CONFERENCES IN RESEARCH AND PRACTICE IN
INFORMATION TECHNOLOGY

VOLUME 140

PARALLEL AND DISTRIBUTED
COMPUTING 2013

AUSTRALIAN COMPUTER SCIENCE COMMUNICATIONS, VOLUME 35, NUMBER 6

AUSTRALIAN
COMPUTER
SOCIETY

. CORE

Compputing Research & Education

PARALLEL AND DISTRIBUTED
CoOMPUTING 2013

Proceedings of the Eleventh Australasian Symposium on
Parallel and Distributed Computing

(AusPDC 2013), Adelaide, Australia,

29 January — 1 February 2013

Bahman Javadi and Saurabh Kumar Garg, Eds.

Volume 140 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library. v

iii

Parallel and Distributed Computing 2013. Proceedings of the Eleventh Australasian Symposium on
Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia, 29 January — 1 February 2013

Conferences in Research and Practice in Information Technology, Volume 140.

Copyright (©2013, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Bahman Javadi

School of Computing, Engineering and Mathematics
University of Western Sydney

Penrith, NSW 2751

Australia

Email: b. javadiQuws.edu.au

Saurabh Kumar Garg

IBM Research, Australia
University of Melbourne Precinct
Victoria 3010

Australia

Email: saurabhg@unimelb.edu.au

Series Editors:

Vladimir Estivill-Castro, Griffith University, Queensland
Simeon J. Simoff, University of Western Sydney, NSW
Email: crpit@scm.uws.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office

Sydney 1230

New South Wales

Australia.

Conferences in Research and Practice in Information Technology, Volume 140.
ISSN 1445-1336.
ISBN 978-1-921770-25-8.

Document engineering, January 2013 by CRPIT
On-line proceedings, January 2013 by the University of Western Sydney
Electronic media production, January 2013 by the University of South Australia

The Conferences in Research and Practice in Information Technology series disseminates the results of peer-reviewed
research in all areas of Information Technology. Further details can be found at http://crpit.com/.

Table of Contents

Proceedings of the Eleventh Australasian Symposium on Parallel and Dis-
tributed Computing (AusPDC 2013), Adelaide, Australia, 29 January — 1
February 2013

Preface vii
Programme Committee. viii
Organising Committee......... x
Welcome from the Organising Committee xi
CORE - Computing Research & Education...................................... xiii
ACSW Conferences and the Australian Computer Science

Communications xiv
ACSW and AusPDC 2013 SPONSOTS ..ottt xvi

Contributed Papers

A GPU-based Method for Computing Eigenvector Centrality of Gene-expression Networks 3
Ahmed Shamsul Arefin, Regina Berretta and Pablo Moscato

Non-blocking Parallel Subset Construction on Shared-memory Multicore Architectures............. 13
Hyewon Choi and Bernd Burgstaller

Simseer and Bugwise - Web Services for Binary-level Software Similarity and Defect Detection 21
Silvio Cesare and Yang Xiang

Cloud-Aware Processing of MapReduce-Based OLAP Applications 31
Hyuck Han, Young Choon Lee, Seungmi Choi, Heon Y. Yeom and Albert Y. Zomaya

Tools and Processes to Support the Development of a National Platform for Urban Research: Lessons
(Being) Learnt from the AURIN Projecto e 39
Richard Sinnott, Christopher Bayliss, Luca Morandini and Martin Tomko

A Web Portal for Management of Aneka-Based MultiCloud Environments........................ 49
Mohammed Alrokayan and Rajkumar Buyya

Author Index 57

vi

Preface

Parallel and distributed computing has played a key role in enabling execution of several scientific appli-
cations over the past years. With advances in technology, it has changed its scope from small clusters of
workstations to very large-scale datacenters, which providing Cloud computing services. This proceeding
presents some of the current research in this area that have contributed to the 11th Australasian Sympo-
sium on Parallel and Distributed Computing (AusPDC 2013), held between 29 January—1 February 2013
in Adelaide, Australia in conjunction with the Australasian Computer Science Week (ACSW 2013). In
2010, Australasian Symposium on Grid Computing and e-Research (AusGrid) was broadened to include
all aspects of parallel and distributed computing and hence was called as Australasian Symposium on Par-
allel and Distributed Computing. Following a couple of successful events, AusPDC has become the flagship
symposium for Grid, Cloud, Cluster, and Distributed Computing research in Australia and New Zealand.

Submissions were received, mostly from Australia, but also from New Zealand, China, Korea, India,
and Indonesia. The full version of each paper was carefully reviewed by at least two referees, and evaluated
according to its originality, correctness, readability and relevance. A total of 6 papers out of 13 submissions
were accepted to present in the conference. The accepted papers cover topics from Cloud computing, system
security, GPU computing, multi-processing systems, and e-Research tools. In addition to the technical
papers, we are delighted to welcome an invited talk given by Professor Richard O. Sinnott from the
University of Melbourne.

We are very thankful to the Program Committee members, and external reviewers for their outstanding
and timely work, which was invaluable for taking the quality of this year’s program to such a high level.
We also wish to acknowledge the efforts of the authors who submitted their papers and without whom this
conference would have not been possible. Due to the competitive selection process, several strong papers
could not be included in the program. We sincerely hope that prospective authors will continue to view the
AusPDC symposium series as the premiere venue in the field for disseminating their work and results. We
would like to acknowledge the leadership and untiring efforts of the conference General Chair, Dr. Ivan Lee
and the guidance provided by the steering committee, in particular Professor Rajkumar Buyya, Associate
Professor Jinjun Chen, and Dr. Rajiv Ranjan.

We are grateful to ACSW Organizing Committee and Professor Simeon Simoff from UWS representing
CRPIT for his assistance in the production of the proceedings. Thanks to the School of Computing,
Engineering, and Mathematics at University of Western Sydney for web support, advertising and refereeing
for the conference.

Bahman Javadi
University of Western Sydney

Saurabh Kumar Garg
IBM Research, Australia

AusPDC 2013 Programme Chairs
January 2013

vii

Programme Committee

Chairs

Bahman Javadi, University of Western Sydney, Australia
Saurabh Kumar Garg, IBM Research, Australia

Members

Jemal Abawajy, Deakin of University, Australia

David Abramson, Monash University, Australia

Peter Bertok, RMIT, Australia

Borzoo Bonakdarpour, University of Waterloo, Canada
Rajkumar Buyya, The University of Melbourne, Australia
Geffrey Fox, Indiana University, USA

Andrzej Goscinski, Deakin University, Australia

Kenneth Hawick, Massey University, New Zealand

John Hine, Victoria University of Wellington, New Zealand
Michael Hobbs, Deakin University, Australia

Zhiyi Huang, Otago University, New Zealand

Nick Jones, University of Auckland, New Zealand

Wayne Kelly, Queensland University of Technology, Australia
Kevin Lee, Murdoch University, Australia

Young Choon Lee, The University of Sydney, Australia
Laurent Lefevre, INRIA, University of Lyon, France
Weifa Liang, Australian National University, Australia
Farhad Mehdipour, Kyushu University, Japan

Paul Roe, Queensland University of Technology, Australia
Hong Shen, University of Adelaide, Australia

Jun Shen, University of Wollongong, Australia

Michael Sheng, University of Adelaide, Australia
Weisheng Si, University of Western Sydney, Australia
Gaurav Singh, CSIRO Mathematical and Information Sciences, Australia
Richard Sinnott, The University of Melbourne, Australia
Peter Strazdins, Australian National University, Australia
Kurt Vanmechelen, University of Antwerp, Belgium
Andrew Wendelborn, University of Adelaide, Australia
Yulei Wu, Chinese Academy of Sciences, China

Yang Xiang, Deakin University, Australia

Jingling Xue, University of New South Wales, Australia
Jun Yan, University of Wollongong, Australia

Yun Yang, Swinburne University of Technology, Australia
Rui Zhang, The University of Melbourne, Australia
Albert Zomaya, The University of Sydney, Australia

Steering Committee

Prof. David Abramson, Monash University, Australia

Prof. Rajkumar Buyya, University of Melbourne, Australia

A./Prof. Jinjun Chen (Vice Chair), University of Technology Sydney, Australia

Dr. Paul Coddington, University of Adelaide, Australia

Prof. Andrzej Goscinski (Chair), Deakin University, Australia

Prof. Kenneth Hawick, Massey University, New Zealand

Prof. John Hine, Victoria University of Wellington, New Zealand

Dr. Rajiv Ranjan, CSIRO ICT Centre, Australia Dr. Wayne Kelly, Queensland University of Technology,
Australia

viii

Prof. Paul Roe, Queensland University of Technology, Australia
Dr. Andrew Wendelborn, University of Adelaide, Australia

Dr. Bahman Javadi, University of Western Sydney, Australia
Dr. Saurabh Kumar Garg, IBM Research, Australia

Organising Committee

Chair

Dr. Ivan Lee

Finance Chair

Dr. Wolfgang Mayer

Publication Chair

Dr. Raymond Choo

Local Arrangement Chair

Dr. Grant Wigley

Registration Chair

Dr. Jinhai Cai

Welcome from the Organising Committee

On behalf of the Organising Committee, it is our pleasure to welcome you to Adelaide and to the 2013
Australasian Computer Science Week (ACSW 2013). Adelaide is the capital city of South Australia, and
it is one of the most liveable cities in the world. ACSW 2013 will be hosted in the City West Campus
of University of South Australia (UniSA), which is situated at the north-west corner of the Adelaide city
centre.

ACSW is the premier event for Computer Science researchers in Australasia. ACSW2013 consists of
conferences covering a wide range of topics in Computer Science and related area, including;:

— Australasian Computer Science Conference (ACSC) (Chaired by Bruce Thomas)

— Australasian Database Conference (ADC) (Chaired by Hua Wang and Rui Zhang)

— Australasian Computing Education Conference (ACE) (Chaired by Angela Carbone and Jacqueline
Whalley)

— Australasian Information Security Conference (AISC) (Chaired by Clark Thomborson and Udaya
Parampalli)

— Australasian User Interface Conference (AUIC) (Chaired by Ross T. Smith and Burkhard C. Wiinsche)

— Computing: Australasian Theory Symposium (CATS) (Chaired by Tony Wirth)

— Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Bahman
Javadi and Saurabh Kumar Garg)

— Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Kath-
leen Gray and Andy Koronios)

— Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Flavio Ferrarotti and Georg
Grossmann)

— Australasian Web Conference (AWC2013) (Chaired by Helen Ashman, Michael Sheng and Andrew
Trotman)

In additional to the technical program, we also put together social activities for further interactions
among our participants. A welcome reception will be held at Rockford Hotel’s Rooftop Pool area, to enjoy
the fresh air and panoramic views of the cityscape during Adelaide’s dry summer season. The conference
banquet will be held in Adelaide Convention Centre’s Panorama Suite, to experience an expansive view of
Adelaide’s serene riverside parklands through the suite’s seamless floor to ceiling windows.

Organising a conference is an enormous amount of work even with many hands and a very smooth
cooperation, and this year has been no exception. We would like to share with you our gratitude towards
all members of the organising committee for their dedication to the success of ACSW2013. Working like
one person for a common goal in the demanding task of ACSW organisation made us proud that we got
involved in this effort. We also thank all conference co-chairs and reviewers, for putting together conference
programs which is the heart of ACSW. Special thanks goes to Alex Potanin, who shared valuable experiences
in organising ACSW and provided endless help as the steering committee chair. We’d also like to thank
Elyse Perin from UniSA, for her true dedication and tireless work in conference registration and event
organisation. Last, but not least, we would like to thank all speakers and attendees, and we look forward
to several stimulating discussions.

We hope your stay here will be both rewarding and memorable.

Ivan Lee
School of Information Technology & Mathematical Sciences

ACSW2013 General Chair
January, 2013

xii

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2013 in Adelaide. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences - ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s - now share this week with eight other events - ACE, AISC, AUIC, AusPDC, HIKM,
ACDC, APCCM and AWC which build on the diversity of the Australasian computing community.

In 2013, we have again chosen to feature a small number of keynote speakers from across the discipline:
Riccardo Bellazzi (HIKM), and Divyakant Agrawal (ADC), Maki Sugimoto (AUIC), and Wen Gao. I
thank them for their contributions to ACSW2013. I also thank invited speakers in some of the individual
conferences, and the CORE award winner Michael Sheng (CORE Chris Wallace Award). The efforts of the
conference chairs and their program committees have led to strong programs in all the conferences, thanks
very much for all your efforts. Thanks are particularly due to Ivan Lee and his colleagues for organising
what promises to be a strong event.

The past year has been turbulent for our disciplines. ERA2012 included conferences as we had pushed
for, but as a peer review discipline. This turned out to be good for our disciplines, with many more
Universities being assessed and an overall improvement in the visibility of research in our disciplines. The
next step must be to improve our relative success rates in ARC grant schemes, the most likely hypothesis for
our low rates of success is how harshly we assess each others’ proposals, a phenomenon which demonstrably
occurs in the US NFS. As a US Head of Dept explained to me, ”in CS we circle the wagons and shoot
within”.

Beyond research issues, in 2013 CORE will also need to focus on education issues, including in Schools.
The likelihood that the future will have less computers is small, yet where are the numbers of students
we need? In the US there has been massive growth in undergraduate CS numbers of 25 to 40% in many
places, which we should aim to replicate. ACSW will feature a joint CORE, ACDICT, NICTA and ACS
discussion on ICT Skills, which will inform our future directions.

CORE’s existence is due to the support of the member departments in Australia and New Zealand,
and I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am
grateful to all those who gave their time to CORE in 2012; in particular, I thank Alex Potanin, Alan Fekete,
Aditya Ghose, Justin Zobel, John Grundy, and those of you who contribute to the discussions on the CORE
mailing lists. There are three main lists: csprofs, cshods and members. You are all eligible for the members
list if your department is a member. Please do sign up via http://lists.core.edu.au/mailman/listinfo - we
try to keep the volume low but relevance high in the mailing lists.

I am standing down as President at this ACSW. I have enjoyed the role, and am pleased to have had
some positive impact on ERA2012 during my time. Thank you all for the opportunity to represent you for
the last 3 years.

Tom Gedeon

President, CORE
January, 2013

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2014. Volume 36. Host and Venue - AUT University, Auckland, New Zealand.
2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.

2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.

2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.

2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.

2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.

2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.

2006. Volume 28. Host and Venue - University of Tasmania, TAS.

2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.

2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.

2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue
- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.

2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.

2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,
ACT. First running of AUIC.

1999. Volume 21. Host and Venue - University of Auckland, New Zealand.

1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and
Curtin University. Venue - Perth, WA.

1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.
ADC held with DASFAA (rather than ACSW) in 1997.

1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS
joins ACSW.

1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -
Glenelg, SA.

1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first
time separately in Sydney.

1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.

1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).

1991. Volume 13. Host and Venue - University of New South Wales, NSW.

1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information
Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.

1988. Volume 10. Host and Venue - University of Queensland, QLD.

1987. Volume 9. Host and Venue - Deakin University, VIC.

1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.

1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.

1984. Volume 6. Host and Venue - University of Adelaide, SA.

1983. Volume 5. Host and Venue - University of Sydney, NSW.

1982. Volume 4. Host and Venue - University of Western Australia, WA.

1981. Volume 3. Host and Venue - University of Queensland, QLD.

1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.

1979. Volume 1. Host and Venue - University of Tasmania, TAS.

1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACDC Australasian Computing Doctoral Consortium

ACE Australasian Computer Education Conference

ACSC Australasian Computer Science Conference

ACSW Australasian Computer Science Week

ADC Australasian Database Conference

AISC Australasian Information Security Conference

APCCM Asia-Pacific Conference on Conceptual Modelling

AUIC Australasian User Interface Conference

AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
AWC Australasian Web Conference

CATS Computing: Australasian Theory Symposium

HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections
in respective CRPIT volumes.

XV

ACSW and AusPDC 2013 Sponsors

We wish to thank the following sponsors for their contribution towards this conference.

it CORE

||
Cah«/tuﬁhﬁ Research 8 Education

CORE - Computing Research and Education,
www.core.edu.au

AUSTRALIAN
COMPUTER
SOCIETY

Australian Computer Society,
WWWw.acs.org.au

g

University of
South Australia

University of South Australia,
www.unisa.edu.au/

xvi

University of
Western Sydney

University of Western Sydney,
www.uws.edu.au

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

CONTRIBUTED PAPERS

CRPIT Volume 140 - Parallel and Distributed Computing 2013

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

A GPU-based Method for Computing Eigenvector Centrality of
Gene-expression Networks

Ahmed Shamsul Arefin

Regina Berretta

Pablo Moscato

Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine,
School of Electrical Engineering and Computer Science,
Faculty of Engineering and Built Environment,
The University of Newcastle, Callaghan, NSW 2308, Australia
Email: Ahmed.Arefin@uon.edu.au, {Regina.Berretta, Pablo .Moscato}@newcastle .edu.au

Abstract

In this paper, we present a fast and scalable method
for computing eigenvector centrality using graphics
processing units (GPUs). The method is designed to
compute the centrality on gene-expression networks,
where the network is pre-constructed in the form of
kNN graphs from DNA microarray data sets.

Keywords: Eigenvector, centrality, kNN, CUDA.

1 Introduction

Centrality analysis measures the relative importance
of the elements in a given network based on their
connectivity within the network structure. In other
words, centrality measures help to “rank” the net-
work elements according to their importance within
the network structure. Formally, the centrality of a
network is defined as follows (Junker et al. 2006), let
G(V, E) be a directed or undirected graph (network),
then the centrality on G is defined as a function
C : V — R that assigns a real number to each vertex.
For a pair of two vertices, u and v, if C(u) > C(v),
one can say that u is more central than v. Although
many of the popular centrality metrics are actually
originated from the classical analysis of social net-
works, now they have successfully been investigated
on many other practical networks, e.g., Internet (Page
et al. 1998, Gkorou et al. 2011, Ou & Li 2011, Klein-
berg et al. 1999), public transport networks (Kazerani
& Winter 2009), power grid network (Jin et al. 2010),
biological networks (Potapov et al. 2005, Bader &
Madduri 2008), etc. A brief review of the existing cen-
trality metrics and their applications can be found in
(Junker & Schreiber 2011, Newman 2010). The main
problem with many of the metrics is that their se-
quential implementations can often become very time
consuming. For instance, the betweenness centrality
computation of all nodes in a graph requires O(n?3)
time with Floyd- Warshall algorithm, so for network
with 1M nodes, a sequential method may take decades
of computation on a general purpose computer. Even
though there exists some faster approximate methods
(Jacob et al. 2005, Eppstein & Wang 2001), their high
error rates on larger networks can severely limit their
applicability (Jia et al. 2008).

Copyright (©2013, Australian Computer Society, Inc. This pa-
per appeared at the 11th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2013), Adelaide, South
Australia, January-February 2013. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 140,
Bahman Javadi and Saurabh Kumar Garg, Ed. Reproduction
for academic, not-for-profit purposes permitted provided this
text is included.

One feasible way to compute the centrality of such
large-scale networks would be to parallelize the com-
putation and interestingly, a number of paralleliza-
tion approaches for such purpose have already been
developed. Some of them are quite fast and scalable,
but unfortunately, require highly sophisticated and
expensive computer systems with parallel processing
capabilities. For instance, Bader & Madduri (2006)
implemented several parallel shortest path based met-
rics using shared memory multiprocessors on CRAY
MTA-2. Madduri et al. (2009) presented a refinement
of the same work by proposing a lock-free variant on
CRAY- XMT system (Mizell & Maschhoff 2009). Jin
et al. (2010) utilized the same system for computing
the betweenness of power grid contingency measure-
ments utilizing the same set of algorithms. Edmonds
et al. (2010) presented a set of distributed memory
algorithms for computing centralities using cluster
computers with at least 100’s of compute nodes. Al-
ternatively, there exist a few GPU implementations,
which can be considered as relatively inexpensive ap-
proaches. However, a common problem with these
implementations is their relatively lower scalability,
when compared with the CPU based parallel ap-
proaches.

In this work, we present a scalable and fast method
for computing a degree-based centrality metric, called
eigenvector centrality. We apply it on gene-expression
networks constructed from DNA microarray data
sets. We use a GPU-based fast and scalable method
for constructing the network. The proposed central-
ity computation method is an adaption of the classi-
cal power iteration method of computing eigenvector
from a given matrix.

2 Literature Review

2.1 GP-GPUs and CUDA

The GPGPU is a powerful device that is devoted to
parallel data processing rather than data caching and
flow control as a general purpose CPU. Massive par-
allel processing capability of GPU makes it more at-
tractive for algorithmic problem solving, where the
processing of data (or a large block of data) can be
handled in parallel. In general, the GPUs are orga-
nized in a streaming, data-parallel model in which
the processors execute the same instructions on mul-
tiple data streams simultaneously. They are com-
posed of a set of stream multi-processors (SM) with
a certain number of stream processors (SP) each. At
the software level, there exist several programming
interfaces (e.g., CUDA, OpenCL, DirectCompute or
the most recent innovation like OpenACC) that en-
able programmers to develop applications on GPUs.
Among them, NVIDIA’s CUDA (Compute Unified

CRPIT Volume 140 - Parallel and Distributed Computing 2013

Device Architecture) is one of the most widely used
programming models that enable developing GPU-
based applications using the C/C++ programming
language. In CUDA, a parallel task is instantiated
as a collection of threads, organized in blocks (a 1, 2
or 3- dimensional collection of threads, where a lim-
ited amount of shared memory is available to all the
threads in a block), arranged in a grid (a 1 or 2-
dimensional collection of blocks). A CUDA program
typically consists of a host component that runs on
the CPU, or host, and a smaller, but computationally
intensive device component called kernel, that runs
in parallel on the GPU. The kernel cannot access the
main memory of the host directly; input data for the
kernel must be copied to the GPU’s on-board memory
prior to its invocation, output data from the kernel
must first be written to the GPU’s memory and then
copied back to the host CPU memory. For further
details of GP-GPUs and CUDA technology we refer
the reader to nVIDIA’s “CUDA Programming Guide”
(NVIDIA 2012).

2.2 Eigenvector Centrality Metric

Eigenvector centrality metric is a variant of degree
centrality that measures relative influence of a node
in a given network (Newman 2010). As we know,
a degree-based centrality generally counts the num-
ber of neighbors of a vertex and decide the centrality
accordingly (Figure 1). The main limitation of this
centrality is that it only counts the number of neigh-
bors, but does not consider the importance of the
neighbors.

Figure 1: Degree centrality of the nodes in an undi-
rected network.

For instance, the node 0 and 3 in Figure 1 have
equal number of neighbors that gave them exactly
same centrality on degrees. However, if we take a
closer look, we can easily find that not all of their
neighbors are equally connected to their neighbors,
i.e., neighbors of neighbors of node 0 and 3. There-
fore, we can predict that their centrality could be dif-
ferent in that context. To make this distinction, we
need an extended degree-based metric that not only
consider the neighbors but also the connectedness of
the neighbors.

The degree-based centrality proposed by Katz
(1953) is omne of the first that idealised this
neighborhood-based concept which is later adapted
and improved by Hubbell (1965). Finally, Bonacich
(1972) proposed a metric that assigns relative
“scores” to all nodes, based on the concept that “con-
nections to high-scoring nodes contribute more to the
score of the mode in question than equal connections
to low-scoring nodes” .

0.168

Figure 2: Eigenvector centrality of the nodes in the
network shown in Figure 1.

The metric is popularly known as the Bonacich’s
eigenvector centrality, as it uses eigenvector and
principle eigenvalue of the respective adjacency
matrix. For the sample network presented in Figure
1, the eigenvector centralities are given in Figure 2,
where the node 1 and 4 now have different values for
centrality and hence C'(3) > C(0). The eigenvector
centrality is one of the most important degree-based
centrality, and a number of metrics are later derived
from it. For instance, Google’s Page Rank (Page et al.
1998) metric, is a widely known variant of the Eigen-
vector centrality. Formally, a non-zero vector e is a
eigenvector of a symmetric square matrix A, only if
there is a scalar A, such that

Ae = de (1)

For example,

A= E %] and e = [_33} (2)

Here, e, is an eigenvector with eigenvalue A = 1, since,

ae= [l B]-1 5] o

Now, for a given graph, G = (V| E), if A is the respec-
tive adjacency matrix and n «— |V, the eigenvector
centrality (e;) of a vertex ¢ € {1,...,n} is obtained
as follows (Bonacich 1972),

1 n
€= > aise (4)
J

2.3 Related GPU-based Works

Even though a number of efforts have already been
taken to parallelize the PageRank centrality on GPUs
(Praveen et al. 2011, Wu et al. 2010, Cevahir et al.
2010), we found only one work, proposed by Sharma
et al. (2011) that parallelizes the eigenvector central-
ity computation. The authors developed a CUDA-
based approach that implements the centrality for
NodeXL ! (Hansen et al. 2010). Their method con-
siders the input as an sparse graph and hence, use
Compressed Row Storage (CRS) method? to store

INodeXL: Network Overview, Discovery and Exploration for
Excel, http://nodezl.codeplex.com/

2By keeping the subsequent nonzero elements of the matrix rows
in contiguous memory locations.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

scan

Samples (m)
LTTTTTTTTT]
Gene

€T expression
levels

>

and process

Genes (n)

Microarrays/ Raw Data

(a)

Gene
annotations

kNN-based Gene co-expression Network

(d)

[IR e
classes
Gene-expression matrix
(b)

l Correlation statistics

Gene co-expression Network

(c)

Figure 3: Identification of the node centrality in an undirected kNN-based gene-expression (gene co-expression)

network.

(a) Raw data are embedded in DNA microarray chips.

(b) Arrays are scanned, processed and

quantified into a (n x m) gene-expression matrix with n genes and m samples. (c) A fully connected gene
co-expression network formed by taking pair-wise correlation of the gene-expressions in the above matrix (d)
Analysis of centrality on the kNN graph extracted from the fully connected graph.

the adjacency matrix. They classified the computa-
tional problem related to eigenvector centrality as an
“easy partitioning” problem (in contrast to shortest
path-based centralities, which are classified as “hard
to partition”) and proposed a data partitioning ap-
proach to make their implementation scalable on large
instances. However, no results relevant to the data
partitioning are provided in the relevant publication
and furthermore, the implementation requires a num-
ber of tasks to be performed on the host CPU (e.g.,
vector norm, sum etc.). Therefore, the work can be
recognised as a CPU-GPU hybrid approach.

3 Proposed Centrality Computation Method

The proposed centrality computation method is de-
signed to identify central elements in DN A microarray
gene-expression data sets. It works in two steps, first
it constructs a k-nearest neighbor (kNN) graph from
a given gene-expression data set. Next, it computes
the centrality metric on that graph (Figure 3).

3.1 Construction of the #KNN Graphs from
Gene-expression Data Sets

From gene-expression data sets, the kNN graphs can
be constructed in many ways, e.g., by using ex-

haustive search techniques, such as brute-force kNN
search. However, the computation of the distances
of the nearest neighbours for large-scale instances be-
comes very slow on general purpose computers. For-
tunately, the nearest neighbours of each vertex can
be computed and searched independently and hence,
the brute force approach is highly parallelizable. This
influenced us to develop a GPU based parallel im-
plementation for tackling this problem. It can be
noted that the most common problem with the exist-
ing GPU-based brute force kNN algorithms are two-
fold, firstly, they can only work if all the distances
between query and reference points, i.e., the distance
matrix, can fit into GPU’s in-memory (e.g., see (Gar-
cia et al. 2008)); secondly, they assume that the value
of k is relatively small in comparison with the in-
stance size (Liang et al. 2009). In contrast, we scaled
and parallelized the simple brute force kNN algorithm
and implemented a chunking-based approach called
GPU-FS-ENN that can efficiently utilize GPUs and
can handle instances with more than one million ob-
jects and fairly larger values of k (e.g., tested with k
up to 64) on a single GPU. On multiple GPUs, if data
partitioning is applied, then the method is capable of
handling much larger instances and higher dimension
sizes. Details of our GPU-based kNN graph construc-
tion method can be found in (Arefin et al. 2012a) and
its other applications in (Arefin et al. 20125).

CRPIT Volume 140 - Parallel and Distributed Computing 2013
3.2 Eigenvector Centrality of kNN Graphs

Our approach for computing eigenvector centrality
works in two steps. First we construct a memory
efficient bit-wise adjacency matrix of the kNN graph
and then apply our data-parallel variant of a classical
eigenvector computation method called, power itera-
tion method.

3.2.1 Power Iteration Method

The power iteration method proposed by Hotelling
(1936) is one of the many known algorithms that can
be applied to obtain Eigenvector associated with a
given adjacency matrix. The basic sequential method
is presented in Algorithm 1.

Algorithm 1: Power Method
A,n;

Eigenvector centrality of each
vertex stored in e array;

Input
Output:

Initialize e;,Vi € n;

repeat
Ti = Z;L Ai’jej,Vi €n,;
A — ||X||, // Euclidean norm
e; — x; [\ Vi €n;

until convergence criteria is met ;

(2301 S NI VR

The Power Method algorithm is simple to imple-
ment. Its convergence is slow except for certain spe-
cial cases of matrices. To adapt the power method on
GPUs, we create a set of CUDA kernels that can be
called one after another to perform different steps of
the method.

Names | Descriptions

Gk The kNN graph (input graph)

e An array to hold the eigenvector centrality of
each node

T An array to initialize the eigenvector

A Eigenvalue

Amaz Principle eigenvalue

€ A small constant to normalize the principle
eigenvalue

Table 1: Variables and arrays used in the eigenvector
centrality.

3.3 Bitwise Construction of the Adjacency
Matrix

The ENN graph (Gk) is stored as an array of edge
structure that has three members (source, target
and weight) (other variables are given in Table 1).
Unlike Sharma et al. (2011), we assume the input (i.e.,
kNN graph) can either be sparse or relatively dense,
therefore we apply a different approach for storing
the respective adjacency matrix. We use a memory-
efficient representation of the “bit matrix” that sig-
nificantly reduces the space-complexity of the algo-
rithm. Furthermore, the bitwise operations (e.g., OR,
AND, NOT) are very fast primitive actions that are di-
rectly supported by the hardware. Let us assume that
we have a simple network of two vertices, as shown
in Figure 4, where node 0 and 1 represents the source
and target respectively. One can easily construct the
respective (2 x 2) adjacency matrix from it (Equation

5) using a total of 4 x 32 = 128 bits of storage, consid-
ering each integer requires 32 bits (However, on 64-bit
machines, each integer requires 64 bits of storage).

n target
source

Figure 4: An illustrative network with two vertices.

