the same
manner as predicate numbers.

We neglect the memory for predicate index struc-
tures in our analysis due to their high dependency
on utilized data types, supported operators and the
variety of implementation variants.

For the description of network traffic we utilize the
total selectivity of registered subscriptions. This mea-
sure directly implies the number of matching events,
which in turn implies the network traffic created in
event routing.

We separately analyze the three types of subscrip-
tions described in Section 6.1.2 by randomly creating
subscriptions conforming to the respective structure.
Additionally, we present a setting with randomly cho-
sen subscriptions out of all three classes.

Our results are presented in Figure 6 to Figure 9.
Abscissae show the portion of performed pruning op-
erations. Thereby the maximal possible pruning (1.0)
describes the case that a further pruning removes a
complete subscription, i.e., a subscription either con-
tains of only one predicate or of a disjunction.

Left ordinates in the figures describe the relative
decrease in predicates compared to the original situa-
tion without any pruning (0.0); right ordinates show
the total selectivity of registered subscriptions.

7Subscription trees are actually reduced even more, since inner
nodes might be deleted when removing predicates.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

203

In our experiments we used 10, 000 subscriptions
and created 1, 000, 000 event messages conforming to
the derived distribution in online book auctions (Sec-
tion 6.1.1). The determination of initial selectivities
was based on 100, 000 created event messages.

We do not show individual measuring points in
our figures due the large number of performed prun-
ing operations (30, 000 to almost 84, 000 in our dif-
ferent settings) leading to the same amount of single
measurements.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

R
el

at
iv

e
de

cr
ea

se
 in

 p
re

di
ca

te
s

T
ot

al
 s

el
ec

tiv
ity

Relative pruning

Predicates (left ordinate)
Selectivity (right ordinate)

Figure 6: Subscription class 1 - influence of pruning

The behavior of subscription class 1 is given in Fig-
ure 6. Looking at the total selectivity of predicates,
we realize a slight increase followed by a sharp bend
and a fast increase. The bend occurs when approxi-
mately 75% of possible pruning operations have been
performed (40, 000 in total). At this point, the total
selectivity of registered subscriptions has changed by
0.009; relative to their original selectivity (0.065) this
is an increase by 14.3%.

Looking at memory requirements, we realize an
always increasing behavior. Different gradients result
out of pruning different subtrees. Due to the same
pattern in subscriptions, similar subtrees are pruned
one after the other before proceeding with another
one. When reaching the sharp bend, nearly 77% of
the predicates, i.e., memory for subscription indexes,
have been removed. Thus, a reduction of subscription
indexes to 23% of their original size has resulted in a
relative increase of selectivity by only 14.3%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.2

 0.4

 0.6

 0.8

 1

R
el

at
iv

e
de

cr
ea

se
 in

 p
re

di
ca

te
s

T
ot

al
 s

el
ec

tiv
ity

Relative pruning

Predicates (left ordinate)
Selectivity (right ordinate)

Figure 7: Subscription class 2 - influence of pruning

The behavior of subscription class 2 is depicted in
Figure 7. We realize a similar behavior as for sub-
scription class 1: The sharp bend occurs after nearly

88% of performed pruning operations (80, 000 in to-
tal). At this point selectivity has increased by 0.012
(13.3%). Memory requirements of subscriptions in-
dexes could be reduced to 17% of their original size.

Compared to subscription class 1, the sharp bend
in the selectivity curve occurs after a larger amount of
pruning operations has been performed. This directly
results in greater savings of main memory resources
compared to subscription class 1 before selectivity de-
creases sharply.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
el

at
iv

e
de

cr
ea

se
 in

 p
re

di
ca

te
s

T
ot

al
 s

el
ec

tiv
ity

Relative pruning

Predicates (left ord.)
Selectivity (right ord.)

Figure 8: Subscription class 3 - influence of pruning

Subscription class 3 shows a faster decreasing to-
tal selectivity than the two previous classes of sub-
scriptions. This is depicted in Figure 8: The sharp
bend in selectivity occurs after performing almost
53% of pruning operations (30, 000 in total). Up to
this point, selectivity increased by 0.016; memory for
subscription indexes could be reduced by 37%.

From data in Figure 8, we observe that the gradi-
ent of the selectivity curve increases in steps. These
steps result from the inaccuracy of our selectivity
measure in combination with the real distribution of
event messages: A small amount of pruning opera-
tions abruptly increases total selectivity to a large
extend (large gradients in curve). Succeeding prun-
ing operations stick to the predicted small decrease
in selectivity until the next step occurs.

In this particular class of subscriptions, the rea-
son for this effect is the uneven distribution of signed
copies among different categories of books.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
el

at
iv

e
de

cr
ea

se
 in

 p
re

di
ca

te
s

T
ot

al
 s

el
ec

tiv
ity

Relative pruning

Predicates (left ordinate)
Selectivity (right ordinate)

Figure 9: All classes - influence of pruning

In Figure 9 we illustrate the behavior of selectivity
and memory usage in a setting with randomly cre-
ated subscriptions conforming to our three subscrip-
tion classes. There the sharp bend in the selectivity

CRPIT Volume 48

204

curve occurs after performing 77% of possible prun-
ing operations (approx. 50, 000 in total). Up to this
point, selectivity increases by 0.026 (29%). We realize
a strong decrease in memory requirements: subscrip-
tion indexes could be reduced to 34% of their size.

These results of random subscriptions behave bet-
ter than expected when considering the results of the
three single runs (Figure 6 to Figure 8). This is due to
the larger number of pruning operations that are pos-
sible for subscriptions of class 1 and class 2 compared
to subscriptions of class 3 .

6.3 Discussion of Experimental Results

An overview of our results is given in Table 2. We
present our four settings in columns 2 to 5 of the
table; rows show six parameters we could derive:

• Overall possible number of pruning operations

• Original selectivity of registered subscriptions

• Relative number of pruning operations at sharp
bend compared to possible pruning operations

• Relative increase in selectivity at sharp bend
compared to original selectivity

• Total selectivity increase at sharp bend com-
pared to original selectivity

• Relative decrease in predicates at sharp bend
compared to original number of predicates

Table 2: Overview of results for our four test settings
(the last two parameters describe changes in selectiv-
ity and memory at sharp bends)

Parameter Class 1 Class 2 Class 3 All

Number prunings 40, 000 80, 000 30, 000 50, 117
Original selectivity 0.065 0.089 0.006 0.089
Rel. prunings 0.75 0.875 0.525 0.771
Rel. sel. increase 0.143 0.133 2.589 0.29
Total sel. increase 0.009 0.012 0.016 0.026
Rel. predicates 0.667 0.833 0.368 0.663

Our results show that subscription pruning is an effec-
tive way of decreasing the memory required for sub-
scription indexes without increasing the selectivity of
subscriptions to a large extend: For random subscrip-
tions in our book auction application, we could reduce
subscription indexes by 66% (34% of their original
size) with increasing their selectivity by only 29%.

The applied pruning algorithm is straightforward
and does solely depend on selectivity of predicates.
This makes our optimization method efficient and
does not require a large amount of memory.

The efficacy of subscription pruning depends on
the structure of subscriptions and the selectivity of
their predicates. Especially in cases of combining
highly selective and more general predicates in sub-
scriptions, subscription pruning leads to very good
results. That is, we can remove various predicates
without largely decreasing overall selectivity (which
implies network load). Generally, little selective pred-
icates are pruned early without affecting overall se-
lectivity to a large extend. This especially holds if
they are located in higher levels of subscription trees.
However, the effect of pruning also depends on the
structure of subscriptions, i.e., the usage of operators.

Consequently, subscriptions of class 1 and class 2
show better results than subscriptions of class 3. This
is because predicates regarding Ending Within and
Title are quite restrictive. Most of the other parts
of subscription trees can be pruned without affecting
selectivity to a large extend. Subscriptions of class 2
contain more little selective predicates than those of
other classes leading to relatively more pruning oper-
ations before the sharp bend in selectivity.

For subscriptions mainly involving little selective
predicates (e.g., those of class 3), subscription tree
pruning can be used, too. Then, the correlation be-
tween saved memory resources and increased network
usage is not that beneficial as in the former case, but
pruning still results in memory requirements decreas-
ing by 37% before strongly affecting selectivity. A se-
lectivity of 1.0 is reached in this case after all possible
prunings, because remaining subscription trees query
for category that is a relatively general predicate.

We also ran experiments using different settings
than presented in Section 6.1. They resulted in
other magnitudes of selectivity but similarly develop-
ing curves. Especially the assumption of high selec-
tivities for book titles results in increased selectivity.

Several application scenarios normally require sub-
scriptions involving both highly selective and rela-
tively general predicates: Subscriptions in our auction
setting involve predicates regarding Author or Title
(high selectivity) but also predicates on Bids, Buy It
Now or Format (low selectivity).

Healthcare applications often require notifications
in case of critical circumstances, e.g., abnormal blood
pressure parameters or, more general, emergencies
in intensive care units. These circumstances occur
rarely, i.e., specifying predicates are highly selective.
Other predicates, e.g., describing identifiers of mon-
itored patients or names of medical conditions, are
more general.

We can also find the same pattern in subscriptions
for facility management purposes, e.g., when mon-
itoring buildings to detect burglaries. Such events
happen rarely (implying highly selective predicates
describing, e.g., breakage of glass) whereas ordinary
measurements from sensors arrive periodically and
are leading to a low selectivity of predicates speci-
fying, e.g., identifiers of certain buildings.

This shows that the structure of subscriptions in
various application areas beneficially influences the ef-
fect of our subscription generalization approach. Con-
sequently, subscription generalization is a valuable
mechanism to increase scalability and efficiency in dis-
tributed publish/subscribe systems.

7 Conclusions and Future Work

In this paper we have proposed a novel routing opti-
mization approach for distributed publish/subscribe
systems. Our approach, subscription generalization,
works on arbitrary Boolean subscriptions in com-
bination with the well-known distribution scheme
subscription forwarding. Subscription generalization
aims at decreasing the complexity of subscriptions
and thus at reducing the memory requirements in fil-
tering broker components. In turn, the selectivity of
subscriptions is decreased. In contrast to previous
approaches, our proposal works on all kinds of reg-
istered subscriptions independent of their similarity
and operators used in subscriptions.

We have presented two particular subscription
generalization methods: pruning subscription trees
and predicate replacement. Our pruning option
relieves more memory resources than replacement
whereas predicate replacement affects selectivity less
than pruning. For subscription pruning, we have pro-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

205

posed an algorithm automatically determining the or-
der of pruning operations based on selectivities.

In order to calculate selectivities of subscriptions,
we proposed a simple estimation approach focussing
on the minimal, maximal and expected average selec-
tivity of subscriptions. Our estimation is easily com-
putable and requires little additional memory, which
is an important quality criteria in publish/subscribe
systems due to the large number of subscriptions.

To evaluate subscription generalization, we ran a
series of experiments and evaluated our results: In
an online auction scenario, subscription tree pruning
is an effective way to decrease memory usage in bro-
ker components. For a typical set of subscriptions for
online auctions, we could decrease memory require-
ments by 66% while increasing selectivity (and thus
network traffic) by only 29%.

Subscription generalization leads to particularly
beneficial results when combining highly selective and
more general predicates in subscriptions. We can find
subscriptions conforming these criteria in several ap-
plications, e.g., e-commerce, healthcare and facility
management. Thus, subscription generalization is a
valuable mechanism to increase scalability and effi-
ciency in distributed publish/subscribe systems.

In the future we plan to integrate subscription gen-
eralization as routing optimization in a distributed
publish/subscribe service. Then, we want to run
an advanced series of experiments directly evaluating
network traffic, memory requirements and efficiency.

References

Bittner, S. & Hinze, A. (2004), Classification and
Analysis of Distributed Event Filtering Algo-
rithms, in ‘Proceedings of the 12th Interna-
tional Conference on Cooperative Information
Systems’, Agia Napa, Cyprus, pp. 301–318.

Bittner, S. & Hinze, A. (2005a), Investigating the
Memory Requirements for Publish/Subscribe
Filtering Algorithms, Technical Report 03/2005,
Computer Science Department, University of
Waikato.

Bittner, S. & Hinze, A. (2005b), On the Benefits
of Non-Canonical Filtering in Publish/Subscribe
Systems, in ‘Proc. of the 25th IEEE Inter-
national Conference on Distributed Computing
Systems Workshops’, USA, pp. 451–457.

Carzaniga, A., Rosenblum, D. S. & Wolf, A. L.
(2001), ‘Design and Evaluation of a Wide-Area
Event Notification Service’, ACM Transactions
on Computer Systems (TOCS) 19(3), 332–383.

Carzaniga, A., Rutherford, M. J. & Wolf, A. L.
(2004), A Routing Scheme for Content-Based
Networking, in ‘Proc. of the 23rd IEEE Confer-
ence on Computer Communications’, China.

Chand, R. & Felber, P. A. (2003), A Scalable Proto-
col for Content-Based Routing in Overlay Net-
works, in ‘Proceedings of the Second IEEE Inter-
national Symposium on Network Computing and
Applications’, Cambridge, USA, pp. 123–130.

Chen, Z., Koudas, N., Korn, F. & Muthukrishnan,
S. (2000), Selectively Estimation For Boolean
Queries, in ‘Proc. of the 19th Symp. on Prin-
ciples of Database Systems’, USA, pp. 216–225.

Cilia, M. & Buchmann, A. P. (2002), ‘An Active
Functionality Service For E-Business Applica-
tions’, ACM SIGMOD Record, Special Issue on
Data Management Issues in Electronic Com-
merce 31(1), 24–30.

Crespo, A., Buyukkokten, O. & Garcia-Molina, H.
(2003), ‘Query Merging: Improving Query Sub-
scription Processing in a Multicast Environ-
ment’, IEEE Transactions on Knowledge and
Data Engineering 15(1), 174–191.

Fabret, F., Jacobsen, A., Llirbat, F., Pereira, J.,
Ross, K. & Shasha, D. (2001), Filtering Algo-
rithms and Implementation for Very Fast Pub-
lish/Subscribe Systems, in ‘Proc. of the 2001
ACM SIGMOD International Conference on
Management of Data’, USA, pp. 115–126.

Guimarães, M. & Rodrigues, L. (2003), A Genetic
Algorithm for Multicast Mapping in Publish-
Subscribe Systems, in ‘Proc. of the 2nd IEEE
International Symposium on Network Comput-
ing and Applications’, USA, pp. 67–74.

Halevy, A. Y. (2000), ‘Theory of Answering Queries
Using Views’, ACM Special Interest Group on
Management of Data Record 29(4), 40–47.

Hanson, E. N., Chaabouni, M., Kim, C.-H. & Wang,
Y.-W. (1990), A Predicate Matching Algorithm
for Database Rule Systems, in ‘Proc. of the
1990 ACM SIGMOD International Conference
on Management of Data’, USA, pp. 271–280.

Hinze, A. (2003), A-MEDIAS: Concept and Design of
an Adaptive Integrating Event Notification Ser-
vice, PhD thesis, Freie Universität Berlin, Insti-
tute of Computer Science.

Jung, D. & Hinze, A. (2005), A Mobile Alerting Sys-
tem for the Support of Patients with Chronic
Conditions, in ‘Proc. of the 1st Euro Conference
on Mobile Government’, UK, pp. 264–274.

Mathieson, I., Dance, S., Padgham, L., Gorman, M.
& Winikoff, M. (2004), An Open Meteorological
Alerting System: Issues and Solutions, in ‘Proc.
of the 27th Australasian Computer Science Con-
ference’, Dunedin, New Zealand, pp. 351–358.

Mühl, G. (2001), Generic Constraints for Content-
Based Publish/Subscribe Systems, in ‘Proc. of
the 6th International Conference on Cooperative
Information Systems’, Italy, pp. 211–225.

Mühl, G. (2002), Large-Scale Content-Based Pub-
lish/Subscribe Systems, PhD thesis, Technische
Universität Darmstadt.

Mühl, G. & Fiege, L. (2001), ‘Supporting Cov-
ering and Merging in Content-Based Pub-
lish/Subscribe Systems: Beyond Name/Value
Pairs’, IEEE Distributed Systems Online 2(7).

Pereira, J., Fabret, F., Llirbat, F. & Shasha, D.
(2000), Efficient Matching for Web-Based Pub-
lish/Subscribe Systems, in ‘Proceedings of the
7th International Conference on Cooperative In-
formation Systems’, Eilat, Israel, pp. 162–173.

Poosala, V. & Ioannidis, Y. (1997), Selectivity Es-
timation Without the Attribute Value Indepen-
dence Assumption, in ‘Proceedings of the 23rd
International Conference on Very Large Data
Bases (VLDB)’, Athens, Greece, pp. 486–495.

Wang, Y.-M., Qiu, L., Verbowski, C., Achlioptas,
D., Das, G. & Larson, P. (2004), ‘Summary-
based Routing for Content-based Event Distri-
bution Networks’, ACM SIGCOMM Computer
Communication Review 34(5), 59–74.

Yan, T. W. & Garćıa-Molina, H. (1994), ‘Index Struc-
tures for Selective Dissemination of Information
Under the Boolean Model’, ACM Transactions
on Database Systems (TODS) 19(2), 332–364.

CRPIT Volume 48

206

The Challenge of Creating Cooperating Mobile Services:
Experiences and Lessons Learned

Annika Hinze1 George Buchanan2

1Department of Computer Science, University of Waikato, New Zealand
hinze@cs.waikato.ac.nz

2UCL Interaction Centre, London, United Kingdom
g.buchanan@cs.ucl.ac.uk

Abstract

In this paper, we present a mobile infrastructure for
cooperating information services. This infrastructure
is demonstrated through the example of a Tourist
Information Provider (TIP) system. TIP delivers
context-sensitive information from a variety of ser-
vices to the user. The underlying communication is
event-based to support continually changing informa-
tion.

We demonstrate two examples of the use of
context-sensitive services in TIP: first, the presen-
tation of sight information using a Zoomable Map
service which links into a detailed information ser-
vice; second, the exploitation of contextual informa-
tion to deliver targeted recommendations to the user.
Through these examples, we demonstrate the require-
ments for mobile multi-service systems that support
flexible cooperating services.

1 Introduction

Complex information systems are increasingly re-
quired to support the delivery of information to mo-
bile devices. Studies of these devices in use have
demonstrated that the information displayed to the
user needs to be limited in size and focussed in con-
tent (Buchanan & Jones 2000). Furthermore, the pre-
sented information is often dynamic – even changing
continuously. Event-based communication provides
strong support for selecting relevant information for
dynamic information delivery. Therefore, an event-
based system meets many requirements for mobile
information systems.

In this paper, we present a mobile infrastructure
for cooperating information services. The infrastruc-
ture uses an event-based communication layer to sup-
port continually changing information. This new in-
frastructure extends and enriches our earlier core sys-
tem by providing cooperating services, and additional
information and features to the mobile user. The ser-
vices had to be modular and loosely coupled to en-
able users to choose different services depending on
their travel context (e.g., displaying data on a map
or in textual form). This novel approach differs from
existing mobile information systems in its support
for open, componentised and cooperating information
services and its use of an event-based communications
that better support the supply of up-to-date data in
a fluid information environment.
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

The work reported here builds on our first-
generation stationary TIP 1.0 system, which was re-
ported in (Hinze & Voisard 2003, Hinze, Loeffler &
Voisard 2004). Previous work focussed on the in-
terplay of different event/information sources and
the event-based information delivery. The system
evolved through several versions undergoing consid-
erable changes; we refer to the new TIP version that
is introduced here as TIP 2.9.

This paper is structured as follows: In Section 2,
we demonstrate the core TIP system in use to high-
light the functional demands and constraints for the
design. We identify the challenges of cooperating
modular services, and define the focus of this paper.
In Section 3, we introduce our new conceptual design
for TIP 2.9. We discuss in detail two services coop-
erating with the TIP core system: the map service
and the recommendation services incorporated into
the second-generation TIP. This will be followed by
a technical examination of TIP 2.9, considering the
software’s implementation details (Section 4). Sub-
sequently, we discuss the issues identified and lessons
learned for inter-operating and cooperating services
in a mobile context (Section 5). In Section 6, we
review previous work in the field, and clarify the con-
tributions of the new TIP. The paper closes with a
summary and discussion of future work (Section 7).

2 TIP: The Core System

In this section, we briefly re-visit the TIP 1.0 system
in use (for more details on the early versions of TIP
see (Hinze et al. 2004, Hinze & Voisard 2003)). We
demonstrate the general principles of the TIP system
first in a usage scenario and then as conceptual ar-
chitecture. We conclude the section by highlighting
the challenges we faced when integrating cooperating
services into the TIP system.

2.1 TIP Usage Scenario

For clarity, we will explore the simple example of a
visitor Peter coming to New Zealand. Peter is a vis-
iting researcher from London. He has his own TIP-
enabled PDA, and uses it as an interactive guide to
assist his choice of where to visit. Peter is keen to
visit some historic buildings in New Zealand and is
generally interested in architecture. In our example
scenario, Peter is visiting the campus of the Univer-
sity of Waikato.

Peter has set up his profiles in TIP: choosing the
sight types of museums and campus buildings (in his
sight profile) with information topics of ’history’ and
’architecture’ (in his topic profile). The TIP system
will prioritize the display of sights of interest relevant
to his interests expressed in the sight profile. TIP
will only give general introductory information and

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

207

(a) current location,
with darker colour scheme

(b) distant location,
with lighter colour scheme

Figure 1: TIP information delivery based on the
user’s location, interests, and travel history: (a) De-
livering information about user’s current location, (b)
Browsing for information about a distant location

information pertinent to the topics that Peter selected
in his topic profile.

When standing at the entrance to the University,
Peter’s TIP display gives general information about
the University. The display is shown in the screenshot
in Figure 1(a), which features our new mobile inter-
face of TIP. Peter can also browse for places that he
may want to visit but that are not directly at his cur-
rent location (see screenshot in Figure 1(b)). Peter
can obtain further travel possibilities, either further
away or on different themes by interacting with his
TIP display. On revisiting places Peter has been to
before, the system displays the latest information that
was given to Peter on his last visit.

2.2 TIP Core Concepts

TIP’s information delivery is based on the user’s con-
text: their location, personal profile describing inter-
est in (semantic) sight groups and topics, and the
user’s travel history. The system also considers a
sight’s context, such as its location and its member-
ship in predefined semantic groups of sights.

The TIP core system is implemented using an
event-based infrastructure combined with a location-
based service. See Figure 2 for a conceptual archi-
tecture of the TIP core system. The heart of the
system is the filter engine cooperating with the loca-
tion engine. The filter engine selects the appropri-
ate information from the different source databases
based on the user and sight context. Changes in
the user’s location are transmitted to the TIP server
(Steps ① and ②), where they are treated as events
that have to be filtered. For the filtering, the sight
context (Step ③) and the user context (Step ④) are
taken into account. The location engine provides geo-
spatial functions, such as geocoding, reverse geocod-
ing, and proximity search (Step ⑥). For places that
are currently of interest to the user, the system deliv-
ers sight-related information (Step ⑦).

In addition, notification about scheduled events,
such as opening hours of museums and theater pro-
gram information are offered by the system. Notifi-
cations about external events may also be given to
the users, e.g., about changed starting time for a the-
ater performance. Note that these kinds of events
are handled similar to the location events but follow
different characteristics: scheduled events occur infre-
quently compared to user-driven location events.

Information about sights and other spatial data

Information

Dissemenation

Profile DB

user profiles

system profiles

Spatial DB

Location Engine Filter Engine

Data

Collection

Mobile Devices

with TIP Clients Event

Sight &

Information

User

Event

Location 1

2

4

3

6

5

7

maps

sights

Interface

Events DB
opening
 hours

TIP − Server

Figure 2: Conceptual architecture of the TIP core
system: Component interactions

are stored in the spatial database; event-related infor-
mation is stored in the event database. The operations
of the filter engine are controlled by user profiles and
system profiles (stored in the profile database). TIP
uses information about users’ preferences and user-
sight–relations (such as delivered information and vis-
ited sights) for it’s information delivery. System pro-
files enable a flexible integration of different applica-
tions; this aspect of the system is described in more
detail in Section 3.1.

The system is implemented as a client-server ar-
chitecture, supporting desktop clients (as reported
in earlier publications) as well as mobile clients on
a hand-held device with appropriate interfaces (pre-
sented in this paper for the first time).

2.3 Challenges of Cooperating
Mobile Services

As described above, TIP delivers context-sensitive in-
formation to mobile users. Having developed the
TIP core, we discovered interesting additional fea-
tures with which we wished to enhance the sys-
tem. Considering the traveller application, one may
want to deliver and display the sight related infor-
mation in different forms. Options are, for exam-
ple, on map displays (Jones, Jones, Marsden, Patel
& Cockburn 2005) or using audio guides (Warren,
Jones, Jones & Bainbridge 2005). Often, travellers
would also like to interact with the system to plan
their journey or be inspired to visit new places. One
could envision using travel planners as pre-travel aids
and recommendations as interactive support during
journeys (Hinze & Junmanee 2005).

The challenges we identified for these enhance-
ments are threefold; the additional features should
be:

1. modular services that can be used in addition to
the core system, allowing the users to use differ-
ent services for similar purposes interchangeably
(e.g., for displaying guidance information using
maps or textual representation).

2. cooperating services that exchange context data
and information for the benefit of the system’s
user.

3. mobile services that can be used on typical hand-
held devices; preferably with little or no installa-
tion and maintenance overhead for the user.

In this paper, we demonstrate two examples of the
use of context-sensitive services in TIP: first, the pre-
sentation of sight information using a Zoomable Map

CRPIT Volume 48

208

interfaces

time & locationtime & location

User

Data

Sight
Data

Events

Data

geocoding filtering

system

profiles

program logic

GPS location

service display service

map−based recommendation

service

C
o

m
m

u
n
ic

a
ti
o

n
L

a
y
e

r

event−based communication

S
e
rv

ic
e

L
a

y
e
r

D
a
ta

 L
a
y
e

r

Figure 3: Extended conceptual design of the TIP system: A mobile infrastructure for cooperating information
services

service which links into a detailed information ser-
vice; second, the exploitation of contextual informa-
tion to deliver targeted recommendations to the user.
We will analyse and demonstrate the requirements for
mobile multi-service systems, discuss the benefits of
the TIP approach and the lessons learned.

3 TIP Service Architecture – Design

In this Section, we first describe the conceptual de-
sign of the extended TIP system (in Section 3.1).
Then, we illustrate the functionality and interactions
of two services cooperating with TIP: a map service
(in Section 3.2) and a recommendation service (in Sec-
tion 3.3).

3.1 TIP Extended Conceptual Design

To support modular cooperating information services
in a mobile TIP environment, we developed a layered
conceptual architecture as shown in Figure 3.

As before, the heart of TIP still lies in the event
filter engine (for filtering) cooperating with the loca-
tion engine (for geocoding) (shown in the dashed area
on the left in Figure 3). The system profiles deter-
mine the interaction patterns and the functionality
of the system. Supporting variable system profiles
will enable a flexible integration of different applica-
tions – the TIP infrastructure could then be used for
a variety of differing applications, such as a museums
guide, an electronic learning environment, or a mobile
support for patients with chronic conditions (as sug-
gested in (Jung & Hinze 2005)). Details about the
design of system profiles can be found in (Hinze &
Voisard 2003).

For the Communication Layer, the inherent1
event-based communication of the core TIP system
design has to be modularized and extended into an
event-based communication infrastructure. All com-
munication is based on event messages that are for-
warded to the respective components or services. The
communication is either direct and unfiltered (e.g.,
forwarding of parameters), or controlled by the fil-
tering logic (e.g., selection of appropriate information
or service). Note that the event-based communica-
tion infrastructure will have support frequent location
events from a high number of users.2

1The origin and core of the filter engine is an event notification
service that is employed here to filter location-dependent events.

2We are currently evaluating these requirements of performance
and scalability for the event-based communication. Another issue
to consider is security and privacy. Both are currently addressed
on the application level as well as on the communication level.

The Data Layer holds user-related data as well as
data regarding the sights and information about ex-
ternal and scheduled events. User data and event data
are related to sight data by (often time-dependent)
references in location. For example, users visit
sights (i.e., locations) at certain times, which is then
recorded in their travel history. The opening hours of
a museum are described as scheduled events; similarly
the list of performances at a theater.

The Service Layer provides interfaces to different
types of services. Communication among services as
well as communication between the TIP core and
the services are channelled via the communication
layer. One basic service is a location service, here
shown as GPS-based service. Using the layer struc-
ture, it will be possible to interchangeably use differ-
ent location services that provide information about
the user’s current location: the service implementa-
tion and technical details (e.g., using GPS or wireless
LAN) are transparent to the other parts of the sys-
tem.

3.2 Cooperating Services: Maps in TIP

For users navigating in physical locations, maps can
provide vital information about the surrounding area.
On small physical devices, the display of detailed
maps within the confines of a limited screen area can
be problematic. We wished to assist the user’s con-
ception of their own context by supplementing the
existing TIP system with an interactive map. We
used a third-party Zoomable Map display tool that is
tailored for use on small displays (Jones et al. 2005).

We adapted the map display tool to be used as a
service in TIP. An example display of the Zoomable
Map interface in TIP is shown in Figure 4(a): the
sight at the current location is indicated by a colored
circle, which can be seen at the center of the screen-
shot. The Zoomable Map interface can also support
indicators for several locations, which would then ap-
pear as rings at the edges of the screen to indicate
nearby sights that are just off the visible map (for
clarity, we omit this feature in Figure 4(a)).

Here, we will focus upon the conceptual integra-
tion of the tourist information service inside TIP and
the additional Map service. The core TIP system
runs on a web server, whilst the Zoomable Map ser-
vice for PDAs runs as a thick client on mobile devices
themselves.

The TIP display application runs as a separate ap-
plication (thin client) on the PDA. Referring to our
Conceptual Design in Figure 3, the TIP display appli-
cation is a service for which the map service provides
an alternative display service.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

209

(a) map display for current lo-
cation

(b) TIP sight information for
current location (Educational
Libraray)

(c) recommendations for inter-
esting sights near by

Figure 4: Interplay of services: The central screenshot (b) shows the TIP core interface at the current location
of the Educational Library; (a) shows a screenshot of the map interface at the same location; (c) shows a
screenshot of the recommendation service interface at this location

Location information on the PDA is obtained
through a GPS receiver (running as another service
with a thick client on the mobile device), and is de-
livered via the event-based communication layer to
the TIP core system and to other interested services.
In this case, the information is passed on to the
Zoomable Map application to give the current ’home’
location (centering the map).

At the TIP core, the information is processed and
corresponding sight information is passed back to the
services. This information on sights retrieved from
the TIP server needs to be forwarded to the TIP
client software on the PDA. In addition, the TIP
client then needs to pass its sight/user information
onto the sight display module of the Zoomable Map
application. The sight display module is responsible
for drawing the sight circles over the underlying map.
Note that indicating sights on the map depends not
only in the current location (obtained from the lo-
cation service) but also the user’s interest (obtained
from the TIP system) – only sights that are judged
as being of interest for the user are pointed out.

3.3 Cooperating Services:
Recommendations in TIP

TIP presents information based on user and sight con-
text, as described in Section 2. In addition, recom-
mendations suggest new sights that he user might be
interested in. In the earlier TIP version, the sight
recommendations delivered to the users only reacted
to the current context of the user.

In TIP 2.9, we have supplemented the original
presentation with a recommendation component that
utilises the user’s known preferences and the current
context of user and sights. User preferences are de-
termined not only based on the user’s current profiles
(regarding sight groups and topics), but depending on
information from previous user sessions: the user’s
previous context (travel history) and their feedback
about the sights they visited. In addition, we use
information about other users.

Part of the wider goals of the TIP project is to
evaluate the different methods for providing user rec-
ommendations. Therefore, our recommender compo-
nent needed to support modular recommendation ser-
vices that could be combined, added and removed as
required. In addition, the provision of recommenda-
tions requires a separation of logic at different lev-
els: As we wished to have a candidate test rig for

exploring the different options, a modular approach
was required for the services. In the presentation of
the results, the service also needed to abstract from
any given display method (textual or map-based) and
from any particular recommendation algorithm. In
this section, we will discuss both the functionality of
the recommendation services and considerations for
the affected components of the TIP architecture.

As described in Section 2, TIP uses detailed infor-
mation about sights and users to tailor the presented
tourist information. As an example, Figure 4(b)
shows tailored information about the Educational Li-
brary as it is presented to our visitor Peter, who is
interested in campus buildings, architecture and his-
tory. To present personalised recommendations, we
can use the same base data. In addition, the rec-
ommendation service needs to extend the data held
about the users: each user’s feedback about the vis-
ited sights is recorded.

We implemented three different recommendation
services RS1–RS3 that utilize different information
as basis for the recommendations: (RS1) user prefer-
ences and sight context, e.g., interest and proximity,
respectively; (RS2) the user’s travel history and their
feedback; (RS3) feedback and preferences of similar
users. For a given situation, the user can interac-
tively choose between the different recommendation
services. Figure 4(c) shows a screenshot of the recom-
mendation interface presented to our traveller at the
Educational Library; here we used the recommender
service RS1.

Our services explored various data combinations
as input for recommendations comparatively to ex-
plore the viability of each option, and the quality of
recommendations that could be achieved in different
usage scenarios. The service RS1 can be used immedi-
ately after entering the TIP system for the first time.
Earlier user feedback is utilized to compute personal
and user-specific recommendations in RS2. Informa-
tion about similar users is helpful to discover new
sights a user might not have been aware of (in RS3).
Different information, such as proximity or personal
interest, is utilized to prioritize the display of material
to the traveller. For further details about the design
and evaluation of the travel recommendation services,
see (Hinze & Junmanee 2005).

As can be seen from these considerations, a strong
server-side cooperation with the existing data and
core services is necessary. We therefore implemented
the recommendation services as server-based services

CRPIT Volume 48

210

java

java

java

...

 ...

...

SOAP

XML

optional

XML

XML

Client Broker Process

wrapper
SOAP

jspjsp

jsp

JDBC

TCP/IP

PostgreSQL

Tomcat
Apache

run−time environment

application−specific

Thick Client

Browser

Jakarta Struts

Servlet

S
e

rv
e

r
S

id
e

M
o

b
ile

 C
lie

n
t

Thin Client

Figure 5: TIP 2.9 Architecture: Implementation details

with thin clients. Details about the implementation
of the server–client communication are given in the
next section.

4 TIP Service Architecture – Realization

This section discusses the implementation of the TIP
architecture. An earlier implementation of TIP 1.0
is described in (Hinze et al. 2004), where we con-
trast two implementations using a relational database
model and a semantic web RDF model, respectively.
Here, we focus on the interplay of the TIP core archi-
tecture, the mobile clients, and the cooperating ser-
vices. We first introduce the technical details of the
TIP architecture and then discuss the implications of
two differently structured services cooperating with
TIP.

4.1 Architecture of TIP: Technical Details

The technical details of the TIP architecture are
shown in Figure 5; we demonstrate the TIP server
and its interaction with both a thick and a thin client,
respectively. TIP supports both client architectures,
since different services cooperating with TIP might
require either thin or thick clients (such as those re-
quired for the recommendation services and the map
service, respectively).

On the server side, the TIP software has a
database back-end using a PostgreSQL database
with PostGIS extensions for the geographic data.
The server software is implemented using Apache’s
Jakarta Struts framework as a flexible control layer.
Supported by the Struts framework, TIP’s architec-
tures is based on the Model-View-Controller (MVC)
design paradigm. It supports three separate modules:
one for the application model with its data represen-
tation and business logic (java files), the second for
views that provide data presentation and user input
(JSP files and tag library JSTL), and the third for a
controller to dispatch requests and control flow (XML
files). A servlet manages the execution of the JSP
files and their corresponding java files. The Struts
framework is also used for the internationalization of
TIP (i.e., separate storage of text and application) by
supporting different language interfaces (German and
English). For more details on the Struts layers of TIP
see (Ottlinger 2004).

The TIP core architecture requires only a thin
client for the delivery of sight information and the

client interfaces for registration and profile defini-
tion. TIP provides a desktop interface (for standard
browsers) and a mobile interface (standard bowser or
TIP browser, depending on the mobile device).

Services cooperating with TIP may require thin
or thick clients. Thin clients may use the mo-
bile TIP browser or a web browser for displaying
HTML/JavaScript.

Thick clients are application specific; they oper-
ate in their own run-time environment. Communi-
cation with the TIP server is typically managed via
TCP/IP. Services may also interact (cooperate) with
each other: Interaction between services is performed
via the TIP server, since only the server holds the
necessary interface definitions.

For multi-process management on the mobile de-
vice, an additional broker process is needed. We
experimented with various arrangements of multi-
process service management (which we will discuss
in Section 4.3). The arrangement shown in Figure 5
seems to overcome most shortcomings. The broker
process manages the client services as sub-processes
and, thus, emulates task management and allows for
inter-process communication.

4.2 Cooperating with the Map Service
(Thick Client)

The basic communication with a thick client is com-
plicated by the limitations of the available protocols
on the PocketPC platform (or the similar restrictions
of alternatives such as PalmOne). Any truly mo-
bile application must be developed within these con-
straints. For example, even simple technologies such
as ’pipes’ between processes are not supported by the
existing APIs. The new generation of ’smartphones’
shares some similarities to PDA systems, but often
have even fewer communication options. Naturally,
one key challenge in designing and implementing a
complete mobile infrastructure for cooperating ser-
vices is the delivery of the required service function-
alities with such limitations.

Furthermore, the system must support service
modularity and cooperation both within the frame-
work (e.g., the TIP client) and to services outside
the framework (e.g., Zoomable Map). It is critical to
also support TIP services which primarily exist within
other applications and services (e.g., the sight display
module).

In this subsection, we consider the arrangement for
cooperation between TIP, the map service and TIP

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

211

sub-services. Cooperation with other client services
is discussed in Section 4.3. Cooperation between the
TIP core and the map service is managed via TCP/IP
(socket-based) communication, either directly or via
the TIP client broker. We planned to use the map
service to display sight-related information on maps,
such as current position, current sight, and sights near
by. The original Zoomable Map software supported
positioning of a number of halos (circles to identify
locations) by the user, and a zoom-feature in respect
to the given halos.

In order to display TIP’s information, we needed
to extend the Zoomable Map software by an addi-
tional service; the sight display module (SDM). The
sight display module is planned to support both the
geographical positioning of halos and the indication
of different semantics (e.g., ’home’ and ’other place’).
Semantic information may be either displayed explic-
itly (e.g., a sight name), or communicated to the user
through subtle cues such as the use of different shapes
or colours. The current implementation only supports
the display of visually similar halos at coordinates
of sights known to the the core TIP system. The
sight display module runs as a separate sub-service of
the Zoomable Map (i.e., as a sub-process). This al-
lows for direct communication between the two pro-
cesses without server interaction, and readily over-
comes some difficulties with communication within
the PocketPC API. This approach delegates part of
the display decisions and context away from the core
TIP server, allowing greater interactivity. Processing
a long feedback loop via the server to obtain informa-
tion whilst the user scrolls across the map would be
wasteful and potentially error-prone, and may cause
delays in providing the user with accurate informa-
tion.

Clearly, this obliges the ’on-board’ storage of some
sight information. Handheld devices have sufficient
storage to cache simple sight information (e.g., loca-
tion, name) intelligently within a local context, and
the initial download at a location typically consists of
only a few seconds. Such data could also be cached in
advance. Further detailed information is obtained on
a simple on-demand basis. The Zoomable Map sys-
tem further supports a hybrid thick/thin client ap-
proach, wherein the recommendation service (see fol-
lowing subsection) can be viewed through a browser
sub-process. Thus, in implementing the Zoomable
Map, we have probed thick, thin and hybrid clients,
and also some simple caching requirements. All of
these operate within the extended TIP framework.
Services are mutually aware, and communicate with
the underlying TIP databases through abstracted
APIs that hide platform-specific and protocol-specific
implementation details.

4.3 Cooperating with the Recommender Ser-
vice (Thin Client)

We consider the communication both between the rec-
ommendation service and the server, and in between
services. The basic communication of TIP with thin
clients or between thin clients is simple and does not
differ from interactions and cooperation using a desk-
top computer. Communication is performed directly
via TCP/IP using HTTP.

The cooperation between and management of ser-
vices that involve mixed clients, e.g., between the map
service with its own interface and the recommender
services using a browser-based interface, is more chal-
lenging. It is not sufficient to have independent client
processes running on the mobile device. When using
this type of task management, it is not possible to
flexibly change between the different interfaces and
to support a guided and controlled user interaction

with the TIP system. The services would act as in-
dependent applications.

We therefore propose to employ a TIP client bro-
ker process using the following set-up: Each TIP ser-
vice runs as a separate process and the independent
client broker process is utilized for the management
of processes. Thus, the TIP service processes have to
be instantiated by the broker service. This allows for
flexile management of tasks, e.g., to switch between
interfaces. To enable loose coupling, the communica-
tion between the broker process and its sub-services
should utilize the SOAP protocol, if supported by the
respective services. For third party services, SOAP
wrappers may have to used; otherwise the service’s
interface definition has to be directly implemented
into the broker interface. This would result in tight
coupling of services which is contrary to the desired
modularity of TIP services.

5 Discussion:
Issues Identified and Lessons Learned

This paper presented a number of difficulties and
challenges for creating an event-based communication
framework for mobile systems. In this section, we
will summarize the experience and lessons learned to
date (early impressions of our experiences were given
in (Hinze & Buchanan 2005)).

• Firstly, communication protocols themselves are
problematic, given the limited range of inter-
process communication techniques available be-
tween processes running on the same mobile de-
vice, and the various options available when com-
municating between a mobile device and the core
(TIP) server. A global framework is obliged to
hide such implementation details from the dif-
ferent components of the system, to provide a
consistent framework both at the present time
and over the changes that one can readily antic-
ipate in the future. Therefore, the TIP frame-
work must abstract over TCP/IP, SOAP, Win-
dows Messaging and other APIs to support seam-
less communication between service components.

• Secondly, an apparently simple final service pro-
vided to the user (e.g., a tourist guide with
map, sight data and recommendations) is in
fact a composition of a variety of services. Of-
ten, these services need to communicate together
both within the same machine and between com-
puters, using thick- and thin-client scenarios,
and occasionally in hybrid approaches. A sound
framework must also support this range of re-
quirements. Unlike a monolithic approach, often
seen in existing mobile information systems, a
modular, service-oriented approach allows for the
exploration of alternatives, e.g., of communica-
tion (c.f. Zoomable Map) or implementation (c.f.
recommendations). This is important where even
fundamental services such as location can be pro-
vided in different ways – e.g., GPS or 3G wireless
telephony. Furthermore, new services can add
entirely new features to the framework without
requiring the re-implementation of or changes to
existing services.

• The frequent development of stand-alone mobile
services has, we believe, resulted in higher de-
velopment costs for mobile information systems,
reducing the rate of new research. Substantial ef-
fort is required to provide a basic communication
infrastructure. By providing a common frame-
work, this substantial front-loaded implementa-
tion cost can be dramatically reduced. The use

CRPIT Volume 48

212

of a modular, service-oriented approach in the
related field of digital libraries (e.g., (Bainbridge
& Witten 2004)) has demonstrated the advan-
tages of this approach both practically and for
research.

• We have successfully created a framework in
which mobile services cooperate. This can al-
ready be seen in the communication between the
map and sight information services to provide
sight location halos in the Zoomable Map. In
future, further forms of cooperation and compo-
sition are needed. For example, we wish to ex-
tend the display module in the Zoomable Map
system to support different halo cues (e.g., for
sight type or recommendation) and this requires
inter-process communications that may in turn
require further development of our framework.

• However, implementation details, particularly is-
sues of standardisation, continue to be relevant.
For example, in the case of the Map system,
different mapping scales and notations are used
by different map and information providers, and
further services must be introduced to mediate
between systems that function in different nota-
tional standards.

• With the trend of information systems moving
onto mobile devices or supporting mobile clients,
the challenges identified in this paper will become
more pronounced. Client devices will provide a
number of pre-installed services and users will
add their own selections. Consequently, we be-
lieve that even stronger decoupling and modular-
ization may be needed: A mobile infrastructure
for mobile information services needs to flexibly
support existing, changing or new services. The
next design step in the TIP project will there-
fore see the completion of re-designing TIP into
a Service-Oriented Architecture (SOA) using web
services (TIP 3.0).

6 Related Work

TIP is not the first mobile tourist information system.
However, it is the first to use a modular, event-based
communication architecture.

In the first part of this section, we discuss the ex-
isting systems against which TIP can be compared,
identify the system requirements recorded in the ex-
isting literature, and compare the TIP Service Ar-
chitecture and existing implementations against these
needs. We conclude the section with a discussion of
the requirements that we have met, and the outstand-
ing issues for the TIP architecture.

In the second part of this section, we discuss
related approaches from other fields, such as web
services, agents, ubiquitous computing and context-
aware systems.

Mobile Tourist Information Guides From our
own studies and based on the pertinent literature,
we identify the following requirements for a mobile
infrastructure for cooperating services in the area of
tourist information. We group the requirements into
three groups: architecture, application, modelling.
We reported results of an extensive study about
modelling requirements in previous work (Hinze &
Junmanee 2005, Hinze et al. 2004); here we therefore
concentrate on architecture and application. Archi-
tectural requirements are support for modular, co-
operating, mobile services, mobile services and sup-
port for both thin and thick clients (as discussed in
Section 2.3) Application requirements are support of

personalization, of user location guidance (e.g., maps
or music), and of recommendations. We consider only
systems that provide location-based sight information
(see Table 1).

Most research in the area of electronic guides has
focussed on indoor user. Two of the most widely doc-
umented systems for outdoor use are CyberGuide and
Guide. We additionally included systems that had
similar objectives for comparison.

AccessSights (Klante, Krsche & Boll 2004) is a
multi-modal location-aware mobile tourist informa-
tion system that provides tourist information to both
normally sighted users and visually impaired people.
Both visual display and auditory information is given
to users; the system uses loudness to indicate distance
between users’ current location and attraction spots.

The CATIS (Pashtan, Blattler & Heusser 2003)
system is a web-based system that recommends
restaurants based on the users preference and travel
history. The system also considers the current con-
text such as the location and time of the day as well as
means of travel and speed and direction of travel (to
determine the restaurants that can be reached within
a reasonable time). The system uses an architectures
based on web services; it provides different XSLT style
sheets to support display on for PC, PDA, and mobile
phone.

CRUMPET (Poslad, Laamanen, Malaka, Nick,
Buckle & Zipf 2001) is a mobile system that provides
personalized and location-aware services to tourists.
To interact with the system, a user first provides per-
sonal information; the system learns more specific
user preferences during the user interactions with the
system. CRUMPET provides tourist information ac-
cording to the user’s location. Crumpet uses an ar-
chitecture based on agents; it provides interfaces for
displaying on laptop, PDA, and mobile phone.

CyberGuide (Abowd, Atkeson, Hong, Long,
Kooper & Pinkerton 1997) is a mobile system that
assists a visitor in a tour of Georgia Tech Lab; it
was extended to also support outdoor use. The sys-
tem mainly focuses on investigating context-sensitive
computing so that only limited support for tourist
information is provided. The project consists of a
family of prototypes with several independent com-
ponents.

Guide (Cheverst, Mitchell & Davies 2002) is a
mobile context-aware tourist guide facilitating visi-
tors while they are travelling the city of Lancaster.
The user has access to different functions, such as
retrieval web information based on their current lo-
cation, booking a a restaurant for dinner, and mes-
sage sending. The Guide system offers a personalised
‘Nearby Attractions’ page on which it recommends
sights that are near by the users current location. The
system uses interactive dialogues for personalization.

Gulliver’s Genie (O’Hare & O’Grady 2003) is a
mobile context-aware service for tourist information.
It delivers travel information depending on the users
location and context. Gulliver’s Genie uses an agent-
based approach: It supports the deployment of in-
telligent agents to flexibly assemble multi-media pre-
sentations that are displayed on a PDA. The authors
point out that the system is rather demanding in re-
spect to the quality and size of the client device.

The TIP core system (Hinze et al. 2004, Hinze &
Voisard 2003) provides rich location-based informa-
tion depending on user context; support for modu-
lar services and flexible client configuration are poor.
Due to the web-based approach, the system has only
few requirements regarding the client device.

As we see from the comparison presented here
that existing systems fall short in respect to the re-
quirements and the aim reported in this paper. The
TIP 2.9 system is the first one to address the problem

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

213

Architecture Application
System modular thin/thick persona- location recommen-

services clients lization guide dations
AccesSights + – – + –

CATIS + o + – +
CRUMPET – – + ? –
CyberGuide o ? – + –

Guide – – o – +
Gulliver’s Genie o – + + +

TIP core – o + – o
TIP 2.9 + + + + +

Table 1: Comparison of selected traveller information systems. (Symbols: + supported feature, – not supported
feature, o supported in part, ? no information)

of modular incorporation of and cooperation between
various (existing) services. TIP satisfies existing and
new requirements regarding modelling, architecture,
and application domain. The proposed architecture
can be realized in a number of ways; we tried to built
on standard technologies as far as possible. We evalu-
ated several implementation variations and reported
our lessons learned and discussed the issues requiring
further research.

Related Approaches from Other Areas For the
coordination of web services, Alvarez at al. (Álvarez,
Bañares & Muro-Medrano 2003) propose an exten-
sion of service-oriented architectures with a coordi-
nator role that allows more flexible relationships be-
tween service providers and requestors than the one
provided by the client-server model. This new role
has a similar function to our client-broker/ENS mid-
dleware. A component for coordinating changes in
web services has been proposed in (Hinze 2005); this
is similar to the coordinating role of the ENS in our
architecture.

Similar issues as the ones discussed here have
been addressed in the area of agent-based systems
(e.g., in (Zlotkin & Rosenschein 1989)). Coopera-
tion and coordination between multiple agents is a
fundamental question that has been dealt with in
a wide variety of research, such as telecommunica-
tions (Magedanz, Rothermel & Krause 1996), for
trading (Chavez & Maes 1996), and dynamic net-
work configuration (Minar, Kramer & Maes 1999).
The central focus lies on the theory of agent com-
munication and negotiation, drawing from such areas
as artificial intelligence and game theory. The differ-
ence to our approach is that cooperating agents are
inherently designed for communication and coopera-
tion, whereas the services in our application field are
mainly designed to be executed on their own or to
be cooperating with dedicated services. The cooper-
ation and management has to be provided by aux-
iliary components in the architecture (similar to the
management of web services).

General context-aware systems in ubiquitous
computing have already been discussed in earlier
works (Schilit, Adams & Want 1994). There, con-
text refers to individuals that interact with comput-
ers, keyboards and mice. As a whole, they are seen
as a reconfigurable system that is driven by context
information. Complex cooperation of concurrent ser-
vices has not been in the focus of this work. An
overview about approaches to context aware system
can be found in (Chen & Kotz 2000). Context is
mainly the location of the user; more complex con-
cepts such as the user interests are rarely considered.

7 Conclusion

In this paper, we have introduced a mobile infras-
tructure for cooperating information services, demon-
strated through the example of a mobile Tourist Infor-
mation Provider (TIP) system. TIP delivers context-
sensitive information to the system’s users. The in-
frastructure uses an modular approach combined with
an event-based communication layer to support con-
tinually changing information.

We identified a number of the challenges for cre-
ating the infrastructure for mobile systems, namely
the support of modular, cooperating, mobile services
for the information delivery to mobile users. We pre-
sented the conceptual design and implementation de-
tails of our mobile tourist information service TIP 2.9.

We presented details of two service types (map ser-
vice and recommender services) that required differ-
ent client implementations. We highlighted the chal-
lenges of supporting services that require thin and
thick clients on a single device. These services need
to communicate with each other on the mobile de-
vice and with the central TIP server. This paper
reported on our exploration of various process man-
agement structures to achieve flexible cooperation be-
tween these services. We illustrated how our modular,
service-oriented approach allows for the exploration
of alternatives in process communication and imple-
mentation. The conceptual architecture given in Sec-
tion 3.1 has proven effective in delivering the require-
ments we introduced at the beginning of this paper,
providing a framework for both modularity and co-
operation.

This paper presented our TIP 2.9 prototype of a
mobile tourist information system that implements
our design of a mobile infrastructure for cooperat-
ing information services. In our comparison of our
TIP 2.9 system to related existing systems, we have
shown that none of the other systems fully address
the problems of modular incorporation of and coop-
eration between various (existing) services in a mo-
bile information delivery system. This is exemplified
in the case of recommender systems; our implemen-
tation of recommendation support is able to provide
a much wider set of options than any existing sys-
tem, and does so through exploiting our inter-service
communication capacity. When a particular recom-
mendation approach cannot function – e.g., through
the lack of availability of appropriate data – its peers
can continue to provide the same service type through
a different implementation.

In future work, we wish to extend the co-operation
(and thus communication) between the provided ser-
vices. We also plan to incorporate new services, such
as access to external information sources, e.g., in dig-
ital libraries. This may lead to further exploration

CRPIT Volume 48

214

of sophisticated context-models which can be used
for standardized communication between the services.
We wish to support even more flexible service utiliza-
tion: services may register and unregister depending
on availability and capability of the mobile device.
The next step in the TIP design will therefore be the
completion of the re-design into a Service-Oriented
Architecture (SOA) using web services in TIP 3.0.

Acknowledgements This work was valuably as-
sisted by our colleagues Dr. Matt Jones, Dr. Steve
Jones and Bruce Bowering who created the original
Zoomable Map Interface. The Royal Society of New
Zealand supported this work through an ISAT grant
award.

References

Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper,
R. & Pinkerton, M. (1997), ‘Cyberguide: A mo-
bile context-aware tour guide’, ACM Wireless
Networks 3, 421–433.

Álvarez, P., Bañares, J. A. & Muro-Medrano, P. R.
(2003), An architectural pattern to extend the
interaction model between web-services: The
location-based service context., in ‘First Inter-
national Conference on Service-Oriented Com-
puting’, Trento, Italy.

Bainbridge, D. & Witten, I. H. (2004), Greenstone
digital library software: current research, in
‘JCDL ’04: Proceedings of the 4th ACM/IEEE-
CS Joint Conference on Digital libraries’, Tus-
con, AZ, USA.

Buchanan, G. & Jones, M. (2000), Search interfaces
for handheld web browsers, in ‘Poster Proceed-
ings of the 9th World Wide Web Conference’,
Amsterdam, Netherlands.

Chavez, A. & Maes, P. (1996), Kasbah: An agent
marketplace for buying and selling goods, in
‘First International Conference on the Practi-
cal Application of Intelligent Agents and Multi-
Agent Technology (PAAM’96)’, London, UK.

Chen, G. & Kotz, D. (2000), A survey of context-
aware mobile computing research, Technical Re-
port TR2000-381, Dept. of Computer Science,
Dartmouth College.

Cheverst, K., Mitchell, K. & Davies, N. (2002), ‘The
role of adaptive hypermedia in a context-aware
tourist guide’, Communications of the ACM
45(5), 47–51.

Hinze, A. (2005), Supporting change-aware semantic
web services., in ‘Proceedings of the First Work-
shop on Service Oriented Computing’, Leicester,
U.K.

Hinze, A. & Buchanan, G. (2005), Cooperating Ser-
vices in a Mobile Tourist Information System,
in ‘Proceedings of the Conference on Coopera-
tive Information Systems (CoopIS)’, Agia Napa,
Cyprus.

Hinze, A. & Junmanee, S. (2005), Providing recom-
mendations in a mobile tourist information sys-
tem, in ‘Information Systems Technology and
its Applications, 4th International Conference
(ISTA2005)’, Palmerston North, New Zealand.

Hinze, A., Loeffler, K. & Voisard, A. (2004), Con-
trasting object-relational and RDF modelling in
a tourist information system, in ‘Proceedings of
the 10th Australian World Wide Web Confer-
ence’, Gold Coast, Australia.

Hinze, A. & Voisard, A. (2003), Location- and time-
based information delivery in tourism, in ‘Con-
ference in Advances in Spatial and Temporal
Databases (SSTD 2003)’, Vol. 2750 of LNCS,
Santorini Island, Greece.

Jones, S., Jones, M., Marsden, G., Patel, D. & Cock-
burn, A. (2005), ‘An evaluation of integrated
zooming and scrolling on small-screens’, Inter-
national J. Human Computer Studies . In Press.

Jung, D. & Hinze, A. (2005), A mobile alerting system
for the support of patients with chronic condi-
tions, in ‘Proceedings of the 1st Euro Conference
on Mobile Government mGov’2005’, Brighton,
UK.

Klante, P., Krsche, J. & Boll, S. (2004), AccesSights
– a multimodal location-aware mobile tourist in-
formation system, in ‘Proceedings of the 9th In-
ternational Conference on Computers Helping
People with Special Needs (ICCHP’2004)’, Paris,
France.

Magedanz, T., Rothermel, K. & Krause, S. (1996),
Intelligent agents: An emerging technology for
next generation telecommunications?, in ‘INFO-
COM’96’, San Francisco, CA, USA.

Minar, N., Kramer, K. H. & Maes, P. (1999), Co-
operating mobile agents for mapping networks,
in ‘Proceedings of the First Hungarian National
Conference on Agent Based Computation’.

O’Hare, G. & O’Grady, M. (2003), ‘Gulliver’s genie:
A multi-agent system for ubiquitous and intel-
ligent content delivery’, Computer Communica-
tions 26(11), 1177–1187.

Ottlinger, P. (2004), Design and Implementation of
an extensible Software architecture for Distribut-
ing context-sensitive Information (in German),
Master’s thesis, Freie Universitaet Berlin, De-
partment of Computer Science.

Pashtan, A., Blattler, R. & Heusser, A. (2003), Catis:
A context-aware tourist information system, in
‘Proceedings of the 4th International Workshop
of Mobile Computing’, Rostock, Germany.

Poslad, S., Laamanen, H., Malaka, R., Nick, A.,
Buckle, P. & Zipf, A. (2001), CRUMPET: Cre-
ation of user-friendly mobile services person-
alised for tourism, in ‘Proc. 3G2001 Mobile Com-
munication Technologies’, London, U.K.

Schilit, B., Adams, N. & Want, R. (1994), Context-
aware computing applications, in ‘IEEE Work-
shop on Mobile Computing Systems and Appli-
cations’, Santa Cruz, CA, USA.

Warren, N., Jones, M., Jones, S. & Bainbridge, D.
(2005), Navigation via continuously adapted mu-
sic, in ‘CHI ’05 extended abstracts on Human
factors in computing systems’, Portland, OR,
USA.

Zlotkin, G. & Rosenschein, J. S. (1989), Negotiation
and task sharing among autonomous agents in
cooperative domains, in N. S. Sridharan, ed.,
‘Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence’, Morgan
Kaufmann, San Mateo, CA, pp. 912–917.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

215

CRPIT Volume 48

216

Human Visual Perception of Region Warping Distortions

Yang-Wai Chow†, Ronald Pose†, Matthew Regan†, James Phillips††
School of Computer Science and Software Engineering† / Department of Psychology††

Monash University
Clayton, Victoria 3800, Australia

{yang.wai.chow,rdp,regan}@csse.monash.edu.au, jim.phillips@med.monash.edu.au

Abstract
Interactive virtual reality requires at least 60 frames per
second in order to ensure smooth motion. For a good
immersive experience, it is also necessary to have low
end-to-end latency so that user interaction does not suffer
from perceptible delays in images presented to the eyes.
The Address Recalculation Pipeline (ARP) architecture
reduces end-to-end latency in immersive Head Mounted
Display (HMD) virtual reality systems. By using the ARP
in conjunction with priority rendering, different sections
of the scene are updated at different rates. This reduces
the overall rendering load and allows for more complex
and realistic scenes. Large object segmentation in
conjunction with priority rendering further reduces the
overall rendering load. However, scene tearing artefacts
potentially emerge and region warping was devised to
alleviate this. In compensating for the tearing, region
warping introduces slight distortions to the scene.

Immersive virtual reality systems have humans as integral
parts of the system. While researchers do thorough
measurements and evaluation of hardware and software
performance, the human experience and perception of the
system is often neglected. This paper addresses this
important issue. We describe our human visual perceptual
experimental methodology in detail and present some
initial results. Initial experiments in human visual
perception of region warping distortions show interesting
characteristics which lead us to propose further
experimental investigations to clarify their significance.

Keywords: Address Recalculation Pipeline, object
segmentation, priority rendering, region warping, tearing
artefacts, visual perception.

1 Introduction
The ultimate goal of virtual reality is to present the user
with an illusion of reality within a virtual environment.
One of the main aspects involved in the portrayal of a
believable virtual environment is the presentation of
computer generated 3D imagery to the user. In order to
maintain the illusion of reality, virtual reality systems
must continually display images from the user’s vantage

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

point in real time. Interactive virtual reality requires at
least 60 updates per second to achieve good immersion.

Latency is a well recognized problem in virtual reality
and teleoperation technology (Ellis et al. 2004). Latency
is the lag or time delay between when a user performs an
action and when the system responds to that action or
when that action is represented by the system. A
particular issue in virtual reality is that of the latency
between a user moving his/her head, thus changing the
user’s viewpoint, and that change being reflected in
updated images before the user’s eyes. Excessive system
latency or delays in virtual reality makes the system hard
to use and in severe cases this can lead to adverse side
effects such as user disorientation, motion sickness, and
etc. Even with the fast graphics accelerators available
today that can render over 100 frames per second (fps),
latency still remains a factor that has to be addressed
(Meehan et al. 2003). This is because on conventional
systems the update cycle is bound by the need to obtain
user head position orientation information before
rendering can commence.

A hardware architecture known as the Address
Recalculation Pipeline (ARP) was designed to reduce
user head rotational latency in immersive Head Mounted
Display (HMD) virtual reality by detaching user head
orientation from the rendering process (Regan and Pose
1993). Priority rendering was developed for use in
conjunction with the ARP system in order to reduce the
overall rendering load by concentrating rendering power
on sections of the scene that appear to change the most.
Using priority rendering, different sections of the scene
can be updated at different rates. This allows for the
rendering of more complex and realistic scenes (Regan
and Pose 1994).

Large object segmentation and region priority rendering
were introduced to manage objects in the virtual
environment as well as to further reduce the overall
rendering load (Chow et al. 2005a). However, tearing
problems can emerge as a result of updating different
segments of the same object at different rates. This
problem was overcome by using region warping. Region
warping involves the perturbation of object vertices in
model space in order to force these vertices to align,
thereby hiding scene tearing artefacts. This however
introduces slight distortions in the computer generated
graphics.

The quality of frames produced by implementing the
region warping technique has previously been
investigated using mathematical analysis (Chow et al.
2005b). However while mathematical analysis gave an

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

217

indication of the level of distortion caused by region
warping, it did not incorporate the human visual
perception of the distortions. It is therefore essential to
conduct perception experiments in order to fully
understand the characteristics of region warping
distortions with respect to human visual perception.
Virtual reality and interactive systems involve humans as
integral parts of the systems. All too often researchers
thoroughly test and measure the performance of the
hardware and software while ignoring the fundamental
issue of how humans might perceive and react to the
system. This paper addresses this issue by presenting the
experimental methodology and results of an experiment
investigating the human perception of region warping
distortions.

The results and insights gained in the research presented
in this paper are also relevant in other areas and
applications of computer graphics. There are a number of
other perceptually based computer graphics techniques
that attempt to optimize a system’s performance taking
advantage of the limitations in the human visual system.
Some of these applications are provided in the related
work section of this paper.

2 Previous Work
In order to describe the basis for region warping, this
section first provides some background of priority
rendering and the Address Recalculation Pipeline system.
For more information please refer to Pose and Regan
(1994), Regan and Pose (1993, 1994), Chow et al.
(2005a).

2.1 The Address Recalculation Pipeline and
Priority Rendering

The Address Recalculation Pipeline (ARP) graphics
display architecture reduces the end-to-end latency
perceived by the user during user head rotations, by
implementing a concept known as delayed viewport
mapping. In delayed viewport mapping, the scene that
encapsulates the user’s head is pre-rendered into display
memory. Viewport orientation mapping is then performed
only when required by mapping relevant sections of the
scene already residing in display memory, and is
therefore fairly independent of scene complexity and is
based on the most up-to-date user head orientation
information. Unlike conventional systems where user
head orientation has to be obtained prior to rendering, the
ARP system effectively detaches user head orientation
from the rendering process. Thus in the ARP system,
latency is no longer bound by the usually lengthy
rendering process.

A rendering technique known as priority rendering was
designed to be used in conjunction with the ARP system.
Priority rendering takes advantage of the fact that in the
ARP system, the scene surrounding the user’s head has to
be rendered into display memory. In a scene that
surrounds the user’s head, only dynamically animated
objects might constantly be changing, when the user
rotates his/her head. Most other objects in the scene will
remain the same. When a user translates through a scene,

sections of the scene that are closer to the user will appear
to change faster than sections that are further away from
the user. This difference in the speed of movement for
near and far objects is known as motion parallax
(Goldstein 1999). Therefore by using multiple display
memories and multiple renderers, different sections of the
scene can be rendered onto separate display memories
that can be updated individually at different rates. The
images on the different display memories can then be
composited to form an image of the whole scene.

Priority rendering is demand driven rendering, in that an
object is not updated until its image in display memory
has changed above a tolerable amount. This concentrates
rendering power on sections of the scene that are
changing the most. In this manner, priority rendering
reduces the overall rendering load, thus potentially
allowing for the rendering of more complex and realistic
scenes. A threshold which defines the minimum feature
size of the virtual environment has to be pre-determined.
This threshold takes the form of an angle,

�
t. Priority

rendering attempts to keep the image in display memory
accurate to within this threshold. Figure 1 shows a
priority rendering translational validity period estimation.
The translational validity period is an estimate of how
long the image of an object in display memory will
remain valid before requiring an update, based on the
user’s relative translational speed. The translational
validity period estimation was used in the experiment by
varying the value of

�
t for the different scenes.

Figure 1: Translational validity period estimation.

2.2 Large Object Segmentation and Region
Priority Rendering

Region priority rendering was introduced to assist object
management in the virtual environment for priority
rendering. In region priority rendering, objects in the
virtual world are spatially divided and grouped into
different regions. Using this technique, entire regions of
objects can then be assigned to the separate display
memories based on the region that they are located in.
This avoids having to calculate individual object validity

 x2 = d2 + d2 – 2d*d*cos(

�
t)

x2 = 2d2(1-cos(
�

t))
x = d*sqrt(2(1-cos(

�
t))) where d = distance, and

 x = max. trans. distance

translational validity period = x / relative_speed

CRPIT Volume 48

218

periods and sort objects based on these validity periods
before assigning individual objects to the separate display
memories. Figure 2 shows a top-down example of region
to display memory allocations for region priority
rendering. This allocation strategy was employed for the
virtual environment used in the experiment.

Figure 2: 2D top-down view of example region to
display memory allocations.

Large object segmentation was devised to further reduce
the overall rendering load in priority rendering. Large
virtual world objects were segmented so that different
segments of these objects could be updated on separate
display memories at different update rates. In this
manner, if the image of a section of a large object became
invalid in display memory and required an update, only
this section of the object would have to be updated
instead of having to re-render the whole object.

2.3 Tearing and Region Warping
The implementation of large object segmentation with
region priority rendering however causes an adverse
visual artefact, a form of scene tearing. Scene tearing
artefacts occur along the shared vertices of objects’
segments. User head rotations will not cause the scene
surrounding the user’s head to appear to change much.
The problem occurs when the user translates through the
scene. Tearing artefacts emerge as a result of
discrepancies between the shared vertices of an object’s
segments that are updated on separate display memories
at different update rates, whilst the user is translating
through the scene. This tearing problem can destroy the
illusion of reality that the virtual reality system attempts
to present to the user. An example of scene tearing
artefacts is shown in figure 3 (the white lines in the
scene).

Region warping was devised in order to alleviate the
tearing problem. Region warping involves the

perturbation of shared object vertices in order to force
these vertices to align, thereby eliminating any
discrepancy between the vertices during user translations.
Two methods of interpolation for region warping were
introduced in Chow et al. (2005b), linear interpolation
and quadratic interpolation. Before warping could be
performed, the exact amount of perturbation had to be
known. Vertices in the regions had to be normalized
based on their distance from the user’s region. This is
illustrated in figure 4.

Figure 3: Example of scene tearing artefacts.

Figure 4: 2D top-down view illustrating the
normalization of region vertices.

Normalization was performed using what can be seen as
concentric squares, centered on the circumference of the
square based region the user was located in. Interpolation
of vertex perturbations could then be conducted with
these normalized values. In linearly interpolated region
warping, these normalized values were used without any
alteration, whereas in quadratic interpolation the square
of the normalized values was used. Both linear and
quadratic region warping methods were tested in this
experiment. In Chow et al. (2005b) it was concluded that
the distortions in the frames generated using quadratic
region warping were concentrated further away from the
user and were more similar to normally rendered frames,
compared to frames rendered using linear region warping.
This conclusion however was based on mathematical
comparisons and did not reflect human visual perception
of the distortions.

Display Memory 0 Regions
Display Memory 1 Regions
Display Memory 2 Regions
Display Memory 3 Regions
User

Update Rate
Fast

Slow

Display
Memory 0
Regions

Display
Memory 1
Regions

Tearing

Overlapping

0.0

1.0

0.5

0.15

Current User Position

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

219

3 Related Work
Similar concepts of using multiple renderers and/or
multiple display memories have also been designed and
developed by other researchers.

NVIDIA Corporation’s Scalable Link Interface (SLI)
technology combines the rendering power of two
Graphics Processing Units (GPUs) in a single system
(NVIDIA 2005). The SLI system has a rendering mode
called Split Frame Rendering (SFR) which allows a frame
to be divided into two portions (top and bottom) and
rendered separately on each GPU. Software drivers are
used to dynamically share and balance the load between
the two GPUs. Each GPU then renders one of the two
sections, before the sections are digitally composited to
form the whole frame. By clipping the scene into 2
portions, the system attempts to avoid the processing of
all the vertices in a frame on both GPUs.

A 3D graphics and multimedia hardware architecture
codenamed Talisman was designed by researchers at
Microsoft Corporation (Toburg and Kajiya 1996). One of
the main uses of the Talisman architecture was in
multimedia applications such as interactive animation. In
smooth animated sequences, most of the display remains
the same from frame-to-frame and it would be wasteful to
have to re-render the entire frame. The Talisman
architecture takes advantage of temporal and spatial
similarities between sequential frames, by allowing
individually animated objects to be rendered onto
independent image layers before being composited
together to form the final display (Barkans 1997). In this
way, only changing image layers have to be modified or
re-rendered.

3D warping techniques in computer graphics have also
been looked into by a number of other researchers. Mark
et al. (1997) have experimented on what they termed,
post-rendering 3D warping, on adjacent frames in order
to avoid re-rendering entire frames by exploiting frame-
to-frame coherence. The purpose of this warping was to
increase the frame rate of a graphics system. This was
done by warping the images of existing frames in order to
extrapolate for new viewpoints of future frames. Thus,
less rendering had to be performed for the derived frames
resulting in an increase in the rendering frame rate. They
have also suggested that the priority rendering technique
for the ARP system, and also the Talisman architecture,
would benefit from the implementation of 3D warping
techniques.

In light of the fact that the human visual system can only
perceive a limited amount of detail, perceptually
orientated graphics techniques have been designed to
optimize a system’s performance. For example, Level of
Detail (LOD) management techniques attempt to remove
or reduce less perceptible details from the computer
graphics (Reddy 1997). Watson et al. (1997) have
experimented on the effects of degrading the peripheral
detail of a scene in a HMD virtual reality system’s
display with respect to user performance. Visual
perception experiments using visual attention models
have also been conducted to predict where a user will
look in a scene and to selectively concentrate

computational effort on those sections of the scene
(Chalmers et al. 2003).

4 Psychophysics Experiment
The aim of this experiment was to measure the threshold
where a human can perceive the distortions caused by
region warping. Other goals of the experiment were to
determine whether different display devices and/or region
warping methods might affect the human perception of
these distortions. Psychophysical methods of testing were
therefore employed for the experiment. Psychophysics is
a branch of psychology that deals with the measurement
of perception. It is the scientific study of the relation
between stimulus and sensation (Gescheider 1985).

4.1 Method
The method used for the experiment was a variation of
the method of limits known as an adaptive staircase Two
Alternative Forced Choice (2AFC) method. An adaptive
procedure means that the stimulus of a trial is determined
by the preceding stimuli and responses (Levitt 1971). The
advantage of using this procedure is that trials will be
concentrated around the area of interest, i.e. near the
threshold, and therefore presents an efficient method for
measuring threshold.

The staircase 2AFC technique has been widely used in a
variety of different fields to measure threshold of
perception. Experiments using similar methodologies
have also been conducted in the field of virtual reality and
computer graphics by other researchers, for example, to
measure perception of latency in virtual reality (Regan et
al. 1999, Ellis et al. 2004, Mania et al. 2004), and in
perception of modulated Level-of-Detail (LOD) in
computer graphics (Reddy 1997).

In a 2AFC discrimination task, two stimuli are presented
to the participant - a standard (S) and a comparison (C)
(Ulrich and Miller 2004). The participant is then required
to choose which of these two alternatives, contained (or
did not contain) the signal. The comparison stimulus
presented for each trial varies in signal strength, and the
number of different strength values is usually 5 or 7
(Farell and Pelli 1999).

The forced-choice method was chosen for the experiment
over yes/no or same/different methods, as these other
methods contain an internal subjective criterion (Farell
and Pelli 1999). In a yes/no or same/different experiment,
for each trial the participant would be asked whether they
could discern a difference between the two stimuli or
whether the stimuli were the same or different. This
might introduce a certain bias to the experiment, for
example, the participant’s responses might be influenced
if he/she knew the purpose of the experiment beforehand.
The 2AFC method attempts to eliminate this bias, by
forcing the participant to choose between the two
alternatives.

The staircase or up-down method used for the experiment
followed a 2-Down 1-Up (2D-1U) approach, where two
correct responses reduced the signal strength whereas an
incorrect response increased or augmented the signal

CRPIT Volume 48

220

strength. This method gives a 70.7% correct response
threshold (Levitt 1971). Descending and ascending
staircases were used in the experiment. A descending
staircase is one which starts at a high/strong signal
strength, and the signal strength is typically reduced
depending on the participant’s responses. An ascending
staircase starts at a low/weak signal strength, and the
signal strength is typically increased based on the
participant’s responses (Gescheider 1985). An example of
ascending and descending staircases can be seen in figure
7, in the results and discussions section below.

4.2 Design
For this experiment, the standard stimulus was the scene
rendered using normal rendering while the comparison
stimulus was the scene rendered using the region warping
technique, and containing varying levels of distortion. For
each trial, the two scenes, scene A and scene B, were
presented sequentially one after the other. This is known
as temporal-forced choice (Gescheider 1985). The order
of the two scenes (i.e. the standard and comparison
stimulus) presented to the participants was pair-wise
randomized. Participants were then forced to choose
which of the scenes appeared better, in other words,
which scene did not contain distortions (the standard
stimulus). Participants used a 2 button mouse to input
their forced-choice feedback.

There were 2 parts to the experiment. Each part required
the participant to carry out the experimental tasks on a
different display device. The two display devices used
were: a 17 inch computer monitor and a Head Mounted
Display (HMD). The HMD used for the experiments was
a Virtual Research V8 HMD, which has a 640×480
resolution and a 60Hz refresh cycle. The other display
device was a 17 inch computer monitor set to a resolution
of 640×480 and a 60Hz refresh cycle, in order to match
the HMD’s resolution and refresh rate. In view of the fact
that the other device used was a computer monitor, the
HMD was used in monoscopic mode. The wide angle
lens optical distortion of the V8 HMD was corrected
using a technique proposed by Watson and Hodges
(1995).

Figure 5: Overview of experimental design.

A pair of staircases (one ascending, one descending) was
used for each region warping technique (i.e. linear and

quadratic), giving a total of four staircases. Both
ascending and descending staircases were used in this
experiment in order to comprehensively test the
participants’ responses to the full range of distortion
levels. All four staircases were randomly interleaved
based on a pre-randomized script. This was done so that
participants would not know which warping method was
being presented during each trial and also to minimize the
chances of the participant anticipating or predicting the
signal strength of the next trial. For example, if the
participant realized that he/she was on an ascending or
descending staircase he/she would be able to anticipate
whether successive trials would increase or reduce in
signal strength. Figure 5 depicts the overall experimental
design. The entire experiment was automated on the
computer.

Fixed-step staircases with 7 signal strengths (distortion
levels) were used. The signal strengths corresponded to
the level of region warping distortions. Each staircase
would end after 6 reversals or a maximum of 25 trials,
whichever came first. A reversal refers to a change in the
direction of a staircase. In a 2D-1U staircase approach, a
reversal would mean 2 correct responses after 1 (or more)
incorrect responses or an incorrect response after 2 (or
more) correct responses. An example of this is shown in
figure 7, where the ascending staircase ended after 6
reversals while the descending staircase ended after 25
trials. This meant that each part of the experiment would
finish after a maximum of 100 trials. It is important to
note that unlike experimental simulations that can be
done purely on a computer, in experiments involving
humans one must design the experiment to avoid
exhausting the participants.

The V8 HMD has a 600 diagonal Field of View (FOV),
which gives a 480 horizontal FOV and a 360 vertical
FOV. Since the HMD has a 640×480 resolution, this
equates to 4.5 arc minutes per pixel (Mania et al. 2004).
This means that a

�
t value of 4.5 � or 0.0750 corresponds to

1 pixel. The 7 levels of distortion used in the experiment
were obtained by varying

�
t (refer to

�
t in the translational

validity period equation shown in figure 1) in step sizes
of ½ a pixel. Table 1 shows the relations between
distortion levels,

�
t, and the number of pixels.

Distortion Level Value of � t (arcmin) Pixels
1 2.25 � ½
2 4.5 � 1
3 6.75 � 1½
4 9.0 � 2
5 11.25 � 2½
6 13.5 � 3
7 15.75 � 3½

Table 1: Value of � t for each signal strength.

By using these
�

t values, a display memory would be
forced to update if the image in that display memory was
no longer valid to within

�
t from the user’s viewpoint. A

view of the virtual environment used in the experiment
can be seen in figure 11. Region sizes in the virtual
environment were 10 square metres. The scenes were
rendered using a simulation of region priority rendering.

Display Device

HMD

Computer
Monitor

Region Warping Method

Staircase

Linear
Warping

Quadratic
Warping

Ascending
Staircase

Descending
Staircase

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

221

Each scene in the experiment had the camera or viewport
translating along a fixed path. This was to ensure that all
participants would view the exact same sequence of
frames. The worst case scenario was chosen for the fixed
path. In other words, the path chosen would give the
maximum distortions with the viewport looking in the
direction where the distortions would be most apparent.
The fixed path included both horizontal and vertical
movements, with the viewport translating through the
scene at a constant velocity of 1.5 meters per second (a
fast walking speed). Figure 6 illustrates the update rates
used for a

�
t value of 4.5 � at this translational speed (refer

to figure 2 for the relative locations of display memory 0,
1, 2 and 3 regions with respect to the user). The display
memories had different update rates for other values of

�
t.

Nevertheless, display memory 0 was always kept at 60
updates per second. While the fixed path movement used
in the experiment may affect user visual cues, such as
depth perception, user visual perception of region
warping distortions based on user initiated movement is
the subject of further study.

Figure 6: Display memory update rates for the scene
using a � t value of 4.5 � .

Each scene was 3 seconds in duration. The scenes had to
be short as two scenes were presented sequentially to the
participants per trial. This meant that the participant had
to remember what he/she saw of the two scenes before
deciding which of the scenes appeared to look better. This
was also done in the interest of keeping the experiment
short, so that the participants would not lose
concentration during the experiment.

No anti-aliasing techniques were used in the rendering of
the virtual environment. Anti-aliasing is used in computer
graphics in order to smoothen out aliasing artefacts such
as jagged edges. Anti-aliasing also has the effect of
smoothening out the pixel transitions of moving objects.
For this reason, it is expected that region warping
distortions will be less obvious if anti-aliasing were to be
used. However, this was left for future experiments. Note
that hardware anti-aliasing is part of the design of the
ARP system.

4.3 Procedure
A total of 16 volunteers (12-male and 4-female)
participated in the experiment. Participants were aged
between 18-41, and had normal vision or corrected
normal vision. All participants were experienced
computer users.

Participants were informed as to the purpose of the
experiment, which was to determine whether or not they
could tell the difference between the different methods of
rendering. They were told that even though the same
virtual environment was used for all the trials, the two
scenes presented in each trial were different, and that for
each trial they were to choose which of the scenes looked
better. Participants were instructed to guess if they could
not tell which of the two scenes was better.

Before the experiment, participants were shown an
example of region warping distortions during a test run of
the experiment. A different virtual environment was used
for the example, so that it would not influence the actual
experiment. The purpose of the test run was to familiarize
the participants with the experiment, what they were
required to do, as well as what they were expected to look
for during the experiment. However, even though
participants were shown region warping distortions on the
virtual environment used for the test run, participants
were not instructed as to what criterion to adopt when
looking for distortions in the virtual environment
employed for the actual experiment and therefore had to
judge for themselves which of the two scenes contained
the distortions.

Participants were encouraged to take a rest break in
between the two parts of the experiment, i.e. when
switching from one display device to the next. This was
to ensure that the participants would remain attentive
throughout the experiment. Some participants also took
rest breaks at various occasions in between trials. The
duration of the whole experiment was approximately 30-
40 minutes per participant. In order to balance the
experiment, half the participants used the HMD first then
the computer monitor, while the other half used the
computer monitor first followed by the HMD. This was
done to balance any ‘learning effects’, i.e. participants
would more likely perform better during the second part
of the experiment as he/she would be more familiar with
the experimental tasks and would know where to focus
their attention in the virtual environment.

After the experiment, participants were required to
provide some personal computer usage information as
well as to answer some questions relating to the
experiment by filling in a questionnaire.

5 Results and Discussions
Of the experimental data collected from the 16
participants, only 15 sets were used in the analysis. The
experimental results of one of the participants who
consistently answered incorrectly even at the highest
distortion level were not considered in the analysis. Prior
to this experiment, only one of the participants had ever
used a HMD.

In the experimental results, a higher threshold meant that
the participant was less likely to be able to correctly
perceive a difference in the scenes presented during each
trial of the experiment, whereas a lower threshold meant
that the participant was more likely to be able to correctly
differentiate between the scenes. From observations of
the individual participant responses, it was clear that

CRPIT Volume 48

222

region warping distortions of level 5, corresponding to
2½ pixel distortions, and above were generally
perceptible by the participants.

Figure 7: A plot showing the ascending and
descending staircases for one of the participants.

From the experimental data, graphs of the ascending and
descending staircases were plotted for the different
display devices and the different region warping methods.
This gives a total of 4 graphs for each individual
participant. Figure 7 shows an example of this. The mid-
run estimation method was used to determine the
threshold for the individual participants. Mid-run
estimations are the average of the mid-points of staircase
runs. A staircase run is an ascending or descending
sequence in the staircase. This means that a staircase
reversal would mark the end of a staircase run and the
start of another run. The mid-run method of threshold
estimation is an efficient way of estimating threshold and
the precision of the mid-run estimates has been found to
be excellent for small experiments of less than 30 trials
(Levitt 1971). In the analysis, the first staircase run for
each staircase was ignored in order to give the staircases a
chance to stabilize.

Display
Device

Warping
Method Mean Standard

Deviation

Linear 2.7409 0.84552
Monitor

Quadratic 2.6910 1.18052
Linear 3.1789 1.07441

HMD
Quadratic 3.2867 0.75123

Table 2: Means and standard deviations of
participants’ thresholds.

Table 2 shows the means and standard deviations of the
participants’ thresholds for both display devices and both
methods of region warping. It can be seen from the table
that there is not much difference in average threshold for
the different warping methods for each display device
respectively. However there is a clear difference in
average threshold between the different display devices.
The HMD has a higher mean threshold than the computer
monitor, which indicates that participants found
distortions harder to see on the HMD as compared to the
monitor.

Upon closer examination of the thresholds, it appeared
that in general participants who indicated on the
questionnaire that they frequently played computer games

(this includes console gaming platforms like the X-Box,
Play Station, and etc.) had a lower threshold compared to
participants who answered to the contrary. A total of 6
participants indicated that they were gamers. Results of a
t-test only reported a statistically significant difference in
threshold for the HMD and linear warping case [t(13) =
4.93, p<0.01], the box plot in figure 8 depicts this
difference. Nevertheless, differences in average threshold
levels between gamer and non-gamers can clearly be seen
in figure 9. This result is not surprising as gamers are
more attuned to interactive graphics.

Figure 8: Box plot depicting the difference in
threshold between gamers and non-gamers for the

case of linear warping viewed using the HMD.

0

1

2

3

4

5

6

7

D
is

to
rt

io
n

Le
ve

l

Non-Gamers

Gamers

Figure 9: Graph comparing mean threshold between
gamers and non-gamers for different display devices

and different warping techniques.

In order to further investigate the threshold differences
between gamers and non-gamers, group thresholds for the
gamers and non-gamers were calculated. Note that mid-
point estimations could not be performed for group
thresholds, as the staircases could only be plotted for
individual participants. Therefore group thresholds were
obtained by first calculating the probability of correct
responses at each distortion level for the group, and then
fitting a cumulative normal ogive to the groups’
experimental results. As the cumulative normal ogive is
an exponential function, a log transform was first applied
to the average probability of correct responses for the two

Linear Quad Linear Quad

 Monitor HMD

Non-Gamers Gamers

5.0

4.0

3.0

2.0

Distortion
Level

Threshold

Descending
Staircase
Ascending
Staircase

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

223

groups (to 2 minus the average probability of correct
responses). A linear regression was then performed to
obtain a fitted psychophysical function. This was
performed for all cases involving the different warping
methods and the different display devices.

Figure 10: Group thresholds obtained from the 0.75
probability of the psychophysical function.

From fitted psychophysical functions the 0.75 probability
was used to obtain the group threshold. For the 2AFC
method, a probability of 0.5 signifies random guessing
while a probability of 1.0 would mean 100% correct
responses. 0.75 is typically used to obtain the threshold in
2AFC experiments (Ulrich and Miller 2004). Figure 10
illustrates the 75% threshold obtained from a fitted
psychophysical function. Table 3 gives the results of the
group thresholds.

Monitor HMD

Linear Quad. Linear Quad. Gamer

3.0558 2.3341 2.4372 3.6815

Monitor HMD
Linear Quad. Linear Quad. Non-

Gamer
3.6886 3.8115 4.4975 4.3570

Table 3: Group thresholds between the gamers and
non-gamers for the different cases.

From the table it can be seen that there is a clear
difference in threshold between the gamers and non-
gamers. This agrees with observations of the average
individual thresholds between gamers and non-gamers
presented earlier. For the non-gamers, the difference in
threshold between the display devices also indicates that
distortions on the HMD are not as perceptible as on the
computer monitor, and that there is no apparent
difference between warping methods. This also agrees
with analysis presented earlier. However for the
participants who were gamers, this was not the case. The
results suggest that the gamers perceived less distortion in
linear region warping on the computer monitor. But on
the other hand, the gamers perceived less distortion in
quadratic region warping on the HMD.

At this stage it is not clear as to why the difference in
warping technique on the different display devices for the
gamers is so apparent. Green and Bavelier (2003) have

also found that habitual gamers have a perceptually
modified visual attention compared to non-gamers. One
possible explanation might be due to the size of the
display area of the display device. Plumert et al. (2004)
have observed that user perception of distance judgment
in virtual environments is better on large screen
immersive displays rather than virtual reality systems
involving HMDs. Results of another study by Willemsen
et al. (2004) that experimented with the use of HMDs and
‘mock HMDs’ [replica shell of a HMD that restricts a
person’s Field-of-View (FOV)], also implies that there is
an apparent compression of perceived virtual spaces
when using HMDs. Wu et al. (2004) have also previously
conducted experiments with regards to human distance
perception, by using a pair of opaque goggles with a
monocular rectangular aperture to limit the horizontal or
vertical FOVs of human subjects, and have reported
similar findings.

These conclusions by other researchers also suggest that a
user’s sense of perception is affected by the use of
HMDs. This is possibly why the gamers perceived
warping distortions differently on the HMD as opposed to
the monitor, and also why the non-gamers had higher
thresholds on the HMD as compared with the computer
monitor. Another reason might be because when set to a
resolution of 640×480 in full screen, the area covered by
1 pixel will appear much larger on a 17 inch monitor
compared to the HMD. In order to further investigate this,
we are currently setting up visual perception experiments
using two different HMDs with exactly the same
resolution but with different FOVs, in order to affirm
whether a HMD’s FOV makes a difference to perception
of region warping distortions.

In the questionnaire, participants were asked to circle a
section or sections of the scene where they focused their
attention the most. It was found that most participants
focused their attention around one of two major sections
in the virtual environment. Some participants circled both
sections. These two sections are shown in figure 11 below
and close ups of the two sections are provided in figures
12 and 13 respectively.

Figure 11: Sections of the virtual environment where
participants focused their attention the most.

Chalmers et al. (2003) explains this focus of attention in
virtual environments as being a fundamental feature of

Threshold

CRPIT Volume 48

224

the human visual system known as inattention blindness.
The center of the retina known as the fovea has the
densest concentration of color sensitive cones in the
human eye. The visual angle covered by the fovea
however is very small, and everything that lies outside
this foveal angle is perceived as blurred or unclear.
Therefore in a virtual environment, a user will typically
focus on conspicuous objects in the scene and will ignore
or pay less attention to details in the rest of the virtual
environment. This gives rise to the possibility of
concentrating distortions away from where the user might
focus his/her attention or to place eye catching objects in
the scene in order to draw the user’s attention away from
the region warping distortions.

Figure 12: Close up of trees section.

Figure 13: Close up of mountain-sand section.

Participants were also asked to choose whether the
distortions were more noticeable during horizontal
movement, vertical movement or whether direction of
movement did not make a difference. It was interesting to
note that participants who circled the trees section,
typically indicated that distortions were more apparent
during horizontal movement, whereas participants who
circled the mountain-sand section typically selected
vertical movement. When asked to clarify their answers,
participants who circled the trees section said that they
concentrated on the jerkiness in the movement of the
trees during horizontal movement, and participants who
circled the mountain-sand section said that they focused
on the transition rate of the light and dark pixels between
the mountain and the sand.

6 Conclusions and Future Work
The results of this experiment suggest that in general
region warping distortions are less perceptible on a HMD
compared to on a computer monitor. These findings
concur with various other studies conducted by other
researchers that conclude that the use of a HMD does

affect a user’s sense of perception. Distortions of over 2
pixels were generally perceptible by all the participants,
whereas distortions below 2 pixels were less perceptible
and distortions of 1 pixel and below were very much less
perceptible.

Analysis of the experimental data also showed that there
was a difference in visual perception between participants
who frequently played computer/electronic games and
participants who were non-gamers. It was also observed
that a user will normally focus his/her attention on certain
sections of a virtual environment and pay less attention to
the remainder of the scene.

This work is relevant in a wide variety of fields in
computer graphics research and applications, ranging
from the design of interactive animation hardware like the
Talisman to various perceptually based rendering
techniques as well as other perception studies involving
graphics and HMDs.

This experimentation is designed to enable us to
concentrate our computing power on processes that
improve the user experience. To that end we are now
setting up visual perception experiments involving HMDs
with different FOVs in order to further investigate human
perception of region warping distortions. Considerations
in planning for future experiments include employing
anti-aliasing in the rendering of the virtual environment,
as well as the use of different virtual environments with
various scene characteristics and complexities. The
impact of stereoscopy, different image resolutions and
user-initiated interaction also has to be investigated. A
discussion on a number of other factors that have to be
considered when designing human visual perception
experiments have previously been outlined in Chow et al.
(2005c).

7 Acknowledgments
Textures used in the virtual environments were taken
from Paul Bourke’s texture library (Paul Bourke’s
Personal Pages).

The authors would like to thank all the volunteers who
participated in this research experiment. This study has
been approved by the Monash Standing Committee on
Ethics in Research involving Humans (SCERH).

Yang-Wai Chow would also like to acknowledge the
support of the Information and Communication
Technologies (ICT) scholarship provided by the Victorian
Government, Australia, and also the Monash Faculty of
Information Technology scholarship granted for this
research.

8 References
Barkans, A.C. (1997): High Quality Rendering using the

Talisman Architecture. Proc. of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, Los Angeles, California, 79-88.

Chalmers, A., Cater, K. and Mafioli, D. (2003): Visual
Attention Models for Producing High Fidelity Graphics
Efficiently. Proc. of the 19th Spring Conference on

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

225

Computer Graphics (SCCG), Budmerice Castle,
Slovak Republic, 47-54.

Chow, Y.W., Pose, R. and Regan, M. (2005a): Large
Object Segmentation with Region Priority Rendering.
Proc. of the 28th Australasian Computer Science
Conference 2005 (ACSC 2005), Newcastle, NSW,
Australia, 19-28.

Chow, Y.W., Pose, R. and Regan, M. (2005b): Region
Warping in a Virtual Reality System with Priority
Rendering. Proc. of the 2nd IADIS International
Conference on Applied Computing, Algarve, Portugal,
451-458.

Chow, Y.W., Pose, R. and Regan, M. (2005c): Design
Issues in Human Visual Perception Experiments on
Region Warping. Proc. of the 2nd IADIS International
Conference on Applied Computing, Algarve, Portugal,
210-217.

Ellis, S.R., Mania, K., Adelstein, B.D. and Hill, M.
(2004): Generalizeability of Latency Detection in a
variety of Virtual Environments. Proc. Of the Human
Factors and Ergonomics Society 48th Annual Meeting.
New Orleans, Louisiana, 2632.

Farell, B. and Pelli, D.G. (1999): Psychophysical
Methods, or how to Measure a Threshold, and why. In
Vision Research: A Practical Guide to Laboratory
Methods. 129-136. CARPENTER, R.H.S. and
ROBSON, J.G. (eds). Oxford, Oxford University Press.

Gescheider, G.A. (1985): Psychophysics: Method, Theory
and Application, 2nd Edition. Hillsdale, New Jersey,
Lawrence Erlbaum Associates.

Goldstein, E.B. (1999): Sensation and Perception, 5th
Edition. Pacific Grove, California, Brooks/Cole
Publishing Company.

Green, C.S. and Bavelier, D. (2003): Action Video Game
Modifies Visual Selective Attention. Nature, 423(29
May):534-537.

Levitt, H. (1971): Transformed Up-Down Method,
Journal of the Acoustical Society of America, 49(2):
467-477.

Mania, K., Adelstein, B.D., Ellis, S.R. and Hill, M.I.
(2004): Perceptual Sensitivity to Head Tracking
Latency in Virtual Environments with Varying Degrees
of Scene Complexity. ACM International Conference
Proceeding Series, Proc. of the 1st Symposium on
Applied Perception in Graphics and Visualization. Los
Angeles, California, 73:39-47.

Mark, W.R., McMillan, L., and Bishop, G. (1997): Post-
Rendering 3D Warping. Proc. of the 1997 Symposium
on Interactive 3D Graphics, Providence, Rhode Island,
7-16.

