
Conferences in Research and Practice in

Information Technology

Volume 136

Computing Education 2013

Australian Computer Science Communications, Volume 35, Number 2

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

Computing Education 2013

Proceedings of the
Fifteenth Australasian Computing Education Conference
(ACE 2013), Adelaide, Australia,
29 January – 1 February 2013

Angela Carbone and Jacqueline Whalley, Eds.

Volume 136 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Computing Education 2013. Proceedings of the Fifteenth Australasian Computing Education Conference
(ACE 2013), Adelaide, Australia, 29 January – 1 February 2013

Conferences in Research and Practice in Information Technology, Volume 136.

Copyright c©2013, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Angela Carbone
Office Pro Vice-Chancellor (Learning and Teaching)
Monash University
Caulfield East, VIC, 3145
Australia
Email: angela.carbone@monash.edu

Jacqueline Whalley
School of Computing and Mathematical Sciences
AUT University Auckland
New Zealand
Email: jacqueline.whalley@aut.ac.nz

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
Simeon J. Simoff, University of Western Sydney, NSW
Email: crpit@scm.uws.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 136.
ISSN 1445-1336.
ISBN 978-1-921770-21-0.

Document engineering, January 2014 by CRPIT
On-line proceedings, January 2014 by the University of Western Sydney
Electronic media production, January 2014 by the University of South Australia

The Conferences in Research and Practice in Information Technology series disseminates the results of peer-reviewed
research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Fifteenth Australasian Computing Education Conference
(ACE 2013), Adelaide, Australia, 29 January – 1 February 2013

Preface . vii

Programme Committee . viii

Organising Committee . ix

Welcome from the Organising Committee . x

CORE - Computing Research & Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xii

ACSW and ACE 2013 Sponsors . xiv

Contributed Papers

A Process for Novice Programming Using Goals and Plans . 3
Minjie Hu, Michael Winikoff and Stephen Cranefield

Its Never Too Early: Pair Programming in CS1 . 13
Krissi Wood, Dale Parsons, Joy Gasson and Patricia Haden

Distractions in Programming Environments . 23
Raina Mason and Graham Cooper

Identifying career outcomes as the first step in ICT curricula development . 31
Nicole Herbert, Kristy de Salas, Ian Lewis, Michael Cameron-Jones, Winyu Chinthammit, Julian
Dermoudy, Leonie Ellis and Matthew Springer

Student Concerns in Introductory Programming Courses . 41
Angela Carbone, Jason Ceddia, Simon, Daryl D’Souza and Raina Mason

Stakeholder-Led Curriculum Design . 51
Nicole Herbert, Julian Dermoudy, Leonie Ellis, Michael Cameron-Jones, Winyu Chinthammit,
Kristy De Salas, Ian Lewis and Matthew Springer

Measuring the difficulty of code comprehension tasks using software metrics . 59
Nadia Kasto and Jacqueline Whalley

Revisiting models of human conceptualisation in the context of a programming examination 67
Jacqueline Whalley and Nadia Kasto

A conceptual model for reflecting on expected learning vs. demonstrated student performance 77
Richard Gluga, Judy Kay, Raymond Lister, Simon, Michael Charleston and Donna Teague

A Qualitative Think Aloud Study of the Early Neo-Piagetian Stages of Reasoning in Novice Pro-
grammers . 87

Donna Teague, Malcolm Corney, Alireza Ahadi and Raymond Lister

What vs. How: Comparing Students’ Testing and Coding Skills . 97
Colin Fidge, James Hogan and Raymond Lister

Visualisation of Learning Management System Usage for Early Detection of Students At Risk of
Failure in Computer Science Courses . 107

Thomas Haig, Katrina Falkner and Nickolas Falkner

A Comparative Analysis of Results on Programming Exams . 117
James Harland, Daryl D’Souza and Margaret Hamilton

Examining Student Reflections from a Constructively Aligned Introductory Programming Unit 127
Andrew Cain and Clinton Woodward

Computational Thinking and Practice A Generic Approach to Computing in Danish High Schools . . 137
Michael E. Caspersen and Palle Nowack

How difficult are exams? A framework for assessing the complexity of introductory programming exams145
Judy Sheard, Simon, Angela Carbone, Donald Chinn, Tony Clear, Malcolm Corney, Daryl D’Souza,
Joel Fenwick, James Harland, Mikko-Jussi Laakso and Donna Teague

Integrating Source Code Plagiarism into a Virtual Learning Environment: Benefits for Students and
Staff . 155

Tri Le Nguyen, Angela Carbone, Judy Sheard and Margot Schuhmacher

Author Index . 165

vi

Preface

Welcome to the Fifteenth Australasian Computing Education Conference (ACE2013). This year the ACE2013
conference, which is part of the Australasian Computer Science Week, is being held at the University of
South Australia, Adelaide, Australia from 29 January to 1 February, 2013.

The Chairs would like to thank the program committee for their excellent efforts in the double-blind
reviewing process which resulted in the selection of 17 full papers from the 37 papers submitted, giving
an acceptance rate of 49%. The number of submissions was slightly less than the 43 papers submitted in
the previous year, however this year we had ten papers submitted by research students, which reflects the
growing research interest in computing education. We again see a strong national and international presence,
with submissions from Australia, New Zealand, Finland, United States, Malaysia, Brazil and Denmark. A
variety of topics are presented in this year’s papers, including: novice programming; assessment, curricula
design and pedagogy; and student learning. Many of the papers present new innovations and demonstrate
high quality research.

This year we invited Dr Mats Daniels, Senior academic from the Department of Information Technology,
Uppsala University, Sweden to deliver an invited address titled Taking Competencies Seriously. He will also
take part as a panel member in the first ACE doctoral consortium, sponsored by the Australian Council of
Deans ICT Learning and Teaching Academy (ALTA). ALTA covered the ACE registration fee for twelve
PhD students to discuss and explore their research interests and career objectives with a panel of established
researchers in computing education research. The doctoral consortium is chaired by Dr Margaret Hamilton
from RMIT University with discussants including: Jacqueline Whalley and Tony Clear (AUT University),
Daryl DSouza and James Harland (RMIT) and Angela Carbone (Monash University).

As with past ACE conferences, we are continuing to hold workshops. Three workshops have been orga-
nized, these include: Model-driven programming education led by Michael Caspersen; Developing teamwork
that works supported by Australian Council of Deans ICT (ACD ICT) Teaching Fellowship led by Elena
Sitnikova, Patricia Kelly and Diana Collett; Writing a good exam for a programming course led by Simon,
Judy Sheard, Angela Carbone, Malcolm Corney, Raymond Lister and Donna Teague.

This year ACE awarded a best paper and best student paper. The best paper was awarded to:

? Distractions in Programming Environments
Raina Mason and Graham Cooper

Two other papers were also highly commendable from the reviews:

? Examining Student Reflections from a Constructively Aligned Introductory Programming Unit
Andrew Cain and Clinton Woodward

? How difficult are exams? A framework for assessing the complexity of introductory programming exams
Judy Sheard, Simon, Angela Carbone, Donald Chinn, Tony Clear, Malcolm Corney, Daryl D’Souza,
Joel Fenwick, James Harland, Mikko-Jussi Laakso and Donna Teague

The best student paper was awarded to:

? A Qualitative Think Aloud Study of the Early Neo-Piagetian Stages of Reasoning in Novice Program-
mers
Donna Teague, Malcolm Corney, Alireza Ahadi and Raymond Lister

We are grateful to SIGCSE for sponsoring the conference jointly with the ACM. We thank everyone
involved in Australasian Computer Science Week for making this conference and its proceedings publi-
cation possible, and we thank CORE, ALTA, our hosts University of South Australia, Adelaide, and the
Australasian Computing Education executive for the opportunity to chair the ACE2013 conference.

Angela Carbone
Monash University

Jacqueline Whalley
AUT University Auckland

ACE 2013 Conference Co-chairs
January 2013

vii

Programme Committee and Additional Referees

Chairs

Angela Carbone, Monash University, Australia
Jacqueline Whalley, AUT University, New Zealand

Members

David J. Barnes, University of Kent, UK
Tim Bell, University of Canterbury, New Zealand
Jason Ceddia, Monash University, Australia
Alison Clear, AUT University, New Zealand
Tony Clear, AUT University, New Zealand
Mats Daniels, Uppsala University, Sweden
Paul Denny, The University of Auckland, New Zealand
Michael de Raadt, Moodle, Australia
Julian Dermoudy, University of Tasmania, Australia
John Hamer, University of Auckland, New Zealand
Margaret Hamilton, RMIT University, Australia
Chris Johnson Australian National University, Australia
Michael Kolling, University of Kent, UK
Mikko Laakso, University of Turku, Finland
Andrew Luxton-Reilly, University of Auckland, New Zealand
Raymond Lister, University of Technology, Sydney, Australia
Chris McDonald, University of Western Australia, Australia
Dale Parsons, Otago Polytechnic, New Zealand
Arnold Pears, Uppsala University, Sweden
Anne Philpott, AUT University, New Zealand
Helen Purchase, University of Glasgow, UK
Anthony Robins, Otago, New Zealand
Judy Sheard, Monash University, Australia
Daryl DSouza, RMIT University, Australia
Simon, University of Newcastle, Australia
Josh Tenenberg, University of Washington, USA
Errol Thompson, Aston University, United Kingdom

Conference Webmaster

Jason Ceddia, Monash University, Australia

viii

Organising Committee

Chair

Dr. Ivan Lee

Finance Chair

Dr. Wolfgang Mayer

Publication Chair

Dr. Raymond Choo

Local Arrangement Chair

Dr. Grant Wigley

Registration Chair

Dr. Jinhai Cai

ix

Welcome from the Organising Committee

On behalf of the Organising Committee, it is our pleasure to welcome you to Adelaide and to the 2013
Australasian Computer Science Week (ACSW 2013). Adelaide is the capital city of South Australia, and
it is one of the most liveable cities in the world. ACSW 2013 will be hosted in the City West Campus
of University of South Australia (UniSA), which is situated at the north-west corner of the Adelaide city
centre.

ACSW is the premier event for Computer Science researchers in Australasia. ACSW2013 consists of
conferences covering a wide range of topics in Computer Science and related area, including:

– Australasian Computer Science Conference (ACSC) (Chaired by Bruce Thomas)
– Australasian Database Conference (ADC) (Chaired by Hua Wang and Rui Zhang)
– Australasian Computing Education Conference (ACE) (Chaired by Angela Carbone and Jacqueline

Whalley)
– Australasian Information Security Conference (AISC) (Chaired by Clark Thomborson and Udaya

Parampalli)
– Australasian User Interface Conference (AUIC) (Chaired by Ross T. Smith and Burkhard C. Wünsche)
– Computing: Australasian Theory Symposium (CATS) (Chaired by Tony Wirth)
– Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Bahman

Javadi and Saurabh Kumar Garg)
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Kath-

leen Gray and Andy Koronios)
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Flavio Ferrarotti and Georg

Grossmann)
– Australasian Web Conference (AWC2013) (Chaired by Helen Ashman, Michael Sheng and Andrew

Trotman)

In additional to the technical program, we also put together social activities for further interactions
among our participants. A welcome reception will be held at Rockford Hotel’s Rooftop Pool area, to enjoy
the fresh air and panoramic views of the cityscape during Adelaide’s dry summer season. The conference
banquet will be held in Adelaide Convention Centre’s Panorama Suite, to experience an expansive view of
Adelaide’s serene riverside parklands through the suite’s seamless floor to ceiling windows.

Organising a conference is an enormous amount of work even with many hands and a very smooth
cooperation, and this year has been no exception. We would like to share with you our gratitude towards
all members of the organising committee for their dedication to the success of ACSW2013. Working like
one person for a common goal in the demanding task of ACSW organisation made us proud that we got
involved in this effort. We also thank all conference co-chairs and reviewers, for putting together conference
programs which is the heart of ACSW. Special thanks goes to Alex Potanin, who shared valuable experiences
in organising ACSW and provided endless help as the steering committee chair. We’d also like to thank
Elyse Perin from UniSA, for her true dedication and tireless work in conference registration and event
organisation. Last, but not least, we would like to thank all speakers and attendees, and we look forward
to several stimulating discussions.

We hope your stay here will be both rewarding and memorable.

Ivan Lee
School of Information Technology & Mathematical Sciences

ACSW2013 General Chair
January, 2013

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2013 in Adelaide. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences - ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s - now share this week with eight other events - ACE, AISC, AUIC, AusPDC, HIKM,
ACDC, APCCM and AWC which build on the diversity of the Australasian computing community.

In 2013, we have again chosen to feature a small number of keynote speakers from across the discipline:
Riccardo Bellazzi (HIKM), and Divyakant Agrawal (ADC), Maki Sugimoto (AUIC), and Wen Gao. I
thank them for their contributions to ACSW2013. I also thank invited speakers in some of the individual
conferences, and the CORE award winner Michael Sheng (CORE Chris Wallace Award). The efforts of the
conference chairs and their program committees have led to strong programs in all the conferences, thanks
very much for all your efforts. Thanks are particularly due to Ivan Lee and his colleagues for organising
what promises to be a strong event.

The past year has been turbulent for our disciplines. ERA2012 included conferences as we had pushed
for, but as a peer review discipline. This turned out to be good for our disciplines, with many more
Universities being assessed and an overall improvement in the visibility of research in our disciplines. The
next step must be to improve our relative success rates in ARC grant schemes, the most likely hypothesis for
our low rates of success is how harshly we assess each others’ proposals, a phenomenon which demonstrably
occurs in the US NFS. As a US Head of Dept explained to me, ”in CS we circle the wagons and shoot
within”.

Beyond research issues, in 2013 CORE will also need to focus on education issues, including in Schools.
The likelihood that the future will have less computers is small, yet where are the numbers of students
we need? In the US there has been massive growth in undergraduate CS numbers of 25 to 40% in many
places, which we should aim to replicate. ACSW will feature a joint CORE, ACDICT, NICTA and ACS
discussion on ICT Skills, which will inform our future directions.

CORE’s existence is due to the support of the member departments in Australia and New Zealand,
and I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am
grateful to all those who gave their time to CORE in 2012; in particular, I thank Alex Potanin, Alan Fekete,
Aditya Ghose, Justin Zobel, John Grundy, and those of you who contribute to the discussions on the CORE
mailing lists. There are three main lists: csprofs, cshods and members. You are all eligible for the members
list if your department is a member. Please do sign up via http://lists.core.edu.au/mailman/listinfo - we
try to keep the volume low but relevance high in the mailing lists.

I am standing down as President at this ACSW. I have enjoyed the role, and am pleased to have had
some positive impact on ERA2012 during my time. Thank you all for the opportunity to represent you for
the last 3 years.

Tom Gedeon

President, CORE
January, 2013

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2014. Volume 36. Host and Venue - AUT University, Auckland, New Zealand.

2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.

2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.
2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.
2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.
2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACDC Australasian Computing Doctoral Consortium
ACE Australasian Computer Education Conference
ACSC Australasian Computer Science Conference
ACSW Australasian Computer Science Week
ADC Australasian Database Conference
AISC Australasian Information Security Conference
APCCM Asia-Pacific Conference on Conceptual Modelling
AUIC Australasian User Interface Conference
AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
AWC Australasian Web Conference
CATS Computing: Australasian Theory Symposium
HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections

in respective CRPIT volumes.

xiii

ACSW and ACE 2013 Sponsors

We wish to thank the following sponsors for their contribution towards this conference.

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

CORE - Computing Research and Education,
www.core.edu.au

Australian Computer Society,
www.acs.org.au

University of South Australia,
www.unisa.edu.au/

Monash University,
www.monash.edu.au

AUT University,
www.aut.ac.nz

Association for Computing Machinery,
www.acm.org

ACM Special Interest Group on
Computer Science Education,

www.sigcse.org

Australian Council of Deans of Information and
Communications Technology,

www.acdict.edu.au

xiv

Contributed Papers

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

1

CRPIT Volume 136 - Computing Education 2013

2

A Process for Novice Programming Using Goals and Plans
Minjie Hu

Department of Information Science
University of Otago

PO Box 56, Dunedin 9054
minjiehu@infoscience.

otago.ac.nz

Tairawhiti Campus
Eastern Institute of Technology

PO Box 640, Gisborne 4010
New Zealand

mhu@eit.ac.nz

Michael Winikoff
Department of Information Science

University of Otago
PO Box 56, Dunedin 9054

New Zealand
mwinikoff@infoscience.

otago.ac.nz

Stephen Cranefield
Department of Information Science

University of Otago
PO Box 56, Dunedin 9054

New Zealand
scranefield@infoscience.

otago.ac.nz

Abstract
We propose to improve the teaching of programming to
novices by using a clearly-defined and detailed process
that makes use of goals and plans, and a visual
programming language. We present a simple notation for
designing programs in terms of data flow networks of
goals and plans, and define a detailed process that uses
this notation, and that ultimately results in a program in a
visual programming language (BYOB). Results from an
evaluation are presented that show the effectiveness of
this approach. .
Keywords: Goal, Plan, Process of Programming.

1 Introduction
A range of studies across institutions and countries have
observed that novices struggle in introductory
programming (Lister et al. 2004, McCracken et al. 2001).
Accordingly a wide range of approaches have been
proposed to improve novices’ learning of programming.
For example, the problem-solving approach emphasises
the development of problem-solving skills connected to
programming (Pears et al. 2007); problem-based learning
(PBL) is based on solving a “large real-world” problem
collaboratively in groups (Kay et al. 2000); collaborative
learning provides support and enhances communication
in learning environments to promote students’ high level
cognitive skills (Rößling et al. 2008); psychological
analysis considers the mental models of novices, and
proposes various concrete conceptual models to help
novices to understand programming (Mayer 1981,
Winslow 1996); programming visualisation provides
visual support towards the development of viable mental
models and engages novices in an active learning activity
to improve their understanding of programming and help
their learning (Ben-Ari 2001, Naps et al. 2003); and game
programming attracts, motivates and engages novices to
learn programming by using computer games as a subject
based on multimedia, pre-developed libraries or micro-
worlds (Guzdial and Soloway 2002, Kölling and
Henriksen 2005).

Copyright © 2013, Australian Computer Society, Inc. This
paper appeared at the 15th Australasian Computer Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

However, these approaches have not been widely
adopted. Although some approaches (e.g. PBL) have been
demonstrated to be highly effective (Kay et al. 2000),
they are quite costly to introduce. By contrast, we aim to
develop an approach for teaching novice programming
that is both effective and cheap to introduce. Specifically,
we propose to combine three aspects: the use of a visual
programming language; the use of goals and plans; and
the employment of a clear well-defined process with
feedback.

Recently, visual programming languages (VPLs), such
as Scratch and Alice, have been used to teach novice
programming. Programs are built by dragging and
dropping statement blocks, which helps to prevent syntax
errors and enables students to make better early progress
(Lister 2011). The philosophy of using VPLs to teach
novices is to “let them play first, let them achieve
something, … and then sneak the explanations in” (Utting
et al. 2010, p7). However, there are concerns that students
might “simply mess around and never focus towards any
goal” (Utting et al. 2010, p4). In other words, students
may learn to program by trial and error, rather than by
following a systematic approach. Therefore, they need
guidance, that is, a process, for how to program.

In order to give guidance to novice programmers, we
take as our point of departure the work on goals and
plans. A goal is a certain objective that a program must
achieve in order to solve a problem (Letovsky and
Soloway 1986), and a plan (Spohrer, Soloway, and Pope
1985) corresponds to a fragment of code that performs
actions to achieve a goal. In the 1980s, Soloway (1986)
and his colleagues (Letovsky and Soloway 1986, Spohrer,
Soloway, and Pope 1985) discovered that experts have
strategies to solve problems using their own libraries of
plans. They advocated structuring these libraries in terms
of goals and plans, and teaching strategies for using these
libraries. Subsequently, educators have been attempting
to introduce goals and plans as a means of structuring the
development of programs (de Raadt 2008, de Raadt et al
2006, Guzdial et al. 1998, Soloway 1986). For example,
various template-based approaches for using program
fragments were proposed such as “pedagogical
programming patterns” (Porter and Calder 2003) and
“programming strategies” (de Raadt 2008). However, this
body of work did not provide a detailed process for using
goals and plans in program development.

For the reasons outlined above, there is therefore an
opportunity and need to provide a detailed step-by-step

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

3

process for programming by novices (Caspersen and
Kölling 2009). There have been a number of approaches
that focus on teaching novices a process for
programming. Pattis (1990) proposed that the
programming process be broken down into a series of
well-defined steps, and that it is important to provide
feedback from each step. Providing feedback at each step
was considered to be critical in giving students
confidence. In fact, feedback is at the heart of test-driven
development, and Janzen and Saiedian (2006) recently
proposed to improve teaching by using “test-driven
learning”. However, none of these papers provided a
detailed process that could be taught to novices.

A number of detailed processes for teaching novices
have been proposed. For example, Programming by
Numbers (Glaser, Hartel, and Garratt 2000) and
TeachScheme (Felleisen et al. 2004) both provide a clear
process for creating the smallest components of functions,
using stepwise refinement. Both approaches are data-
driven and more suited to functional programming
languages than to mainstream procedural languages.
Another process that has been proposed is STREAM
(Caspersen and Kölling 2009), which aims to teach
novices a process for object-oriented programming.
However, none of these proposed processes included the
use of goals and plans (or of a VPL).

Our research therefore focuses on the development of
a programming process for novice programmers using
goals and plans in a visual programming environment.
Our programming process aims to be clearly defined,
detailed, iterative, incremental, and to provide feedback at
every step. Our previous work (Anonymous 2012)
presented an overview of our approach, whereas this
paper provides a more detailed presentation of the
process.

2 Design Notation
Before providing a process for program development
using goals and plans, we first need to define a design
notation, which is used to capture the results of the first
step of the process.

Soloway and colleagues proposed that novices develop
a structure for their program in terms of a tree of goals.
This tree is progressively refined, and ultimately, goals
are realized as combinations of plans. Initially, Soloway
(1986) proposed three ways of combining plans:
sequential (Plan B begins after Plan A finishes), nested
(Plan B is used as one of the steps within Plan A), and
interleaved (the steps of Plan A and B are merged with
each other). Subsequently Ebhrahimi (1992) proposed an
additional plan combination: branching (Plan A uses
either Plan B or Plan C, depending on a condition).

The term “interleaved” plans above does not indicate
plans that have been interleaved, but rather plans that will
need to have their implementations merged to form an
executable single-threaded program. For example,
consider computing an average of a sequence of numbers,
which has been designed using a plan for computing the
sum of the sequence, and another plan for computing the
count of the sequence (number of items). An executable
(procedural) program needs to read each input, and then
process it, including updating both the sum and the count,
before the next input value is read. For example, see the

right part of Figure 7, which shows an executable
procedural program (in BYOB1) where three plans (Input,
Sum, and Count) are interleaved.

However, by adopting a data flow based
representation, we can avoid the need for merging before
any execution can be done. We model plans as
consuming and producing sequences of data. For the
above example, if we have a data flow buffer between
plans, then we can execute the Input plan, store the results
in a buffer, execute the Sum plan to completion, then
execute the Count plan to completion, and finally proceed
to compute the average by dividing the sum by the count.
In other words, by using a data flow model, we can
execute unmerged plans. This is a significant difference
between control flow and data flow models when using
goals and plans, because it enables novices to receive
feedback before plans are merged into a final (procedural)
program.

We therefore propose a notation where goals and plans
are represented by icons, and are linked by arrows
(denoting data flows between them). Goals can be
categorized into three types: input, output, or processing
(Figure 1). A simple program might have only one goal
of each type and achieve these goals in sequence, but
more typically a program would have multiple processing
goals.

Figure 1: Example of three basic goals

A data flow is a sequence of values that “flow”
between goals. Each data flow is represented by an arrow
that links two goals. In the typical case, a data flow has a
single source and single destination, and links two goals.
It is also possible for a data flow to have two destinations,
indicated with a “fork” notation (e.g. Figure 4). We make
the assumption that each goal has a single out port and we
use arrows to show the direction of the flow. This means
that we do not need to have named ports on goal
diagrams, which simplifies the initial design stage for
students.

The second design stage is to produce a plan diagram
corresponding to the goal diagram. Since a plan is a code
segment that accomplishes a programming goal, it is
visualised as a box with double lines on both sides like a
sub-program icon in flowchart notation. Plan icons are
used to replace all goal icons in the goal diagram,
yielding a plan diagram (Figure 2). At this stage, plan
ports are added and named. A data flow can be accessed
from within plans by two ports: from a source (“out”)
port of one plan to a destination (“in”) port of another
plan. Ports are identified and named by the combination
of the name of the plan and the function of the port. For
example, the port name Input:out represents the out port
of an Input Plan.

1 Build Your Own Blocks (BYOB) is a variant of Scratch (see
http://scratch.mit.edu). BYOB permits users to build new
“blocks”. Each new block can include a procedure. See
http://byob.berkeley.edu6

CRPIT Volume 136 - Computing Education 2013

4

Figure 2: An example of a plan network diagram

We distinguish between ports that are associated with
a data flow that only involves a single value, and those
that are the end points of a data flow with a sequence of
values. For example, the first data flow in Figure 2 links
the port Input:out to the port Sum:in and can contain a
sequence of values. However, the data flow from
Sum:out to Output:in will only contain a single value.

3 Programming Process
The process of programming that we propose consists of
five steps: (1) analysing goals and plans; (2) mapping the
plan network to BYOB using plan blocks (where each
plan is mapped to a BYOB plan block); (3) expanding
plan blocks; (4) merging the expanded plan details; and
(5) simplifying the merged details (Figure 3). Each step
includes three or four sub-steps.

In order to provide early and frequent feedback, we
adopted the test-driven learning approach. Before
tackling the first step, students have a “step zero” (not
shown in Figure 3) in which they study the question, and
specify test cases (both input and correct output). For
example, if the problem is to compute the average of
input numbers, then a student might define the following
two test cases: given 1, 2, and 3 the average is 2; and
given 2, 3, 7 and 8 it is 5.

After each step, the student checks that the results are
correct, i.e. that the design produces the expected answers
for the test cases. For the first step, this checking is done
by a manual desk-check, but for the following four steps,
all the test results come from executable programs.

The programming process that we describe below
guides the student through an incremental development
process that proceeds from goal and plan concepts, to
plan block design, to intermediate program, and to final
code. The process is illustrated using the following
example, which was originally used by Soloway (1986)
to analyse goals and plans:

Write a program that will read in integers and output
their average. Stop reading when the sentinel value (-1) is
input.

3.1 Analysing Goals and Plans
Goal analysis starts by identifying what goals the
program needs to achieve. Typically a program includes
at least one input, one output, and some number of
processing goals, some of which may need hierarchical
refinement. For the above example, the first goal is to
input the values. Following this, a “compute average”
goal was initially required. However, the average goal
needs the sum and count of the input. Hence, the
“compute average” goal can be decomposed into three
goals, sum, count, and divide, where both sum and count
receive the same data flow from the input goal (in
parallel), and send their results to the divide goal (also in
parallel). Finally, the result of the divide goal is sent to

Figure 3: The process of programming

1. Analyse Goals and Plans:
 1) Draw Goal Diagram, identifying goals
and joining them by data flow links.
2) Map to Plan Network, identifying ports
for each data flow.
3) Desk-check Plan Network.

Begin

Are the results the same as
predicted answers?

2. Encode Plan Network Using BYOB Plan
Blocks:
1) Apply plan blocks from library or by
building new ones.
2) Link plan blocks using ports for each
data flow.
3) Test and debug.

Are the results the same as
previous step?

End

3. Expand Plan Blocks:
1) Replace plan blocks by plan code details
found inside each plan block.
2) Replace every parameter of each plan
with its plan port.
3) Test and debug.

Are the results the same as
previous step?

4. Merge Plan Code Details:
1) Collect all the initialization blocks.
2) Combine loops that share the same data
flow.
3) Remove the loop control if it is driven by
a dataflow including only a single value
4) Test and debug.

Are the results the same as
previous step?

5. Simplify the Merged Details:
1) If two variables share a data flow to/from
the same port, rename the second variable to
be the same as the first one.
2) Remove all the scaffolding blocks.
3) Test and debug.

Are the results the same as
previous step?

Y

N

Y

N

Y

N

Y

N

Y

N

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

5

Figure 4: Example of goal

Figure 5: Example of plan network

the last goal (to output the result). Therefore, five goals
(1–5) of three types are identified and presented using
visual notation in Figure 4. The relationships between
these goals were also identified and the goals are linked
by five data flows (A–E in Figure 4). Note that the
numbers 1–5 and the letters A–E are only added here for
ease of explanation, i.e. they are not part of the notation.

In general, the development of the goal diagram is an
incremental refinement process, in which the processing
goals are hierarchically decomposed. Once goals are
refined to a level where they are sufficiently fine-grained,
they can be mapped to plans in a one-to-one manner (i.e.
each goal becomes a plan), resulting in a plan network
diagram (Figure 5). For teaching novice programming, a
sufficiently fine-grained decomposition of goals means
that the decomposed goals correspond to BYOB plan
blocks in a provided plan library or that they can be
implemented simply. For the example in Figures 4 and 5,
five plan icons have been used to replace the five goals.

The next step is to realise the data flows by defining
ports. In simple cases, a port name can be identified by
the combination of plan name and type of the port (“in”
or “out”). For example, the port on the left2 of “Sum
Plan” is named Sum:in; and the port on the right is named
Sum:out. In cases where a plan has multiple incoming
data flows, its graphical representation shows multiple in
ports with different names. For example, the two in ports
of the Dividing Plan are identified as dividing:in.dividend
and dividing:in.divisor.

After mapping from the initial goal diagram to a plan
network, a desk-check table is used to test whether or not
the first step of analysis is correct (see Table 1). The table
consists of two parts. The first part contains the first two
columns of the table: Test Cases and Predicted Answers.
The contents of these two columns are based on the test
cases specified in step zero: the test case cells are the
input of the test case, and the predicted answer is the
expected output. The second part of the table comprises
the rest of the columns, and is based on the plan network.
Each column represents one port within the plan network.
The cell under the “in” column of a plan is filled with a

2 We use a convention where in ports are on the left of a plan
and out ports are on the right.

copy of the data from the relevant “out” column, i.e. the
“out” port that is linked to it by a data flow. For example,
the “in” column for the Sum Plan is simply a copy of the
“out” column of the Input Plan, since Input’s out port is
linked to the Sum’s in port. The cells under the “out”
column of a plan are filled by computing the
corresponding output of a plan, given its input, for
example the “out” column for Sum Plan is the sum of its
inputs. Hence, the second part of the table records the
data flow through the plan network.

Test Cases: 1, 2, 3, -1 2, 3, 7, 8, -1
Predicted Answers: 2 5
Input out 1, 2, 3 2, 3, 7, 8
Sum in 1, 2, 3 2, 3, 7, 8

out 6 20
Count in 1, 2, 3 2, 3, 7, 8

out 3 4
Dividing in.dividend 6 20

in. divisor 3 4
out 2 5

Output in 2 5

Table 1: Example of a desk-check for data flow in
plan ports

The first step of analysis is completed after the outputs
from the last column are the same as the predicted
answers in the second column for every test case.
Otherwise, the analysis has to be corrected. The plan
network produced is used in the next step, where it is
mapped to BYOB, using plan blocks.

3.2 Encoding Plan Network Using BYOB Plan
Blocks

Following the confirmation of the correctness of the goal
and plan analysis by desk-checking, the diagram of the
plan network (Figure 5) can be mapped to an executable
plan network (Figure 6). The process for doing this is
fairly straightforward and mechanical. Each plan icon is
replaced by a plan block in BYOB, and every data flow is
mapped to a “scaffolding block” (Link <<out port
name>> to <<in port name>>) to link an out port to an in
port. Note that the order of the plan blocks (1–5 in Figure

CRPIT Volume 136 - Computing Education 2013

6

6) does matter: the plan blocks need to follow the order of
the arrows in the plan network (Figure 5). For example, in
this case the Input plan must be first, followed by the
Sum and Count plans (in either order), and then the
Dividing plan and finally the Output plan.

Figure 6: Example of an executable plan network in

BYOB

We map plan icons to plan blocks by considering the
diagram of the plan network from the previous step.
Using BYOB, each plan can be implemented as a plan
block with arguments that are ports to receive and/or send
data flow. Processing plans (i.e. plans other than an Input
or Output plan), encapsulate a procedure to receive data
flow from their in ports, to process the data flow, and
then send the results to their out port.

Individual plan blocks are identified from our plan
library developed in BYOB. If a plan block does not
exist, then the student must build it based on similar
pattern of existing plan blocks in the library3. For
example, considering the plan network in Figure 5, plan
blocks 1–3 and 5 can be found in the provided library, but
plan block 4 (“Dividing Plan”) is not in the provided
library. However, the library has a “Multiplying Plan”
block, which is similar and can be used as a template for
developing the “Dividing Plan” block.

In order to represent a plan network in BYOB we use
a number of scaffolding blocks. Note that eventually all
the scaffolding blocks will be removed from the final
program. There are three data flow scaffolding blocks
which are used to deal with data flow within a plan. They
are named “NO MORE DATA? <<port>>”, “GET
DATA <<port>>”, and “SEND DATA <<datum>>
<<port>>”. The first is used to find out if there is any
datum in the input port of the current plan. The second is
used to get a datum from the input port. The last (SEND
DATA) is used to send a result of the current plan to its
output port.

There are also linkage scaffolding blocks which are
used to define the linkages between plan blocks. These
are placed at the start, between “Begin Links” and “End
Links” blocks. Each Link block specifies a linkage from
an out port (source) to an in port (destination). If the
current plan output port is linked by a scaffolding block

3 Our process also includes guidance for developing new
plan blocks, but due to space limitations this is not
covered in this paper. We return to this issue in Section 5.

to an input port of another plan, this data flow will be sent
to the linked plan through its input port. Each link in the
plan network diagram (Figure 5) is directly mapped to a
Link block in BYOB (Figure 6, indicated with letters A–
E). For example, data flow “A” is mapped to the first two
Link blocks. The first Link block links the out port of the
Input Plan (Input:out) to the in port of the Sum plan
(Sum:in). The second Link block links the same out port
to the in port of the Count plan (Count:in).

Note that we provide default port names in each plan
block that combine the plan name and port function, for
example “Sum:in” and “Sum:out”. Therefore, students do
not need to create port names, and can fill in the port
names in the Link blocks by copying from the plan
blocks. However, when students use same plan block
more than once in their program, they have to change the
default port name for different copies of the same plan.
For example, if a second copy of the Sum Plan block is
used, its default port names must be renamed from
“Sum:in” and “Sum:out”. Correct and consistent use of
port names is essential for correctness, and the internal
implementation of the Link blocks tests for this, and gives
a message if the port name filled in the Link block does
not match the spelling of its original name in the plan
block.

The result of this process (Figure 6) is fully
executable, and can be tested and debugged. Note that the
execution makes use of buffers: in this example (see the
left side of Figure 7), the Input plan runs to completion,
collecting all the inputs, then the Sum plan runs to
completion (reading from a behind-the-scenes buffer) and
computes the Sum of the input, followed by the Count
plan counting the number of input values, and so on. This
is quite different to how a final (procedural) program
executes: a single input is read, and a running sum and
count updated before dealing with the next input value.
The testing of this step is part of the evaluation and
testing schedule for the whole programming process. As
students proceed through the process in Figure 3 they
maintain a checklist (Table 2). The first three columns are
filled according to the results in Table 1. The remaining
columns correspond to the steps in the process. After each
step, the results from testing are recorded and compared
with results from the earlier steps in the process. In this
step, the testing and debugging results are filled in the
fourth column (Step 2), and Step 2 will be considered to
be completed if the test results in the Step 2 column are
the same as those in column Step 1.

Test Cases 1, 2, 3, -1 2, 3, 7, 8, -1
Predicted Answers 2 5
Results from analysis of goals
and plans (Step 1)

2 5

Results from mapped plan blocks
(Step 2)

2 5

Results from expanded plan
details (Step 3)

Results from merged details
(Step 4)

Results from final program
(Step 5)

Table 2: Example of the test schedule

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

7

Figure 7: Examples of expanded program (left), merged program (middle), and final program (right)

3.3 Expanding Plan Blocks
Expanding plan blocks means replacing each plan block
with the defined details within it (see the left side of
Figure 7). Since data flow blocks (“GET DATA”, “SEND
DATA”, and “NO MORE DATA?”) inside every plan
block contain local parameters “in-port” and “out-port” to
refer to ports of their hosting plan block, after expanding
from a plan block, these parameters must be changed to
the plan port names in order to work with the linkage
using plan ports. For example, the blocks details within
the Sum plan (which are not shown in Figure 7) include
the block “repeat until NO MORE DATA? in-port”,
where “in-port” is the first parameter of the plan block.
When replacing the Sum plan block with its plan details
we replace “in-port” with the value of the plan block’s
first parameter, namely “Sum:in” (Figure 6) yielding the
statement “repeat until NO MORE DATA? Sum:in” (see
the numbers part 2 in the left side of Figure 7).

To help explain this process we have provided
students with video clips of a screen capture that
demonstrates how to firstly duplicate plan details from
each plan block and then how to replace the parameters
by copying-and-pasting a port name from the plan block.
Whereas the previous two steps require human thought
and creativity, this step is purely mechanical and could be
automated in future work. Note that the expanded
program is also executable and testable.

3.4 Merging Expanded Plan Details
Merging expanded plan details aims to combine the
details from different plans into one program in which
data flow (and the associated use of buffers) is
eliminated, and in its place, a single datum is sent and
received between plans. In other words, traditional
variables, rather than buffers, are used to communicate
data between plans. Common variables are also shared
between plans (see the middle part of Figure 7). Since
plans all follow the same pattern (iterating, reading items
from their input port, and dealing with items one at a

time), they can be merged by following three steps, which
are demonstrated to students with video clips of
examples. The first step of merging plan details is to
collect all the blocks that initialise variables by setting or
inputting initial values, and put them immediately after
the “End Links” block, i.e. at the start of the merged
program. For example, in the middle of Figure 7, the first
two statements, “set Sum to 0” and “set Count to 0”, as
well as the 3rd and 4th statements, “ask” and “set” to
input the initial value for variable Number, are placed
immediately after “End Links”.

The second step is to combine loops that share the
same data flow. In this situation, the first loop is used to
generate the data flow, while the other loops receive this
data flow. Hence, the bodies of the other loops can be
moved within the first loop. Specifically, consider the
case where output port portA is linked to input port
portB, and we have the following two loops:

Repeat until <condition>
 <body of first loop part 1>

 SEND DATA (value, portA)
 <body of first loop part 2>
End repeat
Repeat until NO MORE DATA(portB)?
 Set Var to GET DATA (portB)
 <body of second loop>
End repeat

Then both loops will execute the same number of

times because the second loop executes once for each
data item sent in the first loop. Therefore, the second loop
can be eliminated by moving its body inside the first
loop4:

Repeat until <condition>

4 This assumes that there are no common variables between the
loop bodies, which can be ensured by renaming. Since the loop
bodies originate in different scopes, there cannot be common
variables. However, there may be variables which use the same
name (in different scope), and bringing them into the same
scope would require renaming to avoid the distinct variables
being conflated.

CRPIT Volume 136 - Computing Education 2013

8

 <body of first loop part 1>
 SEND DATA (value, portA)
 Set Var to GET DATA (portB)
 <body of second loop>
 <body of first loop part 2>
End repeat

For example, since the loop of the Input Plan generates
a data flow to both the Sum Plan and the Count Plan,
three loops (see parts 1, 2 and 3 in the left side of Figure
7) are merged under the loop condition from the Input
Plan loop (Repeat Until Number = -1). The loop bodies
from both Sum Plan and Count Plan are put after “SEND
DATA Number Input:out” and before the blocks for
inputting the next value of Number (see the numbered
parts (1–2–3–1) of the program in the middle of Figure
7). Note that blocks outside of each loop body, such as
“SEND DATA Sum Sum:out” and “SEND DATA Count
Count:out”, are still kept outside of the merged loop (see
the final two blocks in the middle of Figure 7).

The third step is to remove the loop control where
there will only be a single value in a data flow. For
example, the loop controls from the Dividing Plan and
Output Plan can be removed, since the input data flows to
these plans only have single values (as shown in Figure 5,
and confirmed in Table 1). Once more, the merged plan
details are executable and testable. Table 2 is used to
check whether the testing results from Step 4 are the same
as those from previous steps.

3.5 Simplifying the Merged Details
The last step of the process is to simplify the merged
details by combining variables that deal with the same
data but have different variable names, and then
removing all the scaffolding and data flow blocks to
obtain the final program.

When a variable has its value sent to an output port,
and subsequently another variable receives the same
value from a linked input port, the second variable should
be consistently renamed to match the first one. When we
have code of the form:

LINK p1 p2
 …

SEND DATA (v1, p1)
v2 := GET DATA (p2)
<code referring to v2>

Then the variable v2 receives its value (via the SEND
and GET) from v1, and can be renamed to v1:

LINK p1 p2
 …

SEND DATA (v1, p1)
v1 := GET DATA (p2)
<code referring to v1>

For example, consider “SEND DATA Sum Sum:out”,

and “set Number1 to GET DATA Dividing:in.dividend”.
Because the two ports are linked, the value of Number1 is
taken from Sum, and so Number1 should be consistently
renamed to Sum. Similarly, variable Number2 is replaced
by variable Count.

This renaming of variables means that the SEND and
GET blocks become redundant and can be removed,
leaving only variables and control flow blocks, which are
independent from scaffolding and data flow blocks.
Therefore, the last step is to remove all the scaffolding

blocks, both those used to define links (“Begin Links”,
“Link”, and “End Links”), and those used to specify data
flow (“NO MORE DATA?”, “GET DATA” and “SEND
DATA”). This results in the final program shown on the
right of Figure 7. At the end of this process, the final
program is tested and the last column of Table 2 shows
the test results in Step 5, which should be the same as
those in the previous column.

4 Evaluation
We evaluated our approach by comparing the answers to
a programming question from exams in an introductory
programming course at Tairawhiti Campus, Eastern
Institute of Technology in New Zealand. We collected
answers from the final exams in the course from 2006 to
2009, and for 2011 collected answers from the final exam
and the mid-term test (Hu, Winikoff, and Cranefield
2012). Note that the programming questions used in the
exam were similar across years, for example, calculating
the sum and (positive or negative) count, or the average
of a sequence numbers, and are thus comparable. Also,
note that the programming questions in this course’s
exams are done on a computer, rather than on paper.

In all years the course was taught by the first author of
this paper. In the institutes of technology and
polytechnics in NZ, the introductory programming course
is delivered as a total of nine week module for the first
year diploma programme. Each week had a three hour
mixture of teaching and exercises in a computer lab. The
course outlines are listed in Table 3. From 2000–2009 the
course taught programming using Visual Basic (VB) (and
a conventional approach). In 2011 the course used
BYOB. The 2011 course retained a conventional
approach for the first half of the course, but adopted our
proposed process and tool for the second half (see Table
3).

All the answers on the programming question were re-
marked using the same criteria: identifying variables,
using fragments of key code, combining fragments, and
being bug free. The summaries of exam results are shown
in Table 4. In order to establish a causation (i.e. students
did better because of the new method) we consider a
range of possible alternative explanations for the
performance improvement, and rule them out. We
compare data from students using the new method with
data from students using the old method, and given an
observed difference, we rule out other possible causes,
such as different student cohorts from year to year,
different exam questions, or changes of computer
languages (VB to BYOB). We do this by considering a
number of hypotheses.

Our first hypothesis is that the scores of the
programming question in final exams for the
conventional approach (2006–2009) do not show
significant differences (more precisely: come from
populations with the same probability distribution). This
is the case (p = 0.689 > 0.05, see Table 5) and so we
conclude that changes in cohort from year to year, and
in exam questions from year to year do not make a
significant difference.

Our second hypothesis is that the scores for the
conventional approach (including both 2006–2009, and

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

9

also the 2011 mid-term exam5) do not show significant
difference. Again, this is the case (p = 0.603 > 0.05),
which suggests that the 2011 cohort is not significantly
different to earlier cohorts, and also that the use of
BYOB rather than VB is not in itself the cause of a
significant change in performance in the exam.

Wk 2006 – 2009 2011

Topics Topics Contents Contents
1 Introduc

-tion to
Visual
Basic

Introduc-
tion to
BYOB

Pseudocode
Computer
Languages
Sequence:
Input, Process,
Output
Flowchart

Pseudocode
Computer
Languages
Sequence: Input,
Process, Output
Flowchart

2 Input,
Process
and
Output

Making
Decision

Flowchart
Desk Check
Pseudocode
BYOB

Flowchart
Desk Check
Pseudocode
Visual Basic

3 Making
Decision

More
about
Making
Decision

Nesting of
Selection
Flowchart
Desk Check
BYOB
Pseudocode
Documenta-
tion

Flowchart
Desk Check
Pseudocode
Visual Basic
Documen-tation

4 More
about
Making
Decision

Repeating
Actions

Flowchart
Desk Check
BYOB
Pseudocode
Documenta-
tion
Nesting of
Repetition

Review
Nesting of
Selection
Solving
problems
Exercises

5 Repeati
ng
Actions

Analysis of
Problems

Analysis of
Goals
Design by
Plans

Flowchart
Desk Check
Pseudocode
Visual Basic
Solving
problems
 Documen-tation

6 Integra-
tion of
Selectio
n and
Repetiti
on

Steps of
Solving
Problems

Solving
Problems by
Provided Plans

Nesting of
Repetition
Solving
problems
Exercises

7 More
about
Integra-
tion

Put All
Together
to Solve
Problems

Build Your
Own Plans
Solving
Problems from
Goal to
Program

Review
Solving
problems
Exercises

8 Revision Revision Revision Revision

9 Test Test Written and
practical Test

Written and
practical Test

Table 3: Course outline by years

Our last hypothesis is that the new method does make
a difference, i.e. that including students’ performance in
the final exam in 2011 (i.e. after being taught our new
approach) will result in a significant difference. This is
the case (p = 0.031 < 0.05), and since we have excluded a
change in cohort, or programming language, or exam
question, we conclude that our method has made a
significant difference.

5 Ideally we would compare mid-term tests from all years, but
2006-2009 didn’t have a mid-term test.

 Conventional Method Experiment
Method

Year of
Exam

2006 2007 2008 2009 Mid-
term
2011

2011

Student
Numbers

13 16 13 8 7 8

Mean 33.3 53.8 36.8 39.4 52.4 84.5
Median 18 82.5 0 22.5 40 100

Table 4: Summary of student results

Student Groups p-value
Final exam from 2006 to 2009 0.689 (> 0.05)
Final exam from 2006 to 2009 and
mid-term exam 2011

0.603 (> 0.05)

Final exam from 2006 to 2009 and
final exam 2011

0.031 (< 0.05)

Table 5: Kruskal-Wallis H test6 results

Having determined that including the 2011 final exam
leads to a significant difference (i.e. rejecting the null
hypothesis), we would like to find out which medians of
examination scores are different. We performed a family
of pairwise comparisons using the Mann-Whitney U test
and Holm’s sequential Bonferroni adjustment to reduce
the chance of any type 1 errors. We only consider the
four comparisons between the samples from 2011 and
each of the earlier years (see Table 6). This is because
2011 is the year in which the intervention we wish to
measure was applied. We made three hypotheses to the
sample data summarized as follows. The Mann-Whitney
U Test result of each paired comparison to 2011 is
smaller than its threshold p-value, which indicates
significant differences of examination scores between the
year 2011 and each individual year from 2006 to 2009.
Therefore, the evaluation has shown a statistically
significant improvement in student performance using our
new approach. The difference is not due to variation in
the cohort, in the examination questions, or in the use of
BYOB.

Table 6: Comparing Paired Examination Scores

There were two limitations in the evaluation.
However, even though the number of students was low,
there was still a clear and statistically significant result.
There was also a ceiling effect (where for the 2011 cohort

6 Since we had a small group of students in each year
(between 8 to 16) and the performance of novice programmers
is known to not follow a normal distribution, we used a non-
parametric statistical analysis of variance technique, which does
not make any assumptions about the shape of the underlying
probability distribution. The Kruskal-Wallis one-way analysis
of variance by ranks (H test) is a statistical test for measuring
the likelihood that a set of samples all come from populations
with the same probability distribution.

Paired Comparisons p-value (Holm-
Bonferroni
threshold)

Final exam between 2011 to 2006 0.003 (< 0.013)
Final exam between 2011 to 2008 0.01 (< 0.017)
Final exam between 2011 to 2007 0.021 (< 0.025)
Final exam between 2011 to 2009 0.025 (< 0.05)

CRPIT Volume 136 - Computing Education 2013

10

five out of eight students produced programs that were
awarded full marks). However, this ceiling effect actually
reduces the difference between the experimental and
conventional groups, and there would be a more
significant improvement if we used an instrument that did
not have a ceiling effect. Overall, the evaluation results
are significant, but further evaluation would help to
strengthen the results.

5 Conclusion
We have introduced a well-defined, iterative and
incremental program development process for teaching
novice programming. The process provides a guideline
for novices to develop from the concepts of goals and
plans to final code in a visual environment. The process
includes five major steps (Figure 3), which guide the
student through a process of stepwise refinement. Each
step has strategies, and heuristics to guide novices. A
significant difference with existing process approaches is
that our process includes feedback from every step rather
than having one round of feedback from the final
program. This regular feedback from every intermediate
step encourages students to continue to progress “from
victory to victory” in the next step. Our research suggests
that the experimental teaching method proposed, with a
well defined process, use of goals and plans, and a visual
notation, has the potential to significantly improve
learning of programming skills.

Note that we are aiming to teach generic programming
in a way that leads to further computer courses. This is
why we focus on problems that are more representative of
the sort of algorithmic programming done in later
courses, rather than the sort of applications that BYOB is
typically used for. In other words, BYOB is merely a
vehicle, and the process is applicable to other
programming languages. One area for future work is to
assess whether the cohort that did the course in 2011
(with the new teaching method) did better, worse, or the
same in subsequent programming courses. We have done
a preliminary comparison of the overall exam mark in the
second programming course (PP590) for the 2006-2011
cohorts. However, although the PP590 exam marks for
the 2011 (experimental) cohort are higher (average of
53.857 for 2011, compared with 34.1 across 2006-2009
[2007 is lowest with 23.67, 2008 highest with 44.308]),
the difference is not statistically significant. Note that the
PP590 exam typically includes both questions that
involve programming, and questions that assess
knowledge rather than programming skill (e.g. "what is
pseudocode?"). This means that the overall exam mark is
not a good measure of programming ability.
Unfortunately, we do not have the marks for individual
questions, only the total exam mark.

As noted earlier, where the library is missing a
required plan block, the student must develop it
themselves by modifying similar blocks (e.g.
multiplication to division), or by using a template-based
process (not described in this paper). Our experience has
been that this is not an issue (as indicated in the
evaluation results), and we argue that constructing a
single plan block can be expected to be easier than
constructing an entire program, i.e. that even where some
plan blocks are not in the library, our process has the

effect of reducing the problem to a smaller one. However,
more broadly, this is a limitation of our work: we assume
that the task at hand is reasonably well covered by the
library of plans. Another limitation of this work is that
the model of a plan network with data flowing between
them is not expected to be applicable to all programming
tasks. However, since our aim is to help novices to learn
basic programming skills, we do not see the lack of
universal applicability as a significant issue.

Having a programming process is, to some extent, a
trade off in that the process is more structured (and hence
more easily followed by novices), but also more complex
than unguided programming. Our experience, and results,
clearly show that the process is usable, and furthermore,
that the benefits from having a structured process
outweigh the costs of the additional complexity. We
argue, as Kölling and Henriksen (2005) did, that without
a programming process we could end up with two groups
of students: those who fail programming, and those who
pass by their own implicit process. We draw an analogy
with swimming lessons. We would not let swimmers just
jump into a river or the sea to learn swim. Instead, we
prefer to teach them steps of swimming in a well-
designed style at a swimming pool in the first place.

During the teaching, we recognised that some students
were reluctant to follow the process they were taught
(using goals and plans), and instead used BYOB blocks
directly. It is not clear whether these students did not
need the detailed process: they might be in the group who
can find their own process implicitly (Kölling and
Henriksen 2005). However, what is clear is that across
the class, the new process did make a difference. It is
possible that for some of the students the process assisted
them to advance to a point where they no longer needed
to follow the explicit process for simple programs. We
also note that it may be easy to build up a program for a
simple problem without explicit process, but it is hard to
directly write a program for a complex problem.

There are a number of directions for future work. One
direction concerns “bricoleurs” (Turkle and Papert 1990)
who prefer to arrange and rearrange existing material
transparently. To what extent does our process support or
hinder this style of work? We argue that the steps of
expanding and merging can actually expose and deal with
the details of goals and plans, and that the feedback from
each step should support a bricoleur style of negotiating
and renegotiating. However, more work is needed to
confirm this.

Another direction for further work concerns the
number of plans. A limitation of our plan framework is
that we only provided a limited number of plans. In other
words, there are not many different plans to choose for
the same goal. Therefore, one area of further investigation
is to investigate students’ mental models in order to better
understand how they select plans when many plans are
available.

Finally, one weakness with the process is that the plan
merging process, although well-defined, is somewhat
complex. Therefore an area for future work is to
investigate how to better support the plan merging
process. However, we want to provide support that helps
students to gain insight into the merging process, rather
than just providing a “wizard” that does the merging of

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

11

plans. On the other hand, the expansion of plans (Section
3.3) can, and should, be automated.

6 References
Ben-Ari, M. (2001): Program visualisation in theory and

practice. UPGRADE, 2, 2, 8-11.
Caspersen, M. and Kölling, M. (2009): STREAM: A First

Programming Process, Transactions on Computing
Education (TOCE) 9, 1, 4:1-29, ACM

de Raadt, M. (2008): Teaching programming strategies
explicitly to novice programmers. PhD Thesis, School
of Information Systems, University of Southern
Queensland.

de Raadt, M., Watson, R. and Toleman, M. (2006): Chick
Sexing and Novice Programmers: Explicit Instruction
of Problem Solving Strategies. In Proceedings of the
Eighth Australasian Computing Education Conference
(ACE2006), 52, 55-62.

Ebhrahimi, A. (1992): VPCL: A Visual Language for
Teaching and Learning Programming. (A Picture is
Worth a Thousand Words). Journal of Visual
Languages and Computing 3 (1992), 299-317

Felleisen, M., Findler, R. B., Flatt, M. and Krishnamurthi,
S. (2004): The TeachScheme! project: Computing and
programming for every student. Computer Science
Education, 14, 1, 55-77.

Glaser, H., Hartel, P. H. and Garratt, P. W. (2000):
Programming by numbers: a programming method for
novices. The Computer Journal, 43, 4, 252-265.

Guzdial, M., Konneman, M., Walton, C., Hohmann, L.
and Soloway, E. (1998): Supporting programming and
learning-to-program with an integrated CAD and
scaffolding workbench. Interactive Learning
Environments, 6, 1/2, 143-179.

Guzdial, M. & Soloway, E. (2002): Teaching the
Nintendo generation to program, Communications of
ACM, 45, 4, 17-21

Hu, M., Winikoff, M. and Cranefield, S. (2012):
Teaching Novice Programming Using Goals and Plans
in a Visual Notation, In Proceedings of the Fourteenth
Australasian Computing Education Conference
(ACE2012), 123, 43-52.

Janzen, D.S. and Saiedian, H. (2006): Test-driven
learning: Intrinsic integration of testing into the CS/SE
curriculum. In Proceedings of the 37th Technical
Symposium on Computer Science Education
(SIGCSE’06), 254–258. ACM.

Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O.,
Kingston, J. H. and Crawford, K. (2000): Problem-
based learning for foundation computer science
courses. Computer Science Education, 10, 2, 109-128.

Kölling, M. and Henriksen, P. (2005): Game
Programming in Introductory Courses with Direct State
Manipulation, In Proceedings of the Innovation and
Technology in Computer Science Education
(ITiCSE’05), 59-63. ACM.

Letovsky, S. and Soloway, E. (1986): Delocalized plans
and program comprehension. IEEE Software, 3, 3, 41-
49.

Lister, R. (2011): Programming, Syntax and Cognitive
Load, ACM Inroads, 2, 2 (June 2011), 21-22

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., McCartney, R., Moström, J. E.,
Sanders, K. and Seppälä, O. 2004. A multi-national
study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin, 36, 4, 119-150.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y. B. D., Laxer, C., Thomas, L.,
Utting, I. and Wilusz, T. (2001): A multi-national,
multi-institutional study of assessment of programming
skills of first-year CS students. ACM SIGCSE Bulletin,
33, 4, 125-180.

Mayer, R. (1981): The psychology of how novices learn
computer programming, Computing Surveys, 13, 1,
121-141, ACM

Naps, T. L., Rößling, G., Almstrum, W., Dann, W.,
Fleischer, R., Hundhausen, C., Korhonen, A., Malmi,
L., McNally, M., Rodger, S., and Velazquez-Iturbide, J.
A. (2003): Exploring the Role of Visualization and
Engagement in Computer Science Education. ACM.
SIGCSE Bulletin, 35, 2, 131-152.

Pattis, R. (1990): A philosophy and example of CS-1
programming projects, In Proceedings of the Twenty–
first SIGCSE, 34-29, ACM

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams,
E., Bennedsen, J., Devlin, M. and Paterson, J. (2007):
A survey of literature on the teaching of introductory
programming. In Proceedings of the working group
reports on Innovation and Technology in Computer
Science Education (ITiCSE'07). ACM.

Porter, R. and Calder, P. (2003): A pattern-based
problem-solving process for novice programmers. In
Proceedings of the Fifth Australasian Computing
Education Conference (ACE2003), 20, 231-238.

 Rößling, G., Joy, M., Moreno, A., Radenski, A., Malmi,
L., Kerren, A., Naps, T., Ross, R. J., Clancy, M.,
Korhonen, A., Oechsle, R. and Iturbide, J. Á. (2008):
Enhancing learning management systems to better
support computer science education. SIGCSE Bulletin,
40, 4, 142-166.

Soloway, E. (1986): Learning to program = learning to
construct mechanisms and explanations.
Communications of the ACM, 29, 9, 850-858.

Spohrer, J. C., Soloway, E. and Pope, E. (1985): A
goal/plan analysis of buggy Pascal programs. Human-
Computer Interaction, 1, 2, 163-207.

Turkle, S and Papert, S. (1990): Epistemological
Pluralism: Styles and Voices within the Computer
Culture, Journal of Women in Culture and Society, 1,
16, 11, 128-157.

Utting, I., Cooper, S., Kölling, M., Maloney, J., and
Resnick, M. (2010): Alice, Greenfoot and Scratch – A
discussion. ACM Transactions on Computing
Education. 10, 4, Article 17, 11 pages.

Winslow, L. E. (1996): Programming pedagogy—a
psychological overview. ACM SIGCSE Bulletin, 28, 3,
17-22.

CRPIT Volume 136 - Computing Education 2013

12

It’s Never Too Early: Pair Programming in CS1

Krissi Wood
School of ICT

Otago Polytechnic
Dunedin, New Zealand
Krissi.Wood@op.ac.nz

Dale Parsons
School of ICT

Otago Polytechnic
Dunedin, New Zealand
Dale.Parsons@op.ac.nz

Joy Gasson
School of ICT

Otago Polytechnic
Dunedin, New Zealand
Joy.Gasson@op.ac.nz

Patricia Haden
School of ICT

Otago Polytechnic
Dunedin, New Zealand

Patricia.Haden@op.ac.nz

Abstract
This paper describes the use of the Pair Programming
software development methodology in the earliest weeks
of a first programming course. Based on a broad,
subjective assessment of “programming confidence”,
instructors placed students in level-matched pairs for a
portion of their programming exercises. Students who
began at the lowest levels of confidence showed
significantly better exercise completion rates when paired
than when working individually. Student response to the
Pair Programming technique was uniformly positive, and
teaching staff report pedagogical, mechanical and social
benefits from the practice. These data indicate that
successful programming pairs can be constructed based
on tutors’ subjective judgements of student performance
very early in CS1, before exam scores or code quality
assessments are available. Thus Pair Programming can be
an effective classroom intervention even with extreme
novices..

Keywords: Programming education, Pair
Programming, Novice programmer.

1 Introduction
Failure rates in first computer programming papers
(usually called CS1) are alarmingly high, often greater
than 40% (Bennedsen and Caspersen, 2007). Recent work
(Robins, 2010) has identified student struggles in the first
days and weeks of CS1 as a significant contributing
factor to this high failure rate. Robins has demonstrated
mathematically that students who fail to acquire the core
concepts presented in first programming lessons are
frequently unable to recover, leading to high drop out and
failure rates. He maintains that this is largely due to the
scaffolded structure of computer programming, where
each skill builds upon, and requires mastery of, a set of
simpler skills. Thus it is essential that we find classroom
approaches and interventions that can support novice
programmers during their earliest teaching sessions. In
the current study, we explore the possibility of leveraging
a specific programming methodology – Pair
Programming – in the very first weeks of CS1. To do this,

.Copyright © 2013, Australian Computer Society, Inc. This

paper appeared at the 15th Australasian Computing Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

we introduce a protocol for assigning students to pairs
using holistic judgements made by in-class teaching staff.
These judgements were made after the second week of
CS1 before either exam marks or code quality
assessments were available. As detailed below, this
pairing protocol resulted in significantly better class
performance for those students who initially appeared to
be at greatest risk.

Pair Programming is a formal software development
protocol where two programmers work synchronously on
a single piece of code (Williams and Kessler, 1998). The
protocol includes detailed policies for participant roles
and procedures. One member of the pair is the Driver,
who controls the mouse and keyboard, physically creating
the code. The other member of the pair is the Navigator,
who oversees the construction process, watches for
errors, makes suggestions and locates resources. Partners
switch roles at regular intervals, usually every 15 to 20
minutes. Pair Programming originated in industry but has,
in the last decade, become increasingly common in the
classroom. An active research community is exploring the
potential benefits of Pair Programming to students and
teachers, while considering mechanical and procedural
issues in its use.

Studies have shown that Pair Programming can
contribute to an improvement in learning outcomes. In a
large longitudinal study involving several thousand
students, McDowell, Werner, Bullock, and Fernald
(2004) found that students in classes that used Pair
Programming were more likely to complete their classes
and to continue in a computer science major than were
students in comparable classes that used only solo
programming. Students from the Pair Programming
classes had equivalent exam performance to solo
students, addressing the concern of some educators that
Pair Programming permits one student to “freeload” on a
stronger partner.

Similarly, Mendes, Al-Fakhri and Luxton-Reilly (2005
and 2006) have performed two large-scale studies of Pair
Programming at the University of Auckland. In these
studies, students in Pair Programming classes performed
better on programming exercises, and earned higher exam
marks, than solo programming controls.

Williams (2007) describes the lessons learned in seven
years of using Pair Programming at a large university in a
variety of Computer Science papers at all academic
levels, including graduate. Williams details benefits of
the protocol for both teachers and students. For students,

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

13

Pair Programming supports the building of stronger social
relationships (through the need to work together),
increases retention, and reduces “waiting time” for
teacher feedback as two students working together can
often resolve a problem for which a student working
alone would require teacher assistance. For teachers, the
protocol reduces marking time (by halving the number of
submitted assignments), reduces student demand in
practical sessions, and improves general work ethic by,
they hypothesise, engendering a sense of mutual
responsibility between partners.

Braught, Wahls and Eby (2008) performed a tightly-
controlled study of Pair Programming. In a large
programming paper with multiple sections, they
randomly assigned some sections to use Pair
Programming and some to use solo programming.
Students enrolled in a section without knowing which
method would be used in that class, and were not allowed
to transfer between sections after the start of the paper.
Braught et al. compared code quality on individual
assignments, as well as exam marks and time to complete
assignments. They found an interaction between
programming protocol and scores on the Scholastic
Aptitude Test (a test of general academic level
administered prior to college or university entrance in the
United States) such that greatest benefit of Pair
Programming was seen for students with lower SAT
scores. This implies that Pair Programming might be
especially helpful for those students who would otherwise
struggle with a programming paper, which is in
accordance with the higher retention and completion rates
seen in many Pair Programming studies.

In all of the preceding studies, (and in others discussed
below) subjective student feedback was gathered, asking
students for their views of the Pair Programming
experience. Student feedback is nearly universally
positive, with students reporting that they enjoy working
in pairs, that they feel they can program more quickly
with a partner, that they are less likely to “get stuck”, and
that they appreciate the opportunity to get to know fellow
students through working together. Negative feedback
(and less positive performance outcomes) occurs
primarily in the case of dysfunctional pairings, that is,
when partners are unable to work effectively together.

Although some of the reported benefits of Pair
Programming can be obtained simply through random
pairing (e.g. McDowell et al., 2004 used only random
pairing) there is compelling evidence that careful
selection of pairs reduces the probability of dysfunctional
pairings. Specifically, both educational benefit and
student satisfaction appear to be maximised when the two
members of a pair have similar levels of programming
ability.

In the long-term study described by Williams (2007),
teachers experimented with a variety of metrics to
determine pairings, including standardised general exam
scores, grade point average, the results of personality and
self-esteem tests, learning style scores, and work ethic
(based on self-report). They paired students in various
combinations of these measures, using both similarity and
dissimilarity of scores. The most successful pairings were
those based on similar mid-term exam score, the most
direct measure of a student’s programming skill at the

time of the pairing. On self-report, Williams’ students
consistently request to work with a student of equal or
greater programming skill. Since it is not possible to give
one member a stronger partner without giving the other a
weaker partner, Williams recommends attempting to pair
students of equal skill levels.

Cliburn (2003) explored directly the effect of partner
similarity by constructing highly dissimilar pairs. He
originally paired students “from different cultural or
ethnic backgrounds [and]…upper with lower classmen”.
The result was poor collaboration and poor exam
performance. He then re-paired students based on their
project marks, matching students with similar results.
With these pairings he observed better project quality and
completion rates, and higher exam scores.

Direct inspection of students’ experience of Pair
Programming also shows the advantage of pairing
students of similar ability. Chaparro, Yuksel, Romero and
Bryant (2005) used a variety of metrics to explore
students’ qualitative views of Pair Programming.
Through the use of observation, questionnaires, semi-
structured interviews and field notes they determined that
students prefer, and find most effective, pairings of
similar skill levels. Katira, Williams and Osborne (2005)
queried students directly about the “compatibility” of
their Pair Programming partner. Students rated as more
compatible those partners whom they perceived to be of
similar skill. Students’ perception of the skill levels of
their partners was accurate, as measured by exam scores
and grade point average.

More recent studies (e.g. Radermacher and Walia,
2011 and 2012; Braught, Wahls and Eby, 2008) have
accepted pairing by skill level as the appropriate default,
citing the accumulating evidence in its favour.

While there is a growing consensus that pairing by
skill level produces the most successful Pair
Programming experience, the measurement of skill
remains problematic. As we are interested in the use of
Pair Programming very early in a first programming
course – ideally in the first weeks – we require a measure
of ability to be made before exam or major project scores
are available. We have thus used a subjective metric,
based on instructor observation of student performance,
which can be made in the first weeks of the semester.

Our observational assessment of ability is based on
what we call “programming confidence”. The term
“confidence” in this context is not a personality metric; it
does not, in our experience, correlate with self-esteem. It
is a description of the way in which students approach
programming exercises. The confident student
programmer approaches coding exercises boldly, is
willing to experiment with the techniques being learned,
is relatively unfazed by coding errors and seems to expect
to be able to solve the assigned problem. These students
may have prior programming experience in school or as a
hobby, or they may have a history of success in contexts
they perceive to be similar to programming (e.g. games or
puzzles), or they may simply feel comfortable with the
particular intellectual exercise involved. Student
programmers who lack confidence are less able to make
independent progress with coding exercises. They
frequently become “stuck”, and will wait for assistance
from the instructor, rather than try an alternative approach

CRPIT Volume 136 - Computing Education 2013

14

on their own. This slows their work pace, and often
makes it difficult for them to complete in-class
assignments in the allotted time. Programming
confidence, as we define it here, reflects current
programming ability, and can change rapidly as the
student gains experience. We have observed that students
who start out with little confidence can eventually
develop considerable programming skill, if they are able
to navigate successfully the difficult early stages of
learning. In section 2, we discuss further the process used
to make our assessments of student programming
confidence.

It is interesting to note that Thomas, Ratcliffe and
Robertson (2003) attempted to place students on an
equivalent continuum of programming confidence by
self-report. Each student was asked to rate himself or
herself on a 10-point scale from “Code Warrior” to
“Code-Phobe”. Thomas et al.’s description of these terms
is extremely close to our conceptualisation of
programming confidence. Based on the students’ own
rating, Thomas et al. compared the efficacy of same vs.
opposite pairings. That is, in one condition they paired
two high scoring students or two low scoring students; in
the other condition, they paired a high-scoring student
with a low-scoring student (middles were always paired
with other middles). They report that Same pairings
perform better than Opposite pairings on coding
exercises, and that students consistently prefer being
paired with someone at their own level on the Warrior-
Phobe scale.

Another factor that has been explored as a potential
determinant of the efficacy of Pair Programming is the
time course of the pairing. McDowell et al. (2004) paired
students for an entire semester, and pairing was used on
both in-class and out-of-class assignments. Radermacher
and Walia (2011), in contrast, paired students only for a
single 50-minute class session. Based on their lengthy
experience with Pair Programming, Williams (2007) and
her colleagues (see for example, Nachiappan, Williams,
Ferzli, Wiebe, Yang, Miller and Balik, 2003) recommend
switching pairs often. They note that this reduces the
impact of any dysfunctional pairing and increases the
social benefit which many students cite as an advantage
of the method. They further advise that Pair Programming
be initially used only in-class, until students have
mastered the technique. This has the added benefit of
eliminating scheduling difficulties, which are noted as
problematic by many students in studies using out-of-
class exercises (cf. McDowell et al., 2004; Hanks, 2006).

Thus, following current best practice for the
implementation of Pair Programming in the classroom,
we intend to pair students based on programming
confidence (as defined above), to include a combination
of paired and individual exercises during the semester,
and to change pairs for each Pair Programming session.
In this way we hope to be able to use Pair Programming
in the very earliest stages of programming education,
where it is hypothesised that students are at greatest risk
of failure (cf. Robins, 2010).

2 Method
The study was conducted during a one semester (16
teaching weeks) offering of a first programming course at

Otago Polytechnic in New Zealand. “Programming 1” is
a required paper in the first semester of our Bachelor of
Information Technology degree. For the majority of
students it is their first exposure to formal computer
programming, although there are generally a small
number of students who have previously taken a
programming paper (some who have previously taken
Programming 1 but not passed), and occasionally students
with hobbyist coding experience. In this offering, 40
students started the paper, including 3 repeaters and 11
with some other prior programming experience.

The focus of Programming 1 is on programming
fundamentals, such as variable manipulation and flow of
control. The paper is taught in C# using Visual Studio,
but is taught exclusively on the console, and contains
only minimal Object-Oriented theory (formal OO and
GUI work begins in our Programming 2 paper in second
semester). Programming 1 comprises two two-hour
sessions each week. In a typical session, a new topic is
introduced by the lecturer with discussion and code
examples. Students are then given a set of practical
exercises to perform in class on the discussed topic.
Practicals are designed to be completed during class by
the majority of students.

In previous offerings of Programming 1, each student
worked individually on all practical sessions. In the
semester in which this study was conducted, Pair
Programming was introduced in selected sessions. Our
goal was to begin Pair Programming as early as possible,
matching students at comparable levels of ability, as
dictated by the current literature. While the common
quantitative metrics of ability – exam scores and code
quality assessment – are not available in the first weeks of
CS1, our experience as programming instructors
convinced us that there were observable differences
between students even in these early stages. These
differences we have summarised as “programming
confidence” (see discussion above). We hypothesised that
programming confidence could be a criterion for the
construction of successful pairs. Further, we believed that
judgements of programming confidence could be made
simply through observation of student behaviour by
experienced programming educators. This hypothesis was
based on our conviction, developed over some 40 years of
combined CS1 teaching experience, that “we know it
when we see it”. Thus we determined to assign students
subjectively to one of three levels of programming
confidence, and to use this assignment to construct
programming pairs.

Teaching staff predicted that they needed at least four
teaching sessions to identify accurately each student’s
level of programming confidence. Thus, for the first four
sessions (i.e. the first two weeks of the semester),
students worked individually while teaching staff
carefully observed their behaviour.

The four session topics were:

1. Introduction to the IDE and writing to the
screen.

2. Introduction to variables and reading from user
input.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

15

3. Introduction to data types and computation.
4. Small interactive program combining reading

user input, performing computation using
multiple data types, and writing output.

After the fourth session, the two classroom tutors
made their initial confidence assignments individually.
Each student was assigned to a confidence band, with 1
being lowest confidence, 3 being highest confidence and
2 being intermediate. These assignments were made
subjectively, reflecting the tutor’s sense of how
confidently each student approached the programming
exercises. Where there were disagreements between the
two tutor judgements, the final banding was made
collaboratively through detailed discussion of each
student’s progress and consideration of the number of in-
class exercises the student had been able to complete.
Prior to the banding, tutors had anticipated difficulty
assigning students who fell at the borders of the banding
categories. In practice, while tutors had some uncertainty
at the boundary between levels 2 and 3, they had no
difficulty identifying those at level 1 and there were no
disagreements between the two teaching staff about who
belonged in this category.

Although no specific quantitative metrics were used to
determine confidence bandings, the in-class tutors
identified a number of behaviours which they both used
consistently to identify low confidence students. These
included:

• Getting stuck: The student simply stops working

and either switches to some non-related task or
waits passively for tutor assistance.

• Copy-coding: The student begins reproducing
code samples verbatim where they are not
appropriate.

• Frantic random changes: The student begins
inserting and deleting code elements randomly in
the hopes that an error will be resolved, without
any organised plan.

The consistency of assignment to level 1 by both
tutors even in the absence of specific quantitative metrics
is notable. The very low confidence student seems almost
qualitatively different from his peers, at least in the
perception of an experienced programming teacher. In
future semesters, we intend to analyse formally the initial
judgements of the two classroom staff to obtain a
statistical measure of inter-rater reliability.

For the next four weeks of the semester, the two
classroom sessions each week were handled differently.
In the first session students worked individually; in the
second session, students were assigned to pairs and used a
formal Pair Programming code development
methodology. (The technique was explained prior to the
first Paired session.) Students were paired based on
banding such that each student worked with a student at
the same confidence level. Each student was assigned a
different partner for each of the four paired sessions. The
pairing assignment was made by the instructors prior to

the class session and announced at the beginning of
practical work time. In cases where an odd number of
students necessitated a cross-banding pairing, this was
arranged by the instructors based on their assessment of
the students’ suitability. Where an odd number of
students required one student to work alone, this role was
always given to a more experienced Level 3 student. For
each session, instructors recorded exercise completions
and observed student behaviour.

At Week 6, after four weeks of using Pair
Programming in alternating sessions, student feedback
was collected. See below for details. Additionally,
students were rebanded at this time. The course
instructors had noted that different students were
progressing at different rates (as is generally true in
Programming 1) and some students who had initially
been placed in the same band were now working at
different levels of confidence. The rebanding used, as
much as possible, the same criteria as the original
banding. That is, students who were still obviously
struggling were assigned to Level 1, and those who were
working independently were assigned to Level 3. The
new banding was not based on a student’s ranking
relative to the rest of the class. Thus it was technically
possible that the second banding would have no Level 1
students. In actual fact, the second banding produced 8
Level 1 students (22%), 22 Level 2 students (61%) and 6
Level 3 students (17%). See below for a more detailed
discussion of the changes in banding over time.

Weeks 7 to 9 of the paper were spent in revision and
preparation for the mid-term exam, so no formal practical
sessions were held. After the mid-term exam, students
were banded based on their exam score to provide an
external comparison for the instructors’ subjective
bandings. Students scoring 55% or lower were considered
Level 1, students scoring 55% to 75% were considered
Level 2, and students scoring more than 75% were
considered Level 3.

The purpose of the second banding (and the banding
based on exam score) was to prepare for pair assignments
in the remaining weeks of the semester, where we
intended to continue the alternation of individual and
paired practical sessions. However, students began to
express a preference for working in pairs rather than
individually. In view of this attitude, and given the
positive impact of Pair Programming that was observed
during the first experimental weeks (see below) the
instructors decided that educational efficacy took
precedence over data collection, and did not require
students to perform any practicals individually after week
11. The instructors continued to place students into pairs
for the planned Paired sessions if they had not self-paired,
but students were also allowed to construct their own
pairs. Thus only weeks 3 to 6 (inclusive), 10 and 11 are
included in the analysis.

CRPIT Volume 136 - Computing Education 2013

16

3 Results1

3.1 Practical Lab Completions
During the six experimental weeks, there were six
individual and six paired practicals. The mean number of
individual practicals completed on time per student was
4.58; the mean number of paired practicals completed on
time was 4.97 (F1,34 = 2.489; p<.05).

The distribution of the difference between numbers of
paired and individual lab completions across students is
shown in Figure 1. Of the 14 students who completed
equal numbers of individual and paired practicals, 8
(57%) completed all twelve labs. This apparent ceiling
effect compromises our ability to sensitively observe the
impact of Pair Programming for students at the top end.

