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Preface

The Australasian Computer Science Conference (ACSC) series is an annual meeting, bringing together
research sub-disciplines in Computer Science. The conference allows academics and other researchers to
discourse research topics as well as progress in the field, and policies to stimulate its growth. This conference
is unique in its ability to provide a platform for cross-disciplinary research. This volume comprises papers
being presented at the Thirty-Sixth ACSC in Adelaide, Australia. ACSC 2013 is part of the Australasian
Computer Science Week which runs from January 29 to February 1, 2013.

The ACSC 2013 call for papers solicited 29 submissions from Australia, New Zealand, Iran, Slove-
nia, Korea, Spain, United Kingdom, Denmark, Germany, India, Japan, China and Thailand. The topics
addressed by the submitted papers illustrate the broadness of the discipline. These included algorithms,
virtualisation, software visualisation, databases, constraint programming and image processing, computer
architecture, compression, to name just a few.

The programme committee consisted of 39 highly regarded academics from Australia, New Zealand,
Italy, Japan, Sweden, China, Canada, and USA. Every paper was reviewed by at least three programme
committee members, and, in some cases, external reviewers. Of the 29 papers submitted, 14 were selected
for presentation at the conference.

The Programme Committee determined that the ”Best Paper Award” should go to Marcus Brazil and
Martin Zachariasen Castro for their paper entitled Computational Complexity for Uniform Orientation
Steiner Tree Problems. Congratulations.

We thank all authors who submitted papers and all conference participants for helping to make the
conference a success. We also thank the members of the programme committee and the external referees
for their expertise in carefully reviewing the papers. We are grateful to Professor Simeon Simoff from
Univerity of Western Sydney representing CRPIT for his assistance in the production of the proceedings.
I thank Professor Tom Gedeon (President) for his support representing CORE (the Computing Research
and Education Association of Australasia).

Thanks to the School of Computer and Information Science at The University of South Australia for
web support for advertising the conference.

Last, but not least, we express gratitude to our hosts at the University of South Australia and, in
particular, Dr. Ivan Lee.

Bruce Thomas
University of South Australia

ACSC 2013 Programme Chair
January 2013, Adelaide, Australia
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Welcome from the Organising Committee

On behalf of the Organising Committee, it is our pleasure to welcome you to Adelaide and to the 2013
Australasian Computer Science Week (ACSW 2013). Adelaide is the capital city of South Australia, and
it is one of the most liveable cities in the world. ACSW 2013 will be hosted in the City West Campus
of University of South Australia (UniSA), which is situated at the north-west corner of the Adelaide city
centre.

ACSW is the premier event for Computer Science researchers in Australasia. ACSW2013 consists of
conferences covering a wide range of topics in Computer Science and related area, including:

– Australasian Computer Science Conference (ACSC) (Chaired by Bruce Thomas)
– Australasian Database Conference (ADC) (Chaired by Hua Wang and Rui Zhang)
– Australasian Computing Education Conference (ACE) (Chaired by Angela Carbone and Jacqueline

Whalley)
– Australasian Information Security Conference (AISC) (Chaired by Clark Thomborson and Udaya

Parampalli)
– Australasian User Interface Conference (AUIC) (Chaired by Ross T. Smith and Burkhard C. Wünsche)
– Computing: Australasian Theory Symposium (CATS) (Chaired by Tony Wirth)
– Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Bahman

Javadi and Saurabh Kumar Garg)
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Kath-

leen Gray and Andy Koronios)
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Flavio Ferrarotti and Georg

Grossmann)
– Australasian Web Conference (AWC2013) (Chaired by Helen Ashman, Michael Sheng and Andrew

Trotman)

In additional to the technical program, we also put together social activities for further interactions
among our participants. A welcome reception will be held at Rockford Hotel’s Rooftop Pool area, to enjoy
the fresh air and panoramic views of the cityscape during Adelaide’s dry summer season. The conference
banquet will be held in Adelaide Convention Centre’s Panorama Suite, to experience an expansive view of
Adelaide’s serene riverside parklands through the suite’s seamless floor to ceiling windows.

Organising a conference is an enormous amount of work even with many hands and a very smooth
cooperation, and this year has been no exception. We would like to share with you our gratitude towards
all members of the organising committee for their dedication to the success of ACSW2013. Working like
one person for a common goal in the demanding task of ACSW organisation made us proud that we got
involved in this effort. We also thank all conference co-chairs and reviewers, for putting together conference
programs which is the heart of ACSW. Special thanks goes to Alex Potanin, who shared valuable experiences
in organising ACSW and provided endless help as the steering committee chair. We’d also like to thank
Elyse Perin from UniSA, for her true dedication and tireless work in conference registration and event
organisation. Last, but not least, we would like to thank all speakers and attendees, and we look forward
to several stimulating discussions.

We hope your stay here will be both rewarding and memorable.

Ivan Lee
School of Information Technology & Mathematical Sciences

ACSW2013 General Chair
January, 2013



CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2013 in Adelaide. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences - ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s - now share this week with eight other events - ACE, AISC, AUIC, AusPDC, HIKM,
ACDC, APCCM and AWC which build on the diversity of the Australasian computing community.

In 2013, we have again chosen to feature a small number of keynote speakers from across the discipline:
Riccardo Bellazzi (HIKM), and Divyakant Agrawal (ADC), Maki Sugimoto (AUIC), and Wen Gao. I
thank them for their contributions to ACSW2013. I also thank invited speakers in some of the individual
conferences, and the CORE award winner Michael Sheng (CORE Chris Wallace Award). The efforts of the
conference chairs and their program committees have led to strong programs in all the conferences, thanks
very much for all your efforts. Thanks are particularly due to Ivan Lee and his colleagues for organising
what promises to be a strong event.

The past year has been turbulent for our disciplines. ERA2012 included conferences as we had pushed
for, but as a peer review discipline. This turned out to be good for our disciplines, with many more
Universities being assessed and an overall improvement in the visibility of research in our disciplines. The
next step must be to improve our relative success rates in ARC grant schemes, the most likely hypothesis for
our low rates of success is how harshly we assess each others’ proposals, a phenomenon which demonstrably
occurs in the US NFS. As a US Head of Dept explained to me, ”in CS we circle the wagons and shoot
within”.

Beyond research issues, in 2013 CORE will also need to focus on education issues, including in Schools.
The likelihood that the future will have less computers is small, yet where are the numbers of students
we need? In the US there has been massive growth in undergraduate CS numbers of 25 to 40% in many
places, which we should aim to replicate. ACSW will feature a joint CORE, ACDICT, NICTA and ACS
discussion on ICT Skills, which will inform our future directions.

CORE’s existence is due to the support of the member departments in Australia and New Zealand,
and I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am
grateful to all those who gave their time to CORE in 2012; in particular, I thank Alex Potanin, Alan Fekete,
Aditya Ghose, Justin Zobel, John Grundy, and those of you who contribute to the discussions on the CORE
mailing lists. There are three main lists: csprofs, cshods and members. You are all eligible for the members
list if your department is a member. Please do sign up via http://lists.core.edu.au/mailman/listinfo - we
try to keep the volume low but relevance high in the mailing lists.

I am standing down as President at this ACSW. I have enjoyed the role, and am pleased to have had
some positive impact on ERA2012 during my time. Thank you all for the opportunity to represent you for
the last 3 years.

Tom Gedeon

President, CORE
January, 2013



ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0 ). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2014. Volume 36. Host and Venue - AUT University, Auckland, New Zealand.

2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.

2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.
2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.
2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.
2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.



Conference Acronyms

ACDC Australasian Computing Doctoral Consortium
ACE Australasian Computer Education Conference
ACSC Australasian Computer Science Conference
ACSW Australasian Computer Science Week
ADC Australasian Database Conference
AISC Australasian Information Security Conference
APCCM Asia-Pacific Conference on Conceptual Modelling
AUIC Australasian User Interface Conference
AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
AWC Australasian Web Conference
CATS Computing: Australasian Theory Symposium
HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections

in respective CRPIT volumes.
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A Study of Performance Variations
in the Mozilla Firefox Web Browser

Jan Larres1 Alex Potanin1 Yuichi Hirose2

1 School of Engineering and Computer Science
Email: {larresjan,alex}@ecs.vuw.ac.nz

2 School of Mathematics, Statistics and Operations Research
Email: hirose@msor.vuw.ac.nz

Victoria University of Wellington, New Zealand

Abstract

In order to evaluate software performance and find
regressions, many developers use automated perfor-
mance tests. However, the test results often contain
a certain amount of noise that is not caused by ac-
tual performance changes in the programs. They are
instead caused by external factors like operating sys-
tem decisions or unexpected non-determinisms inside
the programs. This makes interpreting the test results
difficult since results that differ from previous results
cannot easily be attributed to either genuine changes
or noise. In this paper we present an analysis of a sub-
set of the various factors that are likely to contribute
to this noise using the Mozilla Firefox browser as an
example. In addition we present a statistical tech-
nique for identifying outliers in Mozilla’s automatic
testing framework. Our results show that a significant
amount of noise is caused by memory randomization
and other external factors, that there is variance in
Firefox internals that does not seem to be correlated
with test result variance, and that our suggested sta-
tistical forecasting technique can give more reliable
detection of genuine performance changes than the
one currently in use by Mozilla.

Keywords: performance variance; performance evalu-
ation; automated testing

1 Introduction

Performance is an important aspect of almost every
field of computer science, be it development of effi-
cient algorithms, compiler optimizations, or processor
speed-ups via ever smaller transistors. This is appar-
ent even in everyday computer usage – no one likes
using sluggish programs. But the impact of perfor-
mance changes can be more far-reaching than that:
it can enable novel applications of a program that
would not have been possible without significant per-
formance gains.

In the context of browsers this is very visible with
the proliferation of so-called “web apps” in recent
years. These websites make heavy use of JavaScript
to create a user experience similar to local applica-
tions, which creates an obvious incentive for browser
vendors to optimize their JavaScript execution speed
to stay ahead of the competition.

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 36th Australasian Computer Science Con-
ference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 135, Bruce H. Thomas, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

A situation like that poses a problem for develop-
ers, though. Speed is not the only important aspect of
a browser; features like security, extensibility and sup-
port for new web standards are at least as important.
But more code can negatively impact the speed of
an application: start-up becomes slower due to more
data that needs to be loaded, the number of condi-
tional tests increases, and increasingly complex code
can make it less than obvious if a simple change might
have a serious performance impact due to unforeseen
side effects.

Automated tests help with this balance by alert-
ing developers of unintended consequences of their
code changes. For example, a new feature might have
the unintended consequence of slowing certain oper-
ations down, and based on this new information the
developers can then decide on how to proceed. How-
ever, in order to not create a large number of false
positives whose investigation creates more problems
than it solves the tests need to be reliable. But even
though computers are deterministic at heart, there
are several factors that can make higher-level opera-
tions non-deterministic enough to have a significant
impact on these performance measurements, making
the detection of genuine changes very challenging.

1.1 Contributions

This paper tries to determine what the most signifi-
cant factors are that cause non-determinism and thus
variation in the performance measurements, and how
they can be reduced as much as possible, with the ul-
timate goal of being able to distinguish between noise
and real changes for new performance test results.
Mozilla Firefox is used as a case study since as an
Open Source project it can be studied in-depth. This
will hopefully significantly improve the value of these
measurements and enable developers to concentrate
on real regressions instead of wasting time on non-
existent ones.

In concrete terms, we present:

• An analysis of factors that are outside of the con-
trol, i.e. external to the program of interest, and
how it impacts the performance variance, with
suggestions on how to minimize these factors,

• an analysis of some of the internal workings of
Firefox in particular and their relationship with
performance variance, and

• a statistical technique that would allow auto-
mated test analyses to better evaluate whether
there has been a genuine change in performance
recently, i.e. one that has not been caused by
noise.

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia
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Table 1: The various performance tests employed by
Mozilla

Test name Test subject Unit

a11y Accessibility Milliseconds
dromaeo basics JavaScript Runs/second
dromaeo css JS/CSS manipulation Runs/second
dromaeo dom JS/DOM manipula-

tion
Runs/second

dromaeo jslib JS libraries Runs/second
dromaeo sunspider SunSpider benchmark

through Dromaeo
suite

Runs/second

dromaeo v8 V8 suite benchmark
Dromaeo suite

Runs/second

tdhtml JS DOM animation Milliseconds
tgfx Graphics operations Milliseconds
tp dist Page loading Milliseconds
tp dist shutdown Shutdown time after

page loading
Milliseconds

tsspider SunSpider benchmark Milliseconds
tsvg SVG rendering Milliseconds
tsvg opacity Transparent SVG ren-

dering
Milliseconds

ts Startup time Milliseconds
ts shutdown Shutdown time Milliseconds
v8 V8 benchmark Milliseconds

More details and complete plots for all of our ex-
periments can be found in the accompanying technical
report (Larres et al. 2012).

1.2 Outline

The rest of this paper is organized as follows. Section 2
gives an overview of the problem using an example
produced with the official Firefox test framework. Sec-
tion 3 looks at external factors that can influence the
performance variance like multitasking and hard drive
access. Section 4 looks at what is happening inside of
Firefox while a test is running and how these internal
factors might have an effect on performance variance.
Section 5 presents a statistical technique that im-
proves on the current capability of detecting genuine
performance changes that are not caused by noise.
Section 6 gives an overview of related work done in
this area. Finally, Section 7 summarizes our results
and gives some suggestions for future work.

2 Background

2.1 The Talos Test Suite

The Talos test suite is a collection of 17 different tests
that evaluate the performance of various aspects of
Firefox. A list of those tests is given in Table 1. The
purpose of this test suite is to evaluate the perfor-
mance of a specific Firefox build. This is done as part
of a process of Continuous Integration (Fowler 2006),
where newly committed code gets immediately com-
piled and tested to find problems as early as possible.

The focus of this work is on the Talos performance
evaluation part of the continuous integration process.
We will also mostly focus on variance in unchanging
code and the detection of regressions in order to limit
the scope to a manageable degree (O’Callahan 2010).

2.2 An Illustrative Example

Figure 1 illustrates some example data from the
tp dist part of the test suite over most of the year
2010. This test loads a number of web pages from the
local disk and averages over the rendering times. We
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Figure 1: Page load speed tp dist example se-
quence with data taken from graphs.mozilla.org

can see two distinct change patterns in the graph: two
big drops in June and August, and seemingly random
changes the rest of the time. Since the second drop
causes the rest of the results to stay around that level,
it suggests a code optimization that led to an overall
better performance. The earlier drop of similar mag-
nitude could be a previous application of the opti-
mization that exposed some bugs and was therefore
reverted until the bugs were fixed.

Unfortunately we do not have an explanation for
the other changes that is as simple as that. But could
we apply the same heuristic that lets us explain the
big changes – seeing it “sticking out” of the general
trend – and use it in a more statistically sound way
to try to explain the other results? To some degree,
yes.

The exact details of the best way to do this will
be explained in Section 5, but let us first have a very
simple look at how we could put a number on the
variance of a test suite series. We will do this by run-
ning a base line series using a standard setup without
any special optimizations.

2.3 Statistics Preliminaries

The Talos suite already employs a few techniques that
are meant to mitigate the effect of random variance
on the test results. One of the most important is that
each test is run 5-20 times, depending on the test, and
the results are averaged. A statistical optimization
that is already being done here is that the maximum
result of these repetitions is discarded before the av-
erage is calculated. Since in almost all cases this is the
first result, which includes the time of the file being
fetched from the hard disk, it serves as a simple case
of steady-state analysis where only the results using
the cache – which has relatively stable access times –
are going to be used.

For our statistical significance analyses we will use
the common significance level of 0.05.

2.4 The Base Line Test

2.4.1 Experimental Setup

For this and all the following experiments in this
paper we used a Dell Optiplex 780 computer with
an Intel Core 2 Duo 3.0 GHz processor and 4 GB
of RAM running Ubuntu Linux 10.04 with Kernel
2.6.32. To start with we ran the whole test suite 30
times back-to-back as a series using the same exe-
cutable in an idle GNOME desktop, with 30 being
a compromise between reasonable test run times and
possible steady-state detection. The only adjustments
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Figure 2: tp dist results of 30 runs
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Figure 3: a11y results of 30 runs

that we made were two techniques used on the official
Talos machines1, namely replacing the /dev/random
device with /dev/urandom and disabling CPU fre-
quency scaling.

In the following we use the term run to refer to
a single execution of the whole or part of the Talos
test suite and series to refer to a sequence of runs,
consisting of 30 single runs unless noted otherwise.

2.4.2 Results

Figure 2 shows the results of the tp dist page load-
ing test, and Figure 3 shows the results of the a11y
accessibility test – both serve as good examples for
the complete test suite results. Here we have – as ex-
pected – no drastic outliers, but we do still have a
non-trivial amount of variance.

Table 2 shows a few properties of the results for the
complete test suite. As a typical statistical measure
we included the standard deviation and the coefficient
of variation (CoV) for easier comparison between dif-
ferent tests. The standard deviation shows us that, in-
deed, the variation for some of the tests is quite high.
The general goal is that we want to be able to de-
tect regressions that are as small as 0.5 % (O’Callahan
2010), so it should be possible to analyse the results
in a way so that we can distinguish between genuine
changes and noise at this level of precision.

We first look at the maximum difference between
all of the values in our series taken as a percentage of
the mean, similar to Georges et al. (2007), Mytkow-
icz et al. (2009) and Alameldeen & Wood (2003). In
other words we take the difference between the high-
est and the lowest value in our series and divide it by
the mean. If a new result would increase this value,
it would be assumed to not be noise. Looking at the
table we can see that almost none of the tests are any-
where near our desired accuracy, so using this method
would give us no useful information. If we measure
the difference from the mean instead of between the
highest and lowest result we can see that the values

1https://wiki.mozilla.org/ReferencePlatforms/Test/
FedoraLinux

Table 2: Results of the base line test

Max diff (%)

Test name StdDev CoV1 Absolute2 To mean3

a11y 2.23 0.69 3.38 2.08
dromaeo basics 4.41 0.53 2.57 1.62
dromaeo css 11.36 0.30 1.39 0.88
dromaeo dom 1.02 0.41 1.99 1.14
dromaeo jslib 0.53 0.30 1.19 0.60
dromaeo sunspider 5.65 0.54 2.09 1.16
dromaeo v8 2.02 0.86 3.03 1.77
tdhtml 0.94 0.33 1.31 0.73
tgfx 0.80 5.68 25.60 18.88
tp dist 1.77 1.16 4.42 3.30
tp dist shutdown 27.09 5.14 16.51 8.72
ts 2.27 0.59 2.45 1.66
ts shutdown 7.28 2.00 6.88 3.44
tsspider 0.11 1.15 4.04 2.57
tsvg 1.43 0.04 0.17 0.10
tsvg opacity 0.62 0.74 3.56 2.02
v8 0.11 1.42 4.31 3.59

1Coefficient of variation: StdDev
mean

2Difference between highest and lowest values: (highest −
lowest)/mean ∗ 100
3max(highest − mean,mean − lowest)/mean ∗ 100

obviously do look better, but they are still too far
away from being actually useful. An additional prob-
lem with these techniques is that they have problems
with significant genuine changes in the performance
like the ones in Figure 1, which are usually much
larger than the variance caused by noise.

Section 5 will pursue more sophisticated methods
to try to address these concerns. However, even with
better statistical methods it will be challenging to
reach our goal – the noise is simply too much. There-
fore in the next two sections we will first have a look
at the physical causes for the noise and try to reduce
the noise itself as much as possible before we continue
with our statistical analysis.

An important thing to note here is that it is clearly
impossible to account for all possible environments
that an application may be run in, but that even an
artificial environment like ours should still be effective
in uncovering the most common issues.

3 External Factors: Hardware, multitasking
and other issues

3.1 Overview of External Factors

3.1.1 Multitasking

Multitasking allows several programs to be executed
nearly simultaneously, and the kernel tries to sched-
ule them in a way so that the reality of them actually
running sequentially (at least on one CPU) is hid-
den from the user. The consequence of this is that
the more programs are running, the less CPU time is
available for each one. So the amount of work that can
be achieved by any one program in a given amount
of real (wall clock) time depends on how many other
programs are running. This means that care should
be takes as to which programs are active during tests,
and also that wall clock time is not very useful for pre-
cise measurements. The actual CPU time is of more
interest to us. In addition the scheduling may differ
from one run to the next, potentially leading to more
variance.
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3.1.2 Multi-processor systems

In recent years systems with more than one processor,
or at least more than one processor core, have become
commonplace. This has both good and bad effects on
our testing scenario. The upside of it is that processes
that use kernel-level threads (as Firefox does) can now
be split onto different processors, with in the extreme
case only one process or thread running exclusively on
one CPU. This prevents interference from other pro-
cesses as described above. “Spreading out” a process
in this way is possible since typical multi-processor
desktop systems normally use a shared-memory ar-
chitecture. This allows threads, which all share the
same address space, to run on different processors.
The only thing that will not get shared in this case
is CPU-local caches – which creates a problem for us
if a thread gets moved to a different processor, re-
quiring the data to be fetched from the main memory
again. So if the operating systems is trying to bal-
ance processes and threads globally and thus moves
threads from our Firefox process around this could
potentially lead to additional variance.

3.1.3 Address-space layout randomization

Address-space layout randomization (ASLR)
(Shacham et al. 2004) is a technique to prevent
exploiting buffer overflows by randomizing the
address-space layout of a program for each run. This
way an attacker cannot know in advance what data
structures will lie at the addresses after a specific
buffer, making overwriting them with data that
facilitates an attack much harder.

Unfortunately, for our purposes this normally very
useful technique can do more harm than good. For ex-
ample, the randomization can lead to data structures
being aligned differently in memory during different
executions of the same program, introducing variance
as observed by Mytkowicz et al. (2009) and Gu et al.
(2004).

Additionally, in Non-Uniform Memory Access
(NUMA) architectures the available memory is di-
vided up and directly attached to the processors, with
the possibility of accessing another processor’s mem-
ory through an interconnect. This decreases the time
it takes a processor to access its own memory, but in-
creases the time to the rest of the memory. So depend-
ing on where the requested memory region is located
the access time can vary. In addition the randomiza-
tion makes prefetching virtually impossible, increas-
ing page faults and cache misses (Drepper 2007).

3.1.4 Hard disk access

Running Firefox with the Talos test suite involves ac-
cessing the hard disk at two important points: when
loading the program and the files needed for the tests,
and when writing the results to log files. Hard disk ac-
cess is however both significantly slower than RAM
access and much more prone to variance. This is
mainly for two reasons: (1) hard disks have to be
accessed sequentially, which makes the actual posi-
tion of data on them much more important than for
random-access memory and can lead to significant
seek times, and (2) hard drives can be put into a
suspended mode that they then have to be woken up
from, which can take up to several seconds.

3.1.5 Other factors

Other factors that can play a role are the UNIX en-
vironment size and linking order of the program as

investigated by Mytkowicz et al. (2009). In our case
we worked on the same executables using the same
environment and so those effects have not been inves-
tigated further.

3.2 Experimental setup

Our experimental setup was designed to mitigate the
effect of the issues mentioned in the previous section
on the performance variance. The goal was to evaluate
how much of the variance observed in the performance
tests was actually caused by those external factors as
compared to internal ones.

The following list details the way the setup of our
test machine was changed for our experiments.

• Every process that was not absolutely needed,
including network, was terminated.

• Address-space randomization was disabled in the
kernel.

• The Firefox process was exclusively bound to one
of our two CPUs, and all other processes to the
second one.

• The test suite and the Firefox binary were copied
to a RAM disk and run from there. The results
and log files were also written to the RAM disk.

Using this setup we ran a test series again and
compared the results with our previous results from
Section 2.4.2. In our first experiment we tested all
of these changes at the same time instead of each
individually to see how big the cumulative effect is.

3.3 Results

A comparison of the results of our initial tests and the
external optimization approach are shown in Table 3.
Overall the results show a clear improvement, most
of the performance differences have been significantly
reduced. For example, the maximum difference to the
mean for the a11y test went down from 2.08 % to
0.46 % and for tsspider it went down from 2.57 % to
1.34 %.

In order to give a better visual impression of how
the results differ Figure 4 shows a violin plot of some
of their density functions, normalized to the percent-
age of their means, with red dots indicating outliers,
the white bar the inter-quartile range similar to box-
plots and the green dot the median.

Looking at the plots we can see that in the cases
of for example tgfx and tp dist the modifications
got rid of all the extreme outliers. The curious shape
of the v8 plot means that all of the results from the
test had the same value, our ideal outcome for all of
the tests. Also even though the result table indicates
that the max diff metric for ts and tsvg opacity
increased, the plots show that this is caused by a few
extreme outliers and that the rest of the results seem
to have gotten better.

3.3.1 The Levene Test

In order to test whether the perceived differences in
variance between our setups are actually statistically
significant, we made use of the Levene test for the
equality of variances (Levene 1960, Brown & Forsythe
1974). This test determines whether the null hypoth-
esis of the variances being the same can be rejected
or not – similar to the ANOVA test which does the
same thing for means. This test is robust against non-
normality of the distributions, so even though not all
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Table 3: Results after all external optimizations

StdDev CoV Max diff (%)

Test name nomod cumul nomod cumul nomod cumul Levene p-value

a11y 2.23 0.54 0.69 0.17 2.08 0.46 < 0.001***
dromaeo basics 4.41 2.39 0.53 0.29 1.62 1.01 0.028*
dromaeo css 11.36 7.95 0.30 0.21 0.88 0.46 0.314
dromaeo dom 1.02 1.00 0.41 0.40 1.14 0.74 0.562
dromaeo jslib 0.53 0.44 0.30 0.25 0.60 0.79 0.280
dromaeo sunspider 5.65 3.77 0.54 0.36 1.16 0.74 0.086
dromaeo v8 2.02 1.20 0.86 0.52 1.77 0.81 0.075
tdhtml 0.94 0.30 0.33 0.10 0.73 0.39 < 0.001***
tgfx 0.80 0.14 5.68 1.37 18.88 2.93 < 0.001***
tp dist 1.77 0.19 1.16 0.14 3.30 0.35 0.002**
tp dist shutdown 27.09 8.59 5.14 1.75 8.72 5.41 < 0.001***
ts 2.27 2.46 0.59 0.74 1.66 3.26 0.282
ts shutdown 7.28 3.75 2.00 1.19 3.44 2.89 < 0.001***
tsspider 0.11 0.05 1.15 0.64 2.57 1.34 < 0.001***
tsvg 1.43 0.68 0.04 0.02 0.10 0.05 0.006**
tsvg opacity 0.62 1.11 0.74 1.35 2.02 6.82 0.639
v8 0.11 0.00 1.42 0.00 3.59 0.00 0.008**

nomod: unmodified setup; cumul: cumulative modifications; * p ≤ 0.05, ** p < 0.01, *** p < 0.001

of the tests follow a normal distribution the test will
still be valid.

Table 3 shows the resulting p-value after applying
the Levene test to all of our test results. The results
confirm our initial observations: 10 out of 17 tests
have a very significant difference, except for most of
the dromaeo tests and the ts and tsvg opacity tests.
The dromaeo tests are especially interesting in that
most of them are a good way away from a statisti-
cally significant difference, and even the one test that
does have one is less significant than all the other pos-
itive tests. It seems as if the framework used in those
tests is less susceptible to external influences than the
other, stand-alone tests.

3.4 Isolated Parameter Tests

In order to determine which of our modifications had
the most effect on the tests and whether maybe some
modifications have a larger impact on their own we
also created four setups where only one of our modifi-
cations was in use: (1) disabling all unnecessary pro-
cesses (plain), (2) disabling address-space random-
ization (norand), (3) exclusive CPU use (exclcpu)
and (4) usage of a RAM disk (ramfs).

Table 4 shows the results of comparing the iso-
lated parameters to the unmodified version using the
Levene test. We can see that the modification that
led to the highest number of significant differences
is the deactivation of memory randomization. Espe-
cially in the v8 test it was the only modification
that had any effect at all – it was solely responsi-
ble for the test always resulting in the same value.
Equally interesting is that this modification also
causes two of the dromaeo tests to become significant
that were not in the cumulative case, dromaeo jslib
and dromaeo sunspider. That suggest that the other
modifications seem to “muddle” the effect somehow.
Also, in the dromaeo basics case the disabled mem-
ory randomization is the only modification that got
rid of all the outliers. Interesting to note is that in the
tgfx and tp dist cases all of the modifications have
an influence on the outliers.

3.5 Conclusions

Our modified test setup was a definite improvement
on the default state without any modifications. Even
though the results did not quite match our goals, they

Table 4: Levene p-values for isolated modifications,
compared to the unmodified setup

Test plain norand exclcpu ramfs

a11y 0.141 0.831 0.072 0.419
dromaeo basics 0.617 0.001** 0.199 0.984
dromaeo css 0.357 0.156 0.926 0.347
dromaeo dom 0.226 0.112 0.921 0.316
dromaeo jslib 0.316 0.020* 0.069 0.212
dromaeo sunspider 0.915 0.028* 0.401 0.743
dromaeo v8 0.205 0.443 0.995 0.555
tdhtml 0.626 0.983 0.168 0.248
tgfx 0.018* < 0.001*** 0.005** 0.002**
tp dist 0.006** 0.041* 0.039* 0.038*
tp dist shutdown 0.316 0.213 0.031* 0.697
ts 0.086 0.433 0.291 0.296
ts shutdown 0.080 0.149 0.002** 0.786
tsspider 0.315 < 0.001*** 0.004** 0.001**
tsvg 0.893 0.157 0.951 0.679
tsvg opacity 0.127 < 0.001*** 0.262 0.698
v8 0.851 0.008** 0.550 0.857

* p ≤ 0.05, ** p < 0.01, *** p < 0.001

still signified a step in the right direction. Based on
that we can safely assume that part of the originally
observed variation is caused by the external factors
investigated in this section.