Meehan, M., Razzaque, S., Whitton, M.C. and Brooks,
F.P. (2003): Effect of Latency on Presence in Stressful
Virtual Environments. Proc. of IEEE Virtual Reality
2003, Los Angeles, California, 141-148.

NVIDIA (2005): GPU Programming Guide version 2.4.0,
NVIDIA Corporation, http://download.nvidia.com/
developer/GPU_Programming_Guide/GPU_Programm
ing_Guide.pdf. Accessed 5 August 2005.

Paul Bourke’s Personal Pages: Texture Library.
 http://astronomy.swin.edu.au/~pbourke/texture/

Accessed 1 August 2005.
Plumert, J.M., Kearney, J.K. and Cremer, J.F. (2004):

Distance Perception in Real and Virtual Environments.
Proc. of the 1st Symposium on Applied Perception in
Graphics and Visualization (APGV), Los Angeles,
California, 27-34.

Pose, R. and Regan, M. (1994): Techniques for Reducing
Latency with Architectural Support. Proc. of East-West
International Conference on Multimedia, Hypermedia
and Virtual Reality, Moscow, Russia, 153-160.

Reddy, M. (1997): Perceptually Modulated Level of
Detail for Virtual Environments. Ph.D. thesis. Dept. of
Computer Science, University of Edinburgh, UK.

Regan, M. and Pose, R. (1993): An Interactive Graphics
Display Architecture. Proc. of the Virtual Reality
Annual International Symposium (IEEE VRAIS ’93),
Seattle, Washington, 293-299.

Regan, M. and Pose, R. (1994): Priority Rendering with a
Virtual Reality Address Recalculation Pipeline. Proc.
ACM SIGGRAPH ‘94, in Computer Graphics, Annual
Conference Series, Orlando, Florida, 155-162.

Regan, M.J.P., Miller, G.S.P., Rubin, S.M., and Kogelnik,
C. (1999): A Real-Time Low-Latency Hardware Light-
Field Renderer. ACM SIGGRAPH ‘99, Proc. of the 26th
Annual Conference on Computer Graphics, Los
Angeles, California, 287-290.

Torburg, J. and Kajiya, J.T. (1996): Talisman:
Commodity Realtime 3D Graphics for the PC. ACM
SIGGRAPH ’96, in Computer Graphics, Annual
Conference Series, New Orleans, Louisiana, 353-363.

Ulrich, R. and Miller, J. (2004): Threshold Estimation in
Two-Alternative Forced-Choice Tasks: The Spearman-
Karber Method. Perception and Psychophysics.
66(3):517-533.

Watson, B.A., and Hodges, L.F. (1995): Using Texture
Maps to Correct for Optical Distortion in Head-
Mounted Displays. Proc. of the IEEE Virtual Reality
Annual Symposium (VRAIS ’95), Research Triangle
Park, 172-178.

Watson, B., Walker, N., Hodges, L.F. and Worden, A.
(1997): Managing Level of Detail through Peripheral
Degradation: Effects on Search Performance with a
Head-Mounted Display. ACM Transactions on Human-
Computer Interaction. 4(4):323-346.

Willemsen, P., Colton, M.B., Creem-Regehr, S.H. and
Thompson, W.B. (2004): The Effects of Head-
Mounted Display Mechanics on Distance Judgments in
Virtual Environments. Proc. of the 1st Symposium on
Applied Perception in Graphics and Visualization
(APGV), Los Angeles, California, 35-38.

Wu, B., Ooi, T.L. and He, Z.J. (2004): Perceiving
Distance Accurately by a Directional Process of
Integrating Ground Information. Nature, 428(4
March):73-77.

CRPIT Volume 48

226

Rendering Multi-Perspective Images with Trilinear Projection

Scott Vallance Paul Calder

School of Informatics and Engineering
Flinders University of South Australia,

PO Box 2100, Adelaide, South Australia 5001,
Email: Paul.Calder@flinders.edu.au

Abstract

Non-linear projections of 3D graphical scenes can be
used to compute reflections and refractions in curved
surfaces, draw artistic images in the style of Escher
or Picasso, and produce visualizations of complex
data. Previously, most non-linear projections were
rendered by ray tracing. This paper presents trilin-
ear projection, a technique for rendering non-linear
projections in a manner that achieves significant per-
formance benefits by taking advantage of current ren-
dering hardware and software.

Trilinear projections are geometrically similar to
Phong-shaded triangular patches, and like Phong
patches they can be joined to represent more compli-
cated shapes. The paper details how a single trilinear
projection projects a scene point, how projections of
scene triangles can be built up by considering the con-
nectivity of projected points, and how multiple trilin-
ear projections can be combined. Finally, it outlines a
method for using trilinear projection to approximate
reflections and refractions on curved surfaces.

Keywords: Multi-Perspective Images, Non-Linear
Projection, Reflections, Refractions, Rendering Algo-
rithms.

1 Introduction

Most computer graphics rendering of 3D scenes is lin-
ear. For example, a perspective projection simulates
the physics of optics, mapping scene data back to a
single point in space as if viewed through a camera
lens. Nonlinear projections differ from linear projec-
tions in that straight lines in 3D may not be straight
lines when projected. Such projections can be used
to compute reflections and refractions in curved sur-
faces, draw artistic images in the style of Escher or
Picasso, and produce visualistations of complex data.

Previous techniques for nonlinear projection have
used ray tracing or relied on distortion of the scene
data. This paper presents a new technique, called tri-
linear projection, for rendering nonlinear projections
in a manner analogous to perspective transformation
matrix rendering. The technique is based on a tri-
linear interpolation similar to that used for Phong-
shaded trianglular patches. And like Phong patches,
multiple trilinear projections can be joined together
to represent complex projection surfaces while main-
taining continuity across sub-projections.

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

1.1 Nonlinear Projections

Nonlinear projections occur naturally as reflections
and refractions on curved objects. The strange and
distorted images seen in an amusement park mir-
ror are a familiar example of the distortion nonlin-
ear projections generate. These images have also
been examined in art, photography and computer
graphics where they have variously been named cubist
images, multi-perspective images, multiple-centre-of-
projection images and multi-perspective panoramas.

Traditional Chinese landscape paintings fre-
quently contain different foci, or sub-images, which
are seamlessly joined. For example, Figure 1 shows a
scene in which the perspective shifts from left to right,
following the path of the stream. German artist M. C.
Escher frequently depicted views with multiple van-
ishing points, or perspectives. For example, Figure 2
has five different vanishing points: top left and right,
centre, and bottom left and right. While the auto-
matic generation of images like these from 3D geom-
etry may not be practical, they illustrate the concept
and the aesthetic potential.

Figure 1: “Fishermans Evening Song” by Xu Daon-
ing, circa 11th Century

Strip cameras are widely used in surveillance and
mapping. These cameras have a continuous roll of
film that slides past a slit as a picture is being taken.
The camera may be moved whilst shooting, provid-
ing a change in point of view from one section of the
film to another. For example, if used from a moving
aeroplane a strip camera can capture a long section of
curved earth as if it were flat. The technique has also
been used for artistic purposes, such as the image in
Figure 3 (Davidhazy 2001).

1.2 A Trilinear Projection Surface

In geometric terms, a perspective projection can be
defined by a set of rays that emanate from a single
point in space, and an orthographic projection by a
set of parallel rays that emanate from a plane. By
extending this approach, a nonlinear projection can
be defined as a projection created by a set of rays that
emanate from an arbitrary surface, with the origin
and direction of each ray a function of the surface.

In computer graphics, complex curved surfaces are
usually approximated as a mesh of triangles because
triangle geometry is easy to compute and render. The

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

227

Figure 2: “High and Low” by M. C. Escher, an ex-
ample of a nonlinear projection

Figure 3: A strip camera photograph of a man’s head

shape of a projection surface can thus be approxi-
mated by a suitable triangle mesh, and the directions
of projection rays can be approximated by specifying
the vertex normals of the triangles. The directions of
rays internal to the triangles are defined implicitly by
linear interpolation of the vertex rays.

Using this approach, a complex non-linear projec-
tion can be computed by tiling smaller projections –
trilinear projections – each defined by a triangle with
specified vertex positions and normals. Because in
general the vertex normals of a projection triangle
do not converge to a single point, a trilinear projec-
tion will be nonlinear. And because adjacent triangles
share vertex normals, the combined projection will be
continuous across triangle boundaries.

1.3 Related Work

Nonlinear projections can be rendered by ray trac-
ing if a nonlinear projection can be expressed as a
set of rays. For example, Löffelmann and Gröller
(Löffelmann 1995) define an extended camera as a
set of rays that start on a surface and point in the di-
rection of the surface normal. The scene is then ren-
dered with POVray [oVPL04], a widely available ray
tracing implementation. Figure 4 shows a scene ren-
dered with standard perpective projection and when
rendered with a toroidal extended camera.

Rademacher and Bishop (Rademacher & Bishop
1998) describe techniques for generating multiple-
centre-of-projection (MCOP) images. The images are
generated by moving a virtual camera through a scene
and capturing a single line of pixels at regular inter-
vals. The technique is effectively a virtual strip cam-

(a) (b)

Figure 4: A scene of columns (a) rendered with con-
ventional perspective (b) rendered from a torus sur-
face

Figure 5: A nonlinear projection of an elephant

era, and can generate images such as the one in Figure
5.

Yu and McMillan (Yu & McMillan 2004) introduce
general linear cameras (GLC) as a mathematical de-
scription for a class of nonlinear projections defined
by three rays passing through two parallel planes.
The authors define and name various special cases
of these cameras, and implement them with ray trac-
ing and a light field rendering system. The technique
is similar to trilinear projection but more constrained
in that the vectors must have equal magnitude in the
direction normal to the view. In that sense, GLC
projections are a subset of trilinear projections.

Various authors have considered techniques for
computing reflections from curved surfaces. For ex-
ample, Glaeser (Glaeser 1999) presents equations
for calculating the reflection of a space point on a
sphere or cylinder of revolution, and environment
mapping (originally described by Blinn and Newell
(Blinn & Newell 1976)) approximates curved reflec-
tions by sampling the projection of a scene as if drawn
from a point behind the reflection surface. Variations
on environment mapping, such as extended environ-
ment maps (Cho 2000) and parameterised environ-
ment maps (Hakura, Snyder & Lengyel 2001), can
produce more accurate images but at greater compu-
tational cost.

Ofek and Rappoport (Ofek & Rappoport 1999) de-
scribe an intriguing approximation for rendering re-
flections on curved surface that involves distorting ob-
jects based on the reflective surface so that they may
then be rendered using standard perspective projec-
tion. The technique requires an appropriate tessel-
lation of both reflective surface and scene object to
approximate the curvature of the reflected lines. The
correspondence between a point in space and the re-
flective surface is approximated by computing an ex-
plosion map (the projection of the reflective surface to
the surface of a surrounding sphere) and then com-
puting where on the map a scene point falls. The
performance of the technique is sufficient for real-time

CRPIT Volume 48

228

rendering of moderate scenes, making it suited for vi-
sualisation tasks.

1.4 Organisation of the Paper

The remainder of this paper is organised as follows:
Section 2 presents the algorithms and techniques for
computing the trilinear projection of a single scene
point. Section 3 describes how the projection for a
scene triangle can be computed from the projections
of its vertices. Since the projection is non-linear, and
since each point can have up to 3 images, the projec-
tion for a single scene triangle can have up to 9 ver-
tices and may consist of several disconnected shapes.
Section 4 shows how multiple trilinear projections can
be combined to represent projection from a complex
surface. Section 5 outlines how trilinear projection
can be applied to the task of computing reflections
and refractions from curved surfaces. Finally, Section
6 briefly examines the performance characteristics of
trilinear projection.

2 Projecting a Point

For purposes of this paper we define projecting a point
as determining which location(s) on the projecting
surface define a ray that intersects that point. A ray
can be defined parametrically by a point, p and a
normal n:

r (t) := p + tn (1)

If p and n are defined using barycentric coordinates u
and v, vertex positions p1..3 and n1..3, then a ray on
the surface of the trilinear projection becomes:

r (u, v, t) := p (u, v) + tn (u, v)
= (1 − u − v) p1 + up2 + vp3 +

t ((1 − u − v) n1 + un2 + vn3) (2)

So for a scene point ps:

ps = r (u, v, t)
= (1 − u − v) p1 + up2 + vp3 +

t ((1 − u − v) n1 + un2 + vn3) (3)

Solving for u, v and t in 3D means a system of three
equations and three unknowns. The t and u, v terms
are multiplied together making it a non-linear system
of equations and an analytical solution is not readily
apparent.

2.1 Treating the Trilinear Projection as a
Parametric Triangle

To analytically solve this problem, instead of repre-
senting the surface as a set of rays, we represent it as
a parametric triangle. Each vertex has a point and a
normal associated with it. Treating these as rays we
can extend along them according to the parameter t
giving three new points, which form the vertices of a
triangle as shown in Figure 6.

The three vertices of the parametric triangle are
defined by the equations:

r1 := p1 + tn1

r2 := p2 + tn2

r3 := p3 + tn3 (4)

A barycentrically defined point on the parametric tri-
angle is:

p (u, v, t) := (1 − u − v) r1 + ur2 + vr3

= (1 − u − v) (p1 + tn1) +
u (p2 + tn2) + v (p3 + tn3) (5)

Figure 6: A parametric triangle shown at different
values of t

The task of projecting a scene point now becomes
that of finding a point p (u, v, t) that coincides with
the scene point. The u, v and t satisfying this con-
straint are the same as those satisfying ps = r (u, v, t)
because the two equations are simply isomorphs.

The advantage in representing the triangle as a
parametric triangle is that the parameter t can be
determined independently of u and v. First, for the
parametric vertices defined in Equation 4, find the
values of t such that the vertices and the scene point
ps are coplanar, then solve for u and v in the plane
of the parametric triangle.

2.2 Determining the Coplanarity of the Para-
metric Triangle and the Scene Point

Any four points can be considered a tetrahedron; four
coplanar points form a tetrahedron whose volume is
0. For a tetrahedron defined by four points A, B, C
and D the volume of the tetrahedron is:

volume :=
1
4
|AB • (AC × AD)| (6)

This equation can also be expressed as the magnitude
of the determinant of the matrix containing the three
vectors.

volume :=
1
4

∣∣∣∣∣det

[
AB
AC
AD

]∣∣∣∣∣ (7)

Composing the three vectors from the parametric ver-
tices defined in Equation 4 with the scene point ps and
substituting into Equation 7 gives the volume of the
tetrahedron defined by those four points. When these
points are coplanar this volume is 0. Removing the
unnecessary constant and magnitude gives:∣∣∣∣∣ p1 + tn1 − ps

p2 + tn2 − ps
p3 + tn3 − ps

∣∣∣∣∣ = 0 (8)

This can be expanded for three dimensions, giving a
cubic polynomial in terms of t. Either one or three
real solutions for t exist, and each value of t defines a
potentially different projection of the scene point.

2.3 Precalculating Partial Coefficient Values

Computing the coefficients of Equation 8 involves
substantial calculation not directly dependent on the
scene point. These calculations depend only upon
the values of the parametric triangle itself and there-
fore can be reused across scene points. This is useful
because in a normal scene situation there are many

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

229

scene points that need to be projected by each para-
metric triangle. The most common drawing primi-
tive, the triangle, is comprised of three such scene
points. The minor additional memory requirements
of storing these values is small in comparison to the
reduction in computation.

In Equation 7 the volume of a tetrahedron is de-
fined as the determinant of three vectors formed from
the four points. This can equally be expressed as the
four by four determinant shown in Equation 9.∣∣∣∣∣∣∣

psx psy psz 1
p1x + tn1x p1y + tn1y p1z + tn1z 1
p2x + tn2x p2y + tn2y p2z + tn2z 1
p3x + tn3x p3y + tn3y p3z + tn1z 1

∣∣∣∣∣∣∣ = 0 (9)

The determinant in Equation 9 can be expanded to
Equation 10 where E1..4 are each three by three de-
terminants.

psxE1 − psyE2 + pszE3 − E4 = 0 (10)

Determinants E1..3 are quadratics in t and E4 is a
cubic. This means the coefficient of t3 depends only
upon properties of the parametric triangle and not
the scene point. Further, the other coefficients of the
cubic defined by the full expansion of Equation 9 de-
pend on the scene point in a useful way. Equations
E1..4 are defined by the general cubic equation, Equa-
tion 11, where A1..3 = 0

Ei = Ait
3 + Bit

2 + Cit + Di, i = 1, 2, 3, 4 (11)

If the coefficients for the cubic equation defined by
Equation 9 are represented by a, b, c and d, where
at3 + bt2 + ct + d = 0, then the relationship between
the coefficients and the properties (A,B,C, D)1..4 can
be described as: a

b
c
d

 =

 0 0 0 A4
B1 B2 B3 B4
C1 C2 C3 C4
D1 D2 D3 D4


 psx

psy
psz
1

 (12)

All properties (A,B,C, D)1..4 can be calculated in-
dependently of scene points. The full derivations
of (A,B, C, D)1..4 are provided elsewhere (Vallance
2005). Using these pre-calculated partial values
allows for faster calculation across multiple scene
points.

3 Drawing a Scene Triangle

Each of the vertices of a scene triangle can be sepa-
rately projected with the trilinear projection gener-
ating either one or three solutions for each vertex.
The manner in which the projected vertices are con-
nected can be understood by considering the sweep
of the parametric triangle intersected with the scene
triangle.

3.1 Computing the Projected Shapes

At every value of t the parametric triangle is a stan-
dard triangle in scene space. The intersection of this
triangle’s plane with the scene triangle’s plane forms
a line. As the value of t changes the intersection line
traverses the plane of the scene triangle. The mo-
tion of this intersection line is continuous because t
is continuous, except where the intersection line is
undefined because the scene triangle and parametric
triangle are parallel or coplanar.

A straight line intersects at most two sides of a
triangle. Furthermore, the locus of a continuously

defined line must intersect a vertex on the end of an
edge before intersecting the edge itself. The order,
from smallest to largest t value, in which projected
scene triangle vertices are intersected determines the
connectivity of those vertices. Initially the line of in-
tersection crosses the two edges connected with the
vertex projected by the smallest t value. Each vertex
thereafter toggles which edges are being intersected
by the parametric triangle. When all edges are tog-
gled off the line of intersection is no longer traversing
the scene triangle and the projected shape is com-
plete.

For strings of vertices, in order of t value, toggling
the edge states reveals which vertices group together
to form a shape. Even though the scene triangle has
three vertices, it does not necessarily project shapes
which have three vertices. Moreover, a single scene
triangle can produce up to four shapes when projected
with a parametric triangle. This particular case hap-
pens when the three scene vertices produce three t
solutions each, and the nine projected vertices form
three two-vertex shapes and one three-vertex shape.

For example, for a list of vertices V =
〈v2, v3, v3, v1, v3〉 which form a five-vertex shape the
following diagrams show how these vertices are
formed into a polygon. Each circle represents a pro-
cessed vertex. An arrow between two circles repre-
sents the edge upon which those two vertics are con-
nected. An unterminated arrow represents an open
edge at that stage of the traversal. Only two arrows
can be unterminated at a given stage in the traversal
and the current unterminated arrows are named left
and right.

����
v2

Q
Q

Q
QQs

�
�

�
��+

v1v2 v2v3

Step 1: Since the first vertex is v2 the two edges
v1v2 and v2v3 become active. If the next vertex was a
v1 then it would be placed on left because it has to
be connected to the edge v1v2. Similarly if the next
vertex was a v3 it would be placed on right. Finally,
as a v2 would be connected to both edges, it would
finish the shape, and could be placed on either left
or right.

����
v2

����
v3

Q
Q

Q
QQs

�
�

�
��+

?

v1v2 v2v3

v1v3

Step 2: The next vertex is in fact v3 so it is placed
on right. This toggles the active edges such that
v2v3 becomes inactive and v1v3 active.

CRPIT Volume 48

230

����
v2

����
v3

����
v3

Q
Q

Q
QQs

�
�

�
��+

?

?

v1v2 v2v3

v1v3

v2v3

Step 3: The next vertex is also v3, indicating a
transition to the v2v3 edge. Accordingly the vertex
v3 is placed on the right and the right’s edge is
changed.

����
v2

����
v3

����
v3

����
v1

Q
Q

Q
QQs

�
�

�
��+

?

?

?

v1v2 v2v3

v1v3

v2v3

v1v3

Step 4: In a similar way, vertex v1 is placed on the
left and the left’s edge is changed to v1v3.

����
v2

����
v3

����
v3

����
v1

����
v3

Q
Q

Q
QQs

�
�

�
��+

??

v1v2 v2v3

v1v3v1v3

Step 5: The final vertex is v3 which could be placed
in either list; it is arbitrarily placed on left for con-
venience. Previously active edges v1v3 and v2v3 are
toggled off and the shape is finished.

3.2 Drawing the Projected Polygons

The result of projecting each vertex in a triangle and
then assembling the vertices together is a set of poly-
gons. One scene triangles may result in nine projected
vertices, which can be arranged in up to four differ-
ent polygons from two to nine vertices (though not
all combinations are possible). Each projected vertex
has a u, v and t value associated with it and these
values correspond to post projection x, y and z co-
ordinates. Using these coordinates a polygon can be
drawn using standard rasterising techniques with vis-
ibility resolved by the depth coordinate. Rasterising
assumes that the straight lines connect the projected

vertices which is unlikely to be accurate. Figure 7
shows one scene triangle projected by a single trilin-
ear projection resulting in two shapes, one with four
vertices and the other with five. The left hand fig-
ure is the correct projection as computed by a ray
tracing algorithm. The right hand figure shows the
approximation introduced by trilinear projection.

(a) (b)

Figure 7: A projected triangle resulting in two shapes:
(a) ray trace (b) trilinear projection

To more accurately represent the curves that con-
nect projected vertices the solution can be tesselated.
This can be done by sampling the scene triangle at
intermediate t values. In the non-tesselated case the
triangle is sampled at a value of t for each projected
vertex. Extra values of t between the start and end
of a shape can be inserted to increase the projected
polygons accuracy.

For each t value the parametric triangle is a tri-
angle in scene space. The intersection of this triangle
and the scene triangle results in a line. For every
value of t from the smallest for a particular shape to
the largest the intersection line crosses the scene tri-
angle. This line, clipped to the overlapping sections
of the scene and parametric triangle (for this particu-
lar t value), corresponds directly to a line on the final
image. Figure 8 shows a scene triangle rendered with
5 extra t samples per shape.

Figure 8: Scene triangle sampled at 5 extra t levels
per shape approximating a (4,5) shape configuration

4 Combining Multiple Projections

A projection comprising a single trilinear projection
has limited curvature. More complicated projections
can be built with a mesh of trilinear triangles. In
the same way that a triangular scene mesh can be
approximated as smoothly curving by sharing surface
normals, so can a projection mesh. When projecting
with multiple trilinear triangles, issues of continuity
arise that can be solved by clipping in scene space.

The simplest approach to the problem of clipping
is to clip each projection in view space. This can

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

231

result in discontinuity because the lines between pro-
jected vertices are drawn as straight when they are
really curved. Discontinuities arising from this sim-
plistic approach can be addressed by clipping scene
triangles to the volume swept out by projecting the
parametric triangle into scene space. The result is
equivalent to tessellating the projected scene trian-
gle at the boundary of the next trilinear projection.
Each edge of a surface triangle forms a parametric
line segment that traces out a surface through space
which may intersect with edges in the scene triangles.
To correctly clip to a parametric surface triangle re-
gion, the three parametric line segments defining the
triangle edges must be traced through all the scene
triangles, and the triangles clipped according to the
intersections.

A line segment of the parametric triangle at t is
defined parametrically by:

e (s, t) := pi + tni + s (pj + tnj)
i, j = 1, 2, 3
i 6= j (13)

where s varies from 0 to 1. Consider the intersec-
tion between a parametric edge, defined by the points
pi + tni and pj + tnj , and a scene triangle edge, de-
fined by the points ps1 and ps2. The value of t at the
intersection as projected out of the trilinear projec-
tion, can be determined independently of s because
for the two line segments to intersect they must lie
on the same plane. According to Equation 7 the four
points are coplanar when:∣∣∣∣∣ ps1 − ps2

pi + t.ni − ps2
pj + t.nj − ps2

∣∣∣∣∣ = 0 (14)

This can expanded giving a quadratic in terms of t.
This quadratic may have two, or no real solutions.
Each value of t defines a triangle and the scene line
can be intersected with that triangle yielding a clip-
ping point.

5 Applications

Non-linear projections have been explored in art and
visualisation because of their ability to represent 3D
objects in unusual ways. Though not as readily in-
terpreted as perspective projections they may have
the potential to illustrate complicated relations that
are hidden in perspective projections. Finding non-
linear projections that genuinely improve the task of
visualisation is an unsolved problem. This paper in-
stead examines the use of trilinear projection as way
of approximating reflections and refractions on curved
surfaces.

5.1 Reflection

The specular reflection of a ray is governed by the
equation:

θr = θi (15)

where θr is the angle of reflection and θi is the angle
of incidence. This leads to following equation:

r = 2 (n · i) n − i (16)

where r, n and i are unit vectors for the reflection,
surface normal and incidence direction.

5.2 Refraction

Refraction is the bending of light due to the difference
in refractive index between two materials. Simple re-
fraction can be described by Snell’s law, which shows
the relation between angles of incidence, refraction
and the refractive index of the materials. Snell’s law
is described by the following relation:

sin θi

sin θt
=

ηt

ηi
(17)

where θi is the angle of incidence, θt is the angle of
transmission, ηt is the refractive index of the material
the ray is entering and ηi is the refractive index of the
material the ray is leaving. This leads to the following
equation:

q = ηi − (cos θt + η cos θi)n (18)

where q, i and n are the vectors of transmission, in-
cidence and the surface normal, and η = ηt

ηi
.

5.2.1 Approximating Reflections and Refrac-
tions

For a given scene surface, represented by a polygon
mesh with shared normal vectors (a Phong-shaded
mesh), the reflected or refracted image in each seg-
ment can be approximated by a trilinear projection.
The points p1..3 and vectors r1..3 in Figure 9 form a
trilinear projection approximating the reflection seen
from the eyepoint e in the triangle defined by the
points p1..3 and the normals n1..3. The projection
is exactly correct at the vertices, but the reflection
vectors across the surface will in general only approx-
imate the correct solution. This is because instead of
interpolating the surface normal and then calculating
the reflection vector, the reflection vector is interpo-
lated from the vertex reflection vectors. In Figure 9
the reflection at point p should be along the ray r but
in the trilinear projection it is along ray r′. Despite
the inaccuracy the computed reflection has several
desirable characteristics: it is nonlinear, which means
that the reflection is curved, as is expected, and it is
continuous across multiple reflective facets. Refrac-
tions, inter-reflections and inter-refractions can all be
approximated by using the vector equations for re-
flection and refraction at the vertices of the face to
generate a trilinear projection.

e

i

n r
n1

n2

n3

p1

p2

p3

r2

r3
r1 r'

i2

i1

i3

p

Figure 9: An approximation of a reflection with a
trilinear projection

CRPIT Volume 48

232

5.3 Example Projections

Figure 10 shows a scene with a reflective sphere and a
cube that is being rendered from a view point close to
the sphere’s surface. The rays at the four corners of
the view intersect the sphere and are reflected off at
various angles. Figure 11 (a) shows a ray traced im-
age similar to that which would be seen in the section
of reflective sphere shown in Figure 10. Figures 11 (b)
to (f) show a trilinear projection approximation of the
image with increasing projection mesh resolution. In
the 1x1 surface, Figure 11 (b), the trilinear projec-
tion is two coplanar triangles whose normals are the
reflection vectors show in Figure 10. Figures 11 (c)
to (f) are rendered from projection surfaces that are
increasingly accurate approximations of the surface of
the sphere and the reflection vectors off the sphere’s
surface. The increasing mesh resolution means more
trilinear projections are used to approximate the re-
flection, resulting in more accurate rendering.

Figure 10: A cube reflected in a sphere

Figures 12 (a) to (f) show a refraction of a cube
scene through a plane whose normals are coincident.
This simulates the effect of viewing an object through
a convex lens. Figure 12 (a) is the correct ray traced
solution and figures 12 (b) through (f) show trilinear
projections to approximate this using 1x1, 2x2, 3x3,
4x4 and 5x5 resolution meshes respectively.

6 Performance Characteristics

An implementation of the trilinear projection algo-
rithms and a ray tracer was developed using OpenGL
(Segal & Akeley 1998). The prototype can draw sin-
gle and multiple trilinear projections, with or with-
out clipping and tessellation. Reflective or refractive
projection surfaces can be generated automatically,
and the ray tracing implementation can render cor-
rect reflection and refraction solutions for comparison.
The ray tracing code is naive, and performs no scene
organisation optimisation to decrease the rendering
time.

The results here were obtained on a 800 MHz
Athlon with a GeForce 2mx graphics card. Execu-
tion speeds were averaged across multiple runs. Table
1 shows the speed in milliseconds to render a single
frame of the scene presented in Figure 11 at resolu-
tions of 800 × 800 pixels. The scene consists of 686
untextured triangles. Table 2 shows the time taken
to render the images in Figure 12, also at 800 × 800
pixels with same scene rendered through a refractive
sphere.

As noted before ray tracing can be speeded up by
organising the scene so that for any particular ray
only a subset of triangles need be intersected. Tri-
linear projection can also use scene organisation to
improve speed because any particular trilinear pro-
jection may only image a subset of the scene. For a
single trilinear projection there is only a linear per-
formance cost over scanline rendering. This perfor-
mance cost relates to determining the coefficients of

Image Projections Ray(ms) Trilinear(ms)
(a) 177926.0
(b) 2 24.4
(c) 8 70.1
(d) 18 150.1
(e) 32 230.2
(f) 50 360.7

Table 1: Execution time for rendering examples in
Figure 11

Image Projections Ray(ms) Trilinear(ms)
(a) 247576.0
(b) 2 18.5
(c) 8 72.3
(d) 18 167.0
(e) 32 287.8
(f) 50 467.3

Table 2: Execution time for rendering examples in
Figure 12

the cubic equation, solving the cubic and rejoining
the projected vertices. The performance of rendering
with multiple trilinear projections scales in a linear
fashion.

7 Conclusion

The problem of rendering nonlinear projections with
scanline-style algorithms has not previously been
thoroughly examined. This paper presents an
overview of a trilinear projection algorithm that
projects scene points and triangles in a manner com-
patible with scanline rendering algorithms. The al-
gorithms have been implemented and used to demon-
strate a range of applications. More details of the
algorithms and performance benchmarks appear else-
where (Vallance 2005).

The performance characteristics of scanline ren-
dering have made it very useful in interactive and an-
imated computer graphics, and algorithms compati-
ble with scanline rendering have a substantial base of
hardware and software to draw upon. A limitation of
scanline rendering has been its difficulty in modeling
certain complicated optical interactions. The trilin-
ear projection algorithm provides a new technique for
rendering optical interactions that presents develop-
ers with more tools to render unusual visualisations
and optical phenomena with acceptable performance.

References

Blinn, J. F. & Newell, M. E. (1976), ‘Texture and
reflection in computer generated images’, Com-
munications of the ACM 19(10), 542–547.

Cho, F. (2000), Towards Interative Ray Tracing in
Two- and Three-Dimensions, PhD thesis, Uni-
versity of California at Berkeley.

Davidhazy, A. (2001), ‘Peripheral portraits and other
strip camera photographs’, Retrieved October,
2001 from the World Wide Web http://www.
rit.edu/~andpph/exhibit-6.html.

Glaeser, G. (1999), ‘Reflections on spheres and cylin-
ders of revolution’, Journal for Geometry and
Graphics 3(2), 121–139.

Hakura, Z., Snyder, J. & Lengyel, J. (2001), Parame-
terized environment maps, in ‘Proc. of the 2001
Symposium of Interactive 3D Graphics’.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

233

Löffelmann, H. (1995), Extended cameras for ray
tracing, Master’s thesis, Vienna Technical Insti-
tute.

Ofek, E. & Rappoport, A. (1999), Interactive reflec-
tions on curved objects, in ‘Proc of SIGGRAPH
99’.

Rademacher, P. & Bishop, G. (1998), Multiple-center-
of-projection images, in ‘Proc. of SIGGRAPH
98’.

Segal, M. & Akeley, K. (1998), The OpenGL Graphics
System: a Specification (Version 1.2).

Vallance, S. (2005), Trilinear Projection, PhD thesis,
Flinders University.

Yu, J. & McMillan, L. (2004), General linear cam-
eras, in T. Pajdla & J. Matas, eds, ‘Computer
Vision - ECCV 2004, 8th European Conference
on Computer Vision, Prague, Czech Republic,
May 11-14, 2004. Proceedings, Part II’, Vol. 3022
of Lecture Notes in Computer Science, Springer.

CRPIT Volume 48

234

(a) (b)

(c) (d)

(e) (f)

Figure 11: A cube reflected on a sphere: (a) ray
traced, (b) 1x1 surface, (c) 2x2 surface, (d) 3x3 sur-
face, (e) 4x4 surface, (f) 5x5 surface

(a) (b)

(c) (d)

(e) (f)

Figure 12: A cube refracted through a plane with
spherical normals: (a) ray traced, (b) 1x1 surface, (c)
2x2 surface, (d) 3x3 surface, (e) 4x4 surface, (f) 5x5
surface

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

235

CRPIT Volume 48

236

Extensible Detection and Indexing of Highlight Events in Broadcasted
Sports Video

Dian W. Tjondronegoro1, Yi-Ping Phoebe Chen2, Binh Pham3
1 School of Information Systems, Queensland University of Technology, Brisbane, Australia

2 School of Information Technology, Deakin University, Melbourne, Australia
3 Faculty of Information Technology, Queensland University of Technology, Brisbane, Australia

dian@qut.edu.au, phoebe@deakin.edu.au, b.pham@qut.edu.au

Abstract
Content-based indexing is fundamental to support and
sustain the ongoing growth of broadcasted sports video.
The main challenge is to design extensible frameworks to
detect and index highlight events. This paper presents: 1)
A statistical-driven event detection approach that utilizes
a minimum amount of manual knowledge and is based on
a universal scope-of-detection and audio-visual features;
2) A semi-schema-based indexing that combines the
benefits of schema-based modeling to ensure that the
video indexes are valid at all time without manual
checking, and schema-less modeling to allow several
passes of instantiation in which additional elements can
be declared. To demonstrate the performance of the
events detection, a large dataset of sport videos with a
total of around 15 hours including soccer, basketball and
Australian football is used.

Keywords: Extensible sports video indexing, multi-
modal event detection

1 Introduction
Sports video indexing approaches can be categorised
based on low-level (perceptual) features and high-level
semantic annotation (Djeraba, 2002). There are some
elements beyond perceptual level (known as the semantic
gaps) which can make feature based-indexing tedious and
inaccurate. For example, users cannot always describe the
visual characteristics of certain objects they want to view
for each query. In contrast, the main benefit of semantic-
based indexing is the ability to support more intuitive
queries. However, semantic annotation is generally time-
consuming, and often incomplete due to the limitations of
manual supervision and the currently available techniques
for automatic semantic extraction. Therefore, video
should be indexed using semantic that can be extracted
automatically with minimal human intervention. Events-
based indexing can be noted as the most suitable indexing
technique for sport videos as sport highlights on TV,
magazine or internet are commonly described using a set
of events, particularly the important or exciting ones.

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Tasmania, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

As there is yet a complete solution that can extract all
events automatically, we need to design frameworks that
support extensible detection and indexing of (highlight)
events. Extensibility is emphasized as the algorithms
developed for automatic extraction of features and
semantic in sports video need to be extended gradually
while improving the performance. As a result of more
extractable contents, the indexing scheme needs to
support continuous updates. The first and second section
of this paper addresses each of these issues respectively.
Following this, the experimental results that use a large
dataset are reported before we close with some
conclusions and future work.

2 Extensible Events Detection
It has become a well-known theory that sports events can
be detected based on the occurrences of specific audio
and visual features which can be extracted automatically.
To date, there are two main approaches to fuse audio-
visual features. One alternative, called machine-learning
approach, uses probabilistic models to automatically
capture the unique patterns of audio visual feature-
measurements in specific (highlight) events. For example,
Hidden Markov Model (HMM) can be trained to capture
the transitions of still, standing, walking, throwing,
jumping-down and running-down states during athletic
sports’ events (Wu et al., 2002). The main benefit of
using such approach is the potential robustness, thanks to
the modest usage of domain-specific knowledge which is
only needed to select the best features set to describe each
event. However, one of the most challenging
requirements for constructing reliable models is to use
features that can be detected flawlessly during training
due to the absence of manual supervision. Moreover,
adding a new feature into a particular model will require
re-training of the whole model. Thus, it is generally
difficult to build extensible models that allow gradual
development or improvement in the feature extraction
algorithms. To tackle this limitation, our statistical-driven
models are constructed based on the characteristics of
each feature. Any addition of a new feature will only
result on the updates of the rules that were associated
with that feature.

Another alternative for audio-visual fusion is to use
manual heuristic rules. For example, the temporal gaps
between specific features during basketball goal have a
predictable pattern that can be perceived manually (Nepal
et al., 2001). The main benefit of this approach is the
absence of comprehensive training for each highlight and

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

237

the computations are relatively less complex. However,
this method usually relies on manual observations to
construct the detection models for different events. Even
though the numbers of domains and events of interest are
limited and the amount of efforts is affordable, we
primarily aim to reduce the subjectivity and limitation of
manual decisions.

These two approaches still have two major drawbacks,
namely, 1) the lack of a definitive solution for the scope
of highlight detection such as where to start and finish the
extraction. For example, Ekin et al (Ekin and Tekalp,
2003b) detect goals by examining the video-frames
between the global shot that causes the goal and the
global shot that shows the restart of the game. However,
this template scope was not used to detect other events.
On the other hand, Han et al (Han et al., 2003) used a
static temporal-segment of 30-40 sec (empirical) for
soccer highlights detection. 2) The lack of a universal set
of features for detecting different highlights and across
different sports. Features that best describe a highlight
are selected using domain knowledge. For instance,
whistle in soccer is only used to detect foul and offside,
while excitement and goal-area are used to identify goal
attempt (Duan et al., 2003).

In order to solve the first drawback, some approaches (Xu
et al., 1998, Li and Ibrahim Sezan, 2001) have claimed
that highlights are mainly contained in a play scene.
However, based on a user study as reported in our earlier
paper (Tjondronegoro et al., 2004b) , we have found that
most users need to watch the whole play and break to
understand fully an event. For example, when a whistle is
blown during a play in soccer video, we would expect
that something has happened. During the break, the close-
up views of the players, a replay scene, and/or the text
display will confirm whether it was a foul or offside.
Consequently, it is expected that automated semantic
analysis should also need to use both play and break
segments to detect highlights. As for the second
drawback, we aim to reduce the amount of manual choice
of features set. For instance, it is quite intuitive to decide
that the most effective event-dependent features to
describe a soccer foul are whistle, followed by referee
appearance. However, we were able to identify some
additional characteristics of foul that could be easily
missed by manual observation such as shorter duration
(compared to shoot) and less excitement (compared to
foul), based on statistical features that will be discussed in
section 2.2.

2.1 Play-Break as Standard Scope of Events
Most broadcasted sport videos use transitions of typical
shot types to emphasize story boundaries while aiding
important contents with additional items. For example, a
long global shot is normally used to describe an attacking
play that could end with scoring of a goal. After a goal is
scored, zoom-in and close-up shots will be dominantly
used to capture players and supporters celebration during
the break. Subsequently, some slow-motion replay shots
and artificial texts are usually inserted to add some
additional contents to the goal highlight. Based on this
example, it should be clear that play-break sequences

should be effective containers for a semantic content
since they contain all the required details. Using this
assumption, we should be able to extract all the
phenomenal features from play-break that can be utilized
for highlights detection. Thus, as shown in Figure 1, the
scoping of highlight (event) detection should be from the
last play-shot until the last break shot.

Figure 1. Extracting Events from Play-Break.

Analysis of camera-views transition in a sports video has
been used successfully for play-break segmentation (Ekin
and Tekalp, 2003a). We have extended this approach by
adding replay-based correction to improve the
performance. Figure 2 shows how a replay scene (R) can
fix the boundaries of play-break sequences – which are
formed by a sequential play scene (P) and break scene
(B). Please note that “.s” indicates start while “.e”
indicates end. For example, R.s is short for the start of
replay scene.

Figure 2. Locations of Replays in Play-breaks.

Based on these scenarios, an algorithm to perform replay-
scene based play-break segmentation has been developed.
This algorithm aims to: 1) fix the inaccurate boundaries
of play-break sequences due to shorter breaks; 2) locate
missing sequences due to missed breaks; and 3) avoid
false sequences due to falsely detected play which is
followed by a break.

Algorithm to fix play-break boundaries, based on
replay scene locations
 If (A.s > B.s) & (A.e < B.e)
 A strict_during B
 If (A.s > B.s & A.e <= B.e) OR (A.s >= B.s & A.e < B.e)
 A during B
 If A.e = B.e
 A meets B
(1) If [R strict_during P] & [(R.e – P.e) >= dur_thres]
 B.s = R.s; B.e = R.e; Create a new sequence where [P2.s = R.e+1] &
 [P2.e P.e]
(2) If [R strict_during P] & [(R.e – P.e) <= dur_thres]
 P.e = R.e; B.s = R.e+1
(3) If [R meets B] & [R.s < P.e]
 P.e = R.s
(4-5) If [R during B] & [R meets B]) OR (If [R strict_during B])
 No processing required
(6) If [R during B] & [(R.e – P2.s) >= dur_thres]
 B.e = R.e; Amend the neighbor sequence: [P2.s = R.e+1]
(7) If [R during P2] & [(R.e – P2.s) >= dur_thres]
 Attach sequence 2 to sequence 1 (i.e. combine seq 1 and seq 2 into
 one sequence)

CRPIT Volume 48

238

It is important to note that some broadcasters insert some
advertisements (ads) in-between or during the replay. To
obtain the correct length of the total break, the total
length of the ads has to be taken into account.

2.2 Statistical-Driven Events Detection
As most of the current cinematic-heuristics for highlight
detection are heavily based on manual discoveries and
domain-specific rules, we aim to minimize the amount of
manual supervision in discovering the phenomenal
features that exist in each of the different highlights.
Moreover, in developing the rules for highlight detection,
we should use as little domain knowledge as possible to
make the framework more flexible for other sports with
minimum adjustments. For this purpose, we have
conducted a semi-supervised training from different
broadcasters and different matches for each highlight to
determine the characteristics of play-break sequences
containing different highlights and no highlights. It is
semi-supervised training as we manually classify the
specific highlight that each play-break sequence contains.
Moreover, the automatically detected play-break
boundaries and mid-level features locations within each
play-break such as excitement are manually checked to
ensure the accuracy of training.

During training, statistics of each highlight are calculated
with the following parameters (the examples are based on
AFL video):

� SqD = duration of currently-observed play-break
sequence. For example, we can predict that a
sequence that contains a goal will be much longer
than a sequence with no highlight.

� BrR = duration of break / SqD. Rather than
measuring the length of a break to determine a
highlight, the ratio of break segment within a
sequence is more robust and descriptive. For
example, we can distinguish goal from behind based
on the fact that goal has a higher break ratio than
behind due to a longer goal celebration and slow
motion replay.

� PlR = duration of play scene / SqD. We find that
most non-highlight sequences have the highest play
ratio since they usually contain very short break.

� RpD = duration of (slow-motion) replay scene in the
sequence. This measurement implicitly represents the
number of replay shots which is generally hard to be
determined due to many camera changes during a
slow motion replay.

� ExcR = duration of excitement / SqD. Typically, a
goal consists of a very high excitement ratio whereas
a non-highlight usually contains no excitement.

� NgR = duration of the frames containing goal-
area/duration of play-break sequence. A high ratio of
near goal area during a play potentially indicate goal.

� CuR = length of close-up views that includes crowd,
stadium, and advertisements within the sequence /
SqD. We find that the ratio of close-up views used in
a sequence can predict the type of highlight. For
example, goal and behind highlights generally has a

higher close-up views due to focusing on just one
player such as the shooter and goal celebration.

The statistical data of the universal feature sets within
each highlight after a training that uses 20 samples is
presented in Table 1. Based on the trained statistics, we
have constructed a novel set of ‘statistical-driven’
heuristics to detect soccer, AFL, and basketball
highlights. We do not need to use any domain-specific
knowledge, thereby making the approach less-subjective
and robust when applied for similar sports. As each
feature can be considered independently, more features
can be introduced without the necessity to make major
changes in the highlight classification rules. Moreover,
our model does not need to be re-trained as a whole,
thereby promoting extensibility. Hence, our approach will
reap the full benefit when larger set of features are to be
developed/improved gradually.

Highlight classification is performed as:
RpR)R,CuR,PlR,(D,NgR,ExcHighlightClassify_[HgtClass] =

where, HgtClass is the highlight class most likely
contained by the sequence, while D, NgR, and so on are
the statistical parameters described earlier. This equation
will be performed according to the sport genre.

In order to classify which highlight is contained in a
sequence, the algorithm uses some measurements. For
example, in soccer, G, S, F, and Non are the highlight-
score for goal, shoot, foul and non-highlight respectively.
Each of these measurements is incremented by 1 point
when certain rules are met. Thus, users should be able to
intuitively decide the most-likely highlight of each
sequence based on the highest score. However, to reduce
users’ workload, we can apply some post-processing to
automate/assist their decision.
Feature Soccer

G=Goal, S=Shoot,
F=Foul,
N=Non_(avg; max;
min)

AFL
G=Goal, B=Behind,
M=Mark, T=Tackle,
N=Non_(avg; max;
min)

Basketball
G=Goal, F=Foul,
FT=Free throw,
T=Timeout_(avg; max;
min)

Duration
(D)

Gd_(73; 104; 43)
Sd_(36, 73; 10)
Fd_(38; 72; 14)
Nd_(24; 40; 5)

Gd_(72; 120; 40)
Bd_(31; 53; 7)
Md_(26; 65; 8)
Td_(25; 63; 10)
Nd_(20; 42; 8)

Gd_(24; 51.6; 9.6)
Fd_(28.8; 60; 12)
FTd_(20.4; 30; 11)
Td_(124.8; 255; 25)

Play Ratio
(PlR)

Gp_(0.30; 0.46; 0.07)
Sp_(0.57; 0.87; 0.15)
Fp_(0.64; 0.97; 0.08)
Np_(0.73; 0.91; 0.47)

Gp_(0.17; 0.33;0.06)
Bp_(0.38; 0.92; 0.10)
Mp_(0.62; 0.86; 0.26)
Tp_(0.55; 0.83; 0.08)
Np_(0.52; 0.81; 0.17)

Gp_(0.71; 0.94; 0.27)
Fp_(0.48; 0.72; 0.13)
FTp_(0.50; 0.81; 0.23)
Tp_(0.12; 0.24; 0.05)

Near Goal
(NgR)

Gn_(0.47; 1; 0.13)
Sn_(0.55; 0.93; 0)
Fn_(0.23; 0.81; 0)
Nn_(0.17; 0.1; 0)

Gn_(0.13; 0.43; 0.02)
Bn_(0.10; 0.39; 0.02)
Mn_(0.02; 0.23; 0)
Tn_(0.01; 0.05; 0)
Nn_(0.01; 0.08; 0)

Gn_(0.49; 0.92; 0.04)
Fn_(0.43; 0.93; 0)
FTn_(0.55; 1; 0.05)
Tn_(0.34; 0.85; 0)

Excitement
(ExcR)

Ge_(0.45; 0.83; 0.10)
Se_(0.35; 0.79; 0)
Fe_(0.20; 0.50; 0)
Ne_(0.2;0.6; 0)

Ge_(0.29; 0.54; 0)
Be_(0.38; 0.86; 0)
Me_(0.32; 0.91;0)
Te_(0.22; 0.59; 0)
Ne_(0.30; 0.75; 0)

Ge_(0.41; 0.82; 0.05)
Fe_(0.34; 0.78; 0)
FTe_(0.44; 0.90; 0)
Te_(0.24; 0.43; 0.05)

Close-up
(CuR)

Gc_(0.26; 0.51; 0.08)
Sc_(0.23; 0.74; 0)
Fc_(0.12; 0.29; 0)
Nc_(0.2; 0.6; 0)

Gc_(0.35; 0.86; 0)
Bc_(0.35; 0.76; 0)
Mc_(0.28; 0.56; 0)
Tc_(0.18; 0.44; 0)
Nc_(0.29; 0.69; 0)

Gc_(0.11; 0.3; 0)
Fc_(0.27; 0.69; 0)
FTc_(0.26; 0.68; 0)
Tc_(0.49; 0.78; 0.16)
Nc_(0.2; 0.63; 0)

Replay
(RpD)

Gr_(25; 34; 20)
Sr_(6; 16; 0)
Fr_(6; 23; 0)
Nr_(0; 0; 0)

Gr_(9; 23; 0)
Br_(6; 40; 0)
Mr_(1; 14;0)
Tr_(4; 14; 0)
Nr_(0; 0; 0)

Gr_(0; 0; 0)
Fr_(4.8; 13; 0)
FTr_(0; 0; 0)
Tr_(16; 40; 0)

Table 1. Statistics of Soccer, AFL, and Basketball
Highlights.

The essence of highlight classification is on comparing
the value of each input parameter against the typical
statistical characteristics: min, avg, and max which are

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

239

denoted as a stat. The following algorithm describes the
calculation that can be applied to any sport (using soccer
as an example).

Common event classification algorithm
),,,statRegion()_Region(Det_SoccerLet G NFS statstatstatval,val =

Perform

)()()()()()_Region(Det_Soccer region1..n RpR,PlR,CuR,ExcR,NgR,D=

For region1 to regionn

Increment the corresponding highlight score //G, Sh, F, Non in this case

where,

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤

≤≤
≤≤

=

)(&)(if,
...

)(&)(if ,2
)(&)(if ,1

)(Region 22

11

21

MinTDTDMinAvgDAvgDn

MinTDTDMinAvgDAvgD
MinTDTDMinAvgDAvgD

, ... stat, statval, stat

nn

n

)max,min,avg{stat nnnn = ,
avg
nn statvalAvgD −= ,

minmax
nnn statvalstatvalTD −+−= ,

),...,min(AvgD 21 nAvgDAvgDMinAvgD = ,),...,min(TD 21 nTDTDMinTD = .

It is to be noted that in Det_soccer_region(val), Xstat
matches the value input. Therefore, when val is NgR, then

Gstat = {Gn_avg, Gn_max, Gn_min} is used according to
the statistics-table.

In addition to the common algorithm, we can improve the
accuracy of the event classification for a particular sport
based on its statistical phenomena. This concept is
described in the rest of this section.

2.2.1 Events Classification in Soccer
When play ratio, sequence duration and near goal ratio
fall within the statistics of goal or shoot, it is likely that
the sequence contains goal or shoot. Otherwise, we will
usually find a foul or non-highlight. However, shoot often
has similar characteristics with foul. In order to
differentiate goal from shoot, and shoot/foul from non-
highlight, we apply some statistical features:

� Goal vs. Shoot: Compared to shoot, goal has longer
duration, more replays and more excitement.
However, goal has shorter play scene due to the
dominance of break during celebration.

� Shoot, Foul, vs. Non-highlight (None): None does
not contain any replay whereas foul contains longer
replay than shoot in average. Foul has the lowest
close-up ratio as compared to shoot and none. None
has the shortest duration as compared to shoot and
foul. None contains the least excitement as compared
to shoot and foul, whereas foul has less excitement
than shoot.

Based on these findings, the following algorithm is
developed.

Specific algorithm to classify highlight events in soccer

Perform region1..3 = Det_Soccer_Region (PlR), (D), (NgR)
accordingly
If all region1, 2 and 3 = 1 or 2
 //Most likely to be goal or shoot
 Increment G and Sh

 Perform)()()()_Region(Det_Soccer region 4..7 D, PlR, RpD, ExcR=
 For region4 to region7
 If current region = 1, Increment G
 Else if current region = 2, increment Sh
 Else
 //Most likely to be foul, shoot, or non
 Increment F, Sh, Non
 Perform)()()()(_Region Det_Soccer region 4..7 RpD, D, ExcR, CuR=
 For region4 to region7
 If current region = 2, increment Sh
 Else if current region = 3, Increment F
 Else if current region = 4, increment Non

It should be noted that the more compact representation
of this algorithm is presented in Figure 3, where {val} is
the convention
of)),..((val),l_Region(vaDet_Soccerregion 211..N Nval= . Thus,
squares denote the statistics that need to be checked,
whereas the non-boxed texts are the associated highlight
point(s) that will be incremented based on the outputs of
each region. This representation is used for describing
other sports.

2.2.2 Events Classification in AFL
In AFL, a goal is scored when the ball is kicked
completely over the goal-line by a player of the attacking
team without being touched by any other player. A
behind is scored when the football touches or passes over
the goal post after being touched by another player, or the
football passes completely over the behind-line. A mark
is taken if a player catches or takes control of the football
within the playing surface after it has been kicked by
another player a distance of at least 15 meters and the ball
has not touched the ground or been touched by another
player. A tackle is when the attacking player is being
forced to stop from moving because being held (tackled)
by a player from the defensive team. Based on these
definitions, it should be clear that goal is the hardest
event to achieve. Thus, it will be celebrated longest and
given greatest emphasis will be given by the broadcaster.
Consequently, behind, mark and tackle can be listed in
the order of its importance (i.e. behind is more interesting
than mark).

Figure 4 shows the highlight classification rules for AFL.
Let G, B, M, T, Non be the highlight-score for goal,
behind, mark, tackle and non-highlight respectively.
Thus, for AFL event detection:

),,,,statRegion()gion(Det_AFL_Re G NTMB statstatstatstatval,val = .

The algorithm firstly checks that if current PlR belongs to
Gstat (i.e. output = 1) and NgR is greater than the

minimum of the typical value for goal and behind, then
the sequence is most likely to contain either goal or
behind. This is followed by comparing: ExcR, RpD, and
PlR values: the outputs determine which score is
incremented from G or B.

Else (if PlR does not belong to Gstat), it is more likely to
contain mark, tackle, or none. This is followed by
comparing: D, CuR, PlR, and RpR values: the outputs
determine which score is incremented from M, T, or N.

CRPIT Volume 48

240

Figure 3. Highlight Classification Rules for Soccer

Figure 4. Highlight Classification Rules for AFL.

Figure 5. Highlight Classification Rules for Basketball

2.2.3 Events Classification in Basketball
Compared to soccer and AFL, goals in basketball are not
celebrated and do not need a special resume such as kick
off. Therefore, it is noted that the rules applied to soccer
and AFL cannot be used directly for basketball goals.

Figure 5 shows the highlight classification rules for
basketball. Let G, FT, F, T be the highlight-score for
goal, free-throw, foul, and timeout respectively. Thus, for
basketball event detection, let:

),,,statRegion()n(ball_RegioDet_Basket G TFFT statstatstatval,val =
The algorithm firstly checks if current PlR belongs to

Tstat (i.e. output = 4), then the sequence is most likely to
contain timeout. This is followed by comparing: Cur,
RpD, NgR, and D values: each time that the output of
comparison is equal to 4, T is further incremented.

Else (if current PlR does not belong to Tstat), it is more
likely to contain goal, free-throw, or foul (if RpD > 0).
This is followed by checking:

If NgR belongs to region Gstat or FTstat (i.e. output = 1 or
2), then the comparison is based on the values of: CuR,
PlR, D, and NgD: the outputs determine which score is
incremented from G or FT.

Else, (if NgR does not belong to region Gstat or FTstat),
then the comparison is based on the values of: CuR, PlR,
NgD, and ExcR: each time that the output of comparison
is equal to 3, F is further incremented.

3 Extensible Indexing
For the indexing of events, OO modeling is recognized
for its ability to support complex data definitions. We
have identified two main alternatives in using O-O for
modelling data based on the models presented in AVIS
(Adali et al., 1996) and OVID (Oomoto and Tanaka,
1997), namely, schema-based and schema-less,. A
schema-based model (Adali et al., 1996) can be

composed of three types of entities (i.e. index-able items)
in a video database, namely, 1) video objects, which
capture entities that present in the video frames, 2)
activity types, which is the subject of a frame sequence,
and 3) event, which is the instantiation of an activity type.
Thus, their model has allowed users to query the location
of the occurrence of their desired object or events. The
main benefit of using a schema-based model is its
capability to support easy updates due to the strict
components that have to be followed exactly for each
entity. However, the main limitation is the difficulty to
include new description during instantiation of video
models due to the static schema; therefore, the model is
not extensible.

In contrast, schema-less modeling (Oomoto and Tanaka,
1997) is designed based on the fact that each video
interval can be regarded as a video object, in which the
attributes can be objects, events, or other video objects.
Thus, the content of a video object is more dynamic.
Moreover, they also proposed dynamic calculation of
inheritance, overlap, merge and projection of intervals to
satisfy user queries. However, there are two main
problems of schema-less modelling. First, query
difficulties arise as users/developers must inspect the
attribute definition of each object to develop a query
because each object has its own attribute structure.
Second, the total dependency on users or applications for
supervising the instantiation of video objects occurs due
to the fact that a schema is not present.

In order to combine the strengths of schema-based and
schema-less modelling, this section demonstrates the
utilization of XML to design and construct a semi-schema
based video model. Schema-based matching ensures that
the video indexes are valid during data operations such as
insertion, thereby minimizing the need of manual
checking. However, the model is also semi-schema based
as it allows additional declared elements in the
instantiated objects as compared to its schema definition.
Moreover, not all elements in an object need to be
instantiated at one time as video content extraction often
requires several passes due to the complexity and lengthy
processing; thereby supporting an extensible modeling
scheme.In addition to the strength of OO modeling, the
video model also attempts to benefit from relational
modeling scheme. In particular, the utilization of
referential integrity (Connolly and Begg., 2002) allows
an object to include elements which are referenced from
the existing objects within the database. The main
purpose is to reduce objects being added within another
object(s), thereby avoiding complex hierarchies and
potential redundancies. Hence, in overall, the proposed
video model supports object-relational modeling
approach while adopting semi-schema based index
construction and maintenance.

The sport video indexing is designed using two main
abstraction classes, namely, segment and event. Each
segment is instantiated with a unique key of segment Id
into either: video-, visual-, or audio-segment. A segment,
as shown in Figure 7, can be instantiated as video-, audio-
or visual-segment which are extracted from a raw video
track when mid-level features (e.g. whistle and

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

241

excitement) can be detected. An event can be instantiated
into generic (e.g. interesting event), domain-specific (e.g.
soccer goal), or further-tactical (e.g. soccer free kick)
semantics. Events and segments are chosen as they can
provide an effective description for many sport games.
For example, most users will benefit from watching
soccer goals as the most celebrated and exciting event.
Segments are used as the text-alternative annotations to
describe the goal. As shown in Figure 6, the last near-goal
segment in a play-break sequence containing goal
describe how the goal was scored. Face and text displays
can inform who scored the goal (i.e. the actor of the
event) and the updated score. Replay scene shows the
goal from different angles to further emphasize the details
of how the goal is scored. In most cases, when the replay
scene is associated with excitement, the content is more
important. Excitement during the last play shot in a goal
is usually associated with descriptive narration about the
goal. In fact, we (human) often can hear a goal without
actually seeing it.

Figure 6. Goal Event with Segment-Based

Annotations.

We have utilized some of the main benefits from using
XML to store and index the extracted information from
sport videos:

� XML is extensible by allowing additional
information without affecting others. This is
important to support gradual developments of feature
extraction techniques that can add extractable
segments and events.

� XML is internally descriptive and can be displayed
in various ways. This is important to allow users
browsing the XML data directly, while search results
can also be returned as XML that can provide direct
link(s) to the video location.

� XML fully supports semi-structured aspects that
match video database characteristics: 1) Object can
be described using attributes (properties), other
objects (i.e. nested object), or heterogeneous
elements (i.e. any element). Instantiated objects from
the same class may not have the same number of
attributes as not all attributes are compulsory,
depending on the min and max occurs. 2) XML

supports two types of relationships: nesting and
referencing. However, to reduce redundancy, we
have used referencing instead of nested object class.

We have used XML Schema to define and construct the
XML-based video schema as it has replaced DTD as the
most descriptive language. Due to its expressive power,
XML schema has also been used as the basis of MPEG-7
DDL (Data Definition Language) and XQuery data
model. Therefore, we should be able to easily leverage
our proposed model to support MPEG-7 standard
multimedia descriptions and XQuery implementation. For
a more compact representation of XML schema, this
section will demonstrate the use of ORA-SS (Object-
Relationship-Attribute notation for Semi-Structured data)
(Dobbie et al., 2000) to design the video model as shown
in Figure 7 to Figure 9 (that is located on the last page).
ORA-SS notation is chosen for its ability to represent
most of XML schema’s features. It is to be noted that our
diagrams extend the ORA-SS notation by demonstrating
a more complex sample which integrate inheritance
diagram with schema diagram. We have also introduced
two additional notations: 1) italic texts indicate abstract
object, 2) (in Figure 9) indicates repeated object to
avoid complex/crossing lines.

The followings describe the overall video indexing
model. As shown in Figure 9, a sport video (SV) is a type
of video segment which consists of SV components,
overall summary, and hierarchical summary. SV
components are composed of: 1) segment collection
which stores a flat-list of audio, visual and audio
segments that can be extracted from the sport video, 2)
syntactic relation collection which stores all the syntactic
relations such as ‘composed of’ and ‘starts after’ between
one source segments and one or more destination
segments, and 3) semantic relation collection which
records all the semantic relations such as ‘is actor of’ and
‘appears in’ between one source segment or semantic
object and one or more destination segments or semantic
objects. Overall summary describes the sport video game
as a whole; it includes where (stadium), when (date time),
who (teams that compete), final result, and match
statistics. Match statistics can be stored as XML tags or a
visual frame such as text displays that depicts the number
of goals, shots, fouls, red/yellow cards, and counter
attacks in a soccer game. Hierarchical summary is
composed of comprehensive summary and highlight
events (HE) summary. Comprehensive summary
describes sport video in terms of play-break sequences
which are the main story decomposition unit in most of
sport videos. For example, an attacking attempt during a
play is stopped when there is a goal or foul. Each play-
break can contain zero or one (key) event and can be
decomposed into one or more play and break shots. Each
play or break can be described by text-alternative
annotations, including face, replay and excitement which
are referenced (segments) from segment collection. On
the other hand, HE summary organizes highlight events
into common summary theme such as soccer goals and
basketball free throws.

Each time sport video is instantiated, it will be specialized
into the classified genre, such as soccer video, basketball

CRPIT Volume 48

242

video and AFL video. Therefore, a soccer video will
inherit all components of (general) sport video while
providing extra attributes such as sport category and
some extra components. In particular, for each type of
sport video, we can extract domain specific events such as
soccer goal. Each domain event can be described using
specific roles such as goal scorer. It should be noted that
goal scorer will reference to a player that is defined
elsewhere in order to avoid nested components.
Similarly, domain events are referenced by hierarchical
summaries. Finally, a sport video database is composed
of one or more classified sport videos, and one semantic
object collection. Semantic object collection defines the
details of all the semantic objects that appear in the sport
videos. For example, player can be instantiated into
soccer player which is described by the specific attributes
of a soccer player such as squad number, and preferred
position.

Figure 7. Extensible Indexing Scheme (1).

Figure 8. Extensible Indexing Scheme (2).

It is to be noted that in order to achieve a faster gradual
index construction, all segments should be able to be
extracted incrementally in the same level, without
concerning about the hierarchy. For example, assuming
that PB1 contains P1, P2, and B1, the system should be
able to add B1 without necessarily attaching it to PB1.
This allows the system to easily add P1 and P2 at later
time. Therefore, hierarchy structures should be stored
separately as a hierarchical view or processed
dynamically when required by users for browsing.

Using the proposed video model, we have demonstrated a
sport video indexing scheme that supports:

� Extensible video indexes that allow gradual
extraction of segments and events without affecting
the others. For example, we can introduce more
segments and events incrementally without affecting
the existing ones. Similarly, more semantic objects,
such as stadium and referee, can be introduced at a
later stage when many sport videos share the same
stadium and referee.

� Object-Relationship modeling scheme. In particular,
we have demonstrated that inheritance and
referencing are important features in video database

modeling. Inheritance enables us to reuse existing
parent components while refining them with more
specific items. Referencing enables us to store video
components into a flat list which can be referenced
by hierarchical structures to avoid redundancies.

� Semi-schema based modeling scheme. As shown in
Figure 7, we allow users/applications to add ANY
additional elements (or attributes) into a segment
description as long as the element has been declared
somewhere else in the proposed schema, or other
schema within a particular scope. In fact, we may
attach ANY into other elements in our data model to
allow more flexibility as users often know better
what they want to describe than developers.
However, we aim gradually modifying the schema
with new components, especially when the extra
information provided by users can be used to enrich
the current video model.

4 Experimental Results
Performance results for mid-level features extraction (that
are required during training and evaluation) including
view classification, near-goal, and excitement, have been
presented in our previous papers (Tjondronegoro et al.,
2004a). For AFL and basketball videos, we only need to
ensure that the adaptive thresholds are effective for each
video sample. For this purpose, we compare the truth and
the automatic results of features detection on each video
for duration of 5-10 minutes. We then select the best
empirical thresholds that can be applied to all videos
within the same domain. Missing and/or false detections
on individual mid-level features detection have less
significant impacts on the highlights classification as the
models depend on the fusion of all features. For example,
soccer goal will still be detectable even if the near goal
ratio and excitement is not detected perfectly.
Nevertheless, the more accurate mid-level features can be
extracted, the highlight points will be more accurately
calculated. Hence, during experiment we have set a
minimum value that highlight point should reach to be
trusted. For all sport videos, we have successfully applied
a minimum of 3 points for all highlights which means that
at least 3 mid-level features can be detected. In almost all
cases, highlights can be detected with a 6 to 7 point
minimum threshold.

Table 2 will describe the video samples used during
experiment. For each sport, we have used videos from
different competitions, broadcasters and/or stage of
tournament. The purpose is, for example, final match is
expected to contain more excitement than a group match
while exhibition will show many replay scenes to display
players’ skills. Our experiment was conducted using
MATLAB 6.5 with image processing toolbox. The videos
are captured directly from a TV tuner and compressed
into ‘.mpg’ format which can be read into MATLAB
image matrixes.

Sample Group (Broadcaster) Videos “team1-teams2_period-[duration]”

Soccer: UEFA Champions League
Group Stage Matches (SBS)

ManchesterUtd-Deportivo1,2-[9:51, 19:50]

Madrid-Milan1,2[9:55,9:52]

Soccer: UEFA Champions league
(SBS)

Juventus-Madrid1,2:[19:45,9:50]

Milan-Internazionale1,2:[9:40,5:53]

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

243

Elimination Rounds Milan-Depor1,2-[51:15,49:36] (S1)

Madrid-BayernMunich1,2-[59:41,59:00] (S2)

Depor-Porto-[50:01,59:30] (S3)

Soccer: FIFA World cup

Final (Nine)

Brazil-Germany [9:29,19:46]

Soccer: International Exhibition
(SBS)

Aussie-SthAfrica1,2-[48:31,47:50] (S4)

Soccer: FIFA 100th Anniversary
Exhibition (SBS)

Brazil-France1,2-[31:36,37:39] (S5)

AFL League

Matches (Nine)

COL-GEEL_2-[28:39] (A3)

StK-HAW_3-[19:33] (A4)

Rich-StK_4-[25:20] (A5)

AFL League

Matches (Ten)

COL-HAW_2-[28:15] (A1)

ESS-BL_2-[35:28] (A2)

BL-ADEL_1,2:[35:33,18:00] (A6)

AFL League

Final rounds (Ten)

Port-Geel_3,4-[30:37,29:00] (A7)

Basketball: Athens 2004 Olympics
(Seven)

Women: AusBrazil_ 1,2,3-[19:50,19:41,4:20] (B1)

Women: Russia-USA_3-[19:58] (B2)

Men: Australia-USA_1,2-[29:51,6:15] (B3)

Basketball: Athens 2004 Olympics
(SBS)

Men: USA-Angola_2,3-[22:25,15:01] (B4)

Women: Australia-USA_1,2-[24:04-11:11] (B5)

Table 2. Sample Video Data.

4.1 Performance of Play-Break Segmentation
Play-break scoping plays a significant role to ensure that
we can extract all of the features that usually exist in each
highlight. Moreover, the statistics (especially play-/break-
dominance) will be affected when the play-break
sequences are detected perfectly. Table 3 to Table 5
depicts the performance of the play-break segmentation
algorithm on soccer, AFL and basketball videos,
respectively. It is to be noted that that RC = Replay-based
(P-B sequence) Correction, PD = perfectly detected, D =
detected, M = missed detection, F = false detection, Tr =
Total number in Truth, Det = Total Detected, RR = Recall
Rate, PR= Precision Rate, and PD decr = perfectly
detected decrease rate if RC is not used; Tru= PD+D+M,
Det = PD+D+F, RR = (PD+D+M)/Tru * 100%, PR=
(PD+D)/Det * 100%, and PD_Decr = (PD-D)/PD *
100%. The results demonstrate that RC is generally useful
to improve the play-break segmentation performance. It is
due to the fact that many (if not most) replay scenes,
especially soccer and AFL use global (i.e. play) shots.
This is shown by all PD_decr, RR, and PR as RC always
improves all of these performance statistics. In particular,
the RR and PR for soccer 1-1 with RC are 100% each but
they are reduced to below 50% without RC. In soccer 1-1
without RC, the PD dropped from 49 to 12 (i.e. 75%
worse) whereas M increases from 0 to 25 and F increases
from 0 to 5. This is due to the fact that soccer1 video
contains many replay scenes which are played abruptly
during a play, thereby causing a too-long play scene and
missing a break. However, based on the statistics shown
in Table 5, RC for basketball may not be as important as
that of soccer and AFL. It is because basketball’s replay
scene uses more break shots such as zoom-in and close-
up, as compared to soccer and basketball.

4.2 Performance of Soccer Events Detection
Based on Table 6 and Table 7, most soccer highlights can
be distinguished from non-highlights with high recall and
precision. As there are normally not many goal highlights
in a soccer match, it would be ideal to have a high RR

over a reasonable PR; 5 out of 7 goals are correctly
detected from the 5 sample videos while 2 shoots and 1
non-highlight are classified as goals. The shoot segments
detected as goals very exciting and nearly result in goal.
On the other hand, the non-highlight detected as a goal
also consist of a long duration and replay scenes and
excited commentaries due to a fight between players.
The foul detection is also effective as the RR is 81% and
most of the misdetections are either detected as shoot or
non which have the closest characteristics. However, the
PR is considerably low since some shoots and non-
highlights are detected as foul. An alternative solution is
to use whistle existence for foul detection, but we still
need to achieve a really accurate whistle detection that
can overcome the high-level of noise in most of sport
domains. Only 46 out of 266 non-highlight sequences
were incorrectly detected as highlights. These additional
highlights will still be presented to the viewers as there
are generally not many significant events during a soccer
video. In fact, most of these false highlights can still be
interesting for some viewers as they often consist of long
excitement, near-goal duration and replay scene.

4.3 Performance Basketball Events Detection
Highlights detection in basketball is slightly harder than
soccer and AFL due to the fact that: 1) goals are generally
not celebrated as much as soccer and AFL, 2) non-
highlights are often detected as goal and vice versa.
Fortunately, non-highlights mainly just include ball out
play which hardly happen in basketball matches. Thus,
we have decided to exclude non-highlight detection and
replace it with timeout detection which can be regarded
as non-highlights for most viewers. However, for some
sport fans, timeouts may still be interesting to show the
players and coaches for each team and some replay
scenes. In addition to these problems, sequences
containing fouls are sometimes inseparable from the
resulting free throws. For such cases, the fouls are often
detected as goal due to the high amount of excitement and
long near-goal. However, fouls which are detected as
goals can actually be avoided by applying a higher
minimum highlight point for goal but at the expense of
missing some goal segments. For our experiment, we did
not use this option as we want to use a universal threshold
for all highlights.

Based on Table 8 and Table 9, basketball goal detection
achieves high RR and reasonable PR. This is due to the
fact that goals generally have very unique characteristics
as compared to foul and free throw. Timeouts can be
detected very accurately (high RR and PR) due to their
very long and many replay scenes. Moreover, most
broadcasters will play some in-between advertisements
when a timeout is longer than 2 minutes, thereby
increasing the close-up ratio. Free throw is also detected
very well due to the fact that free throw is mainly played
in near-goal position; that is, the camera focuses on
capturing the player with the ball to shoot. However, it is
generally distinguishable from goal based on: less
excitement, higher near goal, and more close-up shott;
that is, goal scorer is often just shown with zoom-in
views to keep the game flowing. However, the system
only detected 28 out of 54 foul events. This problem is

CRPIT Volume 48

244

caused by the fact that after foul, basketball videos often
abruptly switches to a replay scene which is followed by
time-out or free-throw. This can be fixed with the
introduction of additional knowledge such as whistle-
detection.

4.4 Performance of AFL Events Detection
As shown in Table 10 and Table 11, the overall
performance of the AFL highlights detection is found to
yield promising results. All 37 goals from the 7 videos
were correctly detected. Although the RR of behind
detection seems to be low, most of the miss-detections are
actually detected as goal. Moreover, behind is still a sub-
type of goal except that it has lower point awarded. The
slightly lower performance for detection of mark and
tackle detection is caused by the fact that our system does
not include whistle feature which is predominantly used
during these events. Based on the experimental results,
mark is the hardest to be detected and needs additional
knowledge. In Table 11, PR and RR for behind is N/A as
1 behind was detected as goal while Mark = N/A because
5 marks were detected as goal.

5 Conclusion and Future Work
We have proposed an extensible approach for detecting
events in sports video. The use of play-break scoping for
all highlights have enabled us to obtain statistical-
phenomena of the features contained in each highlight.
Since the rules for highlight classification are driven by
the statistics, none or low amount of domain-specific
knowledge is required. Therefore, the proposed
algorithms should be more robust for different sports,
especially, field-ball goal oriented games. Based on the
experimental results, play-break sequences are proven to
be effective containers for detecting highlights. Thus,
play-breaks need to be perfectly segmented and we have
shown that replay-correction improves the performance.
We have also proposed a segment-event based video data
model which is designed using semi-schema-based and
object-relationship modeling schemes. The schema is
developed into XML schema with ORA-SS notation. The
proposed schema is extensible as it supports incremental
development of algorithms for feature-semantic
extraction. Moreover, the schema does not need to be
complete at one time while allowing users to add
additional elements. We have also emphasized the usage
of referencing relationship to avoid redundant data.
Referencing also allows the system to add segments and
events to achieve more straightforward and faster data
insertions. In order to further verify and improve the
robustness of the proposed algorithms for events
detection we have incorporated more sport genre such as
volleyball, tennis and gymnastics, into the existing
dataset. The extracted information will allow the system
to construct a larger sample of video database data which
consequently would verify the benefits from using the
proposed video indexing model.

Soccer Play-break detection Video

PD D M F Tru Det RR PR PD_decr

S1-1 (RC) 49 0 0 0 49 49 100.00 100.00

S1-1 12 12 25 5 49 54 48.98 44.44 75.51

S1-2(RC) 53 0 0 1 53 54 100.00 98.15

S1-2 36 10 7 1 53 54 86.79 85.19 32.08

S2-1(RC) 54 1 1 12 56 68 98.21 80.88

S2-1 53 2 1 12 56 68 98.21 80.88 1.85

S2-2(RC) 58 1 0 7 59 66 100.00 89.39

S2-2 55 4 0 7 59 66 100.00 89.39 5.17

S3-1 (RC) 49 0 0 4 49 53 100.00 92.45

S3-1 45 4 0 5 49 54 100.00 90.74 8.16

S3-2 (RC) 69 0 0 3 69 72 100.00 95.83

S3-2 65 4 0 5 69 74 100.00 93.24 5.80

S4-1(RC) 49 0 0 9 49 58 100.00 84.48

S4-1 40 8 1 13 49 62 97.96 77.42 18.37

S4-2(RC) 47 0 0 9 47 56 100.00 83.93

S4-2 36 11 0 12 47 59 100.00 79.66 23.40

S5 (RC) 48 0 0 0 48 48 100.00 100.00

S5 24 16 8 1 48 49 83.33 81.63 50.00

Table 3. Play-Break Detection in Soccer Videos.
AFL Play-break detection

Video PD D M F Tru Det RR PR PD decr

A1 (RC) 34 0 0 5 34 39 100.00 87.18

A1 29 5 0 8 34 42 100.00 80.95 14.71

A2 (RC) 21 6 0 8 27 35 100.00 77.14

A2 16 10 1 5 27 32 96.30 81.25 23.81

A3 (RC) 20 3 0 4 23 27 100.00 85.19

A3 17 6 0 6 23 29 100.00 79.31 15.00

A4 (RC) 29 0 0 1 29 30 100.00 96.67

A4 21 6 2 2 29 31 93.10 87.10 27.59

A5 (RC) 34 0 0 1 34 35 100.00 97.14

A5 23 4 7 3 34 37 79.41 72.97 32.35

A6 (RC) 50 2 0 3 52 55 100.00 94.55

A6 36 10 6 7 52 59 88.46 77.97 28.00

A7 (RC) 41 10 4 4 55 59 92.73 86.44

A7 39 12 4 6 55 61 92.73 83.61 4.88

Table 4. Play-Break Detection Results in AFL Videos.
Video Basketball Play-break detection

 PD D M F Tru Det RR PR PD decr

B1 (RC) 32 6 2 3 40 43 95.00 88.37

B1 31 7 2 4 40 44 95.00 86.36 3.13

B2 (RC) 19 2 0 2 21 23 100.00 91.30

B2 18 3 0 3 21 24 100.00 87.50 5.26

B3 (RC) 39 3 0 1 42 43 100.00 97.67

B3 38 4 0 2 42 44 100.00 95.45 2.56

B4 (RC) 26 5 2 2 33 35 93.94 88.57

B4 25 6 0 3 31 34 100.00 91.18 3.85

B5 (RC) 39 0 1 1 40 41 97.50 95.12

B5 25 13 2 5 40 45 95.00 84.44 35.90

Table 5. Play-Break Detection Results in Basketball.
Highlight classification of 5 videos Ground

truth
Goal Shoot Foul Non Truth

Goal 5 0 2 0 7

Shoot 2 66 32 12 112

Foul 0 13 91 13 117

Non 1 11 34 220 266

Detected 8 90 159 245

Table 6. Events Detection Results in Soccer Videos.
S1 S2 S3 S4 S5 Average

RR PR RR PR RR PR RR PR RR PR RR PR

Goal 60 100.0 100 50.0 N/A N/A 100 33.3 N/A N/A 86.7 61.1

Shoot 39.4 76.5 64.0 84.2 80.0 66.7 78.9 71.4 40.0 66.7 60.5 73.1

Foul 85.2 53.5 68.0 53.1 71.4 78.9 88.9 38.1 92.9 52.0 81.3 55.1

Non 86.5 82.1 86.3 88.5 90.5 90.5 75.8 100.0 60.0 80.0 79.8 88.2

Table 7. Distribution of Soccer Events Detection
Highlight classification of 5 basketball videos Ground truth

Goal Free throw Foul Timeout Truth

Goal 56 0 0 2 58

Free throw 4 14 0 0 18

Foul 21 2 28 3 54

Timeout 0 0 0 13 13

Total Detected 81 16 28 18

Table 8. Basketball Events Detection Results

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

245

Figure 9. Extensible Indexing Scheme (3).

B1 B2 B3 B4 B5 Average

RR PR RR PR RR PR RR PR RR PR RR PR

Goal 100 72.2 75 50.0 95 70.4 100 72.2 100 66.7 94 66.3

Free throw 100.0 66.7 100.0 75.0 80.0 100.0 50.0 100.0 66.7 100.0 79.33 88.3

Foul 64.7 100.0 50.0 100.0 30.8 100.0 37.5 100.0 75.0 100.0 51.59 100.0

Timeout 100.0 100.0 100.0 50.0 100.0 40.0 100.0 66.7 100.0 100.0 100 71.3

Table 9. Distribution of Basketball Events Detection
Highlight classification of 7 videos Ground

truth
Goal Behind Mark Tackle Non Truth

Goal 37 0 0 0 0 37

Behind 11 12 7 0 2 32

Mark 15 1 35 8 5 64

Tackle 4 0 9 20 2 35

Non 4 4 11 3 33 55

Detected 71 17 62 31 42

Table 10. Events Detection Results in AFL Videos
A1 A2 A3 A4 A5 A6 A7 AVG

RR PR RR PR RR PR RR PR RR PR RR PR RR PR RR PR

Goal 100.0 44.4 100.0 52.9 100.0 57.1 100.0 33.3 100.0 50.0 100.0 63.6 100.0 53.3 100.0 50.7

Behind 50.0 100.0 N/A N/A 33.3 33.3 33.3 66.7 50.0 100.0 33.3 100.0 33.3 50.0 38.9 75.0

Mark 50.0 60.0 N/A N/A 60.0 60.0 77.8 77.8 60.0 42.9 66.7 42.1 47.1 80.0 60.3 60.5

Tackle 80.0 66.7 100.0 75.0 25.0 100.0 100.0 100.0 12.5 33.3 85.7 66.7 50.0 50.0 64.7 70.2

Non 77.8 100.0 33.3 100.0 50.0 50.0 50.0 66.7 71.4 71.4 46.2 100.0 75.0 69.2 57.7 79.6
Table 11. Distribution of AFL Events Detection

6 References
Adali, S., Candan, K. S., Chen, S.-S., Erol, K. and

Subrahmanian, V. S. (1996) 'The Advanced Video
Information System: Data Structures and Query
Processing' Multimedia Systems, 4, 172-186.

Connolly, T. M. and Begg., C. E. (2002) Database
systems : a practical approach to design,
implementation, and management, Addison-Wesley,
Harlow [England] ; [New York].

Djeraba, C. (2002) 'Content-based multimedia indexing
and retrieval' Multimedia, IEEE, 9, 18-22.

Dobbie, G., Xiaoying, W., Ling, T. W. and Lee, M. L.
(2000) In Technical Report Department of Computer
Science,National University of Singapore.

Duan, L.-Y., Xu, M., Chua, T.-S., Qi, T. and Xu, C.-S.
(2003) In ACM MM2004ACM, Berkeley, USA, pp. 33-
44.

Ekin, A. and Tekalp, A. M. (2003a) In International
Conference on Mulmedia and Expo 2003 (ICME03),
Vol. 1 IEEE, pp. 6-9 July 2003.

Ekin, A. and Tekalp, M. (2003b) 'Automatic Soccer
Video Analysis and Summarization' IEEE Transaction
on Image Processing, 12, 796-807.

Han, M., Hua, W., Chen, T. and Gong, Y. (2003) In
Information, Communications and Signal Processing,
2003 and the Fourth Pacific Rim Conference on
Multimedia. Proceedings of the 2003 Joint Conference
of the Fourth International Conference on, Vol. 2, pp.
950-954.

Li, B. and Ibrahim Sezan, M. (2001) In Content-Based
Access of Image and Video Libraries, 2001. (CBAIVL
2001). IEEE Workshop onPractical, Sharp Labs. of
America, Camas, WA, USA, pp. 132-138.

Nepal, S., Srinivasan, U. and Reynolds, G. (2001) In
ACM International Conference on MultimediaACM,
Ottawa; Canada, pp. 261-269.

Oomoto, E. and Tanaka, K. (1997) In The Handbook of
Multimedia Information Management(Ed, William I.
Grosky, R. J. a. R. M.) Prentice Hall, Upper Saddle
River, NJ, pp. 405 - 448.

Tjondronegoro, D., Chen, Y.-P. P. and Pham, B. (2004a)
'Integrating Highlights to Play-break Sequences for
More Complete Sport Video Summarization' IEEE
Multimedia, Oct-Dec 2004, 22-37.

Tjondronegoro, D., Chen, Y.-P. P. and Pham, B. (2004b)
In The 6th International ACM Multimedia Information
Retrieval WorkshopACM Press, New York, USA, pp.
267-274.

Wu, C., Ma, Y.-F., Zhang, H.-J. and Zhong, Y.-Z. (2002)
In Multimedia and Expo, 2002. Proceedings. 2002
IEEE International Conference on, Vol. 1, pp. 805-
808.

Xu, P., Xie, L. and Chang, S.-F. (1998) In IEEE
International Conference on Multimedia and
ExpoIEEE, Tokyo, Japan,.

CRPIT Volume 48

246

Using Formal Concept Analysis with an Incremental Knowledge

Acquisition System for Web Document Management

Timothy J. Everts, Sung Sik Park and Byeong Ho Kang

School of Computing,

University of Tasmania

Sandy Bay, Tasmania 7001, Australia

{tjeverts, sspark, bhkang}@utas.edu.au

Abstract

It is necessary to provide a method to store Web

information effectively so it can be utilised as a future

knowledge resource. A commonly adopted approach is to

classify the retrieved information based on its content. A

technique that has been found to be suitable for this

purpose is Multiple Classification Ripple-Down Rules

(MCRDR). The MCRDR system constructs a

classification knowledge base over time using an

incremental learning process. This incremental method of

acquiring classification knowledge suits the nature of Web

information because it is constantly evolving and being

updated. However, despite this advantage, the

classification knowledge of the MCRDR system is not

often utilised for browsing the classified information. This

is because it does not directly organise the knowledge in a

way that is suitable for browsing. As a result, often an

alternate structure is utilised for browsing the information

which is usually based on a user’s abstract understanding

of the information domain. This study investigated the

feasibility of utilising the classification knowledge

acquired through the use of the MCRDR system as a

resource for browsing information retrieved from the

WWW. A system was implemented that used the concept

lattice-based browsing scheme of Formal Concept

Analysis (FCA) to support the browsing of documents

based on the MCRDR classification knowledge. The

feasibility of utilising classification knowledge as a

resource for browsing documents was evaluated

statistically. This was achieved by comparing the concept

lattice-based browsing approach to a standard one that

utilises abstract knowledge of a domain as a resource for

browsing the same documents.

Keywords: Formal Concept Analysis, Document

Management, Knowledge Acquisition, Document

Browsing

Copyright ©2006, Australian Computer Society, Inc.?This

paper appeared at the Twenty-Ninth Australasian

Computer Science Conference (ACSC2006), Hobart,

Australia. Conferences in Research and Practice in

Information Technology (CRPIT), Vol. 48. Vladimir

Estivill-Castro and Gill Dobbie, Eds. Reproduction for

academic, not-for profit purposes permitted provided this

text is included.

1 Introduction

The World Wide Web (WWW) has become the most

popular information source for people today and is now

the largest sharable and searchable repository of

information (Park, Kim et al. 2003; Kim and Compton

2004). Originally the WWW widely utilised a passive

information delivery mechanism that meant users would

have to search for and then ‘pull’ down the information

they needed. In order to overcome this limitation, a more

active mechanism was required. This stemmed the

research and development of software applications that

could deliver the most up to date information in a timely

manner. Web Monitoring Systems are an example of such

software that has become popular in recent times (Liu, Pu

et al. 2000; Tang, Liu et al. 2000; Boyapati, Chevrier et al.

2002; Liu, Tang et al. 2002). They check predefined target

Web pages, automatically detect changes in these pages,

and prompt users when these changes occur. The use of

such systems appears to offer at least a partial solution to

the problems of traditional information retrieval methods

such as Web search engines, because the user has more

control over the type and amount of information being

delivered. It also ensures that the information being

gathered is the latest.

However, the quantity of information being gathered can

still be reasonably large. Subsequently, an effective

method for storing and managing this information is also

required. Document classification is one of the solutions to

this problem. Traditionally, the dominant approach for

classification is based on the content (text) of documents

through trained classifiers using Machine Learning (ML)

techniques because they achieve impressive levels of

effectiveness (Sebastiani 2002). However, although

classification by ML has proved to be successful in some

commercial or research applications (Mladenic 1999), it is

not generally appropriate for classifying information from

the WWW. This is because the classification knowledge

created during the training process cannot usually cater for

the dynamic nature of Web documents. New information

is constantly being generated or it is being updated. For

this reason, efficient classification of documents retrieved

from the WWW requires a technique that can operate on a

continual learning process. This enables incremental

knowledge acquisition that suits the dynamic nature of

Web document information (Kim, Park et al. 2004).

A technique that has been found to be suitable for this

purpose is the Multiple Classification Ripple-Down Rules

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

247

(MCRDR) knowledge acquisition method. Unlike

machine learning methods, MCRDR constructs a

classification knowledge base incrementally over time

through a process of differentiation by the expert. When

the case-based reasoning system of MCRDR retrieves

cases that are recognised by the expert as inappropriate,

the expert simply identifies the important characteristics of

the present case that distinguish it from existing cases. In

this way, knowledge is acquired by the system and new

rules are created accordingly. When applied to Web

Monitoring Systems, this technique enables the MCRDR

rule set to be developed and adapted to suit the dynamic

nature of Web documents (Park, Kim et al. 2003; Kim,

Park et al. 2004).

Despite the appropriateness of using MCRDR to classify

the documents collected by Web Monitoring Systems, the

technique has one major weakness. MCRDR does not

directly organise the knowledge in a way that is suitable

for browsing (Kim and Compton 2004). As a result, the

heuristic classification knowledge in an MCRDR

knowledge base is not often utilised for browsing and

searching the documents. Instead browsing and searching

is facilitated through a structure based on some form of

abstracted knowledge about the document domain that has

been provided by the expert or user (Park, Kim et al. 2004).

Therefore, it is suggested that the classification knowledge

acquired through the use of MCRDR may also provide a

useful resource for browsing the retrieved documents. To

this extent, our research undertaken assessed the feasibility

of utilising the heuristic classification knowledge of an

MCRDR knowledge base as a resource for browsing

documents in a specified domain. A system was developed

and implemented that adopted the lattice-based browsing

method of Formal Concept Analysis (Ganter, Stumme et al.

2005) as a means of providing a browsing representation

based on heuristic classification knowledge. Formal

Concept Analysis has been shown by Kim (Cole 2000;

Kim and Compton 2001) to be quite successful for

browsing documents in a specified domain. A comparative

statistical analysis was performed between the use of a

traditional browsing structure (based on abstract

knowledge of a domain), and the concept lattice structure

of FCA (based on heuristic classification knowledge). This

has been done to evaluate the feasibility of utilising

heuristic classification knowledge for browsing Web

documents.

2 Related Work

2.1 WebMon and MCRDR

The WebMon Web Monitoring System was developed by

a number of researchers at the University of Tasmania,

Australia, and was built as part of the Personalised Web

Information Management System detailed in Park et al.

(Park, Kim et al. 2003). A Web monitoring system needs a

method for archiving collected information effectively so

it can be utilised in the future. For this purpose, WebMon

adopts the MCRDR knowledge acquisition technique to

classify and store retrieved documents appropriately.

The Multiple Classification Ripple Down Rules

(MCRDR) method is derived from the Ripple Down Rules

(RDR) method, a hybrid case-based and rule-based

approach for knowledge acquisition and representation

(Richards 2001). Knowledge acquisition (KA) in MCRDR

involves the incremental addition of cases and

justifications (rules) in the circumstance where a case is

misclassified by the MCRDR system in the retrieval

process. This incremental approach to KA is centred on the

idea that the knowledge an expert provides is essentially a

justification for a conclusion in a particular context

(Compton and Jansen 1989; Preston et al. 1996). When the

case-based reasoning (CBR) system of MCRDR retrieves

a case(s) that is incorrect, the expert is required to identify

the important characteristics that distinguish the

incorrectly retrieved cases from the present case (Kang,

Yoshida et al. 1997). It is thought that experts will select

more valid knowledge if asked to deal with the differences

between cases (Kang, Yoshida et al. 1997). Thus, the

expert’s justification provides a basis for a new rule to be

created. The new rule(s) is first validated against existing

rules (cornerstone cases) and then automatically appended

to the knowledge base.

The MCRDR knowledge acquisition technique is used by

the WebMon Web Monitoring System for determining

where documents retrieved during Web monitoring should

be stored for archival and sharing purposes. The structure

used by the system to store the information is a storage

folder structure (SFS). It is comparable to a hierarchical

tree arrangement of folders, much like that used in

common operating system environments such as

Microsoft Windows. Depending on the choice of the user,

the entire SFS can be defined up front or it can be defined

incrementally as documents are collected. It is important

to note that there are no predefined specifications that state

the requirements for the specific folders contained in the

SFS. The structure is usually devised based on the user’s

knowledge or understanding of the monitored document

domain. It should also be noted that if the user chooses to

utilise the Web portal option to share the collected

information with other users, this same storage folder

structure is replicated on the Web portal site. It is provided

as a means for browsing and searching for the documents.

Once the SFS has been defined, newly updated Web

documents retrieved during Web monitoring are classified

into one or more target folders. Keywords are extracted

from documents and form the conditions of rules in the

MCRDR knowledge base. The rule conclusions are target

folders in the SFS. This means that keywords in a newly

retrieved document can be utilised in inference the

MCRDR knowledge base, in order to recommend a target

storage folder for the document. In the circumstance when

a document is misclassified as a result of the inference

process, the user simply adds knowledge to the knowledge

base that enables a correct classification to be made.

As an example of the inference process for a document,

Figure 1 shows how a document with the case (keywords)

of [a,b,c,d,e,f,g] is recommended to storage locations

within the SFS. The MCRDR KBS is drawn as an n-ary

tree, with each node of the tree representing a rule which

has a corresponding case. The inference process involves

all rules attached to true parents being evaluated against

the data. Thus the process begins by evaluating the root

CRPIT Volume 48

248

rule and then moving down level by level until either a leaf

node is reached or none of the child nodes evaluate to true

(Dazeley and Kang 2003). Since multiple pathways of

refinement can be selected, multiple conclusions can be

reached. This means that the last true rule on each pathway

forms the conclusion for the case. Therefore, in the case

presented in Figure 1, the inference process results in the

recommendation of three storage folders for the current

document, namely folders F_2, F_6, and F_5.

Figure 1 - Inference for a Web Document

Classification

Analysis of the WebMon Web Monitoring System reveals

that the user (or domain expert) is utilising the devised

SFS as a basis for defining a conclusion for document

classifications. The common folder structure is used as a

mediating knowledge representation for the user, and it

enables them to easily build a conceptual document

classification model using folder manipulation. In other

words, the devised SFS is an explicit representation of the

user’s knowledge of the current document domain.

Evidently, two types of knowledge are actually being

utilised in the classification process. One type of

knowledge is being used to define the SFS, while another

type of knowledge is being used in the actual classification

of documents to target folders. This point is more apparent

when the user devises the SFS. Its structure is based upon

their conceptual hierarchical understanding of the domain.

However, when the user classifies a document to a folder

in the storage structure, that classification is made based

on the actual content of the document, namely keywords.

These keywords may also be embedded in the conditions

of the existing classification rules in the MCRDR

knowledge base. The knowledge used in the creation of the

SFS is hereafter referred to as being ‘abstract domain

knowledge’. In regards to the second type of knowledge, it

is hereafter referred to as being ‘heuristic classification

knowledge’, since it is associated with the classification

knowledge embedded in the rules of the MCRDR

knowledge base. Having discovered that there are two

types of knowledge being utilised by WebMon for

document classification, it is well worth noting that only

the abstract domain knowledge is ever utilised for

browsing the documents.