Figure 1: Distribution of Completions

To observe more closely the differential impact of
pairing on students of different initial confidence, we can
compare completion rates for students based on their first
bandings. Due to the low number of students initially
banded at Level 3 who did not withdraw from the paper
prior to the midterm exam, we combine Levels 2 and 3
for this analysis. Students who had initially been banded
at Level 1 completed on average .84 more paired labs
than individual; students initially banded in Levels 2 or 3
completed on average .12 fewer paired labs than
individual (F1,34 = 4.11; p=.05). This pattern does not
seem to be attributable entirely to a ceiling effect, as the
total mean labs (out of 12) completed for initial Level 1
students is 9.05, and for initial Level 2/3 students is
10.11. This difference is not significant (F1,34 = 2.53;
p=.12). Thus the benefit of Pair Programming as
measured by practical lab completion rates appears to be
primarily for those students who initially exhibited the
greatest difficulty with programming.

3.2 Programming Confidence Bandings
The proportion of students at each Level for each of the
bandings is shown in Figure 2. The proportion of students
at Level 1 decreased between week 2 and 6, while the
proportion at Level 2 increased. Assuming that
programming confidence increases with experience, this
pattern is as expected. The mid-term banding shows a
steep increase in the proportion of students placed at
Level 3. Since this banding was based not on instructor

1 To allow comparisons between analyses, four students who

withdrew from the paper prior to the midterm exam have been
omitted from all results summaries.

judgment (as the Week 2 and Week 6 bandings were) but
on exam score, it is not possible to determine whether this
shows an actual continuation of the trend of increasing
confidence, or is just a reflection of a comparatively easy
exam.

Figure 2: Proportion of students at each level for
each banding.

As discussed above, students initially placed in

confidence Level 1 turned in significantly more practical
labs from paired than from individual sessions, while
students initially placed in confidence Levels 2 and 3 did
not. This indicates that the instructors’ subjective ratings
of programming confidence do correspond to some
student quality relevant to performance in Programming
1. To interpret this pattern fully, it will help to explore
precisely what is being measured in the instructors’
confidence judgements. The difficulty of accurately
predicting, or even measuring, programming skill has
been discussed widely (see, for example, McCracken et
al., 2001) and complicates all research into programming
education. It would be useful to discover that something
as simple as tutor observation could be used to make such
a prediction.

If early programming confidence is a useful predictor
of eventual programming performance, we would expect
to see a correlation between initial banding judgement
and final course mark. This was not observed (Spearman-
r = -0.17; ns). However, it is interesting to consider
student performance not just as a function of initial
confidence, but as a function of the change in confidence
seen between Week 2 and Week 6. Since confidence
banding judgements were absolute, not relative, we
would have hoped to see all students’ confidence scores
improving with experience, and this pattern was seen
generally in the summary of proportions shown in Figure
2, where many students moved from Level 1 at Week 2 to
Level 2 at Week 6. However, not all students’ banding
scores did increase. In fact, of the 36 students who earned
final marks in the paper, 20 (56%) actually maintained
the same confidence banding from Week 2 to Week 6
(33% went up; 11% went down). Perhaps when
predicting eventual programming skill it is useful to look
not only at where the student starts, but how rapidly he or
she gains programming confidence. To assess this, we
can look at the relationship between students’ change in
confidence in the early weeks of the paper, and their
eventual final course mark. For this analysis, we omit the
6 students originally at Level 3 since it was not possible
for them to increase their confidence band. Of the

0

2

4

6

8

10

12

14

16

-4 -3 -2 -1 0 1 2 3 4

F
re

q
u

e
n

cy

Paired - Individual

Distribution of (Paired Completions - Individual Completions)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Week 2 Banding Week 6 Banding Mid-term exam Banding

P
ro

p
o

rt
io

n
 o

f
S

tu
d

e
n

ts

Confidence Banding Level Proportions

1

2

3

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

17

remaining students, one student’s banding dropped from
Week 2 to Week 6, 14 stayed the same, and 11 improved.
The mean final course marks for the three groups are
shown in Figure 3. Those who improved their confidence
rankings from Week 2 to Week 6 earned significantly
higher final course marks, on average (F2,23 = 3.4; p=.05).

Figure 3: Mean final mark by confidence band
change.

3.3 Student Feedback
After the first four weeks of alternating individual and
Pair Programming sessions (at Week 6), students
completed a brief questionnaire covering their attitudes
toward the Pair Programming techniques. The
questionnaires were submitted anonymously, and were
administered by a non-teaching member of the research
team. The questions asked are shown in Table 1.

1. Which do you enjoy more: pair programming or working

alone? Why?

2. Do you feel you program better in a pair or on your
own? Why?

3. What did you like about the pair programming
sessions?

4. What did you dislike about the pair programming
sessions?

5. Would you like to continue to use pair programming
during the remainder of the semester?

6. Which best describes your programming education
experience prior to this paper? 1) No prior experience
2) Hobbyist or self-taught 3) Have taken one or more
previous programming papers.

7. Any other comments?

Table 1: Feedback questionnaire Week 6

After Week 12 of the paper, feedback was again

collected. Since prior experience was not expected to be
as relevant, given that even complete novices had been
through 12 weeks of programming education, Question 6
was replaced with a question designed to elicit students’
opinions about how best to construct a pair: “Think about
the most effective pairings that you have been in this
term. What do you think makes a Pair Programming
partnership successful?”

Figures 4 to 6 show summaries of responses to the
three binary questions (numbers 1, 2, and 5 in Table 1)
comparing Week 6 and Week 12.

Figure 4: Student preference

Figure 5: Student judgement of quality

Figure 6: Student willingness to continue

There are no significant differences between the
patterns of responses to these questions at Weeks 6 and
12 (by χ2). The main effect of response collapsed across
Weeks is significant for all questions (by χ2; p<.002).

In Week 6, a greater proportion of students preferred
working individually to working in pairs than at Week 12
(47% to 41% at Week 6; 35% to 50% at Week 12).
Although this effect is not statistically significant, the
trend corresponds to the classroom instructors’
observation that students became more comfortable with
the protocol over time. Based on students’ free comments
(see below) this appears to be due both to a reduction in
social awkwardness as students get to know each other,
and increased value of the protocol as the programming
tasks become more challenging.

In both Week 6 and Week 12, a greater proportion of
students felt they “programmed better” in a pair (58% to

0

0.1

0.2

0.3

0.4

0.5

0.6

Individual Paired No Preference

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

Which Do You Enjoy More?

Week 6

Week 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Individual Paired No Preference

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

In Which Do You Program Better?

Week 6

Week 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Yes No Indifferent

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

Continue to Use Pair Programming?

Week 6

Week 12

65.20 67.57

82.26

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Down Same Up

F
in

a
l

C
o

u
rs

e
 M

a
rk

 (
%

)

Week 2 to Week 6 Change

Mean Final Mark by Confidence Band Change Week 2 to Week 6

n=1 n=14

n=11

CRPIT Volume 136 - Computing Education 2013

18

27% collapsed across weeks). Student free comments
identify a number of possible rationales for this, including
the sharing of ideas, greater opportunity for code
checking and increased motivation to do well. In both
weeks the majority of students stated that they wished to
continue to use Pair Programming during the remainder
of the semester (74% to 16% collapsed across weeks).
Student free comments show a number of caveats,
however, primarily an unwillingness to work with
partners who were perceived as weaker programmers.

The reluctance of students to work with a weaker
partner can also be seen by looking at the pattern of
responses in Week 6 to the three binary questions as a
function of self-reported experience level (Question 6 in
the Week 6 survey). Figures 7 to 9 show these results.

Figure 7: Student preference by previous
experience

Figure 8: Student judgement of quality by previous
experience

Figure 9: Student willingness to continue by
previous experience

Students identified themselves as Experienced (n=12),
Self-taught (n=3) or Novice (n=19). Students who
classified themselves as Experienced were significantly
more likely to prefer working alone than were their less
experienced classmates (by χ2; p<.02). A similar trend of
reluctance of the Experienced students to work in pairs
was seen in the questions about programming quality and
desire to continue using Pair Programming, but these
effects were not statistically significant (by χ2).

In the remaining survey questions students were asked
to identify specific things that they liked and disliked
about Pair Programming, and to provide any further
comments they wished to make. There was good
consistency among student comments, and we were able
to identify a small number of comment categories. The
complete comment coding for Week 2 and Week 6 is
given in Table 2. For each general class of comment,
Table 2 shows the proportion of students who made the
comment in each week, and the change in proportion
from Week 6 to Week 12.

Week 6

n=33
Week 12

n=27
Type Comment Pr (Wk 6) Pr(Wk 12) Change

Adv.
Indiv.

Can work at
own pace 0.12 0.11 -0.01

More effective
learning 0.30 0.11 -0.19

Can use own
methods 0.09 0.15 0.06

Adv. Pair
Allows
discussion 0.06 0.04 -0.02

Builds sense of
community 0.39 0.26 -0.13

 Faster 0.42 0.33 -0.09
 More fun 0.03 0.04 0.01

Can get help
when stuck 0.52 0.44 -0.07

Can learn from
explaining 0.06 0.07 0.01

More code
checking 0.15 0.15 0.00

 Motivating 0.03 0.04 0.01

Can get other
viewpoints 0.27 0.59 0.32

Disadv.
Pair

Boring for
navigator 0.06 0.07 0.01

Enforced social
interaction 0.24 0.15 -0.09

Evaluation
apprehension 0.06 0.15 0.09

Partners can be
incompatible 0.06 0.15 0.09

Don’t like
working with
stronger partner 0.06 0.04 -0.02

Classroom is
too noisy 0.03 0.00 -0.03

Don’t like
working with
weaker partner 0.21 0.07 -0.14

Table 2: Summary of student comments

In Week 6, the most commonly mentioned advantage
of Pair Programming was that one could get help from the
partner when stuck (mentioned by 52% of respondents).
Often the note “instead of having to wait for the lecturer”
was added. Novice programmers traditionally need a
great deal of assistance, and in large classes it can be
difficult for an instructor to respond to all requests in a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Individual Paired No pref

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

Which Do You Enjoy More?

Experienced

Self-Taught

Novice

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Individual Paired No pref

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

In Which Do You Program Better

Experienced

Self-Taught

Novice

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Yes No Maybe

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

Student Response

Continue to Use Pair Programming?

Experienced

Self-Taught

Novice

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

19

short time. While one might expect that two novices
working together would not be able to provide useful
support to each other, this does not seem to be the case
based on this feedback.

In Week 12, the “able to get help” comment was still
often made (mentioned by 44% of respondents) but at this
point the most frequently cited advantage of Pair
Programming was the ability to get another person’s
viewpoint and suggestions (this was often phrased as
“two heads are better than one”). This shift seems to
reflect students’ increasing independence from the
lecturer between Weeks 6 and 12.

In both weeks, students often noted that working as a
pair was faster (42% and 33% in Weeks 6 and 12
respectively), and that it built a sense of community
among the students (39% and 26%) as it required them to
meet and get to know their classmates. This impact on the
social dynamics of the classroom was among the features
that the instructors found most salient during this
semester (see further discussion below).

The most frequently cited disadvantage of Pair
Programming in Week 6 was the difficulty of working
with a weaker partner (mentioned by 21% of
respondents). By Week 12, this had fallen to only 7%,
perhaps indicating that some of the novice programmers
had “caught up” quickly to the more experienced
members of the class.

A commonly cited advantage of individual
programming, especially early in the semester, was that
students felt they learned more effectively when they had
to work everything out on their own (30% in Week 6;
11% in Week 12). This illustrates the value of including
both individual and Pair Programming sessions.

4 General Discussion
In the interest of finding teaching interventions that can
be used successfully in the earliest weeks of a first
programming course, we introduced the Pair
Programming methodology into our CS1 paper. Based on
previous explorations of the pedagogical use of Pair
Programming, we intended to construct pairs on ability
level, but wished to do so before any exam or significant
project marks would be available. We thus used a
holistic, subjective judgement made by classroom
instructors based on task performance and work style that
reflects an attribute we call “programming confidence”.
Results of the first semester show that Pair Programming
increases practical lab completion rate significantly for
those students who were initially judged as having the
lowest confidence.

Initial confidence judgements were not correlated with
final course mark. Some (but not all) students who had
started with low confidence performed very well in the
paper; some (but not all) students who started with high
confidence levels failed to achieve a high final mark.
Thus low initial confidence in isolation is not an
indication of future poor performance. However,
inspection of change in confidence during the early weeks
does seem to give a better insight into eventual outcome.
Specifically, students whose confidence level improved
between Weeks 2 and 6 of the paper earned higher final
marks, on average, than those whose confidence
remained at the same absolute level. Thus, it is apparently

difficult to catch up if you fall behind in the first six
weeks of CS1. This finding is in concert with the
mathematical model of Robins (2010) which
demonstrates that failure to thrive in the earliest weeks
can be a significant contributor to low pass rates in CS1.
To identify students at risk, perhaps with an eye to
providing additional support, it seems productive to
watch carefully for students who do not gain confidence
with programming even very early in their first course.
This identification can possibly be made by careful
instructor observation – no elaborate assessment metric is
required.

Student feedback regarding the use of Pair
Programming was generally positive, with respondents
identifying advantages mechanical (not having to wait so
long for instructor attention), intellectual (the value of a
second viewpoint) and social (an effective way to get to
know other class members). Students expressed concern
about uneven or incompatible pairings, and the classroom
instructors report that it is necessary to watch closely for
dysfunctional pairings (for example, where one member
of the pair is being too dominant) and intervene when
required.

In addition to the observed advantages accruing to
students, the classroom teaching staff reported a number
of positive consequences of using Pair Programming.
These included:

• Shorter waiting times: Our Programming 1
paper is taught in groups of up to 23 students at a time.
During practical work time, classroom instructors move
about the room answering questions or offering assistance
when students are not progressing. In the first weeks of
CS1 when most students have very little idea of how to
program, this can be a taxing process for instructors. At
our institution we have recently begun assigning two
instructors to Programming 1 simply to reduce student
wait times. This unfortunately imposes a staffing burden
that can be very difficult to manage. With the
introduction of Pair Programming, instructors notice a
significant reduction in “students waiting with their hands
up”. Partially, this is because each instructor intervention
now covers two students, but more positively, even
novice students, when working with a partner, seem to be
able to progress more consistently. As the students
frequently observed, two heads are indeed better than
one.

• Increased Engagement: An historical problem
for more experienced students in Programming 1 has
been lack of engagement. This is a particular issue for
those students who have previously failed the paper, and
are repeating it. For these students, the earliest weeks can
seem rather pointless. Instructors noted, however, that
when working with another more experienced student,
repeaters and students with some other prior experience
were much more engaged than in previous years. The
opportunity to discuss the work with a student of similar
level and to perhaps share interesting approaches or
possible extensions of the exercises, made the early
weeks much more rewarding for students at the top end.

• Increased Motivation and Performance: Each
set of practical tasks contains one or more “challenge
problems”, optional exercises of greater difficulty. The
instructors note that students are more likely to attempt

CRPIT Volume 136 - Computing Education 2013

20

the optional challenge exercises during the Pair
Programming practicals than during the individual
practicals. This may be a reflection of the confidence
obtained from knowing one has a partner to help out on a
difficult problem, and/or the desire to perform well when
working with another student. Interestingly, the same
“striving for excellence” was observed in the major
individual project assignment where an unusually high
number of students attempted extra credit work, in
contrast to previous years.

• Social Dynamic: The change which the
instructors find the most compelling argument for
continuing to use Pair Programming is not directly related
to programming performance, but is a generally increased
sense of community among the students. Compared to
previous years, students are more likely to offer help to
each other even in individual labs. Students are more
likely to discuss individual assignments and ask for
feedback. The general sense of camaraderie and inclusion
is higher.

It should be noted that our department has recently
introduced a number of other policies that might have
contributed to this increased sense of community. In 2012
we have appointed a dedicated first year coordinator
responsible for pastoral care of new students, we have
established a student common room, built a school
Facebook page and increased orientation activities for
first year students. All of these probably contribute to the
social cohesion seen in Programming 1. However,
classroom instructors note that in the specific context of
their classroom, they saw social relationships develop
during Pair Programming which then grew to include
other classroom activities.

In summary, we have found Pair Programming to be a
valuable technique from the earliest days of CS1 when
students at the same level of programming confidence, as
judged by in-class teaching staff, work together. In
coming semesters we will continue to introduce Pair
Programming early in CS1, and also to incorporate it into
our more senior programming papers. With wide-ranging
benefits to both students and teaching staff, we see Pair
Programming as an essential tool in successful
programming education.

5 References

Bennedsen, J. and Caspersen, M.E. (2007): Failure rates
in introductory programming. ACM SIGSCE Bulletin,
39(2):32-36.

Cliburn, D. (2003): Experiences with pair programming
at a small college. Journal of Computing Sciences in
Colleges, 19(1):20-29.

Hanks, B. (2005): Student performance in CS1 with
distributed pair programming. ACM SIGSCE Bulletin,
37(3):316-320.

Katira, N., Williams, L. and Osborne, J. (2005): Towards
increasing the compatibility of student pair
programmers, Proceedings of the 27th International
Conference on Software Engineering, St. Louis, MO,
USA, pp. 625-626.

McDowell, C., Hanks, B., and Werner, L. (2003)
Experimenting with pair programming in the

classroom. Proceedings of the 8th annual conference
on Innovation and technology in computer science
education, Thessaloniki, Greece, pp. 60-64.

Mendes, E., Al-Fakhri, L., and Luxton-Reilly, A. (2005):
Investigating pair-programming in a 2nd-year software
development and design computer science course.
Proceedings of the 8th annual conference on
Innovation and technology in computer science
education, Thessaloniki, Greece, pp. 296-300.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y., Laxer, C., Thomas, L., Utting,
I., and Wilusz, T. (2001): A multi-national, multi-
institutional study of assessment of programming skills
of first-year CS students, ACM SIGCSE Bulletin,
33(4):125-180.

McDowell, C., Werner, L., Bullock, H., and Fernald, J.
(2006): Pair programming improves student retention,
confidence, and program quality. Communications of
the ACM 49(8):90-95.

Radermacher, A. and Walia, G. (2011): Investigating the
effective implementation of pair programming: An
empirical investigation, Proceedings of the 42nd ACM
technical symposium on Computer science education,
Dallas, Texas, USA, pp. 655-660.

Robins, A. (2010): Learning edge momentum: a new
account of outcomes in CS1. Computer Science
Education, 20(1): 37-71.

Thomas, L., Ratcliffe, M., and Robertson, A. (2003):
Code warriors and code-aphobes: a study in attitude
and pair programming, ACM SIGCSE Bulletin,
35(1):363-367.

Williams, L. (2007): Lessons learned from seven years of
pair programming at North Carolina State University.
SIGSCE Bulletin, 39(4):79-83.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

21

CRPIT Volume 136 - Computing Education 2013

22

Distractions in Programming Environments

Raina Mason
Southern Cross University

raina.mason@scu.edu.au

Graham Cooper
Southern Cross University

graham.cooper@scu.edu.au

Abstract
A workshop for teaching introductory programming using
Lego Mindstorms NXT presented students with either a
‘complete’ or ‘subset’ form of user interface, both of
which are pre-packaged with the application. The learning
activities presented to all students only made use of the
functionality contained within the subset interface and
students presented with the complete interface only made
use of the functionality associated with the subset version.
Despite no reference to, or use being made of, the
extended functionality of the complete interface, students
undertaking activities in this mode reported higher levels
of difficulty associated with learning programming and
performed poorly on a test of programming concepts
compared to students presented with the subset form of
the interface. Results are explained in terms of Cognitive
Load Theory, in particular, redundancy of information.
Implications to the selection of programming languages
and environments for teaching introductory programming
are discussed..
Keywords: Cognitive load, instructional design,
introductory programming, Lego Mindstorms.

1 Introduction
Teaching programming is difficult and often unsuccessful
(McCracken et al., 2001; Denning and McGettrick, 2005;
Ma et al., 2007). This difficulty may be partially caused
by the necessity of learning several interacting concepts
all at the same time, such as understanding the problem
statement, constructing algorithms, navigating syntax
rules, semantics, problem solving, navigating a
programming interface and compiling and executing a
program (Jenkins, 2002).

Regardless of the programming language being used
or other aspects of learning programming such as the
mechanics of compiling, students must learn how to
construct algorithms using the three core structures of
sequence, selection and iteration (Dijkstra, 1972). The
primary conduit for teaching and learning these three core
structures is the user interface, environment and
programming language.

Introductory programming courses have many
languages and environments from which to choose. There
has been debate (Kolling, 1999; Kelleher and Pausch,
2005) regarding the extent to which simplified learning
environments may be beneficial in this context. Some

Copyright © 2013, Australian Computer Society, Inc. This
paper appeared at the 15th Australasian Computing Education
Conference (ACE2013), Adelaide, Australia, January-February
2013. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 136. A. Carbone and J. Whalley,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

have argued, and developed simplified environments, for
pedagogical reasons, but little direct evidence for the
reasons behind their success in this purpose have been
demonstrated. In contrast, some introductory
programming course instructors have contended (see
Mason et al. 2012) that introductory programming
courses should utilise “professional” level applications as
these are used in industry, and that there is no benefit to
be gained in requiring students to learn an additional
language and environment as a pathway to such
professional languages and environments.

The current paper argues that the relatively high level
of complexity inherent within most programming
languages and environments acts as an impediment to
understanding and learning the three core structures of
sequence, selection and iteration. Although arguments
have been offered for the effectiveness of simpler
environments based upon student motivation, visual
aspects of the interface and games oriented tasks (Kolling
and Henriksen, 2005; Boisvert, 2006; Gomes and
Mendes, 2007; Hundhausen et al., 2009) such
environments have not been analysed through the lens of
cognitive learning theories.

Theories of cognition such as Cognitive Load Theory
(Sweller 1999) have been used to develop successful
principles of instructional design in other complex
domains (for example, see Van Merrienboer et al., 2006).
Cognitive Load Theory has previously demonstrated the
negative impact that can accrue from split attention
(Tarmizi and Sweller, 1988) and redundant information
(Mayer et al., 2001). Such studies have typically required
students to attend to the ‘complete’ set of information
presented. In the context of learning programming there
are elements of information that are presented on screen –
within the environment – that are irrelevant to the task(s)
at hand. Even though such elements may reside outside of
the task activities undertaken by students, this paper
argues that these may effectively become a source of split
attention or redundancy through tacit distraction and thus
impede learning.

The primary purpose of the current research is to
explore the potential benefits of using simplified
languages and environments as pathways to more positive
learning experiences, increased self-efficacy with respect
to programming, and deeper understanding and transfer
of acquired concepts to other computer programming
languages.

2 Methodology

2.1 Participants
The experiment was conducted as part of an “IT Careers
Day” at a private high school in regional Queensland,
with 32 students in Year 7, aged 11 to 13 years. Students
participating in the day completed an introductory

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

23

programming workshop with Lego Mindstorms NXT
robotics (The LEGO Group 2009) followed by a
Mindstorms workshop test, then attended a normal school
period of class-work. After lunch they participated in an
IT careers information session followed by another
introductory programming workshop involving the use of
the Alice programming environment (Carnegie Mellon
University 2006).

2.2 Mindstorms Robots
The Lego Mindstorms NXT kits enable students to build
and program robots of their own design. Each kit consists
of a central controller “brick” with processing hardware
and software, touch, sound, light and ultrasonic sensors,
and several servo motors, coupled with ‘technics’-style
Lego pieces and gears to enable building of several forms
of robots. These robots can respond to input through the
sensors and can show output by sound, visual display and
movement. The robots are programmed using the
Mindstorms NXT software, using a USB cable
connection to a PC.

The Mindstorms NXT programming environment is
highly visual. Programs are created by dragging
programming “blocks” – which are presented as icons
representing their functionality - to a timeline, and then
setting properties of each block by typing in values or
selecting options. The programs are executed in sequence
along the timeline. More complex programs can be
constructed by using loop and switch/decision structures,
as well as ‘wait’ blocks which can be likened to event
handling in more traditional languages.

2.3 Design of Workshops
There are two modes of interface presentation available
for the Mindstorms software. A “subset” version of the
interface presents a truncated set of icon blocks, which
are sufficient to build many programs, but lack
functionality for tasks such as data storage, data retrieval,
mathematical calculations and more specialized
functionality. A more “complete” version of the interface
presents a greater number of icon blocks representing a
greater range of programming tasks, and these are
organized into a menu-submenu format.

It was hypothesised that students given either interface
would experience an increased knowledge of IT,
increased intent to pursue IT as a career, decreased
perceived difficulty of programming and increased self-
efficacy in programming. The students presented with the
subset version of the interface, however, were
hypothesised to experience and report amplified effects,
resulting in higher self-efficacy and lower levels of the
perceived difficulty of programming, than those
presented with the more complete interface. It was further
hypothesized that students presented with the subset
interface would outperform those who received the
complete interface on subsequent knowledge tests as
measured by both time and score. It was also
hypothesised that students who received the subset
interface would be more able to transfer their newly
acquired (general) knowledge and skills in computer

programming to the Alice computer programming
environment.

For these reasons, each student was asked about their
knowledge and attitudes towards IT and programming
before the IT careers day and at the end of the day, after
the Alice workshop. Each student was also asked about
the conscious cognitive load which they experienced
during the workshop and was given a performance test
directly after the Mindstorms workshop. The sequence of
activities is presented in Figure 1.

Figure 1: Sequence of Activities

2.4 Instructional Design
Each workshop involved students working either alone or
in pairs at one PC computer with one shared robot (built
into a humanoid form). There were the same number of
pairs and single working students in each group. The
instructor introduced the participants to the physical
robots and the Mindstorms NXT software and then
worked through a series of programming activities with
the students. Each programming activity consisted of the
instructor demonstrating and describing a small worked
example on a large smartboard. The participants then
replicated the example using the software, downloaded
their solution to the robots and ran their programs. After
each student or pair of students completed the activity
successfully, the next worked example was demonstrated.
At the end of the workshop, students were given time to
create their own more complex programs.

The approach used was designed to reduce extraneous
cognitive load, and thus facilitate effective learning.
Worked examples were used because worked examples
have been proven to be a more effective teaching
approach than problem solving for novices in technical
domains (for examples see Sweller and Cooper, 1985;
Cooper and Sweller, 1987; Zhu and Simon, 1987; Paas,
1992). The instructor used verbal explanations at the
same time as pictures and processes were demonstrated
on the screen, in accordance with the modality principle
(Mousavi et al., 1995; Tindall-Ford et al., 1997). The
explanations of each step were provided at the same time
as the on-screen demonstrations, to reduce cognitive load
caused by the split-attention effect (Chandler and Sweller,
1991; Mayer and Anderson, 1991). The instructor also
followed a pre-defined script designed using the
segmentation principle (Mayer & Chandler 2001) which
advocates delivering content in small learner-paced

CRPIT Volume 136 - Computing Education 2013

24

segments of delivery, moving from simple examples to
more complex ones.

The sequence of activities included using the
programming environment, simple block use and setting
of properties, sequence, looping, events (sensor triggers)
and more complex combinations of these concepts. Due
to workshop time constraints, decision structures were
omitted.

2.5 Treatment Groups

2.5.1 Interfaces
As previously described, the Mindstorms NXT software
uses programming blocks to build programs using drag
and drop placement on a graphical timeline. The default
palette of blocks includes the most commonly used
programming blocks and is the first palette available
when a new program is created for the first time. Most
programming blocks are available on the left of the
screen, with one group of programming blocks situated in
a slide-out sub-palette. This interface was designated as
the Subset interface (see Figure 2).

Figure 2: Mindstorms Subset Interface

The software can also be configured so that a more
comprehensive set of programming blocks are available
when a new program is created. This more
comprehensive palette includes the common blocks
available in the Subset interface and repeats these blocks
and adds new blocks in several sub-palettes accessed
through side buttons/icons (for example see Figure 3).

Figure 3: Mindstorms Complete interface

The user has a choice of more programming blocks in
this interface, from now referred to as the Complete
interface to distinguish it from the Subset interface. The
buttons are the same size in each interface and buttons

that have the same functionality have the same
appearance.

2.5.2 Distractors
Cognitive Load Theory has previously demonstrated that
redundant information may interfere with learning
(Mayer et al., 2001). In the context of the activities
undertaken by students the Complete interface presented
icon blocks that were unnecessary to the tasks to be
undertaken. These additional icon blocks were never
referenced in any instructions or activities. It is
hypothesised that their mere presence on screen would act
as a form of tacit distractor. It was hypothesised that this
would detract from student learning of the interface. It
was further hypothesised that this tacit distraction would
also reduce participants learning of the core underlying
computer programming concepts and procedures being
presented within the learning activities. It was
hypothesised that this would lead to lower levels of self-
efficacy. Finally, and most importantly, it was
hypothesised that such tacit distraction would also reduce
the scope to transfer newly learnt concepts and
procedures to other programming environments.

2.5.3 Groups
Students were divided into two groups/workshops with
roughly equal numbers of each gender (Group Subset: 9
males, 8 females; Group Complete: 7 males, 8 females) in
each group. Group Subset used the subset interface
throughout their workshop. Group Complete used the
complete interface throughout their workshop. Both
groups used the same programming blocks, and
completed the same activities in the same time. Even
though Group Complete had a greater number of blocks
available via the palette on-screen, they were not directed
to use any of these extra blocks, in any of the worked
example activities or free programming time. The extra
blocks were not referenced or explained in any way.

2.6 Instruments
Prior to the careers day, each participant completed a
questionnaire consisting of demographic questions about
age and school year, as well as several 9-point Likert
scale questions concerning their level of computer
literacy, programming experience, knowledge of IT,
intent to pursue a career in IT, perception of the difficulty
of programming, and confidence with programming.

After the Mindstorms workshop, the participants were
given an equivalent test dependent on their treatment
group. The timed, written tests were designed to test
recall of the purpose of various programming blocks, the
building of schema about the interface used, near transfer
of programming construct concepts as well as far transfer
of concepts such as sequence, looping and events. The
test instrument was also used to collect data about the
mental effort used in each of the three aspects of
completing an activity in the Mindstorms workshop:
understanding what needed to be done in each exercise,
navigating and using the NXT software, and learning and
understanding concepts.

At the conclusion of the careers day, after the Alice
workshops, participants completed a post-workshop

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

25

questionnaire which again asked about their level of
knowledge of IT, intent to pursue a career in IT,
perception of the difficulty of programming and
confidence with programming. Participants were also
asked about their level of interest in programming with
Mindstorms and with Alice, and how difficult they found
each of the programming workshops.

3 Results

3.1 Homogeneity of Groups
There was no significant difference between groups in

participant age, computer literacy, programming
experience, knowledge of IT and intent to pursue a career
in IT between Group Subset and Group Complete, before
the workshop. A t-test on age returned no significant
difference (MeanSubset - MeanComplete = -0.08; t = -0.3; df =
24; p = 0.77, and Mann-Whitney U tests on computing
skill, programming experience, knowledge of IT and
intent to pursue a career in IT all returned no significant
difference between the two groups at the 0.05 level (see
Table 1). (It should be noted that an alpha level of p =
0.05 is used for all tests reported in this paper)

UA z p

Computer Literacy 87 0.1 0.46

Prog. Experience 97 ‐0.62 0.27

IT Knowledge 79 0.26 0.40

Career Intent 83.5 0.03 0.49

Table 1: Homogeneity of Groups

3.2 Career Aspirations and IT Knowledge
Although there were 17 participants in Group Subset and
15 participants in Group Complete for the actual
Mindstorms workshops and test, not all participants
completed both the pre- and post-workshop
questionnaires, as some students did not continue to the
Alice workshops due to timetable clashes with other
classes. The answers to the pre- and post-workshop
questionnaires of the 12 participants in each group who
did complete both questionnaires were analysed using the
Wilcoxon Signed Ranks test. The median, minimum and
maximum scores for each are given in Table 2 below.

It was expected that all participants would be more
knowledgeable and more likely to consider a career in IT
after the workshops, as a result of the positive
experiences, and career information given to them. This
was obtained with a significant difference in the
perceived IT knowledge of participants after the
workshop than before the workshop [Wilcoxon Signed
Rank test: n = 24, W = 179, Ns/r = 21, z = 3.1, p = 0.001]
and a significant difference in participants’ intent to
consider a career in IT after the workshop than before the
workshop [Wilcoxon Signed Rank test: n = 24, W = 128,
Ns/r = 19, z = 2.57, p = 0.005].

 n median mode min max

Knowledge ‐ pre 24 5 5 1 7

Knowledge ‐ post 24 6 7 2 9

Career ‐ pre 24 4.5 1 1 9

Career ‐ post 24 5.5 7 1 9

Table 2: Results of IT knowledge/Career intent

3.3 Programming Difficulty and Self-Efficacy
In both questionnaires, participants were asked to indicate
how much they agreed with the statement "I think
programming generally is difficult" on a 9 point Likert
scale (where 1 = ‘no way’ and 9 = ‘totally!’). It was
anticipated that participants would display a decrease in
the perceived level of difficulty of programming after the
Careers Day when compared to before the Careers Day.
A significant decrease was obtained in participants’
perception of the difficulty of programming, from before
the workshops to after the workshops [Wilcoxon Signed
Rank test: n = 24, W = 128, Ns/r = 19, z = 2.57, p =
0.005]. The median, minimum and maximum scores for
perceived level of difficulty of programming are shown in
Table 3 below.

 n median mode min max

Pre‐workshop 24 5 5 1 9

Post‐workshop 24 4 5 1 7

Table 3: Measures of Difficulty of Programming

It was also hypothesised that Group Subset may have a
greater shift in perception of difficulty in the direction of
“easier” than Group Complete, who were presented with
the fuller interface in the Mindstorms workshops.

Further analysis of the pre- and post-workshop
answers from the 12 participants in Group Subset and 12
participants in Group Complete who completed the
Mindstorms workshops and the Alice workshops and who
completed both questionnaires were then analysed
individually using Wilcoxon Signed Rank tests. The
results are shown in Table 2.

n W Ns/r z p

Subset 12 ‐55 11 ‐2.42 0.008

Complete 12 ‐29 10 ‐1.45 0.07

Table 4: Difficulty of Programming

Group Subset had a significantly different perception of
the difficulty of programming after the workshop
compared to before the workshop, in the direction of
‘easier’. Although Group Complete displayed shifts
downwards, this group did not experience a significant
change in their perception of the difficulty of
programming.

In pre- and post-workshop questionnaires, participants
were asked to indicate how much they agreed with the
statement "I feel confident with programming" on a 9
point Likert scale (where 1 = ‘no way’ and 9 = ‘totally!’).
Previous workshop results (Mason et al., 2011a, 2011b)

CRPIT Volume 136 - Computing Education 2013

26

indicated that it was likely that participants would report
increased self-efficacy in computer programming after
the workshops. However it was anticipated that Group
Subset may have a greater increase in self-efficacy in
programming than Group Complete.

Answers from both groups were analysed together
using Wilcoxon Signed Rank tests and participant’s self-
efficacy was found to be significantly higher after the
workshops than before the workshops [n = 24, W = 119,
Ns/r = 18, z = 2.58, p = 0.005]. The median, minimum and
maximum scores for participants' self-efficacy before and
after the workshops are shown below in Table 5.

 n median mode min max
Pre-workshop 24 5 5 1 9
Post-workshop 24 7 9 2 9

Table 5: Measures of self-efficacy

Pre- and post-workshop measures were then analysed
separately for the subset and complete interface groups
using Wilcoxon Signed Rank tests and the results are
shown in Table 6 below:

n W Ns/r p

Subset 12 42 9 p < 0.01

Complete 12 18 9 p > 0.05

Table 6: Self-Efficacy in Programming

Group Subset had a significantly higher self-efficacy in
programming after the workshop than before the
workshop. Although Group Complete displayed some
shifts upwards in self-efficacy, this group did not
experience a significant change.

3.4 Test Performance

3.4.1 Test Completion Time
It was hypothesised that if the different interface had an
effect on learning then participants from Group Subset
would take less time to complete the test than participants
in Group Complete. The times from the 17 participants in
Group Subset and 15 participants in Group Complete
were compared using a t-test. Participants from Group
Subset were found to take significantly less time to
complete the test than Group Complete [MeanSubset –
MeanComplete = -150 seconds; t = -1.91, df = 30, p = 0.03].

3.4.2 Test Score
There was a total maximum possible mark of 17 for the
Mindstorms test. The sequence of questions and
associated marks were allocated as follows:

• 1 mark each for correct description of the
purpose of programming blocks [total 3 marks];

• 1 mark each for correct placement of
programming block on blanked interface [total 6
marks];

• 1 mark each for correct multiple choice answers
(near transfer) [total 5 marks];

• 1 mark each for far transfer answers [total 3
marks].

The two groups mean total marks, standard deviation,
minimum and maximum are shown in Table 7.

mean st dev min max

Subset 11.03 2.60 6.5 15

Complete 8.83 1.88 6 14

Table 7: Test Score Totals

The total test scores from the 17 participants in Group
Subset and 15 participants in Group Complete were
compared using a t-test, and participants from Group
Subset were found to have a significantly higher test
score than Group Complete [MeanSubset – MeanComplete =
2.20; t = 2.71, df = 30, p = 0.006].

3.4.3 Interface Schema Acquisition
Students were asked to indicate where six programming
blocks were placed on a blanked version of the
Mindstorms interface. Each of these six programming
blocks had been used in the Mindstorms workshop
activities at least twice. It was anticipated that students in
Group Subset would more effectively build schema for
the positioning of the blocks in the interface over students
in Group Complete interface, who would have more of
their working memory capacity used in needing to deal
with the tacit distractors of the availability of extra blocks
– even though those blocks were not being used or
referenced in any of the activities.

The maximum score available on this question was 6,
if the student placed all of the blocks in the correct
positions. The Complete Interface makes several
programming blocks available in more than one location,
so if a student in Group Complete placed that particular
block in any of the correct positions, they received a point
for that block.

The two groups mean marks, standard deviation,
minimum and maximum are shown in Table 8.

mean st dev min max

Subset 2.76 1.71 0 5

Complete 1.33 1.18 0 4

Table 8: Interface Schema Score totals

Participants from Group Subset scored significantly
higher on rebuilding the interface than participants from
Group Complete [t-test: MeanSubset - MeanComplete = 1.43, t
= 2.72, df = 30, p = 0.005].

3.4.4 Knowledge Acquisition
The maximum score available for the test, excluding
rebuilding the interface, was 11. The two group scores for
the knowledge acquisition part of the test were compared
using a t test and although these results were not
statistically significant [MeanSubset – MeanComplete =
0.7647, t = +1.36, df = 30, p = 0.09], the results trended
in the expected direction. Closer inspection of the test
scores for Knowledge Acquisition showed that 9 of the
17 participants in Group Subset scored 9 or higher (from
a possible 11), while in Group Complete, only 2 of the 15

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

27

participants scored 9 or above. This result is statistically
significant (p = 0.02) using Chi-Square analysis. This
indicates that more participants in Group Subset scored
highly (at 9 or more marks out of a possible 11 marks) for
Knowledge Acquisition than those participants in Group
Complete.

3.5 Difficulty of Programming Environments

3.5.1 Mindstorms environment Difficulty
In the post-IT Careers Day questionnaire, participants
were asked to complete the statement "Programming
robots to do things is .. " on a 9 point Likert scale (where
1 = ‘really easy’ and 9 = ‘really difficult’. It was expected
that if having the extra (unused) programming blocks
available in the Complete interface were having an effect
on working memory load while using the interface, then
Group Complete would perceive programming robots as
more difficult than Group Subset, even though both
groups completed the same activities with the same
programming blocks.

The responses of the 15 participants in Group Subset
and 14 participants in Group Complete who completed
the Mindstorms workshops and completed the post-
workshop questionnaire were analysed for differences
using a Mann-Whitney U Test. Participants in Group
Complete found programming with the Mindstorms
Robots significantly more difficult than participants in
Group Subset [UA = 144, z = 1.66, p = 0.049]. The
median, minimum and maximum scores are given below
in Table 9.

 n median mode min max

Group Subset 15 2 1 1 5

Group Complete 14 3.5 1 1 9

Table 9: Mindstorms Difficulty

This was an expected result. The presence of the extra
(unused) programming blocks was interfering with the
attentional process for the students in Group Complete.

3.5.2 Alice Environment Difficulty
In the post-IT Careers Day questionnaire, participants
were also asked to complete a similar statement about the
difficulty of programming with Alice - "Programming
with Alice 3D worlds is .. " on a 9 point Likert scale
(where 1 = ‘really easy’ and 9 = ‘really difficult’.

Note that both Group Subset and Group Complete
were mixed in a common Alice programming session in
the afternoon, after completing the Mindstorms
workshops.

Both groups completed the same Alice workshop
activities, with the same Alice interface, and were asked
afterwards about the difficulty of programming in Alice.
As all participants were in the same Alice programming
workshop, the only variable was the Mindstorms group in
which each participant had participated. It was
hypothesised that the difference in difficulty experienced
in the Mindstorms workshops as a result of having the
subset interface for participants in Group Subset,
compared to those in Group Complete, would have a

positive transfer effect to the perceived difficulty of Alice
programming. That is, participants that had experienced
the Subset interface for Mindstorms, would perceive
programming in Alice as less difficult than those who had
experienced the Complete Mindstorms Interface.

The responses of the 15 participants in Group Subset
and 14 participants in Group Complete who completed
the Mindstorms workshops and completed the post-
questionnaire after the Alice workshop were analysed for
differences using a Mann-Whitney U Test. The novice
programming participants in Group Complete found
programming with Alice significantly more difficult than
novice programming participants in Group Subset [UA =
158, z = 2.29, p = 0.01]. The median, minimum and
maximum scores are given below in Table 10.

 n median mode min max

Group Subset 15 1.5 1 1 7

Group Complete 14 5 5 1 9

Table 10: Alice Difficulty

This result shows a transfer effect from the
Mindstorms workshop to the Alice workshop based upon
the nature of the Mindstorms interface that participants
had received. This is discussed more in Part 4:
Discussion.

3.5.3 Cognitive Load
It was expected that participants in Group Subset would
report lower conscious mental effort (cognitive load)
measures in “navigating and using the Mindstorms NXT
software” and their overall patterns of mental effort
would differ from participants in Group Complete. The
performance measures indicate that learning was more
effective for Group Subset. We had hypothesized that this
would be the result of lower cognitive load being
imposed upon Group Subset. Although there were trends
present in the direction of lower reported cognitive load
in Group Subset, there were no significant differences
between groups.

4 Discussion
The benefits of the Careers Day intervention for both
girls and boys who were novices to programming were
obvious, with positive shifts in IT knowledge, IT career
aspirations and self-efficacy in programming, and
lowered perception of the difficulty of programming,
from before the workshops to after the workshops.

The effect of the treatment and differences between
groups became evident on analysing their performance in
the Mindstorms test. On each of the four chosen measures
(Test Completion Time, Total Test Score, Interface
Schema Acquisition Score and Knowledge Acquisition
Score), Group Subset outperformed Group Complete.
There was a demonstrated advantage for the students who
were given the simpler interface with fewer options, even
though the extra options for Group Complete were not
used.

It was expected that if the students in Group Complete
were experiencing higher cognitive load on working
memory during the Mindstorms workshop than Group

CRPIT Volume 136 - Computing Education 2013

28

Subset as a result of the extra options on screen, they
would experience the task of programming in the
Mindstorms environment as more difficult, compared to
Group Subset. Group Complete did find programming in
the Mindstorms environment significantly more difficult
than Group Subset which supports this hypothesis.

There were, however, no significant differences
observed between groups on reported cognitive load
measures. This may be due to lack of sensitivity in the
Likert test questions used with this participant pool, or
may represent another dynamic associated with a form of
tacit distraction. This issue warrants further research.

Both treatment groups then participated in the same
Alice workshop, at the same time, with the same
materials and instruction. There was a significant transfer
effect, with those participants in Mindstorms Group
Subset finding Alice programming significantly easier
than participants who had been in Group Complete.

This is a potentially critical outcome. At the heart of
all computer programming languages and environments
are the core, fundamental concept blocks that enable the
design and development of suitable algorithms. The
results obtained in the present study argue that the
schemas for these underlying mental representations may
be facilitated through the use of entry-level computer
programming environments specifically designed to cater
for novices.

These results have implications for the often-debated
question about whether it is better to introduce
introductory programming students to an Integrated
Development Environment (IDE) that is used in industry
first, or to introduce students to programming using a
teaching environment first, and then move on to an
industry standard IDE later. Instructors that are in favour
of using an industry standard environment for
introductory programming courses often point to the extra
effort of teaching (and for students, in learning) two
environments (de Raadt et al., 2002; Mason et al., 2012).

The results of this research indicate that for novices to
programming, having extra options available in the
environment - even if they are not used or referenced -
hinders learning (reduces performance) and causes the
students to perceive programming in both that
environment and subsequent environments as more
difficult. The results of this study indicate that novice
students benefited from a simplified first-programming
environment. This facilitated learning of core
programming constructs as measured on test performance
and also transferred to a second programming
environment as measured by reported perceptions of
programming difficulty.

While the current study was specifically focussed
upon novice programmers and programming
environments, it is worth noting that relatively many
computer applications present users with additional icons
and functionality that are redundant (or unnecessary) to
their task performance. Such “over-provision” of
functionality may be misguided and impede learning of
the application.

The current study may have limited scope because it
used participants who were school students rather than
university students, because the programming
environments used were heavily icon based rather than

line code, and because the entire exposure of participants
was across a single day, rather than across an entire year
(or longer). Nevertheless, the design of the specific
instructional materials used, and the broad complex of
results obtained, were driven by the application of
Cognitive Load Theory to the context of teaching novices
some of the basic concepts, structures and processes of
computer programming.

Cognitive Load Theory provides an extensive body of
empirical studies demonstrating utility in enhancing
instructional design in complex areas of learning such as
mathematics, science and industry technical applications
(Sweller, 1999). The results reported here represent
another example of Cognitive Load Theory being
usefully applied to enhance the design of instructional
materials in an area of high conceptual and task
complexity…that of computer programming…and all
computer programmers begin their life as
programmers…as novices.

5 Thanks
The authors would like to acknowledge the helpfulness
and involvement of the school teachers and students who
were the participants in this study.

6 References
Boisvert, C., 2006. Web animation to communicate

iterative development. ACM SIGCSE Bulletin 38,
173–177.

Carnegie Mellon University, 2006. What is Alice and
what is it good for? [WWW Document]. URL
http://www.alice.org/index.php?page=what_is_alice/w
hat_is_alice

Chandler, P., Sweller, J., 1991. Cognitive Load Theory
and the Format of Instruction. Cognition and
Instruction 8, 293–332.

Cooper, G., Sweller, J., 1987. Effects of schema
acquisition and rule automation on mathematical
problem-solving transfer. Journal of Educational
Psychology 79, 347–362.

de Raadt, M., Watson, R., Toleman, M., 2002. Language
trends in introductory programming courses [WWW
Document]. Informing Science + IT Education
Conference. URL
http://proceedings.informingscience.org/IS2002Procee
dings/papers/deRaa136Langu.pdf

Denning, P., McGettrick, A., 2005. Recentering
Computer Science. Communications of the ACM 48,
15–19.

Dijkstra, E.W., 1972. Notes on Structured Programming,
in: Structured Programming. Academic Press, New
York, NY, pp. 1–82.

Gomes, A., Mendes, A.J., 2007. An environment to
improve programming education, in: Proceedings of
the 2007 International Conference on Computer
Systems and Technologies - CompSysTech ’07. ACM
Press, Bulgaria, pp. Article 88, 6 pages.

Hundhausen, C.D., Farley, S.F., Brown, J.L., 2009. Can
direct manipulation lower the barriers to computer
programming and promote transfer of training? ACM

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

29

Transactions on Computer-Human Interaction 16, 1–
40.

Jenkins, T., 2002. On the difficulty of learning to
program, in: Proceedings of the 3rd Annual Conference
of the LTSN-ICS. Loughborough, Ireland, pp. 53–58.

Kelleher, C., Pausch, R., 2005. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Computing Surveys (CSUR) 37, 83–137.

Kolling, M., 1999. The problem of teaching object-
oriented programming, part 2: Environments. Journal
of Object-Oriented Programming 11, 6–12.

Kolling, M., Henriksen, P., 2005. Game programming in
introductory courses with direct state manipulation, in:
Proceedings of ITiSCE’05. ACM Press, Caparica,
Portugal, pp. 59–63.

Ma, L., Ferguson, J., Roper, M., Wood, M., 2007.
Investigating the viability of mental models held by
novice programmers, in: Proceedings of the 38th
Technical Symposium on Computer Science
Education. ACM Press, pp. 499–503.

Mason, R., Cooper, G., Comber, T., 2011a. Girls get IT.
ACM Inroads 2, 71–77.

Mason, R., Cooper, G., Comber, T., 2011b. It’s (no
longer) a remote chance for girls in IT, in: Proceedings
of the 1st International Australasian Conference on
Enabling Access to Higher Education 2011. University
of South Australia, Adelaide, Australia, pp. 310–321.

Mason, R., Cooper, G., de Raadt, M., 2012. Trends in
Introductory Programming Courses in Australian
Universities – Languages, Environments and
Pedagogy, in: de Raadt, M., Carbone, A. (Eds.),
Proceedings of the Fourteenth Australasian Computing
Education Conference (ACE2012). Australian
Computer Society, Inc., Melbourne, Australia, pp. 33–
42.

Mayer, R.E., Anderson, R.B., 1991. Animations need
narrations: An experimental test of a dual-coding
hypothesis. Journal of Educational Psychology 83,
484–490.

Mayer, R.E., Chandler, P., 2001. When learning is just a
click away: Does simple user interaction foster deeper

understanding of multimedia messages? Journal of
Educational Psychology 93, 390–397.

Mayer, R.E., Heiser, J., Lonn, S., 2001. Cognitive
constraints on multimedia learning: When presenting
more material results in less understanding. Journal of
Educational Psychology 93, 187–198.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas, L.,
Utting, I., Wilusz, T., 2001. A multi-national, multi-
institutional study of assessment of programming skills
of first-year CS students. ACM SIGCSE Bulletin 33,
125–180.

Mousavi, S.Y., Low, R., Sweller, J., 1995. Reducing
cognitive load by mixing auditory and visual
presentation modes. Journal of Educational Psychology
87, 319–334.

Paas, F., 1992. Training strategies for attaining transfer of
problem-solving skills in statistics: A cognitive-load
approach. Journal of Educational Psychology 84, 429–
434.

Sweller, J., 1999. Instructional design in technical areas.
The Australian Council for Educational Research Ltd,
Camberwell, VIC.

Sweller, J., Cooper, G., 1985. The Use of Worked
Examples as a Substitute for Problem Solving in
Learning Algebra. Cognition and Instruction 2, 59–89.

Tarmizi, R.A., Sweller, J., 1988. Guidance during
mathematical problem solving. Journal of Educational
Psychology 80, 424–436.

The LEGO Group, 2009. MINDSTORMS [WWW
Document]. URL http://mindstorms.lego.com/en-
us/Default.aspx

Tindall-Ford, S., Chandler, P., Sweller, J., 1997. When
two sensory modes are better than one. Journal of
Experimental Psychology: Applied 3, 257–287.

Van Merrienboer, J.J.G., Kester, L., Paas, F., 2006.
Teaching complex rather than simple tasks: balancing
intrinsic and germane load to enhance transfer of
learning. Applied Cognitive Psychology 20, 343–352.

Zhu, X., Simon, H.A., 1987. Learning mathematics from
examples and by doing. Cognition and Instruction 4,
137–166.

CRPIT Volume 136 - Computing Education 2013

30

Identifying career outcomes as the first step in ICT curricula
development

Nicole Herbert, Kristy de Salas, Ian Lewis, Mike Cameron-Jones, Winyu Chinthammit,
Julian Dermoudy, Leonie Ellis, Matthew Springer

School of Computing and Information Systems
University of Tasmania

Private Bag 87, Hobart 7001, Tasmania

Nicole.Herbert@utas.edu.au

Abstract
While much advertising for ICT degrees uses career
outcomes to market them to potential students, there is
little evidence about whether these outcomes have been
truly embedded into the curriculum and hence whether
they can actually be attained by students. This paper
reports on a process to design a University ICT
curriculum that is directly informed by the career
outcomes relevant to the local and national ICT industry.

Keywords: ICT career outcomes, ICT skills, ICT
curriculum, ICT graduates, ICT degree,

1 Introduction
It is well known that ICT curricula are in a constant state
of flux in response to continuing changes in emerging
technology and resources such as staffing levels, student
numbers, and funding models. It is often unclear whether
specified career outcomes for particular degrees are part
of the curriculum development process or just an
advertising mechanism. A study undertaken to investigate
the drivers of curriculum change (Gruba et al 2004),
discovered that change is predominantly driven by
outspoken individuals, budgetary constraints, and student
demand rather than academic merit and external
curricula. In attempts to respond to the constraints and
ever-changing technology it is easy to lose sight of the
advertised career outcomes as a focus. Calitz et al (2011)
stated that academics and students need to acquire a
thorough knowledge of ICT career outcomes and that
“universities must link and publish computing programs,
linking each program with specific career tracks,
indicating specific career specialisation and knowledge.”

There is little evidence that career outcomes as stated
on marketing materials are really attainable by students.
Graduate career prospects are one of the major
influencing factors when pre-tertiary students (and their
parents) are selecting their degree. Babin et al (2010) and
Biggers et al (2008) suggested that the main reason for
the lack of interest in a career in ICT by pre-tertiary
students is that computing is traditionally perceived as
asocial, focusing on programming and having limited
connections to the outside world. To counter this negative
and inaccurate perception, and to promote the future

,Copyright © 2013, Australian Computer Society, Inc. This paper
appeared at the Fifteenth Australasian Computing Education Conference
(ACE2013), Adelaide, Australia, January 2013. Conferences in
Research and Practice in Information Technology, Vol. 136. Angela
Carbone and Jacqueline Whalley, Eds. Reproduction for academic, not-
for-profit purposes permitted provided this text is included.

growth of the industry, it is essential that the career
outcomes for modern ICT degrees reflect the myriad of
career opportunities now available (ACM 2008) and the
curriculum is designed such that graduates can attain the
skills for these careers (von Konsky 2008).

While theoretically linking curricula design closely
with career outcomes might be an ideal situation, in
practice, tertiary institutions are currently juggling the
different demands of local and international students and
there has been increased specialisation of programs and a
correspondingly large growth in the number of units
(subjects) on offer. In 2012, UTAS (2012) has 50 ICT
undergraduate units that, although a sizeable offering, is
small compared to the undergraduate listings in other
universities’ 2012 handbooks. For example, Monash
(2012) has 120 (code FIT), Swinburne (2012) has 163
(code HET, HIT), and QUT (2012) has 64 (code INB).
This is a common problem identified by Henkel and
Kogan (1999), who suggest that an emphasis on academic
objectives tends not to be coherent but results in a large
range of topics for students and will typically include the
research interests of staff. Alternatively Henkel and
Kogan suggest when emphasis is placed on employment
objectives the resulting curricula are more directed and
coherent.

While an abundance of units might allow for an
abundance of career opportunities, this makes isolating
core career outcomes very difficult and therefore also
difficult for students to know exactly what units to take to
achieve a desired career outcome. Alexander et al (2010)
and Nagarajan and Edwards (2008) found that graduates
find it very difficult to identify ICT career opportunities
that relate to the skills they have developed during their
study. Furthermore, this abundance in units, and course
specialisations, makes it difficult for industry to
determine solely on the basis of a graduate’s degree
whether they are qualified for a particular career, instead
requiring knowledge of specific unit content.

The remaining sections of this paper will describe a
process for developing a leading-edge and innovative ICT
degree that is directly informed by the career outcomes
relevant to the local and national ICT industry. The
Australian Computer Society (ACS) provide a process
(what to do) to guide the development of new curricula
(ACS 2011), but not the specific activities to undertake
(how to do it). This paper focuses on how to perform the
first three of seven steps in the ACS process to develop a
new ICT degree, namely:

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

31

• identify potential ICT roles that could be
undertaken by graduates of a given program of
study;

• identify the SFIA skills required by professionals
in a given ICT career role;

• identify the level of autonomy and responsibility
to be developed.

This paper is one of a pair of papers that describe
curriculum design using the ACS process. The
companion paper (Herbert et al 2013) describes the
outcomes of ACS process steps four to six.

There is little literature focussing on how to link career
outcomes and ICT curricula. This paper describes specific
techniques for identifying potential career outcomes,
SFIA skills and responsibility levels during an ICT
curriculum development effort guided by the ACS
process (ACS 2011). As our implementation of our
process will also be important to some readers our
constraints, resources and outcomes of each phase of the
process are included for completeness.

2 Process overview
Figure 1 outlines our four-stage process by which career
outcomes are identified and used to guide subsequent
curricula design decisions. The Figure also includes a
summary of our constraints, resources and outputs to
make it easier to follow our implementation of the
process throughout the paper. As already mentioned, the
process is based on the ACS recommended process (ACS
2011) with additional details on how to perform each
step. Before commencing the process it is worthwhile
identifying any constraints that will impact on decisions

made about career outcomes and skills developed
throughout the process.

Our Constraints
The University of Tasmania (UTAS) is the only
university within Tasmania, and the School of
Computing and Information Systems, as the only
ICT School at UTAS, must meet the ICT higher
education needs of the ICT industry in Tasmania.
In order to maintain the currency and quality of
the school’s activities, an external school review
was undertaken in 2011. One primary outcome
was the recommendation to discontinue the two
current undergraduate degrees: a Bachelor of
Computing and a Bachelor of Information
Systems; and to instead create a new single degree
— a Bachelor of ICT. This would be the only
tertiary ICT degree on offer in Tasmania.

A shrinking staff profile and simultaneous
pressure for increased research output across the
whole of UTAS resulted in the review panel
recommending a reduction of the number of
undergraduate unit offerings from fifty to just
thirty. We need to develop a coherent curriculum
in which every one of the thirty units is achieving
its maximum potential by working towards
providing graduates with a broad range of ICT
skills covering the essential technical and non-
technical ICT skills and the professional skills
needed to enhance the Tasmanian ICT industry.

Figure 1: The process to identify career outcomes for an ICT degree

Our resources

Stage 1: Identify potential roles
• Selection by ICT academics
• Selection by ICT industry members
• Review potential roles

Stage 2: Identify potential SFIA skills
• Tabulate SFIA skills from roles
• Review potential SFIA skills
• Feedback to role list

Stage 3: Identify level of responsibility
• Tabulate levels of responsibility
• Feedback to role list

Stage 4: Identify final career outcomes
• Classify roles as graduate, career,

partial, non-goal

Externally validated
list of roles
QLD Government
(2012) ICT career
streams diagram

A range of ICT
academics
Working party

A range of ICT
industry members
Three industry forums

Our outputs

Table 3
SFIA skills for roles
with levels of
responsibility

Table 1
Roles selected by
working party

Table 2
Roles selected by
industry members

Table 4
Final list of classified
career outcomes

Our constraints

Only ICT degree in
State
Broad range of ICT
Thirty units (subjects)

The process

CRPIT Volume 136 - Computing Education 2013

32

2.1 Stage 1: Identify potential roles
Our initial investigation into ICT degrees throughout
Australia indicated that degrees aim to produce graduates
qualified for a range of ICT careers, and although there
are some common career outcomes, most are quite
different in their emphasis. ICT is constantly changing
and new technology is continuously emerging and as a
result career titles and definitions are changing. Our
investigation indicated there appears to be no nationally
recognised standard set of career titles and definitions that
are used or maintained.

If career outcomes are to be achieved, they must be
embedded into design. The first essential step must be to
identify an externally validated set of ICT career
definitions that covers a broad range of ICT careers.
External validation limits the “influence of outspoken
individuals” (Gruba et al 2004). At the conclusion of this
stage a number of career outcomes is required to create a
degree that will meet its objectives as well as give
graduates options.

Our Resource ICT career streams diagram
The Queensland Government Chief Information
Office (QLD Government 2012) developed an ICT
career streams diagram in 2006. It is maintained to
keep it current, and was last updated in 2012. This
diagram (shown in Figure 2) identifies four
different career streams and 55 key ICT roles. The
online version of the diagram is interactive and
selecting a role will take the user to further
information that clearly defines the role and
identifies the SFIA (Skills Foundation in the
Information Age) skill set required to perform the
role along with the level of responsibility (SFIA
2012).

Given our constraint of only thirty units it was
necessary to identify a subset of the 55 roles that
would be career outcomes for our new degree. At
the conclusion of this stage a broad range of career
outcomes was required in order to create a non-
specialised ICT degree that would have wide
appeal.

Figure 2: ICT Career Streams, included with permission of QLD Government (2012)

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

33

There is a difference between the roles a graduate
could be fully qualified for on graduation and those
careers that they might aspire to over time. It is useful,
not only for accurate marketing to potential students and
their parents but also for the latter stages of the process,
to be able to distinguish between the different roles
available: graduate roles that students can perform when
they enter the workforce, career roles they might
eventually achieve after a few years of experience, or
partially-qualified roles that they might not develop all
the skills required during an undergraduate degree and
require further study. As a result, to guide the process of
identifying relevant career outcomes it is necessary to
preface any selection process with an identification of the
extent of qualification:

• Fully indicates students should be fully
qualified for graduate entry in this role. Some
short specific training maybe required, but
graduates are expected to be fully capable of
performing this role in a business within six
months. Unit content should be focussed towards
this role.

• Partial indicates students should have some
useful skills for this role but not all. There maybe
content that should not be supplied at university
undergraduate level. It could be supplied by
another organisation or a postgraduate degree.

• No indicates this is not a role to aim for with
the degree (whether it is achieved by skill overlap
is irrelevant at this time).

• Unsure indicates the reviewer was undecided.

Unless an institution has unlimited resources or unless
a small set of career definitions was chosen to begin with,
it is necessary to identify a subset of the roles that are
relevant for the new degree. It is recommended that input
from all stakeholders is sought but at the very least a two-
stage process is recommended:

• selection by ICT academics; and
• selection by ICT industry members.

2.1.1 ICT academics
Academics that will be implementing the new degree
should be involved in the identification process. Inviting
academics who will be involved in the implementation of
the new curriculum to be involved in the design from the
outset builds a sense of ownership that will facilitate
change (Elizondo-Montemayor 2008). To ensure that the
new degree is not heavily influenced by any one
individual a range of staff should be invited to identify
the roles they deem relevant from the externally validated
set of career definitions.

Our Resource — Working party
A working party was formed consisting of eight
academics, heavily interested in teaching and
learning with a variety of different characteristics
and backgrounds: three from the Launceston
Campus, five from the Hobart campus; three
primarily from the Information Systems discipline,
five primarily Computer Science; and three being
female and five male.

Our Output — Working party
Only a small number of roles, 8 (out of 55),
received 5 (out of 8) or more Fully votes. There
were 16 roles that received at least 75% (6 out of
8) of the votes when combining the Fully and
Partial votes. The results are shown in Table 1.
The careers that are different to the ICT industry
member responses are shown in italics.

2.1.2 ICT industry members
While academics have a good understanding of the
careers relevant to their graduates, it is also important to
get relevant industry members to identify the ICT
graduate roles. Nagarajan and Edwards (2008)
encouraged academics to collaborate “with industry so as
to incorporate the elements that are crucial for
employability of graduates as a part of curriculum
development, design, training and assessment”.

Each industry member should review each career
definition and rate them on a similar scale to that used by
the ICT academics. To ensure that the roles are actually
available and attainable, each industry member should
additionally rate each career as:

• Employed have employed a (Bachelor’s level)
graduate into this role in the last three years.

• Would Employ would employ a graduate into
this role if a vacancy existed.

• Not Graduate would not employ a graduate
into this role.

• Not Relevant not relevant to my organisation.

Our Resource — Industry members
Three industry forums were held and eighteen
representatives of the local and national ICT
industry and Government participated in an
exercise to identify career outcomes. The types of
organisations represented were: IT recruitment, IT
service/consulting, information management, IT
security, research, software development,
hospitality, tourism, gaming, transport, retail,
fishing aquaculture, food processing, engineering,
education, and government (federal and local)

Our attendees represented organisations with
varying number of ICT employees from one to
thousands. Nearly all had employed graduates into
various positions throughout their career; most
less than ten, some as high as fifty or more.

Our Output — Industry members
Only a small number of roles, 5 (out of 55),
received 10 (out of 18) or more Fully votes from
the industry representatives. There were 12 roles
that received over 75% (14 out of 18) of the votes
when combining the Fully and Partial votes. The
results are shown in Table 2. The careers that are
different from the ICT academic responses are
shown in italics. The number in brackets indicates
the number of attendees that indicated they have or
would employ a graduate into the role.

CRPIT Volume 136 - Computing Education 2013

34

>50% Fully votes Fully + Partial > 75%
Data Modeller Systems Analyst

Software Designer Help Desk Operator
Software Developer Network Analyst

Web Developer Security Specialist
Database Administrator Business Process Modeller
Systems Administrator Project Support Officer

Project Manager Multimedia Designer
Games Developer Multimedia Developer

 Technical Architect
 Security Architect

 Testing Manager

 Network Manager

Information Management

Specialist

 Solutions Architect

Technical Development

Manager

 ICT Manager

Table 1: Roles identified by working party

2.1.3 Review potential roles
On completion of the initial selection activity, it is
necessary to have a reflective discussion with industry
members to share and discuss any differences in outcome
identification amongst the industry members and with the
careers identified by the ICT academics. The discussion
should also consider the impact of any constraints.

Our Output — Review potential roles
The most interesting and relevant points from a
discussion between all parties who had
participated in the career outcomes exercise were:

• employers commonly place graduates in a
Help Desk Operator role initially to test
competence, and if they show ability, they are
quickly advanced to a Systems Administrator
or Software Developer role;

• industry members believed the role of
Graphics Designer was attainable and of high
demand, however it was questioned whether
this role was likely to be attained by graduates
solely undertaking an ICT degree, as specific
skills would be required from Fine Arts
related units;

• only two industry members identified the
Game Developer role as one that should be
Fully achieved, but all recognised that this
role was a strong draw card for students and
they welcomed the potential increase in
graduate numbers it provides; and

• industry members believed it was essential
that graduates were exposed to concepts in
project management and business analysis
during their degree but that a graduate could
not enter into a Project Manager or Business
Analyst role without job experience. Once
shown competent, they would be rapidly
promoted to these roles.

>50% Fully votes Fully + Partial > 75%
Data Modeller (14) Systems Analyst (12)

Software Designer (12) Help Desk Operator (11)
Software Developer (16) Network Analyst (7)

Web Developer (12) Security Specialist (10)
Database Administrator (11) Business Process Modeller (11)

 Project Support Officer (10)
 Multimedia Designer (5)
 Multimedia Developer (7)
 Technical Architect (8)
 Graphics Designer (9)

 Business Analyst (11)

 Project Manager (10)

Table 2: Roles identified by industry members
Even the best externally validated list of career
definitions may be missing some key roles that are
particular relevant to an institutions particular
circumstances. For example, there may be a significant
local industry sector or a significant key
research/innovation direction for the university or state. A
high-quality and focused degree will also potentially
attract students into research.

Our Output — Missing roles
The ICT careers stream diagram was very focused
on business careers and does not include titles that
might fall under ICT Scientist or ICT Researcher.
These careers are not necessarily of high interest
to industry, but they are of significant interest to
the University and the School and other research
institutes within Tasmania particularly with the
introduction of the NBN, Sensing Tasmania,
CSIRO ICT Centre and the HITLab. As a
consequence ICT Researcher was added to the list
of potential roles.

2.2 Stage 2: Identifying potential SFIA skills
Stage 1 of our process identified a list of potential roles
deemed desirable to use as a guide for the new curriculum
development. While this list is a useful starting point, the
next stage is to determine the specific skills required for
the attainment of these roles by graduates.

The Skills Framework for the Information Age is
owned by The SFIA Foundation (SFIA 2012). The SFIA
provides a common reference model for the identification
of the skills needed to develop effective information
systems making use of ICT. SFIA provides a standardised
view of a wide range of professional skills needed by
people working in information technology. Specifically, it
lists 96 professional ICT skills, with each skill being
mapped across seven levels of responsibility.

2.2.1 Tabulate skills for potential roles
A role relies on a combination of skill development.
Identifying an externally validated set of skills for the
career definitions is an essential part of the process.
Figure 3 shows an example of the SFIA skill set for a
software developer, as identified by the QLD
Government (2012).

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

35

Category Skill/description Level Code
Strategy and
architecture

Software development process improvement: Develops and maintains a detailed
knowledge of software process improvement. Contributes effectively to identifying new
areas of software process improvement within the organisation. Carries out software
process improvement assignments, justified by measurable business benefits.

5 - ensure,
advise

SPIM

Solution
development and
implementation

Programming/software development: Designs, codes, tests, corrects and
documents large and/or complex programs and program modifications from supplied
specifications using agreed standards and tools, to achieve a well engineered result.
Takes part in reviews of own work and leads reviews of colleagues' work.

4 - enable PROG

Solution
development and
implementation

Testing: Accepts responsibility for creation of test cases using own in-depth technical
analysis of both functional and non-functional specifications (such as reliability,
efficiency, usability, maintainability and portability). Creates traceability records, from
test cases back to requirements. Produces test scripts, materials and regression test
packs to test new and amended software or services. Specifies requirements for
environment, data, resources and tools. Interprets, executes and documents complex
test scripts using agreed methods and standards. Records and analyses actions and
results, and maintains a defect register. Reviews test results and modifies tests if
necessary. Provides reports on progress, anomalies, risks and issues associated with
the overall project. Reports on system quality and collects metrics on test cases.
Provides specialist advice to support others.

4 - enable TEST

Strategy and
architecture

Technical specialism: Maintains an in-depth knowledge of specific technical
specialisms, and provides expert advice regarding their application. Can supervise
specialist technical consultancy. The specialism can be any aspect of information or
communication technology, technique, method, product or application area.

5 -ensure,
advise

TECH

Figure 3: Software Developer Career and SFIA skills, included with permission of QLD Government (2012)
and text from SFIA (2012) quoted by kind permission of The SFIA Foundation

To identify a potential list of skills for a degree, each
role identified as a potential role should be considered
and the required skill set tabulated. The process will
identify some SFIA skills to include that are necessary for
a number of roles and a number of SFIA skills that are
not needed for any potential role.

Our Output — SFIA skills
The subset of SFIA skills needed for our potential
careers is shown in Table 3. The code titles can be
found at SFIA (2012). There were a number of
skills that were necessary for a range of career
outcomes e.g. CNSL (Consultancy) was required
for 16 careers; EMRG (Emerging technology
monitoring) was required for 8 careers. We
identified only 37 potential skills out of the 96
defined by SFIA.

2.2.2 Review potential SFIA skills
SFIA has identified 96 skills and based on the career
outcomes identified a subset of these will be developed in
a degree. A review of all the SFIA skills should be
conducted to see if any essential skills have been missed.
It maybe that the set of career definitions and the skill
mappings did not cover the full list of SFIA skills.
Consideration should also be given to any constraints
during this review.

Our Output — Review potential SFIA skills
When reviewing all the SFIA skills that were not
included, we discovered two that we will consider
including: HFIN (Human factors integration) and
UNAN (Non-functional needs analysis) both to
level 5. Both these skills relate to the
recommendation in the ACM IT curriculum (ACM
2012) that user-centeredness become a pervasive
theme. An analysis of all the skills required for all
careers in the QLD ICT careers stream diagram
identified that these skills were not listed as a
specific skill for any career.

2.2.3 Feedback to role list
A significant part of the adaption of the ACS process is
the feedback that occurs in each stage that influences the
list of potential career outcomes. Once the list of potential
skills is identified, these skills can be used to influence
the list of potential roles.

There will be some skills that are only needed for a
few roles and, if there are constraints, consideration can
be given to removing these roles or not developing those
specific skills and only partially qualifying a graduate for
these roles.

There might be some roles that were not in the list of
potential roles but an analysis of the skills required might
identify that they are all being covered and the role could
be included in the list of potential roles.

Our Output — Feedback to role list
There were some roles identified by academics
that were not identified by the industry members
that require a specialist skill that within our limited
number of units cannot be included such as
Network Manager, Solutions Architect, or
Information Management Specialist. Graduates
will be partially qualified for these roles.

There were some roles that required specialist
skills, e.g. Multimedia Designer, Multimedia
Developer and Graphics Designer. It was
determined again within the limited number of
units not to focus in this direction within this
degree.

There were some roles that were not identified
as potential roles for which all the skills will be
covered as a result of the careers chosen, e.g.
Benefits Analyst, Animator, Hardware Engineer,
Customer Services Manager, Incident Manager,
and Change Manager.

CRPIT Volume 136 - Computing Education 2013

36

SFIA Code Responsibility Level 4 Responsibility Level 5
METL Project Support Officer, Testing Manager
BUAN Business Process Modeller, Business Analyst
DTAN Business Analyst, Data Modeller (level 3)

PROG Game Developer, Software Designer,
Software Developer, Systems Analyst

FMIT Project Support Officer
SYSP Data Modeller
ITOP Network Analyst, Help Desk Operator (level 2)
PROF Project Support Officer (level 3)
RSCH ICT Researcher
HFIN Pervasive Theme
UNAN Pervasive Theme

TEST
Game Developer, Software Developer, Web
Developer, Graphics Designer, Multimedia
Designer, Multimedia Developer,

Testing Manager (level 4 only)

CHMG Systems Administrator, Network Analyst Network Manager (level 4 only)
ICPM Web Developer, Graphics Designer (level 4 only)

SCAD Database Administrator, Systems
Administrator Security Specialist, Security Architect

SCTY Database Administrator Security Specialist
INAN Systems Administrator
PRMG Technical Development Manager, Project Manager

CNSL

Software Designer, Systems Analyst, Web Developer,
Multimedia Designer, Multimedia Developer, ICT Manager,
Business Process Modeller, Information Management Specialist,
Security Architect, Solutions Architect, Technical Architect,
Project Manager, Network Analyst, ICT Researcher, Technical
Development Manager (level 6)

TECH
Game Developer, Software Designer, Software Developer, Web
Developer, Solutions Architect, Technical Architect, ICT
Researcher

EMRG
Multimedia Designer, Multimedia Developer, Technical
Development Manager, Security Architect, Solutions Architect,
Technical Architect, Network Analyst, ICT Researcher

SPIM Game Developer, Software Developer
DESN Systems Analyst
DBDS Database Administrator
DBAD Database Administrator
PBMG Systems Administrator
BPRE Business Process Modeller, Business Analyst
BURM Project Manager
RLMT Business Analyst, Project Manager (+experience)
CIPM Project Manager (+experience)
BENM Project Manager (+experience)
IRMG Information Management Specialist
ARCH Solutions Architect
NTDS Network Manager
INCA Multimedia Designer Graphics Designer, Multimedia Developer
ITMG Network Manager, ICT Manager (level 6)
SLMO Help Desk Operator (level 2)
USUP Help Desk Operator (level 2)
DLMG Technical Development Manager (level 6)
SURE ICT Manager (level 6)

Table 3: Potential SFIA skills and levels of responsibility
Skills that are required at level 5 but that we will only be able to achieve level 4 are shown in light grey.
Skills that have a lowest level of 5 but that require experience to fully attain level 5 are shown in medium grey.
Skills that we won’t develop within our degree are shown crossed out.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

37

2.3 Stage 3: Identify level of responsibility
To this point, a list of potential roles and the specific set
of skills required for the attainment of each role have
been identified. The third stage of the process is to
identify the level of responsibility for each skill required
to perform each role. Level of responsibility refers to the
recognition that people exercise skills at different levels.
SFIA recognises seven levels of responsibility ranging
from 1 at basic entry to 7 at a very senior level, normally
in a large organisation. SFIA’s levels are: 1. Follow; 2.
Assist; 3. Apply; 4. Enable; 5. Ensure/advise; 6.
Initiate/influence; and 7. Set strategy/inspire/mobilise
(SFIA 2012).

2.3.1 Tabulate level of responsibility
All the identified skills should be reviewed against the
SFIA levels of responsibility to determine the extent to
which the skill could be developed in an undergraduate
degree. The process will identify skills across a range of
levels. This process is guided by the ACS who
recommends that undergraduate degrees should be
producing graduates with skills around SFIA level 4
(enable) of responsibility (ACS 2011).

There might be a number of roles that required skills at
level 5. Decisions need to made about which level 5 skills
to aim for by creating a depth of skill development
throughout all years of the degree. Some of the final
development might be achieved in the first six months of
employment.

There might be some skills at level 5 that will not be
achievable within the constraints and will only be
developed to level 4. There might be some skills that
have a lowest level of 5 that are not possible to achieve at
university undergraduate level and might take one to two
years of employment to attain.

Our Output — Level of responsibility
The levels of responsibility for all skills are also
shown in Table 3. Given the constraint of 30 units
the TEST (Systems Testing), ICPM (Information
Content Publishing), and CHMG (Change
management) skills were reduced to level 4 as we
will be unable to develop these to level 5 by
including units at all years of the degree. CIPM
(Change Implementation Planning and
Management), BENM (Benefits Management),
and RLMT (Stakeholder Relationship
Management) have a lowest level 5 but these skills
require experience to fully achieve based on
feedback from industry members.

