
Conferences in Research and Practice in
Information Technology

Volume 147

Computer Science 2014

Australian Computer Science Communications, Volume 36, Number 1

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

Computer Science 2014

Proceedings of the
Thirty-Seventh Australasian Computer Science Conference
(ACSC 2014), Auckland, New Zealand,
20 – 23 January 2014

Bruce Thomas and Dave Parry, Eds.

Volume 147 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Computer Science 2014. Proceedings of the Thirty-Seventh Australasian Computer Science Conference
(ACSC 2014), Auckland, New Zealand, 20 – 23 January 2014

Conferences in Research and Practice in Information Technology, Volume 147.

Copyright c©2014, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editor:

Bruce Thomas
School of Computer and Information Science
Division of Information Technology, Engineering and the Environment
University of South Australia
Adelaide, SA 5001
Australia
Email: bruce.thomas@unisa.edu.au

Dave Parry
School of Computing and Mathematical Sciences
AUT University
Auckland 1142
New Zealand
Email: dave.parry@aut.ac.nz

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
Simeon J. Simoff, University of Western Sydney, NSW
Email: crpit@scem.uws.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 147.
ISSN 1445-1336.
ISBN 978-1-921770-30-2.

Document engineering, January 2014 by CRPIT
On-line proceedings, January 2014 by the University of Western Sydney
Electronic media production, January 2014 by the AUT University

The Conferences in Research and Practice in Information Technology series disseminates the results of peer-reviewed
research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Thirty-Seventh Australasian Computer Science Conference
(ACSC 2014), Auckland, New Zealand, 20 – 23 January 2014

Preface . vii

Programme Committee . viii

Organising Committee . ix

Welcome from the Organising Committee . x

CORE - Computing Research & Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xiii

ACSW and ACSC 2014 Sponsors . xv

Contributed Papers

An Adaptive Aggregate Maintenance Approach for Mixed Workloads in Columnar In-Memory Databases 3
Stephan Müller, Lars Butzmann, Stefan Klauck and Hasso Plattner

Combining the Shortest Paths and the Bottleneck Paths Problems . 13
Tong-Wook Shinn and Tadao Takaoka

Lazy and Eager Approaches for the Set Cover Problem . 19
Ching Lih Lim, Alistair Moffat and Anthony Wirth

Towards a Vertex and Edge Label Aware Force Directed Layout Algorithm . 29
Roman Klapaukh, David J Pearce and Stuart Marshall

DAC: Database Application Context Analysis applied to Enterprise Applications 39
Johannes Wust, Carsten Meyer and Hasso Plattner

Shape Predicates Allow Unbounded Verification of Linearizability Using Canonical Abstraction 49
David Friggens and Lindsay Groves

Document DNA: Content Centric Provenance Data Tracking in Documents . 57
Michael Rinck, Annika Hinze and David Bainbridge

Exploring the applicability of Reservoir methods for Classifying Punctual Sports Activities Using
On-body Sensors . 67

Doug P. Hunt, Dave Parry and Stefan Schliebs

A Comparative Study of RFID Technology Measuring Effciency and Acceptance when Capturing
Attendance . 75

Steven Tucker, Peter Darcy and Bela Stantic

A Trigger Counting Mechanism for Ring Topology . 81
Sushanta Karmakar and Subhrendu Chattopadhyay

Formal Approach for Generating Privacy Preserving User Requirements-Based Business Process Frag-
ments . 89

Mohamed Anis Zemni, Amel Mammar and Nejib Ben Hadj-Alouane

Poisson Blended Exemplar-based Texture Completion . 99
Hoang M. Nguyen, Burkhard C. Wünsche, Patrice Delmas and Christof Lutteroth

A Replication and Reproduction of Code Clone Detection Studies . 105
Xiliang Chen, Alice Yuchen Wang and Ewan Tempero

Mining Indonesian Cyber Bullying Patterns in Social Networks . 115
Hendro Margono, Xun Yi and Gitesh K. Raikundalia

Current Educational Technology Use for Digital Information Acquisition by Young New Zealand
Children . 125

Nicholas Vanderschantz, Annika Hinze and Sally Jo Cunningham

Understanding Saudi Arabian students engagement in E-learning 2.0 in Australian Higher Education 135
Omar Mayan, Judy Sheard and Angela Carbone

Author Index . 145

vi

Preface

The Australasian Computer Science Conference (ACSC) series is an annual meeting, bringing together
research sub-disciplines in Computer Science. The conference allows academics and other researchers to
discourse research topics as well as progress in the field, and policies to stimulate its growth. This conference
is unique in its ability to provide a platform for cross-disciplinary research. This volume comprises papers
being presented at the Thirty-Seventh ACSC in Auckland, New Zealand.

ACSC 2014 is part of the Australasian Computer Science Week which runs from January 20th to
23rd, 2014. The ACSC 2014 call for papers solicited 37 submissions from Australia, New Zealand, Czech
Republic, France, Germany, India, Indonesia, Malaysia, Poland, Slovenia, Taiwan, Thailand, Tunisia, and
United Kingdom.

The topics addressed by the submitted papers illustrate the broadness of the discipline. These included
algorithms, databases virtualisation, document retrieval, ubiquitous computing, wearable computing, net-
working, privacy, image processing, software engineering, social media, and education, to name just a few.

The programme committee consisted of 32 highly regarded academics from Australia, New Zealand,
Italy, Japan, China, and Korea. Every paper was reviewed by at least three programme committee members,
and, in some cases, external reviewers. Of the 37 papers submitted, 16 were selected for presentation at
the conference.

The Programme Committee determined that the “Best Paper Award” should go to Justin Nguyen,
Burkhard Wünsche, Patrice Delmas and Christof Lutteroth. For “Poisson Exemplar-based Texture Com-
pletion” Congratulations !

We thank all authors who submitted papers and all conference participants for helping to make the
conference a success. We also thank the members of the programme committee and the external referees for
their expertise in carefully reviewing the papers. We are grateful to Dr. Russell Pears from the Auckland
University of Technology, New Zealand for his assistance in the production of the proceedings. I thank
Professor John Grundy (President) for his support representing CORE (the Computing Research and
Education Association of Australasia).

Last, but not least, we express gratitude to our hosts at the Auckland University of Technology and,
in particular the ACSW general chairs Tony Clear and Russel Pears.

Bruce Thomas
University of South Australia

Dave Parry
Auckland University of Technology

ACSC 2014 Programme Chairs
January 2014, Auckland, New Zealand

vii

Programme Committee

Chairs

Bruce Thomas, University of South Australia, Australia
Dave Parry, Auckland University of Technology, New Zealand

Members

Matt Adcock, CSIRO, Australia
Boris Bačić, Auckland University of Technology, New Zealand
Fred Brown, University of Adelaide, Australia
Kuda Dube, Massey University, New Zealand
Julien Epps, University of New South Wales, Australia
Ken Hawick, Massey University, New Zealand
Michael E. Houle, National Institute of Informatics, Japan
Zhiyi Huang, University of Otago, New Zealand
Weidong (Tony) Huang, CSIRO, Australia
Shuji Kijima, Kyushu University, Japan
Paddy Krishnan, Bond University, Australia
Jiuyong Li, University of South Australia, Australia
Jixue Liu, University of South Australia, Australia
William Liu
Michael Marner, University of South Australia, Australia
Wolfgang Mayer, University of South Australia, Australia
Chris McDonald, University of Western Australia, Australia
Muhammad Asif Naeem, Auckland University of Technology, New Zealand
Linda Pagli, University of Pisa, Italy
Maurice Pagnucco, University of New South Wales, Australia
Jun Park, Magic Vision Lab, University of South Australia, Australia
Yuping Shen, Institute of Logic and Cognition, Department of Philosophy, Sun Yat-sen University, China
James Skene, Auckland University of Technology, New Zealand
Tim Simon, University of South Australia, Australia
Markus Stumptner, University of South Australia, Australia
Ewan Tempero, University of Auckland, New Zealand
Burkhard C. Wüensche, University of Auckland, New Zealand
Hua Wang, University of Southern Queensland, Australia
Ruili Wang, Massey University, New Zealand
Xinfeng Ye, University of Auckland, New Zealand
Jianlong Zhou, University of South Australia, Australia

Additional Reviewers

Quan Yu
Selasi Kwashie
Duncan Stevenson
Viveka Weiley
Lili Sun
Chris Gunn

A H M Sarowar Sattar
Lili Sun
Hamidu Abdel-Fatao
Guangrui Dang
S. M. Masud Karim

viii

Organising Committee

Chairs

Tony Clear and Russel Pears

Venue

Tony Clear

Communications

Russel Pears, Hui Ling Tan, Melanie Curry-Irons and Ryan Butler

Finance

Alison Clear and Eva Ihaia

Sponsorship

Stephen Thorpe

Operations

Adam Winship and Eva Ihaia

Programme, proceedings and booklet

Alison Clear

Catering and registration

AUT Hospitality Services

ix

Welcome from the Organising Committee

On behalf of the Organising Committee, it is our pleasure to welcome you to Auckland and to the 2014
Australasian Computer Science Week (ACSW 2014). Auckland is New Zealand’s largest urban area with
a population of nearly one and a half million people. As the centre of commerce and industry, Auckland is
the most vibrant, bustling and multicultural city in New Zealand. With the largest Polynesian population
in the world, this cultural influence is reflected in many different aspects of city life. ACSW 2014 will be
hosted at the City Campus of Auckland University of Technology (AUT), which is situated just up from the
Town Hall and the Auckland central business district. ACSW is the premier event for Computer Science
researchers in Australasia. ACSW2014 consists of conferences covering a wide range of topics in Computer
Science and related areas, including:

– Australasian Computer Science Conference (ACSC) (Chaired by Bruce Thomas and Dave Parry)
– Australasian Computing Education Conference (ACE) (Chaired by Jacqueline Whalley and Daryl

D’Souza)
– Australasian Information Security Conference (AISC) (Chaired by Udaya Parampalli and Ian Welch)
– Australasian User Interface Conference (AUIC) (Chaired by Burkhard C. Wünsche and Stefan Marks)
– Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Bahman

Javadi and Saurabh Kumar Garg)
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by James

Warren)
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Georg Grossmann and Mo-

toshi Saeki)
– Australasian Web Conference (AWC) (Chaired by Andrew Trotman)

This year reflects an increased emphasis for ACSW on community building. Complementing these
published technical volumes therefore, ACSW also hosts two doctoral consortia and a number of associated
workshops, including those for the Heads and Professors of Computer Science, plus for the first time the
‘Australasian Women in Computing Celebration’. Naturally in additional to the technical program, there
are a range of events, which aim to provide the opportunity for interactions among our participants. A
welcome reception will be held in the atrium of the award winning newly built Sir Paul Reeves Building,
which has integrated the city campus as a hub for student activity and provides a wonderful showcase for
this year’s ACSW. The conference banquet will be held on campus in one of the reception rooms in this
impressive complex.

Organising a multi-conference event such as ACSW is a challenging process even with many hands help-
ing to distribute the workload, and actively cooperating to bring the events to fruition. This year has been
no exception. We would like to share with you our gratitude towards all members of the organising com-
mittee for their combined efforts and dedication to the success of ACSW2014. We also thank all conference
co-chairs and reviewers, for putting together the conference programs which are the heart of ACSW, and to
the organisers of the symposia, workshops, poster sessions and accompanying conferences. Special thanks
to Alex Potanin, as the steering committee chair who shared valuable experiences in organising ACSW
and to John Grundy as chair of CoRE for his support for the innovations we have introduced this year.
We’d also like to thank Hospitality Services from AUT, for their dedication and their efforts in conference
registration, venue, catering and event organisation. This year we have secured generous support from
several sponsors to help defray the costs of the event and we thank them for their welcome contributions.
Last, but not least, we would like to thank all speakers, participants and attendees, and we look forward
to several days of stimulating presentations, debates, friendly interactions and thoughtful discussions.

We hope your stay here will be both rewarding and memorable, and encourage you to take the time
while in New Zealand to see some more of our beautiful country.

Tony Clear
Russel Pears
School of Computer & Mathematical Sciences

ACSW2014 General Co-Chairs
January, 2014

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2014 in Auckland. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of
mutual interest. The component conferences of ACSW have changed over time with additions and sub-
tractions ACSC, ACE, AISC, AUIC, AusPDC, HIKM, ACDC, APCCM, CATS and AWC have now been
joined by the Australasian women in computing celebration (AWIC), two doctoral consortia (ACDC and
ACE-DC)and an Australasian Early Career Researchers Workshop (AECRW) which reflect the evolving
dimensions of ACSW and build on the diversity of the Australasian computing community.

In 2014, we have again chosen to feature a small number of keynote speakers from across the discipline:
Anthony Robins (ACE), John Mylopolous (APCCM), and Peter Gutmann (AISC). I thank them for their
contributions to ACSW2014. The efforts of the conference chairs and their program committees have led
to strong programs in all the conferences, thanks very much for all your efforts. Thanks are particularly
due to Tony Clear, Russel Pears and their colleagues for organising what promises to be a vibrant event.
Below I outline some of COREs activities in 2012/13.

I welcome feedback on these including other activities you think CORE should be active in.

The major sponsor of Australian Computer Science Week:
– The venue for the annual Heads and Professors meeting
– An opportunity for Australian & NZ computing staff and postgrads to network and help develop their

research and teaching
– Substantial discounts for attendees from member departments
– A doctoral consortium at which postgrads can seek external expertise for their research
– An Early Career Research forum to provide ECRs input into their development

Sponsor of several research, teaching and service awards:
– Chris Wallace award for Distinguished Research Contribution
– CORE Teaching Award
– Australasian Distinguished Doctoral Dissertation
– John Hughes Distinguished Service Award
– Various Best Student Paper awards at ACSW

Development, maintenance, and publication of the CORE conference and journal rankings. In 2013 this
includes a new portal with a range of holistic venue information and a community update of the CORE
2009 conference rankings.

Input into a number of community resources and issues of interest:
– Development of an agreed national curriculum defining Computer Science, Software Engineering, and

Information Technology
– A central point for discussion of community issues such as research standards
– Various submissions on behalf of Computer Science Departments and Academics to relevant government

and industry bodies, including recently on Australian Workplace ICT Skills development, the Schools
Technology Curriculum and the Mathematics decadal plan

Coordination with other sector groups:
– Work with the ACS on curriculum and accreditation
– Work with groups such as ACDICT and government on issues such as CS staff performance metrics

and appraisal, and recruitment of ?students into computing
– A member of CRA (Computing Research Association) and Informatics Europe. These organisations

are the North American and European equivalents of CORE.
– A member of Science & Technology Australia, which provides eligibility for Science Meets Parliament

and opportunity for input into government policy, and involvement with Science Meets Policymakers

A new Executive Committee from 2013 has been looking at a range of activities that CORE can lead
or contribute to, including more developmental activities for CORE members. This has also included a
revamp of the mailing lists, creation of discussion forums, identification of key issues for commentary and
lobbying, and working with other groups to attract high aptitude students into ICT courses and careers.
Again, I welcome your active input into the direction of CORE in order to give our community improved
visibility and impact.

CORE’s existence is due to the support of the member departments in Australia and New Zealand,
and I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am
grateful to all those who gave their time to CORE in 2013, and look forward to the continuing shaping
and development of CORE in 2014.

John Grundy

President, CORE
January, 2014

xii

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2015. Volume 37. Host and Venue - University of Western Sydney, NSW.

2014. Volume 36. Host and Venue - AUT University, Auckland, New Zealand.

2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.
2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.
2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.
2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.
2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACDC Australasian Computing Doctoral Consortium
ACE Australasian Computing Education Conference
ACSC Australasian Computer Science Conference
ACSW Australasian Computer Science Week
ADC Australasian Database Conference
AISC Australasian Information Security Conference
APCCM Asia-Pacific Conference on Conceptual Modelling
AUIC Australasian User Interface Conference
AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
AWC Australasian Web Conference
CATS Computing: Australasian Theory Symposium
HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections

in respective CRPIT volumes.

xiv

ACSW and ACSC 2014 Sponsors

We wish to thank the following sponsors for their contribution towards this conference.

Host Sponsor

Auckland University of Technology,
www.aut.ac.nz

Platinum Sponsor

DATACOM,
www.datacom.com.au

Gold Sponsor

T
he

 U
ni

ve
rs

it
y

of
 A

uc
kl

an
d

N
ew

 Z
ea

la
nd

Profile
the university of aucklanD

T
he

 U
ni

ve
rs

it
y

of
 A

uc
kl

an
d

P
ro

fil
e

20
07

-8

The University of Auckland,
www.auckland.ac.nz

Silver Sponsors

COLAB - AUT Design+Creative Technologies,
colab.aut.ac.nz

Institute of IT Professionals, New Zealand,
www.iitp.org.nz

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

CORE - Computing Research and Education,
www.core.edu.au

Bronze Sponsor

SERL - AUT Software Engineering Research
Laboratory,

www.serl.aut.ac.nz

Australian Computer Society,
www.acs.org.au

Publication Sponsor

University of Western Sydney,
www.uws.edu.au

xv

Contributed Papers

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

1

CRPIT Volume 147 - Computer Science 2014

2

An Adaptive Aggregate Maintenance Approach
for Mixed Workloads in Columnar In-Memory Databases

Stephan Müller Lars Butzmann Stefan Klauck Hasso Plattner

Hasso Plattner Institute
University of Potsdam, Germany

August-Bebel-Str. 88, 14482, Potsdam
Email: {firstname.lastname}@hpi.uni-potsdam.de

Abstract

The mixed database workloads generated by en-
terprise applications can be categorized into short-
running transactional as well as long-running analyt-
ical queries with resource-intensive data aggregations.
The introduction of materialized views can accelerate
the execution of aggregate queries significantly. How-
ever, the overhead of materialized view maintenance
has to be taken into account and varies mainly de-
pending on the ratio of queries accessing the materi-
alized view to queries altering the base data, which
we define as insert ratio. On the basis of our con-
structed cost models for the identified materialized
view maintenance strategies, we can determine the
best performing strategy for the currently monitored
workload. While a naive switching approach already
improves the performance over staying with a single
maintenance strategy, we show that an adaptive ag-
gregate maintenance approach with inclusion of the
workload history and switching costs can further im-
prove the overall performance of a mixed workload.
This behavior is demonstrated with benchmarks in a
columnar in-memory database.

1 Introduction

Despite the accustomed association of online transac-
tional processing (OLTP) and online analytical pro-
cessing (OLAP) with separate applications, a mod-
ern enterprise application executes a mixed workload
with both – transactional and analytical – queries [19,
20]. For example, within the available-to-promise
(ATP) application, the OLTP-style queries represent
product stock movements whereas the potentially
very resource-intensive OLAP-style queries aggregate
over the product movements to determine the earliest
possible delivery date for requested goods by a cus-
tomer [24]. To speed up the execution of OLAP-style
queries with aggregates, a technique called material-
ized views has been proposed [23]. Throughout this
paper, we use the term materialized aggregate for a
materialized view whose creation query contains ag-
gregations [22]. Accessing tuples of a materialized
aggregate is always faster than aggregating on the
fly. But the main drawback of introducing material-
ized views is the process of view maintenance which
is necessary to guarantee consistency when the base
data is changed [10]. Especially in mixed workload

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

environments, where transactional throughput must
be guaranteed, a downtime due to materialized view
maintenance is not acceptable.

In-memory databases (IMDB) such as SAP
HANA [19], Hyrise [9] or Hyper [13] are able to
handle mixed workloads comprised of transactional
and analytical queries on a single system. In con-
trast to traditional databases, their storage is sepa-
rated into a read-optimized main storage and a write-
optimized delta storage. Since the main storage is
highly-compressed and not optimized for inserts, all
data changes of a table are propagated to the delta
storage to provide high throughput. Periodically, the
delta storage is combined with the main storage in a
process called merge operation [14].

This new storage architecture has implications on
existing materialized view maintenance approaches
which we have evaluated in our recent work [15]. We
showed that IMDBs with a main-delta architecture
are well-suited for a novel view maintenance strat-
egy called merge update [15, 18]. Because of the
main-delta separation, the materialized aggregates do
not have to be invalidated when new records are in-
serted to the delta storage because the materialized
aggregates are only based on data from the main
storage. To retrieve the consistent, final query re-
sult, the newly inserted records of the delta storage
are aggregated on the fly and are combined – us-
ing a SQL UNION statement – with the material-
ized aggregate table. While the merge update strat-
egy outperforms other view maintenance strategies
for workloads with high insert ratios, it is not the
ideal choice for all workloads. Based on this premise,
we showed in [17], that switching between materi-
alized view maintenance strategies can increase the
overall performance compared to staying with a sin-
gle strategy. In this paper, we contribute by propos-
ing more advanced switching approaches that include
a smoothing of the monitored workload patterns and
take switching costs into account. Further, we evalu-
ate how these approaches can be applied to multiple
materialized aggregate tables.

Although we assume that our findings can be
transferred to a wide range of enterprise applications,
we use the available-to-promise (ATP) application as
it provides a mixed workload varying between high se-
lect ratios (when checking for possible delivery dates)
and high insert ratios (stock movements) [24]. In our
implementation, ATP relies on a single, denormalized
table called Facts that contains all stock movements
in a warehouse including past and future orders (Ta-
ble 5a). Every movement consists of an unique trans-
action identifier, the date, the id of the product being
moved, and the amount. The amount is positive if
goods are put in the warehouse and negative if goods
are removed from the warehouse. The materialized

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

3

aggregate based on this table is called Aggregates (Ta-
ble 5b). The aggregate groups the good movements
by date and product and sums up the total amount
per date and product. The ATP application does not
consider physical data updates and uses an insert-only
approach. Logical deletes and updates are handled
through differential inserts. We further manually de-
fine the materialized views and do not address the
view selection problem [11] in the scope of this paper.
We focused on the sum aggregation function as this
is the dominant aggregate function for the TPC-H
benchmark 1.

The remainder of the paper is structured as fol-
lows: Section 2 gives a brief overview of related work.
Section 3 explains view maintenance strategies in de-
tail and describes workload patterns that motivate
our research about switching maintenance strategies.
Section 4 outlines algorithms for maintenance strat-
egy switching before Section 5 benchmarks these and
discusses the results. Section 6 provides an outlook on
future work and concludes the paper with our main
findings.

2 Related Work

Gupta gives a good overview of materialized views
and related issues in [10]. Especially, the problem
of materialized view maintenance has received sig-
nificant attention in academia [6, 4]. Database ven-
dors have also investigated this problem thouroughly
[3, 25] but besides our earlier work [15], there is no
work that evaluates materialized view maintenance
strategies for mixed workloads. Instead, most of the
existing research is focused on data warehousing en-
vironments [26, 1, 12, 16] where maintenance down-
times may be acceptable. Consequently, available
DBMS only provide static view maintenance and sup-
port basic view maintenance strategies.

Chaudhuri et al. highlight in [7] the importance
of automated physical database design including in-
dex and materialized view selection based on changing
workloads. Agrawal et al. extend the definition of a
workload by not only considering the ratios of query
types within a workload, but also their sequence [2].
However, neither of them do address the problem of
materialized view maintenance and how the optimal
maintenance strategy can be chosen based on a chang-
ing workload.

3 Aggregate Maintenance Strategies

In [15], various aggregate maintenance strategies were
presented and evaluated. It was shown that the in-
sert ratio of a workload has the biggest influence on
the execution performance. Figure 1 shows the aggre-
gate maintenance and access times of different main-
tenance strategies for workloads with insert ratios be-
tween 0 and 1. For each single workload, the insert ra-
tio was constant to allow comparisons between them.
For each insert ratio, either smart lazy incremental
update (SLIU) or merge update (MU) has the low-
est workload execution time. SLIU performs best for
read intensive workloads, since only seldom writes,
which change the aggregate, require maintenance ac-
tivities. For workloads with increasing writes (more
than 40 percent inserts), MU outperforms the other
strategies.

However, enterprise workloads are not character-
ized by constant insert ratios. Workloads change and
therefore the best performing maintenance strategy

1http://www.tpc.org/tpch/

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Ti
m

e
in

 m
s

Insert ratio

NoMat
EIU
LIU

SLIU
MU

Figure 1: Aggregate maintenance and access time of
different maintenance strategies for workloads with
different insert ratios.

Table 1: Definition of symbols

Symbol Definition
Ntotal Total number of queries
Ninsert Number of insert queries
Nselect Number of select queries
Ndelta Number of records in delta storage
Rselect Select ratio
Rinsert Insert ratio
Tselect Time to select the aggregate
Tdelta Time to aggregate the delta storage

Tmaintenance Time to maintain the aggregate
Tunion Time to union two results
Tdict Time to read from the dictionary structure

changes. The remainder of the section starts with a
recap of SLIU and MU. The maintenance costs and
switching costs are described to motivate the research
of switching strategies. A definition of symbols used
for the cost function is listed in Table 1. Additionally,
patterns for changing workloads are listed.

3.1 Smart Lazy Incremental Update

Using the smart lazy incremental update (SLIU)
strategy, the maintenance is done when processing
selects querying the materialized aggregate. Thereby,
the where-clause of the query is evaluated and only
aggregates contained in the result set are maintained.
Hence, after processing a select, the requested aggre-
gates are up to date. In order to be able to maintain
the aggregate during a select, one has to store the
changes caused by inserts since the last maintenance
point. This is done in a dictionary, called proxy struc-
ture, storing the difference between the materialized
aggregate and the current correct aggregate for each
combination of grouping values.

Table 2 shows the starting point of a SLIU main-
tenance scenario with a materialized view containing
fresh aggregates based on the base table (c.f. Ta-
bles 2a, 2b). The corresponding proxy structure,
shown in Table 2c, is empty.

Incoming inserts are not immediately included in
the materialized aggregate (c.f. Table 3b). The
resulting changes for the aggregate are temporarily
stored in the proxy structure as shown in Table 3c.

When querying the aggregates table, the mainte-
nance is triggered. Thereby, only requested aggre-
gates are updated using the proxy structure. Af-

CRPIT Volume 147 - Computer Science 2014

4

Table 2: SLIU maintenance: setup

(a) Snapshot of initial base table

Facts
Main Delta

ID Date Prod Amt ID Date Prod Amt
1 1/1/2013 1 100
2 1/1/2013 1 -50
3 1/1/2013 2 30
4 1/1/2013 2 60
5 1/2/2013 1 -10

(b) Fresh materialized aggregate

Aggregates
Date Prod SUM(Amt)

1/1/2013 1 50
1/2/2013 1 -10
1/1/2013 2 90

(c) Empty proxy structure

Proxy structure of Aggregates
Key Value

Date Prod SUM(Amt)

ter selecting the aggregates for product 1, the cor-
responding aggregates are up-to-date and the proxy
struture contains no entries for those grouping values
with product 1 (c.f. Tables 4a, 4b).

Equation 1 shows the costs for a single query using
SLIU. The first summand describes the costs for read
accesses on the materialized aggregate. Tselect is the
average time for a single read of an aggregate. This
time is multiplied by the select ratio Rselect to weight
the costs, since they are not required for inserts. The
costs to maintain the aggregate are calculated by the
second summand. The costs of a single maintenance
activity are Tdict+Tmaintenance. The number of single
maintenance activities increases with an increasing in-
sert ratio Rinsert, since each insert demands a main-
tenance activity when the corresponding aggregate is
requested. However, with an increasing number of in-
serts, the maintenance process can be optimized. The
calculation of the whole maintenance costs is there-
fore divided into two scenarios. With an insert ratio
Rinsert smaller than or equal to 0.5, the maintenance
costs Rinsert ∗ (Tdict + Tmaintenance) are linear. With
an insert ratio greater than 0.5, the average main-
tenance costs decrease due to two facts. First, the
possibility of combining multiple values in the proxy
structure with the same grouping attributes. Second,
a ”bulk” maintenance where all relevant values from
the proxy structure are processed together. This im-
provement is expressed by the optimization function
in Equation 2.

costsSLIU = Rselect ∗ Tselect + optimization(Rinsert)

∗Rinsert ∗ (Tdict + Tmaintenance) (1)

optimization(x) =

{
1 0 <= x <= 0.5
2− 2x 0.5 < x <= 1

(2)

Table 3: SLIU maintenance: after three inserts

(a) Snapshot of base table after three inserts

Facts
Main Delta

ID Date Prod Amt ID Date Prod Amt
1 1/1/2013 1 100
2 1/1/2013 1 -50
3 1/1/2013 2 30
4 1/1/2013 2 60
5 1/2/2013 1 -10

6 1/2/2013 1 20
7 1/1/2013 3 50
8 1/1/2013 3 -10

(b) Materialized aggregate

Aggregates
Date Prod SUM(Amt)

1/1/2013 1 50
1/2/2013 1 -10
1/1/2013 2 90

(c) Proxy structure

Proxy structure of Aggregates
Key Value

Date Prod SUM(Amt)
1/2/2013 1 -10
1/1/2013 3 40

Algorithm 1 Tear down for smart lazy incremental
update strategy

1: procedure SLIU Tear Down(mat aggregate)
2: for all rows row in the proxy structure of

mat aggregate do
3: 〈update the value of the mat aggregate table at

row.key by row.value〉
4: end for
5: 〈delete proxy structure〉
6: end procedure

Setup A proxy structure has to be created to store
the temporary changes caused by inserts.

Tear down All records from the proxy structure
have to be included into the materialized aggregate.
Algorithm 1 explains the required steps in detail.

3.2 Merge Update

The merge update (MU) strategy leverages the exis-
tence of a delta storage in a columnar IMDB. Using
this strategy, the materialized aggregate always con-
sists of the aggregated main storage. Values from the
delta storage, which have been inserted after a merge
operation, are not included in the materialized aggre-
gate. Instead, when querying the aggregate, the data
stored in the delta is aggregated on the fly and com-
bined with the materialized aggregate to represent the
fresh aggregate. With each merge operation [14], the
values from the delta storage are aggregated and the
materialized aggregate table is updated accordingly.

Table 5a shows a table consisting of a main and
delta storage. The materialized aggregate (c.f. Ta-
ble 5b) stores the values of the main storage. When
querying the aggregate, the result (c.f. Table 5c) is
calculated by combining the materialized aggregate
with the on the fly aggregated delta.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

5

Table 4: SLIU maintenance: after querying product 1

(a) Materialized aggregate

Aggregates
Date Prod SUM(Amt)

1/1/2013 1 50
1/2/2013 1 -20
1/1/2013 2 90

(b) Proxy structure

Proxy structure of Aggregates
Key Value

Date Prod SUM(Amt)
1/1/2013 3 40

Algorithm 2 Tear down for merge update strategy

1: procedure MU Tear Down(mat aggregate)
2: base table ← 〈get the base table of mat aggregate〉
3: delta ← 〈get all rows in delta of base table〉
4: aggr delta← 〈aggregate the rows in delta as per

mat aggregate create statement 〉
5: 〈combine mat aggregate table with aggr delta〉
6: end procedure

The merge update strategy only creates costs when
requesting an aggregate. However, since it has to ac-
cess the delta storage, these costs are higher compared
to an aggregate access using SLIU and therefore have
to be included. Equation 3 shows the costs Tselect for
accessing the aggregate, Tdelta for aggregating on the
delta and the costs to combine both results Tunion.

costsMU = Rselect ∗ (Tselect + Tdelta + Tunion) (3)

Setup After a strategy switch to MU, the materi-
alized aggregate is up to date and therefore includes
all records of the main and delta storage. Hence, the
values from the delta storage have to be subtracted
from the materialized aggregate, so that it only con-
tains aggregated main storage records. Alternatively,
a merge can be performed to combine the records of
the delta storage and the main storage. In that case,
the materialized aggregate stays the same.

Tear down The values from the delta storage have
to be included into the materialized aggregate. This
is done by aggregating the records of the delta stor-
age and combine it with the materialized aggregate.
Algorithm 2 explains the process in detail.

The introduced parameters, e.g. time for a
select Tselect and time to maintain the aggregate
Tmaintenance depend on the underlying hardware.
The calibrator introduced in [15] helps to determine
these values.

3.3 Workloads

Workloads are characterized by queries differing in
type and complexity. As our research focuses on ag-
gregate maintenance, we study workloads containing
queries that request or change aggregates. Our mod-
els distinguish two kinds of queries: single inserts
changing the base table and selects querying single
aggregate values. Resulting, the workload can be de-
scribed by the terms insert ratio respectively select
ratio. The insert ratio Rinsert specifies the number

Table 5: MU: calculation of the fresh aggregate

(a) Snapshot of base table

Facts
Main Delta

ID Date Prod Amt ID Date Prod Amt
1 1/1/2013 1 100
2 1/1/2013 1 -50
3 1/1/2013 2 30
4 1/1/2013 2 60
5 1/2/2013 1 -10

6 1/2/2013 1 20
7 1/1/2013 3 50
8 1/1/2013 3 -10

(b) Materialized aggregate: based on main storage

Aggregates
Date Prod SUM(Amt)

1/1/2013 1 50
1/2/2013 1 -10
1/1/2013 2 90

(c) On the fly calculated fresh aggregate

Result when querying Aggregates
Date Prod SUM(Amt)

1/1/2013 1 50
1/2/2013 1 10
1/1/2013 2 90
1/1/2013 3 40

of insert queries in relation to the total number of
queries (Equation 4). Consequently, the select ratio
is 1−Rinsert. These ratios change during a workload
depending on the business application.

Rinsert =
Ninsert

Ntotal
(4)

Rselect = 1−Rinsert (5)

There is no typical workload for enterprises as they
have different business applications implying different
database schema and queries. We use a randomized
workload pattern, called random walk, as general pat-
tern for enterprise workloads. Additionally, more reg-
ular patterns like periodic, linear and hard switching
changes are employed. In the following, we character-
ize these patterns with its configuration parameters.

3.3.1 Random Walk

Enterprise workloads differ and cannot be described
by a single workload pattern. To match many differ-
ent scenarios, we use a configurable randomized work-
load. The insert ratio of the workload randomly in-
creases or decreases after constant time frames. Con-
figuration parameters influence the exact behavior,
e.g. how fast the insert ratio changes or how high
the probability of consecutive phase with insert ra-
tio increases respectively decreases are. Additionally,
upper and lower bounds of the ratio can be set. This
way, we can setup highly unpredictable workloads to
test our switching strategies.

CRPIT Volume 147 - Computer Science 2014

6

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

Linear
Periodic

Hard Switching
Random Walk

Break-Even Point

Figure 2: Different workload patterns we used for our
evaluation.

3.3.2 Periodic Pattern

The periodic pattern is the first regular workload be-
havior. The insert ratio behaves like a sinus curve:
it periodically increases to the configured maximum
and decreases to its minimum. The periodic pattern
can be further configured with the length of period
and the amplitude. This pattern can match a typical
customer-based workload with peaks during the day
and lows during the night.

3.3.3 Linear Pattern

The insert ratio increases respectively decreases lin-
early. It is beside the hard switching pattern a simple
changing behavior of the insert ratio. This pattern
does not reflect any specific business application. It
is rather used to show the benefit of switching the
maintenance strategy in a simple scenario. However,
linear insert ratio changes are often part of more com-
plicated enterprise workloads.

3.3.4 Hard Switching Pattern

The insert ratio of the hard switching pattern jumps
between certain values. The time of a constant ratio
value can be configured. This pattern can reflect ex-
treme changes of workloads. Enterprises with hourly
batch jobs and businesses with several query peaks
per day have workloads matching this pattern.

3.3.5 Examples

Figure 2 shows an example for each workload pat-
terns. The linear pattern has a constantly decreasing
insert ratio. The periodic pattern consists of two sinus
periods with an amplitude between 0 and 1. The hard
switching pattern jumps between 0.3 and 0.6. The
random walk starts at 0.5, goes up to 0.8 and stays
between 0.1 and 0.5 in the second half. Compared to
the other three examples, the insert ratio of the ran-
dom walk is not smooth. Additionally, the break-even
point of the merge update and smart lazy incremental
update strategy is included (cf. Section 3).

3.4 Multiple Materialized Aggregates

In [15], we have concentrated our work on a single ma-
terialized aggregate. However, enterprise applications
typically work with multiple materialized aggregates
depending on the current scenario.

Client

Delta Main

Column Table Materialized
Aggregate Table

Materialized
Aggregate Engine Maintenance Strategy Materialized

Aggregate Info

n 1

1 1

Column Store
Engine

Sanssouci DB

1

1

Figure 3: Internal architecture of Sanssouci DB in-
cluding the novel materialized aggregate engine.

Figure 3 shows the architecture of SanssouciDB
[21]. Each column table can have multiple materi-
alized aggregates. Each aggregate has meta infor-
mation and its own maintenance strategy. This in-
dependence is important for our materialized aggre-
gate engine and the switching strategies. As a result,
the engine is able to choose the optimal maintenance
strategy for each aggregate individually. The required
information about the number of accesses on the ag-
gregate and the number of modifications is therefore
stored in the meta information.

Figure 4a shows the SQL statements of three mate-
rialized aggregates: Aggregates Total, Aggregates Q3
and Aggregates 2013. They all have the same base
table Facts. The first aggregate has two grouping at-
tributes and no where clause, meaning that all new
inserts affect the aggregate. The second aggregate has
a where clause including a date (year 2013) and an
amount filter. In the ATP scenario, amounts greater
than 0 refer to incoming products. Therefore, approx-
imately half of the inserts affect the aggregate. The
third aggregate has, compared to the previous ones,
the most restricted where clause. It has filters on the
date (third quarter of 2013) and the amount (all out-
going products). Since the third quarter is already
over, only a few inserts queries affect the aggregate.

These three aggregates only represent a subset of
the aggregates that real enterprises have.

Figure 4b shows one example for an insert query
and one example for accessing the aggregate.

4 Maintenance Strategy Switching

As shown in Figure 1, changing insert ratios imply
a change of the maintenance performance. Hence, it
is preferable to change the maintenance strategy ac-
cording to workload changes. [17] presented a simple
switching algorithm henceforth called naive switch-
ing. It was shown that naive switching outperforms
static maintenance strategies for workloads with vary-
ing insert ratios. However, naive switching with cer-
tain configurations can be unfavorable for workloads
with insert ratios oscillating around the break-even
point. That is why, new switching algorithms are in-
troduced to avoid unnecessary maintenance strategy
switches which can decrease the overall performance.

4.1 Naive Switching

Naive switching follows the idea to switch to the best
performing strategy as early as possible. Therefore,
it monitors the current workload for a configurable
number of queries called window. The number of in-
serts and selects is counted. When the end of a win-
dow is reached, the number is divided by the window
size to calculate the ratios. Given the insert ratio,

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

7

CREATE MATERIALIZED VIEW Aggregates_Total AS
SELECT date , product , SUM (amount)
FROM Facts
GROUP BY date , product ;

CREATE MATERIALIZED VIEW Aggregates_2013 AS
SELECT date , SUM (amount)
FROM Facts
WHERE date >= 1/1/2013 AND date <= 12/31/2013

AND amount > 0
GROUP BY date ;

CREATE MATERIALIZED VIEW Aggregates_Q3 AS
SELECT product , SUM (amount)
FROM Facts
WHERE date >= 6/1/2013 AND date <= 9/30/2013

AND amount < 0
GROUP BY product ;

(a) Three materialized aggregate creation queries.

INSERT INTO Facts
(id , date , product , amount)
VALUES (1 , 7/30/2013 , 1 , 1 00) ;

SELECT date , product , amount
FROM Aggregates
WHERE product = 1 ;

(b) An insert into the base table and a select on the aggregate.

Figure 4: Example SQL queries of the ATP scenario.

the optimal maintenance strategy can be obtained by
evaluating the cost functions of the single strategies.
The naive strategy switches to the best performing
strategy after each end of a window. The window
size thereby controls two things: On the one hand,
how long a maintenance strategy stays active until
the next switch is possible, namely at least during
the next window. On the other hand, how precise
the calculated insert ratio is, because the greater the
window the more precise the insert ratio.

In the following, the naive switching algorithm is
explained in detail using the example workload in Fig-
ure 5a. Assume that the workload starts with SLIU
as configured maintenance strategy. In the first win-
dow, an insert ratio of 0.3 is measured, meaning SLIU
was the optimal maintenance strategy for the first
window. That is why, SLIU is used for the second
window, too. However, the insert ratio of the second
window is 0.5 so that MU would have been the better
choice. Hence, naive switching changes the mainte-
nance strategy for the third window. For the win-
dows three to six, MU stays the optimal maintenance
strategy. Resulting, naive switching keeps MU until
the seventh window. At the end of window seven, an
insert ratio of 0.3 is measured and the used mainte-
nance strategy is changed back to SLIU. Summariz-
ing, the maintenance strategy is changed twice: after
the second and seventh window. The workload was
not executed with the best performing strategy dur-
ing window two and seven.

The naive switching algorithm evaluates only the
last window and does not consider the costs for
switching to the optimal strategy. Hence, it is not the
best switching strategy for specific benchmark sce-
narios, especially when the optimal aggregate main-
tenance strategy changes for each window. Figure 5b
shows such a workload. Naive switching reacts on
each workload change. However, since it takes one
window to adjust the maintenance strategy, a non-

optimal strategy is used for each window.

4.2 History-Aware Switching

History-aware switching is an extension to the naive
switching strategy. It includes not only the insert ra-
tio of the last window to calculate the optimal main-
tenance strategy, but also the insert ratios of lapsed
windows. By including multiple windows, history-
aware switching calculates a smoothed insert ratio. In
this way, unnecessary switches in the case of strongly
varying workloads can be prevented. History-aware
switching uses Brown’s simple exponential smooth-
ing [5].

s1 = x0

st = αxt + (1− α)st−1 0 < α < 1 (6)

Given a starting value x0 and a smoothing fac-
tor α, a smoothed value st is calculated based on the
previous input xt−1 and the previous smoothed value
st−1 (Equation 6). The smoothing factor α deter-
mines the level of smoothing. The bigger α, the lower
the level of smoothing. α can be chosen based on the
level of information that is known in advance, e.g.
historic data from previous days or weeks.

4.3 Cost-Aware Switching

Switching between two maintenance strategies creates
tear down and setup costs as explained in Section 3.
Neither naive nor history-aware switching consider
theses costs. Cost-aware switching takes the costs
to switch to another strategy into account to prevent
switches, which waste more time for switching than
they gain for optimized maintenance performance.
Algorithm 3 describes the procedure that determines
if a switch is favorable or not. Therefore, the switch-
ing costs for each maintenance strategy have to be
known. Additionally, a data structure to keep track
of savings is required. As long as the current strat-
egy is the fastest strategy, nothing happens. As soon
as another strategy is faster than the current strat-
egy, the cost difference between the current strategy
and the other strategy is added to the savings data
structure. In case the savings are smaller than the
switching costs, nothing changes. In the other case
when the savings are greater than the switching costs,
the system switches to the new strategy and the data
structure is reset.

5 Evaluation

To evaluate our presented concepts, we implemented
the materialized aggregate engine in SanssouciDB [21]
but we believe that they can be applied to other
columnar IMDBs with a main-delta architecture such
as SAP HANA [8]. Figure 3 illustrates the architec-
ture of our implementation. The column store en-
gine represents the persistence layer and contains the
column table with its main and delta storage. The
novel materialized aggregate engine is on top and is
responsible for creating and maintaining materialized
aggregates. All logic for the maintenance strategies
as well as the switching strategies is included there.

For our benchmarks, we used a data set of an
ATP scenario that is based on customer data which
we parametrized to generate different workload char-
acteristics and patterns. The base table size for all
benchmarks is 1M records. We have chosen this size
for faster data imports and because the base table

CRPIT Volume 147 - Computer Science 2014

8

(a) The insert ratio passes the break-even point twice. (b) The insert ratio jumps between 0.1 and 0.4.

Figure 5: Workloads with changing insert ratios.

Algorithm 3 Saving cost calculation

1: switching costs← 〈define switching costs for strategies〉
2: savings← 〈initialize savings for all strategies〉
3:

4: procedure Calculate Savings(costs of last interval)
5: current strategy ← 〈get current strategy〉
6: fastest strategy ← 〈retrieve fastest strategy from

costs of last interval〉
7: savings per strategy ← 〈get current saving〉
8: if current strategy is fastest strategy then
9: 〈reset savings to 0〉

10: else
11: 〈update savings per strategy with the

cost delta of current strategy
and fastest strategy〉

12: savings← 〈savings for fastest strategy
from savings per strategy〉

13: if savings for fastest strategy are greater than
switching costs then

14: 〈switch to fastest strategy〉
15: 〈reset savings to 0〉
16: end if
17: end if
18: end procedure

size has no influence on the performance since we use
incremental view maintenance strategies (as shown
in [15]). The materialized aggregate contains about
4,000 records (i.e. date - product combinations). The
workloads consist of two query types: selects querying
aggregates filtered by product, and inserts with about
1,000 different date - product combinations. Three
queries to create a materialized view, one to insert a
value into the base table and one to select the aggre-
gate are shown in Figure 4. Each workload contains
20k queries divided into 200 phases of constant insert
ratios. Between consecutive phases, the insert ratio
can stay constant or increase respectively decrease by
5 percent. For the history-aware switching strategy,
alpha is chosen to be 0.5. This is equivalent to a
history of three intervals.

All benchmarks have been conducted on a server
featuring 8 CPUs (Intel Xeon E5450) with 3GHz and
12MB cache each. The entire machine was comprised
of 64GB of main memory. Every benchmark in this
section is run at least three times and the displayed
results are the median of all runs.

The different switching strategies are compared
with MU and SLIU, which use the same maintenance
strategy all the time.

 0

 50

 100

 150

 200

 250

SLIU MU Naive History-aware Cost-aware

Ti
m

e
in

 s

Switching Strategy

Aggregates_Q3
Aggregates_2013
Aggregates_Total

Figure 6: Performance of the switching strategies for
multiple views.

5.1 Multiple Views

In Section 3.4, we have explained the need for mul-
tiple materialized aggregates in one system and on
one table. The benchmark in Figure 6 evaluates the
performance of the switching strategies for three dif-
ferent aggregates. The SQL for the aggregates Ag-
gregates Total, Aggregates 2013 and Aggregates Q3 is
shown in Figure 4a.

The results in Figure 6 show that individual
switching strategies for aggregates perform better
than static maintenance strategies. Since each ag-
gregate has its own insert ratio caused by different
materialized view definitions, the materialized view
engine chooses the optimal strategy for each of them.

5.2 Basic Workload Patterns

The following benchmarks are based on our evalua-
tion in [17], where we investigated the performance of
a naive switching strategy for individual aggregates.
Figure 7 shows the result of benchmarking the linear,
periodic and hard switching workload patterns which
were introduced in Section 3.3.

Two things can be observed. First, switching is
always faster. All three patterns cover most of the in-
sert ratio interval [0-1] and therefore cross the break-
even point (see Figure 2). Consequently, switching
is faster compared to the non switching approach.
Second, all three switching strategies have nearly the
same performance. This is a result of the charac-
teristics of the workload patterns. All patterns are

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

9

 50

 60

 70

 80

 90

 100

Linear Periodic Hard Switch

Ti
m

e
in

 s

Workload Pattern

Naive
Cost-aware

History-aware
MU

SLIU

Figure 7: Performance of the switching strategies for
a linear, periodic and hard switching pattern.

relatively simple and have a smooth behavior.
This benchmark only shows one example for each

pattern. The characteristics of the three patterns can
be varied, e.g. the amplitude of the periodic pattern
can be smaller or the difference between the two val-
ues for the hard switching pattern can be larger. The
more a workload stays on both sides of the break-even
point, the greater is the advantage for the switching
strategies.

5.3 Random Workloads

To measure the performance of the switching strate-
gies for unpredictable workloads, we used random
walks (see Section 3.3.1). Thereby, we varied the in-
terval of possible insert ratios in the way it should
influence the advantage of switching strategies:

1. [0, 1] covers the largest possible interval. Switch-
ing in this setup should bring the most.

2. [0.2, 0.6] covers the area close to the break-even
point. The benefit of switching is expected to be
lower.

3. [0.3, 0.8] covers the interval beneficial for MU.
The lower boundary crosses the break-even point
slightly.

4. [0, 0.5] covers the interval beneficial for SLIU.
The upper boundary crosses the break-even point
slightly.

Figure 9 includes benchmarks of the four intervals
with three workloads each. Figure 9a shows the per-
formance for workloads with the largest possible in-
sert ratio interval ranging from 0 to 1. Switching is 27
percent faster than the fastest non switching strategy.
Among the switching strategies, naive and cost-aware
perform best. History-aware is slightly slower because
of a deferred switching point.

The workloads, whose benchmark results are pre-
sented in Figure 9b, have an insert ratio interval of
[0.2, 0.6] (i.e. close to the break-even point). As a re-
sult, the performance advantage of switching strate-
gies is smaller. The average improvement is approxi-
mately 18 percent. The cost-aware and naive switch-
ing strategy perform nearly the same.

In Figure 9c, the benchmark results for select-
intensive workloads are presented. SLIU outper-
forms MU. However, its performance is beaten by the
switching strategies. During the short period with in-
sert ratios higher than 40 percent, switching strategies

(a) Workload 13 (b) Workload 14 (c) Workload 15

 60

 70

 80

 90

 100

 110

 120

 130

 140

13 14 15

Ti
m

e
in

 s

Workload

Naive
Cost-aware

History-aware
MU

SLIU

(d) Insert ratio interval [0.3, 0.8], [0.2, 0.8] and [0.3, 0.46]

Figure 10: Three switching cost intensive workloads
which cross the break-even point after each window.

change the maintenance strategy to the advantageous
MU. The improvement of switching is 10 percent.

Workloads with insert ratios ranging from 0.3 to
0.8 are good for MU (Figure 9c). Again, switching has
a slightly better execution time than MU (5 percent),
since the workloads contain phases (with insert ratios
smaller than 40 percent) where SLIU is the better
maintenance strategy.

5.4 Worst Case Analysis

Even though naive switching is often the best ap-
proach, we have analyzed the behaviour of the switch-
ing strategies in extreme cases. As assumed, we mea-
sured that naive switching is not optimal for all work-
loads.

The workloads 13 to 15 in Figure 10 have an
alternating pattern and jump between different in-
sert ratios (0.3/0.8, 0.2/0.8 and 0.3/0.46). In Fig-
ure 10d, naive switching is significantly slower than
the other two approaches. This is a result of unfavor-
able switching points due to the short interval for each
insert ratio. The cost-aware switching decides not to
switch based on the calculated savings (workload 13
and 15). However, in workload 14, the saved costs per
interval are bigger than the switching costs and there-
fore the strategy is switched as in the naive approach.
Only the history-aware strategy detects the fluctuat-
ing pattern and stays with one maintenance strategy,
because the smoothed insert ratio only crosses the
break-even point in the beginning and then evens out.

6 Conclusion

This paper introduces advanced algorithms to iden-
tify and switch to the optimal aggregate maintenance
strategy. It has been shown that the performance of
maintenance strategies depends on workload charac-
teristics such as the insert ratio. According to work-
load changes, it is desirable to switch to the best
performing aggregate maintenance strategy. Naive

CRPIT Volume 147 - Computer Science 2014

10

(a) Workload 1 (b) Workload 2 (c) Workload 3 (d) Workload 4 (e) Workload 5 (f) Workload 6

(g) Workload 7 (h) Workload 8 (i) Workload 9 (j) Workload 10 (k) Workload 11 (l) Workload 12

Figure 8: A visualization of the insert ratios for the workloads benchmarked in Figure 9.

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

1 2 3

Ti
m

e
in

 s

Workload

Naive
Cost-aware

History-Aware
MU

SLIU

(a) Insert ratio interval [0, 1]

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

4 5 6

Ti
m

e
in

 s

Workload

Naive
Cost-aware

History-aware
MU

SLIU

(b) Insert ratio interval [0.2, 0.6]

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

7 8 9

Ti
m

e
in

 s

Workload

Naive
Cost-aware

History-aware
MU

SLIU

(c) Insert ratio interval [0, 0.5]

 20

 30

 40

 50

 60

 70

 80

 90

10 11 12

Ti
m

e
in

 s

Workload

Naive
Cost-aware

History-aware
MU

SLIU

(d) Insert ratio interval [0.3, 0.8]

Figure 9: Benchmarks with different insert ratio intervals. Each workload consists of 20k queries.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

11

switching uses a simple algorithm to select the main-
tenance strategy by following the goal to switch to the
best performing strategy as early as possible. How-
ever, switching between strategies causes costs and
the best performing strategy can often change in a
short period of time. The two introduced switching
algorithms tackle this issue and reduce the number
of unnecessary maintenance strategy switches. To
achieve that, they include the history of insert ratios
and the costs of strategy switches.

We implemented the introduced switching strate-
gies as part of a materialized aggregate engine
in SanssouciDB. The materialized aggregate engine
monitors the current workload, evaluates the cost
functions and is able to switch to the optimal mainte-
nance strategy. We benchmarked the various aggre-
gate maintenance switching algorithms for workloads
with different insert ratio courses. The results reveal
that switching between maintenance strategies is ben-
eficial for all identified workloads as it decreases the
overall execution time. We evaluated three different
switching strategies that reduce the execution time up
to 27 percent. Among the different switching strate-
gies, the naive switching strategy performs well. How-
ever, for certain workload patterns, the more sophisti-
cated cost-aware and history-aware switching strate-
gies are more beneficial.

As a direction of future work, we plan to employ a
machine learning approach that predicts future work-
load changes and adjusts the materialized view main-
tenance strategy proactively.

References

[1] D. Agrawal, A. El Abbadi, A. Singh, and
T. Yurek. Efficient view maintenance at data
warehouses. In SIGMOD, 1997.

[2] S. Agrawal, E. Chu, and V. Narasayya. Auto-
matic physical design tuning: Workload as a Se-
quence. In SIGMOD, pages 683–694, New York,
New York, USA, 2006. ACM Press.

[3] R. G. Bello, K. Dias, A. Downing, J. J. F.
Jr., J. L. Finnerty, W. D. Norcott, H. Sun,
A. Witkowski, and M. Ziauddin. Materialized
views in oracle. In VLDB, pages 659–664, 1998.

[4] J. A. Blakeley, P.-A. Larson, and F. W. Tompa.
Efficiently updating materialized views. In SIG-
MOD, pages 61–71, 1986.

[5] R. Brown. Smoothing, Forecasting and Predic-
tion of Discrete Time Series. Dover Phoenix edi-
tions. Dover Publications, 2004.

[6] O. P. Buneman and E. K. Clemons. Efficiently
monitoring relational databases. ACM Transac-
tions on Database Systems, 1979.

[7] S. Chaudhuri and V. Narasayya. Self-tuning
database systems: a decade of progress. In
VLDB, 2007.

[8] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, and W. Lehner. SAP HANA database:
data management for modern business applica-
tions. SIGMOD, 2011.

[9] M. Grund, J. Krüger, H. Plattner, A. Zeier,
P. Cudre-Mauroux, and S. Madden. Hyrise: a
main memory hybrid storage engine. VLDB,
pages 105–116, 2010.

[10] A. Gupta and I. S. Mumick. Maintenance of ma-
terialized views: Problems, techniques, and ap-
plications. IEEE Data Eng. Bull. 1995.

[11] H. Gupta. Selection of views to materialize in a
data warehouse. ICDT, 1997.

[12] H. Jain and A. Gosain. A comprehensive study
of view maintenance approaches in data ware-
housing evolution. SIGSOFT Softw. Eng. Notes
2012.

[13] A. Kemper, T. Neumann, F. F. Informatik, T. U.
München, and D-Garching. Hyper: A hybrid
oltp&olap main memory database system based
on virtual memory snapshots. In ICDE, 2011.

[14] J. Krueger, C. Kim, M. Grund, N. Satish,
D. Schwalb, J. Chhugani, H. Plattner, P. Dubey,
and A. Zeier. Fast Updates on Read-Optimized
Databases Using Multi-Core CPUs. In VLDB,
2012.

[15] S. Müller, L. Butzmann, K. Höwelmeyer,
S. Klauck, and H. Plattner. Efficient View Main-
tenance for Enterprise Applications in Columnar
In-Memory Databases. EDOC, 2013.

[16] I. S. Mumick, D. Quass, and B. S. Mumick.
Maintenance of data cubes and summary tables
in a warehouse. In SIGMOD, 1997.

[17] S. Müller, L. Butzmann, S. Klauck, and H. Plat-
tner. Workload-aware aggregate maintenance in
columnar in-memory databases. In BPOE, in
conjunction with IEEE International Conference
on Big Data, 2013.

[18] S. Müller and H. Plattner. Aggregates caching
in columnar in-memory databases. In IMDM, in
conjunction with VLDB, 2013.

[19] H. Plattner. A common database approach
for oltp and olap using an in-memory column
database. In SIGMOD, pages 1–2, 2009.

[20] H. Plattner. Sanssoucidb: An in-memory
database for processing enterprise workloads. In
BTW, 2011.

[21] H. Plattner and A. Zeier. In-memory data man-
agement: an inflection point for enterprise appli-
cations. Springerverlag Berlin Heidelberg, 2011.

[22] J. M. Smith and D. C. P. Smith. Database ab-
stractions: Aggregation. Commun. ACM 1977.

[23] D. Srivastava, S. Dar, H. Jagadish, and A. Levy.
Answering queries with aggregation using views.
In VLDB, 1996.

[24] C. Tinnefeld, S. Müller, H. Kaltegärtner,
S. Hillig, L. Butzmann, D. Eickhoff, S. Klauck,
D. Taschik, B. Wagner, O. Xylander, A. Zeier,
H. Plattner, and C. Tosun. Available-to-promise
on an in-memory column store. In BTW, pages
667–686, 2011.

[25] J. Zhou, P.-A. Larson, and H. G. Elmongui. Lazy
maintenance of materialized views. In VLDB,
pages 231–242, 2007.

[26] Y. Zhuge, H. Garćıa-Molina, J. Hammer, and
J. Widom. View maintenance in a warehousing
environment. In SIGMOD, pages 316–327, 1995.

CRPIT Volume 147 - Computer Science 2014

12

Combining the Shortest Paths and the Bottleneck Paths Problems

Tong-Wook Shinn1 Tadao Takaoka2

Department of Computer Science and Software Engineering
University of Canterbury

Christchurch, New Zealand
1 Email: tad@cosc.canterbury.ac.nz

2 Email: tong-wook.shinn@pg.canterbury.ac.nz

Abstract

We combine the well known Shortest Paths (SP)
problem and the Bottleneck Paths (BP) problem to
introduce a new problem called the Shortest Paths
for All Flows (SP-AF) problem that has relevance
in real life applications. We first solve the Single
Source Shortest Paths for All Flows (SSSP-AF) prob-
lem on directed graphs with unit edge costs in O(mn)
worst case time bound. We then present two algo-
rithms to solve SSSP-AF on directed graphs with in-
teger edge costs bounded by c in O(m2 + nc) and
O(m2 + mn log (c

m)) time bounds. Finally we extend
our algorithms for the SSSP-AF problem to solve the
All Pairs Shortest Paths for All Flows (APSP-AF)
problem in O(m2n+nc) and O(m2n+mn2 log (c

mn))
time bounds. All algorithms presented in this paper
are practical for implementation.

Keywords: Shortest Paths, SP, Bottleneck Paths, BP,
Single Source Shortest Paths, SSSP, All Pairs Short-
est Paths, APSP

1 Introduction

The problem of finding the shortest paths between
pairs of vertices on a graph is one of the most exten-
sively studied problems in algorithm research. This
problem is formally known as the Shortest Paths
(SP) problem and is often categorized into the Sin-
gle Source Shortest Paths (SSSP) problem and the
All Pairs Shortest Paths (APSP) problem. As the
names suggest, the SSSP problem is to compute the
shortest paths from one single source vertex to all
other vertices on the graph, and the APSP problem
is to compute the shortest paths between all possible
pairs on the graph. The most well known algorithm
for solving the SSSP problem is the algorithm by Di-
jkstra (3) that runs in O(n2) time, where n is the
number of vertices in a graph. This algorithm can be
enhanced with a priority queue, and if the Fibonacci
heap (6) is used to implement the priority queue then
the time complexity becomes O(m + n log n) where

This research was supported by the EU/NZ Joint Project, Op-
timization and its Applications in Learning and Industry (Op-
tALI).

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

m is the number of edges in the graph. If edge costs
are integers bounded by c, then the SSSP problem
can be solved in O(m + n log log c) time (9) using a
complex priority queue for integers. For solving the
APSP problem, the O(n3) algorithm by Floyd (4) is
the most well known.

If edges have capacities, the bottleneck of a path
is the minimum capacity out of all edge capacities on
the path. In other words, the bottleneck of a path
from vertex u to vertex v is the maximum amount of
flow that can be pushed from u to v down the path.
Finding the paths that give the maximum bottlenecks
between pairs of vertices is also a well studied prob-
lem and is formally known as the Bottleneck Paths
(BP) problem. The Single Source Bottleneck Paths
(SSBP) problem can be solved with a simple modifi-
cation to the algorithm by Dijkstra (3). For an undi-
rected graph the All Pairs Bottleneck Paths (APBP)
problem can be solved in O(n2), which is optimal (7).

The SP and BP problems are concerned with find-
ing the minimum or the maximum possible values.
However, the shortest path may not give the biggest
bottleneck, and the path that gives the maximum bot-
tleneck may not be the shortest path. If the flow
demand from a vertex to another vertex is known,
then it is clearly beneficial to find the shortest path
that can fully accommodate that flow demand. Thus
we combine the SP and BP problems to compute the
shortest paths for all possible flow amounts. We call
this problem the Shortest Paths for All Flows (SP-
AF) problem. As is common in graph paths prob-
lems, we divide the SP-AF problem into the Single
Source Shortest Paths for All Flows (SSSP-AF) prob-
lem, and the All Pairs Shortest Paths for All Flows
(APSP-AF) problem.

There are many obvious real life applications for
this new problem, such as routing in computer net-
works, transportation, logistics, and even planning for
emergency evacuations. The city of Christchurch has
recently been hit by a series of strong earthquakes,
most notably in September 2010 and in February
2011. If we consider hundreds of people evacuating
from a building in such emergencies, if the amount
of people (flow) can be predetermined, we can find
the shortest route for all people in various locations
around the building to their respective evacuation
points such that the flow of people can be fully ac-
commodated. If the flow amounts (of people) are not
considered in calculating the evacuation routes, con-
gestion may occur at various points in the building
that could lead to serious accidents.

In this paper we present algorithms for solving the
SSSP-AF and APSP-AF problems on directed graphs
with non-negative integer edge costs and real edge ca-
pacities that are faster than the straightforward meth-
ods. We first give an algorithm to solve SSSP-AF

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

13

on graphs with unit edge costs in O(mn) time. We
then present two algorithms for solving SSSP-AF on
graphs with non-negative integer edge costs of at most
c in O(m2+nc) and O(m2+mn log (c

n)) time bounds.
Finally we show that the main concepts behind the
SSSP-AF algorithms can be extended to solve APSP-
AF in O(m2n+nc) and O(m2n+mn2 log (c

mn)) time
bounds.

2 Preliminaries

Let G = {V,E} be a directed graph with non-negative
integer edge costs bounded by c and non-negative real
capacities. Let n = |V | and m = |E|. Vertices are
given by integers such that {1, 2, 3, ..., n} ∈ V . Let
(i, j) be the edge from vertex i to vertex j. Let
cost(i, j) denote the edge cost (or distance) and let
cap(i, j) denote the edge capacity. Let OUT (v) be
the set of vertices that are directly reachable from
v, and IN(v) be the set of vertices that can directly
reach v. There can be up to m distinct capacities if
all edge capacities are unique. We refer to the dis-
tinct capacities as maximal flows. Then the SP-AF
problem is to solve the SP problem for all maximal
flows.

For all our algorithms only comparison operations
are performed on the maximal flow values. Therefore
the real values of maximal flows can be mapped to
integer values without any loss of generality by first
sorting the maximal flows in increasing order then
assigning incremental integer values starting from 1.
This allows us to use maximal flow values as indexes
of arrays in our algorithms.

We use the computational model that allows
comparison-addition operations and random access
with O(log n) bits to be performed in O(1) time.

3 Single Source Shortest Paths for All Flows

We first consider solving the SP-AF problem from
a source vertex s to all other vertices in G. Ini-
tially we compute just the distances rather than ac-
tual paths then later show that the paths information
can be computed in the same time bound. That is, we
first solve the Single Source Shortest Distances for All
Flows (SSSD-AF) problem, then show that the algo-
rithm can be extended to solve the SSSP-AF problem
with no increase in the worst case time complexity.

The SSSD-AF problem can be defined as the prob-
lem of computing the set of all (d, f) pairs for each
destination vertex, where d is the shortest distance
from s and f is the maximal flow value. Let S[v]
be the set of (d, f) pairs for the destination vertex
v. Suppose (d, f) and (d′, f ′) both exist in S[v] such
that d < d′. Then we keep (d′, f ′) iff f < f ′, that is,
a longer path is only useful if it can accommodate a
greater flow. If d = d′, we keep the pair that gives us
the greater flow.

Example Solving SSSP-AF on the example graph
in Figure 1 with s = 1 would result in S[6] =
{(4, 2), (5, 3), (6, 5), (8, 6)}.

The straightforward method for solving the SSSP-
AF problem is to iterate through each maximal flow
fi and solving the SSSP problem for the sub-graph
that only have edges with capacities fi or greater.
On graphs with unit edge costs SSSP can be solved in
O(m) time with a simple breadth-first-search (BFS),
resulting in O(m2) time bound for solving the SSSP-
AF problem. On graphs with integer edge costs

(3, 8)1

2

3

4

5

6

(2, 5)

(1, 7)

(1, 6)

(3, 4)

(2, 2)

(2, 7)

(2, 3)

(1, 8)

Figure 1: An example of a directed graph with n = 6,
m = 9 and c = 3. The first number in the parenthesis
is the edge cost and the second number is the edge
capacity.

bounded by c, we can use the algorithm by Thorup
(9) to solve SSSP-AF in O(m2 + mn log log c) time.

Note that SSSP-AF cannot be solved with a sim-
ple decremental algorithm, where edges are removed
one by one in decreasing order of capacity then the
connectivity of all affected vertices are checked. This
method fails because edges with larger capacities may
later be required to provide shorter paths for smaller
maximal flows.

3.1 Unit edge costs

Algorithm 1 solves SSSP-AF in O(mn) time by utiliz-
ing the fact that even though there are O(m) maximal
flows, there can only be O(n) paths with unique path
costs for each destination vertex. As noted earlier,
if multiple paths from s to v exists with equal path
costs, we only need to keep the path that can accom-
modate the biggest maximal flow out of those paths.
Thus for graphs with unit edge costs, even with m
maximal flows, the size of S[v] is O(n) for each v.

Let B[v] be the bottleneck of a path from s to
vertex v. Let D[v] be a possible distance from s to
v. Let Q[i] be a set of vertices that may be added to
Spanning Tree (SPT) at distance i, such that 1 ≤ i ≤
n − 1, i.e. one set of vertices exists for each possible
distance from s.

The algorithm starts off with just s in the SPT and
makes incremental changes to the SPT as we iterate
through the maximal flow values in increasing order.
The SPT is a persistent data structure and we do
not build it up from scratch in each iteration. In
summary, as we iterate through each maximal flow
we cut nodes from the SPT that cannot accommodate
the maximal flow and add the nodes back to the SPT
at the shortest possible distance from s (the root).

Lemma 3.1 Algorithm 1 correctly solves SSSD-AF
on directed graphs with unit edge costs.

Proof By iterating from Q[1] to Q[n − 1] for each
maximal flow, we ensure that all vertices are added
to the SPT at the minimum possible distance from s
for the maximal flow value in the current iteration.
When the minimum possible distance is found for a
vertex v to be added to the SPT (line 14), all potential
parent nodes, IN(v), are inspected to ensure that v
is added to the SPT such that the bottleneck from
s to v is maximized for the given distance (line 16).
Since D[v] is monotonically increasing (lines 8 and
22), v cannot be added to the SPT multiple times at
the same distance. Thus any time a vertex v is added
to the SPT, (D[v], B[v]) can be appended to S[v] as

CRPIT Volume 147 - Computer Science 2014

14

Algorithm 1 Solve SSSD-AF on graphs with unit
edge costs in O(mn) time

1: for all v ∈ V do
2: B[v]← 0, D[v]← 0
3: B[s]←∞, SPT ← s
4: for all maximal flows f in increasing order do
5: for all v ∈ V such that B[v] < f do
6: if v is in SPT then
7: Cut v from SPT
8: D[v]← D[v] + 1
9: Add v to Q[D[v]]

10: for i← 1 to n− 1 do
11: while Q[i] is not empty do
12: Remove v from Q[i]
13: for all IN(v) as u do
14: if D[u] = D[v]− 1 then
15: b← min(cap(u, v), B[u])
16: if b > B[v] then
17: B[v]← b
18: Add v to SPT , u as parent
19: if v is in SPT then
20: Append (D[v],B[v]) to S[v]
21: else
22: D[v]← D[v] + 1
23: Add v to Q[D[v]]

a (d, f) pair. It follows that once we iterate through
all maximal flows we have retrieved all relevant (d, f)
pairs.

Lemma 3.2 Algorithm 1 runs in O(mn) worst case
time.

Proof We perform lifetime analysis to determine the
upper bound of Algorithm 1. Each vertex v can
be cut from the SPT and be re-added to the SPT
O(n) times, once per each possible distance from s.
Cutting/adding v from/to the SPT takes O(1) time,
achieved by setting the parent of v to either NULL or
u, respectively. Therefore the total time complexity of
all operations involving the SPT is O(n2). Also there
are a total of O(n2) (d, f) pairs. Before each vertex v
is added to the SPT all incoming edges (u, v) are in-
spected. This results in O(m) edges being inspected
in total for the entire duration of the algorithm for
each possible distance from s. Since there are O(n)
possible distances from s, the total time taken for
edge inspection is O(mn). Thus the total worst case
time complexity becomes O(n2 + mn) = O(mn).

Theorem 3.3 There exists an algorithm to solve
SSSP-AF on directed graphs with unit edge costs in
O(mn) time.

Proof There are O(n) destination vertices, O(m)
maximal flows, and the length of each path is O(n).
Therefore storing all explicit paths as a solution to
the SSSP-AF problem takes O(mn2), which is too
expensive. As is common in graph paths algorithms,
we work around this problem by storing just the pre-
decessor vertex for storing the path information. The
predecessor vertex for a path from s to v is the vertex
that comes immediately before v on the path.

We extend Algorithm 1 to store the parent vertex,
u, alongside the (d, f) pair in line 20 i.e. we can
extend the (d, f) pair to the (d, f, u) triplet. Then u is
the predecessor vertex for the shortest path from s to
v that can accommodate flow up to f . By using d and
u, any explicit path can be retrieved by recursively
following the predecessor vertices in time linear to

the path length. Clearly the additional storage of the
predecessor vertex does not increase the worst case
time complexity of the algorithm.

3.2 Cascading Bucket System

Before we move onto solving the SSSP-AF problem on
graphs with integer edge costs, we review the k-level
cascading bucket system (CBS) (1, 2). A detailed
review of this data structure has also been provided
by Takaoka (8).

In the k-level CBS the key value d is given by:

d = xk−1p
k−1 + xk−2p

k−2 + ... + x1p
1 + x0

where p is the number of buckets (or length) of each
level.

Let i be the largest index such that xi is non-zero.
Then an element with key of d is inserted into the xth

i
bucket at level i. The values of xi for all 0 ≤ i < k
are calculated only once when an element is inserted,
and each insertion takes O(k) time.

The decrease-key operation can be performed by
removing the element from the CBS in O(1) time,
updating the key value, then re-inserting in the same
level in O(1) time, or re-inserting at a lower level in
O(l) time where l is the difference between the initial
level and the new level.

The delete-min operation is more involved than
the insert or the decrease-key operations. We main-
tain an active pointer at each level, ai for all 0 ≤
i < k, such that ai is the minimum index of the non-
empty bucket at level i. ai = p means level i is empty.
To perform the delete-min operation, if level 0 is not
empty, we simply pick up the minimum non-empty
bucket pointed to by a0. If level 0 is empty, then we
find the lowest non-empty level, j, and re-distribute
the elements in the ath

j bucket into level j−1, then re-
distribute the elements in the ath

j−1 bucket into level
j− 2, and so on, until level 0 is non-empty. This pro-
cess of repeated re-distribution from a higher level
down to lower levels is referred to as cascading, hence
the name for the data structure. Each delete-min
takes O(k + p) time if j < k− 1, and O(k + M/pk−1)
if j = k− 1, where M is the maximum key value that
the CBS supports.

Example Figure 2 shows an example of a 3-level
CBS that can support key values up to 1399. p = 10
was chosen to make the example easier to understand,
since it becomes straightforward to determine the cor-
rect bucket for base 10 numbers. If the element with
key equal to 19 is removed from the CBS, a0 becomes
10, and the next delete-min operation will trigger the
cascading operation, resulting in elements in a1 to be
re-distributed into level 0.

3.3 Integer edge costs

In Section 3.1 we gave an algorithm to solve SSSP-
AF on directed graphs with unit edge costs in O(mn)
time, that is faster than the straightforward method
of O(m2). In this section we present two algorithms to
solve SSSP-AF on directed graphs with non-negative
edge costs in O(m2 + nc) and O(m2 + mn log (c

m))
time bounds. Both time bounds are faster than the
O(m2 + mn log log c) time bound of the straightfor-
ward method for a wide range of values for c, m and
n, and have the added benefit of not relying on a com-
plex data structure that is difficult to implement in
real life situations. We note that Algorithm 1 can also
be used to solve SSSP-AF in O(mnc) time since the

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

15

a2

a1

a0

119 130 166

512 586

843

1158

1301 1399

31 34 37

70

92 95 19

0 0 0

1 1 1

2 2 2

3 3 3

44 4

5 5 5

6 6 6

7 77

8 88

9 99

10

11

12

13

Figure 2: An example of a cascading bucket system
with k = 3 and p = 10.

maximum distance from s for any vertex for any max-
imal flow value is O(nc). O(mnc) is a comparatively
efficient time bound for dense graphs with small c.

The two time bounds of O(m2 + nc) and O(m2 +
mn log (c

m)) actually both come from the same algo-
rithm, Algorithm 2, but using different data struc-
tures to implement the priority queue. Algorithm 2
is a natural extension to the well known algorithm by
Dijkstra (3). For this algorithm we define the triplet
(v, d, f), where v is the destination vertex and d and
f are equivalent to the (d, f) pair as defined in Sec-
tion 3. We let Df [v] be the current shortest distance
from s to v for the maximal flow value of f . We let
Q be the priority queue for the (v, d, f) triplets with
d as the key where the operations performed on Q
are insert, decrease-key and delete-min. In summary,
all O(mn) (v, d, f) triplets are added to the priority
queue, Q, then as they are removed one by one, the
(d, f) pair is appended to S[v] if the (d, f) pair is use-
ful i.e. f is greater than any flow in existing pairs in
S[v].

Definition (d, f) in S[v] is correct if d is the shortest
distance of a path that can push flows up to f from
s to v.

Lemma 3.4 Algorithm 2 correctly solves SSSD-AF
on directed graphs with integer edge costs.

Proof We provide a formal proof by induction. Let
S be the set of (v, d, f) such that S[v] contains the
pair (d, f), for all v, for all (d, f) pairs. Then in the
beginning of each iteration:

1. The set of (d, f) pairs in each S[v] are all correct
i.e. all (v, d, f) triplets in S are correct.

2. For any (v, d, f) in Q, d is the distance of the
shortest path from s to v that can push f only
through the path that lies in S except for the end
point v.

Basis. Before the while-loop begins (line 9) all are
correct, and we suppose the theorem is correct at the
beginning of some iteration. Then:

Algorithm 2 Solve SSSD-AF on graphs with integer
edge costs

1: for all v 6= s ∈ V do
2: for all maximal flows f do
3: Df [v]←∞
4: Q← empty
5: Add (s, 0,∞) to Q
6: for all v 6= s ∈ V do
7: for all maximal flow f do
8: Add (v,∞, f) to Q
9: while Q is not empty do

10: Delete (v, d, f) with minimum d from Q
11: for all w 6= s ∈ OUT (v) do
12: f ′ ← min(f, cap(v, w))
13: d′ ← d + cost(v, w)
14: if d′ < Df ′

[w] then
15: Let x = (w, Df ′

[w], f ′) in Q

16: Df ′
[w]← d′

17: Put x in the correct position in Q
18: if S[v] is empty then
19: Append (d, f) to S[v]
20: else
21: Let (d0, f0)← last pair in S[v]
22: if f0 < f then
23: if d0 = d then
24: Delete (d0, f0) from S[v]
25: Append (d, f) to S[v]

1. Let (d0, f0) be the last pair in S[v]. Suppose
(d, f) is appened to S[v] at the end of the loop.
Note that d values are sorted in increasing order
in S[v]. Since f is appened only when f > f0,
there can be no shorter path in S[v] that can push
f . Thus (d, f) is appended as a correct pair.

2. We remove (v, d, f) from Q in line 10. The new
distance d′ and flow f ′ from v to w are computed
for all possible w. If d′ < Df [w], (v, d, f) now lies
in the path from s to w, and (w, d′, f ′) is added
to Q. Since (v, d, f) is added to S[v] at the end of
the loop, d′ is the distance of the shortest path
from s to w that can push f only through the
path that lies in S except for the end point w.

Lemma 3.5 Algorithm 2 can run in O(m2 + nc)
worst case time.

Proof We use a one dimensional bucket system to
implement Q. Insert and decrease-key operations can
be performed in O(1), resulting in O(mn) time bound
for both operations for the whole algorithm. The
delete-min operation is performed simply by scanning
through Q from i = 0 to nc one by one, where i is
the distance from s. We only have to scan through
the distances once, and therefore the time complexity
of the delete-min operation for the whole duration of
the algorithm is O(nc). Each vertex can be inspected
exactly once at each maximal flow value. This means
O(m) edge inspections are performed per maximal
flow value, resulting in O(m2) for the whole algo-
rithm. Thus we have O(m2 +mn+nc) = O(m2 +nc)
as the total worst case time complexity of Algorithm
2 using the one dimensional bucket system to imple-
ment the priority queue.

Lemma 3.6 Algorithm 2 can run in O(m2 +
mn log (c

m)) worst case time.

CRPIT Volume 147 - Computer Science 2014

16

Proof We use k-level CBS to implement Q. Since
there are a total of O(mn) (v, d, f) triplets to be
inserted into Q, the total time complexities for
operations performed on Q are: O(kmn) for in-
sert, O(kmn) for decrease-key, and O(kmn + pmn +
cn/pk−1) for delete-min, where p is the length of each
level. We choose p = (c

m)1/k and k = log (c
m) to

implement our k-level CBS. Then the term O(kmn)
dominates and the total time complexity for all three
operations involving Q becomes O(mn log (c

m)). As
shown in the proof of Lemma 3.5, the total time taken
for edge inspection is O(m2), resulting in the total
worst case time complexity of O(m2 + mn log (c

m))
for Algorithm 2 using the k-level CBS to implement
the priority queue.

Theorem 3.7 There exists algorithms to solve the
SSSP-AF problem on directed graphs with integer edge
costs in O(m2 + nc) or O(m2 + mn log (c

m)) time
bounds.

Proof We take the same approach as discussed in
the proof of Theorem 3.3. In line 17 of Algorithm
2, we store v as the predecessor vertex alongside the
(w, d′, f ′) triplet.

Note that in the proof of Lemma 3.6 we could have
chosen k = O(log (c

m)/ log log (c
m)) to speed up the

algorithm by a polylog factor. We also note that if c =
1 then Algorithm 2 has the time complexity of O(m2),
thus Algorithm 1 has not been made redundant by
Algorithm 2.

4 All Pairs Shortest Paths for All Flows

The key achievement in this paper is not to come
up with an original data structure but to devise algo-
rithms to successfully utilize existing well known data
structures, based on the observation that the maxi-
mum distance of any simple path on a graph with
integer edge costs bounded by c is O(nc). From this
observation what we have effectively achieved is to
find a method to share resources. That is, instead
of having to repeatedly scan over O(nc) distances for
solving SSSP for each maximal flow value, we solve
SSSP for all maximal flows at the same time while
sharing the common resource, Q, thereby allowing us
to scan O(nc) only once. Takaoka (8) used a simi-
lar idea to achieve O(mn + n2 log (c

n)) for the APSP
problem. In this section we further extend the idea
of sharing common resources to solve the problem of
APSP-AF.

We let Df [u][v] be the currently known shortest
distance from vertex u to vertex v for maximal flow
f . We extend the (v, d, f) triplet that was defined
in Section 3.3 to the quadruple (u, v, d, f), where u
and v are the starting and the ending vertices of a
possible path, respectively. Then we can extend Al-
gorithm 2 to solve the APSD-AF problem, as shown
in Algorithm 3

Lemma 4.1 Algorithm 3 correctly solves APSD-AF
on directed graphs with integer edge costs.

Proof Essentially the same argument as the proof
of Lemma 3.4 can be applied. The only differences
are that we now have quadruples (u, v, d, f) instead
of triplets in Q and S, and we need to go through
more iterations as we are solving for all O(n2) pairs
of vertices. Clearly these differences has no impact
on the correctness of the algorithm.

Algorithm 3 Solve APSD-AF on graphs with integer
edge costs

1: for all (u, v) ∈ V × V do
2: for all maximal flows f do
3: if u = v then
4: Df [u][v]← 0
5: else
6: Df [u][v]←∞
7: Q← empty
8: for all v ∈ V do
9: Add (v, v, 0,∞) to Q

10: for all (u, v) ∈ V × V such that u 6= v do
11: for all maximal flow f do
12: Add (u, v,∞, f) to Q
13: while Q is not empty do
14: Delete (u, v, d, f) with minimum d from Q
15: for all For all w 6= u ∈ OUT (v) do
16: f ′ ← min(f, cap(v, w))
17: d′ ← d + cost(v, w)
18: if d′ < Df ′

[u][w] then
19: Let x = (u, w,Df ′

[u][w], f ′) in Q

20: Df ′
[u][w]← d′

21: Put x in the correct position in Q
22: if S[u][v] is empty then
23: Append (d, f) to S[u][v]
24: else
25: Let (d0, f0)← last pair in S[u][v]
26: if f0 < f then
27: if d0 = d then
28: Delete (d0, f0) from S[u][v]
29: Append (d, f) to S[u][v]

Lemma 4.2 Algorithm 3 can run in O(m2n + nc)
worst case time.

Proof There are O(n2) pairs of vertices resulting in
O(mn2) (u, v, d, f) quadruples. Each vertex pair can
be observed exactly once at each maximal flow value
hence the number of edge inspections that occur at
one maximal flow value is O(mn), resulting in the to-
tal time bound of O(m2n) for edge inspections. Using
the one dimensional bucket system to implement Q,
we have O(m2n + mn2 + nc) = O(m2n + nc) as the
worst case time complexity.

Lemma 4.3 Algorithm 3 can run in O(m2n +
mn2 log (c

mn)) worst case time.

Proof We use the k-level cascading bucket system
to implement Q, where the delete-min operation
now takes O(kmn2 + pmn2 + cn/pk−1) time. We
choose p = (c

mn)1/k and k = log (c
mn) for the to-

tal time complexity of the delete-min operation to
become O(mn2 log (c

mn)). Thus the total worst case
time complexity using the cascading bucket system is
O(m2n + mn log (c

mn)).

Theorem 4.4 There exists algorithms to solve the
APSP-AF problem on directed graphs with integer
edge costs in O(m2n+nc) or O(m2n+mn2 log (c

mn))
time bounds.

Proof We take the same approach as before and
modify Algorithm 3 to store v as the predecessor ver-
tex alongside the (u, w, d′, f ′) quadruple in line 21.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

17

5 Concluding remarks

We have introduced a new graph path problem and
provided non-trivial algorithms to solve the new prob-
lem that are both practical and faster than the
straightforward methods.

The example of evacuation planning has been used
in the introduction of the paper to show the relevance
of the SP-AF problem in real life. Another possible
application of the SSSP-AF problem is in computer
networking, as a more sophisticated dynamic routing
protocol than the currently commonly used protocols
such as RIP and OSPF. And with the introduction of
Software Defined Networking (SDN) (10), we can also
propose APSP-AF as a possible algorithm to calculate
the routes in the entire network.