Although there are two potentially useful knowledge types

which could be used as a basis for browsing documents,

only one of them is currently being utilised by the majority

of Web portal sites. This means WWW users are being

forced into searching for documents using a user-defined

structure which is based on abstract domain knowledge

rather than on heuristic classification knowledge. It can be

argued that the heuristic classification knowledge would

be more appropriate for being used as a basis for browsing

the documents, because it more accurately represents the

actual content of each document. For this reason, the main

suggestion of this research was that if the classification

knowledge can be incorporated as the basis for a document

browsing structure, it may also provide an extremely

useful resource for browsing the documents in the domain.

Therefore, it was proposed that the use of an alternate

browsing method instead of the storage folder structure

may enable classification knowledge to be utilised as a

basis for browsing the documents classified by MCRDR.

The approach suggested and adopted in this research was

the lattice-based browsing scheme of Formal Concept

Analysis, so therefore it is outlined in the section that

follows.

2.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical

approach used for conceptual data analysis and knowledge

processing. It has had numerous applications for data

analysis and information retrieval in fields such as

medicine, psychology, ecology, social science and

political science. Various researchers have shown that a

quite successful method for browsing documents in a

specified domain is the lattice-based browsing approach of

Formal Concept Analysis (Cole 2000; Cole, Eklund et al.

2004; Kim and Compton 2004; Becker 2005; Carpineto

and Romano 2005; Eklund and Wormuth 2005; Quan, Hui

et al. 2005).

FCA ‘formulates concepts in terms of objects and their

properties or attributes, and provides a way of combining

and organising individual concepts (of a given context)

into [a] hierarchically ordered conceptual structure

[known as a] … concept lattice structure’ (Rajapakse and

Denham 2003). Correia et al. (Correia, Willie et al. 2003)

comments that concepts are necessary for expressing

human knowledge and a formalisation of concepts acts as

means of communicatively representing knowledge.

FCA is based on a formal understanding of a concept as a

unit of thought, comprising its extension and intension.

The extension (extent) of a formal concept is formed by all

objects to which the concept applies (a set of objects) and

the intension (intent) consists of all attributes existing in

those objects (a set of attributes). The set of objects, set of

attributes and the relations between an object and an

attribute in a data set form the basic conceptual structure of

FCA (known as a formal context). A formal context is

defined as a triple (G, M, I) where I maps the relation

between a set of objects G, and a set of attributes M. This is

denoted formally as:

C = (G, M, I)

where C represents the context. In order to express that a

particular object g is in a relation I with a particular

attribute m, the relation is given by:

(g, m) ∈ I or gIm

and should be read as “the object g has the attribute m”.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

249

Once a formal context has been defined, all the formal

concepts of the formal context can be derived. A formal

concept is represented as a pair (A, B), where A is a subset

of objects of the formal context and B is a subset of

attributes of the formal context. In order for a pair (A, B) to

be a formal concept, all attributes common to objects in A,

the intent, and all objects common to attributes in B, the

extent, must be the same.

This duality relationship is formalised by:

1. Set of attributes common to the objects in A (intent)

A’ = { m ∈ M | (g,m) ∈ I for all g ∈ A}

2. Set of objects common to the attributes in B (extent)

B’ = { g ∈ G | (g,m) ∈ I for all m ∈ B}

The formal concepts of a formal context can be ordered

and arranged hierarchically into a conceptual structure of

FCA called a concept lattice. Ganter and Wille (1997)

comment that concept lattices are useful for unfolding

given data, ‘making their conceptual structure visible and

accessible, in order to find patterns, regularities,

exceptions etc.’ Therefore, the concept lattice structure

provides a means of revealing the implicit relationships

between data that are not otherwise obvious. The concept

lattice is ordered by the smallest set of attributes (intent)

between the concepts and thus maps an ordering from the

most general to the most specific concept, top to bottom

(Kim 2003).

To form the concept lattice, hierarchical subconcept -

superconcept relations between all the formal concepts

need to be found. This is formalised by (A1, B1) ≤ (A2,

B2) : ⇔ A1 ⊆ A2 (⇔B2 ⊆ B1) where (A1, B1) is called a

subconcept of (A2, B2), and (A2, B2) is called a

superconcept of (A1, B1). ‘The relation ≤ is called the

hierarchical order of the concepts’ (Kim 2003, p. 55).

When the lattice is formed, the largest subconcept will be

the top most concept in the lattice, called the supremum,

and the smallest subconcept will be the bottom most

concept, called the infimum.

2.3 Combining MCRDR with FCA for

Browsing Documents

Various studies have shown that the lattice-based method

of FCA can be utilised as an effective means for browsing

documents in specialised domains. Kim (2003) developed

a Document Management and Retrieval System (DMRS)

for specialised domains on the WWW that utilised an

incrementally built concept lattice as a means of browsing

and retrieving documents. As part of her work, a user

evaluation was performed on the browsing and retrieving

of documents using the lattice structure. The evaluation

concluded that users considered searching a specialised

domain using lattice-based browsing to be more helpful

than using Boolean queries and hierarchical browsing.

Furthermore, users also found that the ad hoc evolvement

of the lattice-based browsing structure provided good

efficiency in retrieval performance. The lattice-based

browsing approach has also been shown to be much more

advantageous than a hierarchical approach to browsing

documents, such as the storage folder structure used by

WebMon (Kim and Compton 2004). In regards to utilising

MCRDR classification knowledge in the lattice structure,

research undertaken by Richards (Richards 1998) revealed

that the rules of an RDR knowledge base can be utilised to

generate an FCA concept lattice structure. Therefore, the

lattice-based browsing method of FCA may be used as a

means for defining an effective document browsing

structure that is based on MCRDR heuristic classification

knowledge. The feasibility of this could be tested by

utilising the structure to browse the documents collected

by the WebMon Web Monitoring system and comparing

this to browsing the same documents using the system’s

storage folder structure.

3 System Implantation

3.1 System Overview

In order to utilise the MCRDR heuristic classification

knowledge as a basis for browsing the documents

collected during the Web monitoring project, it was

necessary to develop a system that implemented an

alternate browsing representation. Subsequently, a system,

called iWeb FCA, was developed as part of this research

which utilised the MCRDR heuristic classification

knowledge to generate a FCA concept lattice for browsing

the documents. The iWeb FCA system generates a FCA

concept lattice based on the MCRDR heuristic

classification knowledge to provide an alternate browsing

structure for the documents collected and classified by

WebMon. In addition, the system is also capable of

utilising the abstract domain knowledge embedded in the

storage folder structure as a resource for generating a

concept lattice. The system can be configured to generate a

concept lattice using either one of the knowledge sources

as a resource or it can be configured to utilise both

resources at once for lattice generation.

In using the system to generate a concept lattice, it is

important to note that documents are considered to

constitute the objects used in FCA and the rule keywords

(classification knowledge) or folder names (abstract

domain knowledge) are considered to constitute the

attributes. However, this approach does not strictly

comply with the original formulation of FCA in which an

object was implicitly assumed to have some sort of unity

or identity so that the attributes applied to the whole object

(e.g. a car has four wheels). As Kim (2003) states, ‘clearly

documents do not have the sort of unity where attributes

will necessarily apply to the whole document’. However,

in order to use FCA in the iWeb FCA system, the

following assumptions are made. Documents correspond

to objects and the rule condition keywords used to classify

a document or the names of the folders in which the

document is stored constitute the attribute set. A similar

approach has been shown by Kim (2003) to be quite

feasible.

CRPIT Volume 48

250

3.2 System Functionality

3.2.1 Reducing the Amount of Documents in

the Domain

In order to evaluate the feasibility of utilising heuristic

classification knowledge for browsing documents using an

FCA lattice structure, it was only necessary to generate a

single complete lattice for any formal context and gather

statistical results about that generated lattice structure.

However, the lack of available system resources and the

significant quantity of documents for a single domain

posed a problem for lattice generation. It was too time

consuming to generate a complete concept lattice using the

full set of documents. For this reason, iWeb FCA included

a function that reduced the number of documents stored in

all folders in the storage folder structure to contain, at a

maximum, a specified amount. At a minimum, a folder

could contain zero documents. Note the fact that the actual

number of folders is not reduced means that all of the

heuristic classification knowledge is still utilised to

generate the complete concept lattice. This is because the

MCRDR rules apply to particular folders in the storage

folder structure, and not particular documents. In other

words, the conclusions of the MCRDR rules are folders.

3.2.2 Generating a Complete Lattice

The batch process utilised to build the formal concepts and

the concept lattice is an implementation of the general

methodology of FCA for formulating concepts and

building the concept lattice. The algorithm used in iWeb

FCA was based upon the explanations of FCA provided by

Richards (1998), Kim and Compton (2000), and Kim

(2003). In detailing the procedure, C represents the formal

context stored in iWeb FCA’s database, D represents the

set of objects (documents) in C, and M represents the set of

attributes (rule keywords or folder names) in C. The

procedure implemented is detailed in Figure 2.

Step 1:

Formulate an extent containing the set of objects G

representing the largest concept of C. Then perform step 2

for each attribute m in the set M.

Step 2:

a) Find the set of objects X that contains the attribute m.

b) Check whether any previously formulated extent is

equivalent to X.

c) If an equivalent extent of X does not exist, then add the

set X as an extent of the attribute m.

d) Determine the intersection of X with all extents

calculated in previous steps. If the intersection set does not

exist, then add the intersection set as an extent of attribute

m.

Step 3:

For each formulated extent, determine its intent:

 Y ← { m M | (g,m) I for all g X}  

Step 4:

Construct the concept lattice by finding all the

hierarchical subconcept - superconcept relations between

all the formal concepts of C that were computed in steps 1

to 3.

Figure 2 – Procedure for Generation a Concept Lattice

in iWeb FCA

3.2.3 Browsing the Concept Lattice

A sample of the concept lattice browsing interface used in

iWeb FCA is shown in Figure 3. As in the approach of

Kim and Compton (2000), the lattice display is simplified

by showing only direct neighbour nodes of the current

node using hyperlinks. Each lattice node represents a

concept comprised of a pair (X,Y), where X is the extent (a

set of documents) and Y is the intent (a set of classification

rule keywords) of the concept. The intents of each concept

are used for indexing the terms of the browsing structure.

Figure 3 – iWeb FCA Concept Lattice Browsing

Interface

The concept lattice browsing interface in iWeb FCA is

divided into four distinctly recognisable sections. The

current lattice node is displayed in green in a section

labelled ‘Current Concept’, while parent nodes and child

nodes are listed as hypertext links in sections labelled

‘Parent Concepts’ and ‘Child Concepts’ respectively. The

set of documents associated with the current node are

listed as hypertext links in a section labelled ‘Documents’.

The actual browsing of the lattice begins from the root

node (concept) and the relationships of concepts can be

explored by traversing from vertex to vertex by clicking on

a child or parent node hypertext link. Each time a new

node is selected, the interface is updated to show the parent

and child nodes of the current node. The list of documents

associated with the current node is also refreshed.

Documents at a node can be viewed by clicking the

appropriate hypertext link and the document will be

displayed in a new Web browser window.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

251

4 Evaluation

4.1 Data Set

The MCRDR heuristic classification knowledge utilised in

this research study was collected over a period of time

during a project undertaken at the University of Tasmania

in Hobart, Australia. Table 1 summarises the data created

as a result of the Web monitoring project which was

focused on the domain of e-Health. In total, 7 sites were

monitored by WebMon and 7588 documents were

retrieved from those sites. Of those 7588 documents, 4598

were classified to the storage folder structure which

contained 119 folders. During the classification process,

172 rules were created and a total of 285 unique rule

conditions (keywords) were contained in those rules. The

iWeb Web Portal site divided the complete storage folder

structure into various sub-domains of eHealth, based on

the individual folders at the second level of the storage

folder structure. These sub-domains included ‘Diseases’,

‘Demographic Groups’, ‘Drug Information’ and ‘Health

and Wellness’. Dividing the complete storage folder

structure into smaller parts simplified browsing for

information, especially since the entire storage folder

structure was quite large and the quantity of information

was significant.

Web Monitoring

Total Sites Monitored 7

Total Articles Collected 7588

Total Articles Classified 4598

Classification Knowledge

Total Rule Used 172

Total Rule Conditions 285

Storage Folder Structure

Total Folders 119

Table 1 – Summary of Web Monitoring Project

To conduct evaluation, a sub-domain of the eHealth

domain was first selected to be utilised as the source of

data for generating the concept lattice. The reason why

only a sub-domain was selected is because the limited

system resources available meant it would take a

significant amount of time to generate a single complete

concept lattice for the entire eHealth domain. Also, since

the storage folder structure could be distinctly divided into

the various sub-domains of eHealth (as is done on the

iWeb Web portal site), it was much simpler to just deal

with a small portion of the overall structure for the purpose

of analysing it. Consequently, the sub-domain of

‘Diseases’ was selected for the purpose of the analysis. It

contained the most information out of all the sub-domains

and also had the largest storage folder structure. To enable

a concept lattice to be generated from the Diseases

sub-domain data, iWeb FCA was used to reduce the

number of documents in any folder to be no more than 32.

This figure was chosen through a trial and error approach

based on the amount of time it took to generate a concept

lattice with the available system resources. It resulted in a

total number of 1063 classified documents making up the

reduced data set.

4.2 Method

Having reduced the source domain data to a manageable

amount for lattice generation, iWeb FCA was used to

generate two different types of concept lattices. The first

concept lattice was generated based on the MCRDR

heuristic classification knowledge, and the second concept

lattice was generated based on a combination of MCRDR

heuristic classification knowledge (rule keywords) and

abstract domain knowledge (folder names) because many

of the folder names used in abstract domain knowledge

also occur as keywords in the heuristic classification

knowledge. For this reason, it may also be potentially

useful to browse documents using a combination of the

two knowledge types, especially because often a user does

not make a clear distinction between the two knowledge

types. Therefore, browsing a concept lattice based

on this combination of knowledge types was also assessed

as part of the evaluation undertaken.

The final step of the evaluation procedure was to gather

and record statistics on the different browsing structures.

This was done in order to assess the feasibility of utilising

heuristic classification knowledge for browsing

documents. Three main forms of analysis were performed.

Firstly, the physical composition of the different browsing

structures was analysed as a means of assessing the

implications that each would have on browsing for

documents. Secondly, the distribution of documents in the

browsing structures was compared to determine whether

utilising heuristic classification knowledge as a resource

for browsing enhances a user’s ability to locate a particular

document. Finally, an analysis was performed on how the

structures would actually be browsed. This final analysis

was achieved by programmatically simulating the

browsing process and recording information about each

level that would be traversed in each browsing structure.

The results and discussion of the analytical evaluation are

presented in the Section that follows.

5 Result

5.1 Physical Browsing Structures

Table 2 shows the main statistics gathered from analysing

the physical composition of the storage folder structure

(SFS). Table 3 shows the statistics gathered from

analysing the physical composition of a concept lattice

which was generated based on the MCRDR heuristic

classification knowledge (HCK lattice), as well as

statistics for a second concept lattice generated on a

combination of MCRDR heuristic classification

knowledge and abstract domain knowledge (HCK-ADK

lattice).

Total Number of Folder 80

Folders with Documents 56

Folders without Documents 24

Average Sub-Folders per Folder

(without leaf folders)

6.08

Total Rules Utilised 78

Total Rule Keywords 109

Table 2 – Summary of Storage Folder Structure

CRPIT Volume 48

252

 HCK HCK-ADK

Total Number of Nodes

(Concept)

77 88

Total Nodes with Documents 76 87

Total Nodes without Documents 1 1

Number of Single Level Nodes 22 3

Average Child Nodes per Node 1.69 1.69

Average Attributes per Node 4.08 7.18

Table 3 – Summary of Concept Lattice Structure

By comparing the physical composition of the SFS (see

Table 2) with the HCK and HCK-ADK concept lattice

structure (see Table 3), the implications of browsing

documents based on heuristic classification knowledge as

opposed to abstract domain knowledge can be made clear.

In the SFS there is an average of 6.08 sub-folders for every

folder (excluding leaf folders), while in the HCK and

HCK-ADK lattice there is an average of 1.69 children

nodes per node. Since the SFS is a hierarchical tree

structure, it would be traversed starting from the root

folder and finishing at a leaf folder. This means that in

browsing the SFS a user tries to pick the best sub-folder at

each step in order to locate a particular document. Each

time a document is not located in a particular folder, the

user would have to make the decision between an average

of about 6 sub-folders as to where to go next. This also

means that if a leaf folder is reached, it is difficult to know

what to do next because the best guesses have already been

made at each decision point.

However, with the HCK and HCK-ADK lattice structure,

making the decision of where to go next is much less

overwhelming for the user. This is because on average

there is only about 1 or 2 child nodes to choose from. Also,

since the HCK and HCK-ADK lattice is more of a network

type structure, it means that if a document is not located by

taking one path, it is possible to go back up another path

rather than starting again. This opens up new decisions

which have not previously been considered.

A further interesting aspect of utilising the HCK and

HCK-ADK lattice for browsing documents is that every

node except one (which would be the bottom-most node)

contains at least one document (see Table 3). However, in

the SFS there are 24 folders that do not contain any

documents (see Table 2). This means there are 24 possible

decisions a user could make when browsing the SFS that

are potentially useless in locating a particular document.

This not only makes locating a document more difficult in

the SFS, but it would no doubt also increase a user’s

frustration.

Comparing the physical structure of the HCK-ADK lattice

with the structure of the HCK lattice (Table 3) produces

some very interesting results. The most interesting result is

the significant decrease in the amount of single level nodes

in the HCK-ADK lattice. In this analysis, a single level

node is a node that has the supremum node (top most

concept in the lattice) as its only predecessor, and the

infimum node (bottom most concept in the lattice) as its

only successor. If a large percentage of the total nodes in a

lattice are single level nodes, it implies that the overall

lattice structure is very shallow, meaning that more of the

concepts will be general in nature. In regards to browsing

the lattice for documents, this implies it will be more

difficult for a user to locate the document desired. This is

because there are fewer concepts in the lattice that would

be specific enough to uniquely represent the attributes of

that document.

Calculating the percentage of single level nodes in each

lattice generated reveals that even though the HCK-ADK

lattice contains 10 extra nodes (88 nodes) than the HCK

lattice (77 nodes), only about 3 percent of nodes in the

HCK-ADK lattice are single level nodes. However, in the

HCK lattice, about 29 percent of all nodes are single level

nodes. This implies that it would be much easier to locate a

particular document when browsing the HCK-ADK lattice

because a larger number of terms are being used to

represent the attributes of documents resulting in a greater

number of more specific concepts being generated.

5.2 Distribution of Documents

A second statistical analysis was undertaken to analyse

how documents were distributed in the various browsing

structures. The aim of this analysis was to determine

whether utilising heuristic classification knowledge as a

resource for browsing enhances a user’s ability to locate a

particular document.

The most significant result from analysing the distribution

of documents in the SFS shows that the majority of the

total 1063 classified documents are only located in a single

folder. This implies that it would be quite difficult to locate

a particular document when browsing the SFS because few

documents can be found in multiple folders. Consequently,

this makes the decision of which folders a user selects in

searching for a document a lot more critical, since the

likelihood of finding the document in a particular folder is

relatively small.

The ability to locate a document can be significantly

improved if the heuristic classification knowledge and

abstract domain knowledge are used as a resource for

browsing instead. In the HCK and HCK-ADK lattice,

documents are distributed much more evenly than in the

SFS. As a result, a larger amount of documents are located

at a higher number of multiple locations (nodes) in the

HCK and HCK-ADK lattice. This is also evident when the

distribution of documents between the SFS, HCK and

HCK-ADK lattice are compared graphically, as shown in

Figure 4.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 >6

SFS

HCK

HCK-ADK

Documents

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

253

Figure 4 – Distribution of Documents in Multiple

Locations

It is interesting to note the effect that utilising the terms

from both knowledge types has on the distribution of

documents in the lattice structures. In the HCK-ADK

lattice, the distribution of documents appears to be more

evenly spread than in the HCK lattice. This can be clearly

seen in Figure 4. Also, in the HCK-ADK lattice, 78

percent of documents are located at 3 or more nodes,

whereas only about 14 percent are located at that many

nodes in the HCK lattice. This shows that the utilisation of

the terms of both knowledge types can also provide more

possibilities for locating a document while browsing.

5.3 Analysis of Browsing

The final statistical analysis undertaken involved

simulating the way a user might actually browse each of

the different structures. For the storage folder structure

(SFS) this was simulated programmatically by beginning

at the first level of browsing, namely the root folder and

recording information about the properties of that

browsing level. Then the entire SFS was traversed one

level (folder) deeper to all sub-folders visible from the first

level, and the properties of that level were also recorded.

This process continued until it was not possible to traverse

any deeper, namely when all folders on the browsing level

were leaf folders.

A similar programmatic simulation was also applied to the

generated concept lattices to record the information about

each level of browsing in the lattice structure. The deepest

level of browsing in the lattice was the level that contained

only the infimum node (bottom most concept in the lattice).

It should be noted that the structure of a concept lattice is

such, that when browsing the lattice an individual node

may appear (be visible) at two different browsing depths,

depending on which path is taken through the lattice.

The statistics that were recorded at each level of browsing

included the total number of folders or nodes for that level,

the total number of documents, the total number of unique

documents, and the average number of documents per

folder or node on that level.

(a) Storage Folder Structure

Browsing

Depth

(folders)

Total

Folders

Total

Docs

Unique

Docs

Average

Docs per

Folder

1 Level 1 0 0 0.00

2 Level 20 489 487 24.45

3 Level 59 602 586 10.20

(b) HCK Concept Lattice

Browsing

Depth

(Nodes)

Total

Nodes

Total

Docs

Unique

Docs

Average

Docs per

Node

1 Level 1 1063 1063 1063.0

2 Level 46 1088 1063 23.65

3 Level 25 152 145 6.08

4 Level 6 9 7 1.50

5 Level 1 2 2 2.0

6 Level 1 0 0 0.00

(c) HCK-ADK Concept Lattice

Browsing

Depth

(Nodes)

Total

Nodes

Total

Docs

Unique

Docs

Average

Docs per

Node

1 Level 1 1063 1063 1063.00

2 Level 21 1166 1063 55.52

3 Level 46 852 829 18.52

4 Level 20 68 60 3.40

5 Level 5 8 6 1.60

6 Level 1 2 2 2.00

7 Level 1 0 0 0.00

Table 4 – Analysis of Browsing

Table 4 presents the statistics gathered by simulating

browsing the storage folder structure (SFS), the HCK

lattice and the HCK-ADK lattice.

The first and perhaps most obvious comparison that can be

made between the SFS and HCK and HCK-ADK lattice is

the difference in the number of browsing levels. Starting at

the root folder (level 1) in the SFS, it is possible to traverse

to a maximum browsing depth of 3 levels. On the other

hand, in the HCK lattice it is possible to traverse to a

maximum browsing depth of 6 levels and in the

HCK-ADK lattice to 7 levels.

The SFS appears to be much easier for a user to browse

because there are fewer levels of browsing in it. However,

the fact that there are fewer levels of browsing means that

the amount of folders on each level is quite large. The

structure of the SFS is such, that the deeper the user

browses, the larger the amount of folders that appear on

each level. This means the decision of which folder to

select when trying to locate a document becomes much

more difficult with each new level that is traversed. In the

HCK lattice the opposite is the case. Disregarding the first

level of browsing (the root node), the deeper a user

browses the HCK lattice structure, the fewer the nodes that

appear at each browsing level. Therefore the decision of

where to go next when browsing the HCK lattice only

becomes easier rather than more difficult.

It is also interesting to compare the total number of

documents and unique documents at each level of

browsing in the SFS and the HCK / HCK-ADK lattice (see

Table 4). Since the SFS only has three levels, it is

appropriate to compare only the first three levels of both

structures. This comparison reveals that all 1063 classified

documents can be located at both of the first two levels of

browsing in the HCK / HCK-ADK lattice, while not even

half of all the documents can be found at each of the same

two levels of browsing in the SFS. This would suggest that

there is more chance of locating a desired document in the

HCK / HCK-ADK lattice as there is in the SFS.

Comparing the difference between the HCK-ADK lattice

and the HCK lattice shows that there is only one extra level

of browsing in the HCK-ADK lattice. Another interesting

statistic is that the average number of documents per node

on nearly all the levels of browsing in the HCK-ADK

lattice is significantly higher than that in the HCK lattice.

Furthermore, the overall difference between the number of

total and unique documents on each level in the

HDK-ADK lattice is also significantly higher than in the

CRPIT Volume 48

254

HCK lattice. Therefore, from the comparisons presented it

can be concluded that the utilisation of the terms of both

knowledge types improves the possibility of locating a

document during browsing. This makes the browsing

experience all the more beneficial for a user.

6 Conclusion

The investigation undertaken in this study was aimed at

determining the feasibility of utilising heuristic

classification knowledge acquired through the use of

MCRDR as a resource for browsing documents retrieved

from the WWW. A Web-based system was developed

which generated a FCA concept lattice using the heuristic

classification knowledge of MCRDR. To evaluate the

feasibility of utilising heuristic classification knowledge as

a resource for browsing documents, a comparative

statistical analysis was performed. This involved

comparing the difference between browsing documents

using two different structures. Namely, a storage folder

structure (SFS) based on abstract knowledge of a domain,

and a concept lattice based on MCRDR heuristic

classification knowledge.

From the evaluation performed, it is concluded that the

concept lattice-based browsing scheme of FCA provides a

feasible way to utilise MCRDR heuristic classification

knowledge for browsing documents of a specific domain.

An analysis of the physical composition of the SFS

compared with the concept lattice structure revealed that

browsing based on heuristic classification knowledge

significantly simplifies each decision a user has to make

during browsing. Also, analysing the distribution of

documents in each browsing structure revealed that a

user’s ability to locate a particular document when

browsing the lattice structure is significantly enhanced.

Documents are more evenly distributed throughout the

lattice than in the SFS, and they can also be found in a

larger number of multiple locations. Furthermore, by

programmatically simulating the way a user might browse

each structure, it was possible to determine the options

they would be presented with during browsing. Even

though the lattice structure based on heuristic

classification knowledge appeared to require more

interaction from a user during browsing than when using

the SFS, the browsing experience is much less

overwhelming because each individual stage of browsing

is much simpler.

In addition, the results of a secondary investigation

concluded that using the terms of both abstract domain

knowledge and heuristic classification knowledge also

presents itself as a viable option for browsing documents.

Statistically comparing a lattice generated on the terms of

both knowledge types with a lattice generated plainly on

heuristic classification knowledge produced some

interesting results. The results showed that the utilisation

of the terms of both knowledge types provides a much

richer context for browsing. Each document can not only

be found at a larger number of multiple locations in the

lattice, but the extra terms also enable the location of each

document to be identified more specifically.

7 Further Work

There are potentially several areas of research related to

this study that can be investigated. An immediate

continuation of the work undertaken might be to

incorporate the prototyped concept lattice browsing

approach of iWeb FCA into the iWeb Web Portal Site.

This may be useful for providing an alternate method to

users for browsing documents on that site, especially

considering the significant quantity of information

available.

An aspect that was not covered by this study is a user’s

actual satisfaction of browsing documents based on

heuristic classification knowledge, as compared with

browsing based on abstract domain knowledge. To

evaluate this would also be interesting and would most

likely involve performing a quantitative user study. The

study could compare and assess the performance of

browsing documents based on each type of knowledge.

It may also be interesting to investigate the use of other

classification knowledge types as a resource for browsing

documents. This study simply utilised the classification

knowledge of MCRDR because it was readily available

and suitable. There may well be other types of

classification knowledge that can be utilised appropriately

for browsing documents. In the same manner, it may also

be useful to evaluate the use of an alternate browsing

structure, other than the concept lattice of FCA, that can

also utilise heuristic classification knowledge as a resource

for browsing documents.

However, perhaps the most interesting point that remains

to be seen is whether browsing schemes based on heuristic

classification knowledge will become a standard for

browsing information on the WWW. With the consistent

increase in the amount of information being generated on

the WWW, there is an increasing need for more effective

and simple ways of locating and retrieving information. To

this extent, the utilisation of heuristic classification

knowledge as a resource for browsing and searching of

information may provide a potential solution to this

problem.

8 References

Becker, P. (2005). "Using intermediate representation

systems to interact with concept lattices." Formal

Concept Analysis. Third International

Conference, ICFCA 2005. Proceedings (Lecture

Notes in Artificial Intelligence Vol.3403):

265-268.

Boyapati, V., K. Chevrier, et al. (2002).

ChangeDetector[tm]: a site-level monitoring tool

for the WWW. WWW 2002.

Carpineto, C. and G. Romano (2005). Formal Concept

Analysis as Mathematical Theory of Concepts

and Concept Hierarchies. Formal Concept

Analysis Foundations and Applications. B.

Ganter, G. Stumme and R. Wille.

Cole, R. J. (2000). The Management and Visualisation of

Document Collections Using Formal Concept

Analysis, Griffith University: 122.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

255

Cole, R. J., P. W. Eklund, et al. (2004). Browsing

Semi-Structured Texts on the Web Using Formal

Concept Analysis. Intelligent Technologies for

Information Analysis. N. Zong and J. Liu,

Springer: 243-264.

Correia, J. H., G. Willie, et al. (2003). "Concpetual

Knowledge Discovery - A Human-Centered

approach." Applied Artificial Intelligence 17:

281-302.

Dazeley, R. and B. Kang (2003). Weighted

MCRDR:Deriving Information about

Relationships between Classifications in

MCRDR. 16th Australian Joint Conference on

Artificial Intelligence (AI'03), Perth, Australia.

Eklund, P. and B. Wormuth (2005). "Restructuring help

systems using formal concept analysis." Formal

Concept Analysis. Third International

Conference, ICFCA 2005. Proceedings (Lecture

Notes in Artificial Intelligence Vol.3403):

129-144.

Ganter, B., G. Stumme, et al. (2005). Formal Concept

Analysis Foundations and Applications.

Garter, B. and R. Willie (1997). "Applied Lattice

Theory:Formal Concept Analysis."

Kang, B., K. Yoshida, et al. (1997). "Help desk system

with intelligent interface." Applied Artificial

Intelligence 11(7-8): 611-631.

Kim, M. (2003). Document Management and Retrieval for

Specialised Domains: An Evolutionary

User-Based Approach, University of New South

Wales.

Kim, M. and P. Compton (2000). Developing a

domain-specific Information Retrieval

Mechanism. 6th Pacific Knowledge Acquisition

Workshop (PKAW 2000), Sydney Australia.

Kim, M. and P. Compton (2001). Formal Concept

Analysis for Domain-Specific Document

Retrieval Systems,. 13th Australian Joint

Conference on Artificial Intelligence (AI'01),

Adelaide Australia, Springer-Verlag.

Kim, M. and P. Compton (2004). "Evolutionary document

management and retrieval for specialized

domains on the web." International Journal of

Human-Computer Studies 60(2): 201 - 241.

Kim, Y. S., S. S. Park, et al. (2004). Adaptive Web

Document Classification with MCRDR.

International Conference on Information

Technology: Coding and Computing ITCC 2004,

Orleans, Las Vegas, Nevada, USA.

Liu, L., C. Pu, et al. (2000). WebCQ: Detecting and

Delivering Information Changes on the Web.

International Conference on Information and

Knowledge Management (CIKM), Washington

D.C., ACM Press.

Liu, L., W. Tang, et al. (2002). "Information Monitoring

on the Web:A Scalable Solution." World Wide

Web Journal 5(4).

Mladenic, D. (1999). "Text-learning and Related

Intelligent Agents." Applications of Intelligent

Information Retrieval.

Park, S. S., S. K. Kim, et al. (2003). Web Information

Management System: Personalization and

Generalization. the IADIS International

Conference WWW/Internet 2003.

Park, S. S., Y. S. Kim, et al. (2004). Web Document

Classification: Managing Context Change.

IADIS International Conference WWW/Internet

2004, Madrid, Spain.

Quan, T. T., S. C. Hui, et al. (2005). "A fuzzy FCA-based

approach for citation-based document retrieval."

2004 IEEE Conference on Cybernetics and

Intelligent Systems (IEEE Cat.04EX912): 578-83

vol.1.

Rajapakse, R. K. and M. Denham (2003). A

Reinforcement Strategy for (Formal) Concept

and Keyword Weight Learning for Adaptive

Information Retrieval. MLIRUM'03: Second

Workshop on Machine Learning, Information

Retrieval and User Modeling at the Ninth

International Conference on User Modeling,

Pittsburgh, PA, USA.

Richards, D. (1998). The Reuse in Ripple Down Rules

Knowledge Based Systems, University of New

South Wales.

Richards, D. (2001). "Combining cases and rules to

provide contextualised knowledge based

systems." Modeling and Using Context. Third

International and Interdisciplinary Conference,

CONTEXT 2001. Proceedings (Lecture Notes in

Artificial Intelligence Vol.2116): 465-469.

Sebastiani, F. (2002). "Machine learning in automated text

categorization." ACM Computing Surveys 34(1):

1-47.

Tang, W., L. Liu, et al. (2000). WebCQ Detecting and

Delivering Information Changes on the Web.

Proc. Int. Conf. on Information and Knowledge

Management (CIKM).

CRPIT Volume 48

256

Interaction Design for a Mobile Context-Aware System
Using Discrete Event Modelling

Annika Hinze Petra Malik Robi Malik

Department of Computer Science, University of Waikato, Hamilton, New Zealand
E-mail: {hinze,petra,robi}@cs.waikato.ac.nz

Abstract

This paper describes our experience when applying for-
mal methods in the design of the tourist information sys-
tem TIP, which presents context-sensitive information to
mobile users with small screen devices. The dynamics of
this system are very complex and pose several challenges,
firstly because of the sophisticated interaction of several
applications on a small screen device and the user, and sec-
ondly because of the need for communication with highly
asynchronous event-based information systems.

In a first step, UML sequence diagrams have been used
to capture the requirements and possible interactions of
the system. In a second step, a formal model has been cre-
ated using discrete event systems, in order to thoroughly
understand and analyse the dynamics of the system. By
verifying general properties of the formal model, several
conceptual difficulties have been revealed in very early
stages of the design process, considerably speeding up the
development. This work shows the limitations of typi-
cal methods for interaction design when applied to mo-
bile systems using small screen devices, and proposes an
alternative approach using discrete event systems.

1 Introduction

Interaction design for mobile location-aware systems is
a very challenging task that can only to a limited extent
draw from experiences in designing desktop-based sys-
tems (Kjeldskov, Graham, Pedell, Vetere, Howard, Balbo
& Davies 2005). We are implementing TIP, a mobile
tourist information system that provides context-aware in-
formation delivery to travellers. Currently, the software
is being redesigned into a service-oriented architecture to
support the system’s various services in a flexible way.

The complex interactions between the TIP core sys-
tem and its various services together with the manage-
ment of user context (such as location and interests), and
the interplay with the mobile device create several de-
sign challenges (Hinze & Buchanan 2005). Typically,
the design of mobile systems focuses on interface issues,
while the design of location-aware systems, such as tourist
guides, often follows a user-centred design combined with
a-posteriori usability studies.

In contrast, we follow a formal design approach to ad-
dress the service interaction issues. We use automata for
discrete event modelling (Cassandras & Lafortune 1999,
Ramadge & Wonham 1989) since this design methodol-
ogy mirrors the abstraction concept that guides the sys-
tem’s internal control using event-based interaction.

Copyright ©2006, Australian Computer Society, Inc. This paper ap-
peared at Twenty-Ninth Australasian Computer Science Conference
(ACSC2006), Hobart, Tasmania, Australia, January 2006. Conferences
in Research and Practice in Information Technology, Vol. 48. Vladimir
Estivill-Castro and Gill Dobbie, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

Traditionally, formal methods have mostly been ap-
plied to mission-critical software. This paper shows the
advantages of using a formal approach in the design of a
mobile location-aware system. We provide a complex for-
mal model of the TIP system and show how its analysis
leads to a much improved system architecture.

Section 2 provides a brief introduction to the TIP sys-
tem and its architecture. Section 3 illustrates the design
of the interactions within and between the services using
UML sequence diagrams. Section 4 shows the interac-
tion design by modelling interactions with automata for
discrete event systems. Section 5 briefly refers to related
work. In Sections 6 and 7, we conclude the paper with a
discussion of the lessons learned regarding interaction de-
sign for mobile systems, and a summary of our findings
and future work.

2 The TIP System

TIP is a mobile system that delivers tourist information
about sights based on the user’s context: their location,
two personal profiles describing interests, and the user’s
travel history. The system also considers the sights’ con-
text, such as their location and memberships in semantic
groups. Sights that are in a semantic group share certain
features, e.g., medieval churches. Details about the TIP
core can be found in (Hinze & Voisard 2003). In addi-
tion, TIP supports several services such as recommenda-
tions and a map service (Hinze & Junmanee 2005, Hinze
& Buchanan 2006).

This section briefly illustrates TIP in use, argues for
a new service-oriented architecture for TIP 3.0, and de-
scribes the basic interactions within the architecture.

2.1 TIP in Use

Figure 1 shows the TIP core system and its services in use.
In Figure 1(a), sight-related information is delivered for
the current location of the user. TIP also supports naviga-
tion by maps that dynamically update the current location
and the location of nearby sights. Figure 1(b) shows the
map for the same location as before. For recommenda-
tions, we assume that a user who has seen several sights in
a group is interested in seeing more (see Figure 1(c)). Rec-
ommendations are also given based on user feedback and
profiles. Users may also browse for places they are not
currently visiting—this is indicated by a different colour
scheme as shown in Figure 1(d).

The TIP system combines an event-based infrastruc-
ture with a location-based service. The heart of the system
is the filter engine cooperating with the location engine.
The filter engine selects appropriate information from dif-
ferent source databases depending on user and sight con-
text. Thus, the system’s interaction logic is defined in
context-aware profiles for the event-based filter engine.
The system is implemented as a client/server architecture,
supporting desktop clients as well as mobile clients on a
hand-held device with appropriate interfaces.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

257

(a) Current location (b) Map

(c) Recommendations (d) Browse location

Figure 1: TIP in Use: Context-dependent information de-
livery; core system information delivery (a), services (b
and c), and browsing interface (d)

2.2 Towards a Service-Oriented Architecture

The current version 2.9 of TIP is a client/server system
that is being extended to a hybrid client/server and peer-
to-peer structure in TIP 3.0.

The apparently simple final service provided to the
user by TIP 2.9 (a tourist guide with map, sight data, and
recommendations) is in fact a composition of a variety of
services (Hinze & Buchanan 2006). These services need
to communicate with each other both within the same ma-
chine and between computers, using thick- and thin-client
scenarios, and occasionally hybrid approaches. Existing
mobile information systems often follow a monolithic ap-
proach. Our modular, service-oriented approach allows
for the exploration of alternatives, e.g., of communication
or implementation. Services can be provided in different
ways or add new features without requiring changes to ex-
isting services.

With TIP 2.9, we have created a framework in which
mobile services cooperate (e.g., the map and the infor-
mation display system to provide sight indicators on the
map). For TIP 3.0, further forms of cooperation and com-
position are needed. For example, we plan to extend the
map to support different halo cues (e.g., for sight type or
recommendation), which requires advanced inter-process
communications.

With the trend of information systems increasingly be-
ing accessed using mobile devices and small screen inter-
faces, the aforementioned requirements will become more
pronounced. Client devices will provide a number of pre-
installed services and users will add their own selections.
Consequently, we believe that for TIP 3.0 even stronger
decoupling and modularisation is needed: a mobile infra-
structure for mobile information services needs to flexibly
support existing, changing, or new services. The design of
TIP 3.0, for which the interaction design is reported in this
paper, will see the redesigning TIP into a Service-Oriented
Architecture (SOA) using web services.

2.3 Basic Interactions

Figure 2 illustrates the distributed nature of TIP’s services
and components. The databases and basic services are

databases

new_location(user)

new_sight(user, sights)

new_location new_sight(sights)

3

4

2 5

1 2 6

get new location
triggered by time

trigered by user/button
triggered by distance

Location
Service

Map
Service

Display
Service
(Browser)

6

user data
user history
sight data

maps

Information
Service Service 1 Service 2

Event−based middleware (ENS)

Client Broker

new_location new_sight(sights)

Recommenation Recommendation

new_location(user)

new_sight(user, sights)

Figure 2: TIP 3.0 architecture and interactions between
services and components

held on the server side (Figure 2, top). Each mobile client
can have several services running. Interaction between
services on the mobile device is coordinated by the client
broker (Figure 2, bottom). The middle layer is formed by
an event-based communication middleware. We abstract
from details of the implementation on server side.

To clarify the architecture, we now explain the basic
interaction sequence of the TIP system after a user’s lo-
cation change. This sequence is indicated using circled
numbers ① to ⑥ in Figure 2; it is also specified by the
sequence diagram in Figure 3.

First, the location service sends the current location of
this user. This may be triggered by time (e.g., send every
minute) or by location (e.g., send if the user moved more
than 500m) or by user interaction with the system interface
(e.g., a button being pressed to retrieve the new location).
In Step ①, this information is sent to the client broker that
coordinates all services on this mobile device.

In Step ②, the client broker attaches the user ID
and sends the information to the event-based middleware
(ENS). The information is also sent to the map service that
is running locally on the mobile device. Here, we abstract
from the possible distribution of the ENS over the mobile
clients and the server. The event-based middleware holds
service registrations and profiles about the information
need of each service. As a basic service offer, it sends the
information about the user’s current location to the infor-
mation service (and to all other services that requested this
information). This is shown as Step ③. The event-profile
logic that can be used for the ENS in this context is intro-
duced in (Hinze & Voisard 2003). The information ser-
vice receives the user’s location (new_location) and
the user ID; it looks up the sights nearest to the location
that are of interest to the user.

As Step ④, the information service sends back to
the ENS the list of sights that are close to the user
(new_sight). The ENS forwards that information to
the user’s mobile device (i.e., to the client broker); shown
as Step ⑤. The client broker distributes the information
to the local services as needed, in Step ⑥. In this case,
the display service receives the list of sights and sight in-
formation; it will display this information to the user to
choose the sight in which they are interested.

The recommendation service also receives the user’s
location (new_location) and the user ID in Step ③. It
looks up the sights that would be of interest to the user and

CRPIT Volume 48

258

Location Map
Service Service Browser Broker Sevice

Information
ENS

new_location(user)

new_location(user)

new_location(user)

new_location

new_location

new_sight(user,sight)

new_sight(user,sight)

new_sight(sight)

new_sight(sight)

Service
RecommendationClient

move

new_rec(user,rec)

new_rec(user,rec)

new_rec(rec)

new_rec(rec)

Figure 3: Basic interaction: User change of location. As
the user moves, browser and map are updated with loca-
tion, sights and recommended sights (shaded services are
located on the middleware layer)

Location Map
Service Service Browser Broker Sevice

Information
ENS Service

RecommendationClient

feedback

sight_selection(sight)

feedback(sight)

feedback(sight, user)

feedback(sight, user)

select(sight)

req_detail(sight)

req_detail(sight,user)
req_detail(sight,user)

new_detail(user,sight)

new_detail(user,sight)

new_detail(sight)

expose_detail(sight)

Figure 4: Select sight from the list for more information.
Interaction follows after interaction in Figure 3

which the user has not seen already. Recommendations
may also use feedback from other users. The functional-
ity of the recommendation services is described in detail
in (Hinze & Junmanee 2005). As shown in Figure 3, the
recommendation service sends a list of sights back to the
ENS. This list is then forwarded to the client broker on
the mobile device. The client broker distributes the infor-
mation to all services that are interested, i.e., the display
service (for profiling information about the sights) and the
map service (for highlighting the recommended sights).

In addition to this basic interaction, the TIP sys-
tem needs to support several other interaction sequences.
These are described in the next section.

3 Interaction Design Using Sequence Diagrams

This section describes several scenarios of possible in-
teractions of the users and services in the TIP system.
UML sequence diagrams (Kent 2001, Object Management
Group 2003) are used, because they are a commonly un-
derstood means to describe interaction sequences. We fo-
cus on the interactions of a mobile client with the server,
and abstract from the possible distribution of the data
across other peers.

The scenarios presented in the following are grouped
into basic interactions that describe the standard function-
ality of the TIP system, refined interactions that elaborate
the details of how location information is to interpreted,
and interface interactions that explore the specifics of user
interaction on a mobile device.

Location Map
Service Service Browser Broker Sevice

Information
ENS Service

RecommendationClient

feedback

select(sight)

req_detail(sight, browse)

highlight_sight (browse)

sight_selection(sight, browse)

req_detail(sight,user)

new_detail(user,sight)

new_detail(user,sight)

new_detail(sight, browse)

expose_detail(sight, browse)

feedback(sight)

feedback(sight, user)

feedback(sight, user)

req_detail(sight,user)

Figure 5: Select (distant) sight information, e.g., about
recommended sights, from the map

3.1 Basic Interactions

1. User change of location (see Figure 3): The user
changes their location and, subsequently, browser
and map are updated with location, sights and recom-
mended sights. This interaction is described in detail
in the previous section.

2. Select sight for more information (see Figure 4):
The user picks the sight they are looking at from the
list of sights presented to them on the screen or from
the map. If necessary, the application switches over
to a browser interface when the information is avail-
able. Users can give feedback about how they liked
the sight. Moving the mouse over the sight in the
map without clicking could give some information
(already downloaded in the task in Figure 3).

3. Select sight information for distant sights / browse
(see Figure 5): An example is the browsing for
more information about recommended sights (from
the browser or the map). The design in Figure 5 (se-
lecting on the map) has the drawback that people can
assign feedback to sights they did not visit. Another
option would be to present a list with all sights vis-
ited and not rated, and another with all sights visited
to redo the ratings. The given design is useful to set
up the system when used the first time—users can
rate sights they know, even though they did not have
the system yet.

4. Browse for new locations on the map: The user
can also explore new areas of the map, placing a vir-
tual user onto a new location, to receive information
about that place without having to be at that loca-
tion. Zooming and moving of the map is equivalent
to scrolling in a browser; all interaction stays within
the service. Location-browsing, as modelled here, is
the equivalent of browsing on information pages as
modelled in Task 3.

3.2 Refined Interactions

The modelling of location transmission can be refined to
capture different approaches. This opens new possibilities
for interaction design.

5. New location transmission (see Figure 6): So far,
we abstracted from the different modes of sending
locations. As indicated in Figure 2, location is mea-
sured and transmitted constantly (we ignore here the
internal control of the location signal, such as GPS);
the transmission of the location information to other
services depends on the mode: location can be sent
(a) continuously whenever the user moves, (b) de-
pending on time since the last reading, (c) depend-
ing on distance from last reading, and (d) triggered

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

259

new_location(user)

new_location(user)

new_location(user)

new_location

new_location

move

new_location

new_location(user)

new_location(user)

new_location(user)

Information

new_location(user)

new_location

trigger

new_location

move

new_location

new_location(user)

new_location(user)

new_location(user)

us
er

 tr
ig

ge
rr

ed

Location Map
Service Service Browser Broker SeviceENS Service

RecommendationClient

co
nt

in
uo

us
tim

e−
tr

ig
ge

rr
ed

di
st

an
ce

 tr
ig

ge
rr

ed

new_location

move

new_location

new_location(user)

new_location(user)

independent

(T=time between two moves)
only proceed if T>threshold

only proceed if D>threshold

independent

(D=distance between two locations)

Figure 6: Different variations for location transmission

by user action (e.g., button pressed). Hybrid forms
are also conceivable and depend on the actual loca-
tion service implementation (e.g., location signal is
sent according to time frequency or if the distance
crosses a threshold). In fact, the system may have
to behave differently for different services involved
(see Task 6). Currently, TIP 2.9 supports the latter
mode of requiring user interaction with the system,
which leads to several irritating features for the user
interaction.
Modelling the different modes using sequence di-
agrams does not reveal their severe consequences
for user interactions (such as a divergence between
screen location and real location of the user without
indication in the interface).
When the user moves, their representation (e.g.,
avatar or location-halo) in the map should move as
well. This does not hold for the information deliv-
ered: We assume that new information is only shown
when triggered by the user to avoid flickering of the
display. Also, when information about a building is
received, the user should be able to access this infor-
mation while walking around the building.

6. Browsing by walking (see Figure 7): This action
depends on the implementation of Task 5 (transmis-
sion of location data). Switching into a different
mode, users are able to browse through their envi-
ronment by walking. On their screen, new locations
and sights are continuously updated. Consequently,
the interaction mode has to change for both interfaces
(map and browser) when switching into this partic-
ular behaviour. One possible sequence diagram is
shown in Figure 7: location information is contin-
uously sent; the interfaces are updated whenever new
information is available; the information system dis-
play is only updated on request. This mode is not de-
signed for reading and browsing through content but
for scanning the environment and discovery of new
places.

3.3 Interface Interactions

The interactions for navigating on the screen and in the in-
formation history cannot be modelled satisfactorily using

new_sight(user,sight)

new_sight(sight)

new_sight(user,sight)

new_sight(sight)

new_rec(rec)

new_rec(rec)

new_rec(user,rec)

new_rec(user,rec)

Location Map
Service Service Browser Broker Sevice

Information
ENS Service

RecommendationClient

new_location

move

new_location

new_location(user)

new_location(user)

new_location(user)

switch mode to browsing_by_walking

only proceed if D>threshold

independent

(D=distance between two locations)

Figure 7: Browsing by walking

sequence diagrams. The different states of the interface
are an important aspect that is missing in these models.

7. Interaction: To current location (Synchronise):
On pressing this button, the user interface returns to
the current location of the user on the map. The loca-
tion is newly measured and sent to the system; that is
the user and the system are synchronised. This button
is helpful if the user was browsing through informa-
tion or zooming and navigating on the map.

8. Interaction: To last location (‘Back’): On press-
ing this button, the user interface returns to the last
location that was measured, ignoring user moves in
between. This gives the user the opportunity to re-
turn to the last information that was delivered before
they started browsing and/or walking around. It also
offers the option of moving backwards through loca-
tions instead of presented pages.

9. Interaction: Navigation ‘Back’/‘Forward’: On
pressing this button, the user can browse backwards
through the pages that have previously been pre-
sented to them, or move forward from earlier pages.
This navigation should work for all services (each
service itself may provide their own navigation).

The above requirements show that the user interface
has to provide options for setting different modes, and sev-
eral navigation options to support different kinds of histo-
ries in this location-aware system.

4 Interaction Design Using Discrete Event Modelling

While the message sequence diagrams developed in the
previous section provide a good description of the require-
ments and possible usage scenarios of the TIP system,
they cannot show the dynamics of the system behaviour
and the complex interactions with the user interface. In
contrast to modelling for an immobile desktop system,
the small-screen interface on a mobile device consider-
ably influences the system behaviour. Together with the
necessary interactions with all the other services and the
location-related aspects, this leads to very sophisticated
concurrent interactions that need to be modelled carefully.

4.1 The Missing Link: Interfaces and States

Douglas (Douglas 1999) distinguishes between simple,
state, or continuous behaviour of objects in systems mod-
elling. We identify the dynamic behaviour of the services
in the TIP system as state-full. Therefore, finite-state ma-
chines are an appropriate technique to model these concur-
rent interactions. UML supports the modelling of finite-

CRPIT Volume 48

260

state machines with UML statecharts and UML activ-
ity diagrams (Object Management Group 2003, Douglas
1999). While UML statecharts have been used success-
fully to design reactive and real-time systems, there still is
only limited tool support for the formal analysis of com-
plex statecharts models.

We strongly believe that, when modelling concurrent
activities, the designer needs to be able to interact with the
system to explore its capabilities and pitfalls. We therefore
do not use UML statecharts, but a modelling tool for dis-
crete event systems, which allows us to analyse the model
for conflicts, and allows for interaction and playful explo-
ration of the modelled system. The relationship between
UML statecharts and discrete event systems, and a pos-
sible translation between the two formalisms is explored
in (Malik & Mühlfeld 2003).

4.2 Principles of Discrete Event Modelling

We use the VALID Toolset to model and analyse the be-
haviour of the TIP client. The VALID Toolset, developed
at Siemens Corporate Technology, supports the modelling,
verification, and code generation of finite-state automata
as described in (Brandin, Malik & Malik 2004, Malik &
Mühlfeld 2003). It uses the modelling methodology of
discrete event systems (Cassandras & Lafortune 1999, Ra-
madge & Wonham 1989).

In this framework, concurrent systems are modelled
using several finite-state automata running in parallel.
Each automaton is represented graphically as a state tran-
sition graph as shown in Figure 8. States are repre-
sented as nodes, with the initial state highlighted by a
thick border, and terminal states coloured grey. Tran-
sitions are represented as labelled edges connecting the
states: in Figure 8(c), e.g., the automaton map expose
changes its state from hidden to exposed with an occur-
rence of the event map expose. If an edge is marked
with more than one label, this indicates that any one
of the corresponding events causes the transition. Au-
tomaton map expose in Figure 8(c), e.g., changes from
state exposed to state hidden if a br expose or a map hide
event occurs.

If a certain state does not have any outgoing transi-
tions labelled with a certain event, that event is disabled
by the automaton and cannot occur in the system. For ex-
ample, automaton map expose in Figure 8(c) disables
event map expose when in state exposed . This rule ap-
plies only to events that occur somewhere in an automa-
ton or, more precisely, to events that constitute the so-
called event alphabet of the automaton. Events that do
not occur in the event alphabet remain enabled and do
not cause any state change of the automaton when they
occur. For example, event map show(1) occurs in the
event alphabet of map new[1] in Figure 8(b), but not
in map expose in Figure 8(c). Therefore, automaton
map expose is always ready to perform a transition with
event map show(1), leaving its state unchanged.

In this way, several automata are composed by syn-
chronisation on common events. All synchronised au-
tomata repeatedly agree on an event to be executed next,
and simultaneously perform the corresponding state tran-
sition. A state transition using an event σ can only take
place if all synchronised automata that have σ in their
event alphabet allow the event σ to occur.

For more details on synchronous composition and
other concepts from the theory of discrete event systems,
please refer to (Cassandras & Lafortune 1999, Ramadge
& Wonham 1989). The benefit of this very simple frame-
work is that it does not only enable us to create and sim-
ulate a concise model of the dynamic system behaviour,
but also makes it possible to use model checking (Clarke,
Grumberg & Peled 1999). This ability to check criti-
cal properties of the model quickly and automatically has
helped us to discover several problems.

map show(1)
map remove(1)

map select(1)

visible

hidden

(a) map click[1]

cb new sight(1)
cb new rec(1)

map show(1)
cb new sight(1)
cb new rec(1)

near

far

(b) map new[1]

map select(1)
map select(2)
map select(3)
map select location

br expose
map hide

map expose

br expose

exposed

hidden

(c) map expose

map select(2)
map select(3)

map select(1)
map req detail(1)
map select(2)
map select(3)

map select(1)

idle

click

(d) map req detail[1]

map select location

map new location

map select location

click

idle

(e) map new location

Figure 8: The map model

4.3 A Model of the TIP Client

Our model of the TIP system includes all the components
constituting the TIP client on a mobile device as shown in
Figure 2, namely the location service, the map service, the
browser, and the client broker. It also includes a model of
the behaviour of the event-based middleware (ENS), to the
extent needed to capture the communication between the
client and the ENS. The details of the information systems
on the server side are not modelled.

When modelling a system that includes large amounts
of complex data, such as TIP, using discrete event sys-
tems, abstractions are necessary in order to guarantee that
the state space remains finite. In a discrete event model, it
usually is not possible to include details about the informa-
tion attached to the various events that may occur—only
the fact that a message is sent or received is modelled, in
most cases completely abstracting away from the associ-
ated data.

In some cases, a certain reference to the data is needed
to retain an interesting aspect of possible interactions. In
our model, we assume that there are three different Sights
1, 2, and 3 that can be displayed. This number guaran-
tees a tractable model, and is completely sufficient to re-
veal conceptual problems in the design. For clarity of the
model, we also used other small simplifications.

In the following, we describe each of the service com-
ponents separately. The next section explains the inter-
play of these components, and shows some of the re-
sults obtained from the formal analysis of the model. A
more detailed model can be found in (Hinze, Malik &
Malik 2005).

The Map Service. The map service shows the location
of the user as well as sights and recommendations nearby.
For the purpose of modelling the map service, sights and
recommendations are treated alike, although they may be
displayed differently on the screen. Figure 8 shows a sim-
plified model of the map service, which only supports a
single map with a fixed number of up to three sights or
recommendations. Dynamic updates of the map area are
not supported, nor is the removal of sight information, nor
the highlighting of the sight shown in the browser.

Since the model is restricted to three sights, the map
can show none, one, two, or three sights. Automaton
map click[1] in Figure 8(a) models whether Sight 1
is shown on the map or not. There exist similar automata
for Sights 2 and 3, which are not depicted in Figure 8 since
the only difference is the sight number in brackets.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

261

map expose

br expose
map expose

br hide

br select(1)
br select(2)
br select(3)
br select rec list
br select sight list

hidden

exposed

(a) br expose

br show sight(1)
cb new sight(1)

cb new sight(1)

near

far

(b) br new sight[1]

br show rec(1)
cb new rec(1)

cb new rec(1)

far

near

(c) br new rec[1]

br select(1)

br req detail(1)
br select(2)
br select(3)
br select rec list
br select sight list

br select(1)

br select(2)
br select(3)

br select rec list
br select sight list

click

idle

(d) br req detail[1]

map expose

cb new detail(1)
cb new detail(2)
cb new detail(3)

br expose cb new detail(1)
cb new detail(2)
cb new detail(3)

br expose

map expose

br hide

cb new detail(1)
cb new detail(2)
cb new detail(3)

exposed

hidden

requested

(e) br tofront

br select(2)
br select(3)
br select rec list
br select sight list
br expose detail(2)
br expose detail(3)
br expose rec list
br expose sight list
cb new detail(2)
cb new detail(3)

cb new detail(1)

br select(2)
br select(3)
br select rec list
br select sight list
cb new detail(2)
cb new detail(3)

cb new detail(1)

br expose detail(1) br expose sight list
br expose detail(2)
br expose detail(3)
br expose rec list

br select(2)
br select(3)
br select rec list
br select sight list
cb new detail(1)
cb new detail(2)
cb new detail(3)

requested

hidden

exposed

(f) br expose sight[1]

br show sight(1)

br expose rec list
br expose detail(1)
br expose detail(2)
br expose detail(3)

br remove sight(1)

br select(1)

br expose rec list
br expose detail(1)
br expose detail(2)
br expose detail(3)

br expose sight list
br select(1)
br expose rec list
br expose detail(1)
br expose detail(2)
br expose detail(3)

br remove sight(1)

br expose sight list

br show sight(1)

br select(1)
br expose rec list
br expose detail(1)
br expose detail(2)
br expose detail(3)

other visible

other hiddenhidden

visible

(g) br click sight[1]

br select(1)

br expose sight list
br expose detail(1)
br expose detail(2)
br expose detail(3)

br remove rec(1)

br expose rec list
br select(1)
br expose sight list
br expose detail(1)
br expose detail(2)
br expose detail(3)

br remove rec(1)

br show rec(1)

br select(1)
br expose sight list
br expose detail(1)
br expose detail(2)
br expose detail(3)

br expose rec list

br show rec(1)

br expose sight list
br expose detail(1)
br expose detail(2)
br expose detail(3)

hidden

visible

other hidden

other visible

(h) br click rec[1]

Figure 9: The browser model

Initially, Sight 1 is not shown. Becoming visible is
modelled by event map show(1), and becoming invisi-
ble is modelled by event map remove(1), both changing
the state of automaton map click[1]. The automaton
uses another event, map select(1), which does not change
the state of the automaton. The important point here is
that event map select(1) is only possible when Sight 1 is
shown on the map; an obvious consequence of how users
can interact with their device.

The map highlights known sights and makes them se-
lectable for the user. Automaton map new[1] in Fig-
ure 8(b) models that Sight 1 is shown on the map af-
ter the map has received information about it as a sight
(event cb new sight(1)) or as a recommendation (event
cb new rec(1)) from the client broker. Again, there are
similar automata for Sights 2 and 3 not depicted here. Also
note that automata map new[1] and map click[1]
synchronise on the common event map show(1), i.e, the
event map show(1) is only possible if both automata are
in a state where this event is allowed.

There are more factors that influence whether it is pos-
sible to click at the map browser. The map can be either
exposed, which means it is visible on the screen, or hid-
den, and thus not visible on the screen. The user is only
able to click onto the map if it is exposed. This behaviour
is modelled by automaton map expose in Figure 8(c).

Automata map req detail[1] in Figure 8(d) and
map new location in Figure 8(e) describe the be-
haviour of the map if the user clicks on it. The user
can select sights displayed on the map to request for de-
tailed information, or click elsewhere to explore other ar-
eas. After one or possibly more clicks on Sight 1, the map
sends a map req detail(1) event to the client broker, re-
questing detailed information to be shown in the browser.
The attempt to send this message is cancelled if the user
clicks on another sight. If the user clicks on the map to
browse to a different location (event map select location),
a map new location event is sent to the client broker in
order to start searching for sights and recommendations
close to the selected location.

The Browser. The browser is used to show textual in-
formation about sights visited by the user. In the model,
it can display a list of sights close to the current position
of the user, a list of recommendations close to the current
position of the user, or the detailed information of a spe-
cific sight. It can display information in the form of web
pages received from the client broker, and request detail
information, if the user clicks on hyperlinks. The current
model assumes an intelligent browser that can combine in-
formation from several messages and change the display
accordingly.

When a sight or recommendation gets close enough,
the browser receives a cb new rec(1) or cb new sight(1)
message from the client broker. In response to this, the
browser updates its sight or recommendation list, indi-
cated by event br show rec(1) or br show sight(1), as
modelled by automata br new rec[1] in Figure 9(c)
and br new sight[1] in Figure 9(b).

If the user clicks on a hyperlink to request details
about Recommendation or Sight 1 (event br select(1)),
a br req detail(1) event is sent to the client broker un-
less the user clicks onto another recommendation or sight
before that event could be sent. This is modelled in au-
tomaton br req detail in Figure 9(d) and works like
the processing of clicks on the map. The client bro-
ker responds to the br req detail(1) event by sending a
cb new detail(1) event, providing a web page with de-
tailed information about the sight. As soon as this mes-
sage arrives, the browser is exposed (unless it is already,
see automaton br tofront in Figure 9(e)), and the in-
formation about the sight is displayed (see automaton
br expose sight in Figure 9(f)).

A more detailed description of all automata in Figure 9
is given in (Hinze et al. 2005).

The Client Broker. The client broker links the applica-
tions on the mobile device with the network and the event
notification system (ENS) on the server side. It also coor-
dinates the map display and browser to ensure that control
is passed correctly between these two applications.

In most cases, the client broker simply forwards events
received from the applications to the ENS and vice versa.

CRPIT Volume 48

262

loc new location
map new location

cb new location(user)

loc new location
map new location

req

idle

(a) cb new location

ens new sight(user, 1)

cb new sight(1)

ens new sight(user, 1)

idle

event

(b) cb new sight[1]

ens new rec(user, 1)

cb new rec(1)ens new rec(user, 1)

idle

event

(c) cb new rec[1]

cb new detail(1)

cb uncache(1) ens new detail(user, 1)

cb req detail(user, 1)unavailable

cached

(d) cb cache detail[1]

br req detail(2)
br req detail(3)
map req detail(2)
map req detail(3)
cb uncache(1)

br req detail(1)
map req detail(1)

br req detail(2)
br req detail(3)
map req detail(2)
map req detail(3)
cb new detail(1)

br req detail(1)
map req detail(1)
cb req detail(user, 1)

reqnoreq

(e) cb new detail[1]

Figure 10: The client broker model

cb req detail(user, 1)
ens new detail(user, 1)

idle

req

(a) ens new detail[1]

cb new location(user)

cb new location(user)

ens new sight(user, 1)

ens notat(user, 1)

ens at(user, 1)

moved

arrived

idle

sent

(b) ens new sight[1]

Figure 11: The ENS model

For example, automaton cb new location in Fig-
ure 10(a) forwards location changes from the client’s lo-
cation server (event loc new location) or from the map
(event map new location) to the ENS after attaching the
user ID. Likewise, automata cb new sight in Fig-
ure 10(b) and cb new rec in Figure 10(c) model how
information from the ENS about new sights or recommen-
dations, respectively, is sent back to the map and browser.

The model for detailed sight information, as given
by automata cb new detail[1] in Figure 10(e) and
cb cache detail[1] in Figure 10(d), is more elab-
orate because the client broker also has the ability to
cache some of the web pages received. The browser
or map can request detailed information about Sight 1
by sending a br req detail(1) or map req detail(1) event,
which causes the automaton cb new detail[1] to en-
ter state req . In this state, the client broker is ready to
forward the request augmented with the user ID to the
ENS (event cb req detail(user , 1)). This event is an-
swered by the ENS by providing detailed information
(event ens new detail(user , 1)), which is stored in the
cache, indicated by automaton cb cache detail[1]
changing into state cached . At this stage, the client broker
can send a cb new detail(1) event to the browser, which
will display the detailed information.

The Server Side. The model of the server side states
the assumption that all requests sent to the ENS are ac-
tually answered. Automaton ens new detail in Fig-

Table 1: Example trace corresponding to Figure 3

c
b
n
e
w
l
o
c
a
t
i
o
n

e
n
s
n
e
w
s
i
g
h
t
[
1
]

c
b
n
e
w
s
i
g
h
t
[
1
]

m
a
p
n
e
w
[
1
]

b
r
n
e
w
s
i
g
h
t
[
1
]

(initial state) idle idle idle far far

loc new location req idle idle far far

cb new location(user) idle moved idle far far

ens at(user , 1) idle arrived idle far far

ens new sight(user , 1) idle sent event far far

cb new sight(1) idle sent idle near near

map show(1) idle sent idle near near

br show sight(1) idle sent idle near near

ure 11(a) shows that a request for detailed information
in form of a cb req detail(user , 1) event is answered
by an ens new detail(user , 1) event with the correspond-
ing web page. Furthermore, the information servers
respond to location changes of the user, signalled by
cb new location(user) events. If such an event occurs,
the databases are searched for sights that are close to the
new position. The result of the search is modelled by
the two events ens notat(user , 1) and ens at(user , 1). If
Sight 1 is close enough (event ens at(user , 1)), this infor-
mation is sent as an ens new sight(user , 1) event to the
client broker. Similar automata are used for recommenda-
tions.

4.4 Analysing the Model

Having created the model, it is possible to run simulations
and check whether the model can perform the interactions
specified by the sequence diagrams. For example, Table 1
shows the event sequence corresponding to the basic in-
teractions following a location change as specified in Fig-
ure 3.

When a location change occurs, the location server
on the mobile device sends a loc new location event to
the client broker. This event triggers the automaton
cb new location to send a cb new location(user)
event to the ENS. The ENS, in this case represented by au-
tomaton ens new sight, may now detect that the user
is close to Sight 1 (event ens at(user , 1)) and respond
by sending an ens new sight(user , 1) event. This mes-
sage in turn triggers automaton cb new sight, which
forwards the event as cb new sight(1) to the map ser-
vice and browser. The cb new sight(1) event simulta-
neously activates automaton map new in the map ser-
vice and br new sight in the browser, which causes
them to display the new sights by events map show(1) and
br show sight(1), respectively.

In the discrete event model, a single cb new sight(1)
from the client triggers actions both by the map service
and the browser. The same communication is modelled
by two separate interactions in the message sequence dia-
gram in Figure 3. The notion of the client broker send-
ing a single event, without necessarily knowing the re-
ceivers, seems to capture the intended behaviour of the
event-based middleware more accurately.

In addition to simulating the possible behaviours of
the model, it is possible to perform some formal anal-
ysis and check whether the model satisfies properties
of interest. We have checked that the model is con-
trollable (Cassandras & Lafortune 1999, Ramadge &
Wonham 1989), i.e., that it is always ready to react to any
possible events caused by user interactions or the infor-
mation systems, and that it is nonblocking (Cassandras &

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

263

br select(1)

br req detail(1)

br select(2)
br select(3)
br select rec list
br select sight list

br select(1)
cb new detail(1)

br expose detail(1)

br select(2)
br select(3)
br select rec list
br select sight list

cb new detail(1)

br select(1)

br select(2)
br select(3)
br select rec list
br select sight list

br select(1)
br select(2)
br select(3)
br select rec list
br select sight list
cb new detail(1)

br expose sight list
br expose detail(2)
br expose detail(3)
br expose rec list

br select(1)

br select(2)
br select(3)
br select rec list
br select sight list
br expose detail(2)
br expose detail(3)
br expose rec list
br expose sight list
cb new detail(1)

requested

clicked

hidden

exposed

received

Figure 12: Broken version of br expose sight[1]

Lafortune 1999, Ramadge & Wonham 1989), i.e., that it is
free from deadlocks and livelocks.

These checks did not succeed immediately. By re-
peatedly verifying properties, we discovered several prob-
lems in the model. Then we eliminated the problems and
checked the model again until all critical properties could
be checked.

An earlier version of the model included the automa-
ton in Figure 12. It represents an attempt at creating a
smarter browser that tries to avoid showing sight details if
they are not the last thing the user clicked on. The idea
is that, if the user clicks a link to Sight 1 in the browser,
the browser requests detailed information about this sight
from the client broker. However, this request is cancelled
if the user clicks on something else before processing can
be completed.

Formal analysis shows that this approach does not
work. If we replace automata br req detail[1] in
Figure 9(d) and br expose sight[1] in Figure 9(f)
by the alternative in Figure 12, and make similar changes
for Sights 2 and 3, the model contains a deadlock and
therefore cannot be proven to be nonconflicting. When
trying to verify this property, the VALID Toolset produces
a counterexample that reveals a problem in the design.

The problem is as follows. The user may click on
a link to Sight 1 (event br select(1)), which causes the
browser to send a request for details about Sight 1 to the
client broker (event br req detail(1)). At this stage, au-
tomaton br expose sight[1] in Figure 12 is in state
requested and waits for the client broker to send detail
information about Sight 1. But before this information ar-
rives, the user may activate the map (event map expose)
and click on sight two on the map (event map select(2)).
As a result, the map server sends a request for details about
sight two to the client broker (event map req detail(2),
see Figure 8(d)). This causes the client broker to can-
cel the request for details about Sight 1, and only to pro-
cess the second request (see Figure 10(e)). As a result,
the browser will never receive information about Sight 1,
i.e., the automaton in Figure 12 will never receive the
cb new detail(1) event needed to leave state requested .

The root of this problem is that the browser cannot ac-
curately determine which is the most recent request from
the user. The browser only knows about user interactions
with the browser, not with the map service. In conse-
quence, the decision about the most recent request must
be shared between the two applications. To overcome the
problem, the model has been changed to the one presented
in Figure 9, where the client broker determines which re-
quest is the most recent by checking the events received

from the browser and map service. The browser merely
displays all the detail pages received.

After fixing all problems, the model has been verified
successfully by the VALID model checker. All checks can
be completed in three minutes on a 1.4 GHz Athlon pro-
cessor with 256 MB of RAM. This shows that the finite-
state automata model already is fairly complex and serves
as a challenging benchmark for model checking tools.

5 Discussion of Related Work

This work touches on the research of the systems de-
sign and HCI communities. We also consider typical ap-
proaches for modelling and evaluating location-aware mo-
bile systems.

System Modelling and Design. Modelling of concur-
rent systems using state machines has chiefly been used
for mission critical applications, often focusing on safety
issues, e.g., flight interface control (Degani, Heymann,
Meyer & Shafto 2000). Typical problems that have
also been identified in our study are mode awareness,
mode confusion, and automation surprise. Bolignano et
al. (Bolignano, Le Métayer & Loiseaux 2000) call the
application of formal methods in practical applications a
‘missing link’.

For the design of interaction and interfaces for vir-
tual environments, CSP (Communicating Sequential Pro-
cesses) has been used (Smith, Marsh, Duke, Harrison &
Wright 1998, van Schooten, Donk & Zwiers 1999). CSP
is an alternative modelling principle which we could have
used for our system. CSP is related to our modelling ap-
proach, but typically lacks modelling environments that
support active simulation. In CSP applications, the as-
pects of location-awareness and mobile users are rarely
considered. In virtual environments (as the ones men-
tioned above), the mobility of the user’s avatar does not
interfere with the location of the real user as is the case in
our application.

User and Interaction Modelling. HCI research has fo-
cused on modelling of users and their interaction with a
system. Blandford et al. evaluate different programmable
user modelling (PUM) strategies for user-centred crite-
ria such as tractability and re-usability (Blandford, But-
terworth & Curzon 2004). Within their schema of op-
erational and abstract models, our approach follows an
abstract functional model, with the main advantage of
provability. (Thimbleby, Cairns & Jones 2001) pro-
poses modelling push-button devices using Markov mod-
els; this approach is similar to ours but evaluates a dif-
ferent kind of application. Degani et al. (Degani, Shafto
& Kirlik 1999) address the problem of mode confusion
using statecharts and modelling structures; their findings
are more concerned with user interface design. Their
modelling focuses on concurrency issues. The problem
of mode confusion has also been addressed using formal
modelling methods (Rushby 2002, Butler, Miller, Potts &
Carreño 1998). These approaches chiefly deal with the
awareness of the users of different modes (focusing on
opacity, complexity, incorrect mental model) and on safety
(one of the typical application fields of formal methods).
The focus of the cited works is different to ours; in their
evaluations, interactions between system components are
not considered, nor are concurrency and synchronisation
problems. In addition, the issues of location and user
movements introduce challenges that are not addressed.

Design and Evaluation of Location-Aware Mobile Sys-
tems. Typical design and evaluation uses methods from
desk-bound computers (Kjeldskov et al. 2005). The fo-
cus lies on the interface design of small screen devices

CRPIT Volume 48

264

and user-device interactions. Interaction design that takes
location-awareness and mobility into account is rare.

In the distinction between user-centred and technol-
ogy-centred design (Kjeldskov & Howard 2004, Brown
1998), our approach is closer to technology-centred de-
sign. We use reflection about an existing prototype and
technology-driven service models, enriched with usage
scenarios and enactment of future scenarios. The typical
user-centred approach is followed in (Pousman, Iachello,
Fithian, Moghazy & Stasko 2004): questionnaires, inter-
views and discussion with potential users lead to system
design with subsequent user-testing of a functional pro-
totype. The findings of this project underline that design
for mobile hand-held devices needs to be distinct from de-
sign for desktop machines. One result is the necessity to
easily restart or resume actions that have been interrupted.
We address this issue by the introduction of different nav-
igation methods in Section 3.3, which give users easy ac-
cess to their current and previous states within the system
interaction, and by actively propagating context changes
to all services. Our design addresses selected issues (in-
teraction syntax, resuming tasks, integration) identified
in (Pousman et al. 2004) in an a-priori manner. Early HCI
considerations for location-aware applications have been
discussed in (Brown 1998); in our redesign process, we
identify and address similar issues.

A-posteriori Usability Studies. Usability and interac-
tion issues of mobile location-based systems have often
been evaluated a-posteriori, that is after the implemen-
tation of the software (Iacucci, Kela & Pehkonen 2004).
Kjeldskov et al. (Kjeldskov et al. 2005) point out that the
special characteristics of tourist guides make the design
and evaluation a challenging task: close relation to physi-
cal location and objects in immediate user surroundings as
well as the ambulating user constantly changing physical
location. They identified as critical usability issues those
related to the mapping issues from the use of the system
in the real world, such as (1) representation of information
and interaction between user and system depending on the
surrounding environment and (2) disparities in the rela-
tionship presented in the system and the context in which
the user was situated. These are two of the issues that we
also identified as critical in our design phase. Thus, criti-
cal issues typically observed in usability studies could be
addressed already in the design phase.

Summary. Traditionally, formal modelling has mainly
been used to address issues of concurrency, safety, and
correctness. Mobility and location-awareness usually
is not addressed directly. When addressing interaction
design for mobile systems, typically only the aspects
of user interaction are considered, since this commu-
nity mainly regards problems of interactions using small
screen displays. Location-aware mobile applications pose
more challenges such as identity of locations, virtual/real-
world confusion, complex interactions with cooperating
services on the same device. When designing mobile
location-aware applications, scenario and prototype-based
approaches prevail. Only a few publications have dealt
with the modelling of location-aware systems. Most eval-
uations are a-posteriori usability studies.

6 Lessons Learned

From our experience with modelling the system, we have
identified the following issues. A clear distinction is
needed between three user identities:

1. The real-world user. This is the person using the sys-
tem; they can change their location in the real world.
This location is captured by the location service in
the system and triggers various responses.

2. The virtual user. This is the representation of the real-
world user within the system. Typically the virtual
user follows the movements of the real world user.
The virtual user can also be used to ‘visit’ places
within the system on behalf of the user (e.g., by click-
ing on the map to explore places at a distance). It
should be possible to move through the location his-
tory of the virtual and the real user (e.g., using user-
defined location points).

3. The interacting user. Independent of the location of
the user, the interface allows to select browser pages,
pictures and maps. The interaction is controlled by
the real-world user. It should be possible to move
through the interaction history with the system (simi-
lar to the ‘Back’ and ‘Forward’ buttons in a browser).

Several issues for the design of interactions between ser-
vices, and between user and system have been identified.
These issues occur as an immediate consequence of the
mobility and location awareness on the system. They are
typical for this kind of system.

The first one is mode confusion regarding the different
users and places (e.g., location of the real user on the map
while browsing with the virtual user). The user interface
has to address this issue in a clear and comprehensible
manner. This is especially important for the navigation
through interaction and location histories. On the other
hand, the server and involved services have to address this
issue as well. For example, for deciding whether to in-
clude a certain location into the user history, whether to
allow the user to give feedback about a place, or which
information to display.

The second issue is location capturing. Several types
of location capturing are supported for mobile systems;
all provide varying semantics of new-location data (e.g.,
location measured after a time interval or depending on
movement). These different types influence how the sys-
tem can react, and how location events should be handled.
A related issue is that of user movement in interaction with
location capturing. This may lead to confusion about the
actual location of the real-world user.

A third observation is that the context of the user has to
be carried as explicit information, that is, the system has
to react differently depending on its current context. This
has been expressed earlier as ‘modes’, but that concept
does not go far enough. Context is more complex than
simple modes. Concepts from event-based systems with
states may be explored here.

The fourth issue was identified when reasoning about
the resulting model: System components may themselves
have to be distributed (i.e., parts of the component reside
on the client and other parts on the server). The cur-
rent model assumes a certain part of the programming
logic to reside on the client device (e.g., to change the
display modes depending on the context). This may not
be feasible for third-party thin clients such as standard
web browsers displaying information from server-side JSP
pages. This creates a major problem for re-usability of ex-
isting services and interfaces.

7 Conclusions

This paper presents the lessons learned during the redesign
of a mobile location-aware system, using a combination of
UML message sequence diagrams and discrete event sys-
tems. It proposes an improved service-oriented architec-
ture and points out that different contexts need to be distin-
guished with great care in mobile location-aware systems,
with implications not only for the user interface but also
for the interaction protocols between the various services
involved.

The formal modelling approach has greatly improved
the system design. By describing the requirements for-
mally, developers are forced to think carefully about the

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

265

planned system. The activity of specifying and modelling
on its own helps to understand and clarify many aspects of
the system to be constructed.

We have seen that UML message sequence diagrams
are very useful to describe particular sequences of actions,
but fail to reveal problems that occur when several such
action sequences are running together at the same time.
Therefore, a finite-state automata model of the system has
been created and analysed. The result is an abstract model
of the behaviour of the system, which makes it possible to
simulate the interaction between the various components
and gain a thorough understanding of the dynamics of the
system.

Exhaustive simulation and analysis of the model al-
lows for finding subtle problems at this very early stage
of the design. Several issues with the proposed interaction
protocols have been discovered and solved, which may
otherwise have remained undetected until much later dur-
ing the implementation of the system.

As a next step for the interaction design, we plan to
address the issues of interaction with other mobile peers
and distribution of system components. For the overall
system design, we plan to (1) support more services to
identify common abstractions for a service oriented archi-
tecture; (2) include trust-based information exchange; and
(3) model different applications with different services but
the same base architecture. For the design process using
discrete event systems, we plan to implement an interface
simulation to allow for more direct user interaction with
the simulated system.

References

Blandford, A., Butterworth, R. & Curzon, P. (2004),
‘Models of interactive systems: a case study on pro-
grammable user modelling’, Int. J. Hum.-Comput.
Stud. 60(2), 149–200.

Bolignano, D., Le Métayer, D. & Loiseaux, C. (2000),
Formal methods in practice: the missing link. a per-
spective from the security area, in ‘Modeling and
Verification of Parallel Processes (MOVEP 2000)’.

Brandin, B. A., Malik, R. & Malik, P. (2004), ‘Incre-
mental verification and synthesis of discrete-event
systems guided by counter-examples’, IEEE Trans.
Contr. Syst. Technol. 12(3), 387–401.

Brown, P. (1998), Some lessons for location-aware appli-
cations, in ‘Proc. 1st Workshop on HCI for Mobile
Devices’, pp. 58–63.

Butler, R., Miller, S., Potts, J. & Carreño, V. A. (1998),
A formal methods approach to the analysis of mode
confusion, in ‘AIAA/IEEE Digital Avionics Systems
Conf.’.

Cassandras, C. G. & Lafortune, S. (1999), Introduction to
Discrete Event Systems, Kluwer.

Clarke, Jr., E. M., Grumberg, O. & Peled, D. A. (1999),
Model Checking, MIT Press.

Degani, A., Heymann, M., Meyer, G. & Shafto, M.
(2000), Some formal aspects of human-automa-
tion interaction, Technical Report NASA/TM-2000-
209600, NASA Ames Research Center, Moffett
Field, CA.

Degani, A., Shafto, M. & Kirlik, A. (1999), ‘Modes
in human-machine systems: Constructs, representa-
tion, and classification’, Int. J. Aviation Psychology
9(1), 125–138.

Douglas, B. P. (1999), ‘UML statecharts’, Embedded Sys-
tems Programming 12(1).

Hinze, A. & Buchanan, G. (2005), Context-awareness
in Mobile Tourist Information Systems: Challenges
for User Interaction, in ‘Proc. Workshop on Context
in Mobile HCI, in conjunction with Mobile HCI’,
Salzburg, Austria.

Hinze, A. & Buchanan, G. (2006), The challenge of cre-
ating cooperating mobile services: Experiences and
lessons learned, in ‘Proc. 29th Australasian Com-
puter Science Conf. (ACSC 2006)’, Hobart, Aus-
tralia. To appear.

Hinze, A. & Junmanee, S. (2005), Providing recommen-
dations in a mobile tourist information system, in
‘Information Systems Technology and its Applica-
tions, 4th Int. Conf. (ISTA 2005)’, Palmerston North,
New Zealand.

Hinze, A., Malik, P. & Malik, R. (2005), Towards a
TIP 3.0 service-oriented architecture: Interaction de-
sign, Technical Report 08/05, Dept. of Computer
Science, University of Waikato.

Hinze, A. & Voisard, A. (2003), Location- and time-
based information delivery in tourism, in ‘Advances
in Spatial and Temporal Databases (SSTD 2003)’,
Vol. 2750 of LNCS, Satorini Island, Greece.

Iacucci, G., Kela, J. & Pehkonen, P. (2004), ‘Compu-
tational support to record and re-experience visits’,
Personal Ubiquitous Comput. 8(2), 100–109.

Kent, S. (2001), Formal methods for distributed process-
ing: a survey of object-oriented approaches, Cam-
bridge University Press, New York, NY, USA, chap-
ter The unified modeling language, pp. 126–152.

Kjeldskov, J., Graham, C., Pedell, S., Vetere, F., Howard,
S., Balbo, S. & Davies, J. (2005), ‘Evaluating the us-
ability of a mobile guide: The influence of location,
participants and resources’, Behaviour and Informa-
tion Technology 24(1), 51–65.

Kjeldskov, J. & Howard, S. (2004), Envisioning mo-
bile information services: Combining user- and
technology-centered design., in ‘Proc. Asia-Pacific
Conf. Human-Computer Interaction (APCHI 2004)’.

Malik, R. & Mühlfeld, R. (2003), ‘A case study in verifi-
cation of UML statecharts: the PROFIsafe protocol’,
J. Universal Computer Science 9(2), 138–151.

Object Management Group (2003), ‘Unified modelling
language (UML), version 1.5’. Available at http:
//www.omg.org.

Pousman, Z., Iachello, G., Fithian, R., Moghazy, J. &
Stasko, J. (2004), ‘Design iterations for a location-
aware event planner’, Personal Ubiquitous Comput.
8(2), 117–125.

Ramadge, P. J. G. & Wonham, W. M. (1989), ‘The control
of discrete event systems’, Proc. IEEE 77(1), 81–98.

Rushby, J. (2002), ‘Using model checking to help dis-
cover mode confusions and other automation sur-
prises’, Reliability Engineering and System Safety
75(2), 167–177.

Smith, S., Marsh, T., Duke, D., Harrison, M. & Wright,
P. (1998), Modelling interaction in virtual environ-
ments, in ‘Proc. UK-VRSIG ’98’, Exeter, UK.

Thimbleby, H., Cairns, P. & Jones, M. (2001), ‘Us-
ability analysis with markov models’, ACM Trans.
Comput.-Hum. Interact. 8(2), 99–132.

van Schooten, B., Donk, O. & Zwiers, J. (1999), Mod-
elling interaction in virtual environments using pro-
cess algebra, in ‘Proc. 15th Twente Workshop on
Language Technology’.

CRPIT Volume 48

266

Constructing Real-Time Collaborative Software Engineering Tools
Using CAISE, an Architecture for Supporting Tool Development

Carl Cook Neville Churcher

Software Engineering & Visualistion Group, Department of Computer Science & Software Engineering,
University of Canterbury, Private Bag 4800, Christchurch, New Zealand

E-mail: {carl,neville}@cosc.canterbury.ac.nz

Abstract

Real-time Collaborative Software Engineering (CSE)
tools have many perceived benefits including in-
creased programmer communication and faster reso-
lution of development conflicts. Demand and support
for such tools is rapidly increasing, but the cost of
developing such tools is prohibitively expensive. We
have developed an architecture, CAISE, to support
the rapid development of CSE tools. It is envisaged
that the architecture will facilitate the creation of a
range of tools, allowing the perceived benefits of col-
laboration to be fully realised. In this paper, we focus
on the development of CSE tools within the CAISE
architecture. We present examples to illustrate how
such tools are constructed and how they support real-
time multi-user collaborative software development.
We also address issues related to the number of col-
laborators and discuss performance aspects.

Keywords: Collaborative Software Engineering,
CSCW & Groupware, Tool Construction, Continuous
Integration

1 Introduction

Software engineering is a predominantly collaborative
activity. Typically multiple teams of people develop
and maintain successive versions of a range of prod-
ucts, in parallel. Surprisingly, tools to support syn-
chronous, or real-time Collaborative Software Engi-
neering (CSE) are still restricted to minor tasks for
specific software engineering purposes—if they make
it out of the research prototype stage at all.

Today there is a real need for CSE tools, and this
demand will grow as software engineering becomes
an increasingly complex and heterogeneous discipline.
While support for collaboration has emerged in other
areas of everyday applications such as file sharing,
instant messaging, and generic tele-working, software
engineers themselves appear ambivalent about the op-
portunities and potential benefits of more comprehen-
sive tool support. Accordingly, research into CSE is
both timely and imperative.

The main premise of our research is that by
enabling fine-grained CSE through seamlessly inte-
grated tool support, it is possible to raise the very
restricted levels of communication within current
software engineering practice. The value of active
communication has long been recognised in Com-
puter Supported Collaborative Work (CSCW) re-

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

search (Greenberg 1989), and is re-emerging in soft-
ware engineering within the eXtreme Programming
movement. Increased programmer communication,
as put forward current CSE research, is likely to pro-
duce more informed decisions during the development
stage of software engineering, and less likelihood of
costly coding conflicts.

In this paper, we discuss how new tools can be
constructed within the CAISE architecture to sup-
port the real-time development of a collaborative soft-
ware project. We also address issues related to large
group sizes and performance aspects of the architec-
ture. The design of the CAISE architecture has been
described previously (Cook, Churcher & Irwin 2004).

The remainder of the paper is structured as fol-
lows. Section 2 provides a background related to real-
time CSE and supporting tools. Section 3 provides
an overview of the CAISE architecture with particu-
lar emphasis on the services it provides to the con-
struction of new CSE tools. Section 4 presents some
typical CAISE-based CSE tools in use today, and Sec-
tion 5 illustrates how to build new CSE tools within
the CAISE architecture. Section 6 addresses the per-
formance of the CAISE architecture and supporting
tools, and a summary is given in Section 7.

2 Background and Motivation

In the last year many of the major commercial IDEs
have taken significant steps towards code-level real-
time collaboration. Of the five Java IDEs that have
the largest market shares, Eclipse, Borland’s JBuilder
and Sun’s JSE now support shared development fa-
cilities, and all vendors are promising more to come
in the next major releases.

While the proposal of tools to support CSE often
draws an enthusiastic response from practitioners, the
design and implementation of commercial-strength
tools is a challenging task. Even once such tools
have been developed, there is no guarantee that they
will gain widespread adoption; this mistake has been
made within related areas of CSCW research (Carasik
& Grantham 1988).

Any CSE tool has complex issues to address, such
as user interface design, CSCW floor control and man-
agement, varying levels of collaboration requirements,
varying expectations between developers within a
group, support of multiple artifact types, and po-
tentially multiple views of artifacts. There are also
technical aspects to address such as concurrency con-
trol and distributed system design, along with the
standard software engineering technicalities such as
parsing, semantic modelling and source code manage-
ment.

Very few research prototypes have evolved into fea-
tures within professional tools. A significant difficulty
is that conventional software engineering tools are de-
signed for single-developer use, and ‘bolting on’ col-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

267

laborative features does not necessarily scale or pro-
vide the level of improvement envisaged.

Implementing collaborative features for commer-
cial strength tools, as we and others have discovered,
is a very challenging problem. To date, software en-
gineering tools typically work with the lowest com-
mon denominator of software engineering artifacts:
source code. By employing source files as the finest-
grained type of shared information, and by support-
ing information sharing only through code repository
systems, it is difficult to extend IDEs to support real-
time within-files collaboration, to provide support for
additional views of software, and to provide collabo-
rative access to the underlying software model.

While it is certainly possible to implement
collaboration-enhanced real-time software engineer-
ing tools, the single significant barrier to the success
of tools may be the poor ratio of tool power to devel-
opment effort.

2.1 Why CSCW Fails for CSE

An initial solution to implementing CSE tools is to
use CSCW Groupware, and this has been trialled
elsewhere with varying degrees of success (Schummer
2001) and (Churcher & Cerecke 1996). Groupware
toolkits such as GroupKit (Roseman & Greenberg
1996) and Maui (Hill & Gutwin 2003) allow the shar-
ing of text documents, whiteboards and other com-
mon forms of electronic media, and good results have
been achieved when converting single user generic
applications to their multi-user equivalents (Cox &
Greenberg 2000).

Problems occur, however, when building
industrial-strength CSE tools from Groupware
toolkits. Professional tools are not limited to a
single task, a single language or a single artifact
view, and this is orthogonal to the characteristics
of Groupware support. Additionally, Groupware
has no understanding of the complex semantics or
syntax of artifacts, and the relationships between
users and artifacts. Software engineering artifacts
are also persistent over a long time scale, whereas
Groupware is more aligned to the support of transient
communication with throw-away artifacts.

An attempt could be made to extend a single-
user IDE collaboratively through the use of a CSCW
toolkit, allowing it to support distributed collabora-
tive development of code or UML diagrams. However,
extending it where multiple views of artifacts are sup-
ported at the same time, such as round-trip engineer-
ing between source code and UML diagrams, is ex-
tremely difficult. This is particularly true if the main
source of information is derived from the source code
management system; shared access to an in-depth se-
mantic model of the project is typically required to
translate between different views. Commercial IDEs
do not provide this functionality adequately, and IDE
model sharing is only in its infancy within the Eclipse
platform via the Eclipse Communication Framework
project (Lewis 2005).

Given that CSCW technology does not scale to
meet the needs of CSE, and IDEs do not provide
enough fine-grained information to support the de-
velopment of highly-synchronous new tools, often the
only means of producing new tool sets is by com-
pletely redesigning tools upon a foundation of collab-
orative software engineering technology.

2.2 Related Work Towards Real-Time CSE

The augmentation of software engineering tools with
Groupware features failed to produce tools of any
considerable impact within the field of research.

A decade on since the conception of Groupware
toolkits, researchers have turned to implementing
collaboration-based prototype tools upon existing
software engineering frameworks.

Palant́ır, for example, is a system that inspects
in real-time the impact of changes within source
code repositories (Sarma & van der Hoek 2002).
Rosetta provides an Internet-based collaborative class
diagramming tool-set (Graham, Stewart, Ryman,
Kopaee & Rasouli 1999). Tukan, using the COAST
Groupware framework, is a shared code editor for
SmallTalk (Schummer 2001). Augur provides com-
prehensive user activity visualisations based on source
code management systems (Froehlich & Dourish
2004). Moomba is a recently published system for
supporting distributed eXtreme Programming (XP)
within a global software development context (Reeves
& Zhu 2004).

Tools such as those listed above are well suited
for a single task or development methodology, but
they are for the most part fixed and non-extensible.
Additionally, it is certain that each tool took a con-
siderable amount of effort to design and implement.
The purpose of our research is to reduce the barrier
of high construction costs for CSE tools by proving a
architecture that enables many types of CSE tools to
be developed rapidly.

3 The CAISE Architecture

The CAISE architecture, as illustrated in Figure 1,
allows isolated programmers to work collaboratively
without sacrificing communication. CAISE-based
tools achieve this by keeping all programmers within a
group synchronised in real-time, at the same time pro-
viding customisable user awareness and project state
information to the individual tools.

Figure 1: A schematic representation of CAISE.

The CAISE architecture provides an infrastruc-
ture with the potential to support the entire software
engineering process. CAISE tools can be constructed
that provide more that just the shared editing of basic
software artifacts. Collaborative compilation, testing
and debugging of software projects are also possible
to implement using the services of CAISE. Compre-
hensive inter-developer communication facilities can
also be constructed.

The CAISE architecture is not built on top of a
source code repository system. CAISE and its sup-
porting tools, however, do not aim to replace source
code repositories either. The ability to work in pri-
vate at times and to be able to keep different ver-
sions of programs separate are elements that very few
programmers could do without. Our tools, therefore,
are designed to support what code repositories do
not provide: communication between developers and
tools during fine-grained real-time collaboration, such
as multi-user coding within the same file.

The example CSE tools presented in this paper
support the core functionality expected of any soft-
ware engineering suite, including project compilation

CRPIT Volume 48

268

and execution support, editor undo, cut, copy and
paste, UML class diagramming, and round-trip engi-
neering between tools.

To date, the current set of CSE tools have per-
formed well anecdotally (Cook et al. 2004), em-
pirically (Cook & Churcher 2005a), and heuristi-
cally (Cook & Churcher 2005b). The underlying
CAISE architecture allows for the rapid development
of fully featured CSE tools, such as those presented
in this paper. Typically, CAISE tools are designed to
support patterns of collaboration evident in software
engineering practice. Such patterns are presented
in (Cook 2005).