2.3.2 Feedback to role list
There might be some roles that were selected that have
skill levels that are too low or too high for an
undergraduate degree. Removing these careers from the
list can be considered.

Our Output — Feedback to role list
The role Help Desk operator requires SLMO
(Service Level Management), ITOP (IT
Operations), and USUP (Service Desk and
Incident Management) at responsibility level 2.
Help Desk Operator was eventually considered a
side-effect career outcome of the degree, and was
not seen as a role worthy as a career outcome for a
university degree (people can do this with
certificate IV or V). Many students take on these
roles before graduation.

Project Support Officer required PROF (Project
Office) at responsibility level 3 and Data Modeller
required DTAN (Data Analysis) at responsibility
level 3 but both also required skills at level 4;
these were seen as good graduate roles that
students could use to enter the workforce.

Technical Development Manager required
CNSL at level 6 which can only be developed to at
most level 5 in an undergraduate degree and ICT
Manager required ITMG (IT Management) at level
6 — this skill was not required for any other
career. As both careers also require other skills
that we will develop, it was decided these would
be partially qualified roles for the new degree.

2.4 Stage 4: Identify final career outcomes
Using combined insight developed from the previous
three stages — identification of potential roles,
identification of required skills for each potential role,
and identification of each level of responsibility required
for each skill — an informed decision can be made about
the final set of career outcomes that would be attainable
for the students, and would therefore guide the
curriculum development into the future.

Given that not all potential roles and skills identified
will be deemed attainable by undergraduate students
immediately on completion of their studies, it is
necessary to develop a categorisation that distinguishes
the differences in the attainability of these career
outcomes. Thus, the careers outcomes are divided into
four categories:

• graduate roles: all skills would be fully developed
and the role is suitable for graduates (though they
may need six months of experience to reach the
specific level of responsibility);

• career roles: all theoretical skills would be covered
and the role is suitable for graduates who have
acquired one to two years of experience and shown
competence;

• partially qualified roles: some key skills may be
absent from the undergraduate degree which might
be available from another discipline of the university
or other educational institution or in a postgraduate
degree; and

• non-goal roles: all the skills would be developed
however the delivery of the unit content and
discussion would not be focused towards these
particular roles.

CRPIT Volume 136 - Computing Education 2013

38

Graduate Roles (entry roles)
Data Modeller
Business Process Modeller
Systems Analyst
Project Support Officer
Software Designer
Software Developer
Web Developer
Games Developer
ICT Researcher/Scientist
Career Roles (after 1 or 2 years experience)
Project Manager
Business Analyst
Systems Administrator
Database Administrator
Security Specialist
Security Architect
Technical Architect
Network Analyst

Non-goal Roles
Benefits Analyst
Animator
Hardware Engineer
Customer Services Manager
Incident Manager
Partially-qualified Roles
Testing Manager (missing TEST level 5)
Help Desk Operator (missing USUP, SLMO)
Network Manager (missing NTDS, ITMG)
Information Management Specialist (missing IRMG)
Graphics Designer (missing INCA)
Multimedia Designer (missing INCA)
Multimedia Developer (missing INCA)
Change Manager (missing CHMG level 5)
Solutions Architect (missing ARCH)
Technical Development Manager (missing level 6)
ICT Manager (missing level 6)

Table 4: Final list of career outcomes

3 Conclusions: What others can learn from
our process

Curriculum design is a complex process that must be
informed by stakeholders and developed from multiple
perspectives. In creating a new ICT curriculum we
determined a need to identify those careers that would be
attainable by our graduate students and guide our future
curriculum design process. While career outcomes seem a
logical place to commence curriculum design, there exists
little direction available to guide the process of
identification and evaluation of potential career outcomes
and the required skills for each.

This paper reports on the development of an ICT
curriculum that was guided by the ACS recommended
process for developing curricula and provides practical
suggestions for undertaking the first three steps:

• Have a range of academics and industry members
select the roles within the constraints using an
externally validated set of roles with clear
definitions.

Our Output — Final career outcomes
In total we have identified 33 career outcomes for
our degree. The categorisation resulted in the
identification of 9 graduate roles that would be
immediately attainable by our graduating students
and would thus be our primary focus in
developing an ICT curriculum. In addition to these
core ICT graduate roles, we also identified 8
career roles, 11 partially qualified roles; and 5
non-goal roles. A list of these careers is presented
in Table 4.

We will develop 31 skills (twelve to level 4,
sixteen to level 5, and three to almost level 5 but
experience is needed to achieve that level of
responsibility). The skills will be embedded
throughout the units, and each unit will work
towards developing a number of skills.

Having identified the career outcomes, skills
and level of responsibility we went onto complete
steps 4, 5, and 6 of the ACS process (ACS 2011)
as documented in Herbert et al (2013). The next
step for us is to create the units based on external
curricula; in particular we are using the ACM
international curricula (ACM 2012). Having
completed the first draft of the framework we have
identified the equivalent of 28 units to cover these
skills at the required level. The units will be
developed throughout 2013 for delivery in 2014.

• Using the roles selected, identify the skills
relevant to each career. Then use the skills
identified to modify the list of potential roles (to
both remove some options and introduce others)
within the constraints.

• Identify the level of responsibility for each skill
within any constraints. Use the level of
responsibility for each skill to modify the list of
roles and to classify roles into graduate roles,
career roles and partially qualified roles that can
be used for accurate marketing of the degree.

In following the stages of this process, career
outcomes can be identified that are informed by a
balanced view of academic insight and employer needs,
both being further supported by externally validated and
industry-standard skill definitions. Furthermore potential
students can be assured that the career outcomes as stated
in marketing materials are really attainable, and that the
degree was developed with these career outcomes in
mind.

Most readers will be interested in our reflection of
using career outcomes as the mechanism for identifying
the skills to be developed during a degree. Following the
process documented in this paper has succeeded in
producing an ICT degree curriculum and given the
participants confidence that by following this process a
curriculum development team can:

• determine exactly what career outcomes from the
degree will be covered completely, which will be
covered partially, and which will not be covered
at all;

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

39

• be guided by career outcomes when developing
and making decisions about what skill set to
include in specific curricula;

• avoid the problems of outspoken individuals
having undue influence on curricula; and

• reduce the number of units to operate within
budgetary constraints, allowing time for staff to
do research, and still offer a broad range of career
outcomes to meet student and industry demand.

4 References
ACM, Association for Computing Machinery (2008),

Information Technology 2008: Curriculum Guidelines
for Undergraduate Degree Programs in Information
Technology.
http://www.acm.org//education/curricula/IT2008%20C
urriculum.pdf, Accessed 26 Oct 2012

Australian Computer Society (2011), Australian
Computer Society (2011): Accreditation Manual, ACS.

Alexander, P.M., Holmner, M., Lotriet, H. H., Matthee,
M. C., Pieterse, H.V., Naidoo, S., Twinomurinzi, H.
and Jordaan, D., (2010), Factors Affecting Career
Choice: Comparison between Students from computer
and other disciplines, Journal of Science Education and
Technology. Springer, 16 October 2010.

Babin, R., Grant, K. and Sawal, L., (2010), Identifying
Influencers in High School Student ICT Career Choice.
Information Systems Educational Journal, 8(26).

Biggers, M., Brauer, A. and Yilmaz, T., (2008). Student
Perceptions of Computer Science: A Retention Study
Comparing Graduating Seniors vs. CS Leavers. ACM
SIGCSE’08, 12–15 March 2008, Portland Oregon,
USA, 402–406.

Calitz, A.P., Greyling, J.H., Cullen, M.D.M., (2011), ICT
Career Track Awareness amongst ICT Graduates, ACM
SAISSIT’11, October 3–5, 2011, Cape Town, South
Africa, 59–66.

Elizondo-Montemayor, L., Hernandez-Escobar, C.,
Ayala-Aguirre, F., & Aguilar, G. M. (2008). Building a
sense of ownership to facilitate change: The new
curriculum. International Journal of Leadership in
Education, 11(1), 83–102.

Gruba, P., Moffat, A., Søndergaard, H., & Zobel, J.
(2004), “What Drives Curriculum Change?” in
Proceedings of the Sixth Australasian Computing
Education Conference, pp 109–117, ACS.

Henkel, M. and Kogan, M. (1999), Changes in
curriculum and institutional structures, in C. Gellert.
ed., ‘Innovation and Adaption in Higher Education’,
Jessica Kingsley Publ., 116 Pentonville Road, London,
N19JB, England, Chapter 2.

Herbert, N., Dermoudy, J., Ellis, L., Cameron-Jones, M.,
Chinthammit, W., Lewis, I., de Salas, K., Springer, M.,
(2013), Industry-Led Curriculum Redesign, To appear
in Proceedings of the Fifteenth Australasian
Computing Education Conference, ACS.

Monash University 2012 Handbook,
http://monash.edu/pubs/2012handbooks/units/index-
byfaculty-it.html, Accessed 8 August 2012.

Nagarajan, S. & Edwards, J. (2008), “Towards
Understanding the Non-technical Work Experiences of
Recent Australian Information Technology Graduates”
in Proceedings of the Tenth Australasian Computing
Education Conference, pp 103–112, ACS.

QLD Government, Chief Information Office, Department
of Science, Information Technology, Innovation and
the Arts,
http://www.qgcio.qld.gov.au/qgcio/projectsandservices
/ictworkforcecapability/Pages/ICTcareerstreams.aspx,
Accessed 8 August 2012.

QUT, Queensland University of Technology 2012
Handbook,
http://www.qut.edu.au/study/courses/bachelor-of-
information-technology, Accessed 8 August 2012.

SFIA Foundation, Skills Framework for the Information
Age. http://www.sfia.org.uk, Accessed 8 August 2012.

University of Swinburne 2012 Handbook,
http://courses.swinburne.edu.au/courses/Bachelor-of-
Information-Technology-I050/local, Accessed 8
August 2012.

UTAS, University of Tasmania 2012 Handbook,
http://courses.utas.edu.au/portal/page/portal/COURSE_
UNIT/UTAS_CU_ENTRY?P_CONTEXT=NEW,
Accessed 8 August 2012.

von Konsky, B. (2008), “Defining the ICT Profession: A
Partnership of Stakeholders.” in S. Mann & M. Lopez
(Eds.), Proceedings of the 21st Annual NACCQ
Conference (pp. 15–21). Auckland, New Zealand:
NACCQ.

CRPIT Volume 136 - Computing Education 2013

40

Student Concerns in Introductory Programming Courses

Angela Carbone

Monash University

angela.carbone@monash.edu

Jason Ceddia

Monash University

jason.ceddia@monash.edu

Simon

University of Newcastle

simon@newcastle.edu.au

Daryl D’Souza

RMIT University

daryl.dsouza@rmit.edu.au

Raina Mason

Southern Cross University

raina.mason@scu.edu.au

Abstract
1

Student evaluations of courses across many Australian

universities typically give students the option to

comment on the best aspects of a course and those

aspects that they believe need improving. Such

comments have been collated from students in

introductory programming courses at four Australian

universities. In this paper we present the results of a

thematic analysis to see whether there are common

themes to the areas students consider most in need of

improvement. We have undertaken this study to gain an

understanding of the student concerns in introductory

programming courses, in the expectation that a

framework could be developed to assist academics with

reviewing their courses in subsequent offerings. We

have found that at all institutions the main focuses of

student comments are the course as a whole and the

assessment, although at different universities the

comments focus on different aspects of these items.

Keywords: ICT Education, education quality in ICT,

teaching strategy, thematic analysis

1 Introduction

Universities in Australia and elsewhere are increasingly

being called to account for the quality of their student

experience, which necessarily includes the perceived

quality of their courses and of their teaching. Student

evaluations of courses and teaching have long been

standard practice in most Australian universities

(Ramsden 2003). To these can be added government-

administered surveys addressing similar questions

(Australian Graduate Survey 2012). Now, more than

ever, the findings from these surveys are being used to

identify how courses and degrees can be improved.

Student surveys are usually administered towards the

end of each semester, and results are analysed to

provide a snapshot of students’ perceptions of their

teachers, the course, and their learning. In most of these

Copyright © 2013, Australian Computer Society, Inc.

This paper appeared at the 15th Australasian Computer

Education Conference (ACE 2013), Adelaide, South

Australia, January-February 2013. Conferences in

Research and Practice in Information Technology

(CRPIT), Vol. 136. A. Carbone and J. Whalley, Eds.

Reproduction for academic, not-for profit purposes

permitted provided this text is included.

surveys, students rate a number of aspects of the course

on a Likert scale, followed by open-ended questions in

which they can identify best aspects of the course and

the teaching, along with areas that could be improved.

Brookfield (1995) suggests that courses should be

viewed through several lenses in order to improve them.

Carbone and Ceddia (2012) have used student survey

responses as one of those lenses, analysing the

responses to develop a picture of the areas of

dissatisfaction expressed by students about their ICT

courses. This paper extends the work of Carbone and

Ceddia, offering more focus in one respect and more

breadth in another.

While Carbone and Ceddia dealt with ICT courses

broadly, we have analysed student qualitative

comments only from introductory programming

courses. The focus on programming is appropriate

because for many years authors have expressed concern

about high failure rates and high attrition specifically in

introductory programming courses (Denning &

McGettrick, 2005; Moura, 2009; Kinnunen and Malmi

2006; Beaubouef and Mason 2005; Chalk 2003).

Second, the analysis is undertaken across four

universities: two major metropolitan universities, a

large non-metropolitan university, and a smaller

regional university with a significant distance education

component, to enhance the generalisability of our

findings. This spread enables us to explore which

student concerns are common across multiple

universities.

Much work has been devoted to ways of teaching

that might improve the students’ learning, the students’

learning experience, or both; but little work has been

reported on the students’ own experiences of the course

and how it can be improved. In this paper, we have set

out to explore what aspects of introductory

programming courses are seen by students as most in

need of improvement. We have two specific research

questions:

1. What do students perceive as the major concerns

in introductory programming courses?

2. Are the students’ concerns common across

different institutions?

This paper reports on a thematic analysis of the

qualitative comments from student evaluations in which

students suggest areas for improvement in introductory

programming courses from four universities.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

41

2 Background
Student evaluation surveys focus on student experiences

of courses, and are extremely important in identifying

whether courses are meeting students’ expectations and

needs, as well as areas that can be improved. However,

as Galbraith et al (2012) note, survey evaluations are in

no way a measure of student learning. It is possible for

students to like a course and learn very little from it, or

vice versa. Also, as Pears (2010) suggests, the student is

not necessarily the most competent stakeholder in the

education process to gauge course quality. Even so, the

students’ experiences of the course are clearly

important. Lefevere (2012) has shown that lecturers

who were specifically asked to alter their presentation

content in light of student feedback showed a greater

than average one-year change in student evaluation

scores. This finding confirms that courses can be

enriched by changes based upon student feedback.

2.1 The Student Evaluation Instruments
The student evaluation surveys used at the four

participating institutions are described below, with

particular focus on the free-text questions whose

answers we have analysed.

For items requiring a closed response, all

instruments use a five-point Likert scale ranging from

Strongly disagree (1) to Strongly agree (5), with 3

representing Neutral. Options for Not applicable and

Don’t know were also provided in some cases; these

options are not counted when calculating the mean

responses for questions.

Reports generated from the analysis of the closed

question responses for all courses are generally

accessible by staff and students of the university in

question. Access to the qualitative comments is

restricted to academic staff and their supervisors.

Usually the survey is issued in the last 4 weeks of the

session, and is available to all students enrolled in that

course, irrespective of location or study mode.

Monash University

The instrument used at Monash University is distributed

online at the end of each semester. There are five

university-wide Likert-scale course evaluation items:

1. The unit enabled me to achieve its learning

objectives.

2. I found the unit to be intellectually stimulating.

3. The learning resources in this unit supported

my studies.

4. The feedback I received in this unit was helpful.

5. Overall I was satisfied with the quality of this

unit.

Following the closed questions there are two open-

ended questions:

1. What were the best aspects of this unit?

2. What aspects of this unit are most in need of

improvement?

For the analysis in this study we collected the answers

to the second of these questions.

RMIT University

The Course Experience Questionnaire (CEQ) at RMIT

University has 13 Likert-scale questions of the form:

The learning objectives of this course are clear to

me (Strongly agree) to (Strongly disagree).

There are also two open-ended questions:

1. What are the best aspects of this course?

2. What aspects of this course are most in need of

improvement?

For the analysis in this study we collected the answers

to the second of these questions.

The University of Newcastle

The survey instrument used at The University of

Newcastle has 15 two-part questions and two further

open-ended questions. The first part of each two-part

question is closed, and the second part is a free-text

question inviting further comment on the same topic.

For example,

Q12. FEEDBACK: I received feedback that was

helpful to my learning.

Q12a. Any comments regarding feedback?

The additional open-ended questions are:

Q16. Are there things about this course that you

have not already mentioned that you think

are particularly good?

Q17. Are there things about this course that you

have not already mentioned that you think

need improving?

For the analysis in this study we examined all of the

free-text responses to any of the 17 questions and

collected those that suggest some need for improvement

in the course.

Southern Cross University

Southern Cross University has 18 Likert-scale

questions, of which seven are system-wide course-

related questions, five are questions selected by the

course instructor, and six are system-wide teaching-

related questions.

Each of these questions has an associated open

question: “please explain your reasons for your rating”.

There are two additional open questions:

1. Here is your opportunity to tell us how to

improve this unit.

2. Here is your opportunity to give other feedback

on the teaching in this unit.

For the analysis in this study we collected all comments

that could be considered to be criticisms or suggestions

for improvement.

3 Research Context

The four institutions participating in this study are

demographically quite varied; a brief description of the

background of each course at the institutions is

presented below. Note: what is called a unit in some

Australian universities is often called a course, a

subject, or (in New Zealand) a paper. The term ‘course’

will generally be used in the remainder of this paper.

3.1 Monash Context

Monash University offers Introductory Programming as

a core course to four undergraduate degrees. The course

is offered across multiple campuses: four domestic

CRPIT Volume 136 - Computing Education 2013

42

campuses at locations within Australia and two

international campuses. This introductory programming

course is offered at all six campuses.

The assessment consists of a 3-hour examination

worth 60% and in-semester assessment worth 40%. The

in-semester assessment is broken into three assignments

worth 5%, 10% and 15%, and a mid-semester test worth

10%, with ViLLE quizzes used as a hurdle. ViLLE

(ville.utu.fi) is a programming visualisation tool that

offers a range of question formats for Java and other

languages. At Monash, ViLLE is employed principally

for non-assessed work in Introductory Programming.

3.2 RMIT Context

Programming 1 is a first-year course that teaches

foundations of programming with Java as the vehicle of

instruction. It is a core course for students enrolled in

the Bachelor of Computer Science, Bachelor of

Software Engineering, and Bachelor of IT. For the latter

course students must have completed Introduction to

Programming or have equivalent recognised prior

learning. Programming 1 is also offered to postgraduate

coursework students whose first degree is not in

Computer Science or cognate disciplines.

ViLLE was employed for both assessed and non-

assessed work.

Assessed work comprises 3 assignments (total

35%), regular tutorial quizzes (10%), a mid-semester

paper test (4%), a mid-semester ViLLE online test

(6%), an online exercise (5%), and a final examination

(40%). The final exam and the other assessed work

form two separate hurdles.

3.3 Newcastle Context
Visual Programming is an introductory programming

course that is a core requirement for students in the

Information Technology degree, although it is also

taken by a number of students in other degrees. At the

time of this study it was taught using C# in Visual

Studio.

The assessment in Visual Programming consists of

two practical tests each worth 15%, a paired assignment

worth 20%, and a final written exam worth 50%.

3.4 Southern Cross Context

We have examined two first-year introductory

programming courses from Southern Cross. The first

uses Visual Basic .NET as its programming language

and has four minor assignments (small programs), one

major assignment (larger program) and an exam. The

second course uses C# as its programming language and

has three online quizzes (based on previous

programming exercises), one minor assignment, one

major assignment, and an exam.

Both of these courses have lectures that are delivered

live to all students once a week via Blackboard’s

Collaborate software (http://www.blackboard.com/

platforms/collaborate/overview.aspx). Recordings of

the lecture are also made available for those students

who are not able to attend the online lecture, via the

university’s Blackboard site for each course. In

addition, in each course, six live online workshops are

conducted via the Collaborate software, which are also

recorded for students who cannot attend. On-campus

students attend internal workshops of two hours/week.

Both on-campus and external students are expected to

work through a provided study guide.

For the purposes of this analysis we consider these

two courses to be a single introductory programming

course.

3.5 Overall Course Satisfaction
While this research focuses on the students’ free

responses to the open-ended questions, there is one

Likert-scale question that is often used to benchmark

courses, and that is the overall satisfaction question,

which is something along the lines of:

Overall I was satisfied with the quality of this

course.

This question is typically used as a quality measure to

rank courses and to identify those that are most in need

of attention. At Monash, for example, courses with a

mean response of 3 or less for this question are flagged

as needing critical attention, and courses with a mean

response from there up to 3.6 are flagged as needing to

improve. The dividing lines are not the same at each

university, and are determined at different levels of the

university hierarchy, but the principle remains more or

less the same.

 Table 1 lists, for each institution, the enrolment in

the course we were examining, the survey response

count and rate, and the score for the course on the

overall satisfaction question. None of the programming

courses that we have studied fared particularly poorly

on this question.

Where the overall satisfaction score appears as a

range, it is because the responses were gathered from

two or more offerings of the course, each of which had

a different score.

3.6 Response Rates and Comment Counts
The response counts listed in Table 1 are the formal

counts of the numbers of students who completed the

surveys. There is no clear relationship between these

response counts and the numbers of open-ended

answers received. A student might respond to some or

all of the closed questions and none of the open

questions. For example, at RMIT there were 211

enrolments with 80 responses, giving a response rate of

38%. However, there were only 46 actual qualitative

comments, giving a ‘comment’ response rate of 22%.

For Monash the comment response rate is 27%, and for

Newcastle it is 22%.

A further complication is that while Monash and

RMIT each give students a single opportunity to

suggest aspects of the course that might need

Institution Enrolment
Response

count

Response

rate

Overall

satisfaction

Monash 674 234 35% 3.63-4.33

RMIT 211 80 38% 3.75

Newcastle 301 92 31% 3.83-4.35

Sthn Cross 236 71 30% 3.77-4.00

Table 1: Course demographics

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

43

improvement, Newcastle and Southern Cross give

multiple opportunities for open comment. When the

comments are made available in summary form there is

no way to discern whether two or more of them were

made by the same student. It is possible, for example,

for a single student to have made a dozen or more

comments on the same form. Indeed, there is evidence

that some students did contribute two or more

comments, because some comments begin with words

such as ‘As I remarked above . . .’

For these reasons the comment counts are best

considered simply as comment counts, with no useful

connection to the survey response rates.

4 Research Approach

This section describes the processes of data collection

and analysis.

4.1 Data Collection

Reports on the quantitative course evaluation results are

generated by central university areas, and are publicly

accessible by staff and students by way of the university

websites. However, access is more controlled to the

responses to the open questions.

Human ethics approval was obtained from each

institution to analyse the course evaluation qualitative

comments for the introductory programming courses.

This approval entailed gaining consent from the staff

involved in teaching the courses.

Once ethics approval had been granted and the

lecturers’ consent had been obtained, the qualitative

data was provided by the university statistics units at

each participating university. All files with qualitative

data had any identifying lecturer and tutor information

removed, along with any further sensitive information

that might offer the potential for re-identification.

4.2 Focus of Analysis

A thematic analysis was undertaken on the student

responses to the following open-ended question or its

equivalent:

What aspects of this course are most in need of

improvement?

4.3 Deriving a Common Set of Categories

As a convenience, and to avoid reinventing the wheel,

we began with the set of categories and subcategories

derived by Carbone and Ceddia (2012). The main

categories were straightforward to identify as they were

often key words in the comment. For example, a

comment beginning with “The lecturer was...” would

normally (though not always) be classified into the

Lecturer category.

Each researcher began by classifying all of the

comments in one dataset. The team then met to discuss

differences, clarify understanding of the classification

scheme and of the course in question, and introduce

new categories or subcategories if required. At times it

was necessary for the member from the institution being

classified to explain any special software or process that

was used at that institution. For example, two of the

universities use the ViLLE program visualisation

system (ville.utu.fi) in their programming courses, but

one uses it just as a practice tool while the other also

uses it for an aspect of assessment. The researchers

from those universities had to explain to the others what

ViLLE was and how it was used in their particular

courses so that students’ comments about ViLLE could

be accurately interpreted and classified.

Discussion of the data from each university resulted

in a possibly revised set of categories to be used when

classifying the next dataset. This was done

progressively with the data from the four universities.

Thus the derivation of the categories and subcategories

was addressed naturally and progressively through four

rounds of coding and discussion.

In the course of our analysis we developed four

further categories in addition to those used by Carbone

and Ceddia (2012). However, we agreed that two of

these contribute nothing to the lecturer’s understanding

of how to improve the course, so we have labelled them

‘non-contributing’ categories.

The first of these categories is Null. The student

clearly intended to comment on something that needed

improving in the course, but the comment itself was so

uninformative that we were unable to classify it. An

example of a Null comment is the single word

“practice”. Such comments contribute nothing useful to

the lecturer planning the delivery of a course, so we

have omitted them from the summary counts and from

further analysis.

The second non-contributing category is Student.

Comments in this category came principally from

Newcastle, where one question asks students if they

have any comment on the effort they put into the

course. While teaching staff clearly have some

influence on how students approach a course, after

examining the specific comments in this category we

concluded that nothing they said would be of help to

lecturers in preparing to deliver a course, so these, too,

were removed from consideration.

The two additional contributing categories are

Course and Lab. When students’ comments pertained to

the course as a whole, rather than any specific aspect of

it, we felt that this merited its own category. Students

might, for example, suggest that improvements could be

made to the course content, the overall course structure,

or the relevance of the course to their other studies or to

their career aspirations.

When we found comments pertaining to computer

lab classes our first inclination was to classify them into

the Tutorial category. However, the course at Monash is

taught by way of lectures, tutorials (in which the

students do pen-and paper exercises), and labs (in

which they carry out programming at computers), so we

introduced the Lab category in recognition of this

distinction – while recognising that at other universities

there might be some blurring of these two categories.

In addition to the four new categories we discerned

several new subcategories. One important subcategory

is unspecified. It is not uncommon for a student to

clearly indicate what needs improving, but not in what

regard. For example, a comment that “lectures” need

improving might be referring to the content, timing,

duration, structure, or some other aspect of the lectures.

CRPIT Volume 136 - Computing Education 2013

44

We put such a comment into the Lecture category so

that it would be counted there, but for lack of further

information then put it into the unspecified subcategory.

The final ten categories and their subcategories are

listed in Appendix 1.

4.4 Inter-rater reliability
It is common to measure inter-rater reliability (Banerjee

et al, 1999) when undertaking any form of subjective

classification, such as, in this research, the classification

of each student comment into a category and

subcategory. This measurement is generally done for

one of two reasons: to validate the classification system

being used, or to ensure that individual classifiers are

classifying comparably when the work is partitioned

among them.

The purpose of this study was to determine common

concerns in introductory programming courses, and not

to propose a classification system for others to use, so

there was no need to validate the system.

Furthermore, the task of classification was not

partitioned among the researchers, so it was not

necessary to establish that each classifies as the others

would; the researchers classified all the data separately,

but then met to discuss and reach consensus on a

classification for each and every comment. For these

reasons we did not carry out inter-rater reliability

calculations.

5 Results

A total of 347 qualitative comments from four

introductory programming courses were categorised

and coded. The actual number of individual students

who gave feedback is less than 347, as some students

commented on multiple areas and these were coded as

separate comments into their respective categories. In

particular, at Monash and RMIT there was a single

question asking students to nominate aspects of the

course that could be improved; some students combined

multiple suggestions into these single comments, and

when classifying the comments we separated them into

their component parts and classified each separately.

Thus a single comment might be counted and classified

as several. This gives some comparability with

Newcastle and Southern Cross, where the surveys give

multiple opportunities to comment, each on specified

aspects of the course.

5.1 Comment frequencies

Tables 2, 3, 4 and 5 list the frequencies of comments in

each category and subcategory for Monash, RMIT,

Newcastle, and Southern Cross respectively. In these

tables, the ‘%’ column is calculated as a percentage of

the total comments for the institution. For example, in

Table 2 for the Monash data, 51 of the 182 comments

were classified in the Course category, giving 28%.

Within each category the most prevalent subcategory is

marked in bold text.

In the following subsections we shall note any

classifications that appeared in some way localised to

the university in question.

5.2 Concerns of students at Monash
A total of 182 comments were coded for Monash; the

classifications are listed in table 2. This is the university

Category Frequency % Subcategory Freq

Course 51 28%

challenge 12

content 10

organisation 20

relevance 1

workload 5

unspecified 3

Lecturer 16 9%

control 1

knowledge 1

presentation 8

support 5

unspecified 1

Lecture 15 8%

access 1

content 7

duration 2

quality 1

structure 2

unspecified 2

Tutor 21 12%

organisation 1

presentation 7

support 13

Tutorial 23 13%

alignment 2

clarity 2

length 7

scheduling 2

type of activity 9

unspecified 1

Lab 11 6%

activity 4

length 3

unspecified 4

Assessment 32 18%

alignment 3

content 3

difficulty 3

feedback 1

marking 2

organisation 9

practice 3

specification 5

timing 1

unspecified 2

Resources 11 6%

availability 1

quality 8

quantity 1

unspecified 1

LMS 1 1% ease of use 1

OffCampus 1 1% support 1

Table 2: Monash data - 182 comments total

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

45

that had distinct labs and tutorials, and for which we

introduced the Lab category.

Lab – activity refers to the type of activity issued in the

lab. A sample comment is:

The lab sessions weren't very productive, I was

basically sitting at my computer for 2 hours working

on question 1 of each task and the supervisor did

nothing unless you asked him

Lab – length refers to the time allocated to the lab. A

sample comment is:

computer lab time is too short to do 4 exercises.

5.3 Concerns of students at RMIT
A total of 47 comments were coded for RMIT; the

classifications are listed in table 3. The data from this

university led to significant discussion on the nature and

role of ViLLE, so that we could be more confident

whether at this university we should classify comments

about ViLLE in the Assessment or Resources category.

5.4 Concerns of students at Newcastle
A total of 63 comments were coded for Newcastle; the

classifications are listed in table 4. Coding of the

comments for this university led to a new subcategory,

challenge, which emerged under the categories Course

and Lecture. We would not normally expect a student to

comment on the challenge posed by a course (as distinct

from, say, the workload of the course). However this is

one of the universities that invite comment on specific

topics, and after asking students to rate the challenge of

the course its survey explicitly asks if they have any

further comment on challenge.

Course – challenge refers to the level of difficulty of

the course as experienced by the student, with

comments such as:

[Challenge] As this is my first programming course

but second attempt yeah it was a challenge .

Lecture – challenge refers to the level of difficulty of

the lecture material, and arises from the comment:

[Learning activities] I find this is a hard course to

teach through lectures

While other comments in this paper are reproduced

verbatim, the notation above indicates that a student

Category Frequency % Subcategory Freq

Course 10 21%

content 4

organisation 1

relevance 1

unspecified 1

workload 3

Lecturer 1 2% support 1

Lecture 4 9%

content 1

structure 2

unspecified 1

Tutor 2 4%
support 1

unspecified 1

Tutorial 2 4% type of activity 2

Assessment 20 43%

alignment 1

content 1

difficulty 1

feedback 2

practice 1

quantity 3

specification 7

support 1

timing 2

unspecified 1

Resources 7 15%

availability 1

quality 5

unspecified 1

LMS 1 2% quality 1

Table 3: RMIT data – 47 comments total

Category Frequency % Subcategory Freq

Course 23 37%

challenge 6

content 1

organisation 3

quality 1

relevance 3

unspecified 1

workload 8

Lecturer 7 11%

organisation 1

presentation 3

support 3

Lecture 3 5%

challenge 1

content 1

unspecified 1

Tutor 6 10% support 6

Tutorial 4 6%

structure 1

scheduling 2

type of activity 1

Assessment 12 19%

difficulty 1

feedback 2

marking 1

organisation 2

practice 1

specification 4

unspecified 1

Resources 8 13%

availability 2

quality 2

quantity 1

readings 3

Table 4: Newcastle data - 63 comments total

CRPIT Volume 136 - Computing Education 2013

46

wrote “I find this is a hard course to teach through

lectures” in response to the invitation “Any comments

regarding learning activities?” We have used this

notation as some of the comments from this university

would be difficult to interpret without the context of the

question to which they were responding.

5.5 Concerns of students at Southern Cross
A total of 55 comments were coded for Southern Cross;

the classifications are listed in table 5. This university

delivers its lectures via the Collaborate tool rather than

face-to-face; some students found this interface difficult

to deal with, leading to comments on delivery mode, a

subcategory that we did not find at the other

universities.

The subcategory ease of study emerged under the

main category OffCampus. The subcategory relates to

the challenges students face when undertaking off-

campus courses and arose because of this comment:

Yet again, this unit posed many challenges due to

the tyranny of distance and subsequent lack of

hands on interaction with peers and lecturer. The

blackboard is a wonderful asset for distance ed

students but will never replace the vibrancy of an

actual lecture or workshop. Even though [lecturer]

was always open to emails the problem is that

asking questions in emails can be difficult,

especially when you are not even sure what your

asking for because the topic is so foreign.

6 Discussion
Table 6 lists top three category student concerns at each

institution. The rows list the main category, the columns

list the institution concerned, and the cell contents

identify the subcategory for the institution. For

example, the top issues for Monash are Course –

organisation, Assessment – organisation and Tutorial –

type of activity.

The two research questions that motivated this

research were:-

1. What do students perceive as the major concerns

in introductory programming courses?

2. Are the students’ concerns common across

different institutions?

These questions can now be answered by examining

Table 6. The twelve completed cells indicate what

students perceive as the major concerns in the

introductory programming courses at these four

institutions. At a category level there is fairly strong

agreement: students express concerns about the course

as a whole and about the assessment in the course.

There is rather more diversity at the subcategory level,

and the answer to the second question would seem to be

that there is some commonality in the students’

concerns, but that there is also diversity, and even when

considering only four institutions we are able to identify

concerns that relate directly to the specific

circumstances of each course. These points are

illustrated in the following sections.

6.1 Concerns about the course
With regard to the top category concern of Course,

students at Monash and Southern Cross are concerned

about the course structure, while the concern at

Newcastle focuses on workload and that at RMIT

focuses on course content.

Course – structure refers to the way that components of

the course are arranged. Comments include:

 The unit should emulate the structure of other

subjects (e.g. Commerce subjects) where

tutorials and labs cover the previous week's

lectures (as opposed to the current week's

lectures). [Monash]

 found that the subject seemed to concentrate

most marks toward the end with the difficult

concepts of files and structs left until the major

assignment was due. Perhaps more balanced

loading over the semester [Southern Cross]

Course – workload refers to the size and number of

things to do in the course. Comments include:

Just time we need more time so we can spend more

time on individual things rather than cram

everything into a short period of time [Newcastle]

Course – content relates to the choice of topics that are

covered, including the programming language used.

Comments include:

change language from java to something more

widely used [RMIT]

Category Frequency % Subcategory Freq

Course 12 22%
content 3

organisation 9

Lecturer 8 15%

presentation 3

support 4

unspecified 1

Lecture 6 11%

content 2

delivery mode 3

structure 1

Tutor 6 11%

organisation 2

quality 1

response time 1

support 2

Tutorial 7 13% type of activity 7

Assessment 9 16%

alignment 2

content 1

feedback 2

marking 2

practice 1

timing 1

Resources 6 11%

availability 1

content 2

quality 3

OffCampus 1 2% ease of study 1

Table 5: Southern Cross data - 55 comments total

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

47

6.2 Concerns about assessment
With regard to the top category concern of Assessment,

students at RMIT and Newcastle are concerned about

the assessment specifications, students at Monash about

the organisation of assessment, and students at

Southern Cross about feedback, marking, and alignment

of the assessment with the course learning objectives.

Assessment – specification refers to the clarity with

which assignments were written, the submission

process, and any changes to requirements. Comments

from RMIT and Newcastle include:

 Explanation of assignments; Rehash of previous

assignments properly implemented [RMIT]

 the rules for the game in the assignment were a

little ridiculous, making the game just a little bit to

near impossible to understand. [Newcastle]

Assessment – organisation refers to the due dates and

the allocation of marks to components of assessment.

Comments include:

 I don't believe the exam should have such a strong

influence on your overall score as exams are not a

practical programming environment. The real test

of your programming skills is the second

assignment. [Monash]

Assessment – feedback refers to the usefulness of the

correspondence in relation to the assessment.

Comments include:

 Feedback is also an issue, with the option for

Continuous Assignments to be marked in class the

feedback is severely lacking. I found many times

that my documentation was looked over in 10

seconds then the code was looked over in about 30

seconds, then it was tested that everything worked,

and the assignment was ticked off with very

minimal feedback. When we upload our

assignments to [the website] they need to be

thoroughly looked over and precise feedback be

given that clearly outlines what needs to be

changed so that full marks can be attained. With

this feedback students would be able to look

through past feedback and apply it to the next

assignment and get full marks easily. Students put

in a lot of work to make sure assignments are done

the least that can be done is that they are marked

and feedback be given to the same standard.

[Southern Cross]

Assessment – marking refers to the level of consistency of

marking, quality of feedback, timeliness, and clarity of

marking criteria. A typical comment includes:-

 Also for most of our Continuous Assessments, he

didn't seem to care about the documentation most

weeks, as long as the application worked. Then

why is it apart of the work if he doesn't care? This

makes it difficult to know exactly what it is that he

wants! [Southern Cross]

Assessment – alignment refers to the degree of alignment

of assessment tasks with course learning objectives. A

typical comment includes:-

 My only complaint is that the topic on open/read a

file was far too late in the course. I feel this should

have been delivered earlier, which would have

aided in getting the major assignment well under

way, earlier in the course. [Southern Cross]

6.3 Other prevalent concerns
There is less commonality in the third category of

choice, with students at Monash expressing concern

about the type of activity carried out in tutorials (which,

remember, are different from computer labs), students

at RMIT about the quality of the resources, students at

Newcastle about the readings provided as resources

(which include the textbook), and students at Southern

Cross about the support provided by lecturers

(remembering that these courses are lectured remotely

though an online collaboration system). Comments

illustrative of these concerns are provided below:

Tutorial – type of activity

Tutorials - should have easier questions - takes too

long to get through the tutorial worksheets (we get

through it but in a bit of a rush) to enable people

more time to grasp concepts. [Monash]

Resources – readings

i found that the text book was simply rubbish and its

writing was ... confused at best. [Newcastle]

Resources – quality

The online tests. ViLLE was not an appropriate

learning tool as I had many problems using it.

[RMIT]

Lecturer – support

In the Workshops, it would be alot better if

[lecturer] were to actually explain and go through

pieces of code, instead of just sitting there waiting

for us to ask questions. [Southern Cross]

7 Conclusion and Future Work

This study aimed to take a first step in developing an

understanding of the areas that are perceived as

concerns by students in introductory programming

courses. This understanding was achieved by analysing

the qualitative responses to the course evaluation

questionnaire of first-year programming courses from

four Australian universities.

The qualitative comments were obtained from each

university’s central units after approval from Human

Ethics at each institution and receiving the lecturer’s

Category Monash RMIT Newcastle Southern Cross

Course Organisation Content Workload Organisation

Assessment Organisation Specification Specification Feedback, Marking, Alignment

Resources Quality Readings

Lecturer Support

Tutorial Type of activity

Table 6: Top three category/subcategory pairs at each institution

CRPIT Volume 136 - Computing Education 2013

48

consent. The analysis was achieved by each researcher

classifying all of the comments from one university and

then discussing differences, and introducing new

categories if required. This process was repeated for

each university’s data.

A total of 347 qualitative comments were

categorised into 10 main categories: Course, Lecturer,

Lecture, Tutor, Tutorial, Lab, Assessment, Resources,

LMS and OffCampus. Each of these main categories

was divided into subcategories to provide a more fine-

grained focus on the real concern for the student. The

subcategories serve to define the attributes of the main

category. It is these subcategories that provide the real

value to lecturers so that they can interpret the students’

feedback and act to achieve real improvements in their

courses.

From the analysis the students across all four

universities expressed common concerns about the

Course and the Assessment. With regard to the Course

the most common subcategories that emerged were

related to specification, workload and content. With

regard to Assessment the most common were

organisation, specification and feedback. Other

prevalent concerns varied depending on the institution.

Following the analysis we have produced a course

quality attribute list, which is shown in Appendix 1. We

believe that this output from our research will be a

useful guide for academics, highlighting areas that they

should consider when preparing for a new course or a

new offering of an existing course. This list is not a

schedule or a to-do list; rather, its purpose is to prompt

academics to consider what past students have

experienced as course quality, and to bear this in mind

while preparing a course for delivery to students.

At this stage the list has not been deployed; that will

take place during the next phase of the study. The list

will be distributed to relevant lecturers of introductory

programming courses at their institutions to get

feedback from the lecturers themselves as to what they

consider needs improvement in their courses. Each

researcher will work closely with a ‘buddy’ academic to

pilot the list and determine its applicability and

usefulness. Along with deployment, the researchers will

be able to validate the list and confirm its reliability.

8 Acknowledgements
We gratefully acknowledge the lecturers who were

willing to let us examine the negative feedback on their

courses.

9 References

Australian Graduate Survey 2012. Graduate Careers

Australia. http://www.graduatecareers.com.au/

research/surveys/australiangraduatesurvey/

[Accessed June 2012].

Banerjee, M., Capozzoli, M., McSweeney, L., and

Sinha, D. 1999. Beyond kappa: a review of

interrater agreement measures. Canadian Journal of

Statistics, 27:1, 3-23.

Beaubouef, T. and Mason, J. 2005. Why the high

attrition rates for Computer Science students: Some

thoughts and observations. ACM SIGCSE Bulletin,

vol. 37, no. 2, pp. 103—106, ACM New York,

USA, June 2005.

Bennedsen, J. and Caspersen, M. E. 2007. Failure rates

in introductory programming. ACM SIGCSE

Bulletin, vol. 39, no. 2, pp. 32—36, ACM New

York, USA, June 2007.

Brookfield, S., (1995) Becoming a critically reflective

teacher. San-Francisco: Josey-Bass 1995

Carbone, A., and Ceddia J. 2012. Common Areas for

Improvement in ICT Units with Critically Low

Student Satisfaction. Fourteenth Australasian

Computing Education Conference (ACE 2012),

Melbourne, Australia, 167-175.

Chalk, P., Boyle, T., Pickard, P., Bradley, C., Jones, R.

and Fisher, K. 2003. Improving pass rates in

introductory programming. In Proceedings of 4th

LTSN-ICS Conference, Galway, UK, August 2003.

Denning, P. & McGettrick, A., 2005. Recentering

Computer Science. Communications of the ACM,

48(11), pp.15–19.

Galbraith, C., Merrill, G. & Kline, D. 2012. Are Student

Evaluations of Teaching Effectiveness Valid for

Measuring Student Learning Outcomes in Business

Related Classes? A Neural Network and Bayesian

Analyses. Research in Higher Education, 53, 353-

374.

Kinnunen, P. and Malmi, L. 2006. Why students drop

out CS1 course? In Proceedings of the second

international workshop on Computing education

research (ICER’06), pp 97—108, ACM New York,

USA, 9—10 September 2006.

Lefevere, Kathelijne. HERDSA 2012 conference

presentation Course evaluation: does student

feedback improve future teaching? Personal

communication.

Moura, I., 2009. Teaching a CS Introductory Course:

An Active Approach. In Proceedings of Society for

Information Technology & Teacher Education

International Conference 2009. Charleston, SC,

USA: AACE, pp. 2308 – 2317.

Pears, A. 2010. Does Quality Assurance Enhance the

Quality of Computing Education? presented at the

meeting of the 12th Australasian Computing

Education Conference (ACE 2010), Brisbane,

Australia.

Ramsden, P (2003). Learning to Teach in Higher

Education. RoutledgeFalmer, London.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

49

http://www.graduatecareers.com.au/

Appendix 1. Course quality attributes list

These course attributes are derived from a study of student feedback comments on aspects of courses that

could be improved. The attributes are divided into categories and subcategories, and within each category the

highlighted subcategory is the one that drew most comments in this study.

Category Subcategory Description Check

Course

challenge The level of challenge and difficulty of the overall course

content
The choice of topics that are covered in the course, including programming

language used

relevance The real world scenarios in the course and whether the course is current

structure The way that components of the course are arranged

workload The size and number of things to do in the course

Lecturer

control The amount of control the lecturer has over disruptive students in class

knowledge The amount of knowledge the lecturer portrays to the students

organisation The way the lecturer arranges the components of the lecture

presentation The level of engaging teaching methods used to deliver the material

support The lecturer’s availability and attitude towards the students

Lecture

access The ease with which the lecture materials can be reached by students

challenge The level of difficulty of the material

content The choice of topics and activities that are presented in the lecture

delivery mode The suitability of the mode of delivery

duration The amount of time allocated to the lecture

structure The logical sequencing of concepts

Tutor

organisation The way the tutor arranges the components of the tutorial

presentation The engaging teaching methods used to deliver the material

response time How quickly the tutor responds to students’ queries

support The tutor’s availability and attitude towards the students

Tutorial

alignment The alignment of tutorial activities with course learning objectives

clarity The clearness of the requirements of the task

length The amount of time allocated to the tutorial

scheduling When the tutorial classes are scheduled

structure The logical sequencing of activities

type of activity The type of tutorial activity

Lab
activity The type of laboratory activity

length The amount of time allocated to the lab

Assessment

alignment The alignment of assessment tasks with course learning objectives

content The choice of tasks covered by the assessment items

difficulty The level of difficulty of the assessment items

feedback The usefulness of the correspondence in relation to the assessment

marking
Consistency of marking, quality of feedback, timeliness, and clarity of marking

criteria

organisation Due dates and the allocation of marks to components of assessment

practice The amount of similar tasks students have experienced

quantity The number and size of assessments

specification
The clarity in which assignments were written, submission process and changing

of requirements

support The assistance provided to students in relation to their assessment tasks

timing When in the teaching term the assessment items are issued and due

Resources

availability How accessible and ready for use a resource is

content The usefulness of the resources

quantity The amount of resources

readings The suitability of the readings

LMS ease of use The simplicity with which materials can be found on the LMS

Off Campus
ease of study The challenges students face when undertaking off campus courses

support The assistance provided to students studying in distance education mode

CRPIT Volume 136 - Computing Education 2013

50

Stakeholder-Led Curriculum Redesign

Nicole Herbert, Julian Dermoudy, Leonie Ellis, Mike Cameron-Jones, Winyu
Chinthammit, Ian Lewis, Kristy de Salas, Matthew Springer

School of Computing and Information Systems
University of Tasmania

Private Bag 87, Hobart 7001, Tasmania
Nicole.Herbert@utas.edu.au

Abstract
The University of Tasmania is undertaking a ‘green-
fields’ replacement of its existing undergraduate ICT
offerings. As part of the process over thirty industry
members and educators were interviewed to gain their
advice on what should be included in the only bachelors
level ICT degree offered in Tasmania from 2014. This
paper reports on lessons learned in ICT curriculum review
and in the identification of desired graduate skills and
knowledge for future employment. With a strong trend
towards utilising outsourcing and off-shoring for software
and system development, industry members indicated that
there is no room in the ICT industry of the future for
personnel who cannot relate to customers and who lack
the business acumen to be able to undertake analysis at
the commencement of a project or integration at its
conclusion. The review identified strong demand for
graduates to be ICT professionals with generic
professional skills (such as communication and
teamwork) along with other non-technical skills (such as
business analysis, sourcing and integration) in addition to
the traditional domain skills (including programming and
databases). Employers desired graduates with a broad
range of ICT knowledge but with a depth of competency
in at least one ICT technical area. A summary of the
outcomes, including likely degree content, is provided.

Keywords: ICT Curriculum, ICT Graduates, ICT Industry

1 Rationale
As has been the case in ICT schools nationally, the staff
profile of the School of Computing and Information
Systems at the University of Tasmania (UTAS) has
contracted, by almost a third, in the last decade and this
contraction is expected to continue. Further, like many
Australian universities, UTAS is re-positioning itself.
The University is seeking to increase its research-led
reputation and to rationalize the number of units
(subjects) delivered. To this end, the School of
Computing and Information Systems was recently
administratively reviewed and it was recommended that
the current undergraduate degrees, a Bachelor of
Computing and a Bachelor of Information Systems, be
discontinued and a single degree be created in their place.

 Copyright © 2013, Australian Computer Society, Inc. This paper

appeared at the Fifteenth Australasian Computing Education Conference
(ACE2013), Adelaide, Australia, January 2013. Conferences in
Research and Practice in Information Technology, Vol. 136. Angela
Carbone and Jacqueline Whalley, Eds. Reproduction for academic, not-
for-profit purposes permitted provided this text is included.

In addition, the Review Panel also recommended that
the School reduce the number of undergraduate units
from the current fifty to only thirty. In comparison to
other universities, the number of units offered is already
small1.

Unlike all other Australian universities — with the
notable exception of Charles Darwin University — UTAS
is the only university in its state/territory, and
consequently the School has to primarily meet the ICT
higher education needs of Tasmania. Every one of the
intended thirty units must maximize its contribution by
working towards providing graduates with the essential
technical and non-technical ICT skills and professional
skills to enhance the Tasmanian ICT industry and/or
attracting students into an ICT research career to increase
the research potential of the School and/or generating as
much EFTSL income for the School as possible by being
attractive to non-ICT degree students.

The aim of this paper is to present the findings of our
current curriculum review process, the process followed,
and the lessons learned for ICT schools of other
Australian universities.

2 Previous approaches
An early investigation into Australia’s ICT needs
occurred in 1999 (Ignite, 1999). This identified areas of
technical shortage. Domain-specific knowledge and
skills, however, are not the only requirements of job-
ready graduates. Nagarajan and Edwards (2008)
highlighted the fast changing nature of ICT and the
impact such fast-paced change has on the demands and
expectations of employers. They suggested that to
manage this change there needs to be close and
continuous communication between universities and
industry.

Despite the high rate of change, employer demands
appear to have been relatively constant over time:

• The Australian Newspaper (2006) found that
employers valued communication skills and
people skills above academic qualifications and
that applicants for positions would not be hired
without well-developed communication skills.

1 Monash has 120 undergraduate units listed (code

FIT) in its 2012 handbook for the Faculty of IT (Monash
2012), Swinburne has 163 (code HET, HIT) in its 2012
handbook for the Faculty of ICT (Swinburne 2012), and
QUT has 64 undergraduate units listed (code INB) in its
2012 handbook for the Bachelor of Information
Technology (QUT 2012).

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

51

• Teamwork, communication skills, integrity,
reliability, and self-motivation were reported by
Wong, von Hellens, and Orr (2006) to be more
important to employers than purely technical
skills.

• A survey on Employer Satisfaction with
Graduate Skills (DETYA, 2000) for all
discipline areas rates enthusiasm, motivation,
independence and critical thinking abilities as of
paramount importance in graduates. Academic
achievement was used as an indicator of such
things as motivation, problem-solving ability,
and learning capacity.

• Hagan (2004) found that ICT employers were
most often dissatisfied with the graduates’
project management abilities, lack of
understanding of business processes, poor
written communication skills, and the standard to
which they were able to interact with clients.

• Koppi, Sheard, Naghdy, Chicharo, Edwards,
Brookes, and Wilson (2009) examined the
graduate perspective and found that graduates
felt technically competent but lacked
interpersonal and business skills.

The main stakeholders in tertiary education are: the
students, the employers, and the educators themselves.
Noting that students must believe in the relevance of their
courses to their future employment (Nagarajan &
Edwards, 2008) an approach to curriculum review is
needed which yields the best outcomes for all.

The questions of what is required and how best to
provide it remain. Gruba, Moffat, Sondergaard, and
Zobel (2004) tentatively conclude that curriculum change
in universities is rarely best influenced by the educators.
They present a picture of curriculum review being driven
by dominant individuals with change motivated by
financial concerns, academic fashion, and student interest.
Pedagogical concerns only influence change at the micro
(unit) level.

An objective framework is thus needed to guide the
curriculum review. The Australian Computer Society
(ACS) in its accreditation manuals (ACS, 2011) provides
the following:

1. Identify potential ICT roles that could be
undertaken by graduates of a given program of
study.

2. Identify the skills required by professionals in a
given ICT career role.

3. Identify the level of autonomy and responsibility
developed.

4. Identify the ICT Role-Specific Knowledge
required to practise the skills.

5. Identify Complementary Knowledge that
supports the skill set or that broadens student
employability.

6. Design a course structure that incorporates ICT
Role Specific Knowledge with the Core Body of
Knowledge and other Complementary
Knowledge as part of a holistic program of
study.

7. Collect artefacts to demonstrate that skills have
been developed by students to an appropriate
level.

The new degree at UTAS is essentially a completely
original degree and its design is being undertaken with a
‘green-fields’ approach. It is UTAS’ intention that the
degree receive ACS accreditation (as previous offerings
have) and hence adopting the ACS framework seems a
reasonable and beneficial approach. More information on
the adoption of the framework is available in (Herbert, de
Salas, Lewis, Cameron-Jones, Chinthammit, Dermoudy,
Ellis, and Springer 2013).

3 Gaining feedback

3.1 Approach
The approach has been decomposed to well-defined
stages. The first stage has been to gather information so
that tentative degree design down to the unit level can
occur. This degree design is the second phase; at the time
of writing it is nearing completion. The third phase is to
re-engage the industry members to gain feedback and
endorsement of the tentative design, before finally
presenting the degree design to UTAS’ senior committees
and Academic Senate for approval prior to delivery.

In order to obtain as much information as possible and
to allow particular avenues of enquiry to be pursued, face-
to-face communication was undertaken through forums
and interviews. At each forum the attendees were divided
into small groups of approximately three or four
attendees. Where there were multiple such groups, each
group moved around a set of interviewers, so each
interviewer was asking the same set of questions to each
group; each group spent approximately twenty minutes
with each interviewer.

3.2 Participants
The forums and interviews comprising the first stage of
curriculum design were promoted as an opportunity to
influence the future ICT direction of the State.
Stakeholders included ICT industry representatives
together with pre-tertiary and TAFE educators from
institutions across Tasmania.

3.2.1 Industry participants
The number of people seeking to participate was
overwhelming; for logistical purposes the number of
participants was limited to twenty-odd industry
representatives. Approximately ten members of
Tasmania’s ICT industry could not be included in the first
round of information gathering due to their work
commitments at the time; these people will be included in
the next stage — stakeholder feedback on the new degree
proposal.

Representatives of local and national ICT industry and
government participated in the interviews. More
specifically, the types of organisations represented
included those involved in:

• IT Recruitment
• IT Service/Consulting
• IT Information Management
• IT Security
• Research and Development
• Software development
• Hospitality/Tourism/Gaming/Transport/Retail
• Fishing Aquaculture/Food Processing

CRPIT Volume 136 - Computing Education 2013

52

• Engineering
• Education
• Government (Federal and Local)

ICT businesses of all sizes were represented. There
were a number of medium sized software development
companies where the number of ICT employees ranged
from 20–30, there were some businesses (including
government departments) that had a number of ICT
employees ranging from 1–40, and there were four large
national organisations with in excess of 150 ICT
employees, some with thousands.

All the interviewees (except one who was a recent
graduate) had employed graduates into various positions
throughout their career; most had employed fewer than
ten, but some had employed as many as fifty or more.

3.2.2 Education participants
Most UTAS students are matriculants who have
completed the Tasmanian Certificate of Education (TCE).
A significant number of students also enter UTAS from
the Polytechnic2 and Skills Institute with completed
cognate Advanced Diploma, Diploma, Certificate IV and
Certificate III awards. In an attempt to ensure articulation
with pre-University educational awards and institutions,
and to avoid duplication of content delivery and skill
development a number of stakeholder educational
institution representatives were also involved.

Representatives from the government and non-
government college sector (Academies and Polytechnics)
participated together with representatives from the Skills
Institute.

3.3 Question themes
For each industry interview or forum the same set of
questions was used. These questions sought information
about:

• The desired skill set — including both the ‘soft-
skills’ and domain-specific technical skills — a
graduate should have.

• The participant’s perception of the “added value”
of a university graduate compared to a
TAFE/Polytechnic/Skills Institute graduate.

• Desired career outcomes for graduates of
bachelors degrees and coursework postgraduate
degrees.

• Topics which should be included in the degree.
• The nature of likely graduate-entry positions in

the next five years.
Similar questions were asked of the educators. In

particular:
• The participant’s perception of the distinction

between a university graduate and a
TAFE/Polytechnic/Skills Institute graduate.

2 In Tasmania, high schools teach years 7–10 and

colleges teach years 11–12. Government colleges
comprise schools with a focus on academic achievement
(“Academies”), academic and vocational achievement
(“Polytechnics”), and vocational achievement (“Skills
Institutes”). TAFE colleges were recently re-integrated
with colleges to yield the Polytechnic and the Skills
Institute.

• Topics which should be included in the degree.
• Information on their course offerings and for

pathways and collaborations.

4 Messages
The information collected from the interviews and forums
was analysed at a thematic level in order to identify key
messages. The broad themes are presented below along
with specific advice from both industry and educators.

The analysis of the interviews and the forums from
industry resulted in information relating to technical
skills, soft skills, core knowledge, work integrated
learning, and degree /diploma perspectives. The analysis
of the interviews and forums from the educators resulted
in information relating to offerings based on interest,
TCE, vocational versus university perspectives, entry and
articulation, gender appeal and retention, and working
together. A summary of each will now be presented.

4.1 Advice from industry

4.1.1 Technical skills
Interviewees indicated that the technical skills of
graduates should include both the ability to develop
(‘build’) and the ability to operate (‘use’/‘do’). Graduates
should have basic programming skills but this
competence wasn’t requested in any specific
programming language. The general opinion was that as
long as the chosen programming language was taught in
depth, the ICT graduates would be able to adapt quickly
and effectively to another language. The interviewees
expressed a desire that an ICT graduate should have at
least one in-depth technical competency area, such as (but
not limited to) software development, which was
supported by a broad range of context and application
knowledge of ICT. The identification of the specific
technical skill was unimportant, but the capacity to
develop one was said to be essential.

Other skills/knowledge mentioned by industry
participants as being necessary in graduates included:

• Those from fundamental computing and
traditional computer science such as formal
methods, basic mathematics, logic, and the
history of ICT.

• An understanding of data structures and
databases.

• Greater capability in the use of Microsoft Office
applications. Excel skills in particular were
mentioned and an expectation was voiced that
ICT graduates should have such skills possibly
to an advanced level.

• Those related to application development for
mobile devices which was considered to be
increasingly main-stream.

• Ensuring graduates could function in varying
operating system environments. This may be in
response to the fact that UTAS is a strong
partner in the Apple University Consortium and
many industry members expressed their feelings
that the School is too Apple focused.

In general, employers of past graduates who were
interviewed were happy with the ICT technical skills
currently being demonstrated by graduates. They were

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

53

content to teach specific ICT skills on the job. This is a
change from a few years ago when we last consulted with
industry at which time they were insisting on specific
tools and technology to be taught at the University.

4.1.2 Soft skills
Generic abilities such as communication skills were
acknowledged as being of equal importance for UTAS to
teach as technical skills. The interviewees were insistent
that the University should produce professionals with the
ability to communicate; it was suggested that this is the
current added value that a university graduate has over
non-university graduates. The interviewees
recommended taking the students out of their comfort
zones by making them do presentations and debates to
develop improved communication skills.

Additionally, interviewees expressed the need for
graduates to appreciate the drivers of business, and to be
able to undertake the related activities of analysis,
modelling, business process management, and project and
change management.

Interviewees identified that there was no longer room
in the industry for graduates who could not relate well to
business and clients. Employers want graduates to have a
broad ICT knowledge so they have the ability to
understand the needs of clients or users. It was felt that
graduates can mature into a particular area later. Those
who are too specialised are unlikely to be chosen over a
graduate with a broad range of ICT skills for the
Tasmanian industry.

4.1.3 A core body of knowledge
Interviewees preferred that students were taught
principles and context, rather than specific development
languages and current tools (although Microsoft Office
products were an exception). Employers believed that
they could teach new tools and languages to those who
understood what features tools and languages provided,
but graduates needed to understand principles to allow
them to continue to learn and adapt as technology
emerged and evolved.

Industry indicated for graduates to be useful, they need
to understand how all the ICT content links together.
This sort of understanding helps with analysis and
understanding the needs of clients.

4.1.4 Real work experience
Most of the employers interviewed only employed
university graduates and almost exclusively ICT
graduates. Local businesses predominantly hire UTAS
graduates. The ICT subjects completed as part of the
degree were not of major interest to employers, however,
employers wanted evidence that graduates had completed
enough ICT technical subjects in their degree. They
compared the overall results of graduate candidates for a
position and then decided who to employ at the interview
based on communication skills, personality and ability to
fit in with existing employees.

Industry desired graduates that have had real job
experience, “even if it is just at a fast-food restaurant”
was a comment often made. Many interviewees had
participated as clients in the existing capstone project
units, and they thought that this was good for developing

team work and client interaction skills but work-
integrated learning through workplace placements would
provide a better understanding of what to expect on entry
into the workforce and would allow the development of
additional skills, such as customer awareness. They also
recommended that industry participate more in the
teaching program to bring in real world examples and
industry perspectives to the material being taught.

4.1.5 Vocational versus university qualification
Interviewees see a distinct difference between TAFE
(certificate IV, V) and University graduates. TAFE
graduates are seen as more practical and employed for
specific limited tasks. University graduates are
considered to have a broader spectrum of skills and
knowledge. University graduates have the ability to think
critically and approach tasks with a broader view, they are
believed to be generally more mature and by completing a
degree they have demonstrated the ability to “stick at
something”. Although most interviewees initially
employed graduates as software developers or in help
desk type support roles, the university graduates are then
promoted to software analysts, designers, or system
administrators.

It is clear from these views that a mixture of theory
and practical capability needs to be retained in the new
degree and that students need to continue to be taught the
generic graduate attributes of, in particular, problem
solving, critical thinking, and life-long learning.

4.1.6 Other useful insights
The issue of an increased use of outsourcing and off-
shoring was identified as a possible impact on graduate
software developer positions. “No matter how good our
programmers are they are too expensive to compete with
India’s outsourcing” was the advice of one interviewee.
Graduates need business analysis, sourcing and
integration, and project management skills as this is their
future.

Many interviewees said that they did not employ, or
even interview, Bachelor of Information Systems
graduates as it was perceived that these graduates did not
have enough technical skills necessary for the types of
initial roles that ICT graduates undertake. Interestingly,
many interviewees said business analysis skills combined
with technical skills were important and in general they
were not happy with the business acumen of Bachelor of
Computing graduates. Graduates need an understanding
of business structure and practices.

Many interviewees were concerned about the standard
of the weaker graduates, with a suggestion to raise the
entry bar to the degree. Industry representatives were
equally concerned by the decreasing number of students
graduating from the ICT degrees and the fact that demand
for graduates is exceeding supply. Discussion also took
place on the quality of the international graduates and in
particular how to improve their communication skills and
hence make them more employable in the local industry.

When asked, the interviewees liked the idea of having
a single degree with reduced options and a few clear
majors as this would remove confusion and ensure all ICT
graduates had a balance of technical and non-technical
skills.

CRPIT Volume 136 - Computing Education 2013

54

During the interviews there was discussion about the
future of ICT both in the State and nationally. Industry
identified that the future direction of ICT is not easy to
predict but future ICT jobs will still require fundamental
ICT skills.

In summary, there was a very strong emphasis on
producing professionals with generic skills such as verbal
and written communication, team work, ability and desire
to learn, and problem solving along with non-technical
skills in areas such as requirements analysis, business
analysis, project management, and sourcing and
integration. In addition a broad base of technical ICT
fundamental skills are required including programming,
data structures and databases, mobile and web
programming, and low level tool skills — in particular
Microsoft Office products. The interviewees from
industry were in favour of an “all-rounder” rather than
aiming for a specific targeted career outcome.

4.2 Advice from educators
The purpose of the educator forums was to identify what
ICT background students have before coming to UTAS,
what UTAS should value-add to graduates, and what
pathways/incentives/content could be established to
encourage more students to enrol.

4.2.1 Offerings based on interest
Non-government college-level ICT training is now
focusing on developing the specific interests of students,
rather than preparing them for job-readiness in ICT. As a
result, traditional ICT training in Computer Science and
Information Systems was less likely to be taught in the
future; newer attractive topics like Computer Graphics,
Games, AI, and Robotics are being introduced. Similar
changes are occurring in Government schools with
Computer Graphics enrolments far exceeding those in the
pre-tertiary subjects of Computer Science or Information
Systems.

Interviewees suggested that the students tend to want
to learn more in the areas they are already aware of. There
was a general feeling that University should offer a broad
range of topics to meet student interest and to give them a
rounded introduction to many topics.

4.2.2 Tasmanian Certificate of Education
The college curricula for Computer Science and
Information Systems in Tasmania are being redeveloped
for 2013 and the introduction of the national curriculum
in high school and college makes it harder to prepare a
university curriculum that builds on existing lower levels
of ICT education.

At college, a technology subject is mandatory but this
does not necessarily need to be a university pathway
(TCE) subject. College interviewees recommended that
entrants receive reward or credit if they have completed
Computer Science or Information Systems TCE subjects,
as an incentive to enrol at university. This was also seen
as a possible way to increase enrolments at college in
these subjects that currently have low student interest and
enrolments compared to the more popular, but less
rigorous non-TCE topics like Computer Graphics.

To increase enrolments at university it was identified
that there was a need to tap into the growing Computer

Graphics numbers at college. Many students choose this
as their college elective to complement their main interest
area. It is seen as something interesting and relevant to
many fields.

4.2.3 TAFE versus university
Polytechnic ICT teaching is focused on developing
graduates to specific operational ICT jobs. Non-TCE
offerings that support programming, web technologies,
system administration, databases, and networking, have
been recently revised in the light of industry demands. It
is therefore important that the new degree retains flexible
entry and not rely on TCE subjects.

When asked “why do students want to do ICT at
university?” the interviewees indicated students come to
university to do more ICT (not maths or business). They
urged us to ensure that they get enough of what they
want. They come expecting it to be more interesting
material than what they get at college or Polytechnic.
They come because they think on graduation they will get
better jobs than they would with just a college or
Polytechnic qualification. After a tour of our facilities it
was mentioned repeatedly that the “hack space” (a room
where students can do their own thing and explore ideas
with software and hardware) was something that students
would enjoy.

Polytechnic representatives saw the difference to
University being that University should teach similar skill
sets, but in much greater depth, surrounded by much
broader context.

4.2.4 Entry and articulation
Educators feel the degree entry requirement should be
sufficiently low that it attracts a broad range of students
coming from the Polytechnic and college. However, this
view is contradicted by industry members who want a
higher entry requirement in order to get a higher quality
graduate.

Clear articulation with the Polytechnic was
recommended so these students can build on their prior
learning rather than just repeat their college experience
with more theoretical material added — which is not of
great interest to them.

Interviewees indicated they had received feedback
from their students who had gone onto university that
some of the first year content was identified as being too
low-level for some of the top students coming from the
colleges and Polytechnic. The perception is that they
have done it before. Interviewees recommended
investigating offering credit (or different options) for top
students to encourage transition. Catering for the top
students was identified as something that should be a
priority because at the moment they are leaving university
as they are bored and feel they are simply doing the same
material again.

4.2.5 Girls versus boys
Interviewees indicated their male students wanted hands-
on activities in their learning. More practical
components, especially early on will attract and retain
new entrants much better. Advice from the Polytechnic
was to keep the students interested and engaged, so that
they did not focus upon the two or three years that they

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

55

had ahead of them. The view was that they do
Polytechnic courses as they are practical and shorter.

The lack of interest from female students, who
anecdotally tend to be less interested in the hands-on
approach, is a concern for all levels of ICT education.

4.2.6 Working together
There was recognition from all interview participants that
industry wants all levels of the education system working
together to produce the best ICT personnel possible to
meet the ICT needs of Tasmania. It was clear that the
college and Polytechnic educators needed the university
degree to be attractive as it would attract students to ICT
at their levels. They strongly encouraged more
collaboration to ensure understanding of each other’s’
offerings and directions and to create attractive pathways.
ICT college teachers would like the University to host
professional development days as there are no longer
moderation days, so teachers do not have the opportunity
to get together any more.

5 Outcomes for curriculum design
The initial degree framework has been completed and has
been guided by the input received from industry and
educators.

The result is a three-year (24 unit) degree with three
different majors comprising much of the ACM curricula:
“ICT Professional” (which will be compulsory),
“Software Development”, and “Games and Creative
Technology” (which continues the teaching in UTAS’
successful Games Technology and Human Interface
Technology sub-disciplines). Students will complete
eleven technical units with four units at different levels
focused on professional and non-technical skill
development. The structure ensures that all students have
the technical, non-technical, and generic professional
skills needed, while — with the inclusion of at least four
units that are electives from any discipline — still
affording enough choice to further their individual
interests.

The following points outline the key components for
the proposed degree:

• Professional skills units are to be introduced
from first year to develop communication and
teamwork skills early. Further development of
teamwork and communication skills have been
included at all levels to provide depth in
professional skills for the students.

• Breadth in ICT topics will be introduced through
the range of units provided. Depth has been
created with units to be offered at all year-levels
in a hierarchy requiring pre-requisites and with
integrated content. In previous offerings, units
were perceived as being disjointed (silos) and
consequently there was little opportunity to
develop a depth of knowledge. Broad ICT topics
will now be more practically oriented (while
maintaining the theoretical content and
professionalism necessary to differentiate this
topic from what is offered at the Polytechnic).

• There is depth in software development with
compulsory units at all three levels. There is one
compulsory programming unit at first-year and

three programming units at second year when the
bulk of the students are more developed and able
to cope with the material. The compulsory first-
year programming unit will have a prerequisite,
ensuring all students have some programming
experience on entry. The requirement for pre-
requisite knowledge will facilitate a more
interesting and challenging unit — which should
have a positive impact on retention. Flexible
options at degree and pre-degree level will be
available to qualify students that do not have
prior programming experience.

• In response to the demands for business acumen
in our graduates all students will be required to
complete units in entrepreneurship, project
management, requirements and business
modelling, business analysis; and system
sourcing and integration to develop non-
technical ICT skills.

• ICT career outcomes and the relevance of the
content of the degree to those outcomes will be
mapped out in a first year unit to give students a
context for what they can achieve as an ICT
professional. Consideration is being given to
introducing elective industry-based experience
units at all levels to enable students to gain
genuine work experience throughout their degree
in addition to the capstone experience they
receive in the final year project units. There is an
intention to embed talks by industry speakers
throughout all units to relate the content of each
unit to what the students will experience in
employment.

• Artificial Intelligence, a key research direction of
the School, has been proposed as a first year unit
in an attempt to inspire students to consider a
research career. This unit will be accessible to a
broad range of university students and will be
developed to appeal to non-ICT students who are
just as likely to be intrigued by the topic matter.

• Units that relate to research focuses in the
School will also be offered but will have pre-
requisites that restrict enrolment to the top
students. Small classes and special experiences
for these elite students will hopefully inspire in
them a desire to stay to complete higher degrees
and pursue a career in research or innovation in
the field of ICT.

• There is an intention to embed ‘research
hotspots’ throughout all units and relate the
content of each unit to research that is happening
in the field. Consideration is being given to
introducing specialised R&D units at all levels
for the elite students, so that research experience
can be obtained from an early stage.

• A compulsory bridging unit will be introduced
for all international students given a year or
more credit. Many international students are
given advanced standing on the basis of prior
learning in their own country. This results in
them being ‘slotted’ into second or third year at
UTAS and by-passing units that have provided

CRPIT Volume 136 - Computing Education 2013

56

incidental induction to UTAS and which have
developed communication and team work skills.
As a result many are technically competent but
are not best able to participate in group work and
compete for employment on graduation. The
bridging unit will redress these deficiencies and
ensure all students are at a high standard on
graduation with well developed communication
and teamwork skills.

• Two units with a focus on visualisation are being
considered for first year to attract the students
who were interested in Computer Graphics. One
will focus on the visualisation of information and
the other on visualisation as it relates to
computation and simulation.

• Two pervasive themes are to be developed
throughout the degree: security and user-
centeredness including HCI. The pervasive
themes alongside the three depth areas (software
development, professionalism, broad ICT
knowledge) and the need to present the content
from both a technical and non-technical
perspective will discourage teaching in silos. The
approach will focus on relating the content of
each unit to other units in the degree. This will
generate graduates who have a much better
understanding of the relationship between the
ICT content.

6 Conclusion
A role of universities is to educate and produce ‘well
rounded’ graduates who meet industry demands for job
readiness. Having been provided with the rare
opportunity to design a ‘green-fields’ degree, the School
looked to engage with key stakeholders such as industry
and other educators for advice. Curriculum review
guidance was sought from the ACS and this paper has
explored the second stage of the review process.

The key messages that have been incorporated into the
design and structure of the new degree are:

• ICT graduates need generic professional skills
and non-technical skills in addition to technical
ICT skills and tool skills.

• An ICT graduate should have at least one in-
depth technical competency area.

• An ICT graduate needs a broad range of ICT
knowledge. Employers believe it will give
graduates the ability to understand the needs of
clients/users. Educators believe a broad range
will attract more students into the degree.

• There is no longer room in the industry for ICT
graduates who are unable to relate well to
business and clients. Graduates need business
analysis, sourcing and integration, and project
management skills as this is their future as a
result of the growth in outsourcing and off-
shoring.

• UTAS should produce the best ICT personnel
possible to meet the ICT needs of Tasmania.

The School is currently refining and documenting
information relating to the structure and design of the new
degree. The documentation will provide information on
the proposed content of the units in the degree. Once

completed, the School can move to stage three of the
process — to re-engage with key stakeholders for
feedback and hopefully endorsement.

7 References
ACM, Association for Computing Machinery (2008),

Association for Computing Machinery (2008):
Computer Science Curriculum 2008,
http://www.acm.org/education/curricula/ComputerScie
nce2008.pdf. Accessed 17 August 2012.

ACS, Australian Computer Society (2011), Australian
Computer Society (2011): Accreditation Manual, ACS.

DETYA, Department of Education, Training and Youth
Affairs (2000), Employer Satisfaction with Graduate
Skills Research Report, Commonwealth Government of
Australia.

Gruba, P., Moffat, A., Søndergaard, H., & Zobel, J.
(2004), “What Drives Curriculum Change?” in
Proceedings of the Sixth Australasian Computing
Education Conference, pp 109–117, ACS.

Hagan, D. (2004), “Employer Satisfaction with ICT
Graduates” in Proceedings of the Sixth Australasian
Computing Education Conference, pp 119–123, ACS.

Herbert, N., de Salas, K., Lewis, I., Cameron-Jones, M.,
Chinthammit, W., Dermoudy, J., Ellis, L., and Springer
M. (2013), “Identifying career outcomes as the first
step in ICT curricula development”. Accepted in the
Fifteenth Australasian Computing Education
Conference (ACE2013), Adelaide, Australia, January
2013.

Ignite, (1999), Skills in Demand,
http://www.ignite.net.au/skills/ Cited in Orr & von
Hellens (2000).

Koppi, T., Sheard, J., Naghdy, F., Chicharo, J., Edwards,
S., Brookes, W., & Wilson D. (2009), “What Our ICT
Graduates Really Need from Us: A Perspective from
the Workplace” in Proceedings of the Eleventh
Australasian Computing Education Conference
(ACE2009), Wellington, New Zealand, January 2009.

Monash University (2012), 2012 Handbook,
http://monash.edu/pubs/2012handbooks/units/index-
byfaculty-it.html, Accessed 8 Aug 2012

Nagarajan, S. & Edwards, J. (2008), “Towards
Understanding the Non-technical Work Experiences of
Recent Australian Information Technology Graduates”
in Proceedings of the Tenth Australasian Computing
Education Conference, pp 103–112, ACS.

Orr, J. & von Hellens, L. (2000), “Skill Requirements of
IT&T Professionals and Graduates: An Australian
Study — Research in Progress” in Proceedings of the
2000 ACM SIGCPR Conference on Computer
Personnel Research, pp 167–170, ACM.

Queensland University of Technology (2012), 2012 Study
Handbook,
http://www.qut.edu.au/study/courses/bachelor-of-
information-technology, Accessed 8 August 2012

Swinburne University of Technology (2012), 2012
Courses Handbook,
http://courses.swinburne.edu.au/courses/Bachelor-of-
Information-Technology-I050/local, Accessed 8
August 2012.

The Australian Newspaper (2006), Articulate Workers
Wanted, 01 November 2006, Viewed online at

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

57

www.highbeam.com/doc/1G1-153601934.html
8/8/2012.