Trivial lower bounds of O(mn) and O(mn2) ex-
ist for the SSSP-AF and APSP-AF problems, respec-
tively, on weighted digraphs. This paper has inves-
tigated only graphs with integer edge costs. Can we
provide a better time bound than the straightforward
O(m2 + mn log n) for the SSSP-AF problem on di-
rected graphs with real edge costs? Is there a faster al-
gorithm on undirected graphs? How close can we get
to the lower bounds of the SP-AF problems? We con-
clude the paper with these open questions and look
forward to further research that may address these
open problems.

References

[1] Ahuja, K., Melhorn, K., Orlin, J. B., &Tarjan,
R. E. (1990), Faster algorithms for the short-
est path problem, in ‘Journal of ACM’, Vol. 37,
pp. 213-223

[2] Denardo, E. V. &Fox, B. L. (1979), Shortest-
route methods: I. Reaching, pruning, and buck-
ets, in ‘Operations Research’, Vol. 27, pp. 161–
186

[3] Dijkstra, E. (1959), A note on two problems in
connexion with graphs, in ‘Numerische Mathe-
matik’, Vol. 1, pp. 269–271

[4] Floyd, R. (1962), Algorithm 97: Shortest Path,
in ‘Communications of the ACM’, Vol. 5, pp. 345

[5] Fredman, M. (1976), New bounds on the com-
plexity of the shortest path problem, in ‘SIAM
Journal on Computing’, Vol. 5, pp. 83–89

[6] Fredman, M. & Tarjan, R. (1987), Fibonacci
heaps and their uses in improved network opti-
mization algorithms, in ‘Journal of the Associa-
tion for Computing Machinery’, Vol. 34, pp. 596–
615

[7] Hu, T. C. (1961), The maximum capacity
route problem, in ‘Operations Research’, Vol. 9,
pp. 898–900

[8] Takaoka, T. (2012), Efficient Algorithms for
the All Pairs Shortest Path Problem with Lim-
ited Edge Costs, in ‘Proceeding of 18th CATS’,
pp. 21–26

[9] Thorup, M. (2003), Integer Priority Queues with
Decrease Key in Constant Time and the Single
Source Shortest Paths Problem, in ‘Proceeding
of 35th STOC’, pp. 149-158

[10] 2012ONF Open Networking Foundation (2012),
Software-Defined Networking: The New Norm
for Networks, in ONF White Paper

CRPIT Volume 147 - Computer Science 2014

18

Lazy and Eager Approaches for the Set Cover Problem

Ching Lih Lim Alistair Moffat Anthony Wirth

Department of Computing and Information Systems
The University of Melbourne

Victoria 3010, Australia

Abstract

The SET COVER problem is tantalizingly simple to de-
scribe: given a collection F of sets, each containing a
subset of a universe U of objects, find a smallest sub-
collection A of F such that every object in U is included
in at least one of the sets in A. However, like many such
combinatorial problems, SET COVER is NP-hard, mean-
ing that it is unlikely that an efficient algorithm will be
found, and that approximation algorithms must be pre-
ferred for non-trivial problem instances. One well-known
approximation approach for SET COVER is to repeatedly
add the set with the most uncovered items to the solution,
continuing until every element in the universe is covered;
this GREEDY approach has a provable logarithmic ap-
proximation ratio, essentially the best feasible ratio. Here
we study the implementation of the GREEDY approach to
SET COVER, evaluating eager and lazy versions and other
implementation options. Experiments with several large
datasets demonstrate that lazy “as required” priority queue
updates should be preferred, rather than eager “as soon as
possible” ones; and that when implemented in this way,
the GREEDY mechanism can solve some large instances
of the SET COVER problem very quickly. This practi-
cal superiority contrasts with the lazy version’s having a
demonstrably higher worst-case operation cost.

Keywords: set cover, priority queue, lazy update, approx-
imation algorithm.

1 Introduction

The SET COVER problem arises in a very broad range of
logistic and layout problems, including monthly beer pro-
duction, the roll-out schedule of a network, and data min-
ing of a collection of sequenced DNA data for simple re-
peats [11, 12]. An instance of SET COVER consists of a
universe U of objects, and a collection F of subsets of U .
The challenge is to identify a smallest sub-collection of
F subject to the constraint that the union of the sets in A

Copyright c© 2014, Australian Computer Society, Inc. This paper ap-
peared at the Thirty-Seventh Australasian Computer Science Conference
(ACSC2014), Auckland, New Zealand, January 2014. Conferences in
Research and Practice in Information Technology (CRPIT), Vol. 147,
Bruce H. Thomas and David Parry, Eds. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

must be equal to the union of the sets in F ; that is, A must
cover the universe [3, 4, 12].

For example, suppose that the city government wishes
to select a set of locations for fire stations so that every
home is less than 5 km by road from at least one fire sta-
tion, and so that the number of fire stations required is
minimized. In this scenario, the set of homes forms the
universe U of items that must be covered by any solu-
tion; and the i th possible location for a fire station gives
rise to a set Si of homes that are within 5 km of it. As-
suming that the total pool of possible locations is suffi-
ciently numerous that every home is within 5 km of one or
more of the locations under consideration (equivalently:
that

⋃
S∈F S = U), the required SET COVER solution

is a smallest set of locations A such that
⋃

S∈A S is also
equal to U . That is, what is required is a smallest subset
A ⊆ F such that every home in U appears in at least one
element in A. If there is more than one minimal-size solu-
tion, secondary criteria could be used to choose between
them. Other SET COVER scenarios include information
retrieval, where a query over words (elements) computes
the smallest sub-collection of documents, drawn from a
large collection of documents, that as a whole contain all
of the query words.

Like many such combinatorial problems, SET COVER
is NP-hard. Consequently, to find optimal solutions, some
exhaustive search component is required; hence, only triv-
ially small problem instances can be solved exactly within
reasonable resource bounds. Approximation techniques
must then be used for large-scale problem instances. Any
approximation technique is a compromise between solu-
tion effectiveness and implementation efficiency, with high
effectiveness usually only possible at the cost of low effi-
ciency. At one extreme in this spectrum, exhaustive meth-
ods generate optimally effective solutions, but typically
require time that is exponential in the size of the problem
instance; at the other extreme, taking (for the SET COVER
problem) A = F certainly guarantees coverage and is very
fast to compute, but might be ineffective by a very large
multiplicative factor. Between these extremes, a good ap-
proximation algorithm balances a guarantee on effective-
ness (for example, in the case of SET COVER, through a
proof that the solution generated by the approximation al-
gorithm is at most some bounded factor larger than the
size of an optimal solution) with desirable asymptotic ex-
ecution analysis. For most NP-hard problems, the latter
requirement corresponds to running time that is polyno-
mial in the size of the problem instance.

The GREEDY algorithm for SET COVER, introduced in
detail in Section 2, can be measured against these criteria.
The solutions it constructs are bounded relative to the size

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

19

of a corresponding optimal solution [6, 10], and it exe-
cutes in polynomial time. It remains an important focus of
study because it has provably the best approximation fac-
tor possible in polynomial time, is known to perform very
well in practice across multiple kinds of instances and of-
ten generates solutions that are within 10% of optimum
[7, 8]. Recent GREEDY variants include a disk-based ver-
sion [4], and fast parallel algorithms [2, 3]; these options
add to the versatility and usefulness of the approach.

The GREEDY algorithm proceeds by repeatedly adding
to the solution the remaining set with the largest number
of uncovered elements, seeking to obtain the greatest gain
for each additional set that is used. To find the set with the
greatest number of uncovered elements a priority queue
data structure is employed to track the size of every candi-
date set. That structure is one of the focuses of this paper,
as we consider in detail how to implement the GREEDY
approach, and balance the costs of different types of queue
update operations. One obvious option is to use a binary
heap, but other – simpler – structures can also be used.
A critical issue that affects the choice is the rate at which
updates are performed – as each set is added to the grow-
ing solution, a large number of the other remaining sets
might need to have their “uncovered element” counts de-
creased. In this EAGER-GREEDY implementation, the pri-
ority queue must always be able to quickly emit the next
set to be added to the solution, meaning that many updates
to set sizes might be required at each iteration.

To counter this possible inefficiency, we explore the
use of lazy update options, in which changes to sets are
deferred as long as possible and until they are actually
necessary. The resultant implementation, LAZY-GREEDY,
performs a different balance of elementary operations, and
executes more quickly than the EAGER-GREEDY version
on public datasets. Our experimental results indicate that
LAZY-GREEDY outperforms the eager greedy method in
terms of running time, and is also competitive against a
recently described greedy bucket-based algorithm [4].

The notion of lazy evaluation can be further applied
to the process of updating a set, that is, identifying in it
(and removing from it) covered items. We explore this
option too, terminating those operations as soon as it can
be known that the set in question will not be the next one
added to the solution.

The remainder of the paper is structured as follows.
Section 2 explains the technical background of the SET
COVER problem; shows how the GREEDY strategy com-
putes solutions with a guaranteed approximation bound;
and describes the EAGER-GREEDY implementation of
that approach. Section 3 focuses on the bottleneck issue
with EAGER-GREEDY, and describes an alternative lazy-
update version of the same GREEDY paradigm. We also
describe an input pattern that gives rise to a worst-case
number of set updates. Section 4 describes the experiment
environment and datasets used to evaluate the pool of SET
COVER algorithms; and then demonstrates that the new
lazy approach solves large instances of the problem sig-
nificantly faster than does the eager implementation of the
same procedure. The lazy implementation is also compet-
itive against the more complex DF-GREEDY bucket-based
implementation of the eager greedy procedure developed
by Cormode et al. [4]. Extending the notion of “laziness”
to the set difference operator is considered in Section 5.
Section 6 then concludes our presentation.

1 2 3 4

5 6 7 8 9

S
4

S
5

S
3

S
2

S
0

S
1

0

Figure 1: An instance of the SET COVER problem over
U = [0..9], with F = {S0, . . . , S5}, and S0 = {0, 5, 6},
S1 = {1, 2, 6, 7}, S2 = {3, 8}, S3 = {4, 9}, S4 =
{0, 1, 2, 3, 4}, and S5 = {7, 8, 9}.

2 The SET COVER Problem

We now state the SET COVER problem, and describe the
best-known approximation algorithm for solving it.

2.1 Definition

The universe of objects under consideration is supposed,
without loss of generality, to consist of the n integers
[0..n−1], where, as a general notation, [0..z−1] stands for
the set {0, 1, . . . , z − 1}. An instance of the SET COVER
problem relative to the universe U = [0..n−1] is given by
a collection F of m sets {S0, . . . , Sm−1}, with Si ⊆ U ,
and

⋃
i∈[0..m−1] Si = U . That is, it is known that every

item in U appears in at least one of the sets Si in F .
The challenge then posed is to find a smallest sub-

collection A ⊆ F such that
⋃

S∈A S =
⋃

S∈F S =
U [12]. The size of the solution is given by |A|. Another
way of categorizing the cover size that we do not pursue in
this paper is the total number of elements in the sets mak-
ing up A, that is, the objective is to minimize

∑
S∈A |S|

subject to the constraint
⋃

S∈A S = U . It is convenient to
describe the set A in terms of the indices of the sets that
are being included in the solution. The interpretation of
A to be used in a particular situation will always be clear
from the context.

Figure 1 illustrates a simple instance of the SET
COVER problem in which U = [0..9] and F =
{S0, . . . , S5}. It is also helpful to define a value M as
the total of the m sets that are involved in a SET COVER
instance, M =

∑
i∈[0..m−1] |Si|. In the example, M =

19, and is a measure of the size of the input required
when describing the instance. The smallest solution for
the instance in Figure 1 is A = {0, 4, 5}, since these
three sets cover U , and there is no smaller sub-collection
of F that also covers U . The alternative sub-collection
{S0, S1, S2, S3} also covers U and is free of redundancy
(none of the sets can be removed without coverage being
lost), but is not optimal.

The SET COVER problem is NP-hard [12]. Indeed,
Feige [6] showed that, unless NP has “slightly super-
polynomial time algorithms”, SET COVER cannot be ap-
proximated within a factor of (1 − o(1)) lnn. The next
section presents the GREEDY approach, whose approxi-
mation factor is very close to this bound.

2.2 The GREEDY Strategy

Algorithm 1 provides an overview of the GREEDY approx-
imation mechanism for SET COVER. The idea behind it
is very simple: at each iteration of the loop, the set with
the largest number of uncovered items is identified, and
added to a growing solution A. That process is contin-
ued until every element in U is covered; the precondition

CRPIT Volume 147 - Computer Science 2014

20

Algorithm 1 The GREEDY approach
Input: Family F of m sets Si ⊆ U = [0..n− 1], and

with
⋃

i∈[0..m−1] Si = U

Output: Set A of indices of sets with
⋃

i∈A Si = U .
1: A← {}
2: covered← {}
3: while covered 6= U do
4: i← argmaxj∈[0..m−1]{|Sj − covered|}
5: A← A ∪ {i}
6: covered← covered ∪ Si
7: end while
8: return A

size

4 0 1 2 3 4

S 1 1 2 6 7

S 2 3 8

S 3 4 9

S 5 7 8 9

S 0 0 5 6

Increasing

S

Figure 2: The six sets of the SET COVER instance shown
in Figure 1, sorted into increasing size order. The first set
to be considered is S4.

that
⋃

i∈[0..m−1] Si = U guarantees that the termination
condition for the loop will be met.

Figure 2 shows the initial state of Algorithm 1, as ap-
plied to the problem instance shown in Figure 1. The
GREEDY approach first adds set S4 to the solution, and
in doing so, covers items {0, 1, 2, 3, 4}. The second set
considered is then S5, since it (now) has three uncovered
items, more than the larger set S1, which only has two un-
covered items. Once S5 is added to the solution A, there
are only two uncovered items, 5 and 6, and S0 covers both
of them, whereas S1 only covers one of them. With S0

included in the solution, the main loop terminates; in this
case, the optimal solution is identified.

Johnson [10] demonstrated that the GREEDY approach
constructs a solution that is not more than 1 + lnn times
larger than the minimal one; improved bounds were pro-
vided by Slavı́k [13]. Young [14] and Dutta [5] provide
surveys of this development. The GREEDY approach also
performs well in practice, typically identifying solutions
that are close to optimal [3, 4]. Extensions include par-
allel implementations designed for multi-processor archi-
tectures [2]; for disk-based operation [4]; enhancements
that improve the worst-case approximation ratio [9]; and
methods for on-line SET COVER problems [1].

2.3 Implementing GREEDY: Eager Evaluation

Algorithm 1 leaves many details unspecified. Critical de-
cisions that are required include:

• How to represent the sets Si;
• How to manage the collection of sets so that the com-

putation implied by the argmax evaluation at step 4
can be carried out; and
• How to represent the set covered so that the compu-

tations at steps 4 and 6 can be carried out.

Algorithm 2 The EAGER-GREEDY implementation
Input: As for Algorithm 1
Output: As for Algorithm 1

1: A← {}
2: covered← {}
3: pqueue← {}
4: for j ← 0 to m− 1 do
5: pqueue.insert(〈|Sj |, j〉)
6: updates[j]← {}
7: end for
8: while covered 6= U do
9: 〈uc, i〉 ← pqueue.maximum()

10: A← A ∪ {i}
11: for c ∈ Si − covered do
12: covered← covered ∪ {c}
13: for each set Sj that contains c do
14: updates[j]← updates[j] ∪ {c}
15: end for
16: end for
17: for all j for which updates[j] 6= ∅ do
18: 〈uc, j〉 ← pqueue.delete(j)
19: Sj ← Sj − updates[j]
20: pqueue.insert(〈uc− |updates[j]|, j〉)
21: updates[j]← {}
22: end for
23: end while
24: return A

Algorithm 2 shows one way in which these issues can
be resolved. An explicit priority queue is introduced, with
the usual operations assumed: insert(), to add a tuple
〈uc, i〉 consisting of a set label i and queue weight uc
(steps 5 and 20); maximum(), to remove and return the
tuple with the largest weight uc (step 9); and delete(j),
to locate and remove the tuple with the specified label j
(step 18). As well, details are given of the process to
be followed when a set Si is added to the solution. The
loop at step 11 iterates over the newly covered items in
Si, and removes each of them from the every other set Sj

in which it appears (step 13). Each such removal decre-
ments the “uncovered symbol count” uc of a set Sj , but
these changes are all deferred until they can be processed
in a batch at step 18, which locates that set in the pri-
ority queue, extracts its current uc value, and then, at
step 20, puts it back in the priority queue with a reduced
uc value. The batching process ensures that each Sj that
shares items with Si is updated just once per occurrence
of step 9.

Two further details require elaboration. First, in order
to identify at step 11 the items c that are being newly cov-
ered, it is necessary for each element in Si to be checked
for membership in covered. The most appropriate mech-
anism is for covered to be stored as an indexed bitvector,
with covered[c] set to 1 if and only if c ∈ covered. Each
lookup to covered[c] requires O(1) time; over all sets Si,
the cost is at most

∑
i∈[0..m−1] |Si| = M , that is, is lin-

ear in the size of the input description. Second, step 13
requires knowledge of the collection of sets Sj that con-
tain a given element c. An efficient way of supporting this
need is to pre-compute an inverted index over the sets, so
that a mapping is available from items to sets containing
them [4]. Building an inverted index requires O(M) time
using distribution-sorting techniques, plus a correspond-
ing amount of memory space to store it.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

21

2.4 Priority Queue

With structures for covered and for identifying affected
sets in place, the overall time required by EAGER-
GREEDY is determined by the choice of priority queue
structure: there are at most |F | = m priority queue
maximum() operations required at step 9; and at most M
decrease-weight operations required at steps 18–20. If the
priority queue is implemented as a binary heap each opera-
tion requires O(logm) time (since there are at most m sets
in the heap); and the large number of update operations
dominates the running time, giving rise to an O(M logm)
overall cost.

An obvious question is whether a binary heap is in fact
the best choice. When a large number of decrease-weight
operations must be balanced against a smaller number of
extract-maximum operations, other options are also possi-
ble. The fact that all of the item weights manipulated in
the priority queue are integers between 0 and n − 1 also
adds flexibility.

In particular, a simple array-plus-lists structure can
be used as a priority queue. An array pqueue of n ele-
ments is maintained, with pqueue[uc] a list of the indices
of the sets that currently have uc uncovered elements. A
variable pqueue.top indicates the largest index in pqueue
that is non-null; and after every extract-maximum opera-
tion, pqueue.top is updated via a sequential scan through
pqueue looking for the next non-null entry. To carry out
the decrease-weight operation at steps 18–20, the current
entry in pqueue for set j is identified via a table indexed by
set identifier; and that node is deleted from its current list
pqueue[uc], then re-linked in to pqueue[uc− |updates[j]|]
where |updates[j]| is the number of changes being made
to Sj . This takes O(1) time per set moved. In addition, an
auxiliary stack records the values of j for which updates[j]
is no-empty, to that the loops at step 17 does not introduce
unnecessary overhead.

Allowing for the fact that the total cost of all of the
scanning required as part of the extract-maximum opera-
tions is O(n), the execution time for EAGER-GREEDY is
now O(n + M). Moreover, since the collection F cov-
ers U , it must be that M ≥ n. Hence, with this queue
structure, the EAGER-GREEDY approach described in Al-
gorithm 2 executes in O(M) time.

3 A Lazy Implementation

Section 2.4 describes one way in which the small number
of extract-maximum operations can be balanced against a
much larger number of decrease-weight operations. But
a significant imbalance remains between the number of
extract-maximum operations and the number of decrease-
weight operations, and it is interesting to ask if the over-
all envelope of operations can be decreased by explicitly
trading a large drop in the number of decrease-weight op-
erations for a smaller increase in the number of extract-
maximum operations.

3.1 Deferred Cleaning

In Algorithm 2, each execution of step 9 returns the next
largest set, according to the number of uncovered ele-
ments. Then, as that set is added to the solution, every
other set that contains common uncovered elements is ad-
justed. Those adjustments ensure that the counts of un-
covered elements for all sets are correct at all times.

Algorithm 3 The LAZY-GREEDY implementation
Input: As for Algorithm 1
Output: As for Algorithm 1

1: A← {}
2: covered← {}
3: pqueue← {}
4: for j ← 0 to m− 1 do
5: pqueue.insert(〈|Sj |, j〉)
6: end for
7: while covered 6= U do
8: 〈uc, i〉 ← pqueue.maximum()
9: S′i ← Si − covered

10: if |S′i| = |Si| then // all items in Si were clean
11: A← A ∪ {i}
12: covered← covered ∪ Si
13: else // some items in Si were covered
14: Si ← S′i
15: pqueue.insert(〈|Si|, i〉)
16: end if
17: end while
18: return A

If those counts were not reduced so relentlessly, the
putative sizes of the competing sets – the weights manip-
ulated by the priority queue – would deviate from their
true values. But they would always be upper bounds, and
the worst that could happen is that a set might be emitted
by the priority queue as being the next largest, only for a
subsequent check to find that in fact it contained covered
elements that had not yet been noted, and could not be
included as part of the greedy solution just yet.

Algorithm 3 presents the revised process. Step 8 ac-
cesses the largest set in the priority queue, denoted as Si.
In recognition of the fact that Si might include one or more
items covered in previous iterations, the first processing
undertaken is a set difference Si− covered, in which each
element of Si is checked against the set covered. If the set
difference operation removes no elements from Si, then
all elements were uncovered, and it can be added to the
greedy solution (steps 11–12).

But if there were covered elements present in Si, it can-
not be added to the solution, since it might not be the set
containing the largest number of uncovered items – there
might be another smaller set that has that claim. Instead,
the cleaned set S′i is retained, and is reinserted into the
priority queue (step 15). The main loop then iterates, and
the newly largest set is chosen as the next maximum. This
process continues until a clean set containing only uncov-
ered items emerges from the priority queue.

With the revised arrangement, the while loop at step 7
executes more than |A| times. But each reinsertion oper-
ation at step 15 should move the set Si down by multiple
slots in the priority queue ordering; that is, there might be
fewer reinsertions in total, decreasing the total number of
queue operations required.

3.2 Example

Consider the example instance shown in Figure 1. The
initial state of the priority queue is as shown in Figure 2.
The largest set, S4, is removed, and because no items have
been covered yet, all of its elements are clean, and S4 is
added to the solution. The next largest set is S1, with a
putative uc of 4. But when S1 is checked for cleanliness,
it is discovered that two of its elements (1 and 2) have
become covered, and its uncovered size is actually only
two. So a cleaned set S′1 = {6, 7} is added back into the

CRPIT Volume 147 - Computer Science 2014

22

i

8 7 6 5 4 3 2 1 00

9 8 7 6 5 4 3 2 1 X X1

9 8 7 6 5 4 3 X X X X X2

9 8 7 6 X X X X X X X X X3

Set Si

9

Figure 3: Pathological example with m = 4 sets. Items
shown as “X” are unique, and appear one time only.

queue, with uc = 2; nothing is added to the solution at
this loop iteration. Now the next largest set is S0, but it is
also discovered to contain covered items, and is returned
to the queue as S′0 = {5, 6}. Next, S5 is emitted from
the queue, and it is clean – there are no covered items. So
S5 is added to the solution, and elements 7, 8, and 9 are
marked as having been covered.

By this stage, the queue contains S2, S3, S′1, and S′0,
all of size two. Assuming that they are considered in that
order, S2 is found to contain no uncovered elements; then
S3 is likewise found to be of no use; and then S′1 is reduced
to S′′1 = {6} and is returned to the queue.

Now the queue contains S′0 = {5, 6} and S′′1 = {6}.
The processing of S′0 reveals that both of its items are as
yet uncovered, and so S0 is added to the solution A. That
addition results in all items being covered, and so the final
solution is A = {4, 5, 0}, the same solution as the EAGER-
GREEDY approach.

In this particular example, a total of 8 extract-
maximum operations are required compared to just 3 by
EAGER-GREEDY. The anticipated payoff for that growth
is a reduced number of check-covered operations; that
gain does not arise in the example because of its small
scale, but should be measurable on larger instances.

3.3 Worst-Case Performance

The change to lazy evaluation means that the number of
iterations of step 8 is no longer bounded by m, the number
of sets input to the problem. This observation gives rise to
an interesting question: What is the maximum number of
iterations possible, that is, is there a limit on the number
of times that a given set can be reinserted at step 15 before
it emerges “clean” and able to be added to the solution?

Consider the set structure shown in Figure 3. Each set
contains a hierarchy of items present in other sets in the
collection, marked by the various boxes; plus additional
unique filler elements denoted “X”, whose role is to force
the ordering of the queue operations. In a problem in-
stance over m sets S0 to Sm−1 there are thus m(m+1)/2
different items that appear as part of the hierarchical pat-
tern. In addition, set Si, contains i(i + 3)/2 unique filler
elements, meaning that the total filler count is

m−1∑
i=0

i(i + 3)

2
=

m3 + 3m2 − 4m

6
.

Hence, in total, the universe size is given by n = (m(m+
1)/2) + (m3 + 3m2 − 4m)/6 = (m3 + 6m2 −m)/6. A
similar computation shows that the input size is given by

M =
m3 + 2m2 −m

2
≈ m3

2
.

When processed by LAZY-GREEDY, the input arrange-
ment shown in Figure 3 gives rise to a repetitive cycle of
computations. It first processes set Sm−1, finds that all of
its elements are clean, and hence covers them. It then cy-
cles through Sm−2, Sm−3 and so on down to S0, cleaning
the same group of m elements out of each. Once all m−1
remaining sets are clean, set Sm−2 returns to the head of
the queue in a fully uncovered state, and the cycle is re-
peated recursively, exactly as if a pathological instance of
m− 1 sets had been input.

Since set Si cycles through the head of the priority
queue a total of m−i times, the total number of executions
of step 8 in Algorithm 3 is

m−1∑
i=0

(m− i) =
m(m + 1)

2
≈ m2

2
.

Hence, the number of extract-maximum operations per-
formed on the pathological input instances is Θ(M2/3),
and remains sub-linear in the size of the input description.
That asymptotic bound also applies to the number of times
that step 15 is executed.

The other place in the LAZY-GREEDY approach where
the number of iterations might be different from the
EAGER-GREEDY approach is at step 9. Each time a set Si

reaches the head of the queue, every element c in it is
checked against covered, taking O(1) time per element.
Elements that have already been covered are removed as
they are discovered, and only the uncovered elements are
retained in the set S′i that is reinserted in to the queue. But
the elements that were not covered will be checked again
when Si reaches the head of the queue next time, and it
is no longer possible to bound the number of “check cov-
ered” operations by M . Indeed, for the pathological input
structure that is illustrated in Figure 3, the total number
of check-covered operations for an instance of size m, is
given by the summed size of the (recursive) problem in-
stances from size m down to size 1:

m∑
i=1

i3 + 2i2 − i

2
= Θ(m4) .

The behavior of the pathological input arrangement can be
summarized thus:
Observation 1. There is a SET COVER problem in-
stance of size M that requires the LAZY-GREEDY method
to spend Θ(M4/3) time, including Θ(M2/3) extract-
maximum operations in the priority queue.

Note that this time bound is asymptotically greater than
the O(M) time that is achieved by the EAGER-GREEDY
implementation. Fortunately, typical problem instances do
not display the particular structure required to force this
bad behavior, and when executed on typical instances, the
LAZY-GREEDY approach shows substantial benefits com-
pared to the EAGER-GREEDY implementation.

4 Experimental Results

We now demonstrate the difference that lazy evaluation
can make on typical SET COVER problem instances.

4.1 Datasets and Experiment Environment

Three datasets are used in the experiments – RETAIL, AC-
CIDENTS and WEBDOCS – taken from the Frequent Item-

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

23

Dataset Variable RETAIL ACCIDENTS WEBDOCS

Universe size n 16,470 468 5,267,656
Number of sets m 88,162 340,183 1,692,082
Largest set size 76 51 71,472
Median set size 8 34 98
Average set size 10.31 33.81 177.23
Total input size M 908,576 11,500,870 299,887,139

Table 1: The properties of the datasets involved in our experiments.

Set Mining dataset repository1. The RETAIL dataset rep-
resents anonymized data on shopping items purchased by
customers in Belgium, with a set-cover solution being a
minimal set of customer transactions such that every item
stocked in the supermarket is purchased at least once; AC-
CIDENTS is a set of traffic accident records in a certain
time period also in Belgium, with a set-cover represent-
ing a subset of them in which every one of the recorded
variables occurs at least once; and WEBDOCS represents
a crawled collection of Web html documents, with a set-
cover solution being a smallest set of documents such that
every word that appears in any of the documents appears
in at least one of the documents in the subset. Each line
in the datasets is a space-separated sequence of integers.
Table 1 describes the properties of the datasets.

Experiments were conducted on a server running x86-
64 Red Hat Enterprise Linux ES Release 4 (Nahant Up-
date 7) with four 3.2 GHz Intel Xeon processors and 8 GB
of primary memory, with programs implemented using the
64-bit version 1.5.0 08 of the Java Runtime Environment.
The execution times presented below are all the average of
ten runs of the corresponding scenario, in all cases start-
ing with a configuration in which the set data structure is
available in memory.

4.2 Implementations

Java implementations of EAGER-GREEDY and LAZY-
GREEDY were prepared. All of the implementation execu-
tions were restricted to the usage of a single thread by de-
fault and had the runtime JIT (Just-In-Time) optimization
enabled by default. All data structures were presumed to
fit in to main memory. In the case of the EAGER-GREEDY
implementation, the first operation carried out was to con-
struct the index that is required, with that time included in
the reported execution times.

The internal representations for the input sets and for
covered were carefully chosen. A Boolean bit-vector of
dn/32e four-byte integers represents the set covered, al-
lowing constant-time check-covered operations. Each of
the sets was stored in an allocated segment out of an array
of M integers, with covered elements rotated to the end
of each set’s zone, and uncovered elements retained at the
front of each zone. There was no resizing or de-fragging
the underlying array.

The priority queue pqueue for tracking the set sizes
was implemented as an array of size n, in which each
bucket was indexed by uc, and contained the identifier
of the first set of that size, with other sets threaded from
that first one. In the case of the EAGER-GREEDY mecha-
nism, the priority queue lists were doubly-linked, and con-
tained three fields: a next pointer, a prev pointer, and the
uc value for that set, the latter being needed to allow the

1http://fimi.ua.ac.be/data/

Structure EAGER-GREEDY LAZY-GREEDY

covered n/32 + O(1) n/32 + O(1)
pqueue n + 3m + O(1) n + m + O(1)
sets m + M + O(1) m + M + O(1)
index n + M + O(1) —

Table 2: Space cost, in integers.

pqueue.delete(j) operation to be efficient (step 18 in Al-
gorithm 2). Double threading of list nodes was required,
because the nodes being deleted might be anywhere in
their list. Access to the j th set, required at the same step,
is achieved in O(1) time by simply storing the set of pri-
ority queue nodes in a single large array (rather than as
independently malloc’ed objects), with Sj stored in the
j th array element. Each list was implemented as last-in
first-out structure, with insertions always at the head.

In the LAZY-GREEDY approach a similar priority
queue is maintained, but because deletions only occur as
extract-maximum operations at the front of each list, no
uc value is required, and single-threading suffices.

These various considerations lead to the space costs
shown in Table 2. For the file WEBDOCS, the total nom-
inal space requirement for the EAGER-GREEDY imple-
mentation was thus 2,355 MB; with 1,178 MB required
for the LAZY-GREEDY implementation. That is, the in-
dex that is required for the EAGER-GREEDY approach es-
sentially doubles the amount of memory space required.
All of the values are stored as integer indices into either
pqueue or into the array of sets. Naturally, if any of n, m,
or M is greater than 232, then eight-byte integers would be
required rather than the four-byte ones assumed in these
calculations.

4.3 Worst-Case Behavior

Table 3 shows execution times and operation counts for
the EAGER-GREEDY and LAZY-GREEDY implementa-
tions when applied to the extreme problem instances de-
scribed in Section 3.3. As anticipated by Observation 1,
when m doubles, the number of extract-maximum op-
erations required by LAZY-GREEDY increases by a fac-
tor of four, and both the number of check-covered oper-
ations required and the measured running time increase
by a factor of sixteen. As m doubles, the input size M
increases by a factor of roughly eight. For SET COVER
instances that have this structure, the extra space required
by the EAGER-GREEDY approach is a sound investment,
and prevents super-linear (in M) execution times.

CRPIT Volume 147 - Computer Science 2014

24

m M
time (s) extract-maximum check-covered

E-G L-G E-G L-G E-G L-G

200 4,039,900 0.37 1.17 200 20,100 4,039,900 204,681,650
300 13,589,850 1.28 5.65 300 45,150 13,589,850 1,028,283,725
400 32,159,800 2.98 17.47 400 80,200 32,159,800 3,237,393,300
500 62,749,750 5.72 39.92 500 125,250 62,749,750 7,885,510,375
600 108,359,700 9.88 85.36 600 180,300 108,359,700 16,326,134,950

Table 3: Execution time and operation counts LAZY-GREEDY and EAGER-GREEDY on pathological input sequences.

Measurement Dataset EAGER-GREEDY LAZY-GREEDY DF-GREEDY

Solution size RETAIL 5,106 5,113 5,119
ACCIDENTS 181 180 185
WEBDOCS 406,372 406,400 406,428

Extract-maximum RETAIL 5,106 162,961 —
ACCIDENTS 181 1,080,524 —
WEBDOCS 406,372 3,291,585 —

Check-covered RETAIL 92,540 1,239,924 1,223,062
ACCIDENTS 6,630 18,170,446 17,766,461
WEBDOCS 133,008,957 335,085,502 326,336,293

Queue reinsertions RETAIL 778,704 74,817 74,009
ACCIDENTS 2,365,299 743,400 709,066
WEBDOCS 46,092,276 1,599,610 1,562,286

Running time (s) RETAIL 0.39 0.18 0.18
ACCIDENTS 1.53 0.85 0.84
WEBDOCS 73.10 5.34 5.11

Table 4: Performance of EAGER-GREEDY, LAZY-GREEDY and DF-GREEDY on three datasets. The DF-GREEDY
method is measured using parameter p = 1.1. The best value in each row is highlighted.

4.4 Practical Applications

Table 4 shows what happens on the three problem in-
stances described in Table 1. The final column is discussed
in Section 4.5. As currently implemented, the time re-
quired to read each file (text format) is 1.17 sec, 4.82 sec,
and 111.24 sec, for RETAIL, ACCIDENTS and WEBDOCS,
respectively. These quantities are not included in the run-
ning times in Table 4.

In the first block of values, the solution sizes |A|
are listed. The variation between EAGER-GREEDY and
LAZY-GREEDY, and the absence of a single “right” an-
swer, is a consequence of differences in the way that
equal-sized sets are handled. If a secondary key (such
as set number), was introduced to the pqueue ordering,
the implementations could be made to give the same an-
swer. The drawback of doing that would be that queue
reinsertions could no longer be made at the head of the
list pqueue[uc], and would potentially add to the execu-
tion time. Nor could there be any expectation that the sin-
gle answer that would be generated through the use of a
tie-breaking rule would always be the smaller of the two
alternatives. Hence the retention of the current arrange-
ment, which by chance alone happens to favor the EAGER-
GREEDY implementation on two of the three datasets.

The next three blocks in Table 4 give detailed operation
counts for extract-maximum, check-covered, and queue-
reinsert operations for the three datasets. As anticipated,
the EAGER-GREEDY implementation performs a minimal
number of extract-maximum operations, just one per set

added to the solution A, whose size is at most m. But there
is a very large number of queue reinsertion operations per-
formed, close to M , and even with the array-based priority
queue described in Section 2.4, each reinsertion is rela-
tively costly, involving multiple tests for boundary cases
and multiple pointer assignments.

Compared to EAGER-GREEDY, the LAZY-GREEDY
implementation reduces the number of reinsertion oper-
ations by a large or (on WEBDOCS) very large factor.
The tradeoff is that the number of extract-maximum and
check-covered operations increases. But individual check-
covered operations are fast (just an array access and a
mask operation), and even extract-maximum operations
are less costly than reinsertions.

The last block in Table 4 shows the measured execution
time, including the cost of index construction in the case
of EAGER-GREEDY. On the three test datasets LAZY-
GREEDY does indeed execute more quickly, by factors
that vary from 2.2 (RETAIL) to 13.7 (WEBDOCS).

4.5 Disk-Friendly Greedy

Cormode et al. [4] have also considered the question of
how to implement the GREEDY method for SET COVER.
Their DF-GREEDY (disk-friendly greedy) approach is de-
signed to minimize the number of non-sequential opera-
tions, and maximize the number of sequential operations
over the data, and hence provides good performance when
the input data is so voluminous that it cannot be stored in
main memory. Cormode et al. introduce a fidelity param-

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

25

eter p > 1 that permits further imprecision of the output
size, in order to control the number of disk seek opera-
tions required. That is, the DF-GREEDY approach can
be thought of as being an “approximate-approximation”
mechanism, with a slightly weakened performance guar-
antee of 1 + p lnn [4].

The DF-GREEDY implementation has much in com-
mon with the LAZY-GREEDY approach described here.
The critical difference is that instead of the priority queue
being indexed directly by current set size, as given the
by uc component of the tuple, it is instead indexed by
blogp ucc; that is, the number of distinct buckets in pqueue
is given by blogp nc. Each bucket is represented as a disk
file containing explicit sets, and the only requirement for
memory space in the on-disk version of DF-GREEDY is
the n/32 words required for the covered bit-vector.

The main processing loop of the DF-GREEDY method
works systematically through the sets in a given bucket,
for example, the k th bucket containing sets of at least pk
and less than pk+1 elements. As each set is read from the
corresponding file and processed, it is checked for cleanli-
ness. Provided that a set is clean, or nearly clean – where
nearly clean is defined as containing at least pk uncovered
items – it is incorporated into the solution A. On the other
hand, if, after cleaning, the set contains fewer than pk un-
covered items, it is written back to disk by appending it to
the file storing the corresponding range of set sizes, and
held for later processing.

The use of a geometric sequence of sizes means that no
set can be processed more than dlogp ne times, and hence
that there are at most m logp n read and write operations
while the algorithm executes, and, summed across the ge-
ometric sequence of set sizes, at most Mp/(p−1) (that is,
O(M)) words of data written. As many as logp n files are
required to be open for writing at any given instant, and
one file for reading.

The final column of Table 4 shows the performance of
an in-memory version of the DF-GREEDY approach. It is
implemented using the same data structures as shown in
Table 2, using a pqueue with logp n + 2m + O(1) words
required, with set size uc and a forward pointer required as
part of each element. For the file WEBDOCS, for example,
and with p = 1.1, there is a net space saving of around
14 MB compared to LAZY-GREEDY.

Needless to say, the DF-GREEDY approach is also fast
when implemented this way, since it has a very similar
execution profile to the LAZY-GREEDY mechanism. In-
deed, the only significant difference between them is that
in the LAZY-GREEDY approach, each bucket in pqueue
represents a single set size, whereas in the in-memory DF-
GREEDY implementation, each bucket represents a range
of set sizes spanning (when p = 1.1) a 10% margin. That
is, another way of categorizing the LAZY-GREEDY ap-
proach is that it is the limiting implementation, as p → 1,
of the in-memory DF-GREEDY mechanism.

The size of the solutions is very slightly higher when
the in-memory DF-GREEDY is employed, but they are
still close to the range established by the two “exact” ap-
proximate implementations. (Of course, the size of “true”
solutions to these problem instances is not known.)

Interestingly, on the extreme problem instances de-
scribed in Section 3.3, DF-GREEDY performs very well.
For instance, with m = 400, DF-GREEDY with p = 1.1
requires just 0.35 seconds to return the solution, check-
ing whether 70,391,613 items are covered. This is ten
times faster than EAGER-GREEDY and over forty times

faster than LAZY-GREEDY (Table 3). The point is that
DF-GREEDY is not concerned when the set in focus has
had a small fraction of its elements already covered, and
in many cases adds the set to the solution anyway, bypass-
ing the cascading cycle of cleansings that hinder the other
two implementations.

Cormode et al. [4] compare in-memory and on-disk
versions of their DF-GREEDY method with a range of
other implementations, including an EAGER-GREEDY im-
plementation. Using a 2.8 Ghz MacOS machine with
8 GB of main memory, their in-memory DF-GREEDY re-
quires 93 seconds to process WEBDOCS with p = 1.001,
and around 70 seconds with p = 1.1, compared to an
EAGER-GREEDY execution time of 199 seconds. One
possible explanation for the variation in execution time be-
tween their implementation of DF-GREEDY and our im-
plementation of DF-GREEDY (shown as requiring 5 sec-
onds in Table 4) is the use of different data structures;
another contributing factor may be different experimental
assumptions (for example, we do not include data reading
times in Table 4).

5 Partial Set Cleansing

One further avenue was explored, still with the objective
of reducing the execution time. Table 4 shows that the
LAZY-GREEDY approach requires a minimum of three
times more check-covered operations than does EAGER-
GREEDY. Much of that effort is spent removing covered
items from dirty sets even after it is known that set will
not be the next one added to the solution. Removal of cov-
ered elements is, of itself, not wasted effort. But checking
of the uncovered elements embedded in the same set is
in some sense unhelpful, since those uncovered elements
will all get checked again the next time this set emerges
from the priority queue.

The idea of partial set cleansing is to interrupt the pro-
cessing of checking a set once some threshold of “dirti-
ness” is exceeded, knowing that it will be some time be-
fore this set emerges again from the queue, and knowing
that in the intervening period, more of the elements might
have become covered.

Two different strategies were explored. The first was
to abandon cleansing set Si as soon as enough covered
items had been identified in it to confirm that it could not
be the next one added into the solution. That is, if set Si

was from pqueue[uc], and the next largest set was in (say)
pqueue[uc′], then as soon as uc − uc′ + 1 covered items
have been found in Si, it is returned to the queue in bucket
pqueue[uc′ − 1], and attention switched to the set or sets
in bucket pqueue[uc′].

To avoid repeatedly testing and retesting elements
from the start of each set, a variable restart point is added
to each node in the queue, to record the position from
which check-covered operations should resume, when and
if this set returns to the front of the queue again. Re-
suming the next loop of check-covered operations from
restart point rather than the beginning of the set increases
the likelihood of identifying covered items; but does not
remove the need for every item in the set to be checked
before it can be added to the solution.

The second strategy was to continue checking set ele-
ments until some fixed fraction of the set was found to be
covered, and reinsert a partially cleansed set into the queue
as soon as that condition was met. When set cleansing is
resumed, it is again from a stored restart point.

CRPIT Volume 147 - Computer Science 2014

26

Operations LAZY-GREEDY
LAZY-GREEDY with partial set cleansing

uc− uc′ + 1 1 + 0.10× uc 1 + 0.50× uc

Extract-maximum operations 3,291,585 287,420,896 44,731,342 10,276,636
Check-covered operations 335,085,502 314,325,433 319,843,092 326,240,303
Check-covered per extract-max. 101.80 1.09 7.15 31.75
Data movements — 19,706,057 25,223,716 31,620,927
Running time (s) 5.29 189.71 37.40 12.37

Table 5: Operation counts for LAZY-GREEDY with full set cleansing, and three levels of partial set cleansing. The
threshold of the partial cleansing is the maximum number of covered elements to be discovered prior to a suspension of
the set difference. The critical factor determining execution time is the number of check-covered operations required.

Table 5 shows the costs associated with the revised
process. Each approach to partial cleansing is able to
slightly decrease the number of check-covered operations,
but not by enough to also decrease the running time. In-
deed, the number of extract-maximum operations grows
significantly, adding considerably to the execution cost. It
may be that other variants of this idea can be identified
that achieve the hoped-for blend of attributes, but to date
we have not identified a method that is significantly faster
than the LAZY-GREEDY and DF-GREEDY implementa-
tions.

6 Conclusion and Future Work

We have explored the GREEDY approach to the SET
COVER problem, describing and measuring the perfor-
mance of a new implementation, the LAZY-GREEDY
approach. Compared to the standard EAGER-GREEDY
mechanism, the LAZY-GREEDY implementation requires
around half the memory space, and as little as 5% of the
execution time when applied to typical large problem in-
stances. The trade-off is that the lazy set update process
increases the worst-case running time to Ω(M4/3), com-
pared to O(M) for EAGER-GREEDY, where M is the total
size of the input.

The LAZY-GREEDY implementation can be viewed
as a special-case in-memory version of the DF-GREEDY
method of Cormode et al. [4]. An interesting question
is whether that relationship can be exploited in some
way, perhaps to combine the speed of the DF-GREEDY
method with the solution performance bound enjoyed by
the LAZY-GREEDY approach in a single sequentially-
processing implementation that is oblivious as to whether
its data is resident in memory or on disk, and also retain
the worst-case usefulness of DF-GREEDY.

We are also intrigued by the observation, arising from
our experiments, that tie-breaking in the GREEDY mech-
anism can lead to solutions of differing quality. As a fur-
ther part of our ongoing study, we plan to explore ran-
domized choice evaluation to determine if hill-descending
approaches might be effective in practice. The idea here
would be to specify a total execution time that may be
spent, and then execute GREEDY as many times as possi-
ble within that time, in order to obtain in aggregate a better
solution than is likely to arise from a single execution.

Acknowledgments

Graham Cormode provided valuable input. This work was
supported by the Australian Research Council.

References

[1] G. Ausiello, N. Bourgeois, T. Giannakos, and V. T. Paschos.
Greedy algorithms for on-line set-covering. Algorithmic Opera-
tions Research, 4(1):36–48, 2009. URL http://journals.hil.

unb.ca/index.php/AOR/article/view/5928.

[2] G. E. Blelloch, R. Peng, and K. Tangwongsan. Linear-work greedy
parallel approximate set cover and variants. In Proc. 23rd ACM
Symp. Parallelism in Algorithms and Architectures, pages 23–32,
2011. doi: 10.1145/1989493.1989497.

[3] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and
I/O efficient set covering algorithms. In Proc. 24th ACM Symp.
Parallelism in Algorithms and Architectures, pages 82–90, 2012.
doi: 10.1145/2312005.2312024.

[4] G. Cormode, H. Karloff, and A. Wirth. Set cover algorithms
for very large datasets. In Proc. 19th ACM Int. Conf. Informa-
tion and Knowledge Management, pages 479–488, 2010. doi:
10.1145/1871437.1871501.

[5] H. S. Dutta. Survey of approximation algorithms for
set cover problem. Master’s thesis, University of North
Texas, 2009. URL http://digital.library.unt.edu/ark:

/67531/metadc12118/m1/1/high_res_d/thesis.pdf.

[6] U. Feige. A threshold of lnn for approximating set cover. J. ACM,
45(4):634–652, 1998. doi: 10.1145/285055.285059.

[7] F. Gomes, C. Meneses, P. Pardalos, and G. Viana. Experimental
analysis of approximation algorithms for the vertex cover and set
covering problems. Computers & Operations Research, 33(12):
3520–3534, 2006. doi: 10.1016/j.cor.2005.03.030.

[8] T. Grossman and A. Wool. Computational experience with ap-
proximation algorithms for the set covering problem. Eur. J.
of Operational Research, 101(1):81–92, 1997. doi: 10.1016/
S0377-2217(96)00161-0.

[9] R. Hassin and A. Levin. A better-than-greedy approximation algo-
rithm for the minimum set cover problem. SIAM J. Computing, 35
(1):189–200, 2005. doi: 10.1137/S0097539704444750.

[10] D. S. Johnson. Approximation algorithms for combinatorial prob-
lems. J. Computer and System Sciences, 9:256–278, 1974. doi:
10.1016/S0022-0000(74)80044-9.

[11] R. V. Kantety, M. La Rota, D. E. Matthews, and M. E. Sorrells.
Data mining for simple sequence repeats in expressed sequence
tags from barley, maize, rice, sorghum and wheat. Plant Molecular
Biology, 48(5-6):501–510, 2002. doi: 10.1023/A:1014875206165.

[12] R. M. Karp. Reducibility among combinatorial problems. In
Fifty Years of Integer Programming, 1958-2008, pages 219–241.
Springer, 2010. doi: 10.1007/978-3-540-68279-0 8.

[13] P. Slavı́k. A tight analysis of the greedy algorithm for set cover. J.
Algorithms, 25(2):237–254, 1997. doi: 10.1006/jagm.1997.0887.

[14] N. E. Young. Greedy set-cover algorithms. In Encyclope-
dia of Algorithms (Part 7). Springer, 2008. doi: 10.1007/
978-0-387-30162-4 175.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

27

CRPIT Volume 147 - Computer Science 2014

28

Towards a Vertex and Edge Label Aware Force Directed Layout
Algorithm

Roman Klapaukh1 David J Pearce1 Stuart Marshall1

1 School of Engineering and Computer Science
Victoria University of Wellington,

New Zealand
Email: {roma,djp,stuart}@ecs.vuw.ac.nz

Abstract

Many automatic graph layout algorithms can cause
shaped vertices and edge labels (which have a size
when drawn on the screen) to overlap in the result-
ing visualisation. Overlaps can hide information that
users expect to see in cases where the graph is small.
We perform two experiments on a large real-world set
of small (10-110 vertex) graphs to compare how differ-
ent combinations of forces in Eades’ force directed lay-
out algorithm affect the final graph layout. We iden-
tify an optimal combination of forces from those we
tested. In particular, we found that adding charged
walls, variable node charge and edge label charges,
minimises overlaps. We also found that using Hooke’s
Law over Eades’ logarithmic attractive force tends to
reduce edge crossings.

1 Introduction

Many different kinds of data can be represented visu-
ally by graphs. Automatic graph layout allows for the
visualisation of systems ranging from social networks
to mind maps and flow charts. In these cases and
many other real world applications the vertices and
edge labels of the graph will be shaped ; they will have
some shape and size when drawn rather than being a
single point. Shapedness comes from the context of
the graph. In cases where the user wishes to render
large numbers of vertices on the screen, all details of
individual vertices and edges is lost due to the lack
of screen resolution. In those cases it is the overall
pattern and structure of the graph that is interesting.
In contrast, when only a small number of vertices are
rendered, each can take up a reasonable amount of
space on the screen. Each vertex can contain infor-
mation which a user may wish to see. Overlaps, where
vertices or edge labels occlude each other, limit the
amount of information that can be conveyed to the
user. While a lot of research focuses on the visuali-
sation of large graphs, we believe that there are still
problems in the visualisation of small labelled graphs
as shown by the existence of small graph benchmarks
in venues such as Graph Drawing [12], and the use of
small graph layout algorithms as part of large graph
layout [24, 1].

Automatic graph layout is meant to position all
the objects creating a “good” visualisation. What it
means to be “good” is discussed in Section 2, but in

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

this work we are looking particularly at preventing
overlaps between any combination of shaped vertices
and edge labels. We consider both the count of how
many overlaps there are and the proportion of pixels
that are hidden. As a sanity check, we also record
other properties of the layout and use the widely
known and used heuristic of number of edge cross-
ings [26].

Consider the example small shaped graph laid out
in two different ways shown in Figure 1. This shows
an extract from a social network where vertices con-
tain the name of the person they represent, and edges
have the type of relationship between people. In the
top layout two of the vertices are overlapping, while in
the bottom they are all drawn separately. In the top
layout, it is hard to determine the names of the two
overlapping vertices, and to determine which edge is
connected to which. In the bottom layout there is no
such confusion.

Daniel

Kathy

RichardSophia

Friend
Married

Friend

Co-worker

DanielKathy

Richard Sophia

Married

Friend Co-workerFriend

Figure 1: A good and a bad layout of a social network.
In the above layout two of the vertices are overlapping
and it is hard to read what they say or what edges
connect to them.

While the situation of overlapping vertices can
be avoided, most of the core layout algorithms as-
sume that vertices and edge labels are not shaped
– an assumption which is not upheld in many prac-
tical applications with small graphs. Furthermore,
previous suggestions about how to resolve this is-
sue have not been evaluated on a large scale (e.g.
[14, 5, 4, 17, 9, 18]).

This paper contributes an evaluation of a range of
variants to the standard force directed layout algo-
rithm based on Eades’ Spring Embedder [8] to pre-
vent overlaps from occurring given shaped vertices
and shaped edge labels. We experimentally evaluate
a set of variants across a large real-world data set

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

29

using a suite of metrics.
We carried out a large scale experiment across

13,720 realistic graphs to evaluate how the numbers
of overlaps and edge crossings changes as you use dif-
ferent combinations of forces. We followed this ex-
periment with a second smaller experiment validat-
ing the results by ensuring that every combination
was covered. The graphs ranged in size from 10 to
110 vertices and come from a graph drawing bench-
mark containing real world data from a major US
corporation[12].

We found that:

1. Using charged walls, degree-based charge and
charged edge labels reduce overlaps by an order
of magnitude over the base algorithm.

2. Using Hooke’s Law instead of the standard loga-
rithmic attractive force tends to give layouts with
fewer edge crossings.

Overall we found that the force directed layout al-
gorithm without modifications performs significantly
worse than the best modified version with respect to
both overlaps and edge crossings. The ideas presented
here can be applied to other graph layout algorithms,
can be used in the layout of large graphs when using
multi-level layout algorithms [1], and can be used for
techniques such as multi-dimensional scaling [24].

2 Background

The task of graph layout is to assign a position to each
vertex in a graph. This set of positions is called a lay-
out, and should be good. While an exact definition of
good is largely subjective, metrics exist for approxi-
mating how good a graph layout is [25, 26]. These
metrics quantify different properties of the graph,
such as number of edge crossings, angle of separation
between edges connected to the same vertex, or en-
forcing certain rules such as keeping edges as straight
lines, or promoting symmetry. Some metrics, such
as maximising the similarity of edge lengths, involve
solving NP-Complete problems [8, 19]. As there are
many metrics, we choose two on which to focus. The
first is the number of overlaps, as that is the primary
purpose of this paper. The second is the number of
edge crossings. This metric is widely known, is used
by people performing manual graph layout [26], and
serves as a sanity check on how our changes affect
other properties of the graph.

2.1 Force Directed Layout

Our work looks at extending the force directed layout
algorithm, based on Eades’ Spring Embedder [8], with
the edges of the screen (or layout area) as an immov-
able barrier as per Fruchterman and Reingold [10].
There are other graph layout algorithms, such as:
the Kamada and Kawai method which also deals
with spring systems but solves them using Newton-
Raphson on derivatives [20]; likewise spectral layout
which works by finding eigenvectors [13]; finally even
a method where users manually layout subgraphs [30].
More algorithms can be found in [6]. We chose to use
force directed layout for this work because there are
many real world graph layout systems that implement
it (e.g. [16, 15, 2]); it is iterative, allowing users to in-
teract with it while it is running; it can be used with
large graphs [24, 1, 29]; and because it is claimed to
promote symmetry where possible [8]. However, the
ideas from this work could be extended to other lay-
out algorithms.

The force directed layout algorithm simulates the
graph as a physical system (Figure 2). The basic code
can be found in Algorithm 1. Edges, like springs, pull
vertices together. Vertices, like charged particles, re-
pel each other. The system uses friction to prevent
dynamic equilibrium so it tends towards a fixed state.
The result of the computation is then used as a visu-
alisation of the graph. The user can interact with the
graph while the algorithm runs.

The algorithm terminates either when a certain
number of iterations have finished or when the kinetic
energy is low enough. The kinetic energy is a measure
of the activity of the system. Given the mass (m) and
the velocity (v) you have that kineticEnergy = 1

2mv2.
Low values for the kinetic energy suggest that very
little movement is happening so the algorithm can
now be stopped.

++
+

++
+

Coulomb’s Law

Spring Force

Figure 2: Basic Forces

Various forces can be used to model attraction and
repulsion. Almost all the papers we surveyed used
electrostatic repulsion (Coulomb’s Law) as the repul-
sive force between vertices [8, 10, 6, 21]. In contrast,
two different forces are used for the attractive force.
Some papers, including Eades’, use a logarithmic at-
tractive force [8, 21, 23]. However, Eades originally
describes edges as springs, so Hooke’s Law (the phys-
ical law for ideal springs) is a natural alternative. It
is not clear how they compare, though Battista et al.
claim that from their experiences the logarithmic vari-
ant does not provide sufficiently better results given
the extra computation [6]. We experimentally com-
pare both attractive forces to see if there is a differ-
ence.

Algorithm 1 General force directed layout algorithm

1: generateInitialLayout()
2: for 0 .. maxIterations do
3: totalEnergy = 0
4: for all Vertex v do
5: tempForce = (0,0)
6: for all Edge {v,w} do
7: tempForce += springForce(v,w)
8: end for
9: for all Vertex w do
10: if v 6= w then
11: tempForce += coulombsLaw(v,w)
12: end if
13: end for
14: v.move(tempForce)
15: totalEnergy += v.kineticEnergy()
16: end for
17: if totalEnergy ≤ energyCutOff then
18: break
19: end if
20: end for

2.2 Existing Modifications

The original definitions used by Eades do not con-
sider vertices as having any size, or edges as being

CRPIT Volume 147 - Computer Science 2014

30

labelled [8]. In most graph applications, vertices have
a dimension to consider, as they are represented on
the screen, and edges may be labelled. For the sake
of simplicity, we will refer to everything that is drawn
except edges as images (e.g., text, raster images, etc).
Having images leads to what we call occluded pixels,
and overlaps. An occluded pixel is a pixel of an im-
age which is covered by a pixel from a different image.
An overlap occurs when two images are drawn so that
one occludes some pixels of the other. This results in
parts of the graph not being visible, reducing clar-
ity and information retrieval from the visualisation,
and so should be minimised. Our work focuses on
minimising occlusions and overlaps.

Some previous works on reducing overlaps are
modifications to the layout algorithm. Wang and
Miyamoto implemented modifications that cancel out
attraction of occluded vertices, vary constants to
account for vertex size, and integrate a constraint
solver [28]. They did not do an experimental analy-
sis, except to time the layout of a single graph, and to
generate six figures for the paper. Harel and Koren
claim that näıve extensions to layout algorithms to
deal with shaped vertices often have negative reper-
cussions. They proposed changes to the Kamada
and Kawai method and modifications to the spring
method [14] that they claim do not have these limi-
tations, but tested their ideas on only 7 graphs. Ku-
mar et al. reduce clutter by giving certain vertices a
stronger repulsive force in directed acyclic graphs [21],
but test their algorithm on just two graphs. We ex-
tend this approach to create our degree-based charge
force (discussed in Section 3.1). Lin et al. add torque
to allow vertices to pack better [23], but this allows
vertex images to end up at arbitrary angles, poten-
tially decreasing readability. However, their analysis
only contained 6 graphs.

Other works apply a post-processing step to ‘fix’
a layout. Force Transfer [18] and Force Scan [22] are
two common algorithms to iteratively move vertices
apart until they no longer overlap. Each of their ex-
perimental evaluations involved looking at only seven
graphs. Frishman and Tal propose an algorithm to
unclutter an existing layout [9], by mapping from
the existing layout to one with a better information
density. This algorithm is designed for huge graphs,
where details on individual vertices are not visible,
but was tested on just 5 graphs. Gansner and North
use Voronoi diagrams to move vertex centres away
from other each other [11], and notably introduce
curved edges. Their experiment consisted of only nine
graphs. Dwyer et al. use constraint solving to spread
the vertices [7]. They tested their performance on
some randomly generated graphs, but only tested the
layout quality on a single graph.

None of the works above performed any large scale
testing of their algorithms, with the largest test set
containing only 12 graphs. This makes it hard to
generalise their results. For this reason, we perform a
large scale evaluation on over 13,720 realistic graphs,
many of which are anonymised graphs from AT&T.
Additionally, of all the algorithms we surveyed, only
the ePRISM [17] algorithm explicitly considers edge
labels, despite their common use in practice.

3 Algorithm Design and Variants

We use the general force directed algorithm as de-
scribed in Section 2 as the basic algorithm. We de-
scribe some of the implementation details below. The
system was implemented using Java 1.6.

Initial placement places each vertex at random.
The natural length for the attraction force is set as
the minimum distance such that the two connected
vertices do not overlap [22, 1].

Vertex - vertex repulsion is done with Coulomb’s
Law and has the form F = −ke q1q2

‖r21‖2 r̂21, where ke is

a constant, qi is the charge on the given vertex, r21
is the distance between the two vertices, and r̂21 is
the unit vector between the two vertices. All vertices
have the default charge of qvertex.

To move a vertex we convert the total force on
it to acceleration using Newton’s Law

(
a = F

m

)
. All

vertices have the same mass (m). Each time a vertex
is moved dampening reduces the velocity by a fixed
proportion, to ensure that the system eventually set-
tles to a static layout. The plane boundaries in our
system are an impenetrable barrier representing the
edges of the screen. Any vertex that hits a wall has its
component of velocity in the direction of the collision
reversed.

3.1 Variable Forces

We will now describe the different forces we experi-
mentally investigated. Recall the basic configuration
of forces from Section 2.

Hooke’s Law (H) Hooke’s Law is the physical law
for ideal springs, and so is a logical candidate for the
spring force to model the edges. Its advantage is that
it is less computationally expensive than the logarith-
mic spring force [6]. It has the form F = −kh (x−N),
where x is the vector between the two vertices, N is
the natural length, and kh is a constant describing
how stiff the spring is.

Logarithmic Spring Force (L) This is the spring
force Eades’ original paper used, and is also used in
other work [8, 6, 22]. It has the form F = kl log

(
x
N

)
where kl is a constant, x is the distance between the
two vertices, and N is the natural length. This gives
it a behaviour that is similar in shape to Coulomb’s
Law, making it a logical, if more computationally ex-
pensive, alternative to Hooke’s Law.

+

+ + + + +
+

+

+

+

Figure 3: Charged
Walls (W)

Charged Walls (W)
Davidson and Harel pro-
posed (but did not imple-
ment) this as a mechanism
for keeping vertices inside
fixed boundaries [5]. Wall
charge is just Coulomb’s
Law applied to a line the
length of the boundary
as in Figure 3. This
serves several purposes:
it prevents unconnected

components from moving infinitely far from each
other; it prevents layouts settling close to the
boundary where their ability to move is limited,
impairing their ability to move into a minimal energy
configuration; and it centers the resulting image.
Wall charge in Table 2 shows the charge of each wall
as used in our experiments.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

31

+

+

Figure 4: Wrap-Around
Forces (A)

Wrap-Around
Forces (A) Wrap-
around forces cause
the repulsive force to
act as if the layout
is on a torus as seen
in Figure 4. This
does not change how
walls affect the ver-
tices, but Coulomb’s
Law calculations are
performed in both

directions. Given any two vertices, this force pushes
them to be equal distances from each other both
ways around the plane, providing a similar effect to
charged walls, where the vertices take the place of the
charge on the wall. We hypothesize that combining
wrap-around forces with charged walls will center all
the graphs neatly. This is a novel force which we are
testing.

+ +

+

Figure 5: Charged Edge La-
bels (E)

Charged Edge La-
bels (E) Edge la-
bels can be occluded
by other images. To
prevent that, charged
edge labels makes la-
bels charged in the
same way that ver-
tices already are as in

Figure 5. This force is based on the obvious extension
to force directed layout where edge labels are treated
as special nodes. Each label has charge qlabel, and so
repels vertices to which it is not connected. Labels
are unable to move independently so forces applied
to a label instead affect the two vertices which it is
connected to. This avoids moving the label indepen-
dently, while allowing labels to affect the layout.

+ +

Figure 6: Collisions
(C)

Collisions (C) Colli-
sions between vertices is a
trivial extension to force
directed layout as it is a
based on physical simu-
lation. The collisions are
ideal billiard ball collisions
using the coefficient of

restitution. Collisions are only implemented for
vertices.

Our implementation computes the velocity
changes due to the collision and sets the new veloci-
ties appropriately as in Figure 6. While it is possible
to move the vertices apart until they are no longer
overlapping, we do not do this because there may
not always be a sensible layout possible where there
are no overlaps. Some graphs may have very dense
regions, or just so many vertices that allowing some
amount of overlaps is actually beneficial.

++

+ + +

Figure 7: Degree-
Based Charge (D)

Degree-Based Charge
(D) Kumar et al. pro-
posed to increase the
charge on certain ver-
tices to give them more
space [21]. Their technique
relies on the graph being a
directed acyclic graph. We
generalise their technique
to general graphs, giving
high degree vertices higher

charge. The larger the degree of a vertex the more

space it needs, therefore the more it should repel
other images as in Figure 7. Thus we multiply the
standard Coulomb repulsion between the vertices by

the max of 1 and degree(v1)∗degree(v2)
4 . We use the

product of degrees to increase the strength of the re-
pulsion quickly, as the repulsive force falls off quickly
with respect to distance. The original formula cannot
be used directly as it requires directed acyclic graphs.
The constant 4 is chosen for the denominator so that
low degree vertices are not affected (supposing an
average low degree vertex has degree 2).

4 Experiment

We ran two experiments comparing different combi-
nations of forces to see how they affect the number
overlaps, and edge crossings. To measure overlaps,
we recorded both the number of overlapping vertices
and the number of occluded pixels. We also recorded
the time taken to lay out each graph, to see how the
modifications affect performance. We use Coulomb’s
Law as the repulsive force in all the experiments as
it is used in Eades’ original work [8], and makes in-
tuitive sense as the relevant physical law. In the first
experiment we ran each of the fourteen combinations
shown in Table 1 once on each of the 13,720 graphs
in the dataset. In the second we ran all combinations
of forces on a random sample of 100 graphs, to show
that we did not miss any potentially good force com-
binations and to get a more complete picture of how
forces affect computational performance.

Each layout was run until either the kinetic energy
(a measure of the activity of the system) dropped
below a given force cut off, or the maximum num-
ber of iterations was reached. We use short names
comprised of a letter for each active force (excluding
Coulomb’s Law) in this paper for compactness.

Hypothesis We set out to investigate the following
hypotheses.

H1 Changing between H and L has no effect on lay-
out.

H2 Adding in all the additional forces except for C
(i.e. WEDA) results in the lowest number of over-
laps.

In order to test the various algorithms we used
three test data sets from GraphDrawing.org [12]. The
sets are called Rome, North, and random-dag. We use
these graphs as they mostly contain graphs from real
world applications and are small - containing 10 to
110 vertices, and 9 to 241 edges. There are a total of
13,720 graphs, of which all are used.

Choice of Constants We selected the image size
based on a personal social network context such that
they are small, but still easily recognisable. The
width and height of the plane for embedding was lim-
ited to what most modern screens support. The con-
stants were all set by trial and error, such that they
looked reasonable on several data sets. Choice of con-
stants is a difficult exercise, as small changes can have
unforeseen effects. Many papers have simply ignored
the issue entirely e.g. [6, 8, 22, 3, 11, 22, 21, 4]. A
standard practice is to use a heuristic method sim-
ilar to ours, such as optimising for a simple case
e.g. [10, 28, 20]. While such methods are not ideal,
addressing the core issue of how to choose optimal
constant values is beyond the scope of this paper.

CRPIT Volume 147 - Computer Science 2014

32

In the second experiment, the width and height of
the screen were fixed to 1920 x 1080 to mimic a normal
screen, and the image size was changed to be square
rather than rectangular like a screen. We made these
changes to see if small changes to the setup would af-
fect the relative performance of the best combination
of modifications. The full set of constants for both
experiments is shown in Table 2.

5 Results

We used R version 2.11.1 (2010-05-31) [27] to anal-
yse the results of both experiments. We recorded the
number of pixels drawn, the total number of pixels,
the number of overlapping images, and the number of
edge crossings. The number of pixels drawn compared
to the total tells us how many pixels were occluded
and therefore how much is hidden. The number of
overlaps gives an indication of how crowded the lay-
out is. While a layout can have no overlaps and still
be crowded, we only look at crowding that results in
occluded pixels. Edge crossings were recorded to see
if other features of the layout were affected by our
changes, and as minimising them is considered to in-
crease goodness [25, 26].

As the resulting data does not seem to follow a
normal distribution, we used the Wilcoxon rank-sum
test for significance testing as opposed to the t-test.
We hold that the difference is significant at 95% sig-
nificance (p < 0.05).

5.1 Experiment One

The list of medians for each force in the first exper-
iment is shown in Table 3. The entries in bold blue
are minima. All reported values have been rounded
to 4 significant figures, with trailing 0s omitted.

The medians for the proportion of possible over-
laps in the graph (of any size) and the raw count of
overlaps can be found in Table 3. In both cases H
and L (p = 0.1176, 0.3186 resp.) are not significantly
different and the best performer is LWED. In terms
of area lost due to occlusion the best performer is
LWED. With respect to the proportion of edge cross-
ings compared to an estimated upper bound (calcu-
lation from [25]), and also as a raw count HWED is
the best performer.

5.2 Experiment Two

The list of medians for each force in the second exper-
iment is shown in Table 3. The entries in bold blue
are minima. All reported values have been rounded
to two decimal places.

LD was the best performing combinations with re-
spect to edge crossings. LWED was best in percentage
of overlaps and occluded pixels, and best equal (with
HWED) in count of overlaps. In 35 (72%) of cases
the same combinations of forces, with H rather than
L had less edge crossings.

6 Discussion

The LWED algorithm was the most effective at re-
ducing overlaps in the graph, as well as having the
lowest number of hidden pixels. While both results
tables shows that in terms of raw counts HWED and
LWED are the same, this is only because we are show-
ing medians in the table. If we considered arithmetic
means then LWEDs would be lower. This would make
it the best algorithm for our original purpose. It also
fared well with respect to edge crossings in the first

experiment, coming second equal. HWED had the
least edge crossings and came second with regards to
minimising occluded pixels. An example graph gen-
erated using HWED can be see in Figure 9.

This disproves our second hypothesis that
HWEDA or LWEDA would be the best force, but
does show that adding in extra forces improves per-
formance with respect to the metrics used.

All tests run with wrap-around forces (labelled A)
fared poorly. This was a surprising result, as with two
vertices this causes vertices to spread out. Upon run-
ning some additional simulations with larger graphs,
we found that while it did push all the vertices to-
gether, it did so too much leading to poor perfor-
mance. It seemed to perform particularly poorly on
sparse non-planar graphs.

The results from the second experiment confirm
that the LWED and HWED still perform the best.
The changes to the parameters only affected the or-
dering of force combinations that did not perform
well.

They also show that keeping everything else con-
stant, changing from using Hooke’s Law (H) to the
logarithmic spring force (L) generally increases the
number of edge crossings. While we are not sure what
causes this, we think it has to do with how the differ-
ent spring forces change over a small distance while
a vertex is trying to move over an edge to make a
crossing.

We were interested in how different forces affected
performance. We recorded the runtime of each layout
in the second experiment and used that to find an
average run time for a single iteration of the algorithm
for each.

There are three forces which visibly affect program
runtime - E, A and C. Figure 8 shows the average
time taken for a single iteration of the loop coloured
by which combination of these forces is active. The
figure shows that the charged edge labels (E) force
incurs a clearly noticeable time increase. This is due
to this modification requiring an extra inner loop run-
ning over all the edges. The presence of both C and
A increases the run time more than having both in-
dependently would suggest. We believe this happens
because the wrap-around forces (A) force promotes
collisions, creating more work for the collisions (C)
force.

Validity The most notable omission of the exper-
iments is that we do not explore how different com-
binations of constants affect the output of the pro-
gram. This is something that has not been explored
in other papers. It also has a very large search space,
and would take infeasibly long to run.

While we used a large test set of graphs, they
do not encompass all possible graphs. They span a
variety of graph densities, from 0.8608% to 85.45%,
though the majority are less than 8.602%, but all ex-
cept 3 are connected. Nevertheless, we believe that
the set of graphs tested here is representative of many
small real life graphs as it is sampled from a real data
set. We hypothesis that changes and variances in im-
age size can be accounted for by linked changes to
physical constants for each vertex. This is supported
by the second experiment where images were smaller,
but the best performing forces were the same.

Future Work One difficulty in evaluating algo-
rithms is the selection of constants, and what effect
this has on the resulting layout. Further work eval-
uating the effects of constants would be valuable for

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

33

Table 1: Sets of forces we tested in experiment one
Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13 14
H (Hooke’s Law) X X X X X X X
L (Logarithmic Attraction) X X X X X X X
W (Charged Walls) X X X X X X X X X X
E (Charged Edge Labels) X X X X X X X X X X X X
C (Collisions) X X
D (Degree Based Charge) X X X X X X
A (Wrap-Around Forces) X X X X X X

Table 2: Constants used in both experiments
Constant Value Constant Value

All Experiments
ke 50,000 Coefficient of Restitution 0.9
kl -60 Kinetic Energy Cut Off 3
kh 0.2 Edge Label Length 2-4 characters
qlabel 1 Natural Spring Length Min dist to not overlap
qvertex 3 Dampening 0.9
Wall Charge 1000 Max Iterations 10,000
Vertex Mass 2

Experiment 1
w, h 400px ≤ #Vertices× 100 ≤ 8000px
Vertex Image Size 107x87 pixels

Experiment 2
w × h 1920 x 1080 Vertex Image Size 80x80 pixels

Table 3: Medians by force from experiment one
Median # Crossings Prop. Crossings # Overlaps % Overlaps % Occluded Pixels
H 40 0.02256 13 0.2043 1.213
HWE 38 0.02265 3 0.0407 0.1072
HWEC 39 0.0226 3 0.04024 0.104
HWED 34 0.01984 1 0.01463 0.02526
HWEA 80 0.05337 85 1.948 16.46
HWEDA 73 0.04748 53 1.276 12.21
HEDA 71 0.04523 49 1.144 11.34
L 41 0.02369 13 0.2016 1.195
LWE 42 0.02445 2 0.03487 0.08999
LWEC 41 0.02459 2 0.03518 0.09045
LWED 38 0.02231 1 0.01058 0.0159
LWEA 92 0.0615 103 2.266 18.4
LWEDA 91 0.06051 69 1.744 15.34
LEDA 89 0.05751 63 1.583 14.3

CRPIT Volume 147 - Computer Science 2014

34

Figure 8: Time for a iteration vs number of vertices and edges in the graph coloured by forces which reduce
performance. Times are an average over the whole runtime of the program with all combinations of forces.
There are three well defined strata. The top one consists of combinations which contain E. Within this there
are further divisions were C or A are also present. The second strata consists solely of combinations containing
CA in the force. The final strata shows that A and C slow down the algorithm, and having none of E,C or A
is the fastest.

everyone using any graph layout algorithm. More-
over, exploratory studies suggest that size of the lay-
out plane affects the resulting layout significantly and
we hope to explore this in future.

7 Conclusion

We looked at modifications to the force directed algo-
rithm to avoid overlaps in small graph layout. We
described a range of different forces which can be
used with layout algorithms. We then performed two
experiments to find which set of forces would pro-
duce a layout that was spread out applied to the
force directed layout algorithm. We found adding in
edge label charges, charged boundaries, and increas-
ing vertex charge proportionally to its degree results
in layouts that minimise the number of overlaps and
occluded pixels; that using Hooke’s law reduces the
number of edge crossing; and that while there is a
time cost for using charged edge labels, it is not so
high as to make the modification too expensive. As
such, we conclude that adding in additional forces is
a viable way of preventing occluded pixels for graphs
with large vertices and edge labels.

References

[1] Archambault, D., Munzner, T. and Auber, D.
[2007], ‘TopoLayout: Multilevel graph layout by
topological features’, IEEE TVCG 13(2), 305–
317.
URL: http://dx.doi.org/10.1109/TVCG.2007.46

[2] AT&T [n.d.], ‘Graphviz’. www.graphviz.org/
accessed: 20 Nov 2012.

[3] Brandes, U., Kääb, V., Löh, A., Wagner, D. and
Willhalm, T. [2000], ‘Dynamic WWW structures
in 3D’, JGAA 4(3), 183–191.

[4] Chuang, J.-H., Lin, C.-C. and Yen, H.-C. [2004],
Drawing graphs with nonuniform nodes using
potential fields, in ‘Proc. GD, LNCS’, pp. 460–
465.

[5] Davidson, R. and Harel, D. [1996], ‘Drawing
graphs nicely using simulated annealing’, ACM
TOG 15(4), 301–331.

[6] Di Battista, G., Eades, P., Tamassia, R. and Tol-
lis, I. G. [1999], Graph Drawing: Algorithms for
the Visualization of Graphs, Prentice Hall.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

35

Figure 9: A graph produced by HWED. There are no overlaps or edge crossings allowing a human to see details
on the vertices as well as the graph structure

[7] Dwyer, T., Marriott, K. and Stuckey, P. J.
[2005], Fast node overlap removal, in P. Healy
and N. S. Nikolov, eds, ‘GD’, Vol. 3843 of LNCS,
pp. 153–164.

[8] Eades, P. [1984], ‘A heuristic for graph drawing’,
Congressus Numeratum 42, 149–160.

[9] Frishman, Y. and Tal, A. [2009], ‘Unclutter-
ing graph layouts using anisotropic diffusion and
mass transport’, IEEE TVCG 15(5), 777–788.

[10] Fruchterman, T. M. J. and Reingold, E. M.
[1991], ‘Graph drawing by force-directed place-
ment’, Software - Practice and Experience
21(11), 1129–1164.

[11] Gansner, E. R. and North, S. C. [1998], Im-
proved force-directed layouts, in S. Whitesides,
ed., ‘GD’, Vol. 1547 of LNCS, Springer, pp. 364–
373.

[12] graphdrawing.org [n.d.].
http://graphdrawing.org/data.html ac-
cessed: 18 May 2011.

[13] Hall, K. M. [1970], ‘An r-dimensional quadratic
placement algorithm’, Management Science
17(3), pp. 219–229.
URL: http://www.jstor.org/stable/2629091

[14] Harel, D. and Koren, Y. [2002], Drawing graphs
with non-uniform vertices, in ‘Proc. of the
Working Conf. on AVI’, AVI 2002, ACM, New
York, pp. 157–166.
URL: http://doi.acm.org/10.1145/1556262.1556288

[15] Heer, J., Card, S. K. and Landay, J. A. [2005],
Prefuse: a toolkit for interactive information
visualization, in ‘Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems’, CHI ’05, ACM, New York, NY, USA,
pp. 421–430.
URL: http://doi.acm.org/10.1145/1054972.1055031

[16] Hotson, D. [n.d.], ‘Springy.js’.
http://getspringy.com/ accessed: 20 Nov
2012.

[17] Hu, Y. [2009], ‘Visualizing graphs with node and
edge labels’, CoRR abs/0911.0626.

[18] Huang, X., Sajeev, A. S. M. and Lai, W. [2006],
A scalable algorithm for adjusting node-node
overlaps, in ‘CGIV’, IEEE Computer Society,
pp. 43–48.

[19] Johnson, D. S. [1982], ‘The NP-completeness col-
umn: An ongoing guide’, J. of Alg. 3(2), 182–
195.
URL: http://www.sciencedirect.com/science/-
article/pii/0196677482900189

[20] Kamada, T. and Kawai, S. [1989], ‘An algorithm
for drawing general undirected graphs’, Informa-
tion Processing Letters 31(1), 7–15.

[21] Kumar, P., Zhang, K. and Wang, Y. [2008], Vi-
sualization of clustered directed acyclic graphs
without node overlapping, in ‘IV’, IEEE Comp.
Soc., pp. 38–43.

[22] Li, W., Eades, P. and Nikolov, N. S. [2005], Using
spring algorithms to remove node overlapping, in
‘APVIS’, Vol. 45 of CRPIT, pp. 131–140.

[23] Lin, C.-C., Yen, H.-C. and Chuang, J.-H. [2009],
‘Drawing graphs with nonuniform nodes using
potential fields’, JVLC 20(6), 385–402.

[24] Morrison, A., Ross, G. and Chalmers, M. [2003],
‘Fast multidimensional scaling through sam-
pling, springs and interpolation’, Information
Visualization 2(1), 68–77.

[25] Purchase, H. C. [2002], ‘Metrics for graph draw-
ing aesthetics’, JVLC 13(5), 501–516.

[26] Purchase, H. C., Pilcher, C. and Plimmer, B.
[2012], ‘Graph drawing aesthetics - created by
users, not algorithms’, IEEE TVCG 18(1), 81–
92.

[27] R Development Core Team [2010], R: A Lan-
guage and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vi-
enna, Austria.
URL: http://www.R-project.org

[28] Wang, X. and Miyamoto, I. [1995], Generating
customized layouts, in F.-J. Brandenburg, ed.,
‘GD’, Vol. 1027 of LNCS, Springer, pp. 504–515.

[29] Wong, P. C., Foote, H., Mackey, P., Jr., G. C.,
Sofia, H. J. and Thomas, J. [2008], ‘A dy-
namic multiscale magnifying tool for exploring
large sparse graphs’, Information Visualization
7(2), 105–117.

[30] Yuan, X., Che, L., Hu, Y. and Zhang, X. [2012],
‘Intelligent graph layout using many users’ in-
put’, IEEE TVCG 18(12), 2699–2708.

CRPIT Volume 147 - Computer Science 2014

36

Table 4: Medians by force from experiment two. Short names are used in the column names for compactness.
C is Crossings, O is Overlaps and P is Pixels Occluded. The minimum value for each metric is highlighted in
blue.