3.1 Comparison to Other CSE Architectures

We are aware that different programmers will have
different tool requirements, and we make no assump-
tions about the ‘right’ set of software engineering
tools. Accordingly, CAISE has been implemented
as an extensible architecture rather than a tool-set.
We have focused on designing a architecture that can
support a wide range of custom collaborative appli-
cations.

In contrast to most other tools, CAISE employs a
holistic approach in that the entire infrastructure is
based upon collaboration. At the core of the archi-
tecture lies a shared semantic model of the software
being developed, allowing multiple views of artifacts
to be supported by any number of different tools. The
CAISE server, which houses each project’s semantic
model, exists as a shared IDE engine for collabora-
tive tools. This is depicted in Figure 1, where all
management, parsing and semantic analysis of shared
artifacts is provided by default.

The semantic model housed within the CAISE
server is primarily focused on object oriented lan-
guages. Full support is available for Java 1.4, with
work near completion for Java 1.5, including Generic
Types. Other ‘Java-like’ languages such as C# can be
supported by inserting a new semantic analyser into
the CAISE server. Such an analyser maps C# parse
trees into a model-based program structure, which the
CAISE server integrates into the project’s semantic
model.

CAISE is not simply a collaborative add-on
project to existing single-user tools. CAISE oper-
ates as a fine-grained Continuous Integration (CI)
platform where all tools are synchronised with each
other, as opposed to systems that periodically at-
tempt to resynchronise through source code reposi-
tories and social protocols. The CAISE architecture
also differs by being capable of supporting complex
CSE tools. It is not restricted to particular tasks
or methodologies—there is no theoretical limit to the
scale and ability of CAISE-based tools.

3.2 Tool Services

CAISE provides services which support the rapid de-
velopment of CSE tools. By utilising the CAISE ar-
chitecture, CSE tools can rely on the CAISE server
to manage the storage and sharing of artifacts, and
to control users as they join and leave projects and
artifacts. CAISE also provides the low-level mecha-
nisms to allow distributed messaging between tools
and the CAISE server, and supports a distributed
event model.

A semantic model of the software for each project
is maintained by the server, which is refined upon the
actions of participating CAISE tools. The semantic
model represents the collection of components within
the software project, such as packages, classes, meth-
ods, properties, and relationships such as inheritance,

association and invocation. CAISE-based tools are
not required to perform any parsing or semantic anal-
ysis themselves; the server is responsible for translat-
ing modifications in artifacts to an updated semantic
model. The model, however, is accessible by CAISE
tools both for reading and direct modification if re-
quired.

The functions provided by the CAISE server, both
in terms of supporting collaborative work and per-
forming core software engineering tasks, allow the
CSE tool developer to focus on the specific require-
ments of the given tool rather than re-implementing
the functionality common to most CSE tools. If, how-
ever, the tool being developed requires additional fea-
tures, the CAISE architecture is easily extended to
accommodate new artifact types and kinds of feed-
back. Section 3.7 discusses this concept further.

3.3 CAISE Tool Widgets

Before we look at the construction of individual
CAISE-based tools, this section introduces some of
the collaborative widgets available for use within any
CSE tool. The following widgets can be added to
Swing/AWT-based Java applications without any ad-
ditional coding requirements, which allows tools to be
augmented with CSE capabilities for minimal effort.
These widgets operate by communicating with the
CAISE server and responding to real-time events.

The User Tree is shown in Figure 2, which may be
used within a tool to support user awareness. This
widget provides a user-centered view of the CAISE-
based software engineering project in real-time. In-
dividual tools require no knowledge of the artifacts
they are editing; they simply have to keep the CAISE
server informed of the name of the artifact currently
being edited and the most recent cursor location of
the user controlling the tool. The User Tree will keep
itself updated with the latest view.

Figure 2: The CAISE User Tree widget, supporting
a user-centric project view.

The Change Graph is another widget that can be
readily added to any CSE tool. This widget is illus-
trated in Figure 3. The Change Graph widget keeps
track of the cumulative additions and deletions to and
from the model on a per-user basis. This provides
each tool user with an overview of the current devel-
opment activity. Again, this component can be added
to any CSE application, or housed in a dashboard dis-
play or separate frame.

The Client Panel is key component of the CAISE
widgets package, and can be seen within the CAISE-
based tool presented in Figure 7. The Client Panel
typically houses four components known as the Arti-
facts, Users, Feedback and Build Panes, although the
Client Panel can be configured to house any combi-
nation of specific panes. Individual panes can also be
added to an application separately.

The Artifacts Pane is presented at the bottom of
Figure 7. This provides basic file information on the
artifacts within a CAISE project, including their cur-
rent compilation state. The Users Pane is presented
in Figure 5. This pane allows messages to be sent
between users, including audio broadcasts.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

269

Figure 3: The project Change Graph widget.

The Build Pane is presented in Figure 4. It pro-
vides an adjustable level of collaborative awareness,
allowing the user to temporarily ignore concurrent ed-
its for the purpose of building the system without in-
terruption. In addition to allowing the project to be
built from the live, last parseable or last buildable ver-
sion, the Build Pane also allows the current project to
be executed. Finally, the Feedback Pane, which is not
presented in this paper, displays server-based plain-
text information such as Degree of Awareness (DOI)
feedback between users and impact reports that result
from artifact modifications.

Figure 4: The CAISE Build Pane with adjustable
levels of collaborative awareness.

The CAISE Tool widgets can be utilised from
within any application, and applications that use such
components do not require any specific software en-
gineering knowledge or capabilities. For example, a
stand-alone text editor can be enhanced by incorpo-
rating the CAISE collaborative User Tree into its user
interface. Given that the text editor conforms to the
CAISE Tool Protocol as specified in Section 3.5, the
User Tree will highlight the method, class and pack-
age that the editor is currently modifying, without the
editor needing to possess any specific software engi-
neering capabilities.

Within the next release of CAISE, we also aim to
add the multi-user text pane to our collaborative wid-
gets package. The text pane is illustrated in Figure 7.

3.4 The CAISE Tool API

The CAISE Tool API (CTA) is provided as the means
of accessing the functions of the CAISE server from
within a CSE application. While the CAISE server
typically resides on a separate machine, the CTA al-
lows the calling application to view the server as if
it was contained within the same process; the server
functions appear no different to those of any other
library. The server is accessed by a set of standard
method calls, data is marshalled as method return
values, and catchable events are thrown whenever in-
teresting actions occur during the development of a
CAISE project.

Table 1 presents several of the key CTA methods.
This is only a subset of the complete CTA, but it pro-
vides a useful overview of the programming interface.

The CTA provides adequate functionality to im-
plement numerous types of CSE tools. Multi-user
text editors, for example, can rely on the CTA to
provide collaborative code editing, semantic analysis
of code modifications, and user presence feedback. To
implement communication facilities, messaging can
be provided via the Chat methods, and audio broad-
casts are also supported. Tool design and implemen-
tation will always be the responsibility of the CSE
researcher, but the CTA prevents ‘reinventing the
wheel’ for the essential yet complex CSE services.

CAISE is a concurrent system, where it is likely
to receive multiple interleaved requests to modify a
set of artifacts within a short period of time. In-
vocations of CTA methods are treated fairly at the
CAISE server. In the underlying distributed system
that CAISE employs for its client interface, each in-
coming method call is queued and then processed in
a thread safe, sequential order. For all other pend-
ing method calls in the queue, a low-CPU blocking
mechanism is used on the client side.

3.5 The CAISE Tool Protocol

By following the CAISE Tool Protocol, which specifies
the contract between individual tools and the server,
tools are assured of staying synchronised with each
other, and the server is able to avoid concurrency is-
sues such as deadlocks and forced rollbacks of tool
requests.

Individual CSE tools have the ability to implement
locks and other floor control policies that allow only
one user at a time to edit a given region of code. By
default, however, the CAISE architecture allows full
synchronous editing of any artifact. To ensure that
tools are always synchronised, a specialised Model-
View-Controller (MVC) approach is used which guar-
antees consistency over distributed parallel edits. Re-
quests to edit the view are captured by tools, but the
view is not immediately updated. Rather, the edit
is sent to the server which in turn edits the global
model, and broadcasts the change to all tools. Each
tool then updates its local view, including the tool
that made the edit request.

To implement a CSE tool that adheres to the
CAISE Tool Protocol, three application-level threads
are typically used: a GUI thread, a worker thread,
and a CAISE event listener thread. The threading
model for CAISE-based tools is presented in Fig-
ure 6. Most windowing toolkit libraries provide a GUI
thread, and the CAISE Tool API provides a CAISE
event listener thread. As the worker thread can sim-
ply be the main application thread, it is unlikely that
any new threads need to be created explicitly within
a CAISE tool. With the existence of a worker thread,
the GUI thread is free to take any volume of user
input from the user interface, without causing jitter
or lag as the events are being proxied to the CAISE
server.

By using a MVC approach and following the
CAISE Tool Protocol, CSE tools are guaranteed to
stay up-to-date and synchronised with the CAISE
server, and there is no risk of deadlocks or loss of
information. The following list presents the six key
conditions of the CAISE Tool Protocol:

1. The CSE tool captures all user input events such
as keystrokes and caret move events, typically
using action listeners. All actions are to be con-
sumed, blocking the underlying view of the arti-
fact from being modified.

2. All captured events are placed into a FIFO event
queue within the CSE tool. The GUI thread re-
turns immediately after placing the event in the

CRPIT Volume 48

270

Figure 5: The CAISE Users Pane, which provides voice and text communication.

Method Description
Connect to Engine Makes a new connection to the given CAISE server
Open Project Opens an existing CAISE project
Add Artifact Adds a new artifact to the given project
Open Artifact Sets an existing artifact as open for a given user
Set User Location Moves a user’s cursor location within an artifact
Update Source Code Appends a sequence of characters to an artifact
Update Parse Tree Appends a parse tree of an artifact
Update Model Directly manipulates the semantic model of a project
Get Model Snapshot Returns a copy of a project’s semantic model
Fire Tool Event Allows a tool to invoke tool-specific server plug-ins
Get Event Log Returns the complete event log for a given project
Send Chat Message Allows users to send text messages between tools

Table 1: Key methods of the CAISE Tool API.

queue, preventing any latency within the user in-
terface.

3. A separate CSE tool worker thread dequeues
events and issues them to the server as corre-
sponding CTA method invocations.

4. The CSE tool worker thread waits for the re-
turn value of the CTA method invocation before
processing the next tool input event. The CSE
tool does nothing upon a successful method in-
vocation, and escalates any errors if the method
invocation fails.

5. The CSE tool’s CAISE event listener thread lis-
tens for broadcasted server events that result
from CTA method invocations. Upon relevant
events such as artifact modifications and user lo-
cation changes, the model of the artifact within
the tool is updated accordingly. This step is per-
formed by all participating tools, not just the
instance that invoked the event.

6. Upon any model update, the CSE tool’s artifact
view is redrawn by the GUI thread.

During spikes of development by multiple CAISE
tools, the server ensures fairness by queuing events
evenly based on the inbound tool connection, rather
than order of arrival. In this manner, we avoid the
situation where all other tools are unfairly delayed by
an exceptionally active single user.

3.6 Tool Events

Within the CAISE event model, the CAISE server
broadcasts events of various types to all participat-
ing tools upon actions of individual users; this is il-
lustrated in Figure 6. Events contain details of the
general action, such as an artifact edit by a named
user, and the specific details such as the affected text
and file offset.

Each CAISE event type is briefly summarised in
Table 2. Fully featured tools are likely to register as a
listener for all events, as can be seen in the code listing
in Section 5.1. Other components, such as the Change
Graph presented in Section 3.3, are only interested in
specific event types.

Type Typical actions
Project A project is created or deleted.
Artifact An artifact is added, removed or edited.
Chat A user issues text or audio messages.
Client A client opens, closes or moves location

within an artifact, or rebuilds a project.
Change The project model is manipulated di-

rectly or via artifact modification.
Plug-in Tool-specific custom units of informa-

tion exchange.

Table 2: Events types within the CAISE architecture.

3.7 Tool Manager Modules

The CAISE architecture provides generic support for
the collaborative editing of text documents, the pars-
ing of source files, and the semantic analysis of parse
trees derived from source code and UML diagrams.
Often, however, tools require further functionality
from the server, including the support of new arti-
fact types. To accommodate extensibility within the
CAISE server, modules known as Tool Managers can
be integrated through the CAISE plug-ins interface.

For a UML class diagrammer, it is apparent that
such a tool requires information beyond what is con-
tained within the core semantic model of the project.
As well as displaying all classes, methods and relation-
ships, a class diagrammer contains class layout infor-
mation that must be shared every time any instance
of the class diagram is modified. Therefore, when
implementing the UML diagramming tool presented
in this paper, an additional diagrammer-specific type
of artifact was introduced, managed and shared by a
UML-specific Tool Manager.

For the UML diagramming tool, whenever a user
changes the location of a displayed class, a tool-
specific event is thrown to the CAISE server via the
CTA and this event is proxied to the UML diagram-
mer Tool Manager. The Tool Manager will then ac-
cess and update the new artifact that stores the class
location information, and then broadcast this change
out to all tools in accordance with the CAISE Tool
Protocol, allowing all users to update their local view
of the UML class diagram.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

271

Figure 6: The recommended threading model within a CAISE-based tool.

The CAISE server can be extended in many other
ways through the plug-ins interface, including sup-
port for new languages. For further details please
refer to (Cook et al. 2004).

4 Example CAISE-Based Tools

Figure 7: A CSE code editor. When viewed in colour
the text highlighting and tele-cursors are visible.

Since their conception, we have been constantly
refining the CSE tools discussed in this paper in or-
der to provide realistic Software Engineering environ-
ments. These tools are presented in Figures 7 and 8.
The main features currently supported include:

• Round-trip engineering between all tools and ar-
tifact views.

• Full multi-user editing and UML class diagram-
ming capabilities with a relaxed WYSIWIS view,
including collaborative undo.

• An Artifacts Pane that displays the current com-
pilation state of each artifact as well as editor
details and file information.

• A multi-user text pane which provides remote
modification highlighting and tele-cursors. The
diagrammer pane also indicates remote developer
locations through special markers and tool-tips.

• Instant messaging and an audio chat channel.

• All relevant aspects of the user interface have
been designed to accommodate the constantly
changing state of each developer’s display.

• A source code control system has been integrated
to allow a CAISE project to access a central code
repository.

• Build and run facilities, including protection
from crosstalk when attempting to compile dur-
ing times of high development activity

• Event-based collaborative feedback information,
such as Degree of Interest (DOI) reports relat-
ing to other user locations within the project,
and model change impact reports as the project
evolves.

• A collaborative User Tree that provides a model-
based view of developer’s locations.

The majority of the features built in to the above
tools, such as the Artifacts Pane and User Tree,
are stand-alone components made available from the
CAISE client widgets library, as presented in Sec-
tion 3.3. The remaining collaborative features, such
as multi-user editors and a UML class diagramming
pane, have been implemented manually, but rely on
the services of the CAISE Tool API to implement
functions such as tool synchronisation and the shared
modification of artifacts.

To implement tele-cursors within the Java code
editor, each instance of the editor simply listens
for changes in remote user cursor locations and re-
draws each remote cursor onto the text pane using
opaque graphics rendering. To provide more ad-
vanced Groupware features, components of the Maui
toolkit could be integrated with any CAISE-based
CSE tool.

To implement a relaxed-WYSIWIS view within
the UML class diagrammer, each time a component
such as a class or interface is dragged, the drag ac-
tion is captured and sent to the CAISE server via the
fireToolEvent() API method. The UML diagram-
mer Tool Manager module responds to this event by
adjusting its mapping of components and coordinates,
and then broadcasts the adjustment event out to all
tools registered for this event, which in turn update
their local view of the model.

There are numerous other features that have been
built into other tools such as code-age highlighting, as
well as stand alone graphical components such as real-
time visualisations of user activity. These features
have been presented previously (Cook et al. 2004)
(Cook & Churcher 2003), where the primarily focus
was on describing the CAISE infrastructure.

CRPIT Volume 48

272

Figure 8: A UML class diagrammer. Remote user positions are indicated by the blue markers.

4.1 Server Applications

The most common type of CAISE-based tools are
those that allow the direct editing, building and in-
spection of collaborative software projects. Other
more static types of tools can be envisaged, however,
such as visualisation generators and metrics query-
ing tools. For this class of tool, the CAISE architec-
ture supports server-based applications. These appli-
cations run within the server process itself, providing
fast and efficient access to the software project, its
artifacts and underlying semantic model.

Figure 9: A server application which inspects the se-
mantic model of a CAISE-based software project.

An example of a simple server application is pre-
sented in Figure 9. This is a trivial example, where
the application simply walks a project model and
displays the names of all classes within the pack-
age structure. The following code segment, however,
shows how simple it is for the above application to
walk the model programmatically through the use of
the architecture’s model visitor. Server applications
can modify the model directly as well, causing model
change events to be issued to all listening tools, which
will in turn adjust their local views accordingly.

public class SimpleModelWalker extends CAISEServerApp {

// called once server is ready

public void run() { initGui(); }

// called upon events
public void update(Collection events) { /∗ do nothing ∗/ }

/∗ InitGui() method omitted ∗/

public void jButton1ActionPerformed(ActionEvent e) {

// get the given project
Project project = Engine.getEngine().getProject("AA");

// get the default package from the project’s model
PackageDecl pkg = project.getModel().getDefaultPackage();

// print out header
setText("Classes in package " + pkg.getSimpleName());

// create an instance of a subclassed model visitor
new ModelVisitorAdapter(pkg) {

// override the visit ClassType routine
public void visitClass(ClassType classType) {

// write the class name out to the text panel
addText("\n\t" + classType.getSimpleName());

}
}.visit(); // fire up the adapter

}
}

5 Construction of New Tools

This section describes how the tool developer can con-
struct new CSE tools using the CAISE framework.
The code segments presented in this section are taken
from the Java code editor, which was discussed in the
previous section and presented in Figure 7.

5.1 Tool Initialisation

Each instance of a CAISE-based CSE tool needs to es-
tablish a connection to the CAISE server. The most

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

273

appropriate time to do this is at program startup.
Within CAISE, each client has a unique name, and
this is given during the call to establish a server con-
nection. The following code segment demonstrates
connecting to a named CAISE server, registering an
application for CAISE events, and opening an exist-
ing project.

// create a new instance of a CAISE handler
CAISEHandler handler = new CAISEHandler(clientName,

serverName, TextEditor.ID);

// tell the server to notify this class of any events
handler.attachCAISECallback(this);

// open the initial CAISE project with no event filtering
handler.openProject(projectName, CAISEEvent.ALL EVENTS);

5.1.1 Adding CAISE Widgets to a Tool

CAISE widgets may be constructed and added as
components within a user interface in the same man-
ner as any other standard graphics widget. The only
requirement is that events from the CAISE server are
passed from the containing application to each wid-
get. The event handling code segment is given in
Section 5.4.

5.2 Catching Local Tool Actions

The CAISE Tool Protocol stipulates that tools pass
artifact modification events to the CAISE server, in-
stead of allowing the tool’s view of an artifact to be
modified directly. To do so, tools must catch all ar-
tifact modification actions and queue them for sub-
sequent proxying to the server. Only once the event
has been processed by the server and a response has
been broadcasted to all tools will the local text pane
be updated, as illustrated in Section 5.5.

In the following code segment, the key-presses des-
tined for the text pane within the Java editor are
captured and queued. The current cursor location is
not recorded within the keystroke event—the server
maintains the authoritative record of user positions to
ensure consistency between all the tools, and already
knows the user location at the time of the pending
key press. To maintain the record of user locations,
cursor location changes are another type of CAISE
event governed by the CAISE Tool Protocol.

public void keyTyped(KeyEvent e) {

// kill it before it gets to the editor
e.consume();

// ignore any keystrokes that involve alt or ctrl
if ((e.getModifiers() & (e.ALT MASK|e.CTRL MASK)))

return;

// ignore escape key
if (e.getKeyChar() == (char)27)

return;

// add regular key event to client queue
enqueEvent(new EventWrapper(e, fileName));

// update the state of the undo menu item
EditorFrame.this.undoItem.setEnabled(true);

}

5.3 Sending Tool Actions to the Server

As described in Section 3.5, the GUI thread is only re-
sponsible for capturing and enqueuing user input, and
updating the local view of artifacts. The role of the
worker thread is to take events from the local event
queue and deliver them to the server as API method
calls. As illustrated in the following code segment,
the worker thread blocks until a corresponding event

has been broadcast by the server before processing
any remaining queued events.

final class EventHandler implements Runnable {

public void run() {
while (isThreadRunning()) {

// remove event from queue and pass to server
EventWrapper ew = clientInputEvents.take();

if (ew.event instanceof KeyEvent)
// send key events as buffer append requests
handler.appendSourceCodeBuffer(ew.fileName,

ew.event);

// wait until the server has replied
serverFeedbackEvents.take();

}
}

}

5.4 Listening for Server Responses

The CAISE server broadcasts events out to all regis-
tered listeners upon any significant event such as an
artifact modification or a change in the project’s un-
derlying semantic model. If a tool has issued a request
to modify an artifact, the server will perform the mod-
ification on its master copy and then broadcast a cor-
responding event to all tools. The tool that issued the
request will be expecting a subsequent modification
event, and all other tools are also required to adjust
their local artifact views upon event notification.

The following code segment illustrates the main
event loop within the Java text editor, which is repre-
sentative of typical CAISE-based tools. As the editor
also employs the User Tree widget, events are relayed
to the widget, allowing it to update its own view of the
project. The text editor also needs to keep track of
user location changes in the same manner as it mon-
itors artifact modification events, but for the sake of
simplicity, this has been omitted from this example.

public void update(Collection events) {

// for each event
for (Iterator i = events.iterator(); i.hasNext();) {

CAISEEvent event = (CAISEEvent)i.next();

// inspect the event type
switch (event.getType()) {

// if an artifact event
case CAISEEvent.ARTIFACT EVENT:

// if the artifact has been edited by anyone
if (event.getSubType() == ARTIFACT APPENDED)

// if this is the current artifact
if (event.getSourceEntity().equals(fileName))

// append the buffer of the underlying file
appendBufferFromRemoteChange(

event.getSourceUser(),
((KeyEvent)(event.getData())[0]),
((Integer)(event.getData())[1]).intValue(),
((Integer)(event.getData())[2]).intValue());

}

// update user tree
userTree.updateTree(event);

}
}

5.5 Updating the Local Artifact View

To complete the MVC pattern within the CAISE
event model, the final task for CSE tools upon re-
ceiving an event is to update their local view. Within
the text editor, this involves appending and redisplay-
ing the text pane upon artifact modification events.

CRPIT Volume 48

274

For user location change events, this involves updat-
ing the local mapping of users and file positions and
redisplaying all cursors. As the Java code editor uses
a multi-user text component, artifact modification
events only need to be relayed to the text pane—the
multi-user component will perform the text insertion
and remote modification highlighting internally.

It is important to note that each tool’s view runs
no possibility of losing synchronisation with other
tools or the CAISE server, baring catastrophic net-
work failure. As long as events are captured and de-
livered in order to the server, and the underlying ar-
tifact is only updated within each tool in response to
server events, then synchronisation is guaranteed.

private void appendBufferFromRemoteChange(Client editor,
KeyEvent change,
int positionHint,
int previousFileSize) {

// check that our user location is in sync with the server
assertUserLocation(editor, positionHint);

// check that the file size is in sync with the server
assertFileSize(previousFileSize);

// update buffer
buffer.appendDocument(change.getKeyChar(), positionHint,

editor, handler.getClient());

// restore any previously selected text
redrawSelection(editor.equals(handler.getClient()));

// tell auto-save timer to restart
setBufferDirty(true);

// yeild lock if this edit originated from this app
if (editor.equals(handler.getClient()))

serverFeedbackEvents.put(new Object());
}

6 Performance Analysis

A final consideration when discussing the design and
use of collaborative tools for software engineering is
that of performance. The performance of the tools
must be satisfactory, and there should be no theoret-
ical limitations of the architecture that will prevent
the tools from being useful in realistic environments.
While the core response speeds and resource usage of
CAISE and its supporting tools have proved accept-
able over a long period of subjective testing and user
evaluations, it is important to note the effects of code
size and number of concurrent developers on server
memory load and tool response times.

6.1 Memory Load

To provide features such as code modification impact
reports and DOI feedback, the CAISE server main-
tains a semantic model of the software within the
project. An immediate concern is that of memory
usage; if a large amount of memory is required for
each line of code added to the model, projects of a
realistically large size might be beyond the scope of
the CAISE architecture.

Figure 10 presents the amount of memory used per
line of code across a range of CAISE projects. For
any CAISE based project, the server first loads in all
packages, classes, interfaces and methods directly ac-
cessible from any Java source file. This brings the
initial project model size up to around 60 MB. From
that point onwards, however, most of the components
that the modelled software rely upon are now loaded,
and the project model size increases only linearly in
relation to the number of classes and methods de-
clared in each source file. After taking the project

initialisation into account, each line of code requires
approximately one kilobyte of server memory.

Figure 10: Lines of Code vs. Server Memory Usage.

For large software projects where there can be po-
tentially millions of lines of code within a single re-
vision, an alternative to an in-memory model might
be required. In commercial settings, it is likely that
specialised hardware can support multiple gigabytes
of memory. In other situations where mass memory
capabilities are not available, the CAISE architec-
ture can easily be extended to incorporate an object-
oriented database for models of potentially any size.

While the memory requirements for a CAISE-
based project may seem significant, it is important
to note that no other demands are placed on memory
resources throughout the entire development environ-
ment. Unlike other architectures including IDEs, each
CSE tool can rely on the CAISE server for all pars-
ing, analysing and modelling of the software; tools
themselves do not need to store a replica model.

6.2 Network Load

The design of the architecture ensures that network
loads are as low as possible, and recent analysis of
traffic verifies that for small user groups, no consid-
erable strain is placed on a 100 Mbps Ethernet local
area network. Even as the number of concurrent users
increases to that of large development teams, today’s
networks are capable of accommodating the load.

When testing on wide area networks, the data
throughput requirements are low enough for clients
to be connected to the server from dial-up networks,
but the latency can cause edit delays of up to several
seconds. To support low speed wide area network
connections, an alternative distributed system might
be necessary where the anticipated results of modifi-
cation requests are immediately displayed in the orig-
inating tool’s display. In this case, a synchronisation
routine will be required to run in a separate thread to
resolve any modification discrepancies between tools.

At present, fault tolerance within CAISE has not
been addressed. User trials and experimentation has
been limited to within local networks, where error
rates are low and are readily addressed by underly-
ing communication protocols. For high-latency, high
error network configurations such as intercontinental
real-time software development, techniques for fault
tolerance may need to be identified.

6.3 Response Times, Users and Model Size

From performance analysis, we are confident that as
the number of users and the size of the project model

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

275

increases, response times will remain stable. The di-
rect impact of increased numbers of concurrent users
within a CAISE project has been observed to be neg-
ligible; the number of connected users or opened files
does not have a noticeable effect on server memory
usage or response time. If all users are highly active
at the same time the server response times will slow
down, but in reality this is a very unlikely scenario.

Even if a given project has a very large semantic
model, this does not necessarily affect the response
times of the server. Most operations such as adding
a new method to a class or querying the model for
a specific relationship only require the traversal of a
fixed subset of the entire model space. Therefore,
even as the model grows in size, the response times
should stay approximately constant.

7 Summary

Real-time support for CSE is an important emerg-
ing field of research. The size and complexity of
today’s software projects far exceeds the ability of
conventional single-user tools to provide an environ-
ment of fine-grained communication between devel-
opers. While source code repository systems provide
a degree of control over constantly evolving software
projects, there is both the demand and enabling tech-
nology for more comprehensive tool support.

To date, the large development cost in construct-
ing new CSE tools has been a major obstacle within
the field of research. In this paper, we have shown
how new CSE tools can be developed rapidly within
the CAISE architecture.

We have presented example CAISE-based tools,
discussed the underlying protocol that ensures tool
synchronisation, and have illustrated how existing
multi-user widgets can be utilised within existing soft-
ware engineering tools. We have also discussed the
CAISE Tool API at a level of detail suitable to pro-
vide insight for potential tool developers. Finally, we
have addressed various performance issues and have
reasoned why CAISE-based CSE tools are able to op-
erate satisfactorily under a range of workloads.

The CAISE architecture and associated tools per-
formed well during recent empirical and anecdotal
evaluations. After illustrating the construction and
use of CAISE-based CSE tools in this paper, it is
hoped that others are encouraged to develop similar
tools to support the emerging field of real-time CSE.

References

Carasik, R. P. & Grantham, C. E. (1988), A Case
Study of CSCW in a Dispersed Organization, in
‘CHI ’88: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems’, ACM
Press, New York, NY, USA, pp. 61–66.

Churcher, N. & Cerecke, C. (1996), GroupCRC: Ex-
ploring CSCW Support for Software Engineer-
ing, in ‘Proceedings of the 4th Australasian
Conference on Computer-Human Interaction’,
IEEE Computer Society Press, Hamilton, New
Zealand.

Cook, C. (2005), Towards Computer-Supported Col-
laborative Software Engineering, PhD thesis,
University of Canterbury, Christchurch, New
Zealand. Work in Progress.

Cook, C. & Churcher, N. (2003), An Extensible
Framework for Collaborative Software Engineer-
ing, in D. Azada, ed., ‘Proceedings of the Tenth
Asia-Pacific Software Engineering Conference’,

IEEE Computer Society, Chiang Mai, Thailand,
pp. 290–299.

Cook, C. & Churcher, N. (2005a), A User
Evaluation of Synchronous Collaborative Soft-
ware Engineering Tools, Technical Report TR-
COSC 04/05, Department of Computer Science,
University of Canterbury, Christchurch, New
Zealand.

Cook, C. & Churcher, N. (2005b), Modelling
and Measuring Collaborative Software Engineer-
ing, in V. Estivill-Castro, ed., ‘Proceedings of
ACSC2005: Twenty-Eighth Australasian Com-
puter Science Conference’, Vol. 38 of Conferences
in Research and Practice in Information Tech-
nology, ACS, Newcastle, Australia, pp. 267–277.

Cook, C., Churcher, N. & Irwin, W. (2004), Towards
Synchronous Collaborative Software Engineer-
ing, in ‘Proceedings of the Eleventh Asia-Pacific
Software Engineering Conference’, IEEE Com-
puter Society, Busan, Korea, pp. 230–239.

Cox, D. & Greenberg, S. (2000), Supporting Col-
laborative Interpretation in Distributed Group-
ware, in ‘Proceedings of the ACM Conference on
Computer Supported Cooperative Work’, ACM
Press, Philadelphia, PA, pp. 289–298.

Froehlich, J. & Dourish, P. (2004), Unifying Artifacts
and Activities in a Visual Tool for Distributed
Software Development Teams, in ‘6th Inter-
national Conference on Software Engineering
(ICSE’04)’, IEEE, Edinburgh, Scotland, United
Kingdom, pp. 387–396.

Graham, N., Stewart, H., Ryman, A., Kopaee, R.
& Rasouli, R. (1999), A World-Wide-Web Ar-
chitecture for Collaborative Software Design, in
‘Software Technology and Engineering Practice’,
IEEE, Pittsburgh, Pennsylvania, pp. 22–32.

Greenberg, S. (1989), The 1988 Conference on
Computer-Supported Cooperative Work: Trip
Report, in ‘SIGCHI Bulletin’, Vol. 20 of 5, ACM,
pp. 49–55. Also published in Canadian Artificial
Intelligence, 19, April 1989.

Hill, J. & Gutwin, C. (2003), Awareness Support in
a Groupware Widget Toolkit, in ‘Proceedings of
the International ACM SIGGROUP Conference
on Supporting Group Work’, ACM Press, Sani-
bel Island, Florida, USA, pp. 256–267.

Lewis, S. (2005), ‘Eclipse Communication Frame-
work’, Internet Homepage.
http://www.eclipse.org/ecf/goals.html

Reeves, M. & Zhu, J. (2004), Moomba A Collabo-
rative Environment for Supporting Distributed
Extreme Programming in Global Software De-
velopment, in J. Eckstein & H. Baumeister, eds,
‘Lecture Notes in Computer Science’, Vol. 3092,
Springer-Verlag, pp. 38–50.

Roseman, M. & Greenberg, S. (1996), ‘Building
Real Time Groupware with GroupKit, A Group-
ware Toolkit’, ACM Transactions on Computer-
Human Interaction 3(1), 66–106.

Sarma, A. & van der Hoek, A. (2002), Palant́ır: Co-
ordinating Distributed Workspaces, in ‘26th An-
nual International Computer Software and Ap-
plications Conference’, IEEE, Oxford, England.

Schummer, T. (2001), Lost and Found in Software
Space, in ‘34th Annual Hawaii International
Conference on System Sciences’, IEEE Com-
puter Society, Maui, Hawaii.

CRPIT Volume 48

276

Plagiarism Detection across Programming Languages

Christian Arwin S.M.M. Tahaghoghi

School of Computer Science and Information Technology
RMIT University, GPO Box 2476V, Melbourne 3001, Australia.

{carwin,saied}@cs.rmit.edu.au

Abstract

Plagiarism is a widespread problem in assessment
tasks; in computing courses, students often plagiarise
source code. For all but the smallest classes, manual
detection of such plagiarism is impractical, and, while
automated tools are available, none has been applied
to detect inter-lingual plagiarism, where source code
is copied from one language to another. In this work,
we propose a novel approach, XPlag, to detect plagia-
rism involving multiple languages using intermediate
program code produced by a compiler suite. We de-
scribe experiments to evaluate XPlag, and show that
we can detect inter-lingual plagiarism with reasonably
good precision.

Keywords: program source code similarity, plagiarism
detection

1 Introduction

Plagiarism — the representation of another’s work as
one’s own — is a serious problem for academics; a
survey performed by Sheard, Dick, Markham, Mac-
donald & Walsh (2002) on a sample of students at
Monash and Swinburne universities shows that 85.4%
of 137 Monash University students and 69.3% of 150
Swinburne University students admitted to having
engaged in academic dishonesty. Educational insti-
tutions commonly attempt to reduce the incidence
of plagiarism by applying penalties for violation of
rules on academic dishonesty, yet plagiarism remains
widespread (Zobel & Hamilton 2002).

Many computing courses have assessment tasks
that require submission of program source code; stu-
dents may plagiarise by copying code from friends,
the Web, or so-called “private tutors” (Zobel 2004).
For large cohorts, manual comparison of submissions
to identify plagiarism is impractical, and so students
may feel confident that their work will escape detec-
tion. There are also commercial concerns; organi-
sations may be unknowingly liable to litigation for
unauthorised use of program source code. Robust co-
derivative detection methods are essential.

Several approaches have been proposed for de-
tecting code plagiarism; most use source code to-
kenisation and string matching algorithms to mea-
sure similarity. These generally perform well in de-
tecting plagiarism that involves common disguising
techniques such as statement reordering or modifica-
tion of constant values and variable names (Gitchell

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

& Tran 1999, Prechelt, Malpohl & Philippsen 2000,
Wise 1996).

However, these approaches are designed and ap-
plied to detect plagiarism between programs written
in a single language, and cannot handle cases where
source code is copied from one language to another.
We propose the names intra-lingual plagiarism for the
former, and inter-lingual plagiarism or cross-lingual
plagiarism for the latter.

We hypothesise that plagiarised programs, regard-
less of the language they are written in, have a similar
code structure. We propose two solutions to address
inter-lingual plagiarism. One is to compare the tokens
produced by most existing plagiarism detection ap-
proaches that support more than one language. The
second is to compare the intermediate code produced
by a compiler suite, that is, a compiler that supports
more than one language. The former typically sup-
ports only a few languages and requires a scanner and
parser for each language, while the latter solution re-
lies on the components of an existing generic compiler
suite. We focus on the second approach in this work.

We test our new approach against three collections
using ground truth developed from an existing state-
of-the-art plagiarism detection system and through
manual comparisons. The results show that our ap-
proach detects plagiarism with reasonably good pre-
cision for all the test collections. More importantly,
it succeeds in detecting plagiarism across languages.

The remainder of this thesis is organised as follows.
In Section 2, we discuss the main computer-based ap-
proaches to plagiarism detection. In Section 3, we de-
scribe our approach for the detection of inter-lingual
plagiarism. In Section 4, we describe our experiments
and our analysis of the results. We conclude in Sec-
tion 5 with a summary of our work and thoughts for
future research.

2 Background

Two factors that complicate plagiarism detection are
the abundance of available resources and the variety
of techniques used to disguise the copied materials. A
number of approaches have been proposed to detect
plagiarism in text and in program source code; we
briefly review some of these in this section.

2.1 Text Plagiarism Detection

Text plagiarism involves copying parts of
manuscripts, papers, and documents. Hoad &
Zobel (2003) explore the ranking and fingerprint-
ing approaches for detecting plagiarism of text.
These approaches have a common preprocessing
stage that includes case folding, stemming (remov-
ing prefix/suffix from words), stopping (removing
common words), and term parsing (removing whites-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

277

pace, punctuation, and control characters from the
document).

The ranking approach consists of two stages to find
documents similar to a query. In the first stage, doc-
uments are indexed. In the second stage, terms in
the query document are matched against the indexed
terms of each collection document, and a similarity
score is calculated. Documents are ranked by decreas-
ing similarity score for presentation to the user. This
approach relies on the use of an effective similarity
function to determine the similarity score for each
document (Hoad & Zobel 2003). The fingerprinting
approach also uses the two stages used by the rank-
ing approach. However, it compares document finger-
prints rather than document terms.

2.2 Source Code Plagiarism Detection

The nature of program source code makes it diffi-
cult to apply simple text-based detection techniques.
Copied code is typically altered to avoid detection.
Whale (1986) lists thirteen techniques that students
may use to disguise the origin of copied code; these are
“changing comments, changing formatting, changing
identifiers, changing the order of operands in expres-
sions, changing data types, replacing expressions by
equivalents, adding redundant statements, changing
the order of time-independent statements, changing
the structure of iteration statements, changing the
structure of selection statements, replacing proce-
dure calls by the procedure body, introducing non-
structured statements, combining original and copied
program fragments”. We consider there to be one
additional item: the translation of source code from
one language to another, or inter-lingual plagiarism.
For example, source code written in C may be copied
across to an implementation in Java.

There are several existing approaches to detect
code plagiarism. Prechelt et al. (2000) identify two
main categories of automated plagiarism detection for
program source code; these are feature comparison
and structure comparison. We explain these below.

2.2.1 Feature Comparison

In feature comparison, the similarity of two programs
is estimated from the similarity of various software
metrics, such as the average number of characters per
line, the number of comment lines, the number of
indented lines, the number of blank lines, and the
number of tokens (for example, keywords, operator
symbols, and standard library module names). Jones
(2001) proposes a feature comparison category that
compares two programs based on three profiles:

Physical profile characterises a program based on
its physical attributes, such as the number of
lines, words, and characters.

Halstead profile characterises a program based on
its token types and frequencies. These includes
the number of token occurrences (N), the num-
ber of unique tokens (n), and volume (N log2 n).

Composite profile a combination of the physical
profile and the Halstead profile.

To detect plagiarism, the profiles of each program
are calculated, and then normalised. The similarity
of two programs is estimated by computing the Eu-
clidean distance between their profiles (Jones 2001).

Prechelt et al. (2000) note that systems that use
feature comparison may be very insensitive (can eas-
ily be misled), or very sensitive (producing many false

positives) since they ignore program structure. Of-
fenders may easily add or remove comments, vari-
ables, or redundant lines of code to escape detec-
tion (Chen, Li, McKinnon & Seker 2002, Prechelt
et al. 2000, Whale 1990).

2.2.2 Structure Comparison

This approach relies on the belief that the similarity
of two programs can be estimated from the similarity
of their structure. Programs are compared in two
stages; the first stage parses the code and generates
token sequences, while the second stage compares the
tokens. Three systems that fall into this category are
Sim (Gitchell & Tran 1999), YAP3 (Wise 1996), and
JPlag (Prechelt et al. 2000).

Sim

Sim detects similarities between programs by evaluat-
ing their correctness, style, and uniqueness (Gitchell
& Tran 1999). Each program is first parsed using
the flex lexical analyser, producing a sequence of
integers (tokens). The tokens for keywords, special
symbols, and comments are predetermined, while the
tokens for identifiers are assigned dynamically and
stored in a shared symbol table; whitespace is dis-
carded. The token stream of the second program is
grouped into sections, each representing a module of
the program; each section is separately aligned with
the token stream of the first program. An alignment
of two strings is performed by inserting spaces be-
tween characters to equalise their length. An align-
ment scoring scheme is used to calculate similarity.
This rewards matches involving two identifiers by two
points, and other matches by one point. It also pe-
nalises mismatches involving two identifiers by two
points, and other mismatches by one point. Gaps
also attract a two-point penalty. Sim can handle name
changes and reordering of statements and functions.

YAP3

YAP3 (Wise 1996) is another structure-based plagia-
rism detection system; it detects plagiarism through
two phases. In the first phase, token sequences are
generated from the source code. Comments and
string constants are removed, and characters are con-
verted to lower case. Functions are mapped to their
base equivalents (such as strncmp to strcmp). In
the second phase, the maximum, non-overlapping
matches of the tokens sequences are then obtained
using the running Karp-Rabin greedy string-tiling al-
gorithm (Karp & Rabin 1987). YAP3 is able to detect
plagiarism with modified subsequences of lines and
additional statements.

JPlag

JPlag (Prechelt et al. 2000) is a web-based detection
system that uses a comparison algorithm similar to
that of YAP3. In this system, the source code is parsed
and converted into token strings. To minimise simi-
larity by chance, JPlag includes some context of the
program structure into the token strings, for example
using the “BEGIN METHOD” token to indicate an open
brace at the beginning of a method and “OPEN BRACE”
to indicate other open braces. Whitespace, com-
ments, and identifier names are ignored. The greedy
string tiling algorithm is then used to compare token
strings and identify the longest, non-overlapped com-
mon substrings. The result of the detection process
is shown to the user in colour-coded HTML format.

CRPIT Volume 48

278

Source Code

if (i==99) {
 int j=i+123;
}

Register Transfer Language (RTL)

...
(insn 14 12 15 (nil) (set (reg:CCZ 17 flags)
 (compare:CCZ (mem/f:SI (plus:SI (reg/f:SI 54 virtual-stack-vars)
 (const_int -4 [0xfffffffc])) [0 i+0 S4 A32])
 (const_int 99 [0x63]))) -1 (nil)
 (nil))

(jump_insn 15 14 16 (nil) (set (pc)
 (if_then_else (ne (reg:CCZ 17 flags)
 (const_int 0 [0x0]))
 (label_ref 22)
 (pc))) -1 (nil)
 (nil))

(note 16 15 17 0x4017d2c0 NOTE_INSN_BLOCK_BEG)

(note 17 16 19 NOTE_INSN_DELETED)

(insn 19 17 20 (nil) (parallel [
 (set (reg:SI 61)
 (plus:SI (mem/f:SI (plus:SI (reg/f:SI 54 virtual-stack-vars)
 (const_int -4 [0xfffffffc])) [0 i+0 S4 A32])
 (const_int 123 [0x7b])))
 (clobber (reg:CC 17 flags))
]) -1 (nil)
 (nil))

(insn 20 19 21 (nil) (set (mem/f:SI (plus:SI (reg/f:SI 54 virtual-stack-vars)
 (const_int -8 [0xfffffff8])) [0 j+0 S4 A32])
 (reg:SI 61)) -1 (nil)
 (expr_list:REG_EQUAL (plus:SI (mem/f:SI

 (plus:SI (reg/f:SI 54 virtual-stack-vars)
 (const_int -4 [0xfffffffc])) [0 i+0 S4 A32])
 (const_int 123 [0x7b]))
 (nil)))
...

Optimised RTL

...
(insn 14 12 15 (nil) (set (reg:CCZ 17 flags)
 (compare:CCZ (reg/v:SI 61 [i])
 (const_int 99 [0x63]))) -1 (nil)
 (nil))

(jump_insn 15 14 16 (nil) (set (pc)
 (if_then_else (ne (reg:CCZ 17 flags)
 (const_int 0 [0x0]))
 (label_ref 21)
 (pc))) -1 (nil)
 (nil))

(note 16 15 17 0x4017d318 NOTE_INSN_BLOCK_BEG)

(note 17 16 19 NOTE_INSN_DELETED)

(insn 19 17 20 (nil) (parallel [
 (set (reg/v:SI 62 [j])
 (plus:SI (reg/v:SI 61 [i])
 (const_int 123 [0x7b])))
 (clobber (reg:CC 17 flags))
]) -1 (nil)
 (nil))
...

Figure 1: An example of source code (top left), the corresponding unoptimised RTL (bottom left), and the
optimised RTL (right).

3 Plagiarism Detection Using Intermediate
Code

Existing plagiarism detection systems, whether based
on feature or structure comparison, are developed to
detect plagiarism in a particular language such as C,
Java, Pascal, or Scheme. We refer to this as intra-
lingual plagiarism. However, none has been applied
to detect inter-lingual plagiarism, where code in one
language is plagiarised and rendered in another.

In this section, we describe our novel approach,
that we call XPlag, to detect inter-lingual plagiarism
by comparing the structure of intermediate code pro-
duced by a compiler suite.

A compiler typically processes source code in two
passes (Hernandez-Campos 2002). In the front end
pass, a source code file is scanned (lexical analysis),
parsed (syntax analysis), and semantically analysed
to produce intermediate code. In the back end pass,
the intermediate code is optimised and its binary code
(executable) is generated.

Since we wish to detect plagiarism that involves
multiple languages, we need a compiler that supports
more than one language. We refer to this type of
compiler as a compiler suite.

3.1 The Compiler Suite

Two popular compiler suites are Microsoft Visual Stu-
dio .NET and the GNU Compiler Collection (GCC).
Microsoft Visual Studio .NET is based on the .NET
framework1 and supports many languages, among
them Microsoft Visual C#, Visual Basic .NET, Vi-
sual J#, and Visual C++ .NET. Program source code
is compiled first by the appropriate front-end compiler
to produce the the common intermediate language
(CIL) — also known as the Microsoft Intermediate
Language (MSIL). At run time, a Just-In-Time (JIT)

1http://www.microsoft.com/net/basics/framework.asp

compiler is then used generate the executable (native)
code from the intermediate code.

The popular GNU Compiler Collection (GCC)2

also supports several languages including C, C++,
Java, Fortran, and Objective C, and produces in-
termediate code in a common format (Jain, Sanyal
& Khedker 2003). There is also ongoing work
to integrate support for the .NET framework into
GCC (Singer 2003). The GCC front end contains sep-
arate lexical analysis, syntax analysis, semantic anal-
ysis, and tree optimisation modules for each language;
from this, a representation in a common intermediate
code — the Register Transfer Language (RTL) — is
generated. The back end optimises this RTL to pro-
duce machine code that is executable by the target
machine.

The bulk of our work to date has focused on the
GCC compiler suite using the C and Java languages,
acknowledged to be the most popular3 of those sup-
ported by this compiler suite.

3.2 The Register Transfer Language

The GCC Register Transfer Language4 contains a se-
ries of instructions represented in nested parentheses.
Each instruction contains a line number, a pointer to
the previous instruction, and a pointer to the next
instruction followed by expressions.

GCC provides three levels of compiler optimisa-
tion5. Figure 1 shows an example where the expres-
sions in the optimised RTL — Figure 1 (right) — are
simpler than the unoptimised RTL — Figure 1 (bot-
tom left). In the optimised RTL, variable initialisa-
tion is performed by storing a value in a virtual regis-
ter (represented by a reg token) rather than a virtual
stack (represented by a reg and an offset value). This

2http://gcc.gnu.org
3http://www.developer.com/lang/article.php/3390001
4http://gcc.gnu.org/onlinedocs/gcc-3.3.3/gccint/RTL.html
5http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

279

Compiler Suite
(front end)

Source code Assembly
code

Groups of
significant tokens

Filtering
&

Grouping

Code
optimisation

Lexical,
syntactic,
semantic
analysis

Intermediate
code

generation Intermediate
code

Optimised
intermediate

code

Code
generation

Unused

Compiler Suite
(back end)

XPlag

Figure 2: XPlag stages; the input source code is scanned and parsed by a compiler suite, producing the
intermediate code. The intermediate code is optimised, filtered, and clustered, to produce a group of significant
tokens.

insn and call gt truncate NOTE INSN FUNCTION BEG
const int parallel call insn lt ashiftrt NOTE INSN FUNCTION END
reg clobber call placeholder eq ashift NOTE INSN LOOP BEG
set plus expr list le lshiftrt NOTE INSN LOOP CONT
mem minus label ref ge lshift NOTE INSN LOOP END TOP COND
code label unspec symbol ref compare sign extend NOTE INSN LOOP END
use jump insn pc or barrier if then else

Table 1: The list of RTL keywords we consider significant.

makes the RTL file — and consequently the search en-
gine index — more compact. Selecting optimisation
also causes function inlining, where the compiler inte-
grates functions shorter than a threshold (the default
is 600 lines) into the calling code.

In our preliminary research, we determined that
the highest optimisation level brings the most ben-
efit to our approach, since the RTL instructions are
simplified. Moreover, optimisation allows straightfor-
ward detection of cases where function inlining is used
to disguise copied code (Whale 1986). GCC also pro-
vides a compilation option to add debugging infor-
mation in the intermediate code. Our observations
indicate that this additional information is not help-
ful, and so we do not report experiments using this
option.

3.3 The XPlag approach

The XPlag mechanism comprises two stages. In the
indexing stage, all programs in the collection are con-
verted into tokens, and token information is stored
in an inverted index. In the detection stage, source
code is used to query the index and produce a list
of programs in the collection, ranked by decreasing
similarity.

The internal process of XPlag is illustrated in Fig-
ure 2. The source code input is scanned and parsed
by a compiler suite, producing the intermediate code.
After optimisation, the intermediate code is filtered
and clustered, producing groups of overlapping to-
kens — n-grams — as the output. We follow with a
detailed description of this approach.

3.4 The Filtering Process

The RTL of a program contains a sequence of instruc-
tions, each containing a set of keywords. Some key-
words, such as variable names, register names, and
constants, are insignificant for two reasons. First,
they do not represent the structure of a program; sec-
ond, variable names and constants can be altered to
disguise plagiarism. We therefore consider these key-
words to be stop words, and filter them from the op-

Optimised RTL

...
(insn 14 12 15 (nil) (set (reg:CCZ 17 flags)
 (compare:CCZ (reg/v:SI 61 [i])
 (const_int 99 [0x63]))) -1 (nil)
 (nil))

(jump_insn 15 14 16 (nil) (set (pc)
 (if_then_else (ne (reg:CCZ 17 flags)
 (const_int 0 [0x0]))
 (label_ref 21)
 (pc))) -1 (nil)
 (nil))

(note 16 15 17 0x4017d318 NOTE_INSN_BLOCK_BEG)

(note 17 16 19 NOTE_INSN_DELETED)

(insn 19 17 20 (nil) (parallel [
 (set (reg/v:SI 62 [j])
 (plus:SI (reg/v:SI 61 [i])
 (const_int 123 [0x7b])))
 (clobber (reg:CC 17 flags))
]) -1 (nil)
 (nil))
...

Filtered RTL

insn
 set
 reg
 compare
 reg
 const_int

jump_insn
 set
 pc
 if_then_else
 reg
 const_int
 label_ref
 pc

insn
 parallel
 set
 reg
 plus
 reg
 const_int
 clobber
 reg

filtering

RTL
code
block

RTL
code
block

RTL
code
block

Figure 3: RTL example before filtering (left) and after
filtering (right).

timised RTL6. The keywords we retain are listed in
Table 1.

Figure 3 shows an example of RTL, before and
after the filtering process. The indentation of the
filtered RTL represents the depth of the nested ex-
pression in an RTL instruction. Constants, variable
names, and machine modes — for example SI, indi-
cating that the number is a single integer — are not
retained. We discovered that filtered RTL for vari-
able declarations, branching statements, and func-
tion calls have similar sequences of keywords across C
and Java. However, we observed that the RTL struc-
ture of looping statements is different although the
programs are similar. To address this, we keep the
NOTE INSN LOOP BEG and NOTE INSN LOOP END key-
words that are used to indicate the beginning and
the end of a loop in the RTL generated from both
languages.

3.5 The Mapping and Grouping Process

The significant keywords retained by the filtering pro-
cess are between two and twenty-two characters, as
listed in Table 1.

6We use the flex lexical analyser for this purpose.

CRPIT Volume 48

280

Mapping

0z1w2x2bg3x3y

0ai1w2pc2ba4x4y3an3pc

0z1ad2w3x3af4x4y2ae3x

0z1w2x2y

insn
 set
 reg
 const_int

insn
 set
 reg
 compare
 reg
 const_int

jump_insn
 set
 pc
 if_then_else
 reg
 const_int
 label_ref
 pc

insn
 parallel
 set
 reg
 plus
 reg
 const_int
 clobber
 reg

Filtered RTL Grouping (3-grams)

0z1w2x2y0z1w2x2bg3x3y0ai1w2pc2ba4x4y3an3pc

0z1w2x2bg3x3y0ai1w2pc2ba4x4y3an3pc0z1ad2w3x3af4x4y2ae3x

1
2

3

1
2

3

Note:
z : insn
w : set
x : reg
y : const_int
bg : compare
ai : jump_insn

pc : pc
ba : if_then_else
an : label_ref
ad : parallel
af : plus
ae : clobber

Figure 4: An example of the RTL mapping and grouping processes. Each significant keyword in the filtered
RTL is converted to a one- or two-character code. Then, the mapped RTL is grouped into 3-grams. The
number before each mapped RTL keyword represents the depth of indentation in the filtered RTL.

Two programs may contain similar instructions
even where no plagiarism has occurred. Hence, the
similarity of two programs should not be estimated by
simply comparing the pairs of instructions contained
in both programs. XPlag groups instructions into n-
grams, where each gram contains n instructions, and
each instruction contains a set of significant keywords.

We consider each RTL code block as a gram, with
the indentation level indicated by a number. Figure 4
illustrates how the optimised RTL representation of
a program is mapped and then grouped into 3-grams.
The value of n is chosen empirically — we discuss this
in further detail in Section 4.

3.6 The Search Engine

Plagiarism detection systems that are based on pair-
wise comparisons are not scalable; a good alterna-
tive approach is to index and query the tokens with a
search engine (Burrows, Tahaghoghi & Zobel 2004).
We incorporate a search engine into XPlag to perform
two tasks:

1. In the indexing stage, the grouped RTL of the
source code files in the collection is indexed.

2. In the detection stage, the grouped RTL of the
query source code is used to search the index, and
the programs of the collection are listed ranked
by decreasing similarity to the query.

XPlag consists of two stages, namely the indexing
and detection stages. In the indexing stage, a collec-
tion of programs is compiled with the compiler suite
using the highest optimisation option, producing the
intermediate code. This is then filtered, mapped, and
grouped to n-grams, producing groups of significant
keywords that are then indexed by the search engine.
In the detection stage, the source code to be checked
is similarly compiled, filtered, mapped, and grouped
to n-grams, producing a group of significant interme-
diate code keywords. These keywords are then used
as a query to the search engine, returning a list of
similar programs ordered by decreasing similarity.

The similarity between a collection program and
the query is estimated using a similarity measure or
ranking function. The Okapi BM25 similarity func-
tion is highly effective for general text search, and is

defined as (Robertson & Walker 1999):

∑

t∈Q

wt ·
(k1 + 1) fd,t

K + fd,t

·
(k3 + 1) fq,t

k3 + fd,t

where:

wt = loge

(

N − ft + 0.5

ft + 0.5

)

, K = k1 ·

(

(1 − b) +
b · Wd

WD

)

Wd = document length K1 = 1.2
WD = average document length k3 = infinite

N = documents in collection b = 0.75
fq,t = query-term frequency ft = collection frequency
fd,t = within-document frequency

BM25 is more suited to retrieval of text documents
rather than to code, since the more often a query term
occurs in a document, the higher the score given to
the document. Chawla (2003) proposes the Plagi-
Rank ranking function as more appropriate for code
retrieval. This gives a higher score to documents in
which query terms have the same frequency:

Score(Q, Qd) =
∑

t∈Q∩Dd

(

ln
fqt

fdt

+ 1

)

·fqt·
1

WdWq

wherefqt ≤ fdt

Score(Q, Qd) =
∑

t∈Q∩Dd

(

ln
fdt

fqt

+ 1

)

·fqt·
1

WdWq

wherefqt ≥ fdt

We evaluate our approach using both these mea-
sures and discuss the results in Section 4.

3.6.1 The Indexing and Detection Stages

In the indexing stage, the n-grams of the RTL of each
program in the collection are collated into the TREC
format7, and then indexed by the search engine.

In the detection stage, the RTL n-grams of the
program to be checked are run as a query by the
search engine, and a list of programs similar to the
queried program is returned. We examine the top
twenty documents.

The search engine provides an absolute similarity
score for each document. This is unlikely to be mean-
ingful to the average user, and so we instead refer to
the Relative Percentage Similarity (RPS); this is the

7http://www.seg.rmit.edu.au/zettair/zettair/doc/Readme.html

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

281

ratio between the similarity score of a source code
document and the similarity score of the query doc-
ument to itself. To calculate this, the query source
code must also be indexed by the search engine, and
will be returned as the first answer. This represents
the perfect match, with an RPS of 100%.

Relative Percentage Similarity (RPS)i =

{

100% if i = 1
Si/S1 if i > 1

where i, RPSi, and Si represent the rank, Relative
Percentage Similarity of the i-th document, and the
search engine score of the i-th document, respectively.
For example, if the search engine score of program
file 0.c is 0.5 and the score of 67.c is 0.4328, then
the relative percentage similarity of 0.c is 100% (be-
cause i = 1), and the score of program file 67.c
is 0.4328/0.5=86.55%.

4 Experiments and Analysis

We continue with a discussion of our experiments, our
analysis, and the external baseline we use to evaluate
our technique.

All source code in our experiments was compiled
using GCC version 3.3.3 on an Intel Pentium IV 2.4
GHz processor running the Linux SuSe 9.1 operating
system. We also used version 0.6.1 of the Zettair8

search engine developed by the RMIT University
Search Engine Group.

The aim of our experiments is twofold. First, to
evaluate the performance of XPlag in detecting pla-
giarism among programs written in one particular
language, that is, intra-lingual plagiarism. Second,
to evaluate the performance of XPlag to detect inter-
lingual plagiarism. For this purpose, we use three
different collections of program source code:

1. Collection-C: contains 79 C programs from stu-
dent submissions for an assignment in a course on
Secure Electronic Commerce offered in Semester
2 2003.

2. Collection-J: contains 107 Java programs from
the same assignment as Collection-C.

3. Collection-X: contains 206 programs from
the combination of Collection-C and
Collection-J and with the addition of ten
equivalent pairs of C and Java program files
from the Web. This collection was used to see
how well XPlag can detect plagiarism across C
and Java programs.

Some programs in Collection-X were obtained by
translating programs written in the C language to the
Java language using the Jazillian online translation
tool9 to reflect an approach students may take when
copying. We could not find any translation tools to
translate programs written in the Java language to
the C language. We found that some minor edit-
ing is still required to allow the code translated by
Jazillian to be compiled under GCC. For exam-
ple, we have to add the ‘static’ keyword before each
function called from the static main() function, and
replace ‘int int’ to ‘int’ because Jazillian trans-
lates ‘unsigned int’ as ‘int int’.

There are other automatic C-to-Java translation
programs available10, but most, such as C2J and
Ephedra produce output that is clearly machine-
generated code.

8http://www.seg.rmit.edu.au/zettair/
9http://www.jazillian.com

10http://www.jazillian.com/competition.html

4.1 Ground Truth and Evaluation

To evaluate the effectiveness of our approach, we need
the ground truth, that is, a list of programs that are
known to be plagiarised. The ground truth of each
set was determined as follows:

1. For Collection-C, we used exhaustive manual
comparisons. There were twelve groups of pro-
grams that we regarded as copied.

2. For Collection-J, because of time constraints,
we manually verified pairs of similar programs
identified by JPlag. We found seven groups of
plagiarised programs.

3. For Collection-X, we used the known cross-
plagiarised programs downloaded from the Web,
and the pairs which we translated using
Jazillian.

The difference in the way the ground truth for each
collection was prepared is likely to affect the absolute
performance of JPlag and XPlag. Nevertheless, we
believe that the experimental results reflect the rela-
tive performance of the two approaches within each
collection.

To quantify the performance of our detection, we
use the standard information retrieval measures of
precision and recall (Witten, Moffat & Bell 1999).
Precision is the ratio of documents retrieved that are
relevant, while recall is the proportion of the relevant
documents that have been retrieved.

Precision (P) =
relevant documents retrieved

retrieved documents

Recall (R) =
relevant documents retrieved

relevant documents

In the context of source code plagiarism detection,
precision represents the number of plagiarised pro-
grams at some point in the returned list. The higher
the precision, the more accurate the detection (fewer
false positives). Recall represents the number of pla-
giarised programs detected out of all plagiarised pro-
grams in the collection. The higher the recall, the
fewer copied programs escape detection (fewer false
negatives).

Three measures derived from precision and re-
call include R-precision, Precision@n, and interpo-
lated precision-recall. R-precision is the precision at
the R-th program on the list, where R is the number
of correct answers for the query; Precision@n is the
precision at the n-th program on the list; finally, the
interpolated precision at a particular recall level is the
highest precision observed at that or any higher recall
level. Interpolated precision-recall is usually shown at
the eleven 10% steps of recall from 0% to 100%.

Important to us are the Precision@2 (P@2), Pre-
cision@5 (P@5), Precision@10 (P@10), R-Precision
(R-P), and interpolated precision-recall scores. Pre-
cision@2 is useful for measuring how effective XPlag
ranks a copied program at the second position on the
list. Since the first program on the list is always the
query program, Precision@2 is effectively the preci-
sion when only the most similar collection document
to the query is examined. Precision@5 is used to eval-
uate the accuracy of XPlag in returning the top five
programs; this is a useful cut-off point, assuming that
a program is unlikely to have more than four other co-
derivatives in the collection.

We also evaluate the precision and recall values at
every 5% of the Relative Percentage Similarity (RPS)
to estimate an RPS value that can be used by users
as a good cut-off value to stop manual verification,

CRPIT Volume 48

282

No g
ro

up
ing

2-
gr

am

4-
gr

am

6-
gr

am

8-
gr

am

10
-g

ram

Group size

0

20

40

60

80

100

A
ve

ra
ge

 (
%

)

BM25 P@2
PlagiRank P@2
BM25 P@5
PlagiRank P@5
BM25 P@10
PlagiRank P@10
BM25 R-P
PlagiRank R-P

Figure 5: Performance comparison of the BM25 and
PlagiRank similarity measures for varying n-gram
sizes on Collection-C.

0 10 20 30 40 50 60 70 80 90 100

Recall (%)

50

60

70

80

90

100

P
re

ci
si

on
 (

%
)

XPlag (2-gram)
XPlag (4-gram)
XPlag (6-gram)
XPlag (8-gram)
XPlag (10-gram)
JPlag

Figure 6: Interpolated precision-recall using the
BM25 similarity measure and various grouping sizes
on Collection C.

although this is likely to be somewhat dependent on
the preference of the user for high precision or for high
recall.

To test whether differences in performance are sig-
nificant, we use the Wilcoxon signed rank test at
the 95% confidence level.

4.2 Experiments with Collection-C

In our first series of experiments, we aim to evalu-
ate the performance of XPlag in detecting plagiarism
involving only C programs (Collection-C), identify
the best grouping size to be used, and investigate
which ranking function, BM25 or PlagiRank, pro-
duces better results. Our query set contains twelve
programs taken from our ground truth. We find that
grouping keywords into n-grams improves the preci-
sion of XPlag, as shown in Figure 5. Although we
initially expected the PlagiRank similarity measure,
specifically designed for plagiarism detection, to out-
perform BM25, the reverse is true for most combina-
tions of n-gram sizes and evaluation measurements.
Interestingly, all XPlag results are better than the
JPlag baseline.

In our experiment, the BM25 with a group size
of 6 produces the highest precision of all evaluation
measurements. Figure 6 shows the interpolated pre-
cision at standard recall levels using the BM25 and 6-
grams. We see that precision drops sharply after 50%
recall (when half the incidents of known plagiarism in-
stances have been retrieved), but remains above 75%
for most n-gram sizes tested.

For comparison, we performed plagiarism detec-
tion using JPlag with the sensitivity value — or the
minimum match length — set to 6; this value is equiv-
alent to the grouping size of 6 that we used for XPlag.

Average
Precision at XPlag (%) JPlag (%)

2 100.00 79.00
5 44.00 32.00

10 22.00 16.00
R 80.00 71.00

Table 2: Performance comparison of XPlag and JPlag
on Collection-C.

0 10 20 30 40 50 60 70 80 90 100

Relative Percentage Similarity (RPS)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Precision at percentage-similarity
Recall at percentage-similarity

Figure 7: Average precision and recall values at 5%
intervals of Relative Percentage Similarity using the
BM25 and 6-grams on Collection-C.

Table 2 shows that XPlag outperforms JPlag in all
evaluation measurements. Furthermore, the inter-
polated precision of XPlag at standard recall levels
is significantly higher than JPlag, as shown in Fig-
ure 6. Table 2 also shows that XPlag accurately re-
turns copied C programs at the second position on
the list (Precision@2 is 100%).

In application, manual examination of highly
ranked documents is likely to be impractical, and
so we explore how the Relative Percentage Similarity
value relates to the tradeoff between recall and preci-
sion. We plot the average precision and recall values
at 5% Relative Percentage Similarity intervals in Fig-
ure 7. At 0% RPS, the recall reaches 100% (because
all programs in the collection are listed) and the aver-
age precision is around 4% (because many false posi-
tives are returned). When RPS is equal to or greater
than 60%, precision reaches 100% (no false positives),
but recall decreases from 66% (at 60% RPS) to 48%
(at 100% RPS). Requiring matches to have a higher
RPS results in more false negatives.

4.3 Experiments with Collection-J

In our next series of experiments, we evaluated the
performance of XPlag in detecting plagiarism in-
volving only Java programs (Collection-J). We in-
spected the JPlag detection result to obtain groups
of copied programs, and verified seven program pairs
as copied.

Using the copied pairs as the query set, we find
the result to be consistent with our experiments on
Collection-C. Figure 8 demonstrates that grouping
improves the performance of XPlag, and that BM25
produces better results than PlagiRank for most com-
binations of grouping sizes and evaluation measure-
ments. The figure also shows that BM25 with group
sizes of 4 and 6 produces the highest precision for all
evaluation measures, although Figure 9 shows that
using 4-grams leads to the highest interpolated preci-
sion results.

Table 3 compares the performance of XPlag and
JPlag for detection of plagiarism among Java pro-
grams. Since the ground truth of Collection-J
was generated from the JPlag detection result, JPlag
performance represents ideal performance here; this
is shown as a constant 100% interpolated precision-
recall in Figure 9. While XPlag appears to perform

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

283

No g
ro

up
ing

2-
gr

am

4-
gr

am

6-
gr

am

8-
gr

am

10
-g

ram

Group size

0

20

40

60

80

100

A
ve

ra
ge

 (
%

)

BM25 P@2
PlagiRank P@2
BM25 P@5
PlagiRank P@5
BM25 P@10
PlagiRank P@10
BM25 R-P
PlagiRank R-P

Figure 8: Performance comparison of the BM25 and
PlagiRank similarity measures for varying n-gram
sizes on Collection-J.

0 10 20 30 40 50 60 70 80 90 100

Recall (%)

50

60

70

80

90

100

P
re

ci
si

on
 (

%
)

XPlag (2-gram)
XPlag (4-gram)
XPlag (6-gram)
XPlag (8-gram)
XPlag (10-gram)
JPlag

Figure 9: Interpolated precision-recall using the
BM25 similarity measure and various grouping sizes
on Collection J.

less than this ideal, the difference is statistically in-
significant11. XPlag successfully returns all occur-
rences of plagiarism in the collection within the first
five answers — the Precision@5 is equal for both
XPlag and JPlag — and returns copied Java pro-
grams at the second position on the list with an av-
erage precision of 92.86%.

Figure 10 shows that the precision increases at
a constant rate from 10% RPS, and reaches 100%
at 55% RPS. From 25% RPS onwards, recall decreases
gradually from 100% to 48% at 100% RPS. We ob-
serve that for both Collection-C and Collection-J,
precision is greater than 90% (less than 10% false pos-
itives) and recall is greater than 80% (less than 20%
false negatives) at 50% RPS.

4.4 Experiments with Collection-X

We have shown that XPlag can detect intra-lingual
plagiarism with reasonable precision and recall val-
ues. To investigate the XPlag performance in de-
tecting inter-lingual plagiarism, we use Collection-X
and two different query sets: Queryset-C (containing
only the ten C programs); and Queryset-Java (con-
taining only the ten Java programs).

To explore whether we can use JPlag again as
our baseline, we tried to perform plagiarism detec-
tion on Collection-X using the JPlag C/C++ and
Java parsers in turn. However, neither was able to re-
veal inter-lingual plagiarism. The detection using the
Java parser excludes 97 programs due to unsuccess-
ful compilation; this is understandable since the Java
parser cannot process the submitted C programs. In

11We used the Wilcoxon signed rank test at the 95% confidence
level to compare the interpolated precision at standard recall levels
of XPlag (4-grams) and JPlag.

Average
Precision at XPlag (%) JPlag (%)

2 92.86 100.00
5 42.86 42.86

10 21.43 21.43
R 92.86 100.00

Table 3: Performance comparison of XPlag and JPlag
on Collection-J.

0 10 20 30 40 50 60 70 80 90 100

Relative Percentage Similarity (RPS)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Precision at percentage-similarity
Recall at percentage-similarity

Figure 10: Average precision and recall values at 5%
interval of Relative Percentage Similarity using the
BM25 and 4-grams on Collection-J.

contrast, although the C parser can process most of
the Java programs, only one incidence of inter-lingual
plagiarism is reported, and that because one of the
subroutines in both programs is identical. While this
is not surprising — after all, JPlag is not designed to
detect inter-lingual plagiarism — it leaves us with no
external baseline for Collection-X.

Figure 11 and Figure 12 show that BM25 with a
group size of 2 produces the best Precision@2 and
interpolated precision-recall for both query sets. Us-
ing Queryset-C, precision increases sharply from 0%
to 30% RPS, as shown in Figure 13 (a); while using
Queryset-Java, precision increases sharply from 0%
to 40% RPS, as shown in Figure 13 (b). Precision
reaches 100% for both query sets when RPS is equal
to or greater than 60%, while recall is above 90%
when RPS is equal to or less than 20%.

5 Discussion and Future Work

Plagiarism is a serious and widespread problem. Sev-
eral approaches have been proposed to reveal plagia-
rism in source code, but these only aim to detect pla-
giarism involving one programming language. In this
paper, we have described our novel approach, XPlag,
to detect inter-lingual plagiarism by inspecting the
intermediate code produced by a compiler suite. Us-
ing three different collections and employing the pop-
ular JPlag system as our baseline, we have shown
that XPlag can detect intra-lingual plagiarism in and
Java programs with reasonably good precision. Sig-
nificantly, we have also shown that XPlag can detect
inter-lingual plagiarism, albeit with lower accuracy
than for intra-lingual plagiarism.

While the RTL for variable declarations, function
calls, and branching statements of C and Java pro-
grams are similar, the RTL of Java programs often
contains instructions for processing classes and func-
tion calls of the standard Java library. For example,
there are fewer RTL instructions for the C ‘printf()’
function call than the Java ‘System.out.println()’
method call. We believe that the performance of
XPlag can be improved by enhancing the filtering pro-
cess to remove insignificant instruction groups, and
by classifying equivalent function calls in C and Java
RTL.

There are some limitations to our approach that

CRPIT Volume 48

284

No grouping 2-gram 4-gram 6-gram 8-gram 10-gram

Group size

0

20

40

60

80

100
A

ve
ra

ge
 (

%
)

OKAPI; Precision@2/R-Precision
PlagiRank; Precision@2/R-Precision
OKAPI; Precision@5
PlagiRank; Precision@5
OKAPI; Precision@10
PlagiRank; Precision@10

No grouping 2-gram 4-gram 6-gram 8-gram 10-gram

Group size

0

20

40

60

80

100

A
ve

ra
ge

 (
%

)

OKAPI; Precision@2/R-Precision
PlagiRank; Precision@2/R-Precision
OKAPI; Precision@5
PlagiRank; Precision@5
OKAPI; Precision@10
PlagiRank; Precision@10

(a) (b)

Figure 11: Performance comparison of the BM25 and PlagiRank similarity measures for varying n-gram sizes
on Collection-X using (a) Queryset-C and (b) Queryset-Java.

0 10 20 30 40 50 60 70 80 90 100

Recall (%)

0

10

20

30

40

50

60

70

80

90

100

P
re

ci
si

on
 (

%
)

XPlag (2-gram)
XPlag (3-gram)
XPlag (4-gram)
XPlag (5-gram)
XPlag (6-gram)

0 10 20 30 40 50 60 70 80 90 100

Recall (%)

0

10

20

30

40

50

60

70

80

90

100

P
re

ci
si

on
 (

%
)

XPlag (2-gram)
XPlag (3-gram)
XPlag (4-gram)
XPlag (5-gram)
XPlag (6-gram)

(a) (b)

Figure 12: Interpolated precision-recall using the BM25 similarity measure and various grouping sizes on
Collection X using (a) Queryset-C and (b) Queryset-Java.

0 10 20 30 40 50 60 70 80 90 100

Relative Percentage Similarity (RPS)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Precision at percentage-similarity
Recall at percentage-similarity

0 10 20 30 40 50 60 70 80 90 100

Relative Percentage Similarity (RPS)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Precision at percentage-similarity
Recall at percentage-similarity

(a) (b)

Figure 13: Average precision and recall values at 5% interval of Relative Percentage Similarity using the BM25
and 2-grams on Collection-X using (a) Queryset-C and (b) Queryset-Java.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

285

should be addressed in future work. First, all submit-
ted programs must be successfully compiled by the
compiler suite; if a program cannot be successfully
compiled, it must be corrected manually for further
processing. In an educational setting, this might per-
haps be addressed by penalising non-compilable code
as a matter of assessment policy.

Second, the results of our experiments are only
valid when using the GCC compiler suite for plagia-
rism detection involving programs written in the C
and Java languages. Preliminary experiments indi-
cate that the intermediate language produced by the
Microsoft Visual Studio .NET compiler suite can be
used for intra-lingual plagiarism detection. We plan
detailed experiments with this compiler suite.

Third, while the collections we used are realis-
tic for a typical computing courses, we must inves-
tigate how the effectiveness of our approach behaves
across other collections, and also for very large repos-
itories of historical or crawled program source code.
Associated work on intra-lingual plagiarism detec-
tion indicates that the underlying approach scales
well in both effectiveness and efficiency (Burrows
et al. 2004, Chawla 2003).

Finally, we plan to explore the alternative ap-
proach of using tokens produced by existing ap-
proaches (for example Sim or JPlag) instead of using
intermediate code.

Overall, we believe that our approach can greatly
help address the problem of inter-lingual plagiarism,
and in this way help reduce the incidence of code pla-
giarism in general.

Acknowledgments

We thank Professor Justin Zobel and Guido Mapohl
for their advice on this project, and Steven Burrows
for donating Collection-C.

References

Burrows, S., Tahaghoghi, S. M. M. & Zobel, J.
(2004), Efficient and effective plagiarism detec-
tion for large code repositories, in ‘G. Abraham
and B.I.P. Rubinstein Editors, Proceedings of
the Second Australian Undergraduate Students’
Computing Conference (AUSCC04)’, pp. 8–15.

Chawla, M. (2003), An indexing technique for effi-
ciently detecting plagiarism in large volumes of
source code, Honours thesis, RMIT University,
Melbourne, Australia, October.

Chen, X., Li, M., McKinnon, B. & Seker, A. (2002),
‘A theory of uncheatable program plagiarism de-
tection and its practical implementation’.
URL: http://www.cs.ucsb.edu/∼mli/sid.ps
[13 August 2005].

Gitchell, D. & Tran, N. (1999), Sim: a utility for
detecting similarity in computer programs, in
‘Proceedings of the Thirtieth SIGCSE Technical
Symposium on Computer Science Education’,
ACM Press, pp. 266–270.

Hernandez-Campos, F. (2002), ‘Lecture 31: Building
a runnable program’.
URL: http://www.cs.unc.edu/∼stotts/
COMP144/lectures/lect31.pdf
[13 August 2005].

Hoad, T. & Zobel, J. (2003), ‘Methods for identifying
versioned and plagiarised documents’, Journal of
the American Society of Information Science and
Technology 54(3), 203–215.

Jain, N., Sanyal, A. & Khedker, U. (2003), Re-
targeting GCC for cradle’s DSE processor, Tech-
nical report, Department of Computer Science
& Engineering, Indian Institute of Technology,
Bombay, Bombay, India.

Jones, E. L. (2001), Metrics based plagiarism mon-
itoring, in ‘Proceedings of the Sixth Annual
CCSC Northeastern Conference, Middlebury,
Vermont’, pp. 1–8.

Karp, R. M. & Rabin, M. O. (1987), ‘Effi-
cient randomized pattern-matching algorithms’,
IBM Journal of Research and Development
31(2), 249–260.

Prechelt, L., Malpohl, G. & Philippsen, M. (2000),
JPlag: Finding plagiarisms among a set of pro-
grams, Technical Report 2000-1, Fakultat fur
Informatik Universität Karlsruhe, D76128 Karl-
sruhe, Germany.

Robertson, S. E. & Walker, S. (1999),
Okapi/Keenbow at TREC-8, in ‘The Eighth
Text Retrieval Conference (TREC-8)’, pp. 151–
162.

Sheard, J., Dick, M., Markham, S., Macdonald, I. &
Walsh, M. (2002), Cheating and plagiarism: Per-
ceptions and practices of first year IT students,
in ‘Proceedings of the Seventh Annual Confer-
ence on Innovation and Technology in Computer
Science Education’, pp. 183–187.

Singer, J. (2003), GCC .NET—a feasibility study, in
‘Proceedings of the First International Workshop
on C# and .NET Technologies’, University of
West Bohemia, Plzen, Czech Republic.

Whale, G. (1986), Detection of plagiarism in stu-
dent programs, in ‘Proceedings of the Ninth
Australian Computer Science Conference, Can-
berra’, pp. 231–241.

Whale, G. (1990), ‘Identification of program similar-
ity in large populations’, The Computer Journal
33, 2.

Wise, M. J. (1996), ‘YAP3: Improved detection
of similarities in computer program and other
texts’, SIGCSE Bulletin 28(1), 130–134.

Witten, I. H., Moffat, A. & Bell, T. C. (1999), Manag-
ing Gigabytes: Compressing and Indexing Docu-
ments and Images, Morgan Kaufmann Publish-
ers, second edition.

Zobel, J. (2004), “Uni cheats racket”: a case study
in plagiarism investigation, in ‘Proceedings of
the Sixth Conference on Australian Computing
Education’, Australian Computer Society, Inc.,
pp. 357–365.

Zobel, J. & Hamilton, M. (2002), ‘Managing student
plagiarism in large academic departments’, Aus-
tralian Universities Review 45(1), 23–30.

CRPIT Volume 48

286

Programming with Heterogeneous Structures�

Manipulating XML data Using bondi

F� Y� Huang

School of Computing
Queen�s University
huang�cs�queensu�ca

C� B� Jay

Faculty of Information Technology
University of Technology� Sydney

cbj�it�uts�edu�au

D� B� Skillicorn

School of Computing
Queen�s University
skill�cs�queensu�ca

Abstract

Manipulating semistructured data� such as XML� does
not �t well within conventional programming languages�
A typical manipulation requires �nding all occurrences
of a structure matching a structured search pattern�
whose context may be di�erent in di�erent places� and
both aspects cause di�culty� If a special�purpose query
language is used to manipulate XML� an interface to
a more general programming environment is required�
and this interface typically creates runtime overhead for
type conversion� However� adding XML manipulation
to a general�purpose programming language has proven
di�cult because of problems associated with expressive�
ness and typing�

We show an alternative approach that handles many
kinds of patterns within an existing strongly�typed
general�purpose programming language called bondi�
The key ideas are to express complex search patterns as
structures of simple patterns� pass these complex pat�
terns as parameters to generic data�processing functions
and traverse heterogeneous data structures by a gener�
alized form of pattern matching� These ideas are made
possible by the language�s support for pattern calculus�
whose typing on structures and patterns enables path
and pattern polymorphism� With this approach� adding
a new kind of pattern is just a matter of programming�
not language design�

Keywords� Pattern Calculus� functional program�
ming� heterogeneous data structure� XML processing

� Introduction

When processing semistructured data such as XML�
a basic operation is to locate data items by their
position in a structured context� usually described
by a pattern or sequence of patterns� In some sit�
uations� these patterns can be as simple as match�
ing a single type of element� for example� in the
search for all population elements in a geographical
dataset� population is a simple pattern to match for
target data items� In other situations� search pat�
terns are more complex� but complex patterns can
usually be decomposed into simpler ones� For exam�
ple� in the search for the complex pattern population

of individual cities in Canada includes searches for a
country element with a countryName descendant ele�
ment having the value Canada� and some city de�

Copyright c������ Australian Computer Society� Inc� This pa�
per appeared at the Twenty�Ninth Australasian Computer Sci�
ence Conference �ACSC������ Hobart� Tasmania� Australia�
January ����� Conferences in Research and Practice in In�
formation Technology �CRPIT�� Vol� �	� Vladimir Estivill�
Castro and Gill Dobbie� Eds� Reproduction for academic� not�
for pro
t purposes permitted provided this text is included�

scendant elements which in turn have population de�
scendant elements �we do not use attributes in our
examples� because attributes can be transformed into
elements easily��

There are two ways to compose simpler patterns
into more complex ones� The �rst is vertical com�
position� as in the search for the population of cities
of Canada� Such complex patterns match XML el�
ements from di�erent levels of a hierarchy� We call
them vertical patterns� Location paths� expressed in
the popular XPath �Clark 	 DeRose
���� language�
fall in this category� The second is horizontal compo�
sition� as in the search for cities having child elements
for name� population� either timezone or continent�
and zero or more rivers� i�e�� the pattern �cityName�

population� timezone�continent� river��� Such com�
plex patterns match XML elements from the same
level of a hierarchy� We call them horizontal patterns�

Vertical and horizontal patterns can be combined
into even more complex search patterns� For exam�
ple� the pattern� contact phone numbers of city halls
of Canadian cities having child elements for name�
population and zero or more rivers� is a combination
of vertical and horizontal patterns�

Semistructured data processing poses a problem
for general�purpose programming languages� For ex�
ample� typical processing of XML data consists of a
search for all occurrences of a search pattern� extrac�
tion of the occurrences and some part of their context�
changes to these extracted data structures� and their
replacement in the entire data structure� General�
purpose programming languages have trouble typing
such programs because the target pattern can be com�
plex in di�erent ways and can occur in di�erent con�
texts
 and they also have trouble expressing the im�
plied universal quanti�er in the search�

These di�culties led to the design of special�
purpose XML query languages� emerging both from
the database community and the structured text com�
munity� The problem with using a query language
for manipulating XML is that it creates an inter�
face between data extraction and data use� For ex�
ample� in a typical web environment� the data it�
self is in a back�end system and the results of the
data query�transformation must be passed to a front�
end system for further processing� The existence
of a boundary requires a common format� usually
quite a low�level one such as a string� by which
the back�end and front�end communicate� This re�
quires extra programming e�ort� subject to secu�
rity holes and runtime overhead� This has been
called the impedance mismatch problem �Bancilhon
	 Maier
���� Wadler ������

There is an obvious bene�t to extending general�
purpose programming languages so that they can
handle XML manipulation in native mode� Doing so

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

287

reduces or eliminates the impedance mismatch prob�
lem� since computations at the browser� front�end�
and back�end can all be done in the same language
environment� Because such languages are typed� se�
curity of programs can be veri�ed statically� reducing
runtime overhead for dynamic type checking and the
chance of catastrophic failure or unintended leakage of
information� Also� because of the expressive power of
such languages� programs may be smaller and more
modular� making them cheaper and easier to build
and maintain�

Extending general�purpose programming lan�
guages to include XML manipulation directly has
proven di�cult� although a number of attempts have
made some progress towards this goal� Such attempts
usually end up with a new or extended language that
can only handle speci�c kinds of hard�coded XML
search patterns which cannot be passed as typed pa�
rameters� and cannot be further extended without
changing the language�

In this paper we show that an existing general�
purpose functional�programming language� bondi� in
which structures and patterns are treated as of equal
importance to data and functions� allows XML ma�
nipulation to be expressed in a natural and general
way� and without any extensions to the language�

Rather than aggregate the features found in the
existing wide variety of XML query and transforma�
tion languages� bondi treats structures and patterns
as �rst�class objects� Hence� control �ow can be de�
termined by structures� not just datum values
 struc�
tures and structure�matching patterns are well typed
and can be passed as parameters� This respect for the
data creates new power for programming with hetero�
geneous data structures�

Because bondi is a general�purpose language� XML
applications can be seamlessly integrated into other
applications� including web and web service applica�
tions�

In this paper we show that�

� Existing approaches to XML processing only
handle limited kinds of search patterns� with
weaknesses in either type�safety� parameteriz�
ability� extensibility to other kinds of patterns�
or all three

� The ability to handle structures and structure�
matching patterns in the same way as other pro�
gramming entities is the key to manipulating
XML in an e�ective� but also properly typed�
way

� This increase in expressiveness comes with
greater simplicity� rather than greater complex�
ity� due to more powerful parameterization

� With such expressiveness� adding a new kind of
pattern� either vertical or horizontal� to XML
processing is just a programming task� rather
than a language �re��design task�

The rest of the paper is organized as follows� Sec�
tion � reviews existing XML processing approaches�
then the theory on which our approach is based� Sec�
tion � introduces the use of patterns as �rst�class ob�
jects and the construction of complex patterns from
simple ones� and shows how these patterns contribute
to better type�safety and higher parameterization�
Section � brie�y shows how our approach extends
to new kinds of complex patterns� Section � draws
conclusion and discusses some open issues of our ap�
proach�

� Related Work

��� XML Query Languages

In the early years of XML� special�purpose XML
query languages such as Lorel �Abiteboul� Quass�
McHugh� Widom 	 Wiener
����� YATL �Cluet� De�
lobel� Sim�eon 	 Smaga
����� XML�QL �Deutsch�
Fernandez� Florescu� Levy 	 Suciu
����� XQL
�Robie� Lapp 	 Schach
���� and XSLT �Clark
����
were invented to handle query and transformation of
XML data� They are typically untyped� handling
both tag names and element content as strings�

These query languages have very limited program�
ming power� unable to express sophisticated compu�
tations on XML data� In many settings� the queries
and their results must be passed� at runtime� to other
application programs for further processing� These
transfers are usually in a low�level format such as
strings� requiring extra programming e�ort and run�
time overhead for parsing and type�checking� The
type safety of XML manipulation programs then re�
lies on type�checking at runtime by explicit check�
ing code inserted by programmers at development
time� The correctness and completeness of the check�
ing code are not guaranteed�

XSLT uses XPath �Clark 	 DeRose
���� expres�
sions as search patterns� XPath is powerful at ex�
pressing a wide range of complex vertical patterns�
but XSLT is limited in programming power� and in�
capable of sophisticated computation� The other lan�
guages are quite restricted both in expressing vertical
patterns and in programming� None of them is able to
express horizontal patterns systematically� although
they can hardcode individual ones �e�g� sibling axes
in XPath can represent simple horizontal patterns��

��� Native XML Processing

In recent years� attempts have been made to merge
XML processing into general�purpose programming
languages� Typical approaches use special types to
represent XML data and special expressions for search
patterns� in addition to regular programming lan�
guage features� The most recent e�orts include XJ
�Harren� Raghavachari� Shmueli� Burke� Sarkar 	
Bordawekar ������ XQuery �Boag� Chamberlin� Fer�
nandez� Florescu� Robie 	 Simeon ����� and C�
�Bierman� Meijer 	 Schulte ����� Meijer� Schulte
	 Bierman ����� focusing on vertical patterns� and
XDuce�Hosoya 	 Pierce ����� and CDuce�Benzaken�
Castagna 	 Frisch ����� focusing on horizontal pat�
terns� In terms of programming style� XJ and C� are
object�oriented� while XQuery� XDuce and CDuce are
functional�

XJ and XQuery enforce static typing against XML
schemas rather than native types of the program�
ming languages� and express search patterns using
embedded strings
 hence type mismatches still exist
to some extent� C�� XDuce and CDuce express XML
data and search patterns fully in native mode with
static typing� so that XML processing can be han�
dled within a single language�

The inability to parameterize structures and pat�
terns� and poor extensibility� are two common short�
comings in all these languages� First� these languages
can only parameterize XML data items� not struc�
tures of these items� nor the patterns to match the
structures� because the latter are not �rst�class enti�
ties� Traversal of heterogeneous XML structures has
to rely on runtime type casts even if the XML data

CRPIT Volume 48

288

are parsed into well�typed form� and patterns have to
be hard�coded in programs� Second� these languages
only allow speci�c kinds of patterns and cannot be
extended to other kinds easily in a type�safe way� An
extension to a new kind of pattern requires new fea�
tures to be added to the language
 the type system
has to be modi�ed
 and so does the compiler�

XJ extends Java with XML data types and XPath
expressions� capable of handling vertical patterns con�
forming to XPath
�� �Clark 	 DeRose
����� It ex�
presses XML element types as Java classes� and uses
special embedded strings containing XPath expres�
sions as search patterns� Static typing of these XML
types and embedded pattern strings against XML
schemas is enforced by a special type checker� Be�
cause the type checking is against XML schema types�
not native Java types� XML data and pattern expres�
sions are not fully type�safe in Java� Since search pat�
terns are just strings� there is a potential to include
patterns other than XPath expressions� but only in an
untyped way �or at best typed against XML schemas�
not Java�� Also� the special type checking requires
that schemas for XML data are always available and
trustworthy� which is unrealistic in many situations�

XQuery is designed as a query language but is
equipped with some basic functional�programming
features� It is intended to be a language for XML
processing analogous to SQL for relational data pro�
cessing� It aggregates many features from older
XML query languages and SQL� and its data model
and type system fully conform to XML and XML
Schema speci�cations� It is a superset of XPath ���
�Berglund� Boag� Chamberlin� Fernndez� Kay� Robie
	 Simon ������ making XPath expressions native�
and so it is fully capable of handling vertical pat�
terns of the XPath form� On the other hand� XQuery
has only very limited functional programming fea�
tures� Except in user�interactive settings� its expres�
sions are supposed to be embedded in host programs
in other languages for processing of query results� In
such situation� the impedance mismatch problem still
exists� just as in XJ� since XQuery is only typed in
terms of XML schemas� The mismatch between XML
schema types and host�language types weakens the
safety of XML processing programs� The only advan�
tage over XJ is that� in the absence of XML schemas�
XQuery expressions can still be type�checked to some
extent based on the type information in the expres�
sions themselves�

C� is intended to extend C�� another general�
purpose programming language� with native types
that support both object�oriented� relational and
semi�structured data models� so that it can unify the
processing of all these kinds of data� It introduces
three new kinds of types� stream� anonymous struct
and choice� roughly equivalent to list� heterogeneous
tuple and sum types in functional languages� It uses
the notion of content class for expression of XML
schemas� For example� suppose an XML schema for
geographical data has a country element type� with
name� population and zero or more provinces as child
elements� It then can be encoded as a content class
Country as�

class Country f
structf string name� float population� Province� provs� g�
��� �� appropriate constructor
void increasePopulation�float percentage�f���g
���

g

which contains an anonymous struct holding name�
population and a stream of Province� In turn� Province

is another content class �declaration not shown here�
for province element type� which may have children

name� population and a stream of City� and so on�
Suppose canada is an instance of Country� The pattern
to get the population of Canada can then be expressed
as canada�population� To accommodate XPath�style
vertical patterns� C� also introduces �lter expressions
such as Country�name���Canada��� and transitive query
expressions such as Country���population for popula�
tion data appearing at arbitrary depth below coun�
tries� For example� the following method returns a
stream of populations of cities in a given country�

virtual float� getPopulation�Country c�� f
foreach �p in c����City�population� yield return p�

g

The expressiveness of C� for patterns in XML pro�
cessing is roughly equivalent to XPath
�� �Clark 	
DeRose
���� without backward axes� In contrast
to XJ and XQuery� XML data and pattern expres�
sions in C� are fully native� expressed by identi�ers
all having C� native types� There is no impedance
mismatch problem� However� the pattern to search�
such as c	���City�population in the above method�
has to be hardcoded in the program and cannot be
passed to a method parameter in a typed manner�
so that it is not possible to have a general method
to search for user�de�ned target data� something
like get�somePatternType pattern� Country c	�� More�
over� adding other kinds of patterns� for example
XPath backward axes� self�nested structures� or hor�
izontal patterns would require large changes to the
language�

XDuce and CDuce are functional�programming
languages with regular�expression types added to
general�purpose functional language features� These
two languages use regular expressions to denote XML
element types� and to de�ne horizontal patterns to
match the elements� For example� the country ele�
ment type above can be declared in CDuce as�

type Country � �country	
Name Population �Province���
type Province � �prov	
Name Population �City���
type City � �city	
Name Population ����
type Name � �name	
String�
type Population � �pop	
Int�

Traditional Pattern matching can be used to locate
all population items and make some update to them
in a piece of XML data�

let updatePop �x�� 	
 ��� �� 	
 �� �
let
 y � �

xtransform
 x � with
�pop	
�z
 Int�� �	
 �pop	
�z���������� �

in y

This CDuce function uses regular�expression type

 �� ��� meaning an element with any tag name and
any content� to constrain both the parameter and re�
sult� and regular�expression type
pop��Int�� mean�
ing an element with tag name �pop� and an integer
as content� to match target items for update� It tra�
verses the whole structure of a given piece of XML
data x using the macro iterative operator xtransform�
matches any population element and increases it by

��

In XDuce and CDuce programs� patterns are well�
typed and handled natively� CDuce can even encode
XPath�like vertical patterns with child axes �though
not descendant axes�� However� just as for C�� search
patterns such as
pop��Int� in the above CDuce pro�
gram are not �rst�class terms and cannot be refer�
enced and passed as well�typed parameters� And new
kinds of patterns are not easy to include without sig�
ni�cant extensions to the languages�

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

289

��� bondi and Pattern Calculus

bondi �Jay ����a� is a general�purpose functional pro�
gramming language designed to allow many forms of
genericity� Instead of aggregating features for XML
data processing found in the existing wide variety of
XML query and transformation languages� bondi has
a very general extension to functional language fea�
tures to achieve a higher degree of modularity and
program re�use�

The extension is based on a sound theory� the
Pattern Calculus �Jay ����c� Jay ����b� Jay ����d��
which�

� treats structures and patterns as �rst�class ob�
jects with equal importance to data and func�
tions� allowing them to be referenced and passed
as parameters� achieving parameterization of
structures� access paths and search patterns