UTAS (2012), Courses and Units 2012 Handbook,
http://courses.utas.edu.au/portal/page/portal/COURSE_
UNIT/UTAS_CU_ENTRY?P_YEAR=2012&P_CONT
EXT=NEW, Accessed 17 August 2012.

Wong, S., von Hellens, L., and Orr, J. (2006), “Non-
technical skills and personal attributes: the Soft Skills
Matter Most” in Proceedings of the Sixth Australiasian
Women in Computing Workshop. Cited in Nagarajan &
Edwards (2008).

CRPIT Volume 136 - Computing Education 2013

58

Measuring the difficulty of code comprehension tasks using software
metrics

Nadia Kasto and Jacqueline Whalley

Software Engineering Research Laboratory
School of Computing and Mathematical Sciences

AUT University
PO Box 92006, Auckland 1142, New Zealand

{nkasto,jwhalley}@aut.ac.nz

Abstract
In this paper we report on an empirical study into the use
of software metrics as a way of estimating the difficulty
of code comprehension tasks. Our results indicate that
software metrics can provide useful information about the
difficulties inherent in code tracing in first year
programming assessment. We conclude that software
metrics may be a useful tool to assist in the design and
selection of questions when setting an examination.
Keywords: software metrics, code comprehension, novice
programmers, assessment.

1 Introduction
It is common knowledge that novice programmers find
programming particularly difficult and that assessing the
knowledge and skills the students have gained is
problematic. Historically the pass rates for students
undertaking first year courses have been relatively low.
This in part might be due to some difficulties related to
the assessment of these courses. Whalley et al. (2006)
noted that “assessing programming fairly and consistently
is a complex and challenging task, for which
programming educators lack clear frameworks and tools”
(p. 251). More recently, Elliott Tew (2010) suggested that
“the field of computing lacks valid and reliable
assessment instruments for pedagogical or research
purposes” (p.xiii).

In order to write better questions and assessments
computer science educators have attempted to apply
various educational taxonomies to guide the design of
assessments. In 2006 an analysis of a program
comprehension question set within two key pedagogical
frameworks: the Bloom (Anderson et al. 2001) and
SOLO (Biggs and Collis 1982) taxonomies was reported
(Whalley et al. 2006). It was found that student
performance was consistent with the cognitive difficulty
levels, indicated by the assigned Bloom category of the
questions. Additionally a degree of consistency was
found between student performance and the SOLO
taxonomy level of their responses to an ‘Explain in Plain

Copyright © 2013, Australian Computer Society, Inc. This paper
appeared at the 15th Australasian Computer Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

English’ (EiPE) question. While these results and results
of subsequent studies by the Bracelet project team were
encouraging (e.g.: Lister et al. 2006, Thompson et al.
2008, Clear et al. 2008, Sheard et al. 2008, Whalley et al.
2011) many educators have reported difficulties in
reliably using these and other taxonomies in the context
of novice computer programming assessment design,
evaluation and research (e.g.: Fuller et al. 2007,
Thompson et al. 2008, Shuhidan, Hamilton and D’Souza
2009, Meerbaum-Salant, Armoni and Ben-Ari 2010)

An alternative or supplementary approach to
informing the assessment instrument design process
might be to use software metrics in order to determine the
difficulty of examination questions designed to assess
novice programmers.

2 Background
Typically research into software metrics is conducted in
the context of relatively large scale commercial software
development projects. However some work using
software metrics to support research related to the
improvement of teaching and learning of computer
programming has been undertaken.

One study applied software metrics to previously
reported code used in empirical studies of novice and
expert program comprehension (Mathias et al. 1999). The
metrics were used in order to examine the underlying
nature of code designed to study the process of program
comprehension. The software metrics used in this study
were lines of code and cyclomatic complexity (McCabe
1976) . A correlation was found between the complexity
of the code and the comprehension strategies observed by
the original researchers suggesting that lines of code and
cyclomatic complexity might correlate to the difficulty of
small program comprehension tasks.

Parker and Becker (2003) employed Halstead’s
metrics (Halstead 1977) to measure and compare the
effectiveness of students solutions of two different code
writing assessments based on the premise that the metrics
can be seen as a measure of work done. An earlier
empirical study measuring student solutions to code
writing questions using software metrics and comparing
those measures with student performance found that
neither lines of code nor Halstead’s metrics were able to
predict the error rate in the student’s solutions (Klemola
1998). Subsequently, Klemola and Rilling (2003)
developed a software metric called the Kind of Line of
Code Identifier Density (KLCID) metric for analysing the
cognitive complexity of program comprehension tasks.
KLCID was designed to capture the effect of the number

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

59

of unique kinds of code lines in a program segment. For
KLCID only conceptually unique lines of code are
counted and within these unique lines the identifier
density is calculated (Klemola and Rilling 2003). The
effectiveness of the KLCID metric was evaluated in a
study of code comprehension tasks from a final
examination of an introductory C++ course. The
complexity of each task as measured by KLCID was
compared with the average student performance on the
task. A correlation was found between increasing KLCID
and decreasing student performance. This finding is not
surprising as in text comprehension it has been found that
a higher density of concepts decreases the rate of
comprehension (Kintsch and van Dijk 1978). The authors
concluded that KLCID was “a good candidate to measure
the complexity of code comprehension assessment tasks
within the same course” (Klemola and Riling 2003).
However the code comprehension examination questions
themselves are not reported so it is difficult to determine

the general applicability of the KLCID metric to novice
programmer code comprehension tasks.

3 Software Metrics
In order to attempt to measure the difficulty of typical
code comprehension and code tracing examination
questions we first selected an appropriate set of software
metrics. Software metrics focus on a particular feature of
a program and are often devised with a single
programming paradigm in mind. Table 1 shows a set of
commonly employed software metrics classified by
metric type and their applicability to three programming
paradigms.

The examination questions that we have analysed are
from a CS1 (first semester) Java programming course.
The questions are typical code tracing and EiPE questions
that have been reported extensively in the recent literature
(e.g.: Venables, Tan and Lister 2009, Murphy, McCauley
and Fitzgerald 2012).

Metric Type Metric Programming Paradigm

imperative structural object oriented

 Number of lines of code   

 Number of blank lines of code   

 Number of comment lines of code.   

 Number of comment words.   

 Number of statements   

 Number of methods.  

 Average line of code per method.  

Basic Number of parameters.   

Number of import statements.
 

 Number of arguments.  

 Number of methods per class. 

 Number of classes referenced. 

 Average number of attributes per class 

 Number of constructors. 

 Average number of constructors per class. 

 KLCID   

Complexity metrics Cyclomatic complexity   

Nested block depth.   

 Number of operands.   

 Number of operators.   

 Number of unique operands.   

 Number of unique operators.   

Halstead metrics Effort to implement.  

Time to implement.
 

 Program length.  

 Program level.  

 Program volume.  

 Maintainability index.  

 Weight method per class. 

 Response for class. 

Object oriented Lack of cohesion of methods. 

Coupling between object classes.


 Depth of inheritance tree. 

 Number of children. 

Table 1: Static metrics and their applicability across programming paradigms

CRPIT Volume 136 - Computing Education 2013

60

Although the course is taught with an objects first
approach most of the comprehension questions are small
bite size pieces of code and are largely procedural.
Therefore, even if the code is encapsulated in a method,
many of the questions are essentially procedural in
nature.

Of the metrics in Table 1 we selected the subset
which we deemed to be most applicable to measuring the
difficulty of novice code tracing and EiPE tasks:

• Number of statements
• Number of operands (including all identifiers

that are not key words)
• Cyclomatic complexity
• Average nested block depth
• Average number of parameters

One EiPE question involved code that contained two
methods and internal method calls. The object oriented
metric, the number of methods, that had a variation in
value was therefore included as part of our metric set for
EiPE questions.

We did not use KCLID because most of our code
comprehension questions did not contain lines of code
which were not conceptually unique lines of code.
Additionally, we elected not to use the number of
operators metric as the number of operators is
proportional to the number of operands and would
therefore not contribute anything new to the evaluation.

We also supplemented this set of metrics with two
simplified versions of dynamic metrics for the
measurement of the difficulty of the code tracing
questions that we have called the sum of all operands in
the executed statements and the number of executed
program statements. The sum of all operands in the
executed statements was calculated as the sum of all
operands (O) in the executed statements ES where the
total number of executed statements is ν.

Sum of all operands in the executed statements = ∑ν ESi (O)
i=1

The number of executed program statements was

counted as the total number of statements executed for
the complete tracing task. This count, if a selection or
iterative statement is included in the code, is dependent

on the data provided as the input for the specific tracing
task.

These dynamic metrics provide a measurement of the
execution complexity of the code. It seems reasonable to
include such metrics because when students are tracing
code they are hand executing the code and, from an initial
input, processing data through the code line by line via
the relevant paths of the code in order to determine the
output. We postulate that these metrics will correlate well
with the difficulty of the tracing task.

4 Data Sets
The questions analysed in this study were selected from
several occurrences of a final examination for a first year
Java programming course. The teaching team and
pedagogy was the same for all instances of the course and
the results were taken from exam scripts for which the
students had given ethical consent for their data to be
used. These students were representative of the entire
cohort.

For the code tracing questions two examinations were
analysed. One examination contained the questions 1A-D
and resulted in 93 student responses for analysis and the
other contained questions 2A-2E for which 79 student
responses were analysed (Table 2). The EiPE questions
were selected from three examinations. For 3A-D, 4A-C
and 5A-E there were respectively 93, 79, and 92 student
responses analysed. The percentage of fully correct
answers is used as the measure of question difficulty.

The distribution of the percentage of fully correct
answers was irregular and clustered. We therefore used
natural, data driven, clustering to place the data into a five
point scale from very easy (a relatively high percentage of
students got the question correct) to very hard. Questions
of similar difficulty, as determined by student
achievement, for example 1D (26%), 2D (21%) and 2E
(27%) were therefore ranked at the same difficulty level.
These ranks were then used to determine whether or not
there was a correlation between difficulty and the relevant
metrics. It seemed unlikely that one common set of
software metrics would provide useful information about
different types of questions or about questions designed
to measure significantly different types of knowledge. For
this reason the data from the code tracing and EiPE
questions were placed in separate data sets.

 questions
 1A 1B 1C 1D 2A 2B 2C 2D 2E

Difficulty ranked 1 4 4 8 4 6 2 8 8
Cyclomatic complexity 1 2 2 3 1 1 3 2 3
Average nested block depth 1 2 2 3 1 1 2 2 3
Number of operands 14 10 12 29 13 5 13 12 17
Number of parameters 0 2 1 2 0 2 3 1 1
Number of statements 7 5 5 8 3 1 2 4 3
Sum of all operands in the executed statements 14 18 33 48 13 10 35 42 138
Number of commands in the executed statements 7 9 13 52 6 4 13 20 34

Table 2: Metrics for code tracing questions

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

61

An item discrimination analysis was undertaken to
examine the relationship between student scores for each
question and the total score for the related set of
questions to identify any outlier questions that did not
therefore belong in the data set. A point bi-serial
correlation was calculated between each question and the
total score, excluding the score for the question itself, for
all questions in that set (tracing questions or EiPE
questions) . This provides an estimate of the extent to
which an individual question is measuring the same
competencies as the rest of the questions in that question
set. Each question is expected to contribute to the total
score for that question set. Any question that does not
correlate positively with the total score is probably
measuring something other than what the examiners
intended and does not belong in that set.

For all questions except 2C and 2B a significant
positive correlation was found between students’ scores
on the question and their overall scores on the related set
of questions. Therefore, except for 2C (rpb = 0.165, p =
0.15) and 2B (rpb= 0.217, p = 0.06) the questions in each
set are contributing towards the respective total scores
and can be considered to belong within the sets. However,
the discrimination analysis also provides evidence that for
some reason 2C and 2B are not measuring the same thing
as the other code tracing questions. Therefore, for the
purpose of further analysis, we removed both of these
outliers from the data set.

The students found 2C relatively easy while we would
have expected that this would be one of the more difficult
code tracing questions. The students had been introduced
to this code in lectures and had been guided through a
similar tracing exercise with slightly different input data.
Perhaps this is encouraging; clearly teaching has had
some impact on student learning. Nevertheless, if test
questions are set that are too close to specific examples
taught in lectures they may be measuring the students’
abilities to remember specific examples rather than
measuring their code tracing abilities. That is, they may
well be measuring something other than what the
examiner intended.

On the other hand, we would have expected question
2B to be an easy question but student performance
showed that they found it to be relatively difficult.
Question 2B is a simple method that calculates the
remainder. We believe that the issue in this question may

lie with a lack of mathematical knowledge rather than a
lack of programming comprehension. This conjecture is
supported by the fact that many of the same students were
able to answer code tracing questions that consisted of
more complex code successfully. Once again it seems that
the question is not measuring what the developers
intended and does not belong in the data set.

5 Results
The code provided in the examination was analysed using
our set of software metrics. In the case of the dynamic
metrics for the code tracing questions the metrics are
calculated from those parts of the code that are executed
in order to arrive at the correct answer. We then compare
the metrics with the student performance on the
questions. The following metrics were calculated using
the Rationale® Software Analyzer 7.1 (RSA 2012) tool:
number of operands, cyclomatic complexity, average
nested block depth, average number of parameters, and
number of methods. Initially we calculated lines of code,
using Rationale® Software Analyzer, as the total number
of executable lines of code. In the programming
examination questions the code is formatted so that the
opening and closing braces are placed on their own line.
Given the small size of the code for each question, lines
containing only braces contribute significantly to the lines
of code metric when calculated this way. We believe that
these lines do not contribute to the complexity or
difficulty of the code comprehension tasks. Consequently,
we calculated the number of statements rather than the
total lines of code.

The significance of the correlation of each metric to
the categorised difficulty (encoded numerically where the
easiest is ranked as 1) of each question was then tested
using Kendall’s τ-b. Kendall’s τ-b was chosen because
the datasets contained tied ranks. Table 4 gives the
Kendall’s τ-b for all the, tracing and EiPE, questions
analysed.

It is worth noting that the tracing and EiPE exam
questions used in this study are characterised by a low
number of number of program commands and are
generally confined to one or two methods. As a
consequence the cyclomatic complexity for the exam
questions does not exceed 5 and the nested block depth
does not exceed 3.

 questions
 3A 3B 3C 3D 4A 4B 4C 5A 5B 5C 5D 5E

Difficulty ranked 8 10 8 3 5.5 11.5 11.5 1 5.5 3 8 3
cyclomatic complexity 1 2 3 4.5 2 3 5 2 3 2 3 1
Average nested block depth 1 2 3 2.5 2 3 3 2 3 2 3 1
Number of operands 11 11 18 37 14 21 36 11 21 18 39 6
Number of parameters 0 2 2 2 1 1 2 2 1 2 1 0
Number of statements 5 5 6 11 5 5 16 5 5 5 9 3
Number of methods 1 1 1 2 1 1 1 1 1 1 1 1

Table 3: Metrics for ‘Explain in plain English’ (EiPE) questions

CRPIT Volume 136 - Computing Education 2013

62

For code tracing questions cyclomatic complexity,
nested block depth and the two dynamic metrics,
developed for this study, are significantly correlated to
the student performance and therefore to the observed
difficulty of the question (Table 4). Increasing
complexity, as defined by increasing values in the four
metrics of a tracing question, therefore directly correlates
with an increase in difficulty for previously ‘unseen’
code that does not extend beyond the courses content.
The definition of ‘unseen’ code is code that is either
entirely new code for which the key syntax and language
constructs had been taught during the course or a
variation on code that had been seen in the context of the
course. For example the students may have, as a lab
exercise, been asked to write a method that found the
highest number in an array of numbers and the ‘unseen’
code might find the lowest number. Therefore it can be
argued that the students should have the knowledge
required to answer an ‘unseen’ question and that such a
question requires them to apply or adapt their existing
knowledge in order to solve the question.

Question software metric Kendall’s
Type τ-b (2-tailed)

Tracing Cyclomatic complexity 0.775*
 Average nested block depth 0.775*
 Number of operands 0.231
 Number of parameters 0.452
 Number of java commands 0.304
 Sum of all operands in the 0.732*
 executed statements

 Number of commands in the 0.732*
 executed statements

EiPE Cyclomatic complexity 0.289
 Average nested block depth 0.109
 Number of operands 0.219
 Number of parameters -0.040
 Number of commands 0.274
 Number of methods -0.277

Table 4: Correlations between software metrics and
question difficulty [* p < 0.05]

None of the metrics used correlated significantly with
the difficulty of the EiPE questions. Although it is
possible that questions that require EiPE responses are
inherently unsuitable for a metrics approach to predicting
difficulty it is just as likely that we have yet to identify
metrics capable of performing this task.

6 Conclusion
This research has analysed student responses to two types
of exam questions, which are typically used in novice
programming exams, code tracing and EiPE. The results
have shown that some software metrics, for our dataset,
correlate to the difficulty of code tracing exam questions.
As a result of this study we suggest that software metrics
might be a useful tool in the early prediction of the

difficulty of this type of first year computer programming
examination question.

More research is needed into the possible use of
software metrics for evaluating EiPE questions and other
forms of programming tasks and questions to see whether
or not it is possible to develop metrics that are meaningful
in those contexts. Further consideration needs to be given
to what other metrics may be useful for the analysis of
EiPE questions and perhaps to determining the criteria
that should be used to determine whether or not any given
EiPE question should be included in a set of questions of
that type. It is possible that some of the existing metrics
could provide useful information if the question set was
more homogeneous.

When undertaking this analysis we found aspects of
some questions that were not measured by the metrics but
that affected the validity of those questions. What the
question is assessing may not be what the examiner
intended. For example a question that includes
mathematical operators or concepts may be testing
mathematical knowledge not programming knowledge.
Perhaps such questions should be avoided unless the
intent is to assess the mathematical concept. Additionally
the use of previously ‘seen’ code has the potential to alter
the way in which students respond to the question. An
EiPE question with relatively complex code may actually
be reduced to a simple recall question rather than one that
requires an understanding of the code.

In this study we undertook an item discrimination
analysis but it appears that some of our questions may
have additional issues of validity or of inappropriate item
difficulty. It is our recommendation that any future
research should include a full item analysis of all
questions and include only those questions that have
performed adequately in terms of reliability, validity,
difficulty and item discrimination in any further analysis.
This would reduce the likelihood that any question set
contained poorly performing questions that could obscure
possible relationships between the data set and software
metrics. It could also lead to the development of criteria
for each question type that could be used in future to help
to ensure that questions meet an appropriate standard and
can be meaningfully evaluated using the appropriate
software metrics.

Future work will involve applying metrics to other
types of questions. This work will include measuring the
contribution of each metric to the overall question
difficulty with the intention of designing a single
weighted metric for each question type. We also intend to
verify the findings of this preliminary study firstly with a
larger set of examination questions and secondly by
designing questions using software metrics as a factor
that is considered in that design and evaluating the
effectiveness of this approach. Finally, we believe that
code writing tasks might also be amenable to the same
approach by identifying relevant software metrics and
applying them to the model answer and to the student
solutions.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

63

7 References
Anderson, L. W., Krathwohl, D. R., Airasian, P. W.,

Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths,
J. and Wittrock, M. C. (2001): A Taxonomy for
Learning, Teaching, and Assessing: A Revision of
Bloom’s Taxonomy of Educational Objectives.
Longman.

Biggs, J. B. and Collis, K. F. (1982): Evaluating the
Quality of Learning: The SOLO Taxonomy (Structure
of the Observed Learning Outcome). New York.
Academic Press.

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M.,
Sheard, J., Simon, B., and Thompson, E. (2008):
Reliably Classifying Novice Programmer Exam
Responses using the SOLO Taxonomy. Proc. 21st
Annual Conference of the National Advisory
Committee on Computing Qualifications (NACCQ
2008), Auckland, New Zealand, 23--30.

Elliott Tew, A. (2010): Assessing fundamental
introductory computing concept knowledge in a
language independent manner. PhD dissertation,
Georgia Institute of Technology, USA.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D.
Hernán-Losada,I., Jackova, J., Lahtinen, E., Lewis, T.
L. McGee Thompson, D., Riedesel, C. and Thompson
E. (2007): Developing a computer science-specific
learning taxonomy. SIGCSE Bull. 39(4): 152-170.

Halstead, M.H. (1977): Elements of Software Science
(Operating and Programming Systems Series). New
York, NY, USA, Elsevier Science Inc..

Kintsch, W. and van Dijk, T.A. (1978): Towards a model
of text comprehension and production. Psychological
Review, 85, 363-394.

Klemola, T. (1978): Software comprehension: theory and
metrics. Masters Thesis, Concordia University,
Montreal, Canada.

Klemola, T. and Riling, J. (2003): A cognitive complexity
metric based on category learning. Proc. of the 2nd
IEEE International Conference on Cognitive
Informatics (ICCI’03), London, UK, 106 – 112.

Lister, R., Simon, B., Thompson, E., Whalley, J. and
Prasad, C., (2006): Not seeing the forest for the trees:
Novice programmers and the SOLO taxonomy,
SIGCSE Bulletin, 38(3): 118 - 122.

Murphy, L., McCauley, R. and Fitzgerald, S. (2012):
'Explain in plain English' questions: implications for
teaching. Proc. of the 43rd ACM technical symposium
on Computer Science Education (SIGCSE '12), 385-
390

Mathias, K.S., Cross, J.H., Hendrix, T.D., and Barowski,
L.A. (1999): The role of software measures and metrics
in studies of program comprehension. Proc. of the 37th
Annual Southeast Regional Conference (CD-ROM),
ACM-SE, 37, article 13, doi =10.1145/306363.306381

Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M.
(2010): Learning Computer Science Concepts with
Scratch. Proc. of the 6th International Computing
Education Research Workshop (ICER 2010). Aarhus,
Denmark, 69-76.

McCabe, T.J. (1976): A Complexity Measure, Software
Engineering, IEEE Transactions on, 2(4), 308- 320.

Parker, J. R. and Becker, K. (2003): Measuring effectiveness
of constructivist and behaviourist assignments in CS102.
Proc. of the 8th Annual SIGCSE Conference on
Innovation and Technology in Computer Science
Education (ITiCSE 2003), Thessaloniki, Greece, 40-44.

RSA, IBM. http://publib.boulder.ibm.com/infocenter/
ieduasst/rtnv1r0/index.jsp?topic=/com.ibm.iea.rsar/plugin
_types.html. Last accessed 24 August 2012.

 Sheard, J., Carbone, A., Lister, R. Simon, B. Thompson, E.
and Whalley, J. L. (2008): Going SOLO to assess novice
programmers, Proc. of the 13th annual SIGCSE
conference on Innovation and Technology in Computer
Science Education (ITiCSE’08), Madrid, Spain, 209-213.

Shuhidan, S., Hamilton, M. and D'Souza, D. (2009): A
taxonomic study of novice programming summative
assessment. Conferences in Research and Practice in
Information Technology, 95: 147-156.

Venables, A., Tan, G. and Lister, R. (2009): A Closer Look
at Tracing, Explaining and Code Writing Skills in the
Novice Programmer. Proc. of the 5th International
Computing Education Research Workshop (ICER 2009),
Berkeley, CA, USA, 117-128. Berkeley, California,
August 10-11, 2009. pp. 117-128.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, P.
and Prasad, C. (2006): An Australasian Study of Reading
and Comprehension Skills in Novice Programmers, using
the Bloom and SOLO Taxonomies. Australian Computer
Science Communications, 52: 243-252.

Whalley, J., Clear, T., Robbins, P., and Thompson, E.
(2011): Salient Elements in Novice Solutions to Code
Writing Problems. Conferences in Research and Practice
in Information Technology, 114: pp. 37-46.

CRPIT Volume 136 - Computing Education 2013

64

http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567

Appendix

Example of a typical EiPE question and a typical code
tracing question:

Question 5A
In plain English, explain the purpose of this method. Note
that more marks will be gained by correctly explaining
the purpose of the code than by giving a description of
what each line does.

public int method(int x, int y)
{
 int result =x;
 if(x < y)

{
result = y;

}
return result;

}

Question 1C
Complete the trace table below to show what happens
when this method is executed with the parameter limit
equal to 4.

public int method(int limit)
{
 int result = 0;
 for(int i = 0; i<= limit; i++)
 {
 result += 2;
 }

 return result;

}

 Initialisation

i result

0 0

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

65

CRPIT Volume 136 - Computing Education 2013

66

Revisiting models of human conceptualisation in the context of a

programming examination

Jacqueline Whalley and Nadia Kasto

School of Computing and Mathematical Sciences
AUT University

PO Box 92006, Auckland 1142, New Zealand

{nkasto,jwhalley}@aut.ac.nz

Abstract
This paper reports on an evaluation of the Block model

for the measurement of code comprehension questions in

a first semester programming examination. A set of exam

questions is classified using the Block model and two

commonly employed taxonomies, SOLO and Bloom. We

found that some of the problems inherent in the

application of Bloom and SOLO taxonomies also exist in

the Block model. Some of the difficulties associated with

SOLO and Bloom’s taxonomy are due to the wide breadth

of the dimensions. These difficulties are to some degree

mitigated by the limited breadth of the Block model

dimensions and we found that the Block model provided a

better way of describing novice programming code

comprehension tasks because of the increased granularity

that it provides.
Keywords: code comprehension, novice programmers,

Block model, SOLO, Bloom’s taxonomy.

1 Introduction
Teachers of computer programming have experienced

difficulty in judging the cognitive complexity of learning

tasks and test items. A relatively accurate and simple way

is required for determining the difficulty inherent in our

teaching and assessment programs: “...we as educators

are continually underestimating the difficulty of the tasks

that we are asking students to undertake” (Whalley, Clear

and Lister 2007).
Computer science educators have attempted to apply

models and taxonomies of human conceptualisation to

aspects of the teaching and learning of computer

programming with varying degrees of success. The most

widely adopted taxonomies to date have been the Bloom

(Bloom 1956) and SOLO (Biggs and Collis 1982)

taxonomies. Recently a new taxonomy has been

developed specifically for application to the design of

tasks for computer programming. This paper reports on

an investigation of the use of that model to determine the

difficulty of a set of test questions.

2 Background
In 1956, Bloom produced a taxonomy that consisted of a

hierarchy of learning objectives ranked according to their

Copyright © 2013, Australian Computer Society, Inc. This paper

appeared at the 15th Australasian Computer Education

Conference (ACE 2013), Adelaide, South Australia, January-

February 2013. Conferences in Research and Practice in

Information Technology (CRPIT), Vol. 136. A. Carbone and J.

Whalley, Eds. Reproduction for academic, not-for profit

purposes permitted provided this text is included.

expected cognitive complexity (Figure 1). The taxonomy is

a behavioural classification system of educational objectives.

Many variants of the taxonomy have been proposed but the

most widely accepted (Figure 1) is the revised Bloom’s

taxonomy (Anderson et al. 2001). This version of the

taxonomy adds a knowledge dimension, which specifies the

type of information that is processed, to a revised version of

the original cognitive process dimension. Traditionally a

strict inclusive hierarchy has been assumed for the cognitive

process dimension where each category is assumed to

include lower ones.

Bloom Revised Bloom

Evaluation Create

Synthesis Evaluate

in
cr

ea
si

ng
co

m
pl

ex
ity

Analysis Analyse

Application Apply

Comprehension Understand

Knowledge Remember

Figure 1: The cognitive process dimension; (left)

Bloom’s and, (right) revised Bloom’s taxonomy

Bloom’s taxonomy has been applied to computer

science for course design and evaluation (Scott 2003),

structuring assessments (Lister and Leaney 2003, Lister

2001), specifying learning outcomes (Starr, Manaris and

Stavely 2008) and comparing the cognitive difficulty of

computer science courses (Oliver et al. 2004).
The revised and the original Bloom’s taxonomy have

been used in attempts to improve the instruction and

assessment of programming courses (e.g., Abran et al.

2004, Shneider and Gladkikh, 2006, Thompson et al.

2008, Khairuddin and Hashim 2008, Alaoutinen and

Smolander 2010, Whalley et al. 2006, Whalley et al.

2007, Shuhidan, Hamilton and D’Souza 2009).
The use and interpretation of Bloom and the revised

Bloom’s taxonomy for describing computer science tasks

has been found to be problematic (Fuller et al. 2007,

Thompson et al. 2008, Shuhidan, Hamilton and D’Souza

2009, Meerbaum-Salant, Armoni and Ben-Ari 2010).

Much of the research shows that it can be difficult to

reach a consensus on an interpretation for the computer

programming education domain (Johnson and Fuller

2006). In a recent study Gluga et al. (2012) confirmed

that many of the ambiguities in the application of

Bloom’s taxonomy to the assessment of computer

programming are due to the necessity to have a deep

understanding of the learning context in order to achieve

an accurate classification. They also noted that the

classifiers often had preconceived misunderstandings of

the categories and differing views on the complexity of

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

67

tasks and the sophistication of the cognitive processes

required to solve them. This may be due to the difficulty

that the educators have remembering the cognitive

complexity of such a task when they were learning to

program. A much higher cognitive load exists for a

novice programmer writing a simple function than for an

experienced programmer. Additionally it has been

reported that the ordering of cognitive tasks in Bloom’s

taxonomy does not readily map to the learning

trajectories of many novice programmers (Lahtinen

2007).
As a result of these difficulties, several variants of

Bloom’s taxonomy have been proposed specifically for

computer programming education (e.g., Schneider and

Gladkikh 2006, Fuller et al. 2007, Bower 2008). These

variants have not been widely adopted by computer

science educators and researchers. Perhaps this is

partially due to the fact that the appropriateness of

Bloom’s taxonomy for the design of learning activities

and assessments has been disputed. The presupposition

that there is a necessary relationship between the

questions asked and the responses elicited is not a valid

one because a question could potentially elicit responses

at different levels (Hattie and Purdie 1998).
Biggs and Collis (1982) surmised that Bloom levels

reflect a teacher imposed view of what it means to have

achieved full mastery whereas SOLO levels come from

an understanding of the student learning process. The

focus of Bloom is to assist in the development of

educational objectives, while the SOLO taxonomy

focuses on the cognitive process used to solve problems.

SOLO, unlike Bloom, does not assume a relationship

between the task and the outcome so outcomes to a

specific task may be at different levels for different

students. Additionally, while Bloom separates knowledge

from the intellectual processes that operate on this

'knowledge', the SOLO taxonomy is primarily based on

the processes of understanding used by the students when

solving problems. Therefore, knowledge is inferred in all

levels of the SOLO taxonomy. It may be due to these

differences that educators and researchers have had

greater success in using SOLO to describe programming

tasks (code comprehension and code writing), to classify

student responses to those tasks and to gain some insight

into the students’ cognitive processes (e.g., Lister et al.,

2006, Philpott, Robbins and Whalley 2007, Sheard et al.

2008, Clear et al. 2008).
Both taxonomies have been used, independently, to

analyse the same set of programming assessment

questions and responses (Whalley et al. 2006). Thompson

et al. (2008) noted that the Bloom category for a

programming task can be meaningfully mapped to a

number of categories in the SOLO taxonomy and that a

combined version of these taxonomies may provide a

richer model with which to design and describe

programming tasks. Inspired by Thompson’s observation

a hybrid taxonomy was proposed that combines aspects

of the Bloom and SOLO taxonomies (Meerbaum-Salant,

Armoni and Ben-Ari 2010). The combined taxonomy

consists of the SOLO categories of unistructural,

multistructural and relational and three Bloom categories

understand (U), apply (A) and create (C). The taxonomy

was structured so that the three SOLO levels formed

super-categories each containing the three Bloom levels

as subcategories (Figure 2) . This taxonomy was then

used to analyse the correlation between student

performance on a task and the relative complexity of the

task as defined by the classification of the task using the

combined taxonomy. The authors believe that their

“findings suggest that the combined taxonomy captures

the cognitive characteristics of CS practice”. They also

recommend this integration of taxonomies as a research

framework that is applicable to the specific needs of CS

education research. However, they also note that the

taxonomy requires further investigation and validation.

To date this work has not been reported in the literature.

Unistructural Multistructural Relational
U A C A A C U A C

Figure 2: The combined taxonomy

The Block model (Schulte 2008) is an educational

model of program comprehension. It is structured as a

table consisting of three knowledge dimensions and four

hierarchical levels of comprehension. The table consists

of 12 blocks (cells) and each block is designed to

highlight one aspect of the program comprehension

process (Figure 3). The conceptualisation of the

hierarchical levels takes inspiration from Kintsch’s

expanded text comprehension theory (1998).

Macro Understanding Understanding Understanding

structure the overall the “algorithm” the goal / the

 structure of of the program purpose of the

 the program program in its

 text context

Relations References Sequence of Understanding

 between method calls how subgoals

 blocks (e.g.: are related to

 method calls, goals, how

 object function is

 creation, achieved by

 accessing subfunctions

 data

Blocks Regions of Operation of a Function of

 interest (ROI) Block, a block, maybe

 that method or seen as a

 syntactically ROI (as a subgoal.

 or sequence of

 semantically statements)

 build a unit

Atoms Language Operation of a Function of a

 elements statement statement. For

 which goal is

 only

 understandable

 in context

 Text surface Program Functions

 execution (as means or

 (data flow and as purpose,

 control flow) goals of the

 program)

 Structure Function

Figure 3: The Block model (Schulte 2008)

CRPIT Volume 136 - Computing Education 2013

68

Question Type
Revised Bloom’s Block Model

SOLO % correct

cognitive

comprehension

level
 answers

dimension

dimension

2 Basics Remember Atom Text surface U 50%

4 Syntactic errors A Remember Atom Text surface U 68%

 B Understand Block Text surface M 53%

 C Understand Relations Text surface M 31%

7A Tracing Apply Block Execution M 77%

7B Tracing Apply Block Execution M 64%

7C
Tracing

Apply Block

Execution M 81%

(with selection)

7D
Tracing

Apply Relations

Execution M 22%

(with iteration)

7E
Tracing

Apply Relations

Execution M 27%

(with iteration)

5 Skeleton Code Analyse Relations Functions R 42%

6 Parsons Puzzle Apply Block Functions M 60%

10A Code Intent Understand Macro Functions R 36%

10B Code Intent Understand Macro Functions R 9%

10C Code Intent Understand Macro Functions R 6%

Table 1: Classification of exam questions

The intention behind the Block model’s development

was to provide a relatively simple model, compared with

other existing taxonomies and models, to support

research into the teaching of computer programming. The

model was evaluated as a tool for the planning and

evaluation of lessons about algorithm design (Schulte

2008). It was found that the Block model was simple,

constructive and communicative. However the model has

not yet been used as a framework for research into the

teaching and learning of computer programming.
In a recent paper the Block model was used to map a

variety of selected models of program comprehension in

order to assist in the conceptualisation of those models

(Schulte et al. 2010). As a result of this comparative

analysis of models the authors suggest that the process of

knowledge acquisition by novice programmers described

in terms of the Block model might be represented as a

holey patchwork quilt and that the Block model might

help us identify what holes (empty cells) exist and why a

student’s knowledge is “fragile”. We were interested in

investigating the usefulness of the Block model for

measuring and evaluating programming tasks and also for

investigating the cognitive processes employed by

students to solve the problems.
In this preliminary study we employed a set of

programming comprehension questions, from a first

semester programming examination, in order to analyse

the similarities and differences of the Block model with

other models.

3 Analysis and Discussion
What follows is a discussion of the analysis of a small set

of program comprehension questions, given in the same

pen and paper examination, collated by question type.

Table 1 gives an overview of the classification of the

questions. The revised Bloom classification was carried

out using the vignettes and principles described by

Thompson et al. (2008) and Whalley et al. (2006) . In

accordance with this set of guidelines we classified the

cognitive process dimension at the category level rather

than the sub category level. In classifying the questions

using the SOLO taxonomy we applied the principles and

guidelines provided by Biggs and Collis (1982) and from

the SOLO categories established by the BRACElet

project for ‘code intent’ comprehension tasks (Clear et al.

2008) . The Block model classification was carried out

using the cell descriptions shown in Figure 3.
One challenge we faced was in determining exactly

what an atom or a block is. It could be argued that this is

dependent on the stage of development that the individual

learner has reached. This observation has been previously

made with respect to salient elements in novice

programming tasks (Whalley et al., 2010). Here in

assigning classifications we have assumed a norm for all

students based on our experiences in teaching novice

programmers. We have taken the notion of an atom to be

the simplest salient element (for example a variable

declaration and assignment) and a block to be a single

method, loop or selection statement. Therefore at the

relations level we consider a relationship to be a

reference between blocks or between a block and an

atom.
For each question the student performance on that

question was also analysed. In our analysis we are

interested in what skills, knowledge base and cognitive

processes are required to successfully answer the

question. Finally we then compared the actual relative

difficulty of the questions in the context of the

examination (as indicated by the percentage of students

who gave a fully correct answer) with the levels of

difficulty of those questions as indicated by the

taxonomies and models.

Question 2: Matching Terms to Code
Question 2 presented students with a class definition that

had ten lines of code underlined and each annotated with

a letter. Students were asked to match 7 definitions to the

appropriate line of code. This question required students

to recall factual knowledge and was classified as

remember. In terms of SOLO this question requires

students to focus on a single language construct and is

therefore a unistructural question.
Because students are focusing on a single language

element this question is considered to be at the atom level

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

69

in the Block model. The text surface dimension of the

Block model is associated with the external

representation of the program, “it is the code a person

reads in order to comprehend the program” (Schulte et

al. 2010). In order to answer question 2 the students do

not need to go beyond understanding the rules of

discourse (grammar) of the program code. They certainly

do not need to understand or have knowledge of the data

and control flow or goal of the atom of code in order to

answer this question correctly. Therefore this question is

an atom level, text surface question.

Question 4: Syntax Errors
In question 4 (see Appendix) students were asked to find

8 of 11 syntax errors in a complete class. The type of

syntax error had a great affect on the number of students

who were able to correctly locate and identify the error. It

seems, not unexpectedly, that the difficulty of the task (as

measured by student performance on the task) is related

to the type of knowledge that is required which in turn is

directly related to the type of bug or error to be identified.

We found that when we mapped each error identification

question to the Block model clear groupings emerged

based on the level of comprehension required to reach the

correct answer. The lowest level of syntactic errors,

which we grouped together as 4A, consisted of errors

such as missing semicolons, a missing bracket in a

method declaration and typographical errors such as

Return rather than the correct r eturn keyword. All of

these errors can be found without reference to the rest of

the program structure. They focus on a language element

and therefore with respect to the level of student program

comprehension required to answer the question they can

be classified as text surface at the atom level. Identifying

these types of errors can also be considered to be a

unistructural task and in terms of Bloom they require the

students to recognise an error that they would have seen

repeatedly during their course of study.
The syntactic errors that we grouped as question 4B

consist of mismatches either between the return data type

of a method and the data type of the value returned or

between a parameter identifier in the method declaration

and the identifier used to represent that method parameter

in the method body. These errors are all located within a

block of code and consist of a sequence of atoms. One

error was positioned in a selection statement. In order to

locate these errors the students must understand the

syntactic structure of the block so these error

identification tasks were classified as requiring text

surface knowledge at the block level. It is not necessary

to operate at the relations level in order to identify these

errors. We classified the 4B errors to the SOLO

multistructural category because they focus on more than

one language construct but to answer correctly them does

not require the students to understand the relationship

between the constructs and the problem can be solved by

knowing the required structure of the code rather than the

purpose or goal of the code. In order to identify this type

of error students must not only recall basic syntax rules

but also identify where there is an incorrect application of

the rule. In order to do this the students must understand

(Bloom’s category) the rule.

Finally, syntactic errors that were grouped together as

4C consisted of bugs such as an incorrect method call or a

data type mismatch for a global variable. In order to

recognize this type of error, the students need to be aware

of the relationships between various blocks in the code

and therefore required comprehension of relations. In

order to identify these bugs the students are still operating

at the text surface where an understanding does not need

to extend beyond the application of their knowledge of

the ‘grammar’ of the code.
While the different forms of question (4A, 4B, 4C)

were classified into three separate categories in the Block

model they were classified into only two different

categories when Bloom and SOLO classifications were

applied. The Block model was the only classification

system to put the three different types of questions into

separate categories.

Question 7: Code Tracing
Tracing questions are solved by tracking data through the

code line by line. This question type has not been

previously classified using the SOLO taxonomy.

However, in a study that analysed student answers to

‘code intent’ questions it was noted that “a student may

hand execute code and arrive at a ... [correct]... final

value but ... the student may not manifest an

understanding of what the code does”. Such student

responses were classified as multistructural (Lister et al.

2006). Extrapolating this to tracing questions it is clear

that it is not necessary to understand the purpose of the

code to reach the correct answer and question 7 A-E

should be classified as multistructural.
These questions require the students to apply a known

process or strategy and are therefore classified as apply in

the revised Bloom’s cognitive dimension.
The students need to have knowledge of the data flow

and in some cases control flow of a simple Java method

in order to answer code tracing questions. In order to

operate at the program execution level they must also

operate at the lower text surface level. They do not need

to extend to the functions domain of the Block model.

Therefore, the tracing questions in this exam are all posed

within the program execution knowledge dimension of

the Block model.
The aspect in which these questions differ is the level

of the task when classifying the questions using the Block

model. The Block model was the only system that

differentiated amongst these tracing questions. The

questions were classified into two different levels within

the Block model. For these questions code that contained

iteration were classified at the relations level whereas

code without iteration were classified as block level

questions.

Question 5: Skeleton Code (with scaffolding)
The skeleton code for question 5 is a class definition,

taking up a page and a half, containing two private data

members (one of which is an ArrayList), a single

constructor, and three methods, which add to, delete

from, and print the contents of the ArrayList. After the

code, the students are set the following task for

refactoring the code: “The table below shows the missing

lines of code, but not necessarily in the correct order. It

also has one extra line of code that is not needed. Identify

CRPIT Volume 136 - Computing Education 2013

70

which line of code should go where …” In-line comments

are provided as a scaffold to help the students identify the

appropriate lines of code. The scaffolding means that it is

not necessary for the students to identify the overall goal

of the missing lines and the blocks in which the line must

be placed because this is provided. It does still, however,

require them to understand the various relationships

between lines of code in order for them to select the

correct missing line. For example see Figure 4 where

there is a need to understand the connections between

fields as parameters to an external constructor method for

a Lot object and the Lot object and an ArrayList method

call as well as the sub-goals of these method calls.

Question 5 was therefore classified as a SOLO relational

question and in the relations-functions of the Block

model. This question requires the students to differentiate

the relevant from the irrelevant lines of code and to focus

on the sections of code within the class that are relevant

to the differentiation task. Therefore this question was

classified as analyse. A similar skeleton code question

has been reported previously and was also classified at

the analyse level of Blooms cognitive process dimension

(Whalley et al. 2006).

private ArrayList<Lot> lstLots;

private int nextLotNumber;
....
/**
* A simple model of an auction
* @author David J. Barnes and Michael

Kolling */

public void enterLot(String description)
{

//create new Lot
Lot lot = new Lot(nextLotNum,description);
//store it in the ArrayList
<missing code>

nextLotNumber++;
}

Figure 4: Part of question 5 code (adapted

from Barnes and Kölling 2006)

Question 6: Parsons puzzle (with structure)
Question 6 is a Parsons puzzle (Parsons and Haden 2006)

where students are presented with jumbled lines of code

for a Java method (see Appendix). They are provided

with the purpose of the method which is to count the

number of occurrences of a character in a string and a

structure for the method defined by a set of nested braces

and blank lines. The students are required to place the

lines of code into the correct order.
Classifying this question using SOLO is difficult. It

could be argued that even though the students are

provided with the overall purpose of the code they still

have to understand the code as a whole in order to reach

the correct answer. Therefore it should be considered to

be a relational question. Additionally if we take this

viewpoint the revised Bloom’s cognitive level of the

question must be analyse because the students are

determining how the lines of code fit within the overall

structure and purpose of the code. However research

using these puzzles points to the fact that students

typically apply a set of heuristics to solve the problem

(Denny et al. 2008). For example, the final line of the

method must be the return statement and the first line the

method header. Even in determining the position of the

loop in relation to the selection statement the variable i is

defined in the loop and then used in the ‘if statement’.

Understanding the relationship between the two lines of

code and the variable i can be seen as applying a more

sophisticated heuristic. On the other hand it could be seen

as manifesting an understanding of the purpose of the

variable i. Either way in terms of SOLO, the question is

multistructural because although connections between

parts of the code must be made, the question does not

require meta-connections to be made.
The Parsons puzzle examined here is classified at the

apply level, in the revised Bloom’s cognitive dimension,

because it is possible to solve this problem correctly by

applying known heuristics.
This question requires students to operate at the block

level. It is not necessary for them to be able to understand

the connections between the blocks to solve the problem

because they can use heuristics. Although the students are

given the overall goal of the method it is possible to solve

this Parsons puzzle without understanding the overall

goal. However it seems that the students must at least

understand the sub-goals of the constituent blocks and

atoms in order to solve this puzzle correctly. Therefore

we have classified this puzzle in the functions knowledge

domain. It should be noted that a more complex puzzle,

without scaffolding, may require a deeper understanding

of the logic and flow of the algorithm and be at the

relations level of the functions domain. Therefore, unlike

tracing questions, we cannot claim that all Parsons

puzzles have a predetermined classification.

Question 10: Code Intent
Questions 10 A, B and C all required the students to

explain the purpose or goal of a single method. It is clear

that such a question moves beyond the structure of the

code, data flow and control flow, and is within the

Function cognitive dimension of the Block model. As an

example we will consider question 10B (Figure 5). To

solve this question the students need to understand the

connections between the three blocks of code in order to

infer an overall purpose.

public void method10B(int iNum)

Block 1

{

 for(int iX = 0; iX < iNum; iX++)Block 2

 {

 for(int iY = 0; iY < iNum; iY++)

 {
Block 3

 System.out.print(“*”);

 }

 } System.out.println();

}

Figure 5: Question 10B and its constituent blocks

There are a number of possible ways that a student

might solve this problem. They might apply a top-down

comprehension strategy by identifying the sub-goal of

Block 3 before trying to understand the function of Block

2. When considering Block 2 they see Block 3 as an atom

(which prints a line of iNum stars) and that Block 2

executes Block 3 followed by a carriage return iNum

times. The outer block might be processed in a similar

way in order to arrive at the purpose of the method. In

this way it can be argued that a student is reaching an

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

71

understanding of the relationship between the three

blocks and then inferring an overall purpose. The same

outcome might be achieved by tracing the code, a

bottom-up strategy, in order to try to see the relationships

between the blocks and arrive at a conclusion as to the

purpose of the code. Or they may apply a combination of

both. Regardless of the strategy they apply, to reach a

correct answer the student is operating at the highest level

within the functions dimension because an

“understanding the goal or function of the program” is

required. ‘Code intent’ questions, similar to the ones in

this examination have been consistently classified as

SOLO relational (see Clear et. al 2008) and this gives

weight to our classification of questions 10A-C as

relational. In past work ‘code intent’ questions have been

classified as understand (Thompson et al. 2008, Whalley

et al. 2006). Our initial classification was at this level.

However we believe that the cognitive processes used by

novice programmers when trying to solve ‘code intent’

questions are more complex than previously assumed. A

fuller discussion of this aspect of using Blooms

taxonomy to classify program comprehension tasks is

provided in the next section.

3.1 Using Bloom’s taxonomy
Like many educators in science disciplines we have

found it difficult to apply the Bloom and the revised

Bloom taxonomies. There have been several studies that

indicate that the order of the levels changes depending on

the task. For example in a test on atomic structure it was

found that synthesis and evaluation were placed between

knowledge and comprehension. A test related to glaciers

found that synthesis lay between knowledge and

comprehension (Kropp and Stocker 1966). Similarly, we

believe that the cognitive dimension hierarchy does not

map comfortably with computer programming tasks.
In classifying ‘code intent’ questions Thompson et

al.’s (2008) revised Bloom vignettes and definitions

indicate that this type of question is at the understand

level. In the revised Bloom’s taxonomy understand is

defined as ‘constructing meaning from instructional

messages’ which is interpreted by Thompson et al. (2008)

to include “explaining a concept or an algorithm or

design pattern”. Tracing questions were classified, by

Thompson et al. (2008) at the higher revised Bloom level

of apply. Apply is defined as “carrying out or using a

procedure in a given situation” and clearly hand

execution of code is a process which students must apply

in order to answer a code tracing question.
Past research has shown us that novice programmers

find ‘code intent’ questions more difficult than tracing

questions and Parsons puzzles (Lopez et al. 2008). A

study which examined the approaches of experts vs.

novices in solving these types of problems also illustrated

that there is likely to be a higher cognitive load and more

complex cognitive processes involved in solving a

previously unseen ‘code intent’ question than for an

unseen tracing question (Lister et al. 2006). Additionally

they found that even experts sometimes approach ‘code

intent’ questions by first partially tracing the code in

order to discover the code’s purpose. In classifying

questions to Bloom the highest cognitive process level

necessary to solve the problem should be used.

Consequently, at the lowest possible level ‘code intent’

questions must be apply. We believe that code intent

tasks are more complex than has previously been

assumed. It is likely that students first break down the

code into manageable chunks and then try to determine

the goal of each chunk, possibly by using a tracing

strategy. At this point it is likely that they try to start

mapping this code to their existing knowledge.

Subsequently the students try to establish how the parts

relate to one another and attempt to arrive at an overall

purpose for the code. If this viewpoint is accepted then it

is evident that ‘code intent’ questions require the students

to be thinking at the analyse level. This classification

would be more in line with the SOLO and Block

classifications for ‘code intent’ questions and would

better reflect the level of difficulty of such questions for

novice programmers.

3.2 Reflections on the Block model
The Block model classification of this small set of exam

questions seems to indicate that there is a relationship

between the Block classification of a question and the

observed difficulty of a question.
The average % of fully correct answers for all

questions classified into a block for each block in the

Block model is shown in Figure 6. When compared with

SOLO and Bloom (see Table 1) the Block model

classification levels appear to more accurately match the

relative difficulties of code comprehension tasks for

novice programmers.

Macro structure 17%

Relations 31% 24.5% 42%
Blocks 53% 74% 60%
Atoms 59%

 Text Execution Functions
 surface

Figure 6: Average % fully correct answers

This relationship is particularly evident when

examining the results by question type. For example the

tracing questions (question 7A – E) become progressively

more difficult for the students to answer as the block level

and knowledge dimensions increase (see Table 1 and

Figure 6). However the teaching context of the

knowledge required to successfully solve a question

affects the difficulty of that question. The students found

7C was much easier (81% correct answers) than question

7B (64% correct). On closer examination question 7C

required students to determine if a number was outside of

a given range. The selection statement used a logical or.

This code had been covered in detail in class using a

“range doodle” (Whalley et al. 2007). Many of the scripts

had such doodles on them indicating that although the

code was presented as the opposite logic of the class

room example, which checked if values were within a

range, the teaching had an impact on the learning of the

students. Question 7B on the other hand was a simple

remainder operation. The fact that 36% of students could

not solve this simple problem as well as they could 7C

suggests that the students lack basic mathematical

knowledge that was assumed in the teaching of

CRPIT Volume 136 - Computing Education 2013

72

programming for this cohort. Despite these differences

overall tracing problems which are program execution

knowledge domain questions that were posed at the block

level were easier that those posed at the relations level.
If we map the SOLO classification of our questions to the

Block model classification a pattern emerges that shows a

possible relationship between Block model levels and SOLO

(Figure 7).

Macro
Relational

structure

Relations Multistructural Multistructural Multistructural

Blocks Multistructural Multistructural Multistructural

Atoms Unistructural

 Text surface Execution Functions

Figure 7: Mapping of SOLO & Block model

classifications
A relationship had been hypothesised by Schulte et al.

(2010) and while our findings support a mapping we

propose that the relations level actually maps to the

SOLO multistructural level and not the relational

(Figure 8). We found in our exam that questions at the

relations level across all three knowledge dimensions

were at the SOLO level of multistructural. It is important

to note the distinction between relations (references

between blocks) and ‘thinking’ at a relational level when

classifying exam questions using the Block model.

Block model SOLO SOLO
 (Schulte et al. 2008) (revised mapping)

Macro Relational Relational
Relations Relational Multistructural

Block Multistructural Multistructural
Atom Unistructural Unistructural

Table 2: Mapping the Block model to SOLO

Figure 8 shows the mapping between the Bloom and

Block model classifications. As observed for SOLO there

is a general trend of difficulty as you progress up the

Block levels and this was also reflected in decreasing

student achievement.
There also appears to be a general trend of increasing

cognitive complexity required to solve the questions as

you move from text structure to functions across the

Block model knowledge dimensions. However, this trend

is not present in the student performance data on the set

of questions reported in this paper. It is possible that this

trend was not observed because we do not have sufficient

data for some of the blocks. For some questions it was

difficult to determine which block the question should be

classified to if the question lay on the boundary. It may

be necessary to further define the blocks and provide

vignettes to guide the classification process.

Macro structure Analyse

Relations Understand Apply Analyse
Blocks Understand Apply Apply
Atoms Remember

 Text Execution Functions
 surface

Figure 8: Mapping Bloom & Block model

classifications

4 Conclusion
It is important to note that many of the limitations that

exist for the use of Bloom and SOLO also exist for the

Block model. In particular it is necessary to understand

the context of learning and what prior exposure students

have to the information required. In under taking this

research we have noted that when educators attempt to

design “better models” they somehow end up with

models that appear to be revisions of existing taxonomies.

In this case it appears that the Block model might actually

be a hybrid of a revised SOLO and a revised Bloom’s

taxonomy.
Based on our experience SOLO still seems to the most

straightforward model to apply but in using SOLO we

lose the granularity to examine programming exam

questions because those tasks are largely multistructural.

A recent survey of first year programming exams found

that 20% of questions in CS1 courses were tracing

questions and 9% were explain questions (Simon et al.

2012). The main advantage of the Block model is that it

provides us with a way of describing these novice

programming tasks that gives us a level of granularity

which allows us to distinguish between similar tasks in a

way that SOLO or Bloom’s taxonomy cannot.
The mapping of tasks to the Block model reveals

‘holes’ in the coverage of our examination of code

comprehension. We do not have questions that are about

the execution and functions of atoms or questions that

require text surface and execution knowledge at the

macro structure level. Examinations reflect the focus of

our teaching. The lack of coverage of the Block model

leads us to question whether or not we have it right.

Could we be missing key tasks that might enable student

learning? If we do cover the entire Block model can we

improve code comprehension? Perhaps an increased

focus on these missing areas during instruction will help

students to develop advanced understanding more rapidly.
The work reported here is a preliminary look at the

usefulness of the Block model for measuring and

evaluating programming tasks and also for investigating

the cognitive processes employed by students to solve the

problems. In order to explore this further we intend to

analyse a larger set of examination questions. We also

plan to use the Block model to design assessment tasks

and to attempt to establish the level at which the students

are actually operating by using think-out-loud interviews.
In our analysis we have omitted code writing tasks,

largely because the model was originally designed for

comprehension tasks. But it would be interesting to

revisit the Block model with a focus on code writing

tasks. We believe that the Block model, with minor

refinements, might also provide a useful framework for

research and teaching of code writing tasks.

5 References
Abran, A., Moore, J., Bourque, P., DuPuis, R. and Tripp,

L. (2004): Guide to the Software Engineering Body of

Knowledge - 2004 Version SWEBOK ®, Los Alamitos,

CA , IEEE-CS - Professional Practices Committee.
Alaoutinen, S. and Smolander, K. (2010): Student Self-

Assessment in a Programming Course Using Bloom’s

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

73

Revised Taxonomy. Proc. of the 15
th

 Annual

Conference on Innovation and Technology in Computer

Science Education (ITiCSE ’10), 155–159. ACM Press.
Anderson, L. W., Krathwohl, D. R., Airasian, P. W.,

Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths,

J. and Wittrock, M. C. (2001): A Taxonomy for

Learning, Teaching, and Assessing: A Revision of

Bloom’s Taxonomy of Educational Objectives.

Longman.
Barnes, D.J. and Kolling, M. (2006): Objects First with

Java: A Practical Introduction using BlueJ (3
rd

Edition). England, Pearson Education Ltd.
Biggs, J. B. and Collis, K. F. (1982): Evaluating the

Quality of Learning: The SOLO Taxonomy (Structure

of the Observed Learning Outcome). New York.

Academic Press.
Bloom, B. S. (1956): Taxonomy of Educational

Objectives, Handbook 1: Cognitive Domain. Addison

Wesley.
Bower, M. (2008): A Taxonomy of Task Types in

Computing. SIGCSE Bulletin, 40(3): 281–285.
Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M.,

Sheard, J., et al. (2008): Reliably Classifying Novice
Programmer Exam Results using the SOLO

Taxonomy. Proc. of the 21
st

 Annual NACCQ

Conference, Auckland, New Zealand, 23-30.
Denny, P., Luxton-Reilly, A. and Simon, B. (2008):

Evaluating a New Exam Question: Parsons Problems.
Proc. of the 2008 International Workshop on

Computing Education Research (ICER '08), Sydney,

Australia, 113-124.
Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D.

Hernán-Losada,I., Jackova, J., Lahtinen, E., Lewis, T.

L. McGee Thompson D., Riedesel, C. and Thompson

E. (2007): Developing a computer science-specific

learning taxonomy. SIGCSE Bull. 39(4): 152-170.
Gluga, R., Kay, J., Lister, R., Kleitman, S. and Lever, T.

(2012): Overconfidence and confusion in using Bloom

for programming fundamentals assessment. Proc. of the

43
rd

 ACM technical symposium on Computer Science

Education (SIGCSE ’12), 147–152: ACM Press.
Hattie, J. and Purdie, N. (1998): The SOLO model:

Addressing fundamental measurement issues. In B.

Dart & G. Boulton-Lewis, (Eds.), Teaching and

Learning in Higher Education, 145–176. ACER Press.
Johnson, C. G. and Fuller, U. (2006): Is Bloom's

taxonomy appropriate for computer science. In A.

Berglund (Ed.), Proc. of the 6th Baltic Sea Conference

on Computing Education Research (Koli Calling

2006), Koli National Park, Finland, 120-123.
Khairuddin, N. N. and Hashim, K. (2008): Application of

Bloom's taxonomy in software engineering

assessments. Proc. of the 8th conference on Applied

computer science (ACS'08), World Scientific and

Engineering Academy and Society (WSEAS), Stevens

Point, Wisconsin, USA, 66-69.

Kintsch, W. (1998): Comprehension: a paradigm for

cognition. Cambridge University Press.
Kropp, R. P. and Stroker, H. W. (1966): The construction

and validation of tests of the cognitive processes as

described in the taxonomy of educational objectives.
Florida State University, Institute of Human Learning

and Department of Educational Research and Testing.
Lahtinen, E. A. (2007): Categorization of Novice

Programmers: A Cluster Analysis Study. Proc. of the

19th Annual Workshop of the Psychology of

Programming Interest Group (PPIG), 32-41. Joensuu,

Finland.
Lister, R. (2001): Objectives and Objective Assessment in

CS1. Proc. of the thirty-second SIGCSE technical

symposium on Computer Science Education (SIGCSE

'01), 292-296: ACM Press.
Lister, R. and Leaney, J. (2003):First Year Programming:

Let All the Flowers Bloom. Proc. of the 5th

Australasian Computing Education Conference

(ACE2003), Adelaide, Australia, 221-230.
Lister, R., Simon, B., Thompson, E., Whalley, J.L. and

Prasad, C. (2006): Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy, Proc. of

the 11
th

 annual SIGCSE conference on Innovation and

Technology in Computer Science Education (ITiCSE
’06), Bologna, Italy, 118-122.

Lopez, M., Whalley, J., Robbins, P. et al., (2008):
Relationships between reading, tracing and writing

skills in introductory programming. Proc. of the 4
th

International Computing Education Research
Workshop (ICER 2008). Sydney, Australia, 101-112.

Oliver, D., Dobele, T., Greber, M. and Roberts, T. (2004):

This course has a Bloom Rating of 3.9. Proc of the 6
th

Australasian Computing Education Conference,
Dunedin, New Zealand, 227-231,

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.
(2010): Learning Computer Science Concepts with

Scratch. Proc. of the 6
th

 International Computing

Education Research Workshop (ICER 2010). Aarhus,
Denmark, 69-76.

Parsons, D. and Haden, P. (2006): Parson's programming
puzzles: a fun and effective learning tool for first

programming courses. Proc. of the
8th

 Australian

conference on Computing Education, Darlinghurst,
Australia, 157–163.

Schulte, C., Busjahn, T., Clear, T., Paterson, J. and

Taherkhani, A. (2010): An introduction to program

comprehension for computer science educators. Proc.

of the 2010 ITiCSE Working group reports (ITiCSE-

WGR‘10), Ankara, Turkey, 65-86.
Schulte, C. (2008): Block Model: an educational model of

program comprehension as a tool for a scholarly

approach to teaching. Proc. of the 4
th

 International

Workshop on Computing Education Research (ICER
2008), Sydney, Australia, 149-160.

Scott, T. (2003): Bloom’s taxonomy applied to testing in

computer science classes. Journal of Computing in

Small Colleges, 19(1): 267-274.

CRPIT Volume 136 - Computing Education 2013

74

 Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,

E. and Whalley, J. L. (2008): Going SOLO to assess

novice programmers, Proc. of the 13
th

 annual SIGCSE

conference on Innovation and Technology in Computer
Science Education (ITiCSE’08), Madrid, Spain, 209-
213.

Shuhidan, S., Hamilton, M. and D'Souza, D. (2009): A

taxonomic study of novice programming summative

assessment. Conferences in Research and Practice in

Information Technology, 95: 147-156.
Simon, Sheard, J., Carbone, A., Chinn, D., Laakso, M.,

Clear, T., de Raadt, M., D'Souza, D., Lister, R.,
Philpott, A., Skene, J. and Warburton, G. (2012):
Introductory programming: examining the exams.
Proc. of the 14

th
Australasian Computing Education

Conference (ACE2012), Melbourne, Australia, 61-70.
Starr, C. W., Manaris, B. and Stalvey, R. H. (2008):

Bloom’s Taxonomy Revisited: Specifying Assessable

Learning Objectives in Computer Science. SIGCSE

Bulletin, 40(1): 261–265.
Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M.

and Robbins, P. (2008): Bloom's Taxonomy for CS

assessment. Proc. 10
th

 Australasian conference on

Computing Education (ACE 2008), Wollongong,
NSW, Australia, 155-162.

Whalley, J., Clear, T. and Lister, R. (2007): The many

ways of the BRACElet project. Bulletin of Applied

Computing and Information Technology, 5(1).

Retrieved August 3, 2012 from http://www.naccq.ac.nz

/bacit/0501/2007Whalley_BRACELET_Ways.htm
Whalley, J., Prasad, C. and Kumar, P. K. A. (2007):

Decoding doodles: novice programmers and their

annotations, Proc. of the 9
th

 Australasian conference on

Computing Education, Ballarat, Victoria, Australia,
171-178.

Whalley, J. L., Lister, R., Thompson, E., Clear, T.,

Robbins, P., Kumar, P. K. A. and Prasad, C. (2006). An
Australasian Study of Reading and Comprehension
Skills in Novice Programmers, using the Bloom and

SOLO Taxonomies. Proc. of the 8
th

 Australasian

Computing Education Conference (ACE2006), Hobart,
Australia, 243-252.

Whalley, J., Clear, T., Robbins, P., and Thompson, E.

(2011): Salient Elements in Novice Solutions to Code

Writing Problems. Conferences in Research and

Practice in Information Technology, 114: 37-46.

Appendix

Question 4

import java.util.ArrayList;

public SimpleShop{

private String sName A - missing ;

private String sPhoneNumber;

private String aAddress;

private ArrayList lstInventory;

private double dTotalAmountSold; A - missing)

public SimpleShop(String name, String address {

 aAddress = address;

 sName = name;

 lstInventory = new ArrayList();

} dTotalAmountSold = “0.0”;
B

public String getAddress(){

} Return sAddress; A- should be return

public int getPhoneNumber(){ C- wrong return type

}
return sPhoneNumber;

B - should be void

public int setPhoneNumber(String phoneNumber){

sPhoneNumber = phoneNumber;
}

public void addItem(Item item){

lstInventory.add(item);
}

public int numberOfItems(){
B - should have

return statement

lstInventory.size();

} A

public boolean sell Item(Item item){

boolean bSold = false; C

if(lstInventory.contains(items){

lstInventory.remove(item);

dTotalAmountSold + item.getPrice();

bSold = true;

} A – should be +=

return bSold;

}

}

Question 6
Here are some lines of code that in the right order would make up

a method to count the occurrences of a letter in a word.

if(sWord.charAt(i) == c)
for(int i = 0; i < sWord.length;

i++) return count;
int count = 0;
public int countLetter(String sWord, char

c) count++;

Each box represents a placeholder for the lines of code above.

Each line of code must be place in only one of the boxes.

{

{

{

}
}

}

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

75

http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567

Question 7A
What are the values of a, b and c after this code is
executed? public void int q7A(){

int a = 3;

int b = 6;

int c;

a += 2;

b -= 4;
c = b + a;

}

Question 7B
What will this method return for each pairs of inputs shown?

public void int q7B(int num1, int num2){

return num1 % num2;
}

num1 num2 returns
17 5

18 6

Give a value for each of the two input parameters that would
cause the method to return the value

5: num1....... num2.......

Questions 7C, 7D and 7C all have the same instruction:
Complete the table below to show what this method will return

for the various values shown.

Questions 7C
public boolean q7C(int iValue){

boolean bValid = false;

if(iValue>=FIRST_VAL &&

iVALUE<SECOND_VAL){ bValid = true;
}
return bValid;

}

iValue FIRST_VAL SECOND_VAL returns

17 17 2

18 17 20

4 3 4

Question 7D
public boolean q7D(int

iLimit){ int iIndex = 0;
int iResult = 0;

 while(iIndex <= iLimit){

 iResult += iIndex;

 iIndex ++;

}

 iLimit returns

 return iResult; -1

} 3

 0

Question 7E
public int q7E(int[] numbers){

int iResult = 0;

for(int i = 0; idx < numbers.length;

idx++){ if(numbers[idx] > iResult)
{

iResult = numbers[idx];
}

}

return iResult;
}

numbers returns
{1,2,3,4,5}

{20,-10,6,-2,0}

Question 10A
public double method10A(double[]

numbers){ double num = 0;

for(int i = 0; i < numbers.length; id++){

num += numbers[i];
}

return num;

}

Question 10C
public double method10C(int[] numbers, int

val){ int x = 0;
int y = numbers.length-

1; int z, temp;
boolean switch = false;

while (!switch && (x <= y){

z = (x + y)/2;
temp = numbers[z];

if(val == temp){

switch = true;
}
else if(val < temp){

y = z -1;
}else{

x = z + 1;
}

}
return switch;

}

CRPIT Volume 136 - Computing Education 2013

76

A conceptual model for reflecting on expected learning vs.
demonstrated student performance

Richard Gluga 1 Judy Kay 1 Raymond Lister 2 Simon3

Michael Charleston1 James Harland4 Donna Teague5

1 School of IT, University of Sydney, Sydney NSW Australia
2 School of Software, University of Technology Sydney, Sydney NSW Australia

3 School of Design Communication and IT, University of Newcastle, Newcastle NSW Australia
4 School of Computer Science and Information Technology, RMIT University, Melbourne VIC Australia

5 Faculty of Science and Technology, Queensland University of Technology, Brisbane QLD Australia

Abstract

Educators are faced with many challenging questions
in designing an effective curriculum. What prerequi-
site knowledge do students have before commencing
a new subject? At what level of mastery? What is the
spread of capabilities between bare-passing students
vs. the top-performing group? How does the intended
learning specification compare to student performance
at the end of a subject? In this paper we present
a conceptual model that helps in answering some of
these questions. It has the following main capabilities:
capturing the learning specification in terms of syl-
labus topics and outcomes; capturing mastery levels
to model progression; capturing the minimal vs. aspi-
rational learning design; capturing confidence and reli-
ability metrics for each of these mappings; and finally,
comparing and reflecting on the learning specification
against actual student performance. We present a web-
based implementation of the model, and validate it
by mapping the final exams from four programming
subjects against the ACM/IEEE CS2013 topics and
outcomes, using Bloom’s Taxonomy as the mastery
scale. We then import the itemised exam grades from
632 students across the four subjects and compare
the demonstrated student performance against the ex-
pected learning for each of these. Key contributions
of this work are the validated conceptual model for
capturing and comparing expected learning vs. demon-
strated performance, and a web-based implementation
of this model, which is made freely available online as
a community resource.

Keywords: curriculum, assessment, course content

1 Introduction

To develop an effective teaching and learning plan
for a subject that has prerequisites, a lecturer must
be aware of the capabilities of the students at the
beginning of that subject. That is, the lecturer must
have a solid idea of the knowledge and concepts that
students have learnt in the previous semester, and
the level of mastery achieved. The teaching sched-
ule, lecture topics and learning outcome statements
from the previous subject may provide some indica-
tion as to the content that was covered, but this does
not detail what was actually assessed, how it was as-
sessed and how it was graded. The marking criteria

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 15th Australasian Computer Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 136, Angela Carbone and
Jacqueline Whalley, Ed. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

for the subject might have awarded most marks for
rote-memorisation of algorithms and code recipes. On
the other hand, perhaps the assessments tested higher-
level problem-solving skills using the learnt concepts
in unfamiliar scenarios. It is not easy to discern how
much of the overall assessment weight was associated
to the former as opposed to the latter. The lecturer,
however, must be aware of these details in order to
develop an effective teaching program based on the
capabilities of beginning students.

Likewise, a lecturer must be able to answer the
same questions about the teaching and assessments
of his or her own subject. That is, which topics and
concepts are expected as subject outcomes, and at
what levels of mastery are students expected to achieve
them? Additionally, what does the assessment design
infer or guarantee about the minimal capabilities ex-
pected of bare-passing students at the end of the sub-
ject, and how does this compare to the aspirational
outcomes expected of top-performing students?

Further still, expected outcomes must be validated
against actual learning, as demonstrated by student
performance, to ensure that the teaching and learn-
ing design is realistic. That is, are bare-passing stu-
dents meeting the minimal expectations? Are top-
performing students achieving the aspirational out-
comes? If expectations do not align with demonstrated
performance, the lecturer must consider why, and what
remedial teaching or assessment changes are appropri-
ate for future offerings of the subject.

Taking a whole program perspective, each individ-
ual subject is only one in a long sequence of 24 or more
in a typical three- or four-year degree. From semester
to semester, students must progressively learn new con-
cepts and build upon the concepts previously learnt.
So in order to develop an effective program sequence,
each subject lecturer must be able to answer these
questions about his or her own subject, and about
previous subjects in the sequence. The many subject
lecturers involved in the teaching of a degree program
must thus have a shared and comparable understand-
ing of the outcomes and mastery levels developed
throughout the program.

This paper presents a conceptual model for a sys-
tematic curriculum mapping and learner modelling
approach that enables subject lecturers to design and
document the learning goals in a subject, and to com-
pare expected learning with actual performance as
demonstrated by student assessment grades. This is
done in terms of a syllabus specification that can be
used to communicate learning goals across a whole
computer science degree program. The conceptual
model also formally captures the level of mastery for
each topic or outcome assessed, and the academic’s

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

77

confidence and judgement of reliability for each of
these. This model enables academics to systematically
answer some of the difficult questions posed above.

2 Background

Sadler (2009) claims that “academic achievement stan-
dards is now the key issue. It is what worries a lot of
people”. He asks “do the grades that are on students’
transcripts actually mean what they say?” That is,
what do assessment marks actually tell us, if we cannot
reliably identify what exactly is being assessed, what
cognitive skills are required to pass the assessments,
and what a bare-passing grade means compared to the
highest passing grade. Sadler suggests that “what we
need to do is find ways of capturing the standards we
want to use, so we can compare students’ work with
those standards”. Doing so means that “each grade
represents a particular level of competence, knowledge
or skill”, and as Sadler put it, “that is the crux of the
matter”.

Similar concerns have also been expressed in the
computing education (CSEd) research community.
Commenting on the Grand Challenges facing com-
puting education, McGettrick (2005) makes several
points about important issues relating to the com-
puter science curriculum, including that there is an
increasing need for curriculum standardisation and
for comparable outcomes. This is due to the continu-
ing globalisation of the workforce, which requires stu-
dents, educators, employees and employers to have a
common vocabulary for describing discipline skills and
competence levels. McGettrick observes that “there
are different levels of learning as exhibited by the exis-
tence of Bloom’s taxonomy of educational objectives
(Bloom et al. 1956). These different levels, as well
as the associated degrees of commitment required to
achieve these levels, need recognition and their con-
sequences understood”. Two of the grand challenges
which relate directly to this are:

• Identify very clearly the technical skills ... that
students should acquire throughout their program
of study in higher education [2.3.2.i]

• Identify and then employ a phased development
of all these skills, ensuring that the skill levels are
such that graduates are internationally competi-
tive in terms of their skills... [2.3.2.ii]

2.1 Learning Standards in Computer Science

In order to implement the transparency proposed in
the previous section, there needs to be an agreed set
of learning goals against which to measure student
performance. For computer science disciplines within
Australia there are several candidate sets of learning
goals that might be useful. These include high-level
transferable generic graduate attributes (Barrie et al.
2009), national graduate outcomes such as the upcom-
ing TEQSA TLOs (ALTC 2010), international stan-
dards such as the ABET-CAC accreditation guidelines
(ABET 2011), and fine-grained Syllabus or Body of
Knowledge topic and outcome recommendations such
as those from the ACS (Gregor et al. 2008) or the
ACM and IEEE (ACM/IEEE 2008, 2013).

In this paper we choose to focus on detailed fine-
grained syllabus outcomes, and specifically those from
the CS2013 Strawman (ACM/IEEE 2013), which lists
over 1366 topics and 1041 learning objectives, cate-
gorised into 18 top-level Knowledge Areas and 155
Knowledge Units. Out of the 1366 topics, 257 are clas-
sified as Tier-1 Core (absolute essentials), 328 as Tier-2
Core (80% minimum coverage expected) and 781 as
electives. Whilst Australian computer science degree
programs are not formally accredited against this cur-
riculum, most institutions endeavour to be mindful

of and align with these recommendations. Addition-
ally, the ACM/IEEE CS guideline is one of the most
comprehensive and widespread Body of Knowledge
descriptions of a computer science degree. As such,
it provides a common vocabulary for describing and
sharing the design of teaching, learning and assessment
activities, both among the different subject lecturers
within an institution and across institutions within
the wider computer science discipline.

2.2 Mastery and Progression in Computer
Science

As well as indicating the need for agreed learning stan-
dards, both Sadler and McGettrick proposed that stu-
dents’ level of competence or mastery would need to
be measured against such learning standards. Much re-
search has been published about the importance of this
in the CSEd community. Lister & Leaney (2003a,b)
proposed a criterion-based grading scheme based on
Bloom’s Taxonomy (Bloom et al. 1956), where bare-
passing students are expected to show competence
at the novice levels (Knowledge and Comprehension)
while top-performing students should be challenged at
the higher levels (Synthesis and Evaluation). Similar
uses of Bloom’s Taxonomy to classify the cognitive
complexity of programming exercises have been dis-
cussed by many others (Reynolds & Fox 1996, Buck &
Stucki 2001, Oliver et al. 2004, Burgess 2005, Whalley
et al. 2006, Starr et al. 2008, Thompson et al. 2008,
Gluga, Kay, Lister, Kleitman & Lever 2012, Simon
et al. 2012). Bloom’s Taxonomy is also the recom-
mended medium for specifying mastery in the CS2008
curriculum (ACM/IEEE 2008) and in the ACS ICT
Profession Body of Knowledge (Gregor et al. 2008).
The new ACM/IEEE CS2013 Strawman has made a
slight departure from Bloom’s Taxonomy, proposing
instead a new three-level mastery scale, the merits of
which are currently under review (Lister 2012).

2.3 Curriculum Mapping

Having found suitable learning standards (the CS2013
Strawman) and a suitable cognitive classification the-
ory (Bloom’s Taxonomy) on which to model our com-
puter science degree programs, we then turned to lit-
erature on curriculum mapping as a framework on
which to construct our model. English (1988) proposed
that an effective approach to curriculum management
“should include a planned relationship between the writ-
ten, taught and tested curricula”. English stated that
effective program planning and auditing “should en-
sure that the written curriculum has planned relation-
ships to the taught curriculum, and that the taught
curriculum and written curriculum are related to the
tested curriculum”.

English (1978) also stated that “curriculum guide-
lines, behavioral objectives, course outlines are all de-
scriptions of a future desired condition” and thus “do
not represent the actual curriculum applied by indi-
vidual teachers”. He saw this as a serious problem,
labeling curriculum guides and course outlines as the
fictional curriculum. He stated that “to exercise qual-
ity control over curriculum requires the instructional
leader or supervisor to know what the real curriculum
is in his or her subject area” and unless the real cur-
riculum is “known and quantified, it is not possible to
understand ... existing gaps or holes” in the program
of study. English proposed that “a fairly accurate pic-
ture of the real curriculum” must be obtained in order
to allow for effective quality control.