Even with the significant improvements from this
section the results do not quite match our expecta-
tions, unfortunately: only 6 of the 17 tests have a
maximum difference of less than 0.5 %. This shows
that there are other factors to consider that we do
not yet have accounted for.

4 Internal factors: CPU Time, Threads and
Events

After dealing with external influences in the last sec-
tion we will now look at factors that involve the inter-
nals of Firefox, specifically, as the title indicates, the
time the Firefox process actually runs and the threads
and events that are used by it. This involves both in-
vestigating how these factors are handled internally
and modifying the source code of Firefox and the test
suite in an attempt to reduce the variance created
by them. Due to space constraints the experiments in
this section are only presented in summarised form
here. The complete results are available in the tech-
nical report (Larres et al. 2012).
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Figure 4: Some of the tests after external optimiza-
tions, displayed as the percentage of their mean

4.1 CPU Time

As already mentioned in Section 3.1.1, wall clock time
is not necessarily the best way to measure program
performance since it will be influenced by other fac-
tors of the whole system like concurrently running
processes. Since we are running Firefox on an exclu-
sive CPU there is less direct influence by other pro-
cesses, but context switch time could still matter. We
therefore modified Firefox and the test suite to record
the CPU time at the start end end of every test run.
This was done using the clock gettime() system call
for the CLOCK PROCESS CPUTIME ID timer.

Unfortunately only a few tests make direct use
of the time that the Talos framework gathers in
this manner, namely tgfx, tp dist, tsvg, and
tsvg opacity; most tests, especially the JavaScript
tests, do their own timing since they are not interested
in the pure page loading time. The results show that
only one of them, tsvg opacity, had a statistically
significant difference from the results from the exter-
nal optimizations, and the variance actually seems to
have gotten worse (CoV 1.35 to 1.88, p = 0.005). This
indicates that the method of time recording and the
number of context switches are not major factors in
contributing to the variance in the tests. Interesting to
note is that two other tests that should not have been
affected also had significant differences (dromeao v8:
CoV 0.52 to 0.7, p = 0.009; tsspider: CoV 0.64 to
1.02, p = 0.016).

Table 5: Correlation analysis for the total number of
events

Test name Coefficient Pearson p-value

dromaeo css 0.30 0.623
dromaeo jslib 0.36 0.554
dromaeo sunspider 0.76 0.135
dromaeo v8 0.41 0.492
tgfx 0.95 0.012*
tp dist 0.97 0.033*
tsvg opacity −0.76 0.236

* p ≤ 0.05, ** p < 0.01, *** p < 0.001

4.2 Thread pools

Firefox uses two different mechanisms for handling
work like rendering web pages and UI interaction:
threads and events. The majority of work is done
using events, but threads are used for a few cases
where asynchronous operations like I/O and database
transactions are needed, for example for bookmark
and history handling. In addition Firefox makes use
of a thread pool for one-off asynchronous events.
Since this thread pool requires creating and destroy-
ing threads on a regular basis, changes in the timings
of when a new thread is needed could lead to measur-
able variance caused by these thread interactions.

We investigated this hypothesis by modifying the
thread pool code to only ever create one thread that
then stays alive for the entirety of the program life-
time, keeping the pool from creating and destroy-
ing threads arbitrarily. Unfortunately the results mir-
ror the ones from our first experiment: only two of
the tests had statistically significant differences, and
in both cases the variance was worse than without
our modifications (dromaeo dom: CoV 0.33 to 0.5,
p = 0.002; tgfx: CoV 1.28 to 1.69, p = 0.026). So
again the thread pool does not seem to be responsi-
ble for the variance that we are seeing.

4.3 Event Variance

As mentioned above, events are the main mechanism
by which work is done in Firefox. So for our third
experiment we wanted to see whether the events used
to execute a certain task, like running a test of the test
suite, was always done using the exact same events
and in the exact same order of dispatch.

For this we again modified Firefox and the test
suite to print out special messages at the points where
events get dispatched during the tests, and ran a test
series. Due to the size of the generated log files and
the time it took to run our analysis script afterwards
this series consisted of only five distinct runs.

Using the information from our log analyses we
can indeed see that there is variation in the number of
events being used during the tests. What is interesting
is that there are some events that occur several times
in some of the runs but not at all in others, but the
overall sum of the events differs far less, proportion-
ally speaking. Since the events are identified by their
complete backtrace instead of just their class we sus-
pect that this is because those events get dispatched
on a slightly different path through the program even
though they belong to the same class.

In order to establish whether the event variance
is actually correlated to the test result variance we
used the Pearson product-moment correlation coef-
ficient (Rodgers & Nicewander 1988), with the null
hypothesis being that there is no correlation between
the variables.
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Table 6: Correlation analysis for the order of events

Test name Coefficient Pearson p-value

dromaeo sunspider 0.58 0.079
tp dist 0.98 < 0.001***
tsvg 0.44 0.386
tsvg opacity 0.71 0.113

* p ≤ 0.05, ** p < 0.01, *** p < 0.001

The tests that had at least moderate correlation
(abs(coefficient) ≥ 0.3) are presented in tables 5 and
6. Only two respectively one of them are actually sta-
tistically significant, though, which may be a result of
our small sample size. But it does demonstrate that it
could be worthwhile to investigate this direction fur-
ther. One finding that should be studied more closely
is that the only test that showed significant corre-
lation in both cases is also the one with by far the
longest running time, suggesting that the correlation
may only become significant after the test has been
running for a while, overshadowing other influences
beyond that point.

Interesting to note is that most of the events that
appear out of order depend on external or at least
asynchronous factors, for example ones that interact
with database transaction threads or that make use
of hardware timers.

5 Forecasting

After trying to actually reduce the variance as much
as possible, we will now look at statistical techniques
that aim to separate the remaining noise from genuine
performance changes. Since we need test results that
contain both of these in order to do that, in this Sec-
tion we will use data taken from the official Mozilla
test servers instead of generating our own. Note that
this means that all the results used in this section will
be from different builds, in contrast to our previous
experiments.

5.1 t-tests: The current Talos method

There are essentially three cases that a new value in
our results could fall into, and the goal is for us to
be able to distinguish between them. The first case is
that there are no performance-relevant code changes
and the noise is so small that it can easily be classi-
fied as a non-significant difference from the previous
results. The second one is that there are still no rel-
evant code changes, but this time the noise is much
larger so that it looks like there may actually be rel-
evant changes. The last one is that there are relevant
code changes and the difference in value we see is
therefore one that will stay as long as the new code
is in place.

This suggests one potential solution to our prob-
lem: if we check more than one new value and de-
termine if – on average – they differ from the previ-
ous results in a significant way, we know that there
must have been a code change that introduced a long-
lasting change in performance. Unfortunately this
method has a problem of its own: we cannot imme-
diately determine whether a single new value is sig-
nificantly different, we have to wait for a few more in
order to compute the average.

This is essentially what the method that is cur-
rently employed by Mozilla does. In more detail, there
are two parts to it:

1. Compute the means of the 30 results before the
current one (the back-window) and of the 5 runs
starting from it (the fore-window), that is create
two moving averages.

2. Use a t-test to determine whether the difference
between the means is statistically significant.

The size of these windows again has to be a trade-
off: the back-window should be relatively immune to
short-term noise but also not be distorted by large
changes in the past, and the fore-window should be
small enough to allow detecting changes quickly with-
out producing too many false positives due to one or
two noisy results.

An important thing to note with regard to the fore
window is that it starts at the value we are currently
investigating, not ends. This is because we are inter-
ested in the first value where a regression happens. If
we interpret the performance change as a “step” like
in a step-wise function then starting from the first
value after the step means that all of the values that
are taken into account for the window will share the
same change and thus should ideally lead to a mean
that reflects that, pointing back at the “step” that
caused it.

In order to determine whether there is a significant
difference between the two window sample means we
need a statistical test, and Mozilla chose the so-called
Welch’s t-test which works for independent samples
with unequal variances:

t =
X1 −X2√

s21
N1

+
s22
N2

where Xi, s
2
i and Ni are the ith sample mean, sample

variance and sample size, respectively.
This test statistic t can then be used to compute

the significance level of the difference in means as it
moves away from zero the more significant the differ-
ence is. The default t threshold that is considered to
be significant in the Talos analysis is 9. This seems to
be another heuristic based on experience, but it can
hardly be justified statistically – in order to prop-
erly calculate the significance level another value is
needed: the degree of freedom. Once that is known
the significance level can be easily looked up in stan-
dard t-test significance tables2. However, this degree
of freedom has to be computed from the actual data,
it cannot be known in advance, and it also would be
different for different tests. Using a single threshold
for all of the tests is therefore not very reliable.

5.2 Forecasting with Exponential Smoothing

As already mentioned in the previous section, the cur-
rent method has a few problems. For one thing, the
window sizes used are rather arbitrary – they seem
to be reasonable, but there is no real statistical justi-
fication for them, and the fact that all the values in
the window are treated equally presents problems in
cases where there have been recent genuine changes.
Also, due to the need for the fore window a regression
can usually not be found immediately, only after a few
more results have come in. Apart from this unfortu-
nate delay this can also lead to changes that go unno-
ticed because they only exist for a short time, for ex-
ample because a subsequent change had the opposite
effect on performance and the mean would therefore

2See for example http://www.statsoft.com/textbook/
distribution-tables/#t.
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hardly be affected. So instead of a potential perfor-
mance gain the performance will then stay the same
since the regression will not get detected.

We therefore need a more statistically valid way
that can ideally report outliers immediately and that
does not depend on guesses for the best number of
previous values to consider.

A common solution to the problem of equal
weights in the window average is to introduce weight-
ing, that is a weighted average. In the case of our back
window we would give the highest weights to the most
recent results and gradually less to earlier ones. This
would also eliminate the need for a specific window
size, since as the weights will be negligible a certain
distance away from the current value we can just in-
clude all (available) previous values in our computa-
tion. The only issue in this case is the way in which
we assign concrete weights to the previous results.

Exponential smoothing is a popular statistical
technique that employs this idea by assigning the
weights in an exponentially decreasing fashion, mod-
ulated by a smoothing factor, and is therefore also
called exponentially weighted moving average. The
simplest and most common form of this was first sug-
gested by Holt (1957) and is described by the follow-
ing equations:

s1 = x0

st = αxt−1 + (1− α)st−1

= st−1 + α(xt−1 − st−1), t > 1

Here st is the smoothed statistic and α with 0 <
α < 1 is the smoothing factor mentioned above. Note
that the higher the smoothing factor, the less smooth-
ing is applied – in the case of α = 1 the resulting
function would be identical to the original one, and
in the case of α = 0 it would be a constant with the
value of the first result.

The obvious question here is: what is the optimal
value for α? That depends on the concrete values of
our time series. Manually determining α is infeasi-
ble in our case, though, so we would need a way to
do it automatically. Luckily this is possible: common
implementations of exponential smoothing can use a
method that tries to minimize the squared one-step
prediction error in order to determine the best value
for α in each case3.

The property that is most important to us about
this technique is that it allows us to forecast future
values based on the current ones. This relieves us of
the need to wait for a few new values before we can
compute the proper moving average for our fore win-
dow, and instead we can operate on a new value im-
mediately. Similarly we do not have to wait until we
have enough data for our back window before we can
start our analysis. In theory we can start using it with
only one value, although in practice we would still
need a few values for our analysis to “settle” before
the forecasts become reliable.

Normally the exponential smoothing forecast will
produce a concrete new value, which is useful for
the field of economics where it is most commonly
applied. In our case, however, we want to instead
know whether a new value that we already have can
be considered an outlier. For this we need a mod-
ification that will produce confidence intervals. Yar
& Chatfield (1990) developed a technique for that
using the assumption that the underlying statistical

3see for example http://stat.ethz.ch/R-manual/R-patched/
library/stats/html/HoltWinters.html
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Figure 5: Prediction intervals for three values

model of exponential smoothing is the ARIMA (au-
toregressive integrated moving average) model, call-
ing the intervals prediction intervals. The details of
the method are not really relevant here and are also
rather complex, so we will refer interested readers to
the actual paper instead of repeating them here. We
used this modification as it was implemented in the
HoltWinters package for R (R Core Team 2012).

Figure 5a shows an example from the tp dist test
with official test server data and the 95 % prediction
interval for the next three values. We used three here
to make the interval easier to identify, but in practice
only one would be needed.

The figure also demonstrates what influence big
changes in the past have on the prediction intervals.
The big jump in performance in the middle is still re-
flected in the intervals at the end, although the results
themselves would by now clearly lie outside of them if
they were to reoccur. Figure 5b shows the same data
except that the two outliers have been removed, and
we can immediately see that the prediction intervals
are now much more narrow – for example the first
value would now lie outside of them, which was not
the case in the previous figure. Therefore in the case
of such apparently genuine changes that have been re-
verted it might still make sense to remove the values
from the ones that are used for future predictions to
avoid intervals that are unnecessarily wide.

Note that there are a few extensions to this sim-
ple exponential smoothing technique that have been
developed in order to deal with data that exhibits
trends, but our data does not contain any trends and
therefore we did not make use of any of these exten-
sions.

5.3 Comparison of the Methods

We now want to compare our two methods on an
example to give an impression of how they differ in
their ability to distinguish between noise and genuine
changes. For this we used a long stretch of official test
data for the tp dist test and ran both methods on it,
marking the points where they reported a significant
change.
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Figure 6: Comparison of the two analysis methods

Figure 6 shows the result of this comparison. The
test results from three other machines are also de-
picted greyed out in the background to easier deter-
mine which changes are genuine and which are noise,
since the genuine changes will show up in all of the
machines.

Two things can be learned from the graph: first,
and most importantly, our prediction interval method
detects more of the genuine changes than the current
t-test method. For example, the big jumps in August
2010 and February 2011 go undetected by the cur-
rent method since they are followed by equally big
jumps back soon after. This is a result of the need
for more than one value in the respective analysis,
obscuring single extreme values in the process. On
the other hand, all of the changes that are detected
by the old method are also detected by our sug-
gested method, thus demonstrating that previously
detectable changes would not get lost with it.

The second difference can be seen during July/
August 2010: the current method can sometimes re-
port the same change multiple times for subsequent
values, so additional care has to be taken to not raise
more alarms than necessary.

This example demonstrates that our proposed sta-
tistical analysis offers various benefits over the one
that is currently employed. Not only does it give bet-
ter results, it also needs only the newest value in order
to run its analysis. In addition it is also straightfor-
ward to implement, several implementations already
exist in popular software like R3 and Python4.

One disadvantage of our method should be men-
tioned, however. If there is a series of small regres-
sions, each too small to be detected as an outlier,
then the performance could slowly degrade without
any warnings being given. Depending on the exact
circumstances this degradation might be able to be
detected by the old method, but it would probably
be better to develop a different method that is specif-
ically tuned for this case and use this method in ad-
dition to ours.

6 Related Work

Mytkowicz et al. (2009) investigated the effects of

4http://adorio-research.org/wordpress/?p=1230

UNIX environment size and the program link order
on performance measurements. The found that those
factors can have an effect of up to 8 % and 4 %, re-
spectively, on benchmark results and attributed the
variance to memory layout changes. As a partial solu-
tion they proposed randomizing the setup. Gu et al.
(2004) came to a similar conclusion of memory layout
changes through the introduction of new code, but
found that this variance was not well correlated with
the benchmark variance.

Multi-threading variability was investigated by
Alameldeen & Wood (2003), including the possibility
of executing different code paths due to OS schedul-
ing differences, which they called space variability.
Georges et al. (2007) demonstrated that performance
measurements in published papers often lack a rigor-
ous statistical background and presented some stan-
dard techniques that would lead to more valid con-
clusions.

Kalibera et al. (2005) investigated the dependency
of benchmarks on the initial, random state of the sys-
tem, finding that the between-runs variance was much
higher in their experiments than the within-runs vari-
ance. They proposed averaging over several bench-
mark runs to counter this as much as possible, which
is similar to what our experiments did.

Tsafrir et al. (2007) demonstrated that influences
outside of the control of a benchmark can lead to
disproportionally large variance in the results, and
suggested “shaking”/fuzzing the input by carefully
adding noise so as to make averages more reliable.

7 Conclusions and future work

This paper had three main goals: (1) Identifying the
cause(s) of variance in performance tests on the ex-
ample of Mozilla Firefox, (2) trying to eliminate them
as much as possible, and (3) investigating a statisti-
cal technique that would allow for better distinction
between real performance changes and noise.

Section 3 demonstrated that all of the external fac-
tors that we investigated had a certain degree of in-
fluence on the variance, with memory randomization
being the most influential one. This is consistent with
much of the work mentioned in Section 6 that identi-
fied memory layout as having a significant impact on
performance measurements. We also proposed some
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strategies to minimize this variance without the ad-
ditional resources needed for the averaging solutions
that others have suggested.

The studying of the internal factors in Section 4
proved to be less useful than we had hoped for, but
it provided us with evidence that they did not have
a significant amount of influence on the result vari-
ance. This suggests that whatever variance remains
more likely has to do with the external environment
instead of the internal workings of the applications to
be measured, allowing better focused future studies.

Finally, in Section 5 we presented a statistical tech-
nique for assessing whether a new result in a test se-
ries falls outside of the current trend and is there-
fore most likely not noise. This technique was shown
to have various benefits over the currently used one,
most importantly it could report some changes that
the one that is currently being used by Mozilla missed.
Additional advantages include being able to run the
analysis on new values immediately instead of having
to wait for a certain number of values that are needed
for a moving average, and similarly the analysis can
start when only a few values are available for a ma-
chine unlike the 30 values that are required for the
current moving average.

In summary we managed to achieve a certain de-
gree of success for all three of our goals. We identified
various external influences and offered solutions to
mitigate them, and suggested a statistical technique
that improves the quality of change detection. Un-
fortunately we did not conclusively find a connection
between the inner workings of Firefox and the mea-
sured variance, but we did find a certain amount of
internal variance. Investigating this discrepancy could
be a promising topic for future work.

Another worthwhile direction would be to apply
our research to other applications, especially other
browsers like Google Chrome. This was outside the
scope of this paper, not the least because those
browsers use entirely different – and not in all cases
even publicly accessible – performance test suites.
The general principle should be the same, though,
so it would be interesting to see whether there are
any differences between the amount of and the causes
of variance. At least our statistical technique is not
tied to any specific application and should work for
anything that can be represented as a time series, re-
gardless of how the data was produced.
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Abstract

Visualisation is often used to help understand com-
plex systems and in particular scale-free networks
which are present in many systems, from object-
oriented software, to real-world and on-line social net-
works. While a number of tools already exist to visu-
alise these systems, most focus on presenting the net-
work as a whole and neglect to include information
on the possibly concurrent behaviour of individual
nodes. In this paper we present replay which aims to
meet these demands, by visualising both the structure
and evolution of the network through time, as well as
the behaviour of individual nodes and the communi-
cations between nodes. We describe the unique and
novel aspects of replay, including its three different
but related visualisations of the underlying system,
as well as its plug-in architecture, which allows re-
play to be extended and applied to visualise different
networked systems. We also demonstrate the utility
and flexibility of replay with a number of real-world
visualisation examples, as well as present possible di-
rections for future work.

Keywords: Graph and network visualisation, concur-
rency visualisation, interaction visualisation, inter-
connected systems, concurrent systems.

1 Introduction

Visualisation is increasingly being used to aid under-
standing of complex systems. In particular, scale-free
networks [5] have recently become a focus for visual-
isation [26, 16], as a means to understand their un-
derlying structures and hierarchies, as well as their
evolution through time [19]. Many networked sys-
tems have been found to exhibit scale-free properties,
ranging from social networks [5] (both real-world and
on-line) to object-oriented software [30, 8, 24].

By their nature, scale-free networks are quite com-
plex, comprising many nodes with numerous edges,
and hence visualisations have focused on ways of sim-
plifying the overall visualisation while still retaining
the salient features of the network [16, 19]. These
methods concentrate on visualising the network as a
whole, and so while these tools have generally been
successful in helping to understand the overall net-
work structure, they provide little capacity for in-
sight into the detailed behaviour of individual nodes

Copyright c©2013, Commonwealth of Australia. This paper ap-
peared at the 36th Australasian Computer Science Conference
(ACSC 2013), Adelaide, South Australia, January-February
2013. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 135, Bruce Thomas, Ed. Reproduc-
tion for academic, not-for-profit purposes permitted provided
this text is included.

– which we define as the node’s activity and any mes-
sages it exchanges with other nodes.

In many cases, understanding the behaviour of in-
dividual nodes is crucial to properly understanding
the overall behaviour of the network, since the evolu-
tion of the network through time is critically affected
by the actions of its nodes. For example, the need
for visualisations that show both the network’s overal
structure as well as the concurrent behaviour of its in-
dividual nodes has been identified as an educational
tool to aid in the understanding of object-oriented
software, especially the interactions between concur-
rent objects and how this influences the object graph
as a whole [9].

We believe that to truly understand complex, net-
worked, concurrent systems, visualisation tools must
be capable of effectively exploring these systems at
both macroscopic and microscopic levels of detail,
while sweeping arbitrarily backwards and forwards
through time.

We have therefore developed a visualisation tool
called replay to meet these requirements. Section 2
describes the system while Section 3 presents some
case-studies showing replay in action. We then de-
scribe related work in Section 4, future directions for
our research in Section 5 and conclude in Section 6.

2 An overview of replay

replay was designed with a number of features for vi-
sualising complex, concurrent networked systems: a
simple event based data model, three different but
related visualisations of the underlying event model
which are always synchronised, the ability to filter
information, and a plug-in based extension system.
Each of these features will be described in the follow-
ing sections.

2.1 The replay event model

The primary elements represented within replay are
nodes, edges, activities and messages, where nodes
can be executing activities and are connected via
edges to form the graph, and messages are sent be-
tween nodes along edges within the graph. replay em-
ploys a simple event-based data model which allows
the behaviour and structure of diverse concurrent net-
worked systems to be visualised. The plug-in inter-
face (described in Section 2.7) provides programmatic
access to drive the generation of events, allowing ar-
bitrary systems to interface with replay at runtime
using a diverse range of communication mechanisms.
Each event specifies the time at which it occurred, as
well as identifying the elements concerned. The four
basic elements (nodes, edges, activities and messages)
are all uniquely named within separate name-spaces

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

13



and can have arbitrary properties. The following de-
scribes the standard events associated with each ele-
ment.

Node create / set properties Specifies the
unique identifier for the node and a list of
associated properties for the node in question
(such as a label or colour).

Node delete Deletes the node with the given iden-
tifier.

Activity start Specifies the start of a uniquely
named activity upon a particular node with a
list of associated properties for the activity (such
as colour or level).

Activity end Specifies the end of the activity with
the given identifier.

Edge create Specifies the unique identifier for the
edge, the identifiers for the head and tail nodes
of the edge, whether the edge is unidirectional or
bidirectional and a list of associated properties
for the edge in question (such as a label, colour
or weight etc).

Edge set properties Specifies the unique identifier
of an edge and a list of associated properties to
set for the edge at the given time of the event.

Edge delete Deletes the edge with the given identi-
fier.

Message send Message send events specify an iden-
tifier for the message, the identifier for the send-
ing node, a potentially associated edge via which
the message travels and a list of properties for
the message (such as a human readable descrip-
tion to display in the various visualisations). To
model causality of message events, these events
also specify a parent message which caused this
message send to occur.

Message receive Specifies the unique identifier of
the message and the node which is receiving the
message.

Since all events specify a time-stamp, replay is able
to reconstruct the sequence of events for the system
through time, and allows the ability to step through
the sequence both forwards and backwards through
time. From the sequence of events, replay constructs
three different but related views of the system. Fig-
ure 1 shows a screen capture of the main replay win-
dow displaying these three views:

Timeline view This is positioned at the top of the
window and shows the state of nodes and their
interactions through time.

Causal message tree view This view is placed at
the left of the window and is designed to show
the causal relationship between messages sent /
received between nodes.

Network graph view This is situated on the right
hand side of the main window, and is designed to
show the graph of nodes within the system and
how they are interconnected, along with their in-
dividual states, at a given point in time.

2.2 Timeline view

The timeline view presents a two dimensional view of
the behaviour of nodes through time. Nodes are listed
along the vertical axis, while time is plotted along
the horisontal axis. A number of visual attributes
are used to show the different states of nodes through
time:

Node lifetime A thin line drawn in the node’s base
colour is drawn from the time of the node cre-
ate event to the time of the corresponding node
delete event.

Node activity The timeline view represents activ-
ity in a similar way to the network graph, us-
ing the activity level to determine the intensity
of the activity colour. A thick coloured line is
drawn in the current activity colour / level, and
runs from the time of each activity change event
to the next. An activity level of zero (the idle
state) is indicated by the absence of this line.

Message flow Message send / receive event pairs
are indicated by arrows drawn from the node
which sent the message to the node which re-
ceived the message.

Current time The timeline clearly indicates the
current point in time using a thin line, with the
region in the past shaded behind it.

This view is designed to show the concurrency and
message passing characteristics of the system across
time, and is similar to existing visualisations for par-
allel message passing systems [18, 29, 14]. By pairing
together events, the timeline view is able to clearly
show the duration of each interval, such that com-
munication patterns, message passing latencies, and
active / idle times are clearly visible.

The timeline view allows the user to zoom in and
out, providing an infinite zoom resolution to allow the
exact timing of events to be clearly represented and
determined.

2.3 Causal message tree view

While replay allows events to be stepped through se-
quentially, the representations provided by the other
two views give limited insight into the causal rela-
tionship of messages within the system. To address
this, replay includes a third view, the causal mes-
sage tree. Message send / receive events specify an
identifier for the current message, as well as a po-
tential parent message identifier which refers to the
message event (if any) which caused the current one.
This allows the message tree to be easily specified
and constructed. Message send and receive events for
the same message are aggregated into a single entry
within the tree, as the causality of these events is di-
rectly linked (the receipt of a message is always the
result of the corresponding send).

This view is situated at the lower left of the win-
dow, and lists the node which sent the message on the
left, along with the message label on the right. Nodes
are coloured with their corresponding base / activity
colour, depending on their activity level at the time
of the message send event.

This view is similar to the message-order view of
Causeway [27], a message oriented postmortem de-
bugger, and provides a visual representation of the
causality for the current message event. This view is
particularly suited to analysing interactions between
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Figure 1: Main replay window showing the three unified views
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nodes, such as in software development (i.e. repre-
senting the control flow via method calls between ob-
jects in an object-oriented software system).

2.4 Network graph view

The network graph view is situated to the right of the
main window, and displays a three dimensional rep-
resentation of the overall graph of the system. As the
sequence of events is stepped through in time, the
graph is constructed using the node create / delete
and edge add / remove events. The primary pur-
pose of this view is to show the connectivity of nodes
within the system, as well as their current state, and
finally to annotate the view with messages as they
pass between nodes. As a result, a number of specific
features have been incorporated into this view.

Like many existing visualisations which focus on
the connectivity within a graph [16, 19] a force-
directed model is used to layout the graph. All
nodes repel each other with an inverse gravitational
(Coulombic repulsion) force, while neighbors attract
one another using a spring-modeled force. Unlike the
two visualisation models cited previously, nodes in re-
play have a ‘mass’ which is proportional to the total
number of connections they have. Nodes are then
drawn with a size proportional to this mass (assum-
ing a constant density), and the inverse gravitational
repulsive force calculations take this value of mass
into account. By adding this property, nodes which
are highly connected (and hence, for example, have
greater ‘authority’ as defined by [17]) are significantly
larger and are placed further away from less connected
nodes. This creates a visual representation where the
highly connected nodes are easily discerned due to
their placement and size within the overall graph.

Nodes are coloured using the ‘color’ property
value, and activities are drawn as a glow around the
node in the designated colour and at the designated
intensity (using the ‘color’ and ‘level’ properties of
the activity respectively). Multiple concurrent activ-
ities on a node result in blending of their respective
colours at their respective intensities.

The graph is also annotated with the labels of mes-
sage send and receive events as these events occur,
along with the name for the corresponding node. By
overlaying these labels alongside the node with which
they are associated, the flow of messages within the
system is able to be represented along with the state
of the system as these events occur.

This view is able to be controlled by the user, pro-
viding the ability to center the view on a particular
node of interest, zoom in and out, or arbitrarily rotate
the viewpoint around the current center. By default
node and edge properties are hidden, but are exposed
when the user places the mouse over the node or edge
of interest. This allows the graph to be easily un-
derstood by showing only the vital information, but
provides an effective way to allow the user to reveal
relevant information as required. Finally, the user
can also interact directly with the graph and move
the nodes within it to determine how this affects the
overall graph layout.

2.5 Synchronisation of views and interaction

While each of the three views provides its own unique
representation of underlying the system, we believe
the real advantage of replay is the combination of all
three views. As a result, all three views use similar
representation (such as node colour) and remain syn-
chronised at all times, to ensure a consistent represen-
tation of the event sequence, and hence the underlying

system itself. This is an important feature, since it
helps to highlight relationships between the views and
allows the different information presented within the
views to complement one another [28]. Also, by us-
ing consistent representations within all three views,
replay reduces the cognitive load on the user to un-
derstand the underlying data. As a result, this frees
the user, allowing them to process large amounts of
complex data quite easily, due to the natural cogni-
tive abilities of the human visual system [7].

replay also employs user interaction within all
views to allow the user to jump to certain events,
and to manipulate the displays of the views. For ex-
ample, selecting a message within the message tree
causes both the network graph and timeline views to
jump to that event in the event sequence, and simi-
larly, events can also be selected in the timeline view.