� allows a generalized form of pattern matching�
without requiring the pattern cases to be the
same type�

Hence� in bondi� control �ow can be determined by
structures� not just datum values
 and structures and
structure�matching patterns are natively well typed�
can be used as values� passed around as parameters�
and matched in a general way�

In the same way that data and function parame�
terization make data and function polymorphism pos�
sible� the treatment of structures and patterns and
the generalization of pattern matching in bondi make
possible three new forms of polymorphism� structure
polymorphism� path polymorphism and pattern poly�
morphism� They provide new expressive power and
create the opportunity to represent XML processing
in a well�typed� highly parametric and highly exten�
sible way� The next section will explain these forms
of polymorphism and how they can be used in XML
processing�

� Parameterizing Structures and Patterns

Programming �and maintenance� are simpler when
programs are built so that as much of their behav�
ior is captured by parameters as possible� Often
this has a secondary bene�t that the resulting pro�
gram is simpler and easier to understand �many of
the cases have become di�erent parameter choices��
Programming languages that support the passing of
data and functions as parameters �higher�order func�
tions� or use subtyping to pass objects of varying
behavior are plentiful� but until the Pattern Cal�
culus �Jay ����c� Jay ����b� Jay ����d� there has
not been general account of how to pass around in�
formation about structures� and patterns to match
these structures within a typed programming lan�
guage� The Pattern Calculus� and its implementing
language bondi� support all these kinds of parame�
ter passing� achieving polymorphism on data� func�
tions� subtypes� structures� paths and patterns within
one typed programming language� The latter three�
achieved by parameterizing structures and patterns�
are particularly suited to describe XML access paths�
and can greatly simplify programming for XML ma�
nipulation� This section explains these three new
forms of polymorphism by introducing a sequence of
XML processing examples requiring deep parameter�
ization� and shows how simple and type�safe it is to
design highly�parametric functions for XML data pro�
cessing�

��� A Motivating Scenario

Suppose we have a data repository containing geo�
graphical information and we want to carry out the
following operation� Add �� to the population of all
of Canadian cities� How could we express such an
operation�

The �rst way is what might be called assembly
language programming� a speci�c program that tra�
verses the structure in the repository� �nds all of the
places where Canadian cities are present� and then
�nds their population elements and adds
� to them�
The problem is that if we decide to change the prob�
lem in any way we have to rewrite and recompile the
program�

All high�level programming languages allow the
amount by which the populations are to be incre�
mented to be extracted and expressed as a parameter�
So we might write something like�

IncrementPopsofCanadianCities����

This small change increases the generality of the pro�
gram in the sense that we can make many di�erent
changes without rewriting or recompiling the pro�
gram� The program is generic with respect to one
argument�

Many programming languages also allow us to
make the operation that is to be done to the pop�
ulations of Canadian cities into a parameter as well�
So we might write�

UpdatePopsofCanadianCities�incrementby� ���

Now it is trivial to decrement the populations instead�

The next level of generality is to make the parts
of the structure where the function is applied into a
parameter as well� So we might write�

updateCanadianCities�Pops� incrementby� ���

Now it is trivial to increment �or decrement� cities�
areas instead of their populations� Most query lan�
guages� either for databases or for semistructured
data� are powerful enough to allow this kind of pro�
gramming� but many general�purpose languages have
trouble because the contexts that de�ne the regions
where the function is to be applied are constructed in
di�erent ways and look di�erent to the type system�

A further extension is to make the particular units
within Canada that are being considered into a pa�
rameter� So we might write�

updateInCanada�City�Pops� incrementby� ���

Now the program is generic in the pattern that de�
scribes where the increment is to be applied �cities
above populations�� It will work regardless of whether
cities are immediately below countries� e�g�� capitals
such as Ottawa or Washington D�C�� or accessed via
intermediate layers such as states or provinces�

Now let us parameterize on the country too�

update�CountryName �� �Canada��City�Pops� incrementby� ���

The code involves a side�condition to check on a re�
lated structure�

Now we see that the parameters �Canada�� City
and Pops are all related and it is the connections be�
tween them that de�ne the real parameter of interest�
So we could rewrite the code as�

update�Canadian City Pop� incrementby� ���

which has a �complex� pattern parameter� Now if
we want to search for more complicated structures
within the geographical database� we don�t have to
keep building more complicated functions
 rather� the

CRPIT Volume 48

290

complexity is expressed in the choice of a complex
pattern parameter of the standard update function�

This example shows the many levels of need for
genericity in processing semi�structured data� Most
programming languages and query languages can sat�
isfy some of these needs� but the following subsection
will show that bondi is the �rst to handle them all in
one language� and in a natural way�

��� Parameterizing in bondi

This subsection encodes the examples above in bondi

they have all been executed and also appear in the
�le �xmldata�bon� at the bondi web�site �Jay ����a��
Language features will be explained as they are used
without attempting a full introduction here� As a
convention� a� b� c� d� ��� are used as variables for
types and ���� w� x� y� z are variables for values�

De�ne a datatype of populations by

datatype popul � Pop of float��
�� unit� thousand people ��

This declaration introduces both a new type popul

and� a new term� its constructor Pop of type
float
�popul� We can de�ne a function for updating
populations by pattern�matching�

let �atPopIncrementBy�Percent�popul�	popul� x �
match x with
� Pop z �	 Pop �z � �������

When applied to a term of the form Pop x it returns
Pop �x�	��	�� This function can be parameterized with
respect to the action to be taken by de�ning

let �atPopApply��float�	float��	popul�	popul� f x �
match x with
� Pop z �	 Pop �f z���

let incrementBy�Percent x � x�������
let atPopIncrementBy�Percent � atPopApply incrementBy�Percent��

Evaluation of the new version of
atPopIncrementBy	Percent reduces to the old one
by substituting for the variable f�

More generally� we can consider increasing pop�
ulations stored in larger data structures� e�g�� lists
de�ned by

datatype list a �
� Nil
� Cons of a and list a��

This example de�nes a data type list which takes one
parameter� a� which is the type of the list elements� It
has two constructors� Nil which builds an empty list
and Cons which constructs a new list from an element
and a �sub�list� We use �x� y� z� ���� as syntax
sugar for �Cons x �Cons y �Cons z ������ and � � for
the empty list Nil�

The function

let �listMap� �a�	b� �	 list a �	 list b� f x �
match x with
� Nil �	 Nil
� Cons y z �	 Cons �f y��listMap f z���

takes a function f as its �rst argument and applies
it to every element of the second argument� a list�
listMap is de�ned by pattern�matching over the two
list constructors� For example�

listMap incrementBy�Percent

acts on lists of �oats and

listMap atPopIncrementBy�Percent

acts on lists of populations� This illustrates how
listMap is polymorphic in the choice of types a and
b that represent the list entries� i�e�� listMap is data
polymorphic�

Of course� populations may appear as data in all
sorts of structures� not just lists� This situation can
be handled using a mapping function that is para�
metric in the choice of structure type as well as in the
choice of the data types� i�e�� function

map�� �a�	b� �	 c a �	 c b

whose type includes a type variable c representing the
structure� e�g�� list� We say function map	 is structure
polymorphic� The de�nition of map	 is more complex
than its type suggests as it relies on the theory of data
structures developed in �Jay ����c��

Even map	� however� is not �exible enough for our
purposes� since a typical database is not going to be
as homogeneous as type �c popul�� having only one
type of elements� There is no reason to single out
populations while ignoring� say� city names and areas�

Instead� let us de�ne a function that acts on pop�
ulations wherever they occur� by

let �updatePops��float�	float��	d�	d� f x �
match x with
� Pop z �	 Pop �f z�
� y z �	 �updatePops f y� �updatePops f z�
� z �	 z��

Note that the patterns of three matching cases are
of di�erent types� This generalized form of pattern
matching is allowed by Pattern Calculus with a less�
restricted typing requirement �Jay ����c�� The �rst
case is the same as atPop but the second and third
cases cause the action to be propagated to all parts of
the data structure� That is� the pattern y z matches
against any compound data structure �e�g�� Cons s t��
and causes both parts of the compound �e�g�� Cons s

and t� to be updated� while the �nal case is used to
terminate at atoms of data� They can match di�erent
type of structure in each recursive call� For example�

updatePops incrementBy�Percent
Pop x�� Pop x��

evaluates to �Pop x	�	��	�Pop x��	��	�
 but

updatePops incrementBy�Percent �
Pop x���Pop x��

evaluates to ��Pop x	�	��	��Pop x��	��	� even though
the populations appear on di�erent levels of the data
structure� Thus updatePops is path polymorphic since
it can adapt to di�erent data access paths�

Examining the program above� it is clear that the
constructor Pop is playing a completely passive role�
and so is ripe for parameterization� De�ne

let �update�lin�a�	b��	�a�	a��	d�	d� nP f x �
match x with
� P z �	 P �f z�
� y z �	 �update P f y� �update P f z�
� z �	 z��

so that function updatePop can now be de�ned by
update Pop�

The program update arises naturally from our ear�
lier examples� but has a number of unusual technical
features� First some conventions� capitalized vari�
ables such as P are always free unless explicitly bound
as in nP �to be thought of as �P�� Thus� the pattern
P z contains a free variable P and a binding variable
z� Evaluation of update Pop will substitute Pop for P

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

291

so that the pattern above becomes Pop z� That is�
update is pattern polymorphic since it takes a parame�
ter used to build patterns�

Some care is required when substituting into pat�
terns� so such variables are required to be linear as in�
dicated by the linear type lin�a
�b�� meaning that the
function of type a
�b uses its argument exactly once�
Linear terms are explained in detail in �Jay ����b��
For this paper� we will pretend that all linear terms
are constructors though there are important alterna�
tives� So for now lin�a
�b� is the type of a constructor
with an argument of type a for a data structure of
type b� For example� Pop has type lin�float
�popul��

Similarly� we can de�ne a function check that sim�
ply checks that some property holds for some argu�
ment of the given constructor� by�

let �check�lin�a�	b��	�a�	bool��	d�	bool� nP f x �
match x with
� P z �	 f z
� y z �	 �check P f y� �� �check P f z�
� z �	 False��

where True� False are two constant constructors of
type bool as usual and �� is logical�or�

Suppose now that the goal is to update the popu�
lations of only cities� while leaving other populations
unchanged� For example� consider XML geographical
data conforming to the schema�

�xs�element name��cityname� type��xs�string��	
�xs�element name��popul� type��xs�decimal��	

���� unit� thousand people ��	
�xs�element name��river� type��xs�string��	

�xs�element name��city�	
�xs�complexType	�xs�sequence	

�xs�element ref��cityname��	
�xs�element ref��popul��	
�xs�element ref��river� minOccurs����

maxOccurs��unbounded��	
��xs�sequence	��xs�complexType	

��xs�element	

�xs�element name��provname� type��xs�string��	
�xs�element name��province�	

�xs�complexType	�xs�sequence	
�xs�element ref��provname��	
�xs�element ref��popul��	
�xs�element ref��city� minOccurs����

maxOccurs��unbounded��	
��xs�sequence	��xs�complexType	

��xs�element	

�xs�element name��countryname� type��xs�string��	
�xs�element name��country�	

�xs�complexType	�xs�sequence	
�xs�element ref��countryname��	
�xs�element ref��popul��	
�xs�element ref��province� minOccurs����

maxOccurs��unbounded��	
��xs�sequence	��xs�complexType	

��xs�element	

In an implementation of our approach� a validat�
ing XML parser is needed to transform XML data into
bondidata format for processing� Assuming such pars�
ing� the above schema can be denoted as bondidata
structures�

datatype cityname � CityName of string��
datatype popul � Pop of float��
�� unit� thousand people ��
datatype river � River of string��
datatype city � City of cityname � popul � list river��

datatype provname � ProvName of string��
datatype province � Prov of provname � popul � list city��

datatype countryname�CountryName of string��
datatype country � Country of

countryname � popul � list province��

Here � represents product type with the usual func�
tional programming convention� and constructor Pair

of a and b represents pairing data items� �x� y� is
syntactic sugar for Pair x y� and tuple �x� y� z� ����

is nested pairs� For programming convenience� we al�
ways encode children of an XML element as nested
pairs as in the above declarations� e�g� a city element
for Kingston are encoded as�

City��Kingston��Pop ������
�St�Lawrence River���

Now applying update Pop f to a piece of geograph�
ical data will act on all of the city� province and coun�
try populations indiscriminately� However� the func�
tion

update City �update Pop f�

gives the desired behavior� Although correct� this is
not quite satisfactory� since it requires two updates�
More complicated access patterns typical of XML will
then require three or more updates� and there is still
the challenge of checking side�conditions� e�g�� that
the city is in Canada�

The solution is to construct an abstract structure
type for the complex patterns that represents all of
the information about how to access the data items�
In simple cases this will be given by a complete hierar�
chical path� but in general the access information will
be partial� For example� it is not necessary to know
everything above a city to update its population� and
most information along the path down to that city is
not interesting� Let us call such a partial description
of a path a signpost since it guides the way to target
data items�

For the purposes of encoding the motivating ex�
amples� let us consider three sorts of signposts� It
will be easy to add more sorts as needed� A goal is
a constructor whose argument is the singular pattern
of the target item of interest� A stage is a constructor
that constructs a signpost from a leading simple pat�
tern of the path and the rest of the path� A detour is
a path that has a side�path with a �ltering condition
to check before continuing on the main path� Thus
we obtain a structure�

datatype signPost
at a b c �
�Goal of lin�c�	b�
at �a��a�� �b��b�� c �
�Stage of lin �a��	b�� and signPost a� b� c
�Detour of detourPath a� b� and signPost a� b� c��

Here � at� indicates pattern matching with di�erent
forms of the type arguments� signPost takes three
type arguments� the �rst two of which can be pairs of
types� detourPath is a helper structure to represent a
�ltering condition in a signPost�

datatype detourPath
at a b �
� DetourGoal of lin�a�	b� and �a�	bool�
at �a��a�� �b��b�� �
� DetourStage of lin�a��	b�� and detourPath a� b���

signPost and detourPath are similar in form to data
structures such as list� but they are not data struc�
tures any more because they contain pattern type
lin�a
�b�� which is not data type� We call them pat�
tern structures�

Note that in signPost an extra parameter type
c is used to expose the content type of the ��
nal element� the goal� for programming conve�
nience� It enables general programming of compu�
tation with such paths as parameters� For exam�
ple� to search for all populations with the partial
path ����country���city���popul�� the compound pat�
tern can be encoded as�

CRPIT Volume 48

292

let popPath� � Stage Country �Stage City �Goal Pop����

and to search for all populations of Canadian cities�
we use Detour�

let dpath � DetourGoal CountryName ����� �Canada����
let popPath� � Stage Country

�Detour dpath �Stage City �Goal Pop�����

Note that ���� is a boolean function of type
a
�b
�bool� which takes two arguments� so that �����

�Canada�� is a boolean function of type a
�bool�

Now function check can be modi�ed to act on
detourPath� and update be modi�ed to act on signPost�
as follows�

let �checkd��detourPath a b��	d�	bool� p x �
match p with
� DetourGoal nP f �	 check P f x
� DetourStage nP p� �	 check P �checkd p�� x��

let �updates��signPost a b c��	�c�	c��	d�	d � s f x �
match s with
� Goal nP �	 update P f x
� Stage nP s� �	 update P �updates s� f� x
� Detour dp� s� �	

if �checkd dp� x� �� the detour ��
then updates s� f x

else x��

Note that function updates ��s� stands for signpost�
invokes the simple version update for singular pat�
terns� It uses pattern matching to explore the struc�
ture of a given path pattern� that is� a signPost� If
the path pattern is a singular pattern� update is in�
voked directly� If the path pattern is a Stage� update

is used to search for the preceding singular pattern�
then from the matching points the search for the rest
of the path pattern continues� checkd also acts in a
similar way�

If the path pattern given to function updates is a
Detour� the function checks whether the detour path
got a match and whether the content of the match
satis�es the carried boolean function� If so� the func�
tion goes back to the starting point and continue the
search for the rest of the main path pattern� If the
detour does not get a match or the carried boolean
function fails� the function returns unchanged data�
Now it is straightforward to increment all populations
of all Canadian cities� if data is the data repository
containing geographical information�

updates popPath� incrementBy�Percent data

Note that this executes independently of the presence
of provinces�

��� Folding

Given bondi�s support for parameterization over data
structures and data access patterns� we can design
other general functions in much the same way as
map	� update and updates� In this subsection we de�
�ne functions for the folding operation� which is the
basis of many common operations on heterogeneous
data structures� We also show by an example the
simplicity of using the folding functions in XML data
processing�

A function foldleft	 can be de�ned �Jay ����c��
similar to map	� as�

foldleft�� �a�	b�	a� �	 a �	 c b �	 a

It traverses a homomorphic structure of type �c b�
with all elements being only one type b� applying a
given function to the values of all elements it �nds to

modify the given value of type a� For example� given
a de�nition of integer addition function add� the ap�
plication foldleft	 add � AListOfInt produces the sum
of all integers in a list of type �list int��

In the same way that update handles singular pat�
terns appearing in various contexts of arbitrary het�
erogeneous data structures� a generalized foldleftp
for heterogeneous structures can be de�ned� again
simply using three�case pattern matching�

let �foldleftp�lin�a�	b��	�e�	a�	e��	e�	d�	e� nP f x w �
match w with
� P z �	 f x z
� y z �	 foldleftp P f �foldleftp P f x y� z
� z �	 x��

A more sophisticated version that folds elements
satisfying a complex path pattern � signPost� looks
like this�

let �foldlefts��signPost a b c��	�e�	c�	e��	e�	d�	e� s f x w �
match s with
� Goal nP �	 foldleftp P f x w
� Stage nP s� �	 foldleftp P �foldlefts s� f� x w
� Detour dp� s� �	

if �checkd dp� w�
then foldlefts s� f x w

else x��

Many essential XML processing operations can be
expressed as using foldleftp and foldlefts� For ex�
ample� extracting information from XML data based
on a search pattern and a �lter is the most common
kind of XML query� It can be easily implemented by
foldlefts�

Suppose we want a list of names of cities whose
population is bigger than ��� �in units of thousands��
This query consists of three components� the pattern
to search for� ���city���cityname
 the data �lter� pop�
ulation � ���
 and the way to construct the result�
The search pattern is easy to describe by an instance
of a signPost� and the �lter is a boolean function car�
ried by a Detour pattern�

let dpath � DetourGoal Pop ��	� ��������
let namePath � Stage City �Detour dpath �Goal CityName����

Collecting matching items into a �nal result is a
foldlefts operation in bondi� An accumulating func�
tion will be given to the folding function as a param�
eter� to accumulate matching items� Users can use
di�erent accumulating functions for di�erent ways of
constructing the �nal result� If the result is to be a
list of strings for city names� i�e�� of type list string�
the accumulating function can be as simple as�

let �listInsert� list a �	 a �	 list a� x y �
match x with
� Nil �	 Cons y Nil
� Cons z w �	 Cons y �Cons z w���

Of course more sophisticated accumulating functions
can be designed� for example to check for duplicates�
or to construct results into a structure other than a
�attened string list�

Given the pattern and accumulating function� the
task is straightforward �again� data is the geographi�
cal data repository��

let nl � foldlefts namePath listInsert
 � data��

Many other essential XML processing operations�
such as extraction while preserving or restructuring
original structures� indexing and sorting� are basically
folding operations as well and can be implemented
in a similar way using the folding functions� More
examples are available in one of our earlier reports
�Huang� Jay 	 Skillicorn ����b��

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

293

Designing highly�parametric general functions in
bondi� such as update� updates� foldleftp and
foldlefts� is as simple as pattern�matching several
cases� Such simple functions allow us to perform a
large class of XML search and transformation oper�
ations within a general�purpose programming envi�
ronment easily� These functions can be formalized as
library components of bondi� The only task left for
users is to map complex search patterns into instances
of appropriate pattern structures such as signPost�
and this may also be automated�

� More Complex Patterns

Besides designing new generic functions� another way
to extend XML processing capability is to include
more kinds of patterns� In the previous section we
de�ned a pattern structure� signPost� which is able
to express a large class of common vertical patterns�
To handle more complex patterns� we can add more
constructors to signPost� or even de�ne new pattern
structures as appropriate� In bondi this is a program�
ming task� in contrast to other existing XML pro�
cessing approaches where new kinds of patterns need
new language features at best� and are impossible at
worst�

We have experimented how to extend our ap�
proach to handle complex patterns in XPath style�
vertical regular�expression style� and horizontal
regular�expression style� These patterns have been
considered individually in other existing approaches
but have never appeared fully together in one lan�
guage� Our extensions for these new patterns only
need declarations of new pattern structures and
changes to programs processing data using these
structures� None of our extensions require any
changes to the language bondi itself�

For example� we can declare a pattern structure to
represent regular expressions�

datatype regexp
at a b �
� Single of lin�a�	b�
� Kstar of lin�a�	b�
at �a��a���b��b��
� Concat of regexp a� b� and regexp a� b�
� Altern of regexp a� b� and regexp a� b���

and use this structure to encode patterns of horizontal
regular�expression style� We can design functions for
search� update and folding of target data matching
such patterns�

Further details about handling complex patterns
in XPath style� vertical regular�expression style and
horizontal regular�expression style can be found in the
report �Huang� Jay 	 Skillicorn ����a��

� Conclusion

The strongly�typed general�purpose programming
language bondi� based on Pattern Calculus� treats
structures and patterns as �rst�class objects� and al�
lows a generalized form of pattern matching with less
restricted typing rules� These increases in expressive�
ness create new forms of polymorphism� especially
path polymorphism and pattern polymorphism� Path
polymorphism enables traversal of data with hetero�
geneous structures� automatically adapting to di�er�
ent data�access paths on the �y in a well�typed man�
ner� Pattern polymorphism allows data�access pat�
terns to be passed as well�typed parameters� and be
composed into complex pattern structures�

With the new expressive power� we have shown
that we can de�ne general programs using gener�
alized pattern matching and parameterizing struc�
tures and patterns� implementing a large class of
essential XML processing operations� Compared
with those from other existing XML processing ap�
proaches� bondi programs are simpler and more mod�
ular due to higher parameterization and more free�
dom for pattern matching� These programs are also
safer because static typing is enforced not only on
data items and functions� but also on structures and
patterns�

With the new expressive power� we have also
shown that we can easily create new pattern struc�
tures or expand existing ones to handle new kinds of
complex patterns in XML manipulation� These pat�
tern structures can be treated as freely as data struc�
tures� They can be constructed� pattern�matched�
traversed at runtime� and passed as values to param�
eters� making programming with them very �exible
and simple� They carry all necessary type informa�
tion� enabling static type veri�cation for the programs
that use them� Extensions to new kinds of patterns
require only programming not� as in the other existing
approaches� language design or revision� This makes
our approach highly extensible� and applicable for a
richer set of complex patterns than other XML query
and transformation languages�

Given that our approach manipulates XML within
one programming language with simplicity� strong
type�safety and high extensibility� it is easy to inte�
grate back�end data�access programming with front�
end user�interface programming in a single system�
The approach thus represents the �rst steps to solv�
ing the impedance mismatch problem�

Of course� there is still a long way to go to use
this approach in practical applications� A lot of im�
plementation e�ort is required and some issues are
still open for further investigation�

� It is not expected that XML data users has to
do the bondi programming� They will even not
need to know about patterns and pattern struc�
tures� A library for common XML computations
such as search� update and folding can be built�
Pattern structure declarations and constructions
could be automated� and XML� and XPath�style
expressions could be adopted as syntax sugar�

� Currently only an interpreter for bondi is avail�
able� Given the high level of language abstrac�
tion and polymorphism� it is desirable to compile
bondi programs into a format that can be opti�
mized for performance�

� Examples given in this paper assume that XML
data are transformed into bondi data structures
in memory� When facing large�scale data� al�
though bondi data structures could also be stored
in external repositories� it is not yet clear how to
optimize the data access for the performance of
the repositories�

References

Abiteboul� S�� Quass� D�� McHugh� J�� Widom� J� 	
Wiener� J� �
����� �The Lorel query language for
semistructured data�� Int� J� on Digital Libraries
��
�� �� ���

Bancilhon� F� 	 Maier� D� �
����� Multi�language
object�oriented systems� New answers to old
database problems� in K� Fuchi 	 L� Kott� eds�

CRPIT Volume 48

294

�Future Generation Computers II�� Amsterdam�
North�Holland�

Benzaken� V�� Castagna� G� 	 Frisch� A� �������
Cduce� an xml�centric general�purpose language�
in �Proc� of ���� ACM SIGPLAN Int� Conf� on
Functional Programming�� ACM Press�

Berglund� A�� Boag� S�� Chamberlin� D�� Fernndez�
M�� Kay� M�� Robie� J� 	 Simon� J� ������� �Xml
path language �xpath� ��� � w�c working draft��
www�w��org�TR������WD	xpath��	������

��

Bierman� G�� Meijer� E� 	 Schulte� W� �������
�The essence of data access in c��� research�
microsoft�com��emeijer�Papers�popl�pdf�

Boag� S�� Chamberlin� D�� Fernandez� M�� Florescu�
D�� Robie� J� 	 Simeon� J� ������� �Xquery
���
An xml query language � w�c working draft��

Clark� J� �
����� �Xsl transformation�xslt�� Version

�� � w�c recommendation��

Clark� J� 	 DeRose� S� �
����� �Xml path language
�xpath�� Version
�� � w�c recommendation��
www�w��org�TR�xpath�

Cluet� S�� Delobel� C�� Sim�eon� J� 	 Smaga� K�
�
����� Your mediators need data conversion!�
in �ACM SIGMOD International Conference
on Management of Data�� Seattle� Washington�
USA� pp�
��
���

Deutsch� A�� Fernandez� M�� Florescu� D�� Levy� A� 	
Suciu� D� �
����� �A query language for XML��
Computer Networks ���

���

��

���

Harren� M�� Raghavachari� B�� Shmueli� O�� Burke�
M�� Sarkar� V� 	 Bordawekar� R� ������� XJ� In�
tegration of XML processing into Java� in �Proc�
WWW������ New York� NY� USA�

Hosoya� H� 	 Pierce� B� ������� �Xduce� A typed
XML processing language�� ACM Transactions
on Internet Technology �����

�
���

Huang� F� Y�� Jay� C� B� 	 Skillicorn� D� B� �����a��
Dealing with complex patterns in XML process�
ing� Technical Report ��������� School of Com�
puting� Queen�s University� www�cs�queensu�
ca�TechReports�Reports�����	�
��pdf�

Huang� F� Y�� Jay� C� B� 	 Skillicorn� D� B�
�����b�� Programming with heterogeneous struc�
ture� Manipulating XML data using bondi�
Technical Report ��������� School of Comput�
ing� Queen�s University� www�cs�queensu�ca�
TechReports�Reports�����	�
��pdf�

Jay� C� B� �����a�� �bondi web�page�� www	staff�it�
uts�edu�au��cbj�bondi�

Jay� C� B� �����b�� �Higher�order pat�
terns�� www	staff�it�uts�edu�au��cbj�
Publications�higherorderpatterns�pdf�

Jay� C� B� �����c�� �The pattern calculus�� ACM
Trans� Program� Lang� Syst� ������ �

 ����

Jay� C� B� �����d�� �Uni�able subtyp�
ing�� www	staff�it�uts�edu�au��cbj�
Publications�unifablesubtyping�pdf�

Meijer� E�� Schulte� W� 	 Bierman� G� ������� Uni�
fying tables� objects and documents� in �Proc�
DP�COOL ������ Uppsala� Sweden�

Robie� J�� Lapp� J� 	 Schach� D� �
����� �Xml query
language �XQL��� www�w��org�TandS�QL�QL
��
pp�xql�html�

Wadler� P� ������� �Links�� homepages�inf�ed�ac�
uk�wadler�papers�links�links	blurb�pdf�

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

295

CRPIT Volume 48

296

� �������	��

��������������������������� �"!#���$�&%

')(+*-,.*0/213,.4$*-56*879';:$<�*-,.,>=@?�*A=
BDC$EGFIH ,>J ELK =NMIO�P H 5RQ C M&(GMIS-=-TVU�=W4 C3H =
XZY 13,.4$*-56*[T\56][^R_I` EGK :a1 K Jb: H 4c1d:*#1

egf�h�ikjmlonpi
qDrts�uwvyx{z}|�~Avpu�v>���
|>�6~.x-|p�b|��6��sk��x��-�6rt|y�Rz}�6sk�-v��{z�~o��u}sW�6~6z��a�.�
z�~6���6vpxtv���|R�6s�u.�a|�r���|px{��|��6��sk��x{�+|>r{z}s�~.xtsk���6rt|��>rtv�����z}~6�
u}v�~6���ov���s���v�~o��rts�uwvyxtz�|>~ovpu��6vpxtv��ov��{sk�k�����R�As)�yvprtz}v��6u�s��
�o��s���x{|�r{sk�6r{s���sk~.x��o~6�R~6|y��~��os�uw�6�3z�~"xt�6sd�6rt|��>rtv�����z}~6�
u}v�~6���ov���sV�
|>r{rtsk�{�A|>~o�"xt|g�bzw�{��r{z}��z�~ovpx{|>rt�$z}~)rts�uwvyxtz�|>~o�k�

� �¡ i�jy¢-£&¤In�ik¥L¢ ¡
¦ s�uwvyxtz�|>~ovpu��6vyx�vp�ov>��s��[�ovm��s��6r{|y�>sk��x{�os�z}r��$|�r{x{��z}~§��xt|�r{�
z�~6�Dv�~o�¨�"vp~6z}�6�6uwvyxtz�~6�©uwvprt��s�v���|>�6~.xt��|����ovyxtvoª����oz�u}s
|��b��s���x��«|�rtz}s�~.x{s��§�6rt|��>rtv�����z}~6��u}v�~6���Avp��s��cvprts	s�¬6�
s�u}u}s�~.x
vyxg|�rt�>v�~6zw��z}~6�­��|����6�bx�vyxtz�|>~¨z}~®v¯�$vm�©xt�ovyxgzw��°os�¬Rz}�6u}s
vp~o�¯�"vpz}~.xtvpz}~ov��6u�s>��±��6skvpu}u}��ª#|>�b��sk�
x��«|�rtz�sk~.x{sk�;�6rt|���r�vp�"�
���6|>�6uw�²��sD�
|>���oz�u}sk�²x{|¨xtv���s­�a�6u}u�v��b�yv�~>x�vp�>s­|����6vpxtv
��xt|�rtsk�³z}~´r{sku}vpx{z}|�~ov�u#x�vp�6u}sk�V�o�bx�x{�6zw�Vzw���bz¶µg���6u¶x�ª#z���~6|�x
z�����|>�t��z}�6u}s�ªo���oz�u}s�s��>s�rcx{�os��6vyx�v���|R�6s�uZ�a|>r��
uwv��t��s����bz��\�
�as�r����ar{|>�@x{�Avyx[�a|�r3r{sku}vpx{z}|�~o�k�I�c�6zw�[�ov��Askr[�6rt|���|>�{sk�[v	r{s��
u}vpx{z}|�~ov�u6v�����|��6~.xW|��A|��6��sk��x��W�{�6z¶x�vp�6u}sc�a|�r[��|pxt�"�6rt|���r�vp���
��z}~6�gv�~o�gxt�6s�|�rt�>v�~6zw�{vpx{z}|�~g|��&rts�uwvyxtz�|>~ovpuZ�6vpxtvp�Av��{sk�k�
· vprtz}|��o��vp�o�6r{|.v����6s���xt|¯��x{|>r{z}~6�¯|��b��s���x����Avm��s)�Asks�~

�
|�~A��zw�bs�rtsk�-�¹¸Rz}���6u}sk��xºzw�"x{|���xt|�rts�x{�6s³|>�b��sk�
xt�§z�~�xt�6s
�6vyx�vp�ov>��sº���o��x;v��)x{�os��²v�r{s´��xt|�rtsk�²z�~¹�$|�rt�.z}~6����sk���
|�rt�8|���xt�6s�uwvp~o���ov���s�ªVxt|²�
rtskvpx{sDv�~¼»�½L¾�¿tÀ�Á³½�ÂmÃ�¿�ÄG��sks
s�� �o��ÄGÅ�u}|R|��ÇÆÉÈÊ�b|>~6z}�0ËkÌ>Í.ÎRªWÅ$rtskv�Ï��b�Ð�Iv�~6~6sk~-ª�Å$�6~6s��
��v�~�ÆÇÑ��6|>r{z§ËkÌ�ÌoË�ª�q$x{�Rz}~o�{|�~-ª�Åcvp~A�
z}u��6|>~-ª�Ò�s�Ó®z�x�xkª
Ò�z�x�xtr{zw���-ª�Ô³v�z�skr;ÆÕÈÊ�b|>~6z��ÖËkÌ>Ìp×oªdØ#s�|>~>xtz�sk�Êª�Ñ�Ï�����Æ
¸RÏkvp�ar{|>~�ÙpÚ>Ú>Ù�Û{Û��©qdu�x{skr{~Avyx{z}��sku��>ª[|�~6s���v�~�vpz}�Ü�a|�r�Ýo¿
Þ�ß
Ã�àwÃ�ÁÐ¿
áÊÀ�¿@ÄLq���r�vm�$v�uGª;Ò	vpr0Æ9â	s��Avp~6z©Ë�Ì�Ì�ãoª ¦ z}���Avpr��R�
��|>~-ª�ä$v�r{sk�8ÆÕ¸b���R�6�åË�Ì�Í�Ì.Û�ª�|>r­vpx�x{sk���bx¯v®��z�¬Rx{�6rts
|p���6vpxtv­��|R�6s�uw��ª3v>��z�~®ä3�+|>��sk�>v�ÄLÅ$z�skr{�"v�~-ªWÔ�s�z ��s�rgÆ
¸b���R�6u¶xts´Ù�Ú�Ú.æ�Û��èçd~6�a|�r{x{�6~ovpx{sku��>ªdx{�osk�{s¯v�u�u	r{s��b�o��s;xt�6s
x{z}��sgv�~o�¯���ov>�
s�s
µg�
z}s�~A�
��|p��x{�6sg��x{|>r{s�z}~­�cvm�b�����6zw���
�ovm��s��6r{|y�>sk��rtsk�{z}��xtv�~.x�x{|ºz����6rt|y��sk��s�~.xk�Vqd~­s���s�rt��z}~6�
vp�6�6rt|>v>����ÄL�bs��{��r{z}�As���z�~§¸bsk��xtz�|>~ºÙ�Û[z}�Wx{|�xtr{��vp~o����|b�bsku
x{�6sV�
uwv��t��s��Wv��3r{sku}vpx{z}|�~o�kª.��z¶xt�g|��b��s���x��W��|b�bs�u}sk�gv>�3rt|y�d�
z�~�xtv��6u�s������c�6zw�&z}�&~6|>~b�Gxtr{z}�Rz}v�ub��z}~o�
s�x{�osc��xtv�~o�6v�rt����|b�bsku
|p�3�
uwv��t�{sk��zw��é.�6z�x{s��bz¶êÊs�rts�~.x��ar{|>�¼xt�ovyx	|p�[r{sku}vpx{z}|�~o�k��±Ð~
�ovpr{x{zw�
�6uwvpr�ª&r{sku}vpx{z}|�~o���6|³~6|px����6�o�A|>r�x�v³~ovyxt�6rtv�uWz}~>xts�r{�
�6r{s�xtvpx{z}|�~"|p�Z�{�6�b�Ð�
uwv��t��s���ªprtsk�{�6u�x{z}~6��z}~gvV�yvprtz�s�x���|p�-��|����
�As�x{z}~6�¯v��6�6rt|>v>���6sk�kë&x{�6s���s)��vp~©��s��
|����ov�r{s��¯z�~©xts�rt�"�
|p�Êx{�6s�s
µg�
z}s�~o������z�x{�"���6zw���"|��6��sk��x��W��v�~��As���x{|>r{s���v�~o�
r{s�x{rtz�sk��sk�-ª6vp~o�§x{�6s�s�v��{sV|p�I�"v�z�~.x{sk~ovp~A�
s��
ì |y�$s��>s�r�ªW~6|>~6s�|p��x{�6s���s�vp�o�6r{|.v����6s���x{|©��xt|�r�vp�>s§zw�

vp�6u}s�x{|D��|����oz�~6s�s�µg�
z}s�~.x§�6vyx�v©��xt|�r�vp�>s)v�~o�¨r{s�x{rtz�sk�mv�u
��z¶xt�0x{�os­��|b�b�6uwvpr��
|>���oz�uwvyxtz�|>~0|p����u}v>�{�{sk�k�ÖÔ³|R�6�6u}v�r
�
|����6z}uwvyx{z}|�~²z}�§�6z��>�6u}���6sk�{z�r�vp�6u}s³���6sk~²�
rtskvpx{z}~6�Duwvprt��s
���b��x{s��"�k�g±«x�zw��vpuw�{|�v��or{s��«��|�~o�bz�x{z}|�~­�a|�r���s�z}~6�;v��6u}s�xt|
z�~R��s���x�z}~D�{z��>~6z¶����vp~.x�|>�bx{z}�"�{vpx{z}|�~´|p�d�
|b�bs�xt|�xtv���sgv>�R�
�mv�~.xtvp�>sV|p�#xt�6s�s
µg��z�sk~o�
�g|��#xt�6s��6~o�bskr{u}�Rz�~o��é.�6skr{�§u}v�~b�
íÊî�ï
ð�ñGòôó�õ�ö�÷ø�ù�ú�ú�û�ü�ý&þmÿ ö+ñ����ôò�����íÊî���ï þ ö	��ñ�
�î ÷ ò��Ðö\ð ü�
 � ÷���� õmò ÿ ï����ï���ñ���ïmï�����ñ������tö ��� ���
ö\ð����#ò���öGõ ý&þmÿ ö+ñ������ ÿ ò�����íÊî���ï þ ö	��ñ�
 ÷ ò���� ÷ �íÊî��! "��ñ���� ÷ �$# ý í�
mí ù�ú�ú�û&%Ðü(' î�)���ñLö ü � � ÿ �*����ò�� üIýIþmÿ öGñ+���ôò�� ü-, ���!�þ ��ñGð ù�ú�ú�û � íZî��� .��ñ���� ÷ � ÿ ò��0/�� ÿ �1��ñ ÷ õ2�����43�ñ+� ÷ öGò ÷ �cò��
 �! }î�ñ	�*���öGòôî�� � � ÷ õ��mî��ôî�ó�ð ü�5 î�� �76&8!� 5 �����mò���òôñ:9 ÿ öGò ;�ò���� �Lí�� ÿ ö+ñGî2���!�=<&ò����
> î�)�)mò�� ü 9?� � /���ïmñ+î@� þ ÷ öGòôî��A �î�ñ*� ÷ ���!����ò ÷ ü �mî�öB�C �î�ñdïmñ+î�Dmö�ï þ ñ	�ïpî ÿ � ÿ ï���ñ���ò öLö����	ï�ñ+î1;kò�������öGõmò ÿ ö��FE�ö&ò ÿ ò�� ÷ � þ �!��� �

�>�ovp�>s��"�c�6s�x��R�6zw��vpuWv��6�6rt|>v>���;�ov>��vp~´|��b��s���x{�+|>r{z}s�~.x{s��
�6rt|b�
s��{�ºr{s�é.�6sk��x�v�~²|>�b��sk�
xº�art|�� xt�6s´�6vyx�vp�ov>��s¯�o�{z�~6�
�{|���s	x{|R|�u+ªb�6�Ê�6vyxtsk�cxt�6s�|>�b��sk�
x�v�~o�ºx{�6sk~��o��s��cx{�osVx{|R|�u
xt|;rts
x{�or{~Dz�x�xt|;xt�6sº�ovyxtv��ov��{s��­Ó®z¶xt��v­���ov�r{s��©|��6��sk��x
��|b�bs�uAvp~o����|b�b�6uwvpr3��|����6z}u}vpx{z}|�~�z¶xW�"vm���Asd��|>�t�{z��6u}scx{|
��|����6z}u�s��{|���sV��s�x{�6|b�6���bz�rtsk�
x{u}�gz}~>xt|gé.�6s�rtz�s����
Ñ�~6sº��|�~o�{ské.�6sk~o�
sº|p����|b�b�6uwvpr��
|>���oz�uwvyxtz�|>~Dz}��xt�ovyx

xt�6scz�~.x{rt|b�b�o�
x{z}|�~�|��A~6sk���{�6�b�Ð�
uwv��t��s��I�{�6|>�6u}��~6|�x[���Avp~6�>s
xt�6sgrts��6rtsk�{s�~.xtvpx{z}|�~¯|p�cx{�os�z}r��{�6�Askr��Ð�
uwv��t�{sk�kª-s�� �o�&���6|>�6uw�
~6|�x­rtské.�6z}r{s�r{s��G�Lv>��xt|�rtz}�tvyxtz�|>~-�Ç�c�os¨�{z����6u}sk��x´�$vm� x{|
v>���6z�sk��s�x{�6zw�cz}��xt|�rtské.�6z}r{s�x{�Avyx�skv>���§�
uwv��t�$�ovm��s�z¶x��c|y��~
rts�uwvyxtz�|>~-�
ì s�rts�x{�6sk~´v�r{s��a|��or��bsk�{z�r�vp�ou�s��6rt|���s�r{x{z}sk��x{�ovpx����A���

v���|b�bs�u#�{�6|>�6u}�º�ovm�>s��
ÄBGdËmÛ§Ò	vyx�v���xt|�r�vp��s	zw�cs
µg�
z}s�~.xk�
ÄBG�Ù>Û)ä�|>���6z�uwvyxtz�|>~ºzw�c��|b�b�6uwvpr��
ÄBG3ã.Û§�c�os�rts	zw�c|�~os	rts�uwvyxtz�|>~º��s�r��
uwv��t���
ÄBGW×RÛ)ä�|>���6z�u}sk�º��s
xt�6|b�6�cxtv���s�v��6�mv�~.xtvp�>s�|���é.�6skr{z}sk�k�
Ñ��b��s���x��ov>��s��)v�~o�¹���b��x{sk������z�x{�¹��s�r���zw��xtvp~A�
s´�b|�~6|px
�ovm�>s"x{�osg�or���x��6rt|���s�r{x���ª[��|­u�s�x��o���a|b�
�o��|>~D��|R�6s�u}z�~6�
��u}v>�{�{sk��v��gr{sku}vpx{z}|�~o�kª�v>�g�bsk�t�
rtz}�As���z}~�ÄLq����6u}s�rºÙ�Ú�Ú>ã>Û��
Ñ�~6u}��|�~6s�|p�Wxt�6s�vp�6�6rt|>v>���6sk��x{�6skr{skz�~¯�{vpx{zw���os���Ä	G3ã>Û
ëZz�~
xt�6sW|pxt�6s�r-x{�6rts�s3v��6�6rt|>v>���6sk�Ax{�os3rts�uwvyx{z}|�~IÄL��ÛÊ�bsk�t�
rtz��oz�~6�dv
��u}v>�{��s��>|�u}��s�v>�$~6s��²�{�6�b�Ð�
uwv��t�{sk�$vprts	��r{s�vyx{s��Z� ì |y�$s���skrkª
v�u�u	|p��xt�6s¯v��6�6rt|>v>���6sk�"z}~R��|>��s³vD��s�x{�6|b�0�R�®�
|>~R��s�r{x��
z}~6�gv�rt|y�²z}~>xt|gvp~�|��6��sk��x�v�~o�)�6rt|R��s�s��bz�~o��z}~�x{�os��o�{�ovpu
|>�b��sk�
x��«|�rtz�sk~>xtsk�"��x��Ru�sIH&�bs�x{skr{��z}~6s�z�xt�c��u}v>�{�$vp~o�§s
¬bsk���bx{s
xt�6sd�
|>r{rtsk�{�A|>~o�bz}~6���
uwv��t�[�
|b�bs>���I|�v��6|��bx[xt�6z}�3vp�6�6rt|>v>���
���6sk~­��|����6z}u�z}~6�)z�~.x{|)é.�6s�rtz�s��	��|>�6u}�³�As�x{|)z}����|�r{x	x{�6s
���6|>u�sV~6|�x{z}|�~�|p���
uwv��t�cz�~.xt|�x{�6s�é.�6skr{�guwvp~o���ov���s�ªbr�vyxt�6s�r
xt�ovp~)s
¬b�6u}|�z�x�x{�6s�z}~6�6skr{sk~.xc~Avyx{�or{sV|p�[é.�6s�rtz}sk�k�
Ô�|�rtsd���oz¶x�vp�6u}sc�a|�r3x{�6sd�o�6r{��|>�{s�zw�3vp~"v�u¶xts�rt~ovyxtz��>sdvp�b�

�6rt|>v>���)x{|)|��b��s���x��«|�rtz}s�~.xtvpx{z}|�~-ªA|��bxtu�z}~6sk�³z�~¨ÄBJ.vm��Ù�Ú�Úp×Ê½
ª
J.vm�¯Ù�Ú�Úp×LK�Û
�­Ñ��b��sk�
xt��v�r{s§r{sk�6r{s���sk~.x{sk�´�R�´�6vyx�v³��x{rt�o���
xt�6r{s��c�6�6z}u¶x��art|��¼x{�6skz�rd�os�uw�6�kª6���6z}u�sV��s
xt�6|b�6��v�r{s	��z}��sk~
v>�#�a�o~o��xtz�|>~o�Ix{�ovpx��A��sc�ovpx�x{skr{~6�+�"vyx����6z}~6�dxt|	zw�bsk~>xtz¶�a��x{�6s
v��6�6rt|��6rtz}vpx{sgv�u��>|�rtz¶xt�6���;¸R�6�b�Ð�
uwv��t��z}~6�³v�~o�D�{�6�b�+x��.�oz�~6�
v�r{s��Avp~o�bu}sk�³�.���o�{z}~6�gx��R��s��yvprtzwvp�6u}sk�dx{|§rts��or{s���sk~>x��6~b�
�R~6|y��~��osku}�6�kª.z�~§v�~gvp�6�or{|.v����"��z}��z�uwvprWx{|oª.�6�bx$~6|px�z}�bsk~b�
xtz}�kvpu+ª�xt|�xt�ovyx�|��§Þ{»�MONyÂyÞ�àLÂ>½&P�¿
Ã©Ä ¦ sk����Ë�Ì�Í�Ì.Û�� �c�6zw�
�"vp�>sk�ºz¶x³s�v��{�¨x{|®�{vpx{zw���a�²�6r{|>�Askr�xtz�s��´ÄBGdËmÛ§v�~o� ÄBG3ã.Û��
�c�6s����6�6�Gx��R��s�r{sku}vpx{z}|�~o�{�6z}��z}�	��v��bx{�6rtsk�)�o�{z}~6�QKyàwÃ�À�Þ�àSR�ß
à\áÊÂyÁÐ»yÞ�Ã�z}~�r{sku}vpx{z}|�~o�k�[Ô³vyx����6z}~6��|�~��
|>~o��xtr{�A��x{|>rt�$z}~)x{�6s
�6rt|��>rtv�����z}~6�)u}v�~6���Avp��s���sk��|���sk��v�é.�6skr{�­|�~¯x{�os§�bzw���
��r{z}��z�~ovpx{|>rkª6�"v��.z}~6�gz�x�s�v��{z�skr�x{|ºr{sk�6r{s���sk~.xd��s�x{�6|b�6��v��
é.�6skr{z}sk��ÄBGW×RÛ��UTIz}~ov�u�u}��ªZ�{s��ov�rtvpx{s���|����6z}u}vpx{z}|�~�Ä	G�Ù�Û���v�~
��s��{�6�6��|�r{x{sk�¹�R�²x{rtskvyxtz�~o�0��s
x{�o|R�@�{��sk�
zwvpu}zw�{vpx{z}|�~@v��
xt�6s�v>�6�bz�x{z}|�~;|��3vg~6sk�N��v>��s�x{|�vp~³s�¬Rzw��x{z}~6�­ÄG�
|����6z}u}sk�oÛ
�ovpx�xts�rt~b�+�"vpxt���6z}~6���a�6~o��xtz�|>~-�
�c�6s�sku}v��A|>rtvpx{z}|�~º|p�-xt�6z}��v��6�6rt|>v>���gz}�c|>~6��|>z�~o���$|�rt���

�c�6s"�Av��{z}��x{�os�|�rt�³zw���{�6�6�6u}z�s��´�R�³x{�os�Ý6ÂpÁGÁÐ¿
Þ�á¨ÀtÂ�P�À@VWP�VRÃ
Ä	J>vm�ºÙ�Ú�Ú�×�ÀtÛ3���oz}�����ov>����s�s�~�z}���6u}s���s�~.x{s���z�~�xt�6s��6rt|p�
�>rtv�����z}~6��uwvp~o���ov���s f�¢ ¡ £I¥ Äa�6rt|�~o|��6~o��sk�YX���|�~o�R�«s��>s�Z.Û
Ä	J>vm�"ÙpÚ>Úp×�ÂkÛ����6zw���§zw��v��6u}sdx{|����o�6�A|>r�xc�
uwv��t��s��3v�~o�§�{�6�b�
x��R�6z}~6�o�®�c�6s���s³�kvp~¨�As��A��s��Dxt|D�
rtskvyxts�r{sku}vpx{z}|�~o��z}~�v

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

297

r{sku}vpx{z}|�~ov�u��6vpxtvp�Av��{s³��|©xt�ovyx)|��b��s���x��§��v�~0��s­�
rtskvpx{s��Zª
��xt|�rtsk�¯vp~o�­r{s�x{rtz�sk��s��³z}~´v)~ovpx{�6r�vpu��cvm���gä�u}v>�{����|����6z��
u}vpx{z}|�~³zw��v�u�rtskv>�b�§��|b�b�6uwvpr�z�~ f�¢ ¡ £I¥ �o�bxV�6|.s��d~6|�x���s�xs
¬b�6u}|�z�x�x{�6s���|y��skrc|p�&x{�6s�é.�6skr{�guwvp~o���ov���s��
�c�6zw�;�Avp��s�r³z}~.x{rt|R�6�o�
s���x{�os KyàwÃ�À�Þ�àSR�à\áÊÂyÁ+à\á � »�½L¾�¿�À
Á

R�»!K�¿@Povp~A�)�{�6|y�d�c�6|y�8z¶x	�{vpx{zw���os����6rt|���s�r{x{z}sk��Ä	GdË��WG3ã.Û��
±«x&�6~A�bs�rt�6z}~o�#��|pxt��xt�6s���u}v>�{�I��|R�6s�u.|p� f3¢ ¡ £&¥ v�~o��z�xt�I|�r{��>vp~oz}�tvyxtz�|>~g|p�&r{sku}vpx{z}|�~ov�u��6vpxtvoª.���oz}���)��vp~§x{�6sk~º��sV�o�{sk�
x{|�z}u}u��o��x{r�vyxts�x{�os�zw�bskv>�����c�6zw�3�6rt|y�Rz}�6sk�WvV�a|>�6~o�6vpx{z}|�~"�a|>r
s
¬b�6u}|�rtz�~6��Ä	GW×.Û
�
�c�6s���x{rt�o�
x{�6rtsc|p��x{�6sdrtsk��x[|p��x{�6s��ovp��s�rWzw�Wv>�&�a|�u}u�|y�d�k�

¸Rsk�
x{z}|�~�Ù�rts��Rz}s��d�����6rtr{sk~>x�|��b��s���x�rts�uwvyxtz�|>~ovpuW�"v��6�6z}~6�
x{sk���o~6z}é.�6s����0¸Rs���xtz�|>~�ã­rts��Rz�sk�d��x{�6s��ovpx�xts�rt~��kvpuw�
�6u}�o�k�
¸Rsk�
x{z}|�~§×��6rtsk�{s�~.xt��|��or�|>�b��sk�
x$��|b�bs�u+�W¸Rsk�
x{z}|�~�æ��br�vm�d�
�
|�~A�
u}�o��z}|�~A��vp~o�)�
|>~o��zw�bskrt�$�a�bxt�6rts���|>r{�Ê�

� � f��	�Rnpi�

�����Glbik¥G¢ ¡ l�����l����&¥ ¡��

������� �"!$#%��&('�)�# !('*!"�"# &�&,+�-�'.�/'�01 ��)��/2�#%'�34�	-�'*3%-�'.�/'�0 �/576
��)��/2�#%'�398"'�).�	-�:;- #/<�3=6
��)��/2�#%'�398"'�).�	-�:4#�5�5�)�3 &�&�6>

������� �"!;!"��# &�&$8%'���5�3%-�'?3"@�'�3%-�5�&,+�-�'��	'�01 ��)��/2�#%'�398"'�).�	-�:A!%B%��)�&%3C6>

������� �"!;!"��# &�&,+(< ����B"0�3�393"@�'�3%-�5�&,+�-�'��/'�01 ��)��/2�#%'�3D5�B%������3*&%#���#%)�0E6
������� �"!F5�B%�����"3;8�#���#")�0�G	-�!()�3�# &%3=H�I1)�3"'���)"-A&%#���#")�0KJALNMOL/PC6 >

>

������� �"!;!"��# &�&FQ�# &/� #��93%@�'�3%-�5 &,+R< ����B%0�3�31 ��)��/2�#%'�3D5�B%������3DS B%��)�&�6
��)��/2�#%'�3D5�B%������3T8�#���#%)�0�G	-�!/)�3�# &%3�H�I1)�3"'���)"-A&%#���#")�0KJALNMUP�VC6 >

>

T&z��>�6r{s�ËIH ¦ �6~6~6z}~6�"s�¬bv����6u�sVz}~ J>vm�yv
�c�6s�rts@vprts8�yvprtz}|��o�¨�cvm�R�¨z}~2���6z}��� |��6��sk��x��®��v�~���s
��v��6��sk� x{|årts�uwvyxtz�|>~ovpu³xtvp�ou�s���ÄBTo�o�{�{s�u}uDË�Ì�Ì.ÎbªXWVs�u}u�skr
ËkÌ�Ì>Í>Û
�¼�c�6sk�{s©��v�~²��sD�
uwv��t��z��osk�²z�~.xt|��a|>�6r��"vpz}~8|>�b�
��sk��xdrts�uwvyxtz�|>~ovpu��"vp�6�oz�~6��xtsk���6~6zwé.�6sk�cv>���
|>rt�6z�~6��x{|�x{�os�z}r
x{rtskvyxt��s�~.xd|p���
uwv��t�c�6z�skrtv�rt���oz�s��	ÄGqd���6u�skr�ÙpÚ>Ú�ã>Û
�
�c�6s�s
¬6vp���6u}s��>z��>s�~³z}~QT&z}���6rts§Ë���z�u}u��As��o�{sk�³x{|§z}u��

u��o��x{r�vyxtsVx{�6s���sV�a|>�6rd�"vp�o�6z�~o��x{sk���o~6z}é.�6s���� TIz}���or{s"Ë��bs��
�o~6sk��v"�
uwv��t�c�6z}s�r�vpr����.�§�o��z}~6�$J.vm�yv��{�R~.xtvy¬Z�W±«x	�
|�~.x�vpz}~o�
vp~©vp�o��x{r�v��
xZY.[\
] _^§�
uwv��t�V��z¶xt�´�{�6�Ê�
uwv��t��s��a`�\�b/c"dR[\	v�~o�
Y.egf"h i/^jd�d�vp~o��v,kNl/mOb(l�h��{�6�Ê�
uwv��t�"|p�nY.egf�h i/^�d�d>��Å$|�x{�
x{�6soY.epf"h i/^�djd�vp~o�qkNl/mOb(l�hR��u}v>�{�{sk�c�ovm�>s�vZmrl�h l%st^�ut[/vRswd	l/mxd
��s�x{�6|b�Z�­q�ËkÚ�y�z}~o�
rtskv>��snm
l�h lRsw^ºzw���>z��>s�~´xt|³|�r��bz}~ovprt�
s����6u}|y��s�s������6z}u�s���v��{�ov�u-s����6u}|y��sksk�dv�r{s��>z��>s�~�vnz�y z�~6�
�
rtskv��{s	z�~{mrl�h l%sw^.�
Ø-s�x$�A��~o|y�®u�|R|��"vpx��6|y�®s�v����g|��Zx{�6s	�"vp�6�6z}~6��x{s����b�

~6z}é.�6s��V��|>�6uw�;�"vp�­x{�os���u}v>�{�{sk�V�bs��o~6s��;z}~ T&z}���6rts�Ë�xt|
xtvp�ou�s���z�~�v�rts�uwvyx{z}|�~AvpuZ�6vyx�vp�ov>��s>�

� �o� � qdu}u�xt�6s­�{�6�Ê�
uwv��t�ºvpx�xtr{z}�6�bxtsk�º|p��vDrt|R|px­ÄG���6��Askr�Û��
uwv��t��vprts)��x{|>r{s��Dz}~¨v´�{z�~o��u}s§x�vp�6u}s���q����>z��>s�~�z}~
TIz}���or{s�Ù�xt�6s�vpx�xtr{z}�6�bxtsk�d|���x{�6soY.epf"h i/^�djd�ª�`�\�b/c"dR[\cv�~o�
k|l/m�b/l�h���u}v>�{�{sk��vprts��
|>���6z}~6sk�gz�~.x{|�v��{z�~o��u}sdxtv��6u}s�ªb��v�u�u}sk�
x{�6snY.[\
] \}^Vxtv��6u}s���±Ð~§xt�6zw���"v��6�6z}~6��xtsk���6~oz}é.�6s�x{�6s	�osku}�o�
x{�ovpx�v�r{s�~6|px�rts�u}s��yvp~.x	x{|)�ovpr{x{zw�
�ou}v�r�rt|y�@s�~.x{rt����z}u�u[��s
�A|>�6�6uwvyx{s��®��z�x{��~�b"h�h[�yvpu}�6s���� T6|>r§s�¬bv����6u�s>ª�vp~®|�r��bz��
~ovprt��`�\�b(c%d%[j\$��z�u}uZ�ovm�>s	v{~�b"h�h>s�~.x{rt�"�a|�rcxt�6s�mrl�h l%st^�v�~o�
v�l/mOb(l�hZ�osku}�6���
|>r{rtsk�{�A|>~o�bz}~6��x{|;x{�6s�Y.egf�h i/^�d�dgv�~o�$kNl	�
mOb(l�h&�
uwv��t�{sk��r{s�����sk�
x{z}��sku��>�¨ç�~b�a|�r{x{�6~Avyx{sku���z¶��x{�6skr{s�vprts

�"vp~R�)���6�6�«��u}v>�{�{sk�cxt�6s�~���|.��xd�As�uw�6����z}u}u#��s�~�b"h�h ��q�u}�{|oª
s�v�����x{z}��s	v�~6s��8���6�Ê�
uwv��t�Wzw�c�bs
�A~6sk�gx{�6s�s
¬bz}��x{z}~6��xtvp�ou�s
~6sksk�6�&xt|V�As�rtsk��x{rt�o��xt�6rtsk�����6z}�����"vp�>sk�[�6vpxtvp�Av��{s��"vpz}~b�
xts�~ov�~o�
s�s�¬R��s�~A��z}��s>����|px{sdx{�ovpx3vpu�x{�6|>�6�����6rt|���s�r{x��ºÄ	GW×.Û
�kvp~;��s"�{vpx{zw���Ask�Zª-�or{|>�Askr�xtz�s���Ä	GdË�Û
ª3ÄBG$Ù�Û�vp~o�¨ÄBG�ã>Û���z�u}u
�Lv�z�u+�

� ~.xtz¶x��
s�~.xtz¶x�� zw�
~ov���s
v��o�br{s��{�
�
|>�6r���s
�tvpuwvprt�
�6|>�6rt�

T&z��>�6rts�Ù H3Ñ ¦ Ô©Ë H3Ñ�~6sVx�vp�6u}sV�Askrdrt|.|�xc��u}v>�{�

� �o� � Ñ�~6s�x�vp�6u}s�zw�d�bs��o~6sk����s�r	�
|>~o�
rts
xts��
uwv��t���6�bxv��o��xtrtv>��x��
uwv��t��s��V�b|�~6|px���|�rtr{s�����|�~o�³x{|�v���z}~6�>u�s�xtv��6u}s��
G3r{|>�Askr�x��;Ä	G3ã.Ûc�6|�uw�6�c�a|>r���|�~o��r{s�x{s��
uwv��t�{sk�dv�~o�)x{�6skr{s�z}�
~6|�~6s�s��®xt|�rtsk��x{rt�o��xt�6rts³s
¬bzw��xtz�~6��xtv��6u}sk�º���6s�~ vD~6sk�
�{�6�b�Ð�
uwv��t��zw���bs
�o~osk�Z� ì |y��sk��s�r�ª[vpu}u$v��o��x{r�v���x��
uwv��t��vpx��
xtr{z}�6�bxtsk�"���o��xg��s;�b�o�6u�zw��vpx{s���z�~¨x{�os³r{sku}vpx{z}|�~¨|p�Vskv>���
��|�~o��r{s�x{s§�{�6�Ê�
uwv��t���{|�Ä	GdË�Û���z�u}u��Lvpz}uG� T6|>r�s�¬bv����6u�s>ª[z�~
T&z}���6rts§ã�xt�6sº�os�uw�6��|p��xt�6s)v��o��x{r�v���x{Y.[j\
] _^)��u}v>�{���a|�rt�
�ov�r�x�|��#x{�osVxtvp�ou�sV�"vp�6�oz�~6�.�$�a|�rcxt�6sp`�\�b(c%d%[j\
ª|Y.egf�h i/^�djd
v�~o�?k|l/m�b/l�h�rts�uwvyx{z}|�~Avpu�x�vp�6u}sk�k�@±Ð~�x{�6zw�§x{sk���o~6z}é.�6s³x{�6s
��r{s�vyx{z}|�~¯|p�dv�~os��å���o����u}v>�{���6|.s���~6|�x�rtské.�6z}r{s"rtsk��x{rt�o���
xt�6r{z}~6��|��-s
¬bzw��xtz�~6��xtv��6u�s���� ì |y�$s��>s�r�ª�z�x�zw�3~o|px$��u�s�vpr��6|y�
xt|���|����6z}u�sV��s
xt�6|b�6��z}~.x{|"é.�6s�rtz�s���ªb�{|�ÄBGW×RÛ�z}�cz}~��b|��6�6xk�
To|�r[s
¬6v����ou�s>ªpx{|���|����6z}u�scxt�6s�mrl�h l%sw^�ut[/vRswd	l/mxd���s
xt�6|b���a|�r
sk���ou�|y�>s�sk�#r{s�é.�6z�rtsk�I��s�z}~6��vp�6u}s3xt|	�6s
x{skr{��z}~6s$���6z}����s����
�6u}|y��sksk�Iz�~�x{�6s$x�vp�6u}s�vprts3|�r��bz}~ovprt�Vs����6u}|y��sksk�&vp~o�����6zw���
v�r{sV��v>���ov�uZs����6u}|y��sksk�k�

� �o��� q ��z}~6��u}s�xtvp�ou�s�z}�V�bs��o~6sk�³�a|�rVskv>���;�
uwv��t�kªArts
�
�.vpr��bu�s��{�g|p�����6s�x{�6skrºz�x)zw�)vp~²v��o��xtrtv>��x§|>r)v��
|�~A�
rts
x{s
��u}v>�{�kªIv>��z�u}u}�o��xtrtvpx{s��­z}~ T&z��>�6rts"×o��q ��z}~6�>u�s"zw�bs�~.xtz¶�A�kvy�
xtz�|>~³��sk��ªÊ��z}��sk~;v���x{�6s�dR[\
] _^] c)z}���o�{sk�­v����A|�x{�­v§�6rtz¶�
�"vprt�­v�~o�¯�a|�rts�z}��~´�>s��³xt|³u}z�~6�­x{�os"xtv��6u�s���xt|³r{sk�6u}z}�kvyx{s
xt�6s��
uwv��t�$�6z�skrtv�rt���R�>�

�d|y�2ÄBGdËmÛ�vp~A�®ÄBG3ã.ÛVzw���tvyx{zw���osk�Zª�vp~A�©v��6�bz�x{z}|�~A��x{|
xt�6s)��u}v>�{���6z}s�r�vpr����R�¯�6|­~6|�x�rtské.�6z}rtsgx{�os)rtsk��x{rt�o�
x{�6rtz�~o�
|��3s
¬bzw��xtz�~6�ºxtv��6u}sk�k��qduw��|AªWÄBGW×RÛ��kvp~­�As"�tvyx{zw���osk�³v>��x{�6s
Y.egf�h i/^�djd�vp~A��kNl/mOb(l�hk�
uwv��t��s���vprts3u}z�~6�>sk���R�Vx{�6s�dR[\
] _^] c
�osku}�-� ì |y�$s��>s�r�ªoz}~³|�r��bs�rdx{|§s���x�vp�6u}zw�������6s�x{�6skr	v�~³s����
�6u}|y��sks�z}����v>���ov�u-z�x�zw�d~6s��
sk�t�tvprt�"x{|)é>�os�rt�gx{�os�xtv��6u}s��a|�r
�kv��{�ovpu$s����6u}|y��sksk�k�D�c�6z}���"vm�©�6rt|y��sºs
¬b�Ask~o�{z��>s�ªWs�����s
�
��z}v�u�u}�;z��cx{�6skr{sgv�r{s"�"vp~R�¯���6�6�«��u}v>�{�{sk�	xt|;�
|>~o��zw�bskrk��¸R|oª
Ä	G3ã>Û���z�u}uc|�~6u}�©��s)�tvyxtz}���osk��z¶��z¶x�z}����|>�t��z}�6u}s§xt|­��r{s�vyx{s
u}z�~o�R�	xt|�~6s��Nxtvp�ou�s���ª#��|�rtr{sk�A|>~o�bz}~6�gxt|�~6s�� ���o�b�«��u}v>��s���ª
��z�x{�6|>�bxWrts
�Ð�
|����6z}u}z�~6�	xt�6sds
¬bzw��xtz�~o�	�or{|>��r�vp�"���#Ó­s��{�ov�u�u
rts
xt�6r{~ºx{|�xt�6z}�d�A|>z�~.xd��s�u}|y���

� �o��� �c�6zw��x{sk���o~6z}é.�6sºz}��v³�yv�r{zwvyxtz�|>~©|p�	Ñ ¦ Ô³ã;z�~
xt�ovyx�v KpàwÃ�À
Þ�àSR�à\á�ÂpÁ«»pÞ���¿@P"K�z}���A��s��)x{|"rtsk�
|>rt�ºxt�6s�~ov���s
|��bx{�6s$���6�6�«��u}v>�{��Äa|�r#xtv��6u�smÛZxt|����6zw����xt�6s3|>�b��sk�
xI��s�u}|�~6�.���
�c�6s��o��s�|��-�bz}�t�
rtz}��z}~ovpx{|�r��[zw�W�$s�u}u¶�«�R~6|y��~��ar{|>�Nxt�6sdrts��b�
rtsk�{s�~.xtvpx{z}|�~�|��3�yvprtz}v�~>x	r{s��
|>rt�6�k�VqÖ��|����A|.��z�x{s��6rtz��"v�r{�
�>s��d�As�uw�Vz}�I�bs
�o~osk��v�u�u}|y��z�~o�c�a|�rZxt�6s��{�6�6��|�r{x#|p�b���6u¶xtz��ou�s
z}~6�6skr{z�xtv�~o�
s>�&q��$�kvp~"��s	�{s�sk~gz}~7T&z��>�6rts�æ�v�~§v��6�6z¶xtz�|>~ovpu
�bzw�t�
rtz���z}~ovyxt|�rW�As�uw�"z}�$z}~o�
|>r{��|�r�vyxtsk��z}~§skv>���§�
uwv��t�[xt|�rts
�
uwvyxtz�|>~ovpu�x�vp�6u}s"r{sk�6rtsk�{s�~.xtvpx{z}|�~-�"�c�6s§v>�b�yvp~.xtv���s�|p�$x{�6zw�
v��6�6rt|>v����"|y�>s�rdÑ ¦ Ô³ã�z}��xt�ovyx�ªR�a|�r$x{�6s���|>��x$|��&vp~)v��6�6z¶�
xtz�|>~ovpuo��|�u}�6��~��Askr3���o�Askrt��u}v>�{��|>~6sd��v�~����osk����xt�6s���xtvpx{�o�
|��Êv�~"|��b��s���x�Äa���Avyx3�Rz}~o��|p�Zs����6u}|y��sks�vp~"s�~.xtr{��z}��Û&�art|��
��z�x{�6z}~"xt�6s�x�vp�6u}s���|�rtr{s�����|�~A�bz�~o�Vx{|�xt�6sV���6��s�r{�Ð�
uwv��t���&q��
z}~"Ñ ¦ Ô³ã	�As��a|�rts�ªoÄ	GdË�Û&v�~o�ºÄ	G3ã.ÛIv�r{s��tvyxtz}���osk��vp~A�ºÄ	GW×.Û
zw����|�rts"skv>��z}u}�¯�tvyxtz}���osk�-ª&�{z�~A�
sgz�x�zw��|>~6u��¯~6s��
sk�t�tvprt�³x{|
�Rzw��z�x�vp~6|�x{�6skrVxtvp�ou�s�z���xt�6s"|��b��s���x�zw�V�.~o|y��~;xt|)��s"z}~´v

CRPIT Volume 48

298

¸.xt�o�bs�~.x � ���6u}|y��sks ä$v>���ov�u
s�~.xtz¶x�� z}� s�~.xtz¶x�� zw� sk~>xtz¶x�� zw�
~ov���s ~ov���s ~ov���s
v��o�br{s��{� v��o�br{s��{� v>�6�brtsk�t�
�6|>�6rt� �tvpuwvprt� �tvpuwvprt�

u}s��>s�u

T&z}���6rts�ã H�Ñ ¦ Ô­ÙWH3Ñ�~6s	xtv��6u�s���s�rd��|�~o��r{s�x{s��
uwv��t�

� ~.xtz¶x�� ¸.xt�o�bsk~>x
s�~.xtz¶x�� zw� sk~>xtz¶x�� zw�
~ov���s ��|��6r���s
v��o�br{s��{�
� ���6u}|y��sks ä$v>���ov�u
s�~.xtz¶x�� zw� sk~>xtz¶x�� zw�
�tvpuwvprt� �6|>�6r��

T&z}���6rtsV×�H�Ñ ¦ Ô³ã�H3Ñ�~6s	xtvp�ou�s���s�rd��u}v>�{�

���6�6�«��u}v>�{�k�²�c�ovpxgz}�kª$x{�6s;��r{s�vyxtz�|>~�|��V�{�6�b�Ð�
uwv��t��s���x{�ovpx
vprts	~o|pxd�o�{sk�)z}����|>�{sk��vpu}��|.��x�~6|"|y�>s�rt�6skv>�g|>~)s�¬bz}��x{z}~6�
�6r{|>��r�vp�"�k�
¸R�6���"vprtzw��z}~6�oª�z�xIvp�6��skv�rt�Zx{�ovpx�Ñ ¦ Ô�×��ov>�Êx{�osW��rtskvpx��

sk��xc�or{|>��zw�{s�ªR�6rt|y�.zw�bs��g|�~os�zw��vp�6u}s�x{|"v��6�§��s
x{�o|R�)�{�As��
�
zwvpu}z}�tvyxtz�|>~o�Zxt|�s
¬bzw��xtz�~o���
|>���6z�u}sk���
|b�bs�Ä	G�Ù>Û��IÔ³|�rtsW��sk~b�
s�r�vpu}u��>ªÊx{�6skr{s�zw�	x{�6s"zw�{�{�6s�|p�$�6|y�@x{|���|�~R��skr�x	x{�6s��osku}�o�
vp~o�©��s�x{�6|b�6��|p��v³��u}v>�{���6s
�o~6z�x{z}|�~�z�~.x{|;r{sku}vpx{z}|�~o��v�~o�
é>�os�rtz�s����

� ��������lbi�i	�.j ¡�� l �Ln�¤��L¤&h
�c�6s��ovyx{x{s�rt~��kvpuw�
�6u}�o��ÄBJ.vm�DÙpÚ>Úp×�ÀtÛ��{�6�6��|�r{xt���ovpx�xts�rt~b�
��vpxt���6z}~6���a�6~o��xtz�|>~o�$z�~§���6z}���º�bz¶êÊs�rts�~.x���v>��s��W�"vm���Avm��s
�bz¶êÊs�rts�~.x�x��.��s��{�As��
zwvpu}z}�tvyxtz�|>~o��|��[v§�
|�����|�~��bs��Lvp�6u�x	v>�
��sku�u-v>�����6�o�A|>r�xtz�~6�"�{�As��
zwvpu}z}�tvyxtz�|>~gxt�6r{|>�6�����{�6�b�+x��.�oz�~6�A�
�c�6z}�&�{sk��xtz�|>~���z}u�u.z}�6s�~.x{z��a����|>��s[�a|�xt�6s3�>s����askvpx{�6rtsk�#x{�ovpx
vprts	rts�u}s��yv�~>xcxt|�xt�6zw���ovp��s�r��
�c�6s"�{�.~.x�vy¬³|p�3x{�6s�ÝoÂyÁ+Á«¿�Þ�á6Ã�ÄL��s�xtvp�+�yvprtzwvp�6u}s��ÊÛ�v�~o�

Þ{Â�M�ÁÐ¿
Þ�R�ÃdÄa��s
x�vy�«�mv�r{zwvp�ou�s�	�ÛW|��Zx{�6sV�ovpx�x{skr{~º��vpuw�
�ou��o��zw�
��z}��s�~)�R�
Ý�
�
�
����&À��RÝºÝ
Á�
�
�
����&À��#Á3Á�� l	\cÝ b	mrdgÁNd%h mxdgÁ���h d�\���
NÁC] [)Á

�c�6s0NyÂyÞ�àLÂ>½&P�¿
Ã3vprts�rts��6rtsk�{s�~.x{s����.��x{�os���s
x�vy�«�mv�r{zwvp�ou�s��I�
�c�6s�À�»yá6Ã�Á+Þ�VoÀ
ÁÐ»yÞ�Ã§ÄL��s
xtvp�+�yv�r{zwvp�6u}s���Û�vprts)��|�~o��xtv�~.xt��|p�
x{�6sVuwvp~6�>�ovp�>s����6zw���º�b|�~6|�xcv��6�As�vpr�vyx$x{�os	�oskv��§|p�Iv�~R�
s��yvpu}�ovyxtz�|>~§rt�6u}s��3Ñ�x{�6skr$��|�~o��xtv�~.xt����vm�"��sVv��6�bs��gz��I�bs��
��z}r{s����6�bx�x{�6skz�r�s��yvpu}�ovyxtz�|>~"r{�ou�s��W��z}u�uA~6|px$�As���|�~o�{zw�bs�rtsk�
s
¬b�6u}z}��z¶xtu���z�~�xt�6sd�a|>r{�"v�uo�bs��>s�u}|��6��sk~>x��&�c�os�ÂtÝ>Ý?P àLÀ�ÂyÁ+àL»yá
� 	Iv��6�6u}z�s��&x{�6sc�a�o~o��xtz�|>~ � x{|Vz¶x��Wvprt���o��sk~.x�	����c�6sc~6|y��skux{s�rt�å�a|>r{�åzw�$x{�6sg¿��>Á«¿�á6Ã�àL»yáZl	\ fnb/mxd m�dRh mrd \$���6s�rts��)zw�
x{�6scÝoÂyÁ+ÁÐ¿
Þ�áAª � z}��xt�6s�Ã+Ýo¿tÀ�àLÂ�P¶àwÃ
ÂpÁGàL»pá�v�~o��	�z}��xt�6s2K>¿��
Â�VWP ÁG��c�6sºu}s
x{�Gxts�rt� h dO\�� � �] [�	��6z}~o�6���¨x{| � z�~!	��D�c�6s�bsk��u}v�rtvpx{z}|�~�z}��r{s��
�6r��{z��>s�ªbz}~�x{�ovpx��arts�s�|b�����6r{rts�~A�
sk�d|p�"�
z�~ � v�r{s	��|��6~o�ºxt| � z¶x���sku¶���� ¬Rxts�~o�{z�|>~o����|����oz�~6sgv��o��x{r�v���xtz�|>~­|y�>s�rV��|��6~o�´�yv�r{z��
vp�6u}sk�"��z�x{�8v´�6rtv�~o���6z}~6�©�
|>~o��xtr{�A��x{z}|�~#� To|�rgs�¬bv����6u�s>ª
x{�6s$#6�«v��o��x{r�v���xtz�|>~%#&�(' � zw�W�{�6|�r{x��«�ov�~o���a|>r[x{�6s�s�¬Rx{s�~A��z}|�~

l	\)� b	mrd�Ã�d%h mxd�dRs_s
���6s�rts d%s}s@zw�2��|>��s �a|�rt� |p�Nskr{rt|�r¼x{skr{��ªès�� �o�®v

� ~>xtz¶x�� ¸Rx{�o�bsk~.x
sk~>xtz¶x�� zw� ¸Rx{�o�bsk~.x zw�
~ov���s ��|��6r��{s
v>�6�brtsk�t� �6z}�t�
rtz���z}~ovyxt|�r
�bzw�t�
rtz���z}~ovyxt|�r
� ���ou�|y�>s�s ä$v>���Avpu
� ���ou�|y�>s�s zw� ä$v>���Avpu zw�
�tvpuwvprt� �o|��6r��
�bzw�t�
rtz���z}~ovyxt|�r �6z}�t�
rtz���z}~ovyxt|�r

T&z}���6rts�æWHWÑ ¦ Ô�× H[Ñ�~osdxtv��6u}sd�Askr$��u}v>�{�3��z¶xt�ºv��6z}�t�
rtz����
z}~ovyxt|�r$�osku}�

~6|>~b�+x{s�rt��z�~Avyx{z}~6��s�¬R�or{s��{�{z�|>~¨ÄG���A���Dv��Zh d�*�+�,�D] [���Û
|>rcv�~�s
¬6�
sk�bx{z}|�~-�
�c�6s�Ã�Vo½
Ã�ÁGà\Á�VbÁGàL»pá � 1.-0/ � > |p�&v�xts�rt� - �a|>rcv��yvprtz}v��6u�s��z}~)x{s�rt� � z}�d�6s
�o~6s��)z�~ºx{�6s��o���AvpuZ�cvm��ªbv���v�r{sV��|��6~o��yvprtzwvp�6u}sk�Vvp~A�³xt�6s�z}r�1#�«��|�~R��skrt�{z�|>~-���c�6s�Á«¿�Þ�R�Ã�vprts"�bs
�

�o~osk�®xt|���s­s�é.�6z��yv�u�sk~o�
s´�
uwv��t��s��g|���rtvm� xts�rt���)�6~A�bs�r
1#�«��|�~R��skrt�{z}|�~-�
q À�»yáoÃ�ÁGÞ�VoÀ�Á«¿�K�ÁÐ¿
Þ�R zw�$v�x{skr{�å���o|>�{s��6s�v��gzw�cv���|�~b�

��x{rt�o��xt|�r�ªZzG� s��-v§x{skr{� ���6z}���¯zw�Vs�z�x{�6skrVv���|�~o��x{rt�o��xt|�r	|�r
|��#x{�os��a|�rt�2	43�	65Vz}~)���oz}����	43�zw�d�
|>~o��xtr{�A��x{s��Z�WØ-s�x$�	�As
v��
|>~o��x{rt�o��xt|�r��gqèx{skr{� - À�ÂyáoáÊ»yÁ�½�¿tÀ�»�R�¿7��z���z¶x�zw��skz¶�
xt�6s�r$v��
|>~o��xtr{�A��x{s���x{skr{�è|pxt�6s�r3x{�ov�~8��|�r$vp~"s�¬.xts�~o�{z}|�~-�
q x{s�rt� - ÀtÂpáoáÊ»yÁ�½�¿�Àt»�R�¿�Â�Ý�ÝLP àLÀ�ÂyÁ+àSNm¿�z���z�x�zw��s�z�x{�6skr�v
��|�~o��x{rt�o��xt|�rc|�r�v�~)s�¬Rx{s�~A��z}|�~-�

Ä l	\���b	mrd � dRh mrd*	�Û9	 3�: � 1 	 3 / � >Ä l	\�� b	mrd � dRh mxd7	�Û�� : �Ä l	\�� b	mrd � dRh mxd7	�Û9	 3�: 	�	 3z��;	43	��vp~o~6|px���sk�
|>��s<�
Ä l	\;� 3 � 5 b/mxd � dRh mxd*	�ÛVÄ�	 3 	 5 Û :Ä}l	\��=3

b/mxdal	\�� 5 b	mrd � dRh mrd<#?>@' 		ÄA� 3 >6Û
dRh mrd<#?�CBD>@' 	VÄE�F>bÛ
Û9	43�	659z��;	43�z}�dv���|�~o��x{rt�o��xtsk�§x{skr{�
Ä l	\;�@3��G5pb/mxd � dRh mxd*	�Û9	43 : 	�	43z���	 3 �kvp~6~6|�x��As��
|���s�vp�o�6u�zw��vpx{z}��s
h dO\���� �] [�	 : 	 1 � / � >

TIz}���or{saz H ¦ sk�b�o�
x{z}|�~�rt�6u�s��$�a|�rcxt�6s��ovyx{x{skr{~���v�u}���6u��A�
�c�6sD½tÂyÃ�àLÀ�Þ{¿�K�VoÀ�Á+àL»yá®Þ�VWP�¿
Ã�|p��x{�6s���|�~o��x{rt�o��xt|�r���v�u¶�

���6u��A�"vprtsº�>z��>s�~��R�©xt�6s�r{sku}vpx{z}|�~ : z}~ T&z}���6rts z6��Ø#s
x
�o�	�
|>~o�{z}�bskr�xt�6s���v��{sk�k��¸R�6�6��|>�{s�xt�ovyx	x{�os��Avyx�xts�rt~³zw�	v
�yvprtzwvp�6u}s��I�3¸R��sk�
zwvpu}zw�{vpx{z}|�~)z}��v>���6z�sk��s��g�R�8HZ�«r{s��b�o�
x{z}|�~-ª
��z�x{�©xt�6sºv�r{�>�6��s�~.x - �Askz�~o�­�{�6�o��x{z�x{�bxtsk�©�a|>r��¨z�~Dx{�6s
�{�As��
zwvpu}z}�tvyxtz�|>~-�[¸R�6�6��|>�{sdxt�ovyx$x{�6s	�ovpx�x{skr{~ºz}�$�{|���s���|�~b�
��x{rt�o��xt|�r���v�~o�§x{�6s�vprt���o��sk~.x$zw��v��
|�~A��xtr{�o�
x{s��"x{skr{� - �
±«� - z}�;�3x{�6sk~�xt�6s�����sk��z}v�u�zw�tvyx{z}|�~�z}��rts
xt�6rt~6sk��s�uw��s�x{�osd�bs
�
�Lv��6u¶x	z}��vp�6�ou�z}sk��xt| - ��¸R�6�6��|>�{s�xt�ovyx�x{�6s��ovyx{x{s�rt~�zw��v�~
v��6�6u}z}�kvyx{z}|�~I� 3 � 5 vp~o�³x{�6s�vprt���6��sk~>x	z}�	v)�
|�~A��xtr{�o�
x{s��
xts�rt� - ��±«� - zw�Vvp~¯vp�6�6u}zw��vyxtz�|>~ - 3 - 5�x{�6sk~¯�{�As��
zwvpu}z}�tvy�
xtz�|>~�x{rtz}sk�#x{|	��vpxt�����@3W��z¶xt� - 3Wv�~o�)�G53��z�x{� - 5pëpz��Askz¶xt�6s�r
|��3x{�osk�{s��"vpxt���6s��	�Lvpz}u}�	xt�6s�~´s��yv�u��ovpx{z}|�~¯r{sk��skr�x���xt|�vp�b�
�6u}�Rz�~o��x{�os	�bs��Lvp�6u�x$x{|�v�rtsk�
|>~o��x{rt�o��xtsk����skrt�{z}|�~g|�� - 3 - 5
ÄL~6|px - 3 - 5 z�xt�{s�u��Z��z}~o�
scxt�6zw�[�"vm��rtské.�6z}r{scrts
�«s��yvpu}�ovyxtz�|>~AÛ��
±«� - z}��v���|�~o��x{rt�o�
x{|�rcxt�6s�~)xt�6s��bs
�Lv��6u�x�z}��v��6�6u}z�s��ºx{|"z�xk�
¦ s��b�o�
x{z}|�~´|p�dv�u}s
x��+x{skr{� r{sk�6uwv��
s��	x{�6s§�A|>�6~o�¯�yvprtz}v��6u�s
�R�gz�xt��rtsk���6r���z}��s	�bs
�o~oz¶xtz�|>~-�

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

299

� �������)¥Lh�npjy¥��D¥ ¡ lbik¥ ¡���� f �	�.n�in��¢-£����
�c�6s)v��6�6rt|>v>���Dv��b|>�bx{s��©z�~�x{�6s)�ovpx�x{skr{~¨��v�u}���6u��A��zw��xt|
��sk�ovpr�vyxts;vD�
uwv��t�§�6s
�o~6z�x{z}|�~²z�~.x{|�v��6vpxtvyx��R��s;�bs��
uwvpr�vy�
x{z}|�~8v�~o�0�{|���s;v>�{�{|b�
zwvyx{s��¨�a�6~o�
x{z}|�~o�k� �c�os¯�6vpxtvpx��.��s
�bs
�o~oz¶xtz�|>~o��xt�ovyx��
|>r{rtsk�{�A|>~o�­x{|;x{�6s)�
uwv��t��s����bs
�A~6sk�©z}~
TIz}���or{s�Ë�vprts��>z��>s�~ºz�~=T&z��>�6r{s�Îb�&±Ð~)xt�6r{~#ªRx{�6s��6vpxtvpx��.��s
�bsk��u}v�rtvpx{z}|�~o�&�a|>r3s
¬Rxts�~o�{z��ou�sd��u}v>�{�{sk�[sk���6u�|y��v	x��R�Asd�yv�r{z��
vp�6u}s)x{|´r{sk�6rtsk�{s�~.x�v�~R�Dv��6�bz�x{z}|�~Avpuc�osku}�6��xt�ovyx"�"vm�D��s
r{s�é>�oz�rtsk�Z�¹±Ð~0�Avpr{x{zw�
�6uwvpr�ª3xt�6zw�gx��R��s³�yvprtz}v��6u�s X�zw�1Z¯xt�6s
x��.��s�|p�dxt�6s��bz}�t�
rtz}��z}~ovpx{|�r��osku}��z�~�x{�6s��
|>r{rtsk�{��|�~o�bz}~6�
xtvp�ou�s>�¨q��"��vp~��As��{s�sk~��R�´x{�os��o��s)|p��x{�6s)x��R��s)�yv�r{z��
vp�6u}s��dª��dª	�&ªWv�~o��
¹z}~ TIz}���or{s;Î³�a|�r"vp~R��v>�6�bz�x{z}|�~ov�u
�os�uw�6���a|�r3x{�6sV�6vyx�vyx��R��sk� Y.[\
] _^.ª�`�\�b(c%d%[j\
ª Y.egf�h i/^�d�ddv�~o�
k|l/m�b/l�h.r{s�����sk�
x{z}��s�u}���

�6vyx�vyx��R�As � ~.x{z�x��
� �
� ~.xtz¶x��g|�������z}~.x�����x{rtz}~6������x{rtz}~6�oë}ë

�6vyx�vyx��R�As�¸Rx{�o�bsk~.x Ò	vyxtv�� �
¸.xt�o�bs�~.xd|���������x{rtz�~6�Aë�ë

�6vyx�vyx��R�As � ���6u�|y�>s�s Ò	vyx�v"È �
� ���6u}|y��sks�|��[È���°o|>vpxkë}ë

�6vyx�vyx��R�As�ä$v>���Avpu Ò	vyx�v"ç �
ä$v��{�ov�u�|���ç���°o|.vyx�ë�ë

TIz}���or{s�Î H�ä�uwv��t�c�bs
�A~6z¶xtz�|>~o�dv>���6vyx�vyx��R�As��
±Ð~ �A��z}~6� x{�6s �ovyx{x{skr{~Ç��vpuw�
�ou��o� �
|>���6z}~6s�� ��z�x{�

Ñ ¦ Ô�×¯��s���v�~��bs
�A~6s�|�~6sºr{sku}vpx{z}|�~ov�u3x�vp�6u}sº��s�r"��u}v>�{�k�
�c�6s�rts
�a|>r{s�x{�6s���r{s�vyx{z}|�~§|p�&v�~6sk�8�{�6����u}v>�{�c�b|Rs���~o|px�r{s��
é>�oz�rtscr{s���xtr{�o�
x{�6rtz}~6�V|p�A|>�b��sk�
xt�k�&Ô³s
x{�o|R���{�As��
zwvpu}z�Ï�vyxtz�|>~-ª
���6�6x��.�oz�~6��vp~o�"x��.��s��yv�r{zwvp�6u}sdz}~o��xtvp~.xtz}vpx{z}|�~gvprts�v�u�u����6�6�
�A|>r�xtsk�®�R��x{�6s;x��.��s­�tvy�as�x���|��Vx{�6s G[vyx�xts�rt~8ä$vpuw�
�6u}�o�k�
�c�6sk�{s³�
|>�6�6u}sk�¨��z¶xt�²Ñ ¦ Ô�×´s�~o�{�6rtsk��xt�ovyx"xt�6s�z}���ou�s��
��sk~.xtvyxtz�|>~®|p��vp~�z}~6�6s�rtz�x{sk����s�x{�6|b��zw�g�6~o���Avp~6�>sk���.�
x{�6s���r{s�vyx{z}|�~)|p�&z¶x��d�{�6����u}v>�{�k�
Ø-s�x��o��~6|y�¹u�|R|>�)vpx��6|y�¹|��6r�r{�o~6~6z}~6�gs
¬6v����ou�s��kvp~

�As�rts��6rtsk�{s�~.xtsk�ºz�~)x{�oz}��v��6�6rt|>v����#�

���	��� !%��# &�&,+�-�'��/'�0��U# � 1
3%-�'.�/'�0 �/5"! �	-�'E6
- #/<.3#! &('�)��	-�:E6
#�5�5")�3 &�&$! &('�)��	-�:E6 >

Þ{¿
Ã�Á %$áAÁGà\Á'&I
(%$áoÁ+à\Á�&*)ÐÂ,+.- Â
¿�áoÁ+à\Á�& àBK�
/%$áoÁ+à\Á�&*)ÐÂ,+0- à\áAÁ
á�Â�R�¿�
(%$áoÁ+à\Á�&*)ÐÂ,+.- Ã�Á+Þ�à\á �Â KIKyÞ{¿
Ã�Ã�
	%cáoÁ+à\Á�&*)ÐÂ,+.- Ã�Á+Þ�à\á �

T&z��>�6r{s�Í�H � ~.x{z�x��§�
uwv��t�cz�~���|�~o�6z
â	z}��s�~´z}~ TIz}���or{s�Í�z}�	xt�6sg�
uwv��t�V�bs
�A~6z¶xtz�|>~´|p�aY.[j\
] _^

v��§�6s
�o~6s��®z}~ f3¢ ¡ £&¥ ªdv�u�|>~6�©��z¶xt�®x{�os­�
|>r{rtsk�{��|�~o�bz}~6�f3¢ ¡ £&¥ ��s��{�{z}|�~´|��bxt�6�bx�� GWrt|��>rtv�����x��R��sk�©�R�­x{�6sº�o��skr�a|�u}u�|y� x{�os��6rt|����bx �1�	�2� ��¸R�b��x{s��2rtsk�{�A|>~o�{sk�dv�r{s��>z��>s�~z�~¨z¶x�vpu}z}���D�c�6s)r{sk�6r{s���sk~.xtvyxtz�|>~©|p� Y.[\
] _^�v�~o�Dz�xt��v��t�{|p�
�
zwvyx{s��¯�os�uw�6��v�r{sg�6z}�{�6uwvm��sk�¯vpu}|�~o����z¶xt�´x{�6s§v>�6�bz�x{z}|�~ov�u
swdjmU\ Y.[\
] \}^��osku}�-�[±Ð~§xt�6s���z}���6u�s���xd�kv��{s�|��&vp~ dR[\
] _^.ªRxt�6s
r{s���x&�os�uw��zw�&z�~A��x�vp~.x{zwvyxtsk�Vxt|���s3xt�6sc�6~6z�xIx��R��s b�[%] \#���6|>�{s
�6~6zwé>�os��mv�u��os���vp~)��s���vpu}u}sk� ~Eb�h�h �[±Ð~ºx{�6s��6vpxtv��ov��{s�ªRxt�6s
��z}���6u�s���x��kv��{s�|p�$vp~ d%[j\
] _^���z�u}uW�
|>r{rtsk�{�A|>~o�)x{|�v)��z}~6��u}s
r{|y�©|��A�6vyx�v�z}~�xt�6s dR[\
] \}^cxtv��6u}s����6skr{s3x{�6s��bzw�t�
rtz���z}~ovyxt|�r
�os�uw�)��z�u}u-��s��A|>�6�6uwvyx{s��)��z¶xt��~�b�h�h �
±Ð~ TIz}���or{s�Ì���sc��sks��bs
�o~osk��x{�6s `�\�b(c%d%[j\��
uwv��t�Iv�~o��z¶x��

r{sk�6r{s���sk~.xtvyxtz�|>~­z}~ f3¢ ¡ £&¥ �§q `�\�b/c"dR[\ZY.[\
] _^g�ov��Vx��R��s
Y.[j\
] _^�3_`�\�b(c"dR[\ 4Cl	\xl5�76V|>r����A��x�Y.[\
] _^�3_`�\�b(c%d%[j\ 4Cl	\xl

���	�2� !"�"# &�&$8"'���5�3%-�'��U# �43%@�'�3%-�5 &,+�-�'��/'�0 1
!%B%��)�&%38! &('�)��	-�:E6 >

Þ{¿
Ã�Á 9�Á	V�K>¿
áAÁ�
09AÁ�V�K�¿�áoÁ:)ÐÂ;+<- Â
À�»�VbÞ�Ã�¿�
<9�Á	V�K>¿
áAÁ=)ÐÂ,+0- Ã�Á+Þ�à\á �

T&z��>�6r{s�Ì�H[¸Rx{�o�bsk~.x��
uwv��t�cz�~���|�~o�bz

E[R] \>6�z¶�dxt�6somx\�b/c"dR[\��ov>��~6|¯v��6�6z¶xtz�|>~ovpu��os�uw�6�k�­±Ð~Dx{�6s
�6vpxtv��ov��{s�ª-v{`�\�b(c%d%[j\ZY.[j\
] _^"��z�u}u3�
|>r{rtsk�{��|�~o��xt|�vp~¯s�~b�
xtr{�Dz}~��A|�x{�¨x{�os dR[\
] \}^;v�~o�DmU\�b(c%d%[j\�xtvp�ou�s����®�c�6sqc�] mU�
vRs] e�] [(l	\Ui�s3�As�uw�´z�~©xt�6sod%[j\
] _^)xtvp�ou�sg��z}u}u���s§��|��6�ou}vpx{sk�
��z�x{�§x{�6s���x{rtz�~6�Z`�\�b(c%d%[j\3���oz�u}s�z}~gxt�6s�mU\�b(c%d%[j\[x�vp�6u}s�x{�6s
c�] mrvRs] e�] [(l	\Ui�s[�osku}�¯z}~©��z�u}u3��sq~�b"h�h �)�c�6sXdR[\
] _^] c��osku}�
zw�c�bs
�o~osk��v��$��|px{�ºx{�os	�or{z}�"vprt�gvp~o�§�a|�rts�z}��~º��s��"z}~ºx{�6s
d%[j\
] _^ºx�vp�6u}sºv>��z�x@? ��vpuw��|;x{�6s)�6rtz��"vprt�¯��s��¯�osku}�Dz�~�x{�6s
mx\�b/c"dR[\3x�vp�6u}s�ªRxt�ovyxdzw�cx{�osV�os�uw�omx\�b/c"dR[\] cA�

���	�2� !"�"# &�&(+R<�����B"0�3�3A�U# �43%@�'�3%-�5 &,+�-�'��/'�0 1
&%#���#%)�0#!CB���B�#"'76
&%#���#%)�0�G	-�!/)�3�# &%3�HjIED1 '�S���&=M &%#���#")�0TJAL|M�L/P >9>

Þ{¿
Ã�Á % RdÝLP�»F&�¿�¿%
/%:RdÝLP�»F&�¿�¿G)ÐÂ;+H- Â
Ã�Â�P}ÂyÞI&�
(%:R�Ý?P�»J&�¿t¿G)ÐÂ;+H-LKc»�ÂyÁ
Ã�Â�P}ÂyÞI&*M�áÊÀ
Þt¿tÂyÃ�¿�

%:R�Ý?P}»F&�¿�¿>)ÐÂ,+�NUVbáoà\Á�-OK�»kÂpÁ

T&z��>�6rts�Ë�Ú H � ���6u}|y��sks	��u}v>�{�cz}~��A|>~o�bz
±Ð~ TIz}���or{sgË�Ú"zw���bs��o~6sk��x{�6s Y.egf"h i/^jd�d��
uwv��t��v�~o��z�xt�

�osku}��r{sk�6rtsk�{s�~.xtvpx{z}|�~o��z�~ f3¢ ¡ £&¥ ��q�~4Y.egf�h i/^�djd Y.[\
] \}^
�ov>��x��R�AsgY.[\
] _^P3rY.egf�h i/^�djd 4Cl	\xl<�76[|�rZ���o��x Y.[\
] \}^Q3rY.e �
f�h i/^�d�d 4Cl	\xlR
E[R] \>6�z���x{�osqdRegf�h i/^�djd��ov��"~o|�v��6�6z¶xtz�|>~ovpu
�osku}�o���g±Ð~¯xt�6sg�6vyx�vp�ov>��s>ª#vp~;Y.egf�h i/^�djd Y.[\
] \}^º��z�u}u3�
|>r��
rtsk�{�A|>~o��xt|)v�~­sk~.x{rt��z�~¯�A|�x{�­x{�6sZd%[j\
] _^gvp~o� dRegf�h i/^�djd
x�vp�6u}sk�k�I¸Rz}��z�uwvprtu��	xt|d�6|y�¯x{�6s$�bzw�{��r{z}��z�~ovpx{|>rZ�os�uw��zw�-�o�{sk�
xt|�r{sk�6rtsk�{s�~.xEmU\�b(c"dR[\=d%[j\
] _^�sk~.x{rtz�s��[x{�os��tvp��sd|b�����6rt�W�a|�r
d%egf"h i/^jd�d d%[j\
] _^�s�~.x{rtz}sk�k���c�Avyx�z}��xt�6sgc�] m
v(s] e�] [(l	\Ui�sA�osku}�
z}~Vx{�6s�dRegf�h i/^�djd[xtv��6u�s3��z�u}u>��s3��|��o�6u}vpx{s�����z¶xt��x{�os���x{rtz�~6�
Y.egf�h i/^�djd����6z}u}s�z�~�x{�os dRegf�h i/^�djd3x�vp�6u}scx{�6s c�] m
v(s] e�] [/l	\Ui�s
�osku}��z}~���z}u}u6�Asa~�b�h�h ªy�a|�r[|>rt�bz}~ov�r{�ad%egf"h i/^jd�d�mk����|px{s$xt�ovyx
xt�6s��A��s�|p��x{�6s"�bzw�{��r{z}��z�~Avyx{|>r��As�uw�;�
|>���6z}~6s��³��z�x{�­x{�6s
d%[j\
] _^] cºs�~ov��6u}sk��x{�6s����o�6�A|>r�x	|p�W���6u¶xtz��ou�s�z�~o�6s�rtz¶x�vp~o��s��
q��{z�x{�ovpx{z}|�~��"vm�)v�r{zw�{s����6s�rts�vnmx\�b/c"dR[\$zw�	vpuw��|gv�~ dRe �
f�h i/^�d�d>�®±Ð~¨x{�6zw�g��v>��s)xt�6s�����z�u}u��ovm�>s�vp~¨s�~.x{rt��z}~¨x{�6s
d%[j\
] _^.ª�mx\�b/c"dR[\$v�~o��dRegf�h i/^�d�d	x�vp�6u}sk�k�

���7�2� !"��# &�&FQ�# &/� #��8� #1�*3%@�'�3%-�5 & +R< ���"B"0�3�3 1
S�B%��).&$!CB���B�#"'E6
&R#���#")�0.G	-�!()�3�# &%3=HOISD1 '�S ��&=M
&%#���#")�04JKLNMxP�V >D>

Þ{¿
Ã�Á TWÂmÃ�VoÂ�P;
UTWÂyÃ�VoÂ�P)ÐÂ;+V- Â
W »�VbÞ�Ã<
QTWÂmÃ�VoÂ�P)ÐÂ;+V-OK�»kÂpÁ
Ã�Â�P�ÂpÞI&*M�á�À�Þ{¿�ÂmÃ�¿%
QTWÂmÃ�VoÂ�P)ÐÂ,+XNUVbáoà\ÁY-LK�»kÂpÁ

T&z}���6rts�Ë�ËIHWä$v>���Avpu-�
uwv��t�cz}~º��|�~o�6z
TIz}���or{s�Ë>Ëd�bs
�o~osk�[xt�6s kNl/mOb(l�hp�
uwv��t�Wvp~o��z�xt�W�os�uw��rts��b�

rtsk�{s�~.xtvpx{z}|�~o�3z�~ f3¢ ¡ £&¥ ���c�6s	x��R�As	|p�&v vjl/mOb(l�h%dRegf�h i/^�djdzw�g�{|���sFY.[\
] \}^Z3
Y.egf�h i/^�d�d 4Cl	\xlR3 kNl/mOb(l�h 4Cl	\xlR
�6>6��3±Ð~
xt�6s��6vpxtvp�Av��{s�ªov�~)|>rt�6z�~ov�r{� v�l/m�b/l�h�dRegf�h i/^�djd	��z}u}uI�
|>r{rts
�
�{�A|>~o�§x{|"vp~)s�~.x{rt�gz}~�skv����º|p�&x{�6s�d%[j\
] _^.ª dRegf�h i/^�d�dVvp~A�
vjl/mOb(l�h>x�vp�6u}sk�k�d�c�6s c�] mrvRs] ea] [/l	\Ui�s-�As�uw��z�~�xt�6spd%[j\
] _^�x�vy�
�6u}sd��z}u�u���s���z}��sk~gv��EdRegf�h i/^�d�d>ªpz}~"x{�6s�s����6u}|y��sks�xtv��6u�s�z¶x

CRPIT Volume 48

300

��z�u}uZ�AsV�>z��>s�~ºv>��v�l/mOb(l�h>v�~o�§z}~ºx{�6s���v>���AvpuAxtvp�ou�sV��z}u�uZ��s
��z}��s�~©v>�X~�b"h�h �)�c�6s§�tvp��s"z}�6s�~.x{z�x��­�yv�u��6s"��z}u}u3��sg�o�{sk�
v��
rt|>�t�&vpu}u>xt�6rts�s�xtvp�ou�s��&v>�Ix{�6s�dR[\
] _^] cAªRdRegf�h i/^�djd] c	v�~o�
v�l/mOb(l�h] c�rtsk�{��sk��xtz��>s�u}���=�d|�x{s�xt�ovyx�x{�6s�x��.��sd|��#vamU\�b(c%d%[j\
|�r�|p��v v�l/mOb(l�h|dRepf"h i/^�djdgzw��v�u��cvm�b��|p��x{�6sº�a|�rt� Y.[j\
] _^
� �a|�rg�{|���s)x��.��s � ªW�{|¯x{�ovpx"�a�6~o�
x{z}|�~o�"���oz}���®v��
x"|�~
vprt�6z¶xtrtv�r{��sk~>xtz¶xtz�s��c��vp~�vpu}�cvm�R�3�ovm��s�x{�osVv�r{�>�6��s�~.x3x��R��s
Y.[j\
] _^H�d�oqd�.vpz}~-ªbskv>���§|��#x{�osk�{s�x��R��sk���Av��cv���z}~6��u}s��
|>~b�
��xtr{�o�
x{|>rk� T6|>r�s
¬6vp���6u}s�ªRxt�ovyx��a|>r�s�~.x{z�x{z}sk�dz}�

Y.[\
] \}^H�������n] [\��/mx\�s] [����pmU\�s] [��- Y.[\
] \}^V�
ì sk~o�
s>ªpv��{z�~o��u}s3�ovpx�x{skr{~�|p�bx{�osW�a|�rt� Y.[j\
] _^)#?�����6s�rts

#?�­z}��v"�6z}~o�bz}~6�g�yvprtz}v��6u}s���z�u}u#��s�vp�ou�s�xt|g�"vyx����³vp~�vpr{�
�6z¶xtrtv�r{�§s�~.x{z�x����
�c�6s�~6|�x{z}|�~�|���s
¬Rxts�~o�{z�|>~o��z�~�x{�6s��ovpx�xts�rt~���v�u}���6u}�o�

vpu}u�|y�d���A�dxt|§����sk��z}v�u�zw�{s���s�x{�6|b�6��z}~�x{�6s����6�Ê�
uwv��t�d��z�x{�6�
|��bxgxt�6s³~6sksk��x{|�r{s��
|����6z}u}s���s�x{�6|b�6�"�ar{|>� xt�6s³���o�Askr
�
uwv��t���&�c�6z}�I��v�~��As���x&�As�s
¬bs����6u}z��osk�Vxt�6rt|��6�>�Vx{�6s�mrl�h l%st^	�
u [(v(s djl/mrdd��s
x{�o|R�"�6s
�o~6s���z�~�xt�6s�rt�6~6~oz�~6��s�¬6vp���6u}s����c�6s
mrl�h l%st^�u [(v(s djl/mrd���s
xt�6|b�§�bs��o~6s��gz}~gx{�os Y.egf�h i/^�d�d��
uwv��t�Wzw�
�
|����6z}u}sk��xt|º�>z��>s�v;ËkÚ�y¼z}~o�
rtskv>��s�z�~¯�{v�u}v�r{�ºx{|)vpu}u�Y.e �
f"h i/^�djd�m�v����a|>u�u}|y�d�@H
�"3"' HO&%#���#")�0�G	-�!()�3�# &%3�!