A= @

Interestingly, the same matrix can simply be accom-
modated in a single int using only the first 4 out of
its 32 bits. To achieve this, we designed two macros
(Figure 5(a)) such that given the value of source and
target of an edge, a bitwise OR operation between the
these two can set the respective bit in A, where A
represented as a single dimensional integer array of
size ((n* —1)/32 + 1). An illustrative bit adjacency
matrix is presented in Figure 5(b) and the bit adja-
cency matrix construction method (for kNN graphs)
is presented in Algorithm 2.

Algorithm 2: Adjacency Matrix kernel

Gk, A, n;
Adjacency matrix A initialized by

Input
Output:

3

fary

tid < thread id;

if tid < n then

sourse «— Gkltid].source;

target — Gk[tid).target;

u < source X n + target;

v < target X n + source;

// Alsource] [target]l=1 ;

atomicOr (A+BIT_P0OS(u), BIT(v));
// A[target] [sourcel=1 ;

atomicOr (A+BIT_P0S(v), BIT(v))

W N

© 00N > ok

3.4 Data-Parallel Vector Operations

The adjacency matrix A can only have 0 or 1 as its
entries, therefore the line 3 of the Power Method (Al-
gorithm 1), can simply be implemented as a (con-
ditional) vector addition, (i.e., If A;; = 1 then
x; = x; +ej, Vi,j €n) (Algorithm 3).

Algorithm 3: Add Kernel

Input x, A e,n;

Output: Vector x computed as
Tit+ =x; +Ai,j X ej,Vi,j €n.
1 tid <« thread id;
2 if tid < n then
x[tid] « 0;
for)~ 0ton—1do
bit «— tid x n + j;
if A[BIT_POS(bit)] & BIT(bit) = 1 then
// if A[i,jl==1 then
L x[tid] < x[tid] + e[j);

® O UUkh W

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

define BIT _POS (bit) ((bit) / 32)

/* position of the bit */

define BIT (bit) (1 << (32-1- ((bit) % 32))) /* shifted bit */

1=/0/0/0/0/ 00000 O/OOfO/O/O/O/OOOOOOO0O0O0|O[OOOO0O1

A[0]= (0 OR 1<<32-1-(bit % 32)); if bit =1, A[0]=(0 OR 1<<30),

A[0]=|0f1 0/0/0/0 /000000 O O0[0[O[O[O0O[O[OOO/O/OO0/OO0 0000

/*Final Adjacency matrix */

A[0]= 01,1 0f(0/0 00O O0O0O/O00OO0OO0OO0O0OOOOO[OO0OO0O0O0O0(OfO

Figure 5: Bitwise construction of the adjacency matrix for the network shown in Figure 4.

Please note the line 6 of the Algorithm 3, where
the bit defining macros (Figure 5(a)) are re-used
(now with a bitwise &) to investigate the con-
tent of the location defined by bit. To perform
the line 4 in the Power method (Algorithm 1), we
need to compute an Euclidean norm, which is also
known by ¢?-norm or distance. Given a vector x
{z1,z2,...2,}, the norm is computed as, ||x||
VX X = /23 + 23+ -+ 22, which can be imple-
mented as a scalar dot product. We implement it
as a simple kernel using an atomic operation, as
shown in Algorithm 4. Once, the product (dot) is
computed, we get the A = sqrt(dot).

that enables us to find the respective change using
the principle eigenvalue.

Algorithm 6: Substract Kernel

Algorithm 4: Dot kernel

Input
Output:

x,y,dot,n;
Scalar dot product of the vectors x
and y, stored in dot;
tid < thread id;
if tid < n then
tmp — x[tid] x y[tid];
atomicAdd(dot,tmp); // dot = dot + tmp

W N

To normalize the eigenvector (line 5, Algorithm
1) we implement a scalar multiplication kernel
(termed as “Normalize Kernel”), as shown in Algo-
rithm 5.

Algorithm 5: Normalize Kernel

Input
Output:
€5
1 tid < thread id;
2 if tid < n then
3 | a[tid] « yltid] x 1/X;

$7 y7 >\7 n;
Vector y normalized by A stored in

In addition to the eigenvector computation, we
need to define a convergence criteria to stop the
power iteration loop (line 2 - line 6). Thus, we need
to determine how much the eigenvector changed from
the previous iteration.

To do this, we implemented a variant of the vector
addition (Algorithm 6) termed as “Substract Kernel”

Input
Output: Vector y normalized \ stored in x;

1 tid < thread id;
2 if tid < n then
3 | eftid] < e[tid] — Apae X z[tid];

e? l', Amama TL,

3.5 Eigenvector centrality on GPUs

By Perron-Frobenius theorem (Ninio 1976) we know
that for the adjacency matrix A (which is a non-
negative square matrix), there exists a largest unique
eigenvalue \;,q: such that

1. Apae 1S positive;

2. Amaz has a unique eigenvector, with all positive
entries;

3. Amaz is non-degenerate; and,
4. Apaz > A for any eigenvalue A0, # A

Our goal is to apply the fourth condition (Ayaz > A)
as a stopping (or convergence) criteria for the Algo-
rithm 1 (Power Method).

To do this, we slightly re-organise the original
steps as shown in Algorithm 7 (Eigenvector on
GPUs). First, we create the adjacency matrix A(Gk)
and initialize a vector as, x = {1,2,3...,n}, where n
is the number of nodes in Gk (line 1-3). These vari-
ables are passed to the power iteration loop. Since,
a parallelization of this outer-loop is not possible, we
parallelize the computational tasks inside the loop,
using the previously developed kernels for vector op-
erations.

Inside the loop, we first find the Euclidean norm
of the vector x (line 5-8, Algorithm 7) using the Dot
Kernel (Algorithm 4) which is stored in A and subse-
quently we normalize the vector by A and store the re-
sult in a separate vector e (line 9, Algorithm 7 and see
also the Normalize Kernel (Algorithm 5)). Then

CRPIT Volume 140 - Parallel and Distributed Computing 2013

we, re-initialize the vector x by performing the fol-
lowing addition, z; = x; + A; je;, Vi,j € 0 using the
Add Kernel (Algorithm 3). At this stage, we get the
first eigenvector and so, before performing the matrix
vector multiplication over and over again, we define
a stopping criteria as follows,

0 X | Amaz| > A (6)

where, \jq. 1S the principle eigenvalue Ajuq. (com-
puted in line 12 — line 13, Algorithm 7), € is a small
constant (e.g., € «+ 1x107%) that normalizes the prin-
ciple eigenvalue (Apq.) and A = |le|| (line 15 — line
18, Algorithm 7).

When the convergence criteria is met, we derive
the final eigenvector centrality of each node in vector
e as, e — x/[|x]|| (line 21-line 25 in Algorithm 7, see
also line 5 in Algorithm 1 (Power Method)).

Algorithm 7: Eigenvector on GPUs

Gk,6,n;

Eigenvector centrality of each
vertex stored in e array;

Input
Output:

Initialize x[i] « i, Vi € n;

Remove Self-Cycles(Gk, k, n);
Create Adjacency Matrix(Gk, A, n);
repeat

dot «— 0;

device — host (dot);

Dot (z,x,dot,n);

A — sqrt(dot);

Normalize (e, x, A, n);

Add (z,4,e,n);

/* Set-up the convergence criteriax/
)‘maw — O;

Dot (z, e, Amaz, n);

Substract (e, z, \paz, n);

dot «— 0;

Dot(e, dot,n);

device — host (dot);

A — sqrt(dot);

until € X [Apa0| > A

© 0N O kW N

[eI SO
@w N R O

=
[, "N

=
N o

e
©

N
o

/*Finalize the Eigenvector*/
dot + 0;

Dot (z,dot,n) ;

device — host (dot);

A« sqrt(dot);

Normalize (e, z, A\, n);

return e;

N N NN
B W N =

N N
[B4

4 Performance Evaluation

We evaluate the performance of our implementation
on the following hardware setup: 4xNVIDIA Tesla
C2050 GPU cards are installed on a X8DTG-Q Super-
micro server that has 2 x Intel Xeon E5620 2.4GHz
processors, 32GB of 1066 MHz DDR3 RAM and
800GB of Local Hard Disk.

The programs are written in C++ and CUDA
(toolkit 4.0) and compiled using the g++ v4.4.4
and nvcc compilers on a Linux x86_64 version 2.6.9.
The computational times are measured using CUDA
timer utility (NVIDIA 2012).

4.1 Experimental Data Sets

We have utilized two categories of data sets in this
evaluation process: synthetic and a real world DNA
microarray data set. A brief description of these data
sets are given below. Additionally, descriptions of the
respective kNN graphs produced using GPU-FS-kNN
(see Section 3.1) are given in Table 2.

Synthetic Data Sets. Synthetic data sets are cre-
ated by randomly drawing points from a normal dis-
tribution A/ (0, 1) and generated utilizing the following
function: In = randn(n,m) in MATLAB (v. 7.11.0),
where n is the number of rows and m is the number
of columns.

DNA Microarray Data Set. We used a renowned
breast cancer gene-expression study data set provided
by van de Vijver et al. (2002). The original data set
is available at http://bioinformatics.nki.nl/data.php,
and has a total of 24,479 biological oligonucleotides
and 1,281 control probes in 295 breast cancer pa-
tients. For this experiment we utilized the published
log ratio of a total of 24,158 probe sets (mainly tar-
geting genes) for all the 295 samples (i.e., our data
set had 24,158 rows and 295 columns).

Data set #Vertices | k #Edges
Synthetic 5,000 to | 20 100,000 to
100,000 2,000,000
10 241,580
Breast 15 362,370
Cancer 24,158 20 483,160
25 603,950
35 845,530

Table 2: Summary of the kNN graphs used in the
experiments.

4.2 A Simple Case Study

Before proceeding to the larger data sets, we applied
the proposed method to a toy data set for evaluat-
ing the feasibility of kNN graph as a prospective in-
put. The toy instance i.e., the 16 Indo-European Lan-
guages data set is a simple 16 x 16 symmetric distance
matrix which is extracted from 84 Indo-European
Languages data set in (Dyen et al. 1992). Therefore,
it is not possible to rank the nodes by any centrality
metrics. One possible way could be to construct an
MST and then compute the centrality (Figure 6).

Even though there exist certain applications of
centralities metrics and their derivatives on the MST
(e.g., (Correa et al. 2009)), on large-scale they may
lead to significant information loss because of the
sparsity of MST structure. On the other hand, a kNN
graph contains more proximity information than the
respective MST, therefore has more possibilities to
give an accurate centrality estimation.

However, one potential problem is to determine
“which value of k can give more accurate centrality
ranking of the comprising nodes?”. Unfortunately, it
is impossible to find such k.

Comparing the Figures 6 and 7, we can see that
both the approaches at least identified a single node
(i.e., Italian) as the most central one. The centrali-
ties increased with the value of k, however, such in-
crements generally are proportional to the respective
centrality of the nodes. We suggest to use the lowest
k such that the network remains connected.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

1 SardinianN[9]

1 Walloon[6]

2 Provencal[4]

Catalan[15]

1 sardinianC[11]

3 / sardinianL[10]

1 Ladin[3]

Vlach[1]

Italian[2]

Spanish[12]

Brazilian[14]

Figure 6: MST-based degree centrality computed from the 16 Indo-European Languages matrix.

Centrality

Brazilian
Provencal
Spanish

FrenchCreoleC
FrenchCreoleD
PortugueseST
RumanianList
SardinianC
SardinianL
SardinianN

Figure 7: Average eigenvector centralities of kNN
graphs created using k = 2,4,6,8 and 10.

4.3 Speed-Up Gains

We applied the proposed GPU implementations to a
set of kNN graphs, created using six synthetic data
sets. The GPU computation times are given in Table
3.

Vertices(n) Times (Seconds)
5000 0.76

10,000 0.78

25,000 11.74

50,000 25.89

75,000 64.12

100,000 115.48

Table 3: GPU computation times for the kNN graphs
derived from the synthetic data sets (for a fixed value
of k = 20).

The results in Figure 8 show that an increase in the
data size, also increases the speed-up gains on GPUs.
Higher arithmetic intensity improves the utilization of
parallel hardware. However, we were unable to gain
more than ten-times speed-ups, since the convergence
of the power method is slow (Abraham 1974).

GPU Speed-ups

rey o
§)

Number of Vertices T~ ox10?

75

=)
S

Figure 8: Speed-ups gained by the proposed GPU-
based eigenvector centrality computation method
over a standard CPU-based implementation of the
Power method.

Next, we applied the proposed implementation to
five different kNN graphs, created from the breast
cancer study data set provided in (van de Vijver
et al. 2002), by varying the value of k, i.e., for k =
10,15,20,25 and 50. The main goal of this set of ex-
periments is to investigate the change in speed-ups
due to the change in the value of k. The respective
results are presented in Figure 9.

15

GPU Speed-ups

)
N
Values of k

25

o
i

Figure 9: Variation of the GPU speed-ups due to the
change in k (for a fixed value of n =25,158).

The results in Figure 9 show that an increase in
the value of k causes slightly decrease the speed-up
gains (e.g., for k=50, the speed-up gain is decreased
by at least 2 times). It means that denser graphs, can
decrease the speed-ups.

CRPIT Volume 140 - Parallel and Distributed Computing 2013
5 Conclusion and Future Works

In this paper, we presented a GPU-based implementa-
tion of a popular centrality metric, called eigenvector
centrality. The proposed method is an adaptation of
classical power iteration method and unlike Sharma
et al. (2011), it is complete GPU-based. In spite of
the fact that power method converges slowly, our im-
plementation showed at least ten times speed-ups over
standard sequential implementation of classical power
method. We have chosen the NN graphs as input,
as our main goal is to identify central elements in a
given multi-variate data set (e.g., microarrays, time
series data etc.). Generally, it is not possible to make
any distinctions or rankings among the elements in a
multi-variate data set if they are given in the form of
a distance matrix or complete graph. As a solution,
we proposed to use the kNN graphs (in contrast to
the respective MST), as they contain the most im-
portant proximity relations. Our implementation is
very generic and can be applied to other graph for-
mats by accommodating simple modifications. The
proposed method is tested using a single GPU device
and with graphs having hundred thousands of nodes.
A multi-GPUs implementation of the same method
can further increase its scalability and speed-ups. In
near future, we plan to develop a distributed frame-
work for computing the eigenvector centrality met-
ric. Moreover, we plan include other metrics (e.g.,
betweenness, random walk) in the same framework.

6 References
References

Abraham, Z. (1974), ‘Rate of growth and convergence
factors for power methods of limitation’, Mathe-
matical Proceedings of the Cambridge Philosophical
Society (76), 241-246.

Arefin, A. S., Riveros, C., Berretta, R. &
Moscato, P. (2012a), ‘GPU-FS-kKNN: A soft-
ware tool for fast and scalable NN computa-
tion using GPUs, PLoS ONE, 7(8): e44000.
d0i:10.1371 /journal.pone.0044000.

Arefin, A. S., Riveros, C., Berretta, R. & Moscato,
P. (2012b), kENN-Bortuvka-GPU: A fast and scal-
able MST construction from £NN graphs on GPU,
in B. Murgante, O. Gervasi, S. Misra, N. Nedjah,
A. M. A. C. Rocha, D. Taniar & B. O. Apduhan,
eds, ICCSA (1), Vol. 7333 of Lecture Notes in
Computer Science, Springer, pp. 71-86.

Bader, D. A. & Madduri, K. (2006), Parallel al-
gorithms for evaluating centrality indices in real-
world networks, in ‘Proceedings of the 2006 Inter-
national Conference on Parallel Processing’, ICPP
'06, IEEE Computer Society, Washington, DC,
USA, pp. 539-550.

Bader, D. A. & Madduri, K. (2008), ‘A graph-
theoretic analysis of the human protein-interaction
network using multicore parallel algorithms’, Par-
allel Comput. 34(11), 627-639.

Bonacich, P. (1972), ‘Factoring and weighting ap-
proaches to status scores and clique identification’,
Journal of Mathematical Sociology 2(1), 113-120.

Cevahir, A., Aykanat, C., Turk, A., BarlaCam-
bazoglu, B., Nukada, A. & Matsuoka, S. (2010),
‘Efficient Pagerank on GPU Clusters’, IPSJ SIG
Notes 2010(21), 1-6.

10

Correa, C. D., Crnovrsanin, T., Ma, K.-L. & Keeton,
K. (2009), The derivatives of centrality and their
applications in visualizing social networks, Techni-
cal report, University of California at Davis.

Dyen, I., Kruskal, J. B. & Black, P. (1992), ‘An in-
doeuropean classification: A lexicostatistical exper-
iment’, Transactions of the American Philosophical
Society 82(5), pp. iii-iv4+1-132.

Edmonds, N., Hoefler, T. & Lumsdaine, A. (2010),
A Space-Efficient Parallel Algorithm for Comput-
ing Betweenness Centrality in Distributed Memory,
in ‘International Conference on High Performance
Computing’, pp. 1 — 10.

Eppstein, D. & Wang, J. (2001), Fast approximation
of centrality, in ‘Proceedings of the twelfth annual
ACM-STAM symposium on Discrete algorithms’,
SODA 01, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, pp. 228-229.

Garcia, V., Debreuve, E. & Barlaud, M. (2008), Fast
k nearest neighbor search using GPU, in ‘Computer
Vision and Pattern Recognition Workshops, 2008.
CVPRW ’08. IEEE Computer Society Conference
on’, pp. 1-6.

Gkorou, D., Pouwelse, J. & Epema, D. (2011), Be-
tweenness centrality approximations for an inter-
net deployed p2p reputation system, in ‘Proceed-
ings of the 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and
PhD Forum’, IPDPSW ’11, IEEE Computer Soci-
ety, Washington, DC, USA, pp. 1627-1634.

Hansen, D., Shneiderman, B. & Smith, M. A. (2010),
Analyzing Social Media Networks with NodeXL: In-
sights from a Connected World, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Hotelling, H. (1936), ‘Simplified calculation of princi-
pal components’, Psychometrika 1(1), 27-35.

Hubbell, C. H. (1965), ‘An input-output approach to
clique identification’, Sociometry 28(4), 3777399.

Jacob, R., Kosch, D., Lehmann, K. A. & Peeters, L.
(2005), ‘Algorithms for centrality indices’, Network
3418, 62 82.

Jia, Y., Hoberock, J., Garland, M. & Hart, J. C.
(2008), ‘On the visualization of social and other
scale-free networks’, IEEE Trans. Vis. Comput.
Graph. 14(6), 1285-1292.

Jin, S., Huang, Z., Chen, Y., Chavarria-Miranda,
D. G., Feo, J. & Wong, P. C. (2010), A novel appli-
cation of parallel betweenness centrality to power
grid contingency analysis, in ‘IPDPS’ TEEE, pp. 1-
7.

Junker, B., Koschutzki, D. & Schreiber, F. (2006),
‘Exploration of biological network centralities with
CentiBiN’, BMC Bioinformatics 7(1), 219+.

Junker, B. & Schreiber, F., eds (2011), Analysis of Bi-
ological Networks, 1st edn, Wiley-Interscience, Se-
caucus, NJ, USA.

Katz, L. (1953), ‘A new status index derived from
sociometric analysis’, Psychometrika 18(1), 39-43.

Kazerani, A. & Winter, S. (2009), ‘Can between-
ness centrality explain traffic flow 7, in ‘Proceed-
ings of the 12th AGILE International Conference’,
Springer , pp. 11-19.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Kleinberg, J. M., Kumar, R., Raghavan, P., Ra-
jagopalan, S. & Tomkins, A. (1999), The web as
a graph: Measurements, models, and methods, in
‘COCOON’, pp. 1-17.

Liang, S., Wang, C., Liu, Y. & Jian, L. (2009),
Cuknn: A parallel implementation of k-nearest
neighbor on cuda-enabled gpu, in ‘Information,
Computing and Telecommunication, 2009. YC-ICT
’09. IEEE Youth Conference on’; pp. 415 —418.

Madduri, K., Ediger, D., Jiang, K., Bader, D. A. &
Chavarria-Miranda, D. G. (2009), A faster parallel
algorithm and efficient multithreaded implementa-
tions for evaluating betweenness centrality on mas-
sive datasets, in ‘IPDPS’, IEEE, pp. 1-8.

Mizell, D. & Maschhoff, K. (2009), Early experiences
with large-scale cray XMT systems, in ‘Proceed-
ings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing’, IPDPS’09, IEEE
Computer Society, Washington, DC, USA, pp. 1-9.

Newman, M. (2010), Networks: An Introduction, Ox-
ford University Press, Inc., New York, NY, USA.

Ninio, F. (1976), ‘A simple proof of the perron-
frobenius theorem for positive symmetric matrices’,
Analysis 9(8), 1259-1259.

NVIDIA, C. (2012), NVIDIA CUDA C Programming
Guide (Version 4.2), NVIDIA Corporation.

Ou, P. & Li, Z. (2011), ‘A variant betweenness cen-
trality approach towards distributed network moni-
toring’, Parallel Architectures, Algorithms and Pro-

gramming, International Symposium on 0, 340-
344.

Page, L., Brin, S., Motwani, R. & Winograd, T.
(1998), The PageRank citation ranking: Bringing
order to the web, in ‘Proceedings of the 7th Inter-
national World Wide Web Conference’, Brisbane,
Australia, pp. 161-172.

Potapov, A. P., Voss, N., Sasse, N. & Wingender, E.
(2005), ‘Topology of mammalian transcription net-
works.”, Genome informatics. International Con-
ference on Genome Informatics 16(2), 270-278.

Praveen, K., Vamshi, K. K., Anil, S. H. B., Balasub-
ramanian, S. & Baruah, P. (2011), Cost efficient
pagerank computation using GPU, in ‘Proceedings
of the 18th IEEE International Conference on High
Performance Computing’, HiPC’ 11, IEEE Com-
puter Society, Washington, DC, USA, pp. 81-89.

Sharma, P., Khurana, U., Shneiderman, B., Scharren-
broich, M. & Locke, J. (2011), Speeding up network
layout and centrality measures for social computing
goals, in ‘Proceedings of the 4th international con-
ference on Social computing, behavioral-cultural
modeling and prediction’, SBP’11, Springer-Verlag,
Berlin, Heidelberg, pp. 244-251.

van de Vijver, M. J., He, Y. D., van’t Veer, L. J.,
Dai, H., Hart, A. A. & et al. (2002), ‘A gene-
expression signature as a predictor of survival
in breast cancer.’, The New England Journal of
Medicine 347(25), 1999-2009.

Wu, T., Wang, B., Shan, Y., Yan, F., Wang, Y. & Xu,
N. (2010), Efficient PageRank and SpMV compu-
tation on AMD GPUs, in ‘Proceedings of the 2010
39th International Conference on Parallel Process-
ing’, ICPP’10, IEEE Computer Society, Washing-
ton, DC, USA, pp. 81-89.

1"

CRPIT Volume 140 - Parallel and Distributed Computing 2013

12

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Non-blocking Parallel Subset Construction on Shared-memory
Multicore Architectures

Hyewon Choi

Bernd Burgstaller

Department of Computer Science

Yonsei University

Seoul, Korea

xizsmin@yonsei.ac.kr, bburg@cs.yonsei.ac.kr

Abstract

We discuss ways to effectively parallelize the sub-
set construction algorithm, which is used to con-
vert non-deterministic finite automata (NFAs) to
deterministic finite automata (DFAs). This con-
version is at the heart of string pattern match-
ing based on regular expressions and thus has
many applications in text processing, compilers,
scripting languages and web browsers, security and
more recently also with DNA sequence analysis.
We discuss sources of parallelism in the sequen-
tial algorithm and their profitability on shared-
memory multicore architectures. Our NFA and
DFA data-structures are designed to improve scal-
ability and keep communication and synchroniza-
tion overhead to a minimum. We present three dif-
ferent ways for synchronization; the performance
of our non-blocking synchronization based on a
compare-and-swap (CAS) primitive compares fa-
vorably to a lock-based approach. We consider
structural NFA properties and their relationship
to scalability on highly-parallel multicore architec-
tures. We demonstrate the efficiency of our paral-
lel subset construction algorithm through several
benchmarks run on a 4-CPU (40 cores) node of the
Intel Manycore Testing Lab. Achieved speedups
are up to a factor of 32x with 40 cores.

Keywords: Subset construction, shared-memory
multicore architectures, non-blocking synchroniza-
tion, concurrent data-structures

1 Introduction

The subset construction algorithm converts an
NFA to the corresponding DFA. Subset construc-
tion is frequently applied with string pattern
matching based on regular expressions. A stan-
dard technique to match a regular expression on
an input text is to convert the regular expression to
an NFA using Thompson’s construction, perform
subset construction to derive a DFA, and minimize
the DFA. The DFA is then run on the input text.
If the DFA accepts its input, the input is known

Copyright (©2013, Australian Computer Society, Inc. This pa-
per appeared at the 11th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2013), Adelaide, South
Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 140,
Bahman Javadi and Saurabh Kumar Garg, Ed. Reproduction
for academic, not-for-profit purposes permitted provided this

Australia, January-February 2013.

text is included.

to be matched by the regular expression. This
method has been described by Aho et al. (1986).

With multicores becoming the predominant
computer architecture, it is desirable to parallelize
the subset construction algorithm. Although al-
gorithms for DFA state minimization and DFA
matching (discussed in Section 7) exist, to the best
of our knowledge this is the first attempt to par-
allelize subset, construction.

We parallelize subset construction for shared-
memory multicore architectures. We analyze the
different potential sources of parallelism contained
in the sequential subset construction algorithm
and compare their profitabilities. We devise an
efficient parallel version of the subset construc-
tion algorithm, which guarantees load-balance and
provides good scalability. We state the data-
structures devised for the parallelization, which
help improve the efficiency of the operations per-
formed on shared-memory multicore architectures.
To ensure correctness of the algorithm while not
compromising on parallelism, we developed effi-
cient synchronization methods. The performance
of our non-blocking synchronization based on a
CAS primitive compares favorably to a lock-based
approach. We consider structural NFA proper-
ties and their relationship to scalability on highly-
parallel multicore architectures. We demonstrate
the efficiency of our parallel subset construction
algorithm through several benchmarks run on a 4-
CPU (40 cores) node of the Intel Manycore Testing
Lab (accessed Aug. 2012).

This paper is organized as follows. In Sec-
tion 2, we present sequential subset construction
and related background material. In Section 3,
we identify potential sources of parallelism and
their profitability in the sequential subset con-
struction algorithm. In Section 4 we introduce the
algorithm’s data-structures for supporting scala-
bility on shared-memory multicore architectures.
Section 5 discusses synchronization and the algo-
rithm’s termination condition. Section 6 provides
our experimental results. We discuss the related
work in Section 7 and draw our conclusions in Sec-
tion 8.

2 Background

Let X denote a finite alphabet of characters and >*
denote the set of all strings over ¥. Cardinality |X|
denotes the number of characters in 3. A language
over ¥ is any subset of X*. The symbol () denotes

13

CRPIT Volume 140 - Parallel and Distributed Computing 2013

alb

start €b

Figure 1: An example NFA (above), and its DFA converted through subset construction (below). DFA
state qg represents NFA states sg and s, while DFA state ¢; represents NFA states sg, s1 and ss.

the empty language and the symbol ¢ denotes the
null string. A finite automaton A is specified by
a tuple (@, X%, 4, qo, F), where @ is a finite set of

states, ¥ is an input alphabet, § : Q x ¥ — 29 is
a transition function, gp € @ is the start state and
F C @ is a set of final states. We define A to be
a DFA if § is a transition function of Q x ¥ — Q
and 6(q,a) is a singleton set for any ¢ € @ and
a € . Otherwise, it is classified as an NFA. Let
|Q| be the number of states in). By the density of
an automaton, we denote the ratio of the number
of transitions in a given NFA to the number of
transitions of a fully connected DFA of the same
number of states and symbols (Leslie 1995). For
a comprehensive background on automata theory
we refer to (Hoperoft & Ullman 1979, Wood 1987).

2.1 Sequential Subset Construction

Algorithm 1 depicts the sequential subset con-
struction algorithm from Hopcroft & Ullman
Figure 1 depicts a sample NFA and
the DFA computed by the subset construction
To begin with, we get the start
state derived from sg of the NFA. i.e., we take
Then we compute
e-closure(Move(sg,0)) for each o € 3. If we get
several states at once as a result of the computa-
tion, we make a set with them and treat it as a
single DFA state. For a single DFA state T, we
find all the states which can be reached by each
o € ¥ from all the elements of T'. Then we com-
pute e-closures for the results, and this creates a
new DFA state. If this DFA state has not been
appeared before, we add it to the DFA table. This
process is iterated until no more DFA states are

(1979).
algorithm.

So = e-closure(sg) first.

added.

To determine the time complexity for this al-
gorithm, we consider the complexity of comput-
Because sy may have
(|Q| = 1) e-transitions, we conclude that comput-
ing e-closure(so) takes O(|Q| — 1). Then the pro-
cess without set equality test is computed with an

ing e-closure(sp) first.

O(IZ] x Q] x (1Q — 1) x (21°! — 1))

time complexity. Now what we have to do is find-
ing the factors which can be parallelized to reduce
the complexity. We discuss the details in the fol-

lowing section.

14

Algorithm 1: Sequential Subset Construc-
tion
Input : NFA
Output: DFA states Dstates,
DFA transition function §
1 Dstates + {};
2 Add e-closure(sp) as an unmarked DFA
state to Dstates;
3 while there is an unmarked state T in
Dstates do
4 mark T
5 for each 0 € ¥ do
6 U < e-closure(Move(T, 0));
7
8

if U ¢ Dstates then
add T as an unmarked DFA state
to Dstates;

9 O[T, o] < U,

3 Potential Sources of Parallelism With
Sequential Subset Construction

In this section we identify sources of parallelism
and their profitability with the sequential subset
construction algorithm.