Finally, both the message tree and graph view al-
low the user to search for a message or node by name
respectively to easily locate items of interest.

2.6 Filtering

In many large systems the number of nodes, and
their interconnections and communications, can pro-
duce quite complex visualisations where the finer de-
tails of the system are obscured. To deal with this
complexity, a number of techniques for automatically
simplifying the overall graph structure have been ex-
plored [8, 19]. In replay we also provide a means for
filtering the graph, providing the user with direct con-
trol over which properties to filter from the display as
well as providing the ability to implement automatic
filtering through the plug-in extension system as de-
scribed in Section 2.7.

Filters can be created which specify a list of spe-
cific nodes, or a glob [12] style pattern to match the
names of nodes, against which the filter is applied.
The filter can then specify that these nodes are either
grouped, or hidden, or can override the properties
(colour etc.) of the nodes. Groups are then rep-
resented as the aggregate of their component nodes
within the different visualisations. The timeline view
uses a single entry which draws the timelines of the
component nodes overlayed upon one-another, while
the network graph represents a group as a single node
with the combined mass of its components, hiding all
internal edges between nodes within the group. Hid-
den nodes are removed from all views (and any edges
or messages in which they are involved).

This allows the user to selectively hide extraneous
information while retaining that which is pertinent
to the current analysis. This in turn allows the user
to reduce their cognitive load and hence focus on the
problem at hand. The use of such filtering has been
successfully demonstrated in the analysis of Annex
object capability based software [23], which will be
explored in Section 3.1.

2.7 Plug-in / Extension system

Originally replay was built as a tool to help analyse
and debug the Annex object capability system and,
as a result, was initially tailored to suit the specifics
of Annex. However, it was soon realised that the dif-
ferent visualisations within replay could be very use-
ful in analysing other systems including other object-
capability / object-oriented programming systems or
social networks. A plug-in system was developed to
enable replay to be easily extended and used to visu-
alise other diverse, inter-connected systems.

Plug-ins can be used to extend replay in multiple
ways:
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Event Sources The initial motivation for the de-
velopment of the plug-in system was to provide
support for the translation of custom data sets
into the specific events described in Section 2.1.
Hence plug-ins can provide and register event
sources for the main replay application, allowing
replay to easily support a wide range of systems.
Multiple types of event sources are supported,
including disk-based file sources for offline visu-
alisation, or network connected sources for visu-
alisation of live systems.

Analysis Plug-ins also have access to the various
data-structures within the core application, such
as the sequence of events, the node-edge graph,
and the list of filters. This allows for a number
of extensions to be implemented, such as perfor-
mance analysis or automatic filtering by the cre-
ation of custom filters. As an example, a plug-in
could easily analyse the graph at a given point
in time to determine disjoint sub-graphs. By ac-
cessing the filter list, it could then create filters
to select the nodes in each separate graph and
override their colours. This would then provide
a simple visual cue of the separate graphs to the
user without the need for manual intervention.

Extended Functionality The plug-in system has
been used to implement a number of the core
features for replay, including playback controls
(allowing the user to automatically play forwards
and backwards through the events), as well as the
filtering system presented in Section 2.6.

A number of plug-ins have been developed to ex-
tend the utility of replay.

Annex The original Annex specific code from replay
was re-factored into a single plug-in which inter-
prets the custom Annex event log and produces
appropriate replay events. An example of the
output from this is seen in Figure 1.

Java To demonstrate the utility of replay as a gen-
eral tool for the visualisation and analysis of
object-oriented programming languages, a plug-
in is being developed to interface with the output
from the OKTECH Profiler [2] for the Java Vir-
tual Machine to allow generic Java programs to
be visualised. This currently provides support
to visualise the object reference graph through
time, differentiating references obtained through
object creation, method invocation and return
value by using different colours for each. This
plug-in also provides the ability to view the ex-
ecution of methods upon objects through time
including their method signatures.

Due to limitations in the OKTECH profiler and
the nature of the Java garbage collector there is
currently no support for determining when refer-
ences are dropped, and so references simply accu-
mulate in the graph. Even without this complete
support, we believe that with this existing plug-
in replay provides almost complete support for
the visualisation of Java programs, for which a
clear need has previously been identified [9].

FDR A plug-in has been developed to aid in the
task of formal analysis of object-capability se-
curity patterns [22] which translates the output
of the FDR [10] model checker into appropriate
replay events. This will be discussed further in
Section 3.2.

Graphvis A plug-in has also been developed to
translate the Graphvis [11] dot-format graph de-
scriptions into replay node and edge events to
allow these graphs to be visualised in an interac-
tive, three-dimensional display using the force-
directed layout of the network graph view.

Causeway The previously mentioned Causeway
message-oriented debugger was designed to de-
bug concurrent message passing systems such
as the object-capability E programming lan-
guage [20] and the Waterken web server [4]. We
have developed a plug-in to translate the Cause-
way message log format [1] into replay events to
allow these systems to be visualised.

By separating the logic required to parse and inter-
pret custom data sets into different plug-ins, we have
been able to focus on the core visualisation technolo-
gies within replay itself. The following section will
discuss the use of replay in the analysis of real-world
systems, describing its utility and benefits as a gen-
eral purpose visualisation tool.

3 Case studies

3.1 The Annex Capability System

The original motivation behind the development of
replay was to develop a tool for debugging and
analysing the security properties of the Annex object-
capability system (which will be referred to as simply
Annex for the sake of brevity). Annex serves as the
Trusted Computing Base (TCB) in a number of se-
cure devices developed by DSTO Australia [13, 23].
The Annex TCB is used to control the security pol-
icy for these devices, and hence the correctness of the
Annex system is crucial to ensuring the security of
the devices as a whole.

Within Annex, and other object-capability sys-
tems, objects can only communicate with one-another
by message passing, and they can only pass messages
if they have an appropriate capability which desig-
nates the other object. As a result the collection of
capabilities which an object possesses defines the au-
thority of the object within the system [20]. As capa-
bilities can be delegated from one object to any other
that they are already in communication with, the ob-
ject graph (where objects are nodes, connected via
capabilities) is a dynamic entity which is constantly
changing as the system evolves. The ability to easily
visualise this graph and hence quickly ‘see’ the secu-
rity policy / posture of the system embodied by the
graph was the primary motivation in the development
of replay. Once the graph view was developed, it was
also realised that as well as visualising the security
properties of the system, the ability to visualise the
behaviour of the system through time would also help
in analysis and debugging. Hence the timeline view
was added. Similarly, the need to track the causality
of messages (what caused this message to be sent) was
identified, and resulted in the addition of the message
tree view.

replay has served as a significant tool in the devel-
opment of Annex by allowing the entire execution of
the system to be visualised. This has been particu-
larly useful in a number of situations, some of which
are summarised in the follow sections.

3.1.1 Timing and race-conditions

Annex objects interact by method calls / returns
in a turn-based fashion using an asynchronous
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promise [20] model. An object is active and unin-
terruptable while processing a call (and this defines a
single turn for the object), but it is idle while waiting
for the response to other calls it makes. As a re-
sult, while waiting on the result from a call an object
has made, it can be invoked by either another incom-
ing call, or a response to a different call it has previ-
ously made, which will start the execution of a new,
independent turn. This feature of the Annex sys-
tems allows high levels of concurrency, since multiple
turns (and hence multiple method calls) can poten-
tially be interleaved without needing to wait for each
to synchronously execute, and also allows a high level
of parallelism to be achieved, while still guarantee-
ing atomicity between turns. However, without care-
ful attention to turn boundaries this feature can also
lead to potential race-conditions and security critical
bugs. replay has proved useful in helping to track
down these particular issues by clearly showing the
concurrent and interleaved execution of calls within a
single object. The Annex plug-in colours each differ-
ent call separately and so the interleaving of different
calls to a single object is clearly visible within the
timeline view, as seen in Figure 2.

This Figure shows the execution of the tor-
tureAsync application which comprises 1 driver ob-
ject (tortureAsync) and 16 worker objects oTor-
tureAsync repeatedly calling one-another, and is de-
signed to stress-test Annex’s message-passing perfor-
mance. The execution of the top-most oTortureAsync
object clearly demonstrates this interleaving. This
object is initially called by the driver tortureAsync
and starts execution (shown by the blue activity line)
and proceeds to call 4 of the other worker objects, in-
cluding itself. It then suspends execution to wait for
the returns from these calls. Almost immediately a
return is received from the first object which it called
(again shown by the same colour blue activity line),
at which point the initial call is resumed to store this
result, and execution is again suspended. However,
since the object is now idle, the call which it made
to itself is now delivered, shown by the green activ-
ity line. This starts a new turn, which is separate
from the one used to execute the original call (in-
dicated by the different colours) and clearly demon-
strates that these two calls have been interleaved on
this object. In interleaving these calls, if the second
call happens to modify state which the first call is ex-
pecting to remain constant, then a race-condition will
result. However, the timeline view of replay clearly
allows this to be identified and flagged to the pro-
grammer. It should be noted that the causal view will
not help identify this same potential for error since it
only highlights the causal, i.e. partial ordering, not
total ordering.

Figure 2 also clearly shows the ability to measure
the time taken to execute particular calls - the time
taken to execute the call from tortureAsync to each of
the worker oTortureAsync’s is clearly longer than the
time taken to execute the calls made between each
worker object.

3.1.2 Authority analysis

As the purpose of the tortureAsync application is
to simply make repeated calls between each of the
worker objects, there is no need for these objects to
have capabilities to any other object within the sys-
tem, except for the other worker objects. This design
follows the principle of least authority, which states
that an object should only have the minimum author-
ity required to perform its intended function, and no
more [21]. We can easily analyse the authority of the

application by inspecting the object graph within the
network graph view of replay, as shown in Figure 3.

From simple inspection of the Figure, we can see
the 16 worker objects of the application situated in
the bottom right, with the rest of the objects com-
prising the other applications of the system in the
left of the Figure. It is clear that these are two dis-
tinct and separate graphs, i.e. there are no capa-
bilities connecting the worker objects to the rest of
the system. replay therefore provides the ability to
quickly verify the intended security-related isolation
properties of this system by simple inspection of the
graph. While this is clearly useful, the usability of vi-
sual inspection decreases with the complexity of the
system at hand. Therefore for more complex analysis,
as previously mentioned, the plug-in system provides
the ability to directly access various data structures
maintained by replay (such as the graph structure),
allowing programmatic analysis of various properties
of the system to be implemented as needed.

3.2 FDR Model Checker

The FDR plug-in was developed to visualise the
trace output from the FDR model checker [10] when
analysing CSP [15, 25] models of object-capability se-
curity patterns [22]. Communicating Sequential Pro-
cesses (CSP) is a process algebra used to describe
concurrent message-passing systems and allows for-
mal models of such systems to be constructed. The
correctness of such formal models can be stated and
tested using refinement checks which can be evalu-
ated by the Failures-Divergences-Refinements (FDR)
model-checker to ensure correctness of the system.
Murray [22] describes the use of CSP to model object-
capability security patterns and the use of FDR to
test the security properties of such models: CSP is
used to construct a model for the object-capability
pattern, which expresses the desired security proper-
ties for the system as well as the potential behaviour
of its components. FDR is then used to test whether
these security properties hold, and if not will return
a counter example of the system’s behaviour which
violates the properties. One such counter-example,
taken from the work of Murray [22] in analysing the
Sealer-Unsealer pattern for object-capability systems
is as follows:

TheDriver.Alice.Call.null,
Alice.TheUnsealer.Call.Alice,
TheUnsealer.TheSlot.Call.null,
TheSlot.TheUnsealer.Return.null,
TheUnsealer.Alice.Call.null,
Alice.TheDriver.Return.null,
TheDriver.Bob.Call.null,
Bob.TheBox.Call.null,
TheBox.TheSlot.Call.TheCash,
TheSlot.TheBox.Return.null,
TheBox.Bob.Return.null,
Bob.TheDriver.Return.TheBox,
TheDriver.Alice.Call.null,
Alice.TheUnsealer.Return.null,
TheUnsealer.TheSlot.Call.null,
TheSlot.TheUnsealer.Return.TheCash,
TheUnsealer.Alice.Return.TheCash,
Alice.TheCash.Call.TheDriver

From this trace output alone, and with no prior
background information as to the example, it is al-
most impossible to determine the error which this
counter-example expresses. However when visualised
by replay (Figure 4), one aspect stands out as anoma-
lous.
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Figure 2: Timeline view of replay highlighting the interleaving of calls within objects in the tortureAsync
application of the Annex system

Figure 3: The Object-Capability Graph for the Annex system executing the tortureAsync application as
depicted by the network graph view of replay. Note the complete isolation of the two graphs.
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Figure 4: Message tree and timeline views of replay when analysing the output from the FDR model checker

Without any other knowledge of the system to
inform our analysis, we can see the potential error
clearly: the object Alice is called by TheUnsealer
but then proceeds to return to TheDriver. This se-
quence of events is impossible in languages which im-
pose strict call / return semantics, and indeed is re-
sponsible for the error in the model. By using replay
to visualise this sequence of events we are able to
quickly and easily identify the error in the model, a
task which is not so easily accomplished by simply
looking at the raw trace output alone. This example
demonstrates the utility of replay in translating the
user unfriendly output from this formal analysis tool
into a much more easily understood visual form.

4 Related Work

Various individual aspects of replay are similar to ex-
isting visualisation tools. For example, the use of a
three-dimensional force-directed network graph view
is common for visualising scale-free networks [16, 19,
6, 3]; the causal message tree view is similar to that
employed by Causeway [27]; and the time-line is also a
standard technique for showing parallelism and mes-
sage passing within systems [18, 29, 14] .

However, although the individual visualisations
used by replay are not new, the combination of all
three views plus an event model and plugin system
make replay unique and interesting. We are not aware
of any other tool which combines such disparate visu-
alisations in such a coherent manner to provide a com-
prehensive system for understanding how networks
change through time.

5 Future work

While Annex provided the initial motivation for the
development of replay, the current and future direc-
tions for the project lay in applying the general in-
formation visualisation abilities of replay to a wider
range of systems. The existing list of plug-ins al-
ready developed shows the ability of replay as a vi-
sualisation tool for general object-capability / object-
oriented programming systems, and for general par-
allel, message passing systems.

Although replay has proven effective in visualising
numerous software systems, we believe it would also
be apt in visualising a wide range of existing real-
world interconnected systems such as WWW hyper-
link networks and computer networks including real-

time data flows within such networks. replay could
also be useful when applied within the field of foren-
sic analysis of computer systems to visualise commu-
nication networks of suspects, and we believe replay
would also be well suited to visualising real world so-
cial networks. The network graph view of replay is
quite similar to existing social network graph visual-
isations [26, 16], and so is well suited to visualising
the structure of such networks. We also believe the
timeline view showing interactions through time, as
well as the causal view showing the relationships be-
tween communications would provide valuable insight
in understanding these networks which the previously
cited tools do not provide. We also believe a similar
approach could be used to visualise the transmission
of email or instant messages, to determine the struc-
ture and behaviour of such communications.

While the manual filtering already provided by re-
play allows easy analysis by removing extraneous in-
formation, it does not yet apply to the causal message
tree view, but this could be done in the future. It
would also be useful to investigate the utility of ap-
plying automatic filtering and grouping mechanisms
via the plug-in system, as well as implmenting various
graph and performance analysis algorithms.

Finally, extensions to the plug-in system enabling
other visualisations of the existing data structures,
such as different layout algorithms for the network
graph view, could also be developed.

6 Conclusion

In this paper we have presented replay, a novel tool
for the visualisation of concurrent networked systems.
We have shown the unique aspects of replay including
its programmable event model and its three synchro-
nised and related visualisations. The plug-in system,
which allows replay to be applied to a wide variety of
applications has also been presented and a number of
existing uses of replay have been described, demon-
strating its clear utility. Finally, we have contrasted
replay against existing tools and presented possible
future directions for this work. We believe that the
use of a generic, programmable event model, the com-
bination of the three different but consistent views of
these events and an extensible plug-in system make
replay a unique tool with both a high degree of us-
ability and utility for the visualisation and analysis of
networked, parallel systems.
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Abstract

We say that there is a community structure in a graph
when the nodes of the graph can be partitioned into
groups (communities) such that each group is inter-
nally more densely connected than with the rest of
the graph. However, the challenge is to specify what
is to be dense, and what is relatively more connected
(there seems to exist an analogous situation to what is
a cluster in unsupervized learning). Recently, Olsen
(2012) provided a general definition that seemed to be
significantly more generic that others. We make two
observations regarding such definition. (1) First, we
show that finding a community structure with two
equal size communities is NP -complete (Uniform
2-Communities). The first implication of this is that
finding a large community seems intractable. The sec-
ond implication is that, since this is a hardness result
for k = 2, the Uniform k-Communities problem is
not fixed-parameter tractable when k is the parame-
ter. (2) The second observation is that communities
are not required to be connected in Olsen (2012)’s
definition. However, we indicate that our result holds
as well as the results by Olsen (2012) when we require
communities to be connected, and we show examples
where using connected communities seems more nat-
ural.

Keywords: Community detection, graph partitioning,
complexity, parameterized complexity

1 Introduction

Researchers are now focusing on analyzing the com-
munity structure (Boccaletti et al. 2006, Lancichinetti
et al. 2010) of graphs and finding so called communi-
ties or modules (intuitively these are groups of nodes
that are more densely connected to each other than
with the rest of the graph). Exploring communities
in graphs is important (Lancichinetti et al. 2010) be-
cause 1) communities uncover the graph at a coarse
level, for example, formulating realistic mechanisms
for its genesis and evolution 2) communities provide a
new aspect for understanding dynamic processes oc-
curring in the graph and 3) communities reveal re-
lationships among the nodes that are not apparent
when inspecting the graph as a whole.

Recently, there has been a large research focus
on community structures in graphs (Condon & Karp
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2001, Fortunato 2010, Gargi et al. 2011, Kevin J. Lang
et al. 2009). However, the main problem is how
to define communities in the first place. This is
the essential issue tackled by most papers on the
topic which have appeared in the literature (Fortu-
nato 2010, references therein). Here we consider the
most recent definition of community structure intro-
duced by Olsen (2012). This definition is inspired
by the planted l-partition model, and the hierarchical
random graph model introduced by Condon & Karp
(2001). Olsen (2012) was able to justify why this
becomes a more suitable (and formal) definition of
community and initiated the study of the complex-
ity of finding communities by showing that it is NP -
complete to decide if a group of nodes can be extended
to a community in some community structure.

We introduce this generic notion of community
using the following notation. Let Π be a partition
of the vertices V of a graph G = (V,E) (Π =
{C1, C2, . . . , Ck}, with ∅ 6= Cj ⊂ V for j = 1, . . . , k

and
⋃k

j=1 Cj = V , and Cj ∩ Cj′ = ∅ for j 6= j′ ). If
i ∈ V , then we denote the part vertex i belongs to by
Πi. Let i ∈ V be a vertex and S ⊂ V , then Ni(S) is
the number of vertices in S that are neighbors (ad-
jacent) to the vertex i (a vertex is never considered
adjacent to itself).

Definition 1.1 A community structure for an undi-
rected connected graph G = (V,E) is a partition Π of
V such that

1. |Π| ≥ 2 (we have at least 2 communities),

2. |C| ≥ 2 for all C ∈ Π (every community has at
least 2 members) and

3. ∀i ∈ V, ∀C ∈ Π the following holds

Ni(Πi)

|Πi| − 1
≥ Ni(C)

|C|
. (1)

Each set of the partition is called a community.

Olsen (2012) also showed that finding a commu-
nity structure in a graph that does not contain Sn
(the stars of n vertices), for n ≥ 3 can be done in
polynomial time. However, nothing could be said
about the community structure, like if large commu-
nities could be found. Also, it was left open any claim
whether finding community structures with few com-
munities is tractable or not. Thus, we investigate
here the question of finding a community structure
with two communities. That ensures one community
is large as it must include at least half of the ver-
tices. It turns out that this investigation reveals one
more aspect regarding Definition 1.1. We direct the
reader to the observation that communities are not
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required to be connected. That is, each part C is not
required to be connected. Why we suggest communi-
ties be connected? Because it is hard not to consider
the connected components of a disconnected “commu-
nity” more naturally as communities in themselves.
In fact, the lack of links (vs links to other parts of the
graph) suggest the connected components are not to
be placed together. We also consider uniform commu-
nity structure, that is, all communities have the same
size. The uniform community structure has gained
importance due to its application for clustering and
detection of cliques in social, pathological and biolog-
ical networks (Patkar & Narayanan 2003).

We start with a discussion on the complexity of
finding 2-Communities. Why we look at the prob-
lem of two communities rather than the problem
with k communities? Because by showing the prob-
lem with 2 communities is hard, we are showing the
problem with k communities is also hard. Why we
look at equal size communities? Because this forces
the communities to be large. It seems in practice,
the larger a community, the more interesting. We
prove that when we require the communities to have
equal size the problem is NP -complete. This re-
sult suggests that other lines of attack may be re-
quired. For example, a very successful avenue of at-
tack has recently been the application of parameter-
ized complexity theory. Such approach can lead to
polynomial-time algorithms on the size of the input
(at the cost of exponential-time complexity on the
parameter, which can be small in practical settings).
A first natural parameter is the number k of com-
munities. That is, to consider the question whether,
for a given graph G, there exists a community struc-
ture with exactly k communities. We call this prob-
lem k-Communities. Because we will show that
for k = 2, the problem Uniform k-Communities
(where communities are all of the same size) is NP -
complete, the problem Uniform k-Communities is
not fixed-parameter tractable when k is the parame-
ter. In other words, it is unlikely to have an algorithm
for this problem with f(k) · poly(|G|) time require-
ments, for some computable function f .

2 Uniform Two-Communities is hard

In this section, we formally define our problem and
then show our main hardness result (Theorem 2.1).
Our proof is inspired by a hardness result for a graph
partitioning problem (Bazgan et al. 2010). We prove
this results in several steps.

Uniform k-Communities
Instance : A graph G = (V,E).
Parameter : An integer k > 1.
Question : Does a community structure Π =
{C1, C2, . . . , Ck} exist such that |Ci| = |Cj | for
i, j = 1, . . . , k?

Theorem 2.1 Uniform 2-Communities is NP-
complete.

Uniform 2-Communities belongs to the class
NP. Because, we can verify, in polynomial time,
whether a partition of size two constitutes (with equal
parts) a community structure. For the hardness part
of the theorem, we give a polynomial reduction from
a variant of the Clique problem to the Uniform
2-Communities problem. The version of the Clique
problem that asks, for a given non-complete graph
G of size n (n is even), whether there exists a com-
plete subgraph of size at least n/2. This version of
the Clique problem is also NP -complete (Garey &

Johnson 1979), and it is not hard to see that the ver-
sion we will use (whether a graph has a clique of size
n/2) is also NP -complete. Now we construct our re-
duction and we will show that every Yes-instance of
the Clique problem maps to a Yes-instance of the
Uniform 2-Communities problem and vice versa.

Construction 1 Let G= (V , E) be an instance of
the Clique problem with V = {v1, v2, . . . , vn} and
E = {e1, e2, . . . em} (with |E| = m > 0). Let p be
the number of non-edges in G, that is p = n × (n −
1)/2−m. The value of p is at least one, as the graph
G is a non-complete graph. Suppose we label the non-
edges in G by ne1, . . . , nep. We construct an instance
G′′ = (V ′′, E′′) of the 2-Communities problem as fol-
lows. The vertex set V ′′ consists of four disjoint sets,
F , T , V and V ′. That is, V ′′ = F ∪ T ∪ V ∪ V ′. The
set V is the original set of vertices in the instance
of the Clique problem; the set V ′ = {v′1, . . . , v′n}
consists of as many mirror vertices as in the origi-
nal set V of vertices. The set F = {f1, . . . , f2p+1},
has two vertices f2l, f2l+1 for each non-edge nel with
l = 1, . . . , p and f1 is an additional vertex. The set
T = {t1, . . . , t2p+1} also has two vertices t2l, t2l+1 for
each non-edge in the original instance of the Clique
problem, and also t1 is an additional vertex.

We now describe the set of edges E′′. The set E
of original edges among vertices in V is in E′′; that
is E ⊂ E′′. In the new instance, F and T are two
cliques of size 2p+ 1 (that is, in E′′, all vertices of F
are connected among themselves and also in E′′, all
vertices of T are connected among themselves). For
j = 1, . . . , n, (v′j, vj) is in E′′. The edge set E′′

contains some additional edges as follows:

- Each vertex t ∈ T connects to all vertices of V .

- Each vertex f ∈ F connects to all vertices of V ,
unless

– f is of the form f2l or f2l+1

– and nel = (vi, vj) is the missing edge (with
i < j) in G corresponding to the pair
(f2l,f2l+1).

In this case, the vertex f2l connects to every ver-
tex in V \{vj}, and f2l+1 connects to every vertex
in V \ {vi}.

Finally, the edge (f1, t1) is in E′′.

Note the following about this construction. First,
the degree of all vertices in V ′ is one, as these vertices
are only connected to their mirror vertices. Second,
the degree of every vertex t 6= t1 in T is |V |+|T |−1 =
n+ 2p, and the degree of t1 is |V |+ |T | = n+ 2p+ 1.
This is because t is in clique T (degree |T |−1) and it is
connected to each vertex in V and t1 is additionally
connected to f1. Third, the degree of every vertex
f ∈ F is at least |F | − 1 as it belongs to the clique
F . The vertex f1 has degree |F |+ |V |, but the other
vertices in F have degree |F | + |V | − 2, as each of
these vertices looses one connection to one vertex in
V that is an endpoint of a non-edge.

Figure 1 provides a more specific example of the re-
duction. Clearly, this construction can be performed
in polynomial time. We only need to show that a Yes-
instance of the first problem maps to a Yes-instance
of the second problem and vice versa.

Proposition 2.2 A Yes-instance of the Clique
problem maps to a Yes-instance of the Uniform
2-Communities problem.
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Figure 1: The dotted lines mean that there is no edge between the two end points of the line. A branch of four
edges at f1 and each vertex of T mean those vertices connect to all vertices of V .

Proof: First, assume that the graph G has a clique
C of size n/2. We define a partition of size two of
the graph G′′ by considering the first set as Π1 =
F ∪ C ∪ C ′ where C ′ = {v′i : vi ∈ C} and the second
set as Π2 = T ∪ C̄ ∪ C̄ ′, where C̄ = V − C and C̄ ′ =
{v′i : vi ∈ C̄} . We show these two sets constitute a
community structure of size two.

We must verify Inequality (1) for the three types
of vertices that appear in Π1 = F ∪ C ∪ C ′ and also
for the three types of vertices in Π2 = T ∪ C̄∪ C̄ ′. We
start with Π1, and in particular with vertices in C.
Then, vertices in F (this will require three cases) and
then C ′. When dealing with Π2, we sill start with C̄,
then T and finally C̄ ′.

Let c be a vertex in the clique C. We consider
xc = n− 1−Nc(V ), that is the number of non-edges
in the graph G with one end-point in the vertex c.
Then, by construction, the vertex c is not linked to
xc vertices of the clique F . Since C is a clique of
size n/2 in V , then it involves at least half of the
vertices of V , that is |C| ≥ |C̄|. Also, by construction
we have |F | = |T |. We can then see that Nc(Π1)
equals |F | + |C| − xc, because the vertex c connects
to |C| − 1 vertices of the clique C, its mirror c′ and
|F | − xc vertices in F . Therefore, we have

Nc(Π1)

|Π1| − 1
=
|F |+ |C| − xc

|Π1| − 1

≥ |T |+ |C̄| − xc

|Π1| − 1

>
|T |+ |C̄| − xc

|Π1|
=
|T |+ |C̄| − xc

|Π2|
.

Now, we compute Nc(Π2). The vertex c in the clique
C connects to every vertex in T and to every vertex
v on C̄ unless (c, v) is a non edge. Moreover, all non-
edges with an endpoint in c must have an endpoint
in C̄ as C is a clique. Therefore, we have

Nc(Π2)

|Π2|
=
|T |+ |C̄| − xc

|Π2|
.

This implies that the vertex c satisfies Inequality (1).
Now we need to show that every vertex in F also

satisfies Inequality (1) since the second type of vertex
in Π1 are the vertices in F .

Consider f ∈ F . According to our construction
the size of the clique F is at least three (|F | ≥ 3) and
we will face the following cases.

Case 1: f 6= f1, and f connects to every vertex in
C.

In this case Nf (Π1) equals |F | − 1 + |C|, since
the vertex f connects to every vertex in C. Also,
we have |C̄| ≥ Nf (Π2), therefore

Nf (Π1)

|Π1| − 1
=
|F | − 1 + |C|
|Π1| − 1

≥ |F | − 1 + |C̄|
|Π1| − 1

>
|F | − 1 + |C̄|
|Π1|

=
|F | − 1 + |C̄|
|Π2|

>
|C̄|
|Π2|

≥ Nf (Π2)

|Π2|
.

Case 2: The vertex f connects to every vertex in C
except one.