+"-�'��/'�0 Hx+R< ����B%0�3�3
�#"'�#���I - B���B�#"'.I D
#%'?+"-�'��/'�0 Hr+(< ����B"0�3�3
�#"'�# Hr@�
�&�I�

3�
 -�

#�I
�.&%3*&4JKLNM�L/P
3���&%3T3")�)E6�6
±«�$x{�6s"|>�b��sk�
xVzw��vp~ dRepf"h i/^�djd d%[j\
] _^"x{�Avyx�zw�V|p�3x��R��s

Y.[j\
] _^ 3rY.egf�h i/^�d�d��76�xt�6s�~�v¯�{v�u}v�r{�¯z�~A�
rtskv��{s§zw����v�u}���b�
u}vpx{sk�)|�x{�6skr{��zw��sVz�xd��z�u}uZs�rtrt|�r��
�c�6zw�V��s
x{�o|R�¯�bs��o~6sk�­z}~³x{�os��{�6��s�r��
uwv��t�	��z�u}u&x{r�vp~o���

u}vpx{s"z}~>xt|³v���xt|�rtsk�¯�6rt|b�
sk�6�6r{s�|��c�{|���s
xt�6z}~6�³��z}��z�uwvprVxt|
x{�6sV�a|>u�u}|y��z�~o����|b�bs H
!/)�3�#"'�3$��)�B !%3�5%��)�3?&/� &R#���#")�0.G	-�!()�3�# &%3
��3":��	-?'�)�#R-�&%# !('.�RB%-

����5�#"'�39+R<�����B"0�3�3
&R3"'�&R#���#")�0 DA&%#��"#")�0KJKLNM�L/P

!RB/<�<��/'
�d|�x{zw�
s�xt�ovyx��{z�~o��s�x{�6zw����s
xt�6|b�­�cv��V�bs��o~6s��;�a|>r�vpu}u

dRegf�h i/^�d�djm#xt�6s�vp��|y��s$�{é.u6�
|b�bsc�b|Rsk��~o|pxW�
|>~>x�vpz}~�v����/dRs d
�
uwvp�o�{s��
�c�6s�����sk��z}v�u�zw�tvyx{z}|�~�|��[x{�6s mrl�h l%st^�ut[/vRswd	l/mxd���s�x{�6|b�³z}~

x{�6s kNl/mOb(l�h Y.egf�h i/^�djd)��u}v>�{��z}~>xtr{|b�b�A�
sk�"v¯~6sk� �kv��{s§xt|
x{�6sVs
¬bzw��xtz�~o�)ÄG�
|����6z}u}sk�oÛ���s
xt�6|b�Z�[±Ð~o��x{skv>�g|��#r{s��
|>���oz�u��
z�~6�	xt�6sc��s�x{�6|b���a|�r=mrl�h l%sw^�ut[/vRswd	l/mxd>ªmx{�6sc�ovpx�x{skr{~���v�u}���6u}�o�
�bs
�o~osk�dv�~6sk�8��s
xt�6|b��v��$�a|�u}u}|y�d�@H
�"3"' HU- 3�� 8�#���#")�0�Gj-�!()�3"# &%3�!

+"-�'��/'�0 Hx+R< ����B%0�3�3
�#"'�#���I - B���B�#"'.I D
#%'?+"-�'��/'�0CHr+R< ���"B"0�3�3
�#%'�#=H
Q�#�&/� #���S*0�
�&�I�

3�
 -�

#�I
�.&%3*&4JKLNMxP�V
3���&%3*&%#���#%)�0�G	-�!/)�3�# &%3=6�6

�"3"'�&R#���#")�0.G	-�!()�3�# &%3 D?- 3�� 8�#���#%)�0�G	-�!/)�3�#�&R3C6�6
�c�6s$~6s�����s�x{�6|b��s�~o��|����ov��t�{sk�Zxt�6s$~6s����kv��{s[�a|�rEkNl	�

mOb(l�h(Y.epf"h i/^�djd�mZv��-��sku�u�v>�Êx{�os3s
¬bzw��xtz�~o�d�
|b�bs[�a|>r-|�r��bz}~ovprt�
Y.egf"h i/^jd�d�mkª-��z�x{�6|>�bx��ovm�Rz�~o�ºxt|�r{s��
|>���oz�u}s�x{�6sgs�¬bz}��x{z}~6�
��s�x{�6|b�Z�
Ó¯s§s�~R�Rzw�{v���s�x{�Avyx�xt�6z}����s
xt�6|b�©��z�u}uWxtrtv�~o�{u}vpx{s"z}~>xt|

�{é.u#��|R�6sV�{�o����v��$xt�6sV�a|�u}u�|y��z}~6� H
!/)�3�#"'�3$��)�B !%3�5%��)�3?&/� -�3�� 8�#��"#")�0�G	-.!()�3�# &(3
��3":��	-?'�)�#R-�&%# !('.�RB%-

� B45.�"&�!()��O<N�	- #"'�B%)RD��	Q�# &/��#���� '�S�3%-
����5�#"'�3D+(< ����B"0�3�3
&R3"'A&%#���#")�0 D�&%#���#")�0KJALNMxP�V
��S 3")�395.�"&�!()��O<N�	- #"'�B%)RD��	Q�# &/��#����

3���&%3K�FB?5.��&�!().�O<��	- #%'�B") D���� �!�;'�S 3%-
&	� &%#���#%)�0�G	-�!/)�3�# &%3

3R-�5.�FB
!RB/<�<��/'

&	�)�3%- #/<.3$- 3�� 8�#���#")�0�Gj-�!()�3�#�&R39&%#���#")�0�G	-�!()�3�# &%3C6"6

¸Rz���z}u}v�r{u}�dxt|d�6|y�¯��sWv�r{sWv��6u}s�x{|�xtrtv�~o��uwvyxts�x{�6s3~6|pxtz�|>~
|���xt�6s³x��R��s³�yvprtz}v��6u�s���z�~�xt�6s³�6rt|��>rtv�����z}~6�´uwvp~6�>�ovp�>s
��z�x{�;�6z}�t�
rtz���z}~ovyxt|�r��As�uw�6��z}~�xt�6s��6vpxtv��ov��{s�ªA��s���vp~³�{s�s
xt�ovyx3~o|px{z}|�~§|p�-��sk�ovpr�vyxtsd�
|>���oz�uwvyxtz�|>~g��vp~"��s�v��6�6u}z�s���x{|
é.�6skr{z}sk�W�{z}��z}uwvprtu���x{|��6|y�¨x{�6sk��v��6�6u}��xt|���s
xt�6|b�6���[�c�6zw�
zw�$��v>�bs	�A|.�{�{z��ou�sV�b�6s�x{|�x{�6s���|����oz�~ovpx{z}|�~º|p�Iv�~R�6����s�r
|��#�askvpx{�6rtsk�k�
�c�6s�u}z�~o�.z}~6�º|p�Wxt�6s��6vpxtv§��|b�bsku�|p�[x{�os��ovpx�xts�rt~;��v�u¶�

���6u��A��xt|)x{�ovpxVz}~­x{�6s"�6vpxtvp�Av��{s�xt�6r{|>�6���©Ñ ¦ Ô�×�vpu}u�|y�d�
�a|>rcx{�6s��{�6�6��|�r{xd|p�&x{�os��a|��6r��bsk�{z�r�vp�ou�sV�6rt|���s�r{x{z}sk�k� � µ��
��z�sk~>xW�6vpxtv	��xt|�r�vp�>s�ªy|�~os$rts�uwvyxtz�|>~���s�rW��u}v>�{��vp~A����|b�b�6uwvpr
��|����6z}u}vpx{z}|�~ºv�u�uZv�r{sVvyx{xtvpz}~6s��Z�W�c�6s��o~ovpuZ�or{|>�Askr�x��³Ä	GW×.Û
|��&�
|>���6z�u}sk�)��s
xt�6|b�6�cx�vp�Rz�~o��v>�b�yvp~.xtv���s	|p��é>�os�rtz�s���vp�b�
��skv�rt���6r{|>��z}�{z�~o���ar{|>� xt�6s)��v�~R�ovpu3x{r�vp~o�{u}vpx{z}|�~©|���x{�6s
m
l�h lRsw^�ut[(v(s djl/mxdV��s
xt�6|b�Z�

" � ¢ ¡ n%�G¤Ih�¥L¢ ¡ l ¡ £$#I¤#i�¤#j(�&%Ö¢oj�'
�c�6s��bz}�t�
rtz}��z}~ovpx{z}~6�g|��6��sk��x���|b�bskuIzw��v��6u}s�x{|ºr{sk�6r{s���sk~.x
|>�b��sk�
xt�gv�~o�®�
uwv��t��s��"z}~®�A|�x{�®�6rt|��>rtv�����z}~6�©vp~o��rts�uwvy�
xtz�|>~ovpu��6vyx�vp�ov>��s���� � v>���³�
uwv��t��zw�	r{sk�6rtsk�{s�~.x{s����.��v)��z}~b�
�>u�s�x�vp�6u}s³���6|.��s³�os�uw�6�§v�r{s³x{�6|.��s³|��Vx{�6s¯�
uwv��t�"�6u}�o�ºv
�bzw�t�
rtz���z}~ovyxt|�rW�As�uw��x{|�z�~A�bz}�kvyxts����6zw���º�{�6�b�Ð�
uwv��t��ª>z¶�&vp~R��ª
xt�6sW|��6��sk��xI�Asku�|>~6�>�-x{|o�&�c�6s3v>�6�bz�x{z}|�~�|p�6~os��©���o�b�«��u}v>�{�{sk�
�b|Rs���~6|px3���ov�~6��s$xt�6sdrts�uwvyx{z}|�~�z�xt�{s�u���ª��6�bx���skr{sku����
rtskvpx{sk�
~6sk�å|��bxtz�|>~o���a|�r�xt�6s��bz}�t�
rtz}��z}~ovpx{|�r�� ì s�~o��s�ª�xt�6sºrts�uwvy�
xtz�|>~o���oz��"��s
x��$s�sk~�x{�6s���u}v>�{�3vp~o��xt�6s��6vpxtvp�Av��{s�z}����x�vp�6u}s�ª
v�~o�;�{|º��|����6z}u}vpx{z}|�~­�kvp~­�As���|R�6�6u}v�rk��q�u}�{|oªÊxt�6s"v��6�6z¶�
xtz�|>~)|���x{�6s��6z}�t�
rtz���z}~ovyxt|�rc�osku}���Av���u}z¶x{x{u}s�|�r�~6|"z����ov>��x
|>~�s�µ"��z�sk~o�
�>�&�c�oz}�[v��6�6rt|>v������ov�����s�sk~�z����6u}s���s�~.xtsk��z�~
f3¢ ¡ £I¥ ��c�6sº��s�~os
�6x���ÄBGdËO� G�ã>Û��6s�rtz��>sk�©�art|��Üxt�6s��bzw�{��r{z}��z¶�
~ovpx{z}~6�;|>�b��sk�
x���|b�bskucv�r{sº~6|px�u}z���z�x{sk��x{|´v­�ovpr{x{zw�
�6uwvpr
v>���
|>�6~.x3|p�Z|>�b��sk�
x��«|�rtz�sk~>x�vyxtz�|>~�v�~o�g�{�6|��ou}�"�or{|y�>s��o��s��a�6u
�a|>rdv��yv�r{z}s
x��"|��&uwvp~6�>�ovp�>sk�k�

T6�bxt�6r{s´�$|�rt�®��z�u}u�s
¬b�6u}|�rts­x{sk���o~6z}é.�6s��)�a|�r³��|����6z}u¶�
z}~6�g�{z����6u}s���s
xt�6|b�6�dz}~.x{|gé.�6s�rtz}sk�k�$�c�6zw��zw�d�ov�r�xtz}���6uwvprtu��
�{�6z�x{sk�©x{|;�bsk��sku�|>�6��s�~.x�z}~©x{�os§�ovpx�x{skr{~���vpuw�
�ou��o�kª[v���z¶x
�{�6�6��|�r{xt�Vvp~¯z}~o�
rts���s�~.x�vpuWvp�o�6r{|.v�����xt|��bs
�o~oz�~6����s
xt�b�
|b�6�k�-To�6r�xt�6s�r�ªkx{�6skz�r&s
¬bsk���bx{z}|�~��kvp~���s��brtz}��s�~��R��x{�6s$�bzw���
��r{z}��z�~ovpx{|>rt����z¶xt�6|��bx���|�~o�{�6u�x{z}~6�)v�~R����u}v>�{�	�6z}s�r�v����R�)z�~
xt�6s��or{|>��r�vp����z�~6�"uwvp~o���ov���s���±«���{�o����sk�t���a�6u+ª�x{�6zw�	��|>�6uw�
��|����oz�~6s�xt�6sgs
¬b�6rtsk�t�{z��>s���|y�$s�r�|p�$x{�osg|��b��s���x{�+|>r{z}s�~.x{s��
�6rt|��>rtv�����z}~6�³��x��Ru�s)��z¶xt�Dxt�6sºs�µg�
z}s�~o���©|p��é.�6skr{�´uwvp~b�
�>�ovp�>sk�k�

���)(�.j(� ¡ n"�.h
q���r�vm�$v�uGª ¦ �}ªcÒ�v�rkªc¸Ê�WÆ â	sk�ovp~6z+ª���� ì �dÄ�ËkÌ>Ì�ã>Û
ª3�c�6s
|+*,*Ü�6vyx�vp�ov>��s¯�6rt|��>rtv�����z}~6�¨u}v�~6���ov���sIH�±Ð���6u}s
�
��s�~.x�vyx{z}|�~�vp~A�§s�¬R��s�rtz}s�~o��s�ªb�#s����6~6zw��v�u ¦ s���|�r{x z6Ë
�
ÎpÚ6ª6q[��� Å�sku�u-ØIvp��|�r�vyxt|�rtz�s����

q����6u}s�r�ªp¸Ê��Ó@�RÄGÙ�Ú�Ú�ã.Û�ª�- � àSP�¿/.�ÂyÁÐÂ�½�ÂyÃ
¿10A¿�À W áoà32@Vo¿�Ã
 %=��ß�
¿�À�ÁGàSNy¿E9AÁ+Þ{ÂyÁÐ¿ � àL¿
Ã<�
»yÞ;Á W ¿4- � àSP�¿E9Z»6��Á�M3ÂyÞ{¿4.�¿&Ny¿&P¶ß
»�Ý6¿�Þ�ª6Ó®z}u�sk��ªo���ov��bx{skr�Ë�×A�

q$xt�.z}~o�{|�~-ª Ô©�}ª Å$v�~o�
z}u}�6|�~-ª T$��ª Ò�s�Ó®z�x�x�ª Ò��}ª
Ò�z¶x{x{rtz}���#ª W��}ª Ô³v�z�skrkª Ò�� Æ ÈÊ�6|�~6z}�Êª ¸Ê�
Ä�ËkÌ�Ì�×.Û
ª 5ô�c�6s |>�b��sk�
x��«|�rtz�sk~.x{sk� �6vpxtvp�Av��{s
�{�b��xts�� �"vp~6z��ask��x{| ?�� �.x�xt��H76�6m�����c�
Ù����k� �����-� sk�b�86�G�s�|>�6u}s�6y��u}v���s�~�6>Ñ�Ñ	Ò�ÅcÔ;¸96 Ô³vp~oz¶�
�as���xt|�r:6m�.xtÔ³v�~6z��ask��x{|!6y~6|b�bskãoË�� �.x{���

Å$z}s�rt��v�~-ª#â��}ªIÔ�skz ��skrkª � �-Æ¼¸b���R�6u�x{s>ª#Ó@�WÄGÙ�Ú�Ú.æ�Û�ª;5ô�c�6s
s��{�{s�~o��s�|p���6vyx�v v>����sk�´z}~è�:<d��x{�os®�A|y�$s�r´zw�©z�~
xt�6s;�b|�x>= ?�ª��.x�xt��H?6�6mrtsk�{skv�rt���#� ��zw�
rt|>�{|p�\xk� �
|>��6�s���skz¶�
��skr@6�G[vp��s�r��A6y�A|>�6uG� �Ê�R���³ÄLq����
sk�bx{s��´�a|�r��o�6�6u}z}�kvyx{z}|�~
vpx � ä�Ñ�ÑUG¨Ù�Ú�Ú.æ�Û��

Å$u}|.|>��ª��V��ÆÕÈÊ�b|>~6z}��ª�¸Ê���V��Ä�Ë�Ì�Í.Î�Û�ªB5 ±��{�{�6s��³z}~¹x{�6s
�bs���z}��~§|p�-|��6��sk��x{�+|>r{z}s�~.xtsk�"�6vpxtvp�Av��{sd�6rt|���r�vp����z}~6�
uwvp~6�>�ovp�>sk�@?�ªDCEC/F	9+G�-IH J9K&FcÞ{»kÀ�¿�¿�Kyà\á � Ã��6�-�W×>×oËO�×RæbË��

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

301

Å�rtskv�Ï��b�Ð�&vp~6~6sk~-ª · �}ª>Å$�6~os��"vp~-ªIG��pÆ Ñ��6|>r{z+ª�q��6Ä�ËkÌ>Ì6Ë�Û
ª
Ò�vpxtv ��xtr{�o�
x{�6rtsk� vp~A� �6vpxtv�x��R��sk�Ö�a|�r |��6��sk��x{�
|�rtz�sk~.x{sk�è�6vpxtv��ov��{sk�kª;à\á 5 ± ���E� Ò	vyxtv � ~6�>z�~os�s�r{�
z�~o�º�6�ou�u}s
xtz�~-ª&¸R�As��
zwvpu[±��t���os�|>~­�c�6sk|�rts
x{zw��v�u To|��6~6�
�6vyxtz�|>~o��|p��Ñ��6��sk��x{��Ñ�rtz}s�~.x{s��DÒ�vpxtv��ov��{s)¸R�b��x{sk���@?}ª
· |�u+�ZË�×Aªb± �E�E� ªR�6�-�AÙ�ã/�bÙ.ÎR�

T6�o�t��sku�u+ªpÔ©�yØW�bÄ�ËkÌ�ÌRÎpÛ
ª�To|��6~A�6vyxtz�|>~o�#|��o|��6��sk��x�rts�uwvyx{z}|�~Avpu
�"vp�6�6z}~6�Aª6�#s����6~6zw��vpuZrts���|�r{xkªAä��oz����)�o�6�6u}z}�kvyx{z}|�~A���

J>vm�>ª ä�� Å	� Ä+ÙpÚ�Ú�×�ÂkÛ�ª 5 �A|>~o�bz'?�ª �����c�
��x�vyê�� z�xk� �bx���� sk�b�#� v���6��
�b� 6y�A|>~o�bz+�

J>vm�>ª ä�� Å	� ÄGÙpÚ>Úp×Ê½{Û
ª Ô�s
xt�6|b�6� v>� �ovpx�xts�rt~b�
�"vyxt���oz�~6� �a�6~o�
x{z}|�~o�kª à\á 5 To|��6~A�6vyxtz�|>~o�
|p� Ñ��b��sk�
x���Ñ�r{z}s�~.xtsk� Ø#v�~6���ov���s���ª Ù�Ú�Ú�×�H
z�~6�a|�rt��v�u �6r{|b��s�sk�6z�~6�.�*?}ª �-� Ë	z �6�#�
�.x�x{��H76�6m������� �b|b�p� z}��� v>�p� �6�96 �{�k� 6�T�Ñ�Ñ	ØWË�Ë 6 �ovyx{�
x{skr{~o�k� ���R���

J>vm�>ª�ä���Å	�)ÄGÙpÚ>Úp×ÊÀ{Û
ª&5 �c�os0�ovyx{x{skr{~ �kvpuw�
�6u}�o�@?�ª&-QT �
0bÞtÂyá6Ã�Â>À
Á+àL»yáoÃ8»yá F$Þ{» � Þ{Â�R2R�à\á � GIÂyá � VoÂ � ¿
Ã ÂyáLK
9 &mÃ�ÁÐ¿&R�Ã�� 0�C�F/G�-V9�� ��� Ä z>Û
ªoÌ6Ë>Ë��bÌ�ã.Îb�

J>vm�>ª�ä���Å	�©ÄGÙ�Ú�Ú�×?K�Û
ª�5 ç�~6z��Avp�6u}så���o�bx��R�6z�~o� ?}ªD�����c�
��x�vyê�� z�xk� �bx���� sk�b�#� v���6 �
�b� 6�GW�6�ou�zw��vpx{z}|�~o�@6 �o~6z¶�o�
vp�6u}s �{�6�bx��R�6z}~6�o� �Ê�R���

WVs�u}u�skrkª$Ó@��Ä�ËkÌ�Ì>Í>Û
ªcÑ��b��s���x@6yr{sku}vpx{z}|�~ov�u�v�����sk�t��u}vm�>s�r����
v³rt|>v>�b�"vp�-ªW��zw�{�{z}~6�;u}z�~o�R��v�~o����|>r{sº�ovyx{x{s�r��kªdà\á
5 � �6rt|IG3Ø#|IG0?��

Ø-s�|>~.x{z}s��Êª<����ª�Ñ�Ïk�{�-ª�Ô©��Æ ¸RÏ�vy�art|�~-ª	Ò���ÄGÙ�Ú�Ú.Ù�Û�ªE5¶Ñ�~
x��R�As³�{�b��xts��"���a|�r§|��b��s���x��«|�rtz}s�~.x{s����6vpxtv��ov��{s��6r{|��
��r�vp����z�~o��uwvp~6�>�ovp�>sk�@?�ª9-QT � TW»�R�Ý?VbÁ+à\á � 9 VbÞ�Ny¿ &mÃ
� � Äa×RÛ�ªb×.Ú�Ì/�R×�×.Ì6�

¦ s�����ªÊÒ��[Ä�Ë�Ì�Í>Ì>Û�ª��3�R��sk���6s����Rz�~6�"rtsk��|�r��6�dv�~o���yvprtz}v�~>x��
z�~�v0~ovyxt�6rtv�u�s�¬.xts�~o�{z}|�~¹|p�§Ô³Ø3ª�à\á ØW�Vä$v�rt�6s�u}u�z+ª
sk�Z�}ª85�GWrt|R��s�s��bz�~o�>�W|�� GcÑUG3Ø ? Ì�Íoª.q�ä$ÔÉ¸R±�â G3ØIq �d�
¸R±�âVq�ä$�@¸R�R���A|.��z}�6�2|�~ G3r{z}~o�
z}�6u}sk��|�� GWrt|���r�vp���
��z�~6�"ØIvp~6�>�ovp�>sk�@?�ªbq�ä$Ô©�

¦ z}���Avpr��6��|>~-ª$JA� � �}ª)ä$vprts��>ªgÔ©�0JA��Æ ¸b���R�6�#ª§Ò����V�
Ä�Ë�Ì�Í�Ì.Û�ªc�c�6s­�6sk�{z��>~¨|��Vx{�6s­s³�6rt|���r�vp����z}~6�´u}v�~b�
���ov���s>ª3�#s����6~6zw��v�u$rts���|�r{xkª$çd~6z}��skrt�{z�x��D|p�	Ó®z}�t�
|>~b�
��z}~-�

CRPIT Volume 48

302

Tracing Secure Information Flow Through Mode Changes

Colin Fidge1 Tim McComb2

1School of Software Engineering and Data Communications, Queensland University of Technology
2School of Information Technology and Electrical Engineering, The University of Queensland

Abstract

Communications devices intended for use in security-
critical applications must be rigorously evaluated to
ensure they preserve data confidentiality. This pro-
cess includes tracing the flow of classified informa-
tion through the device’s circuitry. Previous work
has shown how this can be done using graph analysis
techniques for each of the device’s distinct operating
modes. However, such analyses overlook potential in-
formation flow between modes, via components that
store information in one mode and release it in an-
other. Here we show how graph-based analyses can
be extended to allow for information flow through se-
quences of consecutive modes.

1 Introduction

Electronic communications devices safeguard classi-
fied information in government and military computer
networks. In particular, ‘domain separation’ devices
allow the flow of information between high and low-
security networks to be controlled. Examples of such
devices include: data diodes, which allow one-way in-
formation flow only; multi-computer switches, which
allow peripheral devices to be shared between dif-
ferent domains; context filters, which constrict infor-
mation flow; and cryptographic devices, which allow
transmission of classified information over insecure
networks.

Before such a device can be deployed, however, it
must be carefully evaluated to ensure that it main-
tains data confidentiality. Such evaluations involve a
detailed analysis of the device’s design and construc-
tion (Bishop 2003, Ch. 21), as prescribed by interna-
tional security standards (Herrmann 2003).

Previous work has shown how information flow can
be traced through the circuitry of domain-separation
devices to see if there are unintended data pathways
from a high-security domain to a low-security one
(Rae & Fidge 2005a, Rae & Fidge 2005b, McComb
& Wildman 2005). Because a device will typically
send data to different destinations in different modes,
such analyses must take each of the device’s different
operating modes into account. These include ‘failure’

We wish to thank the anonymous reviewers for their helpful
comments, especially a suggestion which inspired the exam-
ple in Section 8. This research was funded by the Defence
Signals Directorate and the Australian Research Council via
Linkage-Projects Grant LP0347620, Formally-Based Security
Evaluation Procedures.

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

modes in which a faulty component alters the flow of
information.

However, previous analyses fail to identify unin-
tended information-flow pathways created by changes
in operating mode. A potential security risk may be
caused by components within a device that can store
information in one mode and release it in another.
It is then possible for classified data en route to a
high-security destination to be accidentally diverted
to a low-security domain when the device’s mode is
changed.

Here we use a series of worked examples to show
how a simple extension to existing graph-theoretic
analysis techniques allows us to identify potential se-
curity leaks caused by mode changes. This is done by
allowing information-flow pathways to be defined not
only as those in which data is transmitted in a partic-
ular operating mode, but also as those in which data
is communicated between different operating modes,
providing the information flows intersect at compo-
nents that may store and forward data.

2 Previous Work

International standards such as the Common Crite-
ria for Information Technology Security Evaluation
define the need to undertake detailed analyses of com-
munications devices intended for use in high-security
computer networks (Common Criteria 1999). In-
evitably, however, general standards like these offer
broad guidelines only, so much work is required to
put them into practice (Herrmann 2003).

Our own research has been dedicated to automat-
able evaluation techniques for domain-separation de-
vices. In previous work we have shown how to analyse
electronic circuitry to identify information flow paths
(Rae & Fidge 2005a, Rae & Fidge 2005b), and have
implemented this theory in a practical tool (McComb
& Wildman 2005). However, this work was limited to
exploring information flow occurring within a single
operating mode of the device. Behaviours that span
modes were not considered.

In the context of safety-critical, rather than
security-critical, systems the ‘mode logic’ of em-
bedded controllers has been well explored elsewhere
(Miller 1998, Paynter 1996). Although similar in
motivation to our research, this work is not con-
cerned with information flow, but rather with the
need to model the way the system may change op-
erating modes, in order to prove that no undesirable
sequences of mode changes are possible.

3 Motivation

In previous research we explained how the schematic
circuit diagram of a communications device could be
treated as an information flow graph for the purposes

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

303

of security evaluation (Rae & Fidge 2005b). Discrete
components such as logic gates and microprocessor
chips are treated as nodes, and the wiring connect-
ing them as arcs. The way each type of component
connects its inputs to its outputs is defined for each
of the device’s operating modes. The device’s circuit
diagram is then modelled as an adjacency matrix of
the following form.

outputs
inputs modes

Each row represents a connection acting as an input
and each column a connection acting as an output.
Based on the behaviour of the various components,
the cells in the matrix are populated with sets of op-
erating modes, possibly empty, defining the particular
modes in which the corresponding input and output
are connected.

Connectivity across the whole circuit is then de-
fined as the transitive closure of the adjacency matrix.
The security evaluator can then easily see whether
there is any information flow from those inputs to the
device which come from a high-security domain and
those outputs which lead to a low-security domain.

Importantly, the transitive closure is calculated
under the assumption that two adjacent arcs are con-
nected only if they are both ‘active’ in the same mode.
Since a circuit diagram is usually fully-connected, this
assumption limits the information flow analysis to re-
alistic cases.

Although adequate for components such as logic
gates, that can be modelled as if they ‘instanta-
neously’ transfer information from their inputs to
their outputs, this assumption is not always satisfac-
tory. If it possible for a particular component to store
information when the device is one mode, and subse-
quently release the information when the device is in
another mode, then classified data may flow through
the device in a way that will not be identified by a
mode-specific analysis. Therefore, our goal below is
to extend the approach to allow for the possibility
that some components, such as memory chips and
flip flops, can transfer information from one operat-
ing mode to another.

4 Tracing Information Flow Through Mode
Changes

To do this we must extend the notion that a com-
ponent connects its inputs to its outputs in a partic-
ular mode to allow for components that receive in-
formation in one mode and release it in a subsequent
mode. Therefore, rather than reasoning about partic-
ular modes of the device, we must consider sequences
of consecutive modes.

Let M,N, . . . represent distinct operating modes
of a device. In practice these may be ‘normal’ be-
haviours, fault modes or both. We firstly intro-
duce mode sequences within angled brackets, e.g.,
〈M,N,O, P 〉, to model the notion that the device has
switched between the particular sequence of modes,
in the order shown.

To model the mode-specific way a component con-
nects its inputs to its outputs we also need a special
operator for joining mode sequences end-to-end. This
is denoted here by ‘X ⊕ Y ’, which joins (non-empty)
mode sequences X and Y provided that the last mode
in sequence X is the same as the first mode in se-
quence Y .

〈M, . . . , O, P 〉 ⊕ 〈P,Q, . . . , S〉
= 〈M, . . . , O, P, Q, . . . , S〉

(1)

Sequences whose last/first modes don’t match cannot
be joined. For example, 〈M, . . . , P 〉⊕〈Q, . . . , S〉 does
not produce a valid mode sequence.

To model components that may exchange informa-
tion in any mode, we also introduce mode ‘wildcards’,
denoted ‘?’ that match any mode.

〈M, . . . , O, P 〉 ⊕ 〈?,Q, . . . , S〉
= 〈M, . . . , O, P, Q, . . . , S〉

(2)

Similarly for the symmetric case with the wildcard at
the end of the first sequence. Notice that, given this
rule, we can use the sequence 〈?, ?〉 as a ‘connector’
to join any two mode sequences.

Since it is unhelpful to say that a device switches
from a given mode P to the same mode P , we also as-
sume that duplicated, non-wildcard modes are always
compressed.

〈M, . . . , O, P, P,Q, . . . , S〉
= 〈M, . . . , O, P, Q, . . . , S〉

(3)

We then follow our previous approach (Rae &
Fidge 2005b) of populating the adjacency matrix with
the mode-specific connections implied by the individ-
ual components in the device and performing matrix
multiplications to calculate the transitive closure and
achieve an end-to-end connectivity analysis. Now,
however, the cells of the adjacency matrix contain sets
of mode sequences, rather than just sets of modes.

Let Z be an N × N adjacency matrix. Let Z(i,j)

be the value in the cell in Z’s ith row and jth column.
Then we define the square Z2 as a matrix in which
the cell in the ith row and jth column is calculated
as follows.

Z2
(i,j) =

⋃
1≤k≤N

{s ⊕ t | s ∈ Z(i,k) ∧ t ∈ Z(k,j)} (4)

In other words, if information can flow from input i to
output k via mode sequence s, and information can
flow from input k to output j via mode sequence t,
then information can flow from input i to output j
via mode sequence s ⊕ t (provided that sequences s
and t can be joined using Rules 1 to 3 above). The
transitive closure of a graph can be found by squaring
its adjacency matrix until it stops changing.

To illustrate the technique and its properties, the
following sections present four distinct examples in
which ‘inter-mode’ information flow may occur.

5 Example: A Device With a Modal,
Buffered Component

Here we consider an example where a component with
memory transmits information in different directions
in different operating modes. An abstract view of the
device of interest is shown in Figure 1. It comprises
four components, A, B, C and D, which act as se-
rial interface converters, and a switching component
X, which directs the flow of information. Such a de-
vice may, for instance, form part of a multi-computer
switch, used to allow peripheral devices to be shared
between different security domains, while still main-
taining separation of data.

We assume that component X has two different
operating modes, M and N , selected by a physical
switch on the device (not shown in the figure). In
mode M information flows along connections e, f , g
and h, via components B, X and A. In mode N in-
formation flows along connections i, j, k and l, via
components D, X and C. Connections e and h in-
terface to a high-security domain, while connections i

CRPIT Volume 48

304

Table 1: Adjacency matrix for the switching device using global modes

e f g h i j k l

e {M}
f {M}
g {M}
h

i {N}
j {N}
k {N}
l

Table 2: Connectivity matrix for the switching device using global modes

e f g h i j k l

e {M} {M} {M}
f {M} {M}
g {M}
h

i {N} {N} {N}
j {N} {N}
k {N}
l

A

X

B D

C

e

f

gh

i

j

k l

High
security
domain

Low
security
domain

Figure 1: A buffered switching device

and l interface to a low-security domain. We also as-
sume that component X contains a data buffer, to
smooth the flow of data packets through the device.

To evaluate such a device’s security properties we
must determine whether there are any information-
flow pathways from the high-security domain to the
low-security one in any operating mode. We first per-
form the analysis using the previous mode-specific ap-
proach (Rae & Fidge 2005b) to illustrate its weakness.

Table 1 shows the initial adjacency matrix as pop-
ulated by the security evaluator, showing connectiv-
ity through the individual components in different
modes. For instance, it says that information flows
from e to f , from f to g and from g to h in mode M ,
as per the above description of the device’s behaviour.
Similarly for mode N . All unoccupied cells are as-
sumed to contain the empty set of modes. We omit
the cells on the diagonal since it is unhelpful to note
that an arc is connected to itself.

To analyse the device’s overall connectivity, we
then perform matrix multiplications until a fixed
point is reached, populating each cell (i, j) with the
intersection of the mode sets from cells (i, k) and (k, j)

(Rae & Fidge 2005b). This is consistent with the no-
tion that components must be in the same mode to
interact. The resulting connectivity matrix is shown
in Table 2.

This analysis correctly shows that information
may flow from e to h in mode M and from i to l in
mode N . Moreover, the two clusters of occupied cells
in Table 2 clearly suggests that the device successfully
achieves domain-separation in its two modes.

Unfortunately, this analysis completely overlooks
the possibility that component X retains information
between modes. To solve this we redo the analysis
using mode sequences as defined in Section 4 above.

Table 3 shows our initial population of the ad-
jacency matrix using mode sequences. As before it
includes the explicit information flow in operating
modes M and N . However, this time the security
evaluator has chosen to use ‘mode wildcard’ sequences
to indicate that buffered component X may forward
information received on input j in one mode to out-
put g in another mode. Similarly for input f and
output k. (We have added only those additional con-
nections created by component X’s ability to store-
and-forward information in different modes. Adding
‘wildcards’ to the (f, g) and (j, k) cells would also be
reasonable but does not change the outcome in this
case.)

Table 4 then shows the matrix after multiplying
twice (at which point it stops changing) using Rule 4
above. This time the (i, h) cell tells us that informa-
tion may flow between these two arcs when compo-
nent X’s mode is switched from N to M . This is an
unexpected but harmless behaviour of the device.

Of much more concern is that the (e, l) cell shows
potential information flow when the mode changes
from M to N . This is especially disturbing since
this is a previously unsuspected flow from the high-
security domain to the low-security one.

In this way the security evaluator is alerted to a po-
tentially dangerous flow of information and the need
to study this pathway in more depth. For instance, if
it can be proven that component X’s buffer is cleared

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

305

Table 3: Adjacency matrix for the switching device using mode sequences

e f g h i j k l

e {〈M〉}
f {〈M〉} {〈?, ?〉}
g {〈M〉}
h

i {〈N〉}
j {〈?, ?〉} {〈N〉}
k {〈N〉}
l

Table 4: Connectivity matrix for the switching device using mode sequences

e f g h i j k l

e {〈M〉} {〈M〉} {〈M〉} {〈M,?〉} {〈M,N]〉}
f {〈M〉} {〈M〉} {〈?, ?〉} {〈?,N〉}
g {〈M〉}
h

i {〈N, ?〉} {〈N,M〉} {〈N〉} {〈N〉} {〈N〉}
j {〈?, ?〉} {〈?,M〉} {〈N〉} {〈N〉}
k {〈N〉}
l

every time the device changes from mode M to N
then the device may still be considered secure. If not,
however, it may need to be rejected.

The transitive closure also produces ‘wildcard’
mode sequences in the (i, g), (j, h), (e, k) and (f, l)
cells, denoting potential information flow along these
paths in different modes, but since none of these paths
both begin and end in the device’s environment they
are of little security interest. Generally, we are inter-
ested only in pathways leading from a high-security
domain, or some other source of classified informa-
tion, to a low-security domain.

6 Example: A Device with a Non-Moded
Buffered Component

In this section we consider an example where the com-
ponent that retains information between modes is not
itself affected by mode changes, but another compo-
nent that uses it is.

A

f
a

B

e
c

db

High
security
domain

Low
security
domain

Figure 2: A cryptographic device

Figure 2 shows a (highly abstract) view of a cryp-
tographic device. It connects a high-security com-
puter to a low-security network. The device has two
modes, encryption E and decryption D. In encryp-

tion mode E plaintext messages are read from the
computer via input b, encrypted by processor A, us-
ing memory chip B to temporarily store each block of
the resulting ciphertext, and these are then sent to the
network via output d. In decryption mode D cipher-
text messages are read from the network via input c,
decrypted by processor A, using memory chip B to
temporarily store each block of the resulting plain-
text, and these are then sent to the computer via
output a. In practice, such devices are used in pairs,
allowing computers in two different high-security do-
mains to communicate over a low-security network.
Each device must thus perform both encryption and
decryption functions to support bidirectional commu-
nication. The device’s overall mode, encryption or
decryption, is controlled by signals (not shown) sent
to processor A from either the local or remote high-
security domain.

Once again, we first attempt to evaluate the device
using the old approach. Table 5 shows the security
evaluator’s population of the adjacency matrix, based
on our understanding of the way components A and B
work. To model the fact that information can be writ-
ten to and subsequently read from memory chip B in
either mode, we put both modes E and D into the
(e, f) cell. (This seems unnatural, because a memory
chip doesn’t normally have ‘modes’, but leaving the
cell empty would imply there is no information flow
through this component. Indeed, this dilemma high-
lights how poorly suited the previous approach is to
handling devices that store-and-forward information.)

The transitive closure after performing matrix
multiplications is shown in Table 6. It correctly
identifies information flow from c to a in decryption
mode D and from b to d in encryption mode E, both
of which are expected for this device.

Again, however, this approach fails to recognise
the possibility that information stored in the mem-
ory chip in one mode may accidently be released in
another mode. Therefore, we redo the analysis us-
ing mode sequences. To model the memory com-
ponent’s ability to connect information flow in any

CRPIT Volume 48

306

Table 5: Adjacency matrix for the cryptographic device using global modes

a b c d e f

a

b {E}
c {D}
d

e {E,D}
f {D} {E}

Table 6: Connectivity matrix for the cryptographic device using global modes

a b c d e f

a

b {E} {E} {E}
c {D} {D} {D}
d

e {D} {E} {E,D}
f {D} {E}

pair of modes—because the memory chip itself is
not influenced by changes to the device’s encryp-
tion/decryption mode—we put a wildcard entry into
the (e, f) cell in Table 7.

The resulting transitive closure after matrix mul-
tiplication is shown in Table 8. This time the (b, a)
cell tells us that information put into memory in en-
cryption mode E could potentially be sent back to
the high-security domain in decryption mode D. Al-
though this is not an intended behaviour of the device,
it would be harmless from a security perspective.

More seriously, though, the (c, d) cell alerts us to
the danger that

1. processor A, in decryption mode, reads a cipher-
text message from input c,

2. it decrypts the ciphertext and stores the resulting
blocks of plaintext data in memory chip B via
arc e,

3. processor A’s mode is switched to encryption,

4. processor A reads the contents of memory com-
ponent B, via arc f , and sends the blocks of de-
crypted plaintext to the low-security domain via
output d.

This series of events would allow the device to decrypt
a ciphertext message received from the low-security
domain and send the resulting plaintext back to the
low-security domain!

Having been alerted to this risk, the security eval-
uator would be obliged to look for mitigations against
it. This would most likely require a careful analysis of
the software on processor A to ensure that it accesses
arrays in memory in a safe way or, better still, that
it completely clears the contents of memory chip B
when the mode changes from encryption to decryp-
tion.

7 Example: Combining Buffered and Modal
Modules

The next example demonstrates that the approach
has good compositional behaviour. In this case we
show that combining a buffered component with an
otherwise ‘secure’ modal circuit makes the overall de-
vice insecure in the presence of mode changes.

a b

fe

H
ig

h
se

cu
rit

y

R S T

U

dc

Lo
w

 se
cu

rit
y

Figure 3: A context filtering device

Figure 3 shows a (highly abstract) design for a
context filter. Such devices are used to restrict the
flow of information from a high-security domain to
a low-security one. In this case we assume the de-
vice has two operating modes, filter F and bypass B.
When the device is in filter mode it is intended to ac-
cept information from the high-security domain and
forward only data packets that satisfy some prede-
fined security criterion to the low-security domain.
When the device is in bypass mode information may
flow from the high-security to the low-security do-
main without restriction. (Bypass modes are typ-
ically needed in such devices to allow binary con-
trol data through while setting up communication
links.)

The device’s design consists of two main modules.
On the right is a modal (and essentially memoryless)
module in which component S directs the flow of in-
formation depending on whether the device is in by-
pass or filter mode. Component T is a simple merge
component (probably just an ‘or’ gate in practice).
Component U performs the filtering function, which
normally involves excising messages being sent from
the high-security domain to the low-security one if
they are not in some dictionary of allowed messages.
On the left of Figure 3 is a separate module containing
an unmoded input buffer R which is used to smooth
the flow of traffic into the filter.

The interesting aspect of this device is that, in
isolation, both the left and right-hand modules have
well-understood, ‘secure’ behaviours, but their com-
position in the presence of mode changes does not.

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

307

Table 7: Adjacency matrix for the cryptographic device using mode sequences

a b c d e f

a

b {〈E〉}
c {〈D〉}
d

e {〈?, ?〉}
f {〈D〉} {〈E〉}

Table 8: Connectivity matrix for the cryptographic device using mode sequences

a b c d e f

a

b {〈E,D〉} {〈E〉} {〈E〉} {〈E, ?〉}
c {〈D〉} {〈D,E〉} {〈D〉} {〈D, ?〉}
d

e {〈?,D〉} {〈?,E〉} {〈?, ?〉}
f {〈D〉} {〈E〉}

Table 9 shows our initial population of the adja-
cency matrix for this device using mode sequences.
In particular, the (a, b) cell shows that component R
can receive information in either mode B or F and
release it in any mode.

(Putting 〈?, ?〉 in this cell would have exactly the
same meaning, since the only two modes are B and F ,
but explicitly enumerating the modes for cells that
are on the outermost boundary of a diagram pro-
duces a more readable result. Another modelling
decision in this table is that the evaluator has cho-
sen to separately specify the two distinct modes in
which information is intended to flow through com-
ponent T , either from c to d in mode B or from f
to d in mode F . Although reasonable, we could
equally well take the view that this simple ‘or’ gate-
like component is essentially unmoded and put both
modes B and F in the (c, d) and (f, d) cells. This has
no significant impact on the overall example, how-
ever.)

Table 10 then shows the calculated connectivity
matrix. If we consider just the b to f rows and
columns, we can see the overall connectivity for the
right-hand module in Figure 3. In particular, the
(b, d) cell tells us that this unbuffered module is ‘se-
cure’ in the sense that information flows from end-to-
end only in modes B or F , as we expect from such a
device.

However, with the addition of buffered compo-
nent R (i.e., the ‘a’ row and column in Table 10)
we see that the device as a whole is not secure.
Specifically, the 〈F,B〉 sequence in the (a, d) cell
alerts us to the fact that information accumulated
in component R while the device is in filter mode F
can be subsequently released to the low-security
domain when the device is switched into bypass
mode B, and thus won’t get filtered as the operator
intended.

Once again, therefore, the security evaluator will
be obliged to carefully consider the device’s behaviour
when it switches from filter to bypass mode. Al-
though component S is the primary one concerned
with the device’s overall mode, we must ensure that
all data in component R is cleared when the mode is
changed. If this cannot be proven by more detailed
analysis of the device’s design it must be rejected as
insecure.

8 Example: Clearing a Buffered Component

In the preceding examples we have assumed a worst-
case scenario in which a buffered component may re-
lease any information acquired in previous modes. If,
however, we know that the buffer is cleared when cer-
tain mode changes occur we can incorporate this in-
formation in the adjacency matrix and thus eliminate
false positives from the connectivity analysis. Using
sets of mode sequences in the cells makes this pos-
sible because we can selectively omit sequences from
the sets when we know that this particular sequence
of modes never allows information flow.

A

S

B

QP

e f

c

High
security
domain

Low
security
domain

K

d

ba

Figure 4: A keyboard switch

For example, consider the (highly abstract) design
for a keyboard switch in Figure 4. Its purpose is to
allow a single keyboard K to be shared between high-
security computer A and low-security computer B.
The switching device contains three components, a
‘mode switch’ S, and two microprocessors, P and Q,
for interfacing between the keyboard and the high and
low-security computers, respectively.

CRPIT Volume 48

308

Table 9: Adjacency matrix for the filter device

a b c d e f

a {〈F, ?〉, 〈B, ?〉}
b {〈B〉} {〈F 〉}
c {〈B〉}
d

e {〈F 〉}
f {〈F 〉}

Table 10: Connectivity matrix for the filter device

a b c d e f

a {〈F, ?〉, 〈B, ?〉} {〈B〉, 〈F,B〉} {〈F 〉, 〈B〉,
〈F,B〉, 〈B,F 〉}

{〈F 〉, 〈B,F 〉} {〈F 〉, 〈B,F 〉}

b {〈B〉} {〈B〉, 〈F 〉} {〈F 〉} {〈F 〉}
c {〈B〉}
d

e {〈F 〉} {〈F 〉}
f {〈F 〉}

The device has two modes, H and L, where the
keyboard is connected to the high-security computer
and the low-security computer, respectively. The
mode of choice is controlled by the operator, using
a physical switch connected to component S, which
in turn sends appropriate control signals (not shown)
to the two microprocessors.

In such a device, component S does not physi-
cally disconnect the keyboard from the ‘disconnected’
computer, to avoid problems caused by the computer
detecting that its keyboard has been unplugged. In-
stead, the microprocessor linked to the disconnected
computer simulates the behaviour of the keyboard so
that both computers believe they have a dedicated
keyboard attached at all times. For instance, when
the device is in high-security mode H, microproces-
sor P acts as an interface between the keyboard and
computer A, while microprocessor Q simultaneously
simulates an idle keyboard for computer B.

Primary information flow through the keyboard
switch consists of keystrokes forwarded from the key-
board to whichever computer is ‘connected’, depend-
ing on the operating mode. However, the comput-
ers also send signals to the keyboard, to drive LED
and LCD displays, maintain the ‘Caps-Lock’ status,
and to store information about programmable func-
tion keys. This is why all arcs in Figure 4 are shown
as bidirectional. For instance, when the device is in
mode H, not only do keystrokes travel from compo-
nent K to component A, via components P and S,
but some data also travels from the high-security com-
puter to the keyboard in the reverse direction.

The presence of even a small memory buffer in the
keyboard thus introduces the danger of a covert chan-
nel via which classified information can be sent from
the high-security computer to the keyboard while the
device is in mode H and subsequently forwarded from
the keyboard to the low-security computer when the
device is in mode L. Indeed, undertaking a connec-
tivity analysis of this device, using ‘wildcard connec-
tors’ to model information flow through the keyboard,
would reveal that all the components in this device are
potentially connected.

In this example, however, we wish to introduce the
additional knowledge that a safeguard has been built
into the device. Assume that the device has been

engineered so that when it is switched from mode H
to mode L, microprocessor P instructs the keyboard
to clear all of its memory buffers.

We can incorporate this knowledge into our model
as shown by the adjacency matrix in Table 11. In-
stead of putting ‘〈?, ?〉’ connectors into the (e, f) and
(f, e) cells, we have instead included only the possibil-
ity that information flows through the keyboard when
the mode changes from L to H. Omitting the 〈H,L〉
sequence from these cells models our assumption that
information flow is prevented when switching from
mode H to mode L.

(Also note that component S is assumed to suc-
cessfully keep the high and low-security data streams
separate. There is no information flow between arcs a
and d or between arcs b and c.)

The resulting transitive closure in Table 12 then
shows that this device can be considered secure
thanks to the assumption we have made about clear-
ing the buffer. The (b, a) cell shows that information
may flow from the low-security computer to the high-
security one when the mode is switched from L to H,
but this is harmless. Most importantly, the (a, b) cell
is empty. Even though the (a, e) cell shows that infor-
mation may flow from the high-security computer to
the keyboard in mode H, and the (f, b) cell shows that
information may flow from the keyboard to the low-
security computer in mode L, our deliberate omission
of a 〈H,L〉 link in the (e, f) cell successfully captured
the notion that that the keyboard does not leak clas-
sified data in this design.

9 Conclusion

Evaluating information flow through communications
devices intended for secure applications is both te-
dious and intellectually taxing. Our research is devis-
ing ways of automating various aspects of the prob-
lem. In this short paper we have described an im-
provement to previous analysis techniques which will
help highlight potential security problems in devices
which possess both different operating modes and the
ability to temporarily store classified information be-
tween modes.

Although calculation of connectivity matrices is
readily automatable, population of the adjacency ma-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

309

Table 11: Adjacency matrix for the keyboard switch

a b c d e f

a {〈H〉}
b {〈L〉}
c {〈H〉} {〈H〉}
d {〈L〉} {〈L〉}
e {〈H〉} {〈L,H〉}
f {〈L〉} {〈L, H〉}

Table 12: Connectivity matrix for the keyboard switch

a b c d e f

a {〈H〉} {〈H〉}
b {〈L,H〉} {〈L,H〉} {〈L〉} {〈L, H〉} {〈L〉}
c {〈H〉} {〈H〉}
d {〈L,H〉} {〈L〉} {〈L,H〉} {〈L, H〉} {〈L〉}
e {〈H〉} {〈H〉} {〈L,H〉}
f {〈L,H〉} {〈L〉} {〈L,H〉} {〈L〉} {〈L, H〉}

trix used as a starting point inevitably relies on a de-
gree of skill from the security evaluator to model as-
sumed device characteristics properly. Including too
many modes in the cells will produce false positives,
while omitting modes in which information is actu-
ally transmitted through a component runs the more
serious risk of overlooking security problems. If in
doubt about how to model a particular component,
therefore, the evaluator would be best advised to put
in too many modes, rather than too few.

All of the examples presented above were trivial
block-diagram abstractions of the types of devices we
normally consider. In practice, information security
evaluations are based on circuitry schematics with
dozens of distinct components. Such evaluations are
practical only with tool support. We have already
built a software tool capable of analysing circuit-level
system descriptions (McComb & Wildman 2005) and
now plan to extend it with the analysis capability de-
scribed above.

In future work, this general area of research can be
extended in two directions. Firstly, since we treat cir-
cuitry merely as a connectivity graph, the approach
can also be applied to whole communications net-
works, not just single communications devices. Also,
we plan to extend the type of analysis described above
to embedded software running on microprocessors
within communications devices, since embedded code
has a major influence on the transfer of information
between modes.

References

Bishop, M. (2003), Computer Security: Art and Sci-
ence, Addison-Wesley.

The Common Criteria Project Sponsoring Organi-
sations (1999), Common Criteria for Informa-
tion Technology Security Evaluation, 2.1 edn.
ISO/IEC Standard 15408.

Herrmann, D. S. (2003), Using the Common Criteria
for IT Security Evaluation, Auerbach Publica-
tions.

McComb, T. & Wildman, L. P. (2005), SIFA: A tool
for evaluation of high-grade security devices, in

C. Boyd & J. Nieto, eds, ‘Information Secu-
rity and Privacy: Tenth Australasian Confer-
ence (ACISP 2005)’, Vol. 3574 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 230–
241.

Miller, S. P. (1998), Specifying the mode logic of a
flight guidance system in CoRE and SCR, in
M. Ardis, ed., ‘Proceedings of FMSP’98: The
Second Workshop on Formal Methods in Soft-
ware Practice’, ACM Press, pp. 44–53.

Paynter, S. (1996), Real-time mode-machines, in
B. Jonsson & J. Parrow, eds, ‘Formal Tech-
niques in Real-Time and Fault-Tolerant Systems
(FTRTFT’96)’, Vol. 1135 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 90–109.

Rae, A. J. & Fidge, C. J. (2005a), ‘Identifying critical
components during information security evalua-
tions’, Journal of Research and Practice in In-
formation Technology 37(4), 391–402.

Rae, A. J. & Fidge, C. J. (2005b), ‘Information flow
analysis for fail-secure devices’, The Computer
Journal 48(1), 17–26.

CRPIT Volume 48

310

SPiKE: Engineering Malware Analysis Tools using Unobtrusive
Binary-Instrumentation

Amit Vasudevan Ramesh Yerraballi

Department of Computer Science and Engineering
University of Texas at Arlington,

Box 19015, 416 Yates St., 300 Nedderman Hall,
Arlington, TX 76019-0015, USA.

Email: {vasudeva, ramesh}@cse.uta.edu

Abstract
Malware — a generic term that encompasses viruses,

trojans, spywares and other intrusive code — is
widespread today. Malware analysis is a multi-step pro-
cess providing insight into malware structure and func-
tionality, facilitating the development of an antidote.
Behavior monitoring, an important step in the analy-
sis process, is used to observe malware interaction with
respect to the system and is achieved by employing dy-
namic coarse-grained binary-instrumentation on the tar-
get system. However, current research involving dy-
namic binary-instrumentation, categorized into probe-
based and just-in-time compilation (JIT), fail in the con-
text of malware. Probe-based schemes are not transpar-
ent. Most if not all malware are sensitive to code mod-
ification incorporating methods to prevent their analy-
sis and even instrument the system themselves for their
functionality and stealthness. Current JIT schemes,
though transparent, do not support multithreading, self-
modifying and/or self-checking (SM-SC) code and are
unable to capture code running in kernel-mode. Also,
they are an overkill in terms of latency for coarse-grained
instrumentation.

To address this problem, we have developed a new
dynamic coarse-grained binary-instrumentation frame-
work codenamed SPiKE, that aids in the construction
of powerful malware analysis tools to combat malware
that are becoming increasingly hard to analyze. Our
goal is to provide a binary-instrumentation framework
that is unobtrusive, portable, efficient, easy-to-use and
reusable, supporting multithreading and SM-SC code,
both in user- and kernel-mode. In this paper, we dis-
cuss the concept of unobtrusive binary-instrumentation
and present the design, implementation and evaluation
of SPiKE. We also illustrate the framework utility by
describing our experience with a tool employing SPiKE
to analyze a real world malware.

Keywords: Security, Malware, Instrumentation

1 Introduction
Malware analysis is a multi-step process combining

both coarse- and fine-grained analysis schemes that pro-
vide insight into malware structure and functionality.
Malware analysis environments (sandboxes) thus require
various coarse- and fine-grained analysis tools to facili-
tate the development of an antidote. The first and a
very important step in the analysis process, known as
Behaviour Monitoring, involves monitoring malware be-
havior with respect to the system, to glean details which
aid in further finer investigations. For example, the

Copyright c©2006, Australian Computer Society, Inc. This paper
appeared at Twenty-Ninth Australasian Computer Science Con-
ference (ACSC2006), Hobart, Tasmania, Australia, January 2006.
Conferences in Research and Practice in Information Technology,
Vol. 48. Vladimir Estivill-Castro and Gill Dobbie, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided this
text is included.

W32.MyDoom trojan and its variants propagate via e-mail
and download and launch external programs using the
network and registry. Such behavior, which includes the
nature of information exchanged over the network, the
registry keys used, the processes and files created etc.,
is inferred by employing coarse-grained analysis pertain-
ing to process, network, registry, file and other related
services of the host operating system (OS). Once such
behavior is known, fine-grained analysis tools such as
debuggers are employed on the identified areas to reveal
finer details such as the polymorphic layers of the trojan,
its data encryption and decryption engine, its memory
layout etc.

Instrumentation – the ability to control constructs
pertaining to any code – is a technique that is used
for both coarse- and fine-grained analysis. Constructs
can either be pure (functions following a standard call-
ing convention) or arbitrary (code blocks composed of
instructions not adhering to a standard calling conven-
tion). Control means access to a construct for purposes
of possible semantic alteration. While instrumentation is
trivial for OSs and associated applications that are open
source, the task becomes complicated with deployments
that are commercial and binary only. To this end there
has been various research efforts which achieve instru-
mentation at the binary level. They fall into two broad
categories: Probe-based and JIT. Probe-based methods
such as Dtrace (Cantrill et al. 2004), Dyninst (Buck &
Hollingsworth 2000), Detours (Hunt & Brubacher 1999)
etc., achieve instrumentation by modifying the target
construct in a fashion so as to enable a replacement
function to be executed when the original construct is
invoked. JIT methods such as Pin (Luk et al. 2005),
DynamoRIO (Bruening 2004), Valgrind (Nethercote &
Seward 2003) etc., on the other hand achieve instrumen-
tation by employing a virtual machine (VM).

Both methods however fail in the context of malware.
Probe-based methods are not transparent because orig-
inal instructions in memory are overwritten by trampo-
lines. Most if not all malware are sensitive to code modi-
fication and even instrument certain OS services for their
functioning and stealthness. Also recent trends in mal-
ware show increasing anti-analysis methods, rendering
probe-based schemes severely limited in their use. Cur-
rent JIT schemes on the other hand, though transparent,
do not contain support for multithreading and SM-SC
code and are unable to analyze code executing in kernel-
mode. Also JIT schemes are more suited for fine-grained
instrumentation and are an overkill in terms of latency
for coarse-grained analysis. This situation calls for a
new coarse-grained instrumentation framework specifi-
cally tailored for malware analysis.

This paper discusses the concept of unobtrusive
binary-instrumentation, and presents SPiKE, a re-
alization of this concept that provides unobtrusive,
portable, efficient, easy-to-use and reusable binary-
instrumentation, supporting multithreading and SM-SC
code in both user- and kernel-mode. The instrumenta-
tion deployed by SPiKE is unobtrusive in the sense that

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

311

it is completely invisible and cannot be easily detected
or countered. This is achieved by employing the vir-
tual memory system coupled with subtle software tech-
niques. The framework currently runs on OSs such as
Windows (9x, NT, 2K and XP) and Linux on the IA-32
processors (Intel Corporation 2003) and is portable on
any platform (processor and OS) that supports virtual
memory. The framework achieves efficient instrumen-
tation using special techniques such as redirection and
localized-executions. SPiKEs API is simple yet power-
ful making the framework easy-to-use. Analysis tools
are usually coded in C/C++ using SPiKEs API. The
API is platform independent wherever possible allow-
ing tool code to be reusable among different platforms,
while allowing them to access platform specific details
when necessary. To the best of our knowledge, SPiKE
is the first coarse-grained binary-instrumentation frame-
work that facilitates the construction of powerful mal-
ware analysis tools to combat malware that are increas-
ingly becoming hard to analyze.

This paper is organized as follows: We begin by giv-
ing an overview of SPiKE’s instrumentation mechanism
in Section 2. We follow this with a detailed discussion on
design and implementation issues in Section 3. In Sec-
tion 4, we discuss our experience with one of our tools
employing SPiKE to analyze a real world malware. We
then evaluate in Section 5, the framework performance
and compare it against other schemes. Finally, we con-
sider related work on binary-instrumentation in Section
6 and conclude the paper in Section 7 summarizing our
contributions with suggestions for future work.

2 Framework Overview
Instrumentation under SPiKE is facilitated by a tech-

nique that we call Invisi-Drift. The basic idea involves
inserting what we call drifters, at memory locations cor-
responding to the code construct whose instrumentation
is desired. Drifters are invisible logical elements that
trigger an event when a read, write and/or execute oc-
curs to the corresponding memory location. Each drifter
has an associated instrument, a user-defined function to
which control is transferred, when the drifter triggers.
Instruments can then monitor and/or alter the execut-
ing code stream as desired. SPiKE’s instrumentation
strategy is stealth and cannot be detected or countered
in any fashion. The framework also employs software
techniques such as redirection and localized-executions
to efficiently tackle issues involving reads, writes and/or
executes to memory locations with drifters, thereby en-
suring instrumentation presence while co-existing with
other instrumentation strategies employed by a malware.

SPiKE relies on our stealth breakpoint framework,
VAMPiRE (Vasudevan & Yerraballi 2005) to insert
drifters at desired memory locations. Figure 1 illustrates
the current architecture of SPiKE. The framework core
consists of a code slice execute engine (CSXE) and an
instrumentation API invoked by the analysis tool that
uses SPiKE. The CSXE can be thought of as a pseudo-
VM, that enables the framework to execute code frag-
ments (slices) locally. This is needed to efficiently tackle
various run-time issues involving SM-SC code (see Sec-
tion 3.3) and invocation of the original construct at a
drifter location (see Section 3.2). The CSXE employs a
disassembler and a slice repository (acting as a cache)
for its functioning. Since SPiKE’s core resides in kernel-
mode, it can capture both user- and kernel-mode code
with ease.

As Figure 1 shows, there are typically three binary
elements present during an analysis session: the target
application, the analysis tool front-end, and the tool pay-
loads. The tool payloads contain instruments that need
to be in the target address space along with support
code that deploys instrumentation. The target address
space can be a new process, an existing process and/or
the OS kernel itself. The tool front-end runs as a sep-

SPiKE Library
API

Tool Front-End
Address

Space

O
pe

ra
tin

g
Sy

ste
m

 A
bs

tra
ct

io
nStealth Breakpoints

(VAMPiRE)

Code Slice
eXecute Engine

(CSXE)

Disassembler
(Machine Abstraction)

Kernel-Mode User-Mode

SPiKE

Target Address
Space

Dyamic Library-1

Redirection Pads

...
...

...
...

Dyamic Library-n

Redirection Pads

...
...

...
...

Payload
Instruments

Support Code
+

SPiKE Library
API + CSXE

User-Mode

Pa
yl

oa
d

In
str

um
en

ts

Su
pp

or
t C

od
e

+

SP
iK

E
Li

br
ar

y
A

PI

K
er

ne
l-M

od
e

1

2

3

4

5

2

Target Address
Space

4
35

Figure 1: Architecture of SPiKE
arate process and forms the user interface. The tool
front-end initialises the framework and loads the tool
payloads in the target address space, by a process that
we call payloading (steps 1 and 2). The payloads upon
gaining control, use the framework library to initialize
SPiKE in the target address space and insert drifters at
specified memory locations for instrumentation (step-3).
When a drifter triggers (step-4), SPiKE transfers control
to the associated instrument, which then does the nec-
essary processing (step-5). Using SPiKE, the tool pay-
loads can communicate with the tool front-end in real
time. A point to be noted from Figure 1, is that, pay-
loads in user-mode have a local copy of the CSXE linked
to themselves. Thus, localized-executions occur at the
same privilege level where the drifter was triggered. This
ensures that malformed user-mode code cannot result in
system instability, which would have been the case had
localized executions always taken place in kernel-mode.

SPiKE also employs a technique that we call redirec-
tion, for efficient instrumentation of functions housed in
dynamic libraries. This is achieved by embedding code
constructs known as redirection-pads into the target li-
brary. SPiKE is completely re-entrant, as it does not
make use of any OS specific routines within the CSXE
and uses shared memory with its own isolation primi-
tives for interprocess communication. The SPiKE API
is simple yet powerful to allow a tool writer to harness
the complete power of the framework.

3 Design and Implementation
In this section, we present a detailed dicussion of

SPiKE. We begin by discussing how the framework is
deployed in the target execution space, followed by a
detailed description of how the framework achieves in-
strumentation. Finally, we discuss the SPiKE API and
some issues involving the framework stealthness.
3.1 Payloading

The analysis tool employing SPiKE, uses the frame-
work API, to load the tool-payload(s) into the target
execution space. The target execution space can be a
new process, an existing process or the OS kernel itself.
We call this process payloading. The design of our pay-
loading scheme is unified and lends itself to implementa-
tion on a variety of OSs such as Windows, Linux, Solaris
etc. Payloading is facilitated by the ptrace API on Unix
systems and process and thread creation APIs such as
CreateProcess, OpenProcess, Suspend/ResumeThread
etc. on Windows systems. Using our payloading scheme
allows us to attach to a new or an already running
process in the same way as a debugger. For kernel-
mode payloading, a tool-payload simply translates to a
kernel-module for the specific OS. For user-mode pay-
loading, a tool-payload translates to a dynamic library.
Our payloading mechanism has the ability to track pro-
cess dependencies (parent and child) and load the tool-
payload(s) into newly created children processes auto-
matically, thus aiding local (per process) and global (en-
tire system) instrumentation. Further details regarding
the payloading process and issues regarding OSs in the

CRPIT Volume 48

312

context of payloading can be found in our earlier work,
SAKTHI (Vasudevan & Yerraballi 2004).
3.2 Invisi-Drift

SPiKE inserts drifters at memory locations corre-
sponding to the code construct whose instrumentation
is desired. Drifters are logical elements that are a com-
bination of a code-breakpoint and an instrument. A code-
breakpoint provides the ability to stop execution of code
at an arbitrary point during runtime and the instrument
is a user-supplied function to which control is transferred
when the breakpoint triggers. SPiKE makes use of our
stealth breakpoint framework, VAMPiRE (Vasudevan
& Yerraballi 2005) to set invisible code-breakpoints at
memory locations corresponding to the code constructs
whose instrumentation is desired. Stealth breakpoints
provide unlimited number of invisible code, data and/or
I/O breakpoints that cannot be detected or countered in
any fashion. The basic idea involves exploiting the vir-
tual memory system of the underlying platform by set-
ting the attribute of the target memory page containing
the memory location to not-present and using the page-
fault exception (PFE) and subtle software techniques
to trigger the corresponding breakpoint (Vasudevan &
Yerraballi 2005).

A drifter under SPiKE can have a local (per-process)
or global (entire system) presence and can be active or
inactive at a given instance. A drifter can trigger (due to
the triggering of the corresponding code-breakpoint) due
to a read, write and/or execute to the memory location
where it is inserted. When a drifter triggers, SPiKE in-
vokes the instrument corresponding to the drifter, which
can then monitor and/or alter program behavior by over-
writing registers and/or memory (including the stack).
They can also invoke the original code at the drifter lo-
cation within themselves. This feature could be used
to chain to the original construct to do the meat of the
processing while employing changes to the result. As an
example, let us consider the Windows OS kernel API
CreateProcess. This API is responsible for creating
new processes in the system. A possible instrumentation
of this API might be used to keep track of the processes
that are being created in the system and their relation-
ships (parent/children). Under SPiKE, the instrument
for the CreateProcess API can invoke the original API
to create a process, perform its function (which is to keep
track of the process hierarchy) and return to the caller.
This model is much more flexible than a function pro-
logue/epilogue instrumentation as found in probe-based
systems such as DynInst (Buck & Hollingsworth 2000),
DProbes (Moore 2001) etc. in that: (a) it decouples
the instrument from the construct being instrumented,
which enables the instrument to invoke the original con-
struct as many times as required with different sets of pa-
rameters on the call stack and (b) it is a generic method
that can capture invocations to constructs that are not
pure. Instruments also have the ability to insert and/or
remove drifters at any memory location dynamically.
3.3 Localized-Executions

With Invisi-Drift, when a drifter is inserted at a de-
sired memory location, the entire memory page corre-
sponding to the location, has its attribute set to not-
present as described in the previous section. Further, for
instrumentation persistence, such memory pages always
need their attribute set to not-present for the lifetime of
a drifter. These facts give rise to a couple of issues that
need to be dealt with. The first is when the target code
reads and/or writes to drifter locations or to locations
within the memory page containing drifters. The second
situation is when the original code at the drifter location
is invoked from within the instrument. Both cases result
in multiple PFEs due to the destination memory page
attribute being not-present.

The framework employs the CSXE to eliminate such

PFEs and execute such code with minimal latency. The
CSXE slices code at a given location and stores it in a
slice-repository. A slice is nothing but a straight line se-
quence of instructions that terminates in either of these
conditions: (1) an unconditional control transfer, (2) a
specified number of conditional control transfers or (3)
a specified number of instructions. The slice-repository
acts as a framework local cache and contains the collec-
tion of code sequences that have been sliced. Only code
residing in the slice-repository is executed-never the orig-
inal code and hence the term localized-executions.

Original Code:
...
 1. push esi
 2. push edi
 3. mov eax, [8400D010h]
 4. cmp eax, [esp+12]
 5. jz 10
 6. mov edi, [esp+16]
 7. mov esi, [esp+20]
 8. call 84003140h
 9. jnz 6
10. pop edi
11. pop esi
12. ret
...

Slice-coalesced code:
...
 1. push esi
 2. push edi
 3. mov eax, [8400D010h]
 4. cmp eax, [esp+12]
 5. jz 10
 6. mov edi, [esp+16]
 7. mov esi, [esp+20]
 8. call 84003140h
 9. jnz 6
10. pop esi
11. pop edi
12. push [esp]
 jmp cxse
...

Slice-1:
 1. push esi
 2. push edi
 3. mov eax, [8400D010h]
 4. push 10
 jz cxse
 push 6
 jmp cxse

Slice-2:
 6. mov edi, [esp+16]
 7. mov esi, [esp+20]
 8. push targeteip
 push 9
 push 84003140h
 jmp cxse

Slice-3:
 9. push 6
 jnz cxse
 push 10
 jmp cxse

Slice-4:
10. pop edi
11. pop esi
12. push [esp]
 jmp cxse

Slicing

Sl
ic
e-
Co
al
es
ci
ng

Figure 2: Localized-Executions using CSXE
Figure 3 illustrates a typical slicing process. A slice

consists of one or more exit sequences which transfer con-
trol to the CSXE. The CSXE determines the target ad-
dress, performs slicing for the target if it has not done be-
fore, and resumes execution at the target slice. Branches
to and from the CSXE result in the saving of the cur-
rent registers and flags. Generating exit stubs for uncon-
ditional control transfers is as simple as performing an
unconditional jump into the CSXE. For certain uncondi-
tionals such as the call instruction, the stub pushes the
destination instruction pointer (targeteip, line 8, slice-
2, figure 2) and performs an unconditional jump to the
CSXE. This ensures that code employing position in-
dependent access (as seen in many SM-SC code) works
without any problems. For unconditional brances, the
CSXE employs a host of exit stubs for different variants
(slice-1 and slice-4, figure 2). The basic idea being to
translate a conditional into a conditional and an explicit
branch. This model enables slice-coalescing, whereby a
group of slices can be coalesced to minimize exits to the
CSXE. Slice-coalescing is a powerful mechanism that can
produce code fragments which are very similar to the
original code that can be locally executed with mini-
mal latency. The CSXE also stores what are known as
ghosts for read and/or writes to memory pages contain-
ing drifters. These are duplicates of the original memory
page where drifters are inserted and are used when the
original code at the drifter location need to be invoked
within the instrument. Ghosts allow others to install
their own instruments while preserving the original func-
tion for invocation by the framework instruments.

The CSXE differs from traditional VMs employed in
current JIT schemes in that it does not reallocate reg-
isters or perform any liveliness analysis etc. This elim-
inates the latency associated with dynamic compilation
since localized execution is typically over a limited code
fragment (maximum of a page size). The CSXE stops
slicing if the target address of goes beyond the memory
page containing the drifter for instances where the code
residing at the drifter location needs to be invoked from
the instrument. For situations involving reads and/or
writes to drifter locations or locations within the mem-
ory page of the drifter, the CSXE stops code slicing after
a certain number of instructions that are obtained and

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

313

refined over time by employing simple heuristics on the
target code. Eg. A sequence of writes to a given loca-
tion, often happen with a loop over a specified number
of instructions. The fact that the CSXE is completely
re-entrant, does not re-allocate registers, does not tam-
per with the code stack and employs subtle exit stubs
for conditional and unconditionals, endows it with the
capability to support multithreading and SM-SC code
— features that are unavailable in current JIT schemes.
3.4 Redirection

SPiKE allows drifters to be inserted at arbitrary
memory locations for instrumentation purposes. How-
ever, this direct method of instrumentation incurs a la-
tency when it comes to invoking the code at the drifter
location from within the instrument due to localized-
executions as described in the previous section. This
latency can be nullified if we hinge on the fact that most
of the services offered by the OS or an application are
in the form of dynamic link libraries (DLL) or shared
libraries. For example, the socket send function is pro-
vided as an export of the DLL, WINSOCK.DLL under the
Windows OSs and as an export of the shared library,
libsocket.so under the Linux OS. While there are pro-
grams that make use of static libraries, their numbers are
very limited (about 1% of all applications in our experi-
ment). Also on some OSs such as Windows it is simply
not possible to statically link against the system libraries
without severely compromising compatibility.

Original WINSOCK.DLL

Code Section
Data

Section
Relocation
Information

Exports
 and
EAT

Imports

...
...

send functionH
ea

de
r

(.text) (.data) (.idata)(.reloc) (.edata)

CALLRET

WINSOCK.DLL
embedded with

Redirection-Pads

Code Section
Data

Section
Relocation
Information

Exports
 and
EAT

Imports

...
...

send functionH
ea

de
r

(.text) (.data) (.idata)(.reloc) (.edata)

Re
di

re
ct

io
n

 P
ad

s

CALL

Instrument

SPiKE

RET

(a)

(b)

Figure 3: Redirection for Dynamic Libraries
Every DLL or a shared library exports the functions

contained within it using an export-table. Among other
fields, the export-table contains an array of pointers to
functions within the library known as the Export Address
Table (EAT). When an application links with a DLL or
a shared library, it imports a set of functions from it.
This is in the form of an Import Address table (IAT) or a
Procedure Linkage Table (PLT) within the application.
Further details regarding the executable formats of DLLs
and shared libraries can be found in the Portable Exe-
cutable Specification (Microsoft Corporation 2004) and
the Executable and Link Format Specification (Unix
System Laboratories 1998). The OS loader, obtains a list
of the functions that are being imported, loads the ap-
propriate libraries, fetches the addresses of the functions
using the EAT and patches the IAT or the PLT within
the application. Figure 3a shows a sample function invo-
cation from an application using the DLL, WINSOCK.DLL.

SPiKE re-writes the DLL or the shared library that
contains the function(s) to be instrumented, with redi-
rection pads. The re-writing is carried out in binary and
does not require the sources and/or any debug symbols
for the library. Every function in the module, that is in-
tended to be instrumented will have a unique redirection-
pad embedded within the module. A redirection-pad is a
sequence of instructions which finally transfer control to
the function that is associated with it. The export-table
entries of the module are then overwritten to point to the
redirection pads of the corresponding functions. Thus,
when an application links to the library and imports a
function which has a redirection-pad, it will in reality

invoke the redirection-pad code instead of the original
function, when the target library is loaded and the OS
loader performs the IAT patch. However, the semantics
of the function invocation will remain the same as the
redirection-pads chain to the original function without
any changes. Figure 3b shows the same function invoca-
tion for the DLL, WINSOCK.DLL with the redirection-pads
in place. Note from the figure that the redirection-pads
are embedded directly in the code section of the library
and not as a separate section. This is needed to hide the
framework from the malware being analyzed (see Section
3.6).

Thus, when drifters are inserted at memory locations
corresponding to the functions within the DLL or shared
libraries, they will be inserted on memory pages con-
taining the redirection pads. In other words, the origi-
nal function is available for invocation from within the
instrument with no latency involved. The redirection-
pads however, still incur a latency due to reads and/or
writes but as a side-effect elminate the need for ghost
pages, since any modifications to the original code is in
fact modifying the redirection-pad code. The instruc-
tions generated in the redirection-pads are polymorphic
to prevent the malware from detecting the framework us-
ing pattern-based schemes on the redirection-pads (see
Section 3.6). The framework also allows the user to tune
the number of redirection-pads per memory page, and
the range for the number of instructions that will be
generated for a redirection-pad.
3.5 SPiKE API

Anaylsis tools that employ SPiKE are usually written
in C/C++ using SPiKE’s API. The API is easy-to-use
and is designed to be platform independent whenever
possible allowing tool code to be re-usable while allowing
them to acess platform specific details when necessary.
In Figure 4, we list a partial code of one our prelimi-
nary tool employing SPiKE under the Windows OS. The
tool, DrvDllMon, enables complete monitoring of drivers
and dynamic link libraries that are being loaded and un-
loaded in the system.

The main interface to SPiKE is provided in
the form of five easy to use API functions,
spike init, spike payload, spike insertdrifter,
spike removedrifter and spike comm. As seen from
Figure 4, a tool using SPiKE is typically composed of
two elements. A tool payload and a tool front-end. The
tool payload contains the instruments that need to be
in the target address space along with support code
that deploys instrumentation. The tool front-end forms
the user interface. The front-end of the tool initializes
the framework and typically invokes the spike payload
API to load the payload into the target address space.
The spike init API is used to initialize the frame-
work. The payload upon gaining control, initializes the
framework in the target address space, and uses the
spike insertdrifter and spike removedrifter API
calls to insert or remove drifters at selected memory
locations. As mentioned earlier, drifters can have a
global (DGLOB) or local presence (DLOCL) with the ability
to trigger on a read (DREAD), write (DWRITE) and/or
execute (DEXEC) to its corresponding memory location.
Communication between the payload and the tool
front-end occurs via SPiKEs API spike comm.

Note that the payload code is automatically trans-
lated into the appropriate executable during compile
time, depending on whether instrumentation is desired in
user- and/or kernel-mode. The instruments access rele-
vant information via the argument of type DRIFTERINFO,
which among other fields includes a pointer to the cur-
rent stack and a function pointer that can be used to
invoke the original construct at the drifter location from
the instrument. The instruments can thus alter pro-
gram registers, memory (including the stack) and per-
form any semantic changes. The instruments can also

CRPIT Volume 48

314

access instrument specific data using the exinfo field of
the argument. This feature, for example allows a sin-
gle instrument to be associated with multiple drifters
as seen from Figure 4 where the instrument LL Inst is
associated with drifters to the ANSI (LoadLibraryA)
and UNICODE (LoadLibraryW) versions of the API
LoadLibrary, which is used to load a DLL under the
Windows OS. SPiKE also provides a host of other sup-
port APIs apart from the ones discussed above, related
to architecture and OS specific elements such as instruc-
tions, processes, libraries, files etc.

---drvdllmonp.c (drvdllmon payload)---
#include <spike.h>
...
void LL_Inst(DRIFTERINFO *di){ \\LoadLibrary API Instrument
 ...
 if(di->exinfo[0] == 'W') \\UNICODE version
 spike_comm("0x%X: LoadLibW(%ls)", di->stack[0], di->stack[4]);
 ...
 di->retval= di->originalcode(di->stack[4], di->stack[8]);
}

void payload_init(PROCESSINFO *p){ \\payload initialise function
 ...
 spike_init(); \\initialise framework in process address space
 ...
 \\instrument the ANSI and UNICODE version of Loadlibrary API
 addr1=spike_addr("kernel32.dll", "LoadLibraryA");
 addr2=spike_addr("kernel32.dll", "LoadLibraryW");
 spike_insertdrifter(addr1, DEXEC | DGLOB, LL_Inst, 'A');
 spike_insertdrifter(addr2, DEXEC | DGLOB, LL_Inst, 'W');
 ...
}
...

---drvdllmonf.c (drvdllmon front-end)---
#include <spike.h>
...
int main(){
 ...
 spike_init(); \\initialise framework
 ...
 spike_payload(pid, "drvdllmonp"); \\load the payload
 ...
}
...

Figure 4: DrvDllMon, a tool employing SPiKE

3.6 Stealth Techniques
SPiKE uses drifters, CSXE and redirection-pads for

implementing un-obtrusive instrumentation. However,
these elements and the latency that they introduce can
be detected during runtime albeit with some subtle
tricks. We now present some simple techniques that the
framework employs for stealthness to counter such meth-
ods. While there are a host of detection methods and
their antidotes, due to space constriants, we will only
concentrate on a few important ones.

Drifters rely on the virtual memory system for their
operation. However, drifter triggerings result in in-
creased latency due to PFEs being invoked that is not
present during normal execution. A malware could use
this fact to detect if its being analyzed. As an example,
on the IA-32, a malware could use the RDTSC instruction
(returns the number of clock cycles that have elapsed
since system-bootup) and/or the real-time clock to ob-
tain a relative measure of its code fragment execution
time. Depending on the system SPiKE is run under, the
framework applies a clock patch resetting the time stamp
counter and/or the real-time clock to mimic a value close
to that of a normal execution.

SPiKE makes use of redirection-pads within the dy-
namic libraries to void latency issues during invocation
of original constructs from the instruments. The redirec-
tion pads are embedded within the library in the same
section as the function code. This is necessary since, if
the pads were embedded in a separate section, a malware
could check the EAT entries and compare them with the
library header to detect that the EAT entries have been
routed. However, since the redirection-pads are within
the code section of the library, there is no way of distin-
guishing them from the library functions. The redirec-
tion pad code is polymorphic in the sense that one cannot
employ any signature detection to check for them. The
framework employs a polymorphic code generator, that
allows fine tuning of the upper-bound of the number of
instructions that will be generated in a redirection-pad.
In other words, a malware cannot search for a unique

instruction within the redirection pad code which would
establish a postive detection of the framework.

SPiKE employs the CSXE for localized code exe-
cution during read, writes or executes to drifter loca-
tions. Though the CSxE supports SM-SC code, a mal-
ware could use a technique such as to single-step its
own instruction stream and performing the actual opera-
tion within its single-step handler. The malware single-
step handler can check the return address on the ex-
ception stack and figure that the code is not being exe-
cuted at the address it should have been (since localized-
executions execute the slice from a different memory lo-
cation altogether). The CSXE can recognize such situ-
ations, and will execute the code slice instructions one
by one invoking the target single-step handler with the
original instruction addresses.

The framework also employs a polymorphic engine
to ensure that every instance of its deployment is differ-
ent in the form of any privileged modules, environment
variables, configuration files and code streams. Thus, no
malware can detect SPiKE by searching these elements
for a pattern.

4 Experience
In this section we discuss our experience with one of

our tools employing SPiKE to analyze a real world mal-
ware, therby illustrating the framework utility. Our tool
called WatchDog, currently runs under the Windows OS,
and enables monitoring of various user- and kernel-mode
components of the OS, offering insight into malware be-
havior with respect to the system. WatchDog is a sim-
ple yet versatile tool that allows real-time monitoring of
Windows APIs related to files, processes, registry, net-
work, memory and various other sections of the OS both
in user- and kernel-mode. It enables complete monitor-
ing of drivers and dynamic link libraries that are being
loaded and unloaded in the system. The tool also al-
lows instrumenting the entry and exit points of the dy-
namic link libraries and drivers with support for EAT
access monitoring, critical data access monitoring, de-
pendencies, per process filters and a host of other fea-
tures which make it an indispensable tool to monitor
malware behavior in a system. WatchDog is one of the
many components that make up our malware analysis
environment that is currently under research and devel-
opment. This section will discuss our experience using
WatchDog on several monitoring sessions with a Win-
dows based trojan, W32.MyDoom. We chose W32.MyDoom
as our candidate for discussion, since it has several vari-
ants, employing a variety of anti-analysis tricks that one
would typically encounter in recent malware.

The W32.MyDoom, with variants commonly known as
W32.MyDoom.X-mm (where X can be S, G, M etc.) is
a multistage malware. It generally arrives via an exe-
cutable e-mail. Once infected, the malware will gather
e-mail addresses, and send out copies of itself using its
own SMTP engine. It also downloads and installs back-
doors and listens for commands. Once installed, the
backdoor may disable antivirus and security software,
and other services. The downloaded trojan might allow
external users to relay mail through random ports, and
to use the victim’s machine as an HTTP proxy. The tro-
jans downloaded by the W32.MyDoom envelope, generally
posses the ability to uninstall or update themselves, and
to download files.

The W32.MyDoom and modified strains cannot be com-
pletely analysed using traditional JIT and/or probe-
based binary-instrumentation. The malware employs a
polymorphic code envelope and employs efficient anti-
probe techniques to detect probes and will remain dor-
mant and/or create system instability in such cases. For
the purposes of discussion, we look at a simplified code
fragments of different variants of the W32.MyDoom un-
der monitoring sessions with WatchDog and our malware
analysis environment. The fragments are shown in the

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

315

IA-32 assembly language syntax. We have removed de-
tails from the code that are not pertinent to our dis-
cussion and have restructured the code for easy under-
standing. Consider a fragment of code shown in Figure
5a.