Force # C % C # O % O % P Force # C % C # O % O % P
H 34.50 2.28 13.00 0.24 0.91 HA 276.00 18.20 375.50 7.61 80.38
HC 48.00 3.39 19.00 0.34 1.31 HCA 298.00 19.66 172.00 3.12 29.67
HD 31.00 2.09 10.00 0.22 0.82 HDA 294.50 20.57 411.50 8.61 83.47
HDC 32.00 2.25 10.00 0.22 0.83 HDCA 312.00 20.46 172.50 3.10 29.34
HE 38.00 2.72 6.00 0.13 1.16 HEA 95.00 6.94 16.00 0.32 5.72
HEC 41.00 2.87 8.00 0.18 2.02 HECA 55.00 4.18 23.00 0.46 5.76
HED 40.00 2.85 6.00 0.12 1.22 HEDA 176.50 12.02 128.00 2.55 45.02
HEDC 41.50 2.89 6.00 0.14 1.57 HEDCA 93.00 6.51 41.00 0.72 8.96
HG 39.00 2.74 8.00 0.19 1.37 HGA 98.00 7.09 21.00 0.41 6.15
HGC 42.00 3.09 11.00 0.23 2.04 HGCA 60.00 4.57 28.00 0.54 6.15
HGD 40.00 2.88 9.00 0.18 1.38 HGDA 171.00 11.94 100.00 2.00 38.88
HGDC 43.00 3.14 10.00 0.21 1.68 HGDCA 99.00 7.11 44.50 0.77 9.34
HW 55.00 3.36 35.00 0.63 2.42 HWA 284.00 19.04 388.50 7.99 82.60
HWC 123.00 8.57 65.50 1.07 8.99 HWCA 306.50 20.66 177.00 3.34 30.74
HWD 43.00 2.62 22.00 0.40 1.54 HWDA 312.00 21.02 434.50 8.83 84.34
HWDC 48.00 3.46 24.50 0.51 1.74 HWDCA 323.00 21.09 176.00 3.33 30.69
HWE 34.00 2.17 4.00 0.08 0.33 HWEA 146.00 9.80 34.00 0.59 10.54
HWEC 39.00 2.74 9.00 0.18 1.48 HWECA 83.50 6.08 44.00 0.81 10.31
HWED 34.00 2.22 2.00 0.05 0.13 HWEDA 192.00 13.20 165.00 3.37 52.25
HWEDC 38.00 2.59 5.00 0.11 0.69 HWEDCA 125.50 8.52 61.00 1.09 13.19
HWG 35.00 2.19 7.00 0.15 0.49 HWGA 143.00 9.94 40.00 0.70 10.62
HWGC 44.00 3.03 13.00 0.27 1.75 HWGCA 98.00 6.98 51.00 0.89 10.75
HWGD 35.00 2.25 6.00 0.13 0.39 HWGDA 197.00 12.89 137.00 2.71 46.65
HWGDC 40.00 2.87 9.00 0.20 0.95 HWGDCA 133.50 9.65 64.00 1.15 12.89
L 33.00 2.09 13.00 0.24 0.91 LA 266.50 18.08 369.00 7.42 79.89
LC 42.00 2.81 17.00 0.30 1.16 LCA 285.50 19.60 172.00 3.03 29.73
LD 27.00 1.87 9.00 0.20 0.78 LDA 292.50 19.94 418.50 8.40 82.26
LDC 29.00 1.98 9.00 0.20 0.75 LDCA 315.50 20.60 176.00 3.20 29.54
LE 37.00 2.65 4.00 0.10 0.86 LEA 89.00 6.60 12.00 0.26 4.89
LEC 40.00 2.80 6.00 0.12 1.20 LECA 52.00 3.91 20.00 0.41 5.21
LED 39.00 2.77 4.00 0.08 0.73 LEDA 178.00 11.47 106.00 2.06 40.06
LEDC 40.00 2.87 5.00 0.10 1.18 LEDCA 95.00 6.36 40.00 0.71 8.80
LG 36.00 2.72 7.00 0.15 0.99 LGA 95.00 6.74 17.00 0.36 5.89
LGC 42.00 3.03 9.00 0.18 1.54 LGCA 60.00 4.45 24.00 0.50 5.34
LGD 39.00 2.85 7.00 0.16 1.01 LGDA 170.50 11.31 81.00 1.64 34.29
LGDC 40.50 3.02 7.00 0.17 1.22 LGDCA 100.50 7.27 43.00 0.76 9.11
LW 50.00 3.07 36.00 0.63 2.44 LWA 288.00 19.23 401.50 8.04 82.48
LWC 110.00 7.68 65.00 1.04 8.33 LWCA 311.50 20.93 179.00 3.32 30.71
LWD 35.00 2.28 19.50 0.38 1.41 LWDA 315.50 20.97 442.50 8.73 84.21
LWDC 40.00 2.85 22.00 0.45 1.57 LWDCA 322.50 21.50 179.00 3.37 30.78
LWE 32.00 2.10 3.00 0.06 0.25 LWEA 141.50 9.74 32.00 0.53 9.92
LWEC 36.00 2.53 6.00 0.13 0.90 LWECA 84.00 6.03 43.00 0.78 10.14
LWED 34.00 2.16 2.00 0.04 0.09 LWEDA 185.00 12.72 145.00 2.96 49.16
LWEDC 36.00 2.54 3.00 0.07 0.36 LWEDCA 118.00 8.56 61.00 1.08 12.97
LWG 33.00 2.11 6.00 0.14 0.41 LWGA 145.50 9.92 38.00 0.64 10.65
LWGC 41.00 2.95 10.00 0.22 1.15 LWGCA 96.00 6.72 49.00 0.85 10.63
LWGD 35.00 2.23 5.00 0.12 0.37 LWGDA 195.00 12.47 112.00 2.35 43.16
LWGDC 37.00 2.73 7.00 0.16 0.58 LWGDCA 133.00 9.51 66.00 1.14 13.11

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

37

CRPIT Volume 147 - Computer Science 2014

38

DAC: Database Application Context Analysis applied to
Enterprise Applications

Johannes Wust Carsten Meyer Hasso Plattner

Hasso Plattner Institute for Software Systems Engineering,
University of Potsdam,

PO Box 14440, Potsdam, Germany,
Email: johannes.wust@hpi.uni-potsdam.de

Abstract

In today’s fast-paced business environment, we see an
ongoing trend towards the need for analytics on the
latest operational data. The data management layer
of enterprise applications needs to adapt to this re-
quirement and In-Memory Column Stores have been
proposed as a new architecture that can handle such
mixed workload scenarios. A thorough understand-
ing of the resulting query workload is required to
validate and optimize data management concepts for
this new challenge. Consequently, this paper intro-
duces Database Application Context (DAC) analysis
—an holistic framework to analyze database work-
loads, data characteristics as well as access patterns
on specific domain types. We present results for a pro-
ductive enterprise resource planning system, as well
as widely accepted database benchmarks for transac-
tional and mixed workloads. In contrast to existing
work, we have analyzed correlations between issued
queries and the domain types of accessed attributes.
Our main findings are (i) that enterprise workloads
are read heavy, (ii) that specific database operators
predominantly operate on attributes with a specific
domain type, and (iii) that data characteristics differ
depending on the data type. Furthermore, based on
our analysis of trends in modern enterprise applica-
tions, we expect workloads with an increased runtime
share of complex queries in the future. These findings
help in designing and optimizing the data manage-
ment layer of modern enterprise applications.

Keywords: Database, In-Memory Database, Work-
load Analysis, Enterprise Applications

1 Introduction

A traditional enterprise IT landscape largely sepa-
rates systems for operational data management and
reporting. The main reasons for this fact are fun-
damental differences in functional and performance
requirements of both domains (Chaudhuri & Dayal
1997). However, companies often demand more flexi-
ble, ad-hoc reporting on the latest data, also referred
to as Operational Business Intelligence (Gillin 2007,
Golfarelli et al. 2004, Kuno et al. 2010, White 2005).
To avoid an additional load of analytical capabilities
on the operational database, these applications typ-
ically rely on synchronized copies of the operational
data, so-called operational data stores (White 2005).

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

Maintaining such a redundant real-time copy is com-
plex and expensive.

A radically different approach has been proposed
by database architectures that are designed for a
mixed workload of both, transactional and analytical
queries (Plattner 2009, Kemper & Neumann 2010).
The main reasons for the increased performance that
allows processing both type of query workloads on
a single database instance are massive intra-query
parallelism on many-core CPUs and a primary data
store in main memory instead of disks or SSDs. It is
now possible to store and process data sets of enter-
prise applications, such as enterprise resource plan-
ning (ERP) systems, entirely in main memory (Plat-
tner 2009). Holding the entire data set of an appli-
cation in main memory, rather than on secondary
storage such as hard disks and optimizing data ac-
cess towards main memory and CPU-integrated mem-
ory, offers data access performance that is in orders
of magnitudes faster than traditional disk-based sys-
tems. Applied to the domain of enterprise applica-
tions, the performance gain is so dramatic, that it
becomes feasible to build analytical capabilities on
top of transactional systems. Additionally, the per-
formance increase allows a rethink of the design of
database schema. As an example, complex material-
ized aggregates that require a predefinition of avail-
able aggregations can be replaced by dynamic views
that aggregate on the fly, enabling a simpler and more
flexible database schema.

Optimizing data structures of the data manage-
ment layer for these new applications requires a thor-
ough knowledge of the resulting workload in such a
scenario with a mix of transactional and analytical
applications on a single database instance. Therefore,
the objective of this research is to improve the un-
derstanding of current and anticipate future database
workloads of enterprise applications to optimize the
data structures of in-memory databases for these sce-
narios. As we are right at the beginning of this rev-
olutionary trend, we do not have access to a large
productive database installation running in such a
mixed scenario. Therefore, our approach presented in
this paper is to start with an analysis of a large, pro-
ductive ERP system as a representative for a trans-
actional system. Based on this baseline, we look
into two areas to understand how a mixed workload
will look like: (i) we analyze an existing database
benchmark, specifically designed for mixed workload,
and (ii) we analyze recent developments in enterprise
applications and formulate expected changes to the
transactional baseline workload. It is important to
note, that the obvious approach of combining the
queries of existing transactional and analytical appli-
cations fails due to different data schema, as explained
in more detail in Section 5. As a foundation of these

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

39

workload analyses, we have defined a framework to
analyze database workloads by classifying queries and
data access patterns. In contrast to existing work, we
have also analyzed correlations between the domain
types of attributes and data access patterns across
workloads.

The contributions of this paper are as follows:

• Database Application Context (DAC) Analysis
—A framework used to extract and parse queries,
database operations, and data characteristics, as
well as execution times from different SQL work-
loads

• A classification and quantification of queries,
database operations and data schema definitions
from a productive enterprise system, as well as a
benchmark for mixed enterprise workloads

• An analysis of the expected changes of the
database workload due to new enterprise appli-
cations, as well as changed database schema.

This paper is structured as follows: Section 2 gives
a brief overview of the basic concepts of in-memory
data management for enterprise applications and dis-
cuss trends we see in modern enterprise applications.
Section 3 describes our framework DAC for classifying
database workloads. In Section 4, we introduce the
analyzed database workloads and present the results
of our analysis in Section 5. We discuss the results
of the workload analysis together with the trends we
see in modern enterprise applications in Section 6.
Section 7 discusses related work and the last Section
closes with some concluding remarks.

2 Trends in Modern Enterprise Applications

This section gives a short overview of an in-memory
database that allows processing of mixed database
workloads of both, transactional, as well as analyt-
ical queries. Furthermore, we describe trends that
we have identified by analyzing new applications that
have been developed for these new database manage-
ment systems. We will discuss these trends in the
context of the results of the analyses of a productive
enterprise application and of benchmarks in Section 6.

2.1 In-Memory Database Management
Here, we give a brief overview of the architecture of
an in-memory database as introduced as SanssouciDB
in (Plattner 2011). Other architectures for in-memory
databases targeted towards mixed workloads have
been proposed, for example HyPer (Kemper & Neu-
mann 2010). In this paper we briefly introduce the ar-
chitecture of SanssouciDB to demonstrate the change
in database technology that triggers new usage pat-
terns. However, the workload analyses presented
in this paper are largely independent on a specific
database architecture and can be generally applied
as a starting point for optimization of data structures
for enterprise application specific data management.

In SanssouciDB, all columns are stored dictionary-
compressed to utilize main memory efficiently. Dic-
tionary compression replaces all values by a small in-
teger representative that references the original value
that is uniquely stored in a dictionary. Databases
that use a column-wise data store typically favor read-
mostly analytical workloads, making updates and in-
serts into dictionary-compressed columns a challenge.
To achieve high read and write performance, a com-
mon concept in column-oriented databases is to use
an additional data store besides the read-optimized

main partition (Krueger et al. 2011): a write opti-
mized differential store.

To achieve durability in case of a system failure,
the in-memory database writes log information to
persistent memory. This log information is used to
recover the latest consistent state in case of a failure
and thus guarantees durability. We have proposed an
efficient logging mechanism for dictionary-compressed
columns in (Wust et al. 2012). We apply multi ver-
sion concurrency control (MVCC) based on transac-
tion IDs (TID) to determine which records are visible
to each transaction when multiple transactions run
in parallel. TIDs issued by a transaction manager for
each arriving query define the start order of transac-
tions. See (Plattner 2011) for more details.

2.2 Mixed Database Workloads
New enterprise applications that leverage the perfor-
mance of new database architectures potentially lead
to a changed database workload. Our objective is to
describe what changes we have to expect in order to
optimize database architectures for these use cases.
However, observations from analyzing individual ap-
plications are hard to generalize. During our research
we have looked at existing applications that have been
redesigned for in-memory databases, cases of new
feature-sets on existing data and also entirely new ap-
plications that rely on analytical queries running on
transactional data. In this paper, we briefly describe
two major trends we have observed, namely replacing
materialized aggregates with on-the-fly aggregations,
and applications that mix transactional queries and
analytical queries. In Section 6, we discuss the impli-
cations of these trends on future database workloads,
considering our findings from the analysis of exist-
ing enterprise workloads using our analysis framework
DAC, as presented in the following Sections.

On-the-fly Aggregates Replace
Materialized Views
The concept of materializing certain views in order to
speed up the processing of queries is common prac-
tice in database systems (Yang & Larson 1987, P.
Larson and H. Z. Yang 1985). Today, all major
analytical database systems support the definition
of de-normalized, pre-calculated views (Bello et al.
1998, Halevy 2001) for frequently executed queries.
In SAP ERP (SAP 2013), the concept of material-
ized views is realized using additional, transactional
tables that are maintained by the application logic.
They hold subsets or even entire table projections of
huge transactional relations, filtered and aggregated
on pre-defined granularity. This redundancy has been
necessary to get reasonable response times for com-
plex aggregates and lookups on huge tables. However,
there are three major limitations:

• Data redundancy,

• Reduced query flexibility and

• Maintenance cost (inserts and updates of mate-
rialized tables)

Consequently, an in-memory database replaces mate-
rialized aggregates using on-the-fly queries that run
on the original tables (Plattner 2009). In order to
estimate the impact of such a redesign, we have ana-
lyzed the workload on the most relevant materialized
tables in SAP ERP Financial, based on the execution
count:

• Sum table holding customer balances on a
monthly basis

CRPIT Volume 147 - Computer Science 2014

40

• Secondary index table that allows fast access to
accounting documents

• Sum table holding balances of general ledger ac-
count on a monthly basis

Each query that calculates these aggregates on the fly
based on the transactional schema contains a join on
at least two transactional tables, calculating aggre-
gates, grouped by a set of attributes.

Mixed Workload Applications
Providing a platform that can run transactional and
analytical queries on a common dataset opens the
way for new business applications. As an example,
(Wust et al. 2011) proposes an application that gives
sales representatives a tool to generate cross-selling
recommendations on the fly adjusted to the actual
customer. Product recommendations are calculated
on-the-fly, in order to handle a range of different pa-
rameters (products, regions, branches or customers).
Additionally, the abundance of pre-calculated, ma-
terialized result sets leads to a less complex data
schema. Prior to xSellerate, product recommenda-
tions needed long-running, inflexible batch-job oper-
ations that were persisted in dedicated, materialized
tables. xSellerate shows the need and feasibility of
analytic queries on transactional data. As another
example, (Tinnefeld et al. 2011) presents a real- time
availability-to-promise service that calculates a stock
projection in real-time for each request; this applica-
tion includes transactional queries for ordering prod-
ucts that depend on analytical style queries calcu-
lating the current stock level, and therefore need to
run on a consistent data set of a single database in-
stance. Furthermore, (Krueger, Tinnefeld, Grund,
Zeier & Plattner 2010) gives a detailed overview of
the characteristics of these applications. Analyzing
at the queries issued by these applications, we see
large joins, as well as groupings and aggregations.

3 Database Application Context
(DAC) Analysis

This Section introduces our framework to analyze
database workloads. We start with a presentation of
the overall process and then describe the individual
steps in more detail in the subsequent section.

3.1 Overview
The motivation of this research is to get a thorough
understanding of the database workload issued by to-
day’s enterprise application and derive characteristics
of future mixed workload scenarios. In the context of
columnar databases we intend to provide rationales
for optimizations of data structures, compression and
operators based on existing domain type schema def-
initions.

Typical questions that arise are: What kind of
statements and operations are issued most by certain
workloads and on what attributes do they operate?
Answers to these questions can help to optimize the
data management layer for specific workloads. To find
answers to these questions, we designed a framework
called Database Application Context (DAC) analy-
sis, shown in Figure 1.

An application’s workload, data schema and data
characteristics are the elementary aspects of an appli-
cation that determine the performance of a database.
DAC describes and quantifies those aspects with the
objective of understanding the predominantly used

Figure 1: Database Application Context Analysis

queries, database operations, data types, and data
characteristics for a given application.

First, we use the access pattern model AP , to
describe database operations such as joins, group-
ings, selection, projections and aggregations parsed in
each query statements. Based on that the query-class
model Q, separates statements into distinct groups.
Then all table attributes in AP are classified using
a domain model D, that separates columns based on
their domain information.

As a first step of the analysis, the application
workload, its data schema definition and data statis-
tics are captured from various sources. Then the
workload is parsed for specific AP and the schema in-
formation is classified before it gets consolidated into
a central data repository. Typically the workload is
captured as an SQL trace, or as a snapshot of the
SQL plan cache of a database, ideally annotated with
performance data, such as execution count, runtime
per query, and returned rows. Obviously, retrieving
all performance data is only partially possible in a live
system due to potential overhead. The data schema
and information about the data can be extracted di-
rectly from the database.

The different models are applied to classify work-
loads into distinct query classes (Q), characteristic
operations into access pattern (AP) and data seg-
ments, respectively relational attributes into domain
groups (D), based on their domain-type information.
Additionally, the data of each domain group in D
is characterized, using the average data distribution,
distinct value count and total number of the columns
in each group. The extracted workload characteris-
tics are then mapped with characteristics of the data
schema and data statistics to find correlations for each
workload.

3.2 Models of the DAC Analysis
This section describes the models used in DAC anal-
ysis in detail. We apply different models to analyze
workload queries, access patterns as well as an appli-
cation’s data schema and data characteristics.

Classification of Queries
A first step towards characterizing a workload is to
classify the queries of each workload.

The separation of statements into query classes is
done by parsing the type of SQL statement as well
as specific operations in the query. We currently con-
sider the SQL statement types SELECT, INSERT,
DELETE, and UPDATE. That allows a simple sep-
aration of all select- or read- (QR), delete- (QDEL),

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

41

Description

APAgg Aggregate operations (e.g. count(),
max(), min(), sum())

APJoin Join operation on a field
APSel Data selection using where predicates
APGrp Group by operation on a field
APSort Order by operation on a field
APProj Projection of a field

Table 1: Access Patterns

update- (QUPD), and insert- (QINS) queries. By ana-
lyzing the data characteristics stored in the database,
QR-queries are further divided into Point or Single Se-
lect (QSingle), Range Select (QRange), and Complex
Select (QComplex) statements. We define Range Se-
lect (QRange) as statements that have a low selectivity
and read a set of data entities. In contrast to Com-
plex Selects (QComplex), they do not aggregate, join
or group a set of data, but only read them. Point or
Single Select (QSingle) statements have a high selec-
tivity, reading only single data sets. Finally, Complex
Selects (QComplex) are defined as statements that op-
erate and modify sets of data. Aggregate, grouping
and join operations are considered complex, because
they change and re-define the original data structure.
QSingle-queries must provide a equi-predicate on the
(compound)-key attribute. QRange-queries are iden-
tified by a range-select operation or by a selection
on non-key table attributes. QComplex-queries are
characterized by complex database operations, such
as joins, groupings, or aggregations.

Classification of Access Pattern
Data Access Patterns (AP) considered in this paper
are all standard SQL operations such as a projec-
tion, selection, join, grouping, aggregation or sort on
a particular table column. Table 1 gives an overview
of the considered access patterns. Provided that we
have performance indicators for the issued SQL state-
ments of the analyzed workload, such as execution
count, rows processed and time elapsed, we can rank
the relevance of database operations (AP) that are
extracted from the statements.

We believe that a detailed access pattern analysis
helps to characterize the application workload and fo-
cus on the relevant optimizations strategies. For ex-
ample, conducting an access pattern analysis, it is
possible to tell on which data segments join opera-
tions are executed, how often they are executed and
if there are multi-column or single-column joins.

Listing 1: Example SQL Statement

SELECT ∗ FROM DISTRICT WHERE
WID=:B2 AND DID>B1

As an example, consider the SQL query illustrated
in Listing 1. Assuming that it was executed ten times,
and that we retrieved the average runtime of 500 ms
on the query on statement level. Then, we could cap-
ture access patterns and performance characteristics
as shown in Table 2. Besides the AP we use an addi-
tional text field to capture AP relevant information,
such as the aggregate function in APAgg or the pred-
icate for APSel.

It is important to note in that example, that the
(run-)time performance for each AP is derived from
the original query. Although, a more fine granular
run-time information on access pattern level is sup-
ported by the model and would allow a better analysis

Type Table Attr Exec Time Info
APProj DISTRICT * 10 500
APSel DISTRICT WID 10 500 =
APSel DISTRICT DID 10 500 >

Table 2: Extracted AP of Listing 1

of the importance of each access pattern, it is typi-
cally not a feasible option for analyzing productive
workloads due to the overhead of generating the per-
formance data. Therefore, we used the runtime infor-
mation on statement level in our analysis presented
in Section 5.

Analysis of the Data Schema
In a relational database, relations are the basic en-
tities, where each element is defined by attributes.
Each attribute has a defined data type, either a primi-
tive type, predefined by the database system or a user
defined type, also called domain-type. In enterprise
applications, domain-types are used in a schema to
enforce data integrity among attributes of different
relations. A domain-type limits the range of pos-
sible values, of all columns of that type. It is an
abstraction of a primitive data-type, having a set of
additional, application-specific constraints. For ex-
ample, a check constraint in a domain-type MONEY
requires all price columns to be greater than zero or a
foreign-key constraint in domain PRODUCT ID lim-
its all columns to the values defined in the primary
table column.

Depending on the domain definition (constraints)
the number and change frequency of legal values
differs. Domains, such as NAME, STREET or
DESCRIPTION, defined only by a data type do
not have a well-defined, reasonably-sized list of val-
ues. They are called qualified domains. In con-
trast, the value range of enumerated domains (e.g.
GENDER, CATEGORY ID, PRODUCT ID or CUS-
TOMER ID) and all columns defined by them is pre-
determined and sorted by default. Either by a in-
cremental primary table column or even fixed by the
application itself.

Domain constraints provide valuable information
for columns that are dictionary compressed. Espe-
cially enumerated domain constraints, as they provide
a dictionary-like, well defined value range. Moreover,
we believe that a column’s domain type also has an
impact on how it is accessed by a workload. For ex-
ample, an enumerated domain column is likely to be
used in a join operation in order to link the primary
table relation with its own. In order to prove this
assumption, the DAC analysis references a model to
segment columns, based on their domain.

Our column classification first separates quali-
fied (DQ) and enumerated domain (DE) columns.
Within DQ there are three subgroups: datetime type
(DQ−DT), numeric type (DQ−N), and character type
(DQ−C) qualified domains, are separated based on
the data type of the domain. We divided enumer-
ated domains (DE) by the type of their primary do-
main table and adopted the SAP specific definition
of master data, transaction data and Organizational
and customizing tables (SAP 2013).

While master data tables and their list of do-
main values (DE−Master) are frequently read, new in-
serts are rare. Transaction data, respectively domain
values (DE−Trans) are frequently inserted. Organi-
zational and customizing domain values (DE−Cust)
are unchanged during runtime, because they are de-
fined before the system is run productively. Finally,

CRPIT Volume 147 - Computer Science 2014

42

DE−Fix domain columns have a value range that is
defined at design time. We adopted this distinction,
as it can provide valuable insights for designing spe-
cific compression techniques for different types.

Analysis of Data Characteristics
Data characteristics, such as number of distinct and
total data items, value distribution and default-value
density are essential for database compression and op-
timization. As an example, the effectiveness of dictio-
nary compression depends on the number of distinct
values of a column.

Therefore, being part of our DAC analysis, we ex-
tract three basic data indicators. In contrast to previ-
ously conducted data characterizations, we aggregate
these indicators on domain level for enumerated do-
main types. We determine the following figures for
each column:

• Default-value count,

• Distinct value count and

• Total data items (length).

The default-value count describes the number of data
entries that are equal to the most frequent value in
the column. This might be a NULL value as well
as any other domain value. Distinct values count is
the number of unique values in a column. Total data
items of a column is equal to the number of rows in
the table. Based on this information we derive the
following characteristics for each domain group D.

• Distinct item count,

• Total data item count and

• Default value share

For DQ domains the distinct data items are the sum of
distinct values of all columns in that domain. In con-
trast, the number of distinct values in a DE domain
is only based on the distinct values of the primary do-
main column, because all other columns use a subset
of the primary domain column. Total data items in
a domain are the sum of all column data items. De-
fault value share is calculated by the number default
values across all domain columns and the total data
item count. It gives us the share of default data items
in a domain.

4 Analyzed Application Contexts

This Section introduces the different database appli-
cation contexts we have analyzed.

Transactional applications are the backbone of
any enterprise. Invoices, sales orders and account-
ing documents - all enterprise specific business en-
tities are first captured and processed in a transac-
tional systems. Analytical applications built upon
a star schema, typically trade intense data compres-
sion, data redundancy as well as limited update per-
formance for the efficiency to process and analyze
increasing amounts of data in a fraction of time.
However, transactional applications, built on a nor-
malized data schema remain the necessary prerequi-
site and source for these systems. As proposed by
Plattner in (Plattner 2009), our research builds on
on the assumption that the central data source for
mixed-workloads is based on a normalized transac-
tional schema. Consequently, all application contexts
analyzed here are based on a normalized data schema.

The first application context is a productive trans-
actional workload, captured from a productive SAP

ERP (SAP 2013) system of a company with roughly
20,000 employees. It provides the status-quo and
the basis of future mixed-workload applications. The
well established TPC-C benchmark (TPC 2010) is
used to compare a transactional benchmark with the
productive, transactional workload. Furthermore, we
have analyzed the mixed-workload benchmark CH-
benCHmark (Cole et al. 2011).

4.1 Transactional Enterprise Application
Our transactional context analysis is based on data
from a large productive SAP ERP system, used for
financial-, sales-, distribution- and production- pro-
cessing. The workload of that application was traced
over the period of one work-week. During that time,
there were no untypical periodic loads, such as year-
end-processing, etc. The analysis of a single system
may not be representative for transactional enterprise
applications in general. However, as the analyzed sys-
tem had only few modifications to the standard SAP
ERP system, which is widely used and a de-facto stan-
dard in most industries, it can be considered as highly
representative. Besides, we consider the possibility
to analyze a productive ERP system of a company of
that size as a great opportunity and expect that these
results are valuable for the community. We constantly
try to find more companies that are willing to share
data to increase the data base.

In the presented case, the workload information
was extracted from the shared pool buffer of the un-
derlying database of the running ERP system. Along
with the executed SQL statements (without variable
binding), we tracked relevant usage statistics of each
statement, such as the number of executions, the time
elapsed (runtime) and the number of rows processed.

In total, we extracted the following quantities:

• Total number of SQL queries: 144.000

• Analyzed SQL queries: 23.000 (92% load)

• Users: ≈ 1.000 active SAP Users (24h)

• Number of SQL executions: 3.300.000.000

• Rows processed: 20.200.000.000

• Total query runtime: 1.900 h

4.2 Transactional TPC-C Benchmark
In order to allow references to existing research
and compare the transactional, enterprise application
with a benchmark context, we analyzed the workload
and schema of a TPC-C benchmark (TPC 2010). In
the following, this workload is referred to WTPC−C .
WTPC−C consists of 33 transactional queries, each
having a defined share of the entire runtime and exe-
cution count.

4.3 Mixed-Workload
CH-benCHmark Benchmark

With the motivation of comparing the performance
of mixed workload databases, a group of researchers
designed a benchmark, called CH-benCHmark (Cole
et al. 2011). CH-benCHmark is a composite bench-
mark, combining the well known, transactional TPC-
C (TPC 2010) and the analytical TPC-H (TPC 2013)
on the normalized TPC-C data schema.

(Cole et al. 2011) examine three scenarios, weight-
ing OLTP and decision support (DS) workload
streams with different factors. Then they compare
the execution results to see how those workloads ef-
fect each other in terms of tpmC and QphH, using

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

43

a reference number where each workload was run in
isolation. The number of OLTP and DS streams does
not emulate the number of business users, but can
be interpreted as a ratio between those two workload
types. For our workload analysis we chose two work-
load mixtures. One, where OLTP and DS queries
have the same share - WCH11 and, as a reference for
a analytical workload, one that consists of TPC-H
queries only - WCH01.

As we do not intend testing performance scala-
bility of a system under load or how the different
workloads effect each other, we are only interested
in relative execution statistics (execution count, run-
time) of each query in the same time frame. The
benchmark conducted in (Cole et al. 2011), running
on a PostgreSQL system provided the reference num-
bers. It is based on the assumption, that there is no
contention between workloads, that they run on the
same database size and that there is no think-time
between requests. After a 5 minutes warm-up, one
OLAP client running in isolation performs in aver-
age 5200 tpmC, whereas one OLAP stream runs 902
QphH. These reference numbers were used to calcu-
late the execution statistics of each query presented
in Section 5.

5 Analysis of Workload Characteristics

In this Section, we present the results of our DAC
analysis of the workloads described in Section 4.

The results of our analysis are presented for each
of the models introduced in Section 3 (i) analysis
of query classes, (ii) analysis of access patterns, (iii)
analysis of the accessed domain types, and (iv) data
characteristics. A comprehensive discussion of the re-
sults will follow in Section 6.

5.1 Classification of Queries
Figure 2 shows the query classes of the workloads in-
troduced in Section 4, by displaying for each of the
six query classes (QRange, QSingle, QComplex, QINS ,
QUPD, QDEL) of the Q model the percentage of to-
tal executions and total runtime for each query class.
This way, we can compare the relative importance
of each query class between workloads, even as they
differ in absolute numbers.

Looking at the results of QComplex in Figure 2,
it is notable that the share of the total runtime is
higher than the share of executions, which is in line
with our expectations when defining the query classes.
Comparing the workloads, it is striking that WTPC−C
and WCH11 have a much higher number of update
and insert statements as the productive workload
WTrans. Comparing WTPC−C , WCH01 and WCH11
we see an increasing percentage of complex query
runtime, which is as expected given the increasing
amount of analytical queries.

The total number of executed queries of WCH01
is almost negligibly low compared to WTPC−C , as
the analytical queries run orders of magnitude longer.
The WCH11 workload is a mix of WTPC−C and
WCH01. Consequently, the total number of executed
queries in WCH11 is almost equal to WTPC−C . How-
ever, comparing the runtime of the statements we see
an increase of QComplex queries for WCH11 and ob-
viously for WCH01 as well, compared to the transac-
tional workloads WTPC−C and WTrans.

The “total execution count” provides a runtime-
independent figure of the share and the impact of each
query class Q. Unfortunately, this is not meaningful
for the WCH11 benchmark. Because the runtime for
the TPC-C part is the same as for TPC-H part, it

causes very few TPC-H queries to be executed. A
difference in execution count between WTPC−C and
WCH11 is almost not perceivable. However, compar-
ing the runtime of the statements, we see an increase
of QComplex queries for WCH11, and obviously for
WCH01 as well, compared to the transactional work-
load WTPC−C . Hence, we consider runtime as the
performance indicator to analyze the relevance of ac-
cess patterns in the next section.

5.2 Classification of Access Patterns
In order to measure the occurrence and importance of
individual database operations, we use the extracted
AP and the performance figures of their SQL state-
ment. For each AP we know to which SQL state-
ment it belongs. Based on the performance figures of
those statements, we measure the share and impact
of AP . This way, we determine the relevance of an
AP in a workload. It is important to mention that
we could only extract runtime information on state-
ment level. Thus, the indicated percentage of total
runtime for an AP indicates that the execution time
of all queries that contained this specific AP accounts
for this percentage, but not necessarily the AP itself.
Extracting more fine granular performance data on
database operation level would have had a too high
performance impact on the live system and was not
a viable option.

Figure 3 illustrates and compares the share of
statements having certain AP , in WTrans, WTPC−C ,
WCH11 and WCH01. It shows that joins do not ac-
count for a significant percentage of the total runtime
in WTPC−C , whereas WTrans shows a relevant share.
As expected the impact of complex database opera-
tions such as aggregations, sorting, joins or grouping
plays a much greater role in WCH11 and WCH01. Al-
though this analysis does not reveal the individual
runtime contribution of each of these more complex
AP , we can confirm that more complex AP play a
significant role in analytical style workloads executed
on a normalized data schema.

In the next section the qualitative characteristics
of access patterns in workloads will be analyzed, il-
lustrating detailed figures on the data segments that
are accessed by AP.

5.3 Classification of Data Schema
This section shows the qualitative analysis of the ac-
cess patterns AP and their correlations with accessing
certain domain types. We restrict the presentation
here to read queries QR, as they account for most
executions and runtime in our productive application
context WTrans.

Each AP references a data segment (table and at-
tribute), has two performance indicators (execution
count and runtime) and an additional text-field, used
to qualify the AP with additional information, such as
select-predicate or aggregate function (Section 3.2).

In this paper, we show in detail the access patterns
of selections and joins, as selections are the most used
access pattern and join is the access pattern that typ-
ically has the longest execution time. We have further
analyzed the accessed data types of aggregations and
groupings and briefly mention the results.

For aggregations, SUM, AVG as well as MAX and
MIN are primarily used on DQ−N columns. Espe-
cially SUM as the basic analytic operation is only
conducted on numeric domain columns. The COUNT
function is typically applied to the anonymous star-
column and returns the number of rows in a query.

Group by operations are the requirement for most
aggregate functions. As shown in Figure 3 they are

CRPIT Volume 147 - Computer Science 2014

44

QRange QSingle QComplex QUPD QDEL QINS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

E
xecutions

R
untim

e
WTrans WTPCC WCH11 WCH01

Figure 2: Query-Class Workload Characteristics

APProj APAgg APSel APSort APJoin APGrp

0.00%

30.00%

60.00%

90.00%

R
untim

e

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

MIN & MAX SUM & AVG CNT Runtime Use

Figure 3: Access Pattern Workload Characteristics, based on Total Runtime

essential and intensively used in analytic queries. Our
analysis showed that groupings happen largely on
enumerated domain types. Although groupings hap-
pen on name or other qualified domains in WCH11 and
WCH01, we would expect them to be implemented
as enumerated domains in productive applications,
as names are typically not enforced to be unique.
E.g. instead of using the customer.name attribute
the customer.id attribute would be used for group-
ing. The analysis of accessed domain types revealed
that in WTrans, 82% of all APGrp are conducted on
DE columns. Besides, there are 17% DQ−DT columns
used to group selected data sets, based on their date-
time attribute.

Data Selection on Domain Columns
Data selection is the most used AP in all analyzed
workloads. There is almost no query without data se-
lection operation(s) as shown in Figure 3. The APSel
has an additional variable, called “predicate-type”.

In Figure 4a, we use three predicate-groups: RANGE
(<,<=,>,>=,between), LIKE and EQUI (=,!=,IN),
to concentrate similar predicates in groups. The bars
in the chart represent the overall fraction of APSel
predicate-groups within each W based on the runtime
of their SQL statements.

In the purely transactional workloads WTrans
and WTPC−C the EQUI-predicate is predominant.
RANGE and LIKE predicates play an important role
in the workloads WCH11 and WCH01 that also con-
sist of analytical queries. Looking at the domain-
type distribution of EQUI predicated, most selec-
tions operate on DE columns: From left, WTrans
to right, WCH11, 77%, 98%, 89% and 57% operate
on DE and especially on DE−Cust columns. Analo-
gously, most RANGE predicates operate on qualified
domains: 89% in WTrans, 89% in WCH11, and 99%
in WCH01. Only a small fraction of 11% of RANGE-
APSel operate on DE−Trans columns.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

45

WTrans WTPCC WCH11 WCH01

0.00%
5.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

R
A

N
G

E

E
Q

U
I

LI
K

E

E
Q

U
I

R
A

N
G

E

E
Q

U
I

LI
K

E

R
A

N
G

E

E
Q

U
I

LI
K

E

R
un

tim
e

(a) Select operation

WTrans WCH11 WCH01

0.00%
5.00%
10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

= = =

R
un
tim

e

DQ−DT

DQ−C

DQ−N

DE

(b) Join operation

Figure 4: Operation / domain group dependencies based on runtime

Join Operations on Domain Columns
The access pattern APJoin is mapped to the join
conditions of SQL statements. One APJoin always
reflects one join attribute. Thus, a standard join-
condition on one attribute, over two tables yields two
APJoin. This way, we can compare the domain-types
of join-couples and see that they always relate to the
same domain. It shows that while attribute names
can be different, their legal set of possible values is
always the same.

Figure 4b shows the domain-types used in APJoin
based on the SQL runtime. The presented analy-
sis only considers equi-joins, as other join types have
been negligible in runtime and execution time in the
analyzed workloads. In WTrans we see that 79% of
all join attributes are DE columns. In WCH11 and
WCH01 all join attributes are DE columns. Convinced
that only DE columns are appropriate to join rela-
tions we further investigated the 21% of DQ columns
used for join operations in WTrans. It shows that
these columns are also key attributes, having a pri-
mary table column. However, they are not defined
as an DE domain type in the schema definition. This
might be due to historic reasons or simply suboptimal
schema design.

Domain-Type Distribution and
Characteristics in Data Schema
In this section we analyze the distribution of domain
groups D in the schema of WTrans, as well as the
characteristics of the data that is stored in those
groups. We only show WTrans, as the data schema
of the benchmarks WTPC−C , and similarly WCH01
and WCH11, are too simplified to be representative
for productive enterprise systems. While DE domains
have a shared, well-defined set of distinct values for
all columns of the same domain, DQ columns do not
have such a list of domain values. Every column de-
fines its own distinct values.

The y-facet “Distinct Domain Items (%)” of Fig-
ure 5 shows the sum of all distinct values for each
domain group. It points out that DQ domains make

up 90% of all distinct values stored in the analyzed
WTrans. Especially DQ−C and DQ−N have a consid-
erably high number of distinct values. DE columns
contribute only 10% of the distinct values. However,
the share of “Data Items (%)” is almost equally dis-
tributed between DE and DQ. While not shown in
the figure, the same spreading between DE and DQ
can be seen for the number of columns, respectively
domains in the data schema of WTrans. In detail
there are ≈ 17% DE−Fix, ≈ 28% DE−Cust, ≈ 3%
DE−Trans and ≈ 7% DE−Master columns in the pro-
ductive data schema. Additionally, there are ≈ 7%
DQ−DT , ≈ 15% DQ−N and ≈ 23% DQ−C columns.

The low share of distinct values per domain, ac-
companied by the high share of data items in DE
columns results in a very low uniqueness (share of
distinct values among all data items).

As generally shown in (Huebner et al. 2011),
the distinct values of a domain are not equally dis-
tributed. Our analysis confirms this and reveals a
significant share of default values among DE columns.
On average 84% of all DE−Fix and 73% of all
DE−Cust data items contain the column’s default
value. As these are just average numbers across all
domain group columns a default-value aware com-
pression algorithm can be very effective for certain
relational attributes.

6 Discussion of Results

This section summarizes the main findings from the
results of our DAC analysis presented in Section 5.

Our major insights of the DAC Analysis are:

• Enterprise workloads are read heavy; interest-
ingly, we see a much higher percentage of read
queries compared to the industry benchmark
TPC-C.

• Specific database operators predominantly oper-
ate on attributes with a specific domain type.

• Data characteristics differ depending on the do-
main type.

CRPIT Volume 147 - Computer Science 2014

46

DE DQ

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

D
ata Item

s (%
)

D
istinct D

om
ain Item

s (%
)

DE−Fix DE−Cust DE−Trans DE−Master DQ−DT DQ−C DQ−N

Figure 5: Data Characteristics of WTrans

• We expect a trend towards more complex queries
and operators with the introduction of modern
enterprise applications.

We will briefly explain each of the insights and discuss
implications.

Based on the analysis presented in Section 5.1, we
see that more than 90% executed statements which
account for around 90% execution time in the pro-
ductive transactional workload are read-only state-
ments. In contrast, the TPC-C workload shows an al-
most equal distribution of read and write statements.
This is in line with the findings in a previous anal-
ysis of data access patterns (Krueger, Grund, Zeier
& Plattner 2010), which derive the adequacy of read-
optimized column stores based on this insight. This
confirms that the system we have analyzed does not
show an exceptional behavior and gives us confidence
that we can generalize our findings.

When analyzing the domain types of attributes
and the operators that access these attributes, as
shown in Section 5.3, we see a clear correlation be-
tween domain types and operators across all work-
loads. Equi-selects, being the most important oper-
ation in all workloads, used in all query-classes (ex-
cept QINS), strongly depend on enumerated domain
columns, whereas DQ−N and DQ−DT columns make
up more than 90% of all range-selects in all work-
loads. The importance of enumerated domains is also
shown for join and grouping operations, that primar-
ily depend on DE domain-types. Character columns
are only used in like-selection and data projections.
These findings are valuable for optimizing operator
implementations for domain types they mostly oper-
ate on. We think that a domain based optimization
of data structures is a promising approach for highly
normalized relational databases. Each group of do-
main types holds specific characteristics that can be
leveraged by a different data structure. What we have

seen is that while DQ columns contain any possible,
user-defined data, DE columns are determined and
controlled by the application, only. As a consequence
DE columns are essential to enforce data consistency
as well as join, select and group data. As they are
deterministic they are preferred, if not required for
many database operations. On the other hand range-
selections, aggregate functions and like-selection are
irrelevant or even illegal on these DE columns, be-
cause their domain values are always of nominal scale.

A closer look at the value distributions of the data
set of the productive ERP system shows that the
number of distinct values in all columns with a quali-
fied domain is roughly ten times higher than the dis-
tinct values in all columns with enumerated domains
which share values among columns (See Section 5.3).

Domain type information are available during de-
sign time. Compared to approaches that analyze
workloads and data characteristics during runtime,
it does not pose any overhead. We see that the ef-
fectiveness of different compression techniques such
as sorted, unsorted as well as shared and attribute-
wise dictionary compressions depends on the specific
domain context. A shared or global dictionary for
example seems reasonable for DE attributes, in order
to leverage a common dictionary encoding during join
processing. Besides, our result show that it is ques-
tionable if DQ−C columns profit from column-wise
data structures as there are almost no operations on
single DQ−C columns. Therefore, we plan to leverage
these insights by designing specific encoding and com-
pression techniques depending on the domain type of
attributes.

Based on our identified trends in Section 2.2, we
see more complex data operations in future enterprise
workloads. Ad hoc aggregations as well as more ana-
lytical style queries will lead to a mix of shorter run-
ning transactions, as well as potentially longer run-
ning queries that read, join and process large amounts
of data. In line with the analysis of WCH11 shown
in Figure 2, we expect a higher absolute number of
transactional queries, but a larger share of the total
execution time accounted by analytical queries. This
will be further intensified by a trend to push logic into
the database instead of only reading data from the
database in bulk and process it in the application. As
a potential implication, short running transactional
queries, as well as the more complex queries, might
compete for resources. In the worst case, complex
queries can occupy all database resources and block
short transactional queries from executing. Hence, a
direction for future work is to design workload man-
agement systems for mixed workloads.

7 Related Work

We have identified related work in two fields: char-
acterization of database workloads, as well as the un-
derlying data. Our work extends prior work in work-
load characterization by analyzing the correlation of
database queries of a workload as well as accessed
data. Furthermore, we present results that have been
obtained from analyzing the workload of a large scale,
productive enterprise application system.

7.1 Workload Characterization
Workload analysis and characterization is the require-
ment for many performance studies and a foundation
for various benchmarks, built as the synthesized, con-
trolled workload, which can be used to measure and
compare the performance of different environments.
(Elnaffar & Martin 2002) summarize and compare

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

47

workload analysis conducted in different application
fields. They basically classify and characterize anal-
ysis techniques into two categories: static and dy-
namic. Static techniques, such as descriptive statis-
tics, histogram, component analysis and clustering
are used to characterize static workloads components.
Dynamic techniques are used to describe the proba-
bility of system transitions. Knowing a certain per-
formance figure at a certain point in time is not suf-
ficient. Instead the workload components must be
captured periodically to show dependencies between
different parameters. Based on our motivation, the
analysis conducted in this paper is of static nature.

7.2 Data Characterization
In general, data characteristics of enterprise sys-
tems have been investigated in (Krueger et al. 2011),
(Krueger, Grund, Zeier & Plattner 2010) and (Hueb-
ner et al. 2011). They show that many columns in
standard enterprise systems have a low number of
distinct values. A share of 35% of all analyzed ta-
ble columns is even unused, due to the wide table
schema needed in standard software to support var-
ious industries and customer requirements. Besides,
Huebner et al. analyze the value distribution of FI
table columns in an SAP ERP system. They found
that half of all columns are best approximated by a
uniform distribution, while the other part adheres to
a zipf pdf distribution. Based on that information
they built a merge strategy that is optimized for pdf
zipf distributed columns.

8 Conclusion and Future Work

In this paper, we have presented Database Applica-
tion Context (DAC) Analysis, a framework used to
extract and classify queries, used database operations,
and data access patterns, as well as execution times
from SQL workloads. With DAC, we have analyzed
a productive enterprise resource planning system, as
well as established database benchmarks. Based on
an analysis in trends in modern enterprise applica-
tions, we have derived expected changes to the work-
loads of enterprise applications in the future. We are
confident that our results can be a valuable input for
optimization data structures of the data management
layer of enterprise applications. We plan to lever-
age these findings in two dimensions: (i) develop effi-
cient database operations and compression techniques
for enumerated domains that are shared among at-
tributes, and (ii) implement effective query schedulers
to handle a mixed workload of different query classes.

References

Bello, R. G., Dias, K., Downing, A., Feenan, Jr.,
J. J., Finnerty, J. L., Norcott, W. D., Sun, H.,
Witkowski, A. & Ziauddin, M. (1998), Materialized
views in oracle, in ‘VLDB’.

Chaudhuri, S. & Dayal, U. (1997), ‘An overview of
data warehousing and olap technology’, SIGMOD
.

Cole, R., Funke, F., Giakoumakis, L., Guy, W., Kem-
per, A., Krompass, S., Kuno, H., Nambiar, R.,
Neumann, T., Poess, M. & Others (2011), The
mixed workload CH-benCHmark, in ‘DBTest’.

Elnaffar, S. & Martin, P. (2002), Characterizing com-
puter systems’ workloads, Technical report, School
of Computing, Queens University.

Gillin, P. (2007), ‘Bi @ the speed of business’, Com-
puter World Technology .

Golfarelli, M., Rizzi, S. & Cella, I. (2004), ‘Beyond
data warehousing: what’s next in business intelli-
gence?’, DOLAP .

Halevy, A. Y. (2001), ‘Answering queries using views:
A survey’, VLDB .

Huebner, F., Boese, J.-H., Krger, J., Renkes, F., To-
sun, C., Zeier, A. & Plattner, H. (2011), A cost-
aware strategy for merging differential stores in
column-oriented in-memory dbms, in ‘BIRTE’.

Kemper, A. & Neumann, T. (2010), Hyper hy-
brid oltp&olap high performance database sys-
tem, Technical Report May, Technische Universi-
taet Muenchen.

Krueger, J., Grund, M., Zeier, A. & Plattner, H.
(2010), Enterprise application-specific data man-
agement, in ‘EDOC 2010’.

Krueger, J., Kim, C., Grund, M., Satish, N., Schwalb,
D., Chhugani, J., Dubey, P., Plattner, H. &
Zeier, A. (2011), ‘Fast updates on read-optimized
databases using multi-core cpus’, VLDB .

Krueger, J., Tinnefeld, C., Grund, M., Zeier, A. &
Plattner, H. (2010), A case for online mixed work-
load processing, in ‘DBTest’.

Kuno, H. A., Dayal, U., Wiener, J. L., Wilkinson, K.,
Ganapathi, A. & Krompass, S. (2010), Managing
dynamic mixed workloads for operational business
intelligence, DNIS.

P. Larson and H. Z. Yang (1985), ‘Computing Queries
from Derived Relations’, VLDB .

Plattner, H. (2009), A common database approach for
oltp and olap using an in-memory column database,
SIGMOD.

Plattner, H. (2011), Sanssoucidb: An in-memory
database for processing enterprise workloads, in
‘BTW’, pp. 2–21.

SAP (2013), ‘Sap erp’,
http://www54.sap.com/solutions/bp/erp.html.
[Online; accessed 22-August-2013].

Tinnefeld, C., Mueller, S., Zeier, A. & Plattner, H.
(2011), Available-to-promise on an in-memory col-
umn store, in ‘BTW’.

TPC (2010), Tpc benchmark c (standard specifica-
tion) - revision 5.11, Technical report, Transaction
Processing Performance Council.

TPC (2013), Tpc benchmark h (standard specifica-
tion) - revision 2.16.0, Technical report, Transac-
tion Processing Performance Council.

White, C. (2005), ‘The next generation of business
intelligence:operational bi’, DM Review Magazine .

Wust, J., Boese, J.-H., Renkes, F., Blessing, S.,
Krueger, J. & Plattner, H. (2012), Efficient log-
ging for enterprise workloads on column-oriented
in-memory databases, in ‘CIKM’.

Wust, J., Krueger, J., Blessing, S., Tosun, C., Zeier,
A. & Plattner, H. (2011), xsellerate: Supporting
sales representatives with real-time information in
customer dialogs, in ‘In-Memory Data Manage-
ment’.

Yang, H. Z. & Larson, P.-A. (1987), Query transfor-
mation for psj-queries, in ‘VLDB’.

CRPIT Volume 147 - Computer Science 2014

48

Shape Predicates Allow Unbounded Verification of Linearizability
Using Canonical Abstraction

David Friggens1,2 Lindsay Groves2

1 University of Waikato
Email: friggens@waikato.ac.nz

2 Victoria University of Wellington,
Email: lindsay@ecs.vuw.ac.nz

Abstract

Canonical abstraction is a static analysis technique
that represents states as 3-valued logical structures,
and is able to construct finite representations of sys-
tems with infinite statespaces for verification. The
granularity of the abstraction can be altered by the
definition of instrumentation predicates, which derive
their meaning from other predicates. We introduce
shape predicates for preserving certain structures of
the state during abstraction. We show that shape
predicates allow linearizability to be verified for con-
current data structures using canonical abstraction
alone, and use the approach to verify a stack and
two queue algorithms. This contrasts with previous
efforts to verify linearizability with canonical abstrac-
tion, which have had to employ other techniques as
well.

Keywords: canonical abstraction, concurrent data
structures, linearizability, verification

1 Introduction

Canonical abstraction (Sagiv et al. 2002) is a powerful
static analysis technique that can be used to construct
bounded finite systems representing unbounded or in-
finite systems for verification. Key to this is the abil-
ity to vary the coarseness of the abstraction by defin-
ing so called “instrumentation predicates” that can
explicitly preserve specified properties of a state dur-
ing abstraction. We observe that many of the instru-
mentation predicates defined previously in the liter-
ature record linear relationships between objects in
a state, but it may be necessary to record geometric
relationships, such as a group of objects forming a
triangle shape or a square shape. To demonstrate the
effectiveness of these “shape predicates”, we consider
the problem of verifying that concurrent data struc-
tures are linearizable (Herlihy & Wing 1990) with re-
spect to a sequential specification. Preserving the
relationship between the implementation and speci-
fication data structures is tricky, and without shape
predicates other authors (see Section 5) have had to
invent other techniques to augment canonical abstrac-
tion.

The contributions of this paper are:

• Description of shape predicates, which have not

Copyright c©2014, the authors. This paper appeared at
the Thirty-Seventh Australasian Computer Science Conference
(ACSC2014), Auckland, New Zealand, January 2014. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 147, Bruce H. Thomas and David Parry, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

been used in the literature before, to our knowl-
edge.

• Demonstration that linearizability can be verified
using canonical abstraction alone.

• (Re-)Verification of a stack and two queue al-
gorithms using canonical abstraction with shape
predicates.

The paper is structured as follows. Section 2 gives
some background in two parts. In Section 2.1, an
overview of canonical abstraction; in Section 2.2, a
brief overview of concurrent data structures and the
linearizability correctness condition, as well as a stack
algorithm to be used as an example. Section 3 defines
and explains the canonical abstraction model, includ-
ing the shape predicates used to verify linearizability
of the stack algorithm. Section 4 provides empirical
results of verifying linearizability for the stack algo-
rithm and two queue algorithms using canonical ab-
straction in the TVLA tool. Section 5 discusses re-
lated work. Finally, Section 6 concludes and discusses
future work.

2 Background

2.1 Canonical Abstraction

Sagiv et al. (2002) represent states as logical struc-
tures, where predicates describe relationships be-
tween objects. Concrete states are represented using
2-valued structures. Abstract states are represented
using 3-valued structures, which allow multiple con-
crete objects to be represented by a single abstract
“summary object”. Since a summary object can rep-
resent two or more concrete objects, an abstract state
with summary objects can represent an infinite num-
ber of concrete states.

First, a finite set of predicates P = {eq, p1, . . . , pn}
is fixed for the analysis, and we define Pk to be the set
of k -ary predicates in P (the equality predicate eq has
arity 2). Then, a concrete configuration S \ =

〈
U \, ι\

〉
has a universe U \ that is a (finite or infinite) set of
objects and an interpretation ι\ over the logical values
true (1) and false (0). For each k -ary predicate p,

ι\(p) : (U \)k → {0, 1}

Additionally, for each u1, u2 ∈ U \ where u1 6= u2,
ι\(eq)(u1, u1) = 1 and ι\(eq)(u1, u2) = 0.

The definition of an abstract configuration S =
〈U , ι〉 is similar to that of a concrete configuration,
but the interpretation is over the truth values true (1),

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

49

false (0) and unknown (1
2). For each k -ary predicate

p,

ι(p) : U k → {1, 0, 1
2}

Note that a concrete configuration is also trivially
an abstract configuration. An object u, for which
ι(eq)(u, u) is unknown, is called a summary object.

Intuitively, an abstract configuration represents a
concrete one if it contains the same information, ex-
cept for some conservative information loss. In other
words, it has the same universe of objects, though
some may have been merged together into summary
objects, and it has the same predicate interpretations,
though some may have become unknown. This is for-
malised by the notion of embedding, which relates
configurations (concrete or abstract1) that are related
by conservative information loss.

We say that a configuration S1 = 〈U1, ι1〉 embeds
into an abstract configuration S2 = 〈U2, ι2〉 if there
exists a surjective function f : U1 → U2 such that for
every k -ary predicate p, and u1, . . . , uk ∈ U1,

ι1(p)(u1, . . . , uk) v ι2(p)(f (u1), . . . , f (uk))

where, for l1, l2 ∈ {1, 0, 1
2}, l1 v l2 iff l1 = l2 or l2 = 1

2 .
We further define a tight embedding to be one that

minimises information loss, i.e. a predicate interpre-
tation only becomes unknown if two objects are being
merged together, one which has a true interpretation
and the other a false interpretation. Formally, there
exists a surjective function f : U1 → U2 such that for
every k -ary predicate p, and u1, . . . , uk ∈ U2,

ι2(p)(u1, . . . , uk) =
1 if ∀ u ′1 ∈ f −1(u1), . . . , u ′k ∈ f −1(uk) •

ι1(p)(u ′1, . . . , u
′
k) = 1

0 if ∀ u ′1 ∈ f −1(u1), . . . , u ′k ∈ f −1(uk) •
ι1(p)(u ′1, . . . , u

′
k) = 0

1
2 otherwise

Canonical abstraction is a method for constructing
tight embeddings. Given a subset of the unary pred-
icates A ⊆ P1, called the abstraction predicates, we
map objects in the original configuration to the same
abstract object if they have the same interpretations
over the abstraction predicates. The interpretation in
the abstract configuration is constructed as per the
definition of tight embeddings above. We say that a
configuration is canonically abstract, with respect to
A, if it is the canonical abstraction of itself.

Canonical abstraction has a number of important
properties:

• Every configuration has a single canonical ab-
straction, as each object has a single canonical
mapping in the embedding function.

• Since there are a finite number of abstraction
predicates, it follows that there is a finite bound
on the number of objects in the universe of a
canonically abstract configuration, and thus a fi-
nite bound on the number of potential states in
an abstract system.

The soundness of the canonical abstraction ap-
proach rests upon the Embedding Theorem of Sa-
giv et al. (2002, Theorem 4.9). Informally, this says
that if a structure S embeds into a structure S ′, then

1Since 2-valued configurations are trivially 3-valued configura-
tions also, we will assume that configurations are 3-valued unless
otherwise noted.

any information extracted from S ′ via a formula ϕ is
a conservative approximation of the information ex-
tracted from S via ϕ. Alternatively, if we prove a
property ϕ true or false in S ′, then we know it has
the same value in S .

The initial work of Sagiv et al. (2002) focused on
sequential heap-manipulating programs, with a con-
figuration universe representing the objects of the
heap. This can be extended to represent concurrent
programs, by including an object in the universe for
each thread, and defining predicates to represent the
threads’ locations and fields (Yahav & Sagiv 2010).

2.1.1 Refining abstractions

Canonical abstraction using the fixed predicates P is
often too coarse, resulting in too much information
being lost (i.e. evaluating to unknown) for a property
to be verified. A key method for refining abstrac-
tions is to introduce additional predicates that record
properties derived from the other predicates. These
instrumentation predicates add no new information
to a concrete state, since they evaluate to the same
truth values as their defining formulas. However, in
an abstract state they may add information: an in-
strumentation predicate may evaluate to a definite
value (true or false) whilst its defining formula may
evaluate to unknown. Additionally, unary instrumen-
tation predicates may be added to the set of abstrac-
tion predicates, which can prevent some objects from
being merged together into summary objects.

Defining instrumentation predicates to sufficiently
refine the abstraction is the principal focus of Sec-
tion 3.

2.2 Concurrent Data Structures

In this paper, we consider concurrent data structure
algorithms (see e.g. Moir & Shavit 2004), which have
multiple threads interacting with shared data, and
synchronising access using locks or atomic primitives
such as compare-and-swap (CAS).

A common correctness condition is linearizability
(Herlihy & Wing 1990), which informally requires
each operation to appear to take effect atomically
at some point between its invocation and response.
A system is linearizable, with respect to a given se-
quential specification, if the operations in any exe-
cution can be rearranged — respecting the ordering
of non-concurrent operations — into an execution of
the specification. One way of showing this is by de-
termining “linearization points” for each operation,
where the operation can be seen to take effect. If
the specification is composed with the implementa-
tion and can perform a matching operation atomically
at each linearization point then the implementation
is linearizable.2

2.2.1 Example: Stack

Figure 1 gives the pseudocode for a linked list based
stack algorithm. Each node of the list contains a value
in the val field and a next field pointing to another
node (or is null). A shared Head variable points to
the first element when the stack is non-empty, and is
null when the stack is empty. The algorithm assumes
a garbage collector is present — popped nodes are not
explicitly freed.

2In general this is more complicated, as an operation’s lineariza-
tion point may be a step of another operation, one step may be the
linearization point for several operations, or a step may or may not
be a linearization point depending on the future behaviour of other
threads.

CRPIT Volume 147 - Computer Science 2014

50

Type: Node = {val : T; next : Node}
Shared: Head : Node := null

1: operation Push(lv:T)
2: n := new(Node)
3: n.val := lv
4: repeat
5: ss :=Head
6: n.next := ss
7: until CAS(Head, ss, n)
8: end operation

9: operation Pop()
10: repeat
11: ss :=Head
12: if ss = null then
13: return empty
14: end if
15: ssnext := ss.next
16: lv := ss.val
17: until CAS(Head, ss, ssnext)
18: return lv
19: end operation

Figure 1: A lock-free stack algorithm

A push operation obtains a new node n and sets its
value. It then takes a “snapshot” of Head and points
n’s next field at the snapshot. A CAS operation is
used to ensure that Head is updated to point to n
only if it has not been modified. If Head has been
modified then there has been a conflict with another
(successful) operation so the loop is restarted.

A pop operation first takes a snapshot of Head
and tests to see if the snapshot is null ; if so it returns
“empty”. Otherwise it takes a snapshot of this node’s
next field and records the value in the val field. As for
push, a CAS is used to detect a conflict with another
successful operation — if Head has been modified it
retries, otherwise it uses the snapshots to advance
Head along the list.

This algorithm was first introduced by Treiber
(1986) in IBM System/370 assembler. The version
here assuming garbage collection follows that given by
Colvin et al. (2005). Versions of the algorithm have
been formally verified by several authors (including
Colvin et al. 2005).

We can see that the algorithm is linearizable by
determining the linearisation points of the operations:

• A push operation takes effect at line 7, when the
CAS is successful.

• A non-empty pop operation takes effect at line
17, when the CAS is successful.

• An empty pop operation “takes effect” at line 11
when it reads a null Head value. The linearisa-
tion point is not at line 12 when the snapshot is
tested, because Head may have been changed by
other threads, so the stack cannot be guaranteed
to be empty at that point in time.

For the first two, the successful CAS step is where
the change of an added or removed node becomes ob-
servable to the other threads, and it is the trigger for
leaving the loop, so cannot repeat. For the third, a
null snapshot causes the thread to execute lines 12–13
and exit the loop (and operation), so the linearisation
point cannot be repeated.

3 Verification of Stack

In order to attempt to verify linearizability for the
concurrent stack algorithm in Section 2.2.1, we in-
clude an additional linked-list stack, which performs
a Push or Pop operation atomically at the linearisa-
tion points of the implementation operation. If the
implementation and specification operations always
match, i.e. they always push and pop the same values,
then the concurrent stack is linearizable. If they do
not match, e.g. the specification Pop returns empty

HeadI

HeadS

at[pop12] at[pop12] at[push3]

next next

next next

val

val

val

val

val

val

ss n

lv

Figure 2: A potential concrete configuration

but the implementation Pop returns a value, then lin-
earizability has not been shown.3

To represent this system for canonical abstraction,
we define the set of predicates initially to contain
unary predicates representing object types (is thread,
is node, is data), shared variables for the two stack
lists (HeadI, HeadS) and thread locations (at[loc], for
loc ∈ {idle, push2, push3, . . . , pop11, pop12, . . .}). Addi-
tionally, we have binary predicates representing the
fields of the nodes (next, val) and the threads (n, lv,
ss, ssnext).

For clearer explanations, we will describes states
diagrammatically, rather than logically. We use dif-
ferent object shapes to represent the type predicates
— hexagons for threads, squares for nodes, and circles
for data values. Unary predicates are shown as labels
on objects when true, binary predicates are shown
as arrows (solid for true, dotted for unknown, not
shown for false), and summary objects have a double
line. Figure 2 shows a potential concrete configura-
tion, and Figure 3 its canonical abstraction.

The two stack lists have length three, with three
distinct data values. One of the three threads has
just begun a push operation; the other two have just
begun pop operations, though one has a current snap-
shot of the HeadI and the other has a stale null snap-
shot taken when the stack was empty.

As is common, the canonical abstraction on core
predicates alone is too coarse. For example, we can-
not distinguish between the nodes of the two different
lists, nor those from the nodes not yet pushed, and
cannot tell whether a thread has a null or non-null
field. This means that abstraction of some reachable

3The algorithm may not be linearizable, or it may be lineariz-
able but we have chosen incorrect linearization points. Determining
which is the case is outside the scope of this paper.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

51

HeadI

HeadS

at[pop12]

at[push3]

next

next
next

val

val

val

ss

n

lv

Figure 3: Canonical abstraction of potential configu-
ration

states will also represent some nonreachable states,
which will lead to executions with spurious errors de-
tected. We can refine the abstraction by defining in-
strumentation predicates, of forms previously used by
other authors (e.g. Sagiv et al. 2002, Yahav & Sagiv
2010):4

has[field](v) ⇔ ∃ u • field(v , u)

r by[n](v) ⇔ ∃ u • n(u, v)

shared[n](v) ⇔ ∃ u1, u2 • n(u1, v) ∧ n(u2, v)

∧ ¬ eq(u1, u2)

circ(v) ⇔ next+(v , v)

reachI(v) ⇔ ∃ u • HeadI(u) ∧ next∗(u, v)

reachS(v) ⇔ ∃ u • HeadS(u) ∧ next∗(u, v)

where p+ is the transitive closure of p, and p∗ is the
reflexive transitive closure. These instrumentation
predicates allow more information to be preserved in
the abstract states by, e.g. preventing the two list
bodies from being merged together, and recording
that each is connected and acyclic.

The two lists should have the same data values, in
the same order. However, when the tails of the lists
are abstracted to summary objects, this property is
lost. In order to specify properties of the pair of ith
nodes in the two lists, we introduce an auxiliary core
binary predicate R to relate them. R is set between
the head nodes of the lists by the specification Push
operation, and is unset for the head nodes by the
specification Pop operation.

Even with the auxiliary predicate, the instrumen-
tation predicates defined above are not sufficient to
preserve all the properties we need about the lists
and the threads’ fields. We observe that these pred-
icates all define linear properties — has[field] and
r by[n] describe two objects related by one predicate;
shared[n] describes three objects related by two pred-

4The square brackets have no meaning other than being a vi-
sual indicator of which core predicates are used in the definition.
(TVLA allows parametrised definitions of sets of predicates in this
way — e.g. to define reach[y, next] and reach[z, next] at the same
time.)

icates; reachI describes an arbitrary number of ob-
jects related by a chain of predicates; circ describes
the same, but the chain begins and ends with the
same object. We defined three additional instrumen-
tation predicates that describe geometric shapes re-
lating three or four objects.

3.1 Matching triangle predicate

Consider Figure 5, which shows the abstraction of
(the lists of) two states where the implementation

and specification stacks have length 3 — in S \
1 the

lists have the same values in the same order, and in

S \
2 the lists’ head values differ. Both states have the

same canonical abstraction and the information about
the values is lost.

In order to preserve the property that each corre-
sponding pair of nodes in the lists have the same data
value, we define an instrumentation predicate, called
matching:

matching(n1)⇔ ∃n2, d1 •
R(n1,n2) ∧ val(n1, d1) ∧ val(n2, d1)

The predicate records a “triangular” relationship be-
tween nodes and data values, as shown in the first
diagram in Figure 4.

Adding this instrumentation predicate to the con-
crete states in Figure 5 results in different canonically
abstract states. Both would differ from S1 as the im-
plementation list summary node would be labelled
with matching; and both would differ from each other
as one would have the head implementation node la-
belled with matching and the other would not.

3.2 Commutes square predicate

Consider the two concrete states in Figure 6 — they
both have three elements, and matching is true for

all the implementation list nodes. In S \
4 , the R re-

lations have “crossed”, so after a Pop operation the
head nodes will have different values — another Pop
from both lists will trigger a linearizability error. We
see that these two states have the same canonical ab-
straction, so analysis of a linearizable stack can still
provide spurious errors.

In order to preserve the property that related pairs
of nodes have the same order in both lists, we define
an instrumentation predicate that records whether
the next and R predicates “commute”:

commutes(n1)⇔ ∃n2,n3,n4 •
next(n1,n2) ∧ R(n1,n3) ∧
next(n3,n4) ∧ R(n2,n4)

The predicate records a “square” relationship be-
tween nodes, as shown in the second diagram in Fig-
ure 4.

Adding this instrumentation predicate to the con-
crete states in Figure 6 results in different canoni-
cally abstract states. The first two implementation

nodes in S \
3 are labelled with commutes; then since

all three implementation nodes have different abstrac-
tion predicate labels none of them will be merged in
to summary objects in the canonical abstraction. The
diagrams for the other concrete state and its canonical

abstraction are identical to S \
4 and S3, as commutes

is false for all of the implementation nodes.
Together, matching and commutes preserve suffi-

cient information about the two lists to allow lineariz-
ability to be verified.

CRPIT Volume 147 - Computer Science 2014

52

matching

R

val

val

commutes
next

R R

next

succ[fld1, fld2]

fld1

fld2

next

Figure 4: Three shape predicate diagrams

HeadI
reachI

reachI reachI

HeadS
reachS

reachS reachS

next next

next next

R R R

val

val

val

val

val

val

S\
1

HeadI
reachI

reachI

HeadS
reachS

reachS

next
next

next
next

R R

val

val

val

val

S1

HeadI
reachI

reachI reachI

HeadS
reachS

reachS reachS

next next

next next

R R R

val

val

val

val

val

val

S\
2

α

α

Figure 5: Canonical abstraction of two lists: the prop-
erty of matching values is lost

HeadI
reachI

matching

reachI
matching

reachI
matching

HeadS
reachS

reachS reachS

next next

next next

R R R

val

val

val

val

val

val

S\
3

HeadI
reachI

matching

reachI
matching

HeadS
reachS

reachS

next
next

next
next

R R

valval

valval

S3

HeadI
reachI

matching

reachI
matching

reachI
matching

HeadS
reachS

reachS reachS

next next

next next

R

R Rval

val

val

val

val

val

S\
4

α

α

Figure 6: Canonical abstraction with “crossed” R
predicates: the property of ordered values is lost

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

53

3.3 Successor triangle predicate

In the stack’s Pop operation, the ssnext field is the
next-successor of the ss field when it is read at line
15. This property is assumed to persist, so it is not
checked before the CAS step at line 17 that attempts
to set HeadI to ssnext.

Figure 7 shows that this property is not retained
in canonical abstraction using the predicates defined
so far. Both states (shown without the data values
and specification lists) have two threads performing

a Pop operation — in S \
5 , both ssnext predicates are

the next-successors of the respective ss predicates, but

this is not the case in S \
6 ; nevertheless, both states

have the same canonical abstraction (S5). As a con-
sequence, the CAS transition can remove an arbitrary
prefix of the list because ssnext can be concretised at
any point.

In order to preserve the relationship between the
thread fields, we define an instrumentation predicate
that records whether they are next-successors:

succ[ss, ssnext](t1)⇔ ∃n1,n2 •
ss(t1,n1) ∧ ssnext(t1,n2) ∧ next(n1,n2)

This predicate records a “triangular” relationship be-
tween threads and nodes, as shown in the third dia-
gram in Figure 4.

Adding this instrumentation predicate to the con-
crete states in Figure 7 results in different canonically
abstract states. The diagrams are almost the same,
but are distinguished by whether the thread summary
object has is labelled with succ[ss, ssnext] or not.

A similar situation arises in the Push operation.
The ss predicate is set to be the next-successor of
the n predicate at line 6, which is assumed to be
unchanged at the CAS step that sets HeadI to n at
line 7. Thus we similarly define the instrumentation
predicate succ[n, ss].

For space restrictions, we omit further discussion
on the basic model constructs, notably details about
transitions. A complete presentation can be found in
Friggens (2013, Chapter 7).

4 Empirical Results

To perform analyses and gather empirical results, we
used TVLA5 (Three Valued Logic Analyzer) (Lev-
Ami & Sagiv 2000, Bogudlov et al. 2007), a prototype
static analysis tool developed at Tel Aviv University
that implements canonical abstraction.

4.1 Stack

We analysed thread-bounded and unbounded models
of the stack algorithm using TVLA 3.0α on a ma-
chine with an Intel Core 2 3.0 GHz processor and 4 GB
of RAM, running Java 1.6.0 on a 32-bit GNU/Linux
operating system. By default, TVLA can construct
models with one thread or an unbounded number of
threads, depending on whether the initial configu-
ration has a summary or non-summary idle thread
object. To obtain models with some other bounded
number of threads, we defined compatibility con-
straints (Sagiv et al. 2002, Section 6.4.2) that discard
any configuration that satisfy a formula identifying
n + 1 or more distinct thread objects. For example,

5http://www.cs.tau.ac.il/~tvla/

HeadI
reachI

reachI reachI

at[pop17]
has[ss]

has[ssnext]

at[pop17]
has[ss]

has[ssnext]

next next

ss
ssnext

ss
ssnextS\

5

HeadI
reachI

reachI

at[pop17]
has[ss]

has[ssnext]

next
next

ss

ss

ssnext
S5

HeadI
reachI

reachI reachI

at[pop17]
has[ss]

has[ssnext]

at[pop17]
has[ss]

has[ssnext]

next next

ss

ssnext

ss ssnext

S\
6

α

α

Figure 7: Canonical abstraction of threads: the rela-
tionships between fields’ values are lost

bounding to two threads:

∃ t1, t2, t3 •
is thread(t1) ∧ is thread(t2) ∧ is thread(t3)
∧ ¬ eq(t1, t2) ∧ ¬ eq(t2, t3) ∧ ¬ eq(t1, t3)

Table 1 contains results of verifying linearizability
with unbounded lists and data values, and up to three
threads. Time, memory and statespace figures are as
reported by TVLA. With four threads, the model was
too large and TVLA ran out of memory.

Since TVLA does not implement techniques such
as partial order reduction (Peled 1998) to reduce un-
necessary interleavings of threads, we manually mod-
ified the models to restrict interleaving of transitions
that only read or write to local variables. Table 2
contains results of these models, which appear to have
an exponential reduction in statespace. The principal
result is that linearizability of the stack algorithm is
able to be verified for unbounded numbers of threads
and data values, and for lists of unbounded length,
using only canonical abstraction.

We note that the time for the analyses of bounded
models increases exponentially - the general approach
taken by TVLA of evaluating our bounding formu-
las becomes increasingly impractical as the number of

CRPIT Volume 147 - Computer Science 2014

54

Heap Ave Max
Limit Time RAM RAM Stored

Th. (MB) (s) (MB) (MB) States
1 800 2 16 38 148
2 800 88 178 335 7,731
3 2,048 2,931 1,089 1,946 148,191
4 2,048 — — — >282,441

Table 1: Stack verification results with full interleav-
ing

Heap Ave Max
Limit Time RAM RAM Stored

Th. (MB) (s) (MB) (MB) States
1 800 1 4 6 86
2 800 18 94 252 1,312
3 800 102 173 336 6,493
4 800 535 255 479 18,564
5 2,048 6,409 502 1,184 36,749
6 2,048 143,302 480 1,052 55,069
7 4,096 2,625,113 1,182 2,633 67,334
∞ 1,024 6,524 647 1,057 74,056
∞ 2,048 1,934 849 1,603 74,056

Table 2: Stack verification results with restricted in-
terleaving

thread objects being identified, and thus the length of
the formula, increases. It may well be possible to im-
plement a more direct and efficient way in TVLA for
limiting numbers of specific objects; if so, it would
make verifying models with bounds of greater than
six threads practical.

4.2 Queues

We additionally analyzed linearizability for two non-
blocking queue data structures, the original due to
Michael & Scott (1998). Doherty et al. (2004) give a
variation with a simplified dequeue operation; they
also provide a formal verification using a theorem
prover.

The canonical abstraction models are constructed
similarly to the stack models, with similar shape pred-
icates — full details are available in Friggens (2013,
Section 7.9).

Table 3 contains results, using the same software
and hardware as for the stack. To reduce the states-
pace we again added manual restrictions to interleav-
ing for steps that only read and write to local vari-
ables. For both algorithms we verify linearizability
for one or two threads, unbounded numbers of data
values and lists of unbounded length. For the models
with three threads, the model is too large and TVLA
runs out of memory.

Heap Ave Max
Limit Time RAM RAM Stored

Deq Th. (MB) (s) (MB) (MB) States
MS 1 800 1 13 30 115
MS 2 800 393 260 476 24,271
MS 3 2,048 — — — >235k
Doh 1 800 1 14 33 117
Doh 2 800 83 189 354 10,746
Doh 3 2,048 — — — >230k

Table 3: Queue verification results

5 Related Work

The closest work to ours is by Amit et al. (2007), who
analysed the same nonblocking data structures (plus
two lock-based data structures). They also restricted
interleaving of threads manually, and were able to ver-
ify linearizability for the stack algorithm with three
threads and the queue algorithms with two threads
(limiting to 1.5 GB of RAM). They combine canonical
abstraction with an additional approach called “delta
heap abstraction”: the relationship between each pair
of implementation and specification nodes and their
identical value is represented in the state graph by a
single object. Delta heap abstraction requires each
push/enqueue etc. to be for a unique value, whereas
our approach can represent data values being entered
into the list multiple times. Their analyses use unique
predicates to distinguish each thread and its field val-
ues; this is exponentially more expensive than using
the shape predicates we have defined, and does not al-
low unbounded numbers of threads to be considered.

This approach is made more efficient by Manevich
et al. (2008), who combine canonical abstraction with
heap decomposition. Heap decomposition splits the
state into (overlapping) subgraphs and only stores one
copy of a subgraph no matter how many states it
appears in. They were able to verify linearizability
for the stack algorithm with 20 threads (limiting to
2 GB of RAM), and for the second queue algorithm
with 15 threads (limiting to 16 GB of RAM).

Berdine et al. (2008) combine the above ap-
proaches with an additional approach called “quan-
tified canonical abstraction” to verify linearizability
for unbounded threads. Like heap decomposition,
the approach splits the state into (overlapping) sub-
graphs, each containing the data structure and one
non-summary thread. Unlike heap decomposition,
each subgraph can represent an unbounded number of
identical subgraphs, thus the bounded number of sub-
graphs together can represent states with unbounded
numbers of threads. Extending the models of Amit
et al. (2007), and limiting to 2 GB of RAM, Berdine
et al. (2008) were able to verify linearizability for the
stack algorithm, but ran out of memory for the queue.
Extending the models of Manevich et al. (2008), us-
ing heap decomposition to create smaller subgraphs,
they were able to verify linearizability for both the
stack algorithm (with an 80% reduction in statespace)
and queue algorithm. This is the first published work
to verify linearizability for unbounded threads using
canonical abstraction, though it uses two additional
approaches to do so.

6 Conclusions and Further Work

In this paper we have introduced shape predicates, a
type of instrumentation predicate for refining canon-
ical abstractions. Though defining triangles and
squares may seem obvious in hindsight, these pred-
icates have not been used before in the canonical ab-
straction literature and can prove to be powerful in
constructing an appropriate abstraction. They will
almost certainly be of use in a wide range of canoni-
cal abstraction applications.

We have demonstrated the utility of shape pred-
icates by verifying linearizability for three concur-
rent data structure algorithms. In doing so we have
demonstrated the interesting theoretical result that
verification of linearizability is possible with canoni-
cal abstraction alone, and does not require delta heap
abstraction or thread quantification.

The abstract models that are constructed for the

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

55

stack and two queue algorithms are finite, but still
very large. Restricting the interleaving of local steps,
we were able to completely verify the stack algorithm.
However, for the un-restricted stack and for the re-
stricted queues, the analyses ran out of memory for
models with four or more threads. The principal
problem is the exponential permutations of thread
objects and list configurations. One approach to im-
proving the performance would be to employ heap
decomposition (Manevich et al. 2008) or thread quan-
tification (Berdine et al. 2008), with which (an exten-
sion to) TVLA decomposes each state into list and
thread components, storing each only once, no mat-
ter how many states the component appears in. An
alternative approach would be to collapse all of the
thread objects in a state into a single summary ob-
ject, defining “soft invariant” instrumentation predi-
cates (Friggens & Groves 2013) to preserve properties
of the threads that would be lost otherwise.

Finally, we would like to extend the verifications
of the stack and queue algorithms to other concur-
rent data structures. Some data structures, such as
deques, have a similar property of having a close cor-
respondence between the implementation and speci-
fication data structures, so a similar approach would
be reasonable to expect. Other data structures, such
as elimination stacks and sets have more difference
between the implementation and specification data
structures, so more ingenuity in the model construc-
tion may be required.

References

Amit, D., Rinetzky, N., Reps, T., Sagiv, M. & Yahav,
E. (2007), Comparison under abstraction for veri-
fying linearizability, in W. Damm & H. Hermanns,
eds, ‘Proceedings of the 19th International Con-
ference on Computer Aided Verification (CAV)’,
Vol. 4590 of Lecture Notes in Computer Science,
Springer, pp. 477–490.

Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam,
G. & Sagiv, M. (2008), Thread quantification for
concurrent shape analysis, in A. Gupta & S. Ma-
lik, eds, ‘Proceedings of the 20th International Con-
ference on Computer Aided Verification (CAV)’,
Vol. 5123 of Lecture Notes in Computer Science,
Springer, pp. 399–413.

Bogudlov, I., Lev-Ami, T., Reps, T. & Sagiv,
M. (2007), Revamping TVLA: Making paramet-
ric shape analysis competitive, in W. Damm &
H. Hermanns, eds, ‘Proceedings of the 19th Inter-
national Conference on Computer Aided Verifica-
tion (CAV)’, Vol. 4590 of Lecture Notes in Com-
puter Science, Springer, pp. 221–225.

Colvin, R., Doherty, S. & Groves, L. (2005), Verifying
concurrent data structures by simulation, in J. Der-
rick & E. A. Boiten, eds, ‘Proceedings of the Re-
finement Workshop’, Vol. 137.2 of Electronic Notes
in Theoretical Computer Science, Elsevier, pp. 93–
110.

Doherty, S., Groves, L., Luchangco, V. & Moir,
M. (2004), Formal verification of a practical lock-
free queue algorithm, in D. de Frutos-Escrig &
M. Núñez, eds, ‘Proceedings of the 24th Inter-
national Conference on Formal Techniques for
Networked and Distributed Systems (FORTE)’,
Vol. 3235 of Lecture Notes in Computer Science,
Springer, pp. 97–114.

Friggens, D. (2013), On the Use of Model Checking for
the Bounded and Unbounded Verification of Non-
blocking Concurrent Data Structures, Ph.D. thesis,
Victoria University of Wellington.

Friggens, D. & Groves, L. (2013), ‘Collapsing threads
safely using soft invariants’, In preparation.

Herlihy, M. P. & Wing, J. M. (1990), ‘Linearizabil-
ity: A correctness condition for concurrent ob-
jects’, ACM Transactions on Programming Lan-
guages and Systems 12(3), 463–492.

Lev-Ami, T. & Sagiv, M. (2000), TVLA: A system
for implementing static analyses, in J. Palsberg,
ed., ‘Proceedings of the 7th International Sympo-
sium on Static Analysis (SAS)’, Vol. 1824 of Lecture
Notes in Computer Science, Springer, pp. 280–301.

Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam,
G. & Berdine, J. (2008), Heap decomposition for
concurrent shape analysis, in M. Alpuente & G. Vi-
dal, eds, ‘Proceedings of the 15th International
Symposium on Static Analysis (SAS)’, Vol. 5079
of Lecture Notes in Computer Science, Springer,
pp. 363–377.

Michael, M. M. & Scott, M. L. (1998), ‘Non-
blocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiproces-
sors’, Journal of Parallel and Distributed Comput-
ing 51(1), 1–26.

Moir, M. & Shavit, N. N. (2004), Concurrent data
structures, in D. P. Mehta & S. Sahni, eds, ‘Hand-
book of Data Structures and Applications’, Chap-
man and Hall/CRC, chapter 47.

Peled, D. A. (1998), Ten years of partial order reduc-
tion, in A. J. Hu & M. Y. Vardi, eds, ‘Proceed-
ings of the 10th International Conference on Com-
puter Aided Verification (CAV)’, Vol. 1427 of Lec-
ture Notes in Computer Science, Springer, pp. 17–
28.

Sagiv, M., Reps, T. & Wilhelm, R. (2002), ‘Paramet-
ric shape analysis via 3-valued logic’, ACM Trans-
actions on Programming Languages and Systems
24(3), 217–298.

Treiber, R. K. (1986), Systems programming: Coping
with parallelism, Technical Report RJ 5118, IBM
Almaden Research Centre.

Yahav, E. & Sagiv, M. (2010), ‘Verifying safety
properties of concurrent heap-manipulating pro-
grams’, ACM Transactions on Programming Lan-
guages and Systems 32(5). Article 18.