Source 1: The first opportunity for paral-
lelization is on symbols ¢ € ¥ (line 5 in Algo-
rithm 1). Hence, this method is a task paralleliza-
tion. After checking if there exists an unmarked
state T in Dstates, what we have to do is taking its
e-closure(Move(T, o)) for each o € ¥, which is de-
scribed in line 6 to line 9 of Algorithm 1. With the
sequential version, this part must be computed |3
times, i.e., for each o0 € 3. However, because there
is no dependency upon symbols, we may partition
the symbols in > among the available processors
to be processed in parallel. Thus, the time com-
plexity becomes

a[%ﬂ < 1Q] % (1Q] - 1) x (219 — 1)),

Source 2: The second opportunity is parallelizing
the outer while-loop (line 3) of the sequential algo-
rithm. Until the algorithm terminates, Dstates has
at least one DFA state at the beginning of every
iteration. Thus, for every iteration we partition
the states in Dstates among processors to paral-
lelize the algorithm. This requires each processor
to deal with the steps from line 4 to 9. A step for
counting the number of unmarked states in Dstates

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

must be added right after entering the while loop.
The result is used for determining the number of
to-be-processed DFA states for each processor. For
marking that follows after distribution, we should
allow all processors to access Dstates. Time com-
plexity for this algorithm becomes

QI _
O(1] * Q] * (1Q] — 1) x [ub

Source 3: To exploit the final source of paral-
lelism, we split a DFA state across its contained
NFA states right after marking. The processors
take the work described in line 5 through 9 in Al-
gorithm 1. It should be noted that now processors
work with the elements of a single DFA state (i.e.,
NFA states), not several DFA states. The granu-
larity of concurrent computations is thus smaller
than with Source 2. The partitioning of NFA
states of an unmarked DFA state is conducted af-
ter we mark the unmarked DFA state. The work
from line 5 to 8 is done in exactly the same way
than the sequential version. Adding the result to
a DFA state however, can be done in two different
ways: we may let each worker thread add its NFA
states to the DFA state, or have a dedicated mas-
ter collect NFA states found by the workers and
add them to the DFA state. Now it follows that
the time complexity becomes

o] < 9 s (19 - 1) x @9 — 1)),

p

3.1 Profitability of
Source

Each Parallelism

Unfortunately, not all the suggested methods are
equally profitable. Throughout our evaluated
benchmarks (see also Section 6), we have found
that the second and third opportunities are less
effective than the first one (parallelizing on sym-
bols). This phenomenon is caused by the following
drawbacks of those two methods. To get a notice-
able performance improvement by parallelizing the
Dstates, it should be guaranteed that the number
of DFA states at a certain moment is large enough.
However, this number changes dynamically and
cannot be known in advance. Even worse, larger
automata sizes do not guarantee a larger number
of Dstates at each point in time. Thus, even for
large NFAs, a substantial performance gain cannot
be expected: this observation implies that this al-
gorithm would not be very useful in real situations.

In the case of parallelizing the NFA states of
a DFA state, we need to collect the results from
all the worker threads to construct a complete
DFA state. For this work, the amount of syn-
chronization is too high (e.g., from using barrier-
synchronization) which eventually caused severe
performance degradation with our evaluations.

On the contrary, parallelizing the algorithm on
symbols is advantageous for load balance: because
the number of symbols is constant and known a-
priori, a static partitioning of work among worker
threads can be computed.

5

3114
210]3
41011

21418

Table 1: Thread-local store of DFA states. The
union of all workers’ DFA states constitutes the
Dstates set (see line 1 of Algorithm 1).

4 Data Structures for Parallel Subset Con-
struction

We attempted to minimize overhead due to com-
munication and synchronization between worker
threads. In general, we kept data thread-local as
much as possible, except for the Dstates set, which
must be updated by all worker threads to collect
DFA states.

Each worker thread maintains a thread-local
array of DFA states as depicted in Table 1. The
union over all thread-local DFA states constitutes
the elements of the Dstates set. Similar to the se-
quential, deterministic state ADT by Leslie (1995),
we store DFA states as linear arrays of NFA state
members. The first array element of a DFA state
contains the number of NFA states contained in
a DFA state. Subsequent array elements repre-
sent NFA states. This representation facilitates
efficient comparison of two DFA states, which is
required for the set membership test (line 7 of Al-
gorithm 1). The comparison of two DFA states is
depicted in Algorithm 2.

To create new DFA states, each worker thread
maintains a one-element DFA state scratch-space.
Potentially new DFA states are computed by
the e-closure(Move(T, o))-term in line 6 of Algo-
rithm 1. NFA states are stored in the order of
their appearance during this step. Before perform-
ing the set membership test in line 7, we sort the
potentially new DFA state’s NFA states in ascend-
ing order and copy the DFA state to the worker’s
thread-local DFA state array.

The Dstates set is a shared data-structure rep-
resented as an array of pointers to thread-local
DFA states. Adding a DFA state to the Dstates
set reduces to a single pointer update, i.e., the
first (lowest-index) empty entry of Dstates is set to
point to the new DFA state. Pointers are padded
up to the CPU’s cache-line size to avoid false shar-
ing of cache-lines (see, e.g., (Lin & Snyder 2008))
that would otherwise occur if worker threads up-
date adjacent array elements.

Algorithm 2: DFA State Equality Test

Input : 1D-array Dstatel, Dstate2
Output: True (if identical), False otherwise
for i =0 to Dstatel[0] do
if Dstatelli]! = Dstate2[i] then
| return False;

W N =

4 return True;

The Dstates set needs to maintain the following
properties:

e The whole Dstates array is accessible by all
worker threads.

e For the DFA states pointed by an entry
of Dstates, duplication (entering a duplicate
DFA state into Dstates) is not allowed.

15

CRPIT Volume 140 - Parallel and Distributed Computing 2013

16

After computing a potentially new DFA state in
its thread-local store, a worker needs to deter-
mine whether the DFA state is allowed to be
added to Dstates. As the first step of this deci-
sion, the thread performs the set membership test.
Once it confirms that no identical DFA state has
been added yet, it updates the next empty slot in
Dstates.

Because Dstates allows access from any worker
at any time, the set membership test followed by
the subsequent pointer update is subject to poten-
tial race conditions. We will discuss three synchro-
nization methods in the following section.

5 Synchronization and Termination

We are facing two synchronization problems: how
to avoid race conditions with workers entering
DFA states in the Dstates array, and when to ter-
minate workers.

5.1 Synchronizing Dstates Updates

The first synchronization issue is due to the adding
of DFA states to Dstates. We suggest three ways
to synchronize access to the Dstates array: us-
ing a coarse-grained lock, a fine-grained lock, and
making the algorithm non-blocking by guarding
access to the Dstates array through a CAS instruc-
tion. CAS compares a data item in memory with
a previous value A and replaces it with a newly
provided value B, only iff the data item has not
been updated by another thread. I.e., the data
item’s value in memory is identical with A (Her-
lihy & Shavit 2008). We use mutexes from the
Pthread library for all lock-based synchronization
and GCC’s intrinsics for CAS operations.

Using a coarse-grained lock is a naive way to
protect Dstates. Once a worker finds a new DFA
state, it tries to acquire the mutex which is pro-
tecting Dstates. If successful, it performs the set
membership test to confirm that its DFA state is
not a duplicate of an existing DFA state in Dstates.
During the whole set membership test, no other
worker is allowed to update Dstates. After the set
membership test, no matter the addition has been
allowed or rejected, the worker thread releases the
mutex.

A fine-grained lock, compared to the coarse-
grained one, helps reducing the waiting time for
worker threads waiting for acquiring the Dstates
lock. The major factor which distinguishes this
method from the previous one is that this time,
during the set membership test, the lock for
Dstates needs not be held by a worker thread. In-
stead, right after the worker thread finishes the
set membership test and determines that no iden-
tical state exists in Dstates so far, it acquires the
Dstates lock, and begins the set membership test
again, from the point where it has stopped the
test before locking Dstates until the newest el-
ement in Dstates. This second set membership
test is for compensating a potential race condi-
tion that workers face after finishing the set mem-
bership test and before locking Dstates. Within
this short time period, another thread might add a
DFA state to Dstates. If this happens, the empty
entry found by the previous thread is taken and
the set membership test must be continued.

The final synchronization method does not lock
Dstates: instead, it makes Dstates a concurrent
data structure (Shavit 2011) by employing a CAS
instruction. First, this method goes through the
set membership test without locking Dstates as
done when using a fine-grained lock. This time,
however, we do not protect Dstates even after the
worker thread has finished the set membership
test. Instead, after finding the first empty entry
in the Dstates array, it attempts to add the DFA
state by executing a CAS instruction.

Algorithm 3: Access to Dstates guarded by
CAS instruction

1 while ! CAS (Dstates entryfi/, NULL, DFA
state) do

2 if DFA State Equality Test (Dstates

entryfi], DFA state) then

3 | return False;

4 ++i;

5 // At this point:

6 // Dstates entryfi] = DFA state

7 return True;

Algorithm 3 shows the basic concept of the non-
blocking implementation using CAS. This form of
execution confirms that only if the Dstates entry
is empty, then the DFA state will be added there.
It should be noted that after a failed CAS instruc-
tion, the set membership test must be continued,
similar to our fine-grained locking method. Be-
cause we never delete entries in the Dstates set, the
ABA-problem (see, e.g., (Herlihy & Shavit 2008))
does not apply.

5.2 Terminating Condition

The second problem is to decide when to make
worker threads terminate. As stated in Algo-
rithm 1, subset construction is supposed to termi-
nate when no more new DFA states are added to
Dstates. This implies that we need to enable the
worker threads to determine when it is guaranteed
that no new DFA state will appear anymore. If a
worker thread cannot find any new DFA state, it
needs to observe other threads if any of them is
still processing DFA states. If it turns out that all
workers have processed all DFA states, then it is
safe for a worker to terminate.

To maintain the status of each worker thread
wrt. processing of DFA states in Dstates, we use
one status array per worker. In a worker’s status
array L, a worker keeps track how far it progressed
in processing the DFA states in Dstates. The nth
entry of status array L represents a worker’s status
wrt. the nth DFA state in Dstates.

Entries in the status array can have three
vales: Not_accessed, Processing and Finished.
Not_accessed denotes the status that the worker
thread has not begun to process the DFA state:
Following the expression used in Algorithm 1, this
DFA state has not been marked by this worker
thread yet. Right after a worker begins process-
ing within the while loop stated in line 3 of Algo-
rithm 1 with the nth DFA state, it marks L/n/ as
Processing: if it finishes the work, it sets L/n/ to
Finished.

Now let us assume that a worker thread finds
there is no new DFA state in Dstates after pro-

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

cessing the nth DFA state, i.e., the (n+1)th entry
in the Dstates array is empty. Then it observes
the L/n/ status values of the other workers: if any
of the workers has not set its L/n/ status value as
finished yet, then the idle worker needs to wait
for a new DFA state to appear in the n+1 slot of
Dstates. However, once all workers have set L/n]
to finished and no DFA state appeared in slot n+1
of Dstates, it is safe for all workers to terminate.
It should be noted that workers write the Finished
flag to the status array after they have entered a
new DFA state to the Dstates array.

6 Experimental Results

We demonstrate that our implementation of the
sequential subset construction shows reasonable
performance, compared to related tools. We chose
the Grail tool by Raymond & Wood (1995) as
our yardstick. Grail is a formal language toolbox
which already provides a sequential version of the
subset construction algorithm.

To determine the scalability of our parallel sub-
set construction algorithm, we have conducted ex-
periments on a 4-CPU (40 cores) shared mem-
ory node of the Intel Manycore Testing Lab. The
POSIX thread library (see, e.g., Butenhof (1997))
has been used for worker threads and mutexes. We
compared the scalability of two groups of NFAs
that differ in their density, to show that density
affects scalability.

Finally, we conducted experiments for all three
Dstates synchronization mechanisms: using a
coarse-grained lock, a fine-grained lock, and the
non-blocking method. We compare the efficiency
of each method and we discuss the obtained re-
sults.

All execution times have been determined by
reading the elapsed clock ticks from the x86 time-
stamp counter register (Paoloni 2010).

6.1 Performance Comparison with Grail

To confirm that our data-structures are efficient
even for the sequential case, we compared our
subset construction implementation to Grail. We
used version 3.0 of the Grail code from the Grail+
Project Web Site (retrieved Aug. 2012), and we
revised it to compile with g++ version 4.1.2. The
performance comparison of a sequential version of
our subset construction implementation with Grail
is depicted in Figure 2.

The y axis represents relative time spent: we
set the spent time for computing a 20-symbol au-
tomaton as 1. Thus, if the time spent for com-
puting automata with z symbols takes five times
longer than that of the 20-symbol automaton, the
spent time for computing z is noted as 5. The
number of states has been fixed to 20. This exper-
iment has been conducted on an Intel Xeon E5405
CPU running Linux. As the NFA size increases,
the performance gap increases remarkably: this
implies that our NFA and DFA representations are
efficient even with large NFAs.

6.2 Automata Density vs. Scalability

For this experiment, we have classified the NFA
samples based on their density. In particular, we

— —— the sequential version
o 120 0 4 grail3.0
£
X 100
[}
£
= 80
[
o
2]
%5 60
Q
IS
> 40
£
2]
@
g 20]
%»///‘
1
20 40 80 100
symbols

Figure 2: Performance comparison of proposed
subset construction using custom NFA and DFA
representations vs. the Grail tool.

considered two groups of density 0.3 and 0.4, re-
spectively. We observed the speedups gained with
both groups. As depicted in Figure 3, there is a
clear gap in scalability between those two groups.
We conjectured that this is related to properties of
the DFAs converted from NFAs through our algo-
rithm. In particular, we investigated the number
and sizes of DFA states, as shown in Figure 5.

34 T
32 T

28 X *3

speedup (x times)
=
©

8 10 16 20 24
cores

(a) NFAs with density 0.3

3032 35 3840

speedup (x times)
=
©

8 10 16 20 24
cores

(b) NFAs with density 0.4

Figure 3: Scalability test with NFAs of density 0.3
and 0.4. NFAs from both groups have 20 states
and 100 symbols.

3032 35 3840

To generate NFA samples, we have used an
NFA random generator from Almeida et al. (2007).
In this program, an automaton’s density is used
as a factor which determines the number of tran-
sitions. Let density be denoted by d, the num-
ber of states denoted by n, k denote the number

17

CRPIT Volume 140 - Parallel and Distributed Computing 2013

18

of symbols and ¢ denote the temporary number of
transitions. The NFA random generator computes
the temporary number of transitions as

t =dn’k — (n—1).

The final number of transitions is determined by
adding a small random factor to t. This formula
suggests that if the number of states and sym-
bols are not changed, as the density increases, the
number of transitions also increases. As a result,
each state gets more reachable states on average.
From Algorithm 1, we can infer that if such an
automaton undergoes subset construction, the av-
erage DFA state size would increase. Now we will
show that this increment leads to a decrease in the
number of DFA states. For an NFA, let Q denote
the set of states. Then DFA states are subsets of
Q. Let n = |Q] and m the average DFA state size.
Then we may approximate the number of possible

DFA states by ()

n
m

200000
180000
160000
140000 / \
120000
100000
80000
60000
40000
20000

bin(20,x)

Y

0 i .
01234567 8 91011121314151617181920
X

Figure 4: Number of possible DFA states y = (QZO)

for a 20-state NFA and 0 < z < 20 NFA states per
DFA state.

Figure 4 shows this tendency for n set to 20,
and m ranging from 0 to n. As we may consider
the z axis as the average size of the DFA states, we
can infer that within a certain range of the DFA
size, the number of DFA states would increase as
the size increases, while the tendency could be re-
versed in some other range.

The DFAs from our experiment clearly follow
this trend, as Figure 5 shows. To mitigate the ef-
fect of a few outliers, we have taken the median
of the sample data instead of an arithmetic mean.
The sizes and the number of DFA states collected
from our NFA samples clearly match the approach
suggested in Figure 4, which claims that between
the average DFA state size of 14 to 16, the num-
ber of DFA states will decrease. This eventually
reduces the amount of computation in the subset
construction, which negatively affects the scalabil-
ity as observed in Figure 3: compared to Figure
3(a), Figure 3(b) shows a clear performance degra-
dation.

6.3 Comparing Scalability of the Three
Synchronizing Methods

Figure 6 compares the scalability test results from
three different versions of the parallelized algo-
rithms: using a coarse-grained lock, a fine-grained

16

3
g 155
2]
g 15
[}
B 14.5
[}
N
o 14
Q
£
kS 135
c
]
S 13
Q
£
o 125
s
12
0.3 0.4
density
(a) the median of DFA state size
4000
(%]
Q
IS
» 3500
<
[T
O 3000
o
[
Qo
g 2500
=]
(=
o 2000
]
o 1500
8
3
g 1000
2
< 500 L~
0.3 0.4
density

(b) the median of number of DFA states

Figure 5: Median over all DFA sizes and over the
number of DFA states of the sample automata.

one, and the non-blocking mechanism. The graph
clearly shows that using a coarse-grained lock
causes severe serialization as the number of cores
increases. With the coarse-grained lock, the set
membership test is performed while holding the
Dstates lock. Thus, while a worker thread is do-
ing the set membership test for a newly found DFA
state, other threads who want to add their DFA
states cannot proceed, which serializes the algo-
rithm.

On the contrary, the parallelized algorithms
which used a fine-grained lock and the non-
blocking mechanism show good scalability. Both
algorithms show a similar tendency, because their
strategies to protect Dstates are fundamentally
similar to each other: they both let each worker
thread perform the set membership test without
locking Dstates, and once a worker finds an empty
entry to add its DFA state, it begins the second
test to confirm that it is safe to do the addition.
What we need to focus here is that the most time-
consuming part is the first set membership test,
not the second one. Thus, this part affects on the
whole processing time.

Both algorithms, i.e., using a fine-grained lock
and the non-blocking mechanism, show an impor-
tant phenomenon: Around 30 cores, the scalabil-
ity becomes imperfect: this is due to the non-
parallelized part of the algorithm, such as com-
puting an epsilon-closure, the set equality test per-
formed as a single step of the set membership test,
etc. As the number of cores increases, time spent
for the parallelized part decreases, but the non-
parallelized part remains. In our experiment, this

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Scalability for Each Synchronizing Method

32 [De— " coarsé—grainéd lock
30 —*— fine-grained lock
28 |- —=— non-blocking
26 —
w24 —
g 22
= 20
X 18 A
o 16
3 14
o 12 y
F 10
8
6
‘i‘ "
12 4 8 10 16 20 24 3032 35 3840
cores
Figure 6: Scalability test result of the paral-

lelized subset construction, with three synchroniz-
ing methods: using a coarse-grained lock, a fine
grained lock and our non-blocking mechanism

limitation appears as the number of cores reaches
around 30.

7 Related Work

Tewari et al. (2002) devised a parallel algorithm
for DFA minimization. Approaches to parallelize
DFA matching have been contributed by Luchaup

et al. (2011), Wang et al. (2010), Holub & Stekr
(2009), Jones et al. (2009), Luchaup et al. (2009),
Scarpazza et al. (2007), Misra (2003), Hillis &
Steele (1986), Ladner & Fischer (1980) and Ko
et al. (2011). However, to the best of our knowl-
edge this is the first attempt to parallelize subset
construction.

Sequential subset construction has been de-
scribed in the literature on automata theory by
Hopcroft & Ullman (1979) and Aho et al. (1986).
Leslie (1995) improves the efficiency of sequen-
tial subset construction through data structures
for hashing, heaps and bitvectors. This imple-
mentation brings two major advantages: avoiding
redundant checks for symbols, and taking the ad-
vantage of sorted transitions. Because their multi-
way merging operation takes around 30% ~ 90%
of the overall running time, techniques have been
suggested to improve this operation. Representing
the ADT for DFA states as a hash table is pro-
posed. Leiss (1980) proposed a DFA construction
method that reduces DFA size. Johnson & Wood
(1996) discuss methods for instruction computa-
tion of DFAs. Liu et al. (2011) propose a method
to construct a combined DFA for a set of regular
expressions. They apply hierarchical merging of
DFAs for individual regular expressions.

8 Conclusions

We have parallelized the subset construction algo-
rithm, which is used to convert non-deterministic
finite automata (NFAs) to deterministic finite au-
tomata (DFAs). We have discussed sources of par-
allelism in the sequential algorithm, and critically
evaluated their profitability on shared-memory
multicore architectures. Data-structures for NFAs

and DFAs have been chosen to improve scalabil-
ity and keep communication and synchronization
overhead to a minimum. Three different ways
of synchronization have been implemented. The
performance of our non-blocking synchronization
based on a compare-and-swap (CAS) primitive
compares favorably to a lock-based approach. We
have shown that the amount of work and hence
the scalability of parallel subset construction de-
pends on the number of DFA states, which is re-
lated to automata density. We demonstrate the
efficiency of our parallel subset construction algo-
rithm through several benchmarks run on a 4-CPU
(40 cores) node of the Intel Manycore Testing Lab.
Achieved speedups are up to a factor of 32x with
40 cores.

9 Acknowledgements

Our research has been partially supported by the
National Research Foundation of Korea (NRF
grant funded by the Korea government (MEST
(No. 2010-0005234), and the OKAWA Foundation
Research Grant (2009).

References

Aho, A. V., Sethi, R. & Ullman, J. D. (1986),
Compilers: principles, techniques, and tools,

Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Almeida, M., Moreira, N. & Reis, R. (2007), On
the performance of automata minimization algo-
rithms, Technical Report DCC-2007-03, Depar-
tamento de Ciéncia de Computadores & Lab-
oratério de Inteligéncia Artificial e Ciéncia de
Computadores.

Butenhof, D. R. (1997), Programming with POSIX
threads, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Grail+ Project Web Site (retrieved Aug. 2012),
‘http://www.csd.uwo.ca/Research/grail’.

Herlihy, M. & Shavit, N. (2008), The Art of Mul-
tiprocessor Programming, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Hillis, W. D. & Steele, Jr., G. L. (1986), ‘Data par-
allel algorithms’, Commun. ACM 29(12), 1170-
1183.

Holub, J. & Stekr, S. (2009), On parallel imple-
mentations of deterministic finite automata, in
‘Proceedings of the 14th International Confer-
ence on Implementation and Application of Au-
tomata’, pp. 54-64.

Hopcroft, J. & Ullman, J. (1979), Introduction
to Automata Theory, Languages, and Compu-
tation, Addison-Wesley, Reading, MA.

Intel Manycore Testing Lab (accessed Aug. 2012),
‘http://software.intel.com/en-us/
articles/intel-many-core-testing-lab’.

Johnson, J. & Wood, D. (1996), Instruction com-
putation in subset construction, Technical re-
port, Institute for Information Technology, Na-
tional Research Council and Hong Kong Uni-
versity of Science and Technology.

19

CRPIT Volume 140 - Parallel and Distributed Computing 2013

20

Jones, C. G., Liu, R., Meyerovich, L., Asanovi¢,
K. & Bodik, R. (2009), Parallelizing the web
browser, in ‘Proceedings of the First USENIX
conference on Hot topics in parallelism’, Hot-
Par’09, USENIX Association, Berkeley, CA,
USA, pp. 7-T.

Ko, Y., Jung, M., Han, Y.-S. & Burgstaller,
B. (2011), A speculative parallel DFA mem-
bership test for multicore, SIMD and cloud
computing environments, Technical Report
arXiv:1210.5093, Dept. Computer Science, Yon-
sei University, Seoul 120-749, Korea, http://
http://arxiv.org/abs/1210.5093.

Ladner, R. E. & Fischer, M. J. (1980), ‘Parallel
prefix computation’, J. ACM 27(4), 831-838.

Leiss, E. (1980), ‘Constructing a finite automaton
for a given regular expression’, SIGACT News
12(3), 81-87.

Leslie, T. (1995), Efficient approaches to subset
construction, Master’s thesis, University of Wa-
terloo.

Lin, C. & Snyder, L. (2008), Principles of Parallel
Programming, Addison Wesley.

Liu, Y., Guo, L., Guo, M. & Liu, P. (2011), Accel-
erating DFA construction by hierarchical merg-
ing, in ‘Proceedings of the 2011 IEEE Ninth
International Symposium on Parallel and Dis-
tributed Processing with Applications’, ISPA
11, IEEE Computer Society, Washington, DC,
USA, pp. 1-6.

Luchaup, D., Smith, R., Estan, C. & Jha, S.
(2009), Multi-byte regular expression matching
with speculation, in ‘Proceedings of the 12th
International Symposium on Recent Advances
in Intrusion Detection’, RAID ’09, Springer-
Verlag, Berlin, Heidelberg, pp. 284-303.

Luchaup, D., Smith, R., Estan, C. & Jha, S.
(2011), ‘Speculative parallel pattern matching’,
IEEE Transactions on Information Forensics
and Security 6(2), 438-451.

Misra, J. (2003), ‘Derivation of a parallel
string matching algorithm’, Inf. Process. Lett.
85(5), 255-260.

Paoloni, G. (2010), How to benchmark code execu-
tion times on Intel TA-32 and TA-64 instruction
set architectures, Technical report, Intel Corpo-
ration.

Raymond, D. & Wood, D. (1995), ‘Grail: A C++
library for automata and expressions’, Journal
of Symbolic Computation 17, 17-341.

Scarpazza, D. P., Villa, O. & Petrini, F. (2007),
Peak-performance DFA-based string matching
on the Cell processor, in ‘21th International Par-
allel and Distributed Processing Symposium’,

pp. 1-8.

Shavit, N. (2011), ‘Data structures in the multi-
core age’, Commun. ACM 54(3), 76-84.

Tewari, A., Srivastava, U. & Gupta, P. (2002), A
parallel DFA minimization algorithm, in ‘Pro-
ceedings of the 9th International Conference
on High Performance Computing’, HiPC 02,
Springer-Verlag, London, UK, UK, pp. 34-40.

Wang, X., He, K. & Liu, B. (2010), Parallel ar-
chitecture for high throughput DFA-based deep
packet inspection, in ‘2010 IEEE International
Conference on Communications’, pp. 1-5.

Wood, D. (1987), Theory of Computation, John
Wiley & Sons, Inc., New York, NY.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Simseer and Bugwise - Web Services for Binary-level Software
Similarity and Defect Detection

Silvio Cesare and Yang Xiang
School of Information Technology
Deakin University
Burwood, Victoria 3125, Australia

{scesare,

Abstract

Simseer and Bugwise are online web services that
perform binary program analysis: 1) Simseer identifies
similarity between submitted executables based on
similarity in the control flow of each binary. A software
similarity service provides benefit in identifying malware
variants and families, discovering software theft, and
revealing plagiarism of software programs. Simseer
additionally performs code packing detection and
automated unpacking of hidden code using application-
level emulation. Finally, Simseer uses the similarity
information from a sample set to identify program
relationships and families through visualization of an
evolutionary tree. 2) Bugwise is a service that identifies
software bugs and defects. To achieve this end, it
performs decompilation and data flow analysis. Bugwise
can identify a subset of use-after-free bugs and has
already found defects in Debian Linux. Bugwise and
Simseer are both built on Malwise, a platform of binary
analysis.

Keywords: computer security, software similarity,
software theft detection, plagiarism detection, bug
detection, could computing.

1 Introduction

Software similarity is an important topic with a number
of applications. It can be used in the areas of malware
detection, software theft detection and plagiarism
detection. These are the applications for which Simseer
was designed to address.

Software similarity analysis is built upon a platform of
program analysis that performs the relevant aspects of
feature extraction. This process of software analysis can
be used not only for software similarity tasks, but also to
detect software bugs and defects.

Defect Detection is the problem of finding software
bugs. Examples of bugs that defect detection can identify
are buffer overflows, divide-by-zeros, and dynamic
memory management problems such as use-after-frees.

Malware variant detection is the problem of
identifying malware that is a replicated, obfuscated, or an
evolved copy of a known malicious sample. Malware

Copyright © 2013, Australian Computer Society, Inc. This
paper appeared at the 11th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2013), Adelaide, South
Australia, January-February 2013. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 140. B.
Javadi and S. K. Garg, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

yang}@deakin.edu.au

variant detection can be used to attribute a sample to a
particular author or family of malware. Malware variant
detection is the problem of identifying similarity between
known malware and unknown programs.

Software theft detection identifies the unauthorized
duplication or copying of software. The purpose of this
area is to have automated ways to discover or verify
copyright infringement of software or intellectual
property. Software theft detection is the problem of
identifying unauthorized similar software.

Plagiarism detection detects student cheating in
assignments where the submission is a piece of software.
Students copying each other’s work can be broken down
into the problem of identifying similar copies of software
in the students’ submissions

1.1 Motivation

Defect Detection can reduce the cost of maintaining
software by identifying problems during quality and
assurance testing and not after the public software release
is made. Identifying software defects that impact on the
security of software means that producers of software can
stay ahead of attackers who actively try to discover these
defects themselves. Bug detection in binaries is important
to external auditors who need to validate the security of
software they are given. Binary auditing is also important
to verify the compiler and linker are working properly
without introducing new defects.

Malware detection is an important problem on the
internet today. According to the Symantec Internet Threat
Report (Symantec 2008), 499,811 new malware samples
were received in the second half of 2007. The same
vendor reported over 1.5 billion malicious code
detections in 2010 (Symantec 2011). F-Secure published,
“As much malware [was] produced in 2007 as in the
previous 20 years altogether (F-Secure 2007). This
growth continues today.

Malware variant detection can be used to enhance the
traditional approach of signature based malware detection
by providing more predictive power to those signatures.
Most malware today is a variant of existing malware, so
identifying variants is effective in detecting a significant
amount of malicious code that traditional approaches fail
to identify.

Software theft 1is a problem with significant
consequences. In 2005, a federal court determined that
the independent software vendor Compuserve be paid
$140 million by IBM to license its software or $260
million to purchase its services because it was discovered
that IBM products had illegitimately used code from

21

CRPIT Volume 140 - Parallel and Distributed Computing 2013

Compuware without authorization (Wang et al. 2009).
Software theft detection is an important area that helps
protect the high worth of intellectual property.

Plagiarism detection is important to maintain integrity
in educational environments. If students believe they will
be caught if they cheat then they are unlikely to proceed
with that unethical practice. If educators receive a high
number of assignment submissions then it may be hard to
recognize that cheating has occurred, so automated
methods are an important tool.

1.2 Innovation

Simseer is a tool that can detect similar software and
identify malware variants, discover software theft, and
reveal plagiarism. Bugwise can detect some classes of
software defects in binaries. The contributions of this
paper are as follows:

e We propose an online web service to address the
issues of malware variant detection, software theft
detection, and plagiarism detection.

e We propose an online web service to address the
issue of closed source software defect analysis.

e We use state-of-the-art algorithms in our novel
service.

e We implement and make public our services.