We recall that the degree of every vertex in F
that is not f1 is |F |+ |V |−2. Since |F | ≥ 3, then
we have

Nf (Π1)

|Π1| − 1
=
|F | − 1 + |C| − 1

|Π1| − 1

≥ |F | − 1 + |C̄| − 1

|Π1| − 1

>
|F | − 2 + |C̄|
|Π1|

=
|F | − 2 + |C̄|
|Π2|

≥ |C̄|
|Π2|

=
Nf (Π2)

|Π2|
.

Case 3: f = f1.

According to the construction, f connects to
every vertex in C and also connects to t1.
Hence, we have

Nf (Π1)

|Π1| − 1
=
|F | − 1 + |C|
|Π1| − 1

≥ |F | − 1 + |C̄|
|Π1| − 1

>
|F | − 1 + |C̄|
|Π1|

=
|F | − 1 + |C̄|
|Π2|

≥ 1 + |C̄|
|Π2|

≥ Nf (Π2)

|Π2|
.
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The last type of vertex in Π1 that we check for In-
equality (1) belongs to C ′, but these vertices have
degree 1 in Π1 and degree zero in Π2, so this is im-
mediate.

To complete the proof that we have a YES-
instance of 2-Communities we need to establish In-
equality (1) for the vertices in Π2. We start by show-
ing that Inequality (1) holds for every vertex c in C̄.

First, Nc(Π2) = |T |+ 1 + Nc(C̄), since c connects
to all vertices in T , all its neighbors in C̄ and also
connects to its mirror c′. Second, assume xc is the
number of non-edges in C̄ with endpoint in c, then we
have Nc(Π2) = |T |+ 1 + |C̄|− 1−xc = |T |+ |C̄|−xc.
Third, if there exists a missing edge (e, v) with v ∈
C̄, corresponding to this missing edge, there exists
exactly a missing edge between c and a vertex f ∈ F .
Therefore, Nc(Π1) equals |F | − xc + Nc(C). Since
|C̄| = |C| and |C̄| ≥ Nc(C), then we have

Nc(Π2)

|Π2| − 1
=
|T |+ |C̄| − xc

|Π2| − 1

≥ |F |+ Nc(C)− xc

|Π1| − 1

>
|F |+ |C| − xc

|Π1|

=
Nc(Π1)

|Π1|
.

We now argue for the second type of vertices in
Π2. We show that every vertex t in T satisfies In-
equality (1). Since |Π1| = |Π2|, |T | ≥ 3 and |C| = |C̄|
we have for every t 6= t1

Nt(Π2)

|Π2| − 1
=
|T |+ |C̄| − 1

|Π2| − 1

=
|T |+ |C| − 1

|Π1| − 1

>
|T |+ |C| − 1

|Π1|

>
|C|
|Π1|

≥ Nt(Π1)

|Π1|
.

Similarly, for t = t1 we have

Nt(Π2)

|Π2| − 1
=
|T |+ |C̄| − 1

|Π2| − 1

=
|T |+ |C| − 1

|Π1| − 1

>
|T |+ |C| − 1

|Π1|

≥ |C|+ 1

|Π1|

≥ Nt(Π1)

|Π1|
.

And to complete all vertices of Π2 we consider the
mirror vertices in C̄ ′, but again these vertices have
degree one to their community Π2 and zero to the
other part Π1, so trivially they satisfy Inequality (1).

Therefore, a Yes-instance of the Clique prob-
lem maps to a Yes-instance of the Uniform

2-Communities problem. �

Now we show that the reverse is true.

Proposition 2.3 A Yes-instance of the Uniform
2-Communities problem maps to a Yes-instance of
the Clique problem.

Suppose I = (G′′,Π1,Π2) is a Yes-instance of the
Uniform 2-Communities problem. We justify the
following observations to show the pre-image of I is
a Yes-instance of the Clique problem.

Observation 2.4 (about mirror vertices): In each
Yes-instance of 2-Communities, the mirror ver-
tices v′j must be in the same community as vj, with
j = 1, . . . , n.

Proof: If a mirror vertex v′ is in community Π1,
and its corresponding vertex v is in community
Π2 6= Π1, then Nv′(Π1) = 0, while Nv′(Π2) > 0.
This contradicts that the vertex v′ must satisfy
Inequality (1). �

Observation 2.5 The set T can not be cut by the
community structure.

Proof: (by contradiction) Suppose T is divided in
(T1, T2) with Ti ⊆ Πi and i = 1, 2. Also assume that
the set V is cut in (V1, V2) with with Vi ⊆ Πi and
i = 1, 2, where V1 and V2 could be empty. Moreover,
assume that F is divided in (F1, F2) with Fi ⊆ Πi
and i = 1, 2. We will face the following cases where
each one leads to a contradiction.

Case 1: T1 = {t1} and F1 = {f1}.
In this case |T2| is |T | − 1 and |F2| = |F | − 1.
Therefore, |T2| is equal to |F2| and both are equal
to |T | − 1 because |T | = |F |. Since Π is a com-
munity structure, then every t ∈ T2 must satisfy
Inequality (1). But,

Nt(Π2)

|Π2| − 1
=

|T2| − 1 + |V2|
|F2|+ 2|V2|+ |T2| − 1

=
(|T | − 1)− 1 + |V2|

(|F | − 1) + 2|V2|+ (|T | − 1)− 1

=
|T |+ |V2| − 2

2|T |+ 2|V2| − 3
<

1

2
,

and
Nt(Π1)

|Π1|
=

1 + |V1|
2|V1|+ 2

=
1

2
.

This statement contradicts the vertex t must sat-
isfy Inequality (1).

Case 2: T1 = {t1} and f1 ∈ F2.

The neighbors of the vertex t1 in Π1 are all ver-
tices in V1 as T1 = {t1}. Also, the neighbors of
the vertex t1 in Π2 are all vertices in T2, with
also all vertices in V2 and f1. Therefore, we have

Nt1(Π1)

|Π1| − 1
=

|T1| − 1 + |V1|
|F1|+ 2|V1|+ |T1| − 1

=
1− 1 + |V1|

|F1|+ 2|V1|+ 1− 1

=
|V1|

|F1|+ 2|V1|

≤ 1

2
.
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Since |T1| = 1, |T2| = |T |−1 and |T |+ 1 > |F | ≥
|F2|, then we have

Nt1(Π2)

|Π2|
=
|T2|+ |V2|+ 1

|T2|+ 2|V2|+ |F2|
>

1

2
.

This statement contradicts the fact that the ver-
tex t1 must satisfy Inequality (1).

Case 3: T1 = {t1} and |F1| ≥ 2.

Case 1 and Case 2 resulted in if T1 = {t1}, then
the vertex f1 must be in F1 and |F1| ≥ 2. Now
we consider the vertex t1 to show that it violates
Inequality (1). First, the neighbors of the vertex
t1 in Π1 are all vertices in V1 and f1. Second, the
size of |F1| ≥ 2, therefore we have

Nt1(Π1)

|Π1| − 1
=

|V1|+ 1

|F1|+ 2|V1|+ |T1| − 1

=
|V1|+ 1

|F1|+ 2|V1|

≤ 1

2
.

On the other hand, |F1| ≥ 2 implies that |F1| +
|F2| ≥ |F2|+2. The latter inequality implies that
|T | = |F | > |F2|+ 1. Then, we have

|T | > |F2|+ 1

⇒ |T | − 1 > |F2|
⇒ |T2| > |F2|
⇒ 2|T2|+ 2|V2| > |T2|+ 2|V2|+ |F2|.

The most right inequality implies that

Nt1(Π2)

|Π2|
=

|V2|+ |T2|
|T2|+ 2|V2|+ |F2|

>
1

2
.

This statement shows that the vertex t1 violates
Inequality (1).

Case 4: {t1, t} ⊆ T1 where t 6= t1.

The above cases imply that the set T1 must con-
tain another vertex t 6= t1. Since the vertex
t ∈ T1 must satisfy Inequality (1), then we have

Nt(Π1)

|Π1| − 1
=
|T1|+ |V1| − 1

|Π1| − 1

≥ Nt(Π2)

|Π2|

=
|T2|+ |V2|
|Π2|

. (2)

Also, each vertex t′ in T2 must satisfy Inequal-
ity (1), therefore,

Nt′(Π2)

|Π2| − 1
=
|T2|+ |V2| − 1

|Π2| − 1

≥ Nt′(Π1)

|Π1|

=
|T1|+ |V1|
|Π1|

. (3)

From Inequality (2) we get

|Π2|(|T1|+ |V1|)
≥ (|Π1| − 1)(|T2|+ |V2|) + |Π2|. (4)

From Inequality (3) we get

|Π1|(|T2|+ |V2| − 1) ≥ (|Π2| − 1)(|T1|+ |V1|),

or equivalently

|Π1|(|T2|+ |V2| − 1)

≥ |Π2|(|T1|+ |V1|)− (|T1|+ |V1|). (5)

Combining Inequality (4) and Inequality (5) we
arrive at

|Π1|+ |Π2| ≤ (|T1|+ |T2|) + (|V1|+ |V2|).

This inequality contradicts to the fact that F is
not empty. �

Observation 2.6 The set F can not be cut by the
community structure.

Proof: Assume that F is cut into (F1, F2) where F1 ⊆
Π1, F2 ⊆ Π2 and F1 6= ∅. Also assume that the
original set V is cut into (V1, V2) with V i ⊆ Πi and i =
1, 2, where V1 and V2 could be empty. Moreover, since
T can not be split, without loss of generality we can
assume that Π1 = V1∪V ′

1 ∪F1, Π2 = V2∪V ′
2 ∪T ∪F2.

We show that F2 is empty or we have a contradiction.
Assume that F2 is not empty and let f ∈ F2. Then

we will face the following cases.

Case 1: f = f1.

The neighbors of vertex f1 in Π2 are all vertices
in V2, plus all vertices in F2−{f1} and the vertex
t1. Therefore, we have

Nf1(Π2)

|Π2| − 1
=

|F2|+ |V2|
|F2|+ 2|V2|+ |T | − 1

≤ 1

2
.

Similarly, the neighbors of the vertex f1 in Π1 are
all vertices in V1, plus all vertices in F1, therefore,

Nf1(Π1)

|Π1|
=
|F1|+ |V1|
|F1|+ 2|V1|

>
1

2
.

This statement shows that the vertex f1 violates
Inequality (1), so it is a contradiction.

Case 2: f 6= f1 and f does not connect to a vertex
of V2.

The neighbors of the vertex f in Π2 are all
vertices in V2 except one, plus all vertices in
F2 − {f}, hence,

Nf (Π2)

|Π2| − 1
=
|F2| − 1 + |V2| − 1

|F2|+ 2|V2|+ |T | − 1
<

1

2
.

Similarly, the neighbors of the vertex f in Π1 are
all vertices in V1, plus all vertices in F1, therefore,

Nf (Π1)

|Π1|
=
|F1|+ |V1|
|F1|+ 2|V1|

>
1

2
.

This contradicts the fact that the vertex f must
satisfy Inequality (1).

Case 3: f 6= f1, f does not connect to a vertex of V1
and |F1| ≥ 2.

The neighbors of the vertex f in Π2 are all ver-
tices in V2, plus all vertices in F2 − {f}, hence,

Nf (Π2)

|Π2| − 1
=

|F2| − 1 + |V2|
|F2|+ 2|V2|+ |T | − 1

<
1

2
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Similarly, the neighbors of the vertex f in Π1 are
all vertices in V1 except one, plus all vertices in
F1. Moreover, the size of |F1| ≥ 2, therefore,

Nf (Π1)

|Π1|
=
|F1|+ |V1| − 1

|F1|+ 2|V1|
≥ 1

2
.

Similar to Case 1 above, we have a contradiction
that the vertex f violates Inequality (1).

Case 4: If f 6= f1, f does not connect to a vertex of
V1 and |F1| < 2.

Since F1 is not empty, we must have |F1| = 1, and
by Case 1, F1 = {f1}, while |F2| = |F |−1. More-
over, the vertex f1 must satisfy Inequality (1).
Therefore, we have

Nf1(Π1)

|Π1| − 1
=

|V1|
1 + 2|V1| − 1

=
1

2
.

Now, to find the value of Nf1(Π2)/|Π2|, we note
that f1 is adjacent to all the vertices in F2, all the
vertices in V2 and t1. Moreover, |F2| = |T | − 1.
Thus,

Nf1(Π2)

|Π2|
=

|V2|+ |F2|+ 1

2|V2|+ |F2|+ |T |

=
|V2|+ |T |

2|V2|+ 2|T | − 1

>
|V2|+ |T |

2|V2|+ 2|T |

=
1

2
.

This is a contradiction since the vertex f1 must
satisfy Inequality (1) for a 2-community. �

Observation 2.7 The set F and and the set T do
not belong to a same community.

Proof: (by contradiction) Assume V is cut in (V1, V2).
Also, assume Π1 = F ∪T ∪V1 ∪V ′

1 and Π2 = V2 ∪V ′
2 .

Consider a vertex t 6= t1 in T . The neighbors of the
vertex t in Π1 are all vertices in V1, plus all vertices
in T − {t}. Similarly, the neighbors of the vertex t
in Π2 are only all vertices in V2. Since (Π1,Π2) is a
community structure, then the vertex t must satisfy
Inequality (1). Therefore, we have

Nt(Π1)

|Π1| − 1
=

|V1|+ |T | − 1

|F |+ 2|V1|+ |T | − 1
≥ Nt(Π2)

|Π2|
=
|V2|
2|V2|

.

By simplifying the the above inequality we arrive at

|V1|+ |T | − 1

|F |+ 2|V1|+ |T | − 1
≥ 1/2.

Now the above inequality implies that

2 · (|V1|+ |T | − 1) ≥ |F |+ 2|V1|+ |T | − 1,

and hence

2 · |V1|+ 2 · |T | − 2 ≥ |F |+ 2|V1|+ |T | − 1.

Since |T | = |F |, the last inequality implies that
−2 ≥ −1, which is a contradiction. Therefore, T and
F are not in a same community. �

Observation 2.8 If (V1, V2) is a cut of V based
on community structure (Π1,Π2), then Π1 =
F
⋃

V1

⋃
V ′
1 , Π2 = T

⋃
V2

⋃
V ′
2 and V1 is a clique.

Proof: (by contradiction) Assume V1 is not a clique.
Therefore, there exist a missing edge between two ver-
tices of V1. Suppose v ∈ V1 is one of the end points of
the mentioned missing edge. Assume xv is the num-
ber of missing edge in V1 with one end in v. Clearly
xv ≥ 1. Also assume that yv is the number of missing
edge in V2 with one end in v.

Since (Π1,Π2) is a community structure, the ver-
tex v must satisfy Inequality (1), therefore we have

Nv(Π1)

|Π1| − 1
=

(|V1| − 1)− xv + |F | − (xv + yv)

|Π1| − 1

≥ Nv(Π2)

|Π2|

=
|V2| − yv + |T |

|Π2|
. (6)

Since |Π1| = |Π2|, therefore |V1| = |V2|. Now we
simplify Inequality (6) as follows.

|Π2|((|V1| − 1)− xv + |F | − (xv + yv))

≥ (|Π1| − 1)(|V2| − yv + |T |).

Now we substitute |Π1| with |Π2|, |F | with |T | and
|V1| with |V2| as they are equal to each other. There-
fore, we get

|Π2|((|V2| − 1)− xv + |T | − (xv + yv))

≥ (|Π2| − 1)(|V2| − yv + |T |).

After canceling equal values from the both sides of
the inequality and simplifying it, then we arrive at

|V2|+ |T | ≥ |Π2|+ 2 · xv|Π2|.

But, the latter inequality represents a contradiction
since xv ≥ 1 and the value of the left side of the
above inequality is in fact less than |Π2|. Therefore
V1 is a clique. �

Observation 2.9 The size of V1 is at least n/2.

Proof: Observation 2.8 shows that V1 is a clique.
Also we know that |Π1| = |Π2|, therefore, |V1| = |V2|.
Hence, the size of |V1| = n/2. �

3 Some observations on the definition of com-
munity structure

As we alluded in the introduction, our aim was to in-
vestigate when can we find a large community within
a community structure. Thus, we focused on the
2-Communities problem since this ensures one com-
munity is large as it must include half of the vertices
of the underling graph. However, we discovered that
requesting connectivity for each community changes
the problem. According to Definition 1.1, commu-
nities are not required to to be connected. That is,
each community C in the community structure is not
required to be connected.

Observation 3.1 There are graphs that do not
have a 2-community structure, if we demand that
each community must be connected; but have a 2-
community structure under Definition 1.1.
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Figure 2: This graph has a 2-community structure,
nodes in the purple oval is one community and nodes
in the green are the other. But the purple community
is disconnected. There is no 2-community structure
if we require the communities to be connected.

Proof: For example, the graph in Figure 2 has a
non-connected community in a 2-community struc-
ture, but it does not have a 2-community structure
where both communities are connected. It does have
a community structure with three communities. �

One can examine Olsen (2012)’s original proof
about whether there exists a community structure
where a given set S of vertices is in one commu-
nity. We discovered that the proof also shows the
problem to be NP -complete when we add the condi-
tion that each community shall be connected. Also,
Olsen’s algorithm (Olsen 2012, Theorem 2) for com-
puting a sample community structure always returns
connected communities in the structure.

We find it more natural that communities
should be connected. And thus, propose that
Definition 1.1 should require that each com-
munity be connected.

Olsen’s algorithm (Olsen 2012, Theorem 2) also
has the unfortunate circumstance that it may pro-
duce very small (and thus a large number) of commu-
nities. The algorithm uses a polynomial number of
local-search improvements among certain partitions
of the input graph G. Each step requires polynomial
time and the climb on the values of the objective
function finishes with a community structure. The
output of his algorithm depends to the initial state
and, for example, if we consider the graph in Fig-
ure 3 the algorithm finishes with many communities,
each of size three; although the graph accepts a 2-
community (with connected communities). That is,
if we apply his algorithm to this graph by consider-
ing the edge {v, w} and the edge {v′, w′} as an ini-
tial stage, then it will produce a community structure
with many small communities. Therefore, this algo-
rithm may not produce a community structure which
has far more communities (O(n)) when the graph ac-
tually accepts a constant number. Thus, it is not a
good algorithm to approximate within a constant ra-
tio the largest community or the smallest number of
communities.
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Figure 3: The left side illustrates the schema of the in-
put graph; many S3s (stars of three vertices, arranged
in a cycle). The right side illustrates a community
structure found by applying Olsen’s algorithm (Olsen
2012) with an initial state consisting of the edge
{v, w} and the edge {v′, w′}.

4 Classes of graphs with 2-communities

The example of Figure 3 enables us to reflect on what
graphs accept 2-communities. In particular, since a
community is a concept close to a cluster or a re-
gion of high density, a community structure with 2-
communities must imply some low density between
the communities. We can establish a relation between
the notion of a cut in a graph and the notion of a 2-
community structure. A cut in a graph G= (V , E)
is a partition (Π1,Π2) of vertices of G, and is called
balanced if |Π1| = |Π2|. The set of edges whose end
points are in different subsets of the partition is called
a cut set. A min-cut is a cut with the smallest cut-set
size (and can be found in polynomial time, although
it might not be balanced). Figure 4 illustrates a min-
cut of size two.

b b

bb

b

Figure 4: A min cut of size two.

We show that a balanced min-cut of a graph G
constitutes a 2-community structure.

Observation 4.1 If (Π1,Π2) is a cut of size two of
a graph G with cut-set S, then every vertex that is not
an endpoint of an edge in S satisfies Inequality (1).

This is immediate. Every vertex v ∈ Πi, that is not
an endpoint of an edge in the cut-set S, has no con-
nections to the other side. Thus, the value of Nv(Πj)
with j 6= i is zero.

Observation 4.2 If (Π1,Π2) is a minimum cut of
graph G with |Π1| = |Π2|, then (Π1,Π2) forms a 2-
community structure.

Proof: Based on Observation 4.1, we only need to
show that every vertex in the cut-set satisfies Inequal-
ity (1). Assume a vertex v ∈ Π1 is an endpoint of an
edge in the cut-set S. The number of neighbors of ver-
tex v in the set Π1 is equal or greater that the number
of neighbors of vertex v in the set Π2. Otherwise, we
can make an smaller cut-set by moving vertex v to
the set Π2 (contradicting the fact that the size of S
is minimum among all cut-sets). Therefore,

Nv(Π1)

|Π1| − 1
≥ Nv(Π2)

|Π2|
,

since the size of Π1 is equal to the size of Π2. That
is the vertex v satisfies Inequality (1). �

Corollary 4.3 Paths and cycles with even number of
vertices have a 2-communities structure.

The above corollary can be extended to the paths and
cycles with odd number of vertices.

Lemma 4.4 The 2-Communities problem for
graphs with maximum degree two and |V | ≥ 3 can be
solved in polynomial time.

Proof: Let G= (V , E) be a graph with maximum de-
gree two. If G is not a connected graph, then consider
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any connected component Π1 as one community and
Π2 = V − Π1 as the second community. The par-
tition (Π1,Π2) forms a 2-community structure since
there is no edge between the two sets. Thus, based
on Observation 4.1, all vertices satisfy Inequality (1).

Assume now that G is a connected graph. Since
the maximum degree is at most two and the graph is
connected, the graph G is a path or a cycle. We can
construct a two communities as follows.

Case 1: The graph G is a path. We pick a vertex v of
degree one and add all vertices in a path of length
d|V |/2e from v into a set Π1. The rest of vertices
is placed in a set Π2. It is not hard to see that
all vertices in Π1, and Π2 satisfy Inequality (1).
Hence (Π1,Π2) is a 2-community structure.

Case 2: G is a cycle. We pick a vertex v of the cycle
and add all vertices in a path of length d|V |/2e
from v into a set Π1. Again, the rest of vertices is
placed in a set Π2. A similar argument to Case 1
shows that (Π1,Π2) is a 2-community structure.

�

5 Conclusion and open problems

We studied the computational complexity of the uni-
form k-Communities problem. We showed that this
problem is NP -complete even for k = 2. The com-
plexity of the problem is not known if we drop the
uniformity (size of all communities are equal) condi-
tion as in the k-Communities problem. This leads
to observations for detecting a community structure
of size two. We also showed that the known algo-
rithm (Olsen 2012) for finding a community structure
may find a solution that is very far from an optimal
solution to the 2-Communities problem. Moreover,
we observed that there may exist graphs where some
communities are not connected. Since requiring all
communities to be connected is consistent with pre-
vious work, we suggest the definition should incorpo-
rate this requirement.

Our work here leads to several interesting open
problems for finding a community structure with a
specific property. We list some of them.

Problem 1: Determine the computational complex-
ity of the uniform k-Communities problem on
different classes of graphs, such as planar graphs
and regular graphs.

Problem 2: Determine the computational complex-
ity of the k-Communities problem.

Problem 3: Determine the computational complex-
ity of finding a community structure with one
community of size at least k.

Another interesting connection of the
k-Communities problem seems to be a rela-
tively similar problem in the literature which is
called the Sparsest Cuts problem. A sparest cut of
a graph G= (V , E) is a partition (V1, V \ V1) having
the minimum density

|cut-set(V1)|/|V1||V \ V1|

among all partitions in the graph, where

cut-set(V1) = {e = {u, v} ∈ E | u ∈ V1 and v /∈ V1}.

The Sparsest Cuts problem is NP -hard; however, it
can be solved in polynomial time on trees and planar

triconnected graphs (Matula & Shahrokhi 1990). It is
not hard to see that in paths and in cycles a sparsest
cut is also a 2-community structure and vice versa.
However, it would be interesting to know on what
graph classes the concept of 2-community structure
and of sparest-cut are identical.
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Abstract 
Workflow patterns have been recognized as the theoretical 

basis to modeling recurring problems in workflow 

systems. A form of workflow patterns, known as the 

resource patterns, characterise the behaviour of resources 

in workflow systems. Despite the fact that many resource 

patterns have been discovered, people still preclude them 

from many workflow system implementations. One of 

reasons could be obscurity in the behaviour of and 

interaction between resources and a workflow 

management system. Thus, we provide a modelling and 

visualization approach for the resource patterns, enabling a 

resource behaviour modeller to intuitively see the specific 

resource patterns involved in the lifecycle of a workitem. 

We believe this research can be extended to benefit not 

only workflow modelling, but also other applications, such 

as model validation, human resource behaviour modelling, 

and workflow model visualization.
 1
 

Keywords:  Workflow Resource Patterns, Modelling, 

Visualization. 

1 Introduction 
Presently, people often use workflow modeling languages 

to describe their business environment (van der Aalst and 

Hofstede 2005). Conventionally, a workflow system can 

be understood from the control, resource and data 

perspective (van der Aalst, Hee et al. 1994). The resource 

perspective represents responsibilities, behaviour and the 

organizational structure of workflow resources within a 

business environment. 

Human resource behaviour is one important 

component in the resource perspective, since it can affect 

the efficiency of an organization (Moore 2002; zur 

Muehlen 2004). Presently, people have already indentified 

patterns to describe the human resource behaviours, and 

have used these patterns to solve human resource 

behaviour related problems (Russell, van der Aalst et al. 

2005).  

Russell et al. have defined a group of resource patterns 

(Russell, van der Aalst et al. 2005), describing various 

human resource task allocation, execution manner and 

interaction mechanisms between human resources.  

A modelling approach that can represent this 

resource-task logic or resource patterns is quite necessary. 

This is because such a modelling approach can provide 
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people with a clear view about the relationship between 

resources and tasks. 

In the modelling domain, there are various modelling 

approaches, such as Petri nets (Pesic and van der Aalst 

2007) and BPEL4PEOPLE (an extension of BPEL) 

(Russell and van der Aalst 2008) that can be used in 

representing such resource logic. These modelling 

approaches usually have visual representations in 2D 

conceptual shapes, such as circles, arrows and rectangles.  

Indeed, these visual representations can impede the 

communication between business analysts and 

stakeholders (Shannon and Weaver 1963; Sadiq, Indulska 

et al. 2007; Moody 2009). This is because stakeholders 

usually don’t hold necessary knowledge about modelling 

grammars (V. Khatri, I. Vessey et al. 2006), and  some 

empirical studies show that such a simple representation 

can reduce the cognitive load required for understanding in 

the human brain, especially for naïve stakeholders who are 

not quite familiar with specialist visual grammars (J. 

Parsons and Cole 2005; Burton-Jones, Wand et al. 2009).  

According to relevant research, communication 

between business analysts and stakeholder has been 

recognized as a key critical success factor in success of 

business process management projects (Nah, Lau et al. 

2001; Trkman 2010). This implies that an ineffective 

communication approach may result in the failure of a 

process modeling and improvement exercise, as a 

workflow management solution may be implemented sub 

optimally, resulting in an inefficient organization.  

Herein, we can say that a well established resource 

behaviour modelling approach with an easily understood 

visual representation can not only enable managers to 

understand the relationships between workflow resources 

and tasks in the workflow system and facilitate workflow 

management system development, but it can also benefit 

communication between business analysts and 

stakeholders, improving implementation outcomes. 

Therefore, in this paper we propose a resource 

behaviour oriented modelling and visualization approach 

for resource patterns (Russell, van der Aalst et al. 2005). 

The modelling approach is based on an automated 

planning technique, known an Hierarchical Task Network 

(HTN) (Erol, Hendler et al. 1994). Such a modelling 

approach supports a decomposition mechanism, whereby 

some simple resource patterns can be automatically 

assembled up to represent some complex resource 

patterns, enabling a “many workitem to many resources” 

relationship to be modelled. We employ the virtual world 

as our visualization approach. Virtual worlds are a 

synthetic replication of the real world (Burdea and Coiffet 

2003). With a mapping mechanism between HTN 

modelling results and a virtual world, the modelling results 

can be represented as an intuitive, easy to understand 
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animation. Such an intuitive visualization enables people 

to recall and cognate about conceptual and concrete 

content in the business process system, facilitating the 

communication process with regards to analysing, 

modelling and validating human resource behaviours, see 

a simple example in Figure 1, below. 

 
Figure 1 visualization representation of a push resource pattern. The 
cubes above the avatars’ heads indicate the current states of workitems, 

and the allocation task is illustrated with the body movement of the avatar, 

indicating a state transition of a workitem. 

This paper is organized as follows: Section 2 discusses 

related work within the control, resource and data 

perspectives. Section 3 discusses our HTN based resource 

pattern modelling and visualization approach. Section 4 

utilizes a health care scenario to demonstrate the 

modelling and visualization ability of our approach with 

multiple resources and workitems. Finally, Section 5 

discusses our further work. 

2 Related Work 

2.1 Control Perspective  
Regarding the control perspective, some researchers 

(Lu, Bernstein et al. 2006; Rasmussen and Brown 2012) 

model tasks in the workflow system as an operator with the 

form op = <p, q, v>. Item v is a list of parameters, while 

items p and q are two assertions indicating the execution of 

operator op must satisfy p (pre-conditions) and can 

establish the post-conditions q, invoking the state 

transition from the state containing p to the state 

containing q in the workflow system. In their approach, 

search algorithms are used to continually select a suitable 

operator whose pre-conditions are compatible with the 

current state. With several iterations, the search algorithms 

will find a serial list of sequenced operators, and the 

execution of operators can lead the workflow system to 

transition from an initial state to a goal state. Modellers 

can use these sequenced tasks to represent the workflow 

model.  

2.2 Data Perspective  
A similar approach has been used within the data 

perspective. Some researchers (Nigam and Caswell 2003; 

Wang and Kumar 2005; Bhattacharya, Gerede et al. 2007) 

utilize business artefacts or documents in the workflow 

system to automatically construct workflow models. 

These document centric approaches recognize that tasks in 

the workflow system are services requiring input data from 

the task executors which generate related output data. 