CRPIT Volume 147 - Computer Science 2014

56

��

Document DNA: Content Centric Provenance Data
Tracking in Documents

Michael Rinck
7KH�8QLYHUVLW\�RI�:DLNDWR�
8QLYHUVLW\�RI�:DLNDWR�
*DWH���.QLJKWRQ�5RDG�
3ULYDWH�%DJ��������

+DPLOWRQ�������1HZ�=HDODQG���
PU��#ZDLNDWR�DF�Q]�

Annika Hinze
7KH�8QLYHUVLW\�RI�:DLNDWR�
8QLYHUVLW\�RI�:DLNDWR�
*DWH���.QLJKWRQ�5RDG�
3ULYDWH�%DJ��������

+DPLOWRQ�������1HZ�=HDODQG���
KLQ]H#FV�ZDLNDWR�DF�Q]�

David Bainbridge
7KH�8QLYHUVLW\�RI�:DLNDWR�
8QLYHUVLW\�RI�:DLNDWR�
*DWH���.QLJKWRQ�5RDG�
3ULYDWH�%DJ��������

+DPLOWRQ�������1HZ�=HDODQG���
GDYLGE#FV�ZDLNDWR�DF�Q]�

� � �

Steve Jones
7KH�8QLYHUVLW\�RI�:DLNDWR�
8QLYHUVLW\�RI�:DLNDWR�
*DWH���.QLJKWRQ�5RDG�
3ULYDWH�%DJ��������

+DPLOWRQ�������1HZ�=HDODQG���
VWHYHM#FV�ZDLNDWR�DF�Q]�

� � �

�

ABSTRACT
7KLV�SDSHU�SUHVHQWV�D�QHZ�FRQWHQW�FHQWULF�DSSURDFK�WR�SURYHQDQFH�
GDWD� WUDFNLQJ�� 'RFXPHQW� '1$�� :H� SUHVHQW� WKH� UHVXOWV� DQG�
DQDO\VLV�RI� RXU� H[SORUDWRU\� VWXG\�RQ� WKH� UH�XVH� DQG� UH�ILQGLQJ�RI�
FRQWHQW� FRQWDLQHG� LQ� GLJLWDO� GRFXPHQWV�� 7KH� VWXG\¶V� UHVXOWV�
VXSSRUW�RXU�FRQWHQW�FHQWULF�DSSURDFK��DV�XVHUV�KDYH�GLIILFXOWLHV�RQ�
NHHSLQJ� WUDFN�RI� UH�XVHG� FRQWHQW��7KH�'RFXPHQW�'1$�SUHVHQWHG�
LQ�WKLV�SDSHU�LV�D�GLVWULEXWHG�DSSURDFK�WKDW�WUDFNV�FRQWHQW�ZKHQ�LW�LV�
FRS\�SDVWHG�LQ�EHWZHHQ�GRFXPHQWV�E\�DWWDFKLQJ�D�VLJQDWXUH�WR�WKH�
FRQWHQW��7KLV�VLJQDWXUH�HYROYHV�DFFRUGLQJ�WR�WKH�FKDQJHV�PDGH�WR�
WKH� FRQWHQW�� WKHUHIRUH� DOORZLQJ� IRU� WUDFNLQJ� WKH� FKDQJHV�PDGH� WR�
FRQWHQW�� %\� FKRRVLQJ� D� GLVWULEXWHG� DSSURDFK�� ZH� DFKLHYH�
LQGHSHQGHQFH� RI� FHQWUDO� PDQDJHPHQW� V\VWHPV�� 6LQFH� WKH�
'RFXPHQW�'1$�LV�DGDSWHG�RQ�WKH�IO\��ZH�GR�QRW�QHHG�SRVW�DFWLRQ�
DQDO\VLV��PDNLQJ�RXU�DSSURDFK�YHU\�DFFXUDWH��7KLV�SDSHU�LQFOXGHV�
D�GHWDLOHG�GHVFULSWLRQ�RI� WKH� LQLWLDO� VWXG\�� WKH� WKHRUHWLFDO� FRQFHSW�
DQG� ILQDOO\� WKH� SURWRW\SH� ZKLFK� LPSOHPHQWV� WKLV� FRQFHSW� DV� D�
0LFURVRIW�:RUG��DGG�LQ��

Author Keywords
&RQWHQW�WUDFNLQJ��&RQWHQW�HYROXWLRQ��9HUVLRQLQJ��&RQWHQW�
0DQDJHPHQW�
�

ACM Classification Keywords

+�����,QIRUPDWLRQ�6WRUDJH�DQG�5HWULHYDO��,QIRUPDWLRQ�6WRUDJH�
+�����,QIRUPDWLRQ�6WRUDJH�DQG�5HWULHYDO��&RQWHQW�$QDO\VLV�DQG�
,QGH[LQJ�

1 INTRODUCTION
,Q� ������ %DUUHDX� HW� DO�� >�@� ZHUH� WKH� ILUVW� WR� FRQGXFW� D� VWXG\� RQ�
XVHU¶V�KDELWV�ZKHQ�RUJDQL]LQJ�GRFXPHQWV�DQG�ZKHQ�VHDUFKLQJ�IRU�
GRFXPHQWV�VWRUHG�RQ�WKHLU�3&��7KH\�IRXQG�WKDW�DW�WKDW�WLPH��SHRSOH�
ZHUH� FRQWHQW� ZLWK� WKH� ZD\� WKH�)LOH�)ROGHU� VWUXFWXUH� ZRUNHG��
+RZHYHU�� 9DQQHYDU� %XVK� LGHQWLILHG� PDQ\� OLPLWDWLRQV� RI� WKH�
ILOH�IROGHU�VWUXFWXUH�>�@��DQG�RWKHU�UHVHDUFKHUV��IRU�H[DPSOH�)HUWLJ�
HW� DO�>�@�� EHJDQ� WR� TXHVWLRQ� WKH� HIILFLHQF\� RI� WKH� V\VWHP�� LQ�
SDUWLFXODU�WKH�ODUJH�DPRXQW�RI�WLPH�VSHQW�RQ�VHDUFKLQJ�IRU�ILOHV��,Q�
������)HUWLJ�HW�DO�� >�@� LQWURGXFHG�WKH�ILUVW�RI�PDQ\�DSSURDFKHV� WR�
LPSURYH� WKH�)LOH�)ROGHU� V\VWHP�� 7KHLU�/LIHVWUHDPV� V\VWHP�ZRXOG�
VWRUH�HYHU\�ILOH�D�XVHU�UHFHLYHG�RU�FUHDWHG�LQ�DQ�RQJRLQJ�WLPHOLQH��
ZKLFK�XVHUV�FRXOG�WKHQ�EURZVH��

+RZHYHU�� ��� \HDUV� ODWHU�� WKH�)LOH�)ROGHU� V\VWHP� LV� VWLOO� WKH�
SUHGRPLQDQW�ZD\�RI�RUJDQL]LQJ�GLJLWDO�GRFXPHQWV��$W� WKH�VXUIDFH�
OHYHO��LW�VHHPV�WKDW�%DUUHDX�HW�DO��ZHUH�FRUUHFW�LQ�WKHLU�REVHUYDWLRQ�
WKDW�WKH�V\VWHP�LV�DGHTXDWH�DQG�WKDW�PRUH�HIILFLHQW�ZD\V�WR�KDQGOH�
WKHLU�GRFXPHQWV�DUH�QHLWKHU�ZDQWHG�QRU�QHHGHG���

+RZHYHU�� ZH� EHOLHYH� WKDW� PXFK� KDV� FKDQJHG� VLQFH� WKH� RULJLQDO�
VWXG\� ZDV� GRQH� DQG� WKDW� LW� LV� WLPH� WR� UHWKLQN� GRFXPHQW�
PDQDJHPHQW���

�� 7KH� ILUVW� IDFWRU� WKDW� KDV� FKDQJHG� LV� WKH� LQFUHDVHG� GLJLWDO�
VWRUDJH� DYDLODEOH� WR� GRFXPHQW� XVHUV�� 0RUHRYHU�� WKH�
VLJQLILFDQFH�RI�GLJLWDO�ILOHV�LQ�RXU�OLYHV�KDV�LQFUHDVHG�DV�ZHOO��,W�
LV� WKHUHIRUH� UHDVRQDEOH� WR� DVVXPH� WKDW� WKH� DPRXQW� RI� GLJLWDO�
GDWD�RZQHG�E\�HDFK�SHUVRQ�KDV�DOVR�LQFUHDVHG�VLJQLILFDQWO\���

�� 7KH�VHFRQG�IDFWRU� LV� WKH� LQFUHDVHG�FRQQHFWLYLW\� WKDW�XVHUV�DUH�
DEOH� WR� DFFHVV��:LWK� DIIRUGDEOH� SRUWDEOH� GHYLFHV� DQG� PRELOH�

&RS\ULJKW���������$XVWUDOLDQ�&RPSXWHU�6RFLHW\��,QF��7KLV�SDSHU�DSSHDUHG�
DW�WKH�7KLUW\�6HYHQWK�$XVWUDODVLDQ�&RPSXWHU�6FLHQFH�&RQIHUHQFH��$&6&�
������$XFNODQG��1HZ�=HDODQG��-DQXDU\�������
&RQIHUHQFHV�LQ�5HVHDUFK�DQG�3UDFWLFH�LQ�,QIRUPDWLRQ�7HFKQRORJ\��9RO��
�����%UXFH�+��7KRPDV�DQG�'DYLG�3DUU\��(GV��5HSURGXFWLRQ�IRU�DFDGHPLF��
QRW�IRU�SURILW�SXUSRVHV�SHUPLWWHG�SURYLGHG�WKLV�WH[W�LV�LQFOXGHG��
�

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

57

�

LQWHUQHW� FRQQHFWLRQV�� FROODERUDWLRQ� RQ� GLJLWDO� GRFXPHQWV� LV�
SRVVLEOH�YLUWXDOO\�DQ\WLPH�DQ\ZKHUH���

�� 7KH� WKLUG� DQG� ILQDO� IDFWRU� LV� WKH� KXJH� GLYHUVLW\� RI� SODFHV� LQ�
ZKLFK� WR� VWRUH� DQG� UHWULHYH� GRFXPHQWV�� 7KH� VR�FDOOHG� FORXG�
PD\�LQFOXGH�VXFK�GLYHUVH�VWRUDJH�SODFHV�DV��KRPH�3&V��VPDUW�
SKRQHV��ZRUN�3&V�� WDEOHWV� DQG�RQOLQH� VWRUDJH� VROXWLRQV�� �7KH�
WUDFNLQJ� RI� GRFXPHQWV� ³LQ� WKH� FORXG´� LV� WKH� DLP� RI� FXUUHQW�
UHVHDUFK�GRQH�DW�+3�ODEV�>��@��UHVXOWLQJ�LQ�D�V\VWHP�FDOOHG�WKH�
7UXVW&ORXG���

7KHVH� WKUHH� IDFWRUV� LQGLFDWH� WR�XV� WKDW� WKHUH� LV�D�QHHG�IRU�D�EHWWHU�
V\VWHP� RI� RUJDQL]LQJ� DQG� ILQGLQJ� GLJLWDO� GRFXPHQWV�� 7KLV�
DUJXPHQW�LV�VXSSRUWHG�E\�WKH�IDFW�WKDW�D�ODUJH�QXPEHU�RI�PHWDGDWD�
DQQRWDWLRQ� V\VWHPV� KDYH� EHHQ� GHYHORSHG� VLQFH� %DUUHDX¶V� ILUVW�
VWXG\�� 7KHVH� V\VWHPV� DLP� WR� VXSSO\� WKH� XVHU� ZLWK� DQ� DOWHUQDWLYH�
VWUXFWXUH� RI� GRFXPHQW� RUJDQL]DWLRQ� WR� XVH� IRU� VHDUFKLQJ� DQG�
VRUWLQJ� WKHLU� ILOHV�� 6HFWLRQ� �� JLYHV� DQ� RYHUYLHZ� RI� PHWDGDWD�
DQQRWDWLRQ�V\VWHPV�DQG�DQ�DQDO\VLV�RI�ZK\�WKHVH�V\VWHPV�ZHUH�QRW�
ZLGHO\�XVHG���

7KLV�SDSHU�SUHVHQWV� WKH� ILQGLQJV�RI� DQ� H[SORUDWRU\� VWXG\�RQ� KRZ�
SHRSOH�PDQDJH�GRFXPHQW�YHUVLRQV��HVSHFLDOO\�RQ�KRZ�WKH\�UH�XVH�
DQG�UH�ILQG�FRQWHQW�VSUHDG�RYHU�PDQ\�GRFXPHQWV��:H�DQDO\]H�WKH�
UHVXOWV�RI�D�VHULHV�RI� LQWHUYLHZV�WKDW� FRQILUP�DQG�VXEVWDQWLDWH�RXU�
FULWLTXH�RI� WKH� H[LVWLQJ�)LOH�)ROGHU� V\VWHP�� 7KH� VWXG\� VKRZV� WKDW�
GRFXPHQWV� DOPRVW� DOZD\V� FRQWDLQ� UH�XVHG� FRQWHQW� DQG� WKDW� XVHUV�
ILQG�LW�GLIILFXOW�WR�NHHS�WUDFN�RI�WKDW�FRQWHQW��VHH�6HFWLRQ������

:H� SUHVHQW� D� QHZ� GLVWULEXWHG� DSSURDFK� WR� WUDFN� FRQWHQW� DV� LW� LV�
FRSLHG� IURP� RQH� GRFXPHQW� WR� DQRWKHU� GRFXPHQW� E\� DWWDFKLQJ� D�
VLJQDWXUH� GLUHFWO\� WR� WKH� FRQWHQW� �6HFWLRQ� ���� 7KLV� DSSURDFK� DOVR�
WUDFNV� WKH� HYROXWLRQ� RI� WKH� FRQWHQW�� E\� DGDSWLQJ� WKH� VLJQDWXUH�
DFFRUGLQJ� WR� WKH� FKDQJHV� PDGH� WR� WKH� FRQWHQW�� 7KLV� VLJQDWXUH� LV�
FDOOHG� 'RFXPHQW� '1$�� RU� ''1$�� 2XU� DSSURDFK� DLPV� WR� EH�
LQGHSHQGHQW� RI� FHQWUDO� PDQDJHPHQW� V\VWHPV� DQG� SRVW�DFWLRQ�
DQDO\VLV���

:H� FRQFOXGH� WKLV� SDSHU� ZLWK� D� VXPPDU\� RI� RXU� ZRUN� DQG� D�
GLVFXVVLRQ�RI�ZKDW�QHHGV�WR�EH�GRQH�LQ�WKH�IXWXUH��

2 DOCUMENT ANNOTATION SYSTEMS
0HWDGDWD�DQQRWDWLRQ�V\VWHPV�DUH�WKH�SUHGRPLQDQW�ZD\�RI�WDUJHWLQJ�
WKH� OLPLWDWLRQV� RI� WKH�)LOH�)ROGHU� VWUXFWXUH�� 7KLV� DSSURDFK� OHWV�
XVHUV�SUHVHUYH�D�IDPLOLDU�HQYLURQPHQW�IRU�WKHLU�GRFXPHQWV��,W�DOVR�
LQFRUSRUDWHV� DQ� DGGLWLRQDO� GLPHQVLRQ�� WKH� DQQRWDWHG� PHWDGDWD��
ZKLFK�DVVLVWV�XVHUV�ZKHQ�RUJDQL]LQJ�DQG�VHDUFKLQJ�IRU�GRFXPHQWV��
'RFXPHQW� DQQRWDWLRQ� V\VWHPV� FDQ�EH�GLYLGHG� LQWR� DXWRPDWLF� DQG�
PDQXDO�DSSURDFKHV��$V�UHYLHZLQJ�HYHU\�DQQRWDWLRQ�V\VWHP�ZRXOG�
JR� EH\RQG� WKH� VFRSH� RI� WKLV� SDSHU��ZH� KDYH� WKHUHIRUH� VHOHFWHG� D�
QXPEHU�RI�H[DPSOHV�WR�KLJKOLJKW�WKH�DGYDQWDJHV�DQG�GLVDGYDQWDJHV�
RI�H[LVWLQJ�DSSURDFKHV��

Manual annotation
0DQXDO� DQQRWDWLRQ� V\VWHPV� VXFK� DV� 'HVNWRS�� >�@�� 9HQQ)6� >�@��
$UFKRVXP�>�@�DQG�S6WRUH�>��@�DLP�WR�FDSWXUH�VHPDQWLF�LQIRUPDWLRQ�
DERXW�GRFXPHQWV��PRVWO\�GHVFULEHG�DV�FDWHJRULHV��7KRVH�FDWHJRULHV�
PD\� EH� UHSUHVHQWHG� E\� GLIIHUHQW� REMHFWV� �H�J��� 9HQQ� VKDSHV�
�9HQQ)6���SLOHV� �'HVNWRS���RU�PHWD�REMHFWV� �$UFKRVXP����S6WRUH�
HYHQ� LQWURGXFHV� D� FRPSOHWHO\� RSHQ� IUDPHZRUN� ZKHUH� FDWHJRULHV�
FDQ�WDNH�DQ\�IRUP��0DQXDO�DQQRWDWLRQ�V\VWHPV�UHTXLUH�WKH�XVHU�WR�
DOORFDWH� FDWHJRULHV� WR� ILOHV�� VLQFH� WKH� GHWHFWLRQ� RI� VHPDQWLF�
LQIRUPDWLRQ� DERXW� GRFXPHQWV� LV� D� SURFHVV� WKDW� LV� VWLOO� SURQH� WR�
HUURU���

:H� EHOLHYH�PDQXDO� DQQRWDWLRQ� WR� EH� XQUHOLDEOH� DV� LW� UHTXLUHV� WKH�
XVHUV� WR� DOORFDWH� PHWDGDWD� WR� ILOHV�� +RZHYHU� VXFK� PDQXDO�
DQQRWDWLRQ� LV� LWVHOI� XQUHOLDEOH� DV� LW� GHSHQGV� RQ� WKH� XVHU¶V�
DGPLQLVWUDWLYH� DELOLW\� DQG� GLOLJHQFH��)RU� H[DPSOH�� XVHUV� PD\� EH�
XQDEOH� RU� XQZLOOLQJ� WR� NHHS� WUDFN� RI� DOO� DQQRWDWLRQV� QHHGHG� IRU�
WKHLU� GRFXPHQWV�� � 2Q� WKH� RWKHU� KDQG� PDQXDO� V\VWHPV� KDYH� WKH�
DGYDQWDJH�RI�VWRULQJ� LQIRUPDWLRQ� WKDW�PLJKW�EH�PHDQLQJIXO� WR� WKH�
XVHU��,Q�SDUWLFXODU��;X
V�>��@�LGHD�RI�VWRULQJ�HDFK�YHUVLRQ�DV�D�QHZ�
GRFXPHQW� LV�SURPLVLQJ��DV� WKLV�DOORZV� WKH�HYROXWLRQ�RI�GRFXPHQW�
LQIRUPDWLRQ�WR�EH�WUDFNHG����

Automatic annotation
$XWRPDWLF� DQQRWDWLRQ� V\VWHPV� OLNH� 2PQLVWRUH� >��@� RU� WKH� .QRZ�
+RZ� 6KDULQJ� $JHQW� >��@� DLP� WR� FROOHFW� PHWD�GDWD� DQG� DQQRWDWH�
GRFXPHQWV�DXWRPDWLFDOO\���

2PQLVWRUH�PDQDJHV� GRFXPHQWV� WKDW� DUH� GLVWULEXWHG� LQ� D� SHUVRQDO�
DUHD� QHWZRUN� FRQVLVWLQJ� RI� PDQ\� VPDOO� DQG� PRELOH� GHYLFHV��
,QIRUPDWLRQ�DERXW�XVHU�DFWLYLW\�LV�WKHQ�XVHG�WR�DQQRWDWH�GRFXPHQWV�
WKDW� UHVLGH� RQ� WKH� GHYLFHV�� 6YHQVVRQ� >��@� REVHUYHG� WKDW� PRVW�
DXWRPDWLF�DQQRWDWLRQ�V\VWHPV�ORJ�GDWD�RQ�ORFDWLRQ��WLPH�RU�DFWLYLW\�
LQ� RUGHU� WR� SURYLGH� FRQWH[W� �DV� GRQH� LQ� 2PQLVWRUH��� 6RXOHV� HW�
DO�>��@� SRLQWHG� RXW� WKDW�PRUH� WKDQ� MXVW� VHQVRU� GDWD� LV� QHHGHG� IRU�
XVHIXO� DQQRWDWLRQV�� DV� VHQVRU� GDWD� LV� RIWHQ� PHDQLQJOHVV� ZKHQ�
GHWHUPLQLQJ� D� GRFXPHQW¶V� FRQWH[W�� 6DWRK� HW� DO�� >��@� DLPHG� WR�
FROOHFW� PRUH� PHDQLQJIXO� GDWD� E\� ORJJLQJ� WKH� WUDQVIHU� RI� FRQWHQW�
EHWZHHQ�ZHEVLWHV��HPDLOV�DQG�GRFXPHQWV��YLD�WKH�LQIUDVWUXFWXUH�RI�
WKH� SURJUDPV� XVHG��� +RZHYHU�� WKLV� ZRUN� ZDV� OLPLWHG� WR� FHUWDLQ�
VRIWZDUH��H�J��/RWXV�1RWHV�RU�1HWVFDSH���

$�VLPLODU�DSSURDFK�LV�WKH�7UXVW&ORXG�>��@�E\�.R�HW�DO���+3�ODEV���
HVSHFLDOO\� ZLWK�)ORJJHU� LQWHJUDWLRQ�� 7KH�)ORJJHU� �D� ILOH�FHQWULF�
ORJJHU�� WUDFNV� DQG� VWRUHV� DOO� ILOH� DFFHVVLRQV� DQG� PRYHPHQWV� WR�
HQVXUH� WKDW� WKH�XVHUV� NQRZ�RI� HYHU\� LQVWDQFH�RI� WKHLU� ILOHV� LQ� WKH�
FORXG� DW� DOO� WLPHV�� ,W� GRHV� VR� E\� GHWHFWLQJ� HYHQWV� RQ� ILOHV� DQG�
VWRULQJ� WKH� UHVXOWLQJ� LQIRUPDWLRQ� LQ� ORJV� NHSW� RQ� VHUYHUV� LQ� WKH�
FORXG��,W�GRHV�QRW�GHWHFW�DQ\�LQIRUPDWLRQ�WUDQVIHU�EHWZHHQ�ILOHV��$�
VLPLODU�� EXW� GHFHQWUDOL]HG� DSSURDFK� WR� DQQRWDWLQJ� ILOHV� LV� 'LJLWDO�
5LJKWV�ZDWHUPDUNLQJ��.LP� HW� DO�� >��@� GHYHORSHG� D�ZDWHUPDUNLQJ�
DOJRULWKP� WKDW� ZRUNV� RQ� WH[W� GRFXPHQWV�� 7KHLU� DSSURDFK� XVHV�
LQWHU�ZRUG�VSDFHV�DQG�ZRUG�VHJPHQWLQJ�WR�KLGH�D�ZDWHUPDUN�LQ�WKH�
WH[W�GRFXPHQW��7KLV�PHDQV�WKDW�WKH�SDWWHUQ�RI�WKH�VSDFLQJ�EHWZHHQ�
ZRUG� JURXSV� LV� LWVHOI� FRGHG� LQIRUPDWLRQ�� 7KLV� DSSURDFK� KDV� WKH�
GLVDGYDQWDJH�WKDW�WKH�DSSOLHG�PHWDGDWD�LV�VWDWLF�DQG�GRHV�QRW�DGDSW�
WR�FRQWHQW�FKDQJHV�LQ�WKH�GRFXPHQWV��

'UDJXQRY� HW� DO�� >�@� GHYHORSHG� WKH� 7DVN� 7UDFHU�� D� V\VWHP� WR�
DXWRPDWLFDOO\�GHWHFW�WDVNV�DQG�FODVVLI\�GRFXPHQWV�DFFRUGLQJ�WR�WKH�
WDVNV� WR�ZKLFK� WKH\�EHORQJ��7DVN�7UDFHU�NHHSV� WUDFN�RI�FRS\�DQG�
SDVWH� RSHUDWLRQV� RQ� WKH� RSHUDWLQJ� V\VWHP� OHYHO�� XVLQJ� WKLV�
LQIRUPDWLRQ� WR� GHWHUPLQH� FRQQHFWLRQV� EHWZHHQ� ILOHV�� 7KH� PDLQ�
GLVDGYDQWDJH� RI� 7DVN� 7UDFHU� LV� LWV� GHSHQGHQFH� RQ� D� FHQWUDO�
GDWDEDVH� WR� VWRUH� WKH� LQIRUPDWLRQ�� ,W� DOVR� ODFNV� DQ\� WRROV� WR�
GHWHUPLQH�ZKDW� SDUWV� RI� ILOHV�KDYH�EHHQ� FRS\�SDVWHG�� RU� KRZ� WKH�
GRFXPHQWV� ZHUH� VXEVHTXHQWO\� FKDQJHG��)LQDOO\�� -HQVHQ� HW� DO��
FRQGXFWHG� D� XVHU� VWXG\� VKRZLQJ� WKDW� FRS\� DQG� SDVWH� LV� WKH�PRVW�
FRPPRQ�SURYHQDQFH�OLQN�EHWZHHQ�ILOHV�>�@�� LQGLFDWLQJ�WKDW�D�QHZ�
PHWDGDWD�DQQRWDWLRQ�V\VWHP�ZRXOG�EHQHILW�IURP�IRFXVVLQJ�RQ�WKLV�
LQIRUPDWLRQ��

Observations
:H� IRXQG� WKDW� PDQXDO� DQG� DXWRPDWLF� DQQRWDWLRQ� V\VWHPV� DOLNH�
VKDUH� RQH� PDMRU� GLVDGYDQWDJH�� WKH\� GHSHQG� RQ� D� FHQWUDO�
PDQDJHPHQW� FRPSRQHQW� �VXFK� DV� D� GDWDEDVH�� WR� DGPLQLVWHU� WKH�

CRPIT Volume 147 - Computer Science 2014

58

�

GRFXPHQW� DQQRWDWLRQV�� 7KH� DQQRWDWLRQV� DUH� VWRUHG� VHSDUDWHO\� DQG�
QRW�GLUHFWO\�LQ�RU�ZLWK�WKH�GRFXPHQWV��7KLV�PDNHV�WKH�DQQRWDWLRQV�
XVHOHVV� DV� VRRQ� DV� WKH� GRFXPHQWV� DUH� VWRUHG� LQ� D� SODFH� QRW�
FRQQHFWHG� WR� WKLV� FHQWUDO� FRPSRQHQW�� ,W� DOVR� IRUFHV� DOO� XVHUV�ZKR�
FROODERUDWH�RQ�GRFXPHQWV�WR�LQVWDOO�WKH�VDPH�DQQRWDWLRQ�V\VWHP��DV�
RWKHU� VRIWZDUH� LV� XQOLNHO\� WR� XQGHUVWDQG� WKH� IRUPDW� RI� WKH�
DQQRWDWLRQV��)ROORZLQJ� WKLV� JHQHUDO� REVHUYDWLRQ� DQG� WDNLQJ� WKH�
RWKHU� REVHUYHG� GLVDGYDQWDJHV� LQWR� DFFRXQW�� ZH� SURSRVH� WKH�
IROORZLQJ�UHTXLUHPHQWV�IRU�RXU�DQQRWDWLRQ�V\VWHP��

�� 7KH� DQQRWDWLRQ� PXVW� EH� GLUHFWO\� VWRUHG� LQ� RU� ZLWK� WKH�
GRFXPHQW��

�� 7KH�DQQRWDWLRQ�PXVW�EH�DGDSWHG�DXWRPDWLFDOO\�ZKHQ�WKH�
GRFXPHQW�LV�FUHDWHG�RU�PDQLSXODWHG��

�� 7KH� DQQRWDWLRQ� PXVW� QRW� SRLQW� RXW� IDOVH� UHODWLRQV�� RU�
PLVV�FRUUHFW�UHODWLRQV��

�� 7KH� IRUPDW� RI� WKH� DQQRWDWLRQV�PXVW� EH�RSHQ� DQG� HDVLO\�
UHXVDEOH��

�� 7KH� DQQRWDWLRQ� KDV� WR� HQDEOH� WKH� XVHU� WR� WUDFN� ZKHUH�
LQVWDQFHV�RI�WKHLU�FRQWHQW�KDYH�EHHQ�XVHG��

�� 7KH�DQQRWDWLRQ�KDV�WR�HQDEOH�WKH�XVHU�WR�GHWHUPLQH�KRZ�
WKHLU�FRQWHQW�HYROYHG�IURP�SUHYLRXV�YHUVLRQV��L�H���ZKLFK�
DUH�WKH�SUHYLRXV�YHUVLRQV�DQG�LQ�ZKDW�ZD\�GR�WKH\�GLIIHU��

3 EXPLORATORY STUDY
2XU� XVHU� VWXG\� KDG� WZR� JRDOV��)LUVWO\�� WR� H[SORUH� ZKDW� LVVXHV�
FXUUHQW� XVHUV� RI� GLJLWDO� GRFXPHQWV� KDYH� ZLWK� WKH�)LOH�)ROGHU�
V\VWHP�� 6HFRQGO\�� ZH� DLPHG� WR� YHULI\� LI� WKH� UHTXLUHPHQWV� ZH�
GHILQHG�DIWHU�RXU�UHYLHZ�RI�H[LVWLQJ�DQQRWDWLRQ�V\VWHPV�ZRXOG�EH�
VXIILFLHQW�WR�VROYH�WKRVH�LVVXHV��:H�WKHUHIRUH�FRQGXFWHG�D�VHULHV�RI�
��� PLQXWH� LQWHUYLHZV� DW� WKH� ZRUNSODFHV� RI� RXU� SDUWLFLSDQWV��:H�
GLVFXVVHG� WKHLU� ZD\V� RI� PDQDJLQJ� GRFXPHQWV� DQG� OHDUQHG� DERXW�
WKH�LVVXHV�WKH\�KDG�LQ�WKHLU�HYHU\GD\�ZRUN�SURFHVVHV��

:H� FKRVH� RXU� SDUWLFLSDQWV� IURP�8QLYHUVLW\� VWDII� DQG� D� ORFDO� ODZ�
ILUP�� 7KH� RQO\� UHTXLUHPHQW� ZDV� WKDW� WKH� SDUWLFLSDQWV� QHHGHG� WR�
KDYH�ILYH�RU�PRUH�\HDUV�RI�H[SHULHQFH�KDQGOLQJ�GLJLWDO�GRFXPHQWV��
:H� DOVR� ZDQWHG� WR� KDYH� D� GLYHUVH� JURXS� RI� SDUWLFLSDQWV� DQG�
WKHUHIRUH� VHOHFWHG�SDUWLFLSDQWV� IURP�GLIIHUHQW� DUHDV�RI�ZRUN��7KLV�
UHVXOWHG� LQ� WKH� SDUWLFLSDWLRQ� RI� VHYHQ� DFDGHPLFV� �FRPSXWHU�
VFLHQFH��� IRXU� VWDIIPHPEHUV� FRQFHUQHG� ZLWK� DGPLQLVWUDWLYH� RU�
PDQDJHPHQW� WDVNV�� WKUHH� VWDIIPHPEHUV�ZRUNLQJ�DW�D� OLEUDU\�� IRXU�
ODQJXDJH�WHDFKHUV��RQH�ODZ\HU�DQG�RQH�OHJDO�VHFUHWDU\��

:H� SUHSDUHG� D� QXPEHU� RI� TXHVWLRQV� EXW� ZHUH� DOVR� RSHQ� WR�
IROORZLQJ� XS� RQ� DQ\WKLQJ� LQWHUHVWLQJ� ZH� ZRXOG� GLVFRYHU� ZKLOH�
WDONLQJ� WR� WKH� SDUWLFLSDQWV�� :H� DOVR� NHSW� WUDFN� RI� VWDWLVWLFDO�
LQIRUPDWLRQ�VXFK�DV�DJH��JHQGHU�DQG�SURIHVVLRQ�RI�RXU�SDUWLFLSDQWV��
2XU�LQWHUYLHZV�ZHUH�VWUXFWXUHG�DURXQG�WKH�IROORZLQJ�TXHVWLRQV��

�� +RZ�PDQ\�\HDUV�KDYH�\RX�EHHQ�XVLQJ�GLJLWDO�GRFXPHQWV�
LQ�D�SURIHVVLRQDO�HQYLURQPHQW"�

�� :KDW�LV�\RXU�FXUUHQW�PRVW�XVHG�GRFXPHQW�HGLWRU"�

�� +RZ�RIWHQ�GR�\RX�UH�XVH�GLJLWDO�FRQWHQW��RQ�D�VFDOH�IURP�
���QHYHU��WR����YHU\�RIWHQ�"�

�� +RZ�RIWHQ�GR�\RX�QHHG�WR�ILQG�RWKHU�LQVWDQFHV�RI�UH�XVHG�
FRQWHQW��RQ�D�VFDOH�IURP����QHYHU��WR����YHU\�RIWHQ�"�

�� +RZ�GR�\RX�RUJDQL]H�\RXU�GRFXPHQWV"�

�� :KDW�SUREOHPV�GR�\RX�HQFRXQWHU� LQ�WKH�RUJDQL]DWLRQ�RI�
\RXU�GRFXPHQWV"�

7KH� LQWHUYLHZV� ZHUH� KHOG� DW� WKH� ZRUNSODFHV� RI� WKH� SDUWLFLSDQWV�
ZKHUH�SRVVLEOH��VR�WKDW�WKH\�FRXOG�GHPRQVWUDWH�WR�WKH�LQWHUYLHZHU�
KRZ�WKH\�PDQDJHG�WKHLU�GRFXPHQWV���

Results
2XU� VWXG\� KDG� HLJKW� PDOH� DQG� WZHOYH� IHPDOH� SDUWLFLSDQWV�� 2QH�
SDUWLFLSDQW�ZDV�EHWZHHQ����DQG����\HDUV�ROG��VL[�ZHUH�LQ�WKH�DJH�
JURXS�RI��������HLJKW�LQ�WKH�DJH�JURXS�RI�������DQG�ILYH�LQ�WKH�DJH�
JURXS�RI�������\HDUV���

Digital Documents and Editors.
7KH�SDUWLFLSDQWV�KDG�EHHQ�XVLQJ�GLJLWDO�GRFXPHQWV�IRU�ILYH�WR�WKLUW\�
\HDUV� �DYHUDJH� ������� PHGLDQ� ����� 0RVW� SDUWLFLSDQWV� FRXOG� QRW�
QDPH�D�VLQJOH�HGLWRU� WKH\�XVHG�PRVW�EXW� UDWKHU�QDPHG�D�UDQJH�RI�
HGLWRUV� WKH\�XVH�HYHU\�GD\��)LJXUH���VKRZV�WKH�UHVXOWV��0LFURVRIW�
:RUG� ZDV� WKH� IDYRUHG� GRFXPHQW� HGLWRU� IRU� PRVW� SDUWLFLSDQWV��
+RZHYHU��HLJKW�SDUWLFLSDQWV�ZKR�PHQWLRQHG�0LFURVRIW�:RUG�DOVR�
PHQWLRQHG� DQRWKHU� GRFXPHQW� HGLWRU�� 7KHVH� UHVXOWV� DOVR� LQGLFDWH�
WKDW�PRVW�GRFXPHQW�FRQWHQW�LV�WH[W��

�

Figure 1: Document editors used by the 20 participants
(multiple answers allowed)

Reusing Content.
7KH�LQWHUYLHZHU�GHILQHG�FRQWHQW�DV�EHLQJ�UH�XVHG�LI�LW�ZDV�WDNHQ�E\�
WKH� SDUWLFLSDQW� IURP� DQRWKHU� GLJLWDO� VRXUFH��:H� H[SODLQHG� WKDW� D�
GLJLWDO� GRFXPHQW� FRXOG� EH� DQ\� GLJLWDO� ILOH� ZKRVH� FRQWHQWV� ZHUH�
DFFHVVHG� E\� WKH� SDUWLFLSDQW�� 1R� GLVWLQFWLRQ� ZDV� PDGH� EHWZHHQ�
FRQWHQW� WKDW� ZDV� FKDQJHG� ZKHQ� UH�XVHG�� RU� FRQWHQW� WKDW� ZDV� UH�
XVHG�LQ�XQFKDQJHG�IRUP��:H�DOVR�LQFOXGHG�WKH�UH�XVH�RI�FRPSOHWH�
GRFXPHQWV�IRU�RWKHU�SXUSRVHV�LQ�WKLV�GHILQLWLRQ���

�

Figure 2: Frequency of content re-use

3DUWLFLSDQWV¶� DQVZHUV� DERXW� UHXVLQJ� FRQWHQW� ZHUH� UHFRUGHG� RQ� D�
/LNHUW�VFDOH�IURP�RQH�WR�ILYH��ZKHUH���PHDQW�³QHYHU´�DQG���PHDQW�
³YHU\�RIWHQ´� �VHH�)LJXUH��� IRU� UHVXOWV���7ZR�SDUWLFLSDQWV� FKRVH� D�

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

59

�

SRVLWLRQ�LQ�EHWZHHQ���DQG����:H�DWWULEXWHG�RQH�WR���DQG�RQH�WR����
1RQH� RI� WKH� SDUWLFLSDQWV� KDG� QHYHU� UH�XVHG� GRFXPHQWV� RU�
GRFXPHQW� SDUWV�� 7KH� PDMRULW\� RI� SDUWLFLSDQWV� UH�XVHG� GRFXPHQWV�
RIWHQ�DQG�YHU\�RIWHQ����DQG�����7KH�DYHUDJH�RI�DOO�WKH�DQVZHUV�LV���
�RIWHQ����

7KH� DQVZHUV� IRU� KRZ� RIWHQ� SDUWLFLSDQWV� QHHGHG� WR� ILQG� RWKHU�
LQVWDQFHV�RI� UH�XVHG� FRQWHQW� KDG�JUHDWHU�YDULDWLRQ� �VHH�)LJXUH�����
:H�DJDLQ�FKRVH�D�/LNHUW�VFDOH�WR�UHFRUG�WKH�SDUWLFLSDQWV¶�DQVZHUV��
)LYH�SDUWLFLSDQWV�FKRVH�WR�DQVZHU� LQ�EHWZHHQ�QXPEHUV��H�J���������
VR�ZH�VSOLW� WKHLU�YRWH� IRU� WKH� ILJXUH������RQ���DQG�����RQ�����7KH�
DYHUDJH�RI�DOO�WKH�DQVZHUV�LV��������

)RU�VRPH�SDUWLFLSDQWV��WKH�UH�XVH��FUHDWLQJ�RU�ILQGLQJ��GHSHQGHG�RQ�
WKH�FRQWH[W�RI�WKH�GRFXPHQWV��)RU�H[DPSOH��DFDGHPLFV�VWDWHG�WKDW�
WKH\�YHU\�UDUHO\�UH�XVH�RU�WU\�WR�ILQG�UH�XVHG�WHDFKLQJ�FRQWHQW��EXW�
KDG�WKH�RSSRVLWH�H[SHULHQFH�ZLWK�DFDGHPLF�FRQWHQW��

Experiences with File/Folder System.
8QVXUSULVLQJO\�� WKH�)LOH�)ROGHU� V\VWHP� ZDV� VWLOO� XVHG� E\� DOO� ���
SDUWLFLSDQWV��+RZHYHU�����RI�WKH�SDUWLFLSDQWV�QRWHG�LVVXHV�ZLWK�WKH�
)LOH�)ROGHU� V\VWHP�� 7KLV� ZDV� H[SUHVVHG� HLWKHU� LQ� WKH� GLUHFW�
VWDWHPHQW�WKDW�WKHLU�)LOH�)ROGHU�V\VWHP�IDLOV�ZKHQ�WKH\�WU\�WR�ILQG�
GRFXPHQWV�WKH\�VWRUHG��RU�LW�ZDV�PHQWLRQHG�LQGLUHFWO\�LQ�UHIHUHQFH�
WR� LVVXHV�UHVXOWLQJ�IURP�WKH� OLPLWDWLRQV�RI� WKH�)LOH�)ROGHU�V\VWHP��
IRU�H[DPSOH�WKH�ODFN�RI�YHUVLRQLQJ�RU�V\QFKURQL]DWLRQ��

:KHQ� WKH\� PHQWLRQHG� WKH�)LOH�)ROGHU� V\VWHP�� ZH� DOVR� LQTXLUHG�
KRZ�SDUWLFLSDQWV� XVHG� LW��7KH� ILOH� DQG� IROGHU� QDPHV�ZHUH� DOZD\V�
YHU\� LPSRUWDQW� WR� WKH�SDUWLFLSDQWV��2QH�SDUWLFLSDQW� HYHQ�XVHG� WKH�
ILOH� QDPHV� IRU� H[DFW� YHUVLRQLQJ�� 7KLV� SDUWLFLSDQW¶V� ILOH� QDPHV�
LQFOXGHG�GDWHV��YHUVLRQ�QXPEHUV�DQG�SXUSRVHV��

7KH� GHSWK� RI� WKH�)LOH�)ROGHU� V\VWHP� XVHG� E\� RXU� SDUWLFLSDQWV�
UDQJHG�IURP�]HUR��PHDQLQJ� MXVW� WKH�'HVNWRS�� WR���RU�PRUH��([DFW�
QXPEHUV� ZHUH� GLIILFXOW� WR� JHW� LQ� WKHVH� LQVWDQFHV�� DV� XVHUV� DUH�
XVXDOO\�QRW�DZDUH�ZKLFK�RI�WKHLU�VHOI�FUHDWHG�IROGHUV�LV�WKH�GHHSHVW��
,QWHUHVWLQJO\��ERWK�WKH�SDUWLFLSDQWV�ZLWK�ORZ�GHSWK�ILOH�V\VWHPV�DQG�
WKH� SDUWLFLSDQWV� ZLWK� KLJK�GHSWK� ILOH� V\VWHPV� FODLPHG� WR� KDYH�
GLIILFXOW\� ORFDWLQJ� ILOHV��:H� DOVR� KDG� RQH� H[DPSOH� HDFK� RI� ORZ��
DQG�KLJK�GHSWK�IROGHU�V\VWHPV�ZKLFK�SUHVHQWHG�QR�LVVXHV�IRU�WKHLU�
UHVSHFWLYH� XVHUV� +RZHYHU�� HYHU\� SDUWLFLSDQW� VWDWHG� WKDW� WKH�
PDLQWHQDQFH� RI� WKHLU�)LOH�)ROGHU� V\VWHP� UHTXLUHG� D� FRQVLGHUDEOH�
DPRXQW�RI�ZRUN�WKDW�WKH\�ZRXOG�UDWKHU�VSHQG�RQ�GLIIHUHQW�WDVNV��,Q�
RQH�RI� RXU� LQWHUYLHZHG�ZRUN� HQYLURQPHQWV�� D� VHSDUDWH� GRFXPHQW�
ZDV�NHSW�WR�UHFRUG�ORFDWLRQV�RI�RWKHU�GRFXPHQWV��

�

7KH�VHFRQG�REVHUYDWLRQ�ZH�PDGH�ZDV�WKH�VKHHU�QXPEHU�RI�V\VWHPV�
XVHG� WR� NHHS� ILOHV� DQG� WR� RUJDQL]H� WKHP��)LJXUH� �� VKRZV� WKH�
QXPEHU�RI�SODFHV�LQ�ZKLFK�SDUWLFLSDQWV�NHHS�GRFXPHQWV��2QO\�RQH�
SDUWLFLSDQW� NHSW� DOO� WKHLU� ILOHV� LQ� RQH� SODFH�� DQG� ��� RI� WKH� ���
SDUWLFLSDQWV� KDG� WKUHH� RU� PRUH� SODFHV� ZKHUH� WKH\� ZRXOG� NHHS�
GRFXPHQWV�� 2IWHQ� SDUWLFLSDQWV� ZRXOG� GHVFULEH� WKH� GLIIHUHQW�
V\VWHPV�WKH\�XVHG�ZKHQ�FROODERUDWLQJ�ZLWK�RWKHU�SHRSOH�RQ�GLJLWDO�
GRFXPHQWV���

3DUWLFLSDQWV�XVXDOO\�GHVFULEHG� WKRVH� V\VWHPV� LQ�GLUHFW� FRQQHFWLRQ�
WR�WKH�FDVHV�LQ�ZKLFK�WKH\�XVHG�WKHP��7KH�SDWWHUQ�ZH�REVHUYHG�ZDV�
WKDW� SDUWLFLSDQWV� ZKR� XVHG� PDQ\� V\VWHPV� HLWKHU� KDG� D�
KHWHURJHQHRXV� ZRUNJURXS� RU� PDQ\� FROODERUDWRUV� RXWVLGH� WKHLU�
ZRUN� JURXS�� :H� GHILQHG� D� KHWHURJHQHRXV� ZRUNJURXS� DV� D�
ZRUNJURXS� ZKRVH� PHPEHUV� KDG� GLYHUVH� SUHIHUHQFHV� IRU� V\VWHPV�
XVHG�LQ�FRQQHFWLRQ�ZLWK�WKHLU�GRFXPHQWV��

Problems Encountered with Document Organization.
3DUWLFLSDQWV� UHSRUWHG� D� JUHDW� YDULHW\� RI� LVVXHV�� :H� DOUHDG\�
PHQWLRQHG� WKH� HIIRUW� QHHGHG� WR� PDLQWDLQ� DQ� HVWDEOLVKHG� IROGHU�
V\VWHP��7KLV�ZRUNORDG�ZDV�UHSRUWHG�WR�EHFRPH�XQEHDUDEOH�DV�VRRQ�
DV� SDUWLFLSDQWV� LQWHUDFWHG� ZLWK� SHRSOH� ZKR� KDG� FRQIOLFWLQJ�
SUHIHUHQFHV�DV�WR�KRZ�WKH�)LOH�)ROGHU�6\VWHP�VKRXOG�EH�RUJDQL]HG��
3DUWLFLSDQW����DOVR�UHSRUWHG�DQ�LQVWDQFH�ZKHUH�LW�ZDV�LPSRVVLEOH�WR�
SDVV� RQ� WKH� ZRUN� RI� D� UHWLUHG� FRZRUNHU� GXH� WR� WKH� ZRUN� EHLQJ�
VDYHG�LQ�WKH�ZURQJ�IROGHU�V\VWHP��ZKLFK�WKHQ�EHFDPH�SHUPDQHQWO\�
ORFNHG� DIWHU� WKH� UHWLUHH¶V� DFFRXQW� ZDV� GHOHWHG�� $OVR�� GXSOLFDWHV�
FRQWLQXHG�WR�EH�D�SUREOHP�IRU�PRVW�RI�WKH�SDUWLFLSDQWV�ZKR�XVHG�D�
VRSKLVWLFDWHG� IROGHU� V\VWHP�� HYHQ� WKRXJK� WKRVH� SDUWLFLSDQWV�ZHUH�
DZDUH�RI�WKH�RSWLRQV�RI�OLQNV�WR�GRFXPHQWV���

Figure 3: How often do participants want to (re)find
occurrences of the same content

$QRWKHU� LVVXH�PHQWLRQHG�E\�VHYHUDO�SDUWLFLSDQWV�ZDV�9HUVLRQLQJ��
'HGLFDWHG� YHUVLRQLQJ� V\VWHPV� VXFK� DV� 691� RU� *LW� ZHUH� RQO\�
PHQWLRQHG�DQG�XVHG�E\�RQH�SDUWLFLSDQW�IURP�WKH�DUHD�RI�FRPSXWHU�
VFLHQFH�� 9HUVLRQLQJ� LVVXHV� ZHUH� QRW� QHFHVVDULO\� FRQQHFWHG� WR�
GXSOLFDWHV�� EXW� ZHUH� DOVR� WULJJHUHG� E\� ZRUNLQJ� LQ� GLIIHUHQW�
HQYLURQPHQWV� RQ� WKH� VDPH� GRFXPHQW��)RU� H[DPSOH�� WKH� VDPH�
GRFXPHQW�ZDV�DFFHVVHG�YLD�D�KRPH�PDFKLQH��D�ZRUN�PDFKLQH�DQG�
D� WDEOHW� 3&�� ,Q� JHQHUDO�� YHUVLRQLQJ� IDLOHG� GXH� WR� WKH� DWWHPSW� WR�
PDQDJH� LW� PDQXDOO\�� LQVWHDG� RI� KDYLQJ� D� GHGLFDWHG� V\VWHP�� 2QH�
SDUWLFLSDQW� LQ� D� PDQDJHPHQW� SRVLWLRQ� VWDWHG�� ³9HUVLRQLQJ� LV�
LPSRVVLEOH�WR�PDLQWDLQ�LQ�RXU�ZRUN�JURXS��LW�GRHV�QRW�H[LVW�´�7KLV�
ZDV�DJDLQ�GXH�WR�JURXS�PHPEHUV�KDYLQJ�GLIIHUHQW�SUHIHUHQFHV� IRU�
KDQGOLQJ�YHUVLRQLQJ���

3DUWLFLSDQWV� ZKR� XVHG� WKH� VDPH� GRFXPHQW� LQ� PRUH� WKDQ� RQH�
V\VWHP��RU� VKDUHG� DFFHVV� WR� WKH� VDPH�GRFXPHQW�ZLWK�RWKHU�XVHUV��
PHQWLRQHG� WKH� LVVXH� RI� V\QFKRQL]DWLRQ�� 7KH\� UHFRJQL]HG� WKH�
DYDLODELOLW\�RI�WRROV�IRU�V\QFKURQL]LQJ�GRFXPHQWV��EXW�ZHUH�HLWKHU�
QRW� DEOH� WR� XVH� WKHP�GXH� WR� LQFRPSDWLELOLW\� EHWZHHQ� V\VWHPV�� RU�
ODFNHG�WKH�NQRZOHGJH�RU�WLPH�WR�VHW�WKHP�XS��

�

7KH� ODVW� UHSRUWHG� LVVXH� ZDV� XQLTXH� WR� WKH� HPSOR\HHV� RI� WKH� ODZ�
ILUP�� 7KH\� KDYH� D� ODUJH� ERG\� RI� OHJDO� GRFXPHQWV� WKDW� LQFOXGH�
PDQ\� LQWHQWLRQDO� QHDU� GXSOLFDWHV� DQG� ORWV� RI� UH�XVHG� FRQWHQW��
:KHQHYHU�D�OHJDO�SKUDVH�FKDQJHV��HYHU\�GRFXPHQW�FRQWDLQLQJ�WKDW�
OHJDO� SKUDVH� QHHGV� WR� EH� IRXQG� DQG� DGDSWHG� DFFRUGLQJ� WR� WKH�
FKDQJH�WKDW�ZDV�PDGH��7KLV�SURYHV�WR�EH�VXFK�D�GLIILFXOW�WDVN�WKDW�
ODZ\HUV� DUH� DGYLVHG� WR� FKHFN� DOO� WKH� SURYLGHG� OHJDO� GRFXPHQWV�
EHIRUH� XVLQJ� WKHP�� DV� WKH\� PD\� FRQWDLQ� HUURUV�� 2QH� SDUWLFLSDQW�
DOVR�PHQWLRQHG�WKDW�OHWWHUV�IURP�RWKHU�ODZ�ILUPV�ZRXOG�IUHTXHQWO\�
FRQWDLQ�VXFK�HUURUV��LQGLFDWLQJ�WKDW�WKLV�LVVXH�LV�D�ZLGHVSUHDG�RQH���

CRPIT Volume 147 - Computer Science 2014

60

Discussion
1R� JHQGHU�VSHFLILF� GLIIHUHQFHV� ZHUH� GHWHFWHG� LQ� RXU� LQWHUYLHZV��
QRU� GLG� ZH� REVHUYH� GLIIHUHQFHV� EDVHG� RQ� WKH� DJH� RI� WKH�
LQWHUYLHZHHV�� 7KH� ORQJ� \HDUV� RI� SHUVRQDO� H[SHULHQFH�ZLWK� GLJLWDO�
GRFXPHQWV�LQ�D�SURIHVVLRQDO�HQYLURQPHQW�PHDQ�WKDW�WKH�SUREOHPV�
LGHQWLILHG� FRXOG� QRW� EH� H[SODLQHG� VLPSO\� E\� XQIDPLOLDULW\� ZLWK�
WRROV�DQG�V\VWHPV���

�

Figure 4: Number of places/computers in which digital
documents are kept

�

��� RI� WKH� ��� SDUWLFLSDQWV� H[SHULHQFHG� SUREOHPV� ZKLOH� XVLQJ� WKH�
)LOH�)ROGHU� V\VWHP�� 0RVW� IUHTXHQWO\� PHQWLRQHG� LVVXHV� ZHUH� ����
PDLQWHQDQFH� RI� WKH�)LOH�)ROGHU� V\VWHP�� ���� YHUVLRQLQJ� RI�
GRFXPHQWV������V\QFKURQL]LQJ�GRFXPHQWV��DQG�����NHHSLQJ�WUDFN�RI�
LQVWDQFHV�RI�WKH�VDPH�FRQWHQW��7KLV�YHULILHV�RXU�DVVXPSWLRQV�DERXW�
GRFXPHQW� PDQDJHPHQW� DV� RXWOLQHG� LQ� WKH� LQWURGXFWLRQ� DQG�
FRQILUPV�WKH�QHHG�IRU�D�QHZ�DSSURDFK�WR�KHOS�XVHUV�RUJDQL]H�WKHLU�
GRFXPHQWV��

:KHQ� ZH� LQWHUYLHZHG� WKH� SDUWLFLSDQWV�� ZH� UHDOL]HG� WKDW� WKHLU�
GLIIHULQJ�ZRUN�HQYLURQPHQWV�KDG�D� ODUJH� LQIOXHQFH�RQ�KRZ�PDQ\�
V\VWHPV� WKH\� XVHG� DQG� KRZ� PDQ\� LVVXHV� WKH\� H[SHULHQFHG� ZLWK�
WKRVH� V\VWHPV�� :H� REVHUYHG� WHQ� SDUWLFLSDQWV� LQ� KHWHURJHQHRXV�
JURXSV�� ZKLOH� WKH� RWKHU� WHQ� ZHUH� HLWKHU� GLJLWDO� ORQHUV� RU� LQ�
KRPRJHQRXV�JURXSV��+HWHURJHQHRXV�JURXSV�ZHUH�PDGH�XS�RI�XVHUV�
ZLWK�YHU\�GLIIHUHQW�DSSURDFKHV�WR�GRFXPHQW�PDQDJHPHQW��WKLV�ZDV�
XVXDOO\�GXH�WR�WKH�GLIIHUHQW�EDFNJURXQGV�RI�WKH�XVHUV��RU�WR�WKH�IDFW�
WKDW� WKH� XVHUV� FDPH� IURP� GLIIHUHQW� ZRUN� HQYLURQPHQWV� ZKLFK�
RYHUODSSHG� ZKHUH� WKH\� FROODERUDWHG�� 7KHVH� SDUWLFLSDQWV�
HQFRXQWHUHG�WZR�PDLQ�LVVXHV��)LUVWO\��WKH\�HQFRXQWHUHG�GLIILFXOWLHV�
LQ�DJUHHLQJ�RQ�WKH�ZD\�WR�XVH�VKDUHG�V\VWHPV��6HFRQGO\��WKH\�RIWHQ�
KDG� QR� DFFHVV� WR� RU� NQRZOHGJH� RI� WKH� V\VWHPV� WKDW� WKHLU�
FROODERUDWRUV�XVHG��

:KLOVW� WKH� ILUVW� LVVXH� LV� KDUG� WR� VROYH� IURP� D� FRPSXWHU� VFLHQFH�
SHUVSHFWLYH�� WKH�VHFRQG� LV�RSHQ� WR�D� WHFKQLFDO�VROXWLRQ��7KH� LVVXH�
PD\� EH� UHPHGLHG� E\� SURYLGLQJ� D� V\VWHP� WKDW� QHHGV� QR� VHSDUDWH�
LQWURGXFWLRQ�DW�WKH�ZRUNSODFH�QRU�GRHV�LW�QHHG�D�FHQWUDO�FRQQHFWLRQ�
SRLQW��

7KH�GLJLWDO� ORQHUV�RU�KRPRJHQRXV�XVHU�JURXSV�HQFRXQWHUHG�IHZHU�
LVVXHV� ��� RXW� RI� ��� KDG� QRQH��� 7KH\�ZHUH�PRVWO\� FKDOOHQJHG� E\�
V\QFKURQL]LQJ� RU� YHUVLRQLQJ� HIIRUWV� EHWZHHQ� ZRUNSODFHV� RU�
V\VWHPV�� $JDLQ�� WKLV� PD\� EH� UHPHGLHG� E\� D� VROXWLRQ� WKDW� LV�
LQKHUHQW�WR�WKH�GRFXPHQW��LQVWHDG�RI�EHLQJ�DSSOLHG�WR�LW��

7KH� KLJK� OHYHO� RI� UH�XVHG� FRQWHQW� LQ� WKH� SDUWLFLSDQWV¶� GRFXPHQWV�
LPSOLHV� WKDW� WKH� IRFXV� RI� D� QHZ� GRFXPHQW� PDQDJHPHQW� V\VWHP�
VKRXOG�QRW�EH�RQ�WKH�GRFXPHQWV��EXW�RQ�WKH�DFWXDO�FRQWHQW�ZLWKLQ�
WKH� GRFXPHQWV�� 7KLV� LV� XQGHUOLQHG� E\� WKH� IDFW� WKDW� SDUWLFLSDQWV�

XVXDOO\�UHIHUUHG�WR�VSHFLILF�FRQWHQW�VQLSSHWV�LQVWHDG�RI�GRFXPHQWV�
ZKHQ�DVNHG�DERXW�UH�ILQGLQJ�FRQWHQW��

7KH�QH[W�VHFWLRQ�LQWURGXFHV�RXU�DSSURDFK�LQ�WDUJHWLQJ�WKRVH�LVVXHV�
ZKLOVW�IXOILOOLQJ�WKH�UHTXLUHPHQWV�VHW�RXW�LQ�6HFWLRQ����

4 DOCUMENT DNA
:KHQ�UHVHDUFKLQJ�IRU�V\VWHPV�WKDW�FRXOG�IXOILOO�RXU�UHTXLUHPHQWV��
ZH�UHDOL]HG�WKDW�D�FRQFHSW�IURP�RXWVLGH�&RPSXWHU�6FLHQFH�PD\�EH�
DSSOLFDEOH�� ,I� ZH� ZHUH� WR� WKLQN� DERXW� ILOHV� �GRFXPHQWV�� DV� OLIH�
IRUPV�� WKDQ�ZH� FDQ� DVVXPH� WKDW� WKH�'1$� RI� OLIH� IRUPV� EHKDYHV�
OLNH� DQQRWDWLRQV�� 7KHVH� DUH� H[WUHPHO\� SRZHUIXO� DQQRWDWLRQV�� DV�
WKH\� VWRUH� HYHU\� ELW� RI� LQIRUPDWLRQ� QHHGHG� IRU� WKH� OLIH� IRUP��
LQFOXGLQJ� KHULWDJH� �L�H��� YHUVLRQLQJ�� LQIRUPDWLRQ�� 7KURXJK� WKH�
'1$�LW�LV�SRVVLEOH�WR�WUDFN�ZKHUH�FHUWDLQ�DWWULEXWHV��L�H���GRFXPHQW�
FRQWHQW�� RULJLQDWHG� DQG� KRZ� WKH\� HYROYHG� RYHU� WLPH�� 2XU�
DQQRWDWLRQ� DSSURDFK� LV� LQVSLUHG� E\� WKLV� DQDORJ\� DQG� LV��
FRQVHTXHQWO\��QDPHG�'RFXPHQW�'1$��''1$���

DNA and Phenographs
7R� PRGHO� RXU� DQQRWDWLRQV� DIWHU� FRQYHQWLRQDO� '1$�� ZH� QHHG� WR�
EHWWHU�XQGHUVWDQG�KRZ�'1$�LV�FXUUHQWO\�XVHG�WR�LGHQWLI\�UHODWLRQV�
EHWZHHQ�OLIH�IRUPV��3KHQRJUDSKV�DUH�D�ZD\�WR�GHSLFW�UHODWLRQVKLSV�
EHWZHHQ�OLIH� IRUPV��7KH�SKHQRJUDSK�LQ�)LJXUH���VKRZV�SRO\PHUV�
DV�OLIH�IRUPV��DQG�GHSLFWV�VHTXHQWLDO�FKDQJHV�RI�D�VLQJOH�QXFOHRWLGH�
�$��&��*�RU�7��UHVXOWLQJ�LQ�VHYHUDO�QHZ�OLIH�IRUPV��)RU�H[DPSOH��WR�
IROORZ� MXVW� RQH� SDWK�� WKH� RULJLQDO�$7&$�ZDV� FKDQJHG� WR�$7&*�
DQG� WKHQ� WR� $7**�� $V� ZH� SODQ� WR� GHVLJQ� WKH� GRFXPHQW� '1$�
PRGHO�LQ�DQ�DQDORJRXV�ZD\�WR�WKH�ELRORJLFDO�'1$��ZH�KRSH�WR�EH�
DEOH� WR� FUHDWH� WUHHV� VLPLODU� WR� SKHQRJUDSKV� WKDW� ZLOO� GHSLFW� WKH�
UHODWLRQVKLSV�EHWZHHQ�GRFXPHQWV��VHH�)LJ������

�

Figure 5: Phenograph by Lesk [12]

The Document DNA Approach
,Q�NHHSLQJ�ZLWK�WKH�'1$�FRPSDULVRQ��ZH�ZDQW�WR�EH�DEOH�WR�WUDFN�
ZKLFK� VRXUFH� GRFXPHQWV� FRQWULEXWHG� FRQWHQW� WR� D� VSHFLILF� WDUJHW�
GRFXPHQW��)LJXUH���LOOXVWUDWHV�RXU�DSSURDFK��'RFXPHQW�$�KDV�EHHQ�
HGLWHG��DQG�VRPH�IXUWKHU�FRQWHQW�IURP�'RFXPHQW�%�KDV�EHHQ�DGGHG�
WR� 'RFXPHQW� $�� :KHQ� 'RFXPHQW� $� LV� QRZ� VDYHG�� WKH� ''1$�
ZRXOG�UHSUHVHQW�ERWK�VRXUFHV�RI�FRQWHQW��VLPLODU�WR�SDUHQWDJH�RI�D�
OLIH�IRUP����

7R� GHVFULEH� RXU� DQQRWDWLRQ� DSSURDFK� LQ� GHWDLO�� ZH� QHHG� FOHDU�
GHILQLWLRQV�RI�WKH�REMHFWV�RI�RXU�ZRUN��:H�WKHUHIRUH�QRZ�LQWURGXFH�
GHILQLWLRQV�RI� WKH�FRUH�FRQFHSWV�XVHG� LQ�RXU�DSSURDFK��GRFXPHQW��
GRFXPHQW�VWDWH��DFWLRQ��DQG�VHVVLRQ���

Documents
,Q�RXU�ZRUN�� HDFK�GLJLWDO� GRFXPHQW� LV� GHILQHG�E\� D� VHW� RI� WULSOHV�
FRQVLVWLQJ� RI� WKH� REMHFW� �2��� WKH� FRQWHQW� �&�� DQG� D� WHPSRUDU\�
KLVWRU\��=���

Definition 1:��'RFXPHQW���'RFXPHQW�'� �>2��&��=@��

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

61

�

 O: The object is the container holding the content and
any additional information concerning the content, for
example formatting or character count.

 C: The content is the information the document
contains, stripped of formatting or style. In a Word
document this would mean the characters.

 Z: The temporary history of the document is used when
the document is accessed and manipulated. Acts of
manipulation are called actions. Every action is
recorded in Z.

)ROORZLQJ�RXU�H[DPSOH�RI�'RFXPHQW�$��LQ�)LJXUH�����2�UHSUHVHQWV�
WKH� FRQWDLQHU� RI� WKH� GRFXPHQW��&� LV� WKH� FRQWHQW�RI� WKH�GRFXPHQW�
�WH[WXDO�RU�RWKHUZLVH��DQG�=�FRQWDLQV�WKH�HGLW�DFWLRQV�LQ�$�DQG�WKH�
SDVWH�DFWLRQ�IURP�GRFXPHQW�%��1RWH�WKDW�WKH�FRS\�DFWLRQ�ZRXOG�EH�
SDUW�RI�WKH�KLVWRU\�=�RI�'RFXPHQW�%��QRW�RI�'RFXPHQW�$���

�

Figure 6: Document DNA

Document States, Actions and Sessions
Definition 2:�$FWLRQV�DUH�EDVLF�DFWLYLWLHV�WKDW�XVHUV�DSSO\�WR�GLJLWDO�
GRFXPHQWV��7KH\�LQFOXGH��

 Insert content - Ai

 Delete content - Ad

 Manipulate content - Am

 Select content - Ase

 Copy content - Ac

 Paste content - Ap

 Save document - Asa

$FWLRQV� DUH� W\SLFDOO\� UHIOHFWHG� LQ� WKH� GRFXPHQW� LWVHOI��)ROORZLQJ�
WKH�H[DPSOH�LQ�)LJXUH����ZH�KDYH�D�FRS\�DQG�D�SDVWH�DFWLRQ�DQG�D�
QXPEHU�RI�LQVHUW�GHOHWH�PDQLSXODWH�DFWLRQV�UHSUHVHQWLQJ�WKH�HGLWLQJ�
RI� WKH� GRFXPHQW�� $OO� RI� WKRVH� DFWLRQV� DUH� FRQWDLQHG� LQ� WKH� =�
FRPSRQHQW�RI�WKH�QHZ�'RFXPHQW�$��

'LIIHUHQW�DFWLRQV�KDYH�GLIIHUHQW�HIIHFWV�RQ�REMHFW�2��FRQWHQW�&�DQG�
WHPSRUDU\�KLVWRU\�=��+HUH�ZH�OLVW�WKH�HIIHFWV�IRU�WKH�VHYHQ�DFWLRQV�
LGHQWLILHG�DERYH��

Ai(D) = Ai([O;C;Z])

= [O + details and format of inserted content,

C + inserted content, Z + insert]

Ad(D) = Ad([O;C;Z])

= [O - details and format of deleted content,

 C - deleted content, Z + delete]

Am(D) = Am([O;C;Z])

= [O + details and format of manipulation,

C, Z + manipulate]

Ase(D) = Ase([O;C;Z]) = [O, C, Z + select]

Ac(D) = Ac([O, C, Z]) = [O, C, Z + copy]

Ap(D) = Ap([O, C, Z])

= [O + details and format of pasted content,

C + pasted content, Z + paste resource]

Asa(D) = Asa([O, C, Z])

= [O, C, empty Z and write history into DDNA]

7KH�DFWLYLWLHV�RI�RSHQLQJ�RU�FORVLQJ�D�GRFXPHQW�DUH�QRW� UHJDUGHG�
DV� DFWLRQV�� VLQFH� WKH\� DUH� QRW� UHOHYDQW� WR� WKH� YHUVLRQLQJ�� :KHQ�
FRQWHQW� LV� FRSLHG� IURP� RQH� GRFXPHQW�� WKDW� FRQWHQW� LV� KHOG� LQ� D�
VHSDUDWH� EXIIHU� �VXFK� DV� WKH� 0LFURVRIW� &OLSERDUG��� 7KLV� FRQWHQW�
FDQ� QRZ�EH� SDVWHG� LQWR� DQRWKHU� GRFXPHQW� E\� DSSO\LQJ� WKH� SDVWH�
FRPPDQG�WR�WKH�GRFXPHQW��

�

Figure 7: Document States

$�VHVVLRQ�DOZD\V�VWDUWV�DQG�HQGV�ZLWK�D�VDYHG�GRFXPHQW��7KHUH�DUH�
DW� OHDVW� WZR� GRFXPHQWV� LQYROYHG� LQ� HDFK� VHVVLRQ�� WKH� VWDUWLQJ�
GRFXPHQW� DQG� WKH� �ILQDO�� VDYHG� GRFXPHQW��7KH� DFWXDO� QXPEHU�RI�
VWDUWLQJ�GRFXPHQWV�LV�QRW�OLPLWHG��(YHU\�GRFXPHQW�WKDW�LV�XVHG�LQ�D�
VHVVLRQ��DQG�WKDW�LV�QRW�WKH�ILQDO�VDYHG�GRFXPHQW��LV�UHJDUGHG�DV�D�
VWDUWLQJ�GRFXPHQW��

:KHQ�DFWLRQV�DUH�DSSOLHG�WR�D�GRFXPHQW��WKH�VWDWH�RI�WKH�GRFXPHQW�
PD\�RU�PD\�QRW�FKDQJH��GHSHQGLQJ�RQ�WKH�DFWLRQ���

Definition 3:�$�GRFXPHQW� VWDWH� LV� GHILQHG�E\� WKH� ODVW� HQWU\� LQ�=�
DQG�ZKHWKHU�WKH�GRFXPHQW�ZDV�VDYHG�RU�QRW��

 Temporary State: The document will be in the temporary
state, if the last entry in Z is either selection or copy. If
the document is saved in this state, it will take on the
form of the last consistent state or saved state.

 Consistent State: All other actions transform a
document into the consistent state. The consistent state
represents what the document will look like when saved,
closed and reopened later on.

 Saved State: When saved, a document is transformed
into the saved state. This also means that a freshly
opened document is in the saved state. Selections or
content held in a copy buffer will not be restored when
reopened.

CRPIT Volume 147 - Computer Science 2014

62

,Q� D� VWDWH� GLDJUDP�� ZH� LQGLFDWH� GLIIHUHQW� GRFXPHQW� VWDWHV� E\�
GLIIHUHQWO\�VKDSHG�FLUFOHV��VHH�)LJXUH����

�

Figure 8: State Changes

:KHQ�D�GRFXPHQW� LV� VDYHG� �L�H��� LW� HQWHUV� WKH� VDYHG�VWDWH��� D�QHZ�
SK\VLFDO�ILOH�LV�FUHDWHG�DQG�VWRUHG��6LQFH�VWRUDJH�LV�QRW�D�FRQFHUQ��
ZH� FDQ�NHHS�XQOLPLWHG�YHUVLRQV�RI�D�GRFXPHQW�� ,W�GRHV�QRW� VHHP�
HIILFLHQW� WR� NHHS� D� YHUVLRQ� IRU� HDFK� VHSDUDWH� FKDQJH� RU� DGGHG�
FKDUDFWHU�� VR� ZH� GHFLGHG� WKDW� NHHSLQJ� D� GRFXPHQW� HYHU\� WLPH� D�
SLHFH�RI�ZRUN�ZDV�VDYHG�VKRXOG�EH�VXIILFLHQW��7KLV�PHDQV�WKDW�LI�D�
XVHU� ZHUH� ZULWLQJ� D� OHWWHU� DQG� VDYHG� LW� WKUHH� WLPHV� GXULQJ� WKH�
ZULWLQJ��WKHUH�ZRXOG�EH�QRW�RQH�EXW�WKUHH�GRFXPHQWV��7KLV�PHDQV�
WKDW�HYHU\�
VDYH
�DFWLRQ�LV�WUHDWHG�DV�D�
VDYH�DV����
�DFWLRQ���

)LJXUH���LOOXVWUDWHV�DOO�SRVVLEOH�VWDWH�WUDQVLWLRQV�RI�WZR�GRFXPHQWV�
$�DQG�%� IRU�DFWLRQV� VXFK�DV� VHOHFWLQJ��FRS\LQJ��SDVWLQJ��RSHQLQJ�
DQG� FORVLQJ��1RWH� WKDW�ZH� DOVR�QHHG� WR�PRGHO� WKH� HGLWRU¶V�EXIIHU�
�H�J���WKH�06�:RUG�&OLSERDUG��DV�LW�KROGV�LQIRUPDWLRQ�WR�EH�SDVWHG�
LQWR�D�GRFXPHQW����

Sessions
7KH�ODVW�VWHS�UHTXLUHG�LV�WR�GHILQH�WKH�SRLQWV�DW�ZKLFK�WKH�''1$�LV�
DGDSWHG� WR� UHIOHFW� WKH� FKDQJHV� PDGH� WR� D� GRFXPHQW��)RU�
SHUIRUPDQFH� UHDVRQV� WKLV� FDQQRW� KDSSHQ� DIWHU� HYHU\� DFWLRQ� �H�J���
DIWHU�HYHU\�NH\VWURNH���:H�LQWURGXFH�6HVVLRQV��

Definition 4:�A Session starts when a document is opened and
ends when the document is saved. The Session represents all the
actions between those events.�

�

Figure 9: Document Session

7KH�ILQDO�VDYHG�GRFXPHQW�LV�DOZD\V�FUHDWHG�DV�D�QHZ�ILOH�DQG�WKH�
GRFXPHQW�KDV�D�QHZ�XQLTXH�''1$��7KLV�QHZ�''1$�UHSUHVHQWV�
WKH�KLVWRU\�RI�WKH�GRFXPHQW�LQKHULWHG�IURP�WKH�VWDUWLQJ�GRFXPHQWV��
7KH� QHZ� ''1$� LV� FUHDWHG� E\� SURFHVVLQJ� WKH� DFWLRQV� WKDW� DUH�
UHFRUGHG�LQ�=��$IWHU�VDYLQJ��=�LV�FOHDUHG��6LQFH�D�VHOHFW�DQG�FRS\�
DFWLRQ�PD\� UHVXOW� LQ� VHYHUDO� SDVWH� DFWLRQV�� VHVVLRQV�PD\�RYHUODS��
+RZHYHU��DOO�RWKHU�DFWLRQV� �L�H���RWKHU� WKDQ�FRS\�SDVWH��EHORQJ� WR�
VLQJOH� VHVVLRQV��)LJXUH� �� LOOXVWUDWHV� WKH� VHVVLRQ� RI� RXU� VWDUWLQJ�
H[DPSOH��ZLWK�DFWLRQV�SURYLGHG�� �)LUVW��'RFXPHQW�$� LV� HGLWHG�E\�
WKH� XVHU� LQVHUWLQJ� WH[W� ³WKH� FDW´� �VHH� ILUVW� DFWLRQ� DIWHU� RSHQLQJ�
GRFXPHQW�$�RQ�WKH�ULJKW�LQ�)LJ������7KHQ�WKH�XVHU�FRSLHV�WKH�WH[W�
³WKH�GRJ´� IURP�'RFXPHQW�%�DQG�SDVWHV� LW� LQWR�'RFXPHQW�$��)RU�
VLPSOLFLW\� KHUH�� � ZH� GR� QRW� VKRZ� WKH� FOLSERDUG��'RFXPHQW�$� LV�
WKHQ�VDYHG�DV�WKH�1HZ�'RFXPHQW�$��KHUH�QDPHG�'RFXPHQW�;��

)ROORZLQJ� WKHVH� GHILQLWLRQV�� WKH� ''1$� LV� D� UHSUHVHQWDWLRQ� RI� =�
WKDW� LV� XSGDWHG� ZLWK� HYHU\� VDYHG� VWDWH�� :H� QRZ� IROORZ� ZLWK� D�
GHVFULSWLRQ�RI�RXU�ILUVW�SURWRW\SH�DLPLQJ�WR�LPSOHPHQW�WKH�''1$��

5 MICROSOFT WORD ADD-IN PROTOTYPE
7KH�''1$�IRU�RXU�SURWRW\SH�KDV�IRXU�SDUWV��7KH�ILUVW�WKUHH�SDUWV�
DUH�QHHGHG�WR�DOORFDWH�WKH�''1$�WR�WKH�FRUUHFW�FRQWHQW��7KH�IRXUWK�
SDUW�UHSUHVHQWV�=�IURP�6HFWLRQ����

�� $�88,'�WR�XQLTXHO\�LGHQWLI\�D�GRFXPHQW��7KLV�88,'�LV�
VWDWLF�DQG�QHYHU�FKDQJHV��

�� $� VHULHV� RI� WLPHVWDPSV� LQ� WKH� IRUP� RI�DateTime.Ticks�
VXSSOLHG� E\� &��� 7KLV� VHULHV� LV� DXJPHQWHG� ZLWK� HYHU\�
VDYH�DV�D�QHZ�WLFN�LV�DGGHG��

�� 7KH�UDQJH�RI�WKH�FRQWHQW��7KLV�ZLOO�EH�QHFHVVDU\�ZKHQ�D�
FRS\�SDVWH� WDNHV� SODFH�� 7KH� UDQJH� FRQWDLQV� WKH� VWDUWLQJ�

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

63

FKDUDFWHU� SRVLWLRQ� DQG� WKH� HQGLQJ� FKDUDFWHU� SRVLWLRQ� RI�
WKH�FRQWHQW��

�� $�'1$� VLJQDWXUH� UHSUHVHQWLQJ� WKH� DFWXDO� FRQWHQW�� 7KLV�
VLJQDWXUH� VKRXOG�HYROYH�DFFRUGLQJ� WR� WKH�FKDQJHV�PDGH�
WR�WKH�FRQWHQW��:H�FDOO�WKLV�WKH�'1$��

7KHVH�SDUWV�DUH�SXW�WRJHWKHU�LQ�WKLV�IRUPDW��

<DDNA>
<UUID>uuid</UUID>
<Ticks>ticks</Ticks>
<Range>range</Ranges>
<DNA>dna</DNA>

</DDNA>
'RFXPHQWV�ZLOO�VWDUW�ZLWK�VXFK�D�VLPSOH�''1$��7KH�VWDWLF�UUID�
DOORZV�XV�WR�WUDFN�D�GRFXPHQW�HYHQ�LW�LV�UHQDPHG�RU�WKH�FRQWHQW�LV�
GUDVWLFDOO\�FKDQJHG��DV� WKH�UUID�QHYHU�FKDQJHV��7KH� WLFNV�DOORZ�
XV�WR�GHWHUPLQH�WKH�KLHUDUFK\��DFFRUGLQJ�WR�WKH�WLPH�RI�FUHDWLRQ��RI�
VHYHUDO�GRFXPHQWV�ZLWK�WKH�VDPH�UUID��7KH�WLFNV�DOVR�DOORZ�XV�WR�
WUDFN� WKH� FORVHVW� YHUVLRQ� DYDLODEOH� WKDW� KDV� EHHQ� VKDUHG� DV� D�
SUHYLRXV�YHUVLRQ��VLQFH�WKDW�GRFXPHQW�ZLOO�KDYH�RQO\�WKH�WLFNV�WKDW�
DUH�VKDUHG�E\�DOO�VXEVHTXHQW�GRFXPHQWV��

+RZHYHU�� LI� FRQWHQW�JHWV�SDVWHG� LQWR�D�GRFXPHQW�� LW�ZLOO�EULQJ� LWV�
RZQ�''1$�ZLWK� LW� IURP� WKH�VRXUFH�GRFXPHQW��7KLV�''1$�ZLOO�
EH� DGGHG� WR� WKH� RQH� DOUHDG\� DYDLODEOH� IRU� WKH� GRFXPHQW� DQG� WKH�
range� LGHQWLILHUV� RI� ERWK� ''1$V� ZLOO� EH� PRGLILHG�� 7KH� range�
LGHQWLILHUV� ZLOO� DOORZ� XV� WR� LGHQWLI\� ZKLFK� FRQWHQW� EHORQJV� ZLWK�
ZKLFK� ''1$�� Range� LGHQWLILHUV� DOVR� FKDQJH� LI� WKH� FRQWHQW� LV�
FKDQJHG� ZLWKLQ� WKH� GRFXPHQW� WR� UHIOHFW� WKH� range� RI� WKH� QHZ�
FRQWHQW��

�

Figure 10: Clipboard containing DDNA

7KH� '1$� SDUW� RI� WKH� ''1$� LV� UHSUHVHQWHG� XVLQJ� D� ORVV\�
FRPSUHVVLRQ� IXQFWLRQ� RI� WKH� FRQWHQW�� ,W� ZRUNV� VXFK� WKDW� LI� WZR�
GRFXPHQWV�DUH�HTXDO�LQ�DOO�EXW�WZR�ZRUGV�� WKH\�ZLOO� WKHQ�KDYH�DQ�
DOPRVW� LGHQWLFDO�'1$��EXW� LI� WKH\�GLIIHU� FRPSOHWHO\�� WKHLU�'1$V�
ZLOO�DOVR�EH�FRPSOHWHO\�GLIIHUHQW��&XUUHQWO\�ZH�H[SORUH�WKH�TXDOLW\�
RI�GLIIHUHQW�IXQFWLRQV�LQ�WKH�''1$�FRQWH[W����

:H� GHFLGHG� WR� XVH� 0LFURVRIW� :RUG� DV� WKH� SODWIRUP� IRU� RXU�
SURWRW\SH�VLQFH�RXU�LQWHUYLHZ�VHULHV�FRQILUPHG�LW�DV�EHLQJ�WKH�PRVW�
ZLGHO\� XVHG� HGLWRU��:H� DOVR�ZDQWHG� WR� KDYH� D� VROXWLRQ� WKDW�ZDV�
HDV\� WR� DSSO\� WR�XVHUV¶�ZRUNVSDFHV�ZLWKRXW� LQWHUIHULQJ�ZLWK� WKHLU�
HYHU\GD\� ZRUN�� 7KHUHIRUH�� ZH� GHFLGHG� WR� XVH� WKH� $GG,Q� RSWLRQ�
ZLWKLQ� 0LFURVRIW� :RUG�� :H� GHFLGHG� WR� VWRUH� WKH� ''1$�
LQIRUPDWLRQ�LQ�WKH�GRFXPHQW�SURSHUWLHV�DV�D�FXVWRP�SURSHUW\��VLQFH�
WKHUH� LW� LV� DFFHVVLEOH� ERWK� IRU� RXU� $GG,Q� DQG� IRU� XV� WR� FKHFN�
PDQXDOO\��

�

Figure 11: Initial document (before pasting).