1.3 Structure of the Paper

The structure of this paper is as follows: Section 2
examines related work in software similarity and bug
detection. Section 3 describes a high level overview of
our aims and approach. Section 4 discusses the design
and implementation of our system as a cloud service.
Section 5 evaluates different aspects of our system.
Section 6 gives details on how to access our service.
Section 7 looks at future work. Finally, Section 8
concludes the paper.

2 Related Work

Detecting defects in software has a long history in formal
methods. Data flow analysis is used by compilers (Aho,
Sethi & Ullman 1986) and is what Bugwise uses to
perform binary analysis. Abstract interpretation, which
formalizes data flow analysis was introduced in (Cousot
& Cousot 1977). Theorem proving has been used to prove
the absence of bugs (Dijkstra 1975; Hoare 1969).
Satisfiability over Modulo Theories (SMT) extends SAT
and has been used to perform bug detection (Cadar et al.
2008; Molnar & Wagner 2007) and symbolic execution
(King 1976). Decompilation has been used to analyse
binary programs in the past including work in (Cifuentes
1994; Van Emmerik 2007) which used compilation
techniques to aid the decompilation process.

The areas relating to software similarity are malware
variant detection, software theft detection, plagiarism
detection, and code clone detection. A unified approach
to the software similarity problem is to divide the
problem into feature extraction to construct fingerprints,
known as birthmarks, and then to calculate birthmark
similarity using mathematical distance and similarity
functions. Birthmarks can be considered as strings,
vectors, sets, trees, graphs and other objects.

22

In malware variant detection, raw code has been used
to construct string based signatures, which is common in
Antivirus software (Griffin et al. 2009; Kephart & Arnold
1994). Kolmogorov complexity of raw code has been
used in (Wicherski 2009). The Normalized Compression
Distance was used in (Wehner 2007). Opcode
distributions are another feature used in (Bilar 2007). N-
grams were used on instructions in (Karim et al. 2005)
and evolutionary trees were constructed. Static and
dynamic API call features were used in (Ye et al. 2007)
and (Kolbitsch et al. 2009) respectively. Control flow and
data flow were used as a feature in (Christodorescu & Jha
2003; Christodorescu et al. 2005).

Control flow is the approach that Simseer uses to
construct birthmarks. Interprocedural control flow was
proposed as a feature in (Briones & Gomez 2008; Carrera
& Erdélyi 2004; Dullien & Rolles 2005; Gerald & Lori
2007; Hu, Chiueh & Shin) . Simseer uses intraprocedural
control flow of a program’s procedures and similar
techniques have been applied in (Cesare & Xiang 2010b)
(Cesare & Xiang 2010a) (Bonfante, Kaczmarek &
Marion 2008) (Kruegel et al. 2006).

In software theft detection, similar techniques have
been used. Instruction sequences were used in (Park et al.
2008). K-grams of instruction sequences were used in
(Myles & Collberg 2005). Control flow was used in (Lim
et al. 2009a, 2009b) and static API calls used in (Choi et
al. 2008, 2009).

In plagiarism detection systems such as JPlag
(Prechelt, Malpohl & Philippsen 2002) and YAP3 (Wise
1996) have used the text of raw source code as a feature.
Parse trees were used in (Son, Park & Park 2006)
allowing tree based distances to calculate similarity.
Program Dependence Graphs (PDGs) were used in (Liu
et al. 2006).

Code clone techniques are based on the software
similarity problem. It is the problem of identifying
duplicate or similar fragments of code in a piece of
software. Approaches have included using raw source
code as a birthmark in (Ducasse, Rieger & Demeyer
1999) and for large scale applications in (Kamiya,
Kusumoto & Inoue 2002; Livieri et al. 2007). Abstract
Syntax Trees (ASTs) were used in (Baxter et al. 1998).
PDGs were proposed in (Krinke 2001).

Birthmark similarity is the next step after feature
extraction and birthmark creation. Distance metrics for
strings, vectors, sets, trees, and graphs exist. For strings,
the Levenshtein distance is the minimum number of
insertions, deletions, and substitutions to transform one
string to another. Sequence alignment is often used in
bioinformatics including the optimal local sequence
alignment, known as the Smith-Waterman algorithm.
Vector distance metrics include the Manhattan distance or
the classic Euclidean distance. Cosine similarity is a
popular vector similarity measure. Set similarity includes
the Dice Coefficient and the Jaccard Index. Trees and
graphs have edit distances to describe the number of basic
operations to transform one object to another. Maximum
common subtrees or subgraphs are other measures used to
identify similarity and distance.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Web Frontend

A

Scan Server

A

A
Store and
Display <

Script SSH Tunnel Scheduler
A
Script
Y A
Evolutionary _ N :
Tree Creation [* SSH Tunnel () Malwise

Results

SH Tunnel (Bugwise)

Figure 1. Web services work flow.

3 Our Approach

The aims of this work are to provide a web service to
score and visualize similarity between executable
binaries, and also to provide a web service to detect
software defects in binaries. To perform software
similarity scoring and defect detection, we employed
some of our previous work, Malwise, to do the backend
processing.

Malwise performs software similarity scoring by using
control flow within a binary as a signature. Control flow
is considered invariant under common program
transformations and is effective at detecting program
variants.

Malwise can also perform general static analysis of
binaries. It does this by disassembling the binary,
translating the disassembly to an intermediate language,
and then performing decompilation, data flow, and other
analyses. Data flow analysis combined with
decompilation is capable at detecting some defects from
some classes of bugs in binaries.

4 System Design and Implementation

The system uses two Virtual Private Servers (VPS) in the
cloud and could potentially be scaled into larger server
farms. One server is the web frontend and one server is
the scan server. The servers have 1GB of memory each.
The workflow for the web service involving all
components is shown in Fig. 1. The user interface is a
submission system that returns a results page.

4.1 The Web Frontend

Both Simseer and Bugwise are accessed by web
frontends. Bugwise is almost functionally equivalent in
its processing, so Simseer will be explained in depth.

The web frontend is the user interface to the Simseer
cloud service and the landing page and the final result is
shown in Fig. 2. And Fig. 3. A user of the service can

submit a ZIP archive of executables which are
subsequently transferred to and processed by the server.
Our implementation is coded in the server side PHP
programming language. The PHP code is responsible for
rate limiting the number of submission requests per IP
address by maintaining a record of submissions to the
system in a MySQL database.

The PHP code launches a shell script which takes over
handling of the archive submission. The script checks that
the ZIP archive is valid, does not contain an excessive
number of samples, does not contain symbolic links as
archive members, and does not contain archive member
names using special characters.

The system logs that a submission to the system has
been made and makes a copy of the submission content
into storage. The script launches a C++ compiled
program that acts as a client in a client-service protocol
with the scan server. The protocol enables transmission of
files that will be processed by the scan server.
Communication with the scan server is performed over an
SSH port forwarded tunnel which allows security in the
client-server protocol.

4.2 The Scheduling Work Queue

The scan server listens locally on a TCP port which is
connected via an SSH tunnel back to the web frontend.
The C++ implemented server component launches the
Malwise backend to process files received. However,
scheduling must occur so that the server does not
consume excessive resources. Thus receipt and
processing of files is queued so that only 1 job is active at
any given time. The number of parallel jobs can be
arbitrary, however due to the single core nature of our
Virtual Private Server (VPS) scan server, running jobs in
parallel does not result in an increase in performance.
Additionally, running multiple jobs in parallel places
more restrictions on memory usage per instance which we
wanted to avoid. Once a job has been scheduled and the
ZIP archive or binary received from the web frontend
host, a script is launched to process the file and launch the

23

CRPIT Volume 140 - Parallel and Distributed Computing 2013

[et vited [[secumom] o
@ sivcer A SoRwe sy .. (]| o . et

FOLLOWNE O TWITTER

¥ Follow @sivincesne

. CONE

FACEROOK
Bue 1 B3
earch this e

3

W iccaut

Figure 3. Simseer results.

Malwise system. For Simseer, the script unpacks the
archive ready for Malwise to process. For Bugwise, the
binary is passed on directly.

4.3 Malwise Backend

Simseer and Bugwise both use the Malwise backend. The
difference between Simseer and Bugwise is the module
list that Malwise uses. The Malwise backend is coded in
C++ and consists of 100,000 Lines of Code (LOC).
Malwise is launched as a standalone program from the
scheduler launched script. It is possible to use Malwise as
a daemon and avoid the cost of repeated program loading
when submitting jobs. However, the reliability of the
system as a whole is increased when we launch Malwise
as a standalone program for each job because if a scan
then causes a crash it is contained to an individual job. If
Malwise was run as a daemon and allowed jobs to be
queued then all jobs would be lost if the program failed.
Even though we launch jobs separately, the service
allows for scalability because jobs could potentially be
launched on server farms behind the interface. Likewise,

24

klez e

netsky.e

netsky.a

asclitex

Figure 4. Program relationship visualization.

the system still maintains a global view of jobs being
launched - it stores copies of the binaries submitted to the
service. This allows us to perform offline analysis and
correlation to determine if novel samples are being
submitted to the service or if known samples are the
primary source of submissions.

The backend is modular and allows for loading of
modules at program startup defined by an XML
configuration file. A sample of the differences between
the configuration for Simseer and Bugwise is shown in
Fig. 8 and Fig. 9. Malwise returns its results in XML.
This XML is transferred back across the SSH tunnel to
the client on the web frontend host where it is stored for
processing.

4.3.1

The modules we have deployed to implement Simseer
are:

Simseer

e Packer Detection using Entropy Analysis

e Automated Unpacking using Application-level
Emulation.

¢ Control Flow Decompilation

e Software Similarity Detection using Q-Grams of
Decompiled Control Flow Graphs

The automated unpacker is a module to remove
obfuscations and encryptions by revealing the hidden
code (Cesare & Xiang 2010a). Packing is common in
most malware. To deploy the automated unpacker we
needed to make available the Windows system libraries.
The reason for this is that the emulator requires libraries
to implement dynamic linking of the emulated guest
programs.

We used two types of configurations to Malwise with
the above module list. In the first configuration,
processing executables creates a signature for the
software similarity detection. In the second configuration,
the signature database is assumed to be already filled.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Processing Time
8.85
8.80
8.75
.‘-;8,70
% 8.65
@ | W A .lk |
Erve IS I 1w Eeaan Ll
sso VL T WORRAL Y SN
eas |V UV r'yv
b L) \"4 \J
8.40 T T T T 1
Q 20 40 60 80 100
Iteration
Figure 5. Simseer processing time.
Processing Time
8.40
8.30 i
8.20
250 4]
g T
E 700 u A % N A4 ,,J,',, v/‘n."‘v“,
. LTAW R W.VAL WY W T Y i 4
, V A \VAAAA B |
7.70
7.60 T T T T 1
0 20 40 60 80 100
Iteration

Figure 6. Malwise processing time.

Thus Simseer is split into two phases — signature database
creation and software similarity detection. The script
handling the launching of Malwise calls Malwise once for
each phase, and therefore two times in total.

4.3.2 Bugwise

The modules we have deployed to implement Bugwise
are:

o Intermediate Language Optimisation

e Decompilation Modules

e Linux

e Data Flow Analysis

e Double-free Detection

The intermediate language optimisations are a set of
compiler style optimisations that operates over the
intermediate language Malwise uses to represent x86
assembly code. The optimisations that are implemented
are:

e Dead Code Elimination
¢ Copy propagation

¢ Constant folding

¢ Constant propagation

The decompilation modules translate stack based local
variables to native variables in the intermediate language.
This allows the data flow analysis to identify problems
such as use-after-frees and double-frees.

A Linux specific module is used to identify the
beginning of the main() function via the
_libc_start main library call.

The data flow analysis module enables a variety of
analyses such as:

e Reaching Definitions
e Upwards Exposed Uses

klez.a
klez.b
klez.c
klez.d
klez.g
klez.h
netsky.aa
netsky.e
asciitext

Figure 7. Simseer samples.

<ModuleGroup>
<Name>Scan</Name>
<Run>Packer Detection Using Entropy</Run>
<Run>Unpacker Using Application Level Emulation</Run>
<Run>Structuring</Run>
<Run>NGram Structuring</Run>

</ModuleGroup>

Figure 8. Simseer configuration.

<ModuleGroup>
<Name>Scan</Name>
<Run>Code Optimsation 1</Run>
<Run>Linux Arch</Run>
<Run>Pre Decompiler Data Flow Analysis</Run>
<Run>X86 Decompiler Data Flow Analysis</Run>
<Run>Decompiler Data Flow Analysis</Run>
<Run>Code Optimsation 2</Run>
<Run>IRDataFlowAnalysis</Run>
<Run>Double Free Detection</Run>

</ModuleGroup>

Figure 9. Bugwise configuration.

e Reaching Copies
Finally, the double-free detection module uses the data
flow analysis to discover use of the free pointer after a
free() without a reassignment of the pointer. In practice,
Bugwise has found software defects in Debian Linux
given only access to the binary executables.

4.4 Simseer Evolutionary Tree Visualization

A phylogenetic or evolutionary tree is a visual
representation of the evolutionary relationships between
species based on similarity between features or
characteristics. Species closer to the tree in relation to the
number of branches or branch lengths are more closely
related. Simseer uses evolutionary trees to visualize the
relationships between programs and their variants. This
visualization is useful because program variants are
typically derivatives and modified versions of their
upstream source.

The web frontend host is responsible for processing
the XML results returned by Malwise. One of the
responsibilities of the script launched on the web host is
to create and render an evolutionary tree of the
submissions. The XML returned by Malwise scores the
similarity between each sample. The script transforms the
XML into a distance matrix. Distance is calculated as 1 —

25

CRPIT Volume 140 - Parallel and Distributed Computing 2013

similarity. This distance matrix is then analysed to create
an evolutionary tree using the PHYLIP software package
(Felsenstein 2005). The PHYLIP package uses the
neighbour joining method (Saitou & Nei 1987) to
construct an evolutionary tree. The evolutionary tree is
described by the Newick tree format which gives such
information as branch lengths in the tree. The Newick
tree file is processed to render a figure suitable for
display. The figure is then transformed to a PNG image
and stored on the web host. An example of the tree
visualization is shown in Fig. 4.

4.5 Results Processing

The results shown to the user are different depending on
whether Simseer or Bugwise is being used.

4.5.1

To display the results, the Malwise XML similarity
results are displayed as an HTML table. The background
colour of the table cells are proportional to how similar
the samples are. The lighter the colour, the more similar
the programs are. If the programs are not variants of each
other, the table cell is left unshaded. The evolutionary
tree image of the programs is shown on the same page.
The results processing is performed after submitting an
archive to the system and may also be accessed at a later
time. Later viewing of the results is achieved by
accessing a PHP page to reprocess the Malwise XML
results and displaying the permanently stored
evolutionary tree image. To specify which archive is
requested to be processed, an MD5 digest of the ZIP
archive is passed as a parameter to the web page using the
GET HTTP method.

Simseer

4.5.2 Bugwise

Bugwise lists the double frees detection in a HTML table.
The double free detector returns the address of the code in
the disassembly for both frees that are involved in the
bug. To be able to use the results effectively, an analyst
must be familiar with reverse engineering. For people
performing binary analysis without source this skill is
expected.

5 Efficiency of Malwise as a Web Service

We performed an evaluation of the time it takes to
process 9 samples using the Simseer web service. We did
this by writing a Python script to submit the samples to
the web service over HTTP and read the results. The
samples we used to perform this test are shown in Fig. 9.
Eight samples were malware and 1 sample was some
ASCII text which should not be found similar to any of
the executables. We submitted the 9 samples as a ZIP
archive to a local machine running the Simseer web
service. We performed this test 100 times. A mean time
of 8.53 seconds was recorded with a standard deviation of
0.06 seconds. The results are shown graphically in Fig. 5.
We performed a similar evaluation on the samples, but
this time we ran the tests by command line and without
performing the program visualization using evolutionary
trees. This test gives us a base line for Malwise, upon
which Simseer is based. The comparison between
Malwise (Fig. 9) and Simseer (Fig. 8) demonstrates how

26

effective the web service is (Fig. 8) when compared to
using the system without the web interface (Fig. 9). The
mean processing time for 100 iterations was 7.89 seconds
with a standard deviation of 0.11 seconds. The results are
shown graphically in Fig. 6.

The overhead of Simseer as a web service, excluding
varied upload times of different speed networks, is 0.64
seconds. These results show that providing Simseer as a
web service is efficient and does not add significant
overhead to Malwise.

We take the previous results into account when
considering Bugwise. Bugwise is much slower than
Simseer due to the data flow analysis that is required for
bug detection. We see no significant overhead in
launching Bugwise since it uses the same web frontend
and scheduling code as Simseer.

6 Availability

The Simseer service is free to use. It can be accessed on
the web at http://www.foocodechu.com/?q=simseer-a-
software-similarity-web-service. The Bugwise service is
also free to use and can be accessed on the web at
http://www.foocodechu.com/?q=node/19. © We have
implemented rate limiting to restrict the number of scans
per day per IP address. We have also limited the number
of samples that can be submitted per ZIP archive to the
Simseer, and limited the size of the binary that can be
submitted to the Bugwise service. As the service grows,
we may relax some of these constraints.

7 Future Work

One thing we would like to do is replace our custom
scheduling work queue with an enterprise messaging
system such as RabbitMQ. Enterprise-level messaging
systems have guarantees on reliabilities in the case of
transmission or network failures. Using such a system
would improve our reliability. Enterprise messaging also
leads to an easy solution to distributed scan servers as we
can have a single producer of messages on the web front
end, and consumers in multiple scan servers.

We would also like to implement more flexibility in
which modules are used in launching Simseer and
Bugwise. Malwise has many modules available, and
multiple options are available for software similarity
scoring and defect detection.

Another possibility is using any-time clustering on the
stream of samples that are given to Simseer. In this
approach, cluster analysis is performed incrementally as
objects are given to the system sequentially. An any-time
phylogenetic tree analysis could follow on from any-time
clustering. Any-time clustering could provide intelligence
into new families of malware that are given to Simseer.
This could benefit analysts in determining if a new
sample relates to an existing family is something never
seen before or relatively new.

Bugwise could be extended by treating bug detection
instead as bug management. An automated bug reporting
system could be used to submit, remove, and verify bugs
that it discovers. This type of approach has been used
successfully in network vulnerability management and we
think that there exists many parallels.

http://www.foocodechu.com/?q=simseer-a-software-similarity-web-service
http://www.foocodechu.com/?q=simseer-a-software-similarity-web-service
http://www.foocodechu.com/?q=node/19

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

8 Conclusion

In this paper we have demonstrated novel services to 1)
score and visualize the software similarity of executable
binary programs 2) detect software defects in binaries.
The Simseer and Bugwise services are deployed as cloud
services and are free to use. Simseer can be used to
identify malware variants, detect software theft, and
reveal plagiarism of software programs. Bugwise has
already found real defects in Debian Linux. Simseer and
Bugwise are built as a modular extension to our Malwise
binary analysis platform. It demonstrates the versatility of
our system that we can launch both services using only
slightly different parameters with separate configurations.
We performed an evaluation on the overhead incurred by
making our Malwise platform using web services. We
found that such an overhead was minimal and not
significant. We are the first to make a public service that
analyses executable binaries in these contexts and see the
area of cloud based software analysis and similarity
detection as having future growth.

9 References

Aho, AV, Sethi, R & Ullman, JD 1986, Compilers:
principles, techniques, and tools, Addison-Wesley,
Reading, MA.

Baxter, ID, Yahin, A, Moura, L, Sant'Anna, M & Bier, L
1998, 'Clone detection using abstract syntax trees', in p.
368.

Bilar, D 2007, 'Opcodes as predictor for malware',
International Journal of Electronic Security and Digital
Forensics, vol. 1, no. 2, pp. 156-68.

Bonfante, G, Kaczmarek, M & Marion, JY 2008,
'Morphological Detection of Malware', in International
Conference on Malicious and Unwanted Software, IEEFE,
Alexendria VA, USA, pp. 1-8.

Briones, I & Gomez, A 2008, 'Graphs, Entropy and Grid
Computing: Automatic Comparison of Malware', in Virus
Bulletin Conference, pp. 1-12.

Cadar, C, Ganesh, V, Pawlowski, PM, Dill, DL & Engler,
DR 2008, 'EXE: automatically generating inputs of
death', ACM Transactions on Information and System
Security TISSEC (2008), vol. 12, no. 2, pp. 10:1-:38.

Carrera, E & Erdélyi, G 2004, 'Digital genome mapping—
advanced binary malware analysis', in Virus Bulletin
Conference, pp. 187-97.

Cesare, S & Xiang, Y 2010a, 'Classification of Malware
Using Structured Control Flow', in 8th Australasian
Symposium on Parallel and Distributed Computing
(AusPDC 2010).

Cesare, S & Xiang, Y 2010b, 'A Fast Flowgraph Based
Classification System for Packed and Polymorphic
Malware on the Endhost', in IEEE 24th International
Conference on Advanced Information Networking and
Application (AINA 2010).

Choi, S, Park, H, Lim, H & Han, T 2008, 'A static
birthmark of binary executables based on API call
structure', Advances in Computer Science—ASIAN 2007.
Computer and Network Security, pp. 2-16.

Choi, S, Park, H, Lim, H & Han, T 2009, 'A static API
birthmark for Windows binary executables', Journal of
Systems and Software, vol. 82, no. 5, pp. 862-73.

Christodorescu, M & Jha, S 2003, 'Static analysis of
executables to detect malicious patterns', paper presented
to Proceedings of the 12th USENIX Security Symposium.

Christodorescu, M, Jha, S, Seshia, SA, Song, D & Bryant,
RE 2005, 'Semantics-aware malware detection', in
Proceedings of the 2005 IEEE Symposium on Security
and Privacy (S&P 2005), Oakland, California, USA.

Cifuentes, C 1994, 'Reverse compilation techniques',
Queensland University of Technology.

Cousot, P & Cousot, R 1977, 'Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints', in Sixth
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Los Angeles,
California, pp. 238-52.

Dijkstra, EW 1975, 'Guarded commands, nondeterminacy
and formal derivation of programs', Communications of
the ACM, vol. 18, no. 8, pp. 453-7.

Ducasse, S, Rieger, M & Demeyer, S 1999, 'A language
independent approach for detecting duplicated code', in p.
109.

Dullien, T & Rolles, R 2005, 'Graph-based comparison of
Executable Objects (English Version)', in SST/C.

F-Secure 2007, 'F-Secure Reports Amount of Malware
Grew by 100% during 2007', retrieved 19 August 2009,
<http://www.f-secure.com/en EMEA/about-

us/pressroom/news/2007/fs_news 20071204 1 eng.html
>,

Felsenstein, J 2005, PHYLIP (phylogeny
package), version 3.6, Joseph Felsenstein.

inference

Gerald, RT & Lori, AF 2007, 'Polymorphic malware
detection and identification via context-free grammar

27

CRPIT Volume 140 - Parallel and Distributed Computing 2013

homomorphism', Bell Labs Technical Journal, vol. 12,
no. 3, pp. 139-47.

Griffin, K, Schneider, S, Hu, X & Chiueh, T 2009,
'Automatic Generation of String Signatures for Malware
Detection', in Recent Advances in Intrusion Detection:
12th International Symposium, RAID 2009, Saint-Malo,
France.

Hoare, CAR 1969, 'An axiomatic basis for computer
programming', Communications of the ACM, vol. 12, no.
10, pp. 576-80.

Hu, X, Chiueh, T & Shin, KG 'Large-Scale Malware
Indexing Using Function-Call Graphs', in Computer and
Communications Security, Chicago, Illinois, USA, pp.
611-20.

Kamiya, T, Kusumoto, S & Inoue, K 2002, 'CCFinder: a
multilinguistic token-based code clone detection system
for large scale source code', [EEE Transactions on
Software Engineering, pp. 654-70.

Karim, ME, Walenstein, A, Lakhotia, A & Parida, L
2005, 'Malware phylogeny generation using permutations
of code', Journal in Computer Virology, vol. 1, no. 1, pp.
13-23.

Kephart, JO & Arnold, WC 1994, 'Automatic extraction
of computer virus signatures', in 4th Virus Bulletin
International Conference, pp. 178-84.

King, JC 1976, 'Symbolic execution and program testing/,
Communications of the ACM, vol. 19, no. 7, pp. 385-94.

Kolbitsch, C, Comparetti, PM, Kruegel, C, Kirda, E,
Zhou, X, Wang, XF & Santa Barbara, UC 2009,
'Effective and efficient malware detection at the end host',
in /8th USENIX Security Symposium.

Krinke, J 2001, 'Identifying similar code with program
dependence graphs', in p. 301.

Kruegel, C, Kirda, E, Mutz, D, Robertson, W & Vigna, G
2006, "Polymorphic worm detection using structural
information of executables', Lecture notes in computer
science, vol. 3858, p. 207.

Lim, H, Park, H, Choi, S & Han, T 2009a, 'A method for
detecting the theft of Java programs through analysis of
the control flow information', Information and Software
Technology, vol. 51, no. 9, pp. 1338-50.

Lim, H, Park, H, Choi, S & Han, T 2009b, 'A Static Java
Birthmark Based on Control Flow Edges', in Computer

28

Software and Applications Conference (COMPSAC '09),
pp. 413-20.

Liu, C, Chen, C, Han, J & Yu, PS 2006, 'GPLAG:
detection of software plagiarism by program dependence
graph analysis', paper presented to Proceedings of the
12th ACM SIGKDD international conference on
Knowledge discovery and data mining, Philadelphia, PA,
USA.

Livieri, S, Higo, Y, Matushita, M & Inoue, K 2007,
'Very-large scale code clone analysis and visualization of
open source programs using distributed CCFinder: D-
CCFinder', in Proceedings of the 29th international
conference on Software Engineering (ICSE '07), pp. 106-
15.

Molnar, DA & Wagner, D 2007, Catchconv: Symbolic
execution and run-time type inference for integer
conversion errors, Technical Report UCB/EECS-2007-
23, EECS Department, University of California,
Berkeley.

Myles, G & Collberg, C 2005, 'K-gram based software
birthmarks', paper presented to Proceedings of the 2005
ACM symposium on Applied computing, Santa Fe, New
Mexico.

Park, H, Choi, S, Lim, H & Han, T 2008, 'Detecting code
theft via a static instruction trace birthmark for Java
methods', in pp. 551-6.

Prechelt, L, Malpohl, G & Philippsen, M 2002, 'Finding
plagiarisms among a set of programs with JPlag', Journal
of Universal Computer Science, vol. §, no. 11, pp. 1016-
38.

Saitou, N & Nei, M 1987, 'The neighbor-joining method:
a new method for reconstructing phylogenetic trees',
Molecular biology and evolution, vol. 4, no. 4, pp. 406-
25.

Son, J-W, Park, S-B & Park, S-Y 2006, 'Program
Plagiarism Detection Using Parse Tree Kernels', in Q
Yang & G Webb (eds), PRICAI 2006: Trends in Artificial
Intelligence, Springer Berlin / Heidelberg, vol. 4099, pp.
1000-4.

Symantec 2008, Symantec internet security threat report:
Volume XII, Symantec.

Symantec 2011, 'Internet Security Threat Report', vol. 16.

Van Emmerik, MJ 2007, 'Static Single Assignment for
Decompilation', The University of Queensland.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Wang, X, Jhi, Y-C, Zhu, S & Liu, P 2009, 'Behavior
based software theft detection', paper presented to
Proceedings of the 16th ACM conference on Computer
and communications security, Chicago, Illinois, USA.

Wehner, S 2007, 'Analyzing worms and network traffic
using compression', Journal of Computer Security, vol.
15, no. 3, pp. 303-20.

Wicherski, G 2009, 'peHash: A Novel Approach to Fast
Malware Clustering', in Usenix Workshop on Large-Scale
Exploits and Emergent Threats (LEET'09), Boston, MA,
USA.

Wise, MJ 1996, 'YAP3: improved detection of
similarities in computer program and other texts',
SIGCSE Bull., vol. 28, no. 1, pp. 130-4.

Ye, Y, Wang, D, Li, T & Ye, D 2007, 'IMDS: intelligent
malware detection system', in Proceedings of the 13th
ACM SIGKDD international conference on Knowledge
discovery and data mining.

29

CRPIT Volume 140 - Parallel and Distributed Computing 2013

30

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Cloud-Aware Processing of MapReduce-Based OLAP Applications

Hyuck Han! Young Choon Lee?

Seungmi Choi! Heon Y. Yeom!

Albert Y. Zomaya?

1 School of Computer Science and Engineering,
Seoul National University, Seoul, 151-742, Korea.
Email: {hhyuck, smchoi, yeom}@dcslab.snu.ac.kr

2 Centre for Distributed and High Performance Computing, School of Information Technologies,
University of Sydney, NSW 2006, Australia.
Email: yclee@it.usyd.edu.au, albert.zomaya@sydney.edu.au

Abstract

As the volume of data to be processed in a timely
manner soars, the scale of computing and storage sys-
tems has much trouble keeping up with such a rate
of explosive data growth. A hybrid cloud combining
two or more clouds is emerging as an appealing alter-
native to expand local /private systems. However, the
effective use of such an expanded cloud system is lim-
ited primarily by low network bandwidth and high
latency between clouds (i.e., large intercloud data
transmission overheads) when applications/services
span across clouds, and they deal with large data in
particular. Ounline analytical processing (OLAP) ap-
plications are a typical class of data-intensive appli-
cation. These applications process multi-dimensional
analytical queries dealing with ‘big data’ (or data
warehouses). In this paper, we address the effective
processing of MapReduce-based OLAP applications
in a hybrid-cloud environment, and present a (hy-
brid) cloud-aware OLAP system incorporating data
filtering techniques. Our system filters out unneces-
sary data for intercloud transmission with the ulti-
mate goal of optimizing the performance to cost ra-
tio, or cost efficiency. Based on experimental results
obtained using two large-scale data analysis bench-
marks, our system demonstrates its efficacy in im-
proving the cost efficiency with the reduction in in-
tercloud network traffic from 76%-99%.

Keywords: Cloud Computing; Hybrid Cloud; MapRe-
duce; On-Line Analytical Processing (OLAP); Cost
Efficiency

1 Introduction

Cloud computing with the support of virtualization
technologies and utility computing (or pay-as-you-
go) has emerged as a cost-effective solution for many
computing tasks including large-scale data processing
(Amazon Web Services 2012). For example, Cycle-
Computing's Amazon EC2 (Elastic Compute Cloud)
powered 51,132 core high-performance cluster per-
formed massive molecular modeling simulations—21
million chemical compounds—that used the equiva-
lent of 12.5 CPU years for less than $4,900 an hour

Copyright ©2013, Australian Computer Society, Inc. This pa-
per appeared at the 11th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2013), Adelaide, South
Australia, January-February 2013. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 140,
Bahman Javadi and Saurabh Kumar Garg, Ed. Reproduction
for academic, not-for-profit purposes permitted provided this
text is included.