These inputs and outputs are regarded as clues of task 

execution records, being used to derive the temporal and 

logic ordering of tasks. For example, an online shopping 

activity may contain an order list, a confirmation letter, an 

invoice and a confirmation slip of reception. Based on 

their occurrence, the ordering logics of item selection, 

payment and delivery can be derived. With these relations, 

the occurrence ordering and dependency of these tasks can 

be derived, and linkages between these tasks can be used 

to represent a workflow model. 

2.3 Resource Perspective  
In a resource perspective, most of the research work 

focuses on resource modelling and resource utilization 

issues. Zur Muehlen (zur Muehlen 1999) states that a 

resource model usually contains two parts: assignment 

policies and resource details. He points out that most 

modelling approaches do not consider that the resource 

details should facilitate the assignment policies on the one 

hand, and ignore the importance of non-human resources 

in the workflow system on the other hand. Therefore, he 

proposes a generic meta-model that can not only represent 

any resources in the workflow activity, but also facilitates 

the assignment policy implementation and execution.  

Pesic and van der Aalst (Pesic and van der Aalst 2007) 

focus on task distribution issues in the workflow system. 

They proposed a basic model which contains the work 

distribution and work list model. These two modules can 

interact with each other to simulate the process of 

workitem distribution, and the internal mechanisms of 

these two modules are modelled using Petri nets. 

It can be concluded that these works (Nigam and 

Caswell 2003; Wang and Kumar 2005; Lu, Bernstein et al. 

2006; Bhattacharya, Gerede et al. 2007; Rasmussen and 

Brown 2012) focus on the automated model construction 

mechanism in the workflow system from different 

perspectives. Zur Muehlen (zur Muehlen 1999) deals with 

the static structural description of resource properties, 

while Pesic and van der Aalst (Pesic and van der Aalst 

2007) describe the dynamics aspect of work distribution. 

In this paper, we intend to automate the execution of a 

single workitem, rather than the entire workflow model 

construction approaches which have been proposed in the 

papers (Nigam and Caswell 2003; Wang and Kumar 2005; 

Lu, Bernstein et al. 2006; Bhattacharya, Gerede et al. 

2007; Rasmussen and Brown 2012). Similar with the work 

done by Pesic and van der Aalst (Pesic and van der Aalst 

2007), we focus on the dynamics aspects of a workitem, 

describing resource interactions around an allocated 

workitem. The difference between our approach and 

others (Pesic and van der Aalst 2007) is that we employ an 

HTN to automatically model interaction mechanisms 

involved in a workitem execution. The benefit of utilizing 

an HTN as a modelling approach is that an HTN can 

automatically generate rational interactions between 

human resources, if pre-conditions and post-conditions of 

each interaction are provided. In addition, we address the 

visualization issues that have not been addressed in these 

papers (zur Muehlen 1999; Nigam and Caswell 2003; 

Wang and Kumar 2005; Lu, Bernstein et al. 2006; 

Bhattacharya, Gerede et al. 2007; Pesic and van der Aalst 

2007). These papers only consider modelling aspects, 

rather than communication aspects of the modelling 

approach. Their graphical representations are in a highly 

abstracted 2D diagram, which will likely puzzle naïve 

stakeholders who have less professional knowledge about 

specific modelling languages. In contrast, we provide a 

“hands on” representation manner for model readers, by 
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defining a mapping system between modelling results and 

a virtual world. Such a manner is expected to be intuitive 

and easily understood by stakeholders.   

3 Resource Pattern Modelling and 

Visualization 

We are going to describe an HTN based modelling and 

visualization approach for resource patterns. We briefly 

introduce resource patterns in Section 3.1, and discuses 

how to use the Hierarchical Task Network (HTN) to model 

resource patterns in Section 3.2. We then continue with a 

brief introduction of virtual worlds in Section 3.3, 

followed by the mapping mechanism between the HTN 

modelling results and a virtual world. Lastly, we discuss 

implementation issues with this approach in Section 3.4. 

3.1 Resource Pattern as State-transitions  
Resource patterns (Russell, van der Aalst et al. 2005) can 

be categorized into seven groups, namely: Creation, Push, 

Pull, Detour, Auto-start, Visibility and Multiple Pattern, 

respectively, see brief description in Table 1. 

Pattern Category Brief Description 

Creation Pattern 
Workitem creation mechanism in a 
workflow management system 

Push Pattern 
Workitem allocation mechanism in 

workflow management system 

Pull Pattern 
Workitem acquisition mechanism in 
workflow management system 

Detour Pattern 
How a workitem is related to another 

resource 

Auto-start Pattern 
How one workitem can trigger the execution 
of other workitems 

Visibility Pattern 
Visibility of committed workitems with 

respect to other resources  

Multiple resource 
Patterns 

Coordination mechanism between multiple 
resource execution 

Table 1 The brief description of pattern category. 

These patterns can characterize the behaviour of 

workflow management systems and workflow resources in 

the lifecycle of a workitem, in Russell et al. these patterns 

belong to two relationship groups, viz., “single workitem 

to single resource” and “many workitems to many 

resources”. Some evidence (Pesic and van der Aalst 2007) 

utilizing Petri-net to model resource patterns shows that 

resource patterns are state-transitions. Here, we also 

consider resource patterns as state-transitions, but we will 

use different mechanism to model them.  

The “single workitem to single resource” relationship 

involves the Creation Pattern, Push Pattern, Pull Pattern, 

Detour Pattern, and Auto-start Pattern. The selected 

visualizations of these patterns are available in Figure 2, 

and readers who are interest in resource pattern 

visualizations are suggested to read their original paper 

(Russell, Hofstede et al. 2004). Within these five resource 

pattern categories, the lifecycle of a workitem begins at the 

created state and ends at a failed or completed state. For 

example, the push patterns can be represented via three 

state transitions, which are state transitions from created 

state to offered state to single resource, created state to 

allocated state to a single resource, and created state to 

offered to multiple resources (see the three red dash lines 

with arrows in Figure 2). It can be said that the essence of 

resource patterns are actual state transitions in the lifecycle 

of a workitem. The life cycle of a workitem can be viewed 

as a sequence of resource patterns, transiting a workitem 

from the created state to completed or failed state (see the 

dash rectangle in Figure 2, where a creation pattern, push 

pattern and pull pattern occur, consequently). Therefore, 

patterns in the “single workitem to single resource” 

relationship can be modelled as state-transitions. 

 
Figure 2 is a visual representation of the resource pattern. The rectangles are used for representing the states, and arrows are used for the transitions. 

Some of the resource patterns have been omitted for clarity. 

Similar to patterns in the “single workitem to single 

resource”, we consider resource patterns in the “many 

workitems to many resources” relationship can be 

modelled as state-transitions. Russel et al. (Russell, 

Hofstede et al. 2004) discuses two multiple resource 

patterns,  Additional Resources Pattern (Pattern R-AR) 

and Simultaneous Execution Pattern (Pattern R-SE). The 

Pattern R-AR describes the behaviour of a resource 

requiring assistance from additional resources when this 

resource is dealing with a workitem, while Pattern R-SE 

describes the behaviour of several resources processing the 

same workitem at the same. 

We utilize these two patterns placing them into 

Scenario 1, and then use this scenario to demonstrate the 

applicability of using a state transition mechanism to 

model the Multiple Resource Pattern. 

Scenario 1 There is a workitem Wo. It is created and allocated 

to a resource Ra by a workflow engine. Resource Ra started the 

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

33



workitem, and then divided Wo as three sub-workitems Wa, Wb 
and Wc to himself and two subordinates Ra, Rb and Rc, 

respectively. The execution of sub-workitem Wa is dependent 

on the results of Wb and Wc. Ra allocates the Wb to Rb without 
negotiation, Rb has to executed Wb immediately. Ra allocates 

the Wc to Rc with negotiation, Rc can select an appropriate 

time to execute it. As these two sub-workitems have been 
completed and reported back to Ra, Ra can start to execute the 

Wa. When Wa is finished, the original workitem Wo can be 

accomplished and checked back to workflow engine.  

Scenario 1 describes four nested workitems. Their state 

transitions are different from flat ones we discussed 

previously, that is, these state transitions are in a 

hierarchical structure.  

At a very high level, the lifecycle of this workitem Wo 

can be understood as two states (initial and final) with an 

execution phase. The execution phase also involves 

several states. That is, workitem Wo is created and 

allocated to the resource Ra, and then it is the resource Ra 

and the other two additional resources Rb and Rc that 

jointly complete it. The state transition transiting the 

workitem Wc from created state to the completed state can 

be further investigated. According to the description, 

workitem Wo can be divided as three sub-workitems Wa, 

Wb and Wc. The life cycles of these sub-workitems consist 

of different state-transitions or resource patterns. For 

example, the life cycle of workitem Wc involves two 

state-transitions or two resource patterns, that is, a creation 

pattern transiting workitem Wc from created state to started 

state, and an auto-state pattern transiting workitem Wc 

from started state to completed state. This will be true 

when considering lifecycles of Wa and Wb. The execution 

of Wa and Wb can be started simultaneously. In particular, 

the execution of Wa and Wb can be the Pattern R-SE, if we 

recognize Ra and Rb are the same resource. 

We illustrate these state-transitions in a top to bottom 

view, see Figure 4. It can say that a decomposition 

mechanism enables us to analyse the state-transitions of 

nested workitems. In other words, patterns in the Multiple 

Resource Pattern category can be represented as 

state-transitions in a hierarchical structure. 

 
Figure 3  a top-bottom view of the state transitions in the workitem Wo. 

3.2 HTN Modelling Approach  
Conventionally, it is believed that Erol et al. (Erol, Hendler 

et al. 1994) first provided a clear theoretical framework for 

an HTN. There are two types of tasks in their HTN 

framework, namely complex and primitive tasks. The 

execution of a primitive task or a complex task can lead the 

system transit from a state to another, but the execution 

mechanism of these two types of tasks are different. In 

practice, the executions ordering of primitive and complex 

task are constrained by a task network, and a 

decomposition mechanism may involve substantial 

computational effort. We believe these two types of tasks, 

task network and decomposition mechanism can be used 

to represent resource patterns. Table 2 indicates a mapping 

mechanism between resource patterns and an HTN. 

Resource Pattern HTN framework 

“single resource to single 

workitem” resource  patterns 
Primitive task 

“multiple resources to multiple 

workitems” resource  patterns 
Complex task 

Workitem life cycle Task network 

Table 2 mapping mechanism between Resource Pattern and HTN 

framework. 

In the following we select some necessary concepts 

for introduction. Readers who are interest in the full syntax 

and semantics of HTNs are suggested to read the original 

paper (Erol, Hendler et al. 1994). 

A primitive task is a task that can be directly solved by 

the task execution. It can be modelled with the form op = 

<p, q, v>. The satisfaction of pre-conditions p enables 

operator execution, and the operator execution enables the 

establishment of post-conditions q. This means the 

operator execution enables a state transition from the state 

containing pre-conditions p to the state containing 

post-conditions q. 

A complex task can be recognized as the aggregation 

of primitive tasks. Such a complex task cannot be solved 

by task execution directly, but by requiring decomposition 

before execution. That is, using a set of primitive tasks to 

represent this complex task, the execution of the complex 

task is equivalent to execution of all primitive tasks. The 

state transition triggered by the execution of a complex 

task is equivalent to the aggregation of state transitions of 

selected primitive tasks. For example, a complex task ct is 

a complex task, being composited by three primitive tasks 

pt1, pt2 and pt3. The execution of the ct is the execution of 

pt1, pt2 and pt3. The pre-conditions of the firstly executed 

primitive task or primitive tasks should not violate the 
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state     before the execution of ct, and the state    after the 

execution of ct is dependent upon the post-conditions of 

finally executed primitives. 

In short, the complex task needs to be resolved by a 

task network. The task network is an array where some 

states and task sets are alternatively placed. It can be 

modelled in a form                                 , 
where         is the name of this task network,    and 

    are the name and label of a task,   is a formula defining 

the partial ordering of tasks and states. Usually, a task 

network has two functionalities, decomposing a complex 

task and defining logical ordering of tasks.     

A complex task can be modelled in a form      
            , where    is the name of the complex 

task,    is the corresponding task network, and    and 

   are high-level pre- and post-conditions of the 

sequenced primitive tasks in the task network   , 

respectively. That is, a method                   

can be selected for the complex task   , if and only if the 

current and target state contains the    and   , 

respectively. 

3.3 Modelling Resource Patterns with HTN  
We will enumerate a number of HTN modelled resource 

patterns to prove the possibility of using HTN as the 

modelling approach for resource patterns in this section.  

Patterns in the Creation Pattern, Push Pattern and Pull 

Pattern are relatively simple. The common feature of these 

patterns is that they can transit one state to another without 

further decomposition. For example, pull patterns 

characterize the transition from the allocated or offered 

state to started state, characterising the proactive 

behaviour of resources selecting a suitable workitem to 

execute. Thus, we provide basic HTN modelling results 

for them, see Table 3. 

Task Name Task Network Details 

basic_task 

                                 

                  

REMARKS 

The basic_task is a primitive task that can be used to represent the 
resource patterns with two states and one transition. The primitive 
task t in it can be implemented as requirements mentioned in the 
Creation Pattern, Push Pattern, and Pull Pattern. 

Table 3 the basic task and task network that can be used to model patterns 
in Creation Pattern, Push Pattern, Pull Pattern. 

Most patterns, for example, the Detour Pattern and 

Auto-start Pattern, transit a workitem from one state to 

another. They can be modelled by the basic task network 

in Table 3. However, there are some patterns, in these two 

categories, requiring a decomposition mechanism. We 

have to model these patterns individually. These patterns 

are the Stateful Reallocation Pattern (Pattern R-PR) and 

Stateless Reallocation Pattern P-UR (Pattern P-UR) in the 

Detour Pattern group, Piled Execution (Pattern P-PR) in 

the Auto-start Pattern group, as well as the Simultaneous 

Execution Pattern (Pattern R-SE) and the Additional 

Resources Pattern (Pattern R-AR) in the Multiple 

Resources Pattern. These patterns should be modelled by 

complex tasks and decomposition mechanisms. 

Pattern R-PR (Stateful Reallocation) and Pattern 

P-UR (Stateless Reallocation) are different in 

functionality. Pattern R-PR requires the state information 

of a workitem being kept when this workitem is 

reallocated to another resource, while Pattern P-UR 

doesn’t have such a rule. However, their modelling result 

can be illustrated in a similar manner. Tasking Pattern 

R-PR (Stateful Reallocation) as an example, at the top 

level, a task reall_task is needed to transit workitem from 

the started state back to the allocated state. A task network 

for this task contains a primitive task exe_task and a 

complex task next_task. The primitive task exe_task 

enables the execution situation to be recorded, and the 

complex task next_task can be interpreted by a task 

network as next_step_a or next_step_b, see details in 

Table 4. In particular, modelling results in Table 4 can be 

used as a reference to model the Pattern P-UR (Stateless 

Reallocation) by implementing exe_task as a function that 

doesn’t record the execution information. 

Task Name Task Network Details 

reall_task 
                                                       

                              

next_task 

                                                  

                             

next_task 
                                  

                  

REMARKS 

reall_task is a task network that can reallocate workitems from one one 
resource to another, involving one primitive task exe_task and a complex 
next_task. The exe_task is an executable function that can records the 
execution state information, while next_step can be interoperated by two 
different task networks, next_step_a and next_step_b. the next_step_a 
enables a resource to further execute the workitem, next_step_b enables a 
resource to reallocate the workitem to another resource.  

Table 4 the modelling result of Pattern R-PR (Stateful Reallocation). 

Pattern P-PE (Piled Execution) in the Auto-start Pattern is 

a pattern that enables a resource to execute workitems in 

batch. HTN modelling results of Pattern P-PR is available 

in Table 5. In this modelling result, there are two tasks. 

The task pile_all enables a resource to recognize the 

incoming tasks, while the task pile_cpl enables the 

resource to start processing and complete these allocated 

workitem. 

Task Name Task Network Details 

pile_task 
                                                  

                           

pile_all 

                                                    

                                       

pile_cpl 
                                                 

                                       

REMARKS 

plie_task being interoperated by pile_network is the task that enables a 
resource to execute workitems in a batch. Such a task can be divided 
into two parts, namely pile_all and pile_cpl. The task pile_all enables all 
involved workitems transit from some state    to the started state    in 
a partial order, while pile_cpl enables all involved workitems in the 
started state    to the state    where all workitems are completed. 
Table 5 the modelling result of Pattern R-PE (Piled Execution). 

Pattern R-SE (Simultaneous Execution) and Pattern R-AR 

(Additional Resources) are two patterns in the Multiple 
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Resource Pattern, characterizing the “many workitems to 

many resources” relationship. 

Pattern R-SE (Simultaneous Execution) requires that 

one single resource can manipulate multiple workitems in 

a period. We believe the Pattern P-PE (Piled Execution) is 

a particular type of Pattern R-SE. This is because those 

two patterns require that one single resource can deal with 

multiple workitems at the same time. The difference is that 

Pattern P-RP constrains a resource to complete workitems 

in batch, while Pattern R-SE doesn’t have such a strong 

constraint. Thus, the modelling results of Pattern R-SE 

(Simultaneous Execution), as a simple version of Pattern 

R-PE, is available in Table 6 . 

Task Name Task Network Details 

sim_task 
                                               

                                 

REMARKS 

sim_task is a complex task involving many workitems. The   doesn’t 
put execution ordering in a strict manner. It puts every workitem    in a 
context that every task should be executed between states    and   . 
Table 6 the modelling result of Pattern R-SE (Simultaneous Execution). 

Pattern-AR (Additional Resource) characterizes that one 

resource can request additional resources to assist in the 

process of a workitem. One possible solution is to divide 

the workitem into several sub workitems, and allocate 

these sub workitems to additional resources. Then, these 

additional resources can start to process sub workitems, 

individually. As all the sub workitems have been 

completed, then the original workitem is completed (van 

der Aalst and Kumar 2001). We model this pattern in 

Table 7 .  

Task Name Task Network Details 

add_res_task 

                                               

                               

                  

div_and_dis_task 

                                              

                                 

REMARKS 

add_res_task is the task being interpreted by add_network containing 
complex task div_and_dis_task and primitive task cpl. The complex task 
div_and_dis_task can be used to decompose a workitem into a set of 
sub-workitems (task)   , and these sub-workitems should be completed 
before final completion, see the constrains             . The 
decomposition details about    are not shown in this modelling results, 
but can take the basic_task_network in Table 3 as reference. 

Table 7 the modelling result of Pattern R-AR (Additional Resource). 

4 Resource Pattern Visualization in the Virtual 

World 
A virtual world is a network-based, computer synthesized 

dynamic environment, where participants can observe and 

interact with computer-generated objects (Burdea and 

Coiffet 2003). The modelling results of the resource 

patterns previously detailed, basically involves two 

entities, state and transition. A state means a unique 

configuration of the system, indicating the static aspects of 

a workitem. A transition means a process where a system 

moves from one state to another, describing the dynamics 

aspects of the workitem. We believe that appropriate 

geometry and an animated avatar, as features of a virtual 

world, can be used to satisfied static and dynamic 

workitem aspect visualization. 

Geometry in a virtual world can be shaped and 

decorated with different textures to represent different 

material. These representations are an integration of visual 

singles (structure and spectrum). According to cognitive 

theory, the working memory in human can distinguish the 

features of visual singles (Lohse 1997). In the context of 

our research, we can use these visual features to represent 

the different states of a workitem. For example, the green 

colour can suggest a workitem is in started state, while a 

red arrow can suggest a workitem is being handed over 

from one human resource to another.  

Avatars, in general, are a representation of the self in a 

given environment, enabling its host to sense and react on 

events happening in the environment, and to change the 

given environment (Castronova 2003). In the context of a 

3D virtual world, an avatar can be a humanoid 3D 

representation, driven by a virtual world participant (a  

human or an intelligent software agent). It can be used to 

replicate the behaviour of human resource in the workflow 

system. For example, the hand shaking of two avatars can 

be used to represent reallocation of a workitem, the 

keyboard tapping of an avatar can be used to represent a 

human resource is dealing with a workitem. Such an 

animated behaviour can intuitively suggest the transitions 

happening in the system (Tverskyand and Morrison 2002). 

With the discussion above, if a resource pattern can be 

modelled and mapped into a virtual world appropriately, 

participants such as business analysts and stakeholders can 

observe resource patterns in an intuitive manner. We 

already demonstrated the modelling applicability of an 

HTN for resource patterns in Section 3, a mapping 

mechanism between modelled resource patterns and 

virtual world features, geometry and avatar, will be 

necessary for us to establish this visualization system. 

Therefore, we demonstrate the mapping between resource 

patterns and virtual world features in Table 8  

 
Resource Pattern 

Element 
Visual Representation Description 

State 

       

A cube with different textures can be used to represent the state of the workitem. 

The texture with words and colourful background can be used to indicate the 
name and statues of the workitem, respectively. By attaching the texture on the 

cube, it enables people to observe the state information of the workitem from 

different angles, and different colours can make it easy to distinguish in 
different states. 
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Transition 

  

The animation and postures of avatars are used to represent the dynamic aspect 

of the workitem. The avatar taking a blood pack may indicate the blood 

transition is in progress.  

Table 8 the visual representation of states and transitions in the resource patterns. 

5 Detailed Medical Example 

The previous section has established a mapping 

mechanism between resource patterns and a virtual world. 

Here, we use a medical example to illustrate our modelling 

and visualization approach in detail. Section 5.1 

introduces the background of workflow applications in the 

medical domain, indicating a potential visualization needs 

in this field. Section 5.2 uses a fabricated scenario to 

demonstrate applicability of virtual world visualization. 

5.1 Background 

Treatment processes in the medical domain have been 

investigate by many workflow experts, and these experts 

(Mans, M.H.Schonenberg et al. 2008) recognized 

treatment processes as “careflows”, which are a type of 

ad-hoc workflows. Workitems involved in such workflows 

require resources to be highly participative, interactive and 

collaborative, therefore it is evident that, numerous 

resource patterns occur in the lifecycle of one workitem in 

such scenarios. A resource modelling component would be 

useful to clarify the participation, interaction and 

collaboration mechanisms in these careflows (Richard and 

Manfred 2007). Animation has a strong ability to explain 

the dynamics aspect of a system (Tverskyand and 

Morrison 2002), therefore,  a visualization component will 

be necessary to  reduce the cognitive overhead in 

understanding underlying participation, interaction and 

collaboration mechanisms. 

5.2 Resource Pattern Visualization Example 

We adapt the Scenario 1 in Section 3.1 into a medical 

context for demonstrating modelling and visualization 

results. In an adapted scenario, four resources are involved 

in accomplishing a complex workitem, containing three 

primitive tasks. The example involves a creation pattern, 

pull pattern, push pattern, detour and an auto-start pattern, 

with the example itself as a multiple resource pattern 

representing the relationship “many workitems to many 

resources”, see the details below: 

Scenario 2. The trauma team lead R1 is executing a 

workitem WX, the “Medical Case Review”. At that time, the 

workflow engine creates a workitem called “Surgery 

Preparation” W0 for the resource R1. Thus, resource R1 

reallocates workitem WX to another RX with current 

execution information of the workitem WX. After the 

reallocation, resource R1 accepts this workitem W0 and 

starts to divide W0 as three sub-workitems, “Retrieve Patient 

Information” workitem W1, “Aesthetic Preparation” 

workitem W2 and “Instrument Preparation” workitem W3, 

which are going to be allocated to herself, and surgery 

assistants R2 and R3, respectively. R2 should passively wait 

for the allocation, while R3 can actively commit to the 

workitem. After resources R2 and R3 confirm the 

sub-workitems, resources R1, R2 and R3 can execute these 

three workitems. The execution of sub-workitem W1 should 

be started immediately after the accomplishment of W2 and 

W3. When W1 is finished, the original workitem W0 can be 

concluded and checked back to the workflow engine.” 

The scenario above implicitly contains several resource 

patterns (Russell, Hofstede et al. 2004). For example, the 

detour pattern (Pattern R-PR,) between Resource R1 and 

RX, as they are dealing with the workitem WX. The pull 

pattern (Pattern R-SA, see) between Resource R1 and R3, 

as resource R3 is actively requiring the commitment of 

sub-workitem W3. The lifecycle of workitem W0 can be 

modelled by an HTN. We show the final modelling results 

in Figure 4, where the relationships between the tasks are 

represented, but we omit the task network construction and 

execution processes. With the mapping mechanism we 

defined in Section 4, the visualization results can be shown 

in Figure 4.  

 
Figure 4 The HTN solution of surgery preparation, representing the lifecycle of the workitem “surgery”. The circle is the representation of state, while 
the curved arrows is the representation of transition. 
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Picture 
ID 

HTN modelling 
result 

Picture ID 
HTN modelling 

result 
Picture ID 

HTN modelling 
result 

1 S1 2 S2 3 T1 

4 S4 5 S5 6 T5 

7 T6 8 S6 9 T10 ,T11 

10 S8 11 S8 , T12 12 S9 

Pattern Category Pattern Name Picture ID Remark 

Creation Pattern Pattern R-DA 4,5 
A resource is creating three sub-workitems, and going to allocate 
these sub-workitems. 

Push Pattern Pattern R-DBOS 6 A resource is trying to allocate a workitem to her subordinates. 

Pull Pattern Pattern R-SA 7 A resource is actively asking for workitem commitment. 

Auto-Start Pattern Pattern R-CC 10,11 
As two resources completed their workitems in picture 10, a 

resource can start a workitem in picture 11. 

Detour Pattern Pattern R-PR 3 
One resource is reallocating her workitem to another resource, the 
other resource can continue her work 

Multiple Resource Pattern Pattern R-AR 5-12 
A resource needs two extra resources to assist her to accomplish 
surgery preparation.   

Figure 5 The resource behaviour visualization in 9 pictures. These 9 pictures describe the responsibilities of different resources in the workitem surgery 

preparation. Such a workitem is divided into three sub-workitems that are allocated to three different resources. The combination of these 9 pictures 
reflects the relationship of many workitems to many resources, that is, the multiple resource pattern. 
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In Figure 5, we visualize six categories of resource 

patterns, except the Visibility Pattern. According to the 

statement in paper (Russell, van der Aalst et al. 2005), the 

Visibility Pattern mainly deals with relationship among 

the availability and commitment of workitems and 

attributes of resources. This is a problem of authorization 

rather than state transition. Thus, we don’t visualize 

patterns belonging to this category. Despite the fact the 

visualization case does not involve visualized visibility 

patterns, we can still visualize them by modifying the 

property of cube hovering above heads of avatars. The 

cube is the indication of the state of a workitem being 

processed by an avatar. The solid, semi-transparent and 

fully-transparent appearance of the cube can be mapped to 

indicate that the workitem is in a different state. 

6 Conclusion 
Reviewing the state of the art of knowledge in the field of 

workflow, only a few researchers have started to explore 

the resource pattern modelling issue in the workflow 

domain. Few researchers have thought fully about how to 

utilize a virtual world to visualize the behaviour of human 

resources at an operational level. 

With this in mind, we propose that an HTN can be 

used to model the resource patterns occurring in the 

lifecycle of a workitem. The major advantage of such a 

mathematical tool is that it can represent all resource 

patterns in detail, as we demonstrated. We hope the 

modelling approach we discussed in this paper can inspire 

more research works in the multiple resource pattern field. 

In addition, we proposed a visual mapping mechanism 

between the resource patterns and a virtual world 

visualization. The conceptual resource pattern can be 

turned into an intuitive animation. This will be useful for 

naïve stakeholders who have less knowledge in conceptual 

modelling terminology, enabling them to more easily 

engage in resource model validation activities with 

business analysts.  

Presently, our approach can translate resource pattern 

into an intuitive animation, however, subjective evaluation 

tests need to be performed to indicate its capacity as a 

visualization approach. To our best knowledge, less 

attention has been made to resource model visualisation as 

a research question. While some are investigating the 

perception and comprehension of 2D process models 

(Recker, Rosemann et al. 2009), no work has been 

performed in the validity of 3D process model 

representations. 
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Abstract

Constraint programming (CP) and answer set pro-
gramming (ASP) are two declarative paradigms used
to solve combinatorial problems. Many modern
solvers for both these paradigms rely on partial or
complete Boolean representations of the problem to
exploit the extremely efficient techniques that have
been developed for solving propositional satisfiability
problems. This convergence on a common represen-
tation makes it possible to incorporate useful features
of CP into ASP and vice versa. There has been signif-
icant effort in recent years to integrate CP into ASP,
primarily to overcome the grounding bottleneck in
traditional ASP solvers that exists due to their inabil-
ity to handle integer variables efficiently. On the other
hand, ASP solvers are more efficient than CP sys-
tems on problems that involve inductive definitions,
such as reachability in a graph. Besides efficiency,
ASP syntax is more natural and closer to the math-
ematical definitions of such concepts. In this paper,
we describe an approach that adds support for an-
swer set rules to a CP system, namely the lazy clause
generation solver chuffed. This integration also nat-
urally avoids the grounding bottleneck of ASP since
constraint solvers natively support finite domain vari-
ables. We demonstrate the usefulness of our approach
by comparing our new system against two competi-
tors: the state-of-the-art ASP solver clasp, and cling-
con, a system that extends clasp with CP capabilities.

Keywords: Answer set programming, constraint pro-
gramming, stable model semantics, inductive defini-
tions.