:H� PDGH� XVH� RI� WKH� repurpose command� RSWLRQ� DYDLODEOH� IRU�
0LFURVRIW� :RUG� WR� DXWRPDWLFDOO\� DGG� DQG� PDLQWDLQ� WKH� ''1$��
7KLV� RSWLRQ� DOORZV� XV� WR� DGG� FRGH� IRU� WKH� FRPPDQGV� WKDW� XVHUV�
H[HFXWH�� WKHUHIRUH� DXWRPDWLQJ� WKH� PDLQWHQDQFH� RI� WKH� ''1$�
ZLWKLQ�WKH�ZRUN�SURFHVVHV�RI�WKH�XVHUV���

7KH�ILUVW�VWHS�LV�WR�VXSSO\�HYHU\�GRFXPHQW�ZLWK�D�XQLTXH�''1$��
7R�GR� VR��ZH� UHSXUSRVHG� WKH� save FRPPDQG��:KHQHYHU� WKH�XVHU�
KLWV�save��WKH�$GG,Q�FKHFNV�LI�WKH�VDYHG�GRFXPHQW�KDV�D�''1$��,I�
WKH�GRFXPHQW�GRHV�QRW�KDYH�D�''1$��WKH�$GG,Q�FUHDWHV�RQH�DQG�
DGGV�LW��,I�D�''1$�LV�IRXQG��WKH�rangH�DQG�WKH ticks�SURSHUWLHV�ZLOO�
EH�DGDSWHG�DFFRUGLQJ�WR�WKH�FKDQJHV�PDGH�VLQFH�WKH�ODVW�save��:H�
FKRVH�WKLV�SRLQW�VLQFH�ZH�WKLQN�WKDW�WKH�save�DFWLRQ�PDUNV�WKH�SRLQW�
LQ�WLPH�ZKHQ�WKH�XVHU�FRPSOHWHV�D�VLJQLILFDQW�DPRXQW�RI�ZRUN��:H�
DOVR� DGGHG� D� VXEURXWLQH� WKDW� VDYHV� WKH� SUHYLRXV� YHUVLRQ� RI� WKH�
GRFXPHQW�LQ�DQ�DUFKLYH�IROGHU��:H�GLG�WKLV�ERWK�WR�VXSSO\�WKH�XVHU�
ZLWK� WKH�PHDQV� WR� UHWXUQ� WR�SUHYLRXV�YHUVLRQV�� DQG� WR�KDYH�PRUH�
GDWD�ZLWK�ZKLFK�WR�HYDOXDWH�RXU�SURWRW\SH�ODWHU��

7KH�''1$�QHHGV�WR�EH�WUDQVIHUUHG�ZLWK�HYHU\�copy paste�F\FOH��DV�
VKRZQ�LQ�RXU�FRQFHSW��:H�UHSXUSRVHG�ERWK�WKH�copy�DQG�WKH�paste�
FRPPDQGV� LQ� 06� :RUG� WR� DFKLHYH� WKLV�� :KHQ� D� XVHU� FRSLHV�
FRQWHQW� IURP�D�GRFXPHQW�� WKH�DSSURSULDWH�''1$� LV�DGGHG� WR� WKH�
FRQWHQW��7KLV� LV�YLVLEOH� LQ� WKH�FOLSERDUG��VHH�VFUHHQVKRW� LQ�)LJXUH�
����� +HUH� ZH� UHYLVLW� WKH� H[DPSOH� IURP�)LJXUH� �� DQG� DOVR� VKRZ�
DGGLWLRQDOO\�WKDW�LPDJHV�FDQ�EH�KDQGOHG�WKH�VDPH�ZD\�DV�WH[W����

)LJXUH����VKRZV�D�GRFXPHQW�EHIRUH�WKH�FRQWHQWV�RI�WKH�FOLSERDUG�
VKRZQ� LQ�)LJXUH� ��� DUH� SDVWHG� DQG�)LJXUH� ��� VKRZV� WKH� VDPH�
GRFXPHQW�DIWHUZDUGV��

:KHQ� WKH� paste� FRPPDQG� LV� H[HFXWHG�� WKH� DGGHG� ''1$�
LQIRUPDWLRQ� LV� DXWRPDWLFDOO\� UHPRYHG� IURP� WKH� FRQWHQW�� 7KH�
''1$�ZLOO� WKHQ� EH� SHUPDQHQWO\� DGGHG� WR� WKH� GRFXPHQW� LI� LW� LV�
VDYHG�� :H� NHHS� WUDFN� RI� WKH� DSSURSULDWH� UDQJH� LQIRUPDWLRQ� E\�
ORJJLQJ�DW�ZKLFK�FKDUDFWHU�SRVLWLRQV�paste��insert�RU�delete DFWLRQV�
KDSSHQHG���

�

Figure 12: Document after pasting

2XU�SURWRW\SH�FXUUHQWO\�HQDEOHV�XV�WR�GHWHFW�LQVWDQFHV�RI�WKH�VDPH�
FRQWHQW� LQ� DOO� DYDLODEOH� GRFXPHQWV�� HYHQ� LI� WKH� FRQWHQW� KDV� EHHQ�
PRGLILHG��:H�DUH�DOVR�DEOH� WR�GHWHUPLQH� WKH�YHUVLRQ�KLHUDUFK\�RI�
GLIIHUHQW�LQVWDQFHV�RI�WKH�VDPH�FRQWHQW��7KH�QH[W�GHYHORSPHQW�ZLOO�

CRPIT Volume 147 - Computer Science 2014

64

SHUPLW�GHWHFWLRQ�RI�SUHFLVH�GLIIHUHQFHV�EHWZHHQ�FRQWHQW� LQVWDQFHV�
VLPSO\� E\� FRPSDULQJ� WKH� ''1$�� DV� ZHOO� DV� HQDEOLQJ�
UHFRQVWUXFWLRQ�RI�WKH�RSHUDWLRQV�WKDW�OHG�WR�WKRVH�GLIIHUHQFHV���

Discussion
2XU�SURWRW\SH�FXUUHQWO\�DOORZV�XV�WR�WDFNOH�WZR�RI�WKH�LVVXHV�IRXQG�
LQ�WKH�XVHU�VWXG\��7KH�ILUVW�ZDV�WKDW�SDUWLFLSDQWV�IRXQG�LW�GLIILFXOW�
WR�GHWHUPLQH�WKH�PRVW�UHFHQW�YHUVLRQ�RI�GRFXPHQWV�RQ�ZKLFK�WKH\�
KDG� FROODERUDWHG�� 7KLV� LVVXH� LV� UHPHGLHG� E\� VLPSO\� OLVWLQJ� DOO�
GRFXPHQWV�WKDW�VKDUH�WKH�VDPH�''1$�DQG�VHOHFWLQJ�WKH�GRFXPHQW�
ZLWK�WKH�PRVW�UHFHQW�WLPHVWDPS�LQFOXGHG�LQ�WKH�''1$��

7KH�VHFRQG�LVVXH�ZH�DUH�DEOH�WR�VROYH�ZLWK�RXU�SURWRW\SH�LV�WKH�UH�
ILQGLQJ� RI� RWKHU� LQVWDQFHV� RI� WKH� VDPH� FRQWHQW�� IRU� H[DPSOH� IRU�
XSGDWH�SXUSRVHV��:H�VLPSO\�QHHG�WR�WDNH�WKH�''1$�UHSUHVHQWLQJ�
WKH�FRQWHQW�VQLSSHW�DQG�VHDUFK�IRU�RWKHU�GRFXPHQWV�FRQWDLQLQJ�WKLV�
''1$��

7KHVH�WZR�NH\�IHDWXUHV�HQDEOH�XVHUV�WR�VSHQG�OHVV�WLPH�RUJDQL]LQJ�
WKHLU�ILOHV�ZKHQ�FROODERUDWLQJ�DQG�LQVWHDG�DOORZV�WKHP�WR�IRFXV�RQ�
WKH�FROODERUDWLRQ���

$�ILQDO�IHDWXUH�RI�WKH�SURWRW\SH�WKDW�QHHGV�DWWHQWLRQ�LV�WKH�DELOLW\�WR�
FRPSDUH�WZR�YHUVLRQV�RI�WKH�VDPH�FRQWHQW�VQLSSHW�DQG�PHDVXUH�WKH�
GHJUHH� RI� VHPDQWLF� GLIIHUHQFH� EHWZHHQ� WKRVH� WZR� VQLSSHWV� ZLWK�
KLJK�DFFXUDF\���

7 CONCLUSIONS

,Q� WKLV� SDSHU�� ZH� LQWURGXFHG� D� QRYHO� GHFHQWUDOL]HG� DSSURDFK� IRU�
DQQRWDWLQJ�GRFXPHQWV�ZLWK�PHWDGDWD� WR�WUDFN�WKH�HYROXWLRQ�RI� WKH�
GLJLWDO�FRQWHQW�ZLWKLQ�WKH�GRFXPHQW��DV�ZHOO�DV�WKH�VRXUFHV�RI�WKDW�
FRQWHQW��

Summary of Contributions.
:H�ILUVW�FRPSDUHG�DQG�FDWHJRUL]HG�UHFHQW�DSSURDFKHV�IRU�PHWDGDWD�
DQQRWDWLRQ�RQ�GRFXPHQW��:H�IRXQG�WKDW�WKHUH�KDV�EHHQ�QR�VKRUWDJH�
RI� UHVHDUFK� DFWLYLW\� LQ� WKLV� ILHOG� LQ� WKH� ODVW� ��� \HDUV�� EXW� VRPH�
LVVXHV�UHPDLQ�XQVROYHG��:H�GLVFXVVHG� WKH�UHVXOWV�RI�DQ� LQWHUYLHZ�
VHULHV� ZH� FRQGXFWHG� WR� IXUWKHU� LQYHVWLJDWH� WKH� LVVXHV� XVHUV�
HQFRXQWHUHG� LQ� WKH� RUJDQL]DWLRQ� RI� WKHLU� GRFXPHQWV�� :H� WKHQ�
LQWURGXFHG� RXU� '1$�LQVSLUHG� DSSURDFK�� ZKLFK� DLPV� WR� FRPELQH�
WKH� DGYDQWDJHV� RI� DXWRPDWHG�PHWD�GDWD� DQQRWDWLRQ�ZLWK� WKRVH� RI�
PDQXDO�DQQRWDWLRQ��DQG�WR�FRUUHFW�IRU�WKH�GHILFLHQFLHV�RI�WKHVH�WZR�
FDWHJRULHV�RI�V\VWHP��:H�WKHQ�GHILQHG�WKH�REMHFWV�DQG�FRQFHSWV�RI�
RXU� UHVHDUFK� LQ� GHWDLO��)LQDOO\�� ZH� GHVFULEHG� RXU� SURWRW\SLF�
LPSOHPHQWDWLRQ�RI�WKH�''1$�FRQFHSW�

Future Work
7KH� QH[W� VWHSV� QHHG� WR� LQFOXGH� WKH� IROORZLQJ� WZR� WDVNV�� ����
([HFXWLRQ� RI� D� ORQJHU�WHUP� XVHU� VWXG\� WR� HYDOXDWH� WKH� GRFXPHQW�
'1$� ZLWK� XVHUV� ³LQ� WKH� ZLOG´� �L�H��� DW� WKHLU� ZRUNSODFHV��� ����
,PSURYLQJ� RXU� WH[W� FRPSUHVVLRQ� PHWKRG� WR� SHUPLW� D� VPDOO�
VLJQDWXUH��DQG�WKHQ�HYDOXDWLQJ�WKDW�PHWKRG����

)RU� WKH� ILUVW� WDVN��ZH�QHHG� WR�GHVLJQ�D� VWXG\� WR�HQDEOH� ORQJ� WHUP�
REVHUYDWLRQ� RI� VLQJOH� XVHUV� DQG� KRZ� WKH\� KDQGOH� WKHLU� GDWD��
$QRWKHU� SRVVLELOLW\� ZRXOG� EH� WR� REVHUYH� ZRUN� JURXSV� DQG� KRZ�
FROODERUDWLRQ�LV�VLPSOLILHG�E\�XVLQJ�RXU�V\VWHP��

7KH�VHFRQG� WDVN�RI�TXDOLWDWLYH� LQVWHDG�RI�TXDQWLWDWLYH�REVHUYDWLRQ�
RI� FKDQJH� LV� PRUH� FKDOOHQJLQJ��:H� ZLOO� LQYHVWLJDWH� ZRUN� LQ� WKH�
DUHDV�RI�KDVKLQJ�DQG�ILQJHUSULQWLQJ�>��������������@�LQ�DGGLWLRQDO�WR�
ORVV\� FRPSUHVVLRQ� PHWKRGV� FXUUHQWO\� LQ� XVH�� :H� ZLOO� GHILQH�
PHDVXUHPHQWV�RQ� WKH�GLVWLQFWLYHQHVV�RI�FRQWHQW�LQVWDQFHV��DV�ZHOO�
DV� PHWKRGV� WR� PDNH� WKRVH� PHDVXUHPHQWV�� :H� DOVR� QHHG� WR�

GHWHUPLQH� KRZ� WR� PHDVXUH� VXFFHVVIXOQHVV� LQ� GRFXPHQW�
RUJDQL]DWLRQ�� IRU�H[DPSOH�KRZ�TXLFNO\�GR�XVHUV�ILQG� WKH�ILOHV� IRU�
ZKLFK�WKH\�VHDUFK���

:H� EHOLHYH� WKDW� ''1$� FDQ� PDNH� D� VLJQLILFDQW� FRQWULEXWLRQ� WR�
XVHUV¶� HIIRUWV� LQ� RUJDQL]LQJ� DQG� UH�ILQGLQJ� FRQWHQW� WKDW� LV� VKDUHG�
DFURVV�PDQ\�GRFXPHQWV��:H� IXUWKHU�HQYLVLRQ� WKDW�''1$�FDQ�EH�
XVHG� IRU� UHVHDUFK� SXUSRVHV�� IRU� H[DPSOH� WR� ILQG� RXW� ZKLFK�
GRFXPHQWV� IRUP� WKH� NHUQHO� RI� WKH�PRVW� IUHTXHQWO\� XVHG� FRQWHQW��
7KLV�LQIRUPDWLRQ�FRXOG�EH�XVHG�WR�IRUP�FOXVWHUV�DQG�DXWRPDWLFDOO\�
VXSSRUW� WKH� XVHUV� LQ� WKH� RUJDQLVDWLRQ� RI� WKHLU� ILOHV�� :H� DOVR�
UHFRJQL]H� WKDW�''1$�PLJKW� EH� DSSOLFDEOH� WR� WKH� ILHOG� RI�'50��
KRZHYHU��WKDW�LV�QRW�RXU�IRFXV��

ACKNOWLEDGMENTS
:H�WKDQN�DOO�YROXQWHHUV�IURP�RXU�LQWHUYLHZ�VHULHV��:H�ZRXOG�DOVR�
OLNH� WR� WKDQN� anonymised fRU� IXQGLQJ� WKLV� UHVHDUFK� ZLWK� D�
anonymised�'RFWRUDO�6FKRODUVKLS��

REFERENCES
�� %DUUHDX��'��DQG�1DUGL��%�$����������)LQGLQJ�DQG�

UHPLQGLQJ��)LOH�RUJDQL]DWLRQ�IURP�WKH�GHVNWRS��SIGCHI
Bulletin�������������������

�� %XVK��9��$V�ZH�PD\�WKLQN��Atlantic Monthly����������
�����������

�� &KLDUD��5��'���(UUD��8��DQG�6FDUDQR��9��9HQQIV��$�
YHQQ�GLDJUDP�ILOH�PDQDJHU��,Q�Proceedings of the
Seventh International Conference on Information
Visualization��������

�� GH�OD�&UX]��)��DQG�'DYLHV��-��+RUL]RQWDO�JHQH�WUDQVIHU�
DQG�WKH�RULJLQ�RI�VSHFLHV��OHVVRQV�IURP�EDFWHULD��Trends
in Microbiology����������������������

�� 'UDJXQRY��$�1���'LHWWHULFK��7�*���-RKQVUXGH��.���
0F/DXJKOLQ��0���/L��/���+HUORFNHU��-�/���7DVN7UDFHU��$�
'HVNWRS�(QYLURQPHQW�WR�6XSSRUW�0XOWL�WDVNLQJ�
.QRZOHGJH�:RUNHUV��International Conference on
Intelligent User Interfaces��S���������������

��)DOOLQ��.��(QWURS\��Managing data in an electronic
world��������8QGHUJUDGXDWH�UHVHDUFK�SURMHFW��8QLYHUVLW\�
RI�&DOJDU\��

��)HUWLJ��6���)UHHPDQ��(��DQG�*HOHUQWHU��'��/LIHVWUHDPV��
$Q�$OWHUQDWLYH�WR�WKH�'HVNWRS�0HWDSKRU��CHI'96
Conference on Human Factors in Computing Systems��
9LGHR�3URJUDP��9DQFRXYHU��&DQDGD��$SULO��������$&0�
3UHVV��������

�� +RSNLQV��,��DQG�9DVVLOHYD��-��%H\RQG�NH\ZRUGV�DQG�
KLHUDUFKLHV��Journal of Digital Information
Management�������������������

�� -HQVHQ��&���/RQVGDOH��+���:\QQ��(���&DR��-���6ODWHU��0���
'LHWWHULFK��7��*��7KH�/LIH�DQG�7LPHV�RI�)LOHV�DQG�
,QIRUPDWLRQ��$�6WXG\�RI�'HVNWRS�3URYHQDQFH��CHI ’10��
$&0�3UHVV������������������

��� .DU\SLGLV��$��DQG�/DOLV��6��2PQLVWRUH��$�V\VWHP�IRU�
XELTXLWRXV�SHUVRQDO�VWRUDJH�PDQDJHPHQW��In IEEE
International Conference Pervasive Computing and
Communications��SDJHV����������,(((�&RPSXWHU�
6RFLHW\�������

��� .DU\SLGLV��$��DQG�/DOLV��6��$XWRPDWHG�FRQWH[W�
DJJUHJDWLRQ�DQG�ILOH�DQQRWDWLRQ�IRU�SDQ�EDVHG�
FRPSXWLQJ��Personal and Ubiquitous Computing��������
����������

��� .LP��<��:���0RRQ��.��$��DQG�2K��,��6��³$�7H[W��

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

65

ZDWHUPDUNLQJ�$OJRULWKP�EDVHG�RQ�:RUG�&ODVVLILFDWLRQ�
DQG�,QWHU�ZRUG�6SDFH�6WDWLVWLFV´��IEEE,�Seventh
International Conference on Document Analysis and
Recognition Volume II��$XJXVW������������

��� .R��5�.�/���-DJDGSUDPDQD��3��DQG�/HH��%�6��³)ORJJHU��$�
ILOH�FHQWULF�ORJJHU�IRU�PRQLWRULQJ�ILOH�DFFHVV�DQG�
WUDQVIHUV�ZLWKLQ�FORXG�FRPSXWLQJ�HQYLURQPHQWV�´�LQ�
IEEE TrustCom/IEEE ICESS/FCST��,QWHUQDWLRQDO�-RLQW�
&RQIHUHQFH�RI��/RV�$ODPLWRV��&$��86$��,(((�
&RPSXWHU�6RFLHW\��������SS�����±������

��� /HVN��$�0��Introduction to Bioinformatics��2[IRUG�
8QLYHUVLW\�3UHVV���UG�HGLWLRQ��������

��� 5DMDUDPDQ��$��DQG�8OOPDQ��-��Mining of Massive
Datasets��������$YDLODEOH�RQOLQH�DW�
KWWS���LQIRODE�VWDQIRUG�HGX�aXOOPDQ�PPGV�KWPO��ODVW�
YLVLWHG�������������

��� 6DWRK��.��DQG�2NXPXUD��$��'RFXPHQWDWLRQ�NQRZ�KRZ�
VKDULQJ�E\�DXWRPDWLF�SURFHVV�WUDFNLQJ��,Q�Proceedings of
the 4th International Conference on Intelligent User
Interfaces��������

��� 6FKOHLPHU��6���:LONHUVRQ��'��6��DQG�$LNHQ��$��
:LQQRZLQJ��ORFDO�DOJRULWKPV�IRU�GRFXPHQW�
ILQJHUSULQWLQJ��,Q�Proceedings of the 2003 ACM

SIGMOD International Conference on Management of
Data��������

��� 6KLYDNXPDU��1��DQG�*DUFLD�0ROLQD��+��)LQGLQJ�QHDU�
UHSOLFDV�RI�GRFXPHQWV�RQ�WKH�ZHE��,Q�The World Wide
Web and Databases��6SULQJHU�%HUOLQ���+HLGHOEHUJ��������

��� 6LJQHU��%��:KDW�LV�ZURQJ�ZLWK�GLJLWDO�GRFXPHQWV"�$�
FRQFHSWXDO�PRGHO�IRU�VWUXFWXUDO�FURVV�PHGLD�FRQWHQW�
FRPSRVLWLRQ�DQG�UH�XVH��,Q�Conceptual Modeling - ER�
������6SULQJHU�%HUOLQ���+HLGHOEHUJ��������

��� 6RXOHV��&�$�1��DQG�*DQJHU��*�5��:K\�FDQ
W�,�ILQG�P\�
ILOHV"�1HZ�PHWKRGV�IRU�DXWRPDWLQJ�DWWULEXWH�DVVLJQPHQW��
,Q�Proceedings of the 9th conference on Hot Topics in
Operating SystemV���9ROXPH����������

��� 6WHLQ��%��3ULQFLSOHV�RI�KDVK�EDVHG�WH[W�UHWULHYDO��,Q�
Proceedings of the 30th Annual International ACM
SIGIR conference on Research and Development in
Information Retrieval��������

��� 6YHQVVRQ��0��&RQWH[WXDO�PHWDGDWD�LQ�SUDFWLFH��,Q�
Advances in Multimedia��������00(',$�
�����

��� ;X��=���.DUOVVRQ��0���7DQJ��&��DQG�.DUDPDQROLV��&��
7RZDUGV�D�VHPDQWLF�DZDUH�ILOH�VWRUH��,Q�Proceedings of
the 9th conference on Hot Topics in Operating Systems -
Volume 9�������

�

CRPIT Volume 147 - Computer Science 2014

66

Exploring the applicability of Reservoir methods for Classifying
Punctual Sports Activities Using On-body Sensors

Doug P. Hunt1 Dave Parry1 Stefan Schliebs1

1 School of Computing and Mathematical Sciences,
AUT University,

Private Bag 92006, Auckland, New Zealand 1142,
Email: dphunt, dparry, sschlieb@aut.ac.nz

Abstract

This paper explores the use of a reservoir computing
(RC) method, Echo State Networks (ESN) to clas-
sify inertial sensor motion data collected from sensors
worn by horse riders into punctual activities of in-
terest within a scripted movement environment. RC
methods incorporate both temporal and spatial as-
pects within the model and therefore may have appli-
cability classifying signals with the varying temporal
signatures often seen across activity instances even
when performed by the same subject. ESN’s, as one
of a number of RC methods has a potential advan-
tage in this case of being able to directly incorporate
the inertial data into the reservoir without the need
to segment this data into sliding windows. This is
part of a wider set of work to build a wearable coach
for technique feedback for Equestrian sport. Our use
of RC methods on inertial data to classify punctual
human activities is novel.

Keywords: Echo State Networks, Reservoir Comput-
ing, Spatio-temporal data processing, Punctual Ac-
tivity Classification, Activity Classification, Machine
Learning, Equestrian sport

1 Introduction

Human activity recognition using on-body sensors
presents a number of challenges (Avci et al. 2010).
In many situations this includes a lack of knowledge
of overall context such that while it may be possible to
distinguish a gesture such as pronating the wrist, it is
difficult, without some idea of overall context, to con-
clude reliably that the gesture is associated with, for
example, opening a door by twisting the door handle
or turning a car key in a vehicle ignition. One method
used by researchers to resolve this dilemma is to em-
bed the sensor within some other item such as a car
key, pen or baseball bat (Verplaetse 1996) that has a
particular use that constrains the context. Another
method, using a more generalised sensor, is to assume
or predicate (Lukowicz et al. 2004, Ward, Lukowicz,
Troster & Starner 2006) a particular context or do-
main so that the choice of meaning of the gesture is
constrained by the predicated domain. This is our
own approach and in our case our predicated domain
is that of Equestrian sport. Sporting domains have

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

some additional benefits as a result of often being
strongly defined by rules and traditions.

Another challenge in human activity recognition
is the variability in both the spacial and temporal
aspects of a particular action both across subjects
and even within a single subject who performs an
activity (or action) more than once (Ward, Lukowicz
& Troster 2006). Some obvious examples of spatial
variability includes differences between left-handed
and right-handed activities and differences in tech-
nique such as between the drive shot of a professional
golfer and an amateur. Examples of obvious temporal
differences include taking 75 seconds to mount your
horse because the horse is moving away from you or
mounting in 7 seconds (or less) as the horse is stand-
ing still.

Human activities may be broadly distinguished
into durative or punctual activities. Durative ac-
tivities usually occur over a longer period of time
and have some sort of repeating rhythmic compo-
nent. Some simple examples of durative activities
include running, walking, rowing, grooming a horse
and cycling. Punctual activities tend to be shorter
and happen once rather than multiple times and so
often do not have a repeating rhythmic component to
the signal. Some simple examples of punctual activ-
ities include bowling a ball in cricket, hitting a ball
in baseball, a backhand shot in tennis and mounting
a horse. Most of the activity recognition literature
looks at durative activities. This work looks at punc-
tual activities using current state-of-the-art temporal
pattern recognition methods.

This paper is divided into 5 main parts. In section
2 we describe the application domain including our
goal so that other practitioners can understand our
motivation and assess the relevancy of this work. In
addition we define the activities to be classified, with
an illustration and identify the entities involved with
our goal scenario. In section 3 we describe the experi-
mental set up including our approach, the equipment
used, the participant, the activity setting/scenario,
the data obtained and its main characteristics/meta-
data such as sample rate and precision, the prepro-
cessing applied to the data prior to classification and
a description of the classification engine. In section
4 we present the results obtained and in section 5 we
discuss our conclusions and future work.

In reporting this work we have followed the recom-
mendations in “How to do good research in activity
recognition” (Plötz 2010).

2 Application Domain

The goal of our research is to construct an Activity
Classification System (ACS) to classify activities of
interest within Equestrian sport. Data input into the

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

67

system is collected from horse riders using wearable
inertial sensors. The ACS is envisaged to be part of
a wider, wearable coaching system that would be de-
signed to provide horse riders with postural and riding
feedback as they train. We envisage such a system as
having a small number of generalised sensors on the
rider’s body at strategic positions that are used for
multiple purposes.

In this paper and planned follow on work we have
set out to classify the activities Mounting and volun-
tary Dismounting. Mounting is when the rider gets
on the horse and dismounting is when they get off
the horse. At this stage we are only seeking to clas-
sify voluntary dismounts and we exclude involuntary
dismounts or falls.

As with all activities, identifying the precise begin-
ning and ending of a mount/dismount is not trivial
and so a definition of the activity with a recognisable
start and end is required. For this work, our activity
definitions are:

Mount A stirrup mount from the time when a rider
with one leg in the stirrup, lifts the second leg off
the ground or mounting block in order to mount
until the time when they are seated in the saddle.

Dismount The time from when a rider leans forward
(prior to dismounting) until they are standing on
the ground.

Neither definition is inclusive of all possible classes
of either mounting or dismounting but we consider
them sufficient to cover a reasonable percentage of
the mounts and dismounts that are likely to be en-
countered in equestrian sport. As far as we are aware,
there are no other generally accepted definitions for
these activities, for the purposes of activity classifica-
tion.

The entities involved are the horse rider and the
horse. In this case the horse is a built for purpose
wooden model that allows multiple mounts and dis-
mounts in a laboratory setting without having to deal
with horse welfare or safety issues.

3 Experimental Set-up

3.1 Approach

Mounts and dismounts are punctual rather than du-
rative activities. Punctual activities are short, sim-
ple activities such as opening a drawer, sitting down,
picking up a cup, bowling a ball in cricket, hitting a
ball in baseball, a backhand shot in tennis or shoot-
ing a hoop in basketball. Durative activities are of
longer duration and usually have a repeated element
such that there is a rhythmic or cyclic nature to the
activity such as walking, running, rowing, cycling or
grooming a horse. Most of the ACS research for
wearable sensors that has successfully moved out of a
scripted activity, laboratory environment into the real
world has either been based on classifying durative
activities or has made use of additional non-inertial
sensors such as cameras and sound in addition to in-
ertial sensors to reliably classify activity.

Much of the successful work classifying durative
activities has used sliding window techniques to break
the raw input into fixed blocks or windows and then
calculates a number of signal derivatives for each win-
dow. Those window derivatives are then used as in-
puts to the ACS. Example activities include walking,
running and being still. These being successfully clas-
sified based on windowed properties of the sensor sig-
nal such as signal standard deviation (Lee & Mase

Figure 1: Mounting a horse using a stirrup mount

2002, Lester et al. 2005), spectral frequency (Lukow-
icz et al. 2004, Lester et al. 2005), spectral en-
tropy (Bao & Intille 2004, Ermes et al. 2008, Lester
et al. 2005), integrals, means and variances (Lester
et al. 2005). Sliding window techniques have had
some success with scripted punctual activities but
have been markedly less successful in real world situ-
ations.

CRPIT Volume 147 - Computer Science 2014

68

In this work we use a Reservoir Computing (RC)
technique, called Echo State Networks (ESN) to di-
rectly classify the pre-processed input data without
the need to window this data.

3.2 Data Collection

Data was recorded from two laboratory and 55 real
life riding sessions from 20 participants (and their
horses) over a three month period using a com-
mercially available, six degrees of freedom inertial
sensor from SparkFun (SparkFun Electronics Inc
2008). Data collection was done as part of a Mas-
ters project (Hunt 2009) and all data was collected
within Sweden. Each session was videoed so that ac-
tivities could be manually classified by participants,
riding domain experts and the research team.

The data for this set of experiments was taken
from one of the two laboratory sessions and during
this session the participant, who was an experienced
rider, wore the sensor on her right wrist using a simple
stretchable Velcro bandage for attachment. The par-
ticipant self-described herself as right-handed. The
“horse” used during the laboratory sessions was a
built-for-purpose wooden framed horse (Diana) of ap-
proximately 16 hands in height (163cm at the “shoul-
der”), draped with a standard European riding sad-
dle and stirrups. During this particular laboratory
session the participant mounted and dismounted 17
times following a proscribed script. During the labo-
ratory sessions the video camera was fixed into posi-
tion using clamps so that the researcher was free to
move around if needed.

3.2.1 Sensor

The SparkFun 6DoF inertial sensor contains a
Freescale MMA7260Q triple-axis accelerometer, two
InvenSense IDG300 500o per second gyroscopes and
both a Honeywell HMC1052L and a HMC1051Z mag-
netic sensor.

The sensor outputs readings from a 12 bit analogue
to digital converter that gives a reading range between
0 and 1023.

The sensor outputs are:

1. a sample start character “A”

2. an unsigned 15 bit serialised sample number

3. three axis of magnetic readings

4. three axis of accelerometer readings

5. pitch, roll and yaw readings

6. a sample stop character “F”

Giving a total of 12 data fields per sample. For ex-
ample:

A,0,569,498,504,577,344,576,467,446,462,F
A,1,569,493,503,567,342,571,466,458,464,F
A,2,569,496,504,0,340,1023,465,456,464,F

Sensor readings were sampled at 10Hz and broad-
cast via Bluetooth to an on-body receiver for logging
and later analysis. The accelerometer in this sensor
has a settable scale and for this session it was set to
record ±2G’s.

3.2.2 Session Script

The script asked the participant to start and fin-
ish each mount/dismount pair at the same spot in
the laboratory, within three metres of the wooden
horse but clear of all obstacles. Prior to each

mount/dismount pair the participant clapped her
hands over her head two times as a synchronisation
signal (to enable the inertial data to be synchronised
with the video). After each set of claps and upon
mounting the participant was asked to pause for ap-
proximately five seconds by standing or sitting still.

3.3 Data Description

The participant was asked to mount and dismount
as closely as possible to her normal technique and
apart from the requested pauses was not asked to
keep to any particular time schedule. The dura-
tion of each mount and dismount is, never-the-less,
reasonably consistent with a significant but gradual
shortening of duration as the participant gets used to
and more proficient at the script. The first mount
takes 11 seconds while the last mount takes 6.5 sec-
onds with progressive shortening in between. The
first dismount takes 9 seconds and the last dismount
takes 6.7 seconds again with progressive shortening.
There is also a small shortening of the interval be-
tween each mount/dismount pair with the first inter-
val being 11.3 seconds and the last being 7.2 seconds.
However there is also a longer interval after the first
two pairs.

The interval between each mount and dismount
(when the participant is sitting on the horse) is much
more consistent (probably as a result of the script).
The first and second mount to dismount intervals are
both 4 seconds and the last mount to dismount inter-
val is 3.4 seconds.

The periods prior to the mount/dismount series
records the sensor on a bench after being turned
on, being fitted to the participant’s wrist and then
the participant waiting around while the researcher
checked and adjusted equipment such as the video
camera. The period after the series is essentially the
participant taking off the sensor and it being placed
back on a bench.

Figure 2 depicts the recorded time series after
pre-processing and manual labelling. The three pan-
els each show the 3-dimensional recordings from the
accelerometer, gyroscope and magnetometer respec-
tively. The alternating background stripes show the
activity undertaken during recording (mounting, dis-
mounting and null class). The figure depicts all 17
mounts and dismounts.

From figure 2, careful observation shows that there
is a slight drift upwards over time with the Gyro-
scope data. This drift is relatively common with
lower priced Gyroscopes and this tendency has been
ignored in our data analysis. In addition, the y axis
of the Magnetometer data also drifts upwards over
time, while the x and z axis do not show the same
level of drift. The presence of the drift on only a sin-
gle axis is possibly due to the sensor moving slightly
on the participant’s wrist as they do things. In ad-
dition, some level of drift is common with consumer
level Magnetometers such as this one but normally
the drift would be present on all axis. Both instances
of signal drift have been ignored in this work.

3.4 Preprocessing and Labelling

3.4.1 Editing & Error Checking

The raw data files are hand edited to remove extra-
neous set up data and commands that were logged
before and after the main data file. Column labels
are inserted as the first line of the cleaned file. An
error checking routine is then run against the file to
check for missing and out of range data. This routine

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

69

Accelerometer

Gyroscope

Magnetometer

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

0 50 100 150 200 250 300 350 400 450 500 550 600
time in sec

am
pl

itu
de

Class
Label dismount mount Sensor

Axis x y z

Inertial sensor readings over time

Figure 2: Input Data Set

also strips off the start and end characters (A & F)
and changes the end-of-line character sequence. The
raw files have an unusual LF-CR end-of-line (eol) se-
quence and this is replaced with CR-LF. Once the 15
bit sample number has been checked for missing or
duplicate samples it is replaced by an unsigned inte-
ger that does not overflow. No out of range, invalid
or missing data was found in this file.

3.4.2 Synchronisation & Labelling

The overhead hand clap leaves a distinctive signal in
the sensor data and provides an obvious counterpart
in the video. The sensor data is searched visually to
identify the first two sets of overhead hand claps and
the time between the sets of claps is measured. The
video is then run and the first two sets of hand claps
are identified. The time between clap sets is checked
to ensure the same claps are being used. The sensor
data and video are then synchronised based on a de-
tailed visual evaluation of the first set of hand claps
using both the sensor signal and a frame by frame
view of the video. Once synchronisation is established
it is checked against later hand claps to ensure cor-
rectness and negligent temporal drift.

Once synchronisation is complete the video is used
to find the frame where the occurrence of each activ-
ity starts and finishes. The video frame numbers are
then translated into an applicable sample numbers
from the sensor stream, based on the synchronisation
point, and class labels are added to the sensor data
based on our activity definitions.

3.4.3 Data Cleaning

The sensor readings are normalised to a range be-
tween -1 and 1. The Echo State Network (ESN)
prefers input in the range [−1, 1] and so normalisa-
tion gives an opportunity to extract maximum infor-

mation from the signal. Prior to normalisation we
remove the 0.1% upper and lower quantiles. Remov-
ing the outliers and replacing them with the signal
mean value allows us to maximise the signal range at
the cost of a very small number of changes to the sig-
nal. Outlier removal is somewhat controversial and
we discuss this in section 5.

3.5 ESN Model Description

In this study, we have chosen an Echo State Net-
work (ESN) as our classifier. ESN were first intro-
duced in (Jaeger 2001). ESN have been employed
for a wide range of spatio-temporal real-world prob-
lems such as speech recognition (Jaeger et al. 2007,
Verstraeten et al. 2006), financial forecasting (Ilies
et al. 2007) and the prediction of chaotic dynam-
ics (Jaeger & Haas 2004). Here we briefly outline
the concept of the method and refer to the excellent
review on ESN and related reservoir techniques pre-
sented in (Lukoševičius & Jaeger 2009) for further
details. For the sake of consistency with previous de-
scriptions of ESN, we adopt the nomenclature defined
in the review article mentioned above.

The ESN attempts to learn a functional mapping
from a (possibly multi-dimensional) input time series
u(t) ∈ RNu to a target time series ytarget(t) ∈ RNy

based on a training data set {u(t),ytarget(t)} with
t = 1, . . . , T where T is the size of the training set.
The ESN is a neural network consisting of Nu input
neurons, Nx reservoir (hidden) neurons and Ny out-
put neurons. The reservoir neurons are either fully
or sparsely interconnected with connection weights
specified by a weight matrix W ∈ RNx×Nx . Matrix
W is initialized with random (uniform) weights and
then scaled by the spectral radius ρ(W) which is the
largest eigen value of W. Generally, all Nu input
neurons are connected to all reservoir neurons via

CRPIT Volume 147 - Computer Science 2014

70

connection weights defined by a separate input ma-
trix Win ∈ RNx×Nu . The weights of the input matrix
are initialized as either -1 or 1 and then scaled by a
scaling factor.

At time step t, the input u(t) is fed into a neural
network. The output of all reservoir neurons in the
network is computed:

x′(t) = f(Winu(t) + Wx(t− 1)) (1)

x(t) = (1− a)x(t− 1) + ax′(t), (2)

function f being a neuron activation function usu-
ally defined as the (element-wise) hyperbolic tangent
tanh(·), and factor a ∈ R being a leaking rate that
controls the contribution of the previous neural out-
put to its current state.

Since recurrent neural networks are difficult to
train through gradient-descent based learning meth-
ods, ESN propose an elegant and efficient solution for
imposing a desired input-output behaviour onto the
network. Input and output vectors at time step t are
concatenated and then linearly transformed into the
final output of the network:

y(t) = fout (Wout[u(t)|x(t)]) (3)

where Wout ∈ RNy×(Nu+Nx) is a weight matrix con-
necting all reservoir and all input neurons with Ny

output neurons, ·|· represents the vertical concatena-
tion of vectors and fout is the activation function of
the output neurons which is usually chosen as the
identity.

The learning task is defined as an optimization
problem in which the difference between y(t) and
ytarget(t)) is minimized. Arguably the most popular
method of computing matrix Wout is linear regression
or its regularized extension called ridge regression:

Wout = YtargetX
T (XXT + α2I)−1 (4)

where I ∈ RNx is the identity matrix and α ∈ R is a
regularization factor that has to be carefully tuned for
optimal results. Matrix Ytarget ∈ RNy×T contains all
vectors ytarget concatenated into a matrix. We note
that the connection weights W are not modified by
the learning rule and only the output weights Wout
are updated during training.

The role of the reservoir is the transformation of
the input signal into a high-dimensional intermedi-
ate feature space represented by the neural network
output at any time t. Although linear methods are
then used to transform the feature vector into a de-
sired target output, the mapping of the input u(t) to
output y(t) is of non-linear nature.

The concept of generating intermediate feature
vectors is also exploited in other kernel-based ma-
chine learning algorithms, most prominently the Sup-
port Vector Machine (SVM). By choosing a straight-
forward linear learning rule, the training process be-
comes highly efficient. ESN allow the exploitation of
the interesting characteristics of recurrent neural net-
works without the need of mathematically and com-
putationally complex training algorithms.

4 Results

We used an evolutionary algorithm, i.e. a Particle
Swarm Optimiser (PSO) to do a search of the param-
eter space for the ESN, to find a suitable configuration
to use for our experiment. We optimize the regular-
ization parameter α, the number of reservoir neurons

Nx, the scaling factor of the input weights, the leak-
ing rate a and the spectral radius ρ(W). The ranges
for these ESN parameters are generally accepted sen-
sible ranges and were taken from (Lukoševičius 2012)
and are shown in table 1. We ran the PSO with 14
particles over 50 generations and within each gener-
ation the ESN was initialized and trained five times
to take some account of the stochastic nature of the
initialization process. Each ESN was trained on the
first 50% of the time series and the entire series was
used for testing. The root mean square error between
target and actual network output on the test set was
used as a fitness measure for the PSO.

The results of this search process can be seen in fig-
ure 3. As is visible from the diagram, four of the five
parameters (Number of neurons, Input Scaling, Leak
Rate and Spectral Radius) had settled into a small
range within 20 generations. Regularization, the fifth
parameter, appears less critical for this problem and a
range of configurations reported satisfying test errors.

Regularization

Number of Neurons

Input Scaling

Leaking Rate

Spectral Radius

1

2

3

4

400

600

800

1000

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50
generation

pa
ra

m
et

er
 v

al
ue

Figure 3: Optimising the ESN parameters

ESN parameters & ranges

Regularisation α 0 to 5

Number of Neurons Nx 100 to 1,000

Input Scaling 0 to 1

Leaking Rate a 0 to 1

Spectral Radius ρ(W) 0 to 1

Table 1: PSO Parameter Ranges

The selected parameters from the PSO that were
used to run the ESN were Regularisation (2.7), Neu-
rons (939), Input Scaling (0.9147), Leaking Rate
(0,05937) and Spectral Radius (1.0).

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

71

Dismount

Mount

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

0 50 100 150 200 250 300 350 400 450 500 550 600
time in sec

m
od

el
 o

ut
pu

t

prediction target

Online activity classification

Figure 4: ESN Results

Fifty percent of the data file was used for train-
ing and the full file was used for testing. The file
was divided in two parts with no account for where
that separation point fell in terms of the classes. In
this case, as a result of where the mounts and dis-
mounts occur, the first half of the file includes the
first 8 mounts and the first 7 dismounts. The output
from the test run is shown in figure 4.

Using a cut off point set at 0.5 of the continuous
output y(t) has all mounts and dismounts successfully
classified with one false positive mount classified dur-
ing the sequence when the participant takes off the
sensor. No false positive dismounts were classified.
Within each mount and dismount there is a slight lag
between the class label and the classified label in most
cases with an associated drop off towards the end of
each class. This is an expected characteristic of the
reservoir property as the reservoir needs some time to
establish a recognised pattern.

Class Predicted Label

Label 0 1 2

0 3298 53 45

1 103 1281 0

2 58 0 1163

Table 2: Confusion Matrix of Results

5 Conclusions and future work

5.1 Conclusion

The ESN classifier has worked well in this particu-
lar situation, using data from a scripted activity in a
laboratory setting collected from a single participant.
The false positive mount possibly indicates that the
ESN classifier would benefit from additional training
that provides a wider variety of signals that are out-
side of the desired classes. This is supported by some
follow on work (not shown here) where we used the
last eight mounts and dismounts as training data with
the full set of mounts for testing and in this case we

provided the “taking the sensor off”segment as part
of the training and no false positives were classified.

Our use of overhead claps for synchronisation and
scripted pauses in activity introduce significant signal
artefacts into our data. While it is not possible with
ESN to tell what properties of the signal are used by
the classifier it is probable that our artefacts make a
significant contribution to classification. For exam-
ple, the initial spike in the classifier response in the
wider gap between the second dismount and the third
mount may be indicative of the ESN starting to re-
spond to the synchronisation signal. In addition, the
clear pause in activity after mounting consistently oc-
curs just prior to dismounting and so this artefact is
undoubtedly contributing to dismount classification
success. We would be unwise to conclude that our
current classifier is suitable for use on data that does
not contain artificial artefacts.

The current pre-processing methods that we use to
normalise the signal between -1 and +1 will have cre-
ated additional signal artefacts including magnifying
the drift in the Magnetometer and Gyroscope data.
Our removal of outliers has enabled us to amplify the
central portion of the signal but the outliers are real
data and so by removing them we have changed the
underlying activity signatures. These issues, without
resolutions, will make it difficult to generalise the re-
sults across participants and across other sensors.

This data was collected from a single individual
using a single (wooden) horse on the same day using
the same equipment. This provides unrealistic consis-
tency. In the real world not only do riders not follow
a script when mounting and dismounting they also
come in all sizes, temperaments and skill levels; their
horses come in all sizes, temperaments and training
levels; additional equipment may be involved such as
a rider holding a crop while mounting and differing
techniques may be used while mounting. All of this
cautions us against simplistically concluding that we
are close to having a simple, reliable method of classi-
fying this (or any other punctual activity) that works
across riders and situations.

This reported experiment is a idealised situation,
designed to provide the best chance of successful clas-
sification and so while we are pleased that these re-

CRPIT Volume 147 - Computer Science 2014

72

sults are positive they need considerable further de-
velopment before we can safely conclude that RC
methods are well suited to classifying punctual human
activities based on inertial data. Despite this caution,
these results are positive enough that we and perhaps
other researchers are willing to follow this path fur-
ther.

5.2 Future work

This work is part of a larger set of work designed to
resolve some of the issues mentioned in our conclu-
sions as well as additional issues. Some of our future
plans include:

• Comparing the ESN classifier with more tradi-
tional kernel based classifiers such as Support
Vector Machine.

• Testing to see if the classifier will generalise
across participants.

• Testing to see if the ESN classifier can generalise
across activities in different places and time for
the same individual.

• Training and testing the ESN on data collected
during real world situations.

• Designing methods of translating our sensor data
from the form in which it was captured (sensor
dependent) into a standardised format more use-
ful for input into the ESN in a way that allows
us to draw the maximum information out of the
data while still allowing it to be comparable be-
tween data collection sessions. This includes al-
ternate methods of pre-processing the data to fil-
ter out noise, to account for drift and methods
for including outliers.

References

Avci, A., Bosch, S., Marin-Perianu, M., Marin-
Perianu, R. & Havinga, P. (2010), Activity Recog-
nition Using Inertial Sensing for Healthcare, Well-
being and Sports Applications: A Survey, in ‘2010
23rd International Conference on Architecture of
Computing Systems (ARCS)’, pp. 1–10. 0033.

Bao, L. & Intille, S. (2004), ‘Activity recognition from
user-annotated acceleration data’, Pervasive Com-
puting pp. 1–17.

Ermes, M., Parkka, J., Mantyjarvi, J. & Korhonen,
I. (2008), ‘Detection of daily activities and sports
with wearable sensors in controlled and uncon-
trolled conditions’, IEEE Transactions on Informa-
tion Technology in Biomedicine 12(1), 20–26. 0205.

Hunt, D. (2009), A heuristic method to distinguish
horse rider mounts using a single wrsit mounted in-
ertial sensor, Master’s thesis, Auckland University
of Technology, Auckland, New Zealand.

Ilies, I., Jaeger, H., Kosuchinas, O., Rincon, M.,
Sakenas, V. & Vaskevicius, N. (2007), ‘Stepping
forward through echoes of the past: forecasting
with Echo State Networks’.
URL: http://www.neural-forecasting-
competition.com/downloads/methods/27-
NN3 Herbert Jaeger report.pdf

Jaeger, H. (2001), The “echo state” approach to
analysing and training recurrent neural networks,
Technical report, Fraunhofer Institute for Au-
tonomous Intelligent Syst.

Jaeger, H. & Haas, H. (2004), ‘Harnessing nonlinear-
ity: Predicting chaotic systems and saving energy
in wireless communication’, Science 304(5667), 78–
80.

Jaeger, H., Lukosevicius, M., Popovici, D. & Siew-
ert, U. (2007), ‘Optimization and applications of
echo state networks with leaky- integrator neurons’,
Neural Networks 20(3), 335–352.

Lee, S.-W. & Mase, K. (2002), ‘Activity and location
recognition using wearable sensors’, IEEE Perva-
sive Computing 1(3), 24–32. 0303.

Lester, J., Choudhury, T., Kern, N., Borriello, G.
& Hannaford, B. (2005), A hybrid discrimina-
tive/generative approach for modeling human ac-
tivities, in ‘IJCAI’, Vol. 5, pp. 766–772. 0271.

Lukoševičius, M. (2012), A practical guide to ap-
plying echo state networks, in ‘Neural Networks:
Tricks of the Trade’, number 7700 in ‘Lecture Notes
in Computer Science’, Springer, Bremen, Germany,
pp. 659–686. 0003.

Lukoševičius, M. & Jaeger, H. (2009), ‘Reservoir
computing approaches to recurrent neural network
training’, Computer Science Review 3(3), 127–149.

Lukowicz, P., Ward, J., Junker, H., Stäger, M.,
Tröster, G., Atrash, A. & Starner, T. (2004), ‘Rec-
ognizing workshop activity using body worn micro-
phones and accelerometers’, Pervasive Computing
pp. 18–32.

Plötz, T. (2010), How to do good research in activity
recognition, in ‘How To Do Good Research In Ac-
tivity Recognition; Workshop in conjunction with
Pervasive 2010’, Heksinki, Finland, p. 4.

SparkFun Electronics Inc (2008), ‘IMU 6 degrees of
freedom - v4 with bluetooth capability’, Web.
URL: http://www.sparkfun.com/products/8454

Verplaetse, C. (1996), ‘Inertial proprioceptive devices:
self-motion-sensing toys and tools’, IBM Systems
Journal 35(3), 639–650. 0124.

Verstraeten, D., Schrauwen, B. & Stroobandt,
D. (2006), Reservoir-based techniques for speech
recognition, in ‘Proceedings of the International
Joint Conference on Neural Networks, IJCNN’,
pp. 1050–1053.

Ward, J. A., Lukowicz, P. & Troster, G. (2006), Eval-
uating performance in continuous context recog-
nition using event-driven error characterisation,
in ‘Location and Context-Awareness’, Springer,
pp. 239–255.

Ward, J., Lukowicz, P., Troster, G. & Starner, T.
(2006), ‘Activity recognition of assembly tasks us-
ing body-worn microphones and accelerometers’,
Pattern Analysis and Machine Intelligence, IEEE
Transactions on 28(10), 1553–1567.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

73

CRPIT Volume 147 - Computer Science 2014

74

A Comparative Study of RFID Technology Measuring Efficiency
and Acceptance when Capturing Attendance

Steven Tucker Peter Darcy Bela Stantic

School of Information and Communication Technology
Griffith University

Gold Coast QLD Australia
Email: Steven.Tucker@griffithuni.edu.au, {P.Darcy, B.Stantic}@griffith.edu.au

.

Abstract

The use of Barcodes and Radio Frequency Identifi-
cation (RFID) technology has become a ubiquitous
means of inventory and asset tracking. When con-
sidering the application of monitoring people in an
enclosed environment, for example in a classroom or
an examination setting, previously employed RFID-
enabled solutions have yielded high costs and poor
user acceptance. Previous studies have also shown
that an important factor which has impacted adop-
tion is privacy issues surrounding Ultra High Fre-
quency (UHF) systems. In this paper, we compare
attendance recording techniques and technologies to
determine the optimum method focusing on the price,
efficiency and user acceptance. The three approaches
we have examined include manual recording, barcode
scanning and Low-Frequency RFID capturing over a
fixed period conducted as a technology integration pi-
lot study. From our initial results, we have found that
a low cost RFID reader and tags approach is most
favoured for user acceptance, drastically reduced the
recording time compared to manual methods and is
comparative to the cost of barcode systems.

Keywords: RFID, User Acceptance, Efficiency.

1 Introduction

The process of capturing attendance has in the past
been a manual process of calling out names and await-
ing a response which resulted in unacceptable con-
sumption of time. To more efficiently address the
process, both Barcode and Radio Frequency Identi-
fication (RFID) technologies have been employed to
manage the task. Barcode technology uses a printed
series of lines in conjunction with an optical reader
to determine an items unique identifier while RFID
uses wireless technology between a reader and the
tag being interrogated. While barcode systems have
have the potential to be more efficient than a man-
ual roll call, however in past studies concerns that
have been raised included the technologies require-
ment for line-of-sight, if a card is partially covered,
angled or worn it can often result in misreads. RFID
systems that have been deployed have often opted
for long range Ultra-High Frequency (UHF) devices

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Adelaide, Australia, January
2014. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 147, Bruce Thomas, Ed. Reproduc-
tion for academic, not-for-profit purposes permitted provided
this text is included.

which have not only been costly but raised concerns
around privacy as the technology continually makes
readings, effectively tracking participants (Pateriya &
Sharma 2011).

In this paper we will compare and analyse three
methods and technologies used for attendance record-
ing to identify the optimum method in consideration
of speed, user acceptance and cost. The three meth-
ods trialled were Manual Roll Call, Barcode reading
and RFID scanning. The architecture was made up
of a database driven web application, client machines
with a web browser and the Barcode and RFID read-
ers. Readers were attached via usb to the client com-
puter which was logged into the application, upon
receiving a valid read the application would record
the attendees identification and current time stamp
in the data base for later review and analysis.

At the conclusion of the trial our results showed
the RFID technology was most favoured for user ac-
ceptance, was the most speed efficient method and
was comparative to the cost of the Barcode system.

The remainder of this paper is organised in the
following sequence: Section 2 provides the required
background information for both the methods previ-
ously used for attendance tracking, as well as infor-
mation about the technologies deployed which include
Barcode and RFID technologies. Section 3 delivers
a succinct account of related work previously stud-
ied which then leads to our methodology outlined in
Section 4. The results and analysis of the technol-
ogy integration pilot study are delivered in Section 5.
Finally Section 6 discusses our conclusions on which
method provided the optimum solution and the fu-
ture work we intend to study following on from this
research.

2 Background

Recording attendance has traditionally been a man-
ual procedure where by either participants sign in or
a process of announcing names and recording the re-
sponse is undertaken during the attendance period.
The time required for manual attendance monitoring
procedures can be significant, particularly for large
groups. Various means of speeding up the process
have been suggested such as recording only a random
10% of attendees when roll taking is used as an incen-
tive to increase attendance (Shimoff 2001). When the
full data is required however, such is the case for sta-
tistical analysis, electronic means of recording have
been utilised to reduce not only the time required for
recording attendance, but also to streamline or even
eliminate post recording work such as data entry. The
technologies we will be examining in this research are
Barcode and RFID technologies.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

75

2.1 Barcode Technology

Barcode Technology incorporates a printed series of
solid lines and spaces which are interpreted by a
reader into a string of alphanumeric values to identify
an object. The Barcode Reader is most often a laser
scanner where the light reflected back off the printed
Barcode is interpreted by the reader. The solid lines
reflect less light, while the spaces reflect more light
(Woodland et al. n.d.), (Sriram et al. 1996).

Barcode Technology is a familiar and accepted
technology largely due to its almost universal use in
supermarkets and retail in general. Barcode technol-
ogy is used across a vast number of applications from
personal identification tags to inventory management
to tracking items in transit.

2.2 RFID Technology

Radio Frequency Identification (RFID) incorporates
the wireless transfer of data between a reader and one
or more identifying tags (Want 2006). When entering
the range of a reader, a tags Electronic Product Code
(EPC) is reported back to the reader to identify the
tag (Chawathe et al. 2004). RFID Technology can be
divided into short and long range systems. Low Fre-
quency (LF, 125-134 KHz) and High Frequency (HF,
13.56 MHz) systems are short range, whereas Ultra-
high frequency (UHF, 860-960 MHz) is long range
(Nikitin et al. 2007). The range of the RFID interro-
gation zone spans 3 meters to 100 meters depending
on the type of tag and reader employed (Chawathe
et al. 2004).

The primary purpose of RFID Technology is to
accurately and efficiently identify an object using its
associated tag. RFID is employed across a wide range
of industries and use cases such as Stock Manage-
ment in the Retail sector, Smart Cards for Financial
transactions and Human Identification items such as
passports (Ilie-Zudor et al. 2011).

2.3 Related Work

Systems have been implemented and evaluated us-
ing Barcode or RFID to automate attendance track-
ing with the goal of increasing efficiency. Barcode
systems use statically located readers or (often sev-
eral) portable hand-held units, in both cases it is typ-
ically the subjects themselves handling the scanning.
It has been observed that statically located readers
have caused bottlenecks when there are many atten-
dees all attempting to register a scan, this is exas-
perated by failed reads due to the Barcode systems
line-of-sight requirement, where any covering of or
incorrectly aligned Barcode would result in a mis-
read. Portable units raised concerns such as possible
theft, absentees providing their Barcode to attendees
to scan, and misuse of a reader for scanning unre-
lated Barcodes (Casey & Kille 2011). The bottleneck
problem could be reduced by increasing the number of
available readers, this would however reduce the abil-
ity to monitor the scanning to eliminate false scans
as well as increase the expense of deployment.

RFID Technology has been deployed using short
and long range systems for use in automated atten-
dance tracking, though long range systems are pre-
ferred as they can scan large numbers of tags au-
tonomously (Chang 2011).

Long range UHF systems have a number of prob-
lems which has discouraged wide scale adoption.
Some of these problems include the high cost of equip-
ment, possible signal interference, reading collisions
and multiple reads of the same tag. (Wu et al. 2006)

Long range systems also have greater Privacy Con-
cerns than short range. UHF Long range systems
would have readings of attendees for their duration
within the read area, and thus act to track an at-
tendee rather than the approach of a Short range
system which simply takes a snapshot at a given time
(Silva et al. 2008).

A Short Range RFID system coupled with secure
communication and strict server security does not suf-
fer the same privacy concerns as a Long Range sys-
tem.

2.4 Motivation

It is often desirable to collect attendance data for an
event, class or exam, whether for further analysis, re-
flection and planning or to encourage greater atten-
dance. Collecting this data for large groups can be
tedious and can cause unacceptable disruption and
consumption of precious time. The goal of our tech-
nology integration pilot study is to identify the opti-
mum method for capturing attendance, balancing effi-
ciency to address the time constraint, user acceptance
of the technology to encourage participation and to
keep the cost of deployment to a minimum. Our pi-
lot study concentrated on three methods which met
some basic constraints of the environment and which
could be deployed simply, cheaply and immediately.

3 Methodology

In this paper we will compare the results of our tech-
nology integration pilot study to determine the opti-
mum method by which to record attendance. The
recording methods analysed are Manual Roll Call,
Barcode scanning and Low-Frequency short range
RFID capturing. To determine the optimum, each
method is analysed on the basis of three key mea-
surements, efficiency, user acceptance and cost. The
following section outlines the motivation of our analy-
sis, after which the systems architecture and require-
ments are described.

3.0.1 Manual Roll Taking

The traditional method of manual roll taking met all
environmental and cost constraints, however the dis-
ruption and time consuming nature of this approach
has often meant that it has been unpopular for both
the attendees and the coordinator. Regardless of its
short comings, Manual Roll Taking was included in
the study to provide a base line for comparison. Any
alternative method must at minimum have a greater
efficiency and user acceptance to be considered viable.

3.0.2 Barcode Technology

The use of Barcode Technology for the study was a
natural choice due to the low cost of the scanning
equipment coupled with the existing Barcodes allo-
cated to each student that appear on their student
identification cards. Although a single scanning unit
can cause bottlenecks with larger classes, the require-
ment of supervision to prevent problems discussed
earlier, such as absentees providing their barcode to
attendees to register attendance, resulted in the use
of a single scanning point at a very low cost and re-
duced the likelihood of mistreatment or breakage of
the equipment.

User acceptance of Barcode Technology was ex-
pected to be high as the identification cards Barcodes
were already in use by the students and so would be

CRPIT Volume 147 - Computer Science 2014

76

familiar. It was expected that the rate of scanning
would be more efficient than traditional roll call.

3.0.3 Short range RFID Technology

The use of RFID Technology was trialled primarily on
the basis of efficiency. As RFID does not require line
of site to obtain a reading, it was thought that overall
read time would be shorter as attendees would be less
likely to encounter read issues. Short range Low Fre-
quency equipment was selected over Long range Ultra
High Frequency due to cost, potential privacy issues
and possible user acceptance problems as previously
discussed.

The cost of an RFID reader was comparable to the
cost of the Barcode scanner, however tags had to be
purchased and distributed to all the students. While
the tags supplied were low cost, it may not be neces-
sary in future to supply tags as students cards may be
distributed with RFID chips to be used for security
access. As is the case with the Barcode system, if the
student cards are issued with the required technology
then there will not be an extra expense to provide
tags for the purpose of tracking attendance.

It was not clear what level of user acceptance
would be attained with RFID compared to a bar code
system, and so this Technology was of particular in-
terest in the trial.

3.1 Architecture

Figure 1: Architecture overview

As shown in Figure 1, the system architecture is
made up of client machines connecting via a net-
work to a web based application. In the classroom
the client machine reads the attendees identification
through either Barcode code or RFID technologies,
the reading is then sent to the web application which
in turn writes the record to the database including
both the attendee and the current time. Out side
of the class room, a client machine is used to access
the web application to retrieve real time reports and
analysis on the attendance data. To ensure secure
communication between the clients and the server,
the application is password protected and runs over
a Secure Socket Layer (SSL).

Figure 2: Barcode reader

Figure 3: RFID scanner and tag

3.2 Assumptions

We have made three assumptions regarding the trial
processes. The first assumption is that each attendee
will have with them their student identification card
or assigned RFID tag as required in class. The second
assumption is that the organiser will have in their
possession either the Barcode Reader or the RFID
Scanner as needed. The last assumption is that there
is access to a network connected computer with a web
browser at the venue so that it is possible to connect
with the web application.

4 Experimental Results and Analysis

The following section describes the framework we as-
sembled to undertake the technology pilot study as
well as the methodology followed. To begin with we
look at the environment in which the Technologies
operated, next we detail the results of each method
in the context of efficiency, user acceptance and cost.

4.1 Environment

Our web based application was coded using a Linux,
Apache, MySql and Php (LAMP) stack. The server
Operating System is the Debian GNU/Linux distri-
bution Release 6 ”Wheezy”. The Operating System
for the client machines was Windows XP with Service
Pack 3 installed. Both the Barcode Code Scanner and
the RFID Reader operated as standard input devices
running over USB. The RFID Reader and tags oper-
ate at 125Khz. The web browsers used to access the
web application were Firefox and Chrome.

4.2 Efficiency

A key measurement for determining the optimum
method for attendance recording is undoubtedly
speed efficiency. For a technology to be considered for
adoption it must at minimum have a far greater time

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

77

efficiency than manual attendance recording. Each
method trialled had its capture duration recorded for
two lectures with a class of approximately 60 stu-
dents, the averaged results of which are represented
in Figure 4.

Figure 4: The aggregated results of the recording du-
ration of each method

4.2.1 Manual Roll Call

The duration of Roll Call was determined by manu-
ally recording the time of commencement and of com-
pletion. The times were recorded by a second person
so as not to interfere with or allow bias by the roll
taker. It is important to note that while the average
time taken to record attendance using this method
came to 11 Minutes 30 Seconds, an extra task of data
entry was performed after each class, and while this
did not effect the class, it had the impact of effectively
doubling the attendance tracking effort. The results
show that the time needed for manual roll call has a
significant impact on the time remaining for the class
and as such is rarely adopted for large audiences.

4.2.2 Barcode Technology

The results show a vast improvement in time effi-
ciency over Manual Roll Call with an average record-
ing duration of 3:19 Seconds. The duration of Bar-
code approach was retrieved by database queries cal-
culating the difference between the time stamps of
the first and last reads, the scanning required stu-
dents to approach the the reader at the front of the
room and present their barcode. The capture time for
each record was fairly consistent for Barcodes, while
Manual Roll Call varied greatly. The varying times
for Manual Roll Call can be attributed to slow re-
sponding attendees and absentees. A call is repeated
a number of times when there is no response to en-
sure that the person is absent rather than having not
heard the call. Also the callers often encounter names
they find difficult to pronounce, and this also causes
delays which the bar code system is immune from.

4.2.3 RFID Technology

RFID claimed the greatest time efficiency with an
average recording duration of Two Minutes Thirty
Two Seconds. Like the barcode system, students were
required to approach the reader at the front of the
room, this time however they passed their tag over
the reader. The performance increase over Barcode
reading is a result of not requiring line of sight and
hence encountering less misreads.

4.3 Technology Adoption

As part of the technology integration pilot study a
survey was conducted to measure the level of user ac-
ceptance for each method. The survey used a Likert-
type approach with a scale of 1 to 5 where 1 is strongly
disagree and 5 is strongly agree. There were twelve
questions used for evaluation, the aggregated results
of which are shown in Figure 5. The survey questions
were divided into four areas, Perceived Usefulness,
Perceived Ease of Use, Intention to Use and Attitude
Towards Usage. The survey includes questions such
as ”Using ... enables me to get my attendance checked
quicker” and ”Overall, I find ... very useful” for each
of the approaches given a grade between 1 and 5. Ad-
ditionally, a space was provided at the end for any
additional comments regarding the technology.

The survey showed a significant bias in all cate-
gories in favour of RFID, even though in this trial it
required attendees to manage an extra item (the rfid
tag). Interestingly attendees still rated RFID higher
for ease of use than Barcode Technology which they
were already familiar with from existing use. As part
of the survey, space was provided for general feedback,
of those that responded the majority reported that it
was primarily the speed of RFID that was appealing.
A number of participants also commented that there
would be increased convenience if the RFID tag was
integrated into the student card so they only had one
item to manage.

Figure 5: The aggregated results of the Likert-style
survey for user acceptance of attendance recording
methods

4.4 Cost

4.4.1 Barcode Technology

The only purchase required to trial the Barcode Tech-
nology was a Scanner as students had already been
supplied with a unique bar code by way of their stu-
dent cards. We purchased the 80mm USB Barcode
Scanner shown in Figure 2 for AUD$24.92

4.4.2 RFID Technology

To trial the RFID Technology we purchased both a
reader and a sufficient number of tags. The reader
as shown in Figure 3 is a 125Khz EM4100 RFID
USB Proximity ID Card Chip Reader purchased

CRPIT Volume 147 - Computer Science 2014

78

for AUD$9.60. The RFID tags were purchased for
AUD$0.27 each ($26.90 per pack of 100).

5 Conclusion

In this paper we have carried out a comparative anal-
yses on three methods of attendance capturing, Man-
ual roll call, Barcode and RFID technologies. The fo-
cus for comparison was based on three key indicators,
speed efficiency, user acceptance and cost (including
equipment and deployment costs). Our results have
shown RFID Technology performed greatest for both
speed efficiency as well as user acceptance while re-
maining affordable with a cost of deployment com-
parative to that of Barcode technology.

To further leverage the benefits of an optimal at-
tendance capturing technology, it would be interest-
ing in future work to analyse the captured data for
useful applications such as attendance prediction for
class planning, and recognising attendance patterns
to aid content delivery planning.

References

Casey, M. M. & Kille, M. W. (2011), ‘Effective
Administration of a Large Undergraduate Physics
Class: From Enrolment to Assessment Feedback’,
ArXiv e-prints .

Chang, C. H. (2011), Smart classroom roll caller
system with iot architecture, in ‘Innovations in
Bio-inspired Computing and Applications (IBICA),
2011 Second International Conference on’, pp. 356
–360.

Chawathe, S. S., Krishnamurthy, V., Ramachandran,
S. & Sarma, S. E. (2004), Managing RFID Data,
in ‘VLDB’, pp. 1189–1195.

Ilie-Zudor, E., Kemny, Z., van Blommestein, F.,
Monostori, L. & van der Meulen, A. (2011), ‘A

survey of applications and requirements of unique
identification systems and rfid techniques’, Com-
puters in Industry 62(3), 227 – 252.

Nikitin, P., Rao, K. & Lazar, S. (2007), An overview
of near field uhf rfid, in ‘RFID, 2007. IEEE Inter-
national Conference on’, pp. 167 –174.

Pateriya, R. K. & Sharma, S. (2011), The Evolu-
tion of RFID Security and Privacy: A Research
Survey, in ‘Communication Systems and Network
Technologies (CSNT), 2011 International Confer-
ence on’, pp. 115–119.

Shimoff, E. (2001), ‘Effects of recording attendance
on grades in introductory psychology’, Teaching of
psychology 28(3), 192.

Silva, F., Filipe, V. & Pereira, A. (2008), Automatic
control of students’ attendance in classrooms using
rfid, in ‘Systems and Networks Communications,
2008. ICSNC ’08. 3rd International Conference on’,
pp. 384 –389.

Sriram, T., Vishwanatha Rao, K., Biswas, S. &
Ahmed, B. (1996), Applications of barcode technol-
ogy in automated storage and retrieval systems, in
‘Industrial Electronics, Control, and Instrumenta-
tion, 1996., Proceedings of the 1996 IEEE IECON
22nd International Conference on’, Vol. 1, pp. 641
–646 vol.1.

Want, R. (2006), ‘An introduction to rfid technology’,
Pervasive Computing, IEEE 5(1), 25 – 33.

Woodland, N. J., Ventour, N. J. & Silver, B. (n.d.),
‘Classifying Apparatus and Mathod. Patent 1952.
US 2612994.’.

Wu, N., Nystrom, M., Lin, T. & Yu, H. (2006),
‘Challenges to global rfid adoption’, Technovation
26(12), 1317 – 1323.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

79

CRPIT Volume 147 - Computer Science 2014

80

A Trigger Counting Mechanism for Ring Topology

Sushanta Karmakar1 Subhrendu Chattopadhyay 1

1 Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, India, 781039

Email: sushantak@iitg.ernet.in, subhrendu@iitg.ernet.in

.

Abstract

Consider a distributed system with n processors,
which receive triggers from the outside world. The
Distributed Trigger Counting (DTC) problem is to
raise an alarm if the number of triggers over the sys-
tem reaches w, which is an user specified input. DTC
is used as a primitive operation in many applications,
such as distributed monitoring, global snapshot etc.
In this paper, we propose an algorithm for the DTC
problem in a ring topology with a message complex-
ity of O(n2 log(w/n)) and each node in the system
receives O(n log(w/n)) number of messages. We also
discuss about the possible tuning of the algorithm
which results better complexities.

Keywords: Distributed algorithm, distributed moni-
toring, distributed trigger counting, ring topology

1 Introduction

Distributed trigger counting (DTC) is an important
problem in distributed systems. Consider a dis-
tributed system with n processes. Each process re-
ceives some triggers (signals) from an external source.
The DTC problem is to detect the state when the
number of triggers received by the system reaches w
which is a user defined input to the system. Note here
that w may be much larger than n. The sequence of
processors receiving the w triggers is not known apri-
ori to the distributed system. Our goal is to propose
an algorithm for the DTC problem under a known
topological setting. More specifically, in this paper
we propose an algorithm for the DTC problem in a
ring network.

The DTC problem arises in many applications in
distributed systems. Some major application areas
can be distributed monitoring, global snapshot etc.
Monitoring is an important aspect in wireless net-
works as well as in wired networks. A wireless sensor
network is typically used to monitor physical or en-
vironmental conditions such as border surveillance,
forest fire detection, traffic management in highways
etc. In traffic management, one may be interested
in detecting whether the number of vehicles on a
highway exceeds a certain threshold. Similar applica-
tions may be found in border surveillance and forest

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

fire detection as well. In distributed system a global
snapshot state is said to be valid provided all the in-
transit messages are recorded. It was shown by Garg
et al. (2006) that the problem of detecting whether
all the in-transit messages have been recorded can be
reduced to the DTC problem. Awerbuch (1985) pro-
posed the concept of synchronizers which is a tool
to transform a synchronous distributed algorithm to
another that runs on an asynchronous distributed sys-
tem. Here a distributed system is required to generate
a signal (or pulse) when all the messages generated
after the previous signal have been delivered. This
problem can also be formulated as a variant of the
DTC problem. The performance of an algorithm for
the DTC problem is often measured by the following
two metrics.

• Message complexity: It is the total number of
messages sent by all the nodes of the systems.

• MaxRcvLoad: It is the maximum number of mes-
sages received by any node in the system.

The DTC problem was studied by Garg et al.
(2006) for a general distributed system. In their work,
they proposed two algorithms for the DTC problem:
a centralized algorithm and a tree-based algorithm.
The centralized algorithm has a message complex-
ity of O(n logw). Its MaxRcvLoad has a complex-
ity of O(n logw). This is a tight bound for the cen-
tralized algorithm. The tree based algorithm has a
message complexity of O(n log n logw). Again the
MaxRcvLoad of the tree based algorithm has a com-
plexity of O(n log n logw). In the work the authors
also showed that any deterministic algorithm for the
DTC problem must have a message complexity of
Ω(n log(w/n)). Huang et al. (2007) proposed a novel
solution to the problem of efficient detection of an
aggregate predicate over cumulative triggers over a
time-varying window in a distributed monitoring sys-
tem. They provided a queueing theory based analy-
sis of the problem which provides the user the power
to trade-off between desired accuracy and communi-
cation overhead. However, their approach is based
on a single coordinator. Hence the algorithm is not
fully distributed. In another work (Chakaravarthy,
Choudhury, Garg & Sabharwal 2011) a randomized
distributed algorithm was proposed for trigger count-
ing in a tree based topology. The algorithm has a mes-
sage complexity of O(n log n logw) and MaxRcvLoad
complexity of O(log n logw) with high probability.
Later in another work (Chakaravarthy, Choudhury &
Sabharwal 2011) the authors proposed an improved
algorithm for the DTC problem having message com-
plexity of O(n logw) and MaxRcvLoad of O(logw).
However, this work has the limitation that the al-
gorithm is a randomized algorithm and it does not
provide any bound on the messages sent per node.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

81

Table 1: Summary of DTC algorithms
Algorithm Messages MaxRcvLoad Nature
Tree-based (Garg et al. 2006) O(n log n logw) O(n log n logw) randomized
Centralized (Garg et al. 2006) O(n logw) O(n logw) centralized
(Chakaravarthy, Choudhury, Garg & Sabharwal 2011) O(n log n logw) O(log n logw) randomized
(Chakaravarthy, Choudhury & Sabharwal 2011) O(n logw) O(logw) randomized
(Emek & Korman 2010) O(n(log n logw)2) O((log n logw)2) deterministic
Unidirectional Ring (this paper) O(n2 log w

n) O(n log w
n) deterministic

Also this algorithm assumes a clique of n nodes as
the topology. In fact they concluded that designing
a deterministic algorithm with message complexity of
O(n logw) and MaxRcvLoad of O(logw) for any ar-
bitrary network is an open DTC problem.

In this paper, we propose a deterministic dis-
tributed algorithm for the DTC problem in a uni-
directional ring network. A ring of nodes is an in-
teresting topology and is used in solving many dis-
tributed computing problems such as leader election,
mutual exclusion, distributed snapshot etc. Also if a
solution of a problem in distributed computing can
be obtained for a ring topology then the same can
be applied to have a solution for the same problem
under arbitrary topology by means of embedding a
virtual ring topology over the network (e.g. Eulerian
graph). Therefore for many reasons a ring topology
is important and in this paper we propose a solution
to the DTC problem assuming a ring topology. We
also provide an outline of how the DTC problem can
be solved in a general network using our proposed
solution to the problem in a ring network.

The main challenge of the DTC problem is that
outside triggers may be detected by any node and one
would like to minimize the communication overhead
for determining when a total of w external triggers
have been counted. It is important to see that there
is a tradeoff between minimizing the communication
overhead and having a timely detection of the w trig-
gers. The simplest way to minimize the number of
messages is to let every node detect triggers and when
any one has detected w triggers, the global alarm sig-
nal is sent. However, in this simple scheme there is
obviously a big risk that the system will be seriously
delayed in sending the global alarm signal which has
to be sent as soon as w or more triggers are received by
all the nodes. The obvious way to avoid such delays
is to send a message as soon as a trigger is detected.
However this will generate a lot of messages (poten-
tially O(w)). Hence there should be some compromise
between these two extremes. In an earlier work (Garg
et al. 2006) it was shown that any deterministic al-
gorithm for the DTC problem must have a message
complexity lower bound of Ω(n log(w/n)). However
this result was analytical and no algorithmic instance
has been found so far satisfying this lower bound.

Let there be n nodes in a unidirectional ring. The
nodes are denoted as v1, v2, v3, . . . , vn. Any node
vi can send a message to vi+1 and receive a message
from vi−1. Specifically, vn sends a message to v1. We
assume an asynchronous model of computation and
communication (via messages). We assume that the
channels are reliable and FIFO. There is no node or
link failure. Also messages are not corrupted or spu-
riously introduced. It is assumed that each node has
a unique identifier. Out of the n nodes, there is one
node vn designated as the master. All other nodes
(vi such that i 6= n) act as slaves. The algorithm is
stated in the form of guarded statements. A guarded
statement is of the form g → a where g is the guard,
and a is the action. The action a is executed if and

only if g is true. The program for any node i contains
a sequence of statements {S1, S2, . . . , Sn} where each
Sj is of the form gj → aj . The j-th statement of the
program at node i is denoted by Sj(i). The guard cor-
responding to Sj(i) is denoted by gj(i) and the action
corresponding to Sj(i) is denoted by aj(i). Also it is
assumed that the guarded actions are atomic. The
main result of our algorithm is as follows. The dis-
tributed trigger counting algorithm over a ring of n
processors has a message complexity of O(n2 log w

n)
and MaxRcvLoad of O(n log w

n) where w is the num-
ber of triggers to be counted.

The rest of this paper is organized as follows. Sec-
tion 2 contains the related work on the DTC prob-
lem. The proposed algorithm for the DTC problem
in a unidirectional ring is presented in Section 3. Sec-
tion 4 contains the analysis for proving the correctness
and message complexity of the proposed algorithm.
Section 5 discusses the tuning of the algorithm with
respect to some parameters. The trade-off between
message complexity and delay in raising the alarm
is discussed in Section 6. Solving the DTC problem
under arbitrary network is discussed in Section 7. Fi-
nally we conclude in Section 8.

2 Related Work

Many of the earlier works primarily consider the
DTC problem in a centralized setting and solve it
using randomized algorithm. A randomized algo-
rithm was proposed by Emek & Korman (2010)
for the DTC problem with message complexity of
O(n(log log n)2 logw) and average message complex-
ity of O((log log n)2 logw). In this paper it is as-
sumed that the input is constructed by an adap-
tive adversary whose decisions may depend on pre-
vious coin tosses of the randomized protocol but
not on future ones. Here a separator decomposi-
tion of a tree of n nodes is constructed over which
the events are aggregated. By changing the in-
ternal parameters of the randomized protocol they
have obtained a deterministic protocol with message
complexity of O(n(log n logw)2) and MaxRcvLoad of
O((log n logw)2).

A fundamental class of problems called “thresh-
olded counts” was introduced by Keralapura et al.
(2006) where the goal is to return the aggregate fre-
quency count of an event, that is continuously mon-
itored by distributed nodes with a user-specified ac-
curacy, whenever the actual count exceeds a given
threshold value. They studied the cases under static
as well as dynamic threshold values. Cormode et al.
(2011) defined a function monitoring problem as a 4-
tuple (κ, f, τ, ǫ) where κ denote the number of nodes,
f denote the function that is being monitored by the
nodes, τ denote the threshold such that if f ≥ τ then
the system generates some alarm 1 and the alarm is
0 if f ≤ (1 − ǫ)τ . The authors give lower and up-
per bounds of communication cost for the (κ, f, τ, ǫ)

CRPIT Volume 147 - Computer Science 2014

82

MasterProcess(TriggerCount w) // for master node vn

Initialization: TargetTriggerCount w′ = w; C = 0; sflag = true; fsorF lag = false;
eorF lag = false; ψ; τ

(S1) sflag → ψ = w′/2; τ = w′/2n
send < start − of − round , τ > to v1
fsorF lag = true; sflag = false

(S2) upon receiving < Trigger > ∧fsorF lag → C = C + 1

(S3) upon receiving < Coin, factor > ∧fsorF lag → C = C + factor × τ

(S4) fsorF lag ∧ (C ≥ ψ) → efactor = 0
Send < end− of − round, efactor > to v1

(S5) upon receiving < end− of − round, efac > from vn−1 →
w′ = w′ − (C + efac× τ)
if (w′ > 0) then sflag = true
else sflag = false

fsorF lag = false
send < TargetReached > to v1

Figure 1: Pseudocode of master node for DTC algorithm for a ring

problem with different f . The algorithms proposed
by the authors are randomized. One example of f
can be the aggregate function. Here each input trig-
ger i is associated with a value αi. The goal is to raise
an alarm when the aggregate of these values crosses
a threshold.

A decentralized and randomized algorithm called
LayeredRand algorithm was proposed by Chakar-
avarthy, Choudhury, Garg & Sabharwal (2011). In
this work, the nodes are organized in a tree topology
and they communicate only with the nodes in the
adjacent layers. The algorithm proceeds in multiple
rounds and in each round it achieves a trigger count
which is approximately half of the required count. In
another work, Chakaravarthy, Choudhury & Sabhar-
wal (2011) proposed an approximate algorithm with
the assumption w ≤ 2n, and it exhibits a message
complexity of O(n log n logw) and MaxRcvLoad of
O(log n logw). Similar works were done in (Korman
& Kutten 2007, Emek & Korman 2011). No prior
work on the DTC problem considered a ring as the
underlying topology.

3 Algorithm for DTC in a Unidirectional
Ring

In this section, we describe an algorithm for the DTC
problem in a unidirectional ring topology. Its mes-
sage complexity is O(n2 log(w/n)) and MaxRcvLoad
is O(n log(w/n)). We assume that the triggers which
come from the outside world are distributed to the n
nodes of the ring randomly. The distribution of the
triggers among n nodes is arbitrary and not known
apriori. The algorithm consists of a number of rounds.
The total number of triggers to be counted by the sys-
tem is denoted by w. The system has n number of
nodes connected in a logical unidirectional ring con-
figuration. The nodes in the ring are denoted as vi
(1 ≤ i ≤ n). There is one node vn which is designated
as the master node. All the other nodes in the ring
are called slaves. Each slave node has the following
state variables: C is a counter indicating the number
of received triggers that have not yet contributed to
the distributed trigger counting and initialized to 0;
fsorF lag is a boolean flag which indicates the start

of the DTC algorithm, and it is initialized to false;
cflag is a boolean flag which indicates whether a node
has received a Coin message, and it is initialized to
false; coinCount is an integer that denotes the num-
ber of Coin messages sent by the node; eorF lag is
a boolean flag that indicates the end of the current
round and it is set to true on receipt of a end-of-
round message. For the master, there are some other
state variables in addition to the aforesaid variables.
They are: w′ is the remaining number of triggers yet
to be counted by the system and is initialized to w;
sflag is the start of round flag for each round and it is
initialized to true. The master node also maintains
two variables, ψ and τ , which are known as global
threshold and local threshold. Each slave node gets
the value of τ for the current round from its previous
node in the ring. To reduce the number of messages,
each slave node sends a Coin message only when its
trigger count crosses the local threshold, τ . Similarly
the master node sends a end-of-round message only
when the total trigger count at the master crosses its
global threshold, ψ.

For any node vi, vi−1 is called the predecessor of
vi and vi+1 is the successor of vi. Note that the suc-
cessor of vn is v1. Similarly the predecessor of v1 is
vn. The trigger counting algorithm proceeds in mul-
tiple rounds. At the start of each round, the system
should know the number of triggers which are yet to
be counted to raise an alarm. This can be known
by subtracting the sum of all the triggers received in
the previous round from w′. Each round of the al-
gorithm is started by the master node vn by sending
the start-of-round message to v1. Node vn calculates
ψ and τ , and sends τ to v1 along with the start-of-
round message. It updates its state variables as fol-
lows: fsorF lag(vn) = true and sflag(vn) = false.
When a slave vi gets (start-of-round, τ ′) message it
also calculates its local threshold as τ = τ ′. It sets its
local state variables as follows: fsorF lag(vi) = true,
eorF lag(vi) = false. Since it has not yet sent any
Coin message, vi sets coinCount(vi) = 0. It also
sends a (start-of-round, τ) message to vi+1.

With fsorF lag(vi) = true (1 ≤ i ≤ n), any
node vi increments its local counter C(vi) on receiv-
ing a Trigger message. So each node vi independently

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

83

SlaveProcess() // code for node vi where i 6= n

Initialization: C = 0; fsorF lag = false; cflag = false; τ ; coinCount = 0; factor;
eorF lag = false

(S6) upon receiving < start− of − round, τ ′ > → τ = τ ′

Send < start− of − round, τ > to vi+1
coinCount = 0
fsorF lag = true ; eorF lag = false

(S7) upon receiving < Trigger > ∧ fsorF lag → C = C + 1

(S8) upon receiving < Coin, fac > ∧ fsorF lag ∧ ¬cflag → C = C + fac× τ
cflag = true

(S9) fsorF lag ∧ (C ≥ τ ∨ cflag) ∧ ¬eorF lag ∧ coinCount ≤ n→ factor = C/τ
Send < Coin, factor > to vi+1
C = C − factor × τ
coinCount = coinCount+ 1
cflag = false

(S10) upon receiving < end− of − round, efactor > →
eorF lag = true
factor = C/τ
C = C − factor × τ
efactor = efactor + factor
Send < end− of − round, efactor > to vi+1

(S11) upon receiving < TargetReached > → fsorF lag = false
send < TargetReached > to vi+1

Figure 2: Pseudocode of slave node for DTC algorithm for a ring

counts the number of triggers it receives. Whenever
vi finds that C(vi) ≥ τ or cflag(vi) = true then it
sends a Coin message to vi+1 (i 6= n). Note here
that cflag(vi) = true only if vi has received a Coin
message from its previous node in the ring. In this
case vi computes the factor = C/τ and sends the
factor along with the Coin message to its succes-
sor node vi+1 in the ring. So a Coin message essen-
tially transfers τ × factor amount of triggers from
vi to the successor vi+1. Node vi also reduces the
value of its counter C appropriately and remembers
the send of a Coin message by incrementing the vari-
able coinCount. Then it sets cflag(vi) = false. It
is clear from S9 in the pseudocode of Figure 2 that a
slave can send at most n number of Coin messages in
a round of the algorithm.

If a node vi (i 6= 1) receives a Coin message
from its predecessor and fsorF lag(vi) = true and
cflag(vi) = false then vi increments it local trigger
count C(vi) by τ×fac, where fac is the multiplicative
factor received along with the Coin message. Also vi
sets cflag(vi) = true. Therefore Coin messages move
from one node to another and eventually reaches the
master node vn. When the master receives a Coin
message, vn increments C(vn) by τ×fac, where fac is
the the multiplicative factor that vn received from its
predecessor. When the master finds that C(vn) ≥ ψ
then vn initiates the end of the round by sending a
end-of-round message to v1. During the propaga-
tion of the end-of-round message from one node to
another, nodes continue to receive triggers from the
outside world. These triggers are counted in a similar
way.

If a slave vi receives (end-of-round, efactor) mes-
sage then it first set eorF lag(vi) = true such that no
further Coin message is sent in this round. It com-
putes factor = C/τ and adds this with the received
multiplicative factor efactor, and sends this modi-

fied efactor to vi+1 along with a end-of-round mes-
sage. In this way the (end-of-round, efactor) mes-
sage moves from one slave to another and eventually
reaches the master. When the master receives (end-
of-round, efac) message from vn−1 it computes the re-
maining number of triggers yet to be counted in future
rounds. This is given by w′ = w′−(C(vn)+efac×τ).
If the remaining number of triggers yet to be counted
is more than zero then vn sets it variable sflag(vn) =
true so that it can start another round (by S1 of Fig-
ure 1).

4 Correctness and Analysis

Lemma 1. A slave node sends at most n number of
Coin message in each round.

Proof. By S9, a node vi sends a Coin message to vi+1
if the G9 is true. Again G9 is true if coinCount ≤ n.
By S6, coinCount = 0 at the start of each round.
Also by S9, if vi sends a Coin message to vi+1 then
it increments its coinCount. Hence in each round, vi
can send at most n number of Coin messages.

Lemma 2. If master node vn gets the (end-of-round,
efac) message in a round and E is the number of
triggers contributed by all nodes except vn during the
end-of-round phase then E ≥ 0.

Proof. By S4, the master node vn sends a (end-of-
round, efactor) message to v1 with efactor = 0. Any
node vi, on receiving a (end-of-round, efactor) mes-
sage, computes its own contribution as factor = C/τ .
It then adds this factor with the efactor and for-
wards the (end-of-round, efactor) message to vi+1
with the modified efactor value. Therefore eventu-
ally vn will receive the (end-of-round, efac) message
from vn−1. Note here that the contribution of triggers

CRPIT Volume 147 - Computer Science 2014

84

by vn itself in this phase is done through the variable
C(vn). Hence E = efac × τ . Since efac ≥ 0 and
τ 6= 0 therefore E ≥ 0.