(CycleComputing 2012). In essence a cloud is clas-
sified as private or public based primarily on the
availability to the public. A hybrid cloud can be
formed as a mixture of two or more clouds of these
two categories. Services offered in clouds can be
classified into three types: Infrastructure-as-a-Service
(TaaS), Platform-as-a-Service (PaaS), and Software-
as-a-Service (SaaS). This study takes a particular in-
terest in TaaS clouds. An IaaS cloud provisions vir-
tual resources such as computing nodes, storage, and
networks, e.g., Amazon EC2 and S3 (Simple Storage
Service).

In the recent past, we have witnessed dramatic in-
creases in the volume of data literally in every area—
business, science, and daily life to name a few. To-
day, some claim that data (more specifically, data-
intensive science) are the fourth paradigm in scien-
tific research after experimentation/observation, the-
ory, and computational simulation (Hey et al. 2009).
The storage and processing of such an overwhelming
amount of data is a challenging task in the current
computing environments. What’s more, the timeli-
ness of data processing is the key to judicious decision
making, particularly in business.

The MapReduce framework (Dean & Ghemawat
2008) proposed by Google is a parallel-programming
model primarily for (large) data processing specifi-
cally designed with the consideration of large-scale
distributed computing systems, such as clusters and
data centers. A MapReduce application (or job)
typically consists of large numbers of map and re-
duce tasks. FEach map/reduce task deals with a
chunk of data independently, and thus tasks in the
job can be readily parallelizable and effectively pro-
cessed in a large-scale computing environment like a
cloud. Recently, MapReduce have been used in not
only the analysis of a homogeneous data set (e.g.,
log processing) but also that of a heterogeneous data
set such as data warehouses and data marts. Par-
ticularly in businesses, online analytical processing
(OLAP) applications can take great advantage of
the MapReduce framework because these applications
process multi-dimensional analytical queries dealing
with data warehouses (or ‘big data’).

It is often the case that the capacity of a single
computer system (e.g., a private cloud) cannot keep
up particularly with the growth rate of data volume
to be processed by large-scale data processing appli-
cations, such as OLAP applications. Besides, private
clouds occasionally get overloaded due to workload
surges. The expansion with a public cloud (or hybrid
cloud) is an appealing alternative to complement pri-
vate clouds (Celesti et al. 2010, Buyya et al. 2010,
Johnston 2009).

31

CRPIT Volume 140 - Parallel and Distributed Computing 2013

Although adequate computational resources are
available for MapReduce-based OLAP jobs in hybrid
cloud environments, performance is not as high as
expected due primarily to low bandwidth and high
latency between private and public clouds. This in-
tercloud (or cloud to cloud) transmission imposes an
economic burden on users since network usage is also
charged in public clouds. Thus, in hybrid cloud envi-
ronments data movement is a crucial factor not only
for performance, but also for cost.

In this paper, we address the problem of process-
ing MapReduce-based OLAP applications in hybrid
cloud environments. The work in this paper is de-
signed to mitigate the performance and cost issues
of MapReduce jobs in hybrid cloud environments by
reducing the amount of intercloud data transfer us-
ing data filtering techniques. We exploit two types
of filters—static and dynamic—deployed on the dis-
tributed file system; and they are evaluated with
Hadoop. Our experimental results with data anal-
ysis workloads in Amazon EC2 demonstrate perfor-
mance improvement and cost-cutting effects. Specif-
ically, our OLAP system reduces network traffic as
much as 99% (and at least 76%), and improves appli-
cation performance (reduction in processing time) by
13-71%; together, 84% of total costs when processing
without our system (default) is reduced.

The main contributions of this paper are as fol-
lows:

o We identify the impact of intercloud data trans-
fer overheads on the performance of MapReduce-
based OLAP applications.

e We develop a cloud-aware OLAP system based
on the MapReduce framework for hybrid clouds.

o We demonstrate the effective usage of data filter-
ing techniques to reduce intercloud data trans-
mission overheads.

e Our system using two large-scale data analysis
benchmarks has been evaluated in terms of both
performance and cost efficiency.

The remainder of the paper is organized as follows.
Section 2 presents background and related work. Sec-
tion 3 describes the problem we address in this paper.
Section 4 details the design and implementation of our
system with description of data filtering technique in-
corporated. Section 5 evaluates the efficacy of our
system in terms of performance (running time) and
cost efficiency. Then, Section 6 concludes the paper.

2 Background and Related Work

In this section, we begin by describing the MapRe-
duce framework and OLAP applications in the con-
text of Hadoop (Apache 2012a), the open-source
counterpart of MapReduce. We then discuss the de-
ployment of OLAP applications in a hybrid cloud and
issues related to such deployment.

2.1 MapReduce and OLAP

MapReduce is derived from functional programming
concepts and is composed of two basic computation
units/functions: Map and Reduce.

e Map takes an input and produces a set of inter-
mediate key/value pairs. The MapReduce run-
time classifies all intermediate values according
to the same intermediate key k& and passes them
to the Reduce function.

32

Chunk #1 |~ M

o e 1 -

Chunk #3 Map =

perwwrrye Do i
L—1

Map —>|:|

Data Map Phase

Chunk #5

Intermediate Reduce Phase

Data

Figure 1: MapReduce model.

e Reduce receives an intermediate key k£ and a set
of values associated with the key. Reduce merges
the values to form a set of new values. Typically,
one output value is produced per one Reduce in-
vocation.

Figure 1 shows the data flow in the Map/Reduce
phases with IO for reading and writing data indi-
cated by arrows. These IO activities are handled by
the Hadoop Distributed File System (HDFS) resided
in the private cloud. The existing Hadoop filtering
is performed in worker nodes on which Map/Reduce
functions execute instead of HDFS nodes; and some
of these worker nodes are in the public cloud in our
hybrid cloud model. Thus, for these worker nodes,
the existing filtering approach has no effect on inter-
cloud data traffic.

The MapReduce programming model has many
advantages, such as high throughput/performance,
use of commodity clusters, and fault tolerance.
MapReduce is used in not only index construction
for search engines (Dean & Ghemawat 2008) but
also data analysis of both homogeneous and hetero-
geneous sets (Yang et al. 2007, Apache 2012¢). Data
join processing, which is very important for complex
analysis in data warehouses, is addressed in (Yang
et al. 2007) and (Pike et al. 2005) using MapRe-
duce. Recently, Hadoop-based implementations, such
as Hive (Apache 2012b) and CloudBase (Business.com
2012), have been developed for data warehouse work-
loads. In (Stonebraker et al. 2010), the authors com-
pare MapReduce and parallel DBMS in various view-
points such as performance and system management.
Based on their conclusion, parallel DBMSs are suit-
able for efficient querying of large structured data,
whereas MapReduce has advantages at complex ana-
lytics and extract-transform-load (ETL) tasks. This
means that MapReduce can be useful for OLAP pro-
cessing in large data warehouses. For example, Face-
book has implemented a large data warehouse system
using MapReduce instead of DBMSs (Monash 2009).

A data warehouse is an online repository for data
from operational systems of an enterprise (W.H. In-
mon 1996). A data warehouse is usually maintained
using a star schema that is composed of a single fact
table and any number of dimension tables. A fact
table contains atomic data or records for business
areas such as sales and production. Dimension ta-
bles have a large number of attributes that describe
records of the fact table. Figure 2 shows an exam-
ple of a star schema derived from the Star Schema
benchmark database (O'Neil et al. 2007). The fact
table is the LINEORDER table, and the dimension ta-
bles are CUSTOMER, SUPPLIER, PART, and DATE ta-
bles. The LINEORDER table has several foreign keys
such as CUSTKEY, PARTKEY, SUPPKEY, ORDERDATE, and
COMMITDATE to refer to each dimension table. Gen-
erally, queries in data warehouses are complex and
ad hoc. The star-join query, in which the fact table

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

CUSTOMER LINEORDER PART
%
(SF*30,000) (SF¥6,000,000) (200,000*[1+log,SF])
CUSTKEY ORDERKEY PARTKEY
NAME \ LINENUMBER NAME
ADDRESS CUSTKEY MFGR
CITY PARTKEY CATEGORY
NATION SUFFKEY BRANDI
REGION ORDERDATE COLOR
PHONE ORDPRIORITY TYPE
MKTSEGMENT SHIPPRIORITY SIZE
SUPPLIER QUANTITY CONTAINER
(SF*30,000) EXTENDEDPRICE DATE
SUPPKEY ORDTOTALPRICE 7 Years of Days
DISCOUNT DATEKEY
NAME) DAYNUMINMONTH
ADDRESS REVENUE DATE MONTHNUMINYEAR
o DAYOFWEEK WEEKNUMINYEAR
CITY SUPPLYCOST MONTH SELLINGSEASON
NATION TAX YEAR LASTDAYINMONTHFL
YEARMONTHNUM HOLIDAYFL,
REGION COMMITDATE
B YEARMONTH ‘WEEKDAYFL
PHONE SHIPMODE DAYNUMINWEEK DAYNUMINMONTH

Figure 2: Example of the star schema (O’Neil et al.
2007); SF: scale factor in the databases.

is joined with one or more dimension tables, is one
of the well-known queries in OLAP. For another ex-
ample, TPC-H (Transaction Processing Performance
Council 2012) provides a set of ad hoc queries for
decision support systems that primarily use data in
a data warehouse. In MapReduce, all data in data
warehouses are stored as a form of a chunk in dis-
tributed file systems such as HDFS and Google File
System (GFS) (Ghemawat et al. 2003). In this paper,
we focus on MapReduce-based OLAP applications in
data warehouses.

2.2 Hybrid Cloud Deployment

In (Vaquero et al. 2008), authors define a cloud as
a large pool of easily usable and accessible virtual-
ized resources. Clouds can also be regarded as data
center hardware and software being served, and these
resources are exposed in a pay-as-you-go style to en-
able public utility computing (Armbrust et al. 2010,
Paul 2008). Cloud computing users take advantage
of this pool of resources by paying only for the re-
sources as their need grows or shrinks. The elas-
ticity and scalability are the key characteristics of
cloud computing platforms. Scalability is one ris-
ing issue in large-scale cloud deployments particularly
with multi/many core machines (Boyd-Wickizer et al.
2010, Song et al. 2011). Authors in (Vaquero et al.
2011) extensively surveyed cloud scalability issues and
classified them in three different levels.

As the scale of data constantly increases timely
data processing and analysis is of great practical im-
portance in business activities and scientific research
communities such as HPC (Humphrey 2011, Zhai et
al. 2011). If the data size is very large to the extent
that a single cloud system cannot process the data,
the cloud system would not be able to satisfy further
requests from clients. In such a situation, the hybrid
cloud plays a crucial role in resolving the scarcity of
resources. If a private cloud in an enterprise becomes
saturated, the enterprise may provision resources by
renting from public cloud service providers. Thus,
large-scale data processing in data warehouses will
be an important target of hybrid clouds. However,
current MapReduce frameworks do not consider hy-

Private Cloud

Public Cloud

Intercloud data transmission
overheads are embedded

Bottleneck

=5
Reduce

v
Tlmel_

Figure 3: MapReduce example in a hybrid cloud en-
vironment.

brid clouds yet, and MapReduce-based OLAP appli-
cations on hybrid clouds experience low performance.
This expansion of running OLAP application to mul-
tiple clouds offers a type of scalability solution, i.e.,
the platform level scalability as classified by authors
in (Vaquero et al. 2011).

3 Problem Statement

In this section, we use an illustration to state the
problem of processing MapReduce-based OLAP ap-
plications in hybrid clouds.

Supposing there was a private cloud running a
data warehouse, it may occasionally require more
computing capacity beyond its own. If new physical
machines are added to the private cloud, the heavy
burden of both capital and operating costs would be
inevitable. Thus, renting additional computing units
from public clouds is naturally a cost-effective alter-
native. In this study, we do not consider a situation
that the private cloud needs a public cloud for stor-
age (e.g., security issues of internal data), and data
are not partitioned or distributed over between pri-
vate and public clouds.

In hybrid cloud environments, networking between
clouds has low bandwidth and high latency since their
communication essentially relies on the Internet. This
is a major limiting factor to the adoption and preva-
lence of hybrid clouds, particularly for the MapRe-
duce framework for which the data movement is fre-
quent and large. Figure 3 demonstrates the effect of
MapReduce applications when data are transferred
from one cloud to another. While map tasks (M; and
M>) receive their inputs from the data warehouse of
their local cloud, map tasks (M3 and My) in a public
cloud get their inputs from the private cloud, i.e., in-
tercloud data transmission. Although all map tasks
start almost at the same time, the map tasks in the
public cloud take a longer time than the other two
map tasks in the private cloud to execute due to the
intercloud data transmission. Besides, each reduce
task performs only after it gets corresponding output
from every map task. Thus, no reduce tasks can start
until the map tasks in the public cloud are finished,
even if the other map tasks are completed. As a re-
sult, the map tasks in the public cloud are bottlenecks
of total MapReduce processing, and the MapReduce
program is slowed down.

33

CRPIT Volume 140 - Parallel and Distributed Computing 2013
4 Cloud-aware OLAP

In this section, our system design and implementation
are articulated with the description of data filtering
techniques incorporated. Then, cost efficiency met-
rics associated with our approach are presented.

4.1 Intercloud Transmission Reduction using
Data Filtering

We propose a simple filtering technique that avoids
transmission of unnecessary data particularly to pub-
lic cloud nodes in which Map and Reduce tasks ex-
ecute. And, we modify HDFS to be aware of data
(e.g., record layout).

In our system, filters are configured in MapReduce
programs by users (MapReduce Program Generation
in Figure 4), and our system uses filters for better
performance (MapReduce Task Running in Figure
4). When users write a MapReduce program, they
add static/dynamic filters into the MapReduce pro-
gram. Then, our system uses filters that users spec-
ified. When map processes start, they request data
for their jobs with filter information to file systems (3
in Figure 4). File systems send filtered data to map
processes on the public cloud (4 in Figure 4).

1

MapReduce Program Generation,
l.a 1.b
Static Filter Dynamic Filter

v?
Map Tasks <

g :

File System

MapReduce Task Running

Figure 4: Overview of our technique.

Currently, our system supports two types of fil-
ter: static (shown as l.a in Figure 4) and dynamic
(shown as 1.b in Figure 4) filters. A static filter,
such as a relational algebraic operator, is recognized
when a MapReduce task starts. Figure 5 indicates
a sample database and its example query. A static
filter uses a fixed constraint, such as DT1.PK| = ag
and DT2.PKs = by in Figure 5. This information
is included as a job configuration parameter in the
MapReduce Program (shown as 1.a Figure 4). It will
be used to filter data from dimension tables (DT'1
and DT2) if map tasks are placed outside the private
cloud.

On the other hand, a dynamic filter, such as a
bloom filter (Bloom 1970), can be used after filter
construction is performed. For example, a user writes
an efficient MapReduce-based join program by using
a bloom filter. To this end, the user typically writes
the program considering a filter construction phase
(Business.com 2012, Han et al. 2011). During this
phase, records of DT'1 and DT?2 are processed to pro-
duce bloom filters for all join keys (PK; and PK>)
and bloom filters are stored to the distributed file sys-
tem. In the next step, records of the fact table (F'T)
and its corresponding dimension table are processed

34

Dimension Table 1 Fact Table Dimension Table 2

(DTD (FT) (DT2)
P o]
ay | D, a | by | Fo by | D2y
ar | Dip a | by | Fy by | D22
a | D a | b | F
ag | by F3

Example Query:

SELECT * FROM FT, DT1, DT2 WHERE FT.FK, = DT1.PK, and FT.FK, = DT2.PK,
and DT1.PK, = a, and DT2.PK, = b,

Figure 5: Query example.

to perform the join processing. In this phase, the
distributed file system first checks whether each for-
eign key (FK; and FKs) of each record in the fact
table, which usually is the largest table in the data
warehouse, is contained in bloom filters from the pre-
vious phase or not. Then, if a record passes through
the check, it is sent to map processes when they are
far from the data warehouse cloud. Otherwise, it is
dropped in the file system node. Due to the nature of
the dynamic filters, the address of each bloom filter
is saved as a configuration in MapReduce Program,
(1.b) in Figure 4. It is noted that all bloom filters can
be used in map processes if users do not use our sys-
tem, and this technique can improve the performance
of star-join queries in a single cloud (Han et al. 2011).

4.2 System Implementation

In this section, we give implementation details of our
system including filter configuration as part of the
OLAP MapReduce configuration and the actual fil-
tering operation of data.

4.2.1 Filter Configuration

The filter information is stored as part of a job config-
uration in Hadoop. The information includes a type
of filter (dynamic or static, or both), the use of fil-
ter (true, false), required arguments (e.g., addresses
of bloom filters), and the location of the file system
(whether inside or outside the private cloud).

Table 1: Filter property.

Dynamic filter Static filter

filter type
(e.g., bloom fiter)
filter address

filter type

(e.g., operators such as < and >)
number of filters

number of columns

line or only column

Table 1 shows that each setting of filters needs a
different configuration. The dynamic filter needs a
type of filter, notifies its own type, and specifies ad-
dresses of bloom filters. The static filter also demands
a filter type, the number of columns for the table of
data, the number of filters, and a method to eliminate
a line or column.

4.2.2 Operation on HDFS

In this section, we propose a transmission algorithm
that applies a filter at each time after reading data.
Since we consider the LineRecordReaderr class as

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

a default reader', the first line and last line in the
block (or chunk) may be overlapped with the previ-
ous or next chnunk and may not be complete. We
exclude these lines from the filter operation. The rest
of the lines are passed on to the filtering step. If those
lines are necessary data, they are added to the out-
put; otherwise, they are discarded. When the output
size is larger than or equal to the predefined packet
size (e.g., 64KB), the file system nodes transfer the
packet to map tasks in the computational nodes. The
filtering operation (Algorithm 1) repeats until the end
of the block is reached.

Algorithm 1 HDFS Filter.

while not the end of block do
read data 64KB at a time
if data are the first or last line of block then
continue
end if
apply filter to data
concatenate filtered data to output
if output is larger than packet size (64KB) then
transmit output
end if
end while
transmit remaining output

We modify client and server code of original HDF'S
to realize filters. In the BlockSender class of the
server side, data is recognized as a set of tuples,
and is sent to the client side applying filters. The
DFSClient.BlockReader class of the client side re-
ceives filtered data. For prototype implementation,
we do not use existing checksum data stored in HDFS
node but BlockSender re-computes checksum values
when it sends filtered data. Additionally, we insert a
one-byte value (boolean value) that indicates the last
packet for the chunk. Since existing communication
protocols use only the length of static data, the value
is used to mark the completion of data transmission.
To configure filters in MapReduce programs, we in-
troduce new key /value pairs to JobConf objects, and
the key/values pairs describe filter information shown
in Table 1.

4.3 Cost Efficiency

The performance to cost ratio (cost efficiency) from
the user’s perspective is an important metric when
considering the use of public clouds in particular. In
this section we characterize cost efficiency of running
OLAP applications in hybrid clouds. We explicitly
take into account intercloud network traffic and usage
of resources (or instances in Amazon EC2) in our cost
efficiency metrics.

The perfect linearity or even decent direct pro-
portionality between the number of public resources
rented and performance improvement is only in the
ideal scenario (theory). Although this non-linearity
is not only present with the use of public clouds, the
cost related to public cloud usage makes such non-
linearity more serious. This non-linearity is sourced
from two main factors, particularly in our study with
OLAP applications: (i) data transmission overhead
between clouds and (ii) ‘hourly-base’ rate for public
cloud resource rental. In the following, we devise a
cost efficiency metric considering both factors.

For a given MapReduce-based OLAP job with M
map tasks, we estimate the completion time of map

!The LineRecordReader class recognizes a line as a record or a
tuple.

phase T, as follows:

T = (Ti - M)/(Np + sd - Np) (1)

where T; is the average execution time of map tasks,
N, and N, are the numbers of resources in the pri-
vate cloud and the public cloud, respectively, and
sd is a slowdown rate. sd in our study is primar-
ily estimated based on the first non-linearity factor
described above, i.e., intercloud data transmission.
Clearly, the performance of public cloud resources is
affected /decreased by the amount of data to be trans-
ferred. We do not consider the reduce phase because
it is performed in a private (local) cloud.

The expense of renting public cloud resources Cj,
is calculated by the product of unit resource cost C;,
total map phase time (hour) 7T,,, and the number of
rented resources Np.

Cb = CZ‘ . (Tm] : Nb (2)

The cost efficiency of running a MapReduce job
in a hybrid cloud is the reduced time per unit price,
i.e., the performance improvement to the public cloud
cost ratio. It is determined by T;,, and T,; where Ty is
the map phase time without the support of the public
cloud. More formally,

CE = (Ty—T,)/Ch. (3)

5 Experimental Evaluation

In this section we detail experiments to evaluate our
system and present results. Specifically, the perfor-
mance improvement capability of our system is ver-
ified with experiments in the real cloud setup using
Amazon EC2. Then, we show cost saving implica-
tions and discuss how to optimize cost efficiency.

5.1 System Performance

In this section, we show that our system reduces the
amount of data transmission and this reduction leads
to performance improvement effectively.

5.1.1 Experimental Environment

For our experiment, we rented resources from Ama-
zon EC2 (Standard Small, m1.small) in two different
available regions: US East and West zones as shown
in Figure 6. We used four instances in each region
as computing nodes, and four more instances were
added to the East zone as storage nodes. Map tasks
in the US East zone receive their input data from the
same zone (as in the private cloud). However, map
tasks in the US West zone receive their input from
the US East zone through an inter-zone (intercloud)
network.

Storage Nodes

gdug

Data
Transmission

1 god

Private Cloud
(US East zone of Amazon EC2)

Computational Nodes

Public Cloud
(US West zone of Amazon EC2)

Figure 6: Experimental environment.

35

CRPIT Volume 140 - Parallel and Distributed Computing 2013

Our system was evaluated with well-known, large-
scale data analysis benchmarks:

e TPC-H - a business-oriented decision support
benchmark, which simulates an online produc-
tion database environment; we used a scale factor
of 20 (i.e., a data set of 20GB) in this study.

e SSBM (Star Schema Benchmark) - a benchmark
for data warehousing applications; we used a
scale factor of 40, which also gives us a database
size of about 20GB. SSBM has four query groups,
and each group has a couple of queries with dif-
ferent selectivity of the LineOrder table (fact
table). We used the MapReduce-based SSBM
benchmark suite (Han et al. 2011).

These benchmarks provide dedicated data gener-
ator programs (db_gen). Each db_gen program pro-
duces data files (.tbl files). For example, data for the
lineitem table is stored in the lineitem.tbl file. A
tuple of a table corresponds to a line of a data file,
and each column in a tuple is separated by a spe-
cial identifier (‘|’). In our experiments, we uploaded
all data files to HDFS or filter-enabled HDFS and
Map/Reduce programs process data from distributed
storage line by line. We ran each test case five times
and measured the average running time and aver-
age traffic volume. The data are transferred between
clouds in two different ways:

e Default - default Hadoop transmission

e Filter_hdfs - filtering data in storage nodes,
where the data are filtered before the transmis-
sion of the data.

We report results of only dynamic filters (e.g.,
bloom filter) for this study since static filters do not
show significant performance improvement (less than
10%). Because OLAP applications as our target ap-
plications have many complex join procedures, our
dynamic filters can improve query performance and
reduce network usage significantly. It is noted that all
results include costs of additional filter construction
phases (computation, network, and storage costs).

5.1.2 Results

Results are presented in two aspects: traffic volume
and running time. Clearly, these two performance
metrics are negatively correlated.

Figure 7 shows the efficacy of our system using
Filter_hdfs for processing the TPC-H benchmark.
Figure 7(a) also shows that performance using the de-
fault transmission—without explicit intercloud data
filtering—is improved to a certain degree with the
use of public cloud resources; however, this degree of
performance improvement is not quite align with ex-
tra costs related to public cloud usage. Our system
leads to further performance improvement through
filtering-enabled HDFS. That is, Filter_hdfs re-
duces data transmission by 76-99% compared with
the default hadoop transmission (Figure 7(b)), and
this leads to performance improvement of 13-56%
(Figure 7(a)).

Similar results were obtained from experiments
with processing SSBM queries (Figure 8). From Fig-
ure 8(b), we can see that our system significantly
reduces intercloud data transmission for star join
queries (i.e., 95-99% reduction). This leads to su-
perior performance of the Filter_hdfs transmission
by 49.5-70.5% in terms of running time (Figure 8(a)).

More concrete data on performance improvement
our system delivered in experiments are shown in Ta-
ble 2.

36

® Default (local/private only)
u Filter_hdfs (with public cloud)

= Default (with public cloud)

6000
5000
_
<
D
£ 4000
£
= 3000
o0
£ 2000
=
o
1000
O 4
4 5 8 9 17
Query Number
(a) Running time
H Default ® Filter_hdfs
100000
10000
~
)
E 1000
@
N
7]
s 100 +
8
10 +
1 -

4 5 8 9 17
Query Number

(b) ‘Intercloud’ traffic volume

Figure 7: TPC-H results.

¥ Default (local/private only)
® Filter_hdfs (with public cloud)
6000

B Default (with public cloud)

5000
2
D
£ 4000
g
= 3000 -
)
£ 2000 -
=
&~
1000
0 4
21 22 23 31 32 33 34 41 42 43
Query Number
(a) Running time
H Default ™ Filter_hdfs
100000
10000
—_
[=-]
% 1000 -
3
%
s 100
a
10 A
1 4

21 22

23 31 32 33 34 41
Query Number

42 43
(b) ‘Intercloud’ traffic volume

Figure 8: SSBM results. Query id (z_y) in x-axis
represents group id x and the yth query within the x
query group in SSBM (Han et al. 2011).

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

5.2 Cost Efficiency

This section begins by demonstrating actual cost sav-
ings obtained from our system and discusses cost ef-
ficiency implications. All costs are calculated based
on the actual rates of Amazon EC2.2

5.2.1 Cost Savings

We summarize total running times and intercloud
traffic volumes of TPC-H and SSBM —with and with-
out (default) using our system—in Table 2. Corre-
sponding cost savings sourced from those reductions
in Table 2 are plotted in Figure 9. 2 Red bars in-
dicate cost savings from reduction in intercloud net-
work traffic while blue bars show cost savings from
improved performance (fewer instance rental hours).
Specifically, cost savings from intercloud traffic reduc-
tion are $4.8 and $8.7 for TPC-H and SSBM, respec-
tively. Such cost savings can afford additional 56 and
102 default compute instances (m1.small) for 1 hour;
and this implies further performance improvements
‘recursively’. Cost savings in instance rental from
improved performance are $0.34 and $1.7 for TPC-H
and SSBM, respectively. Overall, 84% of costs were
reduced using our system, i.e., 96% in data transfer
costs and 40% in instance rental.

Table 2: Total running time & intercloud traffic vol-
ume.

Total running time (hour)

Filter_hdfs default reduction
TPC-H 2.1 3.6 1.5
SSBM 3.9 8.9 5.0

Total intercloud traffic (GB)

Filter_hdfs default reduction
TPC-H 3.9 51.6 47.7
SSBM 0.75 87.4 86.65

HInstance ™ Network Traffic

=
N

=
o

Cost Saving ($)

o N B O
I

TPC-H

SSBM

Figure 9: Cost savings.

5.2.2 Optimization of Cost Efficiency

As the usage of public cloud resources is charged
based on the number of whole hours, the cost ef-
ficiency of cloud deployment is largely dependent
on the compactness of tasks with a given number
of resources. We have verified this cost efficiency
characteristic using the example below. Given a
MapReduce-based OLAP application, we consider
that M = 3000 map tasks, T; = 55 sec, C; = $0.2,
sd = 0.45, and N, = 4.

2Resource rental: $0.085/hr for Linux/Unix m1.small, and data
transfer in/out: $0.1 and $0.15 per GB, respectively.

3Total costs in our experiments do not include costs for the
private cloud since the management or pricing policy of the private
cloud may vary.

Table 3: Cost efficiency.

public resources Cost Running time | Cost efficiency
(N) (Cv) (Tm) (CE)
25 18.32 3.02 27.65
26 16.30 2.91 31.44
27 16.88 2.85 30.61
28 17.46 2.78 29.83
29 18.04 2.71 29.08
30 18.63 2.64 28.39
31 19.21 2.58 27.74
32 19.80 2.51 27.13
33 20.38 2.44 26.55
34 20.97 2.37 26.00
35 21.56 2.34 25.38
36 22.14 2.27 24.90
37 22.73 2.24 24.34
38 23.32 2.17 23.90
39 23.91 2.14 23.40
40 24.50 2.10 22.92
41 25.09 2.07 22.46
42 17.28 1.99 32.84
43 17.67 1.97 32.23
44 18.06 1.93 31.65

Figure 10 shows the relationship between cost effi-
ciency and public cloud cost with respect to different
volumes of public resource rental. In this experiment,
we have identified eight ‘cost efficiency’ points for the
number of resources to be rented (resource count or
Ny), i.e., they are good candidates for running the
application in terms of cost efficiency. These candi-
dates are 4, 6, 9, 12, 17, 26, 42, and 95 of resources in
this experiment as indicated by vertical lines in Fig-
ure 10; they are the points where running times are
a multiple of whole (or very close to whole) hours,
ie., 7.90, 6.85, 5.69, 4.88, 3.93, 2.91, 1.99, and 0.98.
Specifically, each of these points is the case that an
additional public resource contributes to the reduc-
tion of running time by one hour. Thus, public cloud
cost drops as shown in Figure 10 and Table 3 despite
the increase in the number of public cloud resources.
Table 3 highlights this hourly rate originated pattern
exhibited between 25 and 44 of public resources in our
experiment. Clearly, the global maximum and its cor-
responding number of resources are the best interest
of the user. In this particular experiment, renting 42
instances is the best choice in terms of cost efficiency
(performance improvement per dollar). However, one
may select another point (a local maximum) due to
budget or time constraints. The cost efficiency char-
acteristic presented in this section can greatly facili-
tate the design of scheduling and resource allocation
policies for the user. Note that since good candidates
for the number of public resources to be rented appear
around multiples of hours, the search for the global
maximum terminates at around one hour of running
time.