Curriculum mapping has been used extensively in
K-12 education in the United States (Jacobs 1989,
1991, 1997, 2010). In tertiary education, however, it
has been adopted mostly by the medical disciplines

CRPIT Volume 136 - Computing Education 2013

78

(Willett 2008, Britton et al. 2008, Harden 2001), and
more recently to some extent by engineering (Gluga
et al. 2010, Wigal 2005) and other professionally ac-
credited disciplines. Examples of such systems in com-
puter science education are limited. One example is
the COMPASS system, developed as a Moodle plugin
at the University of West Georgia (Abunawass et al.
2004); COMPASS provided mechanisms to link the
assessment in each subject to CC2001 topics and learn-
ing objectives, at appropriate Bloom mastery levels.
This system aimed to answer some of the same ques-
tions we identified earlier.

However, COMPASS had a number of limitations.
Data entry was “a bit daunting” (Abunawass et al.
2004), in that users had to open external websites
to read through syllabus specifications and manually
copy over the appropriate topics/outcomes for each as-
sessment mapping. Additionally, “most administrative
and review functions require direct interaction with
the underlying database using SQL commands”, which
meant that visualising the mapped relationships re-
quired significant technical expertise and manual data
processing. Further still, the system did not integrate
with student marks (this was listed as future work,
but no further related publications could be found),
so there was no way to compare the actual student
performance with the intended curriculum design.

3 Conceptual Model

To enable subject lecturers to plan more effective and
integrative teaching and learning activities, we have
developed a conceptual model for documenting and de-
scribing degree programs in terms of well defined learn-
ing goals and mastery levels. The conceptual model
supports the capture of teaching and learning inten-
tion at multiple curriculum stages, based on the ideas
introduced by English and others. This model is rep-
resented in Figure 1. We define five curriculum stages
as follows (leftmost column in the Figure).
• Recommended Curriculum – the collection of

graduate attributes, national/international learn-
ing standards, accreditation competencies and
syllabus or body of knowledge recommendations
that are relevant for each degree program. A de-
gree program may not need to consider all recom-
mendations, but may aspire to do so for accredi-
tation purposes and recognition purposes. In this
paper we focus on fine-grained discipline specific
topics and outcomes from an authoritative syl-
labus, namely the ACM/IEEE Computer Science
Curriculum Guidelines (CS2013) (ACM/IEEE
2013).

• Planned Curriculum – the structure of a typical
three- to five-year degree program, comprising
two semesters per year and four core (C) or elec-
tive (E) subjects per semester. Each core and elec-
tive subject must contribute towards the learning
goals from the Recommended Curriculum that
the degree program aspires to align with, such as
the 1366 topics and 1041 outcomes of the CS2013.
Significant planning is required to decide which
topics are to be covered in which subjects, and
at which levels of mastery, to ensure an effective
progressive sequence of study.

• Practised Curriculum – the outcomes and learn-
ing activities in every subject. The outcomes for
the subject are the lecturer’s interpretation of the
aims of the subject, based on the learning goals
prescribed as part of the program-level Planned
Curriculum. These outcomes thus drive the pre-
requisite knowledge of the subject, and also the
design of learning activities such as lecture topics,
lab exercises, text readings, etc.

• Assessed Curriculum – the learning goals that
are actually assessed as part of each individual
subject. The Assessed Curriculum is defined by
the subject lecturer when creating the assessment
exercises for the class. Each assessment question
or task may relate to one or more recommended,
planned and practised learning goals.

• Demonstrated Curriculum – a description of what
students have actually learnt as part of a sub-
ject or collection of subjects, based on the fine-
grained marks associated with each assessment ex-
ercise. The Demonstrated Curriculum is a profile
of learners in terms of learning goals and mastery
levels achieved, based on the marks from each
assessed component.

In this paper we focus on the effectiveness of this
conceptual model in enabling subject lecturers to de-
scribe the Assessed Curriculum and the Demonstrated
Curriculum in terms of fine-grained syllabus/body-
of-knowledge learning goals and mastery levels. The
model supports description and comparison of the ex-
pected performance of the bare-passing student vs. the
top-performing student vs. demonstrated student per-
formance in terms of these learning goals and mastery
levels. The model additionally supports a mechanism
for capturing the academic’s confidence as to the re-
liability of each classification, such that a confidence
value may be used to express overall certainty or un-
certainty in each of the presented visualisations. These
aspects are discussed in greater detail in the following
subsections.

3.1 Modelling the Assessed Curriculum

The Assessed Curriculum represents the subject lec-
turer’s expectations as to what bare-passing students
and top-performing students will have learnt, and will
be able to demonstrate, at the end of the subject. This
is represented in the Assessed Curriculum section of
Figure 1 as a collection of exams or assessments de-
signed to measure student learning. Each exam or
assessment is broken down into a set of questions or
sub-tasks, which are graded separately and may assess
different learning goals, at different levels of mastery.

Subjects, exams and questions each have a weight
component as a function of performance in the over-
all degree program. That is, a subject usually has a
credit-point value, an exam or assessment has an over-
all subject weight, and a question or task is worth
a certain number of marks. These are important for
capturing and calculating the strength of evidence for
each modelled learning goal and mastery level, as will
be discussed later.

On the right side of the Assessed Curriculum box
in Figure 1, we show how learning goals, mastery lev-
els, and other elements are mapped to each assessment
question. We label these mappings the Academic Clas-
sifications. The first of these is a reliability score that is
associated with each assessment. This score represents
the academic’s judgement of how reliable the grades
from the classified exam or assessment are considered
to be. For example, an academic may feel that an end-
of-semester closed-book written final exam, completed
under strict supervision, is a fairly accurate represen-
tation of a student’s capabilities. On the other hand, a
take-home assessment may be considered less reliable
as an indicator, as the student is easily able to seek
external help in completing it, and thus the final mark
may not be as reliable an indicator of the student’s
actual capabilities.

The remaining four fields in the Academic Classifi-
cation box map to each assessment question. The first
is a bare-pass friendly yes/no flag, which indicates if

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

79

Figure 1: Conceptual model for degree program curriculum design

the academic expects most of the students who finish
the subject with a bare-pass mark to be able to earn,
say, 70% or more of the marks in that question.

The remaining three mappings (topic/outcome,
mastery level, confidence), are stored together as a
single sub-classification, and are defined as follows:

1. Topic/outcome – a mapping to a relevant topic,
outcome or other learning goal from the Recom-
mended Curriculum which is specifically assessed
by the question being classified.

2. Mastery level – a classification of the cognitive
difficulty at which the mapped topic or outcome
is assessed (that is, a student would be expected
to be operating at this minimal level to answer
the question correctly)

3. Confidence – a score from 0 to 100 representing
the academic’s confidence in the validity of this
classification.

Multiple instances of such sub-classifications can
be made for each question: a question may assess mul-
tiple learning goals, each at different levels of mastery
(for example, a question may require an advanced un-
derstanding of the topic loops and iteration but only
basic familiarity with arrays). The confidence meta-
tag can be used to represent any uncertainty in each
sub-classification. In some instances it may not be
easy to define the mastery level at which a specific
topic or objective is being assessed, in which case a
low confidence rating can be specified. In other cir-
cumstances the academic may feel that even though
a topic is being assessed, it is only a small part of the
overall question, so again a low confidence rating may

be used to record this as a low evidence mapping.

3.2 Modelling the Demonstrated Curriculum

The Demonstrated Curriculum represents the learn-
ing goals and mastery demonstrated by students at
the completion of a subject, a set of subjects, or a
whole degree program. This is achieved by collecting
itemised student marks for each question or task, and
using these to compute the achieved level of mastery
across the subject/s or program as a whole, or for
specific topics or outcomes. These performance scores
may then be compared against the Assessed Curricu-
lum design to see how closely they match the modelled
expectations.

3.3 Algorithm for Aggregating Classifica-
tions

The algorithm for aggregating the assessment question
classification data into meaningful forms is as follows.

(i) Calculate the weight of each question (Qw) as a
proportion of the overall subject weight (S) and of the
overall degree program (P). Let the credit-point value
of the subject be Scp, the weight of each assessment
be Aw, and the marks for each question be Qm, giving
Qw = (Scp/Pcp) ·Aw · (Qm/Am).

(ii) Next, inspect the topic/outcome mappings
for each question (TOM). The evidence score for
each topic/outcome mapping (TOMe) is given by the
weight of the question (Qw) divided by the number of
topic/outcome mappings for that question (QnTOM),
multiplied by its confidence rating (TOMconf) and
the exam/assessment reliability rating (Arel) to give

CRPIT Volume 136 - Computing Education 2013

80

the final TOMe = Qw · TOMconf ·Arel/QnTOM .
This now gives a list of evidence scores for each

assessed topic/outcome mapping. The sum of all ev-
idence scores for a specific topic or outcome can be
used to represent the overall assessment weight asso-
ciated with that topic across the whole subject, or
across the whole degree program. Additionally, each
topic/outcome mapping also has a mastery level clas-
sification, so we can also sum up all topic/outcome
mappings at a specific mastery level to represent the
overall assessment weight associated with that level. A
third possibility is to sum up all the TOMe scores for
a specific topic/outcome at a specific mastery level.

Further still, we can separate the TOMe scores
into two categories: those from questions that were
marked as bare-pass friendly and those from ques-
tions intended to distinguish top-performing students.
This allows us to create models of the assessed curricu-
lum showing the expected performance of bare-passing
students (the minimal standard) vs. the expected per-
formance of top-performing students (the aspirational
standard) in relation to the mapped syllabus and mas-
tery levels.

To compute and generate the demonstrated cur-
riculum models, we simply factor the average mark
across a set of students for a specific question and mul-
tiply this by the topic/outcome evidence score from
above. This enables a side-by-side comparison of the
expected outcomes of bare-pass students vs. expected
outcomes of top-performing students, and vs. actual
outcomes of any group of students.

4 User View

We have implemented the conceptual model described
above as part of our ProGoSs research system, which
aims to enable educators to document the learning
across a whole computer science degree and repre-
sent it in terms of authoritative curriculum specifica-
tion. The research presented here is one aspect of the
broader BABELnot project (Lister et al. 2012), which
aims to document and benchmark the academic stan-
dards associated with the core sequence of program-
ming subjects in computer science degrees.

The ProGoSs system allows users to specify the
core and elective subjects of a degree program, and
then, for each subject, a list of assessments or exams
and a sub-list of questions or tasks.

Figure 2 shows the interface for classifying Ques-
tion 8 from a fictitious final exam in a first semester
programming fundamentals subject. The system al-
lows the user to write or copy-paste the actual question
text, or to upload an image, or to leave the text empty
and instead reference a PDF version of the exam. The
question shown in the figure is worth 5 marks, and
requires students to Write a function to return the
minimum integer in an array. Below the question text
is the classification meta-data, including the bare-pass
friendly flag as discussed earlier, and two additional
meta-fields for familiarity and estimated time required
for students to answer the question. These two fields
are not currently used in any further processing.

The lower half of Figure 2 shows the topic/outcome,
mastery level, and confidence classifications. In this
case, the question was mapped to three topics from
the ACM/IEEE CS2013. The large slider on the right
is used to quickly set the mastery level for each topic,
in this case using Bloom’s Taxonomy. All three topics
have been mapped at the Application level. Moving
the slider left or right moves through the six Bloom
levels, with Knowledge to the far left and Evaluation
to the far right.

Beneath the mastery sliders is a smaller slider,
which can be used to record the user’s confidence in

each mapping decision. In this case, all three confi-
dence sliders are set to 100%, indicating the user is
very confident in the mappings made. This process is
repeated to map all of the questions in a particular
exam or assessment.

Additional topic or outcome mappings can be
added through a floating dialog editor which allows the
user to begin typing a keyword, such as ‘parameters’,
whereupon any matching topics or outcomes from the
linked syllabus document will be instantly displayed
on the screen. From here, the user can use the sliders
to immediately assign a mastery level and confidence,
and continue searching for other keywords. The dialog
additionally supports manual browsing through the
syllabus hierarchy of knowledge areas and knowledge
units to select relevant topics. A user may also de-
fine his or her own set of topics or outcomes, which
may be used in combination with, or instead of, an
authoritative curriculum.

The tabs across the top of Figure 2 allow the user
to access a range of other functionalities, namely:

• Overview – brief description of subject details,
typically similar to what appears in a printed
handbook.

• Prerequisites – mapping of syllabus top-
ics/outcomes and mastery levels that represents
expected student knowledge prior to commencing
the subject.

• Assessments – list of subject exams and assess-
ments, including facility to drill down to individ-
ual questions as seen in Figure 2.

• Dependency checks – compares the specified pre-
requisite topics/outcomes to previous subjects
in the degree program sequence, allowing the
subject lecturer to quickly identify where, and
to what extent, each prerequisite topic/outcome
was taught and assessed. Similarly, this screen
also shows subsequent subjects in the degree
program sequence which have prerequisite top-
ics/outcomes that are taught and assessed in the
current subject.

• Program progression – provides whole-of-program
visualisations showing the percentage of planned
topic/outcome coverage and planned mastery lev-
els. These are represented via a collection of
charts which allow drill-down from high-level
knowledge areas to specific topics and outcomes,
and to the subjects, assessments and questions
where they were assessed. The design and effec-
tiveness of these reports has been presented else-
where (Gluga, Kay & Lister 2012).

The final tab on the top of Figure 2, Student
Grades, allows the subject lecturer to view the learn-
ing design in terms of the topics/outcomes mapped to
exam/assessment questions. It additionally allows the
lecturer to import a CSV file containing itemised stu-
dent grades for each assessment task. Once the grades
are imported, the lecturer can generate charts such
as the one in Figure 3. These are discussed in the
following section as part of our evaluation.

5 Evaluation

To evaluate the conceptual model presented earlier,
we initially mapped the final exams from seven core
subjects from a computer science degree program of-
fered by an elite Australian (”Go8”) university. The
questions from each final exam were mapped to the rel-
evant topics/outcomes from the ACM/IEEE CS2013
Strawman draft, at appropriate levels of mastery using
Bloom’s Taxonomy. This enabled us to generate the
Program Progression reports mentioned in the previ-

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

81

Figure 2: Interface for mapping topics/outcomes and mastery levels to a fictitious question

ous section. This evaluation was described in detail
elsewhere (Gluga, Kay & Lister 2012).

The objective of this paper is to evaluate the con-
ceptual model for comparing the assessed curriculum
expectations for bare-passing vs. top-performing stu-
dents against the actual learning achieved, as demon-
strated by student grades for each itemised assessment
question. To do this, we used the system to code fi-
nal exams from four programming subjects, each from
a different Australian university. The questions from
each exam were classified by authors of this paper
using the described meta-tags, and validated by an
academic involved in the teaching or design of each
subject. For one of these four subjects, we also coded
the additional three assessments in the subject (two
practical tests and one take-home assignment in ad-
dition to the final exam). This allowed us to create
models of expected learning that took account of the
whole of the assessments for the subject.

Figure 3: Intended vs. actual performance of top 5%
of class in terms of Bloom levels for one subject

For each of these four subjects, we then imported
itemised student grades for the four final exams, and
also for the three additional assessments for the sub-
ject for which we had that information. The numbers
of student records imported for the four subjects were
148, 160, 225 and 99. With this data, each lecturer is
able to select a subset of their students’ grades (for
example, the top 10% of students, the bottom 12 stu-
dents, the 15 students who scored lowest of those who

passed) and the system will generate charts such as
the one shown in Figure 3. Along the y-axis are the
six Bloom levels, with Knowledge at the bottom and
Evaluation at the top.

For each Bloom level, the chart shows three bar val-
ues: the top bar is the expected top-performing student
performance; the middle bar is the actual student per-
formance of the selected subset of the imported grades;
and the bottom bar is the expected bare-passing stu-
dent performance. The x-axis represents the overall
subject assessment weight associated with each of the
Bloom levels. So, for the example in Figure 3, 65% of
the total assessment weight for this subject is mapped
at the Application Bloom level for top-performing stu-
dents (top bar), while the bare-passing students (bot-
tom bar) are expected to achieve 27% of these marks.
The selected subset of students (middle bar – in this
case the top 5% of the class) achieved 52%. Likewise,
the subject had 3% of its assessment weight at the
Evaluation level for top-performing students, while
bare-passing students were not expected to gain any
of those marks. Similarly, the Synthesis and Analysis
levels had 3% and 4% of assessment weight for top-
performing students and bare-passing students were
expected to gain up to 1% of the marks at the Analy-
sis level. It is not our intention to judge whether this
mapping of assessment weightings to Bloom levels is
appropriate. That is a decision that each university
must make for itself. It is merely our intention to make
decisions of this sort transparent, so that they can be
more readily discussed within an institution.

Hovering the cursor over each bar in the chart
brings up a tooltip as seen in Figure 3, which indi-
cates the type of student being modelled (Expected
Top-Performing), the Bloom mastery level (Applica-
tion), the percentage of assessment weight associated
with that mastery level (64.9%) and finally the confi-
dence or reliability score for this value (97.7%).

This confidence score is based on the reliability
of each assessment and the confidence scores for the
topic/outcome mappings as described in the previous
section. This provides an indication of the level of ac-
curacy of each of the values. So in the given example,
the Application level has an overall reliability score
of 97.7%, meaning the classifiers were very confident
when mapping questions to the Application level. The
Knowledge level, however, had a confidence score of
69%. The final exam in this evaluation was given a re-

CRPIT Volume 136 - Computing Education 2013

82

liability score of 100%, as it was closed-book and taken
under strict supervision. This implies that many of the
questions which were mapped at the Knowledge level
had low confidence scores associated with them. This
is perhaps because the classifier was unsure if the stu-
dents would use rote learning to answer the question,
or reason about the solution using higher cognitive
skills. Most of the Application level questions, how-
ever, had a 100% confidence rating associated with
them.

Figure 4: Intended vs. actual performance of bottom
5% of bare-passing students in terms of Bloom levels

The system allows the user to generate this chart
for any subset of actual student grades. That is, after
importing the student marks, the user may select one
or more students to be included in the computation
for the middle bar. If only one student is selected,
the chart represents the demonstrated curriculum for
that individual learner. If, say, five students are se-
lected, the chart shows the demonstrated curriculum
as an average across this subgroup. This allows flex-
ible comparison of the expected performance with,
say, the actual performance of top students, the ac-
tual performance of bare-passing students, the actual
performance of the class as a whole, etc.

The middle bar in the chart in Figure 3 shows the
actual performance of the top 5% of the class (i.e. the
top 12 students, who scored between 82% and 90%).
This reveals that the actual top-performing students
in this example scored between the expected top and
expected bare-passing levels, but closer to the former.
Compare this to the chart in Figure 4, which shows
the actual performance for the bottom 5% of bare-
passing students for the same cohort (that is, the 12
students who scored the lowest marks of 50% or more,
which ranged between 50 and 52). This reveals that the
actual bare-passing students are scoring marks below
the expected bare-passing marks for the Application
and Knowledge levels. We could similarly regenerate
this chart for the whole class, for a single student, or
for any other subset of interest.

The charts in Figures 3 and 4 represent the overall
assessment distribution in terms of Bloom levels. A
different visualisation allows the user to see the over-
all assessment distribution in terms of the mapped
syllabus topics/outcomes, as shown in Figure 5. The
CS2013 topics/outcomes that were mapped to exam
questions for this subject are shown along the y-axis.
The x-axis shows the overall assessment weight associ-
ated with each topic/outcome. The three bars in each
series have the same meaning as in the previous two
charts, that is, expected top-performing students as
the top bar, actual student performance as the middle
bar, and expected bare-passing students as the bottom

bar. The image in Figure 5 is cropped to show only
the bottom five topic/outcome mappings. The actual
chart in the system is scrollable, and in the case of
this subject’s final exam it shows 43 such mappings.
The chart in Figure 5 shows the actual performance
of the bottom 12 bare-passing students. For the five
topics/outcomes shown, the actual bare-passing per-
formance is very close to the mapped intended bare-
passing performance.

Figure 5: Intended vs. actual performance of bot-
tom 5% of bare-passing students in terms of top-
ics/outcomes (partial)

The charts also support drill-down functionality.
Clicking on any of the three bars in the Application
series in Figure 3, for example, will bring up a new
chart that identifies the assessment weights and re-
liabilities associated with all of the topics/outcomes
that were assessed at the Application level. Further
clicking on any bar in the new chart will bring up
a dialog showing all of the exam questions that con-
tributed to the clicked-on topic. Likewise clicking on
a topic/outcome bar in Figure 5 will bring up a new
chart that provides a breakdown of the Bloom levels at
which that topic/outcome was assessed, and a further
click will bring up the exam questions contributing to
those mappings.

5.1 Participant Feedback Results

For each of the four subjects mapped into the sys-
tem, an academic involved in the teaching or design
of that subject was asked first to validate the meta-
tags in each question classification, and then to use
the charting visualisations described above to compare
the assessment design against demonstrated student
performance across different groups of students. Af-
ter doing so, the academics were asked to complete
a questionnaire with Likert-scale responses and open-
answer feedback commenting on the perceived useful-
ness of the approach and system implementation. The
hypotheses for this evaluation were:

1. Differentiating between the expected outcomes
of bare-passing and top-performing students is
useful.

2. Comparing expected bare-passing/top-
performing outcomes against actual bare-
passing/top-performing student outcomes is
useful.

3. Visualising the assessment distribution of the sub-
ject in terms of mastery levels is useful.

4. Visualising the assessment distribution of the sub-
ject in terms of syllabus topics and outcomes is
useful.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

83

5. Expressing reliability of classifications is useful.
6. The system interfaces for classifying and visual-

ising information are effective.
7. Academics would consider using the system to

model their own subjects and assessments if it
were available to them.

The term ‘useful’ in this context is used to capture
whether or not participants perceived value in the ap-
proach and in the rich reporting interfaces that allowed
them to compare expected learning vs. actual learning
in their assessments. These were tested using a series
of Likert-scale questions that mapped to each of the
hypotheses (at least two questions mapped to each hy-
pothesis, with some questions mapping to multiple hy-
potheses). The scale ranged from 1 (Strongly Disagree)
to 5 (Strongly Agree). The average scores for the seven
hypotheses were all in agreement (H1=4.25, H2=4.25,
H3=4.13, H4=4, H5=3.75, H6=4.63, H7=4.25).

Open-ended feedback by the participating aca-
demics was also of high interest. One participant com-
mented in relation to H1 that “I suspect this is some-
thing that I always have in the back of my mind when
setting assessments...So what this has done is bring
these thoughts to the fore and make them explicit on
a question-by-question basis”. Increasing the trans-
parency of these assessment design decisions, so that
they may be shared across subjects, is an important
outcome. One participant commented that “I can see
that this would be useful in terms of syllabus design,
but once the course is designed and implemented I
think the usefulness diminishes”. This may be true
to some extent, namely that the approach would be
most useful in the initial design of a new subject or new
degree program. However, subjects, subject lectures,
degree program enrolment rules and even curriculum
recommendations do often change. Having the orig-
inal design decisions explicitly captured will enable
more informed restructuring of teaching and learning
activities at these points. For example, suppose an aca-
demic designs a new subject, including all assessments,
so that it aligns with a set of recommended learning
goals. What happens when this academic leaves and is
no longer responsible for this subject? How does a sub-
sequent lecturer know the implicit reasoning behind
the assessment design?

While the participants indicated overall satisfac-
tion with the effectiveness of the system interfaces,
some were concerned that the initial data entry may
be somewhat time-consuming. Additionally, some par-
ticipants found that the mapping of questions to the
CS2013 topics and outcomes was not always obvious.
In particular, a number of exam questions were iden-
tified where the primary assessed concepts were not
found in the CS2013 specification (e.g. variable scope
and static variables). However, overall the participants
were satisfied with the use of mastery levels to differ-
entiate between the performances of different student
groups. One participant stated “A very useful tool. It
has suggested, for instance, a broad difference in the
Bloom level that students reach in different bands: be-
low a Credit (65%) for instance, the Application level
average performance dips below the performance for
Comprehension-level questions. Interesting stuff which
might give a good perspective to academics who are
hoping to define clearly what it means to be a ‘Credit
level’ student vs a ‘Passing’ student.”

6 Discussion

The evaluation presented in this paper used student
marks from four subjects, each from a different insti-
tution, to validate the conceptual design. For one of
the four subjects we were able to import marks for all

of the assessments, not just for the final exam. This
provided a more realistic picture of the learning ex-
pectations vs. actual performance across that entire
subject. When considering only final exams, the gen-
erated reports showed very small assessment weight
at the higher Bloom levels (Synthesis and Evaluation).
This is to be expected, as testing for competence at
these higher levels is typically more appropriate in
larger design-oriented tasks such as take-home assign-
ments. This was reflected in the subject for which we
had student results for all assessments: a large portion
of a 20% take-home assignment was classified at the
Bloom Synthesis level. The charts for this report thus
contrasted with those from the three subjects with
only final exams, which had very little emphasis on
these higher levels.

However, take-home assignments may have lower
reliability scores, depending on the classifier’s judge-
ment. This would thus reduce the confidence scores for
these upper Bloom levels, as compared to the stronger
reliability for the lower levels assessed in final exams.
Appropriate ways in which to interpret these confi-
dence and reliability scores need to be explored. If a
topic/outcome has an overall confidence value of less
than 50%, what can we claim about the knowledge
of the student at the end of the subject? Perhaps the
reliability scores are overly pessimistic and need to be
raised? Perhaps some of the confidence values associ-
ated with each question mapping are too low and need
to be revised? Perhaps the subject relies too heavily
on less trusted assessment techniques and thus cannot
support strong claims about the learning outcomes
of the passing student? In any case, the conceptual
design and implementation allows the academic to
explicitly document and capture these concerns, pro-
viding the opportunity to iteratively refine the learn-
ing design so as to raise the mastery levels and their
confidence values to appropriate levels.

The conceptual design also supports the generation
of similar reports and visualisations across a sequence
of subjects, or across a full degree program. This may
provide very valuable information for degree program
quality assurance and accreditation purposes, and for
communicating with employers or other stakeholders
a more precise picture of graduate capabilities. The
main difficulty in doing this is collecting the itemised
fine-grained student marks for each individual ques-
tion in each subject assessment. This may require a
change to current assessment processes in some in-
stitutions, where typically marks are stored only at
a coarse level. For example, only a single mark for a
quiz or exam is recorded in the student gradebook sys-
tem, and after the student completes a subject, these
itemised marks are often lost and all that remains is
an overall subject mark for each student, which does
not provide sufficient information for such analysis.

The validation presented in this paper maps top-
ics and outcomes from the CS2013 Strawman curricu-
lum guideline, which is not formally accredited in Aus-
tralian computer science degree programs. Perhaps an
institution may be more interested in mapping assess-
ment tasks against the ACS Core Body of Knowledge,
or the Skills Framework for the Information Age (SFIA
2012) as proposed in the new ACS accreditation guide-
lines. The skills, attributes and topics listed in these
documents are significantly higher-level, so instead of
mapping to each individual exam question, it may be
more appropriate to classify only at the assessment
level, or even the subject level as a whole. Such higher-
level attributes and skills are discussed at length in
Gluga, Lever & Kay (2012).

The model presented is agnostic of any specific
syllabus or body-of-knowledge statement, so it could

CRPIT Volume 136 - Computing Education 2013

84

instead be used with any internally defined taxonomy
of topics or concepts that an institution, department
or group of academics decides on as important. Addi-
tionally, the model is agnostic of the method by which
mastery levels are classified. We have used Bloom’s
Taxonomy, as it has received significant attention in
computing education, but other classification schemes
such as neo-Piagetian cognitive development (Lister
2011), the SOLO Taxonomy (Sheard et al. 2008), or
any internally defined scheme may work equally well.

The evaluation and discussion thus far have focused
on a single offering of each subject. That is, the final
exams and student results were from a particular offer-
ing of each of the four classified subjects. The charts
and reports shown here are thus only a snapshot view
of a subject or collection of subjects at a particular
point in time. The envisaged use of the system is to
model lecturer expectations from a subject offering,
then to compare these expectations to actual student
performance at the end of the offering, and to take any
necessary corrective action in the teaching and learn-
ing design or assessment design for the next offering.
That is, the conceptual model is intended to be used
as a tool for iterative improvement of courses and pro-
grams. The snapshot aspect of the data might appear
somewhat restrictive, in that each new offering of a
course would entail new data. However, it is our expe-
rience that while assessment items generally change
from one offering to the next, what they assess and
how they assess it remain fairly constant; therefore all
that is required for a new offering is to check the data
for the previous offering and adjust it appropriately.

The primary concern in using the tool for this pur-
pose and in this fashion, as expressed by some of our
participants, is the perceived effort required in per-
forming the fine-grained classifications. However, as
reported in Gluga, Kay, Lister & Lever (2012), the
time taken for mapping a full exam paper is between
one to two hours, or slightly more depending on the
granularity of questions. Mapping additional assess-
ments from the subject may thus take a further hour
or two. An entire subject can thus be reasonably clas-
sified by the lecturer of that subject within a single
sitting. This would enable very rich long-term models
of the curriculum with a modest time investment from
each of the 24 or more subject lecturers.

7 Conclusion

To design an effective computer science degree pro-
gram, subject lecturers need to have a clear under-
standing of the learning standards that they are to
teach and assess, and the capabilities of their students
at the beginning and end of each subject. That is, lec-
turers must know what syllabus topics and outcomes
the students have previously learnt, and what mastery
level they have attained, in order to design effective
teaching, learning and assessment activities that inte-
grate appropriately into the overall degree program
sequence. Additionally, lecturers need to be aware of
the differences in capabilities between the bare-passing
students and top-performing students, to help ensure
that neither group is neglected. Likewise, subject lec-
turers must be able to communicate this knowledge
amongst themselves as students progress through the
many subjects of a degree. They must additionally be
able to support this knowledge with evidence based
on actual student grades, such that any unmet expec-
tations can be addressed in future revisions of the
curriculum.

To achieve these goals, we have presented a con-
ceptual model that supports the description of sub-
ject assessment questions in terms of syllabus topics
or outcomes, such as the CS2013, and also in terms

of mastery levels, such as Bloom’s Taxonomy. The
model additionally supports the importing of student
marks to represent the actual Demonstrated Curricu-
lum, which we believe to be important for iterative
teaching refinement. A third component of the model
is the capture of reliability scores for each assessment
task and confidence ratings in each question classifi-
cation. These are useful for representing the accuracy
and reliability of the generated curriculum models, on
which important decisions may be based.

We have validated the conceptual model by creat-
ing a web-based implementation that enables users
to enter all the subject assessment data and to effec-
tively classify each individual question. The system
was used to model the Assessed Curriculum based
on the final exams of seven core programming sub-
jects from a real computer science degree program.
To test the effectiveness of comparing the expected
learning outcomes with actual student performance,
we imported itemised final exam marks from 632 stu-
dents across four programming subjects from different
institutions. The system was used to aggregate these
grades against the question classifications and present
a series of charts that allow visualisation of the data
from multiple perspectives. Additionally, for one sub-
ject we were able to import student marks for all re-
maining assessments, enabling us to generate realistic
reports as to the learning design of that subject as a
whole, and to compare that against the Demonstrated
Curriculum.

Academics involved in the teaching or delivery of
each of the four subjects validated the question classi-
fications and experimented in using the charting visu-
alisations to explore how closely their expectations of
bare-passing vs. top-performing students matched the
actual student performance at different band levels.
Overall, the academics expressed positive interest in
using a similar system to document and visualise their
subjects and assessments.

The main contributions of this paper are the con-
ceptual model for capturing the learning design and ex-
pectations, for comparing these against demonstrated
student performance, and for also capturing the reli-
ability of the generated models. The system is freely
available to trial online at http://progoss.com.

Acknowledgements

This work was supported by a grant from the Aus-
tralian Government Office for Learning and Teaching.

References

ABET (2011), ‘ABET Computing Accreditation Com-
mission, Criteria for Accrediting Computing Pro-
grams’, http://www.abet.org/cac-current-criteria/.
[Last Accessed: 8-11-2012].

Abunawass, A., Lloyd, W. & Rudolph, E. (2004),
COMPASS: a CS program assessment project, in
‘ACM SIGCSE Bulletin’, Vol. 36, ACM, pp. 127–
131.

ACM/IEEE (2008), ‘Association for Computing Ma-
chinery and the IEEE Computer Society, Computer
Science Curriculum 2008 (CS2008)’.

ACM/IEEE (2013), ‘Association for Computing Ma-
chinery and the IEEE Computer Society, Computer
Science Curricula 2013 (CS2013)’.

ALTC (2010), ‘Engineering and ICT: Learning
and Teaching Academic Standards Statement’,
http://www.olt.gov.au/resource-engineering-
ict-ltas-statement-altc-2010. [Last Accessed:
08-11-2012].

Barrie, S., Hughes, C. & Smith, C. (2009), ‘The Na-
tional Graduate Attributes Project: integration and
assessment of graduate attributes in curriculum’.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

85

Bloom, B. S., Engelhart, M. B., Furst, E. J., Hill, W. H.
& Krathwohl, D. R. (1956), Taxonomy of educa-
tional objectives. The classification of educational
goals. Handbook 1: Cognitive domain, Longmans
Green.

Britton, M., Letassy, N., Medina, M. & Er, N. (2008),
‘A curriculum review and mapping process sup-
ported by an electronic database system’, American
journal of pharmaceutical education 72(5).

Buck, D. & Stucki, D. J. (2001), JKarelRobot: A case
study in supporting levels of cognitive development
in the computer science curriculum, in ‘Proceed-
ings of the Thirty-second SIGCSE Technical Sym-
posium on Computer Science Education’, SIGCSE
’01, ACM, New York, NY, USA, pp. 16–20.

Burgess, G. A. (2005), ‘Introduction to program-
ming: Blooming in America’, J. Comput. Sci. Coll.
21(1), 19–28.

English, F. (1978), ‘Quality control in curriculum de-
velopment’.

English, F. (1988), ‘Curriculum auditing’.
Gluga, R., Kay, J. & Lever, T. (2010), Modeling long

term learning of generic skills, in V. Aleven, J. Kay
& J. Mostow, eds, ‘Intelligent Tutoring Systems’,
Vol. 6094, Springer, pp. 85–94.

Gluga, R., Kay, J. & Lister, R. (2012), ProGoSs: Mas-
tering the Curriculum, in M. Sharma & A. Ye-
ung, eds, ‘Australian Conference on Science and
Mathematics Education (ACSME2012)’, 18th An-
nual UniServe Science Conference, UniServe Science,
The University of Sydney, NSW 2006, Australia,
pp. 92–98.

Gluga, R., Kay, J., Lister, R., Kleitman, S. & Lever,
T. (2012), Coming to terms with Bloom: An online
tutorial for teachers of programming fundamentals,
in M. de Raadt & A. Carbone, eds, ‘Australasian
Computing Education Conference (ACE2012)’, Vol.
123 of CRPIT, ACS, Melbourne, Australia, pp. 147–
156.

Gluga, R., Kay, J., Lister, R. & Lever, T. (2012), A
unified model for embedding learning standards into
university curricula for effective accreditation and
quality assurance, in ‘Australasian Association for
Engineering Education (AAEE2012)’, Vol. [to ap-
pear], Melbourne, Australia.

Gluga, R., Lever, T. & Kay, J. (2012), ‘Foundations for
modelling university curricula in terms of multiple
learning goal sets’, IEEE Transactions on Learning
Technologies p. to appear.

Gregor, S., von Konsky, B. & Wilson, D. (2008), ‘The
ICT profession and the ICT body of knowledge
(vers. 5.0)’, http://www.acs.org.au/attachments/
ACSCBOKWorkingPaper2008.pdf.

Harden, R. (2001), ‘Amee guide no. 21: Curriculum
mapping: a tool for transparent and authentic teach-
ing and learning’, Medical Teacher 23(2), 123–137.

Jacobs, H. (1989), Interdisciplinary curriculum: De-
sign and implementation, ERIC.

Jacobs, H. (1991), ‘Planning for curriculum integra-
tion’, Educational Leadership 49, n2.

Jacobs, H. (1997), Mapping the Big Picture. Integrat-
ing Curriculum & Assessment K-12, ERIC.

Jacobs, H. (2010), Curriculum 21: Essential education
for a changing world, Association for Supervision
and Curriculum Development.

Lister, R. (2011), Concrete and Other Neo-Piagetian
Forms of Reasoning in the Novice Programmer, in
J. Hamer & M. de Raadt, eds, ‘Australasian Com-
puting Education Conference (ACE 2011)’, Vol. 114
of CRPIT, ACS, Perth, Australia, pp. 9–18.

Lister, R. (2012), ‘The CC2013 Strawman and
Bloom’s taxonomy’, ACM Inroads 3(2), 12–13.

Lister, R., Corney, M., Curran, J., D’Souza, D., Fidge,

C., Gluga, R., Hamilton, M., Harland, J., Hogan,
J., Kay, J. et al. (2012), Toward a shared under-
standing of competency in programming: an invi-
tation to the babelnot project, in ‘Proceedings of
the 14th Australasian Computing Education Con-
ference (ACE2012)’, Vol. 123, Australian Computer
Society.

Lister, R. & Leaney, J. (2003a), First Year Program-
ming: Let All the Flowers Bloom, in ‘ACE ’03: Pro-
ceedings of the Fifth Australasian Computing Ed-
ucation Conference’, Australian Computer Society,
Inc., Darlinghurst, Australia, pp. 221–230.

Lister, R. & Leaney, J. (2003b), ‘Introductory program-
ming, criterion-referencing, and Bloom’, SIGCSE
Bull. 35(1), 143–147.

McGettrick, A. (2005), ‘Grand challenges in comput-
ing: Education–a summary’, The Computer Journal
48(1), 42–48.

Oliver, D., Dobele, T., Greber, M. & Roberts, T.
(2004), This course has a Bloom rating of 3.9, in
‘Proceedings of the Sixth Australasian Computing
Education Conference – Volume 30’, ACE ’04, Aus-
tralian Computer Society, Inc., Darlinghurst, Aus-
tralia, pp. 227–231.

Reynolds, C. & Fox, C. (1996), Requirements for
a computer science curriculum emphasizing infor-
mation technology: subject area curriculum issues,
Vol. 28, ACM, pp. 247–251.

Sadler, D. (2009), ‘Moderation, grading and calibra-
tion’.

SFIA (2012), ‘Skills Framework for the Information
Age: How SFIA Works’, http://www.sfia.org.uk.
[Last Accessed: 08-11-2012].

Sheard, J., Carbone, A., Lister, R., Simon, B., Thomp-
son, E. & Whalley, J. L. (2008), ‘Going SOLO to
assess novice programmers’, SIGCSE Bull. 40, 209–
213.

Simon, Sheard, J., Carbone, A., Chinn, D., Laakso,
M.-J., Clear, T., de Raadt, M., D’Souza, D., Lister,
R., Philpott, A., Skene, J. & Warburton, G. (2012),
Introductory programming: examining the exams,
in M. de Raadt & A. Carbone, eds, ‘Australasian
Computing Education Conference (ACE2012)’, Vol.
123 of CRPIT, ACS, Melbourne, Australia, pp. 61–
70.

Starr, C. W., Manaris, B. & Stalvey, R. H. (2008),
‘Bloom’s taxonomy revisited: specifying assessable
learning objectives in computer science’, SIGCSE
Bull. 40(1), 261–265.

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu,
M. & Robbins, P. (2008), Bloom’s taxonomy for
CS assessment, in ‘Proceedings of the Tenth Aus-
tralasian Computing Education Conference – Vol-
ume 78’, ACE ’08, Australian Computer Society,
Inc., Darlinghurst, Australia, pp. 155–161.

Whalley, J. L., Lister, R., Thompson, E., Clear, T.,
Robbins, P., Kumar, P. K. A. & Prasad, C. (2006),
An Australasian study of reading and comprehen-
sion skills in novice programmers, using the Bloom
and SOLO taxonomies, in ‘Proceedings of the 8th
Australasian Computing Education Conference –
Volume 52’, ACE ’06, Australian Computer Soci-
ety, Inc., Darlinghurst, Australia, pp. 243–252.

Wigal, C. (2005), Managing and aligning assess-
ment knowledge, in ‘Frontiers in Education, 2005.
FIE’05. Proceedings 35th Annual Conference’,
IEEE, pp. T3C–13.

Willett, T. (2008), ‘Current status of curriculum map-
ping in Canada and the UK’, Medical education
42(8), 786–793.

CRPIT Volume 136 - Computing Education 2013

86























       

      
       

   
        
        
          
     
 
        



 
      
       

       

     
         
      
      

      



        



 
    
  
 
       


 
       
       
      
       
      
   



   
      
       
        
  


      
       
        
       
       
        
       
        
       
       



  
        
       


        

       
        


       
    
       


      
 




        
       
        
       


 

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

87






















































 
      
      
     
     
         

       

       
   
    
       
        





 
       
        
      
         




      

         



    


         


      
   
         
        




      
       
        


 
      
 

         

       
  
         



      

       
      
       


 
        
        


          




       




         

  







        
       




         


         


        

      





































CRPIT Volume 136 - Computing Education 2013

88



        
      
   
         
           
         
       
           
          
      


 

 
      
      
        
         
     
      
     
       
         
        

         
       
    
  
         
      
         

       

      

       
      
        
       

  

      


 
      



          

       

        
          
        
      
     
       


   

   

   

   

   

   

   

   





        





 
        
         
       
        
      


        
 

        


         
         
        




          

      

        

         
          



        
      
      

 
        

 

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

89













































 

 
         
        
        

          



 


       
           

       
      

      

     


          

  
       





















































      
    
          
      

       

        

  
 
   
  















   
  
  























         










       

        
        







        
       
      
       









































CRPIT Volume 136 - Computing Education 2013

90



        


 

      
        




 
         
         
          
       
       
        

       

       
         
         
       



 
     
        

    
        

        



        

       
         


       

     
  


          
     
         


 
         
          
        
     
        

      



        
          
        





 

 

 

 

 

 

 





 

 

 

 

 

 

 









   


    

 
  


   

 















        


        
        

      


        
 

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

91



        

       

        

      
         
       
          
        

        
        
         
       
        
        


 

 

        



        
         
       

    

         



          
         




       




         
         


           
 
         
        

      


         



       




          


         
        
        
         

          















        

        


          
       
     

   





       





          
          
          











 



     
         
        






CRPIT Volume 136 - Computing Education 2013

92



        








        
 



      

       


         

        

         
       

       
       
          
        
        
       



         
         
















 
        
       
   



         
       
        





       


        


        
       
        





 
  
  
     
       
       
         
  

         



         

         
        




          




           

    
         
        
  


      
     
          






















Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

93







     
          


      


       
        



      












          


          


     
          












    
          















        
   
   


     



        
         
     


         

        


 


       




        
   
       
       
          
      

        
        
        
        

    

       

          

      

       
       
  

           
       
        
        


 
        


 
        

      
      
         

      

        
        



CRPIT Volume 136 - Computing Education 2013

94





       
       
 

       

       
       

       
        
       
      

      

       
         


        
   
         

        


         
       




        
          
      
        
      
        

       

      
 
    
        
        

       
          
       

        
      



       


     
     





        
     
      
   
     




     
  
   
    



        
    


        
      


        
     
    




      
        





      
      
   
      


       


       
      
     


       
       
      
    


       
      


      
        
    
    


Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

95

CRPIT Volume 136 - Computing Education 2013

96

What vs. How: Comparing Students’
Testing and Coding Skills

Colin Fidge1 Jim Hogan1 Ray Lister2

1School of Electrical Engineering and Computer Science,
Queensland University of Technology, Brisbane, Qld, Australia

2Faculty of Engineering and Information Technology,
University of Technology Sydney, Sydney, NSW, Australia

{c.fidge, j.hogan}@qut.edu.au, Raymond.Lister@uts.edu.au

Abstract

The well-known difficulties students exhibit when
learning to program are often characterised as either
difficulties in understanding the problem to be solved
or difficulties in devising and coding a computational
solution. It would therefore be helpful to understand
which of these gives students the greatest trouble.
Unit testing is a mainstay of large-scale software de-
velopment and maintenance. A unit test suite serves
not only for acceptance testing, but is also a form
of requirements specification, as exemplified by ag-
ile programming methodologies in which the tests are
developed before the corresponding program code. In
order to better understand students’ conceptual dif-
ficulties with programming, we conducted a series of
experiments in which students were required to write
both unit tests and program code for non-trivial prob-
lems. Their code and tests were then assessed sep-
arately for correctness and ‘coverage’, respectively.
The results allowed us to directly compare students’
abilities to characterise a computational problem, as a
unit test suite, and develop a corresponding solution,
as executable code. Since understanding a problem
is a pre-requisite to solving it, we expected students’
unit testing skills to be a strong predictor of their
ability to successfully implement the corresponding
program. Instead, however, we found that students’
testing abilities lag well behind their coding skills.

Keywords: Learning to program; unit testing; object-
oriented programming; program specification

1 Introduction

Failure and attrition rates in tertiary programming
subjects are notoriously high. Many reasons have
been suggested for poor performance on program-
ming assignments, including an inability to fully un-
derstand the problem to be solved and an inability
to express a solution in the target programming lan-
guage.

To help determine whether students do poorly on
programming tasks due to an incomplete understand-
ing of the problem or an inability to write a solu-
tion, we conducted a series of experiments in which
these two aspects of programming were evaluated sep-
arately. Students in second and third-year program-
ming classes were given assessable assignments which
required them to:

Copyright c©2013, Australian Computer Society, Inc. This
paper appeared at the Fifteenth Australasian Computing Ed-
ucation Conference (ACE 2013), Adelaide, South Australia,
January–February 2013. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 136, Angela Carbone
and Jacqueline Whalley, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

1. unambiguously and completely characterise the
problem to be solved, expressing the require-
ments as a unit test suite; and then

2. produce a fully-functional computational solu-
tion to the problem, expressed as an object-
oriented program.

Both parts of the assignments carried equal weight.
By directly comparing how well each student per-
formed on each of these tasks we aimed to see if there
was a clear relationship between students’ ability to
say what must be done versus their ability to say how
to do it.

Since understanding a problem is a necessary pre-
requisite to solving it, our expectation was that stu-
dents would inevitably need to do well on problem
definition before succeeding in coding a solution. We
therefore designed assignments which allowed us to
produce independent marks for code functionality and
test coverage, enabling students’ skills in these two
distinct stages of large-scale object-oriented program-
ming to be contrasted.

2 Related and previous work

Our overall goal is to help expose the underlying
reasons for students’ difficulties in learning how to
develop program code. In particular, we aimed to
distinguish students’ abilities to both describe and
solve the same computational problem, using ‘test-
first’ programming as a basis. We did this with classes
of students who had already completed two previous
programming subjects, so they had advanced beyond
the basic problems of developing imperative program
code. As a clearly-defined test-first programming
paradigm we used ‘test-driven development’ (Beck
2003), in which unit tests are developed first and the
program code is then extended and refactored in or-
der to pass the tests.

The academic role of unit testing in general, and
test-first programming in particular, has already re-
ceived considerable attention. For instance, an early
study by Barriocanal et al. (2002) attempted to in-
tegrate unit testing into a first-year programming
subject. They made unit testing optional to assess
its take-up rate and found that only around 10% of
students voluntarily adopted the approach (although
those who did so reported that they liked it).

In another early study, Edwards (2004) advocated
the introduction of testing into student assignments
as a way of preventing them from following an ad hoc,
trial-and-error coding process. He describes a mark-
ing tool called Web-CAT which assesses both program
code correctness and unit test coverage. (We do the
same thing, but developed our own Unix scripts for
this purpose.) However, where we kept students’ code
correctness and test coverage marks separate, so that

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

97

we could perform a correlation analysis on them, Ed-
wards (2004) combined the marks to produce a single
composite score for return to the students.

In a more recent study of unit testing for first-year
students, Whalley & Philpott (2011) assessed the ad-
vantages of supplying unit tests to students. (We do
likewise in our first-year programming subject, giving
students unit tests but not expecting them to write
their own.) Using a questionnaire they concluded that
although it was generally beneficial for students to ap-
ply the ‘test-early’ principle, a minority of students
still struggle to understand the concept.

In an earlier study, Melnick & Maurer (2005)
surveyed students’ perceptions of agile programming
practices, and found that students failed to see the
benefits of testing and believed that it requires too
much work. In our experience, there is no doubt
that test-first programming requires considerable dis-
cipline from the programmer and can be more time-
consuming than ‘test-last’ programming. Neverthe-
less, we have found that this extra effort is compen-
sated for by a better quality product, as have many
other academics (Desai et al. 2008).

Given students’ reluctance to put effort into unit
testing, Spacco & Pugh (2006) argued that testing
must be taught throughout the curriculum and that
students must be encouraged to “test early”. Like us
they did this by assessing students’ test coverage and
by keeping some unit tests used in marking from the
students. (In fact, in our experiments we did not pro-
vide the students with any unit tests at all. Instead
we gave them an Application Programming Interface
to satisfy, so that they had to develop all the unit
tests themselves.)

Keefe et al. (2006) aimed to introduce not just
test-driven development into first-year programming,
but also other ‘extreme’ programming concepts such
as pair programming and refactoring. (These prin-
ciples are also introduced in our overall curriculum,
but not all during first year.) Their survey of stu-
dents found a unanimous dislike of test-driven devel-
opment, and they concluded that students find it a
“difficult” concept to fully appreciate. (In our course
we introduce students to unit testing in first year, but
don’t get them to write their own test suites until the
second and third-year subject described herein. At
all levels, however, our experience is also that there
is considerable resistance to the concept from novice
programmers.)

Like many other researchers, Janzen & Saiedian
(2007) found that mature programmers were more
likely to see the benefits of test-driven development.
Given a choice they found that novice programmers
picked test-last programming in general. In a sub-
sequent study they also found that students using
test-first programming produced more unit tests, and
hence better test coverage, than those using test-
last programming, but that students nevertheless still
needed to be coerced to follow test-first programming
(Janzen & Saiedian 2008). (Both of these findings are
entirely consistent with our experiences. Although
our own academic staff can clearly see the benefits of
test-first programming, our students must be coerced
into adopting it.)

Most recently, using attitudinal surveys, Buffardi
& Edwards (2012) again found that students did not
readily accept test-driven development, despite the
fact that those students who followed the approach
produced higher quality code. (They report that they
taught test-driven development but did not assess it
directly. By contrast we directly assessed our stu-
dents’ unit testing skills.)

Thus, while there have been many relevant studies,
none has presented a direct comparison of unit test-
ing and program coding skills as we do below. Fur-

thermore, while we focussed on students with some
programming experience, most previous studies have
considered first-year students only.

3 Programming versus unit testing

In traditional “waterfall” programming methodolo-
gies, program code is developed first, followed by a set
of acceptance tests. Modern “agile” software develop-
ment approaches reverse this sequence (Schuh 2005).
Here the tests are written first, in order to define what
the program code is required to do, and then cor-
responding program code is developed which passes
the tests. In the most extreme form, test-driven de-
velopment involves iteratively writing individual unit
tests immediately followed by extending and refac-
toring the corresponding program code to pass the
new test (Beck 2003). This is usually done in object-
oriented programming, where the “unit” of testing is
one or more methods. Advantages claimed for this ap-
proach to software development include the fact that
a “working” version of the system is available at all
times (even if all the desired functionality has not yet
been implemented), that it minimises administrative
overheads, and that it responds rapidly to changing
customer requirements.

Most importantly for our purposes, a suite of unit
tests can be viewed as a specification of what the cor-
responding program is required to do. It defines, via
concrete examples, what output or effect each method
in the program must produce in response to specific
inputs. For each method in the program, a well-
designed unit test suite will include several represen-
tative examples of ‘typical’ cases, which validate the
method’s ‘normal’ functionality, as well as ‘extreme’
or ‘boundary’ cases, which confirm the method’s ro-
bustness in unusual situations (Schach 2005, Astels
2003). Overall, a unit test suite must provide good
coverage of the various scenarios the individual meth-
ods are expected to encounter. (However, unit test-
ing does not consider how separate program modules
work together, so it is usually followed by integration
testing.)

Test-driven software development thus produces
two distinct artefacts, a unit test suite and corre-
sponding program code. The first defines what needs
to be done and the second describes how this require-
ment is achieved computationally. Having taught
object-oriented programming and test-driven devel-
opment for several years, we realised that these two
artefacts can be assessed separately, giving indepen-
dent insights into students’ programming practices.

4 The experiments

To explore the relationship between students’ test-
ing (specification) and coding (programming) ability,
we conducted a series of four experiments over two
semesters. This was done in the context of a Soft-
ware Development subject for second and third-year
IT students. (The classes also contained a handful of
postgraduate students, but too few to have a signif-
icant bearing on the results.) The students enrolled
have typically completed two previous programming
subjects, meaning that they have already advanced
beyond simple imperative coding skills and are now
concerned with large-scale, object-oriented program-
ming.

The Software Development subject focuses on
tools and techniques for large-scale program develop-
ment and long-term code maintenance. Topics cov-
ered include version control, interfacing to databases,
software metrics, Application Programming Inter-
faces, refactoring, automated builds, etc. In particu-

CRPIT Volume 136 - Computing Education 2013

98

Figure 1: User interface for the solution to Assign-
ment 2a

lar, the role of unit testing is introduced early and is
used throughout the semester. Test-driven develop-
ment is also introduced early as a consistent method-
ology for creating unit test suites. The illustrative
programming language for the subject is Java, al-
though the concepts of interest are not Java-specific.

Each semester’s assessment includes two non-
trivial programming assignments. Both involve de-
veloping a unit test suite and a corresponding object-
oriented program, each worth approximately equal
marks. The first assignment is individual and the
second is larger and conducted in pairs. In the first
assignment the students are given a front-end Graph-
ical User Interface and must develop the back-end
classes needed to support it. In the second assign-
ment the student pairs are required to develop both
the GUI and the back-end code.

For example, one of the individual assignments in-
volved developing classes to complete the implemen-
tation of a ‘Dam Simulator’ which models the ac-
tions involved in controlling water levels in a dam.
(This topical assignment was introduced shortly af-
ter the January 2011 Brisbane floods, which were
exacerbated by the overflow of the Wivenhoe dam.)
The simulator models the effects on water levels of
randomly-generated inflows and user-controlled out-
flows over a period of time. The user acts as the
dam’s operator and can choose how much water to
release into the downstream spillway each day. The
simulation ends if the dam overflows or runs dry.

(This assignment, and the ‘Warehouse Simulator’
described below, are examples of ‘optimal stopping’
problems, in which the challenge is to optimise the
value of a certain variable, such as a dam’s water
level, despite one or more influencing factors, such
as rainfall, being out of the user’s control (Ferguson
2010). We find that these problems make excellent
assignment topics because they can form the basis

Figure 2: Example Javadoc specification of a method
to be implemented in Assignment 2a

of game-like simulations which are popular with the
students.)

The students were given the code for the user in-
terface (Figure 1), minus the back-end calculations.
(As per civil engineering convention, the dam’s ‘nor-
mal’ water level is half of its capacity, which is why
the meters in Figure 1 go to 200%.) To complete the
simulator they were required to develop two classes
and their corresponding unit tests. One class is used
to keep a daily log of water levels in the dam and the
other implements the effects of the user’s inputs.

The necessary classes and methods to be imple-
mented were defined via Java ‘interface’ classes, de-
scribed in standard ‘Javadoc’ style. For instance,
Figure 2 contains an extract from this specification,
showing the requirements for one of the Java methods
that must be implemented for the assignment. In this
case the method adds a new entry to the log of daily
water levels. It must check the validity of its given
arguments, add the new entry to the (finite) log, and
keep track of the number of log entries made to date.
Our anticipated solution is the Java method shown in
Figure 3.

Each of these Java functions must be accompanied
by a corresponding suite of ‘JUnit’ tests (Link 2003),
to ensure that the method has been implemented cor-
rectly and to document its required functionality. For
instance, Figure 4 shows one such unit test which con-
firms that this method correctly maintains the num-
ber of log entries made to date. The test does this by
instantiating a new log object, adding a fixed num-
ber of entries into it, and asserting at each step that
the number of entries added to the log so far equals
the number of entries reported by the log itself. In
general there will be several such unit tests for each
method implemented—it is typically the case that a
comprehensive unit test suite will be much larger than
the program code itself. In our own solution we had
seven distinct unit tests like the one in Figure 4 to
fully define the required properties of the method in
Figure 3.

Since the deliverables for these assignments in-
cluded both unit tests and code, we determined to
exploit the opportunity to directly compare how well
students performed on unit testing and coding. We
considered only those parts of the assignments where
both unit tests and code must be produced. (The
GUI code in the two pair-programming assignments

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

99

Figure 3: Example of a Java method to be implemented in Assignment 2a

Figure 4: Example of a JUnit test for the method in Figure 3

Table 1: Statistics for the four assignments
Assignment

1a 1b 2a 2b

Number of classes to
implement (excluding
GUIs)

2 10 2 6

Number of methods to
implement (excluding
GUIs)

16 25 12 26

Number of unit tests in our
‘ideal’ solution 66 63 45 53

Number of assignments
submitted and marked 170 83 217 113

was not accompanied by unit tests and was marked
manually. Nor did we consider marks awarded for
‘code quality’ in the experiment.) At the time the
experiment was conducted we had four assignments’
worth of results to analyse, two from each semester
(Table 1). In all four cases the students were required
to implement both program code and unit tests and
it was emphasised that these two parts were worth
equal marks.

• Assignment 1a: First semester, individual as-
signment. This assignment involved completing
the back-end code for a ‘Warehouse Simulator’
which models stock levels in a warehouse. A
Graphical User Interface was supplied and stu-
dents needed to complete a ‘ledger’ class, to track
expenditure, and a ‘transactions’ class, to imple-
ment user-controlled stock buying and randomly-
generated customer supply actions.

• Assignment 1b: First semester, paired assign-

ment. This assignment involved developing the
GUI and back-end code for a ‘Container Ship
Management System’ which models loading and
unloading of cargo containers on the deck of a
ship, subject to certain safety and capacity con-
straints. Classes were needed for different con-
tainer types (refrigerated, dry goods, hazardous,
etc) and for maintaining the ship’s manifest.
(There were a large number of classes and meth-
ods in this assignment, but most were trivial sub-
classes just containing a constructor and one or
two additional methods.)

• Assignment 2a: Second semester, individual
assignment. This was the ‘Dam Simulator’ as-
signment described above.

• Assignment 2b: Second semester, paired as-
signment. This assignment involved developing
the GUI and back-end code for a ‘Departing
Train Management System’ which modelled the
assembly and boarding of a long-distance pas-
senger train. Classes were needed to model the
shunting of individual items of rolling stock (in-
cluding an engine, passenger cars, freight cars,
etc) to assemble a train and then simulate board-
ing of passengers.

In each case the students were expected to follow the
test-driven development discipline. For each func-
tional requirement they were expected to develop a
JUnit test (such as that in Figure 4) and then extend
and refactor their Java program code (like that in Fig-
ure 3) until all the system requirements were satisfied.
During individual Assignments 1a and 2a the lone stu-
dent was expected to alternate roles as ‘tester’ and
‘coder’. Pair-programming Assignments 1b and 2b
allowed each student to adopt one of these roles at a
time.

Unix shell test scripts were developed to auto-
matically mark the submitted assignments. This was

CRPIT Volume 136 - Computing Education 2013

100

done in two stages, to separately assess the students’
program code and unit test suites.

• Code functionality: The students’ classes were
compiled together with our own ‘ideal’ unit test
suite. (As explained below, this often exposed
students’ failures to match the specified API.)
Our unit tests were then executed to determine
how well the students had implemented the re-
quired functionality in their program code. The
proportion of tests passed was used to calculate a
‘code functionality’ mark and a report was gener-
ated automatically for feedback to the students.

• Test coverage: For each of our own unit tests
we developed a corresponding ‘broken’ program
which exhibited the flaw being tested for. To
assess the students’ unit test suite against these
programs, their tests were first applied to our
own ‘ideal’ solution program to provide a bench-
mark for the number of tests passed on a correct
solution. Then the students’ unit tests were ap-
plied to each of our broken programs. If fewer
tests were passed than the benchmark our mark-
ing script interpreted this to mean that the stu-
dents’ unit tests had detected the bug in the pro-
gram. (This process is not infallible since it can’t
tell which of the students’ tests failed. Neverthe-
less, we have found over several semesters that it
gives a good, broad assessment of the quality of
the students’ unit test suites.) The proportion of
bugs found was used to calculate a ‘test cover-
age’ mark and a feedback report was generated
automatically.

These marking scripts needed to be quite elaborate
to cater for the complexity of the assignments and to
allow for various problems caused by students failing
to follow the assignments’ instructions. The mark-
ing scripts ultimately consisted of well over 400 lines
of (commented) Unix bash code (excluding our own
ideal solution and the broken programs needed to as-
sess the students’ tests).

A particularly exasperating problem encountered
during the marking process was the failure of a large
proportion of students to accurately implement the
specified Application Programming Interface and file
formats, typically due to misspelling the names of
classes and methods, failing to throw required excep-
tions, adding unexpected public attributes, or using
the wrong types for numeric parameters. This was
despite the teaching staff repeatedly emphasising the
need to precisely match the specified API as an im-
portant aspect of professional software development.
In particular, during marking of Assignment 2a it
was found that fully half of the submissions failed
to match the API specification, and therefore could
not be compiled and assessed. In order to salvage
some marks for these defective assignments, those
that could be easily corrected by, for example, chang-
ing the class and method signatures, were fixed man-
ually. In the end 97 assignments, which accounted for
45% of all submissions, were corrected manually and
re-marked. Penalities were applied proportional to
the extent of correction needed. Ultimately, however,
this large amount of effort produced little difference
since the re-marking penalties sometimes outweighed
the additional marks gained!

Another practical issue noted by Spacco & Pugh
(2006), and confirmed by our own experiences, is the
difficulty of developing unit tests that uniquely iden-
tify a program bug. In practice a single program bug
is likely to cause multiple tests to fail. We found when
setting up our automatic marking environment, in-
cluding our own unit test suite (for assessing the stu-
dents’ code) and the suite of ‘broken’ programs (for

Table 2: Measures of central tendency, spread and
correlation for code functionality and test coverage

Assignment
1a 1b 2a 2b

Code functionality
mean 82 84 79 91

Code functionality
median 86 93 86 96

Code functionality
standard deviation 20 20 21 12

Test coverage mean 69 79 45 63

Test coverage median 67 92 52 69

Test coverage
standard deviation 23 25 29 24

Functionality versus
coverage correlation 0.64 0.76 0.70 0.55

assessing the students’ unit tests), that it was impos-
sible to achieve a precise one-to-one correspondence
between code bugs and unit tests. While frustrating
for us, this did not invalidate the marking process,
however.

Moreover, one of the risks associated with this kind
of study is threats to ‘construct validity’ (Arisholm &
Sjøberg 2004), i.e., the danger that the outcomes are
sensitive to different choices of code functionality and
test coverage measures. Nevertheless, we believe our
analysis is quite robust in this regard because each
of the individual tests in our ‘ideal’ unit test suite
was directly developed from a specific functional re-
quirement clearly described in the Javadoc API spec-
ifications, and each of the broken programs was in-
troduced to ensure that a particular unit test was
exercised. This very close functional relationship be-
tween requirements, code features and unit tests left
little scope for arbitrary choices of unit tests or bro-
ken programs against which to assess the students’
assignments.

5 Experimental results

The marks awarded for code functionality and test
coverage were normalised to percentages and are sum-
marised in Table 2. (These values exclude marks
awarded for ‘code presentation’ and for the front-
end GUIs in Assignments 1b and 2b.) It is obvious
that the average marks for test coverage are well be-
low those for code functionality, which immediately
casts doubt on our assumption that students’ unit
testing abilities would be comparable to their pro-
gramming skills. Furthermore, while a standard cor-
relation measure (last row of Table 2) shows some
correlation between the two sets of marks, it is not
very strong.

Further insight can be gained by plotting both sets
of marks together as in Figures 5 to 8. Here we have
sorted the pairs of marks firstly by code functional-
ity, in blue, followed by test coverage, in red. As-
signments 1a and 1b used a coarser marking scheme
than was used for Assignments 2a and 2b, thereby ac-
counting for their charts’ ‘chunkier’ appearance, but
the overall pattern is essentially the same in all four
cases. At each level of achievement for code function-
ality there is a wide range of results for test coverage.
This pattern is especially pronounced in Figure 7.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

101

Figure 5: Comparison of marks for code functionality and test coverage, Assignment 1a, 170 submissions

Figure 6: Comparison of marks for code functionality and test coverage, Assignment 1b, 83 submissions

Recall that Assignments 1a and 2a were individ-
ual, so we can assume that the same person developed
both the unit tests and program code. How pairs of
students divided their workload in Assignments 1b
and 2b is difficult to say based purely on the sub-
mitted artefacts, although if they followed the assign-
ments’ instructions they would have swapped ‘tester’
and ‘coder’ roles regularly. Figures 6 and 8 are for
the pair programming assignments and both show an
improvement in the test coverage marks, compared
to the preceding individual assignments in Figures 5
and 7. Regardless of how they divided up the task,
this suggests that the students took the unit testing
parts of the assignment more seriously in their sec-
ond assessment. Nevertheless, the test coverage re-
sults still lag well behind those for code functionality
throughout.

Inspection of the submitted assignments suggests
that many students didn’t follow the test-driven de-
velopment process which, in practice, can be time
consuming and requires considerable discipline. Of-
ten students developed their program code and their
unit tests separately, rather than letting the latter
motivate the former. However, even if students did
not follow the test-driven development process, this
does not invalidate our comparision of their unit test-
ing and program coding abilities, as these are two

distinct skills.
In all four sets of results there are numerous ex-

amples of students scoring well for code functionality
but very poorly for test coverage, meaning that they
could implement a solution to a problem that they
couldn’t (or merely chose not to) characterise in the
form of a unit test suite, the exact opposite of what
we would expect if they had strictly followed the test-
driven development process.

To explore this phenomenon further we conducted
a conventional correlation analysis (Griffiths et al.
1998) to see if there was a clear relationship be-
tween students’ testing and coding skills, irrespective
of their absolute marks for each. We began by check-
ing the normality of all the marks’ distributions. This
was done by inspecting quantile-quantile plots gener-
ated by the qqnorm function from the statistics pack-
age R (R Core Team 2012). These plots (not shown)
provide good evidence of normality for seven of the
eight data sets, albeit with some overrepresentation
of high scores in the coding result distributions. The
quantile-quantile plots were skewed somewhat by dis-
cretisation of the marks; evidence for normality was
especially strong for Assignments 2a and 2b, for which
we had the most fine-grained marks available.

The marks were then used to create correlation
scatterplots (Griffiths et al. 1998), comparing stan-

CRPIT Volume 136 - Computing Education 2013

102

Figure 7: Comparison of marks for code functionality and test coverage, Assignment 2a, 217 submissions

Figure 8: Comparison of marks for code functionality and test coverage, Assignment 2b, 113 submissions

dardised marks for each of the four assignments, as
shown in Figures 9 to 12. As usual, dots appearing
in the top-right and bottom-left quadrants suggest
that there is a positive linear relationship between
the variables of interest, in this case students’ code
functionality and test coverage results. (In the inter-
ests of clarity a handful of extreme outliers, result-
ing from some students receiving near-zero marks for
both tests and code, have been omitted from the fig-
ures.)

All four figures exhibit good evidence of a linear re-
lationship, especially due to the numbers of students
who did well on both measures (top-right quadrant).
Overall, though, the pattern is not as strong as we
expected.

Undoubtedly many students put less effort into the
unit tests, despite them being worth equal marks to
the program code. It is clear from the averages in
Table 2 and the charts in Figures 7 and 8 that even
the best students did not do as well on the unit tests
as the program code, and it certainly wasn’t the case
that successfully defining the test cases to be passed
was a pre-requisite to implementing a solution as we
had originally assumed. Even more obvious is the
line of dots along the bottom of Figure 11 which was
caused by students who received zero marks for test
coverage. Evidently these students learned the im-

portance of the unit tests for their overall grade by
the time they did their second assignment because no
such pattern is evident in Figure 12.

Overall, therefore, contrary to our expectations,
computer programming students’ performance at ex-
pressing what needs to be done proved to be a poor
predictor of their ability to define how to do it.

6 Conclusion

The students’ poor performance in unit testing com-
pared to program coding surprised us. Nonetheless,
the pattern of results in Figures 5 to 8 is remarkably
consistent. On the left of each chart are a few exam-
ples of students who could characterise the problem to
be solved but couldn’t complete a solution (i.e., their
test coverage results in red are better than their code
functionality results in blue), which is what we would
expect to see if the students applied test-driven de-
velopment. However, this was far outweighed in each
experiment by the dominance of results in which stu-
dents produced a good program but achieved poor
test coverage (i.e., their blue code functionality re-
sults were better than their red test coverage results).
We thus have clear empirical evidence that students
struggle to a greater extent defining test suites than

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

103

Figure 9: Correlation scatterplot, code functionality (x-axis) versus test coverage (y-axis), with circled dots
denoting multiple data points with the same value, Assignment 1a

Figure 10: Correlation scatterplot, Assignment 1b

they do implementing solutions, for the same pro-
gramming problem.

The outstanding question from this study is
whether this unexpected result reflects students’ abil-
ities or motivations. From our inspection of the sub-
mitted assignments we can make the following obser-
vations.

• The results can be explained in part by many
students’ obvious apathy towards the unit test-
ing part of the assignments. Despite their regular
exposure to the principles of test-driven develop-
ment in class, and despite being well aware that
half of their marks for the assignment were for
their tests, it was clear in many cases that stu-
dents did not follow the necessary discipline and

instead wrote the program code first, seeing it as
more “important”. Their unit tests were then
completed hastily just before the assignment’s
deadline. As noted in Section 2 above, this
student behaviour has been observed in many
prior studies. For instance, Buffardi & Edwards
(2012) found that students procrastinate when
it comes to unit testing, even when a test-first
programming paradigm is advocated, which typ-
ically leads to poor test coverage in the submitted
assignments.

• Another partial explanation is simply that many
students had poor unit testing skills. Test-driven
development emphasises the construction of a
large number of small and independent tests,

CRPIT Volume 136 - Computing Education 2013

104

Figure 11: Correlation scatterplot, Assignment 2a

Figure 12: Correlation scatterplot, Assignment 2b

each highlighting a distinct requirement. How-
ever, inspection of some assignments with low
testing scores showed that they consisted of a
small number of large and complicated tests,
each attempting to do several things at once.
This is evidence that the students could not (or
chose not to) follow the test-driven development
discipline. Small sets of complex unit tests are
characteristic of test-last programming and typi-
cally produce poor test coverage because several
distinct coding errors may all cause the same test
to fail, without the reason for the failure being
obvious. At the other extreme there were also a
few examples of students producing a very large
number of tests, often over twice as many as in
our own solution, but still achieving poor cov-
erage because their tests did not check distinct

problems and so many were redundant. This
undirected, ‘shotgun’ strategy is again evidence
of a failure to apply, or understand, test-driven
development, which avoids redundancy by only
introducing tests that expose new bugs.

• It is also noteworthy that writing unit tests is
a cognitively more abstract activity than writ-
ing the corresponding program code, thus mak-
ing it more challenging for students still com-
ing to grips with the fundamentals of program-
ming. Whether or not this was the cause of stu-
dents’ poor test coverage marks is impossible to
tell from the submitted artefacts alone. Anecdo-
tally, our discussions with students while they
were working on the assignments left us with
the impression that they understood the prin-

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

105

ciples of unit testing well enough. By far the
most common question asked by students while
they were working on their assignment was “How
many unit tests should I produce?” rather than
“How do I write a unit test?”

Ultimately, therefore, further research is still re-
quired. Although we have demonstrated that pro-
gramming students’ testing and coding skills can be
analysed separately, and that they consistently per-
form better at coding than testing, more work is re-
quired to conclusively explain why this is so.

Acknowledgements

We wish to thank Dr Andrew Craik for developing
the assignment marking scripts used in the first two
experiments, and the anonymous reviewers for their
many helpful suggestions for improving the correla-
tion analysis. Support for this project was provided
by the Office of Learning and Teaching, an initiative
of the Australian Government Department of Indus-
try, Innovation, Science, Research and Tertiary Edu-
cation. The views expressed in this publication do not
necessarily reflect the views of the Office of Learning
and Teaching or the Australian Government.

References

Arisholm, E. & Sjøberg, D. (2004), ‘Evaluating the
effect of a delegated versus centralized control
style on the maintainability of object-oriented soft-
ware’, IEEE Transactions on Software Engineering
30(8), 521–534.

Astels, D. (2003), Test-Driven Development: A Prac-
tical Guide, Prentice-Hall.

Barriocanal, E., Urbán, M.-A., Cuevas, I. & Pérez,
P. (2002), ‘An experience in integrating automated
unit testing practices in an introductory program-
ming course’, SIGCSE Bulletin 34(4), 125–128.

Beck, K. (2003), Test-Driven Development: By Ex-
ample, Addison-Wesley.

Buffardi, K. & Edwards, S. (2012), Exploring influ-
ences on student adherence to test-driven develop-
ment, in T. Lapidot, J. Gal-Ezer, M. Caspersen &
O. Hazzan, eds, ‘Proceedings of the Seventeenth
Conference on Innovation Technology in Computer
Science Education (ITiCSE’12), Israel, July 3–5’,
ACM, pp. 105–110.

Desai, C., Janzen, D. & Savage, K. (2008), ‘A sur-
vey of evidence for test-driven development in
academia’, SIGCSE Bulletin 40(2), 97–101.

Edwards, S. (2004), Using software testing to
move students from trial-and-error to reflection-
in-action, in D. Joyce, D. Knox, W. Dann &
T. Naps, eds, ‘Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Educa-
tion (SIGCSE’04), USA, March 3–7’, ACM, pp. 26–
30.

Ferguson, T. S. (2010), ‘Optimal stopping and ap-
plications’. http://www.math.ucla.edu/∼tom/
Stopping/Contents.

Griffiths, D., Stirling, W. D. & Weldon, K. L. (1998),
Understanding Data: Principles and Practice of
Statistics, Wiley.

Janzen, D. & Saiedian, H. (2007), A leveled exam-
ination of test-driven development acceptance, in
‘Proceedings of the 29th International Conference
on Software Engineering (ICSE’07), USA, May 20–
26’, IEEE Computer Society, pp. 719–722.

Janzen, D. & Saiedian, H. (2008), Test-driven learn-
ing in early programming courses, in S. Fitzger-
ald & M. Guzdial, eds, ‘Proceedings of the 39th
SIGCSE Technical Symposium on Computer Sci-
ence Education (SIGCSE’08), USA, March 12–15’,
ACM, pp. 532–536.

Keefe, K., Sheard, J. & Dick, M. (2006), Adopting
XP practices for teaching object oriented program-
ming, in D. Tolhurst & S. Mann, eds, ‘Proceedings
of the Eighth Australasian Computing Education
Conference (ACE2006), Hobart’, Vol. 52 of Confer-
ences in Research in Practice in Information Tech-
nology, Australian Computer Society, pp. 91–100.

Link, J. (2003), Unit Testing in Java, Morgan Kauf-
mann.

Melnick, G. & Maurer, F. (2005), A cross-program
investigation of students perceptions of agile meth-
ods, in ‘Proceedings of the 27th International Con-
ference on Software Engineering (ICSE05), USA,
May 15-21’, ACM, pp. 481–488.

R Core Team (2012), R: A Language and Environ-
ment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0.
URL: http://www.R-project.org

Schach, S. (2005), Object-Oriented and Classical Soft-
ware Engineering, McGraw-Hill, USA. Sixth edi-
tion.

Schuh, P. (2005), Integrating Agile Development in
the Real World, Thomson.

Spacco, J. & Pugh, W. (2006), Helping students
appreciate Test-Driven Development (TDD), in
W. Cook, R. Biddle & R. Gabriel, eds, ‘Proceed-
ings of the 21st Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA06), USA,
October 22-26’, ACM, pp. 907–913.

Whalley, J. & Philpott, A. (2011), A unit testing ap-
proach to building novice programmers skills and
confidence, in J. Hamer & M. de Raadt, eds, ‘Pro-
ceedings of the Thirteenth Australasian Computer
Education Conference (ACE 2011), Perth’, Vol. 114
of Conferences in Research and Practice in Infor-
mation Technology, Australian Computer Society,
pp. 113–118.

CRPIT Volume 136 - Computing Education 2013

106

Visualisation of Learning Management System Usage for Detecting
Student Behaviour Patterns

Thomas Haig Katrina Falkner Nickolas Falkner

School of Computer Science
The University of Adelaide

North Terrace, South Australia
Email: [thomas.haig,katrina.falkner,nickolas.falkner]@adelaide.edu.au

Abstract

Identifying “at-risk” students - those that are in dan-
ger of failing or not completing a course - is a cru-
cial element in enabling students to achieve their full
potential. However, with large class sizes and grow-
ing academic workloads, it is becoming increasingly
difficult to identify students who require urgent and
timely assistance. Efficient and easy to use tools are
needed to assist academics in locating these students
at early stages within their courses. A significant
body of work exists in the use of student activity data,
e.g. attendance, performance, participation in face-
to-face and online sessions, to predict overall student
performance and at-risk status. This is often built
upon the considerable amount of student data within
learning management systems. Manual data collec-
tion, including surveys and observation, which intro-
duces additional workload is often required to extract
relevant data meaning that it in large classes it is pro-
hibitively difficult to apply such techniques.