Lemma 3. In each round, at least ψ = w′/2 number
of triggers are counted by the system where w′ is the
remaining number of triggers yet to be counted at the
begining of the round.

Proof. By S7 (or S2) and S8 (or S3)) it is clear
that C(vi) is updated when vi receives a Trigger or
a Coin message. Also by S4, the master node vn
sends a (end-of-round, efactor) message to v1 only
if fsorF lag(vn) = true and C(vn) ≥ ψ. Again by
Lemma 2, the number of triggers contributed by all
nodes except vn during the propagation of end-of-
round message (from the time it is sent by vn to
the time it is received by vn) is E ≥ 0. Hence to-
tal number of triggers counted in a round is given by
C(vn) + E. Since C(vn) ≥ ψ, therefore the lemma is
proved.

Theorem 1. The distributed trigger counting takes
O(log w

n) rounds.

Proof. Here we will analyze how the value of w is
decreasing from one round to the next round. By
Lemma 2, it depends on E ≥ 0. Initially w′ = w. By
S5, the remaining number of triggers to be counted in
future rounds is given by w′ = w−(C(vn)+E). Upper
bound of the number of rounds can be obtained when
E = 0. Here w′ decreases as w, 1

2w, (
1
2)

2w, (12)
3w, . . .

, (12)
kw. The number of rounds continue till w′ ≥ 0.

Let after (r + 1) rounds τ < 1 for the first time.

So, in the r-th round τ ≥ 1. Therefore (1/2)rw
n ≥ 1.

Therefore r = O(log w
n). At (r + 1)-th round, τ ≤ 1.

Hence w′/2n ≤ 1. Hence w′ ≤ 2n. Since τ ≤ 1, if a
node gets 1 trigger then its local threshold is crossed
and a Coin message is sent. Therefore to count w′ ≤
2n number of triggers, at most 2n Coin messages will
be required. In worst case this will require 2n rounds.
Hence the total number of rounds is O(2n+ log w

n) =
O(log w

n) since w >> n.

Theorem 2 (Partial Correctness). If the DTC
algorithm has terminated then at least w triggers have
been counted.

Proof. Let us assume that the DTC algorithm has
terminated. However at least w triggers have not yet
been counted. Therefore by S5, w

′ > 0. So vn sets
sflag(vn) = true. Therefore G1 becomes enabled. So
eventually G6 will be enabled. However this contra-
dicts the assumption that the algorithm has termi-
nated. Therefore w′ ≤ 0. Hence at least w triggers
will be counted.

Theorem 3 (Termination). The DTC algorithm
for a ring network eventually terminates.

Proof. By Lemma 1, each slave node sends at most n
number of Coin messages in a round. After this, no
slave will send a Coin message in the current round
even if it crosses its local threshold or receives Coin
message from its predecessor. Also if C(vn) ≥ ψ then
vn sends a end-of-round message to v1. Each slave
node vi, on receiving a end-of-round message, forward
it to its successor. Eventually when vn gets back a
end-of-round message, it does not send any further

end-of-round message in the current round. Here vn
checks is w′ > 0. By Lemma 3, eventually w′ ≤ 0
will hold. Therefore vn will set sflag(vn) = false
and fsorF lag(vn) = false. Hence G1, G2, G3, G4 are
all false. Also by S11, fsorF lag(vi) = false for any
slave node vi. Hence G7, G8, G9 are false. Since
G1 is false, therefore vn does not send start-of-round
message. Here G6 is false. Similarly G10 and G11
are also false. Therefore all the guards are false.
Therefore the algorithm eventually terminates.

Theorem 4. The message complexity of the DTC
algorithm is O(n2 log w

n).

Proof. In a round, each slave node can send n number
of Coin messages. Also each of them is forwarded by
the other slaves towards the master node. Hence in
each round O(n2) number of messages are sent overall
by all the nodes. By Theorem 1, the algorithm takes
O(log w

n) rounds. Hence the overall message complex-

ity is O(n2 log w
n).

Theorem 5. The MaxRcvLoad of the DTC algorithm
in a ring is O(n log(w/n)).

Proof. In a round each node vi receives O(n) number
of messages. Since the algorithm has overall O(log w

n)
rounds, the MaxRcvLoad per node is O(n log(w/n)).

5 Tuning the Algorithm

The algorithm can be tuned by appropriately setting
the parameters ψ and τ . In this case we have chosen
τ = ψ/n. If we choose τ = ψ then we may achieve
a better message complexity and MaxRcvLoad. Let
us assume that ψ = w/k and τ = ψ/l. Here we can
claim that,

No of rounds = R = O
(

log k
k−1

(w/n)
)

= O
(

log w
w−ψ

(w/n)
)

It can be observed that the round complexity is
primarily dependent on ψ. This is due to the fact
that one round completes only when all the nodes
together counts a global threshold, ψ, number of trig-
gers. The local threshold, τ , does not affect the num-
ber of rounds. The variation of the number of rounds
with respect to ψ is shown in Figure 3. We consider
three different values of w. It is observed that as ψ
increases, the number of rounds required decreases.

The overall message complexity of the algorithm
can be given as,

M = O

(

nψ

τ

(

log w
w−ψ

(w/n)
)

)

It is obvious from the above equation that M is di-
rectly proportional to l = ψ/τ . In the proposed algo-
rithm in this paper, l = n. If we assume l = 1 (i.e.
ψ = τ) then we can achieve a better overall message
complexity of O(n log w

w−ψ
(w/n)). Figure 4 depicts

the variation of message complexity with respect to
l = ψ/τ . It is clear that as l increases the messages
complexity increases. This is due to the fact that l
can increse only when ψ is large and τ is small. In
this case, each node crosses its local threshold (due

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

85

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5000 10000 15000 20000 25000 30000

R
ou

nd
 C

om
pl

ex
ity

ψ

w=100000
w=400000
w=800000

Figure 3: The variation of number of rounds with
respect to ψ

to the receive of triggers) many more times and thus
more number of Coin messages are sent in a round.
This increases the overall message complexity of the
system.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 20 40 60 80 100

M
sg

 C
om

pl
ex

ity

l=ψ/τ

w=400000 w/ψ0=2
w=400000 w/ψ0=10
w=400000 w/ψ0=50
w=400000 w/ψ0=100
w=100000 w/ψ0=50
w=100000 w/ψ0=100

Figure 4: The variation of message complexity with
respect to l

Similarly in Figure 5, we see the variation of mes-
sage complexity with respect to τ . Here we keep
w and ψ fixed and observe the variation of message
complexity with respect to τ . It is found that as τ
increases, message complexity falls sharply initially.
However as the value of τ approaches ψ, the rate of
fall in message complexity is small and not as sharp as
earlier. This is an indication that we may not improve
the message complexity by arbitrarily increasing the
τ .

6 Message Complexity and Delay Trade-off

There is a trade-off between the message complexity
of distributed trigger counting and the time of raising
an alarm when at least w triggers have been counted.
The simplest way to minimize the number of mes-
sages is to let every node detect triggers and when
any one has detected w triggers, the global alarm sig-
nal is sent. However, in this simple scheme there is
obviously a big risk that the system will be seriously
delayed in sending the global alarm signal which has
to be sent as soon as w or more triggers are received by
all the nodes. The obvious way to avoid such delays
is to send a message as soon as a trigger is detected.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2000 4000 6000 8000 10000 12000 14000

M
sg

 C
om

pl
ex

ity

τ

W=400000

ψ=200000
ψ=133333

ψ=80000
ψ=50000

Figure 5: The variation of message complexity with
respect to τ

However this will generate a lot of messages (poten-
tially O(w)). Hence there should be some compromise
between these two extremes.

Let t0 be the time when w-th trigger enters the
system (any node). Let t1 be the time at which vn
sends the TargetReached message to v1. We define
the delay of generating the alarm as T = |t1 − t0|. In
the following we give a measure of T .

Let e1 be the (w−1)-th trigger and e2 be the w-th
trigger. Now there can be two cases:

Case 1: e1 and e2 enter the system in same round.
Every trigger that enters the system is counted
by the master node through Coin message or ex-
cess triggers during end-of-round. The maximum
delay between the times e1 and e2 are recorded at
the master node is the delay between the receive
of two successive Coin messages by the master
vn. Essentially this is equal to the time required
by τ triggers to arrive at any arbitrary node
(where trigger count is zero). Let this time be
denoted by ∆. In this case T = ∆. Here we as-
sume that processing delay and communication
delay is negligible.

Case 2: e1 and e2 enter the system in two different
successive rounds. In this case, T = ∆ + ∆e
where ∆e is the amount of time required to col-
lect all the excess triggers during the end-of-
round phase.

If τ is large then delay will be large. However
message complexity will be smaller. The reverse will
happen if τ is small.

7 DTC in Arbitrary Network

To solve the DTC problem over an arbitrary network,
we need to embed a logical unidirectional ring over the
graph. For a certain class of graphs (Eulerian graphs),
this can be done by forming an Eulerian circuit over
the graph. Even though a Hamiltonian circuit pro-
vides the perfect ring embedding, the graph may not
have an Hamiltonian circuit. Also finding a Hamilto-
nian circuit is NP-complete. Therefore our approach
relies on Eulerian circuit construction. Makki (1999)
proposed a distributed algorithm for construction of
an Eulerian circuit. The algorithm has a message
complexity of (1 + r)(|E|+ n) where 0 ≤ r < 1. Here
E denotes the set of edges of the graph. Our ap-
proach is to pre-process the input graph, provided
it is Eulerian, to find an Eulerian circuit using the

CRPIT Volume 147 - Computer Science 2014

86

above algorithm. Next on the virtual ring thus ob-
tained, we apply the proposed trigger counting algo-
rithm. Hence the overall message complexity of the
DTC problem in an arbitrary network, which is Eule-
rian, is O(|E|+ n2 log w

n) = O(n2 log w
n). Also MaxR-

cvLoad for DTC in this case remains O(n log w
n) since

average message complexity of Eulerian circuit con-
struction is O(n).

8 Conclusion

We have presented a distributed algorithm for the
DTC problem in a ring network with message
complexity of O(n2 log(w/n)) and MaxRcvLoad of
O(n log(w/n)). One of the important issues is that
the DTC algorithm may generate an alarm after
counting w′ number of triggers where w′ > w. One
of the future works may be to minimize the difference
between w′ and w. Proposing an algorithm for the
DTC problem in an arbitrary network with optimal
complexity can be a challenging work.

References

Awerbuch, B. (1985), ‘Complexity of network syn-
chronization’, Journal of ACM 32(4), 804–823.

Chakaravarthy, V. T., Choudhury, A. R., Garg, V. K.
& Sabharwal, Y. (2011), An efficient decentral-
ized algorithm for the distributed trigger counting
problem, in ‘Proceedings of the 12th International
Conference on Distributed Computing and Net-
working’, Springer-Verlag, Berlin, Bangalore, In-
dia, pp. 53–64.

Chakaravarthy, V. T., Choudhury, A. R. & Sabhar-
wal, Y. (2011), Improved algorithms for the dis-
tributed trigger counting problem, in ‘Proceed-
ings of the 25th IEEE International Parallel and
Distributed Processing Symposium’, IEEE Com-
puter Society, Washington, DC, USA, Anchorage,
Alaska, USA, pp. 515–523.

Cormode, G., Muthukrishnan, S. & Yi, K. (2011),
‘Algorithms for distributed functional monitoring’,
ACM Trans. Algorithms 7(2), 1–20.

Emek, Y. & Korman, A. (2010), Efficient threshold
detection in a distributed environment, in ‘Pro-
ceedings of the 29th ACM Symposium on Prin-
ciples of Distributed Computing (PODC)’, ACM,
New York, USA, Zurich, Switzerland, pp. 183–191.

Emek, Y. & Korman, A. (2011), ‘New bounds for the
controller problem’, Distributed Computing 24(3-
4), 177–186.

Garg, R., Garg, V. K. & Sabharwal, Y. (2006), Scal-
able algorithms for global snapshots in distributed
systems, in ‘Proceedings of the 20th Annual In-
ternational Conference on Supercomputing (ICS)’,
ACM, New York, USA, Cairns, Queensland, Aus-
tralia, pp. 269–277.

Huang, L., Garofalakis, M., Joseph, A. D. & Taft,
N. (2007), Communication-efficient tracking of dis-
tributed cumulative triggers, in ‘Proceedings of the
27th International Conference on Distributed Com-
puting Systems’, IEEE Computer Society, Wash-
ington, DC, USA, Toronto, Canada, pp. 54–63.

Keralapura, R., Cormode, G. & Ramamirtham, J.
(2006), Communication-efficient distributed moni-
toring of thresholded counts, in ‘Proceedings of the

ACM SIGMOD International Conference on Man-
agement of Data’, ACM, New York, USA, Chicago,
IL, USA, pp. 289–300.

Korman, A. & Kutten, S. (2007), Controller and esti-
mator for dynamic networks, in ‘Proceedings of the
26th ACM Symposium on Principles of Distributed
Computing (PODC)’, ACM, New York, USA, Port-
land, Oregon, USA, pp. 175–184.

Makki, S. A. M. (1999), ‘Eulerian tour construction
in a distributed environment’, Computer Commu-
nications 22(7), 621 – 628.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

87

CRPIT Volume 147 - Computer Science 2014

88

Formal Approach for Generating Privacy Preserving User
Requirements-Based Business Process Fragments

Mohamed Anis Zemni1 Amel Mammar2 Nejib Ben Hadj-Alouane3

1 Ecole Nationale des Sciences de l’Informatique (ENSI), UR/OASIS
Campus Universitaire de la Manouba,

2010 Manouba, Tunisia,
Email: mohamedaniszemni@gmail.com

2 Institut Mines-Telecom/Telecom SudParis, CNRS UMR 5157 SAMOVAR
9 Rue Charles Fourier,
91011 Evry, FRANCE,

Email: amel.mammar@telecom-sudparis.eu

3 Ecole Nationale d’Ingenieurs de Tunis (ENIT), UR/OASIS
BP 37, Le Belvedere,
1002 Tunis, Tunisia,

Email: nejib bha@yahoo.com

Abstract

A business process fragment is a portion of a business
process, more commonly designed for reuse purposes.
Fragments are intended to be declared as safe from
a privacy perspective, when manipulated in an open
context. Privacy is related to the authority to have a
view on some sensitive information. A business pro-
cess privacy-preserving fragmentation is the task of
decomposing business processes into significant frag-
ments, which can be reused in the future in order to
build new business processes while preserving the sen-
sitive information from leakage. This paper presents
a design-time two-phases approach to decomposing
existing business processes into significant fragments
while preserving the integrity of data items that nav-
igate within the process. The first phase is based on
the so-called Formal Concept Analysis (FCA) tech-
nique handling semantic activity clustering according
to designers requirements, while dealing with the pri-
vacy constraints. The second phase manipulates clus-
ters of activities and generates ready-for-reuse frag-
ments. Some experiments that demonstrate the fea-
sibility of the proposed approach are also provided.

Keywords: Business Process, Fragmentation, Reuse,
Privacy, Semantics, Requirements-Driven.

1 Introduction

In the industry of business process management
(Ter Hofstede et al. (2003)), organizations and busi-
ness entities are more and more focused on improving
the quality of their services. At the same time, they
experience a need to maintain a high degree of effi-
ciency, with respect to delivery deadlines and produc-
tivity; all this, within the context of a continuously
increasing competition. A key strategy consists in ef-
ficiently implementing and developing modern busi-

Copyright c⃝2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

ness processes relying on new Web technologies. A
business process, as defined by Ouyang et al. (2007),
consists of a set of operations, more commonly called
activities, organized in a given manner so as to pro-
duce a specific service. Implementing new activities
and business processes completely from scratch may
be a very tedious and time consuming task. Reusing
already existing business process fragments can re-
duce the business process development time and en-
hance its robustness (Schumm et al. (2010)). In fact,
the reuse of business process fragments can be an im-
portant component of any flexible design strategy re-
sulting in a reduction of process development periods
(Markovic & Pereira (2008)). Schumm et al. (2010)
cite two ways to design business process fragments:
(1) from scratch (Eberle et al. (2009)) or (2) extracted
from existing process models. In our work we focus
on the second approach which is used to be done es-
sentially manually. The work introduced by Schumm
et al. (2011) demonstrates that, apart from improving
the quality of the resulting business processes, reusing
the fragments allows to avoid (i) the redesign of cer-
tain existing fragments, and (ii) the implementation
and optimization of all business process artifacts from
scratch.

Business process developers, however, need to pay
special attention to the data privacy concerns. In-
deed, nowadays, the individuals are becoming more
and more concerned about the privacy of their per-
sonal data that may appear within the process bound-
aries. As defined by Sweeney (2002), privacy is re-
lated to the authority to receive some sensitive infor-
mation, e.g., personal information. Such important
information is called sensitive and should not be dis-
closed. Though sensitive information may occur in a
business process for the purpose of performing its key
functionalities, they are not intended for sharing or
publishing. Consequently, the fragments that are to
be reused, must be individually and conjointly safe.
One has to make sure that (i) each fragment produced
from a business process decomposition approach is
safe, and (ii) two fragments from which sensitive in-
formation can be inferred should not be coupled to-
gether when a new business process is built.

In a previous work (Zemni et al. (2012a,b)), we
have presented an initial and informal approach for
business process decomposition while maintaining the

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

89

privacy of sensitive information. The approach gen-
erates any fragment whose activities involve common
functionalities. Fragments may contain superfluous
activities which are not interesting for the designer.
Moreover, the approach relies mainly on grouping se-
mantically close activities while structural concerns
still early stage. In this paper, we seek to improve on
the fragmentation mechanism by attempting to pro-
vide requirements-driven algorithms, as well as for-
mal definitions that make the approach formal. We
also prove the correctness of the privacy-preserving
mechanism. Here, a requirements-driven approach
is presented in order to provide useful and reusable
business process fragments. Indeed, approach re-
lies on the fragmentation of existing business pro-
cesses to retrieve fragments that may suit design-
ers’requirements.

The structure of the paper is articulated as fol-
lows: in the next section, we give a motivating ex-
ample with a detailed illustration of reuse issues that
may occur during the fragmentation process (Section
2). Section 3 provides formal definitions for business
processes and business process fragments along with
privacy and semantics concerns that allow us to for-
malize and prove the decomposition approach. Sec-
tion 4.1 introduces our requirements-driven clustering
mechanism to generate clusters of semantically close
activities, and deals with privacy. A detailed proof
is also given in section 4.2 to show that the privacy
is well respected. We then present an algorithm to
generate privacy-aware and reusable fragments from
the composition of the previous clusters 4.3. Section
5 evaluates the effectiveness of the proposed approach
and gives the description of the most significant re-
lated statistics. We finally conclude with the related
work and the results summary in sections 6 and 7,
respectively.

2 Working Example

In this part, we specify in details the main issues
related to the fragmentation through a practical case
study. For this, we consider an inter-department col-
laboration scenario where a business process designer,
from a given department, desires to provide relevant
fragments of his own process to third designers, from
another department, who needs to build a new pro-
cess. Figure 1 depicts a “surgery performing” process
case study.

Represented in Business Process Model and No-
tation (BPMN)1, this process is roughly defined as a
set of activities, represented with rounded boxes, a
set of data items, represented with note boxes, a set
of events, represented with circles, and, a set of gate-
ways, represented with diamonds. Activities, gate-
ways, and events are linked to each other with con-
trol flows, i.e., represented with solid arrows, and data
items are linked to activities by means of data flows,
i.e., represented with dashed arrows. Control flows
depict the execution order of the elements they link,
while dashed arrows represent the data items routed
in between activities, i.e., as either inputs or outputs.

The process represented in figure 1 performs as fol-
lows: a surgery order triggers the process execution.
Indeed, a message event, i.e., which is a start event,
receives a ’surgery order number’. Activity (a1) uses
the ’surgery order number’ to retrieve the surgery
information as well as the patient′s SSN (Social Se-
curity Number). Note that the surgery information
contains the type of surgery, whether it is urgent

1http://www.omg.org/spec/BPMN/2.0/

or not, etc. Activity (a2) receives the patient′s
SSN and retrieves the patient′s information. Af-
ter that, two branches are called concurrently: (i)
selecting a free surgeon (activity (a5)) and selecting
a free surgery room (activity (a6)), and (ii) asking
for patient’s history (activity (a3)) and compiling pa-
tient’s record (activity (a4)). Activities (activity (a5))
and (activity (a6)) use the surgery information
and check the surgeon and surgery room availabil-
ities, while activities (activity (a3)) and (activity
(a4)) check for surgery and history inconsistencies,
e.g., whether any contraindication exists between the
surgery information and the patient′s record, or if
the patient take some drugs he must stop before the
surgery. The process terminates immediately if any
inconsistency is detected. Once both branches finish
their execution, activity (a7) confirms the patient for
surgery. When the receive message event receives the
surgery report, the patient’s record (activity (a8))
is updated (i.e., using the surgery information, the
patient′s SSN , and the surgery report), the order
patient follow up activity (activity (a9)) is executed,
and the process is ended.

Generally speaking, this process can be published
in an open context to be reused as part of a new busi-
ness process to perform more complex functionalities.
For instance, the process may be part of a “Surgery
Performing and Reimbursement” process to perform
the costs reimbursement tasks by the social security in
addition to the functionalities involved by the surgery
performing process.

This process, however, is not necessarily safe while
it may reveal some sensitive information compiled
from data associations. For instance, the association
between the data item patient′s information (activ-
ity a2 output) and the data item patient′s record
(activity a3 output), is sensitive. Indeed, this associ-
ation may lead to patient′s illnesses disclosure. In
this paper, it is dealt with information, more specif-
ically data items, that are routed between activities.
Recall that information enclosed within the activi-
ties cannot be viewed, as activities are seen as black
boxes and are then safe. More specifically, it is dealt
with non-sensitive data items that are safe when they
are considered separately, but turn out to be critical
when they are associated together. Note that activ-
ities, also, are safe when they are taken separately,
where for a given activity, inputs and outputs do not
form sensitive associations. Indeed, it is the asso-
ciation between data items which may be sensitive.
Consequently, when the process is coupled with ma-
licious activities, the latter may probably make use
of the data items and infer sensitive information. For
example, some additional activities (or even a single
one) may be added to the surgery performing pro-
cess, using the patient′s information data item and
the patient′s record data item manipulates them and
generating the patient′s illnesses.

Moreover, the process may be uninteresting for
reuse, as a whole. For example, let the designer be
interested only in preparing surgery and manipulat-
ing patient’s record (i.e., history) within the desired
“Surgery Performing and Reimbursement” process.
The designer already has his own patient’s follow up
activities, and thus do not need them from the cur-
rent process. Consequently, it would be wiser to catch
only portions that semantically match the designer’s
requirements. Therefore, activities a9, should not be
kept for reuse. This solution, however, is intuitive, es-
sentially manual, and needs business investigations,
as for many existing decomposition approaches (as
stated by Khalaf (2008)). This task also requires a

CRPIT Volume 147 - Computer Science 2014

90

e1
g1

a3: Ask for

patient’s
record

a4: Compile

patient’s
record

a5: Select a

free
surgeon

a6: Select a

free surgery
room

g3
a8: Update
patient’s

record

e4a2: Retrieve

patient’s
information

Patient’s Information

Patient’s SSN

Surgeon information Surgery room

number

Patient’s record

Relevant patient’s

record

Surgery report

Surgery order

number

e3a1: Retrieve

surgery
information

Surgery information

a7: Confirm
patient for

surgery

a9: Order
patient

follow up

e2

g2

Figure 1: An Example of Surgery Performing Process.

good understanding of the initial process to enable re-
trieving the interesting portion for the designer. This
turns out to be a difficult task and thus needs au-
tomation especially to deal with big and complex pro-
cesses.

3 Fragmentation Preliminaries

In this section, we present the necessary for-
mal notions needed to understand and perform the
fragmentation task, in order to generate well-formed
and privacy-aware fragments whose functionalities
are consistent with those required by the designer.

3.1 Business Process and Business Process
Fragment Models

As stated by Mancioppi et al. (2011), a complete
process model definition is an important artifact in
order to enable performing the fragmentation task.

Ouyang et al. (2007) have introduced a business
process (process for short) as a directed graph that is
defined as a collection of activities, events, and gate-
ways, linked with control flows. For our purposes,
this definition is further refined, to clearly specify the
various parts and aspects of a process, namely data
elements, i.e., consisting of data items and data flows.
We formally define a business process as follows:

Definition 1 (Business Process) A Business
Process is a tuple P=(O, A, G, Cf , D, Df), where
O ⊆ (A ∪ G) is a set of objects composed of a set
of activities and events A, and a set of gateways,
G. Cf ⊆ (O × O) is the control flow relation to
link objects to each other, D is the set of data items
handled by the activities, and Df ⊆ (Dfin ∪ Dfout)
is the data flow relation to link objects to their
corresponding input data items Dfin ⊆ (O ×D), and
activities to their output data items Dfout ⊆ (A×D).

The relation Dfout does not involve gateways as
they generate no data items. Note that events and
activities are set in the same activity set A as they
act alike. In the rest, we use “activities” instead of
“activities and events”.

We define a path as a linear and connected portion
of a business process describing a set of sequential

activities, i.e., whose execution is sequential, start-
ing from a given activity, traversing a set of sequen-
tial activities, and leading to another activity, and
where each couple of consecutive activities are linked
by means of a control flow. Let Paths be the set
of all possible paths defined in a process such that
Paths = {(act1, ..., actn)|

∧
i=1..n ai ∈ A∧∀i.(1 ≤ i ≤

(n − 1) => (acti, acti+1) ∈ Cf}. A process should
contain no unconditional control flow cycles leading
the process to run indefinitely. Consequently, there
should not exist any path ending with an activity it
has started by.

Let the following formally defined property that
each business process has to respect:

Property 1 (Unconditional Cycle Free)
∀(a1, ..., an).((a1, ..., an) ∈ Paths⇒ a1 ̸= an).

A business process fragment (fragment for short)
as defined by Schumm et al. (2010) is a connected sub-
process designed for reuse purposes. It is composed
of at least one activity, and of several edges, repre-
senting control and data flows. A fragment involves
some functionalities and is intended to be composed
with other ones to build new processes. A fragment
can depict dangling control flows, i.e., with either no
source or sink activities specified. More formally:

Definition 2 (Business Process Fragment) A
Business Process Fragment is a tuple f = (O, A,
G, Cf , D, Df , fn), with O, A, G, D, and Df as
in Definition 1. Cf ⊆ (O ∪ {⊥})2 − {(⊥,⊥)} is the
complete and/or dangling control flow relation to link
objects to each other, and fn is a set of terms that
describe the fragment’s involved functionalities.

Note that character ⊥ is used to denote dangling
control flows, i.e., representing missing start or end of
a control flow.

As for the case of a complete process, a fragment
should contain no unconditional cycles. This property
is necessary to ensure that business processes that are
made of fragments also respect property 1.

Let the following connectivity property that
should be ensured when generating fragments:

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

91

Property 2 (Connectivity) A fragment f is con-
nected iff ∀(a1, a2).(a1, a2 ∈ f.A ⇒ (a1, ..., a2) ∈
Paths ∨ (a2, ..., a1) ∈ Paths ∨ ∃a3.((a3, ..., a1) ∈
Paths ∧ (a3, ..., a2) ∈ Paths)).

That is, a fragment is connected if and only if each
couple of activities belong to a path when they are
placed on the same branch or belong to two different
paths with a common activity when they are placed
on different branches. The connectivity condition is
necessary to ensure that when a fragment is used in
a new process, all activities can be executed.

Generally speaking, a fragment denotes a complete
process when it encloses no dangling control flows,
i.e., Cf ⊆ O2.

3.2 Privacy-Preserving Mechanism

As we have already tackled in the motivating ex-
ample, when publishing a fragment, the association
between some non-sensitive data items, involved in
this fragment, can disclose some sensitive informa-
tion. For example, “patient’s illnesses” can be in-
ferred from the association between the data items
“patient’s information” and “patient’s record”. The
association between such couples of data items are
called sensitive and should never be published in an
open context. Therefore, data items that are involved
in a sensitive association are called in conflict. To get
over such issues, we propose the following privacy con-
straint definition that should be taken into account
when performing the fragmentation task.

Definition 3 (Privacy Constraints) Privacy
constraints, denoted CN ⊆ D2, is a set of data item
couples that should not figure in the same fragment.

Consequently to the definition, activities that out-
put conflicting data items should never figure in the
same fragment ; they are called in conflict with each
other. To assert that two activities are conflicting,
only the data they produce are taken into account.
Indeed, when an activity is selected for a fragment,
its input data, i.e., that are in conflict with other ones
in the fragment, are not yet received and then may
be substituted with other ones.

For instance, CN = {(surgery information, pa-
tient’s information), (patient’s information, patient’s
record), (patient’s information, relevant patient’s
record)}, in Figure 1, depicts the privacy constraint
set. Then, activities a1 and a2, activities a2 and a3,
and activities a2 and a4 are pairwise in conflict.

The proposed privacy constraints leads to the fol-
lowing privacy-awareness property that we have to
ensure on each fragment f :

Property 3 (Privacy-awareness) A fragment f
is safe iff ∀(a1, a2).(a1 ∈ f.A ∧ a2 ∈ f.A ⇒
((f.Dfout [{a1}]2 × f.Dfout [{a2}]) ∪ (f.Dfout [{a2}] ×
f.Dfout [{a1}])) ∩ CN = ∅).

That is, each fragment should not contain any cou-
ple of activities that output conflicting data items.

3.3 Activities to Functional Requirements
Similarity

In our work, we are interested in any fragment ver-
ifying Definition 2 and whose activities verify some

2Given the relation R ⊆ X × Y , then, R[X1] = {y|y ∈ Y ∧
∃x.(x ∈ X1 ∧ (x, y) ∈ R)}, and R−1[Y1] = {x|x ∈ X ∧ ∃y.(y ∈
Y1 ∧ (x, y) ∈ R)}.

given functional requirements, denoted Q, in addi-
tion to privacy concerns. To this aim, we focus on
any activity textual description that gives the main
functionalities involved by the activities. If no activ-
ity description is provided, then, activities’ labels and
data items’ labels are retrieved. Generally speaking,
activity descriptions are made of a set of terms that
describe the functionalities involved by the activity.

Let â be the textual description of activity a,
and Q̂ be the textual description of requirements
Q. In our work, activity descriptions, â, as well as
the functional requirements, Q̂, are pretreated (e.g.,
by removing stopwords (Fox (1992)), by stemming
terms (Porter (1997)), and by unifying synonyms),
and weighted (e.g., using term weighting mechanisms
(e.g., TF/IDF3 (Salton & Buckley (1988)))). This re-
spectively generates weighted description vectors −→a
and

−→
Q . Let w(t,−→a) be a function that returns the

weight of term t in the activity description â. Note
that function, w, returns 0 if term, t, does not be-
long to the activity description, â. For example, â5
= {’select’, ’free’, ’surgeri’, ’surgeri’, ’inform’, ’surg-
eri’, ’inform’} is an activity description, and −→a5 =
((0.105, select), (0.105, free), (0.037, surgeri), (0.056,
inform)) its corresponding vector, where w(surgeri,−→a5) = 0.037.

To include or not an activity a in a fragment, we
have to compute the similarity between the activity
vector −→a and the requirements vector

−→
Q . To this

aim, we use Vector Space Model (VSM), introduced
bySalton et al. (1975). Let α be a similarity thresh-
old fixed by the designer, above which, the activity
would be part of the fragment. Guidelines for fixing
an appropriate threshold is out of the scope of this
paper.

Generally speaking, an activity may correspond
to all the query terms or only part of them. The
latter occur when the query terms involve complex
functionalities which cannot all be met by a single
activity. Consequently, it would be wiser considering
only terms of the activity descriptions for the similar-
ity computation instead of the union of both query
and activity description terms, as set in the litera-
ture. This enables to focus on the functionalities in
Q that are involved in a given activity. The similarity
function is formally defined as follows.

Definition 4 (Similarity Function) Given a

functional requirement vector
−→
Q and an activity

vector −→a , the similarity between
−→
Q and −→a is defined

by:

sim(
−→
Q,−→a) =

∑
j∈dist(â) w(j,

−→
Q)× w(j,−→a)√∑

j∈dist(â) w(j,
−→
Q)2 ×

√∑
j∈dist(â) w(j,−→a)2

with dist(â) is a function which returns distinct terms
in â.

For instance, sim(
−→
Q,−→a5) =

0 ∗ 0.105 + 0 ∗ 0.105 + 2 ∗ 0.037 + 0 ∗ 0.056
√
22 ∗

√
0.1052 + 0.1052 + 0.0372 + 0.0562

= 0.36

where
−→
Q = ((2, patient), (2, surgeri), (2, record), (2,

reimburs)) is the requirements vector. Note that the
requirement terms are all weighted 2 meaning that
they are as important as each other.

3TF/IDF is a term weighting method which reflects the impor-
tance of a term for a document among a corpus of documents.
Higher weights are assigned to terms occurring frequently in a par-
ticular document, but rarely on the remainder of the document
collection. In our work, documents represent activities.

CRPIT Volume 147 - Computer Science 2014

92

4 Privacy-Aware Business Process Fragmen-
tation

In this section, we propose a two-phases
requirement-driven fragmentation. The first phase
involves an algorithm in which we incorporate pri-
vacy constraints and semantics to generate seman-
tically close and privacy-aware clusters of activities.
A cluster of activities is a group of coupled activ-
ities that cooperate together closely to achieve the
same goal. We also provide a proof demonstrating
the correctness of the approach w.r.t. Property 3.
The second phase involves an algorithm that derives,
from clusters, reusable fragments. Indeed, clusters
of activities are garnished with structural concerns
(gateways, flows, etc...) so as to draw connected and
reusable fragments.

4.1 Clustering Algorithm

The process clustering consists in selecting activ-
ities that are semantically close to the functional re-
quirements and classifying them w.r.t. the function-
alities they are involving, and this, while maintain-
ing the sensitive information privacy. The cluster-
ing is based on the so-called Formal Concept Anal-
ysis (FCA) (Ganter & Wille (1999)). The latter is
a data analysis technique, used for classifying similar
objects within object collections, w.r.t. their common
attributes. Our work adapts the FCA to the process
activity clustering. That is, activities are mapped
onto objects, and activity descriptions are mapped
onto attributes. We extend this technique so as to
compute the similarity between the activities and the
required functionalities. This enables forming clusters
consisting of activities that cooperate to involve the
same functionalities. We also constrain the technique
with the privacy constraints.

The following are the extended FCA element def-
initions that the clustering algorithm, Algorithm 1,
relies on.

Definition 5 (Formal Context) A formal context
is a triplet, C = (A, T,w) involving a set of process
activities, A, a set of terms, T , that has been retrieved
from the process activity descriptions, and a weight
function, w : T × A → R, that returns the weight of
a term, t ∈ T , for an activity a ∈ A.

Definition 6 (Clustering System) S =
(C,Dfout , CN) is a clustering system where C
is the formal context, Dfout

is the output data flow
relation, and CN are the privacy constraints.

Definition 7 (Galois Correspondence) A Galois
correspondence involves two functions, Θ and ∆, for
a clustering system S = (C,Dfout , CN) and functional
requirements Q.

Θ : P(A) → P(T ∩ Q) is defined over the power
set P(A), and returns the maximal set of terms,
among Q, that are shared by all the activities, where
Q is the set of requirements’ terms. That is, for a
given Ai ∈ P(A), where ∀(a1, a2).(a1 ∈ Ai ∧ a2 ∈
Ai ⇒ ((Dfout [{a1}] × Dfout [{a2}]) ∪ (Dfout [{a2}] ×
Dfout [{a1}])) ∩ CN = ∅)), then, Θ(Ai) = {t ∈
(T ∩Q)|w(t,−→a) ̸= 0, ∀a ∈ Ai}.

∆ : P(T ∩Q)→ P(A) is defined over the power set
P(T ∩Q), and returns relevant-enough activities (that
are maximal), according to a fixed threshold α, that
share all the terms in (T ∩ Q). That is, for a given

Tj ∈ P(T ∩Q), ∆(Tj) = {a ∈ A|sim(
−→
Q,−→a) ≥ α}.

Definition 8 (Formal Concept/Cluster) Given
a clustering system S = (C,Dfout , CN), a formal
concept is a tuple Con = (Tj , Ai), where Θ(Ai) = Tj,
and, ∆(Tj) = Ai. Ai is called a cluster made of
relevant-enough activities collaborating to process the
functionalities represented with Tj.

Algorithm 1 depicts the requirement-driven
privacy-aware clustering process. It takes as input
parameters a clustering system S (Definition 6), and
the functional requirementsQ. The algorithm returns
the set of formal concepts conSet from which clusters
are derived.

Algorithm 1 Requirement-driven Privacy-aware
clustering

1: function clustering(FormalContext C,
Output Dfout , Privacy CN , Requirements
Q):FormalConceptSet

2: declare FormalConceptSet conSet ← new
FormalConceptSet()

3: begin
4: for all Ai ∈ P(C.A) do
5: if notConflicting(Ai, CN , Dfout

) then
6: TermSet Ti ← Θ(Ai)
7: if ∆(Ti) = Ai then
8: conSet ← conSet ∪ {new Formal-

Concept (Ti, Ai)}
9: end if
10: end if
11: end for
12: return conSet
13: end
14: end function

The formal context, depicted in definition 5, rep-
resents the clustering basis. It involves the activities
to classify, the classification criteria, i.e, the terms,
and the weights of terms for a given activity. Note
that we have extended the relation between terms
and activities from binary relations to values ones,
i.e, given by the function w. The clustering system in-
volves the process corresponding formal context, the
privacy constraints it is subject to, as well as output
data flows to decouple conflicting activities during the
clustering task.

Given that the clustering task is activity-centric,
the algorithm applies on every element of the power
set P(C.A)4. The algorithm uses the Galois corre-
spondence functions (Definition 7), Θ and ∆ (lines
6,7), that we have extended with semantic concerns.
Function Θ returns a set of terms that represent
the functionalities that may probably be involved by
the activities (e.g., Θ({e1, a1, a5, a6}) = {surgeri}).
The Θ parameter is privacy-aware as the privacy
is checked when selecting the subset Ai by means
of function notConflicting (line 5) which returns
true if the activities in Ai are not conflicting given
CN . Function ∆ applies over (T ∩ Q). This per-
mits to focus the similarity computation on the terms
in Q that may be involved by the process activi-
ties. ∆ returns the activities that are close to the
functional requirements Q, w.r.t. threshold α. For
instance, ∆({surgeri}) = {e1, a1, a5, a6}, where ac-
tivities a4, a7, e2, a9, a8 are not returned, i.e., even if
they involve the term surgeri in their description, as
they are not relevant enough according to threshold
α = 0.35 (e.g., sim(

−→
Q,−→a9) = 0.114 < α). Note

4C.A is the activity set, A, for a formal context, C. The same
thing applies to similar notations.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

93

that ∆, as it exists in the literature, would return
{e1, a1, a5, a6, a4, a7, e2, a9, a8} for ∆({surgeri}).

Using functions Θ and ∆, we generate the for-
mal concepts (Definition 8). A formal concept in
our work represents a cluster of close activities, that
share the same functionalities. Indeed, for a given
formal concept, all activities involve the functional-
ities described by the terms in Q or part of them,
and the terms are significant enough for only those
activities according to the fixed threshold α. For
instance, ({patient, sergeri}, {a1, a7, a8}) is a formal
concept, but ({patient, sergeri}, {a1, a4, a7, a8, a9})5
is not a formal concept as ∆({patient, sergeri}) =
{a1, a7, a8} does not contain a4 nor a9.

Note that, without considering the privacy con-
straints, the clustering task would return the cluster
{a2, a3, a4, a7, a8}, i.e., involving patient’s manipula-
tion, while a2 should not be put in the same cluster
as a3 and a4, as explained in section 3.2.

In the following subsection, we demonstrate that
Algorithm 1 verifies property 3.

4.2 Correctness of the Clustering Algorithm

In order to validate the proposed approach, we
have verified the correctness of Algorithm 1 using the
B formal method and its refinement concept. Before
describing how we used this method to prove the cor-
rectness of the algorithm, we give a brief introduction
of the B method.

Introduced by Abrial (1996), B is a formal method
for safe project development. B specifications are or-
ganized into abstract machines that encapsulate state
variables on which operations are expressed. The set
of the possible states of the system are described us-
ing an invariant which is a predicate in a simplified
version of the ZF-set theory, enriched with many rela-
tional operators. Refinement is the process of trans-
forming a specification into a less abstract one. In B,
we distinguish behavioral and data refinement. The
behavioral refinement, used in this paper, includes
weakening of preconditions, the replacement of par-
allel substitution with a sequence one, etc. To ensure
the correctness of a B specification, a set of proof
obligations is generated for each B component. At
the abstract level, these proofs aim at verifying that
the invariant of the system is satisfied after the exe-
cution of each operation. Refinement proofs permit
us to check the correctness of each concrete operation
with respect to its abstraction. We assume that read-
ers are familiar with B method and more details can
be found in Abrial (1996).

To establish the correctness of Algorithm 1, we
have adopted the B architecture depicted in Figure 2:

• At the abstract level, we build a B machine Frag-
Process that defines a set of types which cor-
respond to Activities, Objects (Data items) and
Terms. The process is described through 3 vari-
ables defined as follows:

1. output: this function gives the data items
used by an activity as output.

2. desc: this function gives the set of terms
corresponding to each activity (it corre-
sponds to â).

3. conflict: this relation stores the sets of the
data items couples that are in conflict (pri-
vacy constraints CN).

5This formal concept is generated using the FCA technique as
it exists in the literature

Figure 2: B Architecture for Algorithm 1 and its Cor-
rectness.

Finally, a B operation is specified in order to per-
form the fragmentation of the process. This op-
eration is expressed in an abstract manner by
giving the properties that the returned fragments
should verify. Functions, Θ and ∆ are declared
as definitions

• According to the B refinement technique, prov-
ing that algorithm 1 is correct comes down to
establish that it is a possible implementation of
the previous B machine. To do that, we cre-
ate a B implementation component of the previ-
ous machine in which operation Fragmentation,
verifying the privacy awareness and maximality
properties, is implemented by the instructions of
algorithm 1. This implementation component
imports a B machine in which function Θ and
∆ are also described as operations in order to be
called from the implementation component.

To validate these B components, we have gener-
ated and proved a set of proof obligations. Not sur-
prising, components FragProcess and Theta Delta do
not generate any proof obligation because their opera-
tions do not modify their variable. Consequently, the
invariant remains true. Component FragProcess Imp
generates 61 proof obligations : 53 have been dis-
charged automatically where the others require the
human intervention in order to help the prover find
the right deduction rules to establish them. Re-
call that the proof obligations of this component
aims at proving that the implementation of operation
Fragmentation is correct with respect to its abstract
specification. In this way, we prove the correctness of
algorithm 1.

4.3 Fragments’ Structure Building Algo-
rithm

Although we ensured the relevance and privacy-
awareness of the derived clusters, the clustering phase
lefts the structural concerns away. Indeed, some
clusters depict disconnected structures, when recon-
structed into fragments. This is not conform to prop-
erty 2. For instance, the cluster {e1, a1, a5, a6} is dis-
connected and would not lead to a correct fragment.
Moreover, the result may further be improved by at-
tempting to merge fragments, i.e., that do not re-
veal sensitive information, into coarser-grained ones.
This permits to involve more complex functionalities.
For instance, the cluster {e1, a1, a5, a6}, the cluster

CRPIT Volume 147 - Computer Science 2014

94

Algorithm 2 Fragment Building

1: function buildFrag(FormalConceptSet
conSet, Process P , Privacy CN):FragmentSet

2: declare FragmentSet F ← new Frag-
mentSet()

3: begin
4: for all (superT, superCl) ∈
{(T,A)|∃((T1, A1), (T2, A2)).({(T1, A1), (T2, A2)} ⊆
conSet ∧ (∀(a1, a2).(a1 ∈ A1 ∧ a2 ∈ A2 ⇒
notConflicting({a1, a2}, CN))) ∧ (A1 ∪ A2) ⊆
A ∧ (T1 ∪ T2) ⊆ T)} do

5: Fragment f ← new Fragment()
//Insert activities and data elements

6: f.A← superCl
7: f.D ← P.Dfin [superCl] ∪

P.Dfout [superCl]
8: f.Dfin ← superCl ▹ P.Dfin
9: f.Dfout ← superCl ▹ P.Dfout

//Insert gateways and the corresponding in-
put data elements

10: f.G ← ran((superCl ▹ Cf) ◃ G) ∪
dom((G▹ Cf)◃ superCl)6

11: f.D ← f.D ∪ P.Dfin [f.G]
12: f.Dfin ← f.Dfin ∪ f.G▹ P.Dfin
13: f.O ← f.A ∪ f.G
14: f.Df ← f.Dfin ∪ f.Dfout

15: f.Cf ← f.O ▹ (P.Cf ◃ f.O)//Insert com-
plete control flows

16: f.Cf ← (f.C−1
f [∅] ∗ ⊥) ∪ (⊥ ∗

f.Cf [∅])//Insert dangling control flows
17: f.fn ← superT//Insert fragment’s func-

tionalities
18: F ← F ∪ splitIntoConnected(f)
19: end for
20: return F
21: end
22: end function

{a1, a7, a8}, and the cluster {a3, a4, a7, a8}, that were
generated from the clustering phase, can be melted
together in a single cluster to involve both surgery
preparation and patient’s record manipulation.

Algorithm 2, buildFrag, takes as parameters the
input process, P , the formal concepts, conSet, that
are generated during phase 1, and the privacy-
constraints CN . The algorithm returns a set of con-
nected and privacy-aware fragments.

The algorithm applies on each super-formal con-
cept that is made of the union of formal concepts
whose cluster activities are not conflicting (line 4).
For example, given two formal concepts (T1, A1)
and (T2, A2), where activities from A1 are not con-
flicting with activities from A2, their super-formal
concept is (T1 ∪ T2, A1 ∪ A2). The merge aims
at assembling clusters involving different functional-
ities in order to provide coarser-grained fragments
making easier their integration into new processes.
A super-cluster corresponds to a connected frag-
ment when all its activities can be connected. It
corresponds to multiple connected fragments other-
wise. For instance, {e1, a1, a3, a4, a5, a6, a7, a8} is
the super-cluster made from clusters {e1, a1, a5, a6},
{a1, a7, a8}, and {a3, a4, a7, a8}.

Given a super-cluster, the algorithm builds a new
fragment consisting of the super-cluster activities.
The latter are garnished with the corresponding data
elements, i.e., namely data items (either inputs or
outputs), and data flows (lines 5-9).

6Given the relation R ⊆ X×X′, dom(R) = {x|x ∈ X∧∃x′.(x′ ∈

e1

Patient’s SSN

Surgery order

number

a1: Retrieve

surgery

information

Surgery information

Figure 3: Example 1 of a Connected Frag-
ment Generated from the Super-Cluster
{e1, a1, a3, a4, a5, a6, a7, a8}.

Next, the algorithm inserts the gateways that are
linked to the selected activities, i.e., in the initial pro-
cess. Gateways’ data elements are also picked and re-
ported in the new fragment (lines 10-12). After that,
the algorithm draws the control flows. Indeed, com-
plete control flows are imported from the original pro-
cess P , and this, when both source objects and sink
objects belong to the fragment’s objects, f.O (line
15). Control flows, that were broken during the clus-
tering phase, are replaced with dangling ones (line
16). Dangling control flows represent gluing points
regarding the new process.

The algorithm, then, tags each fragment with the
terms, superT , describing the fragment involved func-
tionalities (line 17).

Finally, the algorithm uses function
splitIntoConnected, according to property 2, in
order to split the fragment f into multiple connected
fragments when activities cannot be connected to
each other. It keeps the fragment’s structure as it
is otherwise. Function splitIntoConnected is not
detailed within this paper. Indeed, it is straightfor-
ward to check whether a cluster is connected or not
respectively to property 2, e.g., using existing tree
navigation algorithms (Nuutila & Soisalon-Soininen
(1994)).

Note that the generated fragments also fulfill the
property 1. Indeed, given that processes are assumed
respecting such property and fragments are portions
of those processes then fragments respect property 1,
too.

Figure 3 and figure 4 illustrate gener-
ated fragment examples from the super-cluster
{e1, a1, a3, a4, a5, a6, a7, a8}. According to algorithm
2, the fragments deal with both surgery preparation
and patient’s record manipulation. Note that the
fragment in figure 3 involves, in fact, only surgery
preparation. Assigning the specific functionalities to
the fragments will be handled in future works. The
privacy-preserving is well preserved, w.r.t property 3
as clusters whose output activities may form sensitive
associations are dissociated. The activities of both
fragment examples are semantically relevant enough
for parts of the functional requirements Q. Note
that the reimburs term, i.e., part of the requirements
Q, are left away as there are no activities involving
such functionality. Moreover, the fragment structure
is correct respectively to definition 2 and dangling

X′ ∧ x 7→ x′ ∈ R)} and ran(R) = {x′|x′ ∈ X′ ∧ ∃x.(x ∈ X ∧ x 7→
x′ ∈ R)}

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

95

a3: Ask for

patient’s

record

a4: Compile

patient’s

record

a5: Select a

free

surgeon

a6: Select a

free surgery

room

g3

Patient’s Information

Patient’s SSN

Surgeon information Surgery room
number

Patient’s record
Relevant patient’s

record

Surgery information

a7: Confirm

patient for

surgery

g2

Figure 4: Example 2 of a Connected Frag-
ment Generated from the Super-Cluster
{e1, a1, a3, a4, a5, a6, a7, a8}.

control flows play gluing points in the new process.
Therefore, the generated fragments can be reused in
building new business processes.

5 Implementation and Results

We have implemented a tool that corresponds
to the proposed algorithms. Our approach plays
on existing FCA mechanisms adaptability. Indeed,
a Colibri-java library7, for classical Formal Concept
Analysis, has been extended with a prototypical cod-
ing of the semantics and privacy extensions. The tool
receives as input an XML document containing the
activity descriptions of each selected process, an XML
document containing the process organization (as pre-
sented in definition 1), and the set of privacy con-
straints. It produces a set of privacy-aware fragments
as presented in definition 2. We have implemented
activity description preparation classes based on Fox
(1992) and Porter (1997), respectively for removing
stopwords and stemming terms, as well as a weighting
class implementing TF/IDF Salton & Buckley (1988)
weighting mechanism.

To evaluate our decomposition algorithm, we have
directed the tests to check (i) the granularity of the
resulted fragments and (ii) the scalability of the al-
gorithm. To evaluate the granularity of the resulted
fragments, we ran the algorithm over a set of 5 pro-
cesses from SAP library (Industry Specific Business)
while varying the value of the similarity threshold α
and counting the average number of activities within
the resulted fragments. We took a set of 3 terms,
having the same weight, for the functional require-
ments

−→
Q . The decomposition of each process leads

to 2 fragments, on average. The statistical results are
depicted in table 1.

Note that more the similarity threshold increases
more the granularity decreases. This means that some
activities were removed as their similarity were below
α. The similarity may be further improved when ac-
tivities have rich description. The granularity is not
high compared to the size of the processes which re-
flects the weak activities interdependency. This may

7http://code.google.com/p/colibri-
java/source/browse/#svn%2Ftrunk%2Fcolibri

size 0 0.1 0.2 0.3 0.4 0.5
P1 10 3.5 2.5 1.5 1 1 0
P2 20 3.25 3.25 3 2.66 2 1.5
P3 9 3.5 3.5 2.25 1.75 1.33 1
P4 5 1.5 1.5 1.5 1.5 1 1
P5 7 2.33 2.33 1.75 2 1 0

size 0.6 0.7 0.8 0.9 1
P1 10 0 0 0 0 0
P2 20 1.5 1 0 0 0
P3 9 0 0 0 0 0
P4 5 1 1 0 0 0
P5 7 0 0 0 0 0

Table 1: Fragments Granularity.

be improved by considering some terms similar, e.g.,
drug, medicine.

We finally evaluated the scalability of our decom-
position algorithm. The tests were conducted on a
laptop with Core Intel i5 processor, (2.27GHz*2),
4 GB memory, running Microsoft Seven. We have
tested the execution on 3 processes: the first one
containing 270 activities performs in 1.605 seconds,
the second process containing 90 activities performs
in 0.875 seconds, and the third process containing 3
activities performs in 0.531 seconds. Thus, the algo-
rithm can be performed with big processes with a fair
execution time.

6 Related Work

Several approaches have been proposed in the area
of reusing business process fragments. Nevertheless,
it is not well explored when it is about automatically
retrieving reusable fragments and even less when it
comes to ensure the privacy of sensitive information
that may be inferred intentionally or not. In the
following, we present some existing approaches re-
lated to business process decomposition and privacy-
preserving in business process reuse.

Huang et al. (2010) propose a workflow decom-
position mechanism for reuse purposes. Their tech-
nique aims to provide reusable fragments in a bottom-
up fashion. Following Huang et al. (2010), processes
are organized into a hierarchy of reusable fragments.
The approach then computes the interdependence be-
tween each fragment activities. This approach, how-
ever, lacks semantics where it manipulates the co-
occurrence of activity pairs enclosed within each frag-
ment.

In the same thinking, Rosa et al. (2010) have pro-
posed an approach for merging a set of processes in
a pairwise fashion. The merge consists in captur-
ing the common connected activity regions of the ini-
tial processes and adds independent parts. This pro-
vides a unique version of multiple processes that share
some elements. Common regions may be retrieved
and reused as part of new processes. While regions
structurally fit the fragment’s definition, they may
however enclose irrelevant elements for the designer.
Business process patterns are addressed by La Rosa
et al. (2011) to reduce the complexity of business pro-
cess structures. Four out of twelve proposed patterns
foster the reusability of the reduced portions. This
approach is also essentially structure-centric and does
not provide semantics grouping concerns.

Smirnov et al. (2011) provides a semantic approach
to abstract business process models into high level
views. This consists in generating coarse-grained ac-
tivities, a.k.a. clusters, sharing the same property

CRPIT Volume 147 - Computer Science 2014

96

values over several property types. The proposed ap-
proach is based on a binary VSM handling property
values, i.e., only property types are weighted. Our
approach permits such manipulations. Moreover, our
approach assigns a weight for each property value
making the similarity computation more signification
for activities.

Furthermore, Huang et al. (2010), Rosa et al.
(2010), La Rosa et al. (2011), Smirnov et al. (2011) do
not address any privacy-preserving mechanism. In-
deed, sensitive information may freely be inferred by
malicious activities that fragments are linked to.

Khalaf & Leymann (2012) and Khalaf & Leymann
(2006) handle business process partitioning in order
to assign some given functionalities to outside part-
ners. The partitioning is made in such a way to main-
tain the behavior of the original process. Neverthe-
less, the partitioning is mainly performed manually.
Indeed, the partitioning task follows fixing the corre-
sponding activities for each partner.

The work presented by Ivanovic et al. (2010), pro-
poses a fragment identification approach for outsourc-
ing portions of a business process, while dealing with
predefined privacy policies. The latter are used to re-
strict access to certain information to third parties.
The decomposition, while it ensures the privacy of
sensitive information, focuses only on the information
routed between activities. The generated fragments
do not involve semantics features to enable reusing
them later.

7 Conclusion

We have presented a novel approach in order to
provide useful, privacy-aware and reusable fragments.
This is ensured by the proposed process decomposi-
tion mechanism that (i) performs according to the
designer needs (requirement-driven), and (ii) takes
into account privacy constraints avoiding sensitive
information inferences. Furthermore, fragments are
reusable and may easily be integrated into new pro-
cesses as they depict a connected structure. The in-
tegration is enabled as fragments have gluing points
consisting of dangling control flows.

Further improvements can be added on similarity
computation. This can be achieved using ontologies.
Our future work is directed towards this axis.

References

Abrial, J. R. (1996), The B-Book: Assigning Pro-
grams to Meanings, Cambridge University Press.

Eberle, H., Unger, T. & Leymann, F. (2009), Process
fragments, in ‘On the Move to Meaningful Internet
Systems: OTM 2009’, Vol. 5870 of Lecture Notes
in Computer Science, Springer, pp. 398–405.

Fox, C. (1992), ‘Lexical analysis and stoplists’, In-
formation Retrieval: Data Structures & Algorithms
pp. 102–130.

Ganter, B. & Wille, R. (1999), Formal concept anal-
ysis - mathematical foundations, Springer.

Huang, Z., Huai, J., Liu, X. & Zhu, J. (2010), Busi-
ness process decomposition based on service rele-
vance mining, in ‘Web Intelligence’, pp. 573–580.

Ivanovic, D., Carro, M. & Hermenegildo, M. V.
(2010), Automatic fragment identification in work-
flows based on sharing analysis, in ‘ICSOC’,
Vol. 6470 of Lecture Notes in Computer Science,
pp. 350–364.

Khalaf, R. & Leymann, F. (2006), Role-based de-
composition of business processes using bpel, in
‘ICWS’, pp. 770–780.

Khalaf, R. & Leymann, F. (2012), ‘Coordination for
fragmented loops and scopes in a distributed busi-
ness process’, Information Systems pp. 593–610.

Khalaf, R. Y. (2008), Supporting business process
fragmentation while maintaining operational se-
mantics: a BPEL perspective, PhD thesis, Institute
of Architecture of Application Systems, University
of Stuttgart.

La Rosa, M., Wohed, P., Mendling, J., ter Hofst-
ede, A. H., Reijers, H. A. & van der Aalst, W. M.
(2011), ‘Managing process model complexity via
abstract syntax modifications’, Industrial Infor-
matics, IEEE Transactions on 7(4), 614–629.

Mancioppi, M., Danylevych, O., Karastoyanova, D. &
Leymann, F. (2011), Towards classification criteria
for process fragmentation techniques, in ‘Business
Process Management Workshops’, pp. 1–12.

Markovic, I. & Pereira, A. (2008), Towards a for-
mal framework for reuse in business process model-
ing, in ‘Business Process Management Workshops’,
Springer, pp. 484–495.

Nuutila, E. & Soisalon-Soininen, E. (1994), ‘On
finding the strongly connected components in a
directed graph’, Information Processing Letters
49(1), 9–14.

Ouyang, C., Dumas, M., Ter Hofstede, A. & Van
Der Aalst, W. (2007), ‘Pattern-based translation of
bpmn process models to bpel web services’, Inter-
national Journal of Web Services Research (JWSR)
5(1), 42–62.

Porter, M. F. (1997), An algorithm for suffix strip-
ping, in K. Sparck Jones & P. Willett, eds, ‘Read-
ings in information retrieval’, Morgan Kaufmann
Publishers Inc., pp. 313–316.

Rosa, M. L., Dumas, M., Uba, R. & Dijkman, R. M.
(2010), Merging business process models., in ‘OTM
Conferences (1)’, pp. 96–113.

Salton, G. & Buckley, C. (1988), ‘Term-weighting ap-
proaches in automatic text retrieval’, Information
processing & management 24(5), 513–523.

Salton, G., Wong, A. & Yang, C. (1975), ‘A vector
space model for automatic indexing’, Communica-
tions of the ACM 18(11), 613–620.

Schumm, D., Karastoyanova, D., Kopp, O., Ley-
mann, F., Sonntag, M. & Strauch, S. (2011), ‘Pro-
cess fragment libraries for easier and faster devel-
opment of process-based applications’, Journal of
Systems Integration 2(1), 39–55.

Schumm, D., Leymann, F., Ma, Z., Scheibler, T.
& Strauch, S. (2010), ‘Integrating compliance into
business processes: Process fragments as reusable
compliance controls’, Proceedings of the Multikon-
ferenz Wirtschaftsinformatik (MKWI10) .

Smirnov, S., Reijers, H. A. & Weske, M. (2011), A
semantic approach for business process model ab-
straction, in ‘CAiSE’, pp. 497–511.

Sweeney, L. (2002), ‘k-anonymity: A model for pro-
tecting privacy’, International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems
10(5), 557–570.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

97

Ter Hofstede, A., van der Aalst, W. & Weske, M.
(2003), ‘Business process management: A survey’,
Business Process Management 2678, 1019–1019.

Zemni, M. A., Hadj-Alouane, N. B. & Yeddes, M.
(2012a), An approach for producing privacy-aware
reusable business process fragments, in ‘ICWS’,
pp. 659–661.

Zemni, M. A., Hadj-Alouane, N. B. & Yeddes,
M. (2012b), A semantics-based privacy-aware ap-
proach for fragmenting business processes, in
‘MVDA’.

CRPIT Volume 147 - Computer Science 2014

98

Poisson Blended Exemplar-based Texture Completion

Hoang M. Nguyen Burkhard C. Wünsche Patrice Delmas
Christof Lutteroth

Computer Science Department
The University of Auckland,

Email: justin.nguyen@auckland.ac.nz
{burkhard, p.delmas, lutteroth}@cs.auckland.ac.nz

Abstract

Image inpainting is the process of correcting unde-
sirable changes to an image in an unobtrusive way.
The existing literature in this research field describes
predominantly techniques designed to correct narrow
missing regions, which thus often produce undesirable
results when the damaged region is large.

This paper presents a novel exemplar-based image
inpainting technique for automatic filling-in missing
region of an image. Our solution offers two major im-
provements compared to existing techniques. Patches
for filling in missing regions are identified using an ap-
pearance space vector, which not only encodes pixel
colours, but also colour gradients, feature distances
and other measures for computing image similarity.
In order to speed up the search for a matching patch
we use a Principal Component Analysis to reduce the
size of a feature vector used for patch comparison.

The second major improvement is the technique
used combine patches filling in a missing region. In
order to avoid visible seams we use a Poisson-guided
interpolation to blend patches.

Our evaluation and comparison with existing tech-
niques demonstrates significantly improved perfor-
mance for inpainting missing image regions.

Keywords: texture inpainting, texture reconstruction,
image information recovery

1 Introduction

The problem of modifying an image to revert deterio-
ration in a non-detectable way has long been an inten-
sive research field in computer graphics. Generally,
two classes of image inpainting techniques have been
explored and studied: pixel-based and exemplar-based
texture inpainting. Pixel-based inpainting methods
attempt to reconstruct missing or damaged regions
one pixel at a time. This class of methods is often fast
and produces good results for small regions. Pixel-
based approaches work by propagating pixel values
along contours of equal luminance and computing the
value of a “missing” pixel based on its surrounding
“good” pixels. The method tends to produce blurred
outputs for larger regions.

Exemplar-based inpainting attempts to construct
the damaged regions by searching for the best-fitting
patches and copying them over to the missing region.

Copyright c© 2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference, ACSC 2014, Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology, Vol. 147. Bruce H. Thomas and David Parry,
Eds. Reproduction for academic, not-for-profit purposes per-
mitted provided this text is included.

These methods are often not as efficient as pixel-based
techniques due to the time consuming process of find-
ing best-fitting patches. However, they are most suit-
able for dealing with larger missing regions. Effi-
ciently and accurately determining the patch best fit-
ting a missing region is one of the key problems of
this class of methods. Furthermore, in most applica-
tions it is not possible to fill a missing region with a
single patch. Hence multiple patches must be copied,
which results in partial overlaps and consequently vis-
ible seams along patch boundaries.

In this paper, we present a new Poisson-exemplar-
based method for inpainting a missing region in an
image. In order to improve the efficiency and accu-
racy of the best-fit patch finding stage, we forgo the
conventional Sum of Squared Differences (SSD) score
technique and employ so-called appearance space at-
tributes to help with this task. For each pixel, the ap-
pearance space attribute contains not only the RGB
color value, but also its signed feature distance, gradi-
ent in both directions and HSB values. This provides
far more accurate information about each pixel and
its neighbourhood, and hence makes it possible to find
better matching image regions. Selected patches are
fused and blended together using a Poisson interpo-
lation technique, significantly reducing visible seams.

The remainder of this paper is organised as fol-
lows: After a brief discussion on the state-of-the-art
of image inpainting in section 2, we describe our in-
painting algorithm in section 3. Section 4 presents
some of our results. Section 5 concludes our paper.

2 Related Work

An analysis of the literature reveals two key classes of
algorithms for image in-painting. The first group of
methods approaches the problem of texture inpaint-
ing from a pixel-based perspective. These methods
reconstruct a missing region by computing color val-
ues for each pixel one at a time starting from the
missing region’s boundary and processing inward un-
til the entire region is filled.

Exemplar-based techniques fill missing regions by
searching for patches matching the region boundary
and inserting these texture patches such that discon-
tinuities with the valid image region are minimised.
Both approaches are able to produce high-quality re-
sults.

The arguably best known and successful algo-
rithm amongst pixel-based inpainting methods was
proposed by Bertalmio et al. (2000). The authors
attempt to replicate the manual inpainting by prop-
agating the known color values into a missing region
along so called isophotes, representing the smallest
spatial change of color values and structures.

Drori et al. (2003) present a similar approach using

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

99

adaptive circular fragments to operate on different
scales to capture both global and local structures and
approximating the missing region.

Ignecio et al. (2004) present an inpainting tech-
nique based on a fast marching method for level set
applications. The method is simple and considerably
more efficient than other pixel-base methods.

As pixel-based methods synthesize texture infor-
mation of a pixel by examining only its neighborhood
information, these methods only yield good results for
small and narrow missing regions. For larger holes,
the reconstructed image regions tend to be blurry and
visually obtrusive.

Exemplar based methods are hence becoming in-
creasingly popular for generating large missing tex-
ture patches.

Criminisi et al. (2003) propose a method that re-
constructs missing texture regions by iteratively se-
lecting a “best-fit” rectangular patch and copy it over
to the target region. The order in which boundary
pixels of the missing region are processed is based on
the amount of information available for that pixel and
whether it has any prominent features.

In this paper we present a new algorithm, which
uses a similar patch search and insertion concept, but
offers two key improvements. First, instead of using
only pixel colours for the patch finding process, we
employ an appearance space which encapsulates much
more information. Second, Criminisi’s method does
not handle seams along patches. Inevitably, their re-
sults often look unrealistic. In contrast, our method
smoothly fuses patches together to remove all visible
seams.

Cheng et al. (2005) updated the priority equation
of Criminisi et al. (2003) and made it adjustable to
the structural and textural information specific to an
image. Ignecio et al. (2007) extended the concept
of Criminisi’s method and applied it in the wavelet
domain. Their method computes the fill-priority by
first transforming the image and the provided binary
mask and then use wavelet coefficients and a similarly
defined priority to define the fill-order.

3 Algorithm

3.1 Fundamentals

In order to facilitate understanding of our technique
and comparison with alternative techniques we adopt
the notation used in the image inpainting literature.
Let Ω indicate the target region to be inpainted. Note
that there is no restriction imposed on the topology
of Ω. Let δΩ denote the boundary of the target re-
gion. The boundary is sometimes referred to as “fill
front” since this contour evolves inward as the algo-
rithm progresses. The source region is denoted as Φ,
which in our algorithm remains unchanged through-
out the processes. Let Ψp be a window centered at
the point p.

The main principle behind exemplar-based meth-
ods is simple. As with all exemplar-based texture in-
painting methods (e.g. Efros et al. (1999), Criminisi
et al. (2003)), the size of the template patch (window)
must be specified in advance. In our algorithm, the
default patch size is empirically set to 11 × 11 (refer
to (Nguyen et al. 2013) for a more detailed analysis of
the algorithm parameters). To synthesize the missing
region, the following procedure is repeated until all
pixels are filled.

For a given pixel p on δΩ, find a patch Ψq where
q ∈ Φ such that Ψq is most similar to those parts
that are already filled in Ψp. The missing texture in-

formation is then transfered from Ψq to Ψp. Figure 1
illustrates this process.

Figure 1: Exemplar-based texture inpainting. a) The
original input image with the source region Φ, the
target region Ω and the boundary δΩ. b) Attempting
to reconstruct an area around pixel p. c) Several likely
candidate matches are found in the source region. d)
The content of the best patch is copied over, resulting
in a partial filling of Ω (adapted from Criminisi et al.
(2003)).

The filling order is critical for inpainting tech-
niques in general, and even more so for non-
parametric texture synthesis. Traditionally, the most
well-known method has been “onion peel”, where
the inpainted region is synthesised in concentric lay-
ers inwardly (Criminisi et al. 2003). Therefore, in
our method we iteratively shrink the gap of the in-
painted region by continuously transferring colours
from source regions to patches centered at boundary
pixels.

3.2 Determining the Filling-Order

Given a set of boundary pixels, the objective is to
determine the order or priority of the pixels to be
processed. This task is accomplished as followed. For
each boundary pixel p, let Ψp be a patch centered
around p. The priority of p is defined as by Criminisi
et al. (2003):

Priority(p) = Confidence(p) ∗Data(p) (1)

The confidence term, which quantifies the amount
of reliable information in the pixel’s neighborhood, is
defined as:

Confidence(p) =

∑
q∈Ψp∩Ω Confidence(q)

|Ψp|
(2)

where |Ψp| is the area of the patch Ψp and Ω de-
notes the target region to be inpainted. The function
Confidence(q) returns 1 if q is already filled and 0
otherwise. The confidence term aims to boost the pri-
orities of patches that have more already-filled pixels,
allowing them to be synthesized first.

The data term, which defines the strength of the
isophotes arriving at the boundary, is defined as:

Data(p) =
| 5 I⊥p · np|

α
(3)

where 5I⊥p represents a vector that is orthogonal
to the gradient vector at p, np is the normal at p, and
α denotes a normalisation factor (α = 255 for RGB-
colour images). The purpose of this data term is to
find matching patches preserving linear texture fea-
tures, such as straight lines or curves, and therewith
extending the linear features gradually inwards.

The confidence values for all boundary pixels are
computed and the pixel with the highest confidence
value is processed first.

CRPIT Volume 147 - Computer Science 2014

100

3.3 Candidate Patch Identification

The next task is to search for a patch in the im-
age that retains the highest resemblance to the pro-
cessed patch. This is achieved by iteratively travers-
ing through each pixel of the image outside the miss-
ing region and computing the similarity of the patch
centered around that pixel and the original patch. In-
stead of using the standard SSD to measure the sim-
ilarity of two given patches, we employ appearance
space attributes, which provide much more informa-
tion and thus improve the search result.

When searching for a matching patch we consider
for each pixel an 11 × 11 pixel neighbourhood. For
each pixel of this neighborhood we consider RGB
colours, the gradient vector as well as the signed Eu-
clidean distance to the closest dominant feature to the
original texture. The entire information is encapsu-
lated into an 11× 11× (3 + 2 + 1) = 726-dimensional
vector.

Determining the similarity of two given patches
by comparing two 726-dimensional vectors is not ef-
ficient. In order to make the appearance space more
practicable, the 726-dimensional vectors are projected
into low-dimensional vectors using principal compo-
nent analysis (PCA) (Lefebvre et al. 2006, Manke et
al. 2009). In our method, the dimensionality is re-
duced to 12, which from our experiments on different
types of images produced the best results.

The clear advantage of attribute space over the
conventional SSD is that the attribute space approach
permits any meaningful information about the pixels
and their surrounding to be embedded for matching
purposes. By reducing the dimensionality, the com-
putation time can be kept manageable.

3.4 Patch Fusion

The final step is to replicate the content of the can-
didate patch and smoothly blend it with the target
region. We employ a Poisson-guided interpolation ap-
proach proposed by Perez et al. (2003) for this task.
The principle behind this is fairly straightforward.

Suppose ΨB is the candidate patch to be copied
and fused over the target patch ΨA, and let ∂A and ∂B
be the boundaries of the target and candidate patches
respectively. The goal is to adjust the colour infor-
mation of ΨB , while preserving the relative informa-
tion (image gradient) as much as possible, so that the
transition between the newly modified patch ΨC and
the rest of the image is gracefully blended. This is
accomplished as follows:

First, the values of the boundary pixels of ΨC are
initialised to be equal to the corresponding values of
the boundary pixels of ΨA. This is to ensure that
the isophotes arriving at the boundary are properly
maintained.

ΨC(x,y)
= ΨA(x,y)

∀(x, y) ∈ ∂B (4)

Next, each colour channel’s value of the remaining
interior pixels within ΨC are independently adjusted
to be consistent with the boundary pixels while con-
straining the image gradient to be identical to that of
ΨB .

5C(x, y) = 5B(x, y) ∀(x, y) ∈ ΨC\∂C (5)

where 5(x, y) denotes the image gradient at the
pixel (x,y), and 5C(x, y) and 5B(x, y) are defined
as

S1 =
∑

(x+δx,y+δy)∈ΨA

C(x+ δx, y + δy) (6)

S2 =
∑

(x+δx,y+δy)∈∂A

A(x+ δx, y + δy) (7)

5C(x, y) = |N | C(x, y) − S1 − S2 (8)

where N is the number of valid pixels. A pixel is
considered valid if it is inside the processed patch.

5B(x, y) =
∑

(x+δx,y+δy)∈ΨA∪∂A

B(x, y)−B(x+δx, y+δy)

(9)
δx and δy designate a set of 4-connected neigh-

bours around x and y. The equation 5 can then be
expressed in the form of a system of linear equations
with i variables (i is the number of pixels in ΨC(x,y)

),
and can be solved using an iterative matrix solver
such as the Jacobi Method.

4 Evaluation

In this section, we investigate the effect of different
algorithm parameters and compare its performance
in comparison with popular existing algorithms.

4.1 Evaluation of Appearance Space At-
tributes

Figure 2: a) The image contains three black square re-
gions where image information was removed in order
to fill the regions using image inpainting techniques.
b) The original input image. c) Inpainted image us-
ing SSD d) Reconstructed image using appearance
space attributes.

We have tested different appearance space at-
tributes and found that the best matching patches
are found by using a combination of gradient values,

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

101

signed feature distance and RGB colours. Adding
additional information such as HSB channels and
neighbouhood variance increases the cost and pro-
duces no visible improvement. The difference between
using standard SSD and using Appearance Space At-
tribute is demonstrated in figure 2.

The reconstructed image using SSD has a poor
quality. All three missing regions have been filled us-
ing patches which do not properly match the bound-
ary of the hole. Reconstructing the image using ap-
pearance space attributes demonstrates clear improve-
ments. Although there are still some artefacts around
the eyebrow region, these will be mended during the
blending process.

4.2 Blending versus Non-Blending

We present several examples to demonstrate the ef-
fectiveness of our algorithm compared with existing
techniques.

Figure 3: Reconstructed texture with and without
blending. a) Input texture. b) Result using the
method by Criminisi et al. (2003). c) Our result where
patches are blended together using Poisson-guided in-
terpolation.

Figure 3 illustrates inpainting results on a part
of a texture alas. Note that without blending the
overlapping inserted patches have visible seams. Fur-
thermore, not the entire missing region was filled. In

contrast, using Poisson-guided interpolation produces
a very realistic and complete result.

Figure 4: Inpainted texture without blending (left),
and with blending (right).

Figure 4 demonstrates another example of how
Poisson-guided interpolation improves the overall in-
painting results. Notice how the eyebrow now appears
more natural.

4.3 Evaluation against Other Inpainting
Methods

In this section, we evaluate our method against some
of the best known texture inpainting methods de-
scribed in the literature.

Figure 5 shows an example in which spots of a
cheetah are removed using several well-known in-
painting methods.

Ignecio et al. (2004)’s method is the most efficient.
It took approximately 45 seconds to accomplish the
task. However, the result is unsatisfoctory. Most rem-
nants of the cheetah’s spot are still evident. Addi-
tionally, as some of the spots are relatively large, the
inpainted image regions appear blurry.

Bertalmio et al. (2000)’s method takes a little more
time to process but generate a better result (57 sec-
onds). However, as with Alexandru’s method, it fails
to remove some of the spots completely. For some
large gaps, blurry textures can be seen. Additionally,
in some cases (for some spots) colours are not propa-
gated correctly resulting in patches with colours not
consistent with the regions neighborhood.

The bottom image in figure 5 shows that our
method successfully removes all spots with texture
information consistent with the surrounding image
region. However, there are some small regions at the
tail where the algorithm was unable to reconstruct the
fur without spots correctly (part of the tail’s texture
extrudes to the neighbouring area). This is proba-
bly due to the fact that the selected window size was
relatively large in this case. Overall, our algorithm
works well and produces good results compared to
other inpainting methods.

Figure 6 presents another example comparing dif-
ferent inpainting methods. Bertalmio et al.’s (2003)
method was unable to fill the missing region. This is
probably due to the fact that intensity values from the
source region are not properly propagated inwardly.
Traditional exemplar-based techniques such as Crim-
inisi et al. (2003) produce fairly good result, although
there is a large artefact in the reconstructed region.
Ignecio et al.’s (2004) method produced a reasonably
good result, although the inpainted region appears
very blurry. Some parts of the window in the image
are not reconstructed properly. Our algorithm per-
forms well in this test case. Although the inpainted
region still exhibits slight blurriness, the overall struc-
ture of different scene components has been correctly
reconstructed.

CRPIT Volume 147 - Computer Science 2014

102

5 Conclusion and Future Work

In this paper we have presented a novel image inpaint-
ing algorithm for reconstructing large missing texture
regions from digital photographs. The results of this
inpainting process is a new image in which the dete-
rioration has been “inpainted” and reverted in such a
way that few visible traces of it remain.

The basic idea of our approach is to replicate
missing textures by searching for “best-fit” texture
patches in the source regions and smoothly insert
these patches into the missing region to form the fi-
nal result. The filling-order is determined using pix-
els’ confidence value, which is defined by the amount
of information available for that pixel and the image
isophotes. This allows our algorithm to propagate
both linear and round texture features into the tar-
get region.

Our solution offers two major improvements com-
pared to existing techniques. Patches for filling in
missing regions are identified using an appearance
space vector, which not only encodes colour differ-
ences between regions, but also colour gradients, fea-
ture distances and other measures for image similar-
ity. In order to speed up the search for a matching
patch we use a Principal Component Analysis to re-
duce the size of a feature vector used for patch com-
parison. The second major improvement is the use of
Poisson-guided interpolation to blend patches.

We have evaluated our method’s performance
against some of the best known inpainting methods
described in the literature and found that our results
are superior.

References

Marcelo Bertalmio, Guillermo Sapiro, Vicent Caselles
and Coloma Ballester (2000), Image Inpainting,
in ‘Proceeding SIGGRAPH ’00 Proceedings of the
27th annual conference on Computer graphics and
interactive techniques’, pp. 417–424.

Iddo Drori, Daniel Cohen-Or and Hezy Yeshurun
(2003), Fragment-Based Image Completion, in
‘ACM Transactions on Graphics’, Vol. 22, pp. 417–
424.

A. Criminisi, P. Prez and K. Toyama (2003), Object
Removal by Exemplar-based Inpainting, in ‘ACM
Transactions on Graphics’, pp. 721–728.

Wen-Huang Cheng, Chun-Wei Hsieh, Sheng-Kai Lin,
Chia-Wei Wang and Ja-Ling Wu (2005), Robust
algorithm for exemplar-based image inpainting, in
‘In Proceedings of CGIV’, pp. 64–69.

Ubirate Ignecio and Cleudio R Jung (2007), Block-
based image inpainting in the wavelet domain, in
‘Visual Computing’, pp. 733–741.

Alexandru Telea (2004), Journal of Graphics Tool, in
‘An image inpainting technique based on the fast
marching method’, Vol. 9, pp. 23–34.

Patrick Perez, Michel Gangnet and Andrew Blake
(2003), ACM TRANSACTIONS ON GRAPHICS,
in ‘Poisson image editing’, Vol. 9, pp. 23–34.

Alexei Efros and Thomas Leung (1999), In Pro-
ceeding of ICCV, in ‘Texture synthesis by non-
parametric sampling’, pp. 1033–1038.

Felix Manke and Burkhard Wunsche (2009), Image
and Vision Computing New Zealand 2009. IVCNZ
09, in ‘Analysis of appearance space attributes for
texture synthesis and morphing’, pp. 85–90.

Sylvain Lefebvre and Hugues Hoppe (2006), ACM
SIGGRAPH 2006 Papers, in ‘Appearance-space
texture synthesis,’, pp. 541–548.

Hoang Minh Nguyen, Burkhard Wunsche, Patrice
Delmas and Christof Lutteroth (2013), Image and
Vision Computing New Zealand 2013. IVCNZ 13,
in ‘Enhanced Patch-Based Image Inpainting with
Poison Interpolation’, 2013 [Accepted for publica-
tion].

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

103

Figure 5: A scene from the animation series - “Rolling
Safari”. a) The original input image. All black spots
are considered missing regions and we employ image
inpainting techniques in order to fill the black spots
with colour information consistent with the remain-
ing fur colour of the cheetah. b) The inpainted result
using Alexandru’s method Ignecio et al. (2004). c)
Result obtained with Bertalmio et al. (2000) method.
d) Result obtained using our image inpainting tech-
nique.

Figure 6: a) The input image. Image inpaint-
ing results obtained using the algorithms from: (b)
(Bertalmio et al. 2000), (c) (Telea et al. 2004), (d)
(Criminisi et al. 2003) and (e) our method.

CRPIT Volume 147 - Computer Science 2014

104

A Replication and Reproduction of Code Clone Detection Studies

Xiliang Chen1 Alice Yuchen Wang1 Ewan Tempero2

1 Electrical and Computer Engineering
The University of Auckland
Auckland, New Zealand

xche185@aucklanduni.ac.nz,ywan478@aucklanduni.ac.nz
2Computer Science

The University of Auckland
Auckland, New Zealand

e.tempero@auckland.ac.nz

Abstract

Code clones, fragments of code that are similar in
some way, are regarded as costly. In order to under-
stand the level of threat and opportunity of clones,
we need to be able to efficiently detect clones in exist-
ing code. Recently, a new clone detection technique,
CMCD, has been proposed. Our goal is to evaluate
it and, if possible, improve on the original. We repli-
cated the original study to evaluate the effectiveness
of basic CMCD technique, improved it based on our
experience with the replication, and applied it to a 43
open-source Java code from the Qualitas Corpus. We
confirmed the effectiveness of the original technique
but found some weaknesses. We improved the tech-
nique, and applied our improved technique. We found
that that 1 in 2 systems had at least 10% cloned code,
not counting the original, indicating that cloned code
is quite common.

1 Introduction

Code clones, fragments of code that are similar in
some way, are regarded as costly (Juergens et al. 2009,
Li & Ernst 2012). There is some evidence that the
number of clones in any given system can be non-
trivial (Baker 1995, Baxter et al. 1998, Falke et al.
2008, Juergens et al. 2009, Schwarz et al. 2012). This
means, that if code clones do represent an unneces-
sary cost, then their existence is both a threat to the
software quality and an opportunity for improvement.
In order to understand the level of threat and oppor-
tunity, we need to be able to detect clones in existing
code. If there are few code clones, then their cost is
not so important. In order to understand the cost
associated with clones, we need to be able to identify
clones and determine the cost due to their existence.

To detect clones, we need a means that is both ef-
ficient and effective. If the techniques used to detect
clones have poor accuracy, then effort will be wasted
identifying false positives, and the results will be un-
certain due to the unknown false negatives. If the
clone detection techniques are inefficient, it will be
difficult to gather enough data to be useful. Many ex-
isting clone detection techniques are quite expensive,
particularly in time, or trade off time for accuracy.

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

Recently, Yuan & Guo (2011) demonstrated a new
technique, CMCD (for Count Matrix Clone Detec-
tion), for detecting clones that is very efficient and
appears quite effective. The basic idea is language-
independent and relatively straight-forward to imple-
ment, so that it may be possible to produce good clone
detectors for many languages quite quickly. In fact it
is very simple, especially compared to other clone de-
tection systems, raising questions as to whether it can
be generally effective. If it is as good as it appears,
CMCD has very good potential for significantly in-
creasing the number and size of empirical studies,
thus improving our understanding of the impact of
code clones. While the paper explained CMCD well,
the evidence it provided for how good CMCD is was
quite weak, so there is still a question as to its effec-
tiveness. In this paper, we answer these questions.
Specifically, we confirm the original claims, present
an improved version of the technique, demonstrate
that it is effective, and present the results from us-
ing the new technique on a large corpus of Java code.
These results indicate that about half the systems we
studied had more than 10% cloned code.