6 Conclusion

To date, a majority of use cases of hybrid cloud de-
ployments lie in with computationally intensive ap-
plications. Yet, applications and services deployed in
cloud environments are increasingly data intensive.
Cloud sourcing—delegating the entire I'T solution to
public clouds—might be an alternative; however, it is
often not quite possible due to various reasons includ-
ing security. Thus, reducing the amount of intercloud
data transmission is of great practical importance in
hybrid cloud deployments. In this paper, we have
studied on the intercloud data transmission of OLAP
applications, and presented a cloud-aware OLAP sys-
tem using data filtering techniques. We have shown
that our system is capable of reducing intercloud data
transmission significantly; that is, experimental re-

37

CRPIT Volume 140 - Parallel and Distributed Computing 2013

40

35

30 \/\/\/

25

«/\

CE/Ch

0

—Cost Efficiency
—Public cloud cost (Cb) 10
Running time (in hours)

N

=N

&~

W
#hours (Tm)

w

(¥}

0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
public cloud resources (Nb)

Figure 10: Cost efficiency with respect to different numbers of public cloud resources.

sults verified this claim with improvements in both
running time and cost efficiency. We also have explic-
itly taken into account the current practice of (pub-
lic) cloud service pricing, and devised cost efficiency
metrics to discuss about judicious resource rental de-
cisions.

Acknowledgements

This work was supported by Mid-career Researcher
Program through NRF grant funded by the MEST
(No. 2010-0014387). The ICT at Seoul National Uni-
versity provided research facilities for this study.

References

Amazon Web Services (2012), Customer
http://aws.amazon.com/solutions/case-studies/.

Success,

Apache (2012a), Hadoop, http://hadoop.apache.org.
Apache (2012b), Hive, http://hive.apache.org.
Apache (2012c¢), Pig, http://pig.apache.org.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Kon-
winski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I. & Za-
haria, M. (2010), ‘A view of cloud computing’, Commun. ACM
53, 50-58.

Bloom, B. H. (1970), ‘Space/time trade-offs in hash coding with
allowable errors’, Commun. ACM 13, 422—426.

Boyd-Wickizer, S., Clements, A. T., Mao, Y., Pesterev, A,
Kaashoek, M. F., Morris, R. & Zeldovich, N. (2010), An anal-
ysis of linux scalability to many cores, in ‘Proceedings of the
9th USENIX conference on Operating systems design and im-
plementation’, OSDI’10, pp. 1-8.

Business.com (2012), CloudBase,

http://cloudbase.sourceforge.net.

Buyya, R., Ranjan, R. & Calheiros, R. (2010), Intercloud: Utility-
oriented federation of cloud computing environments for scal-
ing of application services, in ‘Algorithms and Architectures for
Parallel Processing’, Vol. 6081 of Lecture Notes in Computer
Science, pp. 13-31.

Celesti, A., Tusa, F., Villari, M. & Puliafito, A. (2010), ‘How to En-
hance Cloud Architectures to Enable Cross-Federation’, Cloud
Computing, IEEE International Conference on pp. 337-345.

CycleComputing (2012), CycleCloud Achieves Ludicrous
Speed! (Utility ~ Supercomputing with 50,000-cores),
http://blog.cyclecomputing.com/2012/04 /cyclecloud-50000-
core-utility-supercomputing.html.

Dean, J. & Ghemawat, S. (2008), ‘MapReduce: simplified data
processing on large clusters’, Commun. ACM 51(1), 107-113.

38

Ghemawat, S., Gobioff, H. & Leung, S.-T. (2003), The google file
system, in ‘SOSP ’03: Proceedings of the nineteenth ACM sym-
posium on Operating systems principles’.

Han, H., Jung, H., Eom, H. & Yeom, H. (2011), ‘Scatter-gather-
merge: An efficient star-join query processing algorithm for
data-parallel frameworks’, Cluster Computing 14, 183-197.

Hey, T., Tansley, S. & Tolle, K., eds (2009), The Fourth Paradigm:
Data-Intensive Scientific Discovery, Microsoft.

Humphrey, M. (2011), Cloud, hpc, or hybrid: A case study involv-
ing satellite image processing, in ‘Cloud Futures 2011°.

Johnston, S. (2009), ‘Intercloud is a global cloud of clouds’.

Monash, C. (2009), Cloudera presents the MapReduce bull
case, http://www.dbms2.com/2009/04/15/cloudera-presents-
the-mapreduce-bull-case.

O’Neil, P., O'Neil, E. & Chen, X. (2007), The Star Schema Bench-
mark.

Paul, M. (2008), ‘The cloud is the computer’, IEEE Spectrum On-
line.

Pike, R., Dorward, S., Griesemer, R. & Quinlan, S. (2005), ‘In-
terpreting the data: Parallel analysis with sawzall’, Scientific
Programming Journal.

Song, X., Chen, H., Chen, R., Wang, Y. & Zang, B. (2011), A
case for scaling applications to many-core with os clustering,
in ‘Proceedings of the sixth conference on Computer systems’,
EuroSys ’11, pp. 61-76.

Stonebraker, M., Abadi, D., DeWitt, D. J., Madden, S., Paul-
son, E., Pavlo, A. & Rasin, A. (2010), ‘MapReduce and parallel
DBMSs: friends or foes?’, Commun. ACM.

Transaction Processing Performance Council (2012), TPC-H,

http://www.tpc.org/tpch.

Vaquero, L. M., Rodero-Merino, L. & Buyya, R. (2011), ‘Dynami-
cally scaling applications in the cloud’, ACM SIGCOMM Com-
puter Communication Review 41(1), 45-52.

Vaquero, L. M., Rodero-Merino, L., Caceres, J. & Lindner, M.
(2008), ‘A break in the clouds: towards a cloud definition’, SIG-
COMM Comput. Commun. Rev. 39, 50-55.

W.H. Inmon (1996), Building the Data Warehouse, J. Wiley &
Sons, Inc.

Yang, H.-c., Dasdan, A., Hsiao, R.-L. & Parker, D. S. (2007), Map-
reduce-merge: simplified relational data processing on large
clusters, in ‘SIGMOD ’07: Proceedings of the 2007 ACM SIG-
MOD international conference on Management of data’.

Zhai, Y., Liu, M., Zhai, J., Ma, X. & Chen, W. (2011), Cloud versus
in-house cluster: evaluating amazon cluster compute instances
for running mpi applications, in ‘State of the Practice Reports’,
SC ’11.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Tools and Processes to Support the Development of a National
Platform for Urban Research: Lessons (Being) Learnt from the
AURIN Project

Richard O. Sinnott, Christopher Bayliss, Luca Morandini, Martin Tomko
The Australian Urban Research Infrastructure Network (AURIN)
University of Melbourne, VIC, 3052 Australia

rsinnott@unimelb.edu.au

Abstract

The development of large-scale software systems remains
a non-trivial endeavour. This is especially so when the
software systems comprise services and resources coming
from multiple distributed software groups, and where they
are required to interoperate with heterogeneous,
independent (and autonomous) distributed data providers.
The use of software development and management tools
to support this process is highly desirable. In this paper
we focus on the software development and management
systems that have been adopted within the national
Australian Urban Research Infrastructure Network
(AURIN - www.aurin.org.au) project. AURIN is tasked
with developing a software platform to support research
into the urban and built environment - a domain with
many diverse software system and data needs. In
particular, given that AURIN is tasked with integrating a
large portfolio of sub-projects offering both software and
data that needs to be integrated, deployed and managed by
a core team at the University of Melbourne, we illustrate
how tooling and support processes are used to manage the
software development lifecycle and code/data integration
from the distributed teams and data providers that are
involved. Results from the project demonstrating the
ongoing status are presented. "

Keywords: Code Management, Collaborative
Development Environment, Software Testing, Urban
Research.

1 Introduction

Despite many years of experience, the development of
complex software infrastructure and systems remains a
challenge (Stojanovic 2005). This is especially so when
the software systems are developed by distributed teams
of software engineers from a multitude of organisations
and where stakeholders beyond the software development
teams are protagonists in the infrastructure efforts. For
many major organisations such efforts are commonplace
and systems and processes are well embedded into the
way in which software is developed, managed and

Copyright (c) 2013, Australian Computer Society, Inc. This
paper appeared at the 11th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2013), Adelaide, South
Australia, January-February 2013. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 140. B.
Javadi and S. K. Garg, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

ultimately released as products with each iteration
(software release) building upon the previous version.
However in many circumstances, this building upon a
common platform with extensive experiences and
feedback from the end users/customers is simply not
possible. This is often the case in the area of research-
focused projects dependent upon IT. For many research
projects, e.g. those sponsored by governments, the
software development activities required to support the
particular research endeavour are, what can best be
described as a greenfield, i.e. with no pre-existing
systems already running that require enhancing/tuning,
but largely building from scratch. In such circumstances,
the architecture of complex research-oriented systems
benefits greatly from re-use of existing software
components, typically these will come from a variety of
sources and/or require implementation without any
existing prototype in place. Even with this recycling of
software systems however, the adaptation, integration and
management of various subsystems to meet the needs of
the research community is a far from trivial process —
especially when the research needs evolve with the
development of the infrastructure itself. That is, often
researchers are unaware of the capabilities required of the
underlying research platform until the platform exists and
facilitates their research.

There have been ranges of software engineering
approaches and methodologies that have been explored
historically to manage such efforts (Boehm 1988, Filman
2004, Booch 1996). More recently the arca of agile
software development has gained widespread
endorsement as the best way of developing complex
systems and ensuring that they meet the end user research
community needs through a rapid prototyping and release
driven approach (Martin 2003). However for many agile
software approaches, the assumption is often that the
software developers themselves are physically co-located
and directly interacting with each other for iterations of
the code and infrastructure release. Often this is not the
case especially in large-scale distributed software
engineering activities. In such circumstances, tool support
for managing the software engineering process of
multiple software teams is essential. This is the focus of
this paper. In particular the paper focuses on the tools and
processes that have been adopted within the Australian
Urban Research Infrastructure Network (AURIN) project
(www.aurin.org.au).

The rest of the paper is structured as follows. Section
2 provides an introductory overview of the AURIN

39

CRPIT Volume 140 - Parallel and Distributed Computing 2013

project. Section 3 describes the software development
framework that represents the AURIN systems
architecture. Section 4 describes the tools and process
that have been adopted to manage the process of
developing the AURIN infrastructure and the lessons
learnt in their usage. Section 5 describes the history of
development of the AURIN platform and example use
cases that have been supported of increasing complexity.
Finally section 6 offers some conclusions and identifies
future work plans for the AURIN project as a whole.

2 AURIN Overview

The Australian Urban Research Infrastructure Network
(AURIN) project (www.aurin.org.au) has been funded
through the Australian Government’s Department of
Industry, Innovation Science, Research and Tertiary
Education (DIISRTE). The project is lead out of the
University of Melbourne. The project formally
commenced in July 2010 with the overarching remit for
the ‘establishment of facilities to enhance the
understanding of urban resource use and management’.
AURIN is a large and complex project with government
investment of $20m to run over the project lifetime.
AURIN was initially expected to run to mid-2014, but has
since been agreed with DIISRTE to run to mid-2015.

The AURIN project is tasked with providing urban
and built environment researchers with a research
environment offering seamless access to data and tools
for interrogating a wide array of distributed data sets
crossing government, industry/commercial and academic
domains. The intention is to support multiple research
activities that will enhance the understanding of key
issues of Australia’s past, current and future major urban
settlements. This will allow better understanding of a
range of phenomenon including (but not restricted to): the
impact of population growth and changing demographic
profiles of cities; the nature and context of urban
environments in which diverse people live, e.g. the future
challenges on transport networks, housing, employment,
through to the health and well-being of individuals and
societal groups, e.g. the elderly.

Prior to AURIN no such national urban research
facility existed. Rather a wide range of largely
independent silos of data and information existed with no
possibility to support the interconnected and multifaceted
research challenges associated with urban settlements.
Similarly a range of bespoke tools and processes has
often been used for the analysis of these data sets.
Pockets of expertise in how to use these tools and data
sets have been the norm. AURIN is tasked with
development of a common data platform with associated
analytical tools to provide a “lab in a browser” offering
seamless access to distributed and heterogeneous data
sets and associated tools.

It is essential to note that in developing an
infrastructure to tackle such multi- and inter-disciplinary
demands, it is paramount that the infrastructure is
developed to be flexible, scalable and extensible. Thus
there is no fixed (closed) set of data providers, data sets
and tools that represent urban and built environment
research. Rather, the AURIN infrastructure has to be
developed to accommodate the flexible access to and use

40

of data from a range of diverse organisations including
new data providers and data sets almost on the fly.

To structure and scope the work on AURIN, the first
year of the project (June 2010-June 2011) focused on
community engagement and outreach on what the urban
and built environment research community would like
AURIN to do, be and ultimately deliver.

It was widely accepted that the heart of the AURIN
project would be providing programmatic access to urban
and built environment data sets in a manner that
supported the researchers and their associated research
processes. To overcome the data deluge and associated
research processes adopted by many which can be
classified as “Google-like”, i.e. searching for relevant
research data using search engines, which typically return
masses of relevant and irrelevant data to the researchers,
it was identified that targeted access to specific data for
specific urban phenomenon was required. To this end the
first year of detailed requirements and community
engagement resulted in the identification of a key set of
strategic urban and built environment research areas to be
realized through targeted implementation stream (lenses).
Each of these lenses has their own data sets, services and
tools that need to be brought together. Ten aspirational
lenses were identified including:

1. Population and demographic futures and

benchmarked social indicators;

Economic activity and urban labour markets;
Urban health, well-being and quality of life;
Urban housing;

Urban transport;

Energy and water supply and consumption;
City logistics;

Urban vulnerability and risks;

A A

Urban governance, policy and management;
10. Innovative urban design.

Each of these lenses has an associated expert panel that
have (are) directly shaping the focus of the lens activities.
Typically these panels identify core data sets and tools
that are required to support the particular urban research
of interest. Once identified, a typical scenario is that a
range of lens-specific sponsored projects is funded
through AURIN. These projects have their own software
development activities. However a foundational principle
of AURIN was that support for multi- and inter-
disciplinary research would be possible. Thus rather than
having ten separate lens subprojects, it was identified that
the inter-connection and interoperability across these
lenses was essential. To this end, a common unifying e-
Infrastructure was needed. A core technical team at the
University of Melbourne is tasked with implementing and
coordinating this overarching e-Infrastructure.

At the time of writing, the current core e-
Infrastructure has been undergoing development since
September 2011 (with the full complement of staff in
place since April 2012); the first three of these lens areas
have started implementation and each of these has a
multitude of lens-specific subprojects occurring. Lenses
4-6 are now at the formal contracting stage (with

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

subprojects to begin in early 2013) and the other lenses
are currently in the early scoping stage or have yet to
commence. It should be emphasized that each lens
represents a significant urban research area in its own
right. However a key challenge (and research
opportunity) is that all of these areas are themselves inter-
related. As one example, understanding the changing
profile of population demographics in cities and the
current and future urban landscape is essential for
planning urban transport, housing, energy and water, and
provisioning of healthcare.

A major challenge facing the core technical team and
outsourced subprojects funded through AURIN is the
number of concurrent software development activities.
Thus it is expected that there will be 42 subprojects
running contemporaneously in 2013. Dealing with this
volume of projects is both a logistical challenge, e.g.
dealing with legal aspects of negotiation with data
providers for example, as well as a technical challenge.
This latter point is the focus of this paper: how can a wide
variety of (often domain-specific!) distributed software
engineers and data providers work together to deliver a
common urban and built environment research platform.
The foundation for this effort is the AURIN technical
architecture.

3 AURIN Technical Architecture

The AURIN e-Infrastructure has been designed around a
client-server based service-oriented architecture model
built upon a variety of flavours service implementations
including Representational State Transfer (REST)-based
services and Open Geospatial Consortium (OGC) web
service flavours with other flavours of web-services in
progress, e.g. statistical data-oriented web services
(SDMX). The focus of the core architecture has been to
establish a loosely coupled, flexible and extensible
service-based architecture. In this model, individual
functional components can be reused in different
situations. The implementation details of each component
are hidden as much as possible from the external
applications and end users. The overall AURIN technical
architecture is shown in Figure 1.

USER ‘ £ | Portal
NTTPS i‘ Liforay
Browser § | &
v Portiat(s) <| %
< JSR286 E f
2 Wabpage | @
§ o dB HITPLSON &
0P LDA - css i VIS¢
-1 "
Qpent.
bt sl Gt i
Geo Classification a }}}} =3,
it B2
HTTPUSON €2 fa
RESTAPI -
REST AP S | 5 §
] Hi VASON | -
g § § Business Logic = - gg
4H I o :
w
g & || & | [Hrmeiseaisson ¥ | 3
— }—
REST API «» RESTAPI OGC W'S API RESTAPI
Data Provider Service Dala Registration| | WMSAVMS-T/WFS | Workflow Environment
JavaSpring (nm:mw Gma'ONSJ

[WFECiant | [WS Cient | [D& Clients

30«‘“‘“ i puber RUBY 0B Df uu WRAPFER
Lt ¢t Grokols —
| O SRR | D SO | M | Analytical Process Library
y Streamed JSON & ABS eounuan Gocrooa P o REST
< Malauala Pos&gerner
~ —_MongoD

—

Figure 1: AURIN Implementation Architecture

The detailed description of the components and how they
are used to support discovery, access and use of data
including mapping, visualisation and a variety of data
analytics are described in (Sinnott 2011). Of particular
relevance here are the ways in which the core technical
team and the external, i.e. the distributed non-core
technical teams, coordinate and integrate their codes and
data into the core AURIN e-Infrastructure. These
possibilities are represented through the three red ovals
depicted in Figure 1 and include the AURIN portal/user
interface components; AURIN data provider components
and the AURIN analytical process library.

3.1 AURIN Portal Interface

The AURIN portal provides a single interface to all of the
data sets, services and tools offered through AURIN. The
portal is (currently!) the only way in which users can
discover data, access data, analyse data, visualise data.
The user interface components exposed within the portal
environment are deployed as JavaScript (JS) objects from
a small set of JS libraries such as ExtJS, ProcessingJS and
for interfacing with map data, OpenLayers. JavaScript
Object Notation (JSON) objects and the geospatial flavor
of JSON (GeoJSON — www.geojson.org) are used for
data transmission between the business logic layer and
the user interface, and a pattern of linked JS objects
created from these data assures linked visualizations, e.g.
brushing based on mouse-over events.

The portal interface represents a key coordination
point for all of the software development activities of
AURIN both for the internal core technical team and for
the associated external dependencies, e.g. for user
interfaces required for lens-specific software tools and/or
data sets.

3.2 AURIN Data Provider Service

The Data Provider Service exposes a REST-based API
that is queried by the internal AURIN components in
order to access and query the distributed data services.
The Data Provider Service uses real-time information on
the data services (and their associated data models), their
availability and potentially the load of the services
themselves.

The Data Provider Service provides both externally
facing REST-based and OGC-based service interfaces
that are typically used to discover, query and where
appropriate return data sets from a range of data providers
typically using provider-mandated/preferred solutions.
That is, it is often not possible for AURIN to mandate
that a given data provider uses a particular technical
solution. Rather the AURIN e-Infrastructure must work
with whatever data provider technologies are
proposed/used by the associated organizations (like the
Australian Bureau of Statistics).

At present the Data Provider Service supports access
to and use of a range of remote service solutions
including: OGC WFS services, REST-based and SOAP-
based Web Services, and data sources directly accessible
through JDBC. These are currently implemented, using a
combination of Hibernate, Spring and Geotools Java-
based libraries. The support for non-SQL databases
(MongoDB in particular) is also supported and used for
processing of real-time Twitter-based information.

M1

CRPIT Volume 140 - Parallel and Distributed Computing 2013

3.3 AURIN Analytical Process Library

Many of the needs of AURIN researchers are driven by
access to and usage of analytical tools and routines. The
AURIN core e-Infrastructure offers a range of basic
analytical routines such as linear regression, however for
many researchers access to richer analytical routines is
essential. These can cover algorithms that allow
performing geospatially-oriented weighted measures or a
variety of cluster analysis. Often domain experts using
statistical packages such as R, SAS or STATA to realize
such routines and algorithms combining advanced
statistical knowledge with urban and build environment
experiences. Incorporation of such expertise (routines and
how best to utilize them) into the AURIN e-Infrastructure
is essential to the overall success of the AURIN platform
for collaboration.

4 Distributed Code Development Tools and
Processes

To support the AURIN project and its evolving set of
needs and requirements both regarding the core technical
e-Infrastructure and the multitude of external subprojects
that are occurring, software development tool support is
essential. To this end the AURIN project has adopted
processes and a range of tools that are shaping the overall
software engineering efforts including: distributed code
versioning tools; coordination, bug tracking and feedback
tools; software documentation tools; integrated testing
tools, and deployment and management tools.

4.1 AURIN Agile Process

The AURIN project has adopted an agile methodology
for its software development plan. Agile software
development is an iterative method of determining
requirements based on rapid prototyping efforts as the
key way to elaborate software requirements and as a
model to move towards systems that meet customer’s
needs (in this case the AURIN research community). An
agile methodology is particularly suitable for AURIN
since the requirements are extremely complex with a
multitude of end users with varying expectations. Put
another way, there is no single documented specification
of what the AURIN e-Infrastructure should do or be,
rather these requirement specifications are growing with
the prototype versions of the platform. As such other
development models such as sequential design ala Spiral
or Waterfall models (Boehm 1988) are not suitable, since
they are typically not able to cope with constant changes
in requirements from end users and the associated
AURIN service/data providers. Indeed, despite the year
spent by AURIN on enumerating the needs of the
community on the AURIN platform, the level of
abstraction identified was not at an implementation level.
Instead, the AURIN agile process is one based largely
upon real-time reactive design, build, test and deploy.

The core AURIN team themselves are physically co-
located at the University of Melbourne in a single office
space. This co-location has been specifically and
deliberately established to support this project and the
team-based coordination efforts. That is, there is no single
team member that has the complete infrastructure
responsibility (at an implementation level) nor the skill
sets to deliver all of the AURIN needs. Rather, it is the

42

pooling of efforts and resources across the team that is
needed.

The actual core AURIN technical team comprises a
range of targeted roles including: Portal / User Interface
e-Enabler; Security e-Enabler; Data/Metadata e-Enabler;
Data architect; Platform infrastructure support; Statistical
Geospatial e-Enabler; Geospatial e-Enabler; Workflow e-
Enabler and a Middleware/business logic e-Enabler.

The full complement of staff on the core technical
team has been in place since April 2012. A senior project
manager responsible for the information infrastructure
design supervises the day-to-day activities of the core
AURIN technical team. The agile methodology that has
been adopted utilizes SCRUM-based (Schwaber 2009)
systems development, where the senior project manager
represents the ScrumMaster tasked with the day-to-day
efforts of the team. A key goal of a SCRUM-based
methodology is organized around the SCRUM-based
concept of sprints, which involve rapid prototyping to
complete the next iteration of the AURIN e-Infrastructure
and/or its components. The SCRUM product owner is the
AURIN Technical Architect and weekly meetings are
organized where results of the latest sprint are discussed
and/or demonstrated.

The physical co-location of the core AURIN e-
Infrastructure staff allows for immediate feedback and
discussions on software development issues that arise.
Even with this however and the associated tools that are
adopted (see below), there is a need to ensure that the
efforts of the team are properly coordinated and
synchronized. To support this process, the AURIN e-
Infrastructure team runs a daily stand-up session where
their daily plans and development issues are identified
and discussed. This daily process is augmented with a
white-board tracking of efforts and issues as shown in
Figure 2 where the horizontal rows represent the
individual team members and the vertical columns the
specific activities that have been identified for completion
as part of the current sprint. The left hand column
represents the starting point of a given activity through to
the right hand column, which indicates when a particular
activity has been successfully completed. As well as
providing an overview of the activities of the individual
team members, this approach allows to see where
bottlenecks and delays are arising for individuals and
across the team, with the added (and inadvertent!)
advantage of visibly incentivizing team members.

Figure 2: White-board based Work and Activity
Scheduling

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

This model of software development has major
advantages for rapid prototyping but does obviously not
cater for remote software engineers. To this end, the
project has organized a series of CodeSprints where the
distributed software teams working on lens specific
projects come together with the core technical team and,
through close coordination of the AURIN senior project
manager, work on joint development and integration
activities. Thus far three CodeSprints have taken place
with a fourth planned in November 2012.

The AURIN e-Infrastructure requires far more
interaction between the technical teams than physical
face-to-face meetings every quarter however. To this end,
the AURIN project has adopted a portfolio of distributed
software development and management systems.

4.2 AURIN Code Versioning Tools

For many distributed software development projects,
network-accessible code versioning systems have been
widely recognized as an essential component for the
implementation of distributed systems. A range of code
management systems currently exist including for
example: Code Versioning System (CVYS)
(http://sourceforge.net/apps/trac/sourceforge/wiki/CVS),
Mercurial (http://mercurial.selenic.com), Subversion
(http://en.wikipedia.org/wiki/Apache Subversion) and
Git (https://github.org). The AURIN project has adopted
Git for its code management and versioning system.

Git is the fastest growing source and revision
management system, originally developed for the
management of code commits by the open source
development community contributing to the development
of the Linux kernel. Git provides the ability to develop
code in a collaborative manner without the need for a
single centralized repository (but allowing the use of
one). As such, it is particularly appealing for use in
AURIN, where elements of the code may have to be
forked and shared with large numbers of external
providers for extensive periods of time, before being
tested, evaluated and subsequently committed (rolled in)
to the core platform.

GitHub (www.github.com) is a commercial code
repository based on Git. AURIN opted to host its code in
a private GitHub repository to reduce the load on the
internal system administrators and leverage access to the
wealth of functions provided. It also allows the checking
in of code from external parties without having to expose
the internal infrastructure at AURIN. At present AURIN
has paid for ten Github instances that are used extensively
across the project for the core e-Infrastructure
development and the associated subprojects.

One of the most important features of Git for AURIN
is its code branching and merging model. Instead of
cloning software into a separate directory, as is the case
with many code versioning systems, Git allows switching
between branches in a single working directory. Thus
instead of only having branches for major development
Git allows routine creation, merging and destroying of
multiple, ad hoc branches. Indeed each feature or bug can
have its own branch, merged in only when it is resolved.
This model allows the AURIN software developers to
experiment quickly and encourages a rapid development

cycle, where they can work in parallel without always
having immediate dependencies on each other.

4.3 AURIN Coordination, Bug Tracking and
Feedback Tools

AURIN uses a project management Web application
called Redmine (http://www.redmine.org/) for the
assignment and tracking of development tasks. This
environment provides an important capability for tracking
bugs, support and feature requests. These so-called
“issues” can be assigned to particular developers,
versions of the system, and internal deadlines, the
progress followed by other collaborators and managers,
and statistics about the progress can be collected. It also
provides an environment where collaborative
documentation is built and maintained in a wiki. It is
important to make this environment available as much as
possible for externally contracted teams who are
interacting with AURIN during the outsourced phases of
development — to this end, the first steps following the
inception of a new subproject are the activation of the
GitHub and Redmine accounts.

4.4 AURIN Software Documentation Tools

To improve collaboration and support the automated
documentation of AURIN software subsystems based
upon ReST-ful APIs, the AURIN project has adopted
Swagger (http://swagger.wordnik.com). Swagger is a
both source code-level a tool for documenting ReST-ful
APIs, and a web-based user interface to browse and test
thee APIs by sending API requests; indeed, Swagger
allows software engineers to test an API without having
to write a single line of code. As such Swagger provides a
key communications tool that supports collaborative
development of APIs. To achieve this, a first prototype
API is developed with Swagger - typically including
representative data. This allows the API's users to play
with the API, and the API's developers to gather users'
feedback and modify the API prototype accordingly.
Once the API prototype matures (is accepted), the full
API can be implemented. This is especially useful when
dealing with distributed software teams.

Swagger is available for multiple languages and
frameworks. Within AURIN it is used with the Node,js
and Spring frameworks. Whilst it works in language-
specific ways, the same annotation-driven mechanism is
used throughout. Swagger works by defining request
parameters, routing and descriptions as JSON objects
defined within the code itself, alongside the function
definition. In the case of Node.js this is highlighted below
(italics representing the Swagger annotations).

exports.putGraph = {
Hspec //.. {
"description" : "Adds a graph to database",
Npal " :
"/graph/datasets/{datasetid}/graphs/{graphid}",
"notes" : """
"summary" :
JSONGraph format”,
"method": "PUT",
"params":
[param.path("datasetid", "ID of dataset”, "string"),
param.path("graphid”,

"Inserts a graph in BPnet or

43

CRPIT Volume 140 - Parallel and Distributed Computing 2013

"ID of graph", "string"),
param.query("format”,
"Format of graph to be inserted (bpnet|
Jjsongraph)", "string")],
"responseClass" : "Response”,
"errorResponses" : [],
"nickname" : "putGraph"
3
"action": function (request, response) {
var dsid= request.params.datasetid;
var graphid= request.params.graphid;
var format= request.query.format;
Figure 3: Swagger Annotations for Bi-Partite /
JSON Graphs

The Swagger web-based user interface that allows
automated testing of such APIs is shown in Figure 4 with
the request URL, the body and response for testing a
Graph-oriented API.

/graph ShowrHide
m Igraph/datasets

Parameters
Parameter Vvalue

List Operations | Expand Operations | Raw

Retums al datasets ordered by name

Descrption
Request URL

https://dev-api.aurin.org.au/graph/datasets?api_key=special-key
Response Body

{
id": “6d90bf2eb39B3I5e9e8IIeccazeac1ons’,

eecazead3dsz”,

Response Code

200

Response Headers

12 14:21:38 GMT+1180 (EST)
i GET, POST, DELETE, PUT
n

Figure 4: AfJRIN Swagger-based ReST Testing

It is noted that Swagger is still evolving and does not
yet represent a completely mature ReST-based testing
and documentation framework. Thus not every feature is
used consistent across languages, e.g. full functional
support of JSON Schema is not yet supported.