 ...
 1. mov eax, [esi+3ch]
 2. mov ecx, [esi+3fh]
 3. mov edx, [esi+4bh]
 4. mov ebx, [edx]
 5. cmp ebx, [esi+3ah]
 6. jb BADBEHAVE
 7. cmp ebx, eax
 8. ja BADBEHAVE
 9. loop 4
10. mov edi, [esi+2ah]
11. call 14
12. jnz BADBEHAVE
13. call install_hooks
 ...

 ...
 ;procedure check_hooks
14. push edi
15. push esi
16. call get_instruction
17. cmp byte ptr [edx], 0E9h
18. je check_jumps
19. cmp byte ptr [edx], 0CDh
20. je check_traps
21. cmp byte ptr [edx], 0F0h
22. je check_invalids
 ...
23. ret
 ...

......
CS:112050DCh CreateFile(”%SYSTEMROOT%\WINVPN32.EXE”, ...) = F124h
......
CS:0042312Ah winsock.dll!send(1A20h, [DS:00404050h], ...) = 800h
CS:11204A2Bh a32ss32.dll!send(1A20h, [DS:00404050h], ...) = 800h
CS:112051E0h a32ss32.dll!connect(213Bh, 84.168.21.11, 200) = 0h
......
CS:0044A340h winsock.dll!send(1A20h, [DS:00404010h], ...) = 400h
CS:11204A2Bh a32ss32.dll!send(1A20h, [DS:00404010h], ...) = 400h
CS:11205AE4h a32ss32.dll!send(213Bh, [DS:1121A000h], ...) = C00h
CS:11206120h a32ss32.dll!recv(213Bh, [DS:12005000h], ...) = 200h
CS:11206120h a32ss32.dll!recv(213Bh, [DS:12102000h], ...) = 200h
......
CS:1120AE70h WriteFile(F124h, [DS:12005000h], ...) = 1000h
CS:1120AE70h WriteFile(F124h, [DS:12102000h], ...) = 1000h
......

(a) Instrumentation Check Code Fragment

(b) Behavior Log showing a Trojan Download
 ...
 1. mov eax, [edx+1b]
 2. mov edi, [edx+2a]
 3. mov ecx, [edx+5b]
 4. mov esi, [edi]
 5. cmp esi, eax
 6. jb BADBEHAVE
 7. cmp esi, [edx+10]
 8. ja BADBEHAVE
 9. loop 4
 ...
10. call 12
 ...
11. call ebx
 ...

 ...
 ;procedure check_function
12. mov eax, [edx+10]
13. mov esi, [edx+56]
14. mov ecx, [edx+10];
15. add ebx, [esi]
16. rol ebx, 8
17. loop 15
 ...
18. ret ;ebx=address of virus
 internal function
 ...

(c) Integrity Check Code Fragment

Figure 5: (a)-(c) W32.MyDoom Anti-analysis Tricks and
Behavior Log

The W32.MyDoom and its variants instrument (hook)
several APIs within the system. One such API
that is hooked is the ZwQueryDirectoryFile. The
ZwQueryDirectoryFile API under the Windows OSs
(NT, 2K and XP), is a kernel function that is used to
obtain the list of files within a particular directory. Calls
to upper level file functions are ultimately translated to
invoke this API within the kernel. The malware hooks
this API, so that it modifies the return query buffer in
a way that would prevent any regular application from
seeing its critical files. There are several ways to in-
strument this API. The first method is by changing
the pointers in the system service table pointed to by
KiSystemServiceDispatcherTable to point to the in-
strumented functions. The pointer location for a partic-
ular system service can be found out by disassembling
the dynamic library, NTDLL.DLL to get the indices for
several system-calls. The second method is by using a
probe-based instrumentation on the starting address of
the API. Thus, if one instruments the API before-hand,
using either of the two methods, it is easy to observe the
behaviour of the malware, even if it hooks the API once
again (since the malware will have to invoke the origi-
nal API to obtain the populated query buffer in the first
place).

However, the W32.MyDoom is intelligent to spot this.
It performs a couple of checks to see if the API has
been already hooked. The first check is a detection of
a system-table hook (lines 1-9, Figure 5a). The mal-
ware uses a fact that original system-table entries point
to code within NTOSKRNL.EXE, the Windows OS kernel.
Thus, if one were to change the system-table entries to
point to their own code, it will be at an address that is
outside the image-space of NTOSKRNL.EXE. If this detec-
tion passes, the malware jumps to a location within its
code which leads to a dormant operation or in certain

cases causes system instability.
The second form of detection is for probe-based

schemes at the target API. All probe-based schemes
rely on the use of a unconditional transfer instruction
(branch, trap etc.) at the address of the target code to be
instrumented. This makes them an easy prey to detec-
tion. As seen from lines 14-22 of procedure check hooks
of Figure 5a, the malware checks to see if the code at the
target address is any instruction that could potentially
transfer control to an instrument (jump, trap, invalid
instructions etc.). The check sweeps through the tar-
get API address checking for such instructions before a
conditional is encountered. Since current probe-based
frameworks rely on the use of control transfer instruc-
tions at the start of the target function thats being in-
strumented, they are rendered unusable in this context.
The idea of inserting the probe, after the malware has in-
serted its hook doesnt accomplish any functionality since
it would never see the unmodified buffer, but is also de-
feated since there are several checks, scattered through-
out the code of W32.MyDoom, within its polymorphic lay-
ers, to ensure that no other system can hook the APIs
after it has.

However, using SPiKE it is trivial to instrument such
APIs, while at the same time allowing the malware hook
to be active. In effect, WatchDog bypasses the checks
and can monitor such APIs in a stealth fashion. Figure
5b shows a sample log from the utility revealing a trojan
download and implant.

Certain variants of the W32.MyDoom use localized
DLL’s for their operation. For example, the trojan
renames WINSOCK.DLL, the dynamic library associated
with socket functions, to a random name and replaces it
with its own DLL instead. The replaced DLL is coded in
a fashion employing polymorphic layers and incorporates
malware functionality while finally chaining to the func-
tions within the renamed WINSOCK.DLL. As seen from
the log of Figure 5b, WatchDog captures both the re-
placed (WINSOCK.DLL) and the renamed (A32SS32.DLL)
dynamic library invocations, allowing us to spot an ac-
tivity such as a trojan download and implantation as
shown. The tool enables logging of several important
pieces of a function invocation such as the parameters,
the return value, the location it was invoked from, the
stack and memory contents etc. WatchDog also features
what we call selective logging, whereby only invocations
arising from a specified range of memory is monitored.
This is a very useful technique that helps maintain the
clarity of information that is logged. The tool also fea-
tures a script based interface allowing users to add real-
time actions to monitored events.

The localized DLL’s of W32.MyDoom employ certain
anti-probing tricks. We noticed a couple of such tricks
in one variant during our analysis. The code fragment
of the malware in this context is shown in Figure 5c.
The malware employs integrity checks using checksums
on the socket primitives on the replaced WINSOCK.DLL
(check function procedure, Figure 5c). Thus, inserting
traditional probes on such functions, results in erratic
behavior (lines 6 and 8, Figure 5c). Solutions employing
replacing the replaced DLL or rehousing the EAT en-
tries in the replaced WINSOCK.DLL are defeated by similar
checksum fragments that are embedded within the mal-
ware code. If the malware detects a malformed replaced
DLL, it will overwrite it with a new copy. As an added
detection, the malware also checks for probe insertions
in the renamed DLL (A32SS32.DLL) once loaded. Man-
ual patching of such integrity checks are cumbersome
since: (a) many such fragments are scattered through-
out the malware code and (b) the checksum themselves
are used as representatives of the target address of a
call that performs some processing pertaining to the
malware functionality (line 18 and 11, Figure 5c). Thus,
on a valid checksum the call performs the desired in-
ternal function whereas on an incorrect checksum, it

CRPIT Volume 48

316

branches to a location where the code is nothing but
garbage. With SPiKE, instrumenting functions within
the renamed DLL is trivial using redirection-pads. For
instrumentation of the replaced DLL, drifters are in-
serted at desired functions directly.

As seen, traditional probe-based insturmentation
methods do not suffice to study code employing self-
modification, self-checking, hooking and/or any form of
anti-analysis and/or anti-debugging schemes as in the
case of the W32.MyDoom and other similar malware. With
SPiKE however, this task is greatly simplified. The
framework allows instrumentation of the target code
without any form of code modification in a stealth fash-
ion making it very hard to detect and counter. The
latency of the framework is well suited for interactive
monitoring (as seen from its performance measurements
in the next section). These features combined with the
fact that the recent trend in malware has been to em-
ploy schemes to detect and prevent any form of analysis,
make SPiKE the first and a very powerful instrumen-
tation framework to aid in the construction of malware
analysis tools.

5 Performance Evaluation
In this section, we first report the performance of

SPiKE without any active instrumentation. We then
report the performance of SPiKE’s direct (without redi-
rection) and redirection-based instrumentation methods.
Finally, we compare SPiKE with some widely used JIT
and probe-based tools, and show that the framework
incurs low latencies while providing features that are
highly conducive to malware analysis.

Before we proceed to discuss the performance mea-
surements of the framework, a few words regarding the
test-bench are in order. The current version of SPiKE
supports IA-32 (and compatible) processors running the
Windows and Linux OSs. Our experimental setup con-
sists of, an AMD Athlon XP 1.8 GHz processor with
512MB of RAM, running Windows XP and Windows
2000, and an Intel Xeon 1.7 Ghz processor with 512MB
of RAM running Linux. To validate SPiKE, we use our
analysis tool WatchDog (see Section 4). We use proces-
sor clock cycles as the performance metric for our mea-
surements. This metric is chosen, as it does not vary
across processor speeds and also since it is a standard
in literature related to micro-benchmarks. The RDTSC
instruction is used to measure the clock cycles. Unless
otherwise specified, for the graphs encountered in the
following sub-sections, the x-axis is the amount of extra
clock cycles that are incurred as opposed to the native
run-time of the function and the latency is measured by
executing sufficient runs and averaging the values to ob-
tain a confidence interval of 95%. Also, parts of some
graphs are magnified (indicated by dotted lines) to pro-
vide a clear representation of categories with low values
on the x-axis.
5.1 Latency Without Instrumentation

SPiKE has zero instrumentation effect for each in-
strumentation point for inactive direct instrumentation.
This is because, a drifter inserted at a memory location
can only trigger when the corresponding memory page
attribute is set to not-present upon drifter activation.
However, SPiKE’s redirection-based instrumentation in-
curs a non-zero, but low run-time overhead when instru-
mentation is inactive. This is due to the execution of the
instructions in the redirection-pads corresponding to the
functions to be instrumented. The number of these in-
structions are variable and depend upon a user-defined
range for a session (see Section 3.4). The framework la-
tency for various dynamic library functions, from differ-
ent analysis sessions under the Windows OSs, for three
arbitrary user-defined ranges are as shown in Figure 6a.

The average latency for the functions when using the
user-defined ranges shown in Figure 6a, are 343, 1405

and 2910 clock cycles respectively. For a 1.8 GHz pro-
cessor, these numbers average to .19µs, 0.78µs and 1.6µs
respectively, which is minimal. In general, the more the
number of instructions per redirection-pad, the more is
the latency and the less is the chance of its detection. In
our opinion a user-defined range of 15–50 instructions
should suffice to keep the redirection-pads from being
detected using any patterns. A point to be noted from
the graph is that, for the same function (NtReadFile(1)
in Figure 6a for example), one could have different laten-
cies per analysis session for the same user-defined range.
This is because of the polymorphic nature of code that
is generated in its redirection-pad.
5.2 Latency With Instrumentation

We now study the performance of SPiKE with active
direct and redirection-based instrumentation. We divide
the total run-time overhead into three components: (a)
latency due to instrument invocation, (b) latency due
to invocation of the original construct at a drifter loca-
tion from the instrument, and (c) latency due to reads,
writes and/or executes to a memory page containing ac-
tive drifters.

The instrument invocation time is the time that has
elapsed after the transfer of control to a code con-
struct (control transfer is usually done via a call for
a code construct that is a function), and before control
is handed over to the instrument. Figure 6b shows the
latency involved in invoking the instrument and the orig-
inal construct at a drifter location, for both direct and
redirection-based instrumentation of SPiKE, for various
arbitrary functions within DLLs and shared libraries un-
der the Windows and Linux OSs. As seen from Figure
6b, both direct and redirection-based methods incur the
same instrument invocation latency. This is due drifter
triggering, which incurs a constant processing overhead
for any instrumented memory location due to the in-
vocation of the PFE (see Section 3.2). However, con-
sidering the latency involved in invoking the original
construct at a drifter location, the direct method in-
curs a higher performance penalty when compared to the
redirection-based method. This is due to the framework
employing the CSXE for localized-executions in the di-
rect method. In contrast, the redirection-based method
uses redirection-pads to eliminate this overhead.

The framework also incurs other forms of latency in
the form of reads, writes and/or executes to a memory
page containing active drifters. For example, a malware
might try to install its own instrumentation at a memory
location where a drifter is inserted. This would result in
PFEs due to reads and/or writes to the drifter location.
Another example would be when a drifter is inserted at
the start of a function, but the memory page containing
the function also houses parts of another function that is
not instrumented. Thus, executes to the uninstrumented
function also trigger PFEs. SPiKE employs the CSXE
to tackle such cases which results in the aforementioned
latency. Coming up with representative inputs for such
cases, for purposes of performance evaluation, is not an
easy task since they depend on a lot of factors, chief
among them being the method of analysis adopted by
an individual, the structure of the executing code and
dependency of one function over the other, which are
not easily characterized. Thus, we will concentrate on
presenting the performance of the framework related to
some specific code fragments for such cases, and show
that the framework latency is within limits to suit inter-
active analysis. The performance of the framework for
other situations can be estimated in a similar fashion.

Consider the code fragment in Figure 5a. This frag-
ment of the W32.MyDoom trojan checks to see if a certain
group of system functions have been instrumented prior
to its execution (see Section 4). As seen from Figure
5a, the procedure check hooks reads every instruction
from the memory locations corresponding to the func-

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

317

0 500 1000 1500 2000 2500 3000 3500

NtW
rit

eFile

so
cket

co
nnect

ZwCre
ate

Pro
ce

ss

NtR
eadFile

NtR
eadFile

(1
)

Range-1
15-50 Instructions
per Redirection-Pad

Range-2
50-100 Instructions
per Redirection-Pad

Range-3
100-150 Instructions
per Redirection-Pad

Latency in Clock Cycles

Latency Without Instrumentation
(a)

315
1487

3125

327
1400

2917

380
1380

2715

377
1532

3001

275
1340

3267

340
1130

3104
0 1.2 2.4 3.6 4.8 6 240 480 720 960 1200

LoadLib
ra

ry

se
nd

co
nnect

ZwCre
ate

Sectio
n

NtW
rit

eFile

NtR
eadFile

Latency in Clock Cycles (x 103)

Instrument
 Invocation
(Direct)

Original Construct
Invocation
(Direct)

Latency of Instrument and Original Construct Invocation
(b)

Instrument
 Invocation
(Redirection-based)

2.83
2.83 + 566

2.83
2.83 + 345.17

2.83
2.83 + 80

2.83
2.83 + 433

2.83
2.83 + 899.57

2.83 2.83 + 1100.57

LoadLib
ra

ry

se
nd

co
nnect

ZwCre
ate

Sectio
n

NtW
rit

eFile

NtR
eadFile

Latency in Clock Cycles (x 103)

ReadsWrites

re
cv

0 20 40 60 80 100 500 1000 1500 2000

Latency of Reads and Writes to Memory Page with Active Drifters
(c)

75.24
5.13

31.26
10.24

42.10

5.12

45.64
10.24

1001

1287.26

1754.43
1587.29

512.53
768

Redire
ctio

n

with

Scatte
rin

g

Dire
ct

Redire
ctio

n

with
out

Scatte
rin

g

Latency in Clock Cycles (x 103)

send function recv function connect function

0 2 4 6 8 10 30 60 90 120 150

Latency of Executes to Memory Page with Active Drifters
(d)

2.90

2.90

2.90

2.90

2.90

132.59

89.50

20.25

Feature Comparison
(e)

Transparent Original Construct
Invocation

Success
Rate Stealth Arbitrary

 Code
SM/SC
 Code

Platform Support

DProbes

Detours

DynInst

Pin

DynamoRIO

SPiKE

Linux/IA-32,
 IA-64

Windows/ IA-32

Windows, Linux/
IA-32

Linux/ IA-32, IA-64
EMT64, ARM

Windows, Linux/
IA-32

Windows, Linux/
IA-32

< 100%

< 100%

< 100%

100%

100%

100%

MultithreadingKernel-Mode
Support







     





 

 
 







 

















 








Feature
Framework











M
em

o
ry

 U
sa

g
e

in
 M

By
te

s

Redirection with
1 Redirection-Pad
per memory page

0

1

2

3

4

5

6

nto
sk

rn
l.e

xe

ntd
ll.d

ll

kern
el32.d

ll

use
r3

2.d
ll

gdi32.d
ll

sh
ell3

2.d
ll

advapi32.d
ll

wso
ck32.d

ll

win
in

et.d
ll

Redirection with
4 Redirection-Pads
per memory page

Redirection with
8 Redirection-Pads
per memory page

Direct

Memory Consumption
(f)

bzip2

gcc

gzip

ls

find

Normalized Execution Time (%)

With InstrumentationWithout Instrumentation

Pin DynamoRIO SPiKE

3.75 2.50 1.25 0350 234 117 0.0 7.5 15 22.5 30 200 400 600

Performance Comparison with JIT Frameworks
(g)

110
105

0.70
313

173

121
132

211
235

344

307

1.04

0.53

0.42

0.55

125
119

4.17

344
201

3.25

143
154

2.82

321
389

8.55

482
501

10.20

0.35 0.28 0.21 0.14 0.07 0.0

SPiKE

Detours

DynInst

DProbes

Latency in Clock Cycles (x 103)

With InstrumentationWithout Instrumentation

SPiKE Direct SPiKE Redirection Detours, DynInst
and DProbes

0 0.5 1 3 6 9 12

Performance Comparison with Probe-based Frameworks
(h)

0

0

0

0
.3

4

0

1
1

.2
9

2.83

0.05

0.21

3.12

Figure 6: (a)-(h) SPiKE’s Quantitative and Qualitative Evaluations
tions, checking for inserted probes. If this check passes,
the virus uses the procedure install hooks to write out
its own probes at desired memory locations. Figure 6c
shows the latency incurred by the framework due to such
reads and writes on certain system functions checked
and instrumented by the procedures check hooks and
install hooks and to functions housed in localized
DLLs employed by the virus (in this case WINSOCK.DLL),
using both direct and redirection based instrumenta-
tion. One can observe from the graph that for functions
housed in system and/or standard libraries, the number
of reads and/or writes is very minimal (mostly the first
few instruction of the function), whereas for a malware
specific DLL that overwrites its own code, the latency
is higher on account of multiple reads and/or writes due
to its polymorphic nature. In either cases, the latency is
well within the limits to suit interactive monitoring and
analysis.

Now, let us consider the behavior log shown in Fig-
ure 5b, that reveals a trojan download (see Section 4).
Let us consider the APIs send, recv and connect of
the dynamic library A32SS32.DLL and assume that only
send and recv are instrumented using SPiKE. Figure 6d
shows the latency incurred (instrument invocation and
original construct invocation put together) for both di-
rect and redirection-based schemes of instrumentation,
for a single invocation of the three APIs. As seen, in
the direct method, the function connect incurs an over-
head even though it is not involved in instrumentation.
This is due to the fact that APIs send and connect
share the same memory page in AS23SS32.DLL. Thus,
the framework needs to employ localized-executions us-
ing the CSXE for the connect function which explains
the latency.

However, when it comes to the redirection-based

method, the latency of the framework depends upon the
number of redirectors per memory page and the way the
redirection pads are chosen for the functions. As an ex-
ample consider the graph in Figure 6d which shows the
latency of the three APIs, with 4 redirection pads per
memory page, and assigned redirection-pads that fall on
the same memory page. This results in a higher run-
time latency, since APIs that are not involved in instru-
mentation, but lie within the same memory-page incur
the overhead of localized-executions. However, by care-
fully assigning redirection-pads for the functions such
that they do not fall on the same memory page, the la-
tency can be reduced. This is shown in Figure 6d, with
4 redirectors per memory page, but with the APIs as-
signed redirection pads in such a fashion so that they do
not occupy the same memory page. This technique, that
we call scattering, can be applied to functions housed in
DLLs and/or shared libraries and helps in reducing the
latency involved in executing functions that are not in-
volved in instrumentation but share the same memory
page with functions that are instrumented.
5.3 Memory Consumption

The direct and redirection based instrumentation
strategies of SPiKE incur a memory overhead due to
their design elements. The direct method has zero mem-
ory overhead when instrumentation is inactive. For
active instrumentation using the direct method, every
memory page containing a drifter incurs a memory over-
head of one extra memory page. This extra memory
page, called a ghost, is used by the framework CSXE for
localized-executions (see Section 3.3). The redirection-
based method on the other hand incurs a memory over-
head when instrumentation is both active or inactive.
This is due to the redirection-pads being embedded in
the DLLs and/or shared libraries which consume mem-

CRPIT Volume 48

318

ory irrespective of any instrumentation.
The exact memory overhead for the direct method,

depends on the number of drifters and the memory lo-
cations at which they are inserted. Similarly, for the
redirection-based method, the actual memory overhead
depends on the number of redirection-pads per memory
page and the number of functions that are instrumented
in a DLL and/or shared library. These factors depend on
the nature of analysis employed by an individual which
as mentioned before is not easy to characterize. Thus,
we will concentrate on presenting the memory overhead
of the framework in the context of a specific analysis ses-
sion under the Windows OS. The memory overhead of
the framework for other situations can be estimated in
a similar fashion.

Figure 6f shows the memory overhead for both di-
rect and redirection-based instrumentation methods of
SPiKE, for selected dynamic libraries, from a session
used to analyse the W32.MyDoom trojan under the Win-
dows OS (see Section 4). Readings were obtained by in-
strumenting all the exported functions within each DLL
and/or shared library using the direct method as well as
the redirection-based method with arbitrary number of
redirection pads per memory page. As seen from Fig-
ure 6f, the worst-case memory consumption (all func-
tions instrumented within all selected libraries with 1
redirection-pad per memory page) is around 23MB which
is not very demanding. A point to be noted from the
graph in Figure 6f is that, the higher the number of
redirection-pads per memory page, the lesser is the mem-
ory consumed. However, choosing too high a value might
have effects on techniques such as scattering and the
framework stealthness. In our opinion, a value of 4 to 16
for the number of redirection-pads per memory page suf-
fices to keep the framework memory utilization minimal
while ensuring its efficacy.
5.4 Framework Comparison

We now compare SPiKE against some popular JIT
and probe-based instrumentation frameworks such as
Pin, DynamoRIO, Detours, Dyninst and DProbes on
the IA-32 (and compatible) processors. Detours runs
exclusively on the Windows OS, DProbes and Pin run
exclusively on the Linux OS, while DynamoRIO and
DynInst run on both OSs. We used the latest release
of each framework for this experiment: Pin Kit 2411
(Luk et al. 2005), DynamoRIO 0.9.4 (Bruening 2004),
Detours 2.0 (Hunt & Brubacher 1999), Dyninst 4.2.1
(Buck & Hollingsworth 2000) and DProbes 2.6.9 (Moore
2001). The first part of this section discusses the features
provided by these JIT and probe-based instrumentation
frameworks and how SPiKE compares qualitatively. A
quantitative comparison in the later part sheds light on
the overhead involved in applying SPiKE’s instrumenta-
tion when compared to the other frameworks.

Figure 6e shows various attributes of an instrumenta-
tion framework and how SPiKE compares qualitatively
to various JIT and probe-based frameworks. As seen,
SPiKE though standing out in features supported in the
context of malware (transparent, stealth, multithread-
ing, SM-SC code and arbitrary code), also offers general
capabilties that match (in certain cases better, such as
original construct invocation, kernel-mode support and
success-rate) that of the existing frameworks.

For a quantitative comparision, coming up with a rep-
resentative performance evaluation criteria was difficult
since not all the features offered by SPiKE is available
on other frameworks. For example, no other existing
framework except for Detours offers the ability to invoke
the original construct at the instrumented location. JIT
frameworks do not support instrumentation in kernel-
mode and only a few of them allow instrumentation to
be set at a function level in a clean fashion. (e.g. Pin
does, but DynamoRIO does not). Also as mentioned
before not all the JIT and probe-based frameworks are

supported under various OSs. Thus, for our compari-
sion we chose to measure only the intrument invocation
time under the Linux OS for the frameworks (except
for Detours). For Detours, we chose to compare both
the instrument invocation time and the time for invok-
ing the original construct at the instrumented location
under the Windows OS. Considering that SPiKE scores
over all the frameworks in terms of the features pro-
vided and the fact that our main aim is to show that
the SPiKE’s instrumentation achieves a low latency, the
performance criteria we have chosen is acceptable.

Figure 6g shows the performance of SPiKE when
compared to JIT frameworks. Since JIT frameworks are
VM based, their instrument invocation time depends on
the nature of the executing code. Hence, for our com-
parision we instrumented the file stat API for various
applications under Linux and measured the normalized
execution time of the applications both with and with-
out instrumentation. The instrument for the file stat
API had no processing whatsoever. This allowed us to
measure and compare the instrument invocation time.
As seen from the figure, SPiKEs instrumentation over-
head is very minimal when compared to that of the JIT
frameworks both with and without instrumentation.

Figure 6h shows the performance of SPiKE when
compared to probe-based frameworks. The instrumen-
tation latency of probe-based frameworks are not depen-
dent on the nature of code that is executed. Hence, for
our comparision we wrote a simple test application which
made a single call to a file open API under the target OS
and measured the latency in terms of clock cycles before
the call and after the return. The instrument did nothing
except to measure the latency of instrument invocation
and invoking the original construct at the instrumented
location (for frameworks that allow such a feature such
as Detours and SPiKE). This allowed us to determine
both the instrument invocation time as well as the time
for the original construct invocation at the instrumented
location. As seen from Figure 6h, SPiKE’s performance
is comparable to other probe-based frameworks, but is
not the most efficient. Given that the other probe-based
frameworks do not compare in capacity when it comes
to malware analysis, the fact that SPiKE can achieve a
latency close to these frameworks is acceptable.

6 Background and Related Work
There are various reseach related to the area of instru-

mentation and dynamic compilation. Broadly, instru-
mentation can be categorized as source level or binary
level. Source level instrumentation basically includes in-
sertion of wrappers in the program source code, which
transfer control to the instrument during program execu-
tion. Binary level instrumentation on the other hand, ac-
complish instrumentation without the program sources.
To limit our scope of discussion, we concentrate on bi-
nary level instrumentation in this section. Binary instru-
mentation can be categorized into static and dynamic
approaches.

Static binary instrumentation is an offline technique
that involves rewriting the program binary to insert in-
strumentation constructs. This art was pioneered by
Atom (Srivastava & Eustace 1994), followed by oth-
ers such as EEL (Larus & Schnarr 1995), Etch (Romer
et al. 1997), Morph (Zhang et al. 1997) etc. Static ap-
proaches have a serious drawback in that, the tool may
not have enough information to deal with mixed code
and data within the executable. In the context of mal-
ware, static approaches do not suffice as most if not all
malware are sensitive to code modification, being self-
modifying and or self-checking. Other difficulties with
static systems are indirect branches, dynamic libraries
and dynamically generated code.

Dynamic binary instrumentation on the other hand
involves inserting instrumentation during run-time, ad-
dressing the limitations of static approaches. There

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

319

are two approaches to dynamic instrumentation: probe-
based and JIT. Probe-based instrumentation works by
dynamically replacing instructions in the target code,
with instructions that branch to the instrumented code
(jump or trap). Example probe-based frameworks in-
clude Dyninst (Buck & Hollingsworth 2000), Dtrace
(Cantrill et al. 2004), Detours (Hunt & Brubacher 1999),
DProbes (Moore 2001), Linux Trace Toolkit (Yaghmour
& Dagenais 2000), Vulcan (Srivastava et al. 2001)
etc. There are various drawbacks to probe-based ap-
proaches. In the context of malware, probe-based ap-
proaches have a severe limitation in that, they cannot
cannot be used to probe malware specific functions since
most if not all malware are very sensitve to code modi-
fication. Also such systems do not observe instrumenta-
tion transparency. With recent trend in malware show-
ing increasing anti-analysis schemes, they can be easily
detected and countered. Other problems with probe-
based approaches are related to arbitrary construct in-
strumentation on architectures where instruction sizes
vary (i.e x86). In such cases, an instruction cannot be
replaced with one which is greater than its size, since
it would overwrite the following instruction. JIT ap-
proaches on the other hand, overcome the transparency
problem of probe-based approaches by executing code
inside a VM. Examples include Pin (Luk et al. 2005),
Valgrind (Nethercote & Seward 2003), DynamoRIO
(Bruening 2004), Strata (Scott et al. 2003) and Diota
(Maebe et al. 2002). However, in the context of mal-
ware, they do not support multithreading and do not
carry support for SM-SC code. Also current JIT frame-
works are unable to analyze code running in kernel-mode
are very slow when compared to their probe-based coun-
terparts. In comparison to the existing frameworks in
the area of dynamic binary-instrumentation, SPiKE is
unique in that, it is the first instrumentation framework
specifically geared to aid in the construction of malware
analysis tools. SPiKE provides dynamic coarse-grained
binary-instrumentation that it is completely invisible to
the target code and cannot be easily detected or coun-
tered. The framework has support for multithreading
and SM-SC code and can capture code in user- and
kernel-mode with minimal latency.

7 Conclusions
We have presented SPiKE, an unobtrusive, effi-

cient, portable, easy-to-use and re-usable dynamic coarse
grained binary-instrumentation framework for engineer-
ing malware analysis tools. The instrumentation de-
ployed by the framework is completely invisible to the
target code and cannot be easily detected or countered.
We show that the framework can capture multithreaded
and SM-SC code in both user- and kernel-mode while in-
curring a minimal performance latency. SPiKE currently
runs under the Windows and Linux OSs on IA-32 (and
compatible) processors. The framework achieves instru-
mentation using the virtual memory system as a base,
that is a commonplace in most platforms. This, coupled
with the fact that the SPiKE architecture abstracts plat-
form specific details, enables the framework to be ported
to other platforms. We show SPiKEs easy to use APIs
enable construction of powerful malware analysis tools
with ease and discuss one of our own tools that we have
used for behavior monitoring of various malware.

Although there remain other important features of
SPiKE for which space does not permit a detailed de-
scription (selective instrumentation, support APIs, slic-
ing internals, framework polymorphism etc.), we have
shown how SPiKE addresses the shortcomings in current
research involving binary-instrumentation in the context
of malware. In our belief, the framework is the first of its
kind in tailoring an instrumentation strategy conducive
to malware analysis. Future works include: (a) raising
the stealth levels by developing a supervised code ex-
ecution environment for privileged malware code, (b)

employ a sophisticated code rewriter which would do
away with the need for redirection-pads and (c) integrate
SPiKE into a full fledged malware analysis environment
currently being developed by us.

References
Buck, B. R. & Hollingsworth, J. (2000), An api for runtime code

patching, in ’Journal of High Performance Computing Ap-
plications’, Vol. 14(4), pp. 317-329.

Bruening, D. L. (2004), Efficient, Transparent, and Com-
prehensive Runtime Code Manipulation, Ph.D., M.I.T.
(http://www.cag.lcs.mit.edu/dynamorio/).

Cantrill, B. M., Shapiro, M. W. & Leventhal, A. H. (2004), Dy-
namic instrumentation of production systems, in ’6th Sym-
posium on Operating Systems Design and Implementation’,
pp. 15–28.

Hunt, G. & Brubacher, D. (1999), Detours: Binary Interception
of Win32 Functions, in ’3rd USENIX Windows NT Sympo-
sium’, pp. 135–144.

Intel Corporation. (2003), IA-32 Intel Architecture Software De-
velopers Manual., Vols 1-3.

Larus, J. & Schnarr, E. (1995), EEL: Machine-independent exe-
cutable editing, in ’ACM SIGPLAN Conference on Program-
ming Language Design and Implementation’, pp. 291-300.

Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney,
G., Wallace, S., Reddi, V. J. & Hazelwoo, K. (2005), Pin:
Building Customized Program Analysis Tools with Dynamic
Instrumentation, in ’ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI)’,
Chicago, IL, USA, pp. 190–200.

Maebe, J., Ronsse, M. & De Bosschere, K. (2002), Diota: Dy-
namic instrumentation, optimization and transformation of
applications, in ’Compendium of Workshops and Tutorials
held in conjunction with PACT02’.

Microsoft Corporation. (2004), Microsoft Portable Executable and
Common Object File Format Specification., Rev.

Moore, R. J. (2001), A universal dynamic trace for Linux and
other operating systems, in ’FREENIX Track’.

Nethercote, N. & Seward, J. (2003), Valgrind: A program supervi-
sion framework, in ’3rd Workshop on Runtime Verification’.

Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W., Levy, H.,
Bershad, B. & Chen. B. (1997), Instrumentation and opti-
mization of win32/intel executables using Etch, in ’USENIX
Windows NT Workshop’, pp. 1-7.

Scott, K., Kumar, N., Velusamy, S., Childers, B., Davidson, J. &
Soffa, M. L. (2003), Reconfigurable and retargetable soft-
ware dynamic translation, in ’1st Conference on Code Gen-
eration and Optimization’, pp. 36-47.

Srivastava, A., Edwards, A. & Vo, H. (2001), Vulcan: Binary
transformation in a distributed environment, Technical Re-
port MSR-TR-2001-50, Microsoft Research.

Srivastava, A. & Eustace, A. (1994), Atom: A system for build-
ing customized program analysis tools, in ’ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation’, pp. 196-205.

Unix System Laboratories. (1998), Tool Interface Standards. ELF:
Executable and Linkable Format.

Vasudevan, A. & Yerraballi, R. (2005), Stealth Breakpoints, To
appear in ’21st Annual Computer Security and Applications
Conference’, Tucson, AZ, USA.

Vasudevan, A. & Yerraballi, R. (2004), SAKTHI: A Retargetable
Dynamic Framework for Binary Instrumentation, in ‘Hawaii
International Conference in Computer Science’, Honolulu,
HI, USA.

Yaghmour, K. & Dagenais, M. R. (2000), Measuring and charac-
terizing system behavior using kernel-level event logging, in
’USENIX Annual Technical Conference’, pp. 13–26.

Zhang, X., Wang, Z., Gloy, N., Chen, J. B. & Smith, M. D. (1997
), System support for automatic profiling and optimization,
in ’16th Symposium on Operating System Principles’, pp.
15–26.

CRPIT Volume 48

320

� �������	��

�������������������������������! ����#"%$&�%�'�(�' ��*),+���-.+�-&�/+(�0)��1+2�%"3)����
�4-653+(���#-%�7�'-6)��

8:9<;>=�;0?A@ B1CD9<EGFG?A@IH*C JKF�?
LKM�MNCPO Q�RSC TU?WVXO�Y0OZE1[�O�\ J]C_^S`A;a\SMb=c;aR�[�FG?

d4e�fhg�ikjml#e2nSjNo�p,qrgsjutZv�w
xAoUl#fhyzju{|n~}h�~�'n~{|��e�i�vu{�j���o�p,��oUyzjuthe�imn/�4yhe�e�nZvk��g�nh�
�Go�os�Ao�oUl��hg6�*�0d��S�U���#��yZv�jmimg���{�g

�<l�g�{|�P�
���h���z�< �¡h¢¤£z¥~¦����< §�S¨�¨Z¢�©� �¨z©Uª~©�¥�«�©U¬< �¬S�h�U­Z«�¦��¯®�°�£±«�²A³k©U¨U£N³���£

´�µ,¶�·2¸º¹h»�·
¼�o��|e(½D�hg�vue2�¾�ze2��e2}Ugsjm{�oUnKl6oz�ze2��¿ÁÀ�ÂNÃ*ÄÆÅÇ�hg�vue2�Ko�n¾jmt~e
iuoU��e�½_�hgUvke¤�Xg�È2È(e2vmv#È(o�nSjmiuoU�4¿ÁÀ'Â�É�Ê4Å�tZg�v�f~iuos�Ue�n]jmoK��e
g/Ëhe�Ìz{��~�|e%g�nh�Íyhvue(pÎy~��gUÈ�È(e¤vuv#È(oUnSjuimo���l#oz�ze2�NpÎo�i6{|nzpÎo�iu½
l6g�ju{|o�n6vktZg�im{�n~}*{|n#gÇ�z{�v�jmiu{|�~yzjme2�6È(oU����g���o�i�gsjm{��Ue<e2nS��{|iuoUnz½
l#e2nSj2Ï,ÐÑn�jmo��hgº��Ò v�t~{|}�t~�|���z��nhg�l#{�È��z{|vkjuim{|�~yzjue¤�6vk�zvkjue�l�v2�
gÇyhvke2i�o�pÓjme�n6n~e�e¤�~v�juo��~e��|e�}Ug�jue�g*iuoU��e�jmoÇg����hl#e2l���e�i�v,o�p
gÇ}�imo�y~f6gsj1jmt~e�vmg�l6eNju{|l6e�Ï,ÐDj<f~ime2vue�nSjmv�jmt~e'È�thg����|e�nh}�eNo�p
t~os�Xjuo*�~y~{|����g4iuoU��e�½_�Zg�vue2��}UiuoUy~f��ze2��e2}Ugsjm{�oUn�pÎi�g�l6e���o�imÔ
��{�jmt~{�n/À'Â�É�ÊÕ{|n%�z{|vkjuim{|�~yzjue¤�§e�n���{�imo�n~l6e2nUj¤Ï
�Nt~{�v�fhg�f�e�i�g�{|l6v0juo4�~y~{|�|��g�}UiuoUy~f��ze��|e�}Sgsjm{�oUnÇpÎimg�l#e�½

�AoUiuÔ/��{�juth{�nXÀ�ÂNÉ�Ê�Ï0�Nt~e6pÎi�g�l6e2�AoUiuÔ%{|nhÈ(�|yh�ze¤v�g§iuoU��e�½
�hg�vue2�X}UiuoUy~fÖ�ze2��e2}Ugsjm{�oUnÖ}�i�g�nSjm{�n~}rl#oz�ze2�P��}UiuoUy~fÖ�ze2��e�½
}Ugsjm{�oUn/ime���ozÈ2gsju{|o�n�l6oz�ze��_�¯}�i�g�nSjm{�n~}�g�yzjutho�im{�×¤gsju{|o�n/g�nh�
iue2��ozÈ�g�ju{|o�nÍg�yzjut~oUiu{|×2g�ju{|o�naÏÙØKe%g�nhg��|��×�eÚ�sg�iu{|o�yhv#ime��Uo�½
È�gsjm{�oUnhv�g�nZ�Íjmt~e%{|l#fZg�ÈÛj�o�p4ime��Uo�È2gsjm{�oUnhv#o�n:iuoU��e�t~{|e�iu½
g�i�È�t~{�e¤v�Ï#�Nt~e6{�l6f~�|e�l6e2nUj�gsjm{�oUnK��{�jut]Ü4ÄrÝÙ�Zg�vue2�rjuo�o���v
�ze�l6o�nZv�jmimg�jue2vGjmt~eNpÎimg�l6e���o�imÔÇg�nh��g�yzjutho�im{�×¤gsju{|o�n�l6e(jut~½
o��hv�Ï,Þ�{�nhg����|���SÈ(oUl#fZg�im{|vuo�nhvG��{�jut6o�jmt~e�i�ime���gsjme2����o�imÔ�g�ime
{�nh�~{|È2gsjue¤�¯Ï

ß à�á ·�¸sâaã�äG»�·2åÁâ á
�Nt~e�æ4gsju{|o�nZg��0ÐÑnZv�jm{�jmyzjue�o�pA�Sj�g�nh�~g�im�hv'g�nZ�%�0e¤È�t~n~o��|o�}U�
�ze��Ue��|o�f�e2�6jmt~e4imo��|e(½D�hgUvke¤�#gUÈ�È�e2vmv<È(oUnSjuimo��G¿PÀ�ÂNÉ�Ê'Å1f~iuo�½
juo�j���f�e�¿ÁÞ~e2{�nZv�jme�{|n�ç�Ï~�1Ï¯è¤é�éU�UÅ1g�nh��f~yh�~��{�vut~e2��g�pÎo�iml6g��
l#oz�ze2�0¿ÁÞhe�imimg�{�oU��o*d�ÏUÞAÏUg�nh�#êÇy~t~n6d�ÏU¼�Ï~è2éUéUëUÅÛÏ0À�ÂNÉ�Ê
thg�v���e�e2nÕ��{��ze��|�Æyhvue2�Õ{|nI�~g�jmg��hg�vue¾vu�zv�jme�l7l�g�nhg�}Ue(½
l#e2nSjÚg�nh�ì�z{�v�jmiu{|�~yzjme2�:e�n���{|iuoUn~l6e�nSjmv�vu{�nZÈ(e%{�j�e�nhg��~��e¤v
l6g�nhg�}U{�nh}Ùg�nZ�>e�nzpÎoUimÈ�{�nh}Ùvue2È(yhiu{�j��Ù{|ní��g�im}�e�½DvmÈ�g���e/g�nh�
e�nSjue2iuf~im{�vke�½_��{��ze3vu�zv�jme�l�v2ÏÙÀ�ÂNÉ�Êî{�n���oU���Ue2v�{�nZ�z{���{��zyhg��
yhvke2imv4��e�{|n~}§gUvuvuozÈ({�gsjme2����{�jutrimo��|e2v*g�v'�Ae2����gUv'imo��|e2v'�Ze�½
{�n~}Kg�vmvkozÈ({�gsjme2�¾��{�jutÖf�e�iml6{|vmvk{|o�nZv�¿Á�Ag�È�tXf�e�iml#{�vmvk{|o�n]{�v
g3fZg�{|i4o�pAo��~ï�e2ÈÛj�vÇg�nh�Ko�f�e�i�gsjm{�oUnhvmÅ(Ï��'v�vuyhÈ�ta�ag§imo��|e�{�v
yhvke¤�ÖjmoXg�vmvkozÈ({�gsjme3yZvke2imv6g�nZ�Öf�e�iml#{�vmvk{|o�nhv2ÏÙ�cyZvke2i#{|n
jut~{�vNl6o��~e��±{|vNg�tSyhl6g�nÚ��e�{|n~}hÏ1�Õimo��|e'{�v�g'ï�o��ÚpÎy~nhÈ(ju{|o�n
o�iÇï�o��Ùju{�ju�|e%��{�jut~{|nÍjmt~e%o�im}Ug�n~{|×2gsjm{�oUnÍg�vmvuo�È�{|g�jue¤�Ö��{�jut
g�yzjmt~o�im{�j��3g�nh�3iue¤vkf�o�nZvk{|�~{|��{�j���Ï
ð,e�iml6{|vmvu{�oUn�{|v�g�n#g�f~f~imos�sg��So�pZg*fhg�ikjm{|È�y~�|g�iGoUfZe2img�ju{|o�n

juo���e'f�e�iupÎo�iml6e2�6o�n�oUn~e�oUi1l6o�ime�o��zï�e¤ÈÛj�v�Ï,�'vAvkt~os��n�{|n
ÞG{|}�yhiueñè���jmt~e�ime���gsjm{�oUnhvut~{�fZv'��e(j���e�e2nryhvue�i�v4g�nh�%imo��|e2v2�
g�nh�#��e(j���e�e�n#imo��|e2v,g�nh��f�e�iml#{�vmvk{|o�nhv�g�iue�l�g�n��S½Pjmo�½Dl�g�n��
¿Î{_Ï eUÏ1g�fZe2iul6{�vuvu{|o�n�È�g�n��Ze*g�vmvkozÈ�{|g�jue2�6��{�jutÚo�n~e�oUi<l6o�ime
iuoU��e¤v��±g�nh�rg�iuoU��e�È�g�nr�Ze#g�vmvkozÈ({�gsjme2����{�jut/oUn~e�oUi'l6o�ime
fZe2iul6{�vuvu{�oUnhv�ÅÛÏò�Nthe¾vue2È�y~iu{�j��>f�o��|{|È��>o�p�jmt~e]o�im}Ug�n~{�×¤gs½
ju{|o�nÍ�ze�jue2iul6{|n~e2v�iuoU��e�l6e2l���e�i�vkt~{|fÖg�nZ�¾jut~e§g��|��ozÈ�g�ju{|o�n
o�p,e2g�È�t§imo��|e�Ò v�È2g�fhg��~{|��{�ju{|e2v2Ï
�Nt~eÖÀ�ÂNÉ�Êól6oz�ze���vky~fhfZoUikj�v§jut~eÖvufZe¤È({�ôZÈ�g�ju{|o�nIo�p

vke2��e�i�g��¯gUvkf�e2È(jmv2Ï
õ±öÛ÷(ø¤ùPúüûÛý�þ6ÿ�������������
	�� þ_ù�
��üú�
��'õ±ö���÷ 	 þ��kù���ö ÿ ú��ÑþÓø ��� � ÿ���� ýºú � ÷�
��
÷ ��ù!
�÷º÷ �"
�ù��$#%
mþ �!& �$�(þÓø'�)(0ú���þPý �
	�� þ_ù�
���
 � ú�
��'õ±ö���÷ 	 þ���ù*� ÿ ú��$� ÿ �
õ±ö���+,��ù��$� ÿ �.- � õ*�ºõ �������0/1�32 ö�4�
�ùÁþ � �
 � �5
��¤ú�
 �6�6	�� þPù7
��üú�
 �68
����
	
�ùPø ������� � õ¯ö��'+9��ù��$� ÿ � � ú��;:�� � �<
�ù ÿ ý=
���#?>�ù7
 ÿ þPú ÿ �Nú�� � ��+|öÛù��5
��
þPúüö�� � � ÿ ý��ºö��üöÛû�ø �*@ ö�� �BA0C�� @ ��
�#ºú���úüùED � þPú F¤ú���� �Áõ!
 � þ_ùPö=
���#HG�ú����
I ö�4�4ºú�� � DJ# � :*��÷ºù_öK# 	 ÿ þPúüö��L+�öÛù5
 ÿ
�#��"��ú ÿ � �ºö�þM�N+�öÛù�÷ºù_ö�Oºþ'÷ 	 ù��
÷�ö � � � ÷ ��ù���ú þÁþ��$#*÷¤ù_ö<F2ú�#��$#4þPýºú � þ��1P�þ�ú � ú�� ÿ � 	 #��"# �

g~Ï��'vue�i0Qºimo��|e#gUvuvuozÈ({�gsjm{�oUnhvSR/jmt~e�È(oUnhv�jmimg�{�nSj�v�vkf�e2È�{�½
pÎ��{|n~}6yhvke2i�g�yzjmt~o�im{|×2gsjm{�oUnhvAjuo�f�e�iupÎo�iml imo��|e2v'T
�aÏb¼�o��|ert~{|e�i�g�i�È�t~{|e2v�R:jut~e¾È(oUnhv�jmimg�{�nSj�vÚvufZe¤È({�pÎ�S{|n~}

��t~{�È�tXimo��|e�l6gº�¾{|n~t~e�im{�j#g��|�<o�pNjut~e3fZe2iul6{�vuvu{�oUnhv�o�p�g�nz½
o�jut~e2i�iuoU��eUT
È�Ï0d4yzj��Çvke2fhg�i�gsjm{�oUn*È�o�nhvkjui�g�{|nSjmvJR�jmt~e2vue1g�ime�iuoU��e�Qºimo��|e

gUvuvuozÈ({�gsju{|o�nZv<{|nh�z{�È�g�ju{|n~}�È(oUnzËh{�ÈÛj�o�p,{�nSjme�ime2vkj2�
È�è�Ï4�Sj�gsjm{|È�vue�fZg�i�gsjue¤�%�zyzj��]¿�VWV~Ã�ÅSR�g�È�o�nhvkjui�g�{|nSj

vufZe¤È({�pÎ��{�n~}/juthg�j#g%yhvue�i#È�g�n~n~o�j��Ze§g�yzjmt~o�im{�×2e2�KpÎo�i�j��Ao
�z{,X±e�ime�nSj�iuoU��e¤vKT

È¤ëzÏÖd4��nhg�l6{�È§vue�fZg�i�gsjue¤�Ö�zyzj��Æ¿PÃYV~Ã�Å;RÖgKÈ�o�nz½
vkjui�g�{|nSj#vufZe¤È({�pÎ�S{|n~}Kjuthg�j6gryhvue�i6È�g�nÙ�Ze�g�y~jut~oUiu{|×�e¤�]pÎo�i
j���o/�z{,X�e2iue2nUj�imo��|e2v��~yzj�È2g�n~n~o�j�g�È(j�vk{|l�yh��j�g�n~e2o�yhvu���K{�n
��o�jmt*T
�¯Ï>x�g�im�~{�nhg���{�j��ZRXjut~e�l�gsÌz{|l�y~l n�y~l��Ze2i6o�p4yZvke2imv

g����|os�Ae¤�¯��{PÏ e�Ï/thos�bl�g�nS�]yhvue�i�v�È2g�nX��e3g�yzjut~oUiu{|×�e¤�¾pÎo�i
g�nS�XfZg�iuju{�È(y~��g�i#iuoU��e]¿Îimo��|e�È�g�i��z{|nhg��|{�j��zÅ(�<eUÏ }ZÏ��1oUn~�|�Öo�n~e
l�g�nZg�}�e2i2Ï
�Nt~eNnSyhl���e�i�o�p�iuoU��e¤v,g�nh��yhvue�i�vG{|n6g4��g�im}�e�e�nSjme�imf~iu{�vue

vu�zv�jme�l È�g�n���eÍt�y~nZ�ziue¤�~v/oUi%jutho�yhvmg�nh�hv�Ï q/g�nhg�}U{�nh}
jmt~e2vue�imo��|e2v<g�nh��yhvue�i�v2�Ug�nZ�6jut~e2{�i�{|nUjme�imiue2�|g�ju{|o�nhvut~{|fhv�{�vAg
��{�jmg��GÈ�thg��|��e2n~}�eÇjmthgsj*{|v�o�pÓjue2n/t~{|}�t~�|���ze2È�e�nSjui�g��|{�×2e2��g�nZ�
�ze2��e2}Ug�jue2��juo4g4vkl�g����Ujue¤g�l�o�p~fhiuo�ï�e2ÈÛj�}�imo�y~fZv�Ï0�4vke2ik½Dimo��|e
gUvuvu{�}Un~l6e�nSj0{�vGg�fhg�iuju{�È(y~��g�im�|�*È�iu{�ju{�È�g��Ug��~l#{|n~{�v�jmimg�ju{|��e<gUÈÛ½
jm{���{�j��K��e2È2g�yhvue�g�vmvk{|}�nh{�n~}%f�e�oUf~�|e�juo%j�g�vuÔzv�{|v�g�n~o�iml�g��
l�g�nZg�}�e2iu{�g��apÎy~nhÈÛjm{�oUnKg�nh�/g�vmvu{�}Un~{�nh}�yhvke2imv'juo3iuoU��e¤v�{�v4g
nhg�juy~i�g���fhg�ikj�o�p�g�vmvu{�}Un~{�nh}4yhvue�i�vGjuo*jmgUvkÔzv2ÏGÞhy~ikjmt~e�iml6o�ime��
jmt~e§gUÈÛjm{���{�ju{|e2v#{�nì�z{�v�jmiu{|�~yzjme2�Ùe�n���{�imo�nhl#e2nSj#g�ime��ze2È�e�nz½
jmimg���{|×�e¤�>g�nh�Æ�~e��|e�}Ug�jue¤�:juoÍyZvke2imvÚimg�jut~e2i�jutZg�nívu�zv�jme�l
gU�zl6{�n~{�vkjui�gsjuoUimv2Ï
d'e2��e2}Ugsjm{�oUn]{|v�g�n]{�l6f�o�iujmg�nSj�gUvkf�e2È(j�o�p�À�ÂNÉ�Ê g�nZ�

o�pÓjue�n§ime�}Ug�im�~e2�ÚgUv�o�n~eÇo�p�juthe*fhiu{|nhÈ({|fhg��¯l#o�ju{|�sgsju{|o�n§��e(½
t~{|nh�¾À�ÂNÉ�Ê�Ï0����jutho�y~}Utrjmt~e�{�l6f�o�iujmg�nhÈ(e6o�pN�ze��|e�}Sgsjm{�oUn
{|n3À�ÂNÉ�Êíthg�v���e�e2nÚime2È(oU}�n~oU×�e¤�6pÎo�iNg��|o�nh}�ju{|l6e��z{�j�thg�v
n~o�j'ime2È(e2{��Ue2�3l�yhÈ�t/g�jkjme�nSju{|o�naÏ\[�tZg�n~}�e�j4g���¿�[�thg�n~}��1Ï|�
�'t~n=]#Ï|��g�nh��xAt�y;^*Ïsë����hè���[±thg�n~}4�1Ï|����t~n=]#Ï|��g�nZ��xAtSy
^*Ï¤ë����Së�ÅZiue¤È(e2nUjm���4f~imo�f�oUvue2�Çg�imy~��e�½_�Zg�vue2�4pÎimg�l6e���o�imÔ�pÎo�i
imo��|e(½D�hg�vue2�#�ze2��e2}Ugsjm{�oUn6{�nhÈ���yZ�z{�nh}�jut~e*À�Ã*Ä`_baUaca�l6oz�ze��_Ï
Ø¾e�yhvueAjmt~e�È(oUnhÈ(e2fzj�o�p±iuoU��e�½_�Zg�vue2���~e��|e�}Ug�ju{|o�n#�ZoUiuimos��e2�
pÎimo�l jut~e2{�iA�AoUiuÔ±Ï,�Nt~e4È�e�nSjui�g��ZÈ(o�nSjmiu{|�~yzjm{�oUnhv1o�p¯jut~{�vAg�ik½
jm{|È���e§g�ime�juo¾�ze2vmÈ(im{���e�t~os� ��e3È2g�nX�~yh{����Íg�pÎi�g�l6e2�AoUiuÔ
o�p�imo��|e(½D�hg�vue2��}�imo�yhf6�~e��|e�}Ug�ju{|o�n6��{�jut~{|n�À�ÂNÉ�Êì{|n�g��z{�v�½
jmiu{|�~yzjme2�Öe2n��S{|imo�n~l6e�nSj6g�nh�]jmoK{|l6f~�|e�l6e�nSj#jut~e%�ze2��e2}Ugs½
jm{�oUn�pÎi�g�l6e���o�imÔ���{�jut#Ü4Ä/Ý��hgUvke¤��jmo�o���v�g�nh���|g�n~}�yZg�}�e¤v�Ï
�Nt~e�iue2l6g�{�nZ�ze�i6o�p4jut~{�v6fhg�fZe2i�{|v6oUiu}Sg�n~{|×�e¤�Ög�v#pÎoU��½

�|os��v��*��e2È(ju{|o�nXë�f~ime2vue�nSj�v�jmt~e6iue2�|g�jue2�r�AoUiuÔ%gUvuvuozÈ({�gsjue¤�
��{�jut�jut~e��~e��|e�}Ug�ju{|o�n�l#oz�ze2�|v�g�nh��À'Â�É�Ê�Ï��4v,juthe�ime2vuy~��jmv
o�p*jmt~{�vÚvue2ÈÛjm{�oUna����e%ôhnh�ìjmthgsj§�Zo�jut>}UiuoUy~fz½D�hg�vue2�ì�ze2��½
e2}Ugsjm{�oUnÙ��{�juth{�n>À�ÂNÉ�Ê�g�nh�:{�j�v�{�l6f~�|e�l6e2nUj�gsjm{�oUn:��{�jut
Ü*Ä/ÝrtZg�v�n~o�j���e�e2n3g�nZg��|��vue2�3g�nh�Úf~ime2vue�nSjue¤��{|n�juthe*�|{�jk½
e2img�juy~ime�Ï%��e2È(ju{|o�nÖ�%fhiuoUfZoSvke¤v�g/�ze��|e�}Sgsjm{�oUnKpÎi�g�l6e2�AoUiuÔ
��t~{�È�t6{�nZÈ(�|yh�ze2v�jut~e'vkjuimyhÈ(juy~ime2v,o�p�imo��|e(½D�hg�vue2���ze��|e�}Sgsjm{�oUn
g�nh�:iuoU��e�½_�hgUvke¤�Í}UiuoUy~fì�ze��|e�}Sgsju{|o�nìl6oz�ze���v2ÏI��e¤ÈÛju{|o�n>�
f~imos��{|�~e2v*�ze��|e�}Sgsju{|o�n¾g�yzjmt~o�im{|×2gsjm{�oUnhv2Ïd]*i�g�nSju{|n~}�g�yzjmt~o�½
im{�×¤gsjm{�oUn§��{�jutKf~ime(½Diue�eUyh{|vu{�jme�È(oUnh�z{�ju{|o�nhv*g�nh��ime��UozÈ�gsjm{�oUn
g�yzjut~oUiu{|×2g�ju{|o�n>g�ime/�z{�vuÈ�yhvmvke¤�ì{�n>jmt~{�vÚvue2ÈÛjm{�oUnaÏ d4e(ôhn~{�½
jm{�oUnhv1o�p6fhgUi jlk�mMk'nogUp$klq�fhgUi r�k�slt uokS�wv<x y,zYv<{�|b}Uz�g�iue�{|nz½
jmiuoz�zyhÈ�e2�¯ÏÇ��e2È(ju{|o�nK�Ú�ze2vmÈ(im{|�Ze¤v�jmt~e�{|l6f~��e2l6e�nSjmg�ju{|o�n/o�p

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

321

Role_Name

User_Name

 Indicates

m n

Senior−
Junior

m n

OPERATION

PE
R

M
IS

SI
O

N
S

m n

m

n

many−to−many relationships

Permission−role assignment (PA)User−role assignment (UA)

OBJECT

USERS ROLES

Þ�{|}�y~ime6è��1¼5^N�'xìime���gsjm{�oUnhvut~{�f0Ï

jut~e�imo��|e(½D�hg�vue2�/}�imo�y~f¾�ze��|e�}Sgsju{|o�nKyhvu{�n~}�Ü*Ä/ÝÙjue2È�thn~o���½
o�}��]g�nZ�Í��e2È(ju{|o�n��KÈ(oUl#fZg�ime2vÇjmt~e3��o�imÔr{|nXjmt~{|v#fhg�fZe2i
g�nh�§ime���gsjue¤�Úfhiue2�S{|o�yZvN�AoUiuÔ±Ï1Þ�{�nZg��|���U�zjut~e�È�o�nhÈ���yZvk{|o�n§o�p
jut~e�fhg�fZe2i�{|v�{�n/��e¤ÈÛju{|o�n��~Ï

� ����� ¹z· � ã
	�âZ¸��
d'e2��e2}Ugsjm{�oUnr{�vÇg�n¾{�l6f�o�iujmg�nSj*pÎe2g�juy~ime�{|n¾l6g�n���È�o��|�|g��Zo�½
img�ju{|o�nÙg�f~f~�|{|È2gsjm{�oUnhv�ÏìÞ~oUi6e(Ì~g�l6f~�|e��A{�l�g�}U{�nhe3jmthgsj6jmt~e
ÐÑl#l6{|}�i�gsjm{�oUnÙd4e�fhg�ikjml#e2nSj#{�v6�ze��Ue��|o�f~{|n~}rfZg�iujun~e2imvut~{|fhv
�Ze�j��Ae2e�nÚ{|l6l6{�}Uimg�ju{|o�nÚg�}�e�nZÈ({|e2v<g�nh��f�e�oUf~�|e'{|nÚ�|o�È2g��±g�iu½
e2g�v�juo]g��h�ziue¤vuv�fZoSvuvu{|�~��e§f~imo��~�|e�l�v2ÏKÐÑl6l6{|}�i�gsju{|o�nÍo�
6½
È(e�i�v<g�iue�g��~�|e�juo�fhiue2��e�nSj<{|�|��e2}Ug��Zv�j�gº��v<g�nh��È�iu{|l6e�{�p¯jmt~e��
e�
�È({|e�nSju�|�3È�o��|�|g��ZoUimg�jue4��{�jmt3jmt~e�f�e�o�fh��eUÏ1�Nt~eÇf~iuoU�~�|e�l#½
o�im{�e2nUjme2�X{|l6l6{�}Uimg�ju{|n~}rvu��vkjue2l ¿������"V0Å�{�v�f~imo�f�oUvue2�¾jmo
{�l6f~imos��e4jut~e�vue�im��{|È�e*gUv�g#fhg�ikjNo�pGjut~eÇÐÑl6l6{�}Uimg�ju{|o�n§d'e�½
fhg�iujul6e�nSj¤Ò v�o�nh}�o�{|n~}*È(o�l6l�y~n~{�j��*eKX�oUikj�v�{�nhÈ���yZ�z{�nh}4{��ze�n~½
ju{�pÎ�S{|n~}�f�o�jme�nSju{�g��0f~iuoU�~�|e�l�v�g�nZ�3ime2vuo��|��{�nh}�jmt~e�l ��e(pÎo�ime
jut~e2���Ze¤È(oUl#e�vu{�}Un~{�ôZÈ�g�nUj¤ÏGØ>{�jut#e�
�È�{�e2nUj1�ze2��e2}Ug�ju{|o�na��o�pÓ½
ôZÈ(e2imv0iue¤vkf�o�nh� eSy~{�È�Ô����4juo4y~im}�e�nSj0l6e¤vuvmg�}Ue2vag�nh�Ç{�nZÈ(ime2g�vue
jut~eÇjm{�l6e�vufZe2nUj'È�o�nzpÎimo�nSjm{�n~}6f~imo��h��e2l6v2Ï
ÐÑn������"V±�±o�
�È(e2imv'l6{�}UtUjÇ��e�{|n���o��|��e¤�%{|nrl�g�n��%È(oUnz½

È(y~imiue2nSj�gUÈÛjm{���{�ju{|e2v�vuyhÈ�tìg�v�È(oUnh�zyhÈ(ju{|n~}X{|n~{�jm{|g���{|nS�Ue2vkju{�½
}Ugsjm{�oUnhv2��g�nhg��|�zvk{|n~}�g�nZ�/È(oUnzpÎiuoUnSju{|n~}ÚÈ(im{|l#e¤v���f~ime�fhg�iu{|n~}
{�l6l6{�}Uimg�ju{|o�nÙiue2fZoUikj�v��<g�nh�:g�vmvke¤vuvu{�nh}rf~imo�ï�e¤ÈÛjmv2ÏÖÐÑn:o�iu½
�ze�iNjmo#gUÈ�t~{�e2��e4jut~{�v2�zyhvke2imv�l�gº��thgº�Ue'o�nhe*oUiAl6oUiue*iuoU��e¤v
vkyhÈ�tìg�v6�|e2gU�Ío�
�È(e�i¤�<fZg�iuju{�È({|fhg�nSj6o�
�È(e2i2�Ao�i6iue2fZoUikjme�i¤Ï
ÐÑnìjut~{�v�e�Ìzg�l6f~��eU���0oUnS�U��gX�z{�ime2È(juoUi2�Nn~e2e2�~v6jmoÍÈ(o�oUim�z{�½
nhgsjme6g�nhg��|�zvk{|n~}�g�nh�KÈ(oUnzpÎiuoUnSju{|n~}§È�iu{|l6e2vÇg�nZ�KgUvuvue2vmvk{|n~}
f~iuo�ï�e2È(jmv2Ï%xAoU����g���o�i�gsjm{�oUnK{�v�n~e¤È(e¤vuvmg�im�%pÎo�i�{�n~pÎo�iml6g�ju{|o�n
vkthg�iu{|n~}K��{�jmtÙl6e�l��Ze2imv�pÎimo�lójuthe2vue3j���orfhiuo�ï�e2ÈÛj�v�ÏÖ�Go
È(o��|��g���o�i�gsjue�È(�|oUvue��|��g�nh�/l�g�Ô�e�j���oÚfhiuo�ï�e2ÈÛj�v'l6oUiue#vkyhÈ(½
È(e2vmvkpÎy~�P���0oUn��¾��o�yh�|�Í��{|Ô�eÚjuo]�ze��|e�}Sgsjue�È(e2ikj�g�{|nÖime2vufZoUnz½
vk{|�~{|��{�ju{|e2v3juo>xAt~im{|vkju{|n~e]g�nh�>the�i�v�j�g�X,Ï
�Ntherf~ime�ime'eSy~{�½
vk{�jue%È(oUnh�z{�ju{|o�nhv6g�iueÚjuoXvke¤È(y~ime�jmt~e2vue�f~imo�È�e2vmvke¤v�g�nh�Xjmo
l#oUn~{�juo�i�jmt~eÇf~iuoU}�ime2vmv1o�pajut~e��ze2��e2}Ug�ju{|o�naÏ,Þ~y~iujuthe�iml#oUiueU�
xAt~iu{�vkju{|n~e�l�gº�3nhe�e2�§jmoÚ�ze2��e2}UgsjmeÇjut~e#�ze��|e�}Sgsjme2�§iuoU��eÇjmo
t~e�i<vkjmg XÚg�v,n~e¤È(e¤vuvmg�im��o�i,jmoÇ�~e��|e�}Ug�jue�gÇimo��|e<jmo�g��|�zl#e2l#½
�Ze2imv�o�p±gÇ}UiuoUy~f6gsj�juthe'vug�l6eAjm{�l6eUÏ�Ø>{�jutho�yzjA�~e��|e�}Ug�ju{|o�n
vkÔ�{|���_�1vke¤È(y~im{�j��Ko�
�È�e�i�v�thgº�Ue�juoK�zore�ÌzÈ�e2vmvk{|��eÚ�AoUiuÔK�Ze�½
È�g�yZvke6o�p�juthe�{|i�{�n��Uo��|��e�l6e2nUjÇ{|nXe���e2iu�/vu{|n~}��|e�È(o��|��g���o�i�gs½
ju{|��e3gUÈÛjm{���{�j���Ï]�Nt~e3l�g�ï�o�i�ime'eSy~{|ime�l6e�nSjmv�o�p�imo��|e(½D�hg�vue2�
�ze��|e�}Sgsju{|o�n§{|n3jmt~{�v�e(Ì~g�l6f~�|e�g�ime��
è�Ï5]*iuoUy~fz½D�hg�vue2�Ú�ze��|e�}Sgsju{|o�nÚl#e¤g�nhvAjmthgsj�g��~e��|e�}Ug�ju{|n~}
yhvue�i�l�gº�Únhe�e2�3jmo��ze��|e�}Sgsjue�g6imo��|e*juoÚg����0l#e2l���e�i�v
o�p�g#}�imo�y~f�gsjNjuthe�vug�l#e*jm{�l6e�Ï

ëzÏ�q%y~��ju{�v�jme�f �ze��|e�}Sgsjm{�oUnÆozÈ�È(yhimv3��t~e�n gÍ�~e��|e�}Ug�ju{|o�n
È�g�n/�Ze�pÎy~iujut~e2i*�ze2��e2}Ug�jue2�aÏ*��{|n~}��|e(½Ñvkjue�f/�~e��|e�}Ug�ju{|o�n
l6e2g�nZv�jutZgsj�juthe��ze��|e�}Sgsjme2�§iuoU��e�È2g�n~nho�j���e�pÎy~iujut~e2i
�ze��|e�}Sgsjme2�¯Ï

�hÏN¼�e���ozÈ2gsju{|o�n%vmÈ�t~e�l6e¤v�g�ime�g�n%{|l6fZoUikj�g�nSj�pÎe¤gsjuyhiue�o�p
È�o��|�|g��ZoUimg�ju{|o�n/vu�zv�jme�l�v�Ï#�Nt~e���j�g�ÔUe#gº�Ngº�§jut~e��ze2��½
e2}Ug�jue2�:f�e�iml6{|vmvk{|o�nZv�Ï �Nt~e�ime/g�ime/�z{,X�e2iue2nSjÚiue2��oUÔU½
{|n~}¾vuÈ�t~e2l6e2v'TAg�l6oUn~}%juthe�l g�ime3vkjuimo�nh}rg�nh�Ö�Ae¤g�Ô
ime��UozÈ�gsjm{�oUnhv2�*È2g�vmÈ�g��~{�n~}Æg�nh�In~o�nZÈ�g�vmÈ�gU�z{|n~}ìiue2��o�½
È2gsjm{�oUnhv���gUv���e��|�4g�vÚ}�i�g�nSjk½Ñ�ze2fZe2nh�ze�nSjÚg�nh�ì}�i�g�nSjk½
{|nh�ze2fZe2nh�ze2nUj#iue2��ozÈ�g�ju{|o�nhvÚ¿ÎØ]g�n~}rç�Ï��Ax�g�o��hÏ,g�nZ�
[±thg�n~}���Ï�ë����U�UÅ(Ï

�ZÏ�xAoUnhvkjui�g�{|nUj�v3g�iue]g�nÕ{�l6f�o�iujmg�nUj�pÁgUÈÛjuoUi�{�n À�ÂNÉ�Ê
pÎoUi<��gº��{�n~}�oUyzj<t~{|}�the�iu½_�|e��Ue��~oUiu}Sg�n~{|×2g�ju{|o�nhg��zfZoU��{�È({|e2v
¿ÁØ¾g�n~}�ç�Ï��~x�g�o��ZÏUg�nh� [�thg�n~}���Ï�ë��U�~è¤Å(Ï��Nthe��6�ze(½
ôZn~e���t~e�jut~e2i'o�i'n~o�j�jmt~e��ze2��e2}Ug�ju{|o�n�o�i�ime��UozÈ�gsjm{�oUn
fhiuozÈ(e¤vuv�{�v��sg��|{|�aÏ

�~ÏNð�g�ikjm{|g��§�~e��|e�}Ug�ju{|o�nòl#e¤g�nhv:oUn~���òvky~�Zvke�jmv:o�pKjut~e
f�e�iml6{|vmvu{�oUnhv'g�iue��~e��|e�}Ug�jue¤�%��t~{|��e�juo�j�g��,�ze��|e�}Sgsjm{�oUn
l6e¤g�nhvAg��|�Zf�e�iml6{|vmvk{|o�nZv<g�ime'�ze2��e2}Ug�jue2�aÏ�ð�g�ikjm{|g��Z�ze2��½
e2}Ug�ju{|o�n6{|v�g�nÚ{�l6f�o�iujmg�nSj1pÎe¤gsjmy~iue4�Ze¤È�g�yhvke4{�jNg��|��os��v
yZvke2imv<o�n~�|�#juo6�ze��|e�}Sgsjue4iue�eSy~{�ime2�6f�e�iml6{|vmvu{�oUnhv�Ï,�Nt~e
��e��|��½_Ô�n~os��n%�|e2gUv�j*f~iu{|��{��|e�}Ue�vue2È�y~iu{�j���f~im{�nhÈ�{�fh��e6È�g�n
��e�{|l#fh��e2l#e2nSjue2�3jmt~iuoUy~}�t§fhg�ikjm{|g��±�~e��|e�}Ug�ju{|o�naÏ
����jut~oUy~}�trjut~e�È(oUnhÈ(e2fzjÇo�pA�ze2��e2}Ug�ju{|o�n/{�vÇn~o�jÇn~e2� {�n

g�yzjut~oUiu{|×2g�ju{|o�nhv�¿Á�'y~img§�ÇÏ,è2éUé�é~�J^Ng�imÔºgÚ��Ï¯g�nh�¾�zg�nZ�zt�y
¼�Ï�ë��U���Ug~��Ø]g�n~}:ç�Ï|�Y[�thg�n~}���Ï|�*x�g�o��hÏNg�nZ�! 1g�i�g���½
thg�img�ïkg�n" �ÏÕë����U�~�¯Ø]g�n~}/ç�Ï��1��y~nÖ�<Ï�� [�tZg�n~}��#Ï���g�nZ�
x�g�o��ZÏ�ë����S��Å(�siuoU��e�½_�hgUvke¤���ze2��e2}Ugsjm{�oUn�ime2È�e�{|��e2��gsjujue�nSjm{�oUn
oUn~���Úiue¤È(e�nSjm���/¿�^�g�iuÔsg6��Ï~g�nh���zg�nh�~tSy�¼�ÏZë����U��g~�b^Ng�imÔsg
�'Ï�g�nh���~g�nh�zt�y�¼�Ï�ë��U�����0�U[�thg�nh}��1Ï|�S�'t~nB]#Ï|�Sg�nh��xAtSy
^*Ïhë��U�~èU�W[±thg�n~}��<Ï��h�'t~n]#Ï��Zg�nh�/xAt�y ^4Ïhë����Së�ÅÛÏ��'y~img
¿P��y~i�g��ÇÏhè¤é�éUéUÅ�{|nUjmiuoz�zyZÈ(e2�6ÔUe��S½Do�im{�e2nUjme2�#�z{�vuÈ�iue�ju{|o�nhg�iu�
gUÈ�È(e¤vuv,È�o�nSjuimo���vk�zvkjue2l6v�jmthgsj<g�iue��hgUvke¤��o�n6�ze2��e2}Ugsjm{�oUn�o�p
gUÈ�È(e¤vuv±im{|}�tSjmv±��{�jut�f~yh�~��{�ÈÛ½DÔ�e2�4È�e�iuju{�ôZÈ�g�jue2v2Ï0�Nt~eAvk�zvkjue�l�v
e2l#fhthg�vu{�×2e2�K�ze2È�e�nSjui�g��|{�×¤gsjm{�oUnro�pNg�yzjmt~o�im{�j��rg�nh�Ko�f�e�i�gs½
jm{�oUnhv,�~yzj1jmt~e�{|i<g�f~f~imoUg�È�t�{|v<g*pÎo�imlWo�p¯�z{�vuÈ�iue�ju{|o�nhg�iu��gUÈÛ½
È�e2vmv<È(oUnSjuimo��_Ï�ç'e�nhÈ�e���juthe���È�g�n�n~e�{�juthe�iNe(Ìzf~ime2vmv1l�g�nZ�~gs½
jmo�im��fZoU��{�È({|e2v1��{|Ô�eNjmt~e\^�e��|��½Ñ�0gUð�g��zyh�|g4l6o��~e��G¿�^�e��|�hd�Ï ��Ï|�
�Gg�ð�g��~y~�|g��1Ï �hÏ¯è¤é$#��UÅÛ�Sn~oUiA{�v�{�j�f�oUvmvk{|�~�|e'jmo#�Ue�im{�pÎ�#jmthgsj
vuo�l6e�oUn~e/�zo�e2v3n~o�j3thgº�Ue/gÍÈ(e2ikjm{�ô�È�gsjme�Ï Þhy~ikjmt~e�iml6o�ime��
vuo�l6e�{�l6f�o�iujmg�nUj�f�o��|{�È({|e2v�vuyhÈ�t>g�v�vue�fhg�img�ju{|o�nÍo�pÇ�~yzj��
f�o��|{|È�{�e¤v�È�g�nhn~o�j��Ze]e�Ì�fhiue¤vuvue2�í��{�jmtÕoUn~���ÆÈ�e�iuju{�ôZÈ�g�jue¤v�Ï
�Nt~e2�Ön~e2e2�ìvkoUl6e�gU�~�z{�ju{|o�nhg���l6e2È�thg�n~{|vul jmoXl6g�{�nSj�g�{|n
jmt~e6f~iue2��{�oUyhvk�|�%}�i�g�nSjme2�%im{�}UtSjmvÇg�nh�rjuthe#th{|vkjuoUiu{|e2v*l�yZv�j
��e�y~f±�~gsjme2��{|n%iue¤g��±ju{|l6e���t~e2n%n~e�� È(e2ikjm{�ôZÈ2gsjme2v�g�iueÇ{�v�½
vuy~e2�aÏ�d4e��|e�}Sgsju{|o�n#{�v�g���vkoÇg�f~fh��{|e2�#{|n6�~e2È(e2nSjui�g��|{�×2e2��jmiuyZv�j
l�g�nZg�}�e2l6e�nSj3¿M^���g�×2eÚqXÏ�Þ~e2{�}Ue�n��hg�yhl%�ZÏ���ÐÑoSg�n~nh{|�z{�v&�hÏ
g�nh��êÇe2iuoUl��Sju{�v0��Ïzè2é�éUé~�º�a{zæ�Ï�g�nh�=]*imoUvuo�p�^*Ïsæ�Ï�ë����U�UÅÛÏ
^���g�×�e¾e(j/g���¿M^��|g�×�eXqXÏ�Þhe�{|}�e�n��hg�y~l'�ZÏ��*ÐÑoUg�n~n~{��z{�v(�hÏ
g�nh�3êÇe2iuoUl��Sju{�v���Ï0è2é�éUéUÅ<{|�~e�nSju{�ôhe2�§jmt~eÇjuimyhvkj�l�g�nhg�}�e(½
l6e�nSj�f~imo��~�|e�l g�v�gÇ�z{�v�jm{�nhÈ(j<g�nh��{|l#f�o�iujmg�nSj�È�o�l6f�o�n~e2nUj
o�p�vke¤È(y~im{�j��:{|nÆn~e(j���o�imÔÙvue�im��{|È�e2v3g�nh�Æ�0{4e�j§g��#¿P�a{Çæ�Ï
g�nh�]*iuoSvko�pY^*Ï<æ�ÏNë��U���UÅ�l�g��~e/g]��oU}�{�ÈÛ½D�hg�vue2�ÙÔ�n~os����½
e¤�z}�e�ime�fhiue¤vke2nUj�gsjm{�oUnrpÎoUi�g�y~jut~oUiu{|×2g�ju{|o�n]��{�jmtXjui�g�È(jmg��~��e
jmiuyhvkjk½Dl�g�nhg�}�e2l#e2nSjK{|nW��g�im}�e(½ÑvmÈ�g��|e���o�f�e�na���z{�vkjuim{��~y~jue2�

CRPIT Volume 48

322

vk�zvkjue�l�v2ÏÕd4e��|e�}Sgsju{|o�nì�Ng�v6yhvue2�:jmoÖg��~�~iue¤vuv#jmt~e%juimyhvkj
l6g�nhg�}Ue�l6e�nSj�f~imo��~�|e�l�{|nhÈ���yh�~{�n~}�pÎoUiul�y~��gsju{|n~}�vke¤È(y~im{�j��
fZoU��{�È({|e2v�g�nh��vke¤È(y~im{�j���È�iue¤�ze�nSju{�g���v2�¤�ze�jue2iul6{|n~{�nh}'��t~e�jut~e2i
fhg�iuju{�È(y~��g�i�vke�jmvAo�pGÈ�iue¤�ze�nSjm{|g��|vAvug�ju{�v�pÎ�#juthe4ime��|e��sg�nSj<f�o��|{�½
È({|e2v2�,g�nh�Ö�ze�pÎe�imiu{|n~}%jmiuyZv�j�jmo/jmt~{�i��Xfhg�ikjm{�e¤v�Ï��'jmt~e�i�iue�½
vke¤g�i�È�t~e�i�v'tZgº��e#{�n���e¤v�jm{�}Sgsjme2�/l�gUÈ�t~{�nhe�jmo�l6gUÈ�t~{|n~e#g�nh�
tSyhl6g�n�jmo�l�g�È�th{�n~e*�ze��|e�}Sgsjm{�oUnhv4¿ÁØ¾g�n~}�ç�Ï��Zx�g�o��ZÏSg�nh�
[�thg�nh}!��Ï�ë��U�~è��4���hgU�z{#qÖÏ���^�y~iuimos��v/qXÏ|���Gg�l6fhvuo�n
^4Ï|�,g�nh�¾ð1�|o�jmÔS{|n]#Ï1è2éUé��SÅÛÏ�Þ~oUi�e(Ì~g�l6f~�|e��GØ¾g�n~}�e(j�g��
¿ÎØ]g�n~}Íç�Ï��'x�g�o �hÏ<g�nh� [�thg�n~}"��ÏNë����hè¤Å�f~imo�f�oUvue2�ìg
vke¤È(y~ime��0vmÈ�g��|g��~�|e#g�n~o�n���l6{�j��/fZgº�Sl6e2nUjÇf~imo�jmo�È�o��,pÎoUi*ÐÑn~½
jue�imn~e�j*f~yhimÈ�thgUvke¤v�jmt~imo�y~}Utrg�nrg�}�e2nUj*��t~{�È�trf~imos��{|�ze¤�/g
t~{�}Ut~e�i�g�n~o�n���l6o�yhvNÈ�e�iuju{�ôZÈ�g�jue�g�nh�§{|l6f~iuos�Ue2��jut~e�vue2È�yz½
iu{�j��]o�p4È�o�nhvuy~l6e�i�v�Ï]�Nt~e§g�}�e2nSj#È(e2ikjm{�ôZe2�Xime(½De�nhÈ�iu��fzjme2�
�~gsj�g/gspÓjme�i��Ue�im{�pÎ��{|n~}�jut~eÚ�ºg���{��z{�j��ro�p�jmt~eÚÈ�o�nSjue2nUj�pÎiuoUl
È(o�nZvky~l6e2imv2Ï>�Nt~e/g�}Ue�nSj�{|v�g¾t�y~l�g�nÙjuoXl�gUÈ�t~{�nhe��~e���½
e�}Ug�ju{|o�n���t~{�È�t È�g�n�f~imos�S{��zeXn~e2� È(e2ikjm{�ôZÈ2gsjme2v2Ïñç'os�N½
e���e2i2�zl�g�nS�3{�l6f�o�iujmg�nUj�imo��|e(½D�hg�vue2�3È(oUnhÈ(e2fzjmv2�zpÎo�i�e�Ì~g�l#½
f~��eU�~imo��|e*th{�e2img�imÈ�t~{|e2v2�zÈ(oUnhv�jmimg�{�nSj�v���ime���ozÈ2gsju{|o�n3�Ae2iueÇn~o�j
l#e2nSju{|o�n~e¤�¯Ï

[�thg�n~}#e(j�g��1¿7[�thg�nh}#�<Ï��~�'t~nH]#Ï|�hg�nh�§xAt�yH^4Ïhë����hè��
[�thg�nh}Ç�<Ï��S��t~n.]#Ï|�Ug�nh��xAtSy ^*ÏUë����UëUÅafhiuoUfZoSvke¤��gÇimy~��e�½
�hg�vue2�KpÎi�g�l6e���o�imÔ%pÎo�i�iuoU��e�½_�hgUvke¤�r�ze2��e2}Ug�ju{|o�n]{�nZÈ(�|yh�z{|n~}
jut~e�À�Ã*Ä`_baUaca6l6o��~e��_Ï,�Nthe*À�Ã*Ä`_oacaca�l6oz�ze��±{�v��hg�vue2�
o�nXjmt~e§À'Â�Ã*Ä a]l6o��~e�����t~{|È�tÍ{|v#grvu{�l6f~�|e3�~e��|e�}Ug�ju{|o�n
l#oz�ze2��vky~fhfZoUikjm{�n~}§o�nh���§ËZg�j*imo��|e2v*g�nh�Kvk{|n~}U��e#v�jme�fK�~e���½
e�}Ug�ju{|o�naÏ�Þ~y~iujuthe�iml#oUiueU�hg�v'g��ze��|e�}Sgsjm{�oUn3l6oz�ze��_�h{�j*�~oSe¤v
n~o�j'vuy~f~f�o�iuj�}�imo�y~fz½D�hgUvke¤�Ú�ze2��e2}Ugsjm{�oUnaÏ
�Nt~{�vafhg�fZe2i¯pÎozÈ(yhvue2v0e(Ì~È(�|yhvu{��Ue��|��o�n�g�imo��|e(½D�hgUvke¤�'�ze2��e�½

}Ugsjm{�oUn�l#oz�ze2�a��t~{�È�t/vkyhf~fZoUikj�v�}�imo�yhfz½_�Zg�vue2�Ú�~e��|e�}Ug�ju{|o�n
g�nh�:{�jmv�{|l6f~�|e�l6e�nSjmg�ju{|o�nì��{�jut>Ü4ÄrÝIjue2È�thn~o��|o�}U��ÏÆØ¾e
e(Ì�jue2nh�ÍoUy~i#f~iue2��{�oUyhv���o�imÔXg�nh�Íf~imo�f�oUvueÚgK�~e��|e�}Ug�ju{|o�n
pÎimg�l#e2�AoUiuÔí{�nhÈ���yZ�z{�nh}í�ze��|e�}Sgsjm{�oUnI}Uimg�nSju{|n~}>g�nh� ime��Uo�½
È�gsjm{�oUn>l6o��~e���v��N}�imo�yhfz½_�Zg�vue2�:�ze��|e�}Sgsju{|o�n0ÏÕ�GoXf~iuos��{��ze
vky
�È�{�e2nUj§pÎy~nhÈ(ju{|o�nhv§��{�jut>jmt~eKpÎimg�l#e2�AoUiuÔ±�Njmt~{|v§fhg�fZe2i
g�nhg����zvue2vNt~os�IÈ�thg�n~}Ue2vAjuo�oUiu{|}�{|nhg���imo��|e�g�vmvk{|}�nhl#e2nSj�{|l#½
fhg�È(jNyhfZoUn§�ze2��e2}Ug�ju{|o�nÚime2vuy~��jmv2Ï��Nt~{|v�Ô�{|nh�Úo�pGimo��|e(½D�hg�vue2�
}�imo�y~fX�ze2��e2}Ugsjm{�oUnXg�nh�¾{�jmv�{|l6f~�|e�l6e�nSjmg�ju{|o�nX��{�jutXÜ*Ä/Ý
thgº��eÇn~o�jN��e�e2n%v�jmyh�z{|e2�§�Ze�pÎo�ime�Ï

� � â � ��� µ,¹~¶ � ã��h¸sâ�ä��>ã ����� �Z¹~·2åÁâ á
	 ¸º¹�� � 	�âh¸��
ÐÑnÚjmt~{|v'vke¤ÈÛju{|o�n3�AeÇf~imo�f�oUvue4g#imo��|e(½D�hg�vue2��}�imo�y~fÚ�~e��|e�}Ug�½
ju{|o�nÙpÎimg�l#e2�AoUiuÔXÈ2g��|��e¤�ÍÀ�Â�
�Ã��î��t~{�È�tìvky~fhfZoUikj�v�imo��|e
t~{�e2img�imÈ�t��Æg�nh�í}UiuoUy~fÕ�~e��|e�}Ug�ju{|o�nÕ�S�í{�nSjuimoz�zyhÈ�{�n~}:jmt~e
�ze��|e�}Sgsju{|o�n§ime���gsju{|o�n0Ï

���Pß � â � ��� µ�¹h¶ � ã:ã ����� ��¹z·2åPâ á �Öâaã ���
� vue2vmvk{|o�nî{|v:g�n {|l6fZoUikj�g�nSj>È(o�nZÈ(e�f~jÙ��{�jut~{|nòÀ�ÂNÉ�Ê
��t~{|È�tìl6e2g�nhv�g¾l�g�f~fh{�n~}X��e(j���e�e2n>gKyZvke2i�g�nh�:f�oUvmvk{�½
�~���Íl6g�n��¾imo��|e2v2ÏXÞ~oUi#e�Ì~g�l6f~�|e��<gKyhvue�i#l6gº�Xe¤v�j�g��~�|{�vkt
g#vue2vmvu{�oUn3���ÚgUÈÛju{|�sgsjm{�n~}�vuo�l6e�vkyh�hvke�j�o�p,g�vmvk{|}�n~e¤��imo��|e2v2Ï
� vke¤vuvu{|o�n�{|v4g��|��gº�zv�gUvuvuozÈ({�gsjue¤�Ú��{�jutKg�vk{|n~}��|e�yhvue�i'g�nh�
e2g�È�t§yhvue�iNl�gº��e2vkjmg��~�|{|vut3×2e�imo�oUiNl#oUiueÇvue2vmvk{|o�nhv2Ï��Nt~e�ime
l6gº����e:t~{�e2img�imÈ�th{�e¤vr��{�jut~{|nWimo��|e2v2Ï	��e2n~{�oUiKimo��|e2v¾g�ime
vkt~os��n¾gsjÇjuthe�jmo�f¾o�p1jmt~e6t~{|e�i�g�i�È�t~{�e¤v�Ï#��e�n~{|o�iÇimo��|e2v4{�n~½
t~e�im{�jNf�e�iml#{�vmvk{|o�nhv<pÎimo�l ï�y~n~{|o�i�imo��|e2v2Ï��0e(j��������ze2n~o�jme
�Ú{�v1vke2n~{|o�i�jmo�����{�jut�oU�S��{|o�yhv,e�Ì�jue�nZvk{|o�n6jmo������±Ï�¼�o��|e
t~{�e2img�imÈ�th{�e¤vNf~iuos��{��ze�g6fZos��e�iupÎy~�ag�nh��È(o�n��Ue�n~{|e�nSj�l6e2g�nhv
juo¾e�nzpÎoUimÈ�e�juthe§fhiu{|nhÈ({|f~�|e3o�p���e¤g�vkj#fhiu{|��{��|e�}Ue3vu{�nhÈ�e3oUn~�|�
iue�eUyh{�ime2�¾f�e�iml#{�vmvk{|o�nhv�juo/f�e�iupÎo�iml g§j�g�vuÔ¾g�iue�g�vmvu{�}Un~e2�
juo6juthe�iuoU��eUÏ
����jutho�y~}UtÖjuthe3È(oUnhÈ(e2fzj6o�p'g/yZvke2i�È�g�nÖ��e3e�ÌSjme�nh�~e2�

juo¾{�nhÈ���yZ�ze3{|nSjue2���|{�}Ue�nSj�g�yzjmo�n~oUl#oUyhv#g�}�e2nSjmv2��l6gUÈ�t~{|n~e2v2�
e���e2n]n~e(j���o�imÔzv��¯��e6��{|l6{�j�g§yhvue�iÇjmo/g§tSyhl6g�n]�Ze2{�n~}%{|n
o�y~i�l6oz�ze��apÎo�i�vu{�l6f~�|{|È�{�j��UÏ
Þ�{�}Uy~ime ë:vkthos��vÚjmt~eXimo��|eKt~{|e�i�g�i�È�t��>v�jmiuyhÈ(juy~ime]o�p

À�ÂNÉ�ÊW{|n �����"V±Ï¯�Nt~e#pÎo��|�|os��{�n~}���g��~�|e3è#e(Ìzf~ime2vmvue2v*g�n
e(Ì~g�l6f~�|eÇo�p,yhvke2ik½Dimo��|e*gUvuvu{�}Un~l6e�nSjN{�n(�����"V¯Ï
�Nt~e2iue�g�ime*j��Ao�vue(j�vNo�p,yhvke2imv�gUvuvuozÈ({�gsjme2����{�jut�imo��|eÇi2�
�4im{�}U{�nhg��±yhvke2imvNg�iue'jut~oSvkeÇyhvue�i�v���t~o#g�iueÇg�vmvu{�}Un~e2�6jmo

jut~e�imo��|eÇi'T

¼�oU��e¤æ'g�l#e �'vue�i�æ'g�l6e
d4Ð�¼ �0oUn��
ç���è xAt~im{|vkju{|n~e
ç��Çë q/{�ÔUe
xAoZè ¼�{|È�tZg�i��
¼�e�è �Uo�thn
xN� ��t~n

�Gg��~�|e�è����'vue�iu½D¼�o��|e*ime���gsjm{�oUnhvut~{�f0Ï

d'e2��e2}Ugsjme2�Úyhvke2imv�g�ime�jmt~oUvue*yhvke2imv���t~o6g�ime4�~e��|e�}Ug�jue¤�
jmo�jmt~e�imo��|e*i¤Ï
�Nt~e�vmg�l6e�yhvue�i'È2g�n%��e�g�n%oUiu{|}�{|nhg��0yhvke2i�o�p�oUn~e�iuoU��e

g�nh�Úg#�ze��|e�}Sgsjme2��yZvke2iAo�p�g�nho�juthe�i�iuoU��eUÏ,�'�|vuo#{�j�{�vAf�oUvmvu{�½
�~�|eÇpÎo�i4g6yhvke2iNjuo���e���o�jut/g�n�o�im{�}U{�nhg��¯yhvue�i'g�nh��g��ze��|e(½
}Sgsjue¤�#yhvke2i1o�p±jmt~e'vmg�l6e�imo��|e�Ï,Þ~o�i<e(Ì~g�l6f~�|e��U{�p�xAt~im{�v�jm{�n~e
�ze2��e2}Ug�jue2v�t~e�i#iuoU��e����� rjuor¼�{�È�thg�im�¯��jmt~e�n:¼�{|È�tZg�i��]{|v
��o�jmt#g�n�oUiu{|}�{|nhg���yhvue�i�¿Áe(Ìzf~�|{|È�{�jm���~Å,g�nh��gÇ�ze2��e2}Ug�jue2��yhvue�i
¿Á{�l6f~�|{|È�{�jm���~ÅGo�p~imo��|e*Ê"!# '��e2È2g�yhvue1jmt~eNiuoU��e$���� *{|v,vue�n~{|o�i
jmo�jut~e4iuoU��e#Ê"!% �Ï,�Nt~e4o�im{�}U{�nhg��~yhvue�i�g�vmvk{|}�n~l6e2nUj*¿'&GÉ��ÇÅ
{�v'g�l�g�nS�S½_juo�½_l�g�n���yZvke2i4g�vmvu{�}Un~l6e�nSj�iue2�|g�ju{|o�n���e(j���e�e�n
oUiu{|}�{|nhg���yZvke2imv�g�nh�]imo��|e2v2Ï§�Nthe3�ze2��e2}Ugsjme2�¾yhvue�i#g�vmvk{|}�nz½
l6e�nSj4¿(&GÉ4Ã�Å<{|vAg���vko�gÇl�g�n��S½_juo�½Dl�g�n���yhvue�iAg�vmvk{|}�n~l6e2nUj
ime���gsjm{�oUnÚ��e(j���e�e�n%�ze2��e2}Ug�jue2�3yhvue�i�vNg�nh�§imo��|e2v2Ï
ØKe6thgº�Ue�jmt~e#pÎo��|��os��{|n~}%È(oUl6fZoUn~e�nSjmv4pÎoUi�iuoU��e�½_�hgUvke¤�

�ze2��e2}Ug�ju{|o�nÚl6oz�ze2�P�
) q+*dq-,�g�nh�/.Íg�ime4vue(j�vAo�p0yhvue�i�v��Simo��|e2v2�Uf�e�iml6{|vmvk{|o�nZv��

g�nh�3vue2vmvu{�oUnhv���ime2vufZe¤ÈÛjm{��Ue��|��Ï
èUÏ0)�132546)879*
{�v*gÚl�g�n��S½Pjmo�½Dl6g�n��§oUiu{|}�{|nhg��0yhvue�i
jmo6iuoU��e�g�vmvu{�}Un~l6e�nSj�ime���gsjm{�oUnaÏ

ë~Ï0)�1;:<4
)�7=*Æ{|v1gÇl�g�nS�S½_juo�½_l�g�n����ze2��e2}Ug�jue2��yhvue�i
jmo6iuoU��e�g�vmvu{�}Un~l6e�nSj�ime���gsjm{�oUnaÏ