In scientific study, it is not enough to observe
something once to be convinced of the validity of
some theory, the observations must be repeated. As
Popper said, “We do not take even our own observa-
tions quite seriously, or accept them as scientific ob-
servations, until we have repeated and tested them.”
(Popper 1968) While there have been a number of
empirical studies reporting the degree to which code
clones exist, there are various issues that exist with
those studies. Their goal is usually not to determine
to what degree clones exist, but to demonstrate how
effective a given clone detector is. They rarely ex-
amine the same systems as each other, so it is not
obvious how to compare the results with each other.
They also are generally quite small. We are aware
of only 2 large studies, and they are both of systems
written in C (Uchida et al. 2005, Kamiya et al. 2002).
Many more studies are needed, and there is a need to
perform large studies of other languages. Our work is
another step in this process. In this paper we present
one of the largest code clone detection studies to be
undertaken in Java.

What constitutes a useful repetition is a matter
of some debate (Drummond 2009), however in this
paper we consider what Cartwright refers to as repli-
cability— doing the same experiment again— and re-
producibility — doing a new experiment (Cartwright
1991). In this paper we replicate (as much as possi-
ble) the study by Yuan and Guo to demonstrate the
validity of CMCD and we attempt to reproduce the
results of various empirical studies undertaken to de-

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

105

termine the degree to which code clones exist in Java
code.

The rest of the paper is organised as follows. In
the next section we present some of the literature on
empirical studies of code clones to determine what
has been established so far. In section 3, we sum-
marise the original CMCD technique. In section 4, we
describe the modifications we have made to CMCD,
and how we carried out the replication and reproduc-
tion studies. We present our results in section 5 and
discuss them in section 6. Finally we present our con-
clusions and discussion future work.

2 Background and Related Work

In this section we introduce the concepts generally
associated with clone detection and give an overview
of clone detection related research. The literature in
clone detection research is quite extensive, and so we
necessarily can only give a sample here. Roy et al.
(2009) provide a good survey and we use their termi-
nology below. We detail only the work that is directly
relevant to ours.

A code fragment is any sequence of code lines that
can be any granularity, such as a complete method
definition or sequence of statements inside an if-
statement (Bellon et al. 2007). A clone pair is de-
fined by having two code fragments that are similar
by some given definition of similarity. When more
than two fragments are similar, they form a clone
cluster or clone group. There are two main types of
similarity between code fragments: textual similarity
and semantic similarity. Two fragments have textual
similarity when the text they contain matches to a
large degree. This might be the consequence of copy-
ing and pasting one fragment to the other, perhaps
with minor modifications. Two fragments are seman-
tically similar if they have similar functionality, but
may have completely different text. Clone types can
be categorised into four types based on both textual
and semantic similarities (Roy et al. 2009):

Type-1: Identical code fragments except for varia-
tions in whitespace, layout and comments.

Type-2: Syntactically identical fragments except for
variations in identifiers, literals, types, whites-
pace, layout and comments.

Type-3: Copied fragments with further modifica-
tions such as changed, added or removed state-
ments, in addition to variations in identifiers, lit-
erals, types, whitespace, layout and comments.

Type-4: Two or more code fragments that perform
the same computation but are implemented by
different syntactic variants.

Most of the clone detection techniques can be sum-
marised into four main categories: textual, lexical,
syntactic and semantic (Roy et al. 2009).

Textual approaches compare the source code with
little or no transformation. In most cases raw source
code is used directly in the clone detection process.
Such approaches must cope with variation of all kinds,
including in whitespace. An early such approach was
described by Johnson (1994).

Lexical approaches transform the source code into
a sequence of lexical tokens using compiler-style lex-
ical analysis. Comparison is then done between se-
quences of tokens to identify common subsequences.

These approaches easily deal with variation in whites-
pace, layout, and comments. Also, variations in iden-
tifiers or literals can also be dealt with. An example
of this approach was described by Baker (2007).

Syntactic approaches use a parser to convert the
source code into parse trees or abstract syntax trees
(ASTs). Comparison is then done between the trees
for commonality, possibly using structural metrics.
The work by Baxter et al. (1998) is perhaps the best
known of these approaches.

Semantic approaches use static program analysis,
which does a more sophisticated comparison than just
at the syntax level. One technique that is used is to
represent the code as a program dependency graph
(PDG) and then analyse that. An example of this
approach uses backward slicing (Komondoor & Hor-
witz 2001).

Roy et al. (2009) describe 4 scenarios giving ex-
amples of each of the categories described above, with
further sub-scenarios for each category, a total of 16
examples. They then evaluated more than 40 tech-
niques with respect to these 16 examples, provid-
ing both clear criteria (at least as a starting point)
for what might constitute a clone, and a comprehen-
sive summary of that the state-of-the-art at that time
could handle.

As mentioned in the introduction, our work is
based on the CMCD technique developed by Yuan &
Guo (2011), which we will detail in the next section.
This technique is a syntactic approach, specifically it
falls in to the category Roy et al. call metrics-based
approaches. Generally, these approaches make mea-
surements of the code fragments using one or more
metrics. The value of the measurements indicate how
similar the code fragments are. One example of this
is by Mayrand et al. (1996) who gather measurements
from a number of metrics, such as different character-
istics of the layout of the code, number and type of
statement, and characteristics of control flow such as
number of decisions, average nesting level, and num-
ber of exits. Another example is by Kontogiannis
(1997), who uses more common metrics such as Fan-
in, Fan-out, and Cyclomatic Complexity Number.

Once measurements are produced, the existence
of clones is determined by the similarity of the mea-
surements. The comparison of measurements may
be done in different ways, depending on who the
measurements look like. For example, Kontogiannis
groups the measurements into 4 categories, and then
compares each category separately. The results of the
4 comparisons are then used to produce an ordinal
scale measurement capturing how different (or simi-
lar) two code fragments are. Another example is by
Davey et al. (1995), who use a self organising neural
net to do the comparisons.

With all the variations in techniques, the question
that naturally arises is which is the best? Unfortu-
nately there is no clear answer, not only because the
answer depends on the reason for detecting clones,
but also because there has been insufficient compari-
son between the techniques.

For an example on how context might affect which
quality attributes of the clone detection technique we
desire, consider plagiarism detection in student as-
signments. In this context, we would probably do
this off-line (as a batch process), we might expect the
size of the inputs to be relatively small (hundreds, or
perhaps a few thousand, lines of code), and we would
likely be willing to accept missing some cases (false
negatives) in order to ensure not making any false ac-
cusations (false positives). On the other hand, to sup-
port a code review function in an IDE, we would want
real-time information of possibly a large code base,

CRPIT Volume 147 - Computer Science 2014

106

but would accept a reasonable degree of false posi-
tives and false negatives. These two examples repre-
sent a trade-off of preferences in performance versus
accuracy. Other trade-offs include what constitutes a
clone, for example only requiring detection of Type 1
and Type 2 clones, and what granularity of code frag-
ments are to be considered, such as comparing only
subroutines or comparing blocks.

As an example of other uses of clone detectors, Li
and Ernst examined the degree to which code clones
also contained duplicated buggy code (Li & Ernst
2012). Their detector used a semantic approach based
on PDGs. They examined 3 systems (Git, Linux
kernel, and PostgreSQL). Using the systems’ bug re-
ports, they identified the code fragments where the
bugs occurred, and then tried to find clones of those
fragments. They compared their system against 4
other clone detectors. Their system performed as well
or better than the others in both accuracy and per-
formance.

There have been some comparisons of different
techniques. Bellon et al. (2007) compared 6 clone
detectors that used different approaches over 4 C

and 4 Java systems with respect to their accuracy
and performance. While there was no clear winner,
they noted that the AST-based approaches tended
to have higher precision (fewer false positives) but
were also longer execution time, whereas token-based
approaches had higher recall (fewer false negatives)
but were faster. They commented that “if idea from
the token-based techniques could be made to work on
ASTs, we would be able to find syntactic clones with
less effort.”

Falke et al. (2008) did a follow up study using the
same infrastructure as by Bellon et al. to examine
the quality of clone detectors based on suffix trees.
They found that using suffix trees was faster than
the standard AST matching, but with varying recall
and precision.

Two important questions relating to clone detec-
tion research are: Is the belief that clones are a prob-
lem correct, and; Are there enough clones in real code
to matter? Juergens et al. (2009) addressed the first
question by developing a new clone detector and ap-
plying it to 5 projects, 4 from 2 companies (3 in C#,
1 in Cobol), and one open source (Java). They were
particularly interested in what they called inconsis-
tent clones, code fragments that differ by more than
just simple changes that apply to the whole frag-
ment, such as renaming variables (effectively Type-2
clones). They presented identified inconsistent clones
to the developers of the systems, and from the devel-
opers determined whether the inconsistency was in-
tentional or not, and whether the clones were faulty
or not. From this they concluded that inconsistent
clones are a major source of faults. The results by Li
& Ernst (2012) also suggest that clones are a problem,
by finding clones that contain the same bugs.

There does not appear to have been any systematic
large-scale studies to determine the degree to which
code clones exist. However, most presentations of new
clone detectors provide data from their application
that indicates that clones are relatively common.

For example, in an early study, Baker found on
the order of 19% of the X Window System (Baker
1995) are either Type-1 or Type-2 clones. Baxter et
al. looked at 19 subsystems of a process-control sys-
tem with 400 KSLOC of C code (Baxter et al. 1998).
Their results indicated that on average 12.7% of code
was cloned, with at least two subsystems having over
28%.

Juergens et al. found 300 or more clone groups
(2 or more code fragments that are clones of each

other) in 4 of the 5 systems. They do not indicate
what proportion of the overall code base these groups
represent, nevertheless it must be non-trivial.

While Bellon et al.’s goal was to compare detec-
tors, they include information about candidates re-
ported by the tools, the size of code fragments iden-
tified as candidates, and information on accuracy in
their results. While it is difficult to determine the
proportion of cloned code, again it is clear that it
must be non-trivial.

Schwarz et al. (2012) examine the repositories of
Squeaksource, a repository in the Smalltalk ecosys-
tem. They found 14.5% of all methods strings (560K
different methods in 74K classes) were present in at
least two distinct repositories.

We are aware of two large empirical studies, both
by the same research group. The earlier one stud-
ies 125 packages of open source software written in C
(Uchida et al. 2005). The size of the systems ranged
between 478 and 2,678,939 “LOC”. They do not re-
port how they measured LOC. They found there is
much variation in how much cloned code there is,
but on average they found 11.3%. This group did
a later study of the “Packages and Ports Collection”
of FreeBSD. The primary goal of this study was to
demonstrate their distributed version of CCFinder
(Kamiya et al. 2002). They analysed more than 400
million LOC over nearly 6700 projects, which ap-
peared to include many of the systems in their previ-
ous study. They found on average 4% of code clones,
but there were several cases where the degree of code
clones was much higher. However they did not report
results for individual projects.

In summary, various studies consistently report
that code clones exist to a non-trivial degree, with
many measurements of more than 10% being re-
ported. However, most studies are only of a small
number of systems, and many of those systems are
quite small. What large studies there are examine
only systems written in C. Our interest is whether
we would see different results in a different language
(Java in our case).

3 Original CMCD Technique

In order to make our contribution clear a good under-
standing of the original CMCD technique is needed,
which we provide below. More details are available
in the original publication (Yuan & Guo 2011). The
modifications we made are described in the next sec-
tion.

The CMCD technique determines the similarity
between two code fragments by modelling each with
a count matrix and comparing the count matrices. A
count matrix is made up of a set of count vectors.
In the original CMCD, there is one count vector for
each variable that appears in the code fragment. The
values in a count vector come from a set of count-
ing conditions that are applied to the variable that
vector represents. The counting conditions represent
how a variable is “used”. The intuition is, if two code
fragments are indeed clones, then a variable in one
fragment will have a counterpart in the other frag-
ment that is used in very similar ways, so the count
vectors will be very similar. Also, most variables in
one fragment will have counterparts in the other frag-
ment, so the count matrices will be very similar. If,
on the other hand, the fragments are very different,
then there is a high probability that many variables
in one fragment will have no obvious counterpart in
the other, so the count matrices will look different.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

107

Table 1: The original Counting Conditions (Yuan &
Guo 2011)
1 Used
2 Added or subtracted
3 Multiplied of divided
4 Invoked as parameter
5 In an if-statement
6 As an array subscript
7 Defined
8 Defined by add or subtract operation
9 Defined by multiply or divide operation
10 Defined by an expression which has constants in it
11 In a third-level loop (or deeper)
12 In a second-level loop
13 In a first-level loop

As the Yuan and Guo noted in the original publica-
tion, exactly what constitutes a “use” is maybe not as
important as applying the counting conditions consis-
tently. Nevertheless the counting conditions do need
to indicate some reasonable notion of “use”. The orig-
inal counting conditions are shown in Table 1. These
counting conditions all are uses of variables that are
familiar to any programmer. Clearly other counting
conditions are possible as the authors acknowledge,
but it is not obvious whether the extra cost of adding
more will significantly change the outcome. We re-
turn to this point in the next section.

Two count vectors are compared by computing
the normalised distance between them. The origi-
nal technique uses euclidean distance and normalises
(roughly) by dividing by the vector lengths (see paper
for full details). The resulting distance is in the range
[0..1], where 1 means identical.

After computing the count vectors for each vari-
able for each code fragment, the resulting count ma-
trices need to be compared to determine similarity.
An issue arises in that, while each variable in one
fragment may have a very similar counterpart in the
other fragment, this may not be obvious if the order
of the count vectors is different in the count matri-
ces, that is, it is not enough to just compare the first
row of one matrix with the first row of the other,
and so on. CMCD resolves this issue using maximum
weighted bipartite matching as follows.

Each row in the two matrices being compared is
treated as a vertex in a graph, and each vertex from
one matrix has an edge to every vertex in the other
matrix. Each edge is weighted by the distance be-
tween the two respective count vectors. This re-
sults in a weighted bipartite graph. The maximum
weighted bipartite matching of this graph is then a
pairing of count vector from one matrix with a count
vector in the other matrix that maximises the sum
of the count vector distances. This sum is then the
measure of similarity between the code fragments.

The similarity value may also be normalised, to ac-
count for comparing code fragments of different sizes,
or have a different number of variables. Also, in case
it is possible for two quite different fragments to get
a high similarity measurement, a false positive elim-
ination step is applied using heuristics. The authors
do not give any details as to what heuristics they use.

The same idea can be used to compare two sets of
code fragments — a weighted bipartite graph can be
constructed where a vertex is the count matrix for a
code fragment, and edges are between vertices from
one set to the other weighted by the similarity score
between the corresponding code fragments. Again,
maximum weighted bipartite matching can be used
to determine how similar the two sets are. In this

way two classes can be compared for similarity by
treating each method as a code fragment and applying
the technique as described above.

Yuan and Guo evaluated their CMCD technique
by using it in three different ways. First, they ap-
plied it to the 16 scenarios described by Roy et al.,
demonstrating that it detected all 16 cases. They
then applied it to 29 student medium-sized project
submissions (7 KLOC – 38 KLOC, 585 KLOC in to-
tal). The processing took 123 minutes on relatively
standard hardware and they found 2 clone clusters.
Manual examination concluded that would have been
difficult to identify the clusters through manual in-
spection. Despite the fact that all projects imple-
mented the same functionality, they did not find any
false positives.

The third evaluation method was to analyse JDK
1.6.0 18 (about 2 MLOC). They compared every pair
of methods in this code base, ignoring very small
methods such as getters and setters. The process-
ing took 163 minutes and found 786 similar methods
over 174 clusters. One of the clusters included at least
one instance that appeared to contain a fault. They
provide no information of how the quality of these
results was determined.

The evaluation provided by Yuan and Guo indi-
cates that CMCD has some value, but only one large
system was analysed, and it is difficult to just the
quality of its results.

4 methodology

The research questions we would like to answer are:

RQ1 Is the CMCD technique as effective as its au-
thors claim and can it be improved?

RQ2 How much code is created through cloning?

The basic steps we follow are:

1. Implement the CMCD technique as close as prac-
tical to the original.

2. Perform two of the three evaluations described
in the original paper (see section 2).

3. Based on the results of, and experience gained
by, performing the previous step, refine our im-
plementation.

4. Evaluate the effectiveness of the refinement, re-
turning to step 3 if the results indicate the need
for, or possibility of, improvement.

5. Apply the refined implementation to a large body
of code, returning to step 3 if the results indicate
the need for, or possibility of, improvement.

Some of these steps are elaborate further below.
There are two details we need to clarify: what def-

inition of clone we are using and what level of granu-
larity of clone we will detect.

As others have noted, in particular Roy et al.
(2009), there is no agreed upon evaluation criteria
as to when two code fragments are clones. We use
the same intuition as others, namely that two code
fragments are clones if one could “reasonably” have
resulted by copying and pasting the other and making
“minor” changes. While this introduces a degree of
subjectivity, we follow Yuan and Guo and use the sce-
narios proposed by Roy et al., which provides some
means of comparison with other work. We discuss
this further in Section 6.3.

We also follow the original CMCD technique,
which compares code fragments that are methods,

CRPIT Volume 147 - Computer Science 2014

108

that is, it does not detect clones that are smaller than
methods. We choose to do so as one of our goals is to
replicate Yuan and Guo’s study. How this technique
might be applied to sub-method clones is a topic for
future work.

4.1 CMCD implementation

As Yuan and Guo used Java as their target language,
we choose to do the same. Their implementation de-
termined the count matrices based on the Jimple rep-
resentation of the Java source, which is a 3-address
code representation produced using the SOOT frame-
work (Vallée-Rai et al. 1999). We had a concern about
this decision.

The Jimple representation is necessarily different
from the original source code, and furthermore is
a transformation of the compiled code (bytecode)
rather than the original source code. Yuan and Guo
argue that these transformations have little effect on
the results. Our concern is that the two transforma-
tions may mean that slight differences in the source
code may result in more significant differences in
the Jimple representation. For example, information
could be lost during compilation which may affect the
level of accuracy, especially if optimisation techniques
are used. Also, the transformation to Jimple involves
introduction of temporary variables, and slight dif-
ferences in the source code may result in different
temporaries, potentially resulting in a more signifi-
cant change at the Jimple representation than exists
in the original source.

If we are right, then we would get better results
dealing with the source code directly. Furthermore,
if Yuan and Guo are right, it should not matter if
our implementation uses a different technique to de-
termine the count matrices.

Consequently we decided to base our implemen-
tation on a parser for Java source code. We used
ANTLR (antlr.org) to create the parser. This pro-
duces an Abstract Syntax Tree (AST), which is then
traversed, applying the counting conditions as appro-
priate to each vertex. The count matrices are created
and compared as in the original.

Unlike the original technique, rather than measure
similarity between methods (smaller values means
less similar), we measured differences (smaller values
means more similar).

As noted in Section 3, the meaning of the mea-
surements can depend on the method size. The mea-
surement for two large methods might be the same as
for two small methods, which would mean the large
methods are much more similar than the two small
methods, but the absolute values suggest they are
equally similar. Also, the values of the counts can
impact the measurement. The difference between two
large counts (e.g. 100 versus 90) for a giving counting
condition can be the same as for two small counts (11
versus 1), again indicating that the former is more
similar than the latter, but just by the measurements
they appear equally similar.

So some form of normalisation is needed. Unfor-
tunately, the original paper does not describe how
normalisation was performed, so we had to develop
our own. We carried out a large number of trials of
different forms of normalisation to find a form that
have the best characteristics regarding false positives
and false negatives (see below). We concluded the
best normalisation was achieved by summing the val-
ues for the smaller count matrix, and dividing the raw
difference measurement by that sum.

The false positive clone detection method men-
tioned in the original paper was also not described

 0

 10

 20

 30

 40

 50

 60

 70

 80

0-3
3-6

6-9
9-12

12-15
15-18

18-21
21-24

24-27
27-30

30-33
33-36

36-39
39-42

42-25
45-48

48-51
51-54

54-57
57-60

60-63

N
um

be
r

of
 m

et
ho

d
pa

irs

Difference value

Clone
Modified

Similar
Not clone

Figure 1: Showing the trade-off in candidate pair clas-
sification according to difference choices of threshold
value. The 0–3 value has been truncated (from 179)
for presentation purposes.

and thus we have come up with our own false positive
detection method. As cloned fragments of code are
similar or the same as the original fragment of code,
we used a textual approach to discard clone pairs de-
tected that had over 50% differences in text. This
difference was computed after spaces and comments
had been removed.

To improve performance, we classified method
pairs by comparing the normalised difference between
the two matrices to a predetermined threshold value.
The threshold value was determined by analysing the
distribution of difference values of clone pairs. This
process consisted of:

1. Detecting all possible clone pairs for a selected
software system and calculating the difference
values.

2. Manually reviewing each method pair found and
classifying it into one of the categories: clone,
modified clone, similar but not clone, and not
clone. (Also see below.)

3. Plotting a chart showing the distribution of dif-
ferent type of method pairs.

4. Determine the threshold value based on distribu-
tion.

Freecol version 0.8.0 was used for the analysis. The
chart is shown in figure 1. From the chart, the default
threshold value was chosen to be 45 to provide a bal-
ance between false positive and false negatives. A
manual evaluation process like this was also used to
evaluate different normalisation forms and choosing
the level of text difference threshold.

Very small methods, such as getters and setters,
are likely to look very similar. Also, even if they
are created through cloning, identifying them as such
is not very useful because they are so small. The
original technique chose to ignore small methods for
this reason, but did not specify how they identified
such methods. In our implementation, the number of
nodes in AST is used as the size of the method. A
method is considered small if its size is less than a
certain value. The number of lines of code was not
used as the size of the method because it did not re-
flect the complexity of the code fragments and it may
vary significantly depending on the coding style. By

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

109

looking at small methods such as getters and setters,
we determined that an AST with 50 or fewer nodes
could be reasonably classified as small.

Constructors are also ignored, as constructor
clones are not very interesting. In addition, it is easy
to get two constructors with the same variable count
in a large system, and therefore they will introduce
false positives.

4.2 Replication

We applied our implementation of the CMCD tech-
nique to the same 16 scenarios used by Yuan and Guo,
and also to JDK 1.6.0 18. We did not have access to
the student submissions and so did not replicate that
part of their study.

4.3 Evaluation and Refinement

The original paper hinted that other counting condi-
tions might be useful, so we planned from the begin-
ning to support adding new conditions. That meant
we also needed some way to select different conditions,
and some way to show the results. We also needed to
be able to vary various parameters, such as the choice
of thresholds (see below). To support evaluation, we
quickly learnt that it was important to not just see
the list of candidate pairs, but to also show the con-
tents of the pair, highlighting the differences between
the two fragments. By examining candidate pairs in
this way, we could then efficiently determine the ac-
curacy of the choice of parameters by determining by
manual inspection whether the candidate pair was in-
deed a clone pair. Finally, we needed the means to
record the result of the manual inspection.

To this end, we developed a tool that can apply
the foundation CMCD technique to any code base and
that supports choosing different sets of counting con-
ditions, different parameter values, reporting candi-
date clone pairs, highlighting the differences between
a selected candidate pair, and recording the result of
the manual inspection.

Candidate pairs are classified as “clone”, “modi-
fied clone”, “similar but not clone” or “not clone”.
“Clone” is where the method pair is clearly identi-
cal with minor changes such as differences variable
types or variable names. “Modified Clone” is the
same as “clone” but allowing a few addition or dele-
tion of statements. “Similar but not clone” is used
for classifying code clones where at a glance, they
have lots of similarities in terms of structure and sub
fragments of code, but is modified enough to not be
considered clones. “Not clones” is where the method
pair is clearly not a clone. This classification data
can be saved for analysis and future clone detections,
so that there is no need to reclassify clones when the
detection process is rerun with different input param-
eters.

Clone pairs can be sorted based on any of the char-
acteristics of the pairs (such as the value of the pre-
normalised difference between a pair). This aids the
identification of clone patterns in our results by or-
dering the results to allow for easy access to groups
of data, and visualisation of correlation between data
types. For example, clone pairs can be sorted by clone
classification and then by the difference value of the
method pair to determine if there is a correlation.

The tool we developed allows us to identify false
positives (candidate pairs that are not in fact clones).
Identifying false negatives (clone pairs that are never
offered as candidates) is more challenging, however
our tool also supports this because it allows us to

ant-1.8.0 argouml-0.34‡ c jdbc-2.0.2 cayenne-
3.0.1 cobertura-1.9.4.1 compiere-330 drawswf-
1.2.9 freecol-0.10.3‡ freemind-0.9.0‡ ganttproject-
2.0.9 gt2-2.7-M3 heritrix-1.14.4 hibernate-4.0.1‡
hsqldb-2.0.0 jFin DateMath-R1.0.1 jag-6.1
javacc-5.0 jgraph-5.13.0.0‡ jgraphpad-5.10.0.2
jgrapht-0.8.1 jhotdraw-6.0.1‡ joggplayer-1.1.4s
jrat-0.6 jrefactory-2.9.19 jruby-1.5.2 jtopen-7.1
marauroa-3.8.1 maven-3.0 nakedobjects-4.0.0
nekohtml-1.9.14 poi-3.6 pooka-3.0-080505 roller-
4.0.1 sablecc-3.2 struts-2.2.1 sunflow-0.07.2
trove-2.1.0 velocity-1.6.4 wct-1.5.2 weka-3.6.6‡
xalan-2.7.1 xerces-2.10.0 xmojo-5.0.0

Figure 2: Systems used from Qualitas Corpus release
20120401. Systems for which multiple versions were
analysed are indicated by ‡.

easily change various parameters to the technique, in
particular the thresholds. The choice of thresholds
affects the level of false positives and false negatives
— the higher the threshold the more false positives
but the fewer false negatives. If we want to determine
the degree of false negatives for a given threshold t,
we can set the threshold to a value l much larger than
t, and examine those candidate pairs that are clones
reported at level l that are not reported at level t.
These pairs are then false negatives at level t.

Identifying false negatives, as well as allowing us
to provide error bounds on our results, also provides
support for refining the technique. By examining false
negatives, we can identify new counting conditions
that may have the potential to detect such cases.

4.4 Empirical Study

Our empirical study was carried out on 43 open
source Java systems from the Qualitas Corpus, re-
lease 20120401 (Tempero et al. 2010). We did both a
breadth (different systems) and a longitudinal (multi-
ple versions of the same system) study. The systems
we used are listed in Figure 2, with those used for
the longitudinal study marked by ‡. See the Qualitas
Corpus website (qualitascorpus.com) for details of
the systems studied, such has which files are analysed.

5 Results

In this section, we present the results of the different
parts of our study. Their interpretation and conse-
quences will be discussed in the next section.

5.1 Replication Study

As with the original CMCD implementation, our im-
plementation was also successful at detecting clones
for all 16 of Roy et al.’s scenarios. We also ran our
implementation on the JDK 1.6 update 18 and found
11,391 similar methods in 2523 clone clusters. The
process used 51 minutes using a 2.7GHz Intel Core i5
CPU.

5.2 Refinement

From the results of our replication study, we iden-
tified limitations in the original CMCD implementa-
tion. About 15% of the candidate pairs identified in
our results were false positives. These false positives
were recognised as clones mainly due to the choice of

CRPIT Volume 147 - Computer Science 2014

110

normVCM =
dVCM(total(vCM1) + total(vCM2))

total(vCM1) + total(vCM2) + total(mCM1) + total(mCM2)

Figure 3: Normalising difference between variable and method count matrices for two code fragments.

private Element remove(Connection connection,
Element element) {

String address = connection.getSocket().
getInetAddress().getHostAddress();

int port = Integer.parseInt(
element.getAttribute("port"));

metaRegister.removeServer(address, port);
return null;

}

Figure 4: Example of a method with no uses of vari-
ables according to the original counting conditions,
and so has an empty count matrix (from the Freecol
class net.sf.freecol.metaserver.MetaServer)

Table 2: The new Counting Conditions
11 Variable used in first level while loop
12 Variable used in second level while loop
13 Variable used in third level while loop (or deeper)
14 Variable used in first level for loop
15 Variable used in second level for loop
16 Variable used in third level for loop (or deeper)
17 Variable used in switch-case statement
18 Method invoked
19 Method used in if-statement
20 Variable invoked on

counting conditions. In Yuan and Guo’s paper, the
13 counting conditions described were not sufficient to
handle all the cases. For example, switch-case state-
ments were ignored because the counts of variables
did not reflect the existence of a switch-case state-
ment.

Another issue was that code fragments that con-
tained only method invocations had empty count ma-
trices, despite potentially having non-trivial code.
Figure 4 shows a small method with this property,
but we saw a number of larger examples of this.

This lead us to change 3 existing conditions (11,
12, and 13 in Table 1) to represent the use of vari-
ables in loops at a more fined-grained manner, and
added other conditions, including for method invoca-
tion. The new conditions are listed in Table 2.

As well as new counting conditions for variables,
we also apply the same counting conditions to meth-
ods in a separate method count matrix. This ma-
trix is normalised in the same manner as described
for the existing (variable) count matrix as described
in Section 4.1. With the two count matrices, the
comparison of code fragments is done by determin-
ing the difference between the variable count matrices
for each fragment and the method count matrices for
each fragment. This again raises the issue that the
respective sizes of the matrices could confound the
result. For example, if the two variable count ma-
trices are the same, but the method count matrices
are different, then the size of the method count ma-
trices might affect the result. Each pair of matrices
is normalised and then the two normalised values are
added together.

The normalisation function is shown in Figure 3.
In that figure, vCM1 and vCM2 are the variable
count matrices for code fragments 1 and 2 respec-
tively, and mCM1 and mCM2 are the method count
matrices; total(*) returns the sum of all values in the
count matrix parameter; dVCM is the difference for
the variable count matrices using the procedure de-
scribed in Section 4.1; normVCM is the difference
between the variable count matrices normalised with
respect to the method count matrices.

5.3 RQ2: Empirical Study

We used our implementation on the systems listed in
Figure 2 and the multiple versions of those systems
indicated. In all, there were 310 different versions,
involving 210,392 files and 26,702,561 non-comment
non-blank lines of code (NCLOC). The total time
taken was approximately 26 hours.

The results of the empirical study are summarised
in Figure 5. The systems are ordered according to
the number of methods we compared in each system
(that is, ignoring “small” methods and constructors)
in order to see if there are any trends due to some
notion of system size. In fact were the systems or-
dered according to lines of code, the order would not
be very different.

The figure shows three values: the total cloned
code, that is, the percentage of the code (determined
by non-comment non-blank lines of code — NCLOC)
that appears in a clone cluster. The light grey shows
the proportion of code that is cloned not counting the
“original” that was cloned and the dark grey is the
size of the original code that was cloned.

We show the total because we believe that that
is what other studies report (although this is gener-
ally not stated) and we want to compare with them.
However, we also believe that it is worthwhile seeing
the size of the code that is cloned. If two systems
have (for example) 10% total cloned code, but in one
the original is 1% and the other it is 5%, then this
difference is worth noting. Note that we do not really
know which method was the original and which was
cloned, but as they are all similar we can pick one as
a representative (hence the use of quotes above).

The ranges of the values are: total 6.5%
(nekohtml) – 59.5% (cobertura) with an average
of 17% (sunflow), original 2.3% (jrat) – 11.8%
(cobertura) with an average of 5.3% (poi), and
cloned 3.8% (nekohtml) – 47.8% (cobertura) with
an average of 11.7% (pooka). The medians are: total
— 14.6%, original — 5.3%, and cloned — 10.0%, all
by the system poi.

While there seems to be a slight trend of increas-
ing cloned code with system size, the largest sys-
tem (gt2) has 446,863 NCLOC and 13,174 methods,
which is much bigger than the second largest, jruby,
with 160,360 NCLOC and 7646 methods, and yet the
amount of cloned code is less than many other sys-
tems (but see Section 6.2).

We examined the outliers, and found that a large
proportion of generated code were included in these
systems. Due to the nature of generated code, they
could be similar or identical and therefore recognised

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

111

 0

 10

 20

 30

 40

 50

 60

jFin_DateM
ath

trove
nekohtm

l

joggplayer

javacc

jgrapht

xm
ojo

jag jrat
m

arauroa

velocity

sunflow

drawswf

sablecc

jgraphpad

jgraph

jhotdraw

ganttproject

wct
m

aven

cobertura

roller
pooka

freem
ind

c_jdbc

struts
heritrix

freecol

xerces

ant
hsqldb

nakedobjects

xalan
jrefactory

cayenne

poi
hibernate

argoum
l

com
piere

weka
jtopen

jruby
gt2

P
ro

po
rt

io
n

(%
)

System (ordered by number of methods)

Cloned code across systems

Figure 5: Proportion (%) of cloned code across the 43 systems in the study. The combined height of a bar is
the proportion of code that appears in a clone cluster. The height of the dark grey bars shows the size of the
“original” code that has been cloned.

as code clones by the clone detector. With the 3 top
outliers (trove, sablecc, and cobertura) removed,
the largest values are: total cloned 27.3%, original
8.3%, cloned 20.9%.

The process we used to determine the threshold
value (the data is shown in Figure 1) also provides us
with the means to estimate our false positive and false
negative rates. For this study, we used a threshold
value of 45. Those candidate clones with a difference
value below the threshold (and thus reported by our
tool as clones) that we manually classified as “similar”
or “not clone” were classified as false positives, and
those with a difference value above the threshold (that
is, reported as not clones) but classified as “clone”
or “modified clone” were classified as false negatives.
Based on this, we had a false positive rate of 14.8%
and false negative rate of 6.7%. We do note that
all of the false positive method pairs found contained
structurally similar code.

In addition to detecting clones in the latest version
of the software systems in the Qualitas Corpus, differ-
ent versions of software systems were also analysed.
The results are shown in Figure 6.

6 Discussion

6.1 RQ1: Replication

The CPU time used between original implementation
and our implementation was of the same order (our
hardware is somewhat faster). However, the number
of clones found was significantly different. Some of
the clone pairs we detected were manually reviewed
to assess the correctness of the result. A large pro-
portion the clone pairs we found were the result of
generated code. These generated code fragments were
very similar to each other and therefore detected as
code clones. We suspect that these methods were not
considered in the original paper.

Yuan and Guo indicated that their implementa-
tion had a very low false positive rate, but did not
provide any information on the false negative rate.
Often there is a trade-off between false positives and
false negatives, and so it is possible that their false
negative rate was quite high. Since we had to develop
our own normalisation and false positive elimination
steps, it is possible that our false negative rate is not
as high as the original. This might also explain why
we found so many more candidate clone pairs.

Another possible source of variation was that it
was not clear exactly which classes were examined
in the original study, since Yuan and Guo analysed
bytecode and we analysed source code.

While we did not get exactly the results reported
by Yuan and Guo, they are close enough for us to
conclude that the CMCD technique is as good as
they claim. Furthermore, by manually reviewing de-
tected clone pairs, there are clearly opportunities for
improvement.

6.2 RQ2: Empirical Study

The smallest amount of cloned code we saw was 3.8%
in nekohtml (6.5% if the original is included), which
is the second smallest system (6,625 NCLOC and
185 methods) we analysed, meaning that the abso-
lute amount of cloned code was also fairly small (421
NCLOC cloned code). Given that half of the systems
we analysed (all larger than nekohtml) have 10% or
more (14.6% if the original is included) points to non-
trivial amounts of cloned code in open source Java
systems. This is consistent with the findings of other
studies.

Over the life-time of a system, according to Fig-
ure 6 there is again possibly a slight increasing trend
over time for the systems that we have 20 or more
versions for, however, as systems also grow over time,
this might be further evidence of a relationship be-

CRPIT Volume 147 - Computer Science 2014

112

Figure 6: Study results showing the percentage of code clones across different versions of software systems

tween system size and amount of cloning. As we
gather more data, we may be able to confirm this
relationship.

It is worth noting that our implementation, like
the original, has very good performance. We were
able to analyse nearly 27 million NCLOC in about 26
hours on commodity hardware.

6.3 Threats to Validity

As with other clone detection research, a possible
threat to the validity of our results is what we con-
sider to be a clone. We have mitigated this threat
by requiring that two people (the first two authors)
agree on the designation (as described in Section 4)
of each candidate pair.

Another possible threat is the correctness of our
implementation. In particular, there is the possibil-
ity that some peculiar combination of circumstances
will be mis-reported by our implementation. We have
mitigated this through approximately 50 per-hours of
manual review of candidate clone pairs.

One issue with comparing our results with oth-
ers is that fact that we detect clones at the method
level of granularity. This means that if the code in
one method is completely copied to another method,
but that other method also has at least as much code
again added, we will not detect the use of cloning.
We do not doubt that this happens, but our man-
ual reviews found few such examples, leading us to
conclude the impact on our results is small.

We have provided false positive and false negative
rates for our results. These are based on our manual
reviews, as supported by our tool, and so are necessar-
ily a small subset of the total code base we analysed.
While we cannot rule out missing incorrectly classi-
fied clone pairs, the nature of the CMCD technique
is such that we believe our results are likely to apply
generally.

Finally, we note that our results are generally in
agreement with other studies, which gives us good
confidence in them.

7 Conclusions

We have examined a technique for clone detection
proposed by Yuan & Guo (2011) and found that gen-
erally their claims for its performance and accuracy
are warranted. We have improved the original tech-
nique, in particular by adding more counting condi-
tions and a separate method count matrix. Our im-
provements significantly reduce the false positives of
the original. We confirmed the performance charac-
teristics of the original study, being able to analyse
nearly 27 million NCLOC in about 26 hours on com-
modity hardware.

We evaluate our improved CMCD through exten-
sive manual validation supported by a visualisation
tool. We replicated some of the original study and
performed a large-scale empirical study of Java code.
The study examined 43 systems in which we found
that 1 in 2 systems had at least 10% cloned code, not
counting the original. These results are broadly in
agreement with other empirical studies. In particu-
lar, they are very close to a previous large study of
systems written in C (Uchida et al. 2005). This sug-
gests that the degree to which clones exist is not due
to a particular language or style (procedural versus
object-oriented).

In future work, we would like to improve the error
bounds on the accuracy of our implementation and
adapt it to work on sub-method granularity. While
our empirical study is one of the largest performed
for Java, it was not done on the whole of the Qualitas
Corpus due to project constraints. We hope carry out
an even larger study.

There is still much to be discovered about code
clones. Based on our findings reported here, we be-
lieve the CMCD technique provides a very promising
means to support such discovery.

References

Baker, B. (1995), On finding duplication and near-
duplication in large software systems, in ‘. . . , 1995.,
Proceedings of 2nd Working Conference on’, p. 86.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

113

Baker, B. S. (2007), ‘Finding Clones with Dup: Anal-
ysis of an Experiment’, IEEE Transactions on Soft-
ware Engineering 33(9), 608–621.

Baxter, I., Yahin, A., Moura, L., Sant’Anna, M. &
Bier, L. (1998), Clone detection using abstract syn-
tax trees, in ‘Proceedings. International Conference
on Software Maintenance (Cat. No. 98CB36272)’,
IEEE Comput. Soc, pp. 368–377.

Bellon, S., Koschke, R., Antoniol, G., Krinke, J.
& Merlo, E. (2007), ‘Comparison and Evaluation
of Clone Detection Tools’, IEEE Transactions on
Software Engineering 33(9), 577–591.

Cartwright, N. (1991), ‘Replicability, reproducibility,
and robustness: Comments on Harry Collins’, His-
tory of Political Economy .

Davey, N., Barson, P., Field, S. & Frank, R. (1995),
‘The development of a software clone detector’, In-
ternational Journal of Applied Software Technology
3/4(1), 219–236.

Drummond, C. (2009), Replicability is not repro-
ducibility: nor is it good science, in ‘Evaluation
Methods for Machine Learning ICML Workshop’,
pp. 2005–2008.

Falke, R., Frenzel, P. & Koschke, R. (2008), ‘Empiri-
cal evaluation of clone detection using syntax suffix
trees’, Empirical Software Engineering 13(6), 601–
643.

Johnson, J. (1994), Substring matching for clone de-
tection and change tracking, in ‘Proceedings In-
ternational Conference on Software Maintenance
ICSM-94’, IEEE Comput. Soc. Press, pp. 120–126.

Juergens, E., Deissenboeck, F., Hummel, B. & Wag-
ner, S. (2009), Do code clones matter?, in ‘31st
International Conference on Software Engineering’,
IEEE, pp. 485–495.

Kamiya, T., Kusumoto, S. & Inoue, K. (2002),
‘CCFinder: a multilinguistic token-based code
clone detection system for large scale source
code’, IEEE Transactions on Software Engineering
28(7), 654–670.

Komondoor, R. & Horwitz, S. (2001), Using slicing
to identify duplication in source code, in ‘8th In-
ternational Symposium on Static Analysis (SAS)’,
pp. 40–56.

Kontogiannis, K. (1997), Evaluation experiments on
the detection of programming patterns using soft-
ware metrics, in ‘Proceedings of the Fourth Work-
ing Conference on Reverse Engineering’, IEEE
Comput. Soc, pp. 44–54.

Li, J. & Ernst, M. D. (2012), CBCD: Cloned buggy
code detector, in ‘2012 34th International Con-
ference on Software Engineering (ICSE)’, IEEE,
pp. 310–320.

Mayrand, J., Leblanc, C. & Merlo, E. (1996), Ex-
periment on the automatic detection of function
clones in a software system using metrics, in ‘Pro-
ceedings of International Conference on Software
Maintenance ICSM-96’, IEEE, pp. 244–253.

Popper, K. (1968), THE LOGIC or SCIENTIFIC
DISCOVERY, Routledge.

Roy, C. K., Cordy, J. R. & Koschke, R. (2009), ‘Com-
parison and evaluation of code clone detection tech-
niques and tools: A qualitative approach’, Science
of Computer Programming 74(7), 470–495.

Schwarz, N., Lungu, M. & Robbes, R. (2012), On how
often code is cloned across repositories, in ‘2012
34th International Conference on Software Engi-
neering New Ideas and Emerging Results Track
(ICSE)’, Ieee, pp. 1289–1292.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li,
J., Lumpe, M., Melton, H. & Noble, J. (2010),
‘The Qualitas Corpus: A Curated Collection of
Java Code for Empirical Studies’, 2010 Asia Pacific
Software Engineering Conference pp. 336–345.

Uchida, S., Monden, A., Ohsugi, N., Kamiya,
T., Matsumoto, K.-I. & Kudo, H. (2005), ‘Soft-
ware analysis by code clones in open source soft-
ware’, Journal of Computer Information Systems
45(3), 1–11.

Vallée-Rai, R., Co, P. & Gagnon, E. (1999), Soot-a
Java bytecode optimization framework, in ‘Confer-
ence on the Centre for Advanced Studies on Col-
laborative Research (CASCON)’, p. 13.

Yuan, Y. & Guo, Y. (2011), CMCD: Count Matrix
Based Code Clone Detection, in ‘2011 18th Asia-
Pacific Software Engineering Conference’, IEEE,
pp. 250–257.

CRPIT Volume 147 - Computer Science 2014

114

Mining Indonesian Cyber Bullying Patterns in Social Networks

Hendro Margono, Xun Yi, Gitesh K. Raikundalia
College of Engineering and Science

Victoria University
PO Box 14428, Melbourne 8001, Victoria. Australia

hendro.margono@live.vu.edu.au; Xun.yi@vu.edu.au; Gitesh.Raikundalia@vu.edu.au

Abstract
Bullying in social media such as Twitter and Facebook
has been recognised as a serious issue in Indonesia.
Bullying in social media is a type of human rights
violation that involves other people following an initial
perpetrator in sending bullying messages repeatedly and
intentionally in order to cause distress and risk to the
victims. Moreover, some people use Twitter for different,
more innocuous, but still unpleasant, purposes such as
embarrassing someone.
Our research analyses Indonesian bullying words on
Twitter so as to discover Indonesian bullying patterns. It
also discusses how to mine Indonesian bullying words on
Twitter by using text mining techniques. Analysing
Indonesian bullying words is one of the challenges in this
work.
Our research has successfully identified that “bangsat”
and “anjing” terms are the trend of Indonesian bullying
patterns on Twitter.
This work also compares Indonesian bullying patterns in
Jakarta and Surabaya. The results are quite similar. The
“bangsat” and “anjing” terms usually occur on Twitter
located in both cities. Finally, our research discusses how
text mining could provide a solution towards analysing
Indonesian bullying words patterns in Twitter messages.
.
Keywords: Data Mining, Text Mining, Cyber bullying,
social computing.

1 Introduction
With the rapid growth of the Information and
Communication Technology, the number of people
interacting using modern technologies such as the
Internet has been increased significantly in Indonesia.
Over the last decade, the Internet in Indonesia has
developed rapidly to become a vital medium of
communication in both personal and professional lives
(Hui 2010). This is a new online concept and associated
technologies will change our perspective on using
Internet media to interact with each other in communities.
Telkom is one of the telecommunication companies in
Indonesia providing internet services, Telkom states that

Copyright © 2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference, ACSC 2014, Auckland, New Zealand,
January 2014. Conferences in Research and Practice in
Information Technology, Vol. 147. Bruce H. Thomas and David
Parry, Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

more than 40 million Indonesian people accessed the
internet in 2011 and this will continue to increase rapidly
to more than 70% in 2014 (Telkom 2012). Telkom also
indicates that more than 63.1 million people used the
internet for interaction in 2012, especially using social
media such as Facebook and Twitter. Around 43.6
million Indonesian people used Facebook and 19.5
million used Twitter as media to communicate. This
indicates that Indonesia has a potential growth of social
media usage as media communication to share
information..
Considering the fact that the internet and the number of
social media users will grow rapidly in the next decade in
Indonesia, social media is considered as a potential
medium of cyber bullying. This is because social media,
such as Twitter and Facebook provide some options for
people to build their network, allowing them to chat or
interact freely. At this point, everybody can express their
ideas spontaneously to fulfil their need for existence,
actualization, and socialization transferred in words,
pictures and videos. Unfortunately, over time, the comfort
of existence, actualization and socialization to build
information and communication has been misused by
people. They have used the social media to bully
someone by sending offensive words, pictures or videos,
which is called cyber bullying.
Cyber bullying is a kind of human rights violation to hurt
or embarrass someone through ICT such as the Internet,
mobile phone or other technology (Commission 2013)
Furthermore, Hosking (2013) reported young Australians
have been bullied at least fortnightly. The purpose of
cyber bullying usually involves intimidating someone
through sending text messages, emails, phone calls,
chatting, and videos or pictures that are often seen as
anonymous.
Bullying face-to-face is common in life. Bullying through
the internet has increased in recent years and has become
widespread in the world. When we look at the data from
some surveys on the Internet, more than 77% students
were bullied in 2012 (Graphs.net 2012). According to the
Graphs.net’s survey, bullying on the Internet will grow
significantly if the parents are not proactive in guiding
their child when their child accesses social media on the
Internet.
The Ipsos is an independent market research company,
which conducted a survey to rank bullying in some
countries (Gottfried 2012). They examined bullying
among approximately 200,000 school-age children in 40
countries in the world in 2005-2006 and reported that
Indonesia is one of the countries that has a high
percentage of cyber bullying (Gottfried 2012). Ipsos
reported that more than 91% of Indonesian citizens are

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

115

mailto:hendro.margono@live.vu.edu.au
mailto:Xun.yi@vu.edu.au
mailto:Gitesh.Raikundalia@vu.edu.au

aware that their children were bullied on social media
(Gottfried 2012). In Australia, it is about 87%, Poland is
around 83%, Sweden is about 85%, the United States is
about 82%, and Germany is around 81% (Gottfried
2012). Moreover, the majority of citizens in each of the
24 countries agreed that cyber bullying needs special
attention from parents, particularly Japan (91%) and
Indonesia (89%) (Gottfried 2012).
Kaman (2007) has conducted a survey about cyber
bullying across 40 countries including Indonesia in 2005-
2006. The result is that Indonesia took third place after
Japan and South Korea. This indicates that cyber bullying
in Indonesia is a major problem needing urgent attention.
Given the rapid growth of cyber bullying in Indonesia,
identifying bullying patterns in social media is an
important research task to understand what kind of
bullying patterns occur. Hence, detecting Indonesian
bullying patterns in Twitter should be analysed more
deeply to know the strong relationship between
Indonesian bullying words. This study will contribute to
knowledge about human rights violations in social media
in Indonesia.
Analysing Indonesian bullying words in Twitter is an
interesting issue to explore. The Indonesian bullying
words are unique compared to other countries, because
they are always related to animals, psychology, disability,
and attitude. For example, “kamu gila, perilaku kamu
seperti anjing, bangsat “(You are crazy, you act like a
dog, you rascal). Other than that, there are several
bullying words combinations – “ bangsat, anjing, gila “
(rascal, dog, crazy). So, the perpetrator technically uses
two or more words to bully.
Even though some previous research has been conducted
on bullying studies, such as to explore the variety of
characteristics of bullying in social media, e.g.,
(Campbell 2005), identifying the relationship between
Indonesian bullying words using text mining technique
has not been investigated as far as we know. Hence, this
research has proposed to analyse Indonesian bullying
words in social media. This research uses text mining
techniques as a tool to extract the words and to mine data
in databases.
Bullying in social media may influence people to commit
harassment and violence, whether physical or
psychological (Kowalski, Limber & Agatston 2008): for
example, when the perpetrator arranges to meet with the
victims and they possibly accomplish violence acts
towards the victims. There have been a few cyber
bullying cases in Indonesia that have influenced physical
violence. These cases are located in Yogyakarta in which
mostly young high school females are the victims.
Bantul, Gunung Kidul, Kulonprogo, Sleman, Klaten,
Magelang, and Purworejo in Central Java also have a
similar cyber bullying phenomenon (Octaviany &
Waskita 2012). The advantage of learning Indonesian
bullying words is to recognise and to identify the words
when they appear in social media . Then, we may be able
to seek earlier help and prevent any violence from taking
place.
In Indonesia, cyber bullying occurs continuously, which
includes harassment, denigration, impersonation, invasion

of privacy, threats and exclusion - being excluded from
the society. Besides, law enforcement in Indonesia is still
weak. So, the victims rarely report such incidents to the
authorities, such as the police or their parents.
This work uses Rapid Miner1 software in order to analyse
the Indonesian bullying words from Twitter. There are
several processes before analysing the Indonesian
bullying words: first, importing data from the reprository
in Rapid Miner; second, filtering words to clean up
unstructure sentences; third, using FP-Growth and
association rules techniques.
The data is collected using Twitter adder2. Moreover, in
the process of filtering words, we created a stem
Indonesian bullying dictionary to detect some bullying
words in Indonesian Twitter posts. Jakarta and Surabaya
are two big cities in Indonesia which have become
objects in this research because some people who sent
bullying messages in Twitter come from Jakarta and
Surabaya. Our research has identified Indonesian
bullying patterns in both cities. We found the trend of
Indonesian bullying patterns in Jakarta and Surabaya to
be quite similar.
Additionally, the results of this research are an important
contribution to the Indonesian government, Non-
Government Organizations and Indonesian society about
human rights violations through the Internet.
This paper is organized as follows. Section 2 describes
the related work of this paper. In section 3, we describe
FP-Growth and Association Rule mining which will be
used to analyse the research problem. In section 4,
implementation of text mining, FP-Growth, and
Association Rule to solve the research problems will be
detailed. Analysing the relationship among words will
discover new bullying patterns. The last section is the
Conclusion section.

2 Related Work
Some previous research has discussed cyber bullying in
social media. Chen et al. (2012) have conducted research
to detect offensive language in social media. The
technique that has been used to identify offensive
language is the Lexical Syntactic Feature (LSF) approach.
The LSF framework has been successful in detecting
some offensive content in social media, which has
achieved precision of 98.24%, and recall of 94.34% and
also succeeds in detecting users who sent offensive
messages, achieving precession of 77.9%, and recall of
77.8% (Chen et al. 2012). A similar technique to detect
offensive content in social media is a lexicon-based
approach which can block and filter the offensive words
and sentences in social media (Popescu & Etzioni 2007;
Taboada et al. 2011). The lexicon-based technique has
been successful in detecting sentiment terms in social
media.
Identifying context words in Twitter using the machine
learning technique has been shown in previous research.
Pak and Paroubek (2010) constructed a simple binary

1 Rapid Miner software is available at http://rapid-
i.com/content/view/26/201/
2 Twitter adder is available at http://www.tweetadder.com/download

CRPIT Volume 147 - Computer Science 2014

116

http://rapid-i.com/content/view/26/201/
http://rapid-i.com/content/view/26/201/
http://www.tweetadder.com/download

classifier using n-gram and POS (Part-of-Speech) features
to classify tweets on the basis of positive, negative and
neutral sentiment. Their approach has similar techniques
to the unigram, bigrams and POS tags approach
introduced by Go, Bhayani and Huang (2009). Go,
Bhayani and Huang have analysed the distribution of
certain POS tags between positive and negative posts.
Recently, Maynard, Bontcheva and Rout (2012)
conducted research to detect negative opinions in social
media using the rule-based approach. Their research has
identified negative opinions, which contain sentiment
sentences, with 86% precision and 71% recall, and also
identified sentences where the accuracy of the polarity
(positive or negative) was 66%.
Another approach to detecting cyber bullying is a
language-based method introduced by Reynolds,
Kontostathis and Edwards (2011).Their research has
successfully identified 78.5% of message posts from
“Form spring” which contain cyber bullying by recording
the percentage of curse and insult word posts.

3 Collecting Indonesian Bullying Words from
Indonesian Twitter Posts

The collected data are the important part in conducting
research. Much of the work required to collect data from
Twitter will be spent obtaining and preparing the data.
Choosing the proper approach will depend on the ultimate
purpose of the analysis. There is Twitter Adder software
development which can capture text in social media. The
reader should be aware that these examples of Indonesian
bullying words may contain offensive and often abusive
language.

3.1 Data Collection from Indonesian Twitter
The first step in collecting data is download tweets text in
Twitter using Twitter Adder. This step generally needs a
key word to capture posting tweet text from Twitter
automatically. The classification of Indonesian bullying
words which were posted on Twitter will be represented
in Table 1.

In our research, to collect data we used the Indonesian
language because we would like to mine Indonesian
bullying words which occur in Twitter. Furthermore,
bullying on the Internet is also a part of human rights
violations. To understand what Indonesian bullying
words mean, we try to translate some Indonesian bullying
words into English in Table 1.

We accessed Twitter’s public timeline to search tweets
containing Indonesian bullying words to suit our interest.
We removed all facts that did not express Indonesian
bullying messages like news and objective phrases from
collected data.

Bullying words Indonesia English
Bullying words
related to animals

- Bangsat
- Anjing
- Babi
- Monyet
- Kunyuk

- Rascal
- Dog
- Pig
- Monkey
- Monkey or stupid

Bullying words
related to stupidity
and Psychology

- Goblok
- Idiot
- Geblek
- Gila
- Tolol
- Sarap
- Udik
- Kampungan

- Stupid
- Idiot
- Fool
- Mental disorder
- Stupid
- Crazy
- Rube
- Hick

Bullying words
related to disabled
persons

- Buta
- Budek
- Jelek

- Blind
- Deaf
- Ugly

General Bullying
words

- Setan
- Iblis
- Keparat
- Gembel
- Brengsek
- Sompret
- Bajingan

- Satan
- Devil
- Assh..*
- Poor
- Bastard
- Jeepers
- Scoundrel /
Bastard

Bullying words
related to attitude

- Bejad - Depraved action

Table 1: The Classification of Indonesian
Bullying Words

Overall, the total number of comments downloaded are
around 14000 tweets, which specifically contain
Indonesian bullying words, and the whole tweet messages
that had been analysed. These data were recorded for
about a week. The data are saved in Microsoft Excel
format and will be recorded in Table 2.

After recording data in Table 2, the next step is
preparation of data to be analysed using data mining
techniques. This work will analyse posting messages on
Twitter. From Table 2, the object to be analysed is the
last tweet attribute.

Table 2: Example Data in Excel Format

The data from Table 2 will be transformed into data
repositories in Rapid Miner software. After transforming
the data, we change the type of attribute of the last tweet
into text because all attributes have been changed to be
polynominal automatically in Rapid Miner.

Tweet
ID

Location Follower Friend Last Tweet Last
tweet
date

36409
4716

Bandung 302 222 Avanya andaiy,
avanya mohamad
DFDM: "sarap
(crazy)!! addnan_ch:
Oh anjing (dog)
goblog (Stupid)
fakyu siah monyet
(monkey), setan
(Satan), babi (pig)
alas bangsat (rascal)
shit damn aaaaahhhh
an

4/06/20
13
14:35

50039
8381

Bekasi 148 179 baju lu beresin gak
anjing
lu,bangsat,monyet,ta
i,sialan, gua bilangin
mama. gini nihh lagi
emosi,semua gua
lempar ke ade

4/06/20
13
14:17

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

117

3.2 Processing Data Using Rapid Miner
The next step is the preparation of the processing
document. First, we design a processing document from
the retrieved data to be numeric data. The purpose of
designing the process document is to navigate processing
data through connecting one process to other processes.
The design process involves process document operator
generating data from repositories using Rapid Miner
Software. Rapid Miner has services for data
manipulation, calculation and graphical display.
Moreover, Rapid Miner also offers a broad range of
statistical methods. Rapid Miner allows users to
transform the text into a structured representation. Rapid
Miner also has functions for managing text documents,
manipulating documents and heterogeneous text format.
Figure 1 shows the design of processing data from the
retrieved data to be words matrix data.

Figure 1. Processing data in Rapid Miner

We set the process document operator by creating word
vectors and selecting attributes that will be analysed, We
design some programs to filter the text. In this case, we
create retrieving data, process document and numerical-
to-binominal operators. Therefore , we need to convert
all the numerical values to binominal values in order to be
scanned at the next step. Every operator connects to each
other.

Table 3 shows the example of a processing document
using some filters such as tokenize, transform case, and
stop word stem dictionary and n-grams. The function of
n-grams is to detect two or more bullying words within a
message. If a message consists of more than two bullying
words, it is detected to be a bullying message. By
selecting specific words within a message, the n-gram
searches whether or not the event involves both users in
applying offensive phrases in their message.
As we can see in table 3, the process cleans up some
terms which do not have meaning.
The processing document operator involves some process
that is as follows:

Operator Before After
Tokenize Avanya andaiy,

avanyaâ™¥RT
mohamadDFDM: "sarap!!
addnan_ch: Oh anjing
goblog fakyu siah monyet
setan babi alas bangsat
shit damn aaaaahhhh an.
(What are you ™¥RT
mohamaddDFDM crazy.
Oh, He is dog, stupid,
fuc.*, monkey, satan, pig
as rascal, shit.*)

Avanya andaiy RT
mohamad DFDM sarap
addnan ch Oh anjing,
goblog fakyu siah
monyet, setan, babi
alas bangsat shit damn
(What are you RT
mohamaddDFDM
addnan ch crazy. Oh,
He is dog, stupid, fuc.*,
monkey, satan, pig as
rascal, shit.*)

Transforming
Case

Avanya andaiy RT
mohamad DFDM sarap
addnan ch Oh anjing
goblog fakyu siah monyet
setan babi alas bangsat
shit damn.
(What are you RT
mohamaddDFDM
addnan ch crazy. Oh, He
is dog, stupid, fuc.*,
monkey, satan, pig as
rascal, shit.*)

Avanya andaiy RT
mohamad DFDM sarap
addnan ch Oh anjing
goblog fakyu siah
monyet setan babi alas
bangsat shit damn
(What are you rt
mohamadddfdm addnan
ch crazy. oh, he is a
dog, stupid, fuc. *,
monkey, satan, pig as
rascal, shit.*)

Filter Stop Word avanya andaiy rt
mohamaddfdm sarap
addnan ch oh anjing
goblog fakyu siah monyet
setan babi alas bangsat
shit damn
(What are you rt
mohamadddfdm addnan
ch crazy. Oh, he is dog,
stupid, fuc.*, monkey,
satan, pig as rascal,
shit.*)

avanya andaiy
mohamadd sarap
addnan anjing goblog
fakyu siah monyet setan
babi alas bangsat shit
damn
(What are you
mohamadd addnan
crazy. he is dog, stupid,
fuc.*, monkey, satan,
pig as rascal, shit.*)

Stem Dictionary avanya andaiy
mohamadd sarap addnan
anjing goblog fakyu siah
monyet setan babi alas
bangsat shit damn
(What are you
mohamadd addnan
crazy. he is dog, stupid,
fuc.*, monkey, satan, pig
as rascal, shit.*)

apa kamu apa
mohamaddfdm sarap
ada anjing goblok jancuk
siah monyet setan babi
ala bangsat shit damn
(What are you
mohamadd crazy. he is
dog, stupid, fuc.*,
monkey, satan, pig as
rascal, shit.*)

n-Grams (terms) apa kamu apa
mohamaddfdm sarap ada
anjing goblok fakyu siah
monyet setan babi ala
bangsat shit damn
(What are you
mohamadd crazy. he is
dog, stupid, fuc.*,
monkey, satan, pig as
rascal, shit.*)

apa apa_kamu kamu
kamu_apa apa
apa_mohamaddfdm
mohamaddfdm
mohamaddfdm_sarap
sarap sarap_ada ada
ada_anjing anjing
anjing_goblok goblok
goblok_jancuk jancuk
jancuk_siah siah
siah_monyet monyet
monyet_setan setan
setan_babi babi
babi_ala ala
ala_bangsat bangsat
bangsat_shit shit
shit_damn damn
(What are you
mohamadd crazy. he is
dog, stupid, fuc.*,
monkey, satan, pig as
rascal, shit.*)

Table 3: Example Filtering Document

Table 3 illustrates the example of before and after
cleaning up tweets and the result is that some
unstructured Indonesian bullying words have been
cleaned. The example of the clean message can be seen in
table 3 in the column after the stem dictionary.

3.3 Stem Indonesian Bullying Dictionary
Figure 2 describes the stem dictionary that we developed
to clean some Indonesian bullying terms when people
sent tweets which may have the same meaning as other
terms. For example: the bngt has the same terms and
meaning as bangsat.

Retrieve data
Repositories

Tokenize

Transform case

Filter stop word

Stem (dictionary)

N-grams

Words matrix

CRPIT Volume 147 - Computer Science 2014

118

The stem Indonesian bullying dictionary has the purpose
to filter some words which may have the same meaning
as Indonesian bullying words. The stem Indonesian
bullying dictionary process will transform some
unstructured Indonesian bullying words into more
structured words because people sent tweets by typing
incomplete words. For example, bngt and anj will be
replaced to become bangsat and anjing.
To replace some unstructured words in tweets, we create
an Indonesian bullying dictionary by typing some
Indonesian bullying words in Microsoft Word and save it
in text format. For example: anjing:anj.*;
bangsat:bngt.*. Typing anjing:anj.* means that all words
by typing anj or anji will be replaced to be anjing.

Figure 2: Creating Stem Indonesian Bullying
Dictionary

Figure 2 shows the stem Indonesian bullying dictionary in
text format. The stem dictionary has the function of
replacing unstructured Indonesian bullying words with
structured words. The resulting stems Indonesian bullying
dictionary is shown in Table 3.
The result of the processing document operator is data
matrix which is shown in Appendix 1. The data show
some Indonesian bullying words which occur in some
tweets. For example, “bangsat” (rascal) term occurs in
tweets 1,2,3,…, etc.. The 0 means the word not appearing
in the tweets, and 1,2,3 mean how many times the word
appears in the tweets. Appendix 1 shows the data matrix
after generating some operators in the processing
document.
The next operator in the processing document is
numerical-to-binominal. If the value of an attribute is
between the specified minimal and maximal values, it is
false, otherwise true. The result of generating this
operator is shown in appendix 2.
Data from the matrix will be analysed using data FP-
Growth and Association Rule. The data will change into
letters representing the real data. The reason to change
the real data to letters is that the computation of data
mining will read data in letters or numbers. Table 3
describes representing the real data as letters or numbers.

3.4 Indonesian Bullying Words in Data Set
In association rule mining, the data which come from
tweets will be represented as alphabet in the data set. The
purpose of representing Indonesian bullying words in the
alphabet is to calculate how often the words occur in the
database and to compute how strong the relationship is
between words. Representing data in a data set of
association rules will be described below.
In association rule TID is a set of transactions. In this
process, TID represents a set of all tweets posts in a
database of Indonesian cyber bullying words. I =
(a,b,d,c,d,e,…,z) is a set of items which contain
Indonesian bullying words. Let A be a set of items of
Indonesian bullying words. When TA ⊆ , an implication
from BA ⇒ can be called an association rule,
where IA ⊆ , IB ⊆ , and ≠BA  ∅. In order to
obtain a strong relationship between items in an
association rule, all itemsets should satisfy the minimum
support threshold and minimum confidence threshold as
prerequisites in association rule mining. For calculating
minimum support and minimum confidence, this work
uses the formula given by Han et al. (2012).
Support)()(BABA Ρ=⇒

Confidence

) (()
))((

))((

))((

))((
/

Acountsupport_

BAcountsupport_

Asupport

BAsupport
ABBA


==Ρ=⇒

Table 4 shows an example of representing bullying words
by letter.

 Item Represent

a Bangsat (rascal)
b Anjing (dog)
c Babi (pig)
d Monyet (monkey)
e Kunyuk (monkey)
f Bajingan (scoundrel/bastrad)

Table 4: Illustrate Set of Item in Data Set

Table 4 shows the illustrated Indonesian bullying words
represented in an alphabet. For example: the letter a
represents “bangsat”, b represents “anjing”, etc. The
concept association rule is market basket analysis; hence
all Indonesian words should be represented in the
alphabet. The purpose of representing Indonesian
bullying words with the alphabet is to get itemsets
patterns in the Indonesian Bullying database.

Tweet ID Last Tweet
1 a, b, c, d, g, n
2 a, b, d
3 a, b, k
4 a, b, c, d
5 a, b, m, t

Table 5: Example Data in Data Set

Table 5 shows some example data recorded in the
database. This means the itemsets that occur in
transactional data are tweets which contain bangsat (a),
anjing (b), babi (c), monyet (d), goblok (g), and sarap (n).

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

119

4 Mining Indonesian Bullying Patterns on
Indonesian Twitter Post

Data preparation, collection data from Twitter are the
main work in this research. The purpose of analysing
message from Twitter is to identify Indonesian bullying
words patterns and trends. To achieve this aim, we will
make an effort to identify pattern words using text mining
technique.
The process of mining Indonesian bullying patterns in
Twitter can be seen in figure 3.

Figure 3. The process analysing Indonesian bullying

words from Indonesian Twitter

This research will use two steps to analyse bullying
which occurs on Twitter.

1. First step, we will conduct analysis tweets using
FP-growth, in terms of finding frequent patterns
itemsets.

2. Second step, we use association rules mining to
analyse the strong relationship between a pair of
words.

In order to obtain a strong relationship between items, the
minimum support threshold is 0.05 and the minimum
confidence threshold is 0.95.

4.1 Mining Indonesian Bullying Pattern Using
FP-Growth in Rapid Miner

In this section, this work uses FP-Growth to analyse
frequent patterns itemsets without generating candidate
itemsets (Han, Kamber & Pei 2012). We believe this
method to be more efficient compared to Apriori
algorithm. The FP - Growth algorithm is an alternative
algorithm in data mining used to find frequent itemsets.
This approach uses FP-Tree algorithm which encodes the
data set into a tree and then extracts the frequent itemsets
from this tree.
The construction FP-Tree is divided into several steps.

1. To get support count for each item, scan the data
set firstly to find frequent itemsets. Then,
abandon the items which are not frequent and
then sort the frequent items in decreasing order.

2. To create FP-Tree, scan every transaction from
the data set. Every transaction will be read as
follows:

a. Create a new path if the transaction is a
unique transaction form and set the counter
for each node to be 1

b. Add the common itemsets node counters if
the transaction shares a common prefix
itemsets then and create new nodes if
needed.

3. Continue from first to second steps until each
transaction has been mapped onto the tree.

Using the Rapid miner software, the data set will be
generated and calculated automatically based on FP-
Growth method. After being generated automatically, the
frequent itemsets have been found, shown in table 6.

 Support
Count

Item1 Item 2 Item 3

0.330 bangsat (rascal)

0.323 anjing (dog)
0.070 anjing_bangsat
0.267 bangsat anjing
0.054 bangsat babi (pig)

0.070 bangsat anjing_bangsat
0.081 anjing babi
0.070 anjing anjing_bangsat
0.052 bangsat anjing babi

0.070 bangsat anjing anjing_bang
sat

Table 6: The Result after generating FP-Growth in
Rapid Miner

Table 6 describes generated support count in FP-growth.
There are frequent itemsets (Indonesian bullying words)
which occurred in FP-growth: “bangsat” (rascal) and
“anjing” (dog) were dominant in frequent itemsets. This
means most Indonesian tweeters use both “bangsat” and
“anjing” words to bully someone on Twitter. Moreover,
another word such as “bangsat and babi” (pig) also has
support count at around 0.054. It means that some
Indonesian tweeters use “bangsat” and “babi” words to
push other tweeters.

4.2 Mining Indonesian Bullying Pattern Using
Association Rule in Rapid Miner

The first method that will be applied in this research is
association Rule which is based on market basket
analysis. This method is usually applied in supermarkets,
grocery stores, or book stores. The purpose of association
Rule is to identify the trend items which tend to be
purchased together in supermarkets, grocery stores, or
book stores. The benefit when the shops have applied this
method is receiving information on the kind of items that
tend to be purchased together. Moreover, the shops can
optimise the layout of items in the store which can
potentially increase sales by cross-selling items. When

Collecting data Twitter adder Export to Excel

Rapid Miner

Retrieve Data from
Repository

Processing data (filter
tokenize, transform case,
stop word, stem Dictionary,
and n-Grams)

Import data to
Repository

Numeric to Binominal

FP-Growth

Association Rule

Result

Import data from Excel
to Repository

CRPIT Volume 147 - Computer Science 2014

120

the association rule is applied to mine text, the text field
would become the transaction and the words themselves
would become the items.
Using the Rapid miner software, the transaction of
itemsets is generated and calculated automatically and the
result is shown in table 7. Table 7 shows that the frequent
itemsets from transaction in database have been found.
“Bangsat” and “anjing” are dominant in frequent
itemsets. Meanwhile, “iblis” (devil) and “setan” (satan)
have taken the second place after both “bangsat” and
“anjing” words. “Bangsat” and “babi” have support count
0.052 and confidence 0.970 with imply “anjing” words.
That means that “bangsat” and “babi” words have strong
relation with “anjing” words. Furthermore, “iblis” word
has support count 0.056 and confidence 0.986 to “setan”
word. This means that “iblis” also a strong relation with
“setan”.

Premises Conclusion Support
Count

Confidence

bangsat (rascal), babi
(pig) Anjing (dog) 0.05 0.97

iblis (devil) setan (satan) 0.05 0.98

anjing_bangsat bangsat 0.07 1.0

anjing_bangsat anjing 0.07 1.0

anjing_bangsat bangsat, anjing 0.07 1.0

bangsat,
anjing_bangsat anjing 0.07 1.0

anjing,
anjing_bangsat bangsat 0.07 1.0

Table 7: The Result after Generating Association Rule
in Rapid Miner

When we are looking at the result in table 7, it can take
the point of view that most Indonesian tweeter use
“bangsat (rascal)”, “ anjing (dog)”, “iblis (devil)”, and
“setan (satan)” words to bully someone on social media
especially on Twitter. The bullying occurs when people
send tweets to others by sending two Indonesian bullying
words such as “bangsat” and “anjing” or “iblis” and
“setan”.
The reasons perpetrators were sending tweets using
Indonesian bullying words on Twitter are follows:

1. They have expressed their emotion because the
victims may have a bad attitude which may
influence another person.

2. They have a purpose to harass or abuse someone
by sending the bullying message.

3. They were following other tweeters in bullying
someone.

Appendix 3 shows the relationship between Indonesian
bullying words in a graph. “Bangsat and “anjing” words
have strong relation with satisfying support_count and
confidence. Meanwhile, “iblis (devil)” and “setan
(satan)” words also have satisfied the support count and
confidence. Nevertheless, “bangsat” and “anjing” do not
have relation with “iblis” and “setan” words.

4.3 Comparison Indonesian Bullying Pattern
between in Jakarta and Surabaya cities

Indonesia has many islands which spread from Sabang to
West Papua Island, about 13.000 Islands (Maruli 2010).

Hence, this work will try a comparison between two
regions in Indonesia which make a high percentage
contribution to bullying in Indonesian Twitter. This
work will analyse the cities of Jakarta and Surabaya
because both cities are among the biggest cities of
Indonesia. Many Indonesian people who come from rural
areas move to Jakarta and Surabaya. Therefore, Jakarta
and Surabaya have a lot of communities which tend to
interact with each other.
To examine the Indonesian bullying pattern in Jakarta and
Surabaya regions, both FP-Growth and Association Rule
will be used. The purpose of this is to compare two
locations which contribute Indonesian bullying words on
Twitter. The comparison between Jakarta and Surabaya
will be described clearly in this work.
The first technique to identify the Indonesian bullying
pattern in Jakarta and Surabaya is FP-Growth. Using the
rapid miner software, the result after generating FP-
Growth algorithm is as follows:

Figure 4: Comparison Support Count in FP-Growth
between Jakarta and Surabaya

Figure 4 shows the comparison support_count in FP-
Growth between Jakarta and Surabaya. We find the trend
in Indonesian bullying patterns in Jakarta after generating
it in FP-Growth. The “bangsat”, and”anjing” terms are
the most popular bullying patterns which occur in Jakarta.
This means most tweeters from Jakarta used “anjing ”
and “bangsat” terms to bully someone on Twitter.
Moreover, “bangsat” has a big support count at around
0.9 and “anjing” has support count at about 0.8. When we
look at “bangsat” and “anjing, the support count is more
than 0.8. This means that the frequency patterns in
Jakarta are “bangsat” and “anjing”.
When we compare this to Surabaya in figure 4, we also
find the trend of Indonesian bullying patterns in Surabaya
after generating in FP-Growth. The “bangsat” and
“anjing” are popular bullying terms in Surabaya. The
frequent patterns of Indonesian bullying patterns in
Surabaya are similar to Jakarta. The “bangsat” and
“anjing” terms have a big support count. This means the
tweeters in Surabaya use “bangsat” and “anjing” to bully
someone on Twitter.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Su
p

p
o

rt
 C

o
u

n
t

Indonesian Bullying Pattern

Comparison Support Count FP-Growth between
Jakarta and Surabaya

Jakarta

Surabaya

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

121

The differences in bullying patterns between tweeter in
Jakarta and Surabaya are as follows:

1. There are other Indonesian bullying patterns in
Jakarta such as “babi”, which has support count
at around 0.25 and “monyet”, which has support
count at about 0.15.

2. Others Indonesian bullying patterns in Surabaya
are “goblok”, “jancuk”, and “setan”. “Goblok”
has support count at about 0.1, “jancuk” has
support count at around 0.25, and “setan” has
support count at about 0.18.

Another technique that will be used is Association Rule.
The Association rule technique will identify how strong
the relationship is between Indonesian bullying words.

Table 8: Comparison between Jakarta and Surabaya
after Generating Association Rule

The results of the comparison after generating association
rule between Jakarta and Surabaya are shown in table 8.
In Jakarta, the combination two and three Indonesian
bullying words that have great support count and
confidence calculation are “monyet (monkey)” and
“bangsat (rascal)”; “setan (satan)” and “bangsat”; “anjing
(dog)”, “babi (pig)”, and “bangsat”; “anjing”, “monyet”
and “bangsat”. This means that the strong rule of the
Indonesian bullying words in Jakarta are “monyet” and
“bangsat”; “setan” and “bangsat”; “anjing”, “babi”, and
“bangsat”; “anjing”, “monyet” and “bangsat”.
When we compare this to Surabaya, the combination two
and three Indonesian bullying words which have great
support count and confidence calculation are “bajingan”
and “bangsat”; “setan” and “bangsat”; “anjing”, ‘setan”

and”bangsat”. This means that the strong rule of the
Indonesian bullying words in Surabaya is “bajingan” and
“bangsat”; “setan” and “bangsat”; “anjing”, ‘setan”
and”bangsat”.
Words with similar calculation support count and
confidence for Indonesian bullying words between
Jakarta and Surabaya after generating association rule are
the “setan” “bangsat”; “anjing “, “monyet” and “bangsat”
words. This means that the words have strong rule.
When we look at the result, the trend of Indonesian
bullying words is “bangsat” and “anjing”. This trend
illustrates that bullying through technology media has
become a new phenomenon in modern life. People can
send messages easily with anonymity to embarrass
someone they do not like.
Moreover, all the trends of Indonesian bullying patterns
both in Jakarta and Surabaya have important information
for people who are interested in cyber bullying, especially
in Indonesia. The trend of Indonesian bullying patterns
also supports information for the Indonesian government
to develop software for detecting offensive messages
which contain Indonesian bullying words on Twitter. This
result shows the real data Indonesian cyber bullying on
Twitter, which can support the Indonesian government in
enforcing Indonesian communication law.
Additionally, the trend of Indonesian bullying patterns on
Twitter can be associated with social anxiety. Perpetrators
send offensive messages on Twitter which can affect the
victims whereby they feel unsafe, become unwell and
anxious. In this situation, the victims are experiencing a
social anxiety. The social anxiety is a potential cause of
the victims feeling shyness, anxiety disorders, other
emotional and temperamental factors. The victims feel
discomfort and fear when they interact with other people
in social media involving the perpetrators judging and
evaluating them.
The social anxiety can be related to the self-esteem of the
victims. The perpetrator will evaluate the victims based
on the qualities they possess. The victims with low self-
esteem tend to focus on their own weaknesses rather than
focusing on their strengths. This will have a huge impact
on their psychological well-being and their actions, thus
leading to disorders like social anxiety.
The trend of Indonesian bullying patterns visualises that
the perpetrators have a social attitude problem in which
they always feel superior to the victims. They also invite
their friends and other followers to be involved in the
bullying.

5 Conclusion
In this study, we investigate the Indonesian bullying
pattern which exists in Indonesian Twitter posts.
Specifically, we propose the stem Indonesian dictionary
to identify Indonesian bullying words in Twitter Posts,
and further, to analyse the relationship between
Indonesian bullying words. Our research has several
contributions. First, we practically conceptualize the
Indonesian lexicon bullying words and further detect
Indonesian bullying word. Second, we analysed the
Indonesian bullying words using Association Rule and
FP-Growth to find trends and patterns of Indonesian

Premises Conclusion
Jakarta Surabaya

Support
Count

Confidence Support
Count

Confidence

anjing
(dog)

bangsat
(rascal) - - 0.576 0.807

bajingan
(scoundrel
)

bangsat
- - 0.102 0.922

bangsat anjing 0.246 0.803 - -

babi (pig) anjing 0.218 0.808 - -

setan
(satan)

anjing 0.077 0.852 - -

monyet bangsat 0.171 1 - -

setan bangsat 0.090 1 0.168 0.926

babi bangsat,
anjing 0.218 0.808 - -

bangsat,
babi

 anjing 0.218 0.808 - -

setan bangsat,
anjing 0.077 0.852 - -

bangsat,
setan,

anjing 0.077 0.852 - -

babi,
monyet
(monkey)

anjing
0.073 0.885 - -

babi,
monyet,

bangsat,
anjing 0.073 0.885 - -

anjing,
babi,

bangsat 0.218 1 - -

anjing,
monyet,

bangsat 0.119 1 0.051 0.805

anjing,
setan,

bangsat - - 0.113 0.991

CRPIT Volume 147 - Computer Science 2014

122

bullying words in Indonesian Twitter. Experimental
results show that the stem Indonesian dictionary in Rapid
Miner satisfies the identification of some Indonesian
bullying words in Indonesian Twitter posts. Moreover,
this research used Association Rule and FP-Growth
techniques in Rapid Miner Software to find frequent
Indonesian bullying patterns which were transformed into
itemsets. The results after generating the data from
repositories have shown that the trend in Indonesian
bullying patterns which occurred in Indonesian Twitter
posts after being generated were “bangsat”, “anjing”,
“iblis”, and “setan”. Furthermore, the result of finding
Indonesian bullying patterns in Jakarta and Surabaya is
quite similar. Both “bangsat” and “anjing” terms are the
most popular used by tweeters who live in Jakarta and
Surabaya.
In addition, after generating data from the repository,
both techniques, FP-Growth and Association Rule, has
similar results. It means both techniques actually have
powerful calculation able to find frequent itemsets which
appeared in the database.
In conclusion, this research will mine deeply the
Indonesian bullying words using clustering techniques to
cluster and Naïve Bayes to classify some Indonesian
bullying words. In the future, this research will be
developed to detect and to predict what kind of
Indonesian bullying patterns will occur on Twitter.

6 References
Campbell, MA. (2005): 'Cyber bullying: An old problem

in a new guise?', Australian Journal of Guidance and
Counselling, vol. 15, no. 1, pp. 68-76.

Chen, Y., Zhou, Y., Zhu, S., & Xu, H. (2012) : 'Detecting
Offensive Language in Social Media to Protect
Adolescent Online Safety', in Privacy, Security, Risk
and Trust (PASSAT), 2012 International Conference
on and 2012 International Confernece on Social
Computing (SocialCom), pp. 71-80.

Commission, AHR (2013): Cyberbullying, Human rights
and bystanders, Australian Human Rights Commision
viewed 29/4/2013 2013,
https://bullying.humanrights.gov.au/cyberbullying-
human-rights-and-bystanders-0.

Go, A., Bhayani, R., & Huang, L. (2009): 'Twitter
sentiment classification using distant supervision',
CS224N Project Report, Stanford, pp. 1-12.

Gottfried, K. (2012): One in Ten (12%) Parents Online,
Around the World Say Their Child Has Been
Cyberbullied, 24% Say They Know of a Child Who
Has Experienced Same in Their Community, Ipsos,
viewed 1/4/2013 2013, http://www.ipsoshk.com/wp-
content/uploads/2012/04/Cyberbullying-factum-
AP.pdf.

Graphs.net. (2012): Bullying Statistics 2012, graphs.net,
viewed 1/5/2013 2013,
http://www.graphs.net/201209/bullying-statistics-
2012.html.

Han, J., Kamber, M., & Pei, J. (2012): Data mining:
concepts and techniques, 3rd edn, Elsevier,
Amsterdam.

Hosking, W. (2013): 'Plug in judges: cyber bullying call
to arms', Herald Sun, 13 july, News 17.

Hui, JY. (2010): 'The Internet in Indonesia: development
and impact of radical websites', Studies in Conflict &
Terrorism, vol. 33, no. 2, pp. 171-91.

Kaman, C. (2007): What country has the most bullies?,
Latitude News, viewed 29/4/2013 2013,
http://www.latitudenews.com/story/what-country-has-
the-most-bullies/.

Kowalski, R, Limber, S & Agatston, P. (2008): 'Cyber
Bully: Bullying in the Digital Age', Australia:
Blackwell.

Li, Min., Sun, Xiaoxun., Wang, Hua., Zhang, Yanchun.,
and Zhang, Ji. (2011): Privacy-aware access control
with trust management in web service. World Wide
Web 14, 4 (July 2011), 407-430.
DOI=10.1007/s11280-011-0114-8
http://dx.doi.org/10.1007/s11280-011-0114-8

Maruli, Ae. (2010): 'Hasil Survey Terbaru Jumlah Pulau
Indonesia', Antara News.

Maynard, D, Bontcheva, K & Rout, D 2012, 'Challenges
in developing opinion mining tools for social media',
Proceedings of@ NLP can u tag#
user_generated_content.

Octaviany, K & Waskita, D. (2012): 'Fenomena
Cyberbullying Facebook Pelajar Yogya: Tindakan
Cyberbullying ternyata Seperti Fenomena Gunung
Es', Viva News, 27/06/2012, Technology.

Pak, A & Paroubek, P. (2010): 'Twitter as a Corpus for
Sentiment Analysis and Opinion Mining', in LREC.

Popescu, A-M & Etzioni, O. (2007): 'Extracting product
features and opinions from reviews', in Natural
language processing and text mining, Springer, pp. 9-
28.

Reynolds, K., Kontostathis, A. & Edwards, L. (2011):
'Using machine learning to detect cyberbullying', in
Machine Learning and Applications and Workshops
(ICMLA), 2011 10th International Conference on, vol.
2, pp. 241-4.