1 Introduction

Constraint programming (Rossi et al. 2006) is a
declarative programming paradigm that is used to
solve a wide range of computationally difficult prob-
lems. It allows users to encode a problem as a concise
mathematical model, and pass it to a constraint solver
that computes solution(s) that satisfy the model. The
goal of CP is that users should find writing models as
natural and as easy as possible, which requires hid-
ing away all the complexity involved in finding those
solutions inside the constraint solvers, where only the
solvers’ implementers have to see it.

Copyright c©2013, Australian Computer Society, Inc. This
paper appeared at the 36th Australasian Computer Science
Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 135, Bruce H. Thomas, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

Motivated by the efficient engineering techniques
developed in the domain of propositional satisfiabil-
ity (SAT) solving (Mitchell 2005), a recent highly
competitive constraint solving approach, lazy clause
generation (Ohrimenko et al. 2009, Feydy & Stuckey
2009) builds an on-the-fly Boolean representation of
the problem during execution. This keeps the size
of the representation small. The propagators record
their results of failed searches as Boolean clauses (no-
goods) so that the solver can later use SAT unit prop-
agation on those clauses to find other instances of that
failure elsewhere in the search tree much more quickly.

Constraint modelling languages allow users to
succinctly define many natural notions, particularly
when using global constraints, which can capture
the entirety of some substructure of the problem.
Global constraints also allow solvers to use effi-
cient specialized reasoning about these substructures.
But constraint modelling cannot naturally capture
some important constructs, such as transitive clo-
sure. (Propositional) definite logic programs do allow
the modelling of transitive closure efficiently, because
they rely on a least model semantics, which ensures
that positive recursion in the rules among a set of
atoms, i.e. circular support between these atoms to
establish each other’s truth, is not sufficient to cause
an atom to be true. When we extend logic programs
to normal logic programs, which allow negative liter-
als in the body, we can extend the least model ap-
proach in at least two ways which still maintain this
property: the stable model (Gelfond & Lifschitz 1988)
and the well-founded model (Van Gelder et al. 1988).

Answer set programming (ASP) (Baral 2003),
based on stable model semantics, is another form of
declarative programming. Answer set solvers take as
input a normal logic program, usually modelling a
combinatorial problem, and calculate its stable mod-
els, each of which corresponds to one of the prob-
lem’s solutions. The incorporation of some of the
engineering techniques originally developed for SAT
solvers (such as nogood learning) in answer set solvers
has resulted in excellent performance (Gebser et al.
2007). The implementation of these techniques re-
lies on translating the normal logic program back to
propositional formulas, an approach which was first
proposed by Lin & Zhao (2004). Representing the
program as its Clark’s completion introduces practi-
cally no overhead, but detecting unfounded sets (Van
Gelder et al. 1988), sets of atoms that are supported
only by each other but have no external support, is
far from straightforward. The main reason for this is
that a program can potentially have a very large num-
ber of unfounded sets (Lifschitz & Razborov 2006).
To tackle this, Gebser et al. (2007) use a principle
similar to lazy clause generation: they calculate and
record unfounded sets lazily during the search, as the
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need arises.
The effectiveness of the above approach motivates

us to incorporate stable model semantics into our
modelling language MiniZinc (Nethercote et al. 2007)
in order to broaden the scope of problems that we
can model; in particular, we are thinking about prob-
lems such as reachability, whose mathematical de-
scriptions require induction. Unless specialized graph
constraints are used (Dooms et al. 2005, Viegas &
Azevedo 2007), these problems cannot be efficiently
handled by existing constraint solvers. In this pa-
per, we propose the use of inductive definitions in
MiniZinc and empirically demonstrate its usefulness.
We describe two implementations of unfounded set
calculation as propagators for the lazy clause genera-
tor chuffed. These implementations are based on the
source pointer technique (Simons et al. 2002) com-
bined with either of the unfounded set algorithms
described by Anger et al. (2006) and Gebser et al.
(2012).

The rest of the paper is organized as follows. Sec-
tion 2 lays out the theoretical background required
for this paper. Section 3 describes, with the help of
a running example, how recursive definitions under
propositional semantics lack the ability to model cer-
tain problems correctly and efficiently, and presents
an extension of the MiniZinc modelling language as a
solution. Section 4 explains how this extension may
be implemented. Section 5 describes one of our two
implementations in detail. We evaluate both imple-
mentations experimentally in Section 6. We then dis-
cuss related work by other authors in Section 7.

2 Background

Constraints and propagators

We consider constraints over a set of variables V. We
divide V into two disjoint sets, namely integer vari-
ables IV and Boolean atoms AV . A literal is an atom
or its negation. A domain D is a mapping: from IV to
fixed finite sets of integers, and from AV to sets over
{>,⊥}. A domain D1 is stronger than a domain D2,
written D1 v D2, if D1(x) ⊆ D2(x) for all x ∈ V. A
valuation θ is a mapping of variables to a single value
in their domains, written {x1 7→ d1, . . . , xn 7→ dn}.
Let vars be a function that returns the set of vari-
ables that appear in any expression. We say that a
valuation θ is an element of the domain D, written
θ ∈ D, if θ(x) ∈ D(x) for all x ∈ vars(θ). A val-
uation θ is partial if vars(θ) ⊂ V and complete if
vars(θ) = V.

A constraint c is a restriction on the values that
a set of variables, represented by vars(c), can be si-
multaneously assigned. In our setting, a constraint c
is associated with one or more propagators that oper-
ate on vars(c). Propagators for a constraint work by
narrowing down the values that the variables of the
constraint can take. More formally, a propagator f is
a monotonically decreasing function from domains to
domains, that is, f(D) v D, and f(D1) v f(D2) if
D1 v D2. A propagator f for a constraint c is correct
iff for all possible domains D, and for all solutions θ
to c, if θ ∈ D, then θ ∈ f(D).

A CP problem is a pair (C,D) consisting of a set
of constraints C and a domain D. A constraint pro-
gramming solver solves (C,D) by interleaving prop-
agation with choice. It applies all propagators F for
constraints C to the current domain D, and it does so
repeatedly until no propagator makes a change (i.e.
until a fixpoint is reached). If the final domain D′

represents failure (D(x) = ∅ for some x) then it back-

tracks to try another choice. If all variables have at
least one element in their domains, but some have
two or more, then the solver needs to make a choice
by splitting the domain of one of these variables into
two parts. This labelling step results in two sub-
problems (C,D′′) and (C,D′′′), which the solver then
solves recursively. If all variables have exactly one
value in their domains, then there are no choices left
to be made, and the domain is actually a valuation.
Whether that valuation satisfies all the constraints
can be trivially checked, although this check is unnec-
essary if the propagators of all constraints are guaran-
teed to find any failures of those constraints. In prac-
tice, solvers use event-driven scheduling of propaga-
tors and priority mechanisms to try to reach fixpoints
as quickly as possible (Schulte & Stuckey 2008).

(Propositional) Normal logic programs

In our proposed system, we divide the set of atomic
variables AV into two disjoint subsets: the set of de-
fault variables DV , and the set of non-default vari-
ables NV . A normal rule r has the form:

a← p1, . . . , pj ,∼n1, . . . ,∼nk

where a ∈ DV and {p1, . . . , pj , n1, . . . , nk} ⊆ AV .
We say that a is the head of r, written rH , and
{p1, . . . , pj ,∼n1, . . . ,∼nk} is the body of r, written
rB . To allow us to represent the truth or falsity of
each rule body, we have the bodyRep function, which
maps each rule body to a new body atom b ∈ NV . We
also have functions that return the positive and neg-
ative atoms in each rule body: if bodyRep(rB) = b,
then pos(b) = {p1, . . . , pj} and neg(b) = {n1, . . . , nk}.
We call the set of positive default literals of the body
b+ = {p | p ∈ pos(b), p ∈ DV}.

A normal logic program (NLP) is a set of normal
rules. We consider an NLP P as a constraint. We
define the following functions for a default atom a
and a body atom b. The set of all body atoms in
the program is bodies(P) = {bodyRep(rB) | r ∈ P};
the set of bodies of the rules whose head is a is
body(a) = {bodyRep(rB) | r ∈ P, rH = a}; the
set of heads supported by b is supHead(b) = {rH |
r ∈ P, bodyRep(rB) = b}; and the set of body
atoms in whose positive parts a ∈ DV appears is
posInBody(a) = {c | c ∈ bodies(P), a ∈ c+}.

We use the concept of positive body-head depen-
dency graph as defined in (Gebser & Schaub 2005).
It is a directed graph (DV ∪ bodies(P), E(P)) where
E(P) = {(a, b) | a ∈ DV , b ∈ posInBody(a)}
∪ {(b, a) | b ∈ bodies(P), a ∈ supHead(b)}.

We associate each strongly connected component
of the graph with a number, and we map every atom
and body literal in the component to this number
through a function scc.

Our implementation of stable model semantics re-
lies on the translation of logic programs into propo-
sitional theories. Given a default atom a ∈ DV ,
the Clark completion (Clark 1978) of its definition,
Comp(a), is the formula a ↔ ∨b∈body(a)b. The com-
pletion of P is the formula:

Comp(P) =
∧
x∈DV

Comp(x)

The following formula ensures that all body literals
are equal to the conjunction of their literals:

Body(P) =
∧

b∈bodies(P)

(b↔
∧

p∈pos(b)

p ∧
∧

n∈neg(b)

¬n)
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We refer to the conjunctive normal form (CNF) of
the formula Comp(P ) ∧ Body(P ) as Clauses(P ).

Given a valuation θ, a set U ⊆ DV is unfounded
with respect to θ iff for every rule r ∈ P and
bodyRep(rB) = b:

1. rH /∈ U or

2. θ(p) = ⊥ for some p ∈ pos(b) or θ(n) = > for
some n ∈ neg(b) or

3. b+ ∩ U 6= ∅.

Basically, a set is unfounded if every default variable
in it depends on some other variable in it being true,
but none of them have external support, i.e. none of
them can be proven true without depending on other
default variables in the set. This is expressed most
directly by the third alternative. The previous alter-
natives cover two different uninteresting cases: rules
whose heads are not in the potentially unfounded set
we are testing, and rules whose bodies are known to
be false.

Finally, we say that a complete valuation θ satisfies
P , or that θ is a constraint stable model of P iff θ |=
Clauses(P ) and there is no U ⊆ DV such that U is
an unfounded set with respect to θ.

Constraint stable models can also be defined
through use of constraint reducts (Gebser et al. 2009).
Given a valuation θ such that vars(θ) ⊇ NV and
vars(θ) ∩ DV = ∅, the constraint reduct of P with
respect to θ, written Pθ, is a version of P that has no
non-default variables. The reduct is computed by first
removing the rules whose bodies have one or more lit-
erals that are not satisfied by θ, and then removing
satisfied non-default atoms from the rule bodies. A
complete valuation θ′ that extends θ is a constraint
stable model of P if θ′ is a stable model of the reduced
program Pθ.

3 Inductive definitions

The goal of this section is to demonstrate the use-
fulness of inductive definitions in constraint mod-
elling languages with the help of an example. Con-
sider the Connected Dominating Set problem.1 Given
a graph G defined by n nodes numbered 1..n
and a (symmetric) adjacency 2D array edge where
edge[i,j] = edge[j,i] = true iff the nodes i and
j are adjacent. A connected dominating set D is a
subset of 1..n such that for each node i, either i or
one of its neighbours is in D, and the set D is con-
nected (each node in D can reach other nodes in D by
a path of edges both of whose endpoints are in D).
The problem is to find a dominating set with at most
k nodes for a given graph.

A MiniZinc (Nethercote et al. 2007) model for this
problem excluding the connectedness condition is:

int: k; % size limit
int: n; % nodes in G
set of int: N = 1..n; % node set
array[N,N] of bool: edge; % edges in G

array[N] of var bool: d; % is member of D?

constraint sum(i in N)(bool2int(d[i])) <= k;
constraint forall(i in N)

d[i] \/ exists(j in N where
edge[i,j])(d[j]);

1See http://dtai.cs.kuleuven.be/events/ASP-competition/
Benchmarks/ConnectedDSet.shtml

But modelling the connectedness condition in CP
is very difficult. We may imagine we can model this
by saying each node in D is adjacent to another node
in D.

constraint forall(i in N)
(d[i] -> exists(j in N, j != i)
(d[j] /\ edge[i,j]);

This model is incorrect, for example for the sym-
metric completion of the asymmetric graph with
edges {(1,2),(2,3),(3,4),(4,5),(4,6),(5,6)}
and limit 4, it has a solution D = {1,2,4,5} which
is dominating but not connected.

We need to define a base case for connectedness,
and reason about reachability from there in terms of
distance: reach[n,s] means we can reach node n
from base node min_idx (the node in D with least
index) in s or fewer steps. (The var N indicates that
min_idx must belong to the previously defined set N.)

var N: min_idx = min(i in N)
(i + bool2int(not d[i])*n);

array[N,0..n-1] of var bool: reach;
constraint forall(i in N)
(reach[i,0] <-> i == min_idx);

constraint forall(i in N)
(forall(s in 0..n-2)
(reach[i,s+1] <-> (reach[i,s] \/

exists(j in N where edge[i,j])
(d[i] /\ reach[j,s]))));

constraint forall(i in N)
(d[i] -> reach[i,n-1]);

The model defines only min_idx as reachable with
0 steps, and node i is reachable in s+1 steps
(reach[i,s+1]) if it was reachable previously or if
it is in d and there is an adjacent node j reachable
in s steps. The model is correct giving two answers
D = {2,3,4,5} and D = {2,3,4,6}. This model is
very expensive, requiring n*n Boolean variables to de-
fine the final connected set.

Lets consider the ASP model for the same prob-
lem, shown here in gringo syntax:

% select the dominating set
{ dom(U) : vtx(U) }.

% dominating set condition
in(V) :- edge(U,V), dom(U).
in(V) :- dom(V).
:- vtx(U), not in(U).

% connectivity constraints
reach(U) :- dom(U),
not dom(V) : vtx(V) : V < U.

reach(V) :- reach(U), dom(V), edge(U,V).
:- dom(U), not reach(U).

% size bound
:- not { dom(U) : vtx(U) } K, bound(K).

where the input is vtx(i) where i is in 1..n,
edge(i,j) whenever edge(i,j), and bound(k) for
limit k. The size constraint is expressed in negation,
while the dominating set is expressed more obscurely.
The base case that relies on defining minimum in-
dex computation is arguably more transparent. The
biggest difference is the reachability condition which
is much more succinct and much more efficient.

The advantage of the ASP model is that it makes
use of the inductive interpretation of the rules for
transitive closure. The solution D = {1,2,4,5} is
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not generated because the transitive closure compu-
tation cannot generate reach(4) or reach(5) from
reach(1).

In order to incorporate this succinct modelling,
and to take advantage of the efficient solving ap-
proaches for this, we extend MiniZinc with inductively
defined predicates.

For the running example we use an inductive def-
inition of the predicate reach as follows

idpredicate reach(N: i) = i == min_idx \/
exists(j in N where edge[i,j])

(d[i] /\ reach(j));

and add the constraint

constraint forall(i in N)(d[i] -> reach(i));

Inductively defined predicates are allowed to have
only fixed arguments; that is, their arguments cannot
be decision variables. They can use arbitrary Mini-
Zinc in the bodies with the restriction that they can-
not introduce new decision variables, and inductively
defined literals cannot appear inside non-Boolean
constraint expressions. The example above uses the
existing decision variables min_idx and d in the body.

In MiniZinc we assume that inductively defined
predicates have an (extended) stable model semantics
(Gelfond & Lifschitz 1988). At the moment, we have
not defined the stable models of inductive definitions.
Instead, we talk about the constraint stable models of
an equivalent set of normal rules. What the extended
stable models of the inductive definitions should be,
and how the translation of the inductive predicate
into a set of normal rules should work, are both di-
rections for our future research. We comment further
on this topic in Section 8.

4 Mapping inductive definitions to FlatZinc

The first step in solving a MiniZinc model is having
the translator program mzn2fzn map it to FlatZinc, a
lower level language that is easier for solvers to under-
stand and implement. In this section, we show what
this translation has to do for MiniZinc models that
contain inductive definitions.

The first task of the translation is identifying the
default variables used by inductively defined predi-
cates, and defining them properly. The FlatZinc we
want to generate for a default variable named dv is:

var bool: dv;
default_variable(dv);

The first line defines dv as a Boolean variable, while
the second tells the solver that this variable is a de-
fault variable, and not an ordinary Boolean variable.
This line defines a predicate we added to FlatZinc:

predicate default_variable(var bool: v);

Each use of this predicate declares a default
Boolean variable. For our running example from pre-
vious section, we want to generate this FlatZinc:

array[N] of var bool: reach;
default_variable(reach[1]);
...
default_variable(reach[n]);

The second task of the translator is replacing the
inductively defined predicate for each default variable
with a set of normal logic rules that have the same
constraint stable models as that predicate.

To make this possible, we have extended FlatZinc
with a predicate that represents normal rule defini-
tions:

predicate normal_rule(var bool: head,
array[int] of var bool: pos_atoms,
array[int] of var bool: neg_atoms);

As the names suggest, pos_atoms and neg_atoms
contain the atoms appearing in positive and negative
literals in the rule respectively, so the generic normal
rule r shown in Section 2 would be represented as

normal rule(a, [p1, . . . , pj ], [n1, . . . , nk])

The head must be a default variable, but the positive
and negative literals have no such restriction.

MiniZinc supports quantifiers, and the inductive
definition of reach in the previous section included
a quantifier. FlatZinc does not allow quantifiers, so
we must eliminate them during translation. This re-
quires knowing the data over which such predicates
operate. For reach, this data is the edge predi-
cate. If the edge predicate contains the three facts
{(1,2),(2,1),(2,2)}, representing a small graph
with two nodes and three edges, we want to trans-
late reach into these constraints:

normal_rule(reach[1],[min_idx==1],[]);
normal_rule(reach[2],[min_idx==2],[]);
normal_rule(reach[1],[d[1],reach[2]],[]);
normal_rule(reach[2],[d[2],reach[1]],[]);
normal_rule(reach[2],[d[2],reach[2]],[]);

The first step in this translation is the replacement
of existential quantifiers in predicate bodies with dis-
junctions. The second step is the replacement of dis-
junctions in bodies with two or more rules. This par-
ticular translation is essentially a form of the Lloyd-
Topor transformation (Lloyd & Topor 1984). While
that is the translation we want to do, we have not
yet implemented either the translation, or the recog-
nition of idpredicate definitions in MiniZinc. Yet
to test the effectiveness of our system, we need some
way to generate FlatZinc code that implements in-
ductive definitions. To do this, we have exploited
mzn2fzn’s existing ability to expand out quantifica-
tions. We have simply added the normal_rule pred-
icate to MiniZinc as well as FlatZinc.

To generate the FlatZinc that we would want gen-
erated from

idpredicate reach(N: i) = i == min_idx \/
exists(j in N where edge[i,j])
(d[i] /\ reach(j));

a MiniZinc user can now write these constraints:

constraint forall(i in N)
(normal_rule(reach[i],[i==min_idx],[]));

constraint forall(i,j in N where edge[i,j])
(normal_rule(reach[i],[d[i],reach[j]],[]));

Basically, until we implement our full translation,
we require users to expand out existential quantifiers
and disjunctions for themselves, although as we have
shown above, this can be conveniently done with the
MiniZinc generator forall.

5 Implementation

Before we describe our implementation in detail, let
us sketch briefly how propagation works in chuffed.
A propagator can subscribe to an event e, written
Subscribe(e). When the event e takes place, the
WakeUp function of the propagator is called. At this
point, the propagator can Queue up for propagation.
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Since a single event can wake up more than one prop-
agator, each propagator has a priority; any woken
propagators are added to the queue in priority order.
The Propagate function of a propagator is called after
all the higher priority propagators have finished. The
code of the Propagate function can choose to Requeue
itself after it has done some work, if it wants higher
priority propagators to run before it does some more
work.

For unfounded set calculation, we have imple-
mented two approaches taken from existing litera-
ture. The first one is based on the approach outlined
by Gebser et al. (2007), which is the combination of
smodels’ source pointer technique (Simons et al. 2002)
with the unfounded set computation algorithm de-
scribed by Anger et al. (2006). The second approach
follows Gebser et al. (2012) in combining the source
pointer technique with a different unfounded set com-
putation algorithm (described in that paper). We call
our implementation of the first approach anger, and
the second one gebser, after the authors of their un-
founded set algorithms.

Computing unfounded sets is inherently more ex-
pensive than most other propagators. We therefore
want to invoke the unfounded set propagator as rarely
as possible, which requires its priority to be low. This
low priority is required for another reason as well:
the algorithms used by the unfounded set propagator
need to run after unit propagation has finished, so
that they have access to a consistent valuation of all
the Boolean solver variables. If they do not, then the
work that they do is likely to turn out to be wasted.

In the rest of this section, we will describe the first
approach in detail, and then briefly outline the second
approach. For all the algorithms used in this section,
we assume that they access the valuation θ.

Initial calculations

When the solver is initialized, prior to any propaga-
tion and search, we calculate Clauses(P) and record
its clauses. We could also optimize Clauses(P) by ex-
ploiting any equivalences present in it (Gebser et al.
2008), but we do not (yet) do so. For example, if one
atom a is known to be exactly equivalent to a body b,
because a is defined by only one clause represented by
b, we can consistently use one constraint variable for
both a and b. Doing so reduces both the number of
variables the solver needs to manage, and eliminates
the propagation steps that would otherwise be needed
to keep them consistent.

We then calculate the strongly connected compo-
nents of the body-head graph implicit in P. We num-
ber each component, and assign each default atom
and body the number of the component it is in. The
only atoms of interest are those whose components
contain more than one atom, since only they can ever
participate in an unfounded set. The calculation of
the SCCs allows us to distinguish between these cyclic
atoms, and all other atoms, which are acyclic.

Establishing source pointers

Both our unfounded set detection algorithms are
based on the idea of source pointers. Each cyclic de-
fault atom has a source, which is a non-false body b
such that atoms in b+ are not unfounded. As long
as the source of an atom is non-false, the atom has
evidence of not being unfounded. If the source of an
atom becomes false, then we must look for another
source for it; if we cannot find one, then the atom is
part of an unfounded set.

Algorithm 1 EstablishSourcePointers()

1: for each atom a do source(a)← ⊥
2: for each body b do
3: if θ(b) 6= ⊥ then ct(b)← |b+| else ct(b)←∞
4: if ct(b) = 0 then
5: if θ(b) = > then
6: MustBeQ .add(b)
7: else
8: MayBeQ .add(b)
9: while MustBeQ 6= ∅ do
10: b← MustBeQ .pop()
11: for a ∈ supHead(b) : source(a) = ⊥ do
12: source(a)← >
13: for c ∈ posInBody(a) do
14: ct(c)← ct(c)− 1
15: if ct(c) = 0 then
16: if θ(c) = > then
17: MustBeQ .add(c)
18: else
19: MayBeQ .add(c)
20: while MayBeQ 6= ∅ do
21: b← MayBeQ .pop()
22: for a ∈ supHead(b) : source(a) = ⊥ do
23: source(a)← b, Subscribe(b = ⊥)
24: for c ∈ posInBody(a) do
25: ct(c)← ct(c)− 1
26: if ct(c) = 0 then MayBeQ .add(c)
27: for each atom a : source(a) = ⊥ do θ(a) = ⊥

We initialize the source pointers of default vari-
ables before beginning search. Our initialization,
shown in Algorithm 1, partitions the set of default
atoms into three disjoint sets: MustBeTrue, the set of
atoms that are true in every constraint stable model
of P; MayBeTrue, the atoms that can be true in some
constraint stable model; and CantBeTrue, atoms that
cannot be true in any constraint stable model. Atoms
in MustBeTrue cannot be part of any unfounded set,
and the unfounded atoms in CantBeTrue can be set
to false at this early stage. Only atoms in MayBeTrue
actually require source pointers; we record the source
“pointers” of atoms in MustBeTrue as >, and the
source pointers of atoms in CantBeTrue as ⊥.

Algorithm 1 describes a bottom-up calculation
which is similar to the Dowling-Gallier algorithm
(Dowling & Gallier 1984). The algorithm keeps two
queues of bodies, MustBeQ and MayBeQ , that we use
to incrementally build MustBeTrue and MayBeTrue
respectively. If for some b ∈ bodies(P), θ(b) = > and
b+ ⊆ MustBeTrue, then we add body b to MustBeQ .
Otherwise, if θ(b) 6= ⊥ and b+ ⊆ MustBeTrue ∪
MayBeTrue, then we add b to MayBeQ . Since the
heads of a body b in MayBeQ can become true due
to b, we set their sources to b. Whenever we assign
the id of a solver variable b to be the source of another
variable a, we make the propagator subscribe to the
event b = ⊥, since if b becomes false, the propagator
must determine a new source for a (or construct an
unfounded set from a if one exists).

The algorithm works by keeping a count ct(b) for
each body b. Before the end of the first while loop,
ct(b) represents the number of atoms in b+ that we
need to find in MustBeTrue before we can put the
heads supported by b into MustBeTrue. After the
end of the first while loop, when there is no possibil-
ity left of finding any atoms that must be true, ct(b)
represents the number of atoms in b+ that we need
to find in MayBeTrue before we can put the heads
supported by b into MayBeTrue.

At the end, we set all the atoms that do not have a
source to false, since these atoms that cannot be true
in any constraint stable model of the program.
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Algorithm 2 WakeUp(b = ⊥)
1: if first wakeup on current search tree branch then
2: U ← ∅, P ← ∅
3: for each atom a : source(a) = b do
4: if θ(a) 6= ⊥ then
5: P.add(a)
6: Queue()

Algorithm 3 Propagate()

1: U ← U \ {a ∈ DV | θ(a) = ⊥}
2: P ← P \ {a ∈ DV | θ(a) = ⊥}
3: while U = ∅ do
4: if P = ∅ then return
5: a← P.pop()
6: if θ(a) 6= ⊥ then
7: if ∃b ∈ body(a) : θ(b) 6= ⊥ and scc(a) 6= scc(b) then
8: source(a)← b, Subscribe(b = ⊥)
9: else
10: UnfoundedSet(a)
11: a← U.remove()
12: if θ(a) 6= > then Requeue()
13: θ(a) = ⊥
14: add loop nogood(U, a)

The WakeUp and Propagate functions

EstablishSourcePointers() subscribes our propagator
to events that record the source of a default variable
becoming false. When such events happen, the sub-
scription system will call the WakeUp function in Al-
gorithm 2, which delegates most of its work to the
Propagate function in Algorithm 3. These two func-
tions jointly manage two global variables: U , which
contains atoms that form an unfounded set, and P ,
which contains atoms that are pending an unfounded
check. These variables are global because they must
retain their values across all the propagation invoca-
tions in a propagation step between two consecutive
labelling steps. We set both variables to be empty
the first time we get control after a labelling step.

When an invocation of WakeUp tells us that a
body b is false, we add the atoms supported by b to the
pending queue P unless they are already known to be
false. However, we do not process the pending queue
immediately; we let higher priority propagators run
first, to allow them to tighten the current valuation as
much as possible before we process the pending queue
in our own low priority Propagate function.

The Propagate function starts by removing all the
atoms that have become false from both U and P .
(Other propagators with higher priorities can set an
atom in P to false after the WakeUp that put that
atom in P .)

If U is not empty, we remove an atom a from U ,
set it to false, add its loop nogood (see below) to the
set of learned constraints, and requeue the propaga-
tor to allow propagators of higher priority efficiently
propagate the effects of setting a to false. This may or
may not fix the values of all the atoms in the updated
U . While it does not, each invocation of Propagate
will set another unfounded atom to false.

For a given set of default atoms U ⊆ DV , we
denote the set of external bodies as EB(U) = {b |
b ∈ bodies(P), supHead(b) ∩ U 6= ∅, b+ ∩ U = ∅}.
The loop nogood of a set U with respect to an atom
a ∈ U is loop nogood(U, a) = (¬a∨b1∨ . . .∨bn) where
EB(U) = {b1, . . . , bn} (Gebser et al. 2007). This cap-
tures the idea that an atom in a set cannot be true
unless one of the external bodies of the set is true.

When there are no more known-to-be-unfounded
atoms left, we look for atoms in the pending queue
that can be part of an unfounded set. If the pending

queue is empty, then there cannot be any more un-
founded sets, and we are done. If there is an atom a
in P , we test whether it is supported by an external
body, a body b in a lower SCC. If it is, then a is not
unfounded. If it isn’t, then it is possible that a is part
of an unfounded set, and we invoke UnfoundedSet to
check if a can be extended to an unfounded set. If
the call fails and leaves U = ∅, we try again with a
different member of P . If it succeeds, we handle the
newly-made unfounded set the same way as we han-
dle unfounded sets that already exist when Propagate
is invoked.

Unfounded set calculation

Algorithm 4 is based on the unfounded set algorithm
by Anger et al. (2006). Its key local data structure is
Unexp, which contains the bodies that may contain
external support for some of the atoms in U . A body
variable b can support an atom a only if it represents
the body of one of the rules of a, it is not false, and
it does not contain any atoms that are themselves
unfounded. If b is in a lower SCC than a, then we
take its valuation as a given; if it is not false, then
it supports a and therefore a cannot be declared un-
founded; if it is false, then it does not support a. If
it is in the same SCC as a, then b may or may not
support a; we need to find out which. That is why
we put into Unexp the set of bodies that may support
the atoms in U . To help us to do this, we define the
function maysupport(a) as {b | b ∈ body(a), θ(b) 6=
⊥, b+ ∩ U = ∅, scc(b) = scc(a)}. The algorithm uses
two other data structures, SAtoms and SBodies (S
is for supported in this context): SAtoms contains
atoms that have been proven to be not unfounded,
while SBodies contains externally supported bodies.
A non-false body b is externally supported if every
atom in b+ is either in SAtoms, or belongs to a dif-
ferent component.