In this paper, we introduce a framework for at-
risk identification combining simple metrics, gathered
from social network and statistical analysis domains,
that have been shown to correlate with student per-
formance and require slow amounts of manual data
collection or additional expert analysis. We describe
each of the metrics within our framework and demon-
strate their usage. We use visualisation to enable
easy interpretation of results. The application of our
framework is demonstrated within the context of an
advanced undergraduate computer science course.

Keywords: Student data, Learning Management Sys-
tems, Prediction, Visualisation

1 Introduction

In order to enable all of our students to succeed to
their potential, academics must be able to identify
students who are “at-risk” - those students who are
likely to fail, or withdraw, from a course - within the
early stages of their at-risk behaviour. Interventions
can only be made if academics have efficient and clear
facilities that enable them to identify at-risk students.
At-risk behaviours are becoming increasingly difficult
to detect within our overburdened higher education
systems, with large classes, de-personalised adminis-
trative systems and separation from peer groups. Our

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the Fifteenth Australasian Computing Edu-
cation Conference (ACE2013), Adelaide, Australia, January
2013. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 132, Angela Carbone and Jacque-
line Whalley , Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

classrooms are increasing in diversity (Biggs & Tang
2007), further complicating this issue by presenting us
with an “unprecedentedly broad spectrum of student
ability and background” (Ramsden 2003).

Early identification of at-risk students is of partic-
ular concern within the ICT discipline - within Aus-
tralia, and globally, we have seen a recent dramatic
drop in applications for ICT degree programs, poor
progression and retention rates (Sheard et al. 2008).

In order to identify at-risk students we need to
provide facilities to assist academics in finding these
students. Any facilities or tools provided to assist
academics must introduce minimal additional work-
load. Although true in every discipline, Computer
Science and ICT academics face an increasing pres-
sure to include more technical concepts in their cur-
riculum (McGregor et al. 2000). In 1978 the ACM
recommendations for undergraduate programs con-
sisted of a 20-page document. In 2010, the current
recommendations total 240 pages with a vast increase
in the body of knowledge expected of an undergradu-
ate curriculum (Becker 2008). These pressures, along
with pressure from industry and accrediting bodies to
focus more attention on the development of generic
skills (Falkner & Falkner 2012), mean that ICT aca-
demics must find efficient and effective mechanisms
to assist them in these tasks. Further, we must work
within the available data sources that can be readily
accessed by academics within their institutions.

There has been considerable work within the area
of automated at-risk identification, using a variety of
data sources, such as learning management systems,
grade rosters, attendance records, and participation
in online discussion forums. However, the majority
of this work relies upon a blend of automated anal-
ysis and manual coding or recording of data. This
includes the use of surveys and large-scale data col-
lection to complement automatically available data.
Even within a small cohort, these methods present
an additional workload for academics, which becomes
prohibitive within large classes, where these tech-
niques are often most needed.

In this paper, we propose a framework for the iden-
tification of at-risk students using a combination of
simple metrics, gathered from the domains of social
network analysis and statistical analysis. These met-
rics, based upon data readily available within learning
management systems, present an automated analysis
framework requiring minimal manual interaction with
the underlying data, and no additional data collec-
tion. We present a range of data visualisations that
enable academics to easily and efficiently identify stu-
dents who are exhibiting potential at-risk behaviours.
We are able to gather the required data early on in a
course without the requirement for additional assess-
ments or surveys.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

107

Using our obtained data and visualisations, we aim
to find patterns of behaviour for successful and unsuc-
cessful students for specific activities of a particular
course. By identifying patterns of behaviour we may
be able to identify those students who require addi-
tional assistance and intervention. We present visual-
isations for each metric that support the ease of iden-
tification of such patterns, and hence the subsequent
identification of at-risk students.

We demonstrate the utility of our framework
within a case study of an advanced undergraduate
ICT course, using data available from the learning
management system used within the course, the Moo-
dle Learning Management System, which is used by
multiple institutions around the world (Moodle 2007).
We demonstrate each of the metrics within the frame-
work applied to this case study, exploring visualisa-
tion potential and validating correlation for each met-
ric and student performance.

The paper will be presented as follows. Section 1
presents an Introduction, Section 2 a review of related
work, Section 3 our Methodology, Sections 4, 5 and 6
our Results, Section 7 a Discussion and Section 8 will
present potential future work and conclusions.

2 Related Work

Obtaining measures of student engagement provides
us with one method for determining at risk behaviour.
However, traditional methods of ascertaining student
engagement, such as attendance and participation in
lectures and tutorials, become increasing difficult to
use in large classes. With the increasing conflict be-
tween external pressures, such as work and family
commitments, even engaged students may not be al-
ways able to make frequent face-to-face contact. Fur-
ther, there is a time burden involved with taking these
attendances and measuring participation, which aca-
demics may struggle to afford. We want to assess
engagement automatically in order to predict results
for students, so as that we may find those who may
be at risk of failing a course, or dropping out, in order
to attempt to prevent this occurring.

The increasing use of online learning management
systems and online learning tools means that we now
have alternative means for gathering information on
student engagement, which supports the more flexible
practices of the modern higher education sector.

Large amounts of data are readily available for
analysis of student engagement. Bayer et al. (2012)
have explored the use of a wide variety of data includ-
ing “capacity to study” test scores, attained credits,
average grades, gender and year of birth, to develop
a model of social behaviour in order to predict po-
tential drop-outs. Merceron & Yacef (2005) utilised
course specific information, such as the types of mis-
takes made in individual assessment exercises, while
El-Halees (2009) used preliminary course assessment
results as a prediction of final grade, hence identifying
at-risk students.

Norris et al. (2008) looked at the work of novice
programmers in the BlueJay environment. This al-
lowed them to log specific actions such as number
of compilations made, amount of time spent working
on a project and the amount of errors encountered.
This level of data provided a log of students patterns
of work while performing a programming task in a
short closed session. Their aim was to gather pat-
terns of work for successful students and compare
these with unsuccessful students visually and inter-
vene where necessary to get unsuccessful students into
better patterns of work, for example compiling their

code more often. While we are not able to log re-
sults at this level, it is useful to note that patterns
of behaviour run to deep levels within a course, down
to how students portion their time and work while
programming.

Logging at a similar level is performed by Murphy
et al. (2009) who also use a BlueJay or Eclipse plug-in
to explore student programming habits. They logged
the students time spent on assignment as well as their
compilation errors. They then used this data to send
recommendations to students about how they could
improve, e.g. they are spending too long on an as-
signment, or making the same error too many times.
Students are then able to reflect upon their patterns
and this aims to move students towards more success-
ful patterns of study, through self-intervention. In-
structors were also able to use the data to make more
meaningful interventions, specifically where students
were making numerous errors it was shown that early
intervention was able to help.

The work of Norris et al. (2008) was expanded
upon by Fenwick Jr et al. (2009). Using the same
ClockIt software, Norris et al. (2008) observed pat-
terns of student behaviour in a programming task
and how this potentially relates to cheating, as well
as how much incremental work they put into their
programming. They found that students that started
the task later in general received a lower grade. As
noted in their work “although this is what we have
already been “preaching” to students, it is now based
on objective analysis of quantitative data”.

Edwards et al. (2009) analysed submission data
and came to the same conclusions as Norris et al.
(2008), in that students who start their work early, in
their case as measured by their first submission, are
more likely to perform better in a task. Of note from
their study is that students who perform consistently
well or consistently poorly may demonstrate similar
behaviours, e.g. a good student may start consis-
tently late and be able to perform under pressure.

Nandi et al. (2011) take the online participation
of students in forums as a measurement of engage-
ment and a possible predictor of grade. Their results
show that students who input more into the course
achieve a better grade. The course analysed was fully
online, and hence students point of contact to course
providers was through the forums, hence overall fo-
rum usage was high. This is in contrast to a blended
learning course where students have more access to
course providers without using the online environ-
ment, and hence overall participation is lower.

Tracking of student movement through an on-
line learning website was performed by Ceddia et al.
(2007) using web logs. They use these logs to track
student behaviour and catagorise it as either pur-
poseful or browsing behaviour. They found that as
the course progressed students use the online system
more purposefully, browsing less to get to their re-
quired goals and materials. They also used the logs
to analyse the learning behaviours of students on the
website. They used completion rates, duration, fre-
quency to measure effectiveness, efficiency and explo-
rational activities. They also used unusual results to
find possible problems with the website interface.

Students self-managing their own timesheets was
shown by Herbert & Wang (2007) to be an effec-
tive measure of students usage of an online learn-
ing system. Students self-evaluated their use of the
system, and this was then contrasted with the ac-
tual usage data from the website. They sought to
find behavioural patterns that showed students may
work to deadlines, relate their time spent to marks
available and to test if students could be induced to

CRPIT Volume 136 - Computing Education 2013

108

start tasks early. They found student timesheets ac-
curate enough to be able to critically analyse these
behaviours, backing up anecdotal evidence that stu-
dents do indeed work to deadlines and will only spend
as much time as proportional to marks.

Although successful in identifying at risk potential,
these studies utilise data that is not readily available
across the sector, or not readily available in a timely
fashion to perform early intervention.

Studies such as Sheard et al. (2003) and Georg
(2009) supplement their automatically collected data
with manually collected survey data. Sheard et al.
(2003) utilised survey data to gain student ratings of
how useful online course material is to them, and how
useful the online site is to their studies. Georg (2009)
used the Konstanz Student Survey, collected in Ger-
many every two to three years, which collects data
about students attitudes towards study and profes-
sion to analyse factors that lead to students dropping
out of courses. However, the use of surveys is prob-
lematic. Black et al. (2008) suggest the burden of
time on administration to create surveys is obvious
and, further, students already suffer from“survey fa-
tigue”, where over-surveying causes data to become
skewed due to students aiming to simply complete
surveys, not give objective answers.

Data collection may be followed by a phase of addi-
tion, where the data is inspected manually and sup-
plemented with expert evaluations. This is used in
studies such as Lopez et al. (2012), where forum posts
are viewed and analysed by experts within the field
in order to evaluate their worth. This expert rating
is then added to the data as a measure of how useful
a resource will be to a student, and hence how much
potential benefit they may receive from using it. This
re-analysis of data, after its collection, is a further de-
mand on academics time as the manual inspection of
data is extremely time consuming. We would also ar-
gue that students are able to be their own “expert
evaluators” of the data that is the most relevant to
them. They are able to identify resources that are
useful and hence successful students will access and
use these resources more frequently.

Visualisation of a network in a learning manage-
ment system has been carried out in studies such as
Dawson et al. (2010). Dawson et al. (2010) showed
the structure of the social network created between
students when they interact on the forums in a learn-
ing management system. The use of student patterns
as predictors of final result has been studied in Zhang
et al. (2007) and Casey et al. (2010) however they do
not present their results visually and give their results
in a more “raw” format, which requires a degree of
statistical knowledge and insight to understand and
work with.

3 Methodology

We aim to create an “at-risk identification” frame-
work by combining simple, automated metrics and
simple visualisations for assessing student behaviours.
We gather methods from a range of areas, including
social network analysis, statistical analysis and data
visualisation.

Studies such as Zhang et al. (2007) and Casey et al.
(2010) show that successful students are more fre-
quently and regularly participating and engaged in
online activities. Much of the work within the area
of at-risk identification addresses the early identifica-
tion of students that exhibit conflicting behaviours,
i.e. they are not engaged in the course and are not
actively participating. One of the most accurate mea-

sures of student engagement is student performance
in assessment activities, but this may not promote
timely interventions, as assignment work may come
too late in a course. We utilise data available in
learning management systems, such as access to on-
line course resources and participation in forums, as
measures of engagement.

Measures such as frequency of access are somewhat
coarse and require more detailed analysis to deter-
mine engagement. A student may be accessing many
resources but they may not be relevant to the ac-
tivities currently at hand, or alternatively a student
may be accessing only a small number of resources,
but those that are the most directly relevant to their
work. We would argue that the latter student is the
more successfully engaged in their studies, and hence
measures of the frequency of accesses only presents
a partial picture, and may incorrectly categorise stu-
dents.

Accordingly, we propose a framework that tracks
students activities over time, combined with their fre-
quency of accesses.

We utilise three distinct methods to explore stu-
dent engagement:

• Social Network Analysis (SNA) - SNA tech-
niques enable us to explore relationships within
our “network”, which consists of data contained
within the LMS, such as forum postings and
course resources, the student cohort, and con-
nections from students to the data, i.e. a student
may read a forum message posted by another stu-
dent.

• Frequency of Access Analysis - analysing pat-
terns of access for individual resources and stu-
dent access patterns over time.

• Measure of Distance Analysis - analysing pat-
terns of access behaviour and similarity between
student access patterns both visually and quan-
titatively.

Using the combination of these metrics, we are
able to identify patterns of behaviour based upon par-
ticipation in online course activities. We have devel-
oped visualisations for each approach that can be used
by academics to identify students who are demon-
strating patterns of at-risk behaviour within the con-
text of their course.

We discuss a students success based upon their
grades received in the course. There are five grades
awarded:

• High Distinction - A grade of or over 85%. Due
to our small sample size we only had one High
Distinction student in the course, as such their
result has been put with the next grade band
down, to form a larger ”Distinction” grade band
of students.

• Distinction - A grade of or over 75%.

• Credit - A grade of or over 65%.

• Pass - A grade of or over 50%. This is the lowest
acceptable passing grade.

• Fail - A grade below 50%. This is the only course
failure grade.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

109

3.1 Social Network Analysis

In order to show the data visually we use Social Net-
work Analysis (SNA) techniques such as in Dawson
et al. (2010).

We use SNA to give a simple display of the net-
work of students participating in a course. The forum
network on an LMS can be considered to be a social
network, where students “socialise” by accessing the
same materials or interacting asynchronously on the
forums. Analysing this network allows us to see the
extent with which students are engaging with each
other and the course materials.

SNA creates a network made up of a set of “ac-
tors” who have a relationship with each other. The
actors in the course are students who interact with
each other via resources. They are related when two
of the same actors have accessed the same resource.
It is not necessary for all actors in the network to
be related, as both present and absent connections
are taken into account. SNA is used to explain the
network of actors and the effect of the relationships
in the network. In our case we can use absent con-
nections to find those who are disengaged from the
network and hence likely to be disengaged from the
course.

3.2 Statistical Measures

We will analyse student engagement by measuring
student access to the LMS in two ways, access to indi-
vidual resources and frequency of access to resources.
We believe that students who are more engaged with
a course will seek to access a wide array of materi-
als and that they will access them frequently as re-
quired. We shall count distinct accesses to resources
as the number of times a resource has been accessed
and a date access as days on which students actively
participated with the LMS, by accessing materials or
engaging on the forum.

We begin by looking at binary-yes-or-no access
counts, with a resource having been accessed or an
access occurring on a date. We then use a box-and-
whisker plot to show the differences between these
accesses frequencies in comparison to other students
by grade band. When presented with data from a new
student an academic would be able to check their ac-
cesses frequencies and give a high level assessment of
their engagement. For a more fine-grained analysis we
will then look at the distinct number of accesses made
to each resource and the number of accesses made on
a given day. We will visualise these results using a
“heat map”, which shows gradients of access frequen-
cies. The heat map shows, using colour gradients, the
intensity of activity on this resource or on a partic-
ular date. The darker the colour on the heat map
the more frequent the activity occurring, i.e. darker
points indicate more intense activity. From this we
expect to see patterns of student behaviour that we
can compare with other students or new data.

After a course has been run we are able to create
an averaged pattern of accesses, i.e. what action the
majority of students have taken. This may be use-
ful after multiple iterations of the same course as an
academic could compare new data to the “average”
pattern.

3.3 Implementation

We have implemented our framework using data from
the Moodle LMS. Moodle logs a large amount of stu-
dent participation data in a CSV file, which is readily

available in all Moodle installations. The data con-
tains four entries for each “action” performed on the
system, these are:

• Full Name of the student or lecturer accessing
the system.

• Date on which the action occurred.

• Access Type, a shorthand for the type of action
performed.

• Information, the name of the resource on which
the action was performed.

The set of actions that can be taken on the system
is extensive and we shall not cover all possible ac-
tions here. The set of actions are broken into five
categories of access; User, Course, Resource, Admin-
istrative and Forum. Of relevance to us for this re-
search are Resource and Forum accesses, of which all
possible actions are:

• Resource Access

Resource View : view a course resource. The
information then contains the name of this re-
source.

• Forum Access

Forum View Forums: View all available fo-
rums, i.e. a list of sub-forums if such forums
exist.

Forum View Forum: View all discussion
headings in a specific forum.

Forum View Discussion: View a particular
discussion on the forum, also included is the title
of the forum.

Forum Add Post : Add a new post to a dis-
cussion forum.

Forum Update Post : Update a post that was
previously created.

Relevant Moodle data from the system is imported
into an external MySQL database to support queries.
MySQL is a ubiquitous and free resource that is eas-
ily installed and is the most popular open source
database system in the world (MySQL 2012). The
database also contains grade information for the stu-
dents.

The SQL database is then integrated with a
Python program which allows us to extract and pro-
cess the data. Python is a free, ubiquitous open
source product (Python 2012). The output from the
Python program is stored which allows the visualisa-
tions to be re-run as required without a large amount
of space overhead.

The file produced from the Python program is then
read into R. R is a statistical program that features
many built in libraries capable of helping to visualise
the data, as well as run statistical analysis and once
again is free and open source (R Core Team 2012).
We use R to produce the final visualisations which
we use to identify patterns in the data.

The outlined process of creating these visualisa-
tions is able to be automated using scripts, which run
each of the required programs in order, negating the
need to perform all of these steps manually.

The data which we have used is from a typical
third year course run at the University of Adelaide.
The data represents a course that contained 47 en-
rolled students, with 44 completing the course and
receiving a final grade, and has 22,320 unique data
entries logged on the Moodle system for this course.

CRPIT Volume 136 - Computing Education 2013

110

The spread of student grades were from a high score of
90, down to a low of 38 out of 100. We experimented
on data from another course to check the validity of
our results and found our results to be typical of the
courses under study. We present data from a single
course for clarity.

4 Network Visualization

We aim to show the network as a whole and show
key points of the network, such as its density and
make-up. A view of how grades are spread in the
network relative to the density or sparsity of links
between students will show if there are any distinct
communities of grades within our network.

Students are categorized as having a “link” in the
network if they have read a discussion that has been
started by another student. We take all relations to be
didactic, as directionality is not important, students
who are engaging in the course will be represented as
having a link with other students accessing the same
materials.

In Figure 1 we see the visualization of the network
as a whole. This gives us a view of the engagement
with the course by showing students linking with the
materials.

Figure 1: Visualization of the overall Network of stu-
dents.

We see an incredibly dense network, even for this
very small cohort. We see that students on the outer
edges of the network are those that are less engaged
with the course, and are more likely to fail. This
behaviour is supported by similar analysis in Dawson
et al. (2010). This gives a good initial guide into
the overall structure of the network, and is a quick
method to identify students who are potentially at
risk as labels are able to be retrieved.

By using this network analysis, educators are able
to get a “snapshot” of their class as a whole, poten-
tially allowing them to target students on the fringes
of the network for assistance and to get them re-
engaged with the course.

From this we can pick out the students who are not
well connected to the network. These are the students
for whom intervention is needed, as they are not ac-
cessing materials. This can be monitored before any
assignments have been marked and requires no addi-
tional assessment or materials. Further, we can view

changes over time to see if students who have been
encouraged to interact begin to do so. We cannot,
however, see when students have become disengaged
who were engaged previously. These students may
begin to drift more towards the fringe of the network,
but the drift will be slow and likely not noticeable,
hence we need different metrics to identify this type
of case.

5 Frequency of Access

The materials with which a student engages, and the
frequency with which they access them, are more
informative than simple measures of overall engage-
ment. Due to the large amount of resources in any
one course it may be easy for students to access ir-
relevant materials, however students who access rele-
vant materials, at the correct time, are those who are
most likely to succeed. As such we look at measures
of access frequencies and patterns, exploring the be-
haviours of both successful students and those who
fail the course. We shall look at frequency of access
in two ways, both of which are engagement through
examination:

• By resource, where it is shown how many course
resources a student has viewed.

• By date, where it is shown how many access to
resources on a particular date are made.

We firstly look at the raw counts of student ac-
cesses and compare these in grade bands using box-
and-whisker plots. Within these plots our grade
bands are numbered, specifically:

• 1 - High Distinction and Distinction grade stu-
dents.

• 2 - Credit grade students.

• 3 - Pass grade students.

• 4 - Failing grade students.

Hence, the first three boxes all refer to passing grades,
while the fourth refers to a failing grade.

Figure 2: Box and Whisker plot of results by Resource

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

111

Figure 2 provides us with a box-and-whisker plot
of resource access counts and shows that students in
the highest grade bands have a greater mean number
of resource accesses, accessing around 50 distinct re-
sources. Credit students have a mean of around 40,
similar to that of passing students, however have a
much smaller Inter-Quartile Range, or dispersion be-
tween students, showing that Credit students on av-
erage have a higher access rate than passing students.
Finally, failing students have the lowest mean number
of resource accesses, with around 30. The bound on
the 75th percentile for failing students falls below the
mean for passing students (in fact the longest whisker
of the failing students is still below the mean for pass-
ing students). This shows a very evident difference in
behaviour and that there is correlation between fre-
quency of access and a students final grade.

Figure 3: Box and Whisker plot of results by Date

In Figure 3 we look at accesses by date. When
viewing by date similar patterns to that of by re-
source are evident. Again the means increase with
grade. Credit students have a large Inter-Quartile
Range meaning that their accesses varied, however
the mean was still greater than that for passing stu-
dents. What is clearly evident, is that lower achiev-
ing students have a lower rate of access than higher
achieving students. Failing students access the fo-
rums on around 30 days of a course that ran for over
100 days, in comparison to a mean of 45+ dates for
passing students and 60 for Distinction students.

From this we can check an individual students ac-
cess levels against the rest of the cohort. If their ac-
cesses are in the lower ranges then there is a possi-
bility that they may be at-risk. The box and whisker
plots give a raw numerical output and do not show
more timely accesses or accesses to more important
resources.

To achieve a more fine-grained view of student ac-
cesses we observe, on an individual level, the engage-
ment with the forums and find if this has a bear-
ing upon the final grade of a student. We visualise
our results using a heat map which allows us to ob-
serve broad student access patterns, including how
frequently students return to view a resource. Key
resources may be accessed more frequently, for exam-
ple a forum post with a long, relevant discussion. In
order to show the results clearly we limit the number

of “return” events to nine. A student did access some
resources 50+ times, however this is considered an
outlier and would make it difficult to see lower num-
ber of accesses. It would be expected that students
that have a higher rate of access are more engaged
with the course.

Figure 4: Results of Frequency of Access by Resource.
Results are ordered by final grade from top to bottom.
Resources are ordered in date of posting.

In our figures we show the edges of the grade band-
ings with heavy horizontal lines, which are ranked
from Distinction to Credit, Pass and Fail. Figure 4
gives us evidence that lower grade students have more
sparse access levels that high grade students. The
lower access rate for failing students is indeed very
clear, hence if we were presented with a student with
a similarly low level of engagement we would expect
them to obtain a similar result. Similarly, we can see
if students are not accessing a key resource as fre-
quently as their peers. For example resource “46”
has been accessed multiple times by students in the
highest grade bands, however the same result is not
seen for students who go on to fail the course. This
type of information is critical when evaluating stu-
dent performance against their peers, and gives likely
indicators of why their results may be unsatisfactory.

We now look at the frequency of access by date in
Figure 5. Again, we would expect that students who
are more successful would return to the forums more
frequently over a larger range of days. More over it
is expected that they access the materials at relevant
times, much like accessing relevant resources.

The matrix clearly shows periods of more intense
access and that students with a higher grade are ac-
cessing the forums more frequently during these pe-
riods. It shows a “ramping up” of accesses at certain
periods that correspond to when assignments are due
as well as the date of the final examination. As an
example, between days 70 and 80, high-achieving stu-
dents access the forums almost daily while failing stu-
dents have a considerably lower amount of accesses.
Overall we can see that failing students have a lower
rate of access.

When presented with a new student an academic
can check their raw access counts first, which will give

CRPIT Volume 136 - Computing Education 2013

112

Figure 5: Results of Frequency of Access by Date.
Results are ordered by final grade from top to bottom.
Dates are from the first day of the course to the end
of the examination period.

a good guide as to a students possible result, and then
obtain more accurate detail using the heat maps.

6 Distance Measures

Finally, we begin grouping students into grade bands
to find if there are particular behavioural patterns
over each grade band. We have shown previously
that there is correlation between behaviour and the
student grade result, we now aim to quantify these
differences and examine the behaviour of each grade
band. This would be most useful after multiple co-
horts have run through the same materials, allowing
quick comparisons to multiple years worth of student
data. It also shows the relative “distances” between
grade bands of students. When presented with a new
piece of data an academic could compare it to the
averaged results of each grade band, and find which
band the new student is closest to, which would be
the likely predictor of their grade.

We obtain the distances between students or bands
of students as a Hamming Distance, where we calcu-
late the difference in magnitude of two binary “be-
havioural vectors”. These behavioural vectors are ob-
tained by filling a vector with a binary 1 or 0 related
to the behaviour, with a 1 either being an access to a
particular resource or an access on a particular date,
a 0 is the absence of this behaviour. Hamming Dis-
tance finds the difference in characteristics between
two vectors. The Hamming Distance is equivalent to
the count of 1s in si XOR sj . A smaller Hamming
Distance will be found for bands with similar access
patterns and a large distance for bands with different
behaviour patterns. We use a heat map to visualize
these differences. For the grade bands we take the
average behaviour for that grade band, e.g. if two
of three students access a resource it is counted as
accessed, if one of three accesses it, it is not. The
Hamming Distance is calculated on these averages to
find the differences between grade bands. A darker
colour indicates a greater similarity, and grade bands
are labelled as earlier.

Figure 6: Results grouping by grade banding. Grades
run from Distinction to Fail, top to bottom, left to
right.

When taking the results averaged over grade band
in Figure 6(a) we see differences between high grade
and failing students. When looking at resource ac-
cesses we see that:

• Credit and pass students are most similar

• Credit and pass students are more similar to dis-
tinction students than to failing students.

• Failing students behave differently to all other
grades.

When looking at accesses by date in Figure 6(b)
we see similar results:

• Failing students are very different to Distinction
students.

• Credit and Pass students are still most similar

• Credit students are almost as similar to Distinc-
tion students as to Passing students.

From this, when presented with a new student we
can combine these two metrics to get the best predic-
tor of their likely result. There may be some difficulty
separating Credit and Pass students, however we are,
in a large number of cases, able separate students who
are failing from those who are passing the course.

7 Discussion

We have created a framework to assist academics in
assessing whether a student is at risk, without im-
posing large additional burdens in time and adminis-
tration. We have shown that surveys or the manual
inspection of data may not be necessary as we were
able to achieve useful results using data easily ob-
tained from a commonly used LMS.

We find that a student’s pattern of study, as mea-
sured by LMS usage, correlates with their final grade
in a course. Our results are supported by studies such
as Lopez et al. (2012) and Morris et al. (2005), who
obtained similar results.

Students who are more engaged with the course
perform better in terms of their final grade. This re-
sult is not unexpected, however, finding a way to mea-
sure engagement and participation is difficult with
larger class sizes and current administrative burden.
Our framework will provide a method with which aca-
demics can measure and visualise participation more

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

113

easily. Further, we also find that students who per-
form better in the course access the most relevant
materials at the appropriate times. This is shown by
Credit students accessing the same materials as Pass-
ing students, but doing so on more appropriate dates.

We present the data obtained visually, allowing
it to be more widely understood, including by those
without a strong statistical background. This allows
academics to identify students who are at risk of fail-
ure, if they are found to be demonstrating patterns
that correlate to this outcome. We have created this
resource without the need for a large amount of man-
ual overhead on the part of the academic and provided
them with a simple medium with which to make pre-
dictions.

We use this data to guide the creation of an au-
tomatic system for detection of failing students, pro-
viding an indicator of the types of flags that may be
put up as warning signs that students are at-risk.

8 Conclusion and Future Work

We have shown that LMS usage can be correlated
with grade, and that we can use simple, highly auto-
mated metrics and visualisations to capture students
who are potentially at-risk. By doing this we hope
that we can increase retention rates as well as course
performance and overall facilitate better learning out-
comes for students. The system provides an auto-
mated tool in order to create these results.

There is the potential for this type of tool
to be built directly into Moodle, as shown with
SNAPP (Dawson et al. 2010) decreasing the amount
of burden to the educator. Further, we can increase
automation by checking correlations automatically
and creating alerts for course co-ordinators to con-
tact students when necessary, rather than the educa-
tor performing this step manually.

Overall, we have shown we are able to find patterns
for successful, as well as at risk students, and use these
to make predictions about likely outcomes. Doing so
may be a step toward decreasing failure rates and
increasing retention rates.

References

Bayer, J., Bydzovská, H., Géryk, J., Obšıvac, T. &
Popelınskỳ, L. (2012), Predicting drop-out from so-
cial behaviour of students, in ‘Proceedings of the
5th International Conference on Educational Data
Mining-EDM 2012’, pp. 103–109.

Becker, K. (2008), ‘The use of unfamiliar words: writ-
ing and cs education’, Journal of Computing Sci-
ence in Colleges 24(2), 13–19.

Biggs, J. & Tang, C. (2007), Teaching for Quality
Learning at University, 3rd edition, The Society for
Research into Higher Education.

Black, E., Dawson, K. & Priem, J. (2008), ‘Data for
free: Using lms activity logs to measure community
in online courses’, The Internet and Higher Educa-
tion 11(2), 65–70.

Casey, K., Gibson, P. & Paris, I. (2010), ‘Mining moo-
dle to understand student behaviour’, International
Conference on Engaging Pedagogy 2010 (ICEP10),
National University of Ireland Maynooth .

Ceddia, J., Sheard, J. & Tibbey, G. (2007), Wat: a
tool for classifying learning activities from a log

file, in ‘Proceedings of the ninth Australasian con-
ference on Computing education-Volume 66’, Aus-
tralian Computer Society, Inc., pp. 11–17.

Dawson, S., Bakharia, A. & Heathcote, E. (2010),
Snapp: Realising the affordances of real-time sna
within networked learning environments, in ‘Pro-
ceedings of the 7th international conference on net-
worked learning, Aalborg 3-4th May’.

Edwards, S., Snyder, J., Pérez-Quiñones, M., Alle-
vato, A., Kim, D. & Tretola, B. (2009), Comparing
effective and ineffective behaviors of student pro-
grammers, in ‘Proceedings of the fifth international
workshop on Computing education research work-
shop’, ACM, pp. 3–14.

El-Halees, A. (2009), ‘Mining students data to ana-
lyze learning behavior: A case study’, Department
of Computer Science, Islamic University of Gaza
PO Box 108.

Falkner, N. & Falkner, K. (2012), A fast measure for
identifying at-risk students in computer science, in
‘Proceedings of the ninth annual international con-
ference on International computing education re-
search’, ACM, pp. 55–62.

Fenwick Jr, J., Norris, C., Barry, F., Rountree, J.,
Spicer, C. & Cheek, S. (2009), ‘Another look at the
behaviors of novice programmers’, ACM SIGCSE
Bulletin 41(1), 296–300.

Georg, W. (2009), ‘Individual and institutional fac-
tors in the tendency to drop out of higher educa-
tion: a multilevel analysis using data from the kon-
stanz student survey’, Studies in Higher Education
34(6), 647–661.

Herbert, N. & Wang, Z. (2007), Student timesheets
can aid in curriculum coordination, in ‘ACM Inter-
national Conference Proceeding Series’, Vol. 239,
pp. 73–80.

Lopez, M., Luna, J., Romero, C., Ventura, S., Molina,
M., Luna, J., Romero, C., Ventura, S., Cano, A.,
Luna, J. et al. (2012), Classification via clustering
for predicting final marks based on student partic-
ipation in forums, in ‘Proceedings of the 5th Inter-
national Conference on Educational Data Mining,
EDM 2012’, Vol. 42, pp. 649–656.

McGregor, H., Saunders, S., Fry, K. & Tayler, E.
(2000), ‘Designing a system for the development
of communication abilities within an engineering
context’, Australian Journal of Communication
27, 83–94.

Merceron, A. & Yacef, K. (2005), Educational data
mining: a case study, in ‘Proceeding of the 2005
conference on Artificial Intelligence in Education:
Supporting Learning through Intelligent and So-
cially Informed Technology’, IOS Press, pp. 467–
474.

Moodle (2007), ‘version 1.9’.
URL: http://moodle.org

Morris, L., Finnegan, C. & Wu, S. (2005), ‘Tracking
student behavior, persistence, and achievement in
online courses’, The Internet and Higher Education
8(3), 221–231.

Murphy, C., Kaiser, G., Loveland, K. & Hasan,
S. (2009), Retina: helping students and instruc-
tors based on observed programming activities, in
‘ACM SIGCSE Bulletin’, Vol. 41, ACM, pp. 178–
182.

CRPIT Volume 136 - Computing Education 2013

114

MySQL (2012), ‘Mysql: the world’s most popular
open source database’.
URL: http://www.mysql.com

Nandi, D., Hamilton, M., Harland, J., Warburton,
G., Hamer, J. & de Raadt, M. (2011), How active
are students in online discussion forums?, in ‘Pro-
ceedings of the Australasian Computing Education
Conference (ACE 2011)’, Australian Computer So-
ciety Sydney, pp. 125–134.

Norris, C., Barry, F., Fenwick Jr, J., Reid, K. &
Rountree, J. (2008), Clockit: collecting quantita-
tive data on how beginning software developers
really work, in ‘ACM SIGCSE Bulletin’, Vol. 40,
ACM, pp. 37–41.

Python (2012), ‘Python’.
URL: http://www.python.org/

R Core Team (2012), R: A Language and Environ-
ment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0.
URL: http://www.R-project.org

Ramsden, P. (2003), Learning to Teach in Higher Ed-
ucation, RoutledgeFalmer, London.

Sheard, J., Carbone, A., Markham, S., Hurst, A.,
Casey, D. & Avram, C. (2008), Performance and
progression of first year ict students, in ‘Proceed-
ings of the Tenth Australasian Computing Educa-
tion Conference (ACE 2008)’.

Sheard, J., Ceddia, J., Hurst, J. & Tuovinen, J.
(2003), ‘Inferring student learning behaviour from
website interactions: A usage analysis’, Education
and Information Technologies 8(3), 245–266.

Zhang, H., Almeroth, K., Knight, A., Bulger, M. &
Mayer, R. (2007), Moodog: Tracking students on-
line learning activities, in ‘Proceedings of World
Conference on Educational Multimedia, Hyperme-
dia and Telecommunications’, pp. 4415–4422.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

115

CRPIT Volume 136 - Computing Education 2013

116

A Comparative Analysis of Results on Programming Exams

James Harland, Daryl D’Souza and Margaret Hamilton

School of Computer Science and IT, RMIT University
GPO Box 2476, Melbourne, 3001, Australia

{james.harland,daryl.dsouza,margaret.hamilton}@rmit.edu.au

Abstract

Measuring student performance on assessments is in-
creasingly important, especially when mapping out-
comes to particular topics in a university subject. In
this paper we investigate the classification of exam
questions. In particular, we examine the performance
of students in two programming subjects, as a means
of determining how we can measure the difficulty of
a particular question. This can not only serve as a
calibration for the expectations of instructors about
the difficulty levels, but also as a means of examining
what it means for a question to be considered diffi-
cult.
Keywords: BABELnot, Exam classification, Assess-
ment measurement

1 Introduction

In Australia, there is a push to measure and compare
educational institutions. School data from 10,000
schools around Australia has been published in the
MySchool website1 and universities are being asked
to be more accountable for their funding and to doc-
ument academic standards clearly. Universities are
being assessed both by our students and by our fund-
ing bodies.

The work reported in this paper contributes to
the overall aims of the BABELnot project (Lister et
al. 2012), which commenced in 2011. It is funded
via a grant from the Office of Learning and Teaching
(OLT), and, in a nutshell, aims to develop a common
language in which educators of programming in ICT
degrees may better communicate about assessments
and standards within their subjects.

Programming has long been regarded as a learn-
ing bottleneck for novices, typically students entering
their first semester of their ICT degrees. High fail-
ure and attrition rates are commonplace, and a lot
of energy has been spent on research to understand
the reasons but yet often the causes of such outcomes
have been explained away on the basis of opinion and
folklore (Sheard et al. 2009). The BABELnot project
seeks to develop an epistemology or common under-
standing of programming concepts and ways of as-
sessing competency across programming subjects.

In the School of Computer Science & IT at RMIT
University, we have several programming subjects,

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 15th Australasian Computer Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 136, Angela Carbone and
Jacqueline Whalley, Ed. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

1www.myschool.edu.au

varying from introductory ones to advanced ones (re-
quiring two or three previous semesters of program-
ming experience). All the subjects involve the learn-
ing of programming, but use Python, Java, PHP and
C as the primary coding languages, and offer dif-
ferent outcomes for undergraduate or postgraduate
students, as well as for various other students tak-
ing a programming stream. For instance, a student
may study multimedia, or games, or engineering, all
of which have degree programs which contain a pro-
gramming stream consisting of three programming
subjects. Also, a student may be undertaking an un-
dergraduate program of three years, or a postgradu-
ate program of one year and still require a knowledge
of programming for their ICT qualification. Hence
the outcomes required by students when undertaking
the programming stream differ immmensely.

The context of each subject makes it very unclear
where to ask to insert various exam questions. An-
other factor is the readiness of the subject manager
to allow exam questions from a different origin. The
learning outcomes of the various subjects are suffi-
ciently different to introduce confusion about whether
or not a particular question will be testing that out-
come. Finally the mixture of concepts required to
answer the question makes it difficult to be able to
place it within the context of any particular subject.

However, despite all of the above difficulties, we
approached all the subject managers and asked if any
would be interested in putting any of our BABEL-
not exam questions into their exam papers for that
semester. Two lecturers agreed, and their answers
provide the results which we discuss here in this pa-
per.

Several issues arise. The stated outcomes and
capabilities in subject guides are typically vague, a
problem being addressed elsewhere in the BABEL-
not project, and often lead to dichotomous teacher-
student perceptions about the questions in exams.
Teachers will of course believe that they are using the
summative assessment instrument appropriately, and
more often than not their attempts are genuine and
sincere in attempting to meet the broadly expressed
outcomes.

On the other hand, and particularly at the intro-
ductory programming stage, students do not neces-
sarily handle summative assessments as their lectur-
ers expect them to (Shuhidan et al. 2010, Tew and
Guzdial 2010). Typically high failure rates demon-
strate that a significant number of students find ex-
ams hard (Tew and Guzdial 2011).

In this paper we investigate how we may use stu-
dent performance on exam questions as an indicator
of the difficulty of the question. In particular, we
wish to be able to relate the Degree of difficulty mea-
sure used in the BABELnot classifications (Sheard

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

117

et al. 2011) to student performance, and hence im-
prove the accuracy of our classification. There are a
number of measures used to classify exam questions,
many of which come with some associated criteria for
their application (Simon et al. 2012). The Degree of
difficulty is intended as a holistic measure, and hence
does not come with any specific criteria. This is also
considered the measure most likely to correlate with
student performance. Hence our focus is on how we
may measure the difficulty of a question by the stu-
dents’ performances on it, and how this relates to the
BABELnot classifications.

Another aim is for a standard approach to the re-
porting of exam performance, and in particular the
statistical information that will best provide for the
classification of questions. There are many issues to
be considered in the development of such a standard
(such as those discussed by Anfoff (Angoff 1971)), and
the approach reported in this paper is not necessarily
going to become a standard one, but it should be seen
as a starting point for discussion.

This paper is organised as follows. In Section 2
we discuss the background to our work, and the BA-
BELnot project. In Section 3, we describe the two
subjects used in our research, and our approach to
analysing the exam results. In Section 4 we present
our data, and in Section 5 we discuss the implications
of it. Finally in Section 6 we present our conclusions
and some areas of further work.

2 Background

As indicated earlier this work contributes to the BA-
BELnot project, which was funded in 2011 by the
the Office of Learning and Teaching (OLT) (http:
//www.olt.gov.au). The BABELnot project held its
inaugural major meeting in October of 2011 in Mel-
bourne and is funded through to August 2013.

The project was prompted by a need to docu-
ment academic standards associated with a sequence
of up to three programming subjects in six partici-
pating universities (UTS, QUT, Monash, RMIT and
the universities of Sydney and Newcastle) and option-
ally other universities as well. In order to meet this
objective, two broad subgoals were presented. One
was to “develop a rich framework for describing the
learning goals associated with programming” and the
other was to “benchmark exam questions that are
mapped onto this framework”. Further details about
the rationale for the project are documented in Lister
et al (Lister et al. 2012). The project unified sev-
eral projects in existence at the time of commence-
ment: Exam Question Classification, Syllabus Speci-
fication, Exam Question Generation and Benchmark-
ing, and Neo-Piagetian Theory (and its application
to the learning of programming).

This paper contributes to the Exam Question Gen-
eration and Benchmarking component of the BABEL-
not project. A significant precursor to this compo-
nent of BABELnot was the BRACElet project (Clear
et al. 2010). The aim of BRACElet was to collect
evidence from end-of-study-period exams to deter-
mine what were the novice programmers’ problems
that caused high failure rates and high attrition rates.
This aim served to establish scientific evidence about
the difficulties faced by novice programmers, in the
face of prevailing folklore “evidence”. The BRACElet
project concluded amongst other things that students
tend not to have problems with low level aspects of
programming, but with the larger picture of piecing
together the parts into a whole, or of not being able
to “see the forest for the trees” (Lister et al. 2012).

The BRACElet project led to a formal investigation
of exam classification in the Exam Question Classifi-
cation and Benchmarking project. To that end, little
further work has been done in the area of benchmark-
ing (Shuhidan et al. 2010).

The ratings used in the BABELnot project involve
a number of different measures. These include

Topics covered
Skill required
Style of question
Open or closed
Degree of difficulty
External domain references
Explicitness
Linguistic complexity
Conceptual complexity
Intellectual complexity (Bloom level)
Code length

The measures for Topics covered and Skills re-
quired come with a list of pre-defined topics and skills
from which a small number must be chosen by the
classifier. The measure for Conceptual complexity
comes with a mapping between particular concepts
covered, and the three ratings of low, medium and
high. The Intellectual complexity measure is based on
Bloom’s taxonomy. The measure for Degree of diffi-
culty is intended as a holistic measure, and one that
should correlate the most with student performance
(although this measure could and should correlate to
some degree with other measures, such as Intellectual
complexity and Conceptual complexity).

3 Exam Questions

In this section we describe our approach to the anal-
ysis of exam questions, and some details of the two
chosen subjects.

3.1 Methodology

There are a number of ways in which exam results
could be analysed (Angoff 1971, de Klerk 2008). Our
intention is to inform our classification of exam ques-
tions by student performance results, and in partic-
ular to see how our perceptions of difficulty align
with the marks obtained by the students on particular
questions or groups of questions.

In order to do this, we first look at the over-
all grade distribution. This gives us some insight
into the overall difficulty of the exam, as well as the
distribution of ‘student types’, i.e. how many high-
achieving students there are compared to those who
barely pass. The most obvious categorisation of stu-
dent types is by the grades they achieve, and so we
will classify students according to their grades, rather
than a finer-grained scheme (e.g. the percentage decile
in which their mark falls) or a coarser-grained one
(e.g. whether they passed the exam or not).

The relevant grades are given in the table below.

Grade Mark Name
HD ≥ 80% High Distinction
DI < 80% and ≥ 70% Distinction
CR < 70% and ≥ 60% Credit
PA < 60% and ≥ 50% Pass
NN < 50% and ≥ 25% Fail
FF < 25%

FF is not actually a separate grade from NN. How-
ever, we separate the data here for analysis purposes
(and specifically to try to isolate ‘genuine’ failures

CRPIT Volume 136 - Computing Education 2013

118

from those who made no serious attempt). As it turns
out, there were comparatively few of these students
(4 out of 236 in P1, and 6 out of 160 in PT), and
hence their effect on our results is minimal.

We then investigate the students’ performance on
each question or question type. Firstly, we look at the
mean and median marks for each question (and the
mode, if applicable). This gives us some indication
of the performance of the students on each question,
as well as the range of marks. For example, there are
some questions in which the mean mark is well be-
low the median, which indicates that there is a wide
spread of marks (as if at least 50% of the students
scored better than the average, then the lower scoring
students must have scored generally very low marks).
In cases where the median mark is 100%, this indi-
cates that at least half the students got full marks.

Our next two analyses are similar in spirit, but dif-
fer on some detail. One analysis looks at performance
on each question by the different classes of students,
as classified by their grades. Hence we look at how
the HD students performed on each question or ques-
tion type, as measured by the average mark obtained
on the question by the HD students. We then per-
form the same analysis for the DI students, the CR
students and so on. This effectively gives us a profile
of the performance of a ‘typical’ HD, DI, CR, PA,
NN or FF student, and in particular how this ques-
tion can be rated by the students’ performance on
it (e.g. “The best students generally struggled with
this question, while the weaker students found it very
difficult”).

The other analysis is to consider the number and
range of marks obtained for each question. We do this
by looking at the number of students who scored 80
or more on this question, and we label these students
as HD, those who obtained between 70% and 80% as
DI, and so forth, giving us an idea of the distribution
of the performance of the overall student population
on each question. This will help inform us about the
rating of questions by allowing us to draw conclusions
such as “Very few students got full marks for this
question” or that “Most students got at least 50% on
this question”.

Hence the difference between these two latter anal-
yses is that the former divides the student popula-
tion into classes, and then looks at the performance
of each class on specific questions, whereas the lat-
ter one looks at the spread of student marks for each
question.

3.2 Subjects

Both of the subjects whose results are presented here
were taught in semester 1, 2012 at RMIT University.

Programming 1 is a first programming subject
in Java, with no previous knowledge of programming
necessary. There were 236 students in semester 1,
2012 who sat for the exam in this subject. In BA-
BELnot terms, this is a level 1 subject.

The Programming 1 exam consisted of three main
parts:

1. 20 multiple choice questions (30 marks)

2. 6 short answer questions (35 marks)

3. 3 interrelated programming problems (35 marks)

We will refer to each of these three parts as MCQ,
Short and Classes respectively.

Programming Techniques assumes some signif-
icant programming experience, and specifically two

0

10

20

30

40

50

60

70

80

HD DI CR PA NN FF

P1 Grade Distribution Number of students

Figure 1: Programming 1: Overall grades

58.0

60.0

62.0

64.0

66.0

68.0

70.0

72.0

74.0

76.0

78.0

MCQ Short Classes Overall

P1 Mean & Median vs Question Type

Mean (%)

Median (%)

%

Figure 2: Programming 1: Mean & Median

previous semesters of programming in Java. This sub-
ject is taught in C, and 160 students sat for the exam
in semester 1, 2012. In BABELnot terms, this is a
level 3 subject.

The Programming Techniques exam consisted of

1. 7 short answer questions (35 marks)

2. 9 programming problems (145 marks)

4 Exam Results

In this section we discuss the results for Programming
1 and Programming Techniques.

4.1 Programming 1

The results for Programming 1 are presented in Fig-
ures 1, 2, 3 and 4.

The graph in Figure 1 (‘P1 Grade Distribution’)
shows the overall distribution of grades. This con-
forms to a typical pattern for introductory program-
ming subjects, i.e. showing some bipolar tendencies.
70 students out of the total of 236 (or almost 30%) got
a grade of HD, whilst around 16% failed. Of the pass-
ing grades, PA had the lowest proportion of students
at 10%.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

119

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

MCQ Short Classes Overall

P1 Average Performance vs Question Type
(grouped by overall grade)

HD

DI

CR

PA

NN

FF

%

Figure 3: Programming 1: Student type performance

The graph in Figure 2 (‘P1 Mean & Median’)
shows the mean and median mark on each of the three
sets of questions (the mode mark for all three was
zero). One point to note is that the average mark on
all three question sets was above 60%. Given that
the median is higher than the mean on all three ques-
tion sets, this is some evidence of a wide spread of
marks, as if at least 50% of the students scored bet-
ter than the average, then the lower scoring students
must have scored generally very low marks.

It is perhaps a little surprising that the highest av-
erage mark is for the Classes questions, which are the
ones that would be expected to be the most difficult.
This is probably explained by the fact that the Pro-
gramming 1 students were informed in advance of the
scenario on which the questions would be based, and
the students were given code skeletons which they had
to complete. This was a new approach compared to
previous years, in which students were not informed
in this way, and they had to write complete pieces of
code.

The graph in Figure 3 (‘P1 Student type perfor-
mance’) shows the performance of the students, clas-
sified by their grade, against the three question types
and their overall results. In other words, the stu-
dents who obtained an HD grade scored an average
of just over 80% on the MCQ questions, just under
90% on the Short questions and just over 90% on
the Classes questions, whilst averaging 88% overall.
Those who obtained a DI grade had a similar pat-
tern of also performing best on the Classes questions.
The CR and PA students were at their worst on the
Short questions, unlike the HD and DI students, for
whom the MCQ questions were their worst perfor-
mance. This is a little counter-intuitive, in that one
may expect the better students to perform best on all
questions; further analysis of this data and compari-
son with similar exams are some items of future work.
Less surprisingly, the NN and FF students performed
best on the MCQ questions.

An interesting property of the Classes questions
is that they appear to have an “Eden-Monaro” prop-
erty, i.e. that performance on this question mirrors ac-
curately the students’ performance on the exam over-
all.2 This property is that the students who obtained
HD overall scored at least 80% on this question, those

2Eden-Monaro is an Australian Electoral Division which has
been held by the government of the day since 1972, and has gained
a reputation as an indicator of national voting trends.

0

10

20

30

40

50

60

70

80

90

100

MCQ Short Classes Overall

P1 Student performance vs Question Type
(grouped by question performance)

HD

DI

CR

PA

NN

FF

Number of
students

Figure 4: Programming 1: Student performance

who obtained DI scored between 70% and 79%, those
who obtained CR scored between 60% and 69%, those
who obtained PA scored between 50% and 59% and
those who failed the exam scored less than 50%. This
is perhaps not altogether unsurprising given that the
Classes questions are worth 35 marks out of a total
of 100, but it is also worth noting that neither of the
other two question sets, worth a total of 65 marks
overall, had this property.

The graph in Figure 4 (‘P1 Student performance’)
shows the performance of the students on each ques-
tion. Hence nearly 100 students got 80% or more on
the Classes questions, with just under 60 students
getting 80% or more on the MCQ questions. This
shows perhaps most starkly that the students per-
formed best on the Classes questions.

In order to compare the effectiveness of the three
question sets (MCQ, Short, Classes) as means of
classifying students, we performed a χ2 test compar-
ing performance on the individual question sets com-
pared with the students overall performance. This
returned Pr values of 0.027, 0.072 and 0.032 for the
sets MCQ, Short and Classes respectively. This is
in some ways a biased test, in that each class com-
ponent forms a part of the overall performance, but
interestingly only the Short class returned a Pr value
over the traditional threshold of 0.05 for statistical
significance. From this we conclude that the Short
class of questions was a more accurate prediction of
the students’ overall performance than either of the
other two question sets.

We also performed similar tests comparing each
pair of question sets. The only one of these three
pairs to return a non-zero Pr value was for Short and
Classes, for which the value was 0.067. This suggests
that there is some correlation between performance
on these sets of questions, but that the performance
on MCQ does not reflect performance on the other
sets.

4.2 Programming Techniques

The results for Programming Techniques are pre-
sented in Figures 5, 6, 7, 8 and 9.

The graph in Figure 5 (‘PT Grade Distribution’)
shows the overall distribution of grades. This con-
forms to a typical pattern for advanced programming
subjects, with a large number of students getting a
grade of HD. This is at least partly due to students

CRPIT Volume 136 - Computing Education 2013

120

0

10

20

30

40

50

60

70

80

HD DI CR PA NN FF

PT Grade Distribution Number of students

Figure 5: PT: Grade Distribution

having to have completed two prior semesters of pro-
gramming before entering this subject, and so a rela-
tively advanced level of programming ability is a pre-
requisite.

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PT Mean, Median & Mode

Mean (%)

Median (%)

Mode (%)

%

Figure 6: PT: Mean, Median & Mode

The graph in Figure 6 (‘PT Mean, Median &
Mode’) shows the mean, median and mode for each
question. Note the scale of the graph, in which the
lowest value shown is 50%, reflecting that the mean,
median and mode for each question was at least 50%
(and in fact the lowest mean value was 57%). From
this it seems reasonable to conclude that Question
4 was the one the students found easiest, as it had
the highest mean (of 90%) and with the median and
mode both being 100%. Questions 1, 3, 4, 7 and
14, being those for which the median and mode are
100% could also be argued to be ones on which per-
formance showed some variability, with Question 1
(the one with the lowest mean) the most varied of
all. Questions 5 and 6, in contrast, had the most uni-
form performance, with the mean, median and mode
marks all virtually identical. It is also notable that
Questions 2 and 10 are arguably the most difficult,
with the two lowest median marks. The high modes
for each of these questions suggests that the distri-
bution is bi-polar rather than spread, i.e. that most
student either got most of the marks, or very few

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PT Student type performance

HD

DI

CR

PA

NN

FF

%

Figure 7: PT: Student type performace

marks.
The graph in Figure 7 (‘PT Student type perfor-

mance’) shows shows the performance of the students,
classified by their grade, against all questions. The
HD students, as expected, were the best performed
students on all questions. However, the questions on
which the average marks were lowest were Questions
1 and 2. It is clear from this graph that Question 4
can be considered the easiest question, as every class
of student scored 80% or more for this question. The
fact that the CR students performed slightly worse
than the PA, NN and FF students is presumably due
to noise, rather than indicative of anything more sig-
nificant. It is also noticeable that the only questions
on which NN or FF students scored an average of 50%
or more were Questions 4, 5, 6 and 9, which also sug-
gests that these were easier questions than the others.
Question 14 is also arguably an easier question, given
that the HD students got an average mark of 99%
on it, and it was also the question on which the PA
students obtained their second-highest average mark
(after Question 4). However, the NN and FF stu-
dents didn’t score particularly well on this question.
As the PA students had an average mark of 75%, this
question seems to have a ‘polarising’ quality, in that
students who passed the exam generally did well on
it, but those who failed tended to score poorly on
it. Similar comments apply to Questions 3, 8, 11, 12
and 13. Question 7 is almost in the same class, ex-
cept for the rather puzzling ‘reversal’ of performance
of the DI and CR students on this question (the DI
students averaged 49%, the CR students 75%).

Question 15 is arguably a moderately challenging
question, in that the only classes of students with
an average mark of 50% or more were the HD and DI
students. This has a similar polarising effect, but this
time in separating the better students from those who
barely pass or fail. Question 10 is similar. Questions
1 and 2 are similar, although the division between the
HD students and the DI students is starker, and the
performance of the CR and PA students is more vari-
able on Questions 1 and 2, making them seemingly
less reliable polarisers.

Question 16 could also be considered a polarising
question, in that the HD, DI and CR students all
performed relatively well, but with the PA students
scoring an average of 47%.

Question 11 has the Eden-Monaro property men-
tioned above (i.e. a students performance on this

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

121

question accurately reflects his or her overall mark).
Questions 3 is similar, although not quite perfect
given that the CR students have an average mark
of 70%.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PT Student performance

HD

DI

CR

PA

NN

FF

Number of students

Figure 8: PT: Student performance

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PT Student performance (CR,PA,NN only)

CR

PA

NN

Number of students

Figure 9: PT: Student performance (CR, PA, & NN
only)

The graph in Figure 6 (‘PT Student performance’)
show the performance of the students on each ques-
tion. The graph in Figure 9 shows only the perfor-
mance levels of CR, PA and NN, as these are obscured
somewhat in the upper figure by the relatively high
values for HD, DI and FF. It is easily seen that the
proportion of students getting HD on each question
is very high, with the exceptions of Questions 5 and
6, suggesting that these were a little more difficult (or
more likely that there was a minor loss of marks that
was very common). One could also imagine a metric
for difficulty based on the number of HD scores on
the question, which would indicate that the 5 easiest
questions (in descending order) were Questions 4, 14,
9, 16 and 3, although if the metric was the number
of HDs and DIs on a particular question, then Ques-
tions 5 and 6 would be the two easiest. It should also
be noted that as Questions 1 to 7 were marked out
of 5, there is a more limited scope for distinguishing
between passing grades (ie between HD, DI, CR and
PA) than on other questions.

Question 1 clearly had a polarising effect, in that
almost all students got either over 80% or under 25%.
Questions 3 and 7 are similar, without being quite as
extreme, and if one considers the HD and DI popula-
tion together, Questions 5 and 6 also had this effect.
One could also argue that Questions 1, 7, 3, 15 and
2 were the most difficult, on the grounds that these
were the questions with the greatest number of stu-
dents who scored in the FF range

We also performed χ2 tests for each of Questions 1
to 16 compared to the overall result. The only values
that were not 0 or 0.001 were those for Questions 8,
11 and 13 with values of 0.046, 0.046 and 0.527 re-
spectively, of which only the value of 0.527 for Ques-
tion 13 is above the threshold value of 0.05 for signif-
icance. Hence student performance on Question 13
seems to be a very good predictor of overall perfor-
mance, with Questions 8 and 11 not at the same level,
but perhaps having some indication of ability, espe-
cially when compared to all of the other questions.

5 Discussion

As mentioned above, we are interested in investigat-
ing the Degree of difficulty measure. This is intended
as a holistic measure, and one that should correlate
the most with student performance (although this
measure could and should correlate to some degree
with other measures, such as Intellectual complexity
and Conceptual complexity). We may see the results
discussed above as a measure of the Degree of diffi-
culty more than anything else. Given that the rating
is one of the three values low, medium and high, it
would seem reasonable to use the above data to de-
termine a way of classifying questions on this scale
according to student performance (such as an aver-
age mark of 80% indicating that the question is of
low difficulty).

Turning to the Programming 1 result discussed
above, it seems that measuring Degree of difficulty
by looking at the average mark on a question is too
simplistic; it is important to look at the spread of
results and whether the question is ‘polarising’ stu-
dents or not. In relative terms, Classes was the one
the students found easiest, with MCQ next and then
Short. The better students (HD, DI) tended to score
better marks on Short than on MCQ (a situation
that is reversed for every other type of student), but
it is arguable that this is a property of more diffi-
cult questions. Certainly a question on which the
top students struggle to get more than 50% would be
considered difficult; is a question difficult if the top
students do well, but other students struggle? In the
case of Short, it would seem that this would be con-
sidered medium, as it doesn’t seem to be low, and to
class it as high when nearly half the students score
more than 70% doesn’t seem right. This seems to
leave the only option for MCQ to be also medium,
as it is hard to argue that it is more difficult than
Short, but calling it low seems to contradict that
this was the question on which the HD and DI stu-
dents scored least well. This would make Classes
either low or medium, depending on how significant
one feels the Eden-Monaro property is (with greater
signficance indicating a stronger likelihood that it is
medium).

Turning to Programming Techniques, it seems
clear that Questions 4 and 6 should be classified as
low (if for no other reason that the FF students scored
nearly 90% on Quetion 4 on average, and over 50%
on Question 6). One could also argue that Question
5 should be rated as low, as on this question, the

CRPIT Volume 136 - Computing Education 2013

122

NN students scored more than 50% on average (and
Questions 4, 5, 6 and 9 were the only ones with this
property). On the strong overall performance of the
students, it would seem a long bow to draw to classify
any of the question as high. The hardest questions,
according to the mean mark, were Questions 1, 10, 2
and 15 respectively, and on these questions the HD
and DI students generally did well, whilst the others
struggled. This is analogous to the Short question
on Programming 1. Note also that there is a polar-
ising effect here, strongest in Question 1, but present
to some degree in Questions 10 and 15. Hence it is
tempting to classify Questions 4,5,6 and 9 as the eas-
iest group, Questions 1, 2, 10 and 15 as the hardest,
and the remaining 8 questions somewhere in the mid-
dle. It seems hard to argue that Questions 1, 2, 10
and 15 are of high difficulty, and at least as hard to
argue that they are low. It seems reasonable to argue
that Questions 4, 5 and 6 (and possibly 9) are low,
but this would make all others (in this case at least
12 out of 16 questions) medium.

Questions 7 and 12 on the Programming Tech-
niques exam were drawn from the BABELnot reposi-
tory, as were Questions 5, 11 and 12 from the MCQ
questions on the Programming 1 exam. In fact, Ques-
tion 12 on the Programming Techniques exam and
Question 11 on the MCQ questions were basically the
same, only that the Programming 1 version was scaf-
folded to a much greater degree, and the students only
had to select which lines of code had to be changed.
The Programming Techniques students had to write
complete (C) code for the specified function.

We have not presented the data for the individual
parts of the MCQ questions, and so it is hard to make
a direct comparison between performance on the Pro-
gramming 1 version of the question compared to the
one for Programming Techniques. However, we
note that Question 12 on the Programming Tech-
niques exam had a mode of 100%, an average mark
of 74% and a median of 86%. Moreover, the passing
students (i.e. the HD, DI, CR, and PA students) all
did well on this question, whilst the NN and FF stu-
dents scored an average of 42% and 7% respectively.
Hence, whilst it may not be the easiest question on
the paper, it was in the easier half, at least. It is
also worth noting that 49% of the Programming 1
students got the correct answer for MCQ Question
11. This lower level of performance together with the
simpler nature of the question being asked tends to
indicate that the Programming 1 students found
this question considerably more difficult than their
Programming Techniques counterparts, as would
be expected.

6 Conclusions and Further Work

We have discussed the exam results of two program-
ming subjects, one of which assumes no programming
background, and the other requiring two semesters of
programming experience. We have seen how attempt-
ing to align student performance on these exams with
the BABELnot notions of Degree of difficulty has led
to some complications. On the basis of these results,
it seems reasonable to conclude that an absolute scale
of low, medium and high is not appropriate for clas-
sifying questions (or at least not for classifying ques-
tions based on students’ results). The underlying is-
sue is that this measure is attempting to summarise
student performance in an overly simplistic way; it
seems that the distribution of students’ marks con-
tains some features which are not readily apparent in
a three-point scale.

Perhaps the most intuitive way to characterise the
difficulty of questions is to look at student types, and
to determine the difficulty of the question relative to
the performance of each student type. For example, if
the weakest students (as measured by overall perfor-
mance on the exam) get an average of 90% or more, it
seems inescapable that the question is of low difficulty.
However, when the performance of each student type
diverges, it can be more problematic. For example, if
half of the student get full marks and the other half
get 0, how difficult is the question? It would seem
that it is better to classify such a question as a ‘per-
fect polariser’ rather than being of a particular level
of difficulty.

It certainly seems that the only way to make
progress on issues like these is to continue analy-
ses of this sort on an increasingly large set of data.
This would allow more detailed and specific criteria
to emerge, and possibly also a more refined under-
standing of the notion of difficulty.

One item of future work is to perform a further
analysis of the data from these two exams, such as
measuring the internal consistency of the questions in
each exam, as suggested by de Klerk(de Klerk 2008),
using inter-correlations as measured by Cronbach’s
Alpha. Another issue discussed by de Klerk is the
validity of testing, which in our case correponds to
determining the appropriate level of content for level
1 and level 3 programming exams. Another possibil-
ity is to determine the difficulty of a given question in
comparison to a normative sample, or standard group
for comparison purposes. Both of these aspects will
be informed and enhanced by the work of the BA-
BELnot project.

References

Angoff, W., (1971), Scales, norms, and equivalent
scores, in R.L. Thomdike (Ed.), Educational mea-
surement (2nd ed., pp. 508-600). Washington, DC:
American Council on Education.

Clear, T., Whalley, J., Robbins, A., Philpott, A.,
Eckerdal, A., Laakso. M-J., and Lister, R., (2011),
Report on the final BRACElet workshop, Auckland
University of Technology, September 2010, Journal
of Applied Computing and Information 15(1).

de Klerk, G., Classical test theory (CTT), in M.
Born, C.D. Foxcroft & R. Butter (Eds.), On-
line Readings in Testing and Assessment, Interna-
tional Test Commission, http://www.intestcom.
org/Publications/ORTA.php.

Lister, R., Clear, T., Simon, Bouvier, D., Carter, P.,
Eckerdal, A., Jackova, J., Lopez, M., McCartney,
R., Robbins, A., Seppala O., and Thompson, E.,
(2011), Naturally occurring data as research instru-
ment: analyzing examination responses to study the
novice programmer, SIGCSE Bulletin 41:156-173.

Lister, R., Corney, M., Curran, J., D’Souza, D.,
Fidge, C., Gluga, R., Hamilton, M., Harland, J.,
Hogan, J., Kay, J., Murphy, T., Roggenkamp, M.,
Sheard, J., Simon and Teague, D., (2012), Towards
a shared understanding of competency in program-
ming: An invitation to the BABELnot project, in
Proceedings of the Fourteenth Australasian Com-
puting Education Conference (ACE2012) 53-60,
Melbourne, Australia.

Lister, R.,(2011), Concrete and other neo-Piatetian
forms of reasoning in the novice programmer, Thir-

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

123

teenth Australasian Computing Education Confer-
ence (ACE2011), Perth, Australia, 9-18.

Petersen, A., Craig, M., and Zingaro, D.,(2011), Re-
viewing CS1 exam question content, SIGCSE 2011,
Dallas, Texas, USA, 631-636.

Schulte C., and Bennedsen, J.,(2006), What do teach-
ers teach in introductory programming? Second In-
ternational Computing Education Research Work-
shop (ICER 2006), Canterbury, UK, 17-28.

Sheard, J.,Simon, Hamilton, M., and Lonnberg,
J., (2009), Analysis of research into the teaching
and learning of programming, Fifth International
Workshop on Computing Education (ICER 2009),
Berkeley, CA, USA, 93-104.

Sheard, J., Simon, Carbone, A., Chinn, D., Laakso,
M-J., Clear, T., de Raadt, M., D’Souza, D., Har-
land, J., Lister, R., Philpott, A., and Warburton,
G., (2011), Exploring programming assessment in-
struments: a classification scheme for examina-
tion questions, Seventh International Computing
Education Research Workshop (ICER2011), Prov-
idence, RI, USA, 33-38.

Shuhidan, S., Hamilton, M., and D’Souza, D., (2010),
Instructor perspectives of multiple choice questions
in summative assessment for novice programmers,
Computer Science Education 20:229-259, 2010.

Simon, Sheard, J., Carbone, A., Chinn, D., Laakso,
M-J., Clear, T., de Raadt, M., D’Souza, D., Lis-
ter, R., Philpott, A., Skene, J., and Warburton,
G., (2012), Introductory programming: examining
the exams, Fourteenth Computing Education Con-
ference (ACE2012), Melbourne, Australia.

Elliott Tew, A., and Guzdial, M., (2010), Develop-
ing a validated assessment of fundamental CS1 con-
cepts, Proceedings of 41st SIGCSE Technical Sym-
posium on Computer Science Education 97-101,
Milwaukee, 2010.

Elliott Tew. A., and Guzdial, M., (2011), The FCS1:
A language independent assessment CS1 concepts,
Proceedings of the 42nd SIGCSE Technical Sym-
posium on Computer Science Education 111-116,
Dallas, 2011.

Appendix: Programming Techniques Exam
Questions

QUESTION 7

In one sentence, explain the purpose of the following piece of code.

int fn(int *array, size_t n)
{
 size_t i;

 for (i = 0; i < n - 1; i++) {
 if (array[i] > array[i + 1])
 return -1;
 }

 return 1;
}

QUESTION 12

The purpose of the block of code below is to take an array of integers

 and move all elements of the array one place to the right, with the

rightmost element moving around to the leftmost position.

void shift_right(int *array, int n)
{
 int temp = array[n - 1];

 int i;

 for (i = n - 2; i >= 0; i--)
 array[i + 1] = array[i];

 array[0] = temp;
}

Write a function shift_left that will move all elements of the array

one place to the left, with the leftmost element moving around to the

rightmost position.

void shift_left(int *array, int n)
{
 /* . . . */
}

CRPIT Volume 136 - Computing Education 2013

124

Appendix: Programming 1 Exam Questions

 2

QUESTION 5 (1.5 Marks) Consider the following method:

boolean testArray(int [] x, int arrayLength)

{

 for (int i = 0; i < arrayLength-1; i++)

 {
 if (x[i] > x[i+1]) return false;

 }

 return true;

}

If testArray returns true after this code is executed, which of the following is the strongest

statement we can make about the contents of the array x? Assume the subscripts p, p+1, and q

are legal indexes of x.

A) x[p] <= x[q] for all p < q.

B) x[p] <= x[p+1]

C) x[p] <= x[p+1] where p is an even number (i.e. 0, 2, 4, etc).

D)

E)

No statement can be made, as the last iteration of the loop will attempt to index an element

of the array that does not exist.
x[0] < x[arrayLength-1]

QUESTION 11 (1.5 Marks)

The code below in the right of the table moves all elements of the array x one place to the right, with the

rightmost element being moved to the leftmost position. The variable length contains the number of

elements in the array x:

Line left right

1 int temp = ??? int temp = x[length-1];

2 for (int i ???
for (int i=length-2; i>=0; i--

)

3 x[i-1] = x[i]; x[i+1] = x[i];

4 ??? = temp; x[0] = temp;

Consider the partial code provided in the above table, on the left. When the occurrences of ??? are replaced

with appropriate code, that code can undo the effect of the code on the right. That is, when the ??? are

replaced appropriately, the code can move all elements of the array x one place to the left, with the leftmost

element being moved to the rightmost position.

The table already shows that line 3 is different in the code on left to the code on the right. When the ??? on

lines 1, 2 and 4 are replaced with appropriate code, which of these lines of code must be different between

the left and the right

A) None of the lines 1, 2 and 4 must be different.

B) Only lines 1 and 4 must be different.

C) Only line 2 must be different.

D) All of the lines 1, 2 and 4 must be different.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

125

 2

 QUESTION 12

(1.5 Marks)

Below is incomplete code for a function which returns the minimum value in

the array x. When an appropriate line of code is selected from each box, the

completed code will scan across the array, using the variable minsofar to

remember the best candidate for minimum so far.

int min(int x[], int arrayLength)

{

 int minsofar = ;

 for (int i = 1 ; i < arrayLength; i++)

 {

 if (x[i] <)

 {

 minsofar = ;

 }

 }

 return ;

}

Which of the following choices of lines from the boxes will produce a correct

version of the function min?

 A) Lines ACFG only.

 B) Lines ADEH only.

 C) Lines BCFG only.

 D) Both lines ADEH and lines BCFG.

(A) 0

(B) x[0]

(C) minsofar

(D) x[minsofar]

(E) i

(F) x[i]

(G) minsofar

(H) x[minsofar]

CRPIT Volume 136 - Computing Education 2013

126

Examining Student Reflections from a Constructively Aligned
Introductory Programming Unit

Andrew Cain Clinton J Woodward

Faculty of Information and Communication Technologies
Swinburne University of Technology,

John Street, Hawthorn, Victoria 3122,
Email: acain@swin.edu.au cwoodward@swin.edu.au

Abstract

Constructive alignment has been widely accepted as
a strong pedagogical approach that promotes deep
learning, however its application to programming
units in higher education has not been widely re-
ported. A constructively aligned introductory pro-
gramming unit with portfolio assessment provides an
opportunity for students to reflect on their learning.
These reflections provide a rich source of information
for educators looking to identify topical and pedagog-
ical issues influencing student outcomes. In this work
we applied thematic analysis to the reflective reports
presented by students as part of their portfolio sub-
mission for an introductory programming unit. The
analysis indicates several interesting aspects related
to both topical and pedagogical issues. These results
can be used to inform the development of construc-
tively aligned programming units, and inform future
research.

Keywords: Constructive Alignment, Portfolio Assess-
ment, Reflection, Introductory Programming, Pro-
gramming Issues, Thematic Analysis.

1 Introduction

Biggs’ model of Constructive Alignment (Biggs 1996),
based upon constructive learning theory (construc-
tivism) and aligned curriculum (Cohen 1987), aims
to enhance student learning outcomes by focusing on
what the student does. The challenges of teaching in-
troductory programming are widely reported (Pears
et al. 2007), and it has been argued that computer sci-
ence and software engineering units1 need to transi-
tion to constructive alignment in order to better meet
the requirements of the profession and improve stu-
dent engagement with the field (Armarego 2009).

Recent work by Thota & Whitfield (2010) and our
work in Cain & Woodward (2012) have demonstrated
different methods for applying the principles of con-
structive alignment to the teaching of introductory
programming. Thota & Whitfield (2010) presented
a holistic and constructively aligned approach, align-
ing traditional forms of assessment and activities with
cognitive and affective learning outcomes. We sug-
gest that, in some respects, the use of traditional as-
sessment methods can limit student engagement and
constructive alignment. In Cain & Woodward (2012)

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 15th Australasian Computer Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 136, Angela Carbone and
Jacqueline Whalley, Ed. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

we proposed an alternative approach using portfolio
assessment to create a constructively aligned intro-
ductory programming unit. It is a similar approach
to that originally proposed by Biggs & Tang (1997).

A key aspect of portfolio assessment is to encour-
age students to reflect on their learning (Biggs &
Tang 1997). In the approach we suggested in (Cain
& Woodward 2012), these reflections are captured in
a reflective report that is required as part of each
student’s portfolio. In these reflections students are
required to discuss the pieces they have included in
their portfolio, and how they relate to intended learn-
ing outcomes. Students are also encouraged to reflect
on their learning in general.

By considering issues students are facing, as ed-
ucators we are able to adapt teaching methods with
the aim of improving student outcomes. In a survey
by Pears et al. (2007), existing work on the teach-
ing of introductory programming was considered and
related to defined categories of curricula, pedagogy,
language choice, and tools for teaching. Issues for
students can be related to each of these areas. Al-
though the last two categories are important, they are
typically selected by teaching staff with little student
input. The outcomes of research related to curricula
and pedagogy are intrinsically more general in nature,
and of use in a broader context.

A number of other studies have examined the na-
ture of issues faced by novice programmers (Robins
et al. 2003, Lahtinen et al. 2005). Some of the prob-
lems identified by Robins et al. (2003) included is-
sues related to program design, algorithmic complex-
ity, certain language features, and “fragile” novice
knowledge. Lahtinen et al. (2005) conducted a sur-
vey of over 500 students, across a number of courses
and institutions, asking them to rate various issues.
Results indicated that issues with pointers and ref-
erences, error handling, and recursion were compara-
tively ranked as more difficult than issues with selec-
tion structures, loops, and variables. Our work will
build on these findings by examining issues identified
by students undertaking a portfolio assessed introduc-
tory programming unit.

As part of an ongoing initiative to improve con-
structively aligned portfolio assessment for introduc-
tory programming, we wish to reflect on the learning
outcomes presented in students’ portfolios.2 Student
reflections provide an open opportunity to identify is-
sues that are relevant from the students’ perspective.
The investigation presented in this paper analyses is-
sues identified in student reflections from a construc-
tively aligned, portfolio assessed, introductory pro-
gramming unit, and we provide some recommenda-
tions to help inform the development of units using
this approach.

This paper first outlines the method used in con-

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

127

ducting the research, with details on the unit under
investigation, the composition of the student cohort,
and the analysis method used. Results from the data
collection phase of the research are then presented.
After the Results section, the Discussion presents
our interpretation and analysis of the data, includ-
ing recommendations to help inform the development
of units delivered using this approach, and ideas for
future research in this area.

2 Method

This section is divided into three parts to clearly de-
scribe the Introductory Programming Unit, the Stu-
dent Cohort and Research Participation, and the The-
matic Analysis of Reflections. In the Introductory
Programming Unit section we provide details of the
unit that was investigated as part of this research.
The Student Cohort and Research Participation sec-
tion details the student body undertaking this unit
and how they were recruited to be part of this re-
search. Finally the Thematic Analysis of Reflections
section outlines the process followed to extract and
analyse the data from the student portfolios.

2.1 Introductory Programming Unit

The unit investigated in this work was a first year,
first semester, programming unit. The design, devel-
opment and delivery of this unit followed the princi-
ples we outlined in Cain & Woodward (2012). This
involved the definition of Intended Learning Out-
comes, supporting Teaching and Learning Activities
and Portfolio Assessment with Iterative Feedback.
Each of these are discussed in the following sections
as context for the thematic analysis.

2.1.1 Intended Learning Outcomes

The Intended Learning Outcomes (ILOs), listed in
Fig. 1, were central to all aspects of the unit. They
formed the central focus for students, who were re-
quired to prepare a portfolio to demonstrate they had
met these outcomes by the end of the unit. The ILOs
guided teaching and learning activities, which were
designed to help students build skills and to give them
opportunities to develop work that could be included
in their portfolios.

This unit aimed to introduce students to struc-
tured programming3 and this is reflected in the par-
ticular wording of the ILOs.