4.5 AURIN Integrated Testing Tools

To support the development and build environment and
associated activities in software testing and integration,
the AURIN project has adopted the Jenkins software
environment (http://jenkins-ci.org/). Through Jenkins it is

possible to automatically highlight the status of overall
builds comprised of many independent software systems
including those from AURIN lens projects and open
source systems upon which these are often built as shown
in Figure 5.

ceeeelo e

©

DePEREPRRERRD

Lesend [F8SS forall [ERSS forfalures [RSS for st latest bulds

Figure 5: AURIN Jenkins-based Continuous
Integration

44

Specifically, the AURIN project has adopted Jenkins
to automate many of the typically manual processes
associated with continuous software testing and
integration. Advanced capabilities to support code
coverage and usage are supported in Jenkins. This allows
for streamlining of codes that are developed or
contributed to the AURIN environment. With Jenkins,
every time a new revision of the code is committed it
automatically downloads, builds and tests the code in a
clean environment. This ensures that any problems
introduced, e.g. due to eccentricities in an individual
developer’s personal working environment are identified
before the new code is circulated.

4.6 AURIN Common Build Environment Tools
To provide a common software build development, the
AURIN core technical team has adopted the Maven
(http://maven.apache.org) software build and
management system. Maven is an open source tool that
supports the building and management of Java-based
projects.

Maven and its project object model (POM) utilizes a
set of plugins that are shared by all AURIN projects. This
provides a uniform AURIN build environment for all
AURIN software developers that addresses many
common challenges facing distributed software systems
including support for tackling software dependencies,
configuration challenges and unit tests. The project also
includes core components in Maven. This provides an
easy way for Maven clients to update their installations so
that they can take advantage of any changes that been
made to Maven itself. This latter feature allows support
for installation of new or updated plugins from third
parties or Maven itself.

4.7 AURIN Deployment and Management
Tools

A key part of the AURIN development and management
environment is to provide integrated deployment and
configuration of phased implementations of systems. At
present two versions of the e-Infrastructure are supported:
production (accessible at https://porta.aurin.org.au) and
an on-going development version of the e-infrastructure
which is used for prototyping purposes and maturing the
software systems to production level. This development
version is available at http://portal-dev.aurin.org.au. It is
planned that a further staging environment will also be
rolled out in due course to help n the transition from
development to production versions. The production
version is deployed within the Australia Access
Federation whilst the development version is available
through the Australian test federation.

To support this process the AURIN project has
adopted the Chef configuration and management software
(http://www.opscode.com/chef). Chef provides a coherent
management approach for the specification and delivery
of deployment of e-Infrastructure components through
recipes and cookbooks. These allow specification and
bundling of the underlying software systems e.g. the OS
versions required, the prototyped versions of software
components and their dependencies and indeed the
database resources and how they should be deployed onto
particular virtual machines. A key advantage of Chef is

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

that it allows association of software bundles onto
resources (VMs) with roles assigned for future access,
usage and monitoring of these resources. Firewalls are
also used to sandbox systems to ensure that systems
developed in development and separated from
production. In AURIN a single dedicated software
engineer is responsible for the deployment and
configuration of systems.

5 AURIN Phased Implementations

The proof of the AURIN development methodology, as
with any other software engineering project can best be
assessed by the successful software systems that are
developed and ultimately used by the end users. The
project has had two major releases of the e-Infrastructure
with a third planned for mid-October 2012.

5.1 AURIN e-Infrastructure Mark-I

The first AURIN platform was largely a proof of concept
system to demonstrate the viability of the approach that
was to be taken. This system was described in (Sinnott
2011) and completed in a 3-month rapid prototyping
effort by a small subset of developers - since at this time
the full complement of the AURIN technical team was
not yet in place. This Mark-I prototype version of the e-
Infrastructure allowed access to a small subset of the data
providers with basic visualization and analytical tools.
One of the primary data resources in the Mark-I version
of the AURIN e-Infrastructure was from Landgate in
Western Australia. Work was also undertaken in this
release using streamed social media from Twitter. The
user interface and visualization/analytical capabilities for
this Mark-I version of the e-Infrastructure are shown in
Figure 6 where data from Landgate is being analyzed and
visualized.

Welcome - AURIN
LINSTANCE_0G9n&p.p_fecyc'- € | (Qr

) Id=regression WAR
Yahoo! Google Maps YouTube Wikipedia News 394)v Popular

Melboume Rents

]

Setings Ol s

Figure 6: AURIN e-Infrastructure Mark-I
(circa July 2011)

Despite its somewhat limited functionality, this initial
implementation was extremely informative and
influential to AURIN as a whole from a variety of
perspectives. Firstly it allowed establishing a grounding
and understanding of the data sets that would be dealt
with in AURIN, and the geospatial information systems
through which many of these data sets would be
delivered. Secondly and importantly this version of the e-
Infrastructure helped to bring an implementation-oriented

focus to the numerous technical and management boards
involved in overseeing the project. To that point, a huge
effort had been expended on discussions, documentation
and planning on what the system might be. This provided
a basis for customer engagement far beyond the more
abstract discussion that had hitherto been taking place.
Thirdly, this version of the system allowed assessment of
the integration of the AURIN portal (which at the time
was based upon the LifeRay portal framework) with the
Australian Access Federation (www.aaf.edu.au) - the
federated authentication system adopted by the project. In
a similar, vein this version of the e-Infrastructure enabled
exploration of a suitable workflow environments and
their prototyping — this was based upon the Object
Modeling System version 3 (OMSv3). Experiences in
developing and using OMSv3 in the AURIN context and
results of applying OMSv3 on Cloud based
infrastructures described in (Javadi 2012).

The majority of the software systems that formed the
basis for the Mark-I version of the AURIN e-
Infrastructure were largely discarded when worked
commenced on the Mark-II version. There were several
reasons for this, but the most important one was that the
initial work was primarily to understand and articulate the
problem through implementation, and to demonstrate that
the overall vision was realistic and achievable. In doing
this, the user interface had specifically developed/crafted
user interface components (portlets) targeted to individual
data sets and tools. It was rapidly recognized that this
model would not scale given the volume of data to be
made accessible. Similarly data and metadata
considerations both in terms of access, usage storage and
provenance were identified as crucial, but not supported
in Mark-I. Instead it was recognized that the whole
AURIN e-Infrastructure itself had to be data-driven
(Sinnott 2012). To this end, a major focus was focused on
the definition and realization of the architecture shown in
Figure 1.

5.2 AURIN e-Infrastructure Mark-II

Driven by user demand, the Mark-II e-Infrastructure
offered a variety of ways to geospatially drill into urban
and built environment data and hence target the data sets
of associated with particular regions (Figure 7).

T A &l
QP 7 s o avnargas (- come Q) 4B
EAURIN Australian Urban Research Infrastructure Network

Logged nas Rt St) Crane Baetep |) Reset:

4 atacat

| Local Government e v
Apne)
Aot ()
Bt (0
B (€)
()

O taet Q) Procss

Bawaw(S)
Baye (0

Viswalsations

O Ve Waet

D CoBy Sy Qoney

15510, 20201

Figure 7: AURIN Mark-II Geospatial Filtering
(May 2012)
This filtering of data is essential in the urban domain
given the proliferation of data and information available
from multiple organisations. This data selection can be

45

CRPIT Volume 140 - Parallel and Distributed Computing 2013

done graphically (using zoom features of the data visual
interface given as a map of Australia) or through use of
query interfaces that allow direct specification of the
region of interest, e.g. Australia/Victoria/Melbourne as
shown in Figure 7. A Google-like search interface was
also offered to select particular regions or data of interest,
e.g. search for data sets associated with “employment”.

To improve the overall performance of the user
experience in accessing and using data, the geometrical
boundaries of spatial regions, e.g. Census Districts,
Statistical Local Areas, Local Government Authorities,
are stored in topologically correct representations at
multiple resolution levels. In particular whilst the detailed
boundaries are always used for analytical purposes,
generalized boundaries are used for client-side display.
This radically increases the overall responsiveness of the
user interface and hence user experience. Details of how
this has been achieved are described in (Tomko 2012).

The Mark-II version of the AURIN e-Infrastructure
incorporated a range of services and tools developed
through the core technical team and through the
associated externally funded subprojects. Some of the
core subproject capabilities included in AURIN e-
Infrastructure Mark-II release was the data registration
service developed by the Centre for Spatial Data
Information and Land Administration (CSDILA). This
service provides an automated mechanism to harvest
metadata from OGC-compliant web feature services. The
service also allows for manual additions and refinements
of metadata from data providers.

Several lens specific data-oriented subprojects were
incorporated into the Mark-II release including some of
the data sets from the Population Health Information
Development Unit (PHIDU — www.publichealth.gov.au)
at the University of Adelaide. PHIDU has a rich source of
health and other aggregated data sets from across
Australia. Voting and a range of associated classification
data were included in this release from the University of
Queensland eResearch Group — drawing on work
previously undertaken by the ARC funded Research
Network in Spatially Integrated Social Science
(www.siss.edu.au/). Data sets from the Centre of Full
Employment and Equity (CofFEE -
http://el.newcastle.edu.au/coffee/) were also included in
this release. Some of the data providers and the associated
data sets along with their associated variables are shown
in Figure 8.

eno

from a Provider
With this shopping interface, as with the Mark-I AURIN
e-Infrastructure, data could be accessed from a range of
federated (distributed) data providers and brought into the
AURIN research space. Following the data shopping, i.e.

46

once data had been returned to the AURIN environment a
range of charting (Figure 9), mapping (Figure 10) and
basic analytical capabilities (Figure 11) were offered.

| EE—T =l
(DF = o aurinorgau & (8- cooa

DIDICE

B - Australian lIrhan Research Tnfrastriichure Network Loaged in as Richard Sinnott & Change BaseMap 5 Reset
FAU Gorizontal Bar chart

Gardonvale —jum 063

) process
 of Life Data
‘Suburb (2006 Cers... ®

11824
oet

— Chart

‘Oakleigh South 0
g 12187 1 Chart

Brighton East
Caulfield South nm

= = -

Figure 9: AURIN Mark-II Charting (May 2012)
showing the total population of Statistical Local Areas
in the Local Government Authority Glen Eira (from
Landgate and based on the 2006 Census)

eno —_—
| = s (el
(WP T avrinorgau (- coow

< @)@

§AURIN Australian Urban Research Infrastructure Network Logged in as Richard Simott) Change BaseMap | 1 Reset

< | Data cart

ion: Iga - Glen Ei +144.99701,

© Dataset) Process
Deakin Qualty of Life Data

Population by Suburb (2006 Cers... .

) © viz & widget
16 Horizontal Bar Chart

e 7,*”‘ ¢ Horizonal Bar Chart

| oo
[A

Figure 10: AURIN Mark-II Visualisation (May 2012)
showing a choropleth overlaying data from the
Australian Unity Quality of Life survey with specific
focus on population safety, i.e. how safe do you feel in
your suburb and population density for the Local
Government Authority of Glen Eira

eno AURN

< @)@

QT i e oo S

Linear Regression for persons_born_overseas vs aged_45_to_54

Process
Life Data

Jurb (2006 Cens... .

(I // B piot ’
Figure 11: AURIN Mark-II Analytics (May 2012)
showing the correlation (linear regression) between
people born overseas and the age group 45-54 for the
Local Government Authority of Glen Eira

5.3 AURIN e-Infrastructure Mark-III

The Mark-III AURIN e-Infrastructure is currently still
under development (with the next formal release
scheduled for mid-October 2012). This next release has
been increasingly extended based upon the agile
methodology that has been adopted. Included in the next
release is a major increase in the number of data
providers and data sets that are now provisioned. This
includes a vastly extended set of data from PHIDU (with
156 separate data sets now incorporated); a variety of
health survey data from VicHealth; data and services

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

from the Public Sector Mapping Agency (PSMA -
www.psma.com.au) including access to the Geocode
National Address File (GNAF) which allows to convert a
valid Australian address into geospatial coordinates
(latitude and longitude). A typical scenario illustrating
these advanced data sets is show in Figure 12.

106 AAURIN Portal
AN ol (2l

Q2@ s pora-devaunnorgaufasp/nder5p e)& coogte

DIEC

\ Australian Urban Research Infrastructure Network Portal

AN Loggedinas Richarhsinott) Crange Baselep | o Reset Logor
S

Selectio: ga - Melbourn () (2460) 149836, 37,8067 VA 9135 37.7791

frr—

1600

1400

g

g

U (]
u

g w ¥
< @ ¥
& 0lse

® w0 .{ .

W %

0
N

0 5000 000 1500 2000 25000

Y 2
e

total_population T sz

alversion 020 apha) Copyiht ALRIN 201

Figure 12: AURIN Mark-III and Enhanced User
Interface (October 2012) showing data related to
avoidable cardiovascular mortalities (PHIDU), those
who sleep <7 hours and have increased work time
pressure (VicHealth 2011 survey), population statistics
(total population and those 65-74 years of age
Landgate) for Melbourne

The user interface to the Mark-III version of the AURIN
e-Infrastructure is also evolving. For example, advanced
brushing techniques now allow data from map-based
regions to be highlighted (and vice versa) as shown in
Figure 13.

ano AURIN Portal
jo AR Portal el

DloLD

s Iporal-dev auog g e sp ¢) oo

ban Research Portal

Logged nasRchardsSmott) Crange Baselp 2 et Logouk

portalveson 020 ata).

X Find: (Q gt) [Match ase

Figure 13: AURIN Mark-III and use of Brushing
Techniques (October 2012) showing responses to
survey questions on sleeping < 7 Hours (VicHealth
2011 survey) for Melbourne. PortPhilip is selected on

the map and the associated data is highlighted.

Many of the AURIN subprojects for the first three lenses
are now deep into their development activities and using
the core collaboration and software management tools
identified in section III. These include a range of
advanced analytical capabilities from the CoFFEE group
at the University of Newecastle; advanced walkability
tools from the McCaughey Centre; health-based

demonstrators with VicHealth and Western Health (in
Perth) amongst many others.

A major enhancement in Mark-IIl of the e-
Infrastructure is the enhanced utilization of workflow
tools (based upon OMSv3). These workflow tools now
allow definition of rich workflows coupling data and
analytical services reflecting and capturing scientific
processes. These workflows have been initially focused
upon the walkability tools and use of PSMA data for
geocoding addresses, and associated simulation and
analytical services (implemented as part of the
walkability services).

Many of the lessons learnt within the AURIN core
technical team in development of the architecture
identified in Figure 1, are now transferring to the
collaborating partners. However this is still a non-trivial
problem. The systems that are being developed are by
their very nature, complex software engineering tasks for
many urban research-oriented groups. To address this, the
project has attempted to provide a core team technical
buddy to the remote software engineering efforts. Given
the number of projects expected to be running
concurrently in 2013, this model will be stress tested with
single technical staff members having to work across a
multitude of domain-specific lens projects. Furthermore,
to ensure that the expertise of any given core team
technical developer is shared, the Project
Manager/ScrumMaster has deliberately paired team
members to work on each others individual software
activities. This provides redundancy to the team and a
shared understanding of the overall development
activities.

In moving from the Mark-II to the Mark-III e-
Infrastructure release, the access to and use of the AURIN
e-Infrastructure has remained largely consistent, i.c.
access is through the Australian Access Feature and users
have to shop for data once a particular geospatial region
has been selected. This consistency is an important
feature to maintain to ensure that returning end users can
benefit from improvements in the e-Infrastructure
capabilities and not have to learn new user interfaces or
techniques to access and use the system more generally.

6 CONCLUSIONS

One of the major challenges of distributed systems
development that is often overlooked is not the
distributed systems and hardware/software resources
themselves, but the distributed teams that are often
involved in these development activities. Tools to
optimize the way in which these teams can coordinate
their activities are essential yet are surprisingly not well
recognized and adopted. This is in particular true as the
types of human distributed collaborations vary, as much
as software distributed collaborations. From teams where
the members are (spatially) distributed, but belong to the
same project and their resources, skills, and tools are
matched, through teams that are contracted to deliver a
specific type of software component based on well
defined acceptance criteria, to merely federated
contributors, i.e. software development resources that are
leveraged because of their availability without the
possibility to influence their direction or adherence to
common project management and coding standards. This

47

CRPIT Volume 140 - Parallel and Distributed Computing 2013

last case represents many voluntary contributors from the
open source development community, to large data
providers that provide data resources to the general
public, where AURIN cannot mandate the APIs and
protocols that are used.

The AURIN work is far from complete — as noted the
project runs to mid-2015. However the foundations for
distributed collaborations and the processes that have
been adopted from the project outset are now bearing
fruit. Without these software development and
coordination foundations, major risks would arise that
could threaten the success of the project as a whole. The
requirement to adopt key tools by the internal and
external groups has meant that the overall software
integration, management and coordination effort has been
greatly simplified. Thus it is directly possible to check
when a delivered piece of software meets the required
integration testing for inclusion into the e-Infrastructure.
As noted, it should be emphasized that these tools do not
remove the overall challenges in developing and
delivering distributed systems involving distributed
teams, rather they are a mechanism to help to manage
these challenges.

The AURIN project is running contemporaneously
with many major e-Infrastructure investment activities
that are currently taking place across Australia. Most
notably are the $50m Research Data Storage
Infrastructure (RDSI — www.rdsi.uq.edu.au), which has a
specific focus on supporting storage of nationally
significant research data sets, and the $47m National
eResearch Collaboration Tools and Resources (NeCTAR
— www.nectar.org.au) project, which has a specific focus
on eResearch tools, collaborative research environments
and Cloud infrastructures. The AURIN project has been
engaging directly with these projects and related projects,
e.g. the Australian Access Federation, in delivery of
much of its underpinning infrastructure. For example, the
AURIN portal and many of the associated services have
been made available on virtual machines made available
through NeCTAR. However given the ramping up of
these projects, early issues with these projects has already
arisen. To mitigate these risks and avoid the total reliance
on VMs from NeCTAR or storage from RDSI, the
AURIN project has purchased its own hardware systems,
which are now used to augment the offerings of NeCTAR
and RDSIL.

The AURIN e-Infrastructure is very much a
supporting activity. That is, the work in the e-
Infrastructure development is not targeted at delivering
novel IT solutions per se nor exploring research
challenges in e-Infrastructure development, but on
supporting the urban and built environment research
community in their research needs. The AURIN research
community is extremely diverse (with over 500 registered
individuals and organisations) crossing a multitude of
research disciplines. Whilst their feedback (positive
and/or negative) will ultimately shape the AURIN e-
Infrastructure, it is hoped that the underlying agile
software engineering and tools described here will persist
throughout the AURIN project lifetime and allow rapid
evolution of systems in a tool supported manner.

48

6.1 Acknowledgments

The authors would like to thank the AURIN groups and
committees that are directly shaping these efforts. The
AURIN project is funded through the Australian
Education Investment Fund SuperScience initiative. We
gratefully acknowledge their support. In addition to the
co-authors, the AURIN team comprises Ivo Widjaja
(Portal/User Interface); Gerson Galang (Data e-Enabler);
Jos Koetsier (Data/Metadata e-Enabler); William
Voorsluys (Workflow e-Enabler); Damien Mannix
(Infrastructure Support); Philip Greenwood (Statistical
Geospatial Developer); Marcos Nino-Ruiz (Geospatial e-
Enabler) and Sulman Sarwar (Middleware/Business
Logic).

7 References

Stojanovi¢, Z., Dahanayake, A., Service-oriented
software system engineering: challenges and practices,
Idea Group Publishing, 2005.

Boehm, B.W., A4 spiral model of software development
and enhancement, Computer, vol. 21, Issue 5, May
1988.

Filman, R., Elrad, T., Clarke, S., Aspect-oriented software
development, Addison-Wesley Professional, 2004.

Booch, G., Object-oriented Development, IEEE
Transactions on Software Engineering, vol. 12, Issue:
2, Feb. 1986.

Martin, R.C., Agile Software Development: Principles,
Patterns, and Practices, Prentice Hall 2003.

Sinnott, R.O., Galang, G., Tomko, M., Stimson, R.,
Towards an e-Infrastructure for Urban Research
Across Australia, 1EEE e-Science Conference,
Stockholm, Sweden, December 2011.

Schwaber, K., Agile Project Management with Scrum,
Microsoft Publishing, 2009.

Javadi, B., Tomko, M., Sinnott, R.O., Decentralized
Orchestration of Data-centric Workflows Using the
Object Modeling System, 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2012), Ottawa, Canada, May
2012.

Sinnott, R.O., Bayliss, C., Galang, G., Greenwood, P.,
Koetsier, G., Mannix, D., Morandini, L., Nino-Ruiz,
M., Pettit, C., Tomko, M., Sarwar, M., Stimson, R.,
Voorsluys, W., Widjaja, 1., 4 Data-driven Urban
Research Environment for Australia, IEEE e-Science
Conference, Chicago USA, October 2012.

Tomko, M., Sinnott, R.O., Bayliss, C., Galang, G.,
Greenwood, P., Koetsier, G., Mannix, D., Morandini,
L., Nino-Ruiz, M., Pettit, C., Sarwar, M., Stimson, R.,
Voorsluys, W., Widjaja, 1., The Design of a Flexible
Web-based Analytical Platform for Urban Research —
Systems Paper, ACM International Conference on
Advances in Geographic Information Systems (ACM
SIGSPATIAL GIS 2012), Redondo Beach, USA,
November 2012.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

A Web Portal for Management of Aneka-Based MultiCloud
Environments

Mohammed Alrokayan and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computing and Information Systems,
The University of Melbourne, Parkville, Victoria 3010, Australia

Emails: aalrokayan.com, rbuyya@unimelb.edu.au

Abstract

Many Cloud providers offer services with different sets
of configurations and settings. This makes it difficult
for their clients to seamlessly integrate various ser-
vices from different Cloud providers. To simplify, we
developed an extendible Cloud Web Portal (CWP), a
comprehensive open source Cloud management portal
that aims to deliver a foundation for researchers and
developers to prove a research concept, test a code or
deliver a product in a fast and easy to use graphical
user interface. Also, it aims to seamlessly integrate
different Cloud services by providing a flexible archi-
tecture and design system. CWP is based on Aneka,
which allows developers to use a set of .Net-based
APIs for monitoring, billing/accounting, scheduling,
and provisioning. Aneka provision services from pri-
vate, public or hybrid Clouds. Our evaluation results
show that Aneka scheduling algorithm performs ef-
ficiently for executing tasks in distributed machines.

Keywords: Cloud Management, Scheduling, Provi-
sioning, MultiCloud, Portal, Cloud Services.

1 Introduction

Contemporary Cloud computing solutions, both
research projects and commercial products, have
mainly focused on Infrastructure as a Service (TaaS)
model due to the uncertainty in the other models
like Platform as a Service (PaaS). This uncertainty
is caused by the lack of proper standards in the TaaS
level especially in terms of APIs for federated Clouds.
This drives the users to develop their own platforms
and portals from scratch trying to use multiple TaaS
providers’ APIs.

As a result, users need an open portal that is flexi-
ble to adapt this uncertainty and regular variations in
Cloud infrastructures. Our Cloud Web Portal (CWP)
aims to provide an open source portal for easy adjust-
ment to adapt the frequent changes in Cloud comput-
ing technology. CWP has been developed using Mi-
crosoft ASPNET MVC 4! with Razor syntax (Gal-
loway et al. 2011). It has the capability to build, test,
deploy, and scale applications easily and rapidly.

There are three main common types of Cloud
PaaS: Firstly, PaaS for application deployment, where

Copyright (©2013, Australian Computer Society, Inc. This pa-
per appeared at the 11th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2013), Adelaide, South
Australia, January-February 2013. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 140,
Bahman Javadi and Saurabh Kumar Garg, Ed. Reproduction
for academic, not-for-profit purposes permitted provided this

tex} is included.
ASP.NET MVC 3: http://www.asp.net/mvc/mvc3

a product is deployed in distributed resources over the
Cloud, for example: web applications, which is the
most common type of application to be deployed on
the Cloud. Secondly, PaaS for batch processing and
scalable grid computing over the Cloud, where a batch
of files is processed in distributed machines to ac-
celerate the application performance. Thirdly, PaaS
for multi and hybrid Cloud management where users
manage multiple resources from different providers
through one interface. CWP is not for application
deployment as in type one of Cloud PaaS. However,
it supports the other two types. It supports the sec-
ond type of Cloud PaaS by using the Aneka frame-
work 2 for three different kind of programming mod-
els: Thread, Task and MapReduce. Also, it supports
the third type of Cloud PaaS by using the provision-
ing library of Aneka which support three different
providers: Amazon AWS, Microsoft Windows Azure
and GoGrid (Wei et al. 2011).

CWP provides several services and components for
developers, researchers and deployment teams to in-
tegrate their work through a graphical web portal.
Those different services and components will be dis-
cussed in Section 4. Our evaluation method, encom-
passing cases with up to 80 experiments using three
different parameters, shows that the Aneka schedul-
ing algorithm perform efficiently for batch processing
in distributed machines, especially when the number
of workers is increased. Surprisingly, with all the net-
work latency and overhead to send and receive data,
the 49 image rendering tasks does not have significant
effect on Aneka performance as shown in Section 8.

The key contributions of our paper are: 1) an
extensible architecture for Web portal for cloud com-
puting environments, 2) a methodology for creation of
adapters or widgets for monitoring or interacting with
different cloud platforms, 3) a prototype software sys-
tem demonstrating these capabilities and their map-
ping to the Aneka cloud application platform, and 4)
a detailed evaluation and demonstration of our por-
tal functionalities by deploying in a hybrid cloud en-
vironment by utilizing Melbourne private cloud and
Amazon EC2 resources.

The rest of the paper is organized as follows: In
next section, we present various open source cloud
projects and how they are compared to CWP. Then
in Section 3 we discuss the motivations behind CWP.
Section 4 describes the different components and ser-
vices of CWP and how they are integrated with
Aneka. Then we discuss the CWP graphical user in-
terface usability for the end-users and the flexibility
of the underlying code for developers in Section 5.
An example of a page request has been illustrated in
a sequence diagram in Section 6. Then in Section 7,
based on the NIST definition of Cloud Deployment

2Manjrasoft Pty Ltd http://manjrasoft.com

49

CRPIT Volume 140 - Parallel and Distributed Computing 2013

Models, we summarize how CWP and Aneka sup-
port all levels of deployment models. In Section 8, an
evaluation of CWP shows the Aneka scheduling per-
formance using several parameters and statistics. We
close in Section 9 with conclusions and future work.

2 Related Works

Cloud computing has been driven mainly by the in-
dustry; as a result the most common and useful ser-
vices can be found there. This section is a result of a
study researching seven Cloud computing projects. It
shows two main features: the service and deployment
models. A summary of the related works is shown in
Table 1 along with Cloud Web Portal for comparison.
In our research, we focus on the deployment model
which will be explained in Section 7. The following
is a summary of the seven projects:

CloudFoundry?

It is a portal to deploy applications in distributed ma-
chines over a Cloud. It supports limited number of
public Cloud providers. Also, it supports OpenStack*
private Clouds. A commercial public Cloud version
of CloudFoundry project by VM Ware can be found at
CloudFoundry.com®, which supports only one public
Cloud provider even though the open source version
of the project supports Multi-Public Cloud. Cloud-
Foundry is for application deployment, not for Mul-
tiCloud management like Delta Cloud project.

Delta Cloud® and jCloud”

These two projects are different than the others, they
are libraries to manage Multi-Public Cloud providers
and manage hybrid infrastructure services using one
API instead of dealing with multiple APIs for differ-
ent providers. Delta Cloud is written in Ruby and
it supports wide range of private Cloud projects and
public Cloud providers, which allows users to man-
age several instances through one REST-based API
for simple any-platform access. jCloud is almost the
same as Delta Cloud except than it is written in Java.

3 Motivations

Not all Cloud platforms and portals fall into one
category, CloudFoundry, Microsoft Windows Azure®,
CloudBees?, and Google App Engine'®, for exam-
ple, are platforms for application deployment and
they vary according to which programming language
the user want to deploy on the Cloud. Other plat-
forms, like RightScale'!, is for Multi-Public Cloud
management where multiple VM instances from mul-
tiple providers and monitoring can be provisioned via
one management console.

Cloud Web Portal (CWP) is different from the oth-
ers, on top of Multi-Public Cloud management, it al-
lows users to run batch processing jobs over the Cloud
in parallel and distributed manner leveraging Aneka
framework (Vecchiola et al. 2012). Aneka supports

3Cloud Foundry Open Source: http://cloudfoundry.org

4 Apache OpenStack: http://www.openstack.org

5Cloud Foundry: http://cloudfoundry.com

6 Apache Deltacloud API: http://deltacloud.apache.org

" Apache jclouds: http://www.jclouds.org

8Microsoft Windows Azure: http://www.windowsazure.com
9CloudBees Java PaaS: http://www.cloudbees.com
19Google App Engine: https://cloud.google.com/products

1 RightScale Cloud Management: http://www.rightscale.com

50

three different programming models: Task, Thread
and MapReduce. CWP provides a flexible user in-
terface for Cloud administrators, developers and re-
searchers to manage multiple nodes in a Cloud. Also,
it aims to give non-technical users an easy to use fully
functional dashboard to view a summary of the cur-
rent system status, and allow them to apply changes
to the Cloud system according to their granted per-
missions. CWP allows the Cloud developers to add
any feature to the portal or develop an application
by implementing what we call "widgets” (which is
Detailed in Section 5) and add it to the portal to be
used instantly.

4 CWP Architecture and Services

CWP has been designed and developed to provide
developers with an easy to understand code struc-
ture. Also, it has a flexible architecture for any future
changes or adjustment to the portal. CWP gives por-
tal users a Multi-Public Cloud support to provision
public VMs from multiple different providers. Also,
it has the capability to execute batch processing jobs
over the Cloud according to the scheduling policy that
the user chooses using Aneka APIs.

The CWP architecture in Figure 1 shows the dif-
ferent CWP services that users and developers can
use and integrate. Aneka provides the main services
for CWP such as monitoring, SLA-Resource man-
agement and resource provisioning whether those re-
sources are local desktop machines, private Cloud,
public Cloud or hybrid Cloud. CWP graphical user
interface and its usability is described in the next sec-
tion.

4.1 Provisioning

CWP provisions resources from all different deploy-
ment models using Aneka (?). Aneka uses differ-
ent scheduling algorithms, for example, the deadline
scheduling algorithm (Vecchiola et al. 2012) which al-
lows Aneka to provision to public Clouds dynamically
when the local desktop grid is not enough to execute
the job within its given deadline. Another example of
an algorithm is the budget-based algorithm that aims
to limit the resources that are provisioned and chooses
a set of resources that can finish the job within the
specific budget.