The algorithm processes the unexplored bodies in
Unexp one by one. It looks at the positive default
atoms in each such body. Those that are in SAtoms
or in a lower SCC are known to support b; the oth-
ers are not. We compute nks(b, curscc,SAtoms) as
the set of not-known-to-be-supporting atoms in b:
nks(b, curscc,SAtoms) = {p | p ∈ b+ : p /∈ SAtoms
and scc(p) = curscc}

If this is not empty, then then we need to test the
atoms in it to see whether or not they actually do
support b. If the test on Line 10 succeeds for an atom
p, then we have found a source for p. The algorithm
records this source. It then removes p from P and
adds it to the set of supported atoms. If the test
on Line 10 fails, then the algorithm makes p part of
the unfounded set U . The definition of Unexp says
that bodies whose positive atoms are in U must not
be in it; on line 17 we remove from it the bodies
that would now violate that invariant. To allow later
iterations of the outermost loop to check whether p
can be supported via other bodies, we then add those
possible bodies to Unexp. All these changes may have
reduced the set of not-known-to-be-supporting atoms
to the empty set, which is why we compute that set
again.

If the set of not-known-to-be-supporting atoms is
empty, either originally or after being recomputed,
then we know b is externally supported (Line 20).
This means that all atoms in U that have a rule
whose body is represented by b are now supported by
b. We compute R as the set of these atoms, and we
record b as their source. We also remove them from
U and P , and add them to SAtoms. Adding them to
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Algorithm 4 UnfoundedSet(a)

1: curscc ← scc(a)
2: U ← {a}
3: Unexp ← maysupport(a)
4: SAtoms ← ∅, SBodies ← ∅
5: while Unexp 6= ∅ do
6: b← Unexp.pop()
7: if nks(b, curscc,SAtoms) 6= ∅ then
8: [b is not externally supported ]
9: for p ∈ nks(b, curscc,SAtoms) do
10: if ∃c ∈ body(p) : θ(c) 6= ⊥ and

(scc(c) 6= curscc or c ∈ SBodies) then
11: if scc(source(p)) = curscc then
12: source(p)← c, Subscribe(c = ⊥)
13: if P.contains(p) then P.remove(p)
14: SAtoms.add(p)
15: else
16: U.add(p)
17: Unexp ← Unexp \ {d | d ∈ Unexp, p ∈ d+}
18: Unexp ← Unexp ∪maysupport(p)
19: if nks(b, curscc,SAtoms) = ∅ then
20: [b is externally supported ]
21: SBodies.add(b)
22: R← {r | r ∈ U, b ∈ body(r)}
23: for r ∈ R do
24: source(r) = b
25: Subscribe(b = ⊥)
26: while R 6= ∅ do
27: r ← R.pop()
28: U.remove(r)
29: P.remove(r)
30: SAtoms.add(r)
31: for j ∈ posInBody(r) : θ(j) 6= ⊥ and

∀t ∈ j+, (t ∈ SAtoms or scc(t) 6= curscc) do
32: SBodies.add(j)
33: for a ∈ supHead(j) ∩ U do
34: source(a)← j, Subscribe(j = ⊥)
35: R.add(a)
36: Unexp ←

⋃
p∈U maysupport(p)

SAtoms may make more bodies qualify for member-
ship of SBodies, which in turn may provide external
support for more atoms. We put any such atoms into
R as well, and we keep going until everything in R
has been processed. Once we have removed as many
atoms as possible from U and have reached a fixpoint,
we reinitialize Unexp based on the final value of U .

Second approach

Our second implementation, gebser, differs from our
first, anger, only in its use of a different unfounded
set algorithm. We have taken that algorithm directly
from (Gebser et al. 2012), so here we just give its out-
line. The algorithm uses the concept of a scope, which
is an upper bound on U . The algorithm computes the
scope by starting with P , and extending it through a
fixpoint algorithm. It then computes U by restricting
the scope to a single SCC.

6 Experiments

We benchmarked our implementations anger and geb-
ser against two competing systems. The first is a
combination of clasp (version 2.0.6) and gringo (ver-
sion 3.0.4), which we call cl+gr in our tables for
brevity. The second is clingcon (Gebser et al. 2009)
(version 2.0.0-beta), which is an extension of clasp
with CP capabilities. We ran all the benchmarks on
a Lenovo model 3000 G530 notebook with a 2.1 GHz
Core 2 Duo T6500 CPU and 3 GB of memory running
Ubuntu 12.04. We repeated each experiment with a
timeout five times, and each experiment without a

Solved Opt AvgPct

RoutingMin cl+gr N/A N/A N/A
clingcon 19 3 69.1
gebser 19 8 33.5
anger 18 9 33.9

RoutingMax cl+gr N/A N/A N/A
clingcon 22 0 100.0
gebser 27 0 42.2
anger 27 0 37.4

Table 1: Results for routing on 34 instances

timeout twice; the results we present are their aver-
ages.

We ran two sets of benchmarks. The first set con-
sists of different instances of two routing problems,
which are slightly modified versions of the models
used in the experiments by Liu et al. (2012). Our
reason for selecting these two problems is that they
involve not just reachability, but also variables with
large finite domains. The two problems differ only
in their objective; they use the same data represen-
tation and impose the same set of constraints. Each
instance of these problems is specified by

• a weighted directed graph (V,E,w) where w :
E 7→ N,

• a source node s ∈ V ,

• a set of destination nodes D ⊆ V \ {s}, and

• a deadline for each destination f : D 7→ N.

Their solutions consist of two parts:

• a cycle-free route (r0, r1, . . . , rk) where r0 = s,
(ri, ri+1) ∈ E for all i ∈ {1, ..., k − 1}, and for
each d ∈ D, d = ri for some i ∈ {1, ..., k}, and

• a time assignment t : V 7→ N such that t(r0) =
0, t(ri+1) ≥ t(ri) + w(ri, ri+1) for all i ∈
{1, ..., k − 1}, and for each d ∈ D, t(d) ≤ f(d).

For the RoutingMin problem, the objective is min-

imizing the total delay
∑
d∈D

(f(d)−t(d)). For the Rout-

ingMax problem, the objective is maximizing the to-
tal delay.

Table 1 presents our results on 34 instances each
of RoutingMin and RoutingMax. The sizes of the
graphs in those instances range from 21 to 87 nodes.
The Solved column gives the number of instances for
which the named solver computed a result (which may
or may not be optimal) within the timeout period,
which was one minute. The Opt column gives the
number of these instances for which the solver not
only computed the optimal result, but also proved it
to be optimal.

Since the sizes of the instances vary significantly,
the minimum and maximum values of the total delay
differ greatly as well. Averages of the delays are there-
fore not an appropriate representation of the overall
quality of the solutions from a solver. Therefore we
express the quality of each solution as a percentage of
the maximum delay computed by any solver on the
relevant problem instance. If all the solvers compute
a delay of 0, we score all solvers as 0% for Routing-
Min and as 100% for RoutingMax. The AvgPct col-
umn shows the average of these percentages for the
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cl+gr flat anger gebser
o/a prop o/a prop

WR (S/8) 894.49 10.22 166.74 95.39 456.71 7.58

WR (U/7) 24.14 8.89 41.20 28.44 53.06 1.29

GP (S/7) 9.69 2.88 656.69 4.13 659.27 2.86

GP (U/6) 43.02 0.95 221.38 9.76 243.08 3.54

CDS (S/7) 26.80 0.39 74.98 44.53 27.24 0.50

CDS (U/8) 1618.22 0.64 566.47 318.65 395.84 4.86

MG (S/15) 2.56 32.95 43.04 42.14 0.86 0.03

Table 2: ASP problems, geometric restart, no timeout

cl+gr flat anger gebser

WR (S/8) 148.21 (5/1) 9.86 149.12 (4/1) 96.74 (5/1)

WR (U/7) 101.68 (5/1) 11.68 36.68 (0/0) 49.10 (0/0)

GP (S/7) 39.24 (0/0) 2.58 21.36 (0/0) 46.52 (0/0)

GP (U/6) 169.22 (5/1) 0.91 123.96 (3/1) 121.72 (0/0)

CDS (S/7) 185.09 (10/2) 0.41 102.79 (5/1) 127.88 (5/1)

CDS (U/8) 274.77 (10/2) 0.69 321.20 (20/4) 314.56 (20/4)

MG (S/15) 5.07 (0/0) 52.86 49.95 (5/1) 1.37 (0/0)

Table 3: ASP problems, Luby restart, with timeout

instances for which all the solvers get a solution. All
the solvers were run with a slow restart strategy that
used a Luby sequence (Luby et al. 1993) with a restart
base of 400.

Due to the large domains involved, grounding is
very inefficient, which causes cl+gr to run out of mem-
ory on all our test instances, even the smallest. For
RoutingMin, all the solvers solve roughly the same
number of instances, but anger and gebser get op-
timal solutions on almost three times as many in-
stances, and the average quality of their solutions is
also better by about a factor of 2. (For minimiza-
tion, better performance is represented by smaller
percentages, while for maximization, it is represented
by larger ones.) For the instances of RoutingMax that
all the solvers can solve, clingcon invariably generates
the best solutions. However, clingcon generates solu-
tions for substantially fewer instances than anger and
gebser, showing that it is not as robust.

Our second set of benchmarks is a selection of
problems taken from the second ASP competition 2:
Wire Routing (WR), Graph Partitioning (GP), Con-
nected Dominating Set (CDS), and Maze Generation
(MG). For each of these problems, we report on their
satisfiable (S) and unsatisfiable (U) instances in sep-
arate rows of both Tables 2 and 3; the numbers af-
ter the forward slashes give the number of instances
in each category. Table 2 shows results for a setup
in which all the solvers were run using the default
restart strategy of clasp (geometric restart, with the
restart threshold starting at 100 conflicts, multiplied
by 1.5 after each restart) and without time limits,
while Table 3 shows the results when all the solvers
were run with a Luby sequence restart strategy with
restart base 10, and with a timeout of 10 minutes.

The numbers in the slots of Table 2 all represent
an average runtime, in seconds, over all the problem
instances represented by the row. The cl+gr column
gives the average time taken by cl+gr to solve those
instances. The flat column gives the average time
taken to flatten the MiniZinc model to FlatZinc. The
anger and gebser overall (o/a) columns give the aver-
age time taken to solve the resulting FlatZinc models
using the anger and gebser variants of our implemen-

2See http://dtai.cs.kuleuven.be/events/ASP-competition/
SubmittedBenchmarks.shtml

tation. The anger and gebser prop columns give the
average times taken by our propagator within those
overall solution times.

The numbers in time slots of Table 3 also repre-
sent average execution times; the execution time will
be the timeout time (600 seconds) if the solver does
not complete before then. Table 3 omits propagation
times to make room for the numbers in parentheses
after each average execution time. These represent
respectively the number of runs on which the given
solver failed to produce a solution before the timeout,
and the number of instances to which those runs be-
long. (For example, 4/1 means that of the five runs
on a problem instance, one produced a solution, but
four did not.) Neither table has a column for cling-
con, since the purpose of Tables 2 and 3 is to com-
pare gebser and anger with a native ASP solver on
pure Boolean problems. The results of running these
problems on clingcon would be the same as the results
of cl+gr, since these problems have nothing to do with
the difference between cl+gr and clingcon, namely the
finite domain extension present in clingcon.

The overall results in Table 2 are mixed. On
WR/U, GP/S, GP/U and (due to flattening) MG/S,
cl+gr clearly beats both anger and gebser. On WR/S
and CDS/U, both anger and gebser clearly beat cl+gr.
On CDS/S, cl+gr clearly beats anger, but edges out
gebser by just a whisker. The overall winner on these
tests is clearly cl+gr.

However, this picture changes when we switch our
attention to Table 3. Even after including flattening
time, gebser is faster than cl+gr on four of the seven
problem sets (WR/S, WR/U, GP/U, CDS/S), and it
is slower on only three (GP/S, CDS/U and MG/S). It
is also more robust, failing to find a solution on only
six problem instances, compared to seven for cl+gr.
Our other system anger is less robust, failing to find
solutions on eight problem instances, though for two
of these, it did solve them on some runs. However,
to compensate for this, anger is the fastest system on
three problem sets (WR/U, GP/S, CDS/S).

The propagation time columns in Table 2 show
that anger spends a lot more time on unfounded set
propagation than gebser. In some cases, such as
WR/S, this pays off handsomely, in the form of more
effective pruning of the search space. In some other
cases, such as CDS/U, anger spends less time outside
the propagator than gebser, so anger seems to get bet-
ter pruning, but not enough to pay back the extra cost
of the propagator itself. And on most problems in Ta-
ble 2, the extra cost of its propagator does not even
help anger get better pruning. This suggests that we
should investigate whether one can blend the two un-
founded set calculation algorithms in order to achieve
the pruning power of anger (Anger et al. 2006), or
something close to it, at an efficiency closer to that of
gebser (Gebser et al. 2012).

7 Related work

The closest modelling system to our approach is the
IDP system (Wittocx et al. 2008b) which extends clas-
sical logic with the use of inductive definitions. Like
our proposed extension of MiniZinc, IDP allows ar-
bitrary first order formulae in the rule bodies of its
inductive definitions while most ASP systems allow
only normal rules. Unlike ASP solvers which apply
the closed world assumption (an atom that cannot be
derived is assumed to be false) to entire programs,
our system and IDP can localize it to only a certain
part of the program: default atoms for us, and def-
initional atoms for IDP. IDP handles constraints by
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grounding, just as a traditional ASP system.
There has been significantly more effort in recent

years to integrate CP into ASP systems than to inte-
grate ASP into CP systems. The principal advantage
of ASP over CP systems is the ability to use recur-
sive definitions, particularly to model transitive clo-
sure. On the other hand, pure answer set solvers have
a serious efficiency problem when dealing with prob-
lems that involve finite domain variables. This is why
most research in this area has focused on integrating
efficient finite domain handling in ASP systems, re-
sulting in a new domain of research called constraint
answer set solving (Drescher 2010).

The systems described by Baselice et al. (2005),
Mellarkod & Gelfond (2008), Mellarkod et al. (2008)
view both answer set and constraint solvers as black
boxes, and their frameworks do not allow the incorpo-
ration of modern engineering techniques such as no-
good learning and advanced backjumping. The cling-
con system (Gebser et al. 2009), while it implements
nogood learning and backjumping, still treats the CP
solver as an oracle that does not explain its prop-
agation to the ASP solver, and works around this
shortcoming by using an indirect method to record
nogoods generated by propagation done by the CP
solver. All these systems have to incur some over-
heads for communication between the ASP and CP
solvers.

The approach described by Drescher & Walsh
(2010) avoids this overhead by translating the CP
part of the problem into ASP rules, and achieves its
efficiency through unit propagation on these rules;
that paper also gives their translation of the alldiff-
erent global constraint. One shortcoming of this ap-
proach is its reliance on an a priori ASP decompo-
sition of global constraints; the example of the per-
formance gains achieved by techniques such as lazy
clause generation strongly suggests that such decom-
positions should be done lazily. Their more recent
paper (Drescher & Walsh 2012) overcomes this short-
coming by allowing lazy nogood learning from exter-
nal propagators. The resulting system is close to what
we have implemented, and shows promising perfor-
mance in comparison with clingcon. The mingo sys-
tem described by Liu et al. (2012) does translation
in the other direction: it translates an ASP program
(extended with integer and real variables) to a mixed
integer program.

The unique feature of constraint languages and
solvers that distinguishes them from other declarative
systems like ASP, SMT, and SAT is the use of global
constraints, and the existence of extremely efficient
propagators to solve these constraints. Other solvers
usually rely on a single propagation method such
as unit propagation. Specialized propagation tech-
niques for global constraints, such as the one given
by Schutt et al. (2011) for the cumulative constraint,
allow much stronger and more efficient propagation
than approaches using decomposition and unit prop-
agation.

8 Conclusion

We have shown a method for adding answer set pro-
gramming capabilities to the general purpose con-
straint programming language MiniZinc. The re-
sulting system is much better at solving combined
ASP/CP problems than existing systems, and we
hope that our examples have convinced readers that
such problems can be expressed more naturally in the
syntax of MiniZinc than in the syntax of ASP lan-
guages. MiniZinc is also more flexible: it can express

constraints on non-Boolean variables (such as inte-
gers, floats and sets); it can express complex Boolean
expressions more naturally, and (with the exception
of disjunctions in heads) it can express all ASP ex-
tensions, including weight constraints, choice rules,
cardinality constraints, integrity constraints, and ag-
gregates such as sum, count, min and max.

We have shown two implementations of our ex-
tensions to MiniZinc. Our benchmark results show
that both these systems can solve combined ASP/CP
problems that cannot be solved by cl+gr, even though
its ASP component, clasp, won the last two compe-
titions for pure ASP solvers. We have also shown
that our system is competitive with clingcon, an ex-
tension of clasp, on such problems, being better on
some tasks, worse on others.

We have several directions for future work. We will
start by implementing our proposal for the inductive
predicate syntax in MiniZinc, which should allow pro-
grammers to model problems more naturally, without
manually grounding normal rules. We intend to in-
vestigate different ways to map these predicates to
FlatZinc. We will look at the approaches used by the
grounder of the IDP system (Wittocx et al. 2008a)
and the transformation to ASP rules described by
Mariën et al. (2004). Adopting some of these ap-
proaches may require moving from the stable model
semantics to the well-founded semantics; the jury is
still out on which users find more natural. We plan
to investigate moving the grounding phase entirely to
runtime, as proposed by the lazy grounding scheme
of Palù et al. (2009) and the lazy model expansion
scheme of De Cat et al. (2012). We also intend to
look into incorporating other efficient features of ASP,
such as preprocessing (Gebser et al. 2008). Finally, we
intend to see whether we can construct an unfounded
set algorithm that combines the efficiency of Gebser
et al. (2012) with the more effective pruning of Anger
et al. (2006).
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Abstract

Genomic sequence data is being generated in massive
quantities, and must be stored in compressed form. Here
we examine the combined challenge of storing such data
compactly, yet providing bioinformatics researchers with
the ability to extract particular regions of interest without
needing to fully decompress multi-gigabyte data collec-
tions. We focus on data produced in SAM format, which
is particularly voluminous in nature, and describe storage
techniques that have the desired blend of attributes.

Keywords: Genomic data, lossless compression, lossy
compression, SAM format.

1 Introduction

Next generation sequencing machines produce vast
amounts of genomic data (Ansorge, 2009). This data is
valuable for the insights it allows now into the health of
individuals and whole populations, and will continue to be
of benefit into the future as medical knowledge grows. But
for genomic data to be long-term useful, it must be stored.
And with output files in the gigabyte range now being gen-
erated within an hour or less of technician time, and at a
cost of just a few hundred dollars, the mechanics of storing
them – and retrieving information out of them when it is
required – is a challenge. Bioinformatics researchers are
increasingly regarding big data storage facilities as being
fundamentally necessary to their operations.

In this paper we consider data stored in SAM
(Sequence Alignment Map) format files (Li et al., 2009).
These files can contain millions of reads, each produced as
a continuous fragment of data extracted from the process-
ing of a single genome, represented as a string of bases,
letters that indicate the fundamental molecules of DNA. A
number of meta-data fields are associated with each read
to form an alignment read, and some of these fields are
as expensive to store as the sequence of bases. Because
of the multiplicity of alignment reads extracted from each
genome, the repetition in the meta-data elements, and the
fact that they are stored as printable ASCII text, there is
considerable redundancy in SAM files. Our purpose in
this project is to identify and exploit that redundancy, and
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develop a new compressed representation for SAM-style
genomic data that is both economical of space and readily
queryable, so that data about particular alignments can be
extracted in isolation, without requiring whole files to be
decompressed. The latter option is of considerable benefit
to researchers working with SAM data, who rarely wish
to fully decompress archived data – and indeed, may not
have the time or space resources required to do so.

The next section provides a general overview of com-
pression methodologies, including a mode we refer to as
being information preserving that sits between the con-
ventional lossless and lossy approaches. Section 3 then
introduces the SAM format that is used to store multi-
alignment genomic data. Compression mechanisms suit-
able for the various SAM fields are examined in Section 4,
including measurement of their effectiveness on several
typical files. The issue of querying SAM files is then ex-
amined in Section 5. Section 6 presents related work, and
then Section 7 concludes our presentations.

2 Compression technologies

This section summarizes several issues relevant to the de-
sign of compression techniques. For detailed coverage of
these topics, see, for example, Bell et al. (1990), Moffat
and Turpin (2002) and Navarro and Mäkinen (2007).

Lossless and lossy compression

Compression techniques can be categorized as belonging
to one of two distinct classes: lossless, or exact compres-
sion; and lossy compression. Lossy compression methods
are typically applied to data originally sampled from con-
tinuous domains, and are based on the recognition that the
process of turning that data into digital form can, within
limits, be further approximated to save space. For exam-
ple, digital cameras take images that can be stored in either
.jpg form (lossy compression) or as .raw files (larger un-
compressed files). But even the .raw file is a quantized
approximation of the original scene, and its attractiveness
to photography purists is not that it contains no loss of
fidelity, but only that it contains no additional loss of fi-
delity. In most applications and environments a viewer
will not perceive any difference between the two formats.

On the other hand, data which is fundamentally dis-
crete and non-continuous, such as ASCII text, is almost
always represented using lossless methods (although it is
also worth noting that from time to time the observation
has been made that human readers can still make sense of
some lossy representations of text).

Information-preserving approaches

There is a second way in which lossy compression con-
cepts might be useful for some data sources, which we
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Figure 1: Three alternative compression modalities.

introduce by way of an example. Suppose a list of n num-
bers each in the range 0 . . . (m− 1) is generated by some
process, in no particular order. These numbers might be
stored in ASCII in a file of at most n(dlog10m)e+1) bytes
(allowing +1 for a newline character after each value),
or, if a minimal binary representation is used, in a file of
ndlog2me bits. If the purpose to which the data will be
put is unknown, and no further indication is provided in
regard to the distribution of the numbers within the spec-
ified range, then the binary form is an efficient one. But
suppose the downstream application that uses the set of
numbers places no importance on the order in which the
numbers are received. If so, then the set of numbers can be
sorted, differences between those numbers taken, and the
differences coded using n(2 + dlog2((n + m)/n)e) bits
(Moffat and Turpin, 2002), which might be a non-trivial
saving. That is, if we regard the order in which the data is
presented as being of no importance, then shifting the in-
put into a particular arrangement might allow better com-
pression. In such cases, the decompressed output will also
be in that order, and so the original input file cannot be
exactly regenerated, in the sense that the Unix diff and
cmp commands will certainly report a discrepancy. Nev-
ertheless, there might also be a sense in which all of the
actual information embedded in the source data has been
preserved, even if the physical representation has not. We
call such representations information preserving, and re-
gard them as being a third possible compression modality,
neither lossless nor lossy.

Figure 1 illustrates these notions. A lossless compres-
sion mechanism must exactly recreate the input file, in all
syntactic detail, as indicated by the double arrow. An in-
formation preserving regime will not be able to reproduce
the original file (denoted by a single arrow), but once it has
been decompressed a first time into its new form, it can
be recompressed and decompressed a second time with-
out further change taking place (the double arrow at the
top of the diagram). That is, a representational fixed-point
is reached after one compress/decompress cycle. A lossy
scheme cannot reproduce the input file; nor is there even
any guarantee that a second iteration of compression and
decompression will achieve the same file.

Information preserving techniques have also been pro-
posed in other application areas. For example, consider
the area of program source code compression. In a syntax-
aware compressor for a language such as C or Pascal,
white-space tokens can be normalized and other changes
made that do not alter the compilability or correctness of
the program, and only affect how it looks in an editor.

It may also possible to augment an information pre-
serving compression regime with additional information

so as to adjust its output to recreate the exact input. That
is, losslessness might be an optional enhancement, at the
cost of storing further data. In the case of program source
code compression, the auxiliary information would spec-
ify the exact whitespace token to be inserted at each loca-
tion from which it had been stripped. In the case of the
numeric example used at the beginning of this discussion,
a permutation index costing ndlog2 ne bits would be re-
quired, which is a relatively high cost. In the SAM-format
compression proposed in the next section, the items being
permuted are long lines of text, and the overhead cost of
storing the required permutation vector is small.

Modeling and coding

It is also recognized that compression should be thought
of as consisting of two complementary activities. Model-
ing is the process of inferring structure from the data that
is presented, and, for each type of symbol or type of con-
text, estimating (either explicitly or implicitly) a probabil-
ity distribution that covers the set of options that might
occur next. Those probabilities are then – again, either
explicitly or implicitly – used to drive a coding step, in
which the actual symbol that appears is represented into
the output bitstream, taking into account the probability
estimates generated by the model. One early example of
such a structure is given the blend of model and coder
sometimes referred to as Huffman coding, in which sym-
bol probabilities are estimated using a zero-order Markov
model counting their occurrence frequencies in the text in
question; and then the symbols in the sequence are coded
via a bit-aligned minimum-redundancy code.

Static, semi-static, and adaptive

A third characterization of compression techniques is
whether they make use of static, semi-static, or adaptive
probability estimations (and hence coders). In a static
regime, probability estimates are independent of any par-
ticular input file, and are constant. In the semi-static ap-
proach, the probability estimates are based on the data file
being represented, and are established in a preliminary
pass through the data and then sent as the first compo-
nent of the compressed message. In an adaptive system
the probability estimates are constructed on-the-fly, based
on the part of the message that has already been processed,
and if necessary, allowing for the possibility of previously
unencountered symbols to be added as they arise.

Static and semi-static codes tend to allow faster decod-
ing, because there is no need for the decoder to track the
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Field Type Description
QNAME string Query template name
FLAG int Bitwise flags (values between 1 and 1160)

that give properties of the alignment,
including if the sequence is a reverse
complement

RNAME string Reference sequence name
POS int Leftmost mapping position of the first

matching base
MAPQ int Mapping quality:

−10 log10 Pr(mapping position is wrong)
CIGAR string The CIGAR string
RNEXT string Reference sequence name of the next

segment in the template
PNEXT int Position of the next segment in the template
TLEN int Signed observed template length
SEQ string Sequence of nucleotides bases of the read

used in the alignment
QUAL string Estimated error probability of each base:

−10 log10 Pr(base is wrong) + 33
OTHER string Optional fields of the form

TAG:TYPE:VALUE

Table 1: The twelve fields recorded for each read in a
SAM file. The first eleven are required, but may be re-
placed with * for strings and 0 for numeric fields if data
is not known or is not being stored. Further details are
provided by Li et al. (2009).

Letter Value Probability
( 40 20%
7 55 0.6%
F 70 0.02%
U 85 0.0006%
d 100 0.00002%

Table 2: Examples of values stored in the QUAL field.
The ASCII letters represent probabilities of error in the
corresponding base according the relationship value =
−10 log10 Pr(error) + 33. The error probabilities are com-
puted by the sequencing hardware.

probability changes. Static and semi-static methods also
make it easier to provide random-access into the com-
pressed file. In particular, if a bit pointer is provided into
the compressed package, coding can be resumed from that
location provided the context is understood.

3 Genomic data formats

Genomes are typically described by (usually long) se-
quences of identifying letters, one per base-pair of the
original. In simplest form, the letters are the four
acronyms of the fundamental bases, A, C, G, and T. Some
formats (including SAM) add other letters, such as N, for
unknown bases; and some formats further extend the al-
phabet to include specific identifying letters for other pro-
teins that might be present. The common thread in all for-
mats is the small alphabet that is employed (between four
and around twenty symbols), and the dominance of the
four key symbols.

SAM format

In the SAM format, each sequence of bases is accompa-
nied by eleven other fields that add considerably to the
total stored size (Li et al., 2009). These fields are shown
in Table 1. All of them are required, in the sense that they
cannot be omitted; but it is also common for them to be
stored as place-holder 0 and/or * values.

Figure 3: Example of CIGAR analysis. The positions
marked with * are indicative only, and not present in ei-
ther of the two sequences.

The field labeled SEQ is the sequence of bases corre-
sponding to this read; the other critical field from a data
storage point of view is QUAL, which is the same length
as the SEQ field, and also contains an ASCII letter for each
sequence position. The value stored in each QUAL field is
an estimate of the correctness of the corresponding SEQ
field. The mathematical relationship between estimated
probability of error and value stored in QUAL is shown in
Table 1; and Table 2 provides some examples. The QUAL
sequence can be thought of as a quantization of a underly-
ing phenomena that is numeric and continuous, and hence
a candidate for possible use of lossy compression. Fig-
ure 2 shows a sample read containing 25 bases in the SEQ
string, with the accompanying QUAL string indicating that
each base after the first has an error probability of well
under 0.05%.

Each of the reads may be referenced against an exter-
nal resource described by the RNAME field, which can be
thought of as a reference identifier indicating the external
location of a related resource. If an alignment has been
computed for this read relative to that resource, then the
POS field indicates the offset within the resource at which
the alignment commences.

Overall, a SAM file consists of a header block describ-
ing attributes of the sample as a whole, such as meta-data
describing the experimental environment and regime; fol-
lowed by thousands or millions of relatively short reads –
each perhaps 30 to 120 bases long – derived from a single
experimental run. Hence, it is not unusual for the same
RNAME to turn up many times in the SAM file, and nor is
it in any way unusual for the reads to overlap, in the sense
of the identified alignment for one of them being within
the range of the identified alignment of another.