To allow students to explore these concepts a
modern version of the Pascal programming language
(Wirth 1971, Van Canneyt & Klämpfl 2011) was used,
with a brief demonstration of the C programming lan-
guage (Ritchie et al. 1978) toward the end of the unit.

2.1.2 Teaching and Learning Activities

Teaching activities took place in scheduled lectures
and laboratory classes. The semester was thirteen
weeks, twelve of which were teaching weeks, and a
single week semester break in week eight. Topics for
the twelve lectures are shown in the following list.

1. Programs, Procedure, Compiling and Syntax

2. User Input and Working with Data

3. Functions, Procedures, and Parameters

4. Branches and Loops

5. Custom Data Types

6. Functional Decomposition

7. Case Study

8. Pointers and Dynamic Memory Management

9. Structured Programming

10. Recursion and Backtracking

11. Portfolio Preparation

12. Review and Future Studies

The unit’s delivery included an early introduction
topic of “understanding syntax”, where students were
taught how to read programming language syntax
using the visual “railroad” diagram syntax notation
(Braz 1990). This allowed later lecture topics to fo-
cus on concepts, with syntax being offloaded to pro-
gramming demonstrations and supplied notes, which
included railroad diagrams and small code examples
for each programming statement.

Allocated classes were designed with the goal of ac-
tively engaging students. Lectures typically included
a review of previous topics, a short presentation using
“Beyond Bullet Points” style lecture slides (Atkin-
son 2007), an interactive programming demonstra-
tion, and group activities. Laboratory sessions in-
volved code reading activities, guided coding activi-
ties, and practical hands-on exercises.

2.1.3 Iterative Formative Feedback

Assessment in the unit included both formative and
summative forms. Weekly assignments were sub-
mitted for formative feedback, with summative as-
sessment of a portfolio submitted in the two week
examination period that followed the thirteen week
semester. A student’s final grade was determined us-
ing criterion referenced assessment (Biggs 1996).

A high importance was placed on the iterative,
formative feedback aspect of the portfolio assessment
process (Cain & Woodward 2012). In this unit, stu-
dents were required to submit their attempts of the
weekly assignments at the start of each lecture. These
were collected and marked by the unit’s tutors, with
the lectures being scheduled so that these exercises
could then be returned to the students that same
week. This enabled students to benefit from the feed-
back in a timely manner.

To enable the short timeframe between submission
and return, tutors were instructed to focus on key is-
sues, rather than all issues, apparent in the submit-
ted work. This was intended to ensure that students
received feedback that was relevant to them, and fo-
cused their attention on the most important areas
they needed to improve.

Weekly assignments were submitted on paper,
rather than electronically, to permit the tutors to
rapidly review the documents and to encourage stu-
dents to submit something of substance. Tutors
quickly scanned through each submission looking for
good qualities and issues to raise with the student.
Sections of the code and answers were highlighted and
then discussed directly with the student when their
assignment was returned to them in the laboratory
session.

No marks were allocated to these weekly assign-
ments. They provided an opportunity for students to
develop work to include in their final portfolio. This
process allowed students to make mistakes without
fear of losing marks from their final grade. It was ex-
pected that students would improve on their earlier

CRPIT Volume 136 - Computing Education 2013

128

1. Read, interpret, and describe the purpose of sample code, and locate within this code errors in syntax, logic, style and/or
good practice.

2. Describe the syntactical elements of the programming language used, and how these relate to programs created with this
language.

3. Write small programs using the language provided that include the use of arrays, pointers, records, functions and procedures,
and parameter passing with call by reference and call by value.

4. Use functional decomposition to break a problem down functionally, represent the resulting structure diagrammatically, and
implement the structure in code as functions and procedures.

5. Describe the principles of structured programming and how they relate to the structure and construction of programs.

Figure 1: Intended Learning Outcomes for the unit investigated

Figure 2: Overview of assessment criteria provided to students in the unit outline.

Figure 3: Example assessment criteria related to a single intended learning outcome.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

129

submissions and include these versions in their final
portfolio submissions.

Students sat three tests during the semester, with
additional classes being scheduled so that they did
not take away from the teaching and learning time.
As with the weekly assignments, these tests carried no
marks. The first two tests were formative, with stu-
dents needing to get near-perfect answers but being
permitted to correct issues once they received their
papers back. This permitted the teaching staff to
gain a better understanding of student progress, and
helped students practice completing programming ex-
ercises in exam conditions. The final test had to be
completed satisfactorily in exam conditions for the
student to be eligible to pass the unit. Students who
did not complete the test satisfactorily the first time
were able to re-sit the following week.

2.1.4 Portfolio Assessment

Student portfolios contained a combination of the stu-
dent’s test work, work they had prepared in response
to the weekly Assignments, a Learning Summary Re-
port, and other pieces. The portfolio requirements
and assessment criteria were included in the Unit
Outline, and these were discussed with students in
multiple lectures.

To be eligible for a Pass grade the portfolio had to
include a range of pieces from the weekly exercises.
The Credit grade required completion of extension ex-
ercises, including additional programs or reports on
related concepts. Distinction and High Distinction
required students to go beyond the set work: Dis-
tinction was awarded for portfolios that included a
custom program of the student’s design and creation,
and High Distinction required a research report that
analysed some aspect related to programming.

The overview of the assessment criteria from the
unit outline, provided to the students in the first
week, is shown in Fig. 2. Each of the ILOs then in-
cluded a separate set of criteria on the different levels
to which these outcomes could be demonstrated. An
example is shown in Fig. 3.

Students were asked to reflect on their learning in
the Learning Summary Report, and a template doc-
ument was provided to assist students in preparing
their comments. The template prompted students to
describe the pieces they had included, to describe how
these related to the ILOs, and then to reflect on what
they had learnt from the unit.

To help students in writing their reflections, the
following instructions were provided in the template.

Think about what you have learnt in this unit, and
reflect on what you think were key learning points or
incidents. Answer questions such as: What did you
learn? What do you think was important? What
did you find interesting? What have you learnt that
will be valuable for you in the future? Which activi-
ties helped you most? Has this changed the way you
think about software development? Did you learn
what you wanted/expected to learn? Did you make
effective use of your time? How could you improve
your approach to learning in the future? Etc.

Note that there were no prompts for students to in-
clude details on issues they had encountered, meaning
that any issues expressed should have been significant
to the learning experience of the student.

2.2 Student Cohort and Research Participa-
tion

This unit was undertaken by 84 students, 70 of whom
submitted a portfolio for assessment. Participation in

the research was voluntary, with informed consent be-
ing sought in lecture 11. All students who attended
the lecture were required to fill in and sign the consent
form, where they could indicate if they were willing
to participate. To avoid any concerns regarding co-
ercion, these forms were collected by a staff member
not involved in the assessment of the unit, and stored
until after unit results had been published. Students
were made aware of these arrangements prior to giv-
ing consent.

Table 1 shows the number of portfolios made avail-
able to this research, the number that included com-
ments related to the theme of “issues” and the distri-
bution of grades. The grade distribution is also shown
in Fig. 4, and will be discussed in Section 4.

Figure 4: Distribution of grades for the full unit, for
those students who agreed to participate in the re-
search, and for those who commented on issues.

2.3 Thematic Analysis of Reflections

Reflections in student portfolios provide a wealth of
information. To help identify the themes and patterns
in these portfolios it was decided to perform a the-
matic analysis using the process outlined by Braun &
Clarke (2008). This process involves six phases (with
some terminology adapted for clarity):

1. Familiarising yourself with the data

2. Generating initial themes,

3. Searching for strong themes

4. Reviewing themes

5. Defining and naming themes

6. Producing the report

Familiarity with the data was obtained early in
the process, with all of the portfolios being read as
part of the unit assessment. At the end of the unit
assessment notes were made in relation to the general
issues that were raised in the portfolios and portfolio
interviews.

Once the portfolios were made available for this re-
search the initial themes were generated by revisiting
the reflective component of each portfolio and look-
ing for all explicit mention of issues the student faced.

CRPIT Volume 136 - Computing Education 2013

130

Table 1: Portfolios submitted, issue comments and grade distribution.
Total HD D C P F

Submitted Portfolio 70 5 14 20 28 3

Agreed to participate 59 5 13 16 23 2

Commented on Issues 35 2 6 11 14 2

- Learning Issues 26 2 3 9 12 1

- Programming Issues 22 1 4 8 7 2

Each new issue identified was matched to a theme and
recorded in a spreadsheet. The spreadsheet software
was used to collate the themes and record the portfo-
lio details of where these issues had been mentioned,
along with any illustrative comments using the stu-
dents own words.

In phases 3 through 5 the codes were grouped
based on broader themes, and then into sub-themes.
To ensure that all issues were reported in the results,
the process we followed did not remove or ignore any
issues raised. All issues that could not be grouped
into an existing theme were collected together as a
miscellaneous “other” theme. The Results section
outlines the different themes identified, and how these
themes relate to the comments raised by students in
their reflections.

In the reporting of this analysis we present the raw
coded results, grouped into the identified themes. Il-
lustrative quotes from the student reflections are pro-
vided to help define the themes. Additional support-
ing evidence is also taken from the reflections of the
teaching staff.

3 Results

A number of themes emerged from the analysis, and
can be broadly classified as either general learning
issues or programming related issues. (See Table 1
and Fig. 5.) Each of these categories is presented in
Table 2 along with the number of students who raised
these issues, broken down by grade. The following
sections describe the individual themes in more detail.

Figure 5: Number of students mentioning learning
issues and programming issues. See Table 1.

3.1 General Learning Issues

The general learning issues capture all of the com-
ments made by students that do not relate directly to

a given programming topic or technical aspect of the
unit, but instead relate to the students’ learning ex-
perience in general. In this category the themes that
appeared include time management, getting started
with the unit, and learning through mistakes. The
issue counts and grade distribution of these are in-
cluded in Table 2, and can also be seen in Fig. 6.

Time management issues identified in the stu-
dents’ reflections included comments about aspects
such as “staying on task”, wishing they had “asked
for help earlier”, or the general need to improve their
time management to enable them to achieve higher
grades. It can be seen that the majority of these con-
cerns were raised by students who obtained either a
Pass or Credit grade. These comments are further
supported by observations from teaching staff, who
noted concerns about students not working consis-
tently through the semester and not seeking help in
a timely manner.

The next largest general learning issue was getting
started with programming. These comments specifi-
cally indicated issues related to the initial hurdle of
getting started with the unit. One student noted this
as their first experience using a computer, while oth-
ers commented on the difficulty of the first few weeks’
lab exercises. Again, these findings are supported by
observations from the teaching staff who noted that
a large number of students withdraw from the unit
before census date,4 and there was a general drop in
enrolment numbers around this time. This may in-
dicate that a larger number of students faced these
issues but did not continue with the unit, though fur-
ther work is needed to verify this.

The last main issue in this section related to stu-
dents reflecting on the mistakes or struggles that pro-
vided them with an opportunity to learn something
important, referred to as learning through mistakes.
For example, one student’s reflection noted that:

“. . . I suddenly gained insight [into the code]
I had been struggling with . . . ”

The reflection continued on to comment that hav-
ing overcoming these issues the student gained a
clearer understanding of the concepts taught up to
that point, and that subsequent programs were easier
to understand.

A number of other issues were identified by indi-
vidual students. These issues included:

• transitioning to university life and study,

• finding information in the online learning man-
agement system,

• seeking help in general,

• keeping up with the pace of the unit, noted as
“challenging but good”, and

• adjusting to portfolio assessment.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

131

Table 2: Issue count results for grade and theme. Values of interest are indicated using bold format.
Theme Description Total HD D C P F

Learning Issues Issues related to learning in general.

- Time Issues Time constraints, or issues with time management. 14 1 0 5 8 0

- Getting Started Comments relating to initial weeks, or tacking early hurdles. 8 0 1 2 5 0

- Learn through mistakes Specifically commented on having issues and learning from these. 7 1 2 2 2 0

- Other Other learning related concepts not allocated to other themes. 5 0 0 2 2 1

Totals 2 3 11 17 1

Programming Issues Issues related to programming topics, or technical areas.

- Pointers Use of pointers and dynamic memory allocation functions. 11 1 2 4 3 1

- Parameters Mentions parameters, or parameter passing 8 0 1 4 3 0

- Program Design Algorithm and program structure design 7 0 1 1 3 2

- Other (Syntax) Other issues, but related to the language syntax or concepts. 7 0 0 2 3 2

- Other (General) Other programming issues not allocated to other themes. 5 0 0 2 2 1

- Recursion Declaration and use of recursive functions or data structures. 4 0 1 2 1 0

Totals 1 4 14 11 3

Figure 6: Number of students mentioning issues re-
lated to learning. See Table 2.

3.2 Programming Issues

As already mentioned, fewer students commented on
programming or technical issues in their reflections
than the more general learning issues. The program-
ming sub-themes matched specific topics covered in
the unit, including pointers, parameters, program de-
sign, and recursion. In this theme the other sub-
theme featured more prominently, with a larger range
of issues being located in the reflections of only one
or two students. The data for these themes is listed
in Table 2 and shown in Fig. 7.

Amongst the identified programming issues, point-
ers featured most prominently. Comments typically
just referred to having issues with “pointers”, with
the more detailed comments discussing issues with
knowing when to dereference pointers and being un-
sure of when to use pointers. This is further sup-
ported by notes from teaching staff indicating that
pointers tended to be problematic even for students
who demonstrated strong programming skills up to
this point in the material.

Parameters were also mentioned by a number of
students as being a topic that was particularly chal-
lenging. This included comments relating to tracing
parameter values through a number of function or

Figure 7: Number of students mentioning issues re-
lated to programming. See Table 2.

procedure calls, and issues of a single value having
different names across different routines. From these
comments there is a direct connection from param-
eter issues to a student’s understanding of program
structure, or more importantly execution flow.

Issues relating to Program Design were also raised
in the portfolio reflections. These comments re-
lated to aspects such as using functional decompo-
sition, planning program structure, and designing al-
gorithms.

The other issues for the programming category
captures issues identified by one or two students.
These were classified as relating either to syntax
and concepts or general programming issues,
and were:

• Syntax issues included:

– iteration and working with loops,

– using arrays (two comments),

– creating composite data types using
records,

– functions in general,

– dealing with syntax errors, and

– using units to divide programs into multiple
files.

CRPIT Volume 136 - Computing Education 2013

132

• General programming issues included:

– “Programming in general”,

– “Following program code” in code reading
exercises,

– difficulties finding and using resources from
the provided5 API, and

– the math needed to achieve programming
tasks.

There were also a number of reflections that raised
the topic of recursion; these mentioned issues with
both recursive functions and data structures.

4 Discussion

4.1 Investigation Focus and Sample Quality

Comments provided by students, when reflecting on
their learning during any unit, can be valuable and
interesting in many ways, especially with respect to
the evaluation of a particular approach to teaching.
Our investigation focused specifically on the theme of
issues mentioned or identified by students in their re-
flective reports. Results of the thematic analysis, pre-
sented in Section 3, identified clear key themes. Ad-
ditionally, several individual comments were selected.

The analysis considered a sample of reflective re-
ports presented in a single semester unit. Of the 70
students in the class, almost 85% were willing to par-
ticipate. Within the participant group, 35 students
wrote one or more comments that matched the target
theme. Table 1 and Fig. 4 show that the relative dis-
tribution of grades in the contributing group matches
closely to both the participant group and the entire
results for the unit. This strongly supports that the
results are a representative sample of the unit, at least
with respect to grade distribution.

4.2 General Learning Versus Programming
Issues

Beginning with the two key themes of general learning
issues and programming issues (Table 1 and Fig. 5) it
can been seen that the distribution of student grades
is very similar, with a slightly stronger representation
of Pass students in the learning issues theme.

Overall, more students commented on learning in
general. This is of particular interest given the rel-
ative emphasis of the course material, which focuses
on teaching programming concepts over syntax de-
tails. Despite the relatively small time spent on syn-
tax, students did not mention having related issues.

A closer examination of the issues related to pro-
gramming strengthens this analysis further. Most
student comments on programming issues (Table 2)
concerned applying programming concepts, rather
than issues of understanding syntax. Also, these com-
ments were about when and how to use the related
programming concepts rather than specifically how to
apply the syntax of the language used.

Comparison of the grade distributions within the
learning issues (Fig. 6) and programming issues
(Fig. 7) suggests potentially interesting differences,
such as issues specific to grade groups, and other is-
sues across all grades. The sample size of this inves-
tigation limits any significant insight although some
points are listed in later discussion.

4.3 Learning Issues

4.3.1 Time Management

Time management issues were identified by the
largest number of students (Table 2). The grade dis-
tribution is skewed towards student’s who achieved
Pass and Credit results (bold values), suggesting that
students who do achieve Distinction or High Distinc-
tion results managed time better, and that the unit
structure requires good time management to achieve
these outcomes.

Developing a portfolio that demonstrates the abil-
ity to apply concepts taught requires time: time to
practice using the concepts, and time to demonstrate
their use competently. For students to achieve Dis-
tinction and High Distinction grades, they need to be
able to organise their time effectively.

With more traditional forms of assessment, marks
can be used as incentives. Using assessment due
dates during the delivery of the unit has the effect of
turning marks into time distributed weighted incen-
tives. Marks no longer represent the importance of
the learning outcome, but match allocation of incen-
tive. Consider, for example, the allocation of marks
for lab attendance. These marks do not help measure
the students’ learning outcomes, but are purely there
to incentivise lab attendance. Similarly, assignments
due within the unit delivery period assess the speed
of acquiring the required knowledge.

With portfolio assessment the summative assess-
ment is delayed until after unit delivery. This has
the benefit of providing a more direct assessment of
learning outcomes, but has a cost related to loss of
incentives during delivery. While this is positive from
a learning perspective, it can easily lead to students
delaying their work on portfolio assessed units in or-
der to address the more time critical assignments in
other units. Given the number of comments related
to this issue, it appears to be easy for students to then
lose sight of how they are falling behind in a unit with
a relatively flexible portfolio assessment.

4.3.2 Getting Started

Getting started is another issue facing many students
(Table 2 and Fig. 6). In the first few weeks of the
semester, students will face practical and conceptual
issues. Practical issues include installing compilers
and text editors, learning to use command line tools,
and issues with general computer use. At the same
time students need to build a viable conceptual model
of computing (Hoc & Nguyen-Xuan 1990), and relate
this to the programs they are creating.

Early on students may also face challenges transi-
tioning to university study and university life in gen-
eral. In the first few weeks students are also more
likely to have issues with syntax, and dealing with
syntax errors. Together these challenges can present
a significant hurdle for students.

These issues could be addressed in a number of
ways. Shifting toward an IDE could remove some is-
sues related to the use of the command line compiler,
but add overhead related to use of a more complex
programming environment, and do not assist students
in building their conceptual model of computing. The
teaching staff also felt that students undertaking this
unit do need to learn to use the command line, and
this early introduction meant that later units could
expect at least some familiarity with command line
tools.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

133

4.3.3 Learning Through Mistakes

The students’ active role in building their own con-
ceptual model of a topic plays a significant role in
constructive learning theories (Glasersfeld 1989). Ef-
fective teaching then becomes the ability to place stu-
dents in situations where errors in their understand-
ing can be challenged to help the students build viable
conceptual models.

With this in mind, it is interesting to note, as
shown in Table 2, the number of students who com-
mented on gaining significant understanding through
making mistakes. In line with constructive thinking,
these students encountered situations in which their
conceptual model was inappropriate, and in address-
ing the associated problems they were able to gain a
better, more robust, conceptual model.

Comments about learning through mistakes were
distributed across all grades, from Pass through to
High Distinction (Fig. 6). This suggests that mistake-
based learning experiences are beneficial to a wide
range of students, albeit with some gaining a better
understanding than others through the process.

4.3.4 Other Learning Issues

From the other issues students noted, many can be
attributed to transitioning to university education.
Learning to locate and use learning resources and to
seek help, are all issues that students must come to
deal with when shifting to university education.

It is interesting to note that one student did raise a
complaint about portfolio assessment, indicating that
it would be easier to sit an exam. While this is only
a single student, it does highlight that the purpose
of the ongoing assessment may not be realised by all.
Tang et al. (1999) indicated that students tend to
apply narrower learning strategies for examinations,
focusing on memorising material covered in lectures.
In contrast, Tang et al. (1999) found that with portfo-
lio assessment students adopted a wider perspective,
making use of higher cognitive activities such as appli-
cation, relation, and reflection. Students are likely to
find these higher cognitive activities more challenging,
and therefore those who wish to apply surface learn-
ing approaches are likely to prefer other assessment
strategies.

4.4 Programming Issues

4.4.1 Pointers and Recursion

Our results support those from Lahtinen et al. (2005)
in indicating that students find learning pointers chal-
lenging. Issues related to using pointers and memory
management featured across a range of grade results
(Table 2 and Fig. 7), indicating that this concept was
challenging even for those students who managed to
achieve good results in the unit.

Pointers require a good conceptual understanding
of computing, and the ability to debug logical errors.
Issues with pointers can often result in abrupt pro-
gram termination, which can be very confronting for
beginner programmers. Locating the cause of these
errors is an additional challenge, that requires a stu-
dents to build a mental model of what is happening
within the programs they have written.

Issues with recursion were raised by fewer students
than other issues, which is in contrast to the study by
Lahtinen et al. (2005). This may be explained by the
short time students had with recursion in this study.
A deep exploration of recursion was not required for
students to pass the unit. It is likely, therefore, that

many students may not have had sufficient time to
explore more complex applications of recursion.

In addition to being complex, pointers and re-
cursion both occur relatively late in the curriculum.
With pointers, students had little time to develop the
skills necessary to handle associated issues, whereas
with recursion the short time meant students had lit-
tle opportunity to develop programs of sufficient com-
plexity to encounter issues. In either case, at the time
of writing their reflections, issues with later lecture
topics are perhaps more likely to be in focus.

4.4.2 Parameters

Parameters require students to understand local scop-
ing of variables, procedure and function calls, and
methods for sharing these values between functions
and procedures. This appears to be another point at
which students need to expand their model of com-
puting (Hoc & Nguyen-Xuan 1990).

While parameter concepts can take time to under-
stand, issues are likely to be constructive in nature.
When the logic for a program is contained within a
single procedure, students can develop a simplistic
model of what is occurring when other functions or
procedures are called. When students need to de-
sign their own functions and procedures that require
parameters, they are presented with situations that
challenge their simplistic model. This suggests that
parameters provide a significant learning opportunity
from a constructive perspective.

The two different parameter passing methods are
both taught in the unit, with pass by reference being
used to create procedures to swap parameter values,
as well as allowing procedures to modify data within
structures and arrays. Call by reference provides an
early introduction to references.

4.4.3 Program and Algorithm Design

Program and algorithm design are progressively
taught throughout the unit, with the main focus being
in the middle of the unit’s delivery in topics related
to functional decomposition and structured program-
ming. Comments by students indicated several issues
on how to practically apply the concepts covered to
create programs.

The authors of this paper initially expected a
larger representation of this issue, as design tasks re-
quire a deeper, relational, understanding of the con-
cepts being used. However, the core tasks students
had to submit for a Pass grade were accompanied
with detailed instructions to help ease these design
issues. Extension tasks required for a Credit grade
did require some design components, and less guid-
ance was provided. Students attempting their own
program, necessary for a Distinction grade, needed to
perform design activities as these programs were of
their own design and creation.

4.4.4 Other Programming Issues

The other programming issues raised by students can
be classified as individual challenges. It seems that
students are likely to learn at different paces, in differ-
ent ways, and find different topics challenging. Again,
general comments concerned the application of pro-
gramming concepts, rather than with basic syntax.
Each of the raised issues indicated a point at which
students had an opportunity to challenge and develop
their conceptual understanding of programming and
their model of computing.

CRPIT Volume 136 - Computing Education 2013

134

4.5 Recommendations

Based on the thematic results and on the experiences
of staff involved in the unit delivery, there are a num-
ber of implications and recommendations that can be
made. These recommendations are listed below, and
will be explained in later sections:

• strongly avoid mixing formative with summative
assessment,

• give students time to adjust to portfolio assess-
ment,

• focus on student “awareness”,

• use a quick formative feedback process,

• avoid the “tutor debugging” phenomena,

• use visual methods to convey progress, and

• make students aware of issues they are likely to
face.

4.5.1 Always formative, lastly summative

Separating formative feedback processes from sum-
mative marking has a clear value, and this is reflected
in student comments. Our observation is that using a
punitive marking system creates an incentive for stu-
dents to hide faults and limits in their understanding.
Students need to know what they need to learn. Re-
lated to this is the time a student can spend asking
about marking schemes or lost marks – time better
spent on learning.

4.5.2 Students need time to adjust

In comments to staff, students have said that it takes
time to get used to a portfolio based unit even if they
understand the principles. If we consider that stu-
dents might be conditioned to respond to summative
marking and due dates as a way of allocating their
attention, an interesting question emerges: how do
we help students maintain an active engagement with
the unit activities? Finding an answer for this is an
ongoing challenge and research opportunity.

4.5.3 Focus on student awareness

Primarily, student awareness is the basis for positive
engagement and an aware student has the opportu-
nity to make appropriate choices. To support this,
staff need to communicate the structure, activities
and expectations of a portfolio-based unit to students
as effectively as possible. Unfortunately students may
essentially have habits that can take time to adjust.
It is possible to help students with issues such as time
management and, hence, learning outcomes.

Although formative activities many not have due
date or marks (grade penalties), staff should still ex-
press clear expectations of when work needs to be
done. In some cases this leverages a students’ habits
to their advantage as they feel compelled to do the
work. Ideally, students should give these formative
tasks as high a priority as assignments with marks.

4.5.4 Use quick formative feedback

Very quick feedback helps to create strong reinforce-
ment in a student that the process really is forma-
tive and personally valuable. In a students’ experi-
ence summative marking is often a delayed process.
If formative feedback takes a long time it is removed

from the students’ current learning and challenges,
and so can be confused as summative marking. Stu-
dents need to be engaged with the formative nature
of these assessments, making use of the feedback to
help develop their understanding.

4.5.5 Avoid tutor debugging

A possible problem with quick formative feedback,
and resubmission opportunities, is that students may
submit poorly prepared “drafts” and use staff simply
to “fix things”. This issue has been described as “tu-
tor debugging” by some of our staff, and should be
actively discouraged. One approach to this is to set
minimum submission standards for work submitted
for feedback.

4.5.6 Use visual methods to convey progress

Visual charting of tasks and completed work, calendar
events and strong reminders of work and time limita-
tions help to engage students. It is also possible that
a “gamefication” approach, by recognising personal
or group achievements and rewarding with awards,
“badges” an other game-related concepts, can create
a fun and personal incentive for students. We also
recognise that there are also risks with gamefication,
such as trivialisation of the value of core learning ac-
tivities or distorting the value of learning activities
through association to a gamefication artefact.

4.5.7 Tell students what to expect

Finally, helping students understand the issues they
are likely to face should help them prepare sufficiently
for the more challenging tasks. This is particularly
relevant to the issues related to getting started. The
challenges early on in the unit may put a number
of students off, and these students are likely to lose
motivation and engagement with the unit. Making
them aware that these challenges are “normal”, and
to be expected, may assist them in getting over early
hurdles.

4.6 Future Work

It would be valuable to compare the thematic re-
sults between different semester groups undertaking
the same unit of study to see if the results are simi-
lar. We would also like to compare results from this
programming unit to later programming units. Sim-
ilarly, as programming units are undertaken by stu-
dents from different courses, each with different ex-
pected aims and outcomes, it would be interesting to
see if the themes identified correlated to particular
groups. Ideally this could inform both the develop-
ment and delivery of programming units, as well as
courses as a whole.

Once students are familiar with the learning envi-
ronment, and expectations of a unit delivered using
constructive alignment and portfolio assessment, it
would be reasonable to expect some indication of this
in the reflection comments presented by students. Fu-
ture investigations could look for changes in themes
such as getting started or time management which
would ideally improve in students with experience.

While this investigation focused on the issues iden-
tified by students, there are other themes that could
be used as a focus for thematic analysis. Themes
could be compared to the learning modes or prefer-
ences of students, which we would expect to strongly
correlate to reflection themes in some cases.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

135

5 Conclusion

In this paper we have presented a thematic analy-
sis of reflective reports presented by students as part
of their assessment in an introductory programming
unit. The development and delivery of the unit was
described in detail as a context for the work. A good
representation of students distributed across all result
grades agreed to participate in the study.

Thematic analysis was directed specifically at the
theme of issues identified by students. Overall re-
sults showed that more students raised learning issues
than programming related issues. Significant learning
themes included time management, getting started
and mistake-based learning. The most common pro-
gramming issues were related to pointers and param-
eters, with only a small number of issues related to
syntax, and both these results were expected. Issues
related to program design were raised less than ex-
pected.

The discussion considered a number of interesting
results, and put forward recommendations and future
directions for research in this area.

Notes

1Unit in this context refers to a course/subject/module within
a degree programme.

2This research was granted ethics approval in accordance with
[institution details anonymised].

3Structured programming in the context of the ILOs has a broad
meaning, encompassing imperative, procedural, and structured de-
sign concepts, as well as control flow.

4This is the date when the university records enrolment num-
bers, typically a few weeks after the start of the semester to allow
for changes of enrolment.

5Students were provided with an API for creating small games.
This included functionality for drawing shapes and images, playing
sound effects and music, handling input, and other functions and
procedures related to creating small 2D games.

References

Armarego, J. (2009), Constructive alignment in se
education: aligning to what?, in H. Ellis, S. De-
murjian & Naveda, eds, ‘Software Engineering: ef-
fective teaching and learning approaches and prac-
tices’, ACM, pp. 15–37.

Atkinson, C. (2007), Beyond bullets points: using
microsoft R©office powerpoint R©2007 to create pre-
sentations that inform, motivate, and inspire, Mi-
crosoft Press.

Biggs, J. (1996), ‘Enhancing teaching through con-
structive alignment’, Higher Education 32, 347–
364.

Biggs, J. & Tang, C. (1997), ‘Assessment by port-
folio: Constructing learning and designing teach-
ing’, Research and Development in Higher Educa-
tion pp. 79–87.

Braun, V. & Clarke, V. (2008), ‘Using thematic anal-
ysis in psychology’, Qualitative Research in Psy-
chology 3(2), 77101.

Braz, L. M. (1990), Visual syntax diagrams for pro-
gramming language statements, in ‘Proceedings of
the 8th annual international conference on Systems
documentation’, SIGDOC ’90, ACM, New York,
NY, USA, pp. 23–27.
URL: http://doi.acm.org/10.1145/97426.97987

Cain, A. & Woodward, C. J. (2012), Toward con-
structive alignment with portfolio assessment for
introductory programming, in ‘Proceedings of the
first IEEE International Conference on Teaching,
Assessment and Learning for Engineering’, IEEE,
pp. 345–350.

Cohen, S. A. (1987), ‘Instructional alignment:
Searching for a magic bullet’, Educational Re-
searcher 16(8), 16–20.

Glasersfeld, E. (1989), ‘Cognition, construction of
knowledge, and teaching’, Synthese 80, 121–140.
URL: http://dx.doi.org/10.1007/BF00869951

Hoc, J. M. & Nguyen-Xuan, A. (1990), ‘Language
semantics, mental models and analogy’, Psychology
of programming 10, 139–156.

Lahtinen, E., Ala-Mutka, K. & Järvinen, H. M.
(2005), ‘A study of the difficulties of novice pro-
grammers’, ACM SIGCSE Bulletin 37(3), 14–18.

Pears, A., Seidman, S., Malmi, L., Mannila, L.,
Adams, E., Bennedsen, J., Devlin, M. & Paterson,
J. (2007), ‘A survey of literature on the teaching
of introductory programming’, ACM SIGCSE Bul-
letin 39(4), 204–223.

Ritchie, D. M., Johnson, S. C., Lesk, M. E. &
Kernighan, B. W. (1978), ‘The c programming lan-
guage’, Bell Sys. Tech. J 57, 1991–2019.

Robins, A., Rountree, J. & Rountree, N. (2003),
‘Learning and teaching programming: A re-
view and discussion’, Computer Science Education
13(2), 137–172.

Tang, C., Lai, P., Arthur, D. & Leung, S. F. (1999),
‘How do students prepare for traditional and port-
folio assessment in a problem-based learning cur-
riculum’, Themes and Variation in PBL. Newcas-
tle: Australian Problem Based Learning Network .

Thota, N. & Whitfield, R. (2010), ‘Holistic approach
to learning and teaching introductory object-
oriented programming’, Computer Science Educa-
tion 20(2), 103–127.

Van Canneyt, M. & Klämpfl, F. (2011), Free Pascal
User’s Guide, 2.6 edn.
URL: ftp://ftp.freepascal.org/pub/fpc/docs-
pdf/user.pdf

Wirth, N. (1971), ‘The programming language pas-
cal’, Acta informatica 1(1), 35–63.

CRPIT Volume 136 - Computing Education 2013

136

Computational Thinking and Practice
— A Generic Approach to Computing in Danish High Schools

Michael E. Caspersen and Palle Nowack
Centre for Science Education, Faculty of Science and Technology

Aarhus University
DK-8000 Aarhus, Denmark

{mec, nowack}@cse.au.dk

Abstract
Internationally, there is a growing awareness on the ne-
cessity of providing relevant computing education in
schools, particularly high schools. We present a new and
generic approach to Computing in Danish High Schools
based on a conceptual framework derived from ideas re-
lated to computational thinking. We present two main
theses on which the subject is based, and we present the
included knowledge areas and didactical design princi-
ples. Finally we summarize the status and future plans for
the subject and related development projects. .
Keywords: curriculum structure, course content, high
school, computational thinking, core competencies, appli-
cation areas, knowledge areas, learning activities, didac-
tical design principles.

1 Introduction
Computing, particularly in the specific form of computer
science, has been a topic in high schools in many coun-
tries for more than three decades, but without achieving
the break-through in terms of adoption that the topic de-
serves in the post-industrial society.

But things are changing, and they are changing at a
global scale. Internationally, there is a growing awareness
on the necessity of providing relevant computing educa-
tion in schools, particularly high schools. Computing ed-
ucation in schools is considered increasingly important as
expressed by e.g. Wing (2006) who argues for teaching
fundamental computing principles for all: “Computation-
al thinking is a fundamental skill for everyone, not just
for computer scientists. To reading, writing, and arithme-
tic, we should add computational thinking to every
child’s analytical ability”. In the book Program or be
Programmed, Rushkoff (2010) puts it even more bluntly:
“In the emerging, highly programmed landscape ahead,
you will either create the software or you will be the
software”.

Half a century ago, Perlis (1962) said that everyone
should learn to program as part of a liberal education. He
argued that programming was an exploration of process, a
topic that concerned everyone, and that the automated
execution of process by machine was going to change

Copyright © 2013, Australian Computer Society, Inc. This pa-
per appeared at the 15th Australasian Computer Education Con-
ference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

everything (Guzdial 2008). It took fifty years to get here,
but finally it seems that (a contemporary interpretation of)
Perlis’ vision has come to pass.

As mentioned by Cutts, Esper, and Simon (2011), sev-
eral national initiatives are being taken to address this
challenge. For example, the UK Royal Society has recent-
ly published the report Computing in School (Royal Soci-
ety 2012), and the US National Science Foundation and
the College Board are supporting development of an Ad-
vanced Placement course, CS Principles (Astrachan et al.
2012), aiming at broadening participation in computing
and computer science by transforming high school com-
puting (Astrachan et al. 2011). Similar initiatives are tak-
en in other countries, e.g. Israel (Gal-Ezer and Harel 1998
and 1999, Bargury 2012), Germany (Steer and Hubwieser
2010), The Netherlands (Van Diepen et al. 2011), and
Norway (Hadjerrouit 2009). Especially the effort in New
Zealand seems to be similar with respect to motivation,
and challenges, but perhaps not with respect to the con-
tent and form (Bell et al. 2010, Bell et al. 2012).

In this paper, we report on a recent Danish initiative to
redefine and revitalise computing in Danish high schools.
The Danish initiative is similar to many of the other initi-
atives in focusing on fundamental computing principles
(including computational thinking) as a fundamental skill
for all. However, the Danish initiative is different from
most of the other initiatives in taking a broader and gener-
ic approach to computing rather than the traditional and
narrower computer science or software engineering ap-
proach. This is a deliberate choice made primarily to em-
brace more fundamental aspects of computing (e.g. im-
pact of information systems, the role of it in innovation,
and interaction design for it-based systems), but also to
accommodate the four different types of high schools in
Denmark (general high schools, upper secondary shorter
general education programme, technical high schools, and
business high schools) with one generic computing sub-
ject.

In section two we briefly recap the history of compu-
ting in Danish High School curricula. Section 3 describes
the two main theses that together define the perspective
from which the new generic computing subject was de-
signed. The subject is then fleshed out in the following
two sections: Section 4 describes the knowledge areas of
the subject, and Section 5 describes the didactical design
principles behind the subject. Finally, Section 6 briefly
summarizes the current status and plans for the subject.

2 Computing in Danish High School 1971-2011
Various flavours of computing has been a topic in Danish
high school for more than forty years.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

137

After some early individual initiatives in the late six-
ties with computing education in high schools, the John-
sen Committee was formed in 1971 to give recommenda-
tions regarding EDP education (Electronic Data Pro-
cessing) in the Danish education system (Johnsen 1972).
The recommendations of the Johnsen committee guided
the computing curriculum decisions in general high
school for more than ten years. However, the full set of
recommendations ⎯encompassing a mandatory compu-
ting subject for all high school students⎯ were never
implemented.

In 1980, the Ministry of Education published the so-
called Obel/Fisher Circular recommending computing in
general high school to be integrated in other subjects and
phased-out as an independent subject. In the 1980s, com-
puting remained an independent subject only in one
branch (out of four) of Danish high schools. In 1987,
computing became again an independent subject, but still
only as an elective, and it has remained as such until to-
day.

In business high schools, computing has been a subject
since the mid-1980s ⎯always with a special flavour of
business, management, and administration.

From the mid-1990s and onward, other computing
subjects saw the light of day in the different types of high
schools, e.g. Information Technology, Programming, and
Multimedia.

A major high school reform in 2005 dramatically re-
duced the conditions for elective subjects such as compu-
ting, and the same pattern emerged in all types of high
schools: hardly any pupils chose computing and the sub-
ject almost completely vanished from the schools.

In late 2008, the Ministry of Education established a
task force to conduct an analysis of computing in high
schools and provide recommendations for a revitalisation
of the subject (Agesen and Nørgaard 2009). The major
recommendations of the task force were:

• To distinguish between computer literacy
(emphasizing it-usage, e.g. the use of spread-
sheets, word processing, and other applica-
tions) and computational thinking and prac-
tice (emphasizing creational and construc-
tional competencies).

• To develop a single, coherent, and uniform
computational thinking and practice subject,
which then can be offered in several flavours.

• To design the course such that it may inspire
pupils to continue with computing studies af-
ter high school.

The recommendations gained political support at all
levels, and a new generic computing subject has been
developed and is offered by volunteering schools for a
three-year test period (2011-2014).

3 Foundational Theses
In general, young people do not consider computing a
proper subject, and they certainly do not realise the im-
portance and potential of computing in modern society.
The main purpose of the new computing subject for high
school is to convey the message condensed in the first of
two foundational theses:

Thesis 1: Through computing, people can create,
share, and handle thoughts, processes, products and ser-
vices that create new, effective, and boarder-crossing
opportunities -impossible without the digital technology.

The wording is a bit heavy, but the essence is quite
similar to Wing’s notion of computational thinking. The-
sis 1 is the keynote of the new computing subject; as
such, it must permeate all concrete learning activities that
will be developed.

The second thesis relates to our ambition of embracing
more fundamental aspects of computing but also to ac-
commodate the four different types of high schools in
Denmark with one generic computing subject. The thesis
also reflects the diversity and various flavours of compu-
ting in academia, education, and industry.

Thesis 2: There exists a common and shared founda-
tional set of computational concepts, principles and prac-
tices, which can be applied purposefully within science &
technology, business and social science, arts and humani-
ties, and health and life sciences.

Both theses were formulated before we commenced
concrete development of the new computing subject.
Throughout development, the theses served as guiding
principles for our efforts of refinement and concrete de-
sign of the subject. In particular, thesis 2 provided
guidelines for identification of seven core knowledge
areas that has come to define the new computing subject.
The seven knowledge areas are presented in the following
section.

4 Knowledge Areas
We use the term “Knowledge Areas” in the same sense as
in the curriculum recommendations from ACM1: the are-
as are not to be thought of as teachable modules by them-
selves, but as appropriate categories for describing sub-
ject content. Hence, the categories are for description, and
not didactical design of practical learning activities. We
expand on these issues in Section 5.

In the following, we motivate and describe the seven
knowledge areas that have been chosen for characterising
the new computing subject and for formulating learning
goals. The areas have been chosen after a short and inten-
sive dialogue with selected colleagues from Danish uni-
versities. In retrospect, some of the areas are related to the
computing practices suggested by (Denning 2003).

The knowledge areas are:
• Importance and Impact
• Application Architecture
• Digitisation
• Programming and Programmability
• Abstraction and Modelling
• Interaction Design
• Innovation

For each area, we provide a brief description and pre-
sent the associated learning goals, as they appear in the
formal curriculum. It should be noted, that the learning
goals may appear overly ambitious, but they must of
course be interpreted in the context of level, preconcep-
tions, and allocated time for the actual course delivery.

1http://www.acm.org/education/curricula-

CRPIT Volume 136 - Computing Education 2013

138

4.1 Importance and Impact
To truly understand and appreciate the importance of
computing in modern society, the pupils must be present-
ed to a portfolio of important and for the pupils relevant
systems and innovations (e.g. Facebook, iTunes, GPS-
based navigation systems, email, health care systems,
etc.) — systems that the pupils know and can relate to.
The design of an IT system has strong consequences for
the people, organisations, and social systems that use it.
 Designers do not only design the system but also use
patterns and workflows that unfold through the use of the
system. The purpose is to make the pupils aware of the
interplay between design of a system and the use patterns
which the system intentionally or unintentionally gener-
ates.
Pupils must be able to

• Give examples of the impact of IT systems on
human behaviour.

• Analyse and assess the importance and impli-
cations of IT systems and how they impact
human behaviour.

• Apply user-oriented techniques for construc-
tion or modification of IT systems.

4.2 Application Architecture
The majority of IT systems are structured according to
the so-called three-tier model consisting of a presentation
tier, a logic tier, and a data tier. The model is relevant
partly because it provides a general framework for under-
standing a very large class of IT systems, their compo-
nents, and the interplay between these, and partly because
the model is useful for qualified use of concrete systems,
e.g. the Office package, Photoshop, iTunes, Facebook and
general types of systems, e.g. simulation tools, account-
ing systems, content management systems, mobile tech-
nology, and computer games.
Pupils must be able to

• Describe principles for the architecture of IT
systems.

• Apply specific architectures for construction
of simple IT products and adjustment of ex-
isting IT systems.

4.3 Digitisation
In order to understand the basic characteristics of the
computer, the pupils must understand and work with rep-
resentation and manipulation of data. The main point is
that data need to be digitised to allow representation in a
computer and manipulation by programs. The purpose
with this topic is that the pupils gain concrete experience
with (and hence understanding of) representation and
manipulation of data including the fact that digitising
often results in loss of information. The other side of the
coin is that digitisation and manipulation makes it possi-
ble to create new data. IT security is another important
issue that may be addressed.
Pupils must be able to

• Describe the representation of selected types
of data (e.g. images, sound, text, etc.) and
construct IT products (programs) that make
simple manipulations of data.

• Integrate various types of data in simple IT
products and extend functionality of existing
IT systems by adding new types of data.

4.4 Programming and Programmability
Computers are indeed very simple machines that gain
their power through scale. The defining characteristic of
the computer is its programmability and universality.
Programming comes in many forms, but common to these
is the principle of defining and hence automating compu-
tations that can be executed again and again with arbi-
trary data and data sets.
Pupils must be able to

• Identify basic structures in programming lan-
guages, construct IT products (simple pro-
grams) and adjust existing programs.

• Apply programming technologies for devel-
opment of IT products and adjustment of ex-
isting IT systems.

4.5 Abstraction and Modelling
The purpose of this topic is to provide insight into model-
ling where data, processes and systems are described at
an abstract level where design alternatives and properties
can be evaluated and choices and decisions can be made.
Pupils must be able to

• Give examples of models of data, processes
and systems and describe the relation be-
tween a concrete model and the relevant as-
sociated parts of an IT system.

• Implement selected models in a concrete IT
product and adjust existing models and im-
plement these adjustments in existing IT sys-
tems.

4.6 Interaction Design
The previous topic is primarily about models for elements
of the presentation and logic tiers of the three-tier model.
This topic is about models and design principles for the
presentation tier — the interface where users and other
systems meet an IT system. It’s the purpose that the pu-
pils understand the premises for as well as the conse-
quences and importance of interaction design.
Pupils must be able to

• Describe and analyse selected elements of a
user interface design, construct simple user
interface designs and adjust existing designs.

• Implement selected interaction design in a
concrete IT product and adjust existing de-
signs and implement these adjustments in ex-
isting IT systems.

4.7 Innovation
The subject treats innovation from a product as well as
process perspective. The subject takes an innovative ap-
proach to IT product development and provides a back-
ground for understanding aspects of IT product develop-
ment and the interplay between IT and users/society.

Pupils must be able to:

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

139

• Characterise innovative development pro-
cesses and sketch ideas for innovative IT
products.

5 Didactical Design Principles
A number of didactical design principles and guidelines
have been enforced, or at least highly recommended, for
the development of learning materials for the new compu-
ting subject. In this section, we present the five major
didactical principles:

• A learning activity is not (necessarily) the
same as a knowledge area.

• Learning activities should be application-
oriented.

• Learning activities should facilitate and guide
a consume-before-produce progression
through the materials.

• Learning activities should include several
substantial worked examples.

• Learning activities should illustrate stepwise
improvement as a general approach to incre-
mental development of artefacts.

Other principles have been used such as game-based
learning and narrative media-approaches (e.g. Andersen
et al. 2003).

For a more general discussion of didactical approaches
to computing, see Bennedsen et al. (2008) and Hazzan et
al. (2011).

5.1 Knowledge Areas vs. Learning Activities
The knowledge areas introduced in Section 4 helps to
structure the entire curriculum, but it is not a feasible
structure for teaching the subject, as it would imply a
sequential depth-first approach to the subject as a whole.

Instead we have adopted a well-known teaching strat-
egy from Danish high schools, in which subject matter
from various different knowledge areas are extracted and
combined to piecemeal construct and deliver smaller
packages of contextualised and interdependent subject
matter components. These learning activities form the
toolbox, from which the teacher select, combine, design,
and implement his/her particular version of the subject
which should be adapted and adjusted to the relevant con-
text (education, level, and individual pupils). A learning
activity may include subject matters from one, multiple,
or all of the seven knowledge areas as illustrated in Fig-
ure 1. A learning activity is comprised by a description
for pupils and teachers, materials and resources, and a
process (cookbook) for using the materials in the learning
activity.

The latter also illustrates a characteristic difference be-
tween knowledge areas and learning activities: the former
are more static and are expected to change at a much
slower pace than the learning activities, which are ex-
pected to change rapidly over the years, as technology
and trends changes. Put another way: when the
knowledge areas change, the whole identity of the subject
changes (ranging from minor adjustments to radical
changes in conceptual frameworks). Furthermore, chang-
es in learning activities could be made for purely peda-
gogical reasons.

Figure 1: Content Structure Framework:
Knowledge Areas (blue columns) versus

Learning Activities (yellow lines)

5.2 Application-oriented (outside-in)
Traditionally, introductory computer science courses ap-
ply a bottom-up approach, in the sense that pupils are
introduced to basic and foundational concepts and ex-
pected to master these before more advanced concepts
and principles are introduced. Hence, in a traditional pro-
gramming course, pupils are often trained in constructing
a “Hello World” program as the very first activity, and
then later on are trained in adding more layers of com-
plexity to a system in terms of user interfaces, databases,
etc. For the technically inclined pupils this may be a fea-
sible approach, but in our case, this could pose severe
motivational problems, as we are dealing with a wider
range of pupils with much more diverse interests and
backgrounds.

There is an even more important reason why a tradi-
tional bottom-up approach is fallible. We are not aiming
at developing detailed and specific competences in the
seven knowledge areas. Overall, we are aiming at devel-
oping interest, critical thinking, and broader skills in
computational thinking and practice. Therefore we have
decided on an application-oriented top-down approach.
This means, that we start the various teaching activities
by introducing well-known or familiar applications,
which we then split apart for conceptual and/or technical
examination, evaluation, and modification. For motiva-
tional reasons, we choose applications based on the crite-
ria, that they must by themselves be naturally appealing
to pupils in our age range. Applications, which they find
interesting to use and hopefully to examine and improve.
Examples could include pedagogical lightweight versions
of Facebook, iTunes/Spotify, YouTube, Twitter, Blogs,
Photoshop, and similar applications.

5.3 From Consumer to Producer
When designing learning activities, we aim at organising
the material in such a way that the pupils experience a
consume-before-produce progression through the materi-
al. Initially, the pupils act as consumers of an artefact by
using and studying it; then, they go on to make first sim-
ple and then gradually more complex modifications to the
artefact. Eventually, the pupils may be requested to build
similar artefacts from scratch.

The consume-before-produce principle ⎯sometimes
alternatively characterised as a use-modify-create pro-
gression⎯ can be applied in many areas. In program-
ming, pupils can use programs or program modules be-

CRPIT Volume 136 - Computing Education 2013

140

fore they start making modifications and eventually cre-
ate modules or complete programs on their own. The ap-
proach applies equally well to other areas, e.g. modelling
and interaction design.

The origin of (a specialisation of) this principle can be
traced back at least to 1990 where Pattis introduced the
call-before-write approach to teaching introductory pro-
gramming (Pattis 1990). In Christensen and Caspersen
(2002), the authors apply the principle to provide an al-
ternative and incremental way of teaching about software
frameworks and event-driven programming in CS1. In
Schmolitzky (2005), the author briefly mentions the no-
tion of consuming before producing by providing three
specific examples of using the principle in the context of
learning object-oriented programming using the BlueJ
system (Kölling 2003).

5.4 Worked Examples
A Worked Example (WE), consisting of a problem state-
ment and a procedure for solving the problem, is an in-
structional device that provides a problem solution for a
learner to study (Atkinson et al. 2000, Chi et al. 1989,
LeFevre and Dixon 1986). WEs are meant to illustrate
how similar problems might be solved, and WEs are ef-
fective instructional tools in many programs, including
computing.

Bennedsen and Caspersen (2004) illustrate implicitly
how WEs can be used to teach object-oriented program-
ming using a systematic, model-based programming pro-
cess. Caspersen & Bennedsen (2007) present an instruc-
tional design for an introductory programming course
based on thorough use of WE. Caspersen (2007) provides
an overview of WE literature related to programming
education as well as a survey of the related cognitive load
theory.

Through didactical training of teachers and systematic
enforcement, WE have come to play a key role in the
didactical design of most learning activities developed for
the new computing subject. A multitude of examples are
available from a website maintained by the Danish Asso-
ciation of High School Teachers in Computing2. Unfortu-
nately, the material is only available in Danish.

5.5 Stepwise Improvement
The Danish Ministry of Education’s official guidelines
for the new computing subject recommend that all con-
structional activities be designed according to Stepwise
Improvement. In its original form, stepwise improvement
(not to be mixed with stepwise refinement although the
two are somewhat related) is presented in the context of
program development (Caspersen 2007, Caspersen and
Kölling 2009), but the methodology is applicable for the
construction of any concrete or abstract artefact.

Stepwise improvement is a framework for incremental
development of an artefact. According to stepwise im-
provement, development takes place in three dimensions:
from abstract to concrete, from partial to complete, and
from unstructured to structured. Thus, development of an
artefact can be characterised as a mixed sequence of re-
finements, extensions, and restructurings of the artefact.

2 http://www.iftek.dk

For the new computing subject, the recommendation
from the Ministry of Education is that stepwise improve-
ment is used systematically in all constructive learning
activities. A number of concrete examples as well as
more general guidelines are provided in eight reports pub-
lished by the Danish Ministry of Education (2011).

6 Summary, Status & Plans
In this paper we have described the international context
and the national history, which together form the back-
ground for a radically new and integral computing subject
in Danish high schools. The new subject has been de-
scribed in terms of two foundational theses, seven
knowledge areas, and five didactical design principles.

6.1 Status
The status of the subject is that after the first year of the
test period (2011-2012), 18% of the high schools taught
the new subject. In the second (2012-2013, current) year
of the test period, at least 26% of the high schools are
teaching the new subject. Although no formal quantitative
evaluation has yet been conducted, the informal feedback
from teachers, examiners and pupils has been very posi-
tive.

As mentioned, the Danish Association of High School
Teachers in Computing offers a number of learning activ-
ity packages on their website. Teachers are encouraged to
develop and share their own learning activity packages.
This bottom-up approach to material development of
course encourage diversity and multiplicity, which chal-
lenges the content structure framework, and the concep-
tual framework, understanding and application of
knowledge areas.

To reinforce the common understanding of the
knowledge areas, a number of short reports have been
developed by academics from Danish universities. Fur-
thermore teacher training has been initiated in an ad-hoc
fashion, offering 3 days of seminars during the winter of
2012, and again in the fall of 2012, where teachers are
instructed in the use of the learning activity packages.
Teachers from roughly 20% of all high schools attend
these courses. While these ad-hoc seminars are necessary
means in the process of developing the new subject, they
are far from sufficient for fulfilling the requirements for
in-service training of teachers to qualify them for teach-
ing the new subject.

6.2 Plans
The plans for the continued development of the subject
are fourfold:

• To further develop materials and resources
• To develop formal teacher training
• To establish professional learning communi-

ties
• To initiate relevant research
• To gain political interest and momentum

With respect to materials, we want to further iterate, in-
crement and refine the content structure framework and
the associated learning materials (both the knowledge
area reports and the learning activity packages). A possi-

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

141

ble next step could be to develop free online materials
supporting inversion of the classroom.

With respect to teacher training, we need to replace
the current ad-hoc approach with a regular 120 ECTS
education in computational thinking and practice to be
offered to high school teachers – both pre-service and in-
service.

We would like to support the former initiatives by fur-
ther evolving the current formal and informal networks
among high school computing teachers into professional
learning communities based on action learning.

The new Danish initiative is an excellent opportunity
for (and it deserves) a thorough treatment in terms of a
number of related research projects. For example, we
would like to investigate the following research ques-
tions:

• Why is computational thinking and compu-
ting practice generally and universally im-
portant to society and the individual?

• What are the relevant didactical design prin-
ciples for the new subject?

• What is the ideal selection of knowledge are-
as for the new subject, and how do they
compare to similar efforts internationally?

• How can we develop methodological and
technological support for developing moti-
vating and efficient learning activities that
properly exploits the chosen didactical de-
sign principles?

• How can we develop efficient teacher train-
ing for the new subject?

Finally we find it of utmost importance, that we ob-
tain political awareness about the importance of the sub-
ject, as it should not be an elective, but an integral, man-
datory part of any high school education. A possible next
step in this direction could be to host a conference on the
importance of the subject.

6.3 Acknowledgments
This work was supported in part by Central Denmark
Region and was conducted as part of the project Create IT
which includes the partners: it-vest – networking univer-
sities, the Danish High School Computing Teachers As-
sociation (IFTEK), Egaa Gymnasium, and Centre for
Science Education at Aarhus University.

The authors would like to thank Elisabeth Husum,
Jakob Stenløkke Bendtsen, Bartlomiej Rohard War-
szawski, Henning Agesen, and Peter Nørgaard for contri-
butions and inspiring discussions. We would also like to
thank the anonymous reviewers for constructive and rele-
vant feedback.

7 References
Agesen, H. and Nørgaard, P. (2009): Investigation of

Computing Subjects in High School (in Danish: Un-
dersøgelse af IT fagudbuddet I de gymnasiale uddan-
nelser), Department for High Schools, Ministry of Ed-
ucation, Denmark.

Andersen, P.B., Bennedsen, J., Brandorff, S., Caspersen,
M.E., and Mosegaard, J. (2003): Teaching Program-
ming to Liberal Arts Students ⎯ A Narrative Media
Approach. Proc. of the Conference on Innovation and

Technology in Computer Science Education, Thessalo-
nica, Greece, 8:109-113, ACM Press.

Astrachan, O., Cuny, J., Stephenson, C., and Wilson, C.
(2011): The CS10K Project: Mobilizing the Communi-
ty to Transform High School Computing. Proc. of the
42nd ACM Technical Symposium on Computer Science
Education, Dallas, TX, USA, 42:85-86, ACM Press.

Astrachan, O., Briggs, A., Cuny, J., Diaz, L., and Ste-
phenson, C. (2012): Update on the CS Principles Pro-
ject. Proc. of the 43rd ACM Technical Symposium on
Computer Science Education, Raleigh, NC, USA,
43:477-478, ACM Press.

Atkinson, R.K., Derry, S.J., Renkl, A., and Wortham, D.
(2000): Learning from Examples: Instructional Princi-
ples from the Worked Examples Research, Review of
Educational Research, 70(2):181-214.

Bargury, I.Z. (2012): A New Curriculum for Junior-High
in Computer Science. Proc. of the Conference on Inno-
vation and Technology in Computer Science Educa-
tion, Haifa, Israel, 17:204-208, ACM Press.

Bell, T., Andreae, P., & Lambert, L. (2010). Computer
Science in New Zealand High Schools. presented at the
meeting of the Twelfth Australasian Computing Educa-
tion Conference (ACE 2010), Brisbane, Australia.

Bell, T., Andreae, P., & Robins, A. (2012). Computer
science in NZ high schools: the first year of the new
standards. presented at the meeting of the 43rd ACM
technical symposium on Computer Science Education,
Raleigh, North Carolina, USA.

Bennedsen, J. and Caspersen, M.E. (2004): Teaching Ob-
ject-Oriented Programming – Towards Teaching a Sys-
tematic Programming Process. Proc. of the Eighth
Workshop on Pedagogies and Tools for the Teaching
and Learning of Object-Oriented Concepts, 18th Euro-
pean Conference on Object-Oriented Programming
(ECOOP 2004), Oslo, Norway.

Bennedsen, J., Caspersen, M.E., and Kölling, M. (2008):
Reflections on the Teaching of Programming, Lecture
Notes in Computer Science, Vol. 4821, Springer-
Verlag.

Caspersen, M.E. (2007): Educating Novices in the Skills
of Programming, DAIMI PhD Dissertation PD-07-04,
ISSN 1602-0448 (paper), 1602-0456 (online).

Caspersen, M.E. and Bennedsen, J. (2007): Instructional
Design of a Programming Course: A Learning Theoret-
ic Approach. Proc. of the International Computing Ed-
ucation Research Workshop, Atlanta, Georgia, USA,
3:111-122, ACM Press.

Caspersen, M.E. and Kölling, M, (2009): STREAM: A
First Programming Process, ACM Transactions on
Computing Education, 9(1):4.1-4.29.

Christensen, H.B. and Caspersen, M.E. (2002): Frame-
works in CS1: a Different Way of Introducing Event-
Driven Programming. Proc. of the Conference on In-
novation and Technology in Computer Science Educa-
tion. Aarhus, Denmark, 7:75-79.

Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P., and
Glaser, R. (1989): Self-explanations: How students

CRPIT Volume 136 - Computing Education 2013

142

study and use examples in learning to solve problems,
Cognitive Science, 13(2):145-182.

Cutts, Q., Esper, S., and Simon, B. (2011): Computing as
the 4th “R”. Proc. of the International Computing Edu-
cation Research Workshop, Providence, RI, USA,
7:133-138, ACM Press.

Danish Ministry of Education (2011): Information Tech-
nology B and C, Eight Reports With Guidelines for In-
formation Technology B and C at stx, hf, htx, and hhx,
Department of High Schools, Ministry of Education.
http://www.uvm.dk/Uddannelser-og-
dagtilbud/Gymnasiale-uddannelser/Studieretninger-og-
fag/Forsoegsfag-i-de-gymnasiale-
uddannelser/Informationsteknologi-C-og-B (in Danish,
accessed 24th August 2012).

Denning, P. J. (2003): Great principles of computing.
Communications of the ACM, 46(11):15-20.

Gal-Ezer, J. and Harel, D. (1998): What (Else) Should CS
Educators Know?, Communications of the ACM,
41(9):77-84.

Gal-Ezer, J. and Harel, D. (1999): Curriculum and Course
Syllabi for a High-School Program in Computer Sci-
ence, Computer Science Education, 9(2):114-147.

Guzdial, M. (2008): Paving the Way for Computational
Thinking, Communications of the ACM, 51(8):25-27.

Hadjerrouit, S. (2009): Teaching and Learning School
Informatics: A Concept-Based Pedagogical Approach,
Informatics in Education, 8(2):227-250.

Hazzan, O., Lapidot, T., and Ragonis, N. (2011): Guide
to Teaching Computer Science: An Activity-Based Ap-
proach, Springer-Verlag.

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J.
(2003): The BlueJ system and its pedagogy, Computer
Science Education, 13(4):249-268.

LeFevre, J.-A. and Dixon, P. (1986): Do Written Instruc-
tion Need Examples?, Cognition and Instruction,
3(1):1-30.

Pattis, R.E. (1990): A philosophy and example of CS-1
programming projects. Proc. of the 21st ACM Tech-
nical Symposium on Computer Science Education,
Washington D.C., USA, 21:34-39, ACM Press.

Perlis, A. (1962): The computer in the university. In
Computers and the World of the Future, 180-219.
Greenberger, M. (ed.). MIT Press.

Royal Society (2012): Shut down or restart? The way
forward for computing in UK schools. The Royal Soci-
ety, UK.

Rushkoff, D. (2010): Program or Be Programmed – Ten
Commands for a Digital Age. New York, OR Books.

Schmolitzky, A. (2005): Towards Complexity Levels of
Object Systems Used in Software Engineering Educa-
tion. Proc. of the Ninth Workshop on Pedagogies and
Tools for the Teaching and Learning of Object-
Oriented Concepts, 19th European Conference on Ob-
ject-Oriented Programming (ECOOP 2005). Glasgow,
UK.

Steer, C. and Hubwieser, P. (2010): Comparing the Effi-
ciency of Different Approaches to Teach Informatics at

Secondary Schools, Informatics in Education,
9(2):239-247.

Van Diepen, N., Perrenet, J., and Zwaneveld, B. (2011):
Which Way with Informatics in High Schools in the
Netherlands? The Dutch Dilemma, Informatics in Edu-
cation, 10(1):123-148.

Wing, J. (2006): Computational Thinking, Communica-
tions of the ACM, 49(3):33-35.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

143

CRPIT Volume 136 - Computing Education 2013

144

How difficult are exams? A framework for assessing the
complexity of introductory programming exams

Judy Sheard
Monash University

judy.sheard@monash.edu.au

Simon
University of Newcastle

simon@newcastle.edu.au

Angela Carbone
Monash University

angela.carbone@monash.edu.au

Donald Chinn
University of Washington, Tacoma
dchinn@u.washington.edu

Tony Clear
Auckland University of Technology

tony.clear@aut.ac.nz

Malcolm Corney
Queensland University of Technology

m.corney@qut.edu.au

Daryl D’Souza
RMIT University

daryl.dsouza@rmit.edu.au

Joel Fenwick
University of Queensland
joelfenwick@uq.edu.au

James Harland
RMIT University

james.harland@rmit.edu.au

Mikko-Jussi Laakso
University of Turku
milaak@utu.fi

Donna Teague
Queensland University of Technology

d.teague@qut.edu.au

Abstract
Student performance on examinations is influenced by
the level of difficulty of the questions. It seems
reasonable to propose therefore that assessment of the
difficulty of exam questions could be used to gauge the
level of skills and knowledge expected at the end of a
course. This paper reports the results of a study
investigating the difficulty of exam questions using a
subjective assessment of difficulty and a purpose-built
exam question complexity classification scheme. The
scheme, devised for exams in introductory programming
courses, assesses the complexity of each question using
six measures: external domain references, explicitness,
linguistic complexity, conceptual complexity, length of
code involved in the question and/or answer, and
intellectual complexity (Bloom level). We apply the
scheme to 20 introductory programming exam papers
from five countries, and find substantial variation across
the exams for all measures. Most exams include a mix of
questions of low, medium, and high difficulty, although
seven of the 20 have no questions of high difficulty. All
of the complexity measures correlate with assessment of
difficulty, indicating that the difficulty of an exam
question relates to each of these more specific measures.
We discuss the implications of these findings for the
development of measures to assess learning standards in
programming courses..

Keywords: Standards, quality, examination papers, CS1,
introductory programming, assessment, question
complexity, question difficulty.

Copyright © 2013, Australian Computer Society, Inc. This
paper appeared at the 15th Australasian Computing Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

1 Introduction
In Australia there has been an increasing amount of
attention placed on the government’s higher education
standards agenda, which aims to achieve quality
assurance in a number of areas including the standard of
qualifications and the learning outcomes of students in
higher education institutions. The Tertiary Education
Quality and Standards Agency (TEQSA) has been
established to register and evaluate the performance of
higher education providers against a new Higher
Education Standards Framework (Tertiary Education
Quality and Standards Agency, 2012). To ensure that
standards are developed the government has formed a
Standards panel (Evans, 2011) to set the benchmark for
quality in higher education.

The interest in learning standards is not restricted to
government agencies. In a recent online survey of
Australian academics, with more than 5,000 respondents
across 20 universities, 46.7% of respondents felt that
academic standards were in decline (Bexley et al, 2011).
From the student perspective, in a survey of nearly
10,000 graduates in 2008, 67% nominated “Challenge
students to achieve high academic standards” as an area
of potential improvement for undergraduate education
(Coates & Edwards, 2008).

In this environment, the challenge currently facing
academics in the Australian tertiary sector is how to
develop learning standards and assess learning outcomes.
As a way forward, the Australian government has funded
eight groups to work within specific disciplines to
develop learning standards: the minimum required
knowledge, skill and capabilities expected of a graduate.
The combined discipline group for Information and
Communication Technology (ICT) and Engineering has
begun its quest for learning standards by drawing on
existing learning outcomes developed from the relevant
professional bodies (Cameron & Hadgraft, 2010).

Proposals currently under consideration to assess the
attainment of learning standards include the development

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

145

of national standardised tests of generic and disciplinary
learning outcomes. In the engineering field, a feasibility
study is looking into testing discipline-specific skills as
part of an Assessment of Higher Education Learning
Outcomes (AHELO) (Australian Council for Educational
Research, 2011). As yet there is no comparable venture in
ICT, where the idea of standardised testing seems to be a
difficult one to address. There appear to be no clear
processes, pathways, or in some cases, communities, to
offer a coherent way forward to assessment of discipline-
specific learning standards.

The work reported here forms part of the BABELnot
project (Lister et al, 2012), a principal goal of which is to
explore a possible approach for the development and
assessment of learning standards in programming
courses. Formal written examinations are a common form
of assessment in programming courses, and typically the
form to which most marks are attached. The approach we
have taken is to analyse examination papers to investigate
levels of, and variations in, assessment of learning
outcomes across institutions. In prior work (Simon,
Sheard, Carbone, Chinn, et al, 2012) we analysed
programming exam papers to identify the range of topics
covered and the skills and knowledge required to answer
exam questions in introductory programming. Here we
extend that approach to determine the complexity and
difficulty of exam questions and the level of knowledge
required to answer them correctly. Our approach is
similar to that taken by Crisp et al (2012), who explored
the types of assessment tasks used to assess graduate
attributes.

In this study we analyse exam questions to determine
the levels of difficulty and complexity of the exams,
which leads to an understanding of the standards being
assessed. We first explore the concepts of task
complexity and difficulty. We then develop a framework
to measure the complexity of programming exam
questions from which we can infer the level of
achievement we expect from our programming students.
Next, we apply this to a set of programming exam papers
from multiple institutions to compare the levels of
knowledge and skills being assessed.

2 Task Complexity and Task Difficulty
In a comprehensive review of the literature on the
concept of task complexity, Campbell (1988) proposed
that task complexity can be defined objectively as a
function of task attributes that place high cognitive
demands on the performer of the task. Braarud (2001)
further distinguished between the objective task
complexity, which is a characteristic of the task itself, and
subjective task complexity, which is the user’s perception
of the complexity of a task. Both Campbell and Braarud
argued that task difficulty is distinct from task
complexity, incorporating additional aspects – such as the
task context – that can entail high effort in doing a task.
Campbell (1988) proposed that complex tasks are often
ill-structured and ambiguous. He observed that while
complex tasks are necessarily difficult, difficult tasks are
not necessarily complex. For example, tracing a path
through a maze with a pencil can be quite complex, but is
seldom difficult.

Complexity is clearly a key concept for determining
the difficulty of a task, but there seems to be little
consensus amongst researchers about what attributes can
be used to determine the complexity of a task. Campbell
(1988) proposed four properties that influence task
complexity and used these to develop a task typology.
Mennin (2007) distinguished between simple,
complicated and complex problems, but did not explain
the distinction, instead using examples to illustrate the
categories. Haerem and Rau (2007) developed an
instrument to measure variability and analysability, which
they suggested are fundamental aspects of complexity.
An investigation of task complexity by Stahl, Pieschl and
Bromme (2006) used Bloom’s taxonomy to classify tasks
of different levels of complexity. They further classified
according to level of difficulty within these tasks, but did
not define what they meant by this.

Williams and Clarke (1997) completed the most
comprehensive work in this area. They proposed six
dimensions of complexity (linguistic, contextual,
representational, operational, conceptual and intellectual)
and applied these to problems in the mathematics domain.
Carbone (2007) later applied these six dimensions to
tasks in the computer programming domain.

3 Exam Question Complexity
In our work we wished to investigate the level of
difficulty of exam questions as a means to assess the level
of skills and knowledge being tested in introductory
programming courses. A search of the literature on
programming exam questions indicated a number of
factors that contribute to the complexity and hence
difficulty of these assessment tasks.

A common factor identified was the cognitive load
placed on the student by the question, which is defined as
the number of discrete pieces of information that the
student is required to understand in order to answer the
question (Sweller, 1988). An investigation of second-year
data structures exam questions by Simon et al (2010)
proposed that the phrasing and construction of a question
can add to cognitive load and therefore increase the
difficulty of a question. They argued that cognitive load
also increases when questions involve multiple concepts.
In a review of 15 introductory programming exams from
14 schools, Petersen et al (2011) investigated the content
and concepts covered by each question, proposing that
the more concepts the students need to deal with to
answer a question, the higher the cognitive load and
hence the difficulty of the question. They assessed
cognitive load simply by counting the distinct concepts
dealt with in a question, without considering whether
different concepts might have different intrinsic levels of
difficulty. They found that code-writing questions had the
highest number of concepts per question. In a study of
data structures exams, Morrison et al (2011) found few
long questions, and proposed that this was due to the
exam setters wishing to avoid the increased cognitive
load that would come with extra length.

The conceptual level of topics covered by a question
has also been proposed as an influence on question
difficulty. A survey by Schulte and Bennedsen (2006)
gathered 242 academics’ opinions of the difficulty of CS1
topics. The topics found most difficult were design,

CRPIT Volume 136 - Computing Education 2013

146

recursion, advanced OO topics (polymorphism &
inheritance) and pointers & references. This aligns well
with a survey of 35 academics by Dale (2006) which
showed that design, problem solving, control structures,
I/O, parameters, recursion, and OO concepts were seen as
the difficult concepts for novice programming students.

Based on a detailed statistical analysis of student
answers to introductory programming exam questions,
Lopez et al (2008) proposed a hierarchy of programming-
related skills. In an attempt to interpret results that were
not intuitively obvious they concluded that there were
characteristics of a task other than its style that could
explain its level of difficulty. They proposed that the size
of the task and the programming constructs used also
influenced the difficulty of a question.

A corpus of work has used Bloom’s taxonomy
(Anderson & Sosniak, 1994) to classify questions
according to the cognitive demand of answering them
(Thompson et al, 2008); or the SOLO taxonomy (Hattie
& Purdie, 1998) to classify the intellectual level
demonstrated by answers to questions (Clear et al, 2008;
Sheard et al, 2008).

From a different perspective, the study of engineering
exam questions by Goldfinch et al (2008) concluded that
the style and structure of questions influenced perceptions
of difficulty.

4 Classifying Exam Question Complexity
In the studies of programming exam questions that we
have reviewed, the assessments of question difficulty
were impressionistic; however, the reasons given for
difficulty usually pointed to specific aspects of
complexity. Some of these related to the question itself,
some to what was required as a response. We considered
that complexity could be inherent both in the question
and in the response to the question. This led us to propose
a framework for assessing the aspects of complexity of
exam questions which could then be used to identify
areas of difficulty for the student.

To determine the factors that influence complexity we
considered four perspectives.
1. How is the question asked? How readily will the

students be able to understand what the question is
asking them to do? Question phrasing or style can
lead to ambiguity and uncertainty in how to respond

(Goldfinch et al, 2008; Simon et al, 2010). To address
these questions we consider the linguistic complexity
of the question and references to external domains
beyond the scope of the course, which we called
‘cultural references’ in our previous work (Sheard et
al, 2011).

2. How much guidance does the question give as to how
it should be answered (Goldfinch et al, 2008; Simon
et al, 2010)? Here we consider the explicitness of the
question.

3. What is the student required to do in order to answer
the question? Here we consider the amount of code to
be read and/or written and the intellectual complexity
level demanded (Lopez et al, 2008; Morrison et al,
2011; Petersen et al, 2011).

4. What does the student need to understand in order to
answer the question? This relates to the number of
concepts involved in the question and to their intrinsic
complexity. Here we consider the conceptual
complexity (Dale, 2006; Schulte & Bennedsen, 2006).
The aspects of complexity highlighted by these

questions led to the development of an exam question
complexity classification scheme, a framework for
determining the levels of complexity of a question. There
are six dimensions to the scheme, as shown in the first six
rows of Table 1. The first three are concerned with the
exam question alone and the next three are concerned
with the question and answer combined. For example,
linguistic complexity applies to the language in which the
question is expressed, while code length assesses the
combined length of any code provided in the question and
any code that the student is required to write in the
answer. Four of the six measures of complexity are
closely aligned to the dimensions of Williams and Clarke
(1997). These are external domain references and
linguistic, conceptual and intellectual complexities. The
last row of the table shows the measure of level of
difficulty, which we consider to be distinct from the
various measures of complexity.

For each measure, the possible classification values
and a brief description of the measure are given. More
detailed explanations of the complexity measures are
given in the results section.

Measure Focus* Classification values Description
External domain

references
Q only low, medium, high; if medium or high, the

external domain is specified
Reference to a domain beyond what one would

reasonably expect introductory programming
students to know

Explicitness Q only high, medium, low (note order of levels) Extent of prescriptiveness as to how to answer
the question

Linguistic complexity Q only low, medium, high Length and sophistication of the natural
language used to specify the question

Conceptual complexity Q & A low, medium, high Classification of the individual programming
concepts required to answer the question

Code length Q & A low, medium, high, NA Whether code is up to half a dozen lines long,
up to two dozen lines long, or longer

Intellectual complexity
(Bloom level)

Q & A knowledge, comprehension, application,
analysis, evaluation, synthesis

Bloom’s taxonomy as applied to programming
questions by Gluga et al (2012)

Level of difficulty Q & A low, medium, high Subjective assessment of difficulty of question

* The second column, Focus, indicates whether the measures apply only to the question or to the question and answer.

Table 1: Six complexity measures and level of difficulty used to classify exam questions

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

147

5 Research Approach
The first version of the exam question complexity
classification scheme emerged from a brainstorming
session that was framed by the perspectives listed in
Section 4 and informed by the literature discussed in the
preceding sections. This was followed by a number of
iterations in which about a dozen researchers applied the
measures to the questions in an exam. After each round of
classification the measures were clarified and adjusted as
appropriate until the classification scheme appeared to
have stabilised.

At that point an inter-rater reliability test was
conducted on the complexity measures, with all
researchers classifying all 37 questions in a single exam,
first individually and then in pairs. As all of the measures
are ordinal, reliability was calculated using the Intraclass
Correlation (ICC) (Banerjee et al, 1999), and was found
to be satisfactory on all measures, with pairs proving
distinctly more reliable than individuals.

Following this test, the remaining exams were
classified by pairs of researchers, who first classified the
questions individually and then discussed their
classifications and reconciled any differences.

6 Results
This section presents the results of analysing 20
introductory programming exam papers using the
complexity measures listed in Table 1. A total of 472
questions were identified in these exams, with the number
of questions in an exam ranging from four to 41.

The 20 exam papers were sourced from ten institutions
in five countries. All were used in introductory
programming courses, 18 at the undergraduate level and
two at the postgraduate level. The latter two courses are
effectively the same as courses taught to first-year
undergraduate students, but are taught to students who are
taking a postgraduate computing qualification to
supplement a degree in some unrelated area. Course
demographics varied from 25 students on a single campus
to 800 students over six campuses, two of these being
overseas campuses. Most courses used Java with a variety
of IDEs (BlueJ, JCreator, Netbeans, Eclipse), two used
JavaScript, one used C# with Visual Studio, one used
Visual Basic, one used VBA (Visual Basic for
Applications), and one used Python.