Sun, Xiaoxun., Wang, Hua., Li, Jiuyong., and Zhang,
Yanchun. (2012): Satisfying Privacy Requirements
Before Data Anonymization. Comput. J. 55, 4 (April
2012), 422-437. DOI=10.1093/comjnl/bxr028
http://dx.doi.org/10.1093/comjnl/bxr028

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede,
M. (2011): 'Lexicon-based methods for sentiment
analysis', Computational linguistics, vol. 37, no. 2, pp.
267-307.

Telkom. (2012) : Indonesia Menuju 100 Juta Pengguna
Social Media. Telkom, viewed 29/4/2013 2013,
http://www.telkomsolution.com/news/it-
solution/indonesia-menuju-100-juta-pengguna-social-
media.

Wang, H., Zhang, Y., Cao, J. (2009) : Effective
collaboration with information sharing in virtual
universities, IEEE Transactions on Knowledge and
Data Engineering, Vol. 21, No. 6, pages: 840-853,
June.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

123

http://www.ipsoshk.com/wp-content/uploads/2012/04/Cyberbullying-factum-AP.pdf%3e
http://www.ipsoshk.com/wp-content/uploads/2012/04/Cyberbullying-factum-AP.pdf%3e
http://www.ipsoshk.com/wp-content/uploads/2012/04/Cyberbullying-factum-AP.pdf%3e
http://www.graphs.net/201209/bullying-statistics-2012.html%3e
http://www.graphs.net/201209/bullying-statistics-2012.html%3e
http://www.latitudenews.com/story/what-country-has-the-most-bullies/%3e
http://www.latitudenews.com/story/what-country-has-the-most-bullies/%3e
http://www.telkomsolution.com/news/it-solution/indonesia-menuju-100-juta-pengguna-social-media%3e
http://www.telkomsolution.com/news/it-solution/indonesia-menuju-100-juta-pengguna-social-media%3e
http://www.telkomsolution.com/news/it-solution/indonesia-menuju-100-juta-pengguna-social-media%3e

Appendix 1
Data Matrix

Appendix 2
Numeric to Binominal

Appendix 3
Association Rule in Graph

CRPIT Volume 147 - Computer Science 2014

124

Current Educational Technology Use for Digital Information
Acquisition by Young New Zealand Children

Nicholas Vanderschantz, Annika Hinze, Sally Jo Cunningham
Department of Computer Science, Faculty of Computing & Mathematical Sciences

University of Waikato, Hamilton, New Zealand
{vtwoz, hinze, sallyjo}@cs.waikato.ac.nz

Abstract
Improving children’s information acquisition using
digital documents is an under-studied field. We
performed a survey with both teachers and parents to
highlight the current use of technology and digital
information by young New Zealand children, both in
schools and at home. We found that children have access
to a range of technologies and information sources both at
home and at school. They use a mix of computers, print
books and eBooks to access documents. This paper
analyses the results of our survey and discusses its
implications for further studies and interventions on
educational practices for children’s information
acquisition.
Keywords: ICT. Children’s Technology. Mobile
Information Search.

1 Introduction
Children are encountering on-screen reading and learning
in both formal educational settings and in their daily
recreational activities. (Cooper, 2005) describes this as
the omnipresence of technology. We note that classroom
technology includes interactive learning tools, on-line
standardized testing material, digital books on CD-ROMs
and eBooks, and digital reference books such as
encyclopedia and dictionary. Children in New Zealand
classrooms have been observed to use this full range of
technologies during their typical educational pursuits. For
example Timpany & Vanderschantz (2011) observed a
range of technologies including digital whiteboards,
laptop computers and mobile tablet and personal touch-
screen interactive devices such as the iPod and iPad in a
single New Zealand school in 2011.

Whilst these technologies are being introduced into
today’s classrooms, it is not clear from the literature how
effective these technologies are in facilitating information
acquisition. Interaction with these technologies, both at
pre-school and primary school, has been shown to be
associated with cognition development (Li and Atkins,
2004) as evidenced through results in school readiness
tests (Boehm-3 Preschool) and cognition development

Copyright © 2014, Australian Computer Society, Inc.
This paper appeared at the Thirty-Seventh Australasian
Computer Science Conference, ACSC 2014, Auckland,
New Zealand, January 2014. Conferences in Research
and Practice in Information Technology, Vol. 147. Bruce
H. Thomas and David Parry, Eds. Reproduction for
academic, not-for-profit purposes permitted provided this
text is included.

tests (WPPSI-R). Yet, there is still much to learn about
children’s information needs and the impact of
technology interventions in the classroom.

Even though some research has addressed reading and
learning with interactive software (Li and Atkins, 2004;
Timpany and Vanderschantz, 2011), facilitating
children’s information acquisition in digital documents
remains largely unexamined. Our goal with this ongoing
research is to develop tools that can be immediately
useful to children in New Zealand classrooms and homes.
A future study in our ongoing work in this area will see
the design and development of tool(s) that can be
deployed immediately within at least one of these New
Zealand schools that we survey here. We therefore
require clear understanding of the technology that
children have access to presently and how we may
extrapolate with reasonable confidence in moving
forward with future research.

This paper explores children’s use of Information
Communication Technology (ICT) as seen by teachers
and parents when seeking information at home and at
school in New Zealand today. We first motivate the need
for our study by an extensive analysis of the literature
related to children’s digital information acquisition. This
related work will show the lack of current literature
reporting contemporary ICT usage statistics.

We compare and contrast the results of our survey
from 10 suburban schools and one rural school in the
Waikato. The results of our analysis lay the foundations
for our research into methods of facilitating children’s
information acquisition with digital documents and will
serve to benefit researchers in related areas with provision
of concrete evidence of the use of specific ICT and
information acquisition sources.

The remainder of the paper is structured as follows.
We highlight in Section 2 the paucity of literature that
reports how tools (hardware and software technologies)
for children’s information acquisition can support
effective information problem solving and information
literacy. Section 3 briefly describes our study
methodology and reports selected results of questions
asked of parents and teachers in suburban school in the
Waikato. We contrast this with results from the same
survey conducted in a rural school in Section 4. We
discuss our conclusions from the survey in Section 5 and
summarise our findings in Section 6.

2 Related Work
This section shows the relevance of our research within
the field of education and computer science. In particular,
we highlight gaps that require further research into

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

125

processes and tools to support children’s information
acquisition.

2.1 Pedagogy & Educational Theory
Mono-directional educational techniques are no longer
the favoured primary educational method in schools in
New Zealand and around the world. Brand-Gruwel et al
(2005, p. 488) observe that students are instead “expected
to construct their own knowledge, search and process
information and combine it with their prior knowledge in
order to tackle authentic tasks and problems”. This
statement describes current teaching pedagogy, which
encompasses teaching practices as well as teaching
philosophies. The fields of science, philosophy and
psychology are all contributing to advancing educational
practices, theories and pedagogies.

The pedagogy of the New Zealand primary curriculum
is largely influenced by the educational theories of
Vygotsky, Papert and Piaget. They represent a teaching
philosophy that requires the students to construct their
own problems and explore ways to solve those problems
in an active and self-motivated manner. Victor Vygotsky
is considered the father of Activity Theory -- a socio-
cultural descriptive theory that pays attention to people
and their work within their environment and culture.
Seymore Papert is known for his work in Constructionist
Theory: based on constructivist theory, constructionism
espouses that students create mental models to understand
the world around them, often through tangible real world
objects. Papert’s predecessor and mentor Jean Piaget is
credited with the theories of Constructivist Theory, which
posits that learning is an active, constructive process
where students create their own learning by linking prior
knowledge through construction rather than acquisition.

These theories are relevant to our research because
schools following these approaches are expected to use
teaching and learning that directly appeals to information
problem solving skills. In the following section, we show
that interaction with ICT form a significant part of the
learning activities of children in New Zealand
classrooms. Therefore both digital and analogue
documents are likely to be assessed on a daily basis,
therefore supporting the need for our ongoing
investigations; the need for further investigation of digital
information acquisition by children.

2.2 Technology (ICT) in the classroom
The study of Information Communication Technology
(ICT) is closely related to pedagogy and has long formed
debate within the education literature. In the 1960s,
Papert and others suggested using the computer as a tool
to enhance learning (Leaning, 2010). Initially ICT was
viewed as a means for teaching science and other
technology-based subjects. However, it became clear
through Paperts work that the computer could be a tool
for creative learning in a range of academic disciplines
for children. During the 1980's, the Paigetian theory of
real world experiences and the constructivist views of
learning were used to argue against computers in the
educational environment as they were considered to be
contrary to real world and "too abstract" (Yelland, 1999,
p. 5). However, it is now largely agreed that technology

alone cannot replace good educational practice, but
should be part of a "blended" solution, in which
technology is “integrated into a coherent educational
program" (Leaning, 2010, pp. 240–241) alongside
appropriate teaching interventions.

Tamim et al (2011) argue that the debate about
technology’s role in education has still not been fully
resolved, even after numerous studies at all levels of the
education system globally that date as far back as the
1960’s. Sims (1998, p. 630) states, “there remains much
to learn about the impact of interactivity on learning
within the context of computer-based applications”.

Differing from our own work, the literature often
examines the use of high-level or globalised concepts and
resources such as a computer, an Interactive White Board
(IWB), an iPod Touch or other such hardware in the
classroom. These are primarily examined as methods for
distributing or delivering content or educational
outcomes. In contrast, our research will seek to
understand information behaviour processes and develop
tools for children’s information acquisition. These tools
will not be designed for content creation or information
dissemination, but to provide solutions for children’s
successful information search and information problem
solving.

A child’s successful use of both digital information
and information technology typically is measured by the
child’s ability to browse, search and find information in a
digital context. Successful use of information and
technology for information acquisition is integral to
current educational practices. Investigation into the
specific problems children have with information
technology for information search and use will be
required in future work in our ongoing study and
therefore our current survey results reported here are the
first step towards developing such investigations and in
future tools that immediately and directly meet the needs
of New Zealand children in the classroom and home.

2.3 Focus of our work
From our study of related work we observe the dearth of
literature to encourage best principles of design for
children’s digital material in general. Specific work is
required to assist with developing a list of requirements
for software that supports children’s digital information
acquisition. We hypothesise that tools are needed that are
specifically aimed at encouraging good information
practices for children which assist with their development
as self reliant information and library users. These tools
must be born out of an understanding of information
behaviour models used by children. Overall, we identify
the following problems and gaps in current literature:

1. Sparse research with respect to children’s digital
document use for information acquisition in a
New Zealand context

2. Tools are required that assist with children’s
effective information behaviour processes

3. Investigation into digital document interface
design considerations for both adults and
children is required

Our ultimate goal with this ongoing research is to develop
tools that support children’s information acquisition with

CRPIT Volume 147 - Computer Science 2014

126

digital documents and can be deployed to children in
New Zealand schools and homes.

Our ongoing investigation therefore targets the
following broad research question: What is required to
improve children’s information acquisition with digital
documents?

As a first step to answer the question and close the
gaps identified above, we executed the survey reported in
this paper, which analysed ICT and information
acquisition behaviour of children in New Zealand schools
(addressing Problem 1). The survey was structured
around four scoping questions:

a. What technology are local schools using in the
classroom?

b. What technology do children have access to in
the home?

c. What ages are appropriate focus years for our
further research developing tools to support
information acquisition?

d. Given the free choice, do children search for
information on digital devices or in print?

The next section (Section 3) details the results from the
survey in suburban schools in the Waikato region of New
Zealand, Section 4 discusses the results from a rural
school.

3 Suburban Schools Survey
New Zealand government-funded schools at pre high
school level (ie. Years 1 through 8) are typically
separated into primary schools (catering to new entrant
Year 1 through Year 6) and intermediate schools
(catering to Year 7 and 8). In New Zealand Year 1
students begin school at five years old. Primary schools in
New Zealand are typically streamed into individual year
levels with a teacher facilitating a single year level in a
classroom. Intermediate schools in New Zealand are often
composite classrooms with a teacher facilitating Year 7
and 8 students in a single classroom. This survey was
conducted in the Waikato region of New Zealand, which
is located in the central North Island of the country.
Using the Directory of Schools (Education Counts, 2013)
we estimate that the Waikato Region of New Zealand has
approximately 252 schools that can be classified as either,
Full Primary, Contributing, Composite, or Intermediate
schools (that is schools that are pre high school level in
the New Zealand School System).

3.1 Method
Principals of 27 suburban schools at pre high school level
in the Waikato Region of New Zealand were approached
to take part in this survey during November and
December 2012. Of these, 10 schools (5 primary schools
and 5 intermediate schools) agreed to take part in the
survey. These 10 schools fell into the range of decile
ratings between 4 and 9. The Decile Rating System
(Ministry of Education, n.d.) is the measure of the socio-
economic catchment zone for a school. Three
intermediate schools were decile 4, one decile 5 and one
decile 9, while we had one decile 4, two decile 5, one
decile 6 and one decile 9 primary school. A decile 1
rating indicates a high proportion of students from low
socio-economic communities, while a rating of 10

indicates a low proportion of students from low socio-
economic communities.

Two different survey forms were created, one
questionnaire to be answered by parents and one
questionnaire to be answered by teachers. Approximately
one teacher at each year level at each school was
approached to take part in the survey. We asked the
principal to identify a teacher at each year level to be
invited to take part. Teachers were explicitly informed
that they could opt to not take part in the study. Principals
were asked to choose teachers who fitted a standard
model of their school environment rather than a class who
had higher technology access than typical in their school.
These “technology classrooms” are present in a number
of the schools that we surveyed and to the best of our
knowledge were not included in this survey. If these
teachers chose to take part, in turn they selected three
female and three male students in their class whose
parents were invited to participate in the survey. The
criteria for the teacher to select students in the class was
at the sole discretion of the teacher. We specifically
encouraged a somewhat random choice by the teacher by
requesting that a teacher does not bias their choice based
on high or low technology use. Because we were working
with so many different schools and required explicit
ethical approval we did not develop a true random
function for the selection processes. 154 parents of a
possible 252 parents (61%) chose to respond to this
survey, while 34 of a possible 39 teachers (87%) also
chose to return surveys.

The parents were asked 11 questions about the
parent’s use of technology at home and at work as well as
11 questions about the child’s use of technology at home
and at school. The teachers were asked 14 questions
about the teacher’s knowledge of their students
technology use at home and at school.

These survey questions directed to the parents and
teachers can be grouped under the following
classifications:

- Access to Technology
- Technology for Completion of School Work
- Information Sources
- Reading in print books & eBooks

This paper looks at the results of 6 questions from the
teacher questionnaire and 4 questions from the parent
questionnaire. This paper does not report the results of
questions pertaining specifically to technology use for
entertainment, internet use, and technology use for
searching library catalogues. Nor are questions pertaining
to technology use by the parents considered here.

3.1.1 Questions from teacher questionnaire:
Teachers were asked to consider the survey questions
with reference to some, all or none of the students in their
class. It can be expected that the teachers answered yes if
1 or more children in their class fitted the criteria of the
question. The exception to this would be when the
question specifically asked about most children.

1a. Please list what technology children in your
class have access to at school that they use to
complete school work.

2a. What does the school provide for in school use?

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

127

3a. Please list what technology children in your
class have access to at school that they use to
complete schoolwork.

4a. What do most children use to find information in
your classroom?

5a. Have you set tasks this year where a child must
find information from a source of their
choosing? What sources would a child have used
to complete this task at school?

6a. Do children read ebooks for education in your
classroom?

3.1.2 Questions from parents questionnaire:
Parents were asked to consider the questions in their
questionnaire with reference to the child that bought
home this questionnaire, not for all children in their
home.

1b. What technology does your child have access to
at home?

2b. What technology does your child use to
complete school work?

3b. What does your child use to find information
a) at home b) at school?

4b. Does your child read ebooks for education at
home?

3.2 Sample
This survey received the following sample of responses
across years from parents and teachers.

Year Level Parents Teachers

Y1 & 2 33 7

Y3 & 4 23 6
Y5 & 6 32 7

Y7 & 8 58 12

Table 1. Sample of responders

3.3 Results
We present here preliminary analysis of the results of this
survey of teachers understanding of their pupils and
parents understanding of their children’s technology use
and information acquisition.

3.3.1 Survey of Teachers
The results of the teacher survey are presented as year
level composites of the teachers’ responses as it became
apparent from the responses that all Year 7 and 8 teachers
teach composite classrooms rather than streamed year
level classrooms. For this reason creating composites of
the results of Years 1 and 2, Years 3 and 4 and Years 5
and 6 gave the clearest comparable data sets.

Figure 1. Technology that Children Access at School

Teachers reported a variety of technologies that children
had available for use at school (Figure 1). Computer and
tablet appearing to be the most available technology at all
year levels. PDA was also listed at years 7 & 8 as being
readily available compared to other year levels.

Figure 2. Technology Supplied by the School

Figure 2 reports technology the school was listed as
supplying for students to use at school. In addition to the
technologies listed here, a number of analogue
technologies were also named by the teachers, such as
audio, video and photographic technologies. All schools
were reported as suppling computers at all year levels and
tablets were also identified at all year levels surveyed.
Interestingly only at Intermediate (Year 7&8) were
PDA’s (such as iPod Touch) listed.

Figure 3. Technology used to Complete Schoolwork

Teachers reported that students complete schoolwork
(either at home or at school) using computers as the most
common tool at all levels. They also named tablets being
used at most year levels for completion of schoolwork.
For this question technologies were named without
prompting. By contrast, the answers reportedin Figure 4
were chosen by the teachers from a set of listed
technologies as listed in the key of Figure 4.

CRPIT Volume 147 - Computer Science 2014

128

Figure 4. Technology used to Find Information

Teachers stated that most children predominantly use
Print and Computer for information finding in the
classroom. However, at Years 5&6 we can see substantial
use of Tablets used to find information.

Figure 5. Technology used to Complete a Set Task

The high use of the Internet and library catalogues shown
in Figure 5 supports the need for investigation into
children’s information acquisition in digital
environments. It is interesting to note that at all 4 levels
teachers assert that children are most likely to use the
Internet to find information on a set task as apposed to a
printed book.

Very little use of eBooks is described for finding
information for a set task. Only one teacher suggested
that children in their class used eBooks at school to
complete a set task and this is not represented in the
above figure.

Figure 6. Reads eBooks for Education at School

In Figure 6, we see how little eBooks are used at school
(note that the Y-Axis ends at 40%). Surprisingly teachers
noted highest use by children at Years 1 & 2.

3.3.2 Survey of Parents
Due to the need to create composites of the teachers’
data, we have used those same composites for the year
level data for the parent data.

Figure 7. Technology that Children Access at Home

Parents reported a fairly even spread of access to
technology by children in the home. Most interestingly,
we don’t see a significant spike at any year level for any
of the technologies listed.

Figure 8. Technology used to Complete Homework

Parents reported that children at Years 6, 7 and 8 were
more likely to use PDA or Smartphone for homework and
total technology use appears to be higher for children in
these 3 Year levels.

Interestingly, Figure 7 and 8 can be read to show that
access to a Tablet and use of such a device for homework
is likely to be fairly spread across all year levels.

Figure 9. Technology used to Find Information

Parents responded fairly strongly that print and computers
were the key tools for finding information at home or at
school. Quite some way behind was the tablet with the
next most recurring use at both home and school. At Year
7&8 we see reported an increase in the use of Tablets for
information finding and the reverse at Years 1 thru 4.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

129

To understand the comparative use of technology for
finding information vs print for finding information we
compared the two based on parents responses. This is
seen in Figure 10 and Figure 11 below.

Figure 10. Technology vs Print used to Find

Information at Home

Figure 11. Technology vs Print used to Find

Information at School

Most notable in the comparisons shown in Figure 10 and
Figure 11 is that at home, technology is believed to be
very nearly as likely to be used for finding information by
children as print sources. At most year levels technology
is slightly more likely to be used than print both at home
and at school. Parents also believe that print is more
likely to be used than technology for children at Years 1
through 4 at school. Interestingly the difference in
technology use compared to print use is more pronounced
for technology use at home than at school. The most
marked difference in the use of technology compared to
print for finding information appears to be at Years 5&6
and Years 7&8 in the home and at school. There appears
to be less marked difference to technology use at school
compared to at home and this is of course due to the
lesser use of Smartphones and PDA’s for finding
information at school as was shown in Figure 9 above.

Figure 12. Reads eBooks for Education at Home

When investigating children’s reading of eBooks for
pleasure and for education at home it appears that
children are more likely to be found reading eBooks at
home for pleasure than for education. In Figure 12 (note
that the Y-Axis ends at 40%). we can see that very low
numbers of children’s parents believe their children use
eBooks for either pleasure or education at home, with
seemingly slightly increased numbers of students at Year
7 & 8 more likely to read eBooks for pleasure than at any
other level. Interestingly children as young as Year 1 and
2 are indicated in this study as using eBooks for pleasure
and education at home.

4 A Rural School Case
To strengthen our investigation, and to ensure we have a
picture of the situation in a range of publicly funded pre-
high school level schools typical in New Zealand, we
have also conducted our survey at a rural school in the
Waikato region of New Zealand.

Differing from the Suburban Schools described in
Section 3 of this paper,

Rural schools in New Zealand typically have a much
smaller enrolment and are far more geographically
isolated than suburban schools. Due to the smaller school
roll of a rural school it is typical for the teaching to be
conducted by a single teacher with all year levels in a
single classroom. This is the case for the school who took
part in this survey where the entire school is facilitated as
a single classroom across Years 1 through 6. These
schools are known by a range of terms in New Zealand
and internationally, including Country Schools, Rural
Schools, Isolated Schools, and One Room Schoolhouses.

We have used the Directory of Schools (Education
Counts, 2013) to estimate that approximately 7% (176 of
2503 schools) of the total number of New Zealand
schools listed are Rural Full Primary, Contributing,
Composite, or Intermediate schools with rolls less than 30
pupils. We also estimate that 9% (23 of 252 schools) are
Rural Primary, Full Primary, Contributing, Composite, or
Intermediate schools with rolls less than 30 pupils in the
Waikato Region of New Zealand.

4.1 Method
The Principal of a single Rural School in the Waikato
Region of New Zealand was approached to take part in
this survey during March 2013. This school caters to
students at years 1 to 6 with a current roll of 12 students
and a teaching staff of two teachers. One teacher
facilitates the learning for all 12 students at any one time.

The same two survey forms were answered by parents
and teachers as was used in the public schools survey.
Both teachers were invited to participate in the survey
and the parents of all 12 children were invited to take part
in the survey. Where a family had more than one child at
the school the family was invited to choose to have one
parent answer the survey for one child only or to have
both parents independently fill in surveys. 8 parents of a
possible 12 parents (66%) chose to respond to this survey,
while 2 of a possible 2 teachers (100%) also chose to
return surveys.

CRPIT Volume 147 - Computer Science 2014

130

4.2 Sample
This survey received the following sample of responses
as shown in Table 2.

Level Y1 Y2 Y3 Y4 Y5 Y6 Y? Y1-6

Parents 0 1 1 0 3 1 2
Teachers 2

Table 2. Sample of responders

We received surveys from parents of children in Year 2,
3, 5 & 6 as well as 2 surveys where the year level of the
child was not listed. We also received surveys from both
of the teachers at this school.

4.3 Results
Due to the small numbers of students and teachers at this
rural school we compare here composites of the results
from Primary schools (Years 1 through 6) and
Intermediate schools (Years 7 and 8) with the entire rural
school (Years 1 through 8).

4.3.1 Survey of Teachers
We compare here the Rural School with the Suburban
Schools surveyed in Section 3 of this paper.

Figure 13. Technology that Children Access at School

As can be seen from Figure 13 very little Smartphone use
was identified at suburban primary schools and
intermediate schools, however, no Smartphone use was
identified at the rural school. No PDA use was identified
at either the suburban or rural primary school, though was
noted at suburban intermediate schools. The strong
difference is the access to Tablets at the rural school is
substantially higher (100% access) compared to the
suburban primary schools (55%) and intermediate schools
(30%).

Figure 14. Technology Supplied by the School

As with technology access shown in Figure 13 we see in
Figure 14 that the rural school supplies tablets to the
entire student roll for in school use.

Figure 15. Technology used to Complete Schoolwork

While Figure 13 and Figure 14 seemed to show high
access to Tablets in the rural school compared to the
suburban schools Figure 15 suggests that teachers from
both rural and suburban schools feel that students use
tablets to complete schoolwork to a fairly similar degree.
Computer use to complete schoolwork is suggested as
being higher for the rural school. While there is some
Smartphone and PDA use identified by teachers at
suburban schools for completing schoolwork this is not
the case for the rural school.

Figure 16. Technology used to Find Information

When asked about technology used to find information
the use of print and computer was fairly comparable for
the rural school and both the suburban primary and
intermediate schools. However, both of the suburban
primary and intermediate schools also listed use of
Smartphone, PDA and Tablet which is not listed for the
rural school.

Figure 17. Technology used to Complete a Set Task

The results of what technology children used to complete
set tasks was comparable across the suburban schools and
the rural school.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

131

Figure 18. Reads eBooks for Education at School

We see very little use of eBooks at school in the suburban
schools and no use of eBooks recorded by the teachers of
the rural school (note that the Y-Axis ends at 40%).

4.3.2 Survey of Parents
We compare here the parent answers at the Rural School
with the answers from Suburban Schools surveyed in
Section 4.

Figure 19. Technology that Children Access at Home

The major difference between technology access at home
for children who attend suburban schools compared to
children who attend the rural school is that parents note
much higher access to Smartphones and PDA’s at the
home for the suburban schools children.

Figure 20. Technology Children Use to Complete

Homework

As was seen in Figure 19 children at the rural school do
not have access to PDA or Smartphone and thus it is
unsurprising that Figure 20 shows no PDA for
Smartphone use for homework completion and Figure 21
shows no PDA or Smartphone use at school by rural
school children.

Figure 21. Technology used to Find Information

Computer use for information finding is reported as
similar at both rural and suburban schools. Parents seem
to consider that print use for information finding is used
much less prominently than computers for information
finding at the rural school. We see an increase in the
reported use of Tablets for information finding compared
to completion of homework for the intermediate children
and the rural children.

Figure 22. Technology vs Print used to Find

Information at Home

Figure 23. Technology vs Print used to Find

Information at School

Most notable in the comparisons shown in Figure 22 and
Figure 23 is that parents believe that at home technology
is as likely to be used for finding information by children
as print for suburban school children, while children of
the rural school are more likely to use print for finding
information.

CRPIT Volume 147 - Computer Science 2014

132

Figure 24. Reads eBooks for Education at Home

As was seen in Figure 12, in Figure 24 (note that the Y-
Axis ends at 40%) we see the numbers of children
reading eBooks at home for pleasure or education is very
low for suburban school children and for rural school
children. Parents of rural school children consider their
children as likely to be reading eBooks for pleasure as for
education compared to suburban school children who
were more likely to be reading eBooks for pleasure.

5 Discussion
This section firstly considers answers to the scoping
questions posited in Section 2 of this paper. The results of
the rural case and their implications are reviewed. Finally,
the use of and access to technology compared to print
media for information acquisition is considered.

5.1 Answering our scoping questions
The survey was structured around four scoping questions
that sought to understand the ages at which children used
information technology in the home and in the classroom
for information acquisition as well as the comparative use
of print or technology for information acquisition.

a. What technology are local schools using in the
classroom?

b. What technology do children have access to in
the home?

c. What ages are appropriate focus years for our
further research developing tools to support
information acquisition?

d. Given the free choice, do children search for
information on digital devices or in print?

We now have indicative answers to these questions that
we discuss here.

(a&b) From our analysis of the results of this early
study we observe that children use a range of
technologies including Tablets, PDAs, Smartphones and
Laptops/Desktop computers both at school and at home.
Therefore information acquisition solutions should not be
constrained by a specific technology. We would also
argue that this range of technologies available at many
age ranges justifies the further investigation of any
individual one of these technologies. For finding
information parents reported that Year 7&8 children were
likely to use Tablets for finding information more than
for completing homework, with the reverse being
reported by parents of Years 1 thru 4 children.

 (c) The observation that technology use seems fairly
spread across all year levels does not assist with decision
making for targeting of future investigations. However,

our findings may indicate that age group targeting will
allow for generalizability of results of future studies. For
our future studies we therefore consider age group
selection based on the impact of comprehension or
reading skill on the task. Given the slightly higher
numbers of parents and teachers describing technology
access across the range of technologies discussed in this
survey at years 7 & 8 (11 and 12 years old) and 5 & 6 (9
and 10 years old) it is likely that these will be fruitful year
levels to concentrate on with future studies. The higher
numbers of responses of both parents and teachers at
these year levels also indicates that these will be suitable
year levels to target with future research due to a
willingness to participate in studies of this nature. Thus
we would argue that Years 5 through 8 are pertinent years
for our studies.

(d) Given the relatively high use of some of the mobile
information technology devices such as Tablet in the
home and the classroom it is interesting to still see limited
use of eBooks in the home and classroom. Reasons for
this low uptake are unknown and bear further
investigation.

5.2 Considering the rural case
From conversations with the principal of the rural school,
the researchers are aware that the school has access to
both broadband internet and wireless networking for the
students, and a well resourced computer lab. As is noted
in the results section, the school supplies one to one tablet
devices to the students and teachers for use at school. One
of the eight parents who responded to the rural survey
specifically answered the survey “sorry, we do not have
internet in our area”. This is indicative of the fact that
access to broadband internet at home for students of rural
New Zealand schools is likely to be limited. Mobile
devices, and internet resourcing in schools is a factor in
research that takes into consideration children living in
rural or remote locations and attending rural schools.

In our study it was unique to see that 100% of the
student body at this rural school had access to a tablet
supplied by the school. Interestingly however, the
teachers did not list the tablet as being used to find
information for a set task at this school. This is in contrast
to the finding that approximately 40% of teachers listed
primary school children in suburban schools as finding
information using a tablet device at school.

We believe that continuing to work closely with this
rural school will benefit our own and others
investigations. The small roll and commitment to
collaborative investigation on the behalf of the school
board, the schools parents and the principal create an
opportunity to work on investigations in a close manner.

5.3 Print Compared to Technology for
Information Acquisition

While the title of this paper uses the terms Educational
Technology Use we must not neglect the consideration of
the printed medium for information acquisition. At both
primary and intermediate level for the suburban schools
surveyed we report here increased use of technology for
finding information at home and at school. This increase
warrants further study of tools for children’s digital

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

133

information acquisition and supports the need for
development of tools that are immediately deployable in
New Zealand schools and homes. This noted increase in
technology use for finding information was not noted for
the rural case and may indeed be due to the limited
numbers reported as well as the noted limited internet
access at home for some of these responders.

Studies (McKay et al., 2012) have shown increased
eBook sales, however from our survey we do not see this
across the age ranges surveyed. This survey suggests that
while students in New Zealand are accessing eBooks in
very small numbers this is not yet being driven by
teachers in a formal manner for information search or
perhaps even for reading for pleasure or learning to read.
This contrasts the findings of Digital Book World and
PlayScience (Shuler, 2013) who report that that over half
of all American children in their survey read eBooks.
Shuler also reports that 85% of those children who read
eBooks are doing so at least once per week.

6 Summary & Future Work
This ongoing research has the overarching goal to
discover what intervention is required to improve
children’s information acquisition with digital documents.
As was shown by the related work, there is a dearth of
literature that describes the current situation in NZ
classrooms and homes with regards to ICT access and use
for information acquisition.

The initial survey reported in this paper has given
direction for future work in this area. We saw that
technology use compared to print for information finding
was slightly higher for children in years 5&6 and 7&8
both at home and at school. Age range targeting of future
investigations is a relevant concern because reading,
comprehension and literacy skills vary drastically from
Year 1 to Year 8. Therefore a year level or year-level-
range will need to be identified for future studies based
on the types of information tasks that are completed by
students at a particular year.

This survey has detailed the range of information
acquisition technologies that children have access to at
home and at school to assist with development of
appropriate future studies. Future studies will investigate
how these technologies are used for specific information
acquisition tasks. Our next step is to investigate the types
of information tasks completed within the classroom and
the ways that children approach these tasks. We hope to
identify the problems encountered with tasks as well as
the affordances of current tools. This next step will bring
us closer to our goal to develop tools that support
children’s information acquisition with digital documents.

This survey has also begun to answer our question of
whether children search for information in print or using
digital devices, however, presently we cannot argue why
they use a particular medium more than the other. We
offer here a snapshot of the current situation of ICT use
for information acquisition in a New Zealand classroom
and home. This important first step serves as a platform
for our own and others’ investigations in this field.

7 References
Brand-Gruwel, S., Wopereis, I., Vermetten, Y., 2005.

Information problem solving by experts and novices:
analysis of a complex cognitive skill. Computers in
Human Behavior 21, 487–508.

Cooper, L.Z., 2005. Developmentally appropriate digital
environments for young children. Library Trends 54,
286(17).

Education Counts, 2013. Ministry of Education -
Education Counts http://educationcounts.govt.nz
Accessed 15 October 2013.

Leaning, M., 2010. The one laptop per child project and
the problems of technology-led educational
development. High-Tech Tots: Childhood in a Digital
World 231–248.

Li, X., Atkins, M.S., 2004. Early childhood computer
experience and cognitive and motor development.
Pediatrics 113, 1715–1722.

McKay, D., Buchanan, G., Vanderschantz, N., Timpany,
C., Cunningham, S.J., Hinze, A., 2012. Judging a
book by its cover: interface elements that affect reader
selection of ebooks, in: Proceedings of the 24th
Australian Computer-Human Interaction Conference,
OzCHI ’12. ACM, New York, NY, USA, pp. 381–
390.

Ministry of Education, n.d. Ministry of Education -
Deciles Information. Ministry of Education. URL
http://minedu.govt.nz. Accessed 15 October 2013.

Shuler, C., 2013. Back to school in an e-reading world
understanding the e-reading habits of children aged 2-
13, with a focus on educational ebooks and ebooks in
the classroom., ABCs of kids and ebooks. [S.l.]  :
Digital Book World, 2013., New York.

Sims, R., 1998. Interactivity or narrative? A critical
analysis of their impact on interactive learning, in:
Proceedings of ASCILITE. pp. 627–637.

Tamim, R.M., Bernard, R.M., Borokhovski, E., Abrami,
P.C., Schmid, R.F., 2011. What Forty Years of
Research Says About the Impact of Technology on
Learning. Review of Educational Research 81, 4 –28.

Timpany, C., Vanderschantz, N., 2011. Learning outcome
dependency on contemporary ICT in the New Zealand
middle school classroom, in: Proceedings of the 12th
Annual ACM SIGCHI-NZ Conference on Human-
Computer Interaction. New York, ACM Press, pp.
65–72.

Yelland, N., 1999. Technology as Play. Early Childhood
Education Journal 26, 217–20.

CRPIT Volume 147 - Computer Science 2014

134

Understanding Saudi Arabian students’ engagement in E-learning 2.0

in Australian Higher Education

1Omar Mayan, 2Judy Sheard and 3Angela Carbone

1

Faculty of Information

Technology

Monash University, Australia

Sponsored by: Ministry of Higher

Education: Saudi Arabia

ohmay1@student.monash.edu

2

Faculty of Information

Technology

Monash University

Australia

Judy.Sheard@monash.edu

3

Office of the Pro Vice-

Chancellor

(Learning & Teaching)

Monash University

Australia

Angela.Carbone@monash.edu

Abstract
.

This paper focuses on understanding Saudi Arabian

students‟ engagement in e-learning 2.0 in Australian

higher education. Eight Saudi students enrolled in the

Australian Higher Education were interviewed to discuss

their experiences and attitudes towards e-learning 2.0

using Semi-structured interviews. A qualitative approach

was adopted to analyse the gathered data. The approach

was based largely upon Charmaz‟s constructivist

grounded theory.

Key findings indicated that Saudi Arabian students

were able to utilise the e-learning 2.0 settings in their

respective universities as tools in which they interacted

with other people while preparing themselves to become

more interactive in their classes. At the same time, e-

learning 2.0 served as a means for these students to

steadily get over the socio-cultural barriers that might

hinder them from making the most out of their education

in Australia. However, it was also found that the language

barrier that persisted even in the e-learning 2.0

environment made it more challenging for students to

break through other barriers. Furthermore, it was found

that the gender segregation culture that Saudi Arabian

students have been used to still affected them in

Australia, even in taking advantage of the e-learning 2.0

opportunities. This paper presents a discussion of four

axial codes /categories that were identified that shape the

Saudi students' attitudes, experiences and their

engagement with e-learning 2.0. Specific attention is

given to the 'Engaging in learning through technology'

axis.

Keywords: E-learning 2.0, Web 2.0, Educational

Technology, Engaging in e-learning 2.0, Australian

Higher Education, Saudi Arabian Students, Qualitative

Research, Grounded Theory.

Copyright © 2014, Australian Computer Society, Inc. This

paper appeared at the Thirty-Seventh Australasian Computer

Science Conference, ACSC 2014, Auckland, New Zealand,

January 2014. Conferences in Research and Practice in

Information Technology, Vol. 147. Bruce H. Thomas and David

Parry, Eds. Reproduction for academic, not-for-profit purposes

permitted provided this text is included.

1 Introduction

This paper is part of a large project investigating the

experiences and attitudes of Saudi Arabian higher

education students in Australia towards e-learning 2.0, as

well as the opportunities and challenges emerging from

these experiences and attitudes. It examines the role of

culture in shaping attitudes and experiences of these

students. One of the aspects of difference that foreign

students face is the change in learning environment. In

this digital age, western universities have led and

continue to lead developments in e-learning, the

utilisation of different online resources in order to better

facilitate learning. One of the latest developments in this

area is e-learning 2.0, which is a shift in the focus of

using online learning resources from delivering

knowledge to students, to enabling students to build

knowledge on their own (Downes, 2007). This shift is far

different from what students with Middle Eastern or

Asian backgrounds may be used to, as educational

institutions in the Middle Eastern region, for instance,

tend to be teacher-centric, and non-participatory

(Mahrous and Ahmed, 2010, Tubaishat et al., 2006). As

such, there are many issues which foreign students in

western or westernised universities have to deal with in

terms of this new learning environment. It is in the

investigation of some of these issues that the topic of this

dissertation is situated.

There is strong impetus for research to be conducted

on how foreign students experience e-learning 2.0 in

western or westernised universities, and how these

experiences shape or change students‟ attitudes about e-

learning 2.0. It is likewise important to determine how

these experiences and attitudes affect the challenges and

opportunities that foreign students face in e-learning 2.0

environments, and how different cultural factors

influence their perception and use of e-learning 2.0

resources.

Since 2005, the Ministry of Higher Education in

Saudi Arabia launched a programme that sought to help

raise higher education achievement among the Saudi

Arabian citizenry. This is the King Abdullah Scholarship

Programme (KASP) which to date has provided over

150,000 full scholarships for Saudi Arabian students to

study in prestigious higher education institutions around

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

135

mailto:Judy.Sheard@monash.edu
mailto:Judy.Sheard@monash.edu
mailto:Angela.Carbone@monash.edu

the world (Ministry of Higher Education in Saudi Arabia,

2012). Approximately 11% of students who are approved

for the scholarship go to study in Australia (Ashrqia

Chamber, 2011).

Saudi Arabian foreign students were selected for the

focus of this study for two reasons. Firstly, Saudi

Arabian cultural norms are very different from western

culture which predominates in Australia, in many aspects,

such as in matters of propriety, liberty and gender roles.

Secondly, the educational systems in the two countries

are very different, specifically, in higher education. For

example, in Saudi Arabia, the higher education system is

based on gender segregation (AlMunajjed, 1997), while

in Australia, all university education is co-educational.

Further, the learning environment in Saudi Arabia is

teacher-centric and non-participatory (Mirza and Al-

Abdulkareem, 2011). In contrast, the Australian learning

environment is participatory and democratic, where both

students and instructors have rights (Bradley et al., 2008).

The concern is finding out how this contrast affects

students‟ experiences and attitudes.

Understanding Saudi Arabian students‟ engagement

in e-learning 2.0 resources in the Australian educational

setting can help improve both learning and teaching

practice by providing such students with a deeper

understanding about the opportunities that they can draw

from e-learning 2.0 resources. In addition, it can help

educators in Australia gain greater knowledge of the

learning needs of their foreign students and how to utilise

e-learning 2.0 resources in order to maximise the benefits

for these students and help them overcome the challenges

that emerge. This benefit is in line with the new

international paradigm of inclusive education proposed in

Mitchell (2005, p. 32), where it is recognised that people

from a foreign culture are introduced into a new

educational system, educators within that system must be

capable of modifying the system to fit such foreign

students‟ diverse needs. Thus, this work can serve as a

stepping stone for other studies relating to how students

from foreign backgrounds experience e-learning 2.0 in

the Australian setting.

2 Background

2.1 The Concept of E-learning 2.0

E-learning 2.0 is dependent on the tools of Web 2.0 that

have "blurred the line between producers and consumers

of content", and made possible access to other people

rather than merely access to information (Brown and

Adler, 2008, p. 18). Brown and Adler (2008, p. 19)

believe that the most important contribution that Web 2.0

is making to e-learning is the creation of a participatory

medium that is able to support social learning.

Social learning is not simply about "what we learn,

but how we learn" – and Brown and Adler (2008, p. 20)

point to the way apprentices are gradually inducted into

becoming “full participants in their field.” In attempting

to describe the most important features of e-learning 2.0,

Ehlers (2009) suggested that "self-directed” learning is a

key feature of e-learning 2.0. Another feature of e-

learning 2.0 described by Ehlers (2009) is that it enables

learners to use informal, networked, and electronically

supported learning.

2.2 Main Web 2.0 Tools for E-learning 2.0

There are a number of Web 2.0 tools that are used in e-

learning 2.0 settings. Some examples of these are blogs

and microblogs, which facilitate the discussion of course-

related topics (Borau et al., 2009): wikis which enable

individual members of a class to contribute their own

inputs in developing a class-wide knowledge base on

course content (Hoewe et al., 2012, Young and Pérez,

2012): and podcasts, and content sharing tools which

enable students to share and absorb a wide range of

multimedia information relevant to their course content

(Krauskopf et al., 2012).

2.3 Affordances of E-learning 2.0

According to Faiola and Matei (2010), affordances of an

educational construct are qualities that allow students that

perform certain actions. E-learning 2.0, through the use of

Web 2.0 resources, has a variety of affordances for

students. Firstly, such an environment allows students to

develop their own learning content, enabling them to

have a deeper familiarity with the subject matter. The

student comes to treat the course as much more than just

a subject that he or she has to take. Secondly, e-learning

2.0 allows the student take greater control of the learning

process, and reduces the imbalances in the power

relationships between students and teachers. Thirdly, e-

learning 2.0 broadens the scope of student interactivity,

and empowers the development of a learning community.

2.4 E-learning 2.0 in Saudi Arabia and

Australia

The development of e-learning in Saudi Arabia has been

relatively slow compared to western countries (Al-Shehri,

2010). However, considerable progress has been made in

the last five years, during which a “national centre for e-

learning was established and e-units or departments have

been set-up in almost every university”. Still, these

developments in e-learning seem to be focused on E-

learning 1.0 rather than e-learning 2.0. E-learning 1.0

platforms have been developed to enable universities to

offer online courses and empower faculties to produce

online learning content. However, studies on the possible

utility of Web 2.0 tools in Saudi Arabian higher education

settings could not be found. As reported by Harrison

(2008), the culture of teaching and learning in Saudi

Arabian schools still tended to be teacher-centred, which

is in line with the e-learning 1.0 platform but not e-

learning 2.0 environments.

The differences in the e-learning 2.0 environments

that are present in the two countries, Saudi Arabia and

Australia are evident. Australian universities have been

developing their e-learning systems since the late 90‟s

(Marshall, 2011), and have come to accept and integrate

changes brought about by the development of e-learning

2.0 in those systems (Kirkwood, 2010). On the other

hand, Saudi Arabian higher education institutions have

been considerably slower in terms of establishing their

own e-learning infrastructures (Mirza and Al-

Abdulkareem, 2011), and have not yet even begun

CRPIT Volume 147 - Computer Science 2014

136

adapting to changes brought about by the development of

e-learning 2.0. Based on this difference, it can be

surmised that Saudi students are less accustomed to Web

2.0 technologies being applied to e-learning 2.0 than

western students.

2.5 Opportunities and Challenges of E-learning

2.0

Based on the descriptions of e-learning 2.0 provided in

the preceding sections, it is clear that Saudi Arabian

students can potentially gain access to many opportunities

through immersion in the e-learning 2.0 environment.

They would be able to gain access to insights of different

people across the world; people who are involved in the

same fields of study. In so doing, such students would be

able to gain greater, more comprehensive knowledge in

their degree programmes. At the same time, they would

be able to expand their social and professional networks,

gaining access to possible collaborative endeavours or

future employment opportunities. However, Saudi

Arabian students also need to engage in the challenges of

e-learning 2.0, which is basically that it is built on

principles of openness and liberty that may be in direct

contrast with their own cultural upbringing.

3 Methodology

3.1 Qualitative research design

The qualitative research design was selected for this

study. According to Merriam (2009, p. 6), the qualitative

research design is a “social” research design that mainly

utilises an interpretive paradigm of truth-seeking. First,

this means that the design is only applicable to studies

that involve people. This is because data gathered from

qualitative research are not completely objective, but are

dependent on the subjective perspective of the

respondent. Secondly, qualitative research accepts that

different people experience the world in different ways.

As such, it is in how people interpret their experiences

that truth is found.

In terms of how research is conducted in a qualitative

design, Merriam (2009) explained that research is carried

out holistically, through a process of organising and

identifying patterns from narrative descriptions of people

who are of relevance to the phenomenon of interest.

3.2 Grounded Theory

Sociology researchers, Barney Glaser and Anselm Strauss

originated their qualitative research design of Grounded

Theory in 1967 (Glaser and Strauss, 1977). This is a

research method, which is quite different to the usual

analysis, because it does not start with a hypothesis, and a

theoretical framework. Rather, after collecting data, and

coding it, the codes are grouped in various formations,

and systematically analysed, until relationships can be

established and a theory developed.

There are three main types of grounded theory

approaches: classic grounded theory by Glaser (1992,

Glaser, 1998), the modern approach by Strauss and

Corbin (1998, 1990) and recently, Charmaz (2006) has

introduced a constructivist approach.

Of the three different grounded theory approaches, it

was Charmaz‟s constructivist approach that was

ultimately applied to the analysis of the data in this study.

Glaser‟s is not strictly a qualitative approach, and

encourages gathering data from various sources using

various instruments in order to come up with a universal

whole of the environment of interest (Glaser, 1998). The

Strauss and Corbin approach is similar to the Charmaz

approach. What separated the two approaches from one

another is their perspective on how the theory should

emerge from the data. Strauss and Corbin maintain that in

the conduct of the different levels of coding, the theory

should emerge on its own, with little help on the part of

the researcher (Strauss and Corbin, 1998). Charmaz

(2006) criticizes this view several times (Chapter 1),

saying that the outlook is positivistic, assuming that there

is an underlying objective reality which the researcher

merely has to uncover. Charmaz‟s approach is more in

touch with post-modernist thinking, which makes the

notion of the researcher‟s “objectivity” problematic.

Charmaz is a constructivist, which means that she

believes the researcher must acknowledge his/her own

subjectively, and that the researcher plays a part in

constructing the theory. In the end, this seemed the most

appropriate approach.

3.3 Steps in Grounded Theory

According to Charmaz (2006) coding is essential to the

development of a grounded theory. Charmaz (2006, p.

46) describes the coding stages as "the pivotal link

between collecting data and developing an emergent

theory to explain these data. Through coding, you define

what is happening in the data and begin to grapple with

what it means." Charmaz (2006) identify a four step

coding process in data analysis. These are initial coding,

focused coding, axial coding and theoretical coding.

 Initial coding phase "involves naming each word, line

or segment of data" (Charmaz., 2006, p. 65). It can be

done though word-by-word, line-by-line segment-by-

segment coding which later form basic statements

(lines of code) that conveyed singular ideas. This

involves a close reading of the data and remaining

open to all possible theoretical data (Charmaz., 2006).

Charmaz (2006, p. 166) also stresses on following

Glaser‟s (1978) guidelines of using "gerunds" (verbs

ending in „ing‟) when naming the codes.

 Focused coding. This is the second phase which is a

“focused selective phase that uses the most significant

or frequent initial codes to sort, synthesize, integrate

and organize” the Data gathered (Charmaz., 2006, p.

65).

 Axial coding. Borgatti (2005, p. 6) defines axial

coding as "the process of relating codes (categories

and properties) to each other, via a combination of

inductive and deductive thinking." Charmaz (2006, p.

107 & 116) discusses that the researcher can treat

focused codes as "tentative" axial codes, and then

decide which can become conceptual categories or

axes. This can be seen as two steps:

1. Focused codes = tentative axial codes/categories

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

137

2. Researcher picks out main focused codes, which

become conceptual axial codes/categories

Thus, at the axial coding phase, the researcher

attempts to fully describe the axial codes, by spelling

out the properties and dimensions, and even

relationships with other axial codes (Charmaz., 2006).

Corbin & Strauss (1990, p. 12) indicated that each

axis emerged "can be broken down into specific

properties and their dimensions", and each property

can also be broken down into sup-property.

 Theoretical coding is where "to specify possible

relationships" between axial codes developed

throughout the focused and axial coding stages

(Charmaz., 2006, p. 84). Glaser (1978, p. 72)

explained that “theoretical coding conceptualises how

the substantive codes may relate to each other as

hypothesis to be integrated into a theory.”

Figure 1, shows the substantive strategy of Grounded

theory analysis as identified in Charmaz (2006).

4 Implementation of Grounded Theory

The following section describes the research techniques

used. It provides a detailed description of the coding

stages which were based largely upon Charmaz‟s

constructivist grounded theory.

The data was gathered via semi-structured

interviews. Although, this work is based on eight

interviews, the full study will involve interviewing more

participants until data saturation is reached. Having used

the Grounded Theory (GT) method for analysing the data

under a qualitative research paradigm, this study is

expected to comprise 20-30 semi-structured interviews,

as indicated in Creswell (1998, p. 64).

4.1 Selection of Participants

The selection of participants was done by establishing

inclusion criteria, which were that the participant should

be Saudi Arabian, and should be studying in a university

located in Australia. An email attached with the

Explanatory Statement and the Consent Form in English

that provide essential details about the study was sent to

all Saudi students in a Google group and a Facebook

group. Both groups were created by the researcher in

preparation for the study.

4.2 Interviews

The data was gathered from the participants using semi-

structured interviews. Around one hour duration

interview were conducted to gather data from the

respondents. As explained by Bryant and Charmaz (2007)

and Charmaz (2006), semi-structured interviews work

best because they provide the researcher with some

control over the relevance of the expected answers to the

research questions, while at the same time allowing

respondents considerable flexibility in answering the

questions. The same type of instrument was used in the

other grounded theory studies reviewed (Omli and Wiese-

Bjornstal, 2011, Sbaraini et al., 2011). In the conduct of

this stage, the researcher scheduled an interview with

each respondent; just as was done in Sbaraini, et al.

(2011). Respondents were provided a wide array of

choices for the medium of the interview, so that they

could choose the medium that was most accessible and

convenient for them.

Several major questions were prepared for the semi-

structured interview and further sub-questions were

developed to ask if it was deemed appropriate based on

the participant‟s initial response. However, the

interviewer could also deviate from these questions and

their order, if they wanted to follow a specific line of

questioning. The interviews were digitally recorded and

transcribed (verbatim).

4.3 Response Overview

From the emails sent to participants, 21 replies were

received from respondents. Out of this number, 8

interviews were scheduled with four males and four

females. Their details are summarised in Table 1.

Intervi

ewee
G Age Year Level Medium Length

I-1 M 18-25
2nd year

Bachelor
Skype 60 mints

I-2 M 26-30 1st year PhD Skype 90 mints

I-3 M 26-30 2nd year PhD
Face to
face

60 mints

I-4 M 26-30
Master -
Coursework

Face to
face

60 mints

I-5 F 26-30
Master -

Coursework
Skype 60 mints

I-6 F
26-30

Master-
Coursework

Skype 60 mints

I-7 F
26-30

Master-
Coursework

Skype 55 mints

I-8 F 18-25
Master-

Coursework
Skype 60 mints

Table 1: Descriptive details of participants

As shown from Table 1, the respondents were

diverse. This diversity is favourable in capturing the full

range of experiences that Saudi Arabian higher education

students have in Australia.

Figure 1: Grounded theory analysis strategy

CRPIT Volume 147 - Computer Science 2014

138

4.4 Coding Process

The raw transcriptions were imported into NVivo 10, a

qualitative analysis software program. The transcripts of

each respondent were carefully read in depth, and broken

down into basic statements (lines of code) that conveyed

singular ideas. That is, each statement code contained

only one significant idea from the respondent. From the

eight interviews, over (400) basic statements were

subsequently extracted forming (65) open/initial codes.

In the process of going through the stages of coding,

open/initial codes were numbered (from 1- 65) in order to

keep track of them, as they went through various

modifications and consolidations. For example, when a

repetition in the open/initial codes was found, a

consolidation was done.

The second stage of the coding process is focused

coding. Frequently occurring initial/open codes which

show promise in answering the proposed research

questions become the focused codes.

The third level of analysis is axial coding stage (also

called categories by Charmaz). In this study, the term

"axial coding" is used. An axis, as explained by Bryant &

Charmaz (2007), is a statement or idea relevant to the

study that can best describe what a set of codes are about.

Currently, the analysis of the data has resulted in

four axial codes. These are:

• Overcoming the language barrier

• Influence of cultural practices

• Adapting to the Australian education system

• Engaging in learning through technology

4.5 Properties and dimensions of the axial

codes
Each of the four emerged axial codes was broken down

into specific properties and their dimensions. The purpose

of identifying the properties and dimensions of each axial

code is to define, characterize, examine and re-examine

the emerged/emerging axial codes.

Table 5 shows example of some of the properties

and dimensions associated with the axial code 'Engaging

in Learning through Technology'.

Properties Sub- properties Dimensions

Being productive
through technology

Gathering information
is faster and easier

using technology

More efficient
...... less

efficient

Improving interaction
with opposite gender

through use of e-

learning 2.0

Has experienced better
relations with opposite

sex through use of e-

learning 2.0

Better relations
........ worse

relations

Table 2: Properties and dimensions associated with

'Engaging in Learning through Technology' axis

For example 'being productive through technology'

is one of these properties in terms of respondents‟

experience of learning through technological interactivity

in the Australian educational setting and e-learning 2.0.

The student respondents have expressed that gathering

information is faster and easier using technology, I5-F "I

think the technology of web 2.0 made it very easy for me

to know more information and to find anything where I‟d

like to find it quickly." At the same time, the respondent's

experiences with E-learning 2.0 in Australia mainly

consisted of being able to discuss topics that were not

completely tackled in class more extensively through

Web 2.0 tools.

These can show how using technology in general

and Web 2.0 tools, in particular, seemed to serve the

purpose of increasing and extending class involvement,

understanding and productivity in course lessons of these

foreign students beyond the time constraints of the typical

classroom. However, comparing this opportunity of

making use of technology provided in the Australian

learning environment with another emerged axial code,

such as, 'the language barrier' axis gives better

understanding and "strengthens the emerging analysis."

(Charmaz, 2012, p. 9). This discussion shows an example

of how the researchers (through memos) define the axes,

explicates the properties of each axial code, describes its

consequences and shows how these axial codes relate to

each (2006).

4.6 Constructing an understanding

(Theoretical Coding)

As explained by Charmaz and Bryant (2010), this is

the stage where the researchers have some freedom to

theorise as long as the theorisation incorporates grounded

information drawn from the previous stages. In order to

carry out theoretical coding, a deeper understanding of

the notion of axial codes is required. This is to be done by

focusing on the axial codes that arise from analysing the

focused codes. As such, in the last stage of analysis, the

validated conceptual axial codes are critically and

reflectively analysed for their interconnections. From the

synthesis of the axial codes, grounded theories are drawn

to address each of the research questions posed

(Charmaz, 2006, p.83). The results of this final stage that

relate to the ultimate goals of this study will be presented

at the end of this project.

5 Findings

This section provides a description of these four

emergent axial codes/categories. Specific attention will

be given to the 'Engaging in learning through technology'

axis. This axial code is over-arching, involving the other

three axes. The discussion provided is based on the

respondents' basic statements that related to each axial

code. The checking process of all axial codes is still

ongoing and will be continued until the data is saturated.

Key Note: Respondents‟ statements in all following

discussion are identified based on respondents‟ codes (I1

to I8) and gender (M or F) from the raw transcriptions.

5.1 Overcoming the language barrier

This axial code describes the opinions and experiences of

Saudi Arabian students regarding the need for English

language skills while studying in Australia, particularly

with regard to e-learning 2.0.

The language barrier was found to be a limiting

agent that prevented students from making full use of e-

learning 2.0. Since e-learning 2.0 typically required them

to write in order to interact with other students, they felt

conscious about their writing abilities and were generally

hesitant about interacting because of fear that their

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

139

English would not be good enough. Specifically, I3-M

said that he was very careful about what he wrote since

“all the people in that group will read it." Similarly, I6-F

“I can‟t explain it (in) English in really good way"…,

"when I write on the board I can‟t proof my English and

no one will correct my grammar.", this explained how

difficulties in English made it hard for her to interact

online.

5.2 Influence of Cultural Practices

The 'Influence of Cultural Practices' axis describes the

respondents' opinions and experiences regarding cultural

norms, ways of life, practices or beliefs related to

students‟ choice and adapt to life in Australia. It also

describes the differing reactions to mixing with the

opposite sex, interaction with the sense of freedom.

Finally, this category describes students‟ practices or

beliefs regarding the lack of confidence and shyness in

using e-learning 2.0.

The students were found to face various challenges

in their stay in Australia. Some of the most prominent had

to do with struggling with cultural differences.

Specifically, many of the respondents expressed difficulty

in adjusting to an environment where males and females

were not segregated. As explained by I5-F, “in Saudi

Arabia we are like completely separate”..."I feel like I

can‟t talk, I can‟t do anything because I wasn‟t raised to

studying like in this environment.” Similar inputs were

made by I6-F and I7-F. This difficulty was not limited to

females, as explained by I4-M,“But here we talk with

them face to face and sometimes we have to shake

hands", which was similarly expressed by I1-Mand I2-M.

5.3 Adapting to the Australian Education

System

The axial code 'Adapting to the Australian Education

System' describes the respondents' opinions and

experiences about educational models they have

experienced, as well as their willingness or otherwise to

accept a new educational model through comparing the

Australian education system, environment, relationship,

learning activities and student rights with KSA and

Australia.

A set of challenges revolved around the

respondents‟ perceived differences between the

Australian and the Saudi Arabian educational model. As

explained by I5-F,“At the beginning it was very difficult

for me to engage with Australian education system."

Specifically, differences pointed out were greater

freedom over "selection of subjects" and the need to go

beyond simply memorising lesson content. Similarly, I6-

F discussed how in the Australian setting lectures push

students to search to find information, "In Saudi Arabia

we just, ahh, the teachers they just give us information

and we just to memorize it, that‟s all.”

5.4 Engaging in Learning through technology

The 'Engaging in learning through technology' axis

discusses the respondents' opinions and their experiences

of being more productive through technological

interactivity in the Australian educational setting and e-

learning 2.0, including previous knowledge about it and

the benefits and challenges of interacting in the new e-

learning 2.0 environment.

The data suggests that there were clear contrasts

between students‟ experiences with E-learning 2.0 in

Saudi Arabia and in Australia. While some of the

respondents did make use of Web 2.0 tools prior to going

to Australia, I5-F “Facebook because I think this is the

only thing I used when was in Saudi Arabia before I came

to Australia”, I4-M “In Saudi Arabia, some of them are

used only figure them out and also to communicate with

friends, on an informal basis, but for education, No.”,

none of them claimed to have used Web 2.0 tools in

Saudi Arabia for academic reasons. It was clear that E-

learning 2.0 was non-existent in the basic education level

for the respondents (I1-M, I2-M, I3-M, I4-M, I5-F, I6-F,

I7-F and I8-F).

Some of the students were found to be able to grasp

the fundamental concept of E-learning, such as I3-M “I

think E-learning is using anything electronically,…using

technology in education in learning whatever this

technology”, and I6-F, “I think it's about using technology

to teach students as much as you can as a teacher”.

However, other students seemed to have less accurate

notions of the concept, such as I1-M “I guess is when we

use the university email”, I8-F “e-learning…you learn

something from a distance”, and I4-M “E-learning in

general is wherever and whenever.”

On the other hand, none of the respondents showed

explicit understanding of what E-learning 2.0 is.

Furthermore, there was some confusion found between

respondents understanding of E-learning and E-learning

2.0 (I1-M, I2-M, I3-M and I5-F), while some students

assuming that any use of technology to learning referred

to E-learning 2.0 (I6-F and I8-F).

In contrast to this, other students actually did have

the idea of what E-learning 2.0 was, but attributed these

ideas to E-learning in general instead of E-learning 2.0

specifically. For example, when asked about their idea

regarding E-learning, I2-M said “I think it how to share

information with other”, but when asked about E-learning

2.0, he said “I can‟t make any assumptions about what E-

learning 2.0 means, because sometime I got confused”

(L:368). Similarly, I5-F explained E-learning as “to use

the internet or wireless technology or like new devices to

gain new knowledge or share some information on

something new”, but about E-learning 2.0 said “Actually,

I'm not sure, could you explain it to me” (L:164). These

inputs show that students‟ formal understanding of E-

learning 2.0 and implicitly, its role in their studies in

Australia may be quite limited, which is consistent with

literature on the underdeveloped nature of E-learning in

Saudi Arabia (Al-Shehri, 2010)..

However, in spite of this supposed limitation, the

respondents were able to extensively describe their

increased use of Web 2.0 tools in Australia as well as

their E-learning 2.0 experiences. Notably, respondents

generally described considerably increased usage of Web

2.0 tools in Australia. These tools were used as means of

communication with family and friends in Australia and

Saudi Arabia, such as stated by I1-M “Usually, I use them

to keep in touch with friends, share information with

CRPIT Volume 147 - Computer Science 2014

140

people I know. For example sharing pictures with friends

I know, and keep touch family in Saudi”, and similarly by

I3-M, I5F, I6-F and I7-F. They were also used to socialise

by both males, I1-M “It's good if you looking for new

friends”, and females I5-F “I can discuss and meet friends

and make a group discussion and all of this from home”,

I6-F, I7-F and I8-F.

Different inputs referred to the usage of these tools

as enjoyable, I6-F “I use YouTube for fun to see different

cultures…to see people from around the world”, I3-M “I

find it very fun and helpful when you can contact with

them all the day and send messages and you know it is

also much cheaper than other way like by phone”, but

there were also inputs that evaluated these tools

negatively, I7-F “I don‟t like Facebook. I have one I

created two years ago just to find out what it is about, but

I think it‟s useless for me.” Despite these varied

perspectives about Web 2.0 tools, all of the students

seemed to have been exposed considerably to these tools

in their academic work in Australia.

These tools have been used as sources of

information for assigned research, I8-F “I used YouTube

because most of the lecturers they would give us all the

time YouTube, they would give us links to open and

download software use it at home so most of these tools I

use them here.", I4-M, I2-M, as well as for sharing and

discussing lesson content and other course-related

information, I1-M “for example last semester we had like

an essay group and we have been using Facebook as

three people and we used Facebook (group) to share

information that we found for our essay group", I3-M and

I8-F. A summary of the Web 2.0 tools used by the

respondents in Australia and those that they used in E-

learning 2.0 activities is provided in Table 12.

Main Web

2.0

Tools Used for

E-learning 2.0
Dominated

Dominantly

mentioned

Social
network

San Diego,
Facebook

Facebook
I1, I2, I3,
I4, I5, I7, I8

Microblogging
Tumblr, Twitter,

Hictu
Twitter

I1, I2, I4,

I5, I7, I8

Media sharing
YouTube,

Broadcast
YouTube

I1, I2, I3,
I4, I5, I6,

I7, I8

Google Apps

Google Docs,
Blogger, Google

group, Google

Search Engine,
Google translator.

Google
translator

I2, I4, I6

Google

Docs
I4, I6, I8

Online group

Mailer

Google and
Facebook groups,

Uni email groups

Facebook

groups

I1, I2, I3,

I4, I5, I8

Blogs Blogger.com Blogger I2, I3

Page editing
Wiki.com,

Wikipedia
Wiki.com

I2, I4, I5,

I6, I7, I8

Forums Message Board
Message
Board

I1, I6, I7, I8

LMSs/ VLEs

Blackboard,

Moodle, Ed-
Modo

Blackboard I1, I6, I7, I8

Online call Skype Meeting Skype I8

Table 3: Different types of Web 2.0 used in Australia

for learning

Table 4 shows that there was clearly a wide range of

Web 2.0 tools that the respondents were exposed to,

highlighting a stark difference between the Saudi Arabian

and Australian educational settings that the respondents

experienced.

5.5 Synthesis

The data suggests that e-learning 2.0 opportunities

acted as tools that enabled the students to bypass the

barriers of their Saudi Arabian perspective of education

and enabled them to begin to accept the new environment

that was being offered by the Australian higher education

system. The e-learning 2.0 system enabled students to

interact with one another online as a way of getting

students to become used to interacting with other people

at their university. I1-M stated that “we can discuss with

student or with teacher if you want." I7-F “you can

discuss on twitter and that giving you some advice even in

your study.” These statements, along with several others

I2-M, I3-M, I4-M, I6-F, I8-F, describe how e-learning 2.0

applications that focused on enabling online interaction

where students started to test out interacting with other

students and began to see that such group interactivity is

good and contributes positively to their studies. As

explained by I7-F, the e-learning 2.0 activities that she

was immersed in enabled her to become better at talking

and treating people and discussing matters with the class;

it also helped her in making friends.

Further, the data suggests that e-learning 2.0 was

found to be especially useful in enabling the Saudi

Arabian students to overcome their enculturation to

gender segregation. I5-F states that when she began in

Australia, she felt shy about dealing with people of the

opposite gender, but this eventually passed due to

interacting with people of the opposite gender online.

This effect is best captured by I8-F “I think, e-learning

2.0 doesn‟t care about male or female"..."For example in

my group I could share anything, explain anything",.."in

class I would feel a bit shy." Similarly, I4-M also

admitted that it was difficult at first to deal with females

online, but that it eventually became normal for him.

Previous discussion of the data shows that Saudi

Arabian students in Australia were introduced to a very

different setting, where teachers were more

accommodating, where gender segregation did not exist,

and where the learners were at the centre of the learning

environment. However, this shift in the environment was

difficult for many students, and many of them regarded

various differences in cultural and educational

environment as challenging.

However, this role of e-learning 2.0 as enabler

environments can be compromised by the language

barriers that many Saudi Arabian students still have when

they enter Australian settings. At the same time, it was

also shown how the gender segregation culture that Saudi

Arabians have been used to can still find its way in the e-

learning 2.0 setting and cause some students to retract

from interactivity.

6 Conclusions

The paper provided insights on how Saudi Arabian

students studying in Australia engage in e-learning 2.0

environments in Australian higher education. Firstly, it

was found that students have a variety of experiences

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

141

with E-learning 2.0 in Australia. These include the use of

such Web 2.0 tools as Twitter, Facebook, YouTube and

wikis. Second, it was found that that the e-learning 2.0

environment provides a good way for Saudi Arabian

students to ease into the Australian education setting.

Through the affordances provided by e-learning 2.0

resources, such as the ability to communicate to

classmates and teachers without needing to face them,

Saudi Arabian students feel more comfortable with

engaging in online interaction, and become better

prepared to do so in face to face settings later on. The

students generally expressed that E-learning 2.0 gave

them the opportunity to learn from their classmates, and

made them appreciate the value of peer knowledge.

On the other hand, when we look at emerged factors

through the discussion of other axial codes; 'Influence of

Cultural Practices' and 'Overcoming the language barrier',

two major challenges were identified; gender segregation

and language barriers. While e-learning 2.0 led to

students participating in a gender-neutral environment,

the prevalence of their enculturation on gender

segregation hindered some of the students from

interacting as actively as they could. The language barrier

was also found to be an extra, initial barrier that Saudi

Arabian students needed to break through first before

they could utilise e-learning 2.0 opportunities to their

utmost potential to gain a deeper and wider understanding

of their studies.

7 References

Al-Shehri, A. M. (2010). E-learning in Saudi Arabia:„To

E or not to E, that is the question‟. Journal of family

and community medicine, 17, 147.

AlMunajjed, M. (1997). Women in Saudi Arabia Today,

Macmillan.

Ashrqia Chamber. (2011). King Abdullah scholarship

program seeks to meet market needs of capable

national cadres.

http://www.chamber.org.sa/English/MediaCenter/N

ews/Pages/KingAbdullahscholarshipprogramseeksto

meetmarketneedsofcapablenationalcadres.aspx

Accessed 8 April 2011.

Borau, K., Ullrich, C., Feng, J. & Shen, R. (2009).

Microblogging for language learning: Using twitter

to train communicative and cultural competence.

Advances in Web Based Learning–ICWL 2009, 78-

87.

Borgatti, S. (2005). Introduction to grounded theory.

http://www.analytictech.com/mb870/introtogt.htm

Accessed 10 May 2012.

Bradley, D., Noonan, P., Nugent, H. & Scales, B. (2008).

Review of Australian higher education discussion

paper June 2008.

Brown & Adler, R. (2008). Open education, the long tail,

and learning 2.0. Educause review, 43, 16-20.

Bryant, A. & Charmaz, K. (eds.) (2007). The SAGE

Handbook of Grounded Theory: SAGE Publications

Ltd

Charmaz, K. (2012). The Power and Potential of

Grounded Theory. A Journal of the BSA MedSoc

Group, 6, 1-15.

Charmaz., K. (2006). Constructing grounded theory: A

practical guide through qualitative analysis, Sage

Publications Limited.

Corbin, J. M. & Strauss, A. (1990). Grounded theory

research: Procedures, canons, and evaluative

criteria. Qualitative sociology, 13, 3-21.

Creswell, J. W. (1998). Qualitative inquiry and research

design: choosing among five traditions, Sage

Publications.

Downes, S. (2007). E-learning 2.0 in development.

Brandon Hall; Innovations in Learning Conference.

San Jose.

Ehlers, U. D. (2009). Web 2.0–e-learning 2.0–quality

2.0? Quality for new learning cultures. Quality

Assurance in Education, 17, 296-314.

Faiola, A. & Matei, S. A. (2010). Enhancing human–

computer interaction design education: teaching

affordance design for emerging mobile devices.

International Journal of Technology and Design

Education, 20, 239-254.

Glaser, B. G. (1978). Theoretical sensitivity: advances in

the methodology of grounded theory, Sociology

Press.

Glaser, B. G. (1992). Basics of Grounded Theory

Analysis: Emergence Vs. Forcing, Sociology Press.

Glaser, B. G. (1998). Doing Grounded Theory: Issues

and Discussions, Sociology Press.

Glaser, B. G. & Strauss, A. L. (1977). The discovery of

grounded theory: Strategies for qualitative

research, Aldine Publ.

Harrison, R. (2008). Teaching in Saudi Arabia: „I had to

unlearn to learn‟.

http://archive.arabnews.com/?page=9§ion=0&a

rticle=112075&d=24&m=7&y=2008 Accessed

March 17 2012.

Hoewe, J., Bowe, B. J. & Zeldes, G. A. (2012). Using a

Wiki to Produce Journalistic Best Practices.

Communication Teacher, 26, 22-32.

Kirkwood, K. (2010). The SNAP Platform: social

networking for academic purposes. Campus-Wide

Information Systems, 27, 118-126.

Krauskopf, K., Zahn, C. & Hesse, F. W. (2012).

Leveraging the affordances of Youtube: The role of

pedagogical knowledge and mental models of

technology functions for lesson planning with

technology. Computers & Education, 58, 1194-

1206.

Mahrous, A. A. & Ahmed, A. A. (2010). A Cross-

Cultural Investigation of Students‟ Perceptions of

the Effectiveness of Pedagogical Tools. Journal of

Studies in International Education, 14, 289.

Marshall, S. (2011). Change, Technology and Higher

Education: Are Universities Capable of

Organisational Change? Journal of Asynchronous

Learning Networks, 15, 13.

CRPIT Volume 147 - Computer Science 2014

142

http://www.chamber.org.sa/English/MediaCenter/News/Pages/KingAbdullahscholarshipprogramseekstomeetmarketneedsofcapablenationalcadres.aspx
http://www.chamber.org.sa/English/MediaCenter/News/Pages/KingAbdullahscholarshipprogramseekstomeetmarketneedsofcapablenationalcadres.aspx
http://www.chamber.org.sa/English/MediaCenter/News/Pages/KingAbdullahscholarshipprogramseekstomeetmarketneedsofcapablenationalcadres.aspx
http://www.analytictech.com/mb870/introtogt.htm
http://archive.arabnews.com/?page=9§ion=0&article=112075&d=24&m=7&y=2008
http://archive.arabnews.com/?page=9§ion=0&article=112075&d=24&m=7&y=2008

Merriam, S. B. (2009). Qualitative Research: A Guide to

Design and Implementation, Jossey-Bass.

Ministry of Higher Education in Saudi Arabia. (2012).

The 3rd ieche Brochure 2012. Riyadh International

Convention & Exhibition Center: Riyadh Exhibition

Company

http://www.ieche.com.sa/web/index.php?lang=en

Accessed 16 Feb 2012.

Mirza, A. A. & Al-Abdulkareem, M. (2011). Models of

e-learning adopted in the Middle East. Applied

Computing and Informatics.

Mitchell, D. R. (2005). Contextualizing inclusive

education: evaluating old and new international

perspectives, RoutledgeFalmer.

Omli, J. & Wiese-Bjornstal, D. M. (2011). Kids Speak:

Preferred Parental Behavior at Youth Sport Events.

Research quarterly for exercise and sport, 82, 702-

711.

Sbaraini, A., Carter, S. M., Evans, R. W. & Blinkhorn, A.

(2011). How to do a grounded theory study: a

worked example of a study of dental practices. BMC

medical research methodology, 11, 128.

Strauss, A. & Corbin, J. M. (1998). Basics of Qualitative

Research: Techniques and Procedures for

Developing Grounded Theory, SAGE Publications.

Strauss, A. L. & Corbin, J. M. (1990). Basics of

qualitative research: grounded theory procedures

and techniques, Sage Publications.

Tubaishat, A., El-Qawasmeh, E. & Bhatti, A. (2006). ICT

experiences in two different Middle Eastern

universities. Issues in Informing Science &

Information Technology, 3, 667-678.

Young, S. & Pérez, J. (2012). „We-research‟: Adopting a

wiki to support the processes of collaborative

research among a team of international researchers.

International Journal of Music Education, 30, 3-17.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

143

http://www.ieche.com.sa/web/index.php?lang=en

CRPIT Volume 147 - Computer Science 2014

144

Author Index

Bainbridge, David, 57
Butzmann, Lars, 3

Carbone, Angela, 135
Chattopadhyay, Subhrendu, 81
Chen, Xiliang, 105
Cunningham, Sally Jo, 125

Darcy, Peter, 75
Delmas, Patrice, 99

Friggens, David, 49

Groves, Lindsay, 49

Hadj-Alouane, Nejib Ben, 89
Hinze, Annika, 57, 125
Hunt, Doug P., 67

Karmakar, Sushanta, 81
Klapaukh, Roman, 29
Klauck, Stefan, 3

Lim, Ching Lih, 19
Lutteroth, Christof, 99

Müller, Stephan, 3
Mammar, Amel, 89
Margono, Hendro, 115
Marshall, Stuart, 29
Mayan, Omar, 135
Meyer, Carsten, 39

Moffat, Alistair, 19

Nguyen, Hoang M., 99

Parry, Dave, iii, vii, 67
Pearce, David J, 29
Plattner, Hasso, 3, 39

Raikundalia, Gitesh K., 115
Rinck, Michael, 57

Schliebs, Stefan, 67
Sheard, Judy, 135
Shinn, Tong-Wook, 13
Stantic, Bela, 75

Takaoka, Tadao, 13
Tempero, Ewan, 105
Thomas, Bruce, iii, vii
Tucker, Steven, 75

Vanderschantz, Nicholas, 125

Wünsche, Burkhard C., 99
Wang, Alice Yuchen, 105
Wirth, Anthony, 19
Wust, Johannes, 39

Yi, Xun, 115

Zemni, Mohamed Anis, 89

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

145

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 124 - Database Technologies 2012
Edited by Rui Zhang, The University of Melbourne, Australia
and Yanchun Zhang, Victoria University, Australia. January
2012. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Third Australasian Database Conference
(ADC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 125 - Information Security 2012
Edited by Josef Pieprzyk, Macquarie University, Australia
and Clark Thomborson, The University of Auckland, New
Zealand. January 2012. 978-1-921770-06-7.

Contains the proceedings of the Tenth Australasian Information Security
Conference (AISC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 126 - User Interfaces 2012
Edited by Haifeng Shen, Flinders University, Australia and
Ross T. Smith, University of South Australia, Australia.
January 2012. 978-1-921770-07-4.

Contains the proceedings of the Thirteenth Australasian User Interface Conference
(AUIC2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 127 - Parallel and Distributed Computing 2012
Edited by Jinjun Chen, University of Technology, Sydney,
Australia and Rajiv Ranjan, CSIRO ICT Centre, Australia.
January 2012. 978-1-921770-08-1.

Contains the proceedings of the Tenth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 128 - Theory of Computing 2012
Edited by Julián Mestre, University of Sydney, Australia.
January 2012. 978-1-921770-09-8.

Contains the proceedings of the Eighteenth Computing: The Australasian Theory
Symposium (CATS 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 129 - Health Informatics and Knowledge Management 2012
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Kathleen Gray, University of Melbourne, Aus-
tralia. January 2012. 978-1-921770-10-4.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 130 - Conceptual Modelling 2012
Edited by Aditya Ghose, University of Wollongong, Australia
and Flavio Ferrarotti, Victoria University of Wellington, New
Zealand. January 2012. 978-1-921770-11-1.

Contains the proceedings of the Eighth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2012), Melbourne, Australia, 31 January – 3 February 2012.

Volume 133 - Australian System Safety Conference 2011
Edited by Tony Cant, Defence Science and Technology Or-
ganisation, Australia. April 2012. 978-1-921770-13-5.

Contains the proceedings of the Australian System Safety Conference (ASSC 2011),
Melbourne, Australia, 25th – 27th May 2011.

Volume 134 - Data Mining and Analytics 2012
Edited by Yanchang Zhao, Department of Immigration and
Citizenship, Australia, Jiuyong Li, University of South Aus-
tralia, Paul J. Kennedy, University of Technology, Sydney,
Australia and Peter Christen, Australian National Univer-
sity, Australia. December 2012. 978-1-921770-14-2.

Contains the proceedings of the Tenth Australasian Data Mining Conference
(AusDM’12), Sydney, Australia, 5–7 December 2012.

Volume 135 - Computer Science 2013
Edited by Bruce Thomas, University of South Australia, Aus-
tralia. January 2013. 978-1-921770-20-3.

Contains the proceedings of the Thirty-Sixth Australasian Computer Science
Conference (ACSC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 136 - Computing Education 2013
Edited by Angela Carbone, Monash University, Australia and
Jacqueline Whalley, AUT University, New Zealand. January
2013. 978-1-921770-21-0.

Contains the proceedings of the Fifteenth Australasian Computing Education
Conference (ACE 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 137 - Database Technologies 2013
Edited by Hua Wang, University of Southern Queensland,
Australia and Rui Zhang, University of Melbourne, Aus-
tralia. January 2013. 978-1-921770-22-7.

Contains the proceedings of the Twenty-Fourth Australasian Database Conference
(ADC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 138 - Information Security 2013
Edited by Clark Thomborson, University of Auckland, New
Zealand and Udaya Parampalli, University of Melbourne,
Australia. January 2013. 978-1-921770-23-4.

Contains the proceedings of the Eleventh Australasian Information Security
Conference (AISC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 139 - User Interfaces 2013
Edited by Ross T. Smith, University of South Australia, Aus-
tralia and Burkhard C. Wünsche, University of Auckland,
New Zealand. January 2013. 978-1-921770-24-1.

Contains the proceedings of the Fourteenth Australasian User Interface Conference
(AUIC 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 140 - Parallel and Distributed Computing 2013
Edited by Bahman Javadi, University of Western Sydney,
Australia and Saurabh Kumar Garg, IBM Research, Aus-
tralia. January 2013. 978-1-921770-25-8.

Contains the proceedings of the Eleventh Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2013), Adelaide, Australia, 29 January – 1 Febru-
ary 2013.

Volume 141 - Theory of Computing 2013
Edited by Anthony Wirth, University of Melbourne, Aus-
tralia. January 2013. 978-1-921770-26-5.

Contains the proceedings of the Nineteenth Computing: The Australasian Theory
Symposium (CATS 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 142 - Health Informatics and Knowledge Management 2013
Edited by Kathleen Gray, University of Melbourne, Australia
and Andy Koronios, University of South Australia, Australia.
January 2013. 978-1-921770-27-2.

Contains the proceedings of the Sixth Australasian Workshop on Health Informat-
ics and Knowledge Management (HIKM 2013), Adelaide, Australia, 29 January –
1 February 2013.

Volume 143 - Conceptual Modelling 2013
Edited by Flavio Ferrarotti, Victoria University of Welling-
ton, New Zealand and Georg Grossmann, University of South
Australia, Australia. January 2013. 978-1-921770-28-9.

Contains the proceedings of the Ninth Asia-Pacific Conference on Conceptual Mod-
elling (APCCM 2013), Adelaide, Australia, 29 January – 1 February 2013.

Volume 144 - The Web 2013
Edited by Helen Ashman, University of South Australia,
Australia, Quan Z. Sheng, University of Adelaide, Australia
and Andrew Trotman, University of Otago, New Zealand.
January 2013. 978-1-921770-15-9.

Contains the proceedings of the First Australasian Web Conference (AWC 2013),
Adelaide, Australia, 29 January – 1 February 2013.

Volume 145 - Australian System Safety Conference 2012
Edited by Tony Cant, Defence Science and Technology Or-
ganisation, Australia. April 2013. 978-1-921770-13-5.

Contains the proceedings of the Australian System Safety Conference (ASSC 2012),
Brisbane, Australia, 23rd – 25th May 2012.

	Vol147_frontmatter
	Vol147_main
	contributed_papers_front
	01_acsc2014_submission_4
	02_acsc2014_submission_7
	03_acsc2014_submission_9
	04_acsc2014_submission_11
	05_acsc2014_submission_14
	Introduction
	Trends in Modern Enterprise Applications
	In-Memory Database Management
	Mixed Database Workloads

	Database Application Context (DAC) Analysis
	Overview
	Models of the DAC Analysis

	Analyzed Application Contexts
	Transactional Enterprise Application
	Transactional TPC-C Benchmark
	Mixed-Workload CH-benCHmark Benchmark

	Analysis of Workload Characteristics
	Classification of Queries
	Classification of Access Patterns
	Classification of Data Schema

	Discussion of Results
	Related Work
	Workload Characterization
	Data Characterization

	Conclusion and Future Work

	06_acsc2014_submission_35
	07_acsc2014_submission_22
	08_acsc2014_submission_23
	09_acsc2014_submission_38
	10_acsc2014_submission_40
	11_acsc2014_submission_28
	12_acsc2014_submission_31
	13_acsc2014_submission_6
	14_acsc2014_submission_18
	1 Introduction
	2 Related Work
	3 Collecting Indonesian Bullying Words from Indonesian Twitter Posts
	3.1 Data Collection from Indonesian Twitter
	3.2 Processing Data Using Rapid Miner
	3.3 Stem Indonesian Bullying Dictionary
	3.4 Indonesian Bullying Words in Data Set

	4 Mining Indonesian Bullying Patterns on Indonesian Twitter Post
	4.1 Mining Indonesian Bullying Pattern Using FP-Growth in Rapid Miner
	4.2 Mining Indonesian Bullying Pattern Using Association Rule in Rapid Miner
	4.3 Comparison Indonesian Bullying Pattern between in Jakarta and Surabaya cities

	5 Conclusion
	6 References

	15_acsc2014_submission_37
	16_acsc2014_submission_41
	Vol147_index

	volume_trailer