4.2 Monitoring

Aneka monitors the running nodes through a
heartbeat-based approach that performs periodic
checks on the availability of the node. If one of the
worker nodes fails executing a task, Aneka migrates
that task to another node to be executed. If a master
node fails, a discovery system looks for another mas-
ter within the defined Cloud domain to take over and
continue scheduling the tasks starting from where the
previous master node stopped.

Service Measurements

CWP measures the services from different Cloud
providers. CWP suggests the best service(s) to provi-
sion based on the users’ QoS, budget, and monitored
data. The SMICloud (Garg et al. 2011) algorithm
has been used for multi-criteria selection of differ-
ent Cloud services but has not been integrated with
Aneka yet.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Table 1: Related Works Projects

| Project || Service Model | Deployment Model | Language | Licence |

CloudFoundry Portal for application de- | Private/Multi-Public Java Apache
ployment Cloud management

Delta Cloud Ruby Library for Multi- | Multi-Public Cloud Ruby Apache
Public Cloud support

jCloud Java Library for Multi- | Multi-Public Cloud Java Apache
Public Cloud support

Cloud Web Por- || Cloud portal for Multi- | Private/Multi-Public .Net Apache

tal Public Cloud management | Cloud/Hybride-Cloud
and batch processing

SLA-Based Resource Allocation and Provi-
sioning

Aneka can allocate resources based on the users’ QoS.
Unfortunately, due to the current limitations, almost
all public Cloud service providers provide a static
SLA, mainly for availability, that can not be nego-
tiated. However, an Aneka prototype performance
results show the feasibility and effectiveness of SLA-
based resource provisioning in Clouds (Buyya et al.
2011).

4.3 Scheduling

Aneka support three different programming models:
Task, Thread, and MapReduce associated with differ-
ent scheduling algorithms based on time (Vecchiola
et al. 2012) and budget. A user or a developer can
implement or execute applications mixing any of the
programming models with any of the scheduling algo-
rithms. This kind of scheduling is important, for ex-
ample, for scientist to execute batch processing type
of applications and for graphical designers to render
images or videos in a shorter time.

4.4 Billing/Accounting

Aneka is Market-oriented system, which can be used
by a Cloud broker. Aneka has a fully functional
billing and accounting system mainly for desktop
grids. There are two different models: Pay-Per-Task
or Pay-Per-Resource. The first one is to set a price
for a task on each node to charge the users or the
brokers depending on how many tasks they have ex-
ecuted. The second model is to set a price for the
hourly usage on a node regardless on how many tasks
the user will execute.

5 CWP Interface and Component Usability

CWP helps developers to create Cloud applications
with decoupled components (input logic, GUI logic,
and business logic). The loose coupling among the
three main components of CWP provides the ability
for parallel development, flexibility in changes and
fast debugging. CWP infrastructure has been de-
signed and implemented not just for the developers
and researchers but also for any non-expert users to
use the portal easily. Also, it brings flexibility in de-
velopment and usability for the end-users to use its
graphical user interface especially the concept of wid-
gets and dashboard. This flexibility and usability in
design allows the Cloud developers to edit any exist-
ing feature, widget or application and add almost any
desired one easily.

The error messages are shown on the top right
corner of the portal, which we call Issues Centre. It

Widget Widget

Provisioning
Widget

N
Monitoring Scheduling

Customized
Widget

Cloud Web Portal User Interface

SLA-Based Resource Public :
Monitoring Allocation and Multi-Cloud
Service Cloud s
Provisioning 3 Provisioning
Service Component
Aneka Measures P

Ay Ay MSEmvg S
il Wl & & & &
— = N N N

- .om — — — —
Desktop Grid Public Cloud

Figure 1: CWP Architecture

gives the portal users a summary and a quick overview
of what are the current errors and warnings. As soon
as the user clicks on any of the errors or warnings it
shows a dialog to solve the problem easily. In addition
to the Issues Centre, CWP has the Activity Centre
that shows to users a summary and a quick overview
on the current running tasks. Next we discuss further
the Widgets, Dashboard, Issues Centre and Activity
Centre.

5.1 Widgets and Dashboard

Widgets give the developers a quicker method to de-
velop Cloud applications leveraging all the compo-
nents that have been mentioned in Section 4. The
concept of widgets gives the users the flexibility to
adjust the graphical user interface and to modify the
business logic easily. Each widget is designed to be
wrapped-up with <article> and <section> HTML
tags; those wrapped-up tags specify the widgets’ con-
figurations, such as the width. A widget creates a
box of information or form depending on the devel-
oper design. The width of a widget is between 1 and
12, so 12 is the full width of the browser window, see
Figure 2 for example.

The HTML code in Figure 2 displays two wid-
gets, each one fills half the width of the user’s browser
window (class="grid_6”). The first widget that will
be shown is the _Clouds controller and ”Details” ac
tion to shows details for a specific Cloud as shown
in Figure 4 (we are also passing the Cloud id id =
@Model.Cloudld). The code of this widget can be
found in the file ”Controllers_CloudsController.cs”

51

CRPIT Volume 140 - Parallel and Distributed Computing 2013
<article class="container_12">
<section class="grid_6">

<div class="block-border">
@Html.Action("Details", "_Clouds",
new { id = @Model.CloudId })
</div>
</section>

<section class="grid_6">

<div class="block-border">
O@Html.Action("CPU_Utilization_Range",
"_Charts",
new { id = @Model.CloudId })
</div>
</section>
</article>

Figure 2: An example of an HTML code to display
two widgets

<div class="block-content">
<h1>New CWP Widget Title</h1>
<div class="infos">
//Any HTML or ASP.Net/RAZOR code
</div>
</div>

Figure 3: An example of a widget code

in function ”Details”, which returns a View object.
The second widget is almost the same as the first
one, it calls the "CPU_Utilization_Range” controller
and 7_Charts” action to draw a CPU utilization chart
for a specific Cloud as shown in Figure 5. This shows
how easy it is to customize and edit any widget in
CWP. A new widget can be added by creating a new
HTML file and following a specific format to match
the CSS of CWP, for example, an HTML file content
is shown in Figure 3

5.2 Issue and Activity Center

The issues and activity centers were designed to mon-
itor the Cloud resources and to keep checking the sta-
tus of Aneka workers and masters. Also, it shows the
ongoing tasks for the provisioned machines, masters
and/or workers.

Issue Center

The issues centre, as shown in Figure 6, checks the
status of the CWP resources, whether they are active
or failed last execution. Also, it displays an error or
a warning message according to how critical the issue
is. Issue center gives the users the ability to fix any
issue easily by clicking on any of the listed issues to
popup a dialog box to solve it.

Activity Center

The activity centre, as shown in Figure 7, checks if
there is any tasks in progress. Each one of those tasks
is clickable to open a popup dialog box to show the
users more information about the selected task.

6 CWP Sequence Diagram

CWP sequence diagram shows how its components
operate with each other and in what order. The se-
quence diagram in Figure 8 was simplified to show de-
tails of only one widget (-Clouds\Details). The rest
of the widgets follow almost the same approach.

52

CPU Utilization
(1)

LIVE CPU Utilization

CPU Utilization (%)

07:5236 07:52:38 0752140 075242 07:5244 075246 075248 075250 075252 075254

| - Cloud UniMelb Live CPUs Utilization
B — Wigheharts com

i i

Figure 5: Live CPU utilization widget

CREATE NEW WORKER

D CREATE NEW CLOUD USER

Logged as: admin | [N “] 3 [P L OGOUT
SHOW MACHINE DETAILS =
.(‘_ ¥ InvalidServicePort: UniMelb Manjra Server

ﬁf .(‘_ Y ServiceAccessDenied: UniMelb Lab PC10 =
‘ @
[t

“ NetworkNotReachable: UniMelb Lab PC11

.(‘_ “ MetworkNotReachable: UniMelb Lab PC12
.‘:l & Badcredentials: UniMelb Lab PC13

.(‘_ % NetworkNotReachable: MS Azure for the Uni |

Figure 6: Different issues have been addressed by
CWP Issue Center

CREATE NEW WORKER

AN 3

ﬂv Starting Daemon: UniMelb Manjra Server
IF: 192.| SHOW MACHINE DETAILS

CREATE NEW CLOUD USER

Logoed 3s; admin Lo
ﬂv Adding Worker: UniMelb Lab PC12

ﬂv Stopping Daemon: localhost L]

Go to activities center »

Figure 7: Activity Center shows different stages of
ongoing tasks

The sequence diagram in this section
is an example of a request to this page:
”\ CloudManagement\ CloudDetails\1”, where

the web server calls ” CloudDetails” action in ” Cloud-
Management” controller passing the Cloud id ”1”.
The controller requests a Cloud object from the
Entity Framework (EF) to send it to the CWP view:
” CloudManagement\ CloudDetails”. This view calls
three widgets as shown in Figure 8. The first widget
is: 7_Clouds\Details\1”, which shows the master and
a list of workers along with some information about
the selected Cloud, like running services. The widget
sends several requests to the Entity Framework
to get such information. Then the widget returns

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

"Hyper Cloud EC2 and Local - Test Phase Cloud Workers I # ADD NEW WORKER

&) REFREASH MASTER [+]
I

) REFREASH ALL WORKERS

Lab PC10

Machine: MS Azure Machine: MS Azure

% Lab12 PC1 @ on EC2-W % on Azure-W % OpenStack #1 @ OpenStack #2
Master Port: 9050 Port: 9050 Port: 9050 Paort: 9050

Port: 9058 Machine: EC2 Machine: MS Azure Machine: MS Azure Machine: MS Azure
Machine: UniMelb Server for the Uni for the Uni for the Uni for the Uni

OpenStack #3 OpenStack #4 OpenStack #5
Q PaEt: 9050 Q Po?‘t: 9050 % PoEl‘t: 9050
Machine: MS Azure

OpenStack #6 OpenStack #7
% Port: 9050 Q Port: 9050
Machine: MS Azure Machine: MS Azure

Show_
Connection

Show Security
Shared Key

10
Workers

Lab12 PC1
Master

5 9058
Services

for the Uni for the Uni for the Uni for the Uni for the Uni
OpenStack #8
Port: 9050
Machine: MS Azure
for the Uni
"Hyper Cloud EC2 and Local - Test Phase Cloud Details
DB
."lf"1 nnection SecuritySharedKey orker | Masterstatus
- | e —

Creating Master
Container

String

1 Edit this cloud and its master ﬁ Create New Worker For This Cloud W Create New Service User For This Cloud ﬁCreate New Cloud User For This Cloud Ti

| start Container || Stop Container || Restart Container | Install Container | Uninstall Container || | € Remove this doud |

Figure 4: Cloud Details widget shows 10 workers and one master in a Cloud

HTML content to the view. The view repeats the
same approach to get the HTML content from all the
widgets. Finally, after the view wraps all the HTML
contents, it sends the completed HTML page to the
user.

Components in Figure 8 are decoupled to be re-
placed or extended. This gives the portal users and
developers a flexibility to build adapters to suit their
work or research.

7 Deployment Models

NIST defines four different Cloud deployment mod-
els (?7), which CWP supports via Aneka along with
the Desktop Grid model.

7.1 Desktop Grid

Aneka utilizes the unused computational power of
desktop Personal Computers (PCs) connected on lo-
cal area networks (LAN), virtual LAN, or over the
Cloud. The main objective of a desktop grid is to ac-
celerate application execution, especially distributed-
aware applications that split a job into tasks. Aneka
provides several .Net libraries for developers to de-
velop this type of applications to be distributed
among Aneka workers. Desktop grid allows organi-
zations to utilize unused PCs resources without af-
fecting the productivity of PC users.

7.2 Public Cloud

This is the most common model of the Cloud which
allows several users to share the same infrastructure
to reduce the cost and utilize the shared resources.
The main features of the public Cloud are the resource
availability, elasticity and cost efficiently. NIST de-
fines public Cloud as "The Cloud infrastructure is
provisioned for open use by the general public” (?).
Aneka provisions public Cloud resources from Ama-
zon EC2, Microsoft Windows Azure and GoGrid (Wei
et al. 2011) to execute batch processing among them.

Multi-Public Cloud

Research on MultiCloud (Xiong et al. 2011), Inter-
Cloud and Cloud Federation (Celesti et al. 2010) have
emerged questioning the openness of the Cloud and
discussing avoiding vendor lock-in. Also, deploying
application on MultiCloud reduces the chance of out-
age by leveraging multiple running application servers
on different providers, and switching to the most ef-
ficient one in case of any failure. In web applica-
tions, for example, MultiCloud application servers al-
low the system to redirect the users requests to where
they can get the best experience by shortening the re-
sponse time and increasing the availability'?. CWP
uses Aneka to provision infrastructure Multi-Public
Cloud resources from any of Amazon EC2, Microsoft
Windows Azure and/or GoGrid (Wei et al. 2011).
Those resources can be managed in a single resource
pool or multiple resource pools.

12Cedexis: http://www.cedexis.com/country-reports/

53

CRPIT Volume 140 - Parallel and Distributed Computing 2013

Web Pages
CwpP Widget Entity
Controllers (@ka CWP Controllers Widget Views Framework
Views)
Call "CloudDetails" action T
CWP user. - "
in"Ce o o' ¢ | db.Clouds Find(1) | I
| € €
e — —— — — 4—ACloud" Object from the database | _ _ _ _ _ _ _ _ _ i____
Sending the "Cloud"” object to -J— | | I
Views\Cloud loudDetails.csht Call "Details" action — | |
in "Controllers_CloudsController.cs;, db.Clouds Find(1) l
lou AN
le— -A"Cloud" Object from the database __ + _— ‘D
db.Machines ToList() A

| .

| — Widget HTML content __ _|

Call "List" action

4 List of "Machine" Objects from the da\abase,L —_——— —

ending the "Cloud” and "Machine" objects to

l¢— — — Widget HTML content __ _

Figure 8: CWP Sequence Diagram Requests Page: 7\ CloudManagement\CloudDetails\1”

7.3 Private Cloud

Many open source projects (Cloud Stack'?, Delta-
cloud, Eucalyptus (Nurmi et al. 2009), Open Neb-
ula'?, Open Stack, and Cloud Foundry) emerged giv-
ing organizations the opportunities to host a private
Cloud. It provides more control on the data and
increases security. NIST defines private Cloud as:
”"The Cloud infrastructure is provisioned for exclu-
sive use by a single organization comprising multiple
consumers (e.g., business units).” (?). Almost any
private Cloud project can be public when hosted and
exposed to the general public as a service. Manjrasoft
Aneka has an ongoing project to support automated
provisioning for OpenStack private Cloud.

Outsourced Private Cloud

Private Cloud usually refers to the on-premise pri-
vate Cloud where an organization hosts the head node
locally and the reset of the resources on the public
Cloud. However, some providers offer private Cloud
service that can be almost 100% outsourced, which
is basically a public Cloud service that has been ad-
justed to isolate the infrastructure of the service to
be dedicated to single organization. This model of-
fers the security strength of the private Cloud and the
availability, elasticity and cost efficient of the public
Cloud.

7.4 Hybrid Cloud

NIST defines hybrid Cloud as: ”The [hybrid] Cloud
infrastructure is a composition of two or more distinct
Cloud infrastructures (private, community, or public)
that remain unique entities, but are bound together
by standardized or proprietary technology that en-
ables data and application portability (e.g., Cloud
bursting for load balancing between Clouds)” (7).
Aneka has the ability to provision resources in hybrid
Cloud (Vecchiola et al. 2012) where multiple tasks are

13Cloud Stack: http://cloudstack.org/
110pen Nebula: http://opennebula.org

54

distributed between local desktop grid PCs and also
Multi-Public Cloud.

8 Performance Evaluation

We evaluate Aneka performance, and the efficiency of
its scheduling algorithm. Aneka schedules jobs that
consist of groups of tasks among workers via a master
node.

Seven small size Amazon EC2 instances were used,
one master and six workers. All the machines have the
same specification. Our evaluation method encom-
passes cases with up to 80 experiments using three
different parameters: number of workers, program-
ming models, and number of tasks. The parameter of
interest is the time in seconds that Aneka takes to fin-
ish executing a job. Four different numbers of work-
ers have been used: one (representing the sequential
execution), two, four and six workers. Two program-
ming models were used: Thread, using the Mandel-
brot application, and Task using a distributed version
of POV-Ray application. Both applications, Mandel-
brot and POV-Ray, use Aneka APIs for scheduling.
Two number of tasks have been used: 25 tasks (which
is rendering an image with 5 columns and 5 rows) and
49 (which is 7x7 image rendering).

Comparing the sequential execution of a job (num-
ber of workers = 1) with the parallel execution (num-
ber of workers = 2, 3, and 6), Tukey simultaneous
tests shows P-Values close to zero, which means sta-
tistically that there is a significant difference between
the different number of workers. Also, ANOVA Gen-
eral Linear Model test for the time in second ver-
sus the number of workers shows P-Value <0.001,
which means that the time and number of workers
are strongly related and each one of them affects the
other, so having more workers means a huge reduction
in time for executing a job.

Also, Two-Sample T-Test for the time and number
of tasks shows a P-Value <0.001 and 95% CI for dif-
ference (84.51, 61.35), which means that the number
of the tasks effects significantly the time that Aneka
needs to execute a job. As a result, both number
of workers and number of tasks have a great impact

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

For Task Programming Model:
Time = 60.1007 - 9.56779 * Num of workers
+ 0.780371 * Num of tasks

For Thread Programming Model:
Time = 12.1695 - 9.56779 * Num of workers
+ 0.780371 * Num of tasks

Figure 9: Regression analysis for the two program-

ming models with the number of tasks and the num-
ber of workers

Line Plot of Mean (Time in second)

90 Number
\ of tasks
80+ A —— 25

\ - 49
70+ N

60+
50+
40+
304

Mean of Time in second

20+

10+

Number of workers

Figure 10: LinePlot of mean time in second

on the time for Aneka to finish executing a job, and a
correlation analysis has been preformed that supports
this result.

Looking at the two programming models, the re-
gression analysis shows the equations in Figure 9.
That means both models have the same spread but
the thread programming model (60.1007) always
executes faster than the task programming model
(12.1695).

The line plot (Figure 10) shows how the increase of
the number of workers to execute the tasks in parallel
reduces the time that Aneka took to execute a job.
Also, the sequence execution (number of workers =
1) has a wide gap between 25 and 49 tasks, while it
is the opposite on parallel execution when we have 2,
4 or 6 workers, and the gap get closer when we have
more workers.

The box plot (Figure 11) of the time Aneka takes
to execute a job grouped in the number of tasks and
the number of workers - shows how the number of
workers decreased the time the Aneka takes to execute
a job significantly. Also, the difference between the
two box plots within the same number of workers is
large in the sequence execution (number of workers
= 1) while it becomes narrower when we increase the
number of workers.

As a result of this experiment, Aneka scheduling
algorithm has been proven to perform efficiently for
executing tasks in distributed machines, especially
when the number of workers is increased. Surpris-
ingly, with all the network latency and overhead to
send and receive data, the 49 image rendering tasks
does not have significant effect on Aneka performance
compared to 25 tasks as shown in the box plot Figure
11.

9 Conclusion and Future Work

Cloud Web Portal (CWP) is an open source Cloud
management portal for researchers and developers to

Boxplot of Time in second

160
140
120
2 100
o —
3 80,
£
£ 60
=
40
= @ gl o8
0,
Number of tasks 25 49 25 49 25 49 25 49
Number of workers 1 2 4 6

Figure 11: Boxplot of time in second

prove a research concept, test a code or deliver a
product. CWP uses Aneka as it is framework, which
gives CWP several features especially in monitoring,
billing/accounting, scheduling, and provisioning of lo-
cal desktop PCs, private, public or hybrid Cloud.
Aneka can be used by the developers using its APIs.
Our evaluation method encompassing cases with up
to 80 experiments using three different parameters
show that Aneka scheduling algorithm perform effi-
ciently for executing tasks in distributed machines,
especially when the number of workers is increased.
Surprisingly, with all the network latency and over-
head to send and receive data, the 49 image rendering
tasks do not have significant effect on Aneka perfor-
mance compared to the 25 tasks.

As CWP is extendible, it is possible to build
adapters for mapping its capability to other Cloud
platforms. One of the undergoing and future works
is the support for Multi-Public Cloud service mea-
surement and keep tracking of the Cloud condition
to select and allocate Multi-Public Cloud resources
more accurately based on the users QoS and budget
— by implementing SMICloud (Garg et al. 2011) on
CWP.

Software Availability

A software of Cloud Web Portal (CWP) repre-
sented in this paper can be downloaded from
http://www.cloudbus.org/cwp.

Acknowledgements

The authors would like to thank Dr.Rodrigo Calheiros
and Nikolay Grozev for their valuable comments for
improving the paper.

References

Buyya, R., Garg, S. & Calheiros, R. (2011), SLA-
Oriented Resource Provisioning for Cloud Comput-
ing: Challenges, Architecture, and Solutions, in
‘Cloud and Service Computing (CSC), 2011 Inter-
national Conference on’, pp. 1 —10.

Celesti, A., Tusa, F., Villari, M. & Puliafito, A.
(2010), How to Enhance Cloud Architectures to
Enable Cross-Federation, in ‘Cloud Computing
(CLOUD), 2010 IEEE 3rd International Confer-
ence on’, pp. 337 —345.

55

CRPIT Volume 140 - Parallel and Distributed Computing 2013

Galloway, J., Haack, P., Wilson, B. & Allen, K. S.
(2011), Professional ASP.NET MVC 3, 1 edn,
Wrox. The book in Kindle.

Garg, S., Versteeg, S. & Buyya, R. (2011), SMICloud:
A Framework for Comparing and Ranking Cloud
Services, in ‘Utility and Cloud Computing (UCC),
2011 Fourth IEEE International Conference on’,
pp. 210 —218.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G.,
Soman, S., Youseff, L. & Zagorodnov, D. (2009),
The Eucalyptus Open-Source Cloud-Computing
System, in ‘Cluster Computing and the Grid, 2009.
CCGRID °09. 9th IEEE/ACM International Sym-
posium on’, pp. 124 —131.

Vecchiola, C., Calheiros, R. N., Karunamoorthy, D.
& Buyya, R. (2012), ‘Deadline-Driven Provisioning
of Resources for Scientific Applications in Hybrid
Clouds with Aneka’, Future Generation Computer
Systems 28, 58 — 65.

Wei, Y., Sukumar, K., Vecchiola, C., Karunamoorthy,
D. & Buyya, R. (2011), ‘Aneka Cloud Application
Platform and Its Integration with Windows Azure’,
CoRR abs/1103.2590.

Xiong, N., Rindos, A., Russell, M. L., Robin-
son, K. P., Vandenberg, A. & Pan, Y. (2011),
‘Sharing Computing Resources to Satisfy Multi-
Cloud User Requirements’, International Journal
of Cloud Computing 1, 81-100.

56

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

Author Index

Alrokayan, Mohammed, 49 Lee, Young Choon, 31
Bayliss, Christopher, 39 Morandini, Luca, 39
Berretta, Regina, 3 Moscato, Pablo, 3
Burgstaller, Bernd, 13

Buyya, Rajkumar, 49 Shamsul Arefin, Ahmed, 3

Sinnott, Richard, 39
Cesare, Silvio, 21 HInOTE, Hichard,

Choi, Hyewon, 13

. ’ Tomko, Martin, 39
Choi, Seungmi, 31

Garg, Saurabh Kumar, iii Xiang, Yang, 21

Han, Hyuck, 31 Yeom, Heon Y., 31

Javadi, Bahman, iii Zomaya, Albert Y., 31

57

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is

available at the series website http://crpit.com.

Volume 113 - Computer Science 2011
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia. January 2011. 978-1-920682-93-4.

Volume 114 - Computing Education 2011
Edited by John Hamer, University of Auckland, New Zealand
and Michael de Raadt, University of Southern Queensland,
Australia. January 2011. 978-1-920682-94-1.

Volume 115 - Database Technologies 2011
Edited by Heng Tao Shen, The University of Queensland,
Australia and Yanchun Zhang, Victoria University, Australia.
January 2011. 978-1-920682-95-8.

Volume 116 - Information Security 2011
Edited by Colin Boyd, Queensland University of Technology,
Australia and Josef Pieprzyk, Macquarie University, Aus-
tralia. January 2011. 978-1-920682-96-5.

Volume 117 - User Interfaces 2011
Edited by Christof Lutteroth, University of Auckland, New
Zealand and Haifeng Shen, Flinders University, Australia.
January 2011. 978-1-920682-97-2.

Volume 118 - Parallel and Distributed Computing 2011
Edited by Jinjun Chen, Swinburne University of Technology,
Australia and Rajiv Ranjan, University of New South Wales,
Australia. January 2011. 978-1-920682-98-9.

Volume 119 - Theory of Computing 2011
Edited by Alex Potanin, Victoria University of Wellington,
New Zealand and Taso Viglas, University of Sydney, Aus-
tralia. January 2011. 978-1-920682-99-6.

Contains the proceedings of the Thirty-Fourth Australasian Computer Science
Conference (ACSC 2011), Perth, Australia, 1720 January 2011.

Contains the proceedings of the Thirteenth Australasian Computing Education
Conference (ACE 2011), Perth, Australia, 17-20 January 2011.

Contains the proceedings of the Twenty-Second Australasian Database Conference
(ADC 2011), Perth, Australia, 17-20 January 2011.

Contains the proceedings of the Ninth Australasian Information Security
Conference (AISC 2011), Perth, Australia, 17-20 January 2011.

Contains the proceedings of the Twelfth Australasian User Interface Conference
(AUIC2011), Perth, Australia, 17-20 January 2011.

Contains the proceedings of the Ninth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2011), Perth, Australia, 17-20 January 2011.

Contains the proceedings of the Seventeenth Computing: The Australasian Theory
Symposium (CATS 2011), Perth, Australia, 17-20 January 2011.

Volume 120 - Health Informatics and Knowledge Management 2011

Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Tony Sahama, Qeensland University of Technol-
ogy, Australia. January 2011. 978-1-921770-00-5.

Volume 121 - Data Mining and Analytics 2011
Edited by Peter Vamplew, University of Ballarat, Australia,
Andrew Stranieri, University of Ballarat, Australia, Kok
Leong Ong, Deakin University, Australia, Peter Christen,
Australian National University, , Australia and Paul J.
Kennedy, University of Technology, Sydney, Australia. De-
cember 2011. 978-1-921770-02-9.

Volume 122 - Computer Science 2012
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia and Bruce Thomas, University of South Aus-
tralia. January 2012. 978-1-921770-03-6.

Volume 123 - Computing Education 2012
Edited by Michael de Raadt, Moodle Pty Ltd and Angela
Carbone, Monash University, Australia. January 2012. 978-
1-921770-04-3.

Volume 124 - Database Technologies 2012
Edited by Rui Zhang, The University of Melbourne, Australia
and Yanchun Zhang, Victoria University, Australia. January
2012. 978-1-920682-95-8.

Volume 125 - Information Security 2012
Edited by Josef Pieprzyk, Macquarie University, Australia
and Clark Thomborson, The University of Auckland, New
Zealand. January 2012. 978-1-921770-06-7.

Volume 126 - User Interfaces 2012
Edited by Haifeng Shen, Flinders University, Australia and
Ross T. Smith, University of South Australia, Australia.
January 2012. 978-1-921770-07-4.

Volume 127 - Parallel and Distributed Computing 2012
Edited by Jinjun Chen, University of Technology, Sydney,
Australia and Rajiv Ranjan, CSIRO ICT Centre, Australia.
January 2012. 978-1-921770-08-1.

Volume 128 - Theory of Computing 2012
Edited by Julidn Mestre, University of Sydney, Australia.
January 2012. 978-1-921770-09-8.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2011), Perth, Australia, 17-20 January 2011.

Contains the proceedings of the Ninth Australasian Data Mining Conference
(AusDM’11), Ballarat, Australia, 1-2 December 2011.

Contains the proceedings of the Thirty-Fifth Australasian Computer Science
Conference (ACSC 2012), Melbourne, Australia, 30 January — 3 February 2012.

Contains the proceedings of the Fourteenth Australasian Computing Education
Conference (ACE 2012), Melbourne, Australia, 30 January — 3 February 2012.

Contains the proceedings of the Twenty-Third Australasian Database Conference
(ADC 2012), Melbourne, Australia, 30 January — 3 February 2012.

Contains the proceedings of the Tenth Australasian Information Security
Conference (AISC 2012), Melbourne, Australia, 30 January — 3 February 2012.

Contains the proceedings of the Thirteenth Australasian User Interface Conference
(AUIC2012), Melbourne, Australia, 30 January — 3 February 2012.

Contains the proceedings of the Tenth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia, 30 January — 3
February 2012.

Contains the proceedings of the Eighteenth Computing: The Australasian Theory
Symposium (CATS 2012), Melbourne, Australia, 30 January — 3 February 2012.

Volume 129 - Health Informatics and Knowledge Management 2012

Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Kathleen Gray, University of Melbourne, Aus-
tralia. January 2012. 978-1-921770-10-4.

Volume 130 - Conceptual Modelling 2012
Edited by Aditya Ghose, University of Wollongong, Australia
and Flavio Ferrarotti, Victoria University of Wellington, New
Zealand. January 2012. 978-1-921770-11-1.

Volume 134 - Data Mining and Analytics 2012
Edited by Yanchang Zhao, Department of Immigration and
Citizenship, Australia, Jiuyong Li, University of South Aus-
tralia, Paul J. Kennedy, University of Technology, Sydney,
Australia and Peter Christen, Australian National Univer-
sity, Australia. December 2012. 978-1-921770-14-2.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2012), Melbourne, Australia, 30 January — 3
February 2012.

Contains the proceedings of the Eighth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2012), Melbourne, Australia, 31 January — 3 February 2012.

Contains the proceedings of the Tenth Australasian Data Mining Conference
(AusDM’12), Sydney, Australia, 5-7 December 2012.

	04 An Overview paper.pdf
	1 Introduction
	2 Architecture
	3 Prototype System
	3.1 Data Collectors, Glims and the Glim Bridge
	3.2 Converting Glims into Knowledge
	3.3 Cyc Knowledge Base and World Model Ontology
	3.4 Planning
	3.5 Web Based User Interface

	4 Use Cases
	5 Evaluation
	6 Related Work
	7 Conclusion

	03_Simseer-Detection-paper4.pdf
	03_Simseer-Detection-paper4
	empty_page_a4