Most of the exams were entirely written, but two were
separated into a written part and a computer-based part,
each worth 50% of the complete exam.

Note that for the analysis, the percentage mark
allocated to each question has been used as a weighting
factor for the other measures.

6.1 Overall Complexity Measures
Each question was classified according to six measures of
complexity.

The results for five levels of complexity (external
domain references, explicitness, linguistic complexity,
conceptual complexity and code length) are summarised
in Table 2. Because the percentage mark allocated to each

Measure of complexity low medium high
External domain references 95% 5% 0%

Explicitness 3% 30% 67%
Linguistic complexity 80% 17% 3%

Conceptual complexity 8% 67% 25%
Code length* 27% 54% 10%

* 9% of questions (weighted) did not involve code

Table 2: Overall levels of complexity of questions from
the 20 exams, with mode values shown in bold

question was used as a weighting, the figures in the table
represent the percentage of the exam marks allocated, not
the percentage of the number of questions.

While these five measures are all classified as low,
medium, or high, intellectual complexity is classified
according to Bloom’s six-point scale, so its classifications
are shown separately in Figure 1. These classifications
ranged from 3% for Evaluation to 44% for Application.

Considering the mode values, we can see that, over all
the exams, questions are predominantly low in external
domain references, highly explicit, low in linguistic
complexity, of medium conceptual complexity and
medium code length, and at the Application level of
Bloom’s taxonomy.

Figure 1: Overall measure of intellectual complexity

(Bloom’s taxonomy)

6.2 External Domain References
Many exam questions involve some sort of scenario,
referring to a domain beyond what would necessarily be
taught in the programming course. These scenarios have
the potential to make a question more complex.

An external domain reference is any use of terms,
activities, or scenarios that may be specific to a particular
group and may reduce the ability of those outside the
group to understand the question. For example, if a
question refers to the scoring scheme of Australian Rules
football, students would require specific knowledge to
fully understand it – unless the question explicitly
includes all of the knowledge that is needed to deduce the
answer. Another question might display a partly complete
backgammon game and ask students to write a program
to determine the probability of winning on the next throw

CRPIT Volume 136 - Computing Education 2013

148

of the dice. Unless the question fully explains the relevant
rules, students who do not know backgammon will
clearly not be able to answer it.

Programming knowledge does not constitute an
external domain reference, because it is assumed to be
taught in the course or prior courses. General knowledge
is not considered as an external domain reference so long
as the classifier is confident that it really is general: that
all introductory programming students could reasonably
be expected to know it.

We classify external domain references as high if
students cannot understand the question without knowing
more about an external domain; medium if they are given
all the information they need, but the wording might lead
them to think otherwise; and low if all students should be
able to understand the question as it is.

None of the questions that we analysed relied upon a
high level of knowledge from an external domain. Only
seven exams contained questions with a medium level of
external domain knowledge; these comprised at most
20% of any exam, and made up only 23 questions (less
than 1% of the 472 questions).

Of those 23 questions, a few assumed some
knowledge of the business domain (interest, profit, taxes),
and a couple assumed knowledge of mathematical
concepts (complex numbers, log arithmetic) or scientific
concepts (storm strength). A few questions assumed
knowledge of computing concepts (codes/encryption,
pixellation, domain name format) beyond what would be
considered reasonable for an introductory programming
student. Some references were culturally based (name
format, motel, vehicle registration, sports, card games).
One referred to a sorting hat, a concept from a popular
series of books and films. All of these references were at
the medium level, so students did not need the external
domain knowledge in order to answer the questions.

Of particular interest are questions that refer to
external domain knowledge but make it clear that this
knowledge was covered thoroughly during the course,
perhaps being the subject of a major assignment. Such
questions would not constitute external domain
knowledge for this particular cohort of students.
However, if the question were to be placed in a repository
for the use of other academics, it would be wise to flag
that there are external domain references for other
students; therefore such references were classified as
requiring external domain knowledge, with the domain in
question being specified as the course assignment.

6.3 Explicitness
How strongly does the question tell the student what steps
to use in writing an answer? How strongly does it
prescribe, for example, what programming constructs
and/or data structures to use? There is a fairly high level
of explicitness in “Write a method that takes an array of
integers as a parameter and returns the sum of the
numbers in the array”. There is a very low level of
explicitness in “Write a program to simulate an automatic
vending machine,” which requires the students to
determine the purchase process of the vending machine
and identify the corresponding programming operations.
Another question might require students to specify a Card
class to use in a card game program. A highly explicit

version would list the methods required and the attributes
and their types. A version with a low level of explicitness
would not specify methods, attributes, or operations. A
version with medium explicitness would perhaps specify
some of the attributes and/or methods and require the
student to deduce the rest. Note that the level of
explicitness of a question would be expected to have an
inverse relationship with the question’s difficulty; that is,
the more explicit a question, the easier we would expect
students to find it.

Figure 2 shows a summary of the explicitness levels of
questions over the 20 exams. Two thirds of the marks
(67%) were allocated to questions expressed with a high
level of explicitness. The graph shows that less than a
third of the exams (6) contained questions of low
explicitness, and the marks allocated for these questions
comprised 20% or less of these exams. In most of the
exams more than half the questions were highly explicit.

Note: in Figure 2, and those following, the four exams
that exceed 100% do so because they include some
choice, so students do not have to complete all questions
to score 100%. The exam that is less than 100% is from a
course that included non-programming topics and has
questions that do not relate to programming. We
classified only the programming-related questions in this
exam.

6.4 Linguistic Complexity
Linguistic complexity is related to the length and
sophistication of the natural language used to specify the
question. Some questions have lengthy descriptions or
use unusual words, which could affect the ability of a
student to answer them. One possible view of linguistic
complexity is that it is an approximation of the likelihood
that a student not fluent in the natural language of the
question would have trouble understanding the question.

Overall, most marks were allocated to questions
involving a low level of linguistic complexity (80%). In
about a third of the exams (7), all questions were
classified as having a low level of linguistic complexity.
Only two exams had questions with high linguistic
complexity. In one of these, the high linguistic
complexity was in a single question, comprising 50% of
the exam, which was to be answered at the computer.

Figure 2: Explicitness of questions in each exam

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

149

6.5 Conceptual Complexity
Questions in programming exams usually require students
to understand a number of different ideas or concepts. On
the basis of our own experience of teaching introductory
programming, and of other people’s survey findings
(Dale, 2006; Schulte & Bennedsen, 2006), we have
classified a number of programming concepts as being of
low, medium, or high conceptual complexity. For
example, variables and arithmetic operators are of low
conceptual complexity; methods, and events are of
medium conceptual complexity; and recursion, file I/O,
and arrays of objects are of high conceptual complexity.
Note that these levels were defined specifically for Java-
like procedural or object-oriented introductory
programming courses; when we come to classify exams
in courses that use functional programming, we might
need to redefine them, with recursion, for example,
shifting from high to a lower conceptual complexity.

We classified the questions using the initial
categorisation as a guide, while remaining conscious that
particular usage might affect the classification. For
example, although loops are generally classified as
medium, a classifier could argue for high complexity
when classifying a particularly tortuous loop.

The conceptual complexity findings are summarised in
Figure 3. Overall, two thirds of the marks (67%) were
allocated to questions involving a medium level of
conceptual complexity. Most exams showed a range of
conceptual complexity, with the majority of marks
allocated to questions involving concepts of medium
complexity. Only four exams had no questions of high
conceptual complexity, and only four had no questions of
low conceptual complexity.

6.6 Code Length
The questions were classified according to the amount of
code involved in reading and answering the question,
with a simple guide that up to about half a dozen lines of
code would be considered low, between there and about
two dozen lines would be considered medium, and any
more than about two dozen lines of code would be
considered high. A summary of the results is shown in

Figure 4. Overall, more than half the marks (54%) were
allocated to questions involving a medium amount of
code. About two thirds of the exams (14) contained
questions that did not involve code; however, these were
usually only a small component of the exam. Most of the
marks in most of the exams were allocated to questions
involving low and medium code length. Less than half the
exams (8) had questions involving large amounts of code,
and only three exams had large weightings of marks
(more than 40%) involving high code length.

6.7 Intellectual Complexity
Bloom’s cognitive domain is a long-recognised measure
of the intellectual complexity of a question in terms of its
expected answer. There has been debate about whether
Bloom’s domains can be usefully applied to
programming questions, but there is some consensus that
they can (Thompson et al, 2008). Gluga et al (2012)
provide a clear explication, with examples and a tutorial,
of one way of doing this.

The summary in Figure 5 shows a great variation in
levels of intellectual complexity across the exams.
Considering the three lowest levels of intellectual
complexity, most exams (17) contained questions at the
Knowledge level, all exams contained questions at the
Comprehension level, and all but one exam contained
questions at the Application level. Questions at the
Analysis level were found in just over half the exams
(12). At the highest Bloom levels there were very few
questions, with only one exam containing Evaluation
level questions and three exams containing Synthesis
level questions.

6.8 Degree of Difficulty
Assessing the degree of difficulty entails classifying a
question according how difficult an average student at the
end of an introductory programming course is likely to
find it. This is a holistic measure. We would expect there
to be a correlation between question difficulty and
students’ marks on the question: the higher the difficulty,
the lower the average mark we might expect students to
attain.

Figure 3: Conceptual complexity of questions in each
exam

Figure 4: Length of code involved in questions in each
exam

CRPIT Volume 136 - Computing Education 2013

150

Question difficulty assesses the student’s ability to
manage all of the demands of a task. It is concerned with
the student’s perception of and response to the question,
whereas task complexity is static and defined by the
nature of the question itself.

The questions were classified according to the
perceived level of difficulty for a student at the end of an
introductory programming course. Overall, half the marks
(50%) were allocated to questions rated as medium, with
30% for questions rated as low difficulty and 20% for
question rated as high difficulty. The summary in Figure
6 shows the variation across the exams. Although some
exams have a fairly wide spread of low/medium/high
difficulty questions, about a third (7) of the exams have
no high difficulty questions, and one exam has high
difficulty only in a bonus question. One exam had no
questions of low difficulty, just 45% medium and 55%
high.

We have been asked why we bother to subjectively
assess question difficulty when the students’ marks on the
questions would provide a more reliable measure. The
answer is simple. We were fortunate enough to have been
provided with these 20 exams to analyse. It would be too
much to have also asked for student performance data on
each question of each exam. First, it is possible that for
many of the exams the only data now available is
students’ overall marks in the course, and perhaps even
that is no longer available. Second, ethics approval is
required before students’ results can be analysed for
research purposes, and we did not feel it appropriate to
ask everyone who gave us an exam to follow this up by
applying for ethics approval in order to give us their
students’ results as well.

However, we have conducted a separate study (Simon,
Sheard, Carbone, D'Souza, et al, 2012), on a set of
questions for which we do have access to student
performance data, and have confirmed the expected link
between our assessment of question difficulty and the
students’ performance on the same questions.

6.9 Relationship between Complexity and
Difficulty
Each of the measures of complexity focuses on particular
characteristics of a question which could be seen to
contribute to an overall complexity for the question,
whereas the degree of difficulty is a perception of how
difficult the average student at the end of the introductory
programming course would find the question. A
correlation test was performed to explore the relationship
between complexity and difficulty. As the measures of
complexity and difficulty are at the ordinal level, a
Spearman’s Rank order correlation was used. The results,
summarised in Table 3, show relationships between the
degree of difficulty and each measure of complexity, all
of which are significant at p < 0.01. The strongest
relationships with degree of difficulty are code length and
intellectual complexity: questions involving more
program code, and questions at the higher levels of
Bloom’s taxonomy, are more difficult questions.

To further explore the relationship between
complexity and difficulty, the levels of difficulty within
each complexity measure were determined. The
following results were found.
• Most questions with a low level of difficulty are

highly explicit (97%).
• Most questions with a low level of difficulty are of

low linguistic complexity (98%).

 Degree of
difficulty (r)

External domain references 0.197 *
Explicitness -0.408 *

Linguistic complexity 0.326 *
Conceptual complexity 0.412 *

Code length 0.564 *
Intellectual complexity 0.501 *

* all significant at p <0.01
Table 3: Relationship between degree of

difficulty and complexity measures

Figure 5: Intellectual complexity of questions in each
exam

Figure 6: Degree of difficulty of questions in each exam

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

151

• No questions with a high level of difficulty have a
low conceptual complexity.

• No questions with a high level of difficulty involve a
low amount of code or no code.

• No questions with low level of difficulty involve a
high amount of code.

• No questions with a high level of difficulty are
classified at the two lowest levels of Bloom’s
cognitive domain (Knowledge and Comprehension).
Figure 7 shows the breakdown of the degree of
difficulty within each level of Bloom’s taxonomy.

7 Discussion
We have found from our analysis that there is wide
variation in the final examinations of introductory
programming courses, with variations in all the
complexity measures and in the level of difficulty. As the
pressure grows to determine standards of assessment for
university courses, the framework that we have devised is
likely to prove extremely helpful. We do not propose that
all introductory programming courses should be identical,
or that they should all assess at the same level; what we
do propose is that there should be a means to determine
the extent of similarity between the courses and their
outcomes, a means to compare the levels at which they
assess their students. As we see it, the push to standardise
is not an attempt to impose uniformity but a desire to be
explicitly aware of the spread and variety of what is
taught and assessed.

An interesting consequence of our findings is that,
notwithstanding their substantial overlap, different
introductory programming courses do assess somewhat
different material at somewhat different levels. Students
migrating between programs, and academics charged
with assigning credit on the basis of courses completed
elsewhere, would do well to be aware of this.

Of the complexity measures addressed in this work, it
is useful to distinguish between ‘good’ complexity and
‘bad’ complexity. High-level external domain references

and high linguistic complexity can be undesirable, and we
were pleased to see little evidence of those in the exams
we assessed. Conceptual and intellectual complexity can
be intentional and purposeful, and it seems quite
reasonable to test these to some extent – through there is
still an open question as to what levels we can reasonably
expect students to attain in an introductory programming
course.

With regard to intellectual complexity, academics
from other disciplines might be surprised to see such a
preponderance of questions at the Application level in the
exam for an introductory course. In other disciplines it
might be expected that the first course will deal more
with Knowledge and Comprehension, with the higher
levels of the taxonomy reserved for higher-level courses.
If this is indeed the case, we need to be confident that this
high level of Application is a necessary consequence of
the nature of teaching programming; the alternative is to
recognise that we are asking too much sophistication of
students in our introductory courses.

Does it help students or hinder them to have a
practical, computer-based exam? Is it more acceptable in
a computer-based exam than a paper-based exam to have
a large question, worth 50% of the exam, that has high
linguistic complexity, high conceptual complexity, high
code length, a Bloom level of Evaluation, and a high
perceived overall difficulty? We do not propose answers
to these questions. Rather, we note that they have
emerged from our study of these exams, and that they are
worthy of consideration by the computing education
community.

The assignment of topics to low, medium, and high
conceptual complexity, while certainly not arbitrary, is
clearly open to debate. The choices appear to have been
reasonable, given the correlation between this measure
and the overall question difficulty. However, we need to
consider whether conceptual complexity is an intrinsic
feature of a topic, or more a function of what was taught
and how it was taught in each course. Just as the
conceptual complexity of recursion might be high in a
procedural programming course and low in a functional
programming course, might it be the case that the
conceptual complexity of any topic is dependent on when
and how that topic was taught in each specific course?
We also note in passing that while selection and iteration
appear as topics in the surveys on which our own lists of
topics were based, the topic of sequence is notable by its
absence, although it has been identified by Simon (2011)
and others as a topic that some students have difficulty
grasping. In retrospect, we accept that it would have been
wise to list sequence as a topic, assigning it a low level of
conceptual complexity.

With regard to the various complexity measures
described in this paper, is it possible and reasonable to
suggest what mix of low, medium, and high values
should normally be found in an introductory
programming exam? Can we use these measures to
suggest that particular exams are inappropriately complex
or inappropriately simple? Or do we accept that there is a
wide variety in the courses themselves, and simply note
where each exam fits into the broader picture?

For some of the measures it is possible to make clear
recommendations to the people who write exams. It

Figure 7: Degree of difficulty of questions within each
level of intellectual complexity

CRPIT Volume 136 - Computing Education 2013

152

would appear reasonable to expect exam questions to
have low linguistic complexity and not to rely on
students’ knowledge of domains outside what is being
taught. For other measures the choice is more personal.
For example, some examiners might like to be entirely
explicit about what students are required to do, while
others might prefer to test the students’ problem-solving
abilities by framing some questions with low explicitness
and leaving the students to fill in the gaps in the
specifications. However, in a couple of exams we
assessed, more than 75% of the questions were of
medium level explicitness; would most examiners
consider this a little high for an introductory
programming exam?

The analysis reported in this paper is exploratory: its
purpose is as much to identify questions as to answer
them. Its contribution is that it raises questions such as
those discussed above, at the same time providing a
framework in which the questions can be discussed, and
possibly, eventually, answered.

8 Conclusions and Future Work
In this study we analysed programming examination
papers across institutions, both national and international,
as a window into the levels of learning expected in
foundation programming courses. The complexity
measures applied in this study highlight the variability of
introductory programming exams. This could be taken as
reinforcing the suggestion that exams are highly personal;
but it leaves open the question: are the exams all
assessing the same or comparable things? If not, can we
be sure that each and every one of these exams is a valid
assessment instrument?

Future work will include exploring the thinking of the
people who write the exams, and whether they do so with
any awareness of the sorts of issue addressed in this
analysis. This will entail interviewing a number of exam
writers and conducting a qualitative analysis of the
interview transcripts.

In addition, we intend to analyse a number of
introductory programming exams that use functional
programming, and to extend our analysis to the exams for
second- and third-level programming courses.

With regard to the increasing role of standardisation,
further aspects of the BABELnot project (Lister et al,
2012) include the establishment of a repository of fully
classified programming exam questions with
accompanying performance data, and the benchmarking
of a subset of these questions across multiple institutions.

9 Acknowledgements
The authors would like to thank the Learning and
Teaching Academy of the Australian Council of Deans of
ICT for its support of the ACE 2012 workshop, and also
the Australian Federal Government’s Office for Learning
and Teaching for its support of the BABELnot project.

10 References
Anderson, L. W. and Sosniak, L., A. (1994): Excerpts

from the "Taxonomy of Educational Objectives, The
Classification of Educational Goals, Handbook I:
Cognitive Domain. In L. W. Anderson & L. Sosniak,
A. (Eds.), Bloom's Taxonomy: A Forty Year

Retrospective (pp. 9-27). Chicago, Illinois, USA: The
University of Chicago Press.

Australian Council for Educational Research. (2011):
Assessment of Higher Education Learning Outcomes
(AHELO) Retrieved 24 August, 2012, from
http://www.acer.edu.au/aheloau

Banerjee, M., Capozzoli, M., McSweeney, L. and Sinha,
D. (1999): Beyond kappa: a review of interrater
agreement measures. Canadian Journal of Statistics,
27, 3-23.

Bexley, E., James, R. and Arkoudis, S. (2011): The
Australian academic profession in transition.
Canberra: Department of Education, Employment
and Workplace Relations, Commonwealth of
Australia.

Braarud, P. (2001): Subjective task complexity and
subjective workload: Criterion validity for complex
team tasks. International Journal of Cognitive
Ergonomics, 5(3), 261-273.

Cameron, I. and Hadgraft, R. (2010): Engineering and
ICT Learning and Teaching Academic Standards
Statement. Strawberry Hills, NSW, Australia:
Australian Learning and Teaching Council.

Campbell, D. (1988): Task complexity: A review and
analysis. Academy of Management Review, 13(1),
40-52.

Carbone, A. (2007): Principles for Designing
Programming Tasks: How task characteristics
influence student learning of programming. PhD,
Monash University, Melbourne, Australia.

Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M.,
Sheard, J., Simon, B. and Thompson, E. (2008):
Reliably classifying novice programmer exam
response using the SOLO taxonomy. Paper presented
at the 21st Annual Conference of the National
Advisory Committee on Computing Qualifications
(NACCQ 2008), Auckland, New Zealand.

Coates, H. and Edwards, D. (2008): The 2008 Graduate
Pathways Survey. Canberra: Department of
Education, Employment and Workplace Relations,
Commonwealth of Australia.

Crisp, G., Barrie, S., Hughes, C. and Bennison, A.
(2012): How can I tell if I am assessing learning
outcomes appropriately? Paper presented at the
Higher Education Research and Development
Society of Australasia (HERDSA), Macquarie Hotel,
Hobart. http://conference.herdsa.org.au/2012/

Dale, N. (2006): Most difficult topics in CS1: Results of
an online survey of educators. inroads - The SIGCSE
Bulletin, 38(2), 49-53.

Evans, C. (2011): Professor Alan Robson to take on key
higher education quality role Media Release
Retrieved 24 August, 2012, from
http://ministers.deewr.gov.au/evans/professor-alan-
robson-take-key-higher-education-quality-role

Gluga, R., Kay, J., Lister, R., Kleitman, S. and Lever, T.
(2012): Coming to terms with Bloom: An online
tutorial for teachers of programming fundamentals.
Paper presented at the 14th Australasian Computing
Education conference, Melbourne, Australia.

Goldfinch, T., Carew, A. L., Gardner, A., Henderson, A.,
McCarthy, T. and Thomas, G. (2008): Cross-
institutional comparison of mechanics examinations:

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

153

A guide for the curious. Paper presented at the
Australasian Association for Engineering Education
conference (AAEE), Yeppoon.

Haerem, T. and Rau, D. (2007): The influence of degree
of expertise and objective task complexity on
perceived task complexity and performance. Journal
of Applied Psychology, 92(5), 1320-1331.

Hattie, J. and Purdie, N. (1998): The SOLO model:
Addressing fundamental measurement issues. In M.
Turpin (Ed.), Teaching and Learning in Higher
Education (pp. 145-176). Camberwell, Victoria,
Australia: ACER Press.

Lister, R., Corney, M., Curran, J., D'Souza, D., Fidge, C.,
Gluga, R., Hamilton, M., Harland, J., Hogan, J., Kay,
J., Murphy, T., Roggenkamp, M., Sheard, J., Simon
and Teague, D. (2012): Toward a shared
understanding of competency in programming: An
invitation to the BABELnot project. Paper presented
at the 14th Australasian Computing Education
conference, Melbourne, Australia.

Lopez, M., Whalley, J., Robbins, P. and Lister, R. (2008):
Relationships between reading, tracing and writing
skills in introductory programming. Paper presented
at the Fourth International Computing Education
Research workshop (ICER 2008), Sydney, Australia.

Mennin, S. (2007): Small-group problem-based learning
as a complex adaptive system. Teaching and Teacher
Education, 23, 303-313.

Morrison, B., Clancy, M., McCartney, R., Richards, B.
and Sanders, K. (2011): Applying data structures in
exams. Paper presented at the 42nd ACM Technical
Symposium on Computer Science Education
(SIGCSE'11), Dallas, Texas, USA.

Petersen, A., Craig, M. and Zingaro, D. (2011):
Reviewing CS1 exam question content. Paper
presented at the 42nd ACM Technical Symposium
on Computer Science Education (SIGCSE'11),
Dallas, Texas, USA.

Schulte, C. and Bennedsen, J. (2006): What do teachers
teach in introductory programming? Paper presented
at the Second International Computing Education
Research workshop (ICER'06), Canterbury, UK.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,
E. and Whalley, J. (2008): Going SOLO to assess
novice programmers. Paper presented at the 13th
Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE'08), Madrid,
Spain.

Sheard, J., Simon, Carbone, A., Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D'Souza, D., Harland, D.,

Lister, R., Philpott, A. and Warburton, G. (2011):
Exploring programming assessment instruments: a
classification scheme for examination questions.
Paper presented at the Seventh International
Computing Education Research workshop (ICER
2011), Providence, Rhode Island, USA.

Simon (2011): Assignment and sequence: why some
students can't recognise a simple swap. Paper
presented at the 10th Koli Calling International
Conference on Computing Eduction research,
Finland.

Simon, Sheard, J., Carbone, A., Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D'Souza, D., Lister, R.,
Philpott, A., Skene, J. and Warburton, G. (2012):
Introductory programming: Examining the exams.
Paper presented at the 14th Australasian Computing
Education conference, Melbourne, Australia.

Simon, Sheard, J., Carbone, A., D'Souza, D., Harland, J.
and Laakso, M.-J. (2012): Can computing academics
assess the difficulty of programming examination
questions? Paper presented at the 11th Koli Calling
International Conference on Computing Education
Research, Finland.

Simon, B., Clancy, M., McCartney, R., Morrison, B.,
Richards, B. and Sanders, K. (2010): Making sense of
data structure exams. Paper presented at the Sixth
International Computing Education Research
workshop (ICER 2010), Aarhus, Denmark.

Stahl, E., Pieschl, S. and Bromme, R. (2006): Task
complexity, epistemological beliefs and
metacognitive calibration: An exploratory study.
Journal of Educational Computing Research, 35(4),
319-338.

Sweller, J. (1988): Cognitive load during problem
solving. Effects on learning. Cognitive Science,
12(2), 257-285.

Tertiary Education Quality and Standards Agency.
(2012): Higher Education Standards Framework,
from http://www.teqsa.gov.au/higher-education-
standards-framework

Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M.
and Robbins, P. (2008): Bloom's taxonomy for CS
assessment. Paper presented at the 10th Australasian
Computing Education Conference (ACE 2008),
Wollongong, Australia.

Williams, G. and Clarke, D. (1997): Mathematical task
complexity and task selection. Paper presented at the
Mathematical Association of Victoria 34th Annual
Conference - 'Mathematics: Imagine the
Possibilities', Clayton, Victoria, Australia.

CRPIT Volume 136 - Computing Education 2013

154

Integrating Source Code Plagiarism into a Virtual Learning
Environment: Benefits for Students and Staff

Thanh Tri Le Nguyen1 Angela Carbone2 Judy Sheard1 Margot Schuhmacher1

1 Faculty of Information Technology, Monash University

PO Box 197, Caulfield East, Victoria 3145
tri.lenguyen@monash.edu
judy.sheard@monash.edu

margot.schuhmacher@monash.edu

2 Office Pro Vice-Chancellor (Learning and Teaching), Monash University
PO Box 197, Caulfield East, Victoria 3145

angela.carbone@monash.edu

Abstract
Source code plagiarism is a growing concern in
computing related courses. There are a variety of tools to
help academics detect suspicious similarity in computer
programs. These are purpose-built and necessarily
different from the more widely used text-matching tools
for plagiarism detection in essays. However, not only is
the adoption of these code plagiarism detection tools very
modest, the lack of integration of these tools into learning
environments means that they are, if used, just intended to
identify offending students, rather than as an educational
tool to raise their awareness of this sensitive problem.
This paper describes the development of a plugin to
integrate the two well-known code plagiarism detectors,
JPlag and MOSS, into an open source virtual learning
environment, Moodle, to address the needs of academics
teaching computer programming at an Australian
University. A study was carried out to evaluate the
benefits offered by such integration for academics and
students.

Keywords: source code matching tools, academic
integrity, plagiarism.

1 Introduction
Ongoing reports of serious plagiarism incidents, as well
as a relaxed attitude amongst students towards this
offence, have motivated a lot of research to combat this
problem from both education-prevention and detection-
punishment perspectives (Sheard and Dick, 2011, Dick et
al., 2008). A lot of tools have been developed to assist
academics with educating their students about plagiarism
and detecting this offence should it occur. A very popular
example of such a tool is the widely used text matching
tool Turnitin, which is not solely intended as a detection
tool for instructors, but is also a feedback tool to educate
students on academic integrity, with features such as
allowing draft submissions and providing students with

access to a similarity report.
Plagiarism involving text (as found, for example, in

essays) is the most widely reported form of plagiarism.
Plagiarism of computer source code, although less widely
reported, has higher incident rates (Sheard et al., 2002,
Wagner, 2000). This can be explained by competition
amongst students, pressure to create error-free programs,
an abundance of readily accessible solutions and a
tradition of reusing past assignments (Roberts, 2002).
Furthermore, source code is much more constrained than
natural languages, which leads to a high degree of
similarity between programming assignments as opposed
to essays. With the help of modern programming
environments, it is remarkably easy to refactor source
code by just a few mouse clicks and make it look very
different in appearance. This constitutes a substantial
challenge for teachers to detect plagiarised code since
they typically do not have enough resources to manually
check for similarities, unless some students commit the
same distinctive mistakes or implement similar unusual
approaches.

Some plagiarism detectors intended specifically for
source code such as MOSS (Aiken, 1995) and JPlag
(Prechelt et al., 2002) can help a great deal in detecting
suspiciously similar code, since their algorithms are
specifically designed to overcome common disguising
techniques. However, these tools are much less known
and adopted than their essay plagiarism detection
counterparts (Lancaster and Culwin, 2010). As standalone
tools, the source code plagiarism detection tools are
neither convenient to use, nor able to provide feedback to
students, as can be done with an educational tool like
Turnitin.

This paper reports on a project to bring code
plagiarism detectors closer to their target users with a
plugin integrating the two popular plagiarism detection
services, JPlag and MOSS, into Moodle, a widely used
virtual learning environment. The aim of the project was
to promote the adoption of source code plagiarism
detectors, not only as detection tools, but also as
educational tools, in order to raise students’ awareness of
academic integrity. This would be achieved by providing
students with feedback on the similarity of their work via
a report. The pre-evaluation phase of the project
investigated needs and issues faced by academics in their
current practices. After integrating the two selected

Copyright © 2013, Australian Computer Society, Inc. This
paper appeared at the 15th Australasian Computer Education
Conference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in
Information Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

155

detectors, JPlag and MOSS, into Moodle in a way that
addressed academics’ needs, the post-evaluation phase
investigated the academics’ and students’ perceptions of
the usability, benefits and impacts of the integration via
the similarity report generated on a real-life assignment.

The next section of the paper gives some background,
on currently available source code plagiarism detectors
coupled with their adoption and impact. The following
section presents the research method leading to the
integration of the plagiarism detectors into Moodle and
the investigation of the benefits of this integration. The
fourth section presents the result of the research, and the
final section concludes the findings of this study.

2 Background

2.1 Definition of source code plagiarism
Plagiarism is one of the most common forms of academic
offence, yet the concept of plagiarism is arguably obscure
and confused. One of the most cited definitions of
plagiarism is from Britannica Encyclopaedia, which
regards plagiarism as “the act of taking the writings of
another person and passing them off as one’s own”
(Britannica, 2012). When applied to computer source
code, an early paper defined plagiarism as “a program
which has been produced from another program with a
number of routine transformations” (Parker and
Hamblen, 1989). However, these definitions are not
particularly clear and there seems to be no consensus
amongst computing academics on one single universal
definition which can apply unambiguously to every case
(Cosma and Joy, 2008). The reason for this divergence is
due to the nature of programming languages which have
less freedom and flexibility than natural languages, the
ease of code modification, and the encouragement for
code reuse. These characteristics make it easy to disguise
plagiarised code, or to unintentionally commit the
offence, not to mention the fact that offenders can rely on
the ambiguity of the rules to claim innocence (Wagner,
2000).

Some research has tried to determine the boundary
between the accepted practice and plagiarism in computer
programs through surveys of academics and students.
However, opinions recorded are diverse, especially in
subtle cases where the student’s contribution is
substantial (Cosma and Joy, 2008). This variation can be
explained by the differences in teaching and assessment
objectives. Therefore, judgement about plagiarism cannot
be made independently of context (Dick et al., 2008).

2.2 Source code plagiarism detectors
While essay plagiarism detection tools search for
consecutive words to identify copying, source code
plagiarism detectors have to take into account the
modifications that students can make to disguise their
code. Faidhi and Robinson (1987) characterised six levels
of modification from simple to complicated. From the
original program (level 0), plagiarists could change
comments and indentations (level 1), identifier names
(level 2), declaration of constants, variables and
procedures (level 3), program modules (level 4), program
statements (level 5) and finally logic expressions
(level 6). With the help of modern programming

environments, modifications at level 3 and below only
require very primitive knowledge of a programming
language, while it is controversial that level 6 could even
be considered as plagiarism (Cosma and Joy, 2008).

Different kinds of source code plagiarism detectors are
able to find copied code at different levels, depending on
the type of algorithms they use. There are basically three
categories of detection tools in this regard: software-
metric based, token-based and semantic-based. Software-
metric based detectors, the most primitive ones, use
metrics in software engineering such as program size,
complexity, as well as the number of keywords, operators
and operands to compare program code (Parker and
Hamblen, 1989). The token-based method generally finds
common consecutive tokens between two programs after
eliminating possible variations such as identifier names
(Prechelt et al., 2002). Semantic-based detectors, the most
sophisticated ones, construct parse trees or program
graphs for each piece of code before matching them
together (Liu et al., 2006). While the last category of
detectors may be able to detect plagiarised code at the
highest level, they do not scale well for large sets of
programs, and no publicly available tools in this category
were found. For student assignments, token-based tools,
which encompass most of the popular detectors, are
considered to be the most appropriate for educational use.

2.3 The adoption and effects of plagiarism
detection tools

Reports suggest that the use of source code plagiarism
detectors is quite limited compared to the scale of the
problem and the adoption of these tools is much less than
their natural language counterparts (e.g. Turnitin). In fact,
only one quarter of the institutions in UK reported having
adopted code plagiarism tools (Lancaster and Culwin,
2010). As a result of this lack of use, when students were
suddenly checked for plagiarism in their programming
assignments, the offences were found to be unexpectedly
high (Wagner, 2000, Daly and Horgan, 2005, Bowyer and
Hall, 2001).

Whilst some papers have reported studies of the
effects of using a text matching tool on students’ text-
based plagiarism practices (Biggam and McCann, 2010,
Rolfe, 2011), not as much research has reported on the
same issue with source code plagiarism. Bowyer and Hall
(2001) observed that the incident of plagiarism dropped
considerably after a period of time using MOSS, but later
discovered that plagiarism was shifted to another source
undetectable by software such as acquiring a program
from students from a previous running of the course or
even hiring outsiders. The problem was only detected
when two students in the same class acquired the same
program from one source, which the authors called the
“ghost author phenomenon”. Similar incidents were also
reported at RMIT University where JPlag is used
officially for every programming assignment (Zobel,
2004, D'Souza et al., 2007).

Besides detection, a suggested educational benefit of
the detectors is the raising of students’ awareness of the
offence by providing them with feedback on the
similarity of their code to others. A search in the literature
found no works that have been done to evaluate the

CRPIT Volume 136 - Computing Education 2013

156

educational effects of this kind of feedback from source
code matching tools. However, similar research on
Turnitin by Biggam and McCann (2010) found that this
feedback could facilitate a smoother transition between
school and university for first year students by helping
them to improve their referencing skills and awareness of
academic integrity.

3 Research approach
The widespread problem of plagiarism in programming
assignments, as opposed to the low adoption of source-
code plagiarism detectors, has motivated this research to
seek a better understanding of the benefits and limitations
of these tools and promote their adoption. The project
proceeded in three phases:

• Phase 1: Investigation of the current plagiarism
detection and handling practices of academics and
their satisfaction with these practices.

• Phase 2: Development of a plugin to integrate the
two well-known third party plagiarism detection
tools MOSS and JPlag into Moodle.

• Phase 3: Evaluation of the benefits of the plugin in
making MOSS and JPlag code plagiarism scanning
services an inherent part of the assessment process
within Moodle. This will be conducted with a real
assignment and from the perspectives of both
academics and students.

The remainder of this section describes each phase,
explaining the purpose of the phase, a justification of the
approach, the method involved and its potential
limitations.

3.1 Phase 1– Investigating the current practice
In order to integrate the detectors in a manner that meets
academics’ needs, it was important to obtain insights into
the current practices of plagiarism detection and the
difficulties encountered. The aims of this phase were
twofold:

• Gain understanding of the current practices in
identifying and dealing with source-code
plagiarism: this was the main focus of this phase
since it helped determine potential enhancements of
the integration of the detectors into the virtual
learning environment the academics used.

• Determine the level of satisfaction with the current
practices and the difficulties encountered: this
would highlight areas of improvement to
academics’ assessment practices that the tools may
offer.

Given the exploratory nature of this phase, a semi-
structured interview approach was adopted. The interview
method was considered over the other qualitative
methods, such as surveys and focus groups, due to its
flexibility in exploring the academics’ views. While a
survey could reach a larger group of participants in a
limited time, it does not offer the opportunity to delve
into the ideas raised by academics, which were of
particular interest to the research. Moreover, interviews
make it easier for respondents to provide their opinions
and personal experiences, which were actively sought in
this phase.

The study was conducted with Monash University
academics, including both lecturers and tutors, who were
involved in teaching programming units at any level.
Twenty-two academics were approached for interview.
This was done by sending an email invitation to lecturers
and tutors of programming units. Every academic who
agreed to take part in the research was interviewed.

A limitation of interviewing only Monash academics
is the lack of representativeness for the whole IT
academic community in general. Since academics from
the same university often adhere to the same standards
and processes, they might be likely to share similar views
and practices. This potentially results in the findings of
the research and the implementation of the plugin having
less applicability to other institutions.

3.2 Phase 2 – Developing a Moodle plugin
Two popular source code plagiarism detectors, MOSS
(Aiken, 1995) and JPlag (Prechelt et al., 2002), were
identified as having good detection performance and
good reputations in the academic world. Taking into
account the needs and difficulties raised in the previous
phase, the aim of this phase was to develop a Moodle 2
plugin for the integration of these two detectors with the
following characteristics:

• Seamless assignment creation and submission: the
use of these plagiarism scanning services should be
effortless and transparent to the users, without
imposing any additional constraints to the normal
submission process.

• Publishing a limited version of the similarity report
to students: seeing plagiarism detectors also as an
educational tool and a means of feedback to
students, the plugin would allow lecturers to
publish a limited version of the similarity report on
the students’ code, whilst ensuring confidentiality
by masking identities.

3.3 Phase 3 – Evaluating the plugin
The aim of Phase 3 was to evaluate the plugin based on
academics’ and students’ opinions of the similarity report
generated from a live assignment. It was considered that
using a live assignment rather than artificial data would
make it easier to elicit feedback from lecturers and, in
particular, students, since a live assignment is more
natural and provides a specific context. Academics and
students would be given the report to view in order to
provide feedback in an interview. The following were the
issues that the interview focused on:

• The academics’ comments on the usability of the
similarity report and any improvements it offers to
their assessment process.

• The students’ opinions about the value of the
feedback on their work given by the generated
report and its impact on their ethical conduct.

A medium size programming assignment was deemed
appropriate for trialling the tool. The first assignment of a
Java unit1 was selected because of the suitability of its

1 A unit of study at Monash is equivalent to a subject in other
university

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

157

schedule to the research timeframe. This unit is a
foundation programming unit for post-graduate students.
More than 20 students in the unit were introduced to the
research project in a lecture and invited to submit their
assignment work to a Moodle sandbox. The sandbox was
separated from the University virtual learning
environment so that the confidentiality of students’ work
could be ensured. As plagiarism is a sensitive topic for
some students, at the time of participation, students were
assured that their marks would not change and the
generated report would not be shown to their lecturer and
tutor. The incentive for students to participate in the
research was that they would have the opportunity to see
the report and give comments about it.

Academic participants in this phase were recruited
from the participants in the first phase. In the first
interview, academics were asked whether they were
willing to evaluate a similarity report in the latter phase of
the research. Everyone who gave consent was recontacted
in this phase.

Interviews were conducted individually and consisted
of open-ended questions. Participants were free to express
their opinions and relate their experiences. Interesting
issues raised by participants were explored more deeply.
All interviews with academics were recorded and
transcribed. However, only hand written notes were taken
during the student interviews to remove any possible
discomfort with the recording.

4 Results
Following the research approach described above, this
section details the findings collected through the
interviews in phase 1 and phase 3. Recurrent themes were
extracted from the transcript and classified into emergent
categories.

4.1 Phase 1- Investigating the current practices
Six academics agreed to participate in this research. It
was found that the academics participating in this study
followed very similar practices of dealing with
plagiarism, although their satisfaction towards the
effectiveness of these practices varied.

4.1.1 Academics’ practice of dealing with
plagiarism

The study found that most academics deal with
plagiarism more on the prevention side than the detection
side. Most participants at the time of interviews did not
have a formal process to detect plagiarism, while they
mentioned many methods on the prevention and
education side.

4.1.1.1 Plagiarism prevention

Prevention strategies were raised the most during the
interviews. The following are the approaches mentioned
by academics.
Assignment design

Most academics interviewed affirmed that they spent
considerable effort to make sure that their assignments
are not easy to find on the Internet, thus making them
more difficult for the students to plagiarise:

“I’m happy that my assignment is not adapted from
somewhere else where [students] can get the code”
… “My responsibility as a lecturer is to create an
assignment that is difficult to plagiarise. I can’t
always blame the students.”

In regard to the design of assignments, the academics
felt it is preferable that an assignment is not too small and
has a variety of possible approaches and designs, so that
students who work independently would produce
significantly different code. This would also reduce the
temptation to plagiarise and make it easy to recognise
striking similarities later:

“In my assignment, most of the stuff is very unique
and most of the time students come up with a unique
solution”

Exam weighting

Another method to reduce the desire to plagiarise is to
give the exam a much higher weight than the
assignments, since it is very difficult to cheat during an
exam. The intention is to encourage students to work on
the assignment to acquire the skills needed to succeed in
the exam. This type of mark distribution is used in
introductory programming units, where assignments are
quite simple and students’ code is likely to be similar to
each other:

“It’s hard to [pass] because the exam has the
majority of the mark. If they do cheat in the
assignment, […] they are not able to pass anyway”

Avoiding assignment reuse

Most participants emphasised the need to avoid reusing
the assignment over many semesters:

“If I use the same assignment over and over, then I
am inviting people to do plagiarism because I know
that some of the students know people who did the
subject last year or the year before. I always make
changes to the assignments every year, so they can’t
copy and paste from last year’s students without
understanding”.

Nevertheless, the extent of variation differed between
academics. One participant claimed that he changes his
assignments completely each semester, whereas another
reported that sometimes he reused old assignments. The
majority stated that they make some variations but the
main ideas and concepts remain unchanged. Depending
on the extent of variation, this strategy may only prevent
blind copying. Since the assessed concepts were the
same, students could adapt a past year’s program with
much less effort than doing it from scratch:

“ If they have access to [last year’s] student work, it
would be helpful to them because the concept is the
same. But they cannot copy and paste”

Considering the effectiveness of these efforts,
academics also maintained that what they do would just
reduce the problem of students copying and pasting from
each other. However, there are always other sources for
students to plagiarise from:

“Students can post questions on forums and,
sometimes, get the whole program from others”…
“Using the Internet, students can hire others to do an
assignment for them… Sometimes, they can
outsource it to India…”

CRPIT Volume 136 - Computing Education 2013

158

Tutorial assistance
A couple of participants mentioned following up with
students during tutorials in order to provide adequate
feedback. As one explained:

“In every tutorial, the students must complete their
work and submit a lab sheet each week. Every week,
I check the lab sheet and give them feedback. So I get
a fairly good idea of what each individual is capable
[of]”

Besides identifying students who need help and
assisting them early so that they can do the assignment by
themselves, knowing the students’ levels of performance
also helps academics know who to pay attention to later
when investigating suspicious plagiarism cases.

4.1.1.2 Plagiarism education

Raising students’ awareness of plagiarism is important,
especially in the area of source code where the boundary
between plagiarism and proper practice is vague. Every
academic in the study claimed that they often remind
their students about plagiarism. Some stated that they
explained their expectations before an assignment:

“I made it quite clear to all the classes that we are
happy for them to discuss the assignments, but the
implementation – that has to be their own. Be
prepared to justify your design in the interview… I
also posted something more on the discussion
board.”

Others, however, were less pro-active and just
mentioned it as a standard procedure in a very general
manner:

“I don’t know that I made it explicit. I always say to
them that the work that you submit must be your own
work, not someone else’s. They might find it’s silly
since I am saying the obvious”

4.1.1.3 Plagiarism detection

When it comes to plagiarism detection in programming
assignments, the methods that every participant used were
either program demonstration in the lab and/or in-depth
interview with the students:

“I detect plagiarism through a demonstration.
Whatever they submitted to Moodle, I ask them to
download and run it. Then I go to a particular class,
and point to a complicated piece of code and ask
them to explain it. I also ask more conceptual
question, such as how did you do it or why do you
use this approach.”

However, interviewing is not possible in every
situation. One academic said that he could not rely on
interviewing since many of his students were not able to
meet face to face for interviews:

“Many students of mine are distance learning. So
many times I don’t interview.”

Other than interviewing or lab demonstration, most
participants stated that they also read the code for
marking and giving feedback, and during this process
plagiarism cases are sometimes uncovered when students
do weirdly similar things or commit the same mistakes:

“I also read the code of the students fairly
thoroughly because I have to give feedback. When I

read the code, sometimes I pick up something very
unusual and another student did exactly the same
thing or made the same error. Then I compare the
code to see if it has too much similarity.”

If the academic monitors students closely in tutorials,
they can target some students who they observe working
together in groups:

“Because we know the students quite well, we would
tend to know who are working together and we could
start to identify this during the process of marking.
We do a little bit of cross checking to see how they
are similar.”

or, they can target students whose performance in the
assignment differs too much from what they have
demonstrated in labs:

“If they produced exceptionally good work and I
know that this student had trouble with programming
in the tutorials, then I know usually something is
going on”.

With regard to the use of technology, it was found that
only one participant had used a technology to detect
plagiarism:

“I sometimes use the diff command in Linux to
compare two codes where I found some similarities.”

Another participant had previously used a tool to
detect similarities in Java code, but considered its
overhead not to be worth the value that it brought:

“From my previous experience, I am not very
convinced that software can do a good job. Software
can just pick up blatant similarity. Then, if it is so
obvious that software can pick up and I can pick it up
myself, then going through the hassle of setting the
software, and feeding all the assignments to it, is not
worth the trouble.”

The remaining participants explained that they did not
used tools because they were not aware of any that were
suitable:

“I didn’t use any formal plagiarism detection tools…
I haven’t found out about them yet.”

or because they thought these tools were unnecessary
because interviewing alone could ensure that the students
actually understand what they submit:

“I can be pretty sure that students don’t get the mark
for what they don’t learn… It’s probably [too] much
trouble to examine what comes back from a
plagiarism detector.”

Another reason was that the purpose of plagiarism
detectors seems to be orthogonal to the purpose of
teaching and learning:

“Using plagiarism detection is something that is
essentially a punishment. That is probably not a core
point I think. It's far more important to use that
opportunity to learn these things and improve
themselves.”

In brief, when it comes to plagiarism detection,
academics just follow the normal process of assessment:
using demonstration and interviews to check the students’
understanding and reading code to give feedback or a
mark. There are no separate stages that are devoted solely
to detecting plagiarism. Plagiarism was discovered in an

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

159

ad-hoc manner when some unusual similarities or striking
progress captured the marker’s attention. At the time of
the interviews, none of the participants were using code
plagiarism detectors, although one participant had tried
one in the past but found that it posed too much overhead
on the assessment process.

4.1.2 Difficulties and satisfaction with the
current methods of detecting plagiarism

By understanding academics’ satisfaction with current
plagiarism detection practices and difficulties they
encounter, possible improvements could be identified. It
was observed that their level of satisfaction and the
difficulties reported depended largely on their degree of
tolerance towards plagiarism, despite their similar
approaches to plagiarism detection.

4.1.2.1 Level of satisfaction with the current
plagiarism detection method

Academics who believed that assessing the students’
learning and understanding is sufficient claimed that their
current approach is satisfactory:

“If the students know the stuff as much as I know,
there is little point in searching for plagiarism…
Students in the interview, they can’t get away with it
because they don’t know it… [With what I currently
do], I can be pretty sure that the students don’t get
the mark for what they haven’t learned.”

On the other hand, academics who took copying
seriously expressed their discontent with their current
practice, since they felt certain that some plagiarism cases
escaped detection:

“It’s possible that the students can get somebody else
to do their work and really study well and
understand it so that during the interview they can
explain it… I’m not satisfied in the sense that I’m
sure there are some cases that go unnoticed.”

However, these academics also affirm that what they
have done is adequate within the limited time they have

“But given all the constraints on time, I don’t feel
that I should put a whole lot more effort to detect
plagiarism. Overall, I think it’s reasonable”

4.1.2.2 Difficulties encountered

Class size
Large class sizes were one of the major difficulties raised
by academics. With a class of hundreds of students, it is
merely by chance that cases of plagiarism are detected:

“It depends on how many students I have. A few
years ago, I had hundreds of students. It was lucky to
find some plagiarism cases since there were so many
students. But if there are only a few, it is very easy”

and also, there are many markers who grade the
assignments independently, which further reduces the
chance of detection:

“I also read the assignments and sometimes pick up
some similarity. But it doesn’t ensure anything
because we have many classes and markers”

Time constraints
Another difficulty encountered by many academics was
the limited time they could spent on assessing each
student, for both the interview and the marking:

“We have a two hour lab. I don’t want to spend more
than 15 minutes per student just trying to detect
plagiarism”

Therefore, some academics admitted that they
sometimes did not want to spend more time finding
similarities, even when in doubt:

“Even if I remember all this, for me to go back to
find it takes too much of my time. If I know who their
friends are, I just look through those ones, but if I
couldn’t find [anything], I probably wouldn’t go
through too many assignments, just to find something
I thought I remember that is similar.”

Low variation between assignments

There are some kinds of assignments for which students’
work is inevitably similar. For example, when students
were given skeleton code or only required to adapt code
given in their lab. In these cases, it is not possible to tell if
the students plagiarised, as one academic pointed out:

“The point is that the size of the program is often not
big enough to be very distinctly different, and in
more advanced units, we actually give them code so
they will be very much the same.”

However, all other participants claimed that the way of
implementation should be different even when the same
approach was taken:

“In my assignment, there are a few ways that are
quite clear that they are the best ways to approach
it… I still expect some deviation in the way classes
are implemented or the logic on how it works”

Overall, the academics in the study thought that their
approaches were effective in reducing plagiarism,
although they admitted that some cases of plagiarism can
slip through the process undetected. For academics that
were happy with assessing students based only on the
students’ understanding, this process was satisfactory.
However, those who wanted to make sure that the
students actually did the work themselves thought that
what they currently did was not enough due to time
limitations for marking and interviewing, as well as the
difficulty of manual checking in large classes where there
are many markers.

4.2 Phase 2 – Building a Moodle plugin

4.2.1 The need for integrating the detection
tools into Moodle

It was found in the previous phase that academics were
concerned about plagiarism and paid attention to
minimising the motive and temptation to plagiarise
amongst their students. Furthermore, they tried to detect
plagiarism in their marking process. However, due to the
constraints of time and resources, most academics
acknowledged that discovering plagiarism was quite ad-
hoc and accidental, relying on unusual similarities, which
captured their attention. The adoption of a good
plagiarism detector could make this process less
dependent on chance.

CRPIT Volume 136 - Computing Education 2013

160

The two major difficulties raised by academics in
detecting plagiarism, large class sizes and time
limitations, could be mitigated by an automated process
using the tools. Moreover, the detectors could make cross
checking between markers much easier by generating a
single report across the whole class.

However, as one participant remarked, code similarity
detectors, when used as stand-alone tools, impose
considerable overhead. The repetitive tasks of
downloading and extracting all students’ submissions and
then organising them into the required directory structure
are time consuming and error-prone. This is compounded
by the non-intuitive interface making the adoption curve
steeper. Moreover, these plagiarism detectors, when used
as stand-alone, are “essentially a punishment”, as one
academic thought. It cannot serve as a means of providing
feedback for students and raising their awareness of
academic integrity.

Considering all the reasons above, it seems reasonable
to propose that integrating the detectors into a virtual
learning environment like Moodle could significantly
promote their adoption. It would enhance the usability of
the tools by providing an intuitive interface in the
learning environment familiar to academics. In addition,
it would make the similarity scanning transparent and
effortless, at the same time allowing academics to provide
students with restricted access to the similarity report.

4.2.2 Features of the plugin
Considering the needs and difficulties mentioned above,
the plugin was developed with features that make the
detection tools fit seamlessly into the assessment process
on Moodle, namely:

• Automatic filtering of code files: students can
submit an archive file containing a bunch of project
files and documentation apart from code. The
plugin will extract only code files to send them to
the scanning service. Therefore, no additional
constraints are imposed on the system other than
the normal submission and marking process.

• Automatic scanning and reporting: the assignments
are extracted and submitted automatically to the
scanning services at the date specified by the
lecturer when configuring the assignment.

• Publishing similarity report to students: the plugin
enables teachers to allow students to view the report
on the similarity of their code with others’. If
permitted, students could only see a restricted
version of the report, with names masked.

Currently, our system keeps the native reporting
interfaces of MOSS and JPlag. The MOSS interface
presents a simple list of pairs in decreasing similarity
order, whereas JPlag groups all the students having high
similarity with one student in a row. In addition, JPlag
also computes the similarity distribution of all the pairs.

4.3 Phase 3 – Evaluation of the plugin
The live assignment selected to evaluate the plugin
involved the development of a small “number guessing
game” in which the user and the computer took turns to
guess a random number within a specified range. Fifteen

students agreed to take part in the study and submitted
their code to our sandbox. Most of them were
international students, and many were in their first
semester of study.

4.3.1 Overview of the generated report
All of the 15 submissions were of similar structures. The
students followed the design they had been recommended
in their lab, with a Player and a Game class, which were
used for storing the information of the player and
controlling the game logic respectively. Depending on
how carefully the students handled input errors and how
much boilerplate code (e.g. set and get methods) they
wrote, the length of their submissions varied. Excluding
comments and blank lines, the average number of lines of
code of all submissions was 193. The generated similarity
report showed the pairwise similarity rate among 15
submissions ranged from 0% to 35%. Overall, MOSS
gave considerably lower percentages than JPlag. The
similarity distribution given by JPlag was symmetrical
with half of all the pairs having similarity rates in the
middle range (10%-20%), a quarter of the pairs in the
lower range (0-10%) and the other quarter in the higher
range (20-30%), plus three “exceptional” pairs having
similarities distinctly higher than the others. MOSS
produced a very different distribution with most of the
pairs (70%) having similarity rates below 10%, the other
30% of the pairs having rates ranging from 10%-20% and
one “outlier” pair had an outstanding rate of 20.5%. For a
small and strictly specified assignment such as this, the
similarity rates were considered quite low.

4.3.2 Evaluation: academic perspective
Four academics who participated in the first phase were
reinterviewed in this phase. In addition, we extended our
invitation to the Moodle administrator of the faculty, who
is also experienced in teaching programming, to get a
more varied perspective on the plugin. In the Phase 1
interview, academics expressed different opinions with
regard to using detection tools, from a high level of
interest to doubts about their benefits. This phase
reinvestigated their views after introducing them to the
plugin and presenting them with the similarity reports.
Overall, academics expressed favourable opinions on the
plugin and their interest in using it in a further trial.

Improvement of the plugin to the assessment process

Academics all had a positive first impression of the
plugin. A variety of enhancements to the marking process
mentioned by academics included time efficiency,
reduced effort, more stable detection and better student
awareness of academic integrity.

Although every academic agreed that the plugin
cannot automate the detection process entirely, most
academics affirmed that the readily available detectors
could save them a lot of time and effort, not to mention
better detection effectiveness:

“What I used to do when I mark… if I think it’s
plagiarism, I put a mark at the top […]. At the end, I
tried to figure out which one is similar to which one.
It's very time consuming, especially when I have 50-
60 [students]. I have so many things to do. Most of

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

161

the time, I just try to go to as much as possible [until]
I give up. A tool like this makes life much easier.”

However, a couple of other academics also mentioned
the extra time they would need to spend examining the
reports:

“ It actually takes more time to examine the report.
But it helps better ensure academics integrity. And
while checking the report, I also read the students’
code. So, it takes less time to review the code”

Some academics emphasised the usefulness of the
plugin for large classes with many tutors who mark
separate groups of students:

“When I have one class with a hundred students,
there are often four to five tutors. It’s not easy for the
tutors to sit together to do the [cross checking]. A
tool like this one would be handy”

A feature of the plugin that attracted opposite opinions
is publishing the report to students. Some academics
commented that it could serve as an effective plagiarism
deterrent:

“It’s OK for the system to say we ran the scanning
through and we don’t find any similarity. It may alert
them and stop them from plagiarising.”

Nevertheless, many concerns were raised. A major
issue is the potential anxiety of students when their code
contains a high degree of coincidental similarity:

“If I tell the students who may not plagiarise that
there is 30% similarity between me and you, it may
make the students anxious.”

Moreover, this may result in a negative impression
among the students, making them think their lecturers are
primarily interested in catching them:

“We really don’t want students to think that we’re
doing a switch hand, that we are having the system to
drag them into trouble”

These concerns were further investigated with
students’ perspectives on the plugin. Some academics
preferred to have a fine-grained control over the
publication of the scanning results to students. For
example, they wanted to filter what reports were sent out
to students, particularly those that were above a
plagiarism threshold.

“It’s better if the system lets the lecturers to decide
to post to the student one by one”

Usability of the similarity report

All five academics agreed that the report was very easy to
read. They commented that the interface and design of the
report helped them to quickly identify suspicious cases:

“ I am really happy with the interface. I could
navigate between the similarities very quickly”

There were somewhat different comments on the
reporting interface of MOSS and JPlag. More academics
preferred the tabular style of JPlag listing all students
similar to each student on a row than a simple list of pairs
in MOSS:

“[The interface is] fine with MOSS. But JPlag is
better. With this style of presentation, I can see all
the students who have a high similarity with one
student… It makes the examination easier”

Nevertheless, one academic expressed a different
opinion:

“JPlag is a bit more confusing… Not all the students
having a high similarity rate appear on the right
hand side. It’s more confusing to follow than the
simple view of MOSS”

A major benefit of JPlag over MOSS expressed by the
academics was the statistics of similarity distribution
between every pair:

“The statistics help me to see immediately a few
suspicious cases, those who have much higher
similarity than the average”

Generally, the additional features provided by JPlag over
MOSS were appreciated by all the academics.

Satisfaction with the tool

Overall, participants were positive about the plugin and
expressed interest in trying it in their units, though each
to a different extent. Some participants expressed their
satisfaction with the report:

“I am impressed by this. The tools clearly told me
what the similarities are… all the things according
to the highest to lowest”

Others expressed a more reserved opinion on the tool’s
usefulness, and expressed their desire to experiment with
the plugin in their units:

“The answer now is yes. I think it is useful, but
until I try it I can tell how useful it is… Yes,
definitely. I am curious about it and want to try”

Overall, academics expressed satisfaction with the
plugin and the detectors after experimenting with its
features and examining the report. They felt the plugin
offers many benefits, including reducing effort in
plagiarism detection, more effective use of time, and
improved detection effectiveness especially in large
classes. Publishing the report to students was generally
supported, although there were some concerns about
students’ anxiety and confidentiality.

4.3.3 Evaluation: student perspective
This section presents the opinions of students on the
report and its influence on their ethical behaviour. Among
the 15 students who had initially submitted their
assignments for the research, three were interviewed in
this study. One of them had a little programming
background before joining the unit, and the other two
were learning programming for the very first time. These
students all had the detected similarity rate a bit higher
than the average (ranging from 25% to 31%). However, a
look through the similarity report showed that they were
unlikely to have copied code from each other.

Students’ opinion on the similarity report
All the students stated that the similarity rate of their
work was higher than they expect, although they agreed
that the tools were quite accurate in highlighting the
similar portions in their code. For example, one student
expressed that he did not expect such a high similarity
since he did the assignment alone. However, he thought
that the tools picked up the interesting similarities.

Another student stated that they should be assessed
based on their understanding of what had been done, not

CRPIT Volume 136 - Computing Education 2013

162

based on the similarity rate with others, since it is very
easy for assignments to be similar.

A common concern raised was that students thought
that coincidental similarity is inevitable and that such a
report on their work may be misleading.

It was observed that a higher than expected similarity
caused certain anxiety amongst participants. After the
report was released, one student sent an email justifying
his incorrect similarity rate (which was just 24.3% and
lower than the interviewed students), by pointing out the
false positives in the report. This student did not take part
in the interview.

“I [have] just seen the result of your system. My
code was [reported] as having a 24.3% similarity
with another student and I think it’s not right…
For example, the group of println statements in
lines 41-48 is very different, but marked as
similar… The similarity score is higher than
reality… I worked independently in this
assignment”

As a contrast, another participant stated that he
thought his similarity rate was normal, though he had the
highest similarity rate amongst the three students
interviewed (30.9%). He was confident that the examiner
would see that there is no sign of plagiarism in his
assignment. This student said he had had experience with
an essay plagiarism detector in his undergraduate study.

Although participants were told before joining the
research that the report was confidential and would not
affect their result, and that there were many reasons for
code to be similar, anxiety still occurred. It seems that
anxiety does not only depend on the similarity rates found
but also on the students’ prior experiences with such a
tool. If students have been exposed to a similar tool
before, they are likely to feel more comfortable in how
the results would be interpreted, even if the similarity is
quite high.
Impact of using the plugin on students’ behaviours

The participants indicated that the strongest impact of
using the plugin would be in discouraging them from
sharing code with classmates. All of the students said that
they “will not dare to share code with anyone” since
there is little chance to escape the detectors.

As for sharing on a conceptual level, opinions of
students diverged. Some students said that they would be
even afraid of sharing ideas and approaches since the
chance of coming up with similar code would be much
higher. However, the student who had had some
programming knowledge prior to joining the unit, said
that he would not feel anxious about sharing his
algorithm or method in a general way, since it is not
likely that there would be a similar implementation based
on just the ideas.

All students interviewed said that they would be afraid
of copying code from another student since there is a
good chance for them to be detected. One student stated
that if he copied the code from someone else, he would
have to modify the code substantially to avoid being
detected. This job requires time and understanding of
someone else’s code; therefore, he concluded that it is
better and safer to write his own program.

4.3.4 Overall summary
The evaluation of teachers’ and students’ perspectives on
the Moodle plugin showed that it offers appropriate
features to assist academics in detecting plagiarism. The
plagiarism detectors are quite efficient and potentially
effective in discouraging students from plagiarising. The
academics stated that the plugin was easy to use and the
report interface allows for faster plagiarism detection than
manual scanning. Although, more time must be spent in
examining the report, this time could be offset by less
code reading time and better detection. The plugin is
especially useful for a large class with many markers,
where manual cross checking is often not possible. The
students stated that plagiarism detectors would deter them
from copying and discourage them from collaborating.
However, using the tool also produced some undesirable
effects. When students know that such tool is being used,
it may also cause anxiety amongst students and hinder
some forms of exchanging of ideas that should be
encouraged. The extent of anxiety would depend on their
exposure to other plagiarism detectors and their
programming experience.

Publishing the report to the students was generally
supported by the academics, provided that confidentiality
is maintained and the results are explained to the students.
However, there were different opinions from the students.
One student considered that the report is part of a
student’s result and they should be allowed to see it,
whilst another student did not want their code to be
revealed to others.

5 Conclusion
This paper described a study to investigate the benefits of
source code plagiarism detectors for current assessment
practices and to promote their adoption by integrating two
well-known detectors into Moodle via a plugin. The
plugin was built to respond to the difficulties encountered
by academics in their current practices and its usefulness
and impact were evaluated from both lecturers’ and
students’ perspectives.

Whilst academics devote considerable attention to the
issue of plagiarism, with a range of measures for
prevention and detection, many of them were unsatisfied
with their current practice since they were quite certain
that some cases of plagiarism went unnoticed when their
class size was large and their time to spend on marking
was limited. All participating academics did not currently
use any plagiarism detection tools for code, as they had
not investigated any tools or they found that tools posed
considerable overhead.

Taking into consideration all of the difficulties
expressed by the academics in this study, a plugin to
integrate JPlag and MOSS into Moodle was implemented.
The plugin makes these detectors effortless to use and
enables the scanning results to be made available to every
marker. In addition, it offers the possibility of giving
feedback to students and therefore has value as an
educational tool.

Evaluation from the lecturers’ and students’
perspectives showed that the tools could assist academics
effectively in detecting plagiarism, and deter the students
from sharing code together. Making the similarity report

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

163

public to the students was considered a good idea by most
of the academics as they saw it raising students’
awareness of plagiarism although there were some
concerns about confidentiality and the students’ levels of
anxiety. In fact, interviews with students showed that
their first exposure to a plagiarism detector might arouse
significant anxiety, since non-plagiarising students
expected a negligible similarity, which often was not the
case. This anxiety may also vary according to the
students’ programming experience and their
understanding of the process.

The evaluation of our current plugin has also revealed
a lot of room for improvement. Our current system uses
the native interfaces of JPlag and MOSS, with just a few
modifications to hide identities in the student view of the
report. The feedback from this study indicates that it is
better to incorporate the result of different engines into a
single interface which combines the advantages of each,
helping academics browse the results and filter suspicious
cases faster. The draft submission is also a very
interesting feature that is available in some text matching
systems. Our current plugin permits students to see the
final report, but does not offer the option to resubmit their
work if they find their similarity rate is high.

A major limitation in the research method is that
academic participants are just given a demonstration of
the plugin before evaluating it instead of actually
experimenting with it themselves. This, perhaps, limits
the richness of the information they could give.

With these identified shortcomings in the research
method and the plugin, future directions of our research
are to improve the plugin and to re-evaluate it by giving
participants hand-on experience of configuring and using
the tool.

Aiken, A. 1995. MOSS - A System for Detecting Software
Plagiarism [Online]. Available:
http://theory.stanford.edu/~aiken/moss/ [Accessed].

Biggam, J. and Mccann, M. (2010): A study of Turnitin
as an educational tool in student dissertations.
Interactive Technology and Smart Education, 7(1): 44-
54.

Bowyer, K. W. and Hall, L. O. (2001): Reducing Effects
of Plagiarism in Programming Classes. Journal of
Information System Education, 12(3): 141-148.

Britannica 2012. plagiarism. Encyclopædia Britannica
Online. Retrieved 01 November, 2012, from
http://www.britannica.com/EBchecked/topic/462640/pl
agiarism.

 Cosma, G. and Joy, M. (2008): Towards a Definition of
Source-Code Plagiarism. IEEE Transactions on
Education, 51(2): 195-200.

D'souza, D., Hamilton, M. and Harris, M. C. (2007):
Software development marketplaces: implications for
plagiarism. Proc of the ninth Australasian conference
on Computing education, Ballarat, Victoria, 1273676,
66: 27-33, Australian Computer Society, Inc.

Daly, C. and Horgan, J. (2005): Patterns of plagiarism.
Proceedings of the 36th SIGCSE technical symposium
on Computer science education, 383-387, ACM.

Dick, M., Sheard, J. and Hasen, M. (2008): Prevention is
Better than Cure: Addressing Cheating and Plagiarism
Based on the IT Student Perspective. In: Student
Plagiarism in an Online World: Problems and
Solutions. Roberts, T. S. (ed.). Hershey, PA :
Information Science Reference.

Faidhi, J. and Robinson, S. (1987): An empirical
approach for detecting program similarity and
plagiarism within a university programming
environment. Computers & Education, 11(1): 11-19.

Lancaster, T. and Culwin, F. (2010): A Comparison of
Source Code Plagiarism Detection Engines. Computer
Science Education, 14(2): 101-112.

Liu, C., Chen, C., Han, J. and Yu, P. S. (2006): GPLAG:
Detection of Software Plagiarism by Program
Dependence Graph Analysis. KDD '06 Proceedings of
the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining New York,
ACM.

Parker, A. and Hamblen, J. O. (1989): Computer
Algorithms for Plagiarism Detection. IEEE
Transactions on Education, 32(2): 94-99.

Prechelt, L., Malpohl, G. and Philippsen, M. (2002):
Finding Plagiarisms among a Set of Programs with
JPlag. Journal of Universal Computer Science, 8(11):
1016-1038.

Roberts, E. (2002): Strategies for promoting academic
integrity in CS courses. 32nd Annual Frontier in
Education, 2: F3G-14.

Rolfe, V. (2011): Can Turnitin be used to provide instant
formative feedback? British Journal of Educational
Technology, 42(4): 701-710.

Sheard, J. and Dick, M. (2011): Computing student
practices of cheating and plagiarism: a decade of
change. Proceedings of the 16th annual joint
conference on Innovation and technology in computer
science education, Darmstadt, Germany, 1999813,
233-237, ACM.

Sheard, J., Dick, M., Markham, S., Macdonald, I. and
Walsh, M. (2002): Cheating and Plagiarism:
Perceptions and Practices of First Year IT Students.
Proceedings of the 7th annual conference on
Innovation and technology in computer science
education, New York, ACM.

Wagner, N. R. 2000. Plagiarism by Student Programmers
[Online]. Available:
http://www.cs.utsa.edu/~wagner/pubs/plagiarism0.html
[Accessed].

Zobel, J. (2004): "Uni cheats racket": a case study in
plagiarism investigation. ACE '04 Proceedings of the
Sixth Australasian Conference on Computing
Education, Darlinghurst, Australia, 30, ACM.

CRPIT Volume 136 - Computing Education 2013

164

Author Index

Ahadi, Alireza, 87

Cain, Andrew, 127
Cameron-Jones, Michael, 31, 51
Carbone, Angela, iii, 41, 145, 155
Caspersen, Michael E, 137
Ceddia, Jason, 41
Charleston, Michael, 77
Chinn, Donald, 145
Chinthammit, Winyu, 31, 51
Clear, Tony, 145
Cooper, Graham, 23
Corney, Malcolm, 87, 145
Cranefield, Stephen, 3

D’Souza, Daryl, 41, 117, 145
De Salas, Kristy, 51
de Salas, Kristy, 31
Dermoudy, Julian, 31, 51

Ellis, Leonie, 31, 51

Falkner, Katrina, 107
Falkner, Nickolas, 107
Fenwick, Joel, 145
Fidge, Colin, 97

Gasson, Joy, 13
Gluga, Richard, 77

Haden, Patricia, 13
Haig, Thomas, 107

Hamilton, Margaret, 117
Harland, James, 117, 145
Herbert, Nicole, 31, 51
Hogan, James, 97
Hu, Minjie, 3

Kasto, Nadia, 59, 67
Kay, Judy, 77

Laakso, Mikko-Jussi, 145
Lewis, Ian, 31, 51
Lister, Raymond, 77, 87, 97

Mason, Raina, 23, 41

Nguyen, Tri Le, 155
Nowack, Palle, 137

Parsons, Dale, 13

Schumacher, Margot, 155
Sheard, Judy, 145, 155
Simon, 41, 77, 145
Springer, Matthew, 31, 51

Teague, Donna, 77, 87, 145

Whalley, Jacqueline, iii, 59, 67
Winikoff, Michael, 3
Wood, Krissi, 13
Woodward, Clinton, 127

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

165

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 113 - Computer Science 2011
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia. January 2011. 978-1-920682-93-4.

Contains the proceedings of the Thirty-Fourth Australasian Computer Science
Conference (ACSC 2011), Perth, Australia, 1720 January 2011.

Volume 114 - Computing Education 2011
Edited by John Hamer, University of Auckland, New Zealand
and Michael de Raadt, University of Southern Queensland,
Australia. January 2011. 978-1-920682-94-1.

Contains the proceedings of the Thirteenth Australasian Computing Education
Conference (ACE 2011), Perth, Australia, 17-20 January 2011.

Volume 115 - Database Technologies 2011
Edited by Heng Tao Shen, The University of Queensland,
Australia and Yanchun Zhang, Victoria University, Australia.
January 2011. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Second Australasian Database Conference
(ADC 2011), Perth, Australia, 17-20 January 2011.

Volume 116 - Information Security 2011
Edited by Colin Boyd, Queensland University of Technology,
Australia and Josef Pieprzyk, Macquarie University, Aus-
tralia. January 2011. 978-1-920682-96-5.

Contains the proceedings of the Ninth Australasian Information Security
Conference (AISC 2011), Perth, Australia, 17-20 January 2011.

Volume 117 - User Interfaces 2011
Edited by Christof Lutteroth, University of Auckland, New
Zealand and Haifeng Shen, Flinders University, Australia.
January 2011. 978-1-920682-97-2.

Contains the proceedings of the Twelfth Australasian User Interface Conference
(AUIC2011), Perth, Australia, 17-20 January 2011.

Volume 118 - Parallel and Distributed Computing 2011
Edited by Jinjun Chen, Swinburne University of Technology,
Australia and Rajiv Ranjan, University of New South Wales,
Australia. January 2011. 978-1-920682-98-9.

Contains the proceedings of the Ninth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2011), Perth, Australia, 17-20 January 2011.

Volume 119 - Theory of Computing 2011
Edited by Alex Potanin, Victoria University of Wellington,
New Zealand and Taso Viglas, University of Sydney, Aus-
tralia. January 2011. 978-1-920682-99-6.

Contains the proceedings of the Seventeenth Computing: The Australasian Theory
Symposium (CATS 2011), Perth, Australia, 17-20 January 2011.

Volume 120 - Health Informatics and Knowledge Management 2011
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Tony Sahama, Qeensland University of Technol-
ogy, Australia. January 2011. 978-1-921770-00-5.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2011), Perth, Australia, 17-20 January 2011.

Volume 121 - Data Mining and Analytics 2011
Edited by Peter Vamplew, University of Ballarat, Australia,
Andrew Stranieri, University of Ballarat, Australia, Kok–
Leong Ong, Deakin University, Australia, Peter Christen,
Australian National University, , Australia and Paul J.
Kennedy, University of Technology, Sydney, Australia. De-
cember 2011. 978-1-921770-02-9.

Contains the proceedings of the Ninth Australasian Data Mining Conference
(AusDM’11), Ballarat, Australia, 1–2 December 2011.

Volume 122 - Computer Science 2012
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia and Bruce Thomas, University of South Aus-
tralia. January 2012. 978-1-921770-03-6.

Contains the proceedings of the Thirty-Fifth Australasian Computer Science
Conference (ACSC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 123 - Computing Education 2012
Edited by Michael de Raadt, Moodle Pty Ltd and Angela
Carbone, Monash University, Australia. January 2012. 978-
1-921770-04-3.

Contains the proceedings of the Fourteenth Australasian Computing Education
Conference (ACE 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 124 - Database Technologies 2012
Edited by Rui Zhang, The University of Melbourne, Australia
and Yanchun Zhang, Victoria University, Australia. January
2012. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Third Australasian Database Conference
(ADC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 125 - Information Security 2012
Edited by Josef Pieprzyk, Macquarie University, Australia
and Clark Thomborson, The University of Auckland, New
Zealand. January 2012. 978-1-921770-06-7.

Contains the proceedings of the Tenth Australasian Information Security
Conference (AISC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 126 - User Interfaces 2012
Edited by Haifeng Shen, Flinders University, Australia and
Ross T. Smith, University of South Australia, Australia.
January 2012. 978-1-921770-07-4.

Contains the proceedings of the Thirteenth Australasian User Interface Conference
(AUIC2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 127 - Parallel and Distributed Computing 2012
Edited by Jinjun Chen, University of Technology, Sydney,
Australia and Rajiv Ranjan, CSIRO ICT Centre, Australia.
January 2012. 978-1-921770-08-1.

Contains the proceedings of the Tenth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 128 - Theory of Computing 2012
Edited by Julián Mestre, University of Sydney, Australia.
January 2012. 978-1-921770-09-8.

Contains the proceedings of the Eighteenth Computing: The Australasian Theory
Symposium (CATS 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 129 - Health Informatics and Knowledge Management 2012
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Kathleen Gray, University of Melbourne, Aus-
tralia. January 2012. 978-1-921770-10-4.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 130 - Conceptual Modelling 2012
Edited by Aditya Ghose, University of Wollongong, Australia
and Flavio Ferrarotti, Victoria University of Wellington, New
Zealand. January 2012. 978-1-921770-11-1.

Contains the proceedings of the Eighth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2012), Melbourne, Australia, 31 January – 3 February 2012.

Volume 134 - Data Mining and Analytics 2012
Edited by Yanchang Zhao, Department of Immigration and
Citizenship, Australia, Jiuyong Li, University of South Aus-
tralia, Paul J. Kennedy, University of Technology, Sydney,
Australia and Peter Christen, Australian National Univer-
sity, Australia. December 2012. 978-1-921770-14-2.

Contains the proceedings of the Tenth Australasian Data Mining Conference
(AusDM’12), Sydney, Australia, 5–7 December 2012.

	ace2013_submission_8.pdf
	1 Introduction
	2 Design Notation
	3 Programming Process
	3.1 Analysing Goals and Plans
	3.2 Encoding Plan Network Using BYOB Plan Blocks
	3.3 Expanding Plan Blocks
	3.4 Merging Expanded Plan Details
	3.5 Simplifying the Merged Details

	4 Evaluation
	5 Conclusion
	6 References

	ace2013_submission_21.pdf
	Introduction
	Background
	Learning Standards in Computer Science
	Mastery and Progression in Computer Science
	Curriculum Mapping

	Conceptual Model
	Modelling the Assessed Curriculum
	Modelling the Demonstrated Curriculum
	Algorithm for Aggregating Classifications

	User View
	Evaluation
	Participant Feedback Results

	Discussion
	Conclusion