�hÏ0)�1?>?)�1�2�@�)�13:�A
�ZÏN�4vke2imv2�B*6C ëEDG{|v*g6pÎy~nZÈÛju{|o�nrl6g�f~f~{|n~}Úo�p�iuoU��e¤v�juo
vue(j�vNo�p,yhvue�i�v�Ï
)=F'k�rGFS¿)r�Å=><HJILK�¿MI
q"r�ÅONP)�1�Q���t~e2iue�)�1
{|v�yZvke2ik½
imo��|eÇg�vmvk{|}�n~l6e2nUj¤Ï

�~Ï0)=F'k�rGFS¿)r�ÅR>S)�F�k�rTF 26¿MrsÅU@�)�F�k'rGF :/¿MrsÅ
��the�ime
)=F'k�rGF 26¿)r�ÅV>WHXIYK Zor\[�� r�q¤¿MI
q"rT[ÓÅVN�)�132]Q
)=F'k�rGF :/¿)r�Å$>^HXIYK Zbr [� r�q¤¿MI
q"r [ÅBN�)�1;:_Q

)=F'k�rGFS¿)r�Å4{�nZÈ(�|yh�ze2vÇg����,yhvue�i�v'��tho3g�ime�l6e2l���e�i�v'o�p
imo��|e r�Ï��Nt~e�yhvue�i�v�l�gº�3�Ze�o�im{�}U{�nhg��ag�nh�%�~e��|e�}Ug�jue¤�
yZvke2imv2Ï �Nt~eXo�im{|}�{|nhg��Çyhvue�i�v�)�F�k�rGF 26¿MrsÅrg�ime]n~o�j
oUn~�|�Çjut~e�l6e�l���e�i,o�pZimo��|e r��~y~j�g��|vuo4jut~e�l6e�l���e�i,o�p
g§vue�n~{|o�i*iuoU��e#o�pEr�Ï��Nt~e6l6e�l��Ze2imv*{|n`)�F�k�rGF :/¿)r�Å
g�iueÇvu{�l6{|�|g�iNjuo6jutZgsj�{�n9)�F�k�rGF 26¿)r�ÅÛÏ
Ø>{�jmtÚjmt~e2vue�È(o�l6f�o�n~e2nSjmv2�S��eÇg�nhg����zvue'}�imo�yhf3�ze2��e2}Ugs½

jm{�oUn3{|n§jut~e�ime�l�g�{|n~{|n~}6fhg�iuj�o�pGjut~{�v�vue2ÈÛjm{�oUnaÏ

��� � � â ����� µ,¹~¶ � ã��Z¸ºâ�äU�ba ����� ��¹z·2åPâ á
�Nt~e�vmÈ(oUfZe'o�p±o�y~i1l6oz�ze2�h{�v�juo�g��~�zime2vmv,yhvue�iu½Pjmo�½Dyhvue�i1�ze2��½
e2}Ugsjm{�oUn�vky~fhfZoUikjm{�n~}�iuoU��e�th{�e2img�imÈ�t~{|e2v<g�nh��}UiuoUy~f��ze2��e2}Ugs½
jm{�oUnhv�Ï�Ø¾e*È�o�nhvu{|�~e�i<oUn~�|��jmt~e4ime�}Uy~��g�i1imo��|e'�ze2��e2}Ugsjm{�oUn�{�n
jmt~{|v<fhg�f�e�i¤��e2��e2n6jut~oUy~}�t�{�j<{�v1f�oUvmvk{|�~�|e'g�nh���~e2vu{�i�g��~�|eNjuo
�ze2��e2}Ug�jueÇg�n%g��zl6{|n~{�v�jmimg�ju{|��e*iuoU��eUÏ
�ò�ze2��e2}Ug�ju{|o�nÖime���gsjm{�oUní¿ÁÃ�c<ÝGÀ'Å�e(Ìz{|vkjmv�{|nÖjuthe§imo��|e(½

�hgUvke¤�ò�~e��|e�}Ug�ju{|o�nòl#oz�ze2�/��t~{�È�tc{�nhÈ���yZ�ze2v:jmt~iue2e�e��|e(½
l6e�nSj�v��¯oUiu{|}�{|nhg��syZvke2iGg�vmvu{�}Un~l6e�nSjmvB&�É��*�2�ze2��e2}Ugsjme2�*yhvue�i
gUvuvu{�}Un~l6e�nSj`&GÉ4Ã���g�nh�ìÈ(oUnhvkjui�g�{|nUj�v�ÏÆ�Nthe/l6o�ju{|�sgsjm{�oUn
��e�t~{|nh�íjut~{�v§iue2�|g�ju{|o�nÆ{�v3juoìg��~�~iue¤vuvÚjut~e]ime���gsjm{�oUnhvkth{�fhv
g�l#oUn~}��z{,X�e2iue2nSj�È(oUl6fZoUn~e�nSjmv<{�n��Uo��|��e2�#{|nÚg��ze2��e2}Ug�ju{|o�naÏ
ÐÑn gÍyZvke2ik½_juo�½_yhvue�i��ze2��e2}Ugsjm{�oUna��jmt~e�imeXg�imerôZ��e]È(o�l6f�o�½
n~e2nSjmv2�ag��ze��|e�}Sgsjm{�n~}�yZvke2i2�ºg��ze2��e2}Ugsjm{�nh}�iuoU��eU�¤g��~e��|e�}Ug�jue¤�
yhvue�i¤�6gÕ�ze2��e2}Ug�jue2� iuoU��eU�#g�nh�WgUvuvuozÈ({�gsjue¤� È(oUnhvkjui�g�{|nUj�v�Ï

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

323

Analysis Assessment
Project (AP) Project (AsP)

Report 1

Head Officer (HO1)

Collaborator 1
(Co1) (Re1)

Report 2
(Re2)

Collaborator 2
(Co2)

Head Officer (HO2)

Director (DIR)

Community
Service (CS)

Project 1 Project 2

Þ�{�}Uy~iue�ë~�1¼�o��|eÇt~{�e2img�imÈ�t��6{|n������"V±Ï

Þ~o�i<e(Ì~g�l6f~�|e�������� !�����	�Ã ��À�
�	
�ÑÊ�����������������	�Ã ��À�
�	E������� ���!

l#e¤g�nhvN�Go�n���g�È(ju{|n~}#{�n§iuoU��eÇÃ���ÀÕ�ze2��e2}Ug�jue2v�imo��|e4Ã���ÀÆjmo
xAt~iu{�vkju{|n~e%o�nìÞ~im{|�hgº��Ï:ØKe/gUvuvuy~l6e3e¤g�È�tì�ze��|e�}Sgsjm{�oUnÍ{�v
g�vmvkozÈ({�gsjme2�Í��{�jmt:×2e�imo]o�i6l6o�ime�È�o�nhvkjui�g�{|nSjmv2Ï:�Nthe��~e���½
e�}Ug�ju{|o�n%ime���gsjm{�oUnrvkyhf~fZoUikj�v�fhg�ikjm{|g����~e��|e�}Ug�ju{|o�n%{|nrg�imo��|e
t~{�e2img�imÈ�th{�e¤v��¯g�yhvue�iG��t~o�{�v0g�yzjut~oUiu{|×�e¤�4juo4�~e��|e�}Ug�jue1g�imo��|e
r3È�g�nKg��|vuo§�~e��|e�}Ug�jue6g§iuoU��e=r [juthg�jÇ{�v�ï�y~n~{|o�iÇjmoBr�Ï�Þ~oUi
e(Ì~g�l6f~�|e��"�#��� !���� 	AÃ ��À�
�	$��É%����	NÀ&�T '
�	B������� ���!
�l6e2g�nhv
�0oUnS�¾g�È(ju{|n~}�{�nXimo��|e�Ã ��À �ze2��e2}Ug�jue2v�g�ï�y~nh{�oUi�iuoU��e�À(�T
juoÖ��thn>o�n>Þ~im{|�hgº��Ïí���ze2��e2}Ug�ju{|o�n:iue2�|g�ju{|o�n:{|v�oUn~e(½_juo�½
l6g�n���iue2�|g�ju{|o�nhvut~{|fÚo�n3yhvue�i�g�vmvk{|}�nhl#e2nSjmv2ÏGÐDj�È(oUnhvu{|vkjmvAo�p
o�im{�}U{�nhg��AyZvke2i#�ze2��e2}Ug�ju{|o�ní¿ �NÀ ��Ã�Å#g�nZ�Í�ze2��e2}Ugsjme2�Íyhvke2i
�ze��|e�}Sgsju{|o�n¾¿ÁÃ�c<ÝGÃ�ÅÛÏZÞG{|}�yhiue ��{��|�|yhv�jmimg�jue¤v�È�o�l6f�o�n~e2nUj�v
g�nh�3juthe�{|i�iue2�|g�ju{|o�nhvN{|n%g�imo��|e(½D�hgUvke¤���ze��|e�}Sgsjm{�oUn3l6oz�ze��_Ï
Þ~imo�lòjuthe�g���os��e��z{�vuÈ�yhvmvk{|o�nhv2��juthe�pÎo��|��os��{|n~}�È�o�l6fZo�½

n~e�nSjmv'g�ime'pÎoUiul�g��|{|×�e2�a�
è�Ï�:*)$+$*64?)�1W79)�1^7 fht�i�F�{|v�oUn~e(½_juo�½_l�g�nS���~e���½
e�}Sgsju{|o�n>ime���gsjm{�oUnaÏ � �ze2��e2}Ug�ju{|o�n>ime���gsju{|o�nÆÈ2g�n>��e
iue2f~ime2vue�nSjue¤�Í���Õ¿u¿MI
q"r�Å�q¤¿MI [q"r [Å�q�fht�i�FºÅ�N6:*)"+R*#�
��t~{�È�t:l6e¤g�nhv#jmt~e/�ze��|e�}Sgsjm{�n~}¾yhvue�i I>��{�jutìimo��|eBr
�ze��|e�}Sgsjme2�/imo��|edr [juo§yhvke2i�I [��t~e2n/jmt~e�È(o�nZv�jmimg�{�nSj
fht�i�F�{�v�vmgsju{�vkôhe2�¯Ï

ëzÏ02�*-,�: 4P)�132�7�)�13:S7Yfht�i�FN{�v�g�n�o�im{�}U{�nhg���yhvke2i
�ze��|e�}Sgsjm{�oUn3ime���gsjm{�oUnaÏ

�~Ï�:*)$+$: 4)�1;: 7)�13: 7 fht�i�F3{|v�g/�ze2��e2}Ugsjme2�
yhvue�i��ze2��e2}Ugsjm{�oUn3ime���gsjm{�oUnaÏ

�hÏ�:*)$+$*S>b2�*-,E: @ :*)$+R:
�Nt~e��|gUv�j*e'eSyhgsjm{�oUn/vkthos��v�jutZgsj*�~e��|e�}Ug�ju{|o�n%ime���gsjm{�oUnhv

È(o�nZvk{�v�j�o�p0oUiu{|}�{|nhg��Zg�nZ���ze��|e�}Sgsjme2��yhvue�iN�ze2��e2}Ugsjm{�oUn�iue2�|g�½
ju{|o�nhv2Ï
æ�os� ��eÚg�nhg��|�zvke�}UiuoUy~fÖ�ze2��e2}Ugsjm{�oUnaÏ%ÐÑnXjmt~{|v#fhg�fZe2i

�Ae�oUn~�|���~{|vmÈ(yhvmv�yZvke2ik½D}�imo�y~f��ze2��e2}Ugsjm{�oUnhv���t~{�È�trÈ�o�nhvu{|vkj
o�p,o�im{�}U{�nhg��±yhvke2ik½D}�imo�yhfÚg�nh�§�ze2��e2}Ugsjme2�3yhvue�iu½_}UiuoUy~fÚ�ze2��e�½
}Ugsjm{�oUnhv2ÏÇ�Nthe�n~e2��iue2�|g�ju{|o�n/o�p<}�imo�yhfr�ze��|e�}Sgsjm{�oUn/{|v*�ze�½
ôhn~e2�Õg�v§�ze��|e�}Sgsjm{�oUn>}�imo�y~f>ime���gsjm{�oUn ¿ÁÃ�c<ÝR
�À4Å���t~{�È�t
{�nhÈ���yZ�ze2v2�3oUiu{|}�{|nhg��<yhvue�i�g�vmvu{�}Un~l6e�nSjmv�&GÉ��*���ze2��e2}Ugsjme2�
yhvke2i'g�vmvu{�}Un~l6e�nSjmv &�É'Ã����~e��|e�}Ug�jue¤�3}UiuoUy~f�g�vmvk{|}�n~l6e2nUj�v

�É'Ã���g�nh�/.�x |�021�v<{43 |51�0ÛÏíÐÑnÆg]yZvke2ik½D}�imo�y~f:�ze��|e�}Sgsjm{�oUna�
jut~e2iueNg�ime<ôZ��eNÈ(o�l6f�o�n~e2nSjmv2�0g4�~e��|e�}Ug�ju{|n~}'yZvke2iN¿Áo�i,g4�~e���½
e�}Ug�jue¤�/yhvue�iÛÅÛ�ag��ze2��e2}Ugsjm{�nh}Úimo��|e��ag§�ze��|e�}Sgsjue¤�/}UiuoUy~fa�ag
�ze��|e�}Sgsjue¤�6iuoU��eU�Ug�nh��g�vmvuo�È�{|g�jue¤�#È�o�nhvkjui�g�{|nSjmv2ÏGÞho�i<e�Ì~g�l#½
f~��eU�6����� !�����	±Ã ��À�
�	7� �8�'!'9'��:��0 ;	�Ã���À<
�	Y >= aca2?A@*B�C!= aca2?A@
Ä�!����D���D
§l6e2g�nZvÚ�Go�n��:gUÈÛjm{�n~}X{|nÆimo��|e/Ã ��À �ze��|e�}Sgsjue¤v
iuoU��e§Ã ��Àîjuo]g��|�NfZe2o�f~�|e3{|n���oU���Ue2�]{|nÙð1imo�ï�e¤ÈÛj§è§�zyhiu{|n~}
è�� ����fhl;Rz�~� ����f~l�o�n�q%oUnh�~gº��Ï,�>}UiuoUy~f#�~e��|e�}Ug�ju{|o�n#iue2�|g�½
ju{|o�n�{�v<oUn~e(½_juo�½_l�g�nS��iue2�|g�ju{|o�nhvut~{|f�o�n�yZvke2iAg�vmvu{�}Un~l6e�nSjmv2Ï

ÐDj<È�o�nhvu{|vkjmv,o�pZoUiu{|}�{|nhg��zyZvke2i�}�imo�y~f#�ze��|e�}Sgsju{|o�n�¿ �NÀ �'
�Ã�Å
g�nh�%�ze��|e�}Sgsjme2��yhvue�i4}�imo�y~f/�ze2��e2}Ug�ju{|o�nÖ¿ÁÃ�c<Ý$
�Ã�Å(Ï±Þ�{|}�½
y~ime �K{|�|��yhvkjui�gsjme2v6È(oUl6fZoUn~e�nSjmv6g�nh�Xjmt~e�{|i6iue2�|g�ju{|o�nhv�{�n
imo��|e(½D�hg�vue2���ze2��e2}Ug�ju{|o�n/l6oz�ze��_Ï�ç�e2nhÈ(e#��e�thgº�Ue�juthe�pÎoU��½
�|os��{�nh}�e2��e2l#e2nSjmv�g�nh��pÎyhnhÈÛjm{�oUnhv�{|n§}UiuoUy~f3�~e��|e�}Ug�ju{|o�na�
èUÏ<E {�vÚg]vke�jÚo�pÇyhvue�i�v�ÏFE�1�{|vÚgXvke�jÚo�pÇ}�imo�y~f~½_imo��|e
gUvuvu{|}�n~l6e�nSj�v�Ï

ë~ÏB:G)$+6E�* 4)�1<7HE�1 7 fht�i�F¾{�vÚoUn~e(½_juo�½_l�g�n��
�~e��|e�}Ug�ju{|o�n�ime���gsjm{�oUnaÏ��Õ�ze2��e2}Ug�ju{|o�n�ime���gsju{|o�n3È�g�nÚ�Ze
ime�fhiue¤vke2nUjme2�Õ��� ¿k¿ I6q<r�Å�q2¿�E�q"r�Å�q�fht�i�FºÅSN :*)$+R*#�
��th{|È�t:l6e2g�nZv#jut~e/�ze2��e2}Ug�ju{|n~}KyZvke2i I>��{�jmt:imo��|eHr
�~e��|e�}Ug�jue¤�4imo��|e3r�juo�}UiuoUy~f(E:{�p�jut~e�È(o�nZv�jmimg�{�nSj�fht�i�F
{�v�vmgsju{�vkôhe2�¯Ï

�hÏ�2�*-, E�:<4P)�1�2 7IE�1;:<7Bfht�i�FÇ{�v�g#iue2�|g�ju{|o�n�o�p
g�n3oUiu{|}�{|nhg���yZvke2i�g�nh�§g6}�imo�y~f3��{�jmt%È(o�nZv�jmimg�{�nSjmv2Ï

�ZÏB:G)$+6E�:<4
)�1;:87JE�13:67 fht�i�F'{|v�g�ime���gsju{|o�n6o�p
g6�ze2��e2}Ug�jue2�3yhvue�i�g�nh�3g#}UiuoUy~f3��{�jut%È�o�nhvkjui�g�{|nSjmv2Ï

�~ÏB:G)$+6E�* > 2�*-,�E�: @ :*)"+6E�:�A
^�gUvke¤�:o�n>jmt~e/ime2vuy~��j�v�o�p�jut~e¾v�jmiuyhÈ(juy~ime/��{�jutÆimo��|e(½

�hgUvke¤�/}UiuoUy~fK�ze2��e2}Ug�ju{|o�na�¯��e#�~{|vmÈ(yhvmvÇ}�imo�yhfr�ze��|e�}Sgsjm{�oUn
g�yzjut~oUiu{|×2g�ju{|o�nhv�{|nÚjmt~e�n~e�ÌSj'vue2È(ju{|o�naÏ

K a ��� � ��¹z·¤åÁâ á ´3ä0·�LGâZ¸så�M�¹~·2åÁâ á
Ø¾e �ze2��e2��oUf �ze��|e�}Sgsju{|n~}îg�nh��ime��Uo�È2gsjm{�oUn l6oz�ze2�|vÕ{�n
jmt~{|v�vke¤ÈÛjm{�oUnaÏ%�Nt~e�n~o�ju{|o�nXo�p�gONwv<zKv<zQP'R!3S023T11zO.�x |�U43T1V3Mx�|Z�
fhgli jUk�m�kKnoglp$k�g�nZ��fhgli r�k�slt uWk'g�imeNÔ�e2��fhg�ikj�v,{�n�}UiuoUy~f
�ze2��e2}Ug�ju{|o�nÚfhiuozÈ(e¤vuv2Ï

KU�Áß ´ÚäG·�L�âh¸så�MU¹z·2åPâ á �Íâaã ��� ¶
�Nt~eì�ze2��e2}Ugsjm{�oUn g�yzjut~oUiu{|×2g�ju{|o�n }�oUg���{|l6fZoSvke¤v]iue¤v�jmiu{�ÈÛ½
jm{�oUnhv�oUn¾��th{|È�tÖimo��|e�È�g�n]�Ze§�ze��|e�}Sgsjue¤�¾juo/��tho�l�Ï�ØKe
fhg�ikjm{|g����|�ÍgU�zo�fzj�jmt~e/n~o�ju{|o�nìo�pÇf~ime�ime'eSy~{�vk{�jue/È�o�nh�~{�jm{�oUn
pÎimo�l ¿ÁØ¾g�n~}�ç�Ï|��x�g�o �ZÏ~g�nh� [�thg�n~}&��ÏZë������SÅ,jmo�{�nSjuimo�½
�zyZÈ(e1�ze2��e2}Ugsjm{�oUn�g�yzjmt~o�im{�×¤gsjm{�oUn4{|nÇjut~eA�ze��|e�}Sgsju{|o�n4pÎi�g�l6e(½
��o�imÔ±Ï
�WNJv<zKv<zQP�R!3S0Q3T11zX.�x |�U;3T1�3Mx |W{�vÍg�n e�Ìzf~iue¤vuvu{|o�n
yhvu{�n~}

^�o�o��|e2g�nXo�f�e�i�gsjuoUimvJY g�nh�HZ�oUnXjue2iul�v#o�p'jut~e3pÎo�iml r
g�nh�\[r���t~e�ime%r�{|v�g�imo��|e*g�nh�OYÖl6e2g�nZv^]ug�nZ��_~��ZXl6e¤g�nhv
]uo�iQ_~ÏG� fhiue2iue�eUyh{|vu{�jme*È�o�nh�~{�jm{�oUn3{�vNe��sg��|yhg�jue2�ÚpÎo�i�g#yhvue�i
I��S�*{|nUjme�imf~ime(ju{|n~}5r�jmo'��e1juimy~eA{�p0¿ Zbr [� rsÅ0q2¿ I6q<r [ÅVN�)�1
g�nh�`[r�juo6��eÇjuimy~e�{�pN¿TaJr [� r�Å�q2¿ I6q<r [Å-bN�)�1��~��t~e2iue)�1
{�v�g6vke�j�o�pGyZvke2ik½DiuoU��eÇg�vmvu{�}Un~l6e�nSjmv2Ï c

CRPIT Volume 48

324

UAO

UAD

ConstraintsORID

DELD

Þ�{�}Uy~iue��h�1¼�o��|e(½D�hg�vue2�3�ze��|e�}Sgsjm{�oUn3l6oz�ze��_Ï

UAO

UAD

Constraints

DELD

GAD

ORIGD

DELGD

ORID

Þ�{|}�y~imeÇ�h�1¼�oU��e�½_�hgUvke¤��}UiuoUy~f§�~e��|e�}Ug�ju{|o�n3l#oz�ze2�PÏ

Ø¾e4vmgº�#g�}UiuoUy~f�vmgsju{�vkôhe2v1g�f~ime�ime'eSy~{�vk{�jue�È�o�nh�z{�ju{|o�nÚ{�p
g��|�1yhvue�i�vÇ{�n]jmt~e�}�imo�y~f]vmgsju{�vkpÎ�/juthe�f~ime�ime'eSy~{�vk{�jue�È(oUnh�z{�½
ju{|o�naÏ
Þ~oUi�g#}�{|��e�n§vke�j�o�pGimo��|e2vB*��|e(j%f�*W�ze�n~o�jue�g��|�¯f�oUvmvk{�½

�~��e#f~ime�ime'eSy~{�vk{�jue#È(oUnh�z{�ju{|o�nhv'juthg�jÇÈ2g�nK�Ze�pÎo�iml6e2�/yZvk{|n~}
jut~e3iuoU��e¤v�{|n�*#�GpÎoUi�e�Ìzg�l6f~��eU� f�* > r���YZr�� Z [r��UÏ/ÐÑn
vkoUl#e#È�gUvke¤v��±��e�l�gº��n~e�e¤�%juo��ze�ôhn~e#��t~e(jmt~e�i*o�i*n~o�j�g
yhvke2i�È2g�n��ze2��e2}Ug�jue'g�iuoU��e�jmo�g�}UiuoUy~f�g�nZ�#pÎo�i�t~os�ìl6g�n��
ju{|l#e¤v��±oUi�y~f%jmo�jut~e�l�gsÌz{�l�y~lc�ze��|e�}Sgsju{|o�n/�~e�fzjmtaÏ'æ�o�j
e���e2iu��yZvke2i,È2g�n#�ze��|e�}SgsjueNg4iuoU��eAjuoÇg'yZvke2i2Ï,�Nt~eApÎo��|��os��{|n~}
iue2�|g�ju{|o�n§f~iuos��{��ze2v���thg�j�iuoU��e¤v�g#yhvke2i�È�g�n��~e��|e�}Ug�jueÇ��{�jut
f~iue2iue�eSy~{|vu{�jue�È(oUnh�z{�ju{|o�nhv2Ï
a ���,á åÎ·2åPâ á ß fhgli jUk�m�kKnoglp$kÚ{�v6grime���gsjm{�oUnÍo�p3* 7

f�* 7�� ��the�imeO*dq�f�*dq	� g�ime6vke�jmv*o�p�iuoU��e¤v��±f~ime�ime'eSy~{�½
vk{�jue§È(o�nZ�z{�jm{�oUnhv2��g�nh�Xl�gsÌz{|l�y~lñ�ze��|e�}Sgsjm{�oUn]�~e�fzjmta��iue�½
vkf�e2È(ju{|��e��|��Ï c
�Nt~e*l6e2g�nh{�n~}#o�p<¿Mr�q�
�r�q<i0ÅBN fhgUi jlk�mMk'nogUp$k4{�v<jmthgsj�g

yhvke2i���t~o#{|v�g#l6e�l��Ze2i�o�pGimo��|eYr3¿ÎoUi�g�imo��|eÇvke2n~{�oUi�juo�r�Å
È�g�n6�ze2��e2}UgsjmeNiuoU��e r�¿Áo�i1g*imo��|eGï�yhn~{�oUi,juo r�ÅGjuo�g�n���}�imo�y~f
��t~oUvue�È(y~imiue2nSj�e2nUjm{�jm��e2l6e�nSjmv�{|n6iuoU��e¤v,vug�ju{�v�pÎ��jmt~e�f~ime�ime'eU½
y~{|vu{�jueÇÈ(o�nZ�z{�jm{�oUnBf�* ��{�jut~oUyzj�e�Ì~È(e�e¤�z{|n~}�jmt~e'l�gsÌz{|l�y~l
�ze��|e�}Sgsju{|o�nX�ze2fzjut i�Ï��Go/{��ze�nSjm{�pÎ�]g%imo��|e�img�n~}�e���{�jut~{|n
jut~e�imo��|e�th{�e2img�imÈ�t�����jmt~e6pÎo��|��os��{|n~}�È(�|oUvue2�Kg�nh�Ko�f�e�n¾{�n~½
jue�im�sg��¯n~o�jmg�ju{|o�n�{|vNyZvke¤�¯Ï

� ��q+��
 >WH�r N�* K ��� r�Y r]��� Q
¿M��q+��
 >WH�r N_* K ��� r<YBrO��� Q
� �6q �~Å">WH�r N_* K ��� r<YBrO��� Q
¿M��q+�~ÅR>SH�r]N_* K ��� r<YBrO��� Q

�'vue�iu½_}UiuoUy~f �ze2��e2}Ugsjm{�oUn {�v g�y~jut~oUiu{|×�e¤� ���
fhgli jUk�m�kKnoglp$kSÏ ��g��~�|ebëòvut~os��v>jmt~e fhgli jlk�mMk'nbglp$k
ime���gsjm{�oUnhv ��{�jmt juthe f~ime�ime'eSy~{�vk{�jue È�o�nh�z{�ju{|o�nZv {|nñjut~e
�����"V e(Ì~g�l#fh��eUÏ �Nt~e�l6e¤g�n~{|n~}óo�p fhgli jlk�mMk'nbglp$k
¿ :*,�*dq � f�.3q	�92#è�
7q�èºÅ�{�v�jmthgsj�gÖl6e�l��Ze2i3o�p�imo��|erÃ ��À
È2g�nì�ze��|e�}Sgsjue�imo��|e%Ã ��À�g�nh�ìg��|��iuoU��e¤v6{�n!�����"V ¿Ávu{|nhÈ(e
g����¯imo��|e2vNg�ime�ï�y~n~{|o�iNjmo6Ã���À'Å�jmo�g�}UiuoUy~fÚ��thoUvueÇÈ�y~imiue2nUj
l6e�l��Ze2imvut~{|fÖvug�ju{�v�ôZe2v�jmt~eÚfhiue2iue�eUyh{|vu{�jmeÚÈ(oUnh�z{�ju{|o�n��PÊ V�	
�&�� ��3��{�jmt�o�n~e�½Dvkjue2f �~e��|e�}Ug�ju{|o�naÏó�Nt~eÖvue2È(oUnh�Õjuy~fh��e
g�yzjut~oUiu{|×�e¤v6jutZgsj3gXyZvke2iÚo�p�imo��|e����� ÙÈ�g�nÆgUvuvu{|}�nìiuoU��e
�&�� ��zg�nh�¾Ê"!% ;	zÀ(�T 4	hÉ��Õg�nh�KÊ V/juo6g�}�imo�y~f3{�n§��t~{�È�t
yhvue�i�v�g�iue�l6e2l���e�i�v�o�p1e2{�jmt~e�i*imo��|e�É ����o�i6Ê"!% ��ho�i*À&�T
¿Pvk{|nhÈ(eXÉ���	#Ê"!% >g�nh�ÕÀ(�T Æg�iue]{|nÕjmt~eXi�g�n~}UeKo�p���É ��	
�&�� 2
#
¤Ï

¼�o��|e2æ4g�l6e�¿Á¼'Å ð1ime�ime'e�Ï xAo�nh�z{�ju{|o�nK¿_x�¼'Å æ
d'Ð�¼ � xN�±�~ç���è�
 è
ç���è � �4ð,�hç���èºÅ ë
�4ð xN� è
xN� � ë

�Gg��~��e�ë~�<x�g�n��ze��|e�}SgsjueÇime���gsjm{�oUnhvN{�n�ðV�4Ðk�¯Ï
�Nt~e�ime�g�imeÇiue2�|g�jue2��vuy~�zjm��e�ju{|e2v�jmthgsj*g�im{|vueÇ{�n/À�Â�
�Ã��

È�o�nhÈ�e�imn~{�nh}�juthe�{�nSjue2imgUÈÛjm{�oUn���e(j���e�e�n#�ze��|e�}Sgsjm{�n~}�g�nh��ime(½
�Uo�È2gsjm{�oUnÕo�p6yZvke2ik½D}�imo�y~fI�ze��|e�}Sgsjm{�oUnIl6e2l���e�i�vkt~{|f g�nZ�
jmt~e�iuoU��e*t~{|e�i�g�i�È�t���Ï
a ���,á åÁ·2åÁâ á � � yhvue�iu½_}UiuoUy~f%�ze��|e�}Sgsjm{�oUn§ime��UozÈ�gsjm{�oUn

{�v�g�ime���gsju{|o�n fhgli r�k�slt uok�4 * 7¾ë��A����t~e2iue *ò{|v�jut~e

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

325

vke�j�o�pGimo��|e2v2Ï c
�Nt~eÇl6e2g�n~{�nh}#o�p
fhgli r�k'sbt uok�¿M�6q��6ÅA{|v�jmthgsj�g�l#e2l#½

�Ze2i'o�p�imo��|e��Í¿ÎoUi'g�l6e�l��Ze2i'o�p,g�imo��|eÇjutZgsj'{�v'vue�n~{|o�iNjmo
��Å�È�g�n�iue2��oUÔ�e��ze2��e2}Ugsjm{�oUn�iue2�|g�ju{|o�nhvut~{|f�o�p0g�}�imo�y~f�pÎiuoUl
g�n��Úimo��|e���N��Ú�h��t~e2iue�� �~e(ôhn~e¤vNjuthe.v<{�|b}Uz�x��?v<z���x�.�{	�
1�3Mx |hÏ<��g��~�|e��#}�{|��e¤v�jut~e�x�g�nz½_ime��Uo�ÔUe'ime���gsju{|o�n§{|n�Þ�{|}�y~ime
ëzÏÇ�Nt~e�ôhi�vkj'juyhf~��e6vut~os��v�jmthgsjÇg�l6e�l��Ze2i4o�p1iuoU��eO����
È�g�nriue2��o�ÔUe�gÚ�ze2��e2}Ug�ju{|o�n%ime���gsju{|o�nZvkt~{|f/o�p<g�}�imo�y~f/pÎiuoUl
g�n���imo��|e*{|n��ÁÊ"!# 4	0Ê V��uÏ

¼�o��|e2æ'g�l6e ¼�oU��e�¼�g�n~}�e
ç���è � xAohè��ZxN�

¼�e�è � ¼�e�èU�~�'ð

��g��h��e��h�,�1Ì~g�l6f~�|e*o�p�È2g�n�iue2��oUÔ�e'ime���gsjm{�oUnaÏ

�Nt~e2iue'g�iueNj���o�Ô�{|nh�~v1o�p¯iue2��ozÈ�g�ju{|o�nhv�¿ÁØ¾g�n~}�ç�Ï|�~x�g�o
�hÏ�g�nh� [�thg�n~}���Ï,ë��U���UÅ(Ï3�Nt~e6ôZimvkj�o�nhe�{|v���e2g�Ôrime��Uo�½
È�gsjm{�oUn3��th{��|eÇjut~e�vue2È�o�nh�3o�nhe*{�v�vkjuimo�n~}6ime���ozÈ2gsju{|o�n0ÏGØ¾e
e(Ì�jue2nh��jmt~e��ze(ôZn~{�jm{�oUn6o�phe�Ì�fh��{�È({�j1g�nh��{�l6f~�|{�È({�j1l#e2l���e�i�v
o�p�g�imo��|e*pÎiuoUlîg#yhvue�iNjuo�g#}UiuoUy~faÏ
a ���,á åÎ·2åPâ á
� �I}�imo�y~fGEW{|vNg�nÚe(Ìzf~�|{�È({�jNl6e2l���e�iNo�p

g'imo��|eR�6{�p�¿MI
q �±ÅVN�)�1��spÎoUi,g���� I�N E���g�nh��jmthgsj E>{�v,g�n
{�l6f~�|{|È�{�j�l6e�l��Ze2iNo�p0imo��|e3�§{�p0pÎo�i�vuo�l6e;� [����q¤¿MI
q � [ÅBN
)�1��zpÎoUi�g��|� I�N E6Ï c
Ø¾e2g�Ô ime��Uo�È2gsjm{�oUn�o�n~�|� iue2��o�ÔUe2v%e�Ìzf~��{�È({�j]l#e2l���e�iu½

vkt~{|fKpÎiuoUl gÚyZvke2i�g�nh�K�zo�e2vÇn~o�jÇime��Uo�ÔUe�{�l6f~�|{�È({�j�l#e2l#½
�Ze2imvut~{|faÏ �4nìjut~eKo�jmt~e�i�tZg�nh�¯�4v�jmiuoUn~}Xiue2��ozÈ�g�ju{|o�n:iue�½
eUyh{�ime2v4iue2��ozÈ�g�ju{|o�n�o�pA�Zo�jut/e�Ì�fh��{�È({�jÇg�nh�%{|l6f~��{�È({�jÇl#e2l#½
�Ze2imvut~{|faÏr�Sjuimo�nh}/iue2��ozÈ�g�ju{|o�n¾o�p%E [F�l6e2l���e�i�vkt~{|fX{|n �
iue�eUyh{�ime2v�juthg�jOEñ��eKime�l6os��e¤�:n~o�j§o�n~�|�ÍpÎimo�l e�Ì�fh��{�È({�j
l#e2l���e�i�vkth{�f {|n �G���~yzjrg���vuoÍpÎimo�l7e�Ìzf~��{�È({�jÍ¿Î{|l6f~�|{|È�{�jÛÅ
l#e2l���e�i�vkth{�fÖ{|nÖg��|�<imo��|e2v�vke2n~{�oUi�juo9�0ÏK�SjmiuoUn~}%ime���ozÈ2gs½
ju{|o�n]juthe�ime(pÎo�ime�thgUv�g%È�gUvuÈ2g��z{|n~}�e0X±e2È(j�y~f���g�im�hvÇ{�n]jmt~e
iuoU��e3t~{�e2img�imÈ�t��UÏ]Þho�i#e(Ì~g�l6f~�|e��Avky~fhfZoSvke3jut~e2iue�g�ime�j���o
�ze��|e�}Sgsju{|o�nZv ¿k¿�
\t�i �wq+:*,E*�Å�q2¿ 1
��i q+13,�Å�q��hr��1jlg��~Å�g�nh�
¿k¿��*t���i q+*hkSè¤Å0q2¿ 1��Wi q-1;,�Å0q��hr��1jUgE�~Å,g�nh�6�Go�n����Ng�nSjmv�jmo
iue2l#os�Ue�jmt~e6l#e2l���e�i�vkth{�f¾o�pB1;, pÎimo�l �'t~n]o�n¾Þ~im{|�~gº�UÏ
Ø>{�jmtÙ��e2g�Ô¾ime��UozÈ�gsjm{�oUna�,jutheÚôhi�vkj6�ze2��e2}Ug�ju{|o�nÖime���gsjm{�oUnz½
vkt~{|f:{|v6ime�l6os��e¤�¯�1�~y~j�jut~e%vue2È(oUnh�:�ze��|e�}Sgsju{|o�nÙthg�v#n~o�j
��e(j4iue2l#os�Ue2�¯Ï<ÐDj'l6e2g�nZvNjuthg�j'��t~nr{|v�vkju{|�|�Gg6l6e�l��Ze2i�o�p
1;,6Ï�Ø>{�jut/vkjuimo�n~}#iue2��ozÈ�g�ju{|o�nÚj��Ao��ze2��e2}Ugsjm{�oUnÚime���gsjm{�oUnz½
vkt~{|fhvNg�ime'ime�l6os�Ue2��g�nZ��t~e�nZÈ(eÇ��t~n3{|v�n~o�j�g�l#e2l���e�i�o�p
1;,6Ï

� ����� å �`� ��� � ��á ·¤¹z·2åPâ á
�Nt~{|v vke¤ÈÛjm{�oUn f~ime2vue�nSj�v jut~e {|l6f~�|e�l6e�nSjmg�ju{|o�n o�pÙjmt~e
}�imo�y~f �ze2��e2}Ug�ju{|o�n ��{�jut Ü*Ä/Ýîjue2È�thn~o��|o�}U��Ï �Nt~eÍpÎo�iu½
l6g�j o�pîg7}�imo�yhf �ze��|e�}Sgsju{|o�n pÎimo�l ��e¤ÈÛjm{�oUn�� {�v
¿k¿MI
q"r�Å0q2¿�E�q<r�Å�q�fht�i�FºÅ(Ïñ�Goìl�g�{|nUj�g�{|nIjut~eXime���gsjm{�oUnhvkth{�f
�Ze�j��Ae2e�ní}UiuoUy~fhv2���Ae¾e(Ì�jme�nh�Æjut~e]�ze(ôZn~{�jm{�oUnío�p�vke2n~{�oUi
g�nh��ï�y~n~{|o�i*iuoU��e�juo3jut~e6�ze(ôZn~{�jm{�oUnro�p<vke2n~{�oUi*g�nh�6ï�y~nh{�oUi
}�imo�y~faÏ
a ���,á åÎ·2åPâ á K �I}�imo�y~fGE6è*{�v�vke2n~{�oUi<jmo#g�}�imo�yhfGE�ë

{�p4g�n��Kl6e�l��Ze2i�o�p&E6èÚtZg�v�jmt~e§fZos��e�i�o�p�jutheÚl6e�l��Ze2i
{�n E�ërg�nh�Öl�gº�Xthgº�Ue3gU�~�z{�ju{|o�nhg���f�os��e�i#�~yzj�n~o�j6��{|È�e
��e�i�vmg~Ï c
�ae�j E6è^�WE�ëìvu{|}�n~{�pÎ�Æjmthgsj E6è]{�v/vke2n~{|o�i�juo E�ë~Ï

ç�e�nZÈ(e�g*l6e�l���e�i<o�p�E6è�{�v�È(oUnhvu{|�ze2iue¤��vue�nh{�oUiGjmo�g*l#e2l#½
�Ze2i'o�p E�ëzÏ�ÐDp8E6è�{|v4vke2n~{|o�iNjuoIE�ë#�Ae�g��|vuo�vugº��juthg�j&E�ë
{|v±ï�yhn~{�oUi1jmo$E6è�Ï,Þ~o�iAÈ(o�n��Ue�n~{|e�nhÈ�eN�Ae�yhvueNjutheNôh��e¤v }cv<x4R��
N��D3Mz��! #"=yzg�nh� v<x y,z$�D3Mz��! %"dySjuo6v�jmo�ime�jmt~e4}UiuoUy~f�t~{|e�i�g�i�È�t��
g�nh�Æjut~e]imo��|ert~{|e�i�g�i�È�t��Ùo�p�jut~eXÈ�t~{|���ziue2níg�nZ�Æfhg�iue2nUj�v
}�imo�y~fhv�g�nh�3iuoU��e¤v�Ï

^Ng�vue2�XoUnÖ�Gg��~�|erè��1g/fhg�iuj�o�p�jut~e3}�imo�y~fXt~{|e�i�g�i�È�t��
o�p�Þ�{|}�y~ime�ë�{�v�l#oz�ze2���|e2�3{|nH}cv<x4R�N&�D3Mz��! #"=y�yhvu{�nh}���Ã*À0cR�
gsjkjm{��hyzjue¤v'¿Áq/{|È�thg�e��hç�ÏUë��U�~èºÅGgUv�vkthos��n#{|n��Gg��~�|e��hÏ,�Nt~e
t~{�e2img�imÈ�t��]{�v�nho�j�g/jmiue2e3�~y~j�gK}�i�g�fhta�,pÎo�i�È(��g�im{�j��]g�nh�
È(o�nZÈ({�vke2n~e2vmv��±��g��~�|e��Úvut~os��v�jut~e#t~{|e�i�g�i�È�tS�§g�v4g�n~e¤v�jme2�
iue2�|g�ju{|o�naÏ<�Nthe�ôhi�v�j'È�o��|y~l6n§}U{��Ue2v�jmt~e�}�imo�y~f�nhg�l6e��zjmt~e
vke¤È(o�nZ�%È(o��|y~l6n%}�{|��e¤vNjuthe�{|l#l6e¤�z{|g�jue�fZg�ime�nSj�}�imo�y~fZv�o�p
juthg�j,}UiuoUy~fa��g�nh��jmt~e�jut~{|im��È(oU��y~l6n#}�{|��e¤vajmt~eN{�l6l6e2�z{�gsjme

È�t~{|���ziue2naÏA�Nthe �Kl#e¤g�nhv�juthg�j�jut~e�}�imo�y~f�thgUv�n~o�fhg�iue2nUj
oUi4È�t~{|�|�Kg�v'jut~e6È�gUvke�l6gº����e�Ï��'vu{|n~}H}cv<x;R�N��D3Mz��! #"=y��a�Ae
È2g�n6ôhnh�3g��|��vue�nh{�oUimvAg�nh�Çï�yhn~{�oUimv1pÎo�iNg�}�imo�yhf��S�6ime2vufZe¤ÈÛ½
jm{��Ue��|�rÈ�thg�vu{|n~}Újmt~e�fhg�iue2nUj�vÇg�nh�¾È�t~{|�|�zime�n¾yhvu{�nh}�vu{|l#fh��e
'�(S{41)�deSy~e�im�Úe�Ì�fhiue¤vuvu{�oUnhv2Ï1��n%e(Ì~g�l#fh��eÇo�p,jmt~e�iuoU��e�th{�½
e2img�imÈ�t���o�p¯Þ�{�}Uy~ime'ëÇ{|v1iue2f~iue¤vke2nSjue2�#{|nHv<x�y,z$�D3Mz��! #"=yUyhvu{�n~}
��Ã*À0cR�Õgsjuju{|�~yzjue¤v�g�v�vut~os��n§{�n%��g��~�|e��zÏ

¼�o��|e�æ'g�l#e ��e�nh{�oUi�iuoU��e �Uy~n~{|o�i�imo��|e
d4Ð�¼ � ç���èU�hç��Çë
ç���è d4Ð�¼ xAoZè��z¼�eUè
ç��Çë d4Ð�¼ xAo�ëz�z¼�eºë
xAohè ç���è �'ð
¼�e�è ç���è �'ð
�'ð xAoZè��~¼�eUè xN�
xN� �4ð,�~�'vmð �

�Gg��~��e��~�]*iuoUy~f3th{�e2img�imÈ�t���o�p,Þ�{�}Uy~iue�ë~Ï

d'e�ôhn~{�ju{|o�n6�'thgUvG�~e2vmÈ(im{���e2��g'}UiuoUy~f�juoÇ��e�g�nLz* 'NJy 3�.�3T1
oUi 3+"%Nwy 3�.'3T1Çl6e�l��Ze2i�o�p�g]imo��|e�ÏI��}�imo�y~fìl�gº�Í��erg�n
z* 'NJy 3�.�3T1�g�nh�O3+"%Nwy 3�.�3T1�l6e2l���e�i<o�pagÇiuoU��e�vu{�l�y~��jmg�nhe�o�yZvk�|��Ï
�Go4vu{�l�y~��gsjueNg�imo��|e<th{�e2img�imÈ�t��*�Ae�yhvue<{|nzpÎo�iml�gsju{|o�n#g���o�yzj
e�Ì�fh��{�È({�j,g�nh��{|l6f~�|{|È�{�j�l6e�l��Ze2imvut~{|f�{|n v<x y,z�,.-�Ï�ç�os��e���e2i2�
v<x y,z*,�-r{�v0n~o�j�vuy
�È({|e�nSj�juo4�~{|vkju{|n~}�yh{|vut�juthe�È2g�vue1��t~e�imeAg
}UiuoUy~f�{|vG��o�jut#g�n�e�Ìzf~��{�È({�j�g�nh��{|l6f~�|{|È�{�j,l6e�l���e�i,o�phvkoUl#e
imo��|eNpÎiuoUl jmt~e4È2g�vue���t~e�ime�juthe�}�imo�y~f6{�v1oUn~���6g�n�{|l6f~�|{|È�{�j
l6e�l��Ze2i�o�p�juthe3imo��|e�Ï]Þ~oUi�jmt~{|v#f~yhiuf�oUvueÚ��e3{|nSjuimoz�zyhÈ(e
g�n~o�jmt~e�i�ôZ��e=z* 'NJy 3�.�3T1��! %"dy�jmthgsjAÔ�e�e2fhv1{|nzpÎoUiul�gsjm{�oUn�g���o�yzj
e�Ì�fh��{�È({�j�l#e2l���e�i�vkth{�f�o�nh���UÏ
�Nt~e�imer{�v3gÍf~imo�È�e2�zyhiue%pÎoUi§�~e��|e�}Ug�ju{|n~}ÙgÍyhvue�i3juoÙg

}UiuoUy~f {�n�oUy~i/{|l#fh��e2l#e2nSjmgsjm{�oUnaÏ �Nt~eÖfhiuozÈ(e¤�zy~imeÖÈ�g����
{�v/,=zKy,z7}l{411z107v<x y,z32 } v�x4R�N#4sÏí�Nthe%fhg�i�g�l6e(jme�i�v#iuoU��e%g�nZ�
}UiuoUy~f�vufZe¤È({�pÎ����t~{�È�t�imo��|eA{�v�juo*�Ze��ze2��e2}Ug�jue2��juoÇg*}�imo�y~faÏ
�Nt~e��~e��|e�}Ug�ju{|o�n#pÎy~nhÈ(ju{|o�n�thgUv,juthe�pÎo��|��os��{|n~}�l�g�{|n�vkjue�fZv��
èºÅ��ze��|e2ÈÛj<gÇimo��|e�juo���e��ze��|e�}Sgsjme2�§¿Îo�i<iue2��o�ÔUe2�hÅ0T�ë�Å���e2��e¤ÈÛj
g#}�imo�yhf�juo��ze2��e2}Ug�jue�¿ÎoUi�ime��Uo�ÔUe¤Å�Tz�SÅNxAthe2È�Ô���t~e�jut~e2i�iuo
n~o�j�jmt~e§}�imo�y~fÍvmgsjm{|vkôhe¤v�jmt~e3fhiue2iue�eUyh{|vu{�jme3È�o�nh�z{�ju{|o�nÙ{�n
jmt~e�iue2�|g�ju{|o�n65 {�| UczKy,z�{K}>17zKT1��Å���e(jmy~fÖÈ(oUnhv�jmimg�{�nSj�vKT�g�nZ�
�UÅ���f±�~g�jue#jut~e�Ã�c<Ý$
�ÀW�~g�jmg��Zg�vue�Ï�Þ~oUi*�ze2��e2}Ug�ju{|o�n/ime(½
�Uo�È2gsjm{�oUna�U{|nhvkjue¤g���o�p0jmt~e�v�jme�fhvN�#g�nh�3�h�zÈ�t~e¤È�Ô���t~e(jmt~e�i
oUi�n~o�j�jmt~e�ime��Uo�Ô�e¤�Úimo��|e�{�v�{�n�jmt~e�imo��|e�img�n~}�e�o�pGjmt~e�ime(½
��gsjm{�oUnBfhgli r�k�sbt uokSÏ��Nt~e*Ã�c<Ý$
�Àí�~g�jmg��hg�vue�l�g�{|nSjmg�{|nhv
}UiuoUy~f�t~{|e�i�g�i�È�t��4{|nzpÎo�iml�gsjm{�oUnÚ¿�}cv<x4R�N&�D3Mz��! #"=y Å(�Uimo��|e<th{�e2ik½
g�imÈ�t���{|nzpÎo�iml�gsjm{�oUn]¿"v<x�y9z*�!3Mz7�! #"dy ÅÛ�±e(Ìzf~�|{�È({�j4l6e�l��Ze2imvut~{|f
¿�z� 'NJy 3�.'3T1��! #"=y Å(�Ug�nh��jmt~e5fhgli jUk�mMk'noglp$k�g�nh��fhgUi r�k�sbt uok
ime���gsjm{�oUn�jmg��~�|e2v2Ï
ÐÑnÚo�i��ze2i<jmo�l�g�ÔUe'oUy~iA{|l6f~�|e�l6e�nSjmg�ju{|o�n§l6o�ime4È(oUn���e(½

n~{|e�nSj���e3�~e���e2��oUfZe¤�Xg%}�i�g�fht~{|È2g��1yZvke2i�{|nUjme�iupÁg�È�e���t~{�È�t
{|nSjue�i�g�È(jmv4��{�jmt/jmt~{|vÇfhiuozÈ(e¤�zy~ime�jmo§�zo3iuoU��e�½_�Zg�vue2�%}UiuoUy~f
�ze2��e2}Ug�ju{|o�naÏ,�Nt~e*}�i�g�f~t~{�È�g��ZyZvke2iA{|nSjue�iupÁg�È�e4{�v�{��|�|yhv�jmimg�jue¤�
{|n§Þ�{|}�y~ime��zÏ��Nt~{�vN{�nSjue2ikpÁgUÈ(e*��gUvA�~e���e2��oUfZe¤�ÚyZvk{|n~}8':9<;
g�nh��{�v0yhvue2��juo*{�n~{�ju{�gsjme<}UiuoUy~f��ze2��e2}Ugsjm{�oUn�{�nZv�jme2g���o�p~j���fz½
{|n~}�jut~e�g���os��e4f~imo�È�e2�zyhiue*È�g��|�_Ï1�Nt~{|v�{|l6f~��e2l6e�nSjmg�ju{|o�n§{|v
È�o�n���e2n~{�e2nSj0pÎo�i�yZvke2imv,vu{�nhÈ�e<jmt~e���o�n~�|��n~e2e2��juo��ze(ôZn~e�jut~e
}UiuoUy~fÚt~{|e�i�g�i�È�t���g�nh�Újuthe�iue2�|g�ju{|o�n�È�g�n~½DgUvuvu{�}UnaÏ

= > â �`�,¹z¸såÁ¶¤â á ¶
�Nt~e�È���oSvke¤�Ú��o�imÔ�jmo6jut~{�v�fhg�fZe2i�{|v�o�n�l6o��~{|��{�j��Úo�p�yZvke2ik½
imo��|erg�vmvu{�}Un~l6e�nSjK¿ÎØ]g�nh}Ùç�Ï|�*�zy~ní�1Ï|�h[±thg�n~} ��Ï|�4g�nZ�
x�g�o �ZÏ�ë��U�U�UÅGg�nh��iuoU��e�½_�hgUvke¤���ze2��e2}Ug�ju{|o�n�¿M^Ng�imÔsg*�'Ï�g�nZ�
�zg�nh�zt�y�¼�ÏZë��U���UgUÅÛÏ
�4y~i�f~ime���{�oUyhv*�AoUiuÔÙ¿ÎØ]g�n~}%ç�Ï|����y~nX�1Ï|�3[�tZg�n~} ��Ï|�

g�nh�¾x�g�o��ZÏ¯ë����S��Å��~{|vmÈ(yhvmvue2�%jmt~e6l6o��~{|��{�j��%o�pAyhvke2ik½Dimo��|e
ime���gsjm{�oUnhvkth{�f�{|n�À'Â�É�ÊÍl�g�nhg�}�e2l#e2nSj�g�nZ��f~imos��{|�ze¤��n~e2�
g�yzjut~oUiu{|×2g�ju{|o�n/g����|ozÈ�gsjm{�oUnKg���}Uo�im{�jmt~l�v�pÎoUi*À�ÂNÉ�Êbg��|o�nh}
��{�jut6l6o��~{|�|{�j���jmthgsj<g�iueN�hgUvke¤��oUn6iue2�|g�ju{|o�nhg���g���}Ue��~i�g4o�fz½
e2img�ju{|o�nhv2Ï/�Nt~e��]g�ime�jmt~e3g�yzjut~oUiu{|×2g�ju{|o�nX}Uimg�nUjm{�nh}/g��|}�o�½
im{�jmt~l��z�Ae¤g�Ô�ime��Uo�È2gsjm{�oUn3g��|}�oUiu{�juthl g�nh�§v�jmiuoUn~}#iue2��ozÈ�g�½
jm{�oUnKg��|}�oUiu{�juthl§Ï��Nt~e�fZg�f�e�i��zo�e2v*n~o�jÇyZvke#iuoU��e6�ze2��e2}Ugs½
jm{�oUn>�~yzj�{�nhvkjue¤g��>�ze�ôhn~e¤v�jmt~erimo��|e/l6o��~{|�|{�j��U����t~e�ime����
gryhvke2i���{�jut:g�nÍl6oU�~{��|eÚimo��|eÚl�gº�KpÎy~iujut~e2i#}Uimg�nSj�o�jmt~e�i

CRPIT Volume 48

326

]*imo�y~f�æ'g�l#e ð�g�ime�nSjA}UiuoUy~f xAth{����§}�imo�y~f
�0oUnS� � ð1imo�ï�e¤ÈÛj¤è��zð1imo�ï�e¤ÈÛj�ë

ð1imo�ï�e¤ÈÛj¤è �Go�n�� �'t~n
ð1imo�ï�e¤ÈÛjÛë �Go�n�� �'t~n
�'t~n ð1imo�ï�e2È(j2èU��ð<iuo�ï�e2È(j�ë �

�Gg��~�|e*�Z�]*iuoUy~f�g�nh�3{�j�v�imo��|e2v�t~{|e�i�g�i�È�tS��o�p�Þ�{|}�y~ime�ëzÏ

Þ�{�}Uy~ime��~�]*iuoUy~f��ze��|e�}Sgsju{|o�n3{�nSjme�iupÁg�È(eUÏ

iuoU��e¤vÇ�~yzj�vut~e�Qst~e�È�g�n~n~o�j�g�È�È�e�fzj�o�jut~e2i�iuoU��e¤vÇ{�p�vut~e�Qst~e
thg�v*g�n%{|l6l#oU�~{|��e#iuoU��eUÏ'�Nt~e�l#oU�~{|��{�j��%È(o�yh�|����e���{|e���e2�
g�v0g�vuf�e2È({�g��SÈ�gUvke�o�p�imo��|e(½D�hgUvke¤�4�ze2��e2}Ug�ju{|o�nÇ{�n�jut~e2{�iG�AoUiuÔ±Ï
^Ay~jÇvuo�l6e�{|l6fZoUikj�g�nSj��ze��|e�}Sgsju{|o�n�pÎe¤gsjmy~iue¤v4vuyhÈ�trgUv4�~e���½
e�}Ug�ju{|o�n]È(oUnzËh{�ÈÛjmv�g�nh�]�ze��|e�}Sgsjm{�oUnKime��Uo�È2gsjm{�oUnrthgº�Ue�n~o�j
�Ze2e�n%È(oUnhvk{��ze2iue¤�¯Ï ^A�3È(o�nSjmimgUv�j¤�Ujmt~e���o�imÔ#{|n§jut~{�v�fhg�fZe2i
f~iuos��{��ze2v*g�im{�È�t/�sg�im{�e�j��§o�p1o�fzjm{�oUnhv'juthg�jÇÈ2g�nr�ze¤g��,��{�jut
�ze��|e�}Sgsju{|o�n�g�y~jut~oUiu{|×2g�ju{|o�n3g�nh�§iue2��ozÈ�g�ju{|o�naÏ

^Ng�imÔsg g�nh���zg�nh�zt�y ¿M^Ng�imÔsg ��ÏÚg�nh���zg�nh�~tSy ¼�Ï
ë����U��gSÅ�f~imo�f�oUvue2�Ùg]vk{|l6f~��e�l6oz�ze���pÎo�i�imo��|e(½D�hg�vue2�Ö�~e���½
e�}Ug�ju{|o�n¾È�g��|�|e2�¾À�ÂNÃ4Ä a/��{�juth{�nXÀ�ÂNÉ�Ê aU�ajut~e�vu{�l6f~�|e2vkj
pÎo�iml o�p,À�ÂNÉ�Ê�é���¿_�zg�nh�~tSy�¼�Ï¯è¤é�é$#�ÅÛÏ��Nt~e2�Ú�ze��Ue��|o�f�e2�
gÇpÎimg�l6e���o�imÔ�pÎo�iA{|�~e�nSju{�pÎ��{�n~}�{�nSjme�ime2vkju{|n~}�È�gUvke¤v�jutZgsj�È2g�n
�ZeÙyhvke¤� pÎo�ir�~y~{|�|�z{|n~}ÕiuoU��e�½_�hgUvke¤� �ze��|e�}Sgsju{|o�n l6oz�ze���v2Ï
�Nt~{|vG{�v0g�È2È(oUl#fh��{�vkthe2�*���4{��ze�nSjm{�pÎ��{|n~}�jmt~e<È�thg�imgUÈÛjue2iu{�vkju{�È�v
iue2�|g�jue2�:jmoÍ�ze2��e2}Ugsjm{�oUna�Nyhvu{�n~}Öjut~e¤vkerÈ�tZg�i�g�ÈÛjme�im{|vkju{�È�v#jmo
}�e�nhe�i�gsjueÇf�oUvmvk{|�~�|e��ze��|e�}Sgsju{|o�n�È�gUvke¤v�Ï��Nt~e2{�i���o�imÔ�{�v��z{�pÓ½
pÎe�ime�nSj0pÎimo�lIo�y~i�va{|n�jmt~iue2e<g�vuf�e2ÈÛj�v�Ï�Þ�{�i�v�j¤�º{�jGpÎo�È�yhvue2vaoUn�g
vk{|l6f~��eA�ze��|e�}Sgsju{|o�nÇl6oz�ze���vuy~f~f�o�iuju{|n~}�o�n~�|�4ËZgsj0imo��|e2v¯g�nh�
vk{|n~}��|e�v�jme�f��ze��|e�}Sgsjm{�oUnaÏ1��o�l6e*{�l6f�o�iujmg�nSjNpÎe2g�juy~ime2v�vuyhÈ�t
g�vÇimo��|e#th{�e2img�imÈ�t~{|e2v2�aÈ(oUnhvkjui�g�{|nUj�v�g�nh�Kime���ozÈ2gsju{|o�nZv4��e�ime
n~o�j6vky~fhfZoUikjme2�¯Ï ^��¾È�o�nSjui�g�vkj2��o�yhi���o�imÔrthgUv�g�nhg����zvue2�
�ze��|e�}Sgsju{|o�n%g�yzjut~oUiu{|×2g�ju{|o�n§g�nh�§ime���ozÈ2gsju{|o�n§l6oz�ze���v���{�jut
È(o�nZv�jmimg�{�nSjmv#{|n���o��|��{�nh}rimo��|e§th{�e2img�imÈ�t~{|e2v2ÏÙ��e¤È(oUnh�¯�1jmt~e��
n~e�{�jut~e2i�}Ugº��erjut~e]�ze�ôhn~{�ju{|o�nIo�p�imo��|e(½D�hg�vue2�>�~e��|e�}Ug�ju{|o�n
iue2�|g�ju{|o�na����t~{�È�tX{|v�grÈ(im{�jm{|È2g��1n~o�ju{|o�n¾juo/jut~eÚ�~e��|e�}Ug�ju{|o�n
l#oz�ze2�Çn~o�i��z{�vuÈ�yhvuvue2�:jmt~e¾iue2�|g�ju{|o�nhvut~{|fhvÚg�l#oUn~}ÍoUiu{|}�{�½
nhg��¯yhvue�i�g�nh�Ú�ze2��e2}Ug�jue2�Úyhvue�i¤Ï3^��ÚÈ�o�nSjui�g�vkj2�UjutheÇ�~e��|e�}Ug�½
ju{|o�n6pÎi�g�l6e���o�imÔ�{|n6jut~{�v1fZg�f�e�i<{�v1�Zg�vue2�6o�n6oUiu{|}�{|nhg��hyhvke2i
g�nh���~e��|e�}Ug�jue¤�Çyhvke2i�vu{|nhÈ(e<jut~e��ze��|e�}Sgsju{|n~}�ime���gsjm{�oUnhvut~{�f�{|n
jut~{�v<fZg�f�e�i�thg�v1ôh��e'È�o�l6f�o�n~e2nUj�v'¿u¿MI
q"r�Å�q¤¿MI [q<r [Å0q�fht�i�FºÅÛÏ
�Nt~{�i��¯��jmt~e��XtZgº��eÚnho�j��z{|vmÈ(yZvuvue2�Í}�imo�y~fz½D�hgUvke¤�¾�~e��|e�}Ug�½
ju{|o�na�z�~y~jN��e*thgº��e*g�nhg����zvue2��e2��e2l6e�nSjmvNg�nZ��pÎy~nhÈ(ju{|o�nhvN{|n
}�imo�y~fX�ze2��e2}Ugsjm{�oUnXg�v���e��|�AgUv�{�j�v�{|l6f~��e2l6e�nSjmg�ju{|o�nX��{�jut
Ü4Ä/Ý<Ï

� > â á » � ä�¶2åPâ á ¶
�Nt~{�v>fhg�fZe2iÆthgUvÆ�z{�vuÈ�yhvuvue2�cg
imo��|e(½D�hg�vue2�ò�ze��|e�}Sgsjm{�oUn
l6oz�ze���g�nh�Ö{�jmv6{|l6f~�|e�l6e�nSjmg�ju{|o�n:��{�jmtÙÜ*Ä/Ý1Ï�Ø¾e%thgº�Ue
g�nhg��|�zvke¤�Knho�j�oUn~�|�¾g/�~e��|e�}Ug�ju{|n~}%pÎi�g�l6e���o�imÔ/{|nhÈ(�|yh�z{|n~}
�ze2��e2}Ug�ju{|n~}�g�yzjmt~o�im{�×¤gsjm{�oUn g�nZ� ime��UozÈ�gsjm{�oUn ��{�jut È�o�nz½
vkjui�g�{|nSjmv2�U�~y~j�g��|vuo�}UiuoUy~fz½D�hg�vue2���~e��|e�}Ug�ju{|o�naÏ,�Go�f~imos��{|�~e
g%fhimgUÈÛju{�È�g���vuo��|yzjm{�oUn]pÎo�i#iuoU��e�½_�hgUvke¤�¾}�imo�y~fÖ�ze2��e2}Ug�ju{|o�na�
��e%thgº��e/g�nhg��|�zvke¤�:iuoU��e%t~{|e�i�g�i�È�t~{|e2v�g�nh�:jut~eKiue2�|g�ju{|o�nz½
vut~{|f:o�pÇvue�nh{�oUi6g�nh�Kï�y~n~{|o�i�imo��|e2v2ÏÆ�Nt~e�jmt~e�oUiu�Ö{|n:jut~{�v
fhg�fZe2i4�Ng�v4�ze�l6oUnhv�jmimg�jue¤�%���§{�jmv*{|l6f~��e2l6e�nSjmg�ju{|o�nr��{�jut
Ü*Ä/Ý1Ï��Nt~e/��o�imÔÍ{|n>jut~{�v�fZg�f�e�iÚtZg�vÚvu{|}�n~{�ôZÈ�g�nSju�|�Íe(Ì�½
jme�nh�ze¤��f~ime���{|o�yhv<�AoUiuÔ#{�n3vke2��e�i�g��Zg�vufZe¤ÈÛjmv2�UpÎo�i�e(Ì~g�l6f~�|e��
jmt~e6}�imo�y~fz½D�hgUvke¤�%�ze��|e�}Sgsju{|o�n0�¯}�imo�y~fr�~e��|e�}Ug�ju{|o�n¾g�yzjmt~o�½
im{�×¤gsjm{�oUnX��{�jmtÍf~ime�ime'eSy~{�vk{�jue3È(o�nZ�z{�jm{�oUnhv#g�nh�Xime��UozÈ�gsjm{�oUn
g�yzjut~oUiu{|×2g�ju{|o�naÏ
�Nt~e'pÎy~juy~imeÇ�AoUiuÔ6��{|���¯��e'jmt~e��ze��Ue��|o�f~l6e2nUjNo�p�g�vu�zv�½

jme�lîl�g�nhg�}Ue�l6e�nSj���{�jmt%Ü4Ä/ÝÖ��t~{|È�t�{|n���o��|��e¤vAjut~e�imo��|e(½
�hgUvke¤�Ú}UiuoUy~f3�~e��|e�}Ug�ju{|o�n�vkyh�hvk�zvkjue2l§Ï

´3» � á â�	 ��� ã � � ��á ·
�Nt~e3g�yzjmt~o�i�v���o�y~���]��{|Ô�e�juo/jmthg�nhÔKime���{|e���e�i�vÇpÎo�i�jmt~e�{|i
}UoSoz�§vkyh}�}�e¤v�jm{�oUnhv�g�nh��È(oUl6l#e2nSjmv2Ï

���E	 � ¸ ��á » � ¶
�'�hg��z{�qXÏ��=^Ayhiuimos��v%qXÏ|���0g�l#fZvkoUn ^*Ï|��g�nZ�Ið<��o�juÔ�{|n

]#Ï<¿kè2éUé��UÅ(��� � È2g���È(y~�|yhv*pÎoUi�g�È�È�e2vmvÇÈ(o�nSjmiuoU��{|nX�z{�v�½
jmiu{|�~yzjme2�¾vk�zvkjue�l�v2Ò���� 5����ov�{�|�0�� (Ev<x�} v�{	"8� ;�{ |l} �
	�
 0Q1�� ß�� ¿Î�SÅ(� #s� ��R #s���ZÏ

�'y~imgÍ�ÇÏÇ¿kè2éUé�éUÅ(��� d4{�v�jmiu{|�~yzjme2�ígUÈ�È�e2vmv�½Diu{|}�tSj�v�l�g�nhg�}�e(½
l6e�nSj���{�jutÆ�ze2��e2}Ug�ju{|o�nìÈ(e�iuju{�ôZÈ2gsjue¤v�Ò|� 	 zQ.�Rov23T1
�
 | �
11z0v�|wz'1 NJv<x�}cv<{	" " 3 |b}Çf~faÏ�ëzè�è%R3ë��S�zÏ

^Ng�imÔsg'�'Ï�g�nh�6�zg�nZ�zt�y#¼�Ï~¿_ë��U����gSÅÛ�sÞ~i�g�l6e2�AoUiuÔ*pÎo�i�imo��|e(½
�hgUvke¤�í�ze2��e2}Ug�ju{|o�níl6oz�ze2�|v�g�nZ�Õvuo�l6e¾e(Ì�jue2nhvk{|o�nZv��

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

327

3 |��üð1imozÈ(e�e¤�z{|n~}Uv�o�p�jut~e§è �Ú��n~n�yhg���xAoUl#fhyzjue2i*��e�½
È(y~im{�j��Æ��f~f~�|{�È�gsjm{�oUnhv/xAo�nzpÎe2iue2nhÈ(eUÒ��Çæ�e2� �4im��e¤g�nhv2�
f~faÏaè ����R�è�# #�Ï

^�g�iuÔsgI��Ï�g�nh�b�~g�nh�zt�y
¼�Ï�¿Pë����U���ZÅ(�6Þhimg�l6e���o�imÔÕpÎoUi
iuoU��e�½_�Zg�vue2���ze2��e2}Ug�ju{|o�n§l#oz�ze2�|v2� 3 | �üð1imo�È�e�e¤�z{�nh}Uv�o�p
jut~e�ë���i��Úæ'g�ju{|o�nhg��±ÐÑnzpÎo�iml�gsju{|o�n%���zvkjue�l�v���e¤È(y~im{�j��
xAo�nzpÎe2iue2nhÈ(eUÒ��W^Ng���jm{�l6o�ime���f~f0Ïaè2�hè�R�èUè��ZÏ

^Ae2���Nd�Ï �'Ï����0gKð�g��zyh�|g%�<Ï �ZÏA¿kè2é$#��UÅ(� � ��e2È�y~ime3È(oUl6f~yzjue2i
vk�zvkjue2l§�,��nh{�ôhe¤��e(Ìzf�oUvu{�jm{�oUnÚg�nZ�6l�y~��ju{�È�vA{�nSjme�imf~iue�½
jmg�ju{|o�naÒ|�~�0e¤È�t~n~{�È�g��¯iue2fZoUikj��A�~d�½Ñ��¼N½ #��º½Ñ��� �~Ï

^A��g�×2e�qXÏhÞhe�{|}�e�n��hg�y~l �ZÏ��hÐÑoUg�nhn~{|�~{|v �ZÏhg�nZ�§êÇe2iuoUl��Sju{�v
��Ï±¿�è¤é�é�éSÅÛ� � �Nthe'imo��|e�o�pajmiuyZv�j�l6g�nhg�}Ue�l6e�nSj<{|n3�~{|vk½
juim{��hyzjue¤�§vu�zv�jme�lîvue2È�y~im{�j��±Ò|� 	 zQ.'Rov23T1

 |517zKv�|Jz�1�Nwv<x	�
} v�{	" " 3 |b}Çf~faÏaè��U� R3ëzè2�hÏ

Þ~e�{|nhvkjue2{�n%ç�ÏZ�1Ïa¿�è¤é�éS��ÅÛ�zÞ�{|nhg��aime�f�o�iuj2��æ'{|vkj�vkl�g��|�¯�~yhvu{�½
n~e2vmvN{|n~n~os�sgsjm{��Ue�iue¤vke¤g�i�È�tK¿Ávu�~{|i�Å�}Uimg�nSj2��imo��|e��hg�vue2�
g�È2È(e2vmvÍÈ�o�nSjuimo��_��f~thgUvke è�Ï�jue¤È�t~n~{�È�g��§ime�f�o�iuj2�\3 |
�ü�~�<����xAoUiuf0Ï�Ò|Ï

Þ~e�imi�g�{|o��|o�d�Ï,ÞAÏ�g�nh�XêÇyht~nXd�Ï,¼�ÏA¿kè2éUéUë�Å(�G¼�oU��eÚ�hg�vue2�
g�È2È(e2vmvbÈ(o�nSjmiuoU�P� 3 | ��è¤�sjut æ'gsjm{�oUnhg��ÕxAoUl6f~yzjue2i
��e2È�y~im{�j��XxAo�nzpÎe2iue2nhÈ(eUÒ��0pÎe�imimg�{�oU��oSéUësimo��|e��Zg�vue2�¯Ï tSjul6�P�
f~faÏZ�U�s� Rz���U�~Ï

�a{�æ�Ï*g�nh�]*imoUvuo�p ^4Ï*æ�Ï#¿Pë��U���SÅÛ��� f~i�g�È(ju{�È�g����|�í{|l#½
f~�|e�l6e�nSjmg�ju{|o�nÍg�nh�XjmimgUÈÛj�g��~�|e§�~e��|e�}Ug�ju{|o�nÖ�|o�}U{|È���3 |
� Ð��A�<� ����l6fZoSvk{|y~l oUnc�ze2È(yhiu{�j��îg�nZ�òð<iu{|�sg�È(�±Ò|�
f~faÏZë$#'R��SëzÏ

q%{|È�tZg�e���ç�ÏÇ¿_ë��U�~è¤Å(�
' 	 ; � (Ev<x�}cv<{	" "�zKv�� 0��%z��0zKv<zK|�.�z��
Ø>{��|e��UÏ

�zg�nh�~tSyX¼�Ï1¿kè2éUé$#�Å(�0¼�g�ju{|o�nhg��,pÎo�iÇjuthe�À�ÂNÉ�Ê�é��ÚpÁg�l6{|���
o�pNg�È�È�e2vmvÇÈ(o�nSjmiuoU��l#oz�ze2�|v2�83 | �üð1imozÈ(e�e¤�z{|n~}Uv*o�pÇè2vkj
�'x�qóØKoUiuÔzvut~o�f�o�n%¼�oU��e�½_�Zg�vue2�§�'È�È�e2vmv4xAo�nSjmiuoU�PÒ|�
�'x�q ð<iue¤vuv2��f~faÏ ����R #�ëzÏ

�zg�nh�~tSyò¼�Ï§¿kè2éUé��UÅ(�Ú¼�oU��eIg�ÈÛjm{��sg�ju{|o�n t~{|e�i�g�i�È�t~{|e2v2� 3 |
� �Nth{�i�� �'x�q Ø¾o�imÔ�vut~oUfboUn ¼�o��|e'^NgUvke¤� �'È�È�e2vmv
xAo�nSjuimo��_Ò|���'x�qñð<iue¤vuv2��f~faÏh�U��RS�S�~Ï

Ø¾g�n~}%ç�Ï|��x�g�o��hÏag�nh� [�thg�nh} �#Ï1¿Pë��U�~èºÅÛ�a�
È(oUnhvkyhl#e2i
g�n~oUn��Sl6{�j��ÆvuÈ2g���g��~�|e]fhgº��l6e�nSj/vuÈ�t~e2l6eX��{�jmtIimo��|e
�hg�vue2��gUÈ�È(e¤vuv�È�o�nSjuimo��_��3 | � ësnh��ÐÑnSjme�imnhgsjm{�oUnhg��GxAoUnz½
pÎe�ime�nhÈ�e�o�n]Ø¾e��ÖÐÑn~pÎo�iml6g�ju{|o�nÍ���zvkjue2l6v��1n~}U{�nhe�e�iu½
{�nh}�¿ÁØ>Ðk�z�<�hè¤Å(Ò��~êÇ�Uo�juoZ� �Ug�fhg�na�zfhfaÏZ����R��SëzÏ

Ø¾g�n~}Kç�Ï���x�g�o��ZÏ�g�nh� [±thg�n~}���Ï�¿Pë������SÅÛ��Þ~oUiul�g���g�yz½
jut~oUiu{|×2g�ju{|o�n�g��|�|o�È2gsjm{�oUn�g�f~f~imoUgUÈ�t~e2v¯pÎo�i0f�e�iml6{|vmvu{�oUnz½
iuoU��e/gUvuvu{|}�n~l6e�nSj�v6yhvk{|n~}Öime���gsjm{�oUnhg���g���}Ue��~i�g¾o�f�e�iu½
gsjm{�oUnhv��"3 | �üð1imozÈ(e�e¤�z{|n~}UvÚo�p�jmt~eìè���jmtí��yZv�jmimg���{�g�n
d4g�jmg��hg�vue*xAo�n~pÎe�ime�nhÈ�e'�'d�xNë��U���~Ò|���'�ze2�|g�{|�zeU�S�'yhvk½
jui�g��|{|ghÏ

Ø¾g�n~}/ç�Ï|�<x�g�o��ZÏ�� [�thg�nh}���ÏA¿_ë��U�U��Å(� �ü�
Ëhe�Ì�{|�~�|e�fhgº�S½
l6e�nSj�vuÈ�the�l6e�g�nh�K{�j�v�imo��|e#�Zg�vue2�¾g�È�È�e2vmvÇÈ(o�nSjmiuoU�PÒ|�

��	�	� �ov<{ |�0K{>.�1V3Mx�|�0Sx�|�
=|Jx
�Ey9z�U'}Uz\{�|�U ,d{411{ � |&�
};3 |wz�z0v23 |b} ß �0¿Á�SÅÛ�z��ë���R��U� �~Ï

Ø¾g�n~} ç�Ï�� ��y~n �1Ï|� x�g�o �ZÏ�� g�nh� [�thg�n~} �#Ï
¿Pë�������ÅÛ���'n~o�n���l6o�yhv�gUÈ�È(e¤vuv,vmÈ�t~e�l6e�pÎo�i�e2��e¤ÈÛjmiuoUn~{|È(½
vke2iu��{�È(e¤v � 3 |��üð1imozÈ(e2e2�z{|n~}Uv o�p jmt~e �N��e�nSj��S½
��e��Ue�nSjut �'yhvkjui�g���g�vu{|g�nòxAo�l6f~yzjme�i>�zÈ({|e�nhÈ�e xAoUnz½
pÎe�ime�nhÈ�eí¿Á�'xN�ZxNë������SÅ(Ò���d4y~n~e¤�z{|na��æ�e�� [±e2g���g�nZ�¯�
f~faÏZë�é���R����S�zÏ

Ø¾g�n~}�ç�Ï|�Ú��y~n
�1Ï|�.[±thg�n~} ��Ï|��g�nZ�bx�g�o �ZÏ6¿_ë��U�U��Å(�
��yzjmt~o�im{|×2gsjm{�oUn ���|}�o�im{�jut~l�v]pÎoUiXjut~eIq%o��h{��|{�j�� o�p
�'vue�iu½D¼�o��|e/¼�e���gsjm{�oUnhvkth{�fa� 3 | � ð<iuozÈ�e�e2�~{�n~}Sv6o�p�jmt~e
ë
��jut���yZv�jmimg��|gUvk{�g�nÚxAo�l6f~y~jue�iN�zÈ({|e�nZÈ(eÇxAoUnzpÎe�ime�nZÈ(e
¿Á�'xN�hxNë����S��ÅÛÒ|�3æ'e��NÈ�gUv�jm��eU�§�'yhv�jmimg���{�g~�§f~faÏ§è ��#'R
è�#��~Ï

Ø]g�n~}�ç�Ï�� [�thg�nh} �#Ï��%x�g�o �ZÏ�g�nZ�bê�g�l��hgº�Sg�thvu{���Ï
¿_ë������SÅ(� �ü�W}U��oU�hg��0ju{�È�Ô�e(ju½_�Zg�vue2�%g�È2È(e¤vuv�vmÈ�t~e2l#e�pÎo�i
l6o��h{��|e3yZvke2imv2Ò�� 	 N�z�.�3M{�y
 0Q0QR�z x |������KzQ.�1 ��� v23MzK|�11z�U
53y 3MzK|�1�� 	 z0v3��z0v
 |517zKv�|Jz�1 � |&��3 v<x�| "�zK|�1�0$2
 |7�0x v3"�{��
1V3Mx�| 	
 0217z�" 0��*v<x�|51�3MzKvQ0 = ¿�èºÅÛ�~�S��RS�$�~Ï

Ø]g�n~}ìç�Ï|�;[�thg�n~}��#Ï���x�g�o
�ZÏ�g�nh� 1g�i�g��~thg�i�gsïkg�n! �Ï
¿_ë����U�UÅ(� �ü�'È�t~{|e���{|n~}�vue2È(yhiue'g�nh�#Ëhe�Ì�{|�~�|e'l#½Ñvke2iu��{�È(e2v
jmt~iuoUy~}�tÇjm{|È�ÔUe(j�v�Ò|�
��	�	� �Wv<{ |�0K{>.�1�3Mx |�0Sx�| 	
 0211z " 0$2
�`{�|&2S{ |�U 5
 ��zKv�|Jz�1V3�.20$2 (S{�v21 �.2 	 N�zQ.'3M{ y�3S0Q02R�z�x�|
� � 	 zKv3��3�.�z'0AfhfaÏ ��é�#'R #s���hÏ

�<g�o¾Ø�Ï|��q%o�oz�z�Ùê6Ï1g�nh� ^�gUÈ(oUn
�ZÏ'¿Pë����hè¤ÅÛ���cl6o��~e��
o�p±oSg�vu{|v,imo��|e(½D�hgUvke¤��gUÈ�È(e¤vuv<È(o�nSjmiuoU�hg�nh�6{�jmvAvkyhf~fZoUikj
pÎoUi,gUÈÛjm{��Ue�vue2È�y~iu{�j�����3 | �üð1imozÈ(e2e2�z{|n~}UvGo�p±�'x�q �z�Sl#½
f�oUvu{�yhlWo�n6�'È2È(e¤vuvAxAoUnSjuimo��zq%oz�ze���v1g�nh�6�0e¤È�t~n~o��|o�½
}U{�e¤v�Ò|�zf~faÏaè #�è0R�è��hè�Ï

[�tZg�n~}Ú�<Ï��¯�'t~n]#Ï|�ag�nh�¾xAtSy ^*Ï�¿_ë����hè¤Å(��� iuyh��e�½_�hgUvke¤�
pÎi�g�l6e���o�imÔ�pÎoUiÍimo��|e(½D�hg�vue2�b�ze��|e�}Sgsjm{�oUna� 3 | �üð1imo�½
È�e�e2�~{�n~}Sv�o�p��'x�q ����l#f�oUvu{|y~l	oUn �4È�È�e2vmvrxAo�nz½
jmiuoU��q%oz�ze2�|vNg�nh���Ge2È�t~n~oU��oU}�{|e2v4¿P�z�'x�q/���Ië��U�~è¤Å(Ò��
xAthg�nSju{|���|��� ,���~fhfaÏaè¤����R±è �Uë~Ï

[�tZg�n~}§�1Ï|�±�'t~n]#Ï��ag�nh�¾xAt�yZ^*Ï�¿Pë����Së�ÅÛ�±� iuoU��e�½_�hgUvke¤�
�ze2��e2}Ug�ju{|o�n#pÎimg�l6e���o�imÔ�pÎo�iAt~e2g���jmthÈ�g�iue�{|nzpÎo�iml�gsjm{�oUn
vu�zv�jme�l�v���3 | � ð<iuozÈ�e�e2�~{�n~}Sv�o�p¯�'x�qc�z�Sl6f�oUvu{�yhl oUn
�4È�È(e¤vuv�xAo�nSjmiuoU�Gq%oz�ze2�|vÇg�nZ�r�Ge2È�t~n~oU��oU}�{|e2v�¿_�z�'x<½
q/��� ë��U�UëUÅÛÒ|��q/o�nSjue2iue2���Zx����hf~faÏaèºë���R±è2���hÏ

CRPIT Volume 48

328

Author Index

Addie, Ron, 321
Allison, Lloyd, 103
Arwin, Christian, 277

Bittner, Sven, 197
Bubendorfer, Kris, 147
Buchanan, George, 207

Calder, Paul, 227
Chen, Yi-Ping Phoebe, 237
Choi, Eric H.C., 49
Chong, Suan Khai, 63
Chow, Yang-Wai, 217
Churcher, Neville, 267
Cikara, S., 127
Cook, Carl, 267

Dasgupta, Aniruddha, 121
Dekeyser, Stijn, 321
Dobbie, Gillian, iii

Estivill-Castro, Vladimir, iii
Everts, Timothy J., 247

Farr, Graham, 63
Faulconbridge, Ian, 43
Fidge, Colin, 303
Frost, Laura, 63

Ghose, Aditya K., 121
Ghosh, Ranadhir, 95

Hawley, Simon, 63
Hayward, Ross, 85
He, Q., 113
Hinze, Annika, 177, 197, 207, 257
Hsieh, Min-Sheng (Peter), 25
Huang, F.Y., 287

Izu, Cruz, 137

Jøsang, Audun, 85
Jay, C. Barry, 287, 297
Johnson, Chris R., 3

Kang, Byeong Ho, 247

Li, Jiuyong, 321
Liu, Chuchang, 69
Lu, Feng, 147
Lu, J., 113

Maj, S.P., 127
Majumdar, Anirban, 187
Malik, Petra, 257
Malik, Robi, 257

Masuda, Sumio, 77
McComb, Tim, 303
Melton, Hayden, 35
Mendiratta, Veena B., 55
Michel, Yann, 177
Murdaca, Clara, 297
Murphy, Eamonn, 55

Nocke, Thomas, 157

Ofoghi, Bahadorreza, 95
Orgun, Mehmet A., 69

Park, Sung Sik, 247
Parnas, David L., 55
Penev, Alex, 167
Pham, Binh, 237
Phillips, James, 217
Pickering, Mark, 43
Pope, Simon, 85
Pose, Ronald, 217

Reeve, Greg, 13
Reeves, Steve, 13
Regan, Matthew, 217
Ryan, Mike, 43

Schlieder, Torsten, 177
Schulz, Hans-Jörg, 157
Schumann, Heidrun, 157
Shaw, D.T., 127
Shi, Z., 113
Skillicorn, D.B., 287

Tahaghoghi, S.M.M., 277
Tempero, Ewan, 25, 35
Thomborson, Clark, 187
Tjondronegoro, Dian, 237
Tokoro, Ken, 77

Vallance, Scott, 227
Vasudevan, Amit, 311
Vilkomir, Sergiy A., 55

Wang, Hua, 321
Watson, Richard, 321
Weinstein, David M., 3
Wong, Raymond, 167

Yamaguchi, Kazuaki, 77
Yearwood, John, 95
Yerraballi, Ramesh, 311

Zhang, G., 113
Zheng, Z., 113

Computer Science 2006 - Proc. Twenty-Ninth Australasian Computer Science Conference (ACSC2006)

329

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 41 - Theory of Computing 2005
Edited by Mike Atkinson, University of Otago, New
Zealand and Frank Dehne, Griffith University, Aus-
tralia. January, 2005. 1-920-68223-6.

Contains the papers presented at the Eleventh Computing: The Australasian Theory Sympo-
sium (CATS2005), Newcastle, NSW, Australia, January/February 2005.

Volume 42 - Computing Education 2005
Edited by Alison L. Young, UNITEC, New Zealand
and Denise Tolhurst, University of New South Wales,
Australia. January, 2005. 1-920-68224-4.

Contains the papers presented at the Seventh Australasian Computing Education Conference
(ACE2005), Newcastle, NSW, Australia, January/February 2005.

Volume 43 - Conceptual Modelling 2005
Edited by Sven Hartmann, Massey University, New
Zealand and Markus Stumptner, University of South
Australia. January, 2005. 1-920-68225-2.

Contains the papers presented at the Second Asia-Pacific Conference on Conceptual Modelling
(APCCM2005), Newcastle, NSW, Australia, January/February 2005.

Volume 44 - ACSW Frontiers 2005
Edited by Rajkumar Buyya, University of Mel-
bourne, Paul Coddington, University of Ade-
laide, Paul Montague, Motorola Australia Software
Centre, Rei Safavi-Naini, University of Wollon-
gong, Nicholas Sheppard, University of Wollongong
and Andrew Wendelborn, University of Adelaide.
January, 2005. 1-920-68226-0.

Contains the papers presented at the Australasian Workshop on Grid Computing and e-
Research (AusGrid 2005) and the Third Australasian Information Security Workshop (AISW
2005), Newcastle, NSW, Australia, January/February 2005.

Volume 45 - Information Visualisation 2005
Edited by Seok-Hee Hong NICTA, Australia.
January, 2005. 1-920-68227-9.

Contains the papers presented at the Asia-Pacific Symposium on Information Visualisation,
APVis.au, Sydney, Australia, January 2005.

Volume 46 - ICT in Education
Edited by Graham Low University of New South
Wales, Australia. October, 2005. 1-920-68228-7.

Contains selected refereed papers presented at the South East Asia Regional Computer Con-
federation (SEARCC) 2005: ICT Building Bridges Conference, Sydney, Australia, September
2005.

Volume 47 - Safety Critical Systems and Software 2004
Edited by Tony Cant, University of Queensland.
March, 2005. 1-920-68229-5.

Contains all papers presented at the Ninth Australian Workshop on Safety-Related Pro-
grammable Systems, (SCS2004), Brisbane, Australia, October 2004.

Volume 48 - Computer Science 2006
Edited by Vladimir Estivill-Castro, Griffith Uni-
versity and Gillian Dobbie, University of Auckland,
New Zealand. January, 2006. 1-920-68230-9.

Contains the papers presented at the Twenty-Ninth Australasian Computer Science Conference
(ACSC2006), Hobart, Tasmania, Australia, January 2006.

Volume 49 - Database Technologies 2006
Edited by Gillian Dobbie, University of Auckland,
New Zealand and James Bailey, University of Mel-
bourne. January, 2006. 1-920-68231-7.

Contains the papers presented at the Seventeenth Australasian Database Conference
(ADC2006), Hobart, Tasmania, Australia, January 2006.

Volume 50 - User Interfaces 2006
Edited by Wayne Piekarski, University of South
Australia. January, 2006. 1-920-68232-5.

Contains the papers presented at the Seventh Australasian User Interface Conference
(AUIC2006), Hobart, Tasmania, Australia, January 2006.

Volume 51 - Theory of Computing 2006
Edited by Barry Jay UTS, Australia and Joachim
Gudmundsson, NICTA, Australia. January, 2006.
1-920-68233-3.

Contains the papers presented at the Twelfth Computing: The Australasian Theory Symposium
(CATS2006), Hobart, Tasmania, Australia, January 2006.

Volume 52 - Computing Education 2006
Edited by Denise Tolhurst, University of New South
Wales, Australia and Samuel Mann, Otago Poly-
technic, Otago, New Zealand. January, 2006. 1-920-
68234-1.

Contains the papers presented at the Eighth Australasian Computing Education Conference
(ACE2006), Hobart, Tasmania, Australia, January 2006.

Volume 53 - Conceptual Modelling 2006
Edited by Markus Stumptner, University of South
Australia, Sven Hartmann, Massey University, New
Zealand and Yasushi KiyokiKeio University, Japan.
January, 2006. 1-920-68235-X.

Contains the papers presented at the Third Asia-Pacific Conference on Conceptual Modelling
(APCCM2006), Hobart, Tasmania, Australia, January 2006.

Volume 54 - ACSW Frontiers 2006
Edited by Rajkumar Buyya, University of Mel-
bourne, Tianchi Ma, University of Melbourne,
Rei Safavi-Naini, University of Wollongong, Chris
Steketee, University of South Australia and Willy
Susilo, University of Wollongong. January, 2006. 1-
920-68236-8.

Contains the papers presented at the Fourth Australasian Workshop on Grid Computing and
e-Research (AusGrid 2006) and the Fourth Australasian Information Security Workshop (AISW
2006), Hobart, Tasmania, Australia, January 2006.

Volume 55 - Safety Critical Systems and Software 2005
Edited by Tony Cant, University of Queensland.
Late 2005. 1-920-68237-6.

Contains all papers presented at the 10th Australian Workshop on Safety Related Pro-
grammable Systems, August 2005, Sydney, Australia.

Volume 56 - Visual Information Processing 2005
Edited by Hong Yan, City University of Hong Kong,
Jesse Jin, University of Newcastle, Australia, Zhi-
qiang Liu, City University of Hong Kong and Daniel
Yeung, Hong Kong Polytechnic University. Late 2005.
1-920-68238-4.

Contains papers from the Asia-Pacific Workshop on Visual Information Processing (VIP2005),
Hong Kong, December 2005.

Volume 57 - Multimodal User Interaction 2005
Edited by Fang Chen and Julien Epps National
ICT Australia. December, 2005. 1-920-68239-2.

Contains the proceedings of the Multimodal User Interaction Workshop 2005, NICTA-HCSNet,
Sydney, Australia, 13-14 September 2005.

Volume 58 - Advances in Ontologies 2005
Edited by Thomas Meyer, National ICT Australia,
Sydney and Mehmet Orgun Macquarie University.
December, 2005. 1-920-68240-6.

Contains the proceedings of the Australasian Ontology Workshop (AOW 2005), Sydney, Aus-
tralia, 6 December 2005.

CRPIT Volume 48

330

	Headers.pdf
	P01CRPITV48Johnson.pdf
	p02 FullPapers.pdf
	P02CRPITV48Reeve.pdf
	P02ZZZ.pdf
	P03CRPITV48Hsieh.pdf
	P03ZZZ.pdf
	P04CRPITV48Melton.pdf
	P04ZZZ.pdf
	P05CRPITV48Faulconbridge.pdf
	P06CRPITV48Choi.pdf
	P07CRPITV48Vilkomir.pdf
	P07ZZZ.pdf
	P08CRPITV48Chong.pdf
	P09CRPITV48Liu.pdf
	P10CRPITV48Tokoro.pdf
	P10ZZZ.pdf
	P11CRPITV48Josang.pdf
	P12CRPITV48Ofoghi.pdf
	P12ZZZ.pdf
	P13CRPITV48Allison.pdf
	P13ZZZ.pdf
	P14CRPITV48Zheng.pdf
	P15CRPITV48Dasgupta.pdf
	Introduction
	Motivation
	Agent Programming with CASO
	Operational Semantics of CASO
	Plan selection
	Incremental Resolving of CSOPs

	Intention Selection and Execution

	Comparison and Conclusion

	P16CRPITV48Cikara.pdf
	Introduction
	Network Performance
	B-Nodes
	The Internet Protocol (IP)
	IP Overhead

	B-Node Efficiency Decomposition
	Device Sub-Optimal operation and its effect on Bandwidth

	Empirical Validation
	Initial Benchmarking
	Initial Benchmark Results (PC to PC)

	Layer 2 Device Measurement
	Single Switch Experiments
	Dual Switch Experiments

	Layer 3 Devices
	Single Router Experiments
	Dual Router Experiments

	B-Node Network Performance Analysis
	Conclusion

	References

	P17CRPITV48Izu.pdf
	P17ZZZ.pdf
	P18CRPITV48Lu.pdf
	P19CRPITV48Schulz.pdf
	P20CRPITV48Penev.pdf
	Introduction
	Background
	Search Engines
	JASE
	Google's API
	Problem Domain

	System Overview
	SearchTerms, a link between Phases
	Weighting

	Phase One
	Detecting Keywords and Keyphrases
	Detecting a domain restriction and numerical ranges

	Phase Two
	Relevance Measure and Heuristics
	Overall Score of a Document
	Reranking Documents

	Evaluation
	Accuracy
	Performance

	Related Work
	Conclusions
	Appendix: Sample

	P21CRPITV48Hinze1.pdf
	P21ZZZ.pdf
	P22CRPITV48Majumdar.pdf
	P23CRPITV48Bittner.pdf
	P24CRPITV48Hinze2.pdf
	P24ZZZ.pdf
	P25CRPITV48Chow.pdf
	P26CRPITV48Vallance.pdf
	P26ZZZ.pdf
	P27CRPITV48Tjondronegoro.pdf
	P28CRPITV48Everts.pdf
	P29CRPITV48Hinze3.pdf
	P30CRPITV48Cook.pdf
	P31CRPITV48Arwin.pdf
	P32CRPITV48Huang.pdf
	P32ZZZ.pdf
	P33CRPITV48Murdaca.pdf
	P34CRPITV48Fidge.pdf
	P35CRPITV48Vasudevan.pdf
	Introduction
	Framework Overview
	Design and Implementation
	Payloading
	Invisi-Drift
	Localized-Executions
	Redirection
	SPiKE API
	Stealth Techniques

	Experience
	Performance Evaluation
	Latency Without Instrumentation
	Latency With Instrumentation
	Memory Consumption
	Framework Comparison

	Background and Related Work
	Conclusions

	P36CRPITV48Wang.pdf
	Trailers.pdf