In some cases, the read represented by the SEQ string
has not only been aligned against the RNAME string, it
is also represented relative to it as a sequence of edit in-
structions. If so, the corresponding CIGAR field (Compact
Idiosyncratic Gapped Alignment Report) is non-empty. If
it is present, the CIGAR string consists of a sequence of
instructions: M atch the next ` characters; D elete the next `
characters; or I nsert a group of ` character. Figure 3 gives
an example showing two similar reads, and a CIGAR string
that describes their (relative to each other) structure.

Fields that are absent are represented by * and/or 0
characters. The file itself is tab-delimited between fields,
and newline delimited between read alignments.

BAM format

The SAMtools software suite1 provides other storage op-
tions. A second standard representation is known as BAM
format, in which blocks of text from a SAM file are stored
compressed using a modified zlib library. Compared to
the original SAM file, a BAM compressed version can be
expected to occupy around 30% of the original size, with
an auxiliary index that allows limited random access to the
reads in order to support queries. The BAM representation
uses the BGZF (Blocked GNU Zip Format) compression

1See http://samtools.sourceforge.net/.
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Figure 2: Example of the SEQ and QUAL components for one read within a SAM file.

HG00113 HG00559 Local
Alignments 5,630,211 2,515,117 8,095,516
Av. read (bases) 90 108 100
Size (MB) 2,220.5 1,121.6 1,965.7
BAM (MB) 457.8 285.1 762.9
Gzip (MB) 429.2 260.7 748.2

Table 3: Statistics for three SAM files. File HG00113
refers to HG00113.chrom11.ILLUMINA.bwa.GBR.
exome.20111114; File HG00559 is HG00559.chrom20.
ILLUMINA.bwa.CHS.lowcoverage.20111114; and file
Local was supplied by a local researcher based on their
own bioinformatics work.

Field Raw Gzip
MB % MB %

QUAL 488.6 22.0% 239.6 66.5%
SEQ 488.6 22.0% 38.2 10.6%
OTHER 933.5 42.0% 27.0 7.5%
QNAME 100.9 4.5% 20.1 5.6%
PNEXT 49.0 2.2% 12.2 3.4%
TLEN 24.0 1.1% 8.7 2.4%
POS 49.0 2.2% 8.2 2.3%
Total 2220.5 100.0% 360.4 100.0%

Table 4: Percentage required by various SAM fields of
HG00113, before and after compression using gzip in a
striped manner, ordered by decreasing compressed contri-
bution to the total, and with six smaller fields omitted. The
striped and compressed representation totals 360.4 MB.

format, which adds an access structure on top of the stan-
dard gzip file format.

As is shown in Table 3, BAM conversion results in a
stored file that is a little larger than can be attained by
gzip alone. The difference is largely caused by the addi-
tional BAM index, which links positions in the reference
sequence with reads in the blocks of the BAM file.

4 Compressing SAM components

To evaluate alternative compression methodologies, three
SAM files are used. Some attributes of the three sam-
ple files are summarized in Table 3. In the remainder of
the text they are referred to by their abbreviated names
HG00113, HG00559, and Local.

Striping

One well-known mechanism for compressing data stored
in structured formats like SAM is to stripe the data into
separate streams, and then use a general-purpose compres-
sor – such as gzip – on the concatenated contents of each
stream. Decompression regenerates the various streams,
and they can be re-interleaved to recreate the original file.
Striping is effective if the fields are distinctive in nature,
and/or contain vertical repetitions. Table 4 shows the raw
cost of some of the striped components of the test file
HG00113, as a percentage of the file size, before and af-
ter the components are compressed by gzip.

Notable in the table is that the QUAL and SEQ fields are
equal in size prior to application of a standard compres-
sion regime, but that the SEQ field is far more compress-
ible than the QUAL field, and that the latter dominates the
compressed representation. The high relative compress-
ibility of the SEQ field is a consequence of the fact that it is
over a very small alphabet; and that overlapping reads are
likely to contain common subsequences that can be iden-
tified by the string match-based gzip compression mech-
anism. The OTHER field is also highly compressible, and
moves from being the dominant cost in the uncompressed
version of the file, to being less than 8% of the striped
compressed file. Note that the percentages in Table 4 are
relative to the sizes of the two original files. Overall com-
pression rates for particular components can be estimated
from the figures supplied. For example, on file HG0013
the SEQ field drops from being 22.0% of 2,200 MB to be-
ing 10.6% of 360.4 MB, an overall saving of more than
445 MB, and a reduction to around just 8% of the original
SEQ requirement.

On the other hand, the QUAL field has both a larger al-
phabet and less repetition, because the estimated error is a
function of many factors, and is only loosely correlated
with its position in the underlying genome. It requires
fully two-thirds of the striped compressed representation.

The SEQ field

We now focus on the SEQ field, and consider if there are
additional storage savings possible.

One of the reasons that gzip obtains such good com-
pression on SEQ components is the large number of re-
peated subsequences, which arise because of the process
used to generate SAM files. The biological source ma-
terial contains many copies of the underlying genetic se-
quences. When cut randomly into segments, each particu-
lar nucleotide in the original appears in any number of the
reads that are reproduced into the SAM file. Within the
SAM file each of these reads might partially or fully over-
lap with other reads in the file, or might be unique. More-
over, when reads do overlap, they are likely to be highly
similar. If the process used to generate them were infalli-
ble, and if there were no mutations in any of the cells in the
source material, the reads at any sequence location should
be in perfect agreement. But there are discrepancies in-
troduced by the inexactness of the process and machinery
used; by the possibility that some of the reads arise from
mutated cells; and by computation errors made when the
alignments are identified.

Even so, there can be a high degree of repetition across
the multiple reads that span any particular location in the
genome, and even though it is a general-purpose text com-
pression program rather than one tailored to DNA se-
quences, gzip does a good job of identifying and exploit-
ing the common subsequences.

An obvious question is whether a tailored compression
regime might do better. In particular, there is additional
information associated with each read that could be used
to explicitly identify the set of reads that are believed to
have overlapping SEQ fields. It is not mandatory for SAM
records to include a meaningful RNAME – like many of the
fields listed in Table 1, it can be stored as a * to indicate
“not present”. But when it is present, it indicates which
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HG00113 HG00559 Local
Different RNAMEs 1 1 68
Overlapping reads (%) 97.1 99.9 80.8
Overlapping bases (%) 94.4 98.6 75.2
Median multiplicity 102 6 16

Table 5: Statistics for the three SAM files in terms of
overlaps relative to the given reference sequences. The
final row shows the median, taken over the set of all bases
present in the file, of the number of bases that share the
same offset in regard to the same RNAME sequence, count-
ing one for bases that appear in read alignments with no
RNAME specified.

reference sequence the SEQ field is like, and the numeric
POS field indicates an offset relative to that reference se-
quence. When these two fields are available it is thus pos-
sible for an encoder to permute the records in the SAM so
that all of the alignments that relate to a given reference
sequence are placed in a cluster of consecutive records,
and also for them to be ordered by POS within that cluster.

If the encoder permutes the records within the SAM
file, there are then two options for decompression. The
first is for a permutation vector to be added to the com-
pressed representation, so that the decoder is able to in-
vert the permutation and restore the original ordering. As
noted in Section 2, if there are n records, then a total
of ndlog2 ne bit suffices for this purpose. If the down-
stream applications do not require that the original SAM
file ordering be retained – indeed, if there is no impor-
tance of any sort associated with the original ordering of
the records, and their arrangement was an arbitrary arti-
fact of the process that generated them – then there is no
need to store the permutation vector, and the compression
regime can be information preserving rather than lossless.

Table 5 shows the extent of the read overlaps in the
three example files. Only the file Local has less than
around 95% or more overlaps in terms of both reads and
individual bases. It is lower is because no RNAME field is
supplied for 18% of the reads, and hence it is not possible
to identify overlaps for those SEQ components.

If it could be assumed that the set of reference se-
quences used in each SAM file was available to the com-
pressor and decompresser as a static external resource,
then each of the reads in the SAM file could be com-
pressed relative to it. But this would be a risky assump-
tion, and would mean that the compressed SAM file could
not be regarded as being self-contained.

Presumed Reference Sequence

Instead, we construct what we call a presumed reference
sequence, or PRS, that is specific to the SAM file in
question, and does not require linkage to any external re-
sources. Figure 4 shows how this is done, using as an
example four reads with slightly different POS fields and
the same RNAME field. First, the set of reads in the SAM
file are ordered by the RNAME field, and then by the POS
field specified for each one. Where there is overlap, the
reads are aggregated by a simple majority vote to form a
presumed reference sequence.

In Figure 4(a) it is supposed that four reads each of
20+ bases are slightly offset from each other, and are the
only four reads that span a section of the REF sequence.
The presumed reference sequence is shown at the top, and
is in complete agreement with the four reads in all but
11 (out of a total of 97) of the base positions, as shown
in Figure 4(b). (For reasons that are explained shortly,
the N in read four is not permitted to install an N into the
PRS.) To encode these four reads, the PRS string span-

ning 38 bases is stored, then four sets of “offset, length,
exceptions” information, one per read, detailing: the com-
mencement within the PRS of that read (which can be
inferred from the POS field); its length (which is usually
constant throughout the whole SAM file); and a list of lo-
cations in the read where bases other than is stored in the
PRS are to be inserted.

Representing exceptions

Figure 5 gives more details of the process used to encode
the reads via copies from the PRS and a list of exceptions.

If the compressed SAM file is to be self-contained, the
first component to be stored must be the PRS. It is a string
of bases, typically over an alphabet of size σ = 4, cov-
ering symbols A, C, G, and T with their usual meanings,
and requiring two bits per base to economically encode
them. Note that N, the symbol used to indicate “unknown”
symbols, is not permitted in the PRS. If it is the majority
symbol – as is the case with the N in Read 4, it is replaced
in the PRS by any other symbol.

Each of the reads relative to the PRS is stored as an
offset relative to the previous read’s POS; plus a length;
plus a set of instructions from which the read can be re-
constructed. To achieve the third component, each read is
decomposed into alternating “copy” and “replace” counts,
illustrated in the lower part of Figure 5. Because the ex-
ceptions are only required when a base differs from the
one stored in the corresponding position in the PRS, it is
beneficial to further split the stream of exceptions into four
parts, denoted in the figure as “not A”, “not C”, and so on.
For example, in Figure 5 the exception in Read 3 consists
of the two bases AA. The PRS contains TG at the corre-
sponding positions, so the first A is stored in the “not T”
subsequence, and the second in the “not G” subsequence.

These nine elemental components are striped across
nine arrays that collectively allow the set of reads to be re-
constructed, provided that the PRS is also available. Each
of the arrays can be thought of as being a set of integers
with a specialized purpose and localized distribution pat-
tern. For example, the values in the “Replace” array will
typically be much smaller than the values in the “Copy”
array, and should be stored using a different encoding.

The decision to avoid N values in the PRS is a con-
sequence of their low frequency in the SEQ sequence. If
N symbols were allowed in the PRS, the alphabet used to
represent it has σ = 5 symbols. On the other hand, if the
PRS is restricted to the standard σ = 4 bases, each can be
represented directly using two bits. Moreover, because the
PRS is an internally-stored aid to compression rather than
an expected output of the process, it can, if it simplifies
processing or saves space, be approximated. Hence, ex-
plicitly preventing N values does not damage the correct-
ness of the arrangement, since whatever is in that position
in the overlapping reads can be coded as an exception to
the base that is arbitrarily used to replace the N.

In addition, because N is such a rare symbol, it is also
helpful to code it differently when it appears in the four
“not” sequences. Where an N appears in any of the over-
lapping reads, it is replaced temporarily by whatever sym-
bol appears in that position in the PRS, and represented as
a simple copy (or as part of a longer copy). To undo this
deliberate simplification, an overall list of locations in the
reads that are N is also maintained. This list is consulted as
the final step in the decoding process, and any occurrences
of N within the designated range of positions are reinstated
into the output SEQ sequence before it is written. This ap-
proach implies a slight redundancy. But N symbols are
relatively rare, and the cost of doing it this way is far less
than the overhead cost of working with σ = 5 when cod-
ing the PRS, and of working with σ = 4 when coding the
four “not” sequences.
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(a) Constructing the presumed reference sequence by majority vote.

(b) Identifying exceptions to the presumed reference sequence.

Figure 4: Construction of a presumed reference sequence by taking the majority opinion of the overlapping reads at each
position: (a) a set of overlapping reads, with N symbols considered to be non-voting; and (b) the locations in those reads
at which discrepancies occur, again ignoring any Ns.
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Figure 6: Cumulative plot of the fraction of bases in the
SAM file as a function of the number of overlapping reads
each base belongs to.

Figure 6 shows the extent to which bases overlap. To
generate the three curves, the total set of bases in each file
was ordered according to the number of other bases that
were coincident with this one. For example, less than a
quarter of the total number of bases in each of the three
SAM files appeared as the only one aligned with that par-
ticular position in the RNAME sequence. More impor-
tantly, 50% of the bases share their position with 5 or more
other bases in HG00559, with 15 or more other bases in
Local, and with more than 100 other bases in HG00113.
The number of overlaps arising from the multiplicity of
reads is substantial.

Table 6 brings the various components together. Each
of the data types comprising the compressed SEQ stream

is shown, together with the number of instances of that
type of object. The cost of storing each component using
a suitable static code is also shown. For example, to code
the “not” sequences, each of which consists of symbols
over an alphabet of size σ = 3, the three binary code-
words 0, 10, and 11 are used, with an average cost of not
more than 1.67 bits per symbol, provided only the most
frequent of the three alternatives is assigned the one-bit
codeword. Similarly, a range of binary codes and Elias
γ codes (see Moffat and Turpin (2002) for details) are
used for the other components. The critical change that
has been achieved compared to the gzip approach is that
none of the values in Table 6 are based on adaptive (or
even semi-static) models or codes.

As was already noted in connection with Table 5, the
third of the data files, Local, contain a significant fraction
of reads that are not associated with an identified refer-
ence sequence. These read alignments are coded as if they
were non-overlapping, that is, as bases over an alphabet of
size σ = 4 symbols, with the N symbols reinstated subse-
quently, and no use made of a PRS. Those costs are shown
in the bottom part of the table.

Summed over the various components, Table 6 shows
that the deconstructed SEQ stream can be represented in
space that is always at least a little less than is required by
gzip equivalent (note that the representations in Table 6
also absorb the separate POS field, stored as the offset),
and on file Local is about half of that space. More im-
portantly, the proposed approach is structured in a manner
that has considerably more flexibility than gzip in terms
of access options, because it is based entirely around static
models and codes. Access operations on SAM-format
data are discussed shortly, in Section 5.

The QUAL field

Genomic data is discrete rather than sampled-continuous,
and hence, at face value, not amenable to lossy compres-
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Figure 5: Representing a group of SEQ fields as independent components relative to a presumed reference sequence.

Component Code HG00113 HG00559 Local
Number Size (MB) Number Size (MB) Number Size (MB)

Reads with an RNAME field supplied
PRS binary(4) 52,641,432 12.55 58,432,811 13.93 106,253,672 25.33
Length array constant 5,630,221 0.00 2,515,117 0.00 8,095,516 0.00
Offsets Golomb 5,630,221 2.01 2,515,117 1.80 6,651,885 3.17
Copies Elias γ 18,926,297 11.54 14,678,161 6.87 24,642,246 16.88
Replacements Elias γ 14,358,719 5.09 12,882,985 4.25 19,814,961 5.66
not A binary(3) 10,649,437 2.12 9,472,568 1.88 11,341,438 2.25
not C binary(3) 11,813,272 2.35 8,686,985 1.73 12,796,833 2.54
not G binary(3) 11,266,210 2.24 8,697,083 1.73 12,407,771 2.47
not T binary(3) 10,850,150 2.16 9,432,063 1.87 11,332,794 2.25
is N binary(230) 6,446 0.01 226,187 0.26 98,348 0.31
Reads without an RNAME field supplied
Bases binary(4) 0 0.00 0 0.00 144,363,100 34.42
is N binary(230) 0 0.00 0 0.00 788,351 0.93
Total 40.06 34.32 96.22

Table 6: Costs for SEQ components when stored as shown in Figure 5. Direct application of gzip to the original SEQ and
POS fields in a striped approach results in corresponding costs of 46.43 MB, 39.91 MB, and 232.54 MB respectively.

sion. But some components of the SAM-format data have
elements of sampling associated with them, most notably
the QUAL field (described in Section 3). Moreover, as is
illustrated in Table 4, the SEQ components and the dom-
inant space requirement when SAM data is compressed.
As a tangible reminder of this, combining the data pre-
sented in Tables 3 and 6 implies that, summed over all of
the SEQ values in HG00113, each base can be stored in an
average of 0.58 bits. But the corresponding gzip’ed rep-
resentation of QUAL elements requires an average of 3.97
bits each. This imbalance makes the QUAL fields costly
indeed to store.

There are two key characteristics that contribute to
QUAL sequences being harder to compress than SEQ com-
ponents. First, they are over a larger alphabet. The ASCII-
33 mapping that is used to convert probabilities into letters
typically spans between ten and twenty values in a typical
SAM file. And second, it is not possible to exploit the
RNAME-based overlaps when compressing QUAL fields in
the way that was possible with the SEQ fields, because dif-

ferent reads that cover the same base position are uncor-
related – the QUAL value is influenced by a wide range of
factors other than the actual offset at which it occurs.

However, the QUAL values represent quantized values
over a numeric domain, and so in some situations it may
be appropriate to quantize them more coarsely than via
the ASCII-33 representation described in Table 1. If a
tolerance p is stipulated, and limited flexibility of values
introduced, with the proviso that no QUAL score may be
varied by more than p units form its original quantized
value, then a spectrum of lossy representations can be in-
troduced. When p = 0, the representation is lossless.

To exploit this possibility, we represent the QUAL se-
quence as a list of tuples, consisting of a value followed
by a repeat count. This run-length encoded approach will
then naturally exploit repeated values, if they can be cre-
ated via the flexibility introduced by the lossy representa-
tion. To encode a QUAL sequence for a given parameter
p, consecutive values from the QUAL are added to a grow-
ing run while the difference between the maximum and
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Figure 7: Lossy representation of QUAL fields. In this example p = 1, and each original value is represented by a
mapped value that differs by at most one from the original.

Component Code HG00113 HG00559 Local
Size (MB) Size (MB) Size (MB)

Fidelity parameter p = 0 (lossless)
Run-length sequence Elias γ 61.48 32.83 92.16
Byte sequence ASCII 414.88 204.98 506.48
Byte sequence binary (global) 311.16 153.74 379.86
Byte sequence binary (local) 263.83 143.61 347.26
Fidelity parameter p = 1

Run-lengths Elias γ 66.89 32.98 80.60
Byte sequence ASCII 300.98 131.70 311.51
Byte sequence binary (global) 225.73 98.77 233.63
Byte sequence binary (local) 195.10 94.86 214.30
Fidelity parameter p = 2

Run-lengths Elias γ 65.01 29.11 71.99
Byte sequence ASCII 230.62 90.09 229.33
Byte sequence binary (global) 172.96 67.57 172.00
Byte sequence binary (local) 151.71 66.74 160.43
Fidelity parameter p = 3

Run-lengths Elias γ 60.34 24.88 64.28
Byte sequence ASCII 177.62 64.53 176.24
Byte sequence binary (global) 133.21 48.40 132.18
Byte sequence binary (local) 118.93 49.23 126.26

Table 7: Lossy compression of QUAL fields. Each QUAL value is replaced by one that is at most p different from its true
value. Direct application of gzip to the same SEQ data results in corresponding files of size 239.60 MB, 141.68 MB,
and 349.83 MB respectively.

minimum of the values in the run is less than 2p. Once
a trigger item is encountered that would cause the differ-
ence to be greater than 2p, a tuple is emitted comprising
the current run length, and the mid-value that represents
it. The trigger item is then the first value in the next run.
Figure 7 gives and example of this process, with p = 1. In
this example the 25 QUAL values are reduced to a total of
7 tuples, including one that includes 9 QUAL values in the
range 72 to 74, all represented by the mid-value 73. With
p = 2, the same sequence would be further reduced to just
three runs, with mid-values of 60, 71, and 72 respectively.

To store the runs, we again seek to make use of static
codes. Table 7 shows how this might be done, for a loss-
less representation with p = 0, and for three different
lossy options with p > 0. In this set of measurements, the
length of each run is assumed to be stored using the Elias
γ code (see Moffat and Turpin (2002)); and three differ-
ent approaches to representing each of the corresponding
QUAL values are examined:
• as a plain ASCII bytes, as is used in the uncom-

pressed SAM file;

• as a binary value using whole-of-file global parame-
ters, using the number of bits indicated by the range
of QUAL values stored in the SAM file; and

• as a binary value using per-alignment read parame-
ters, with two additional bytes stored per alignment
to indicate the upper and lower bounds of the local
binary code.

HG00113 HG00559 Local
p = 0 1.16 1.26 1.52
p = 1 1.61 1.97 2.48
p = 2 2.10 2.88 3.37
p = 3 2.72 4.01 4.38

Table 8: Average number of bases per run of QUAL val-
ues for three files and four different values of the fidelity
parameter p.

The latter is superior in all cases, even allowing for the
overhead caused by the two extra bytes. When p = 0 the
combined cost of the runlengths and QUAL values is (un-
surprisingly) greater than the cost of applying gzip to the
same data. But as p is increased, and lossy compression is
introduced, the cost decreases.

Table 8 lists the average length of the runs that are
formed. As anticipated, increasing p results in increased
run lengths, and hence better compression. On the other
hand, lossy representations are always a risk, since fu-
ture uses of data might require a fidelity of representation
that seems unnecessary now. One option would thus be to
store the QUAL values in lossy form using a relatively large
value of p, plus store a difference list (also compressed) as
a separate resource that would then allow exact reproduc-
tion of the original QUAL sequence, should it be required.
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5 Querying SAM files

The key data extraction operation applied to SAM files is
to isolate and present a window of the reads that it con-
tains, identified by an RNAME and a set of offset positions
within it. For example, if a particular trait is known to be
encoded in some section of the chromosome, a researcher
may interrogate the SAM-format data that has been gener-
ated for an individual, to see where and by how much that
individual differs from the reference in regard to the iden-
tified range of bases. Because of the small but persistent
possibility of error, all of the read alignments associated
with that window of bases are extracted from the SAM
file and displayed to the researcher.

Supporting localized extraction options via complete
decoding and linear scan is expensive, even for uncom-
pressed data. Tools for working with BAM format data
are similarly costly, and involved decompression of non-
trivial blocks of data, followed by sequential scanning
over the read alignments, looking for overlaps.

The storage structure described in Section 4 empha-
sized simple static codes for two purposes:
• first and foremost, to avoid all obstacles to random-

access decoding, so that given a set of pointers into
the various streams of data, decoding can be com-
menced immediately from that index location; and

• second, to allow for faster decoding than is typi-
cally possible if adaptive models, or inverse Burrows-
Wheeler transformations, or similar, need to be con-
sulted for each character generated.

The information preserving reordering of the SAM
file lines assists with these goals, grouping them first by
RNAME, and then by offset relative to the start of it. To
extract any/all reads that relate to a specified set of bases,
the set of reads that is required is identified by seeking
within the compressed representation, looking for the first
read alignment whose last base overlaps with the search
interval, and for the first read alignment thereafter whose
first base is to the right of the search interval.

To allow such seek operations to take place, the set of
read alignments will be sampled at regular intervals, and
an index built that maps offset values into bit pointers into
the compressed data stream (and into each of the distinct
streams of bits that must be combined in order to decode).
The sampling interval will control the tradeoff between
speed of access and space required, with frequent samples
allowing fast access, but requiring increased space.

6 Related Work

There has been a range of previous work that examines
the problem of efficiently representing DNA data (the SEQ
string that is a component of SAM-format files), includ-
ing early discussions such as that provided by Grumbach
and Tahi (1993), who identify the need to locate exact
matches, palindromic matches, and complement matches
at separations much greater than is the usual case in typical
text compression applications. Ten years later, Manzini
and Rastero (2004) describe an enhanced scheme that uses
a finger-printing techniques to identify three kinds of long
repetitions (exact, reverse-complement, and approximate,
and possibly far apart) in DNA sequences, and uses a
range of methods to code descriptions of the repetitions
so identified. Their method is both fast and effective com-
pared to other SEQ-specific approaches, but relies on an
adaptive model (namely, the part of the sequence already
encoded, which is used as a dictionary of long phrases),
and hence is not suited to random-access decoding.

Cao et al. (2007) describe a compression approach
based on multiple “experts”, each of which forms a prob-
ability estimation for each symbol in the genome. The

opinions of the experts are then weighted and combined,
and an arithmetic coder used to convert the final overall
probability distribution into an output bitstream. While
this type of approach is interesting from an “exactly how
much compression can be attained” point of view, it is at
odds with our intention to make use of simple state-less
codes that allow indexed random-access decompression.

Kuruppu et al. (2012) describe a DNA compression
regime they call COMRAD, which builds an explicit dictio-
nary of 16-base sequences, and then uses it iteratively to
form longer recurring phrases, assigning a new identifier
to each such extended phrase. It is an example of DNA-
tailored grammar-based compression; and when applied
to large sets of related genomes, is able to infer and ex-
ploit very long cross-genome repetitions. That is, the more
closely related the set of sequences that is being processed,
the better the more effective the compression. Kuruppu et
al. also explored the scalability of their approach, by simu-
lating the generation of extended sets of related genomes,
and testing the performance of COMRAD against them.

Deorowicz and Grabowski (2011) consider genomic
data stored in FASTQ-format, which, like SAM-format,
maintains a QUAL string for each SEQ string, and creates
files that can contain millions of short read alignments.
They use an adaptive dictionary-based approach, and con-
sider repetitions of 36 bases or more; one of the determin-
ing factors as to whether any given phrase is retained in
the dictionary is the associated quality scores, working on
the principle that low-quality phrases are less likely to re-
cur than high-quality ones. As is proposed in Section 4,
Deorowicz and Grabowski also make use of runlength in-
formation when storing the QUAL fields. They give results
that show that their system DSRC achieves excellent com-
pression with typical FASTQ files in the GB range being
reduced to 20% or less of their original size.

Matos et al. (2012) also consider the question of multi-
sequence alignment compression. They describe an ap-
proach similar to that summarized in Section 4, and derive
a sequence that they call the “estimated ancestor”. At the
core of their mechanism is a two-dimensional context pre-
dictor (similar to the type of predictor used for bi-level im-
age compression) that when coupled with blended proba-
bility estimates and an arithmetic coder is able to represent
a set of related SEQ components in under one bit per base.

Yanovsky (2011) presents a compression implementa-
tion for multi-alignment SEQ values called ReCoil, which
is designed to handle large files of genomic data stored on
disk (rather than in main memory) and where repetitions
might be widely separated. In this approach, reads that
share common subsequences of 15 or more bases are iden-
tified, and a common substitution made at all locations,
thereby saving space. The main contribution of the paper
is showing how the required steps can be mapped onto se-
quential scanning and sorting processes that are efficient
when the data is held on secondary storage.

Cox et al. (2012) apply the well-known Burrows-
Wheeler transform to multi-alignment short read ge-
nomic data. But unlike the general-purpose BWT-based
compression program bzip2, which uses blocks of just
900 kB, here very large numbers of reads can be accom-
modated through the suffix-sorting process that generates
the BWT. The transformed string is then coded using a
context-based estimator, and arithmetic coding. Excel-
lent compression outcomes are achieved, because all of
the like subsequences are brought together by the large-
scale BWT process, and hence the probability estimates
that are generated are relatively highly skewed, and the
emitted arithmetic tend to be very short. It is not clear
whether the same techniques can be applied to the QUAL
fields that dominate SAM-format files.

One potential problem with multi-alignment compres-
sion is the need for the RNAME and POS fields to be sup-
plied. While the methods presented in Section 4 include a
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PRS in the compressed package, rather than simply refer-
ring to an external reference sequence, they nevertheless
require the reads to have been aligned at the time they were
generated. When read alignments have not been provided
with RNAME and POS fields, we have coded them as unref-
erenced components, and used less effective techniques,
as shown in the bottom rows of Table 6. To address this
problem, Jones et al. (2012) include a de novo assembly
component in their Quip software, that seeks out possible
overlaps of reads seeded using overlapping 12-grams, and
uses a probabilistic Bloom filter to reduce the amount of
memory space required while this is taking place. The rest
of Quipmakes use of an order-12 (on bases) context-based
predictor, and arithmetic coding to convert those predic-
tions into a bitstream.

In work that is closely related to the proposal pre-
sented here, Daily et al. (2010) focus on simple static
codes such as Golomb codes, Rice codes, and Elias codes,
and have created a tool called GenCompress that han-
dles multi-alignment files with reference to an externally-
stored RNAME sequence. While we do not wish to make
use of explicit external reference sequences, there are
techniques in their work that may also be applicable when
we construct our own implementation.

In a similar vein, Wan et al. (2012) extend generic SEQ
compression to consider how best to handle collections of
related reads. They carry out a detailed study of the QUAL
field that is part of SAM- and FASTQ-format files, and
consider mapping transformations – including lossy ones
– that improve the compressibility of this data. A range
of codes are considered for representing the mapped val-
ues, including binary and other static representations. Wan
et al. conclude that general purpose compressors such as
gzip and bzip2 are less effective for QUAL values than
are simple codes, and that compression effectiveness can
be traded off against representational fidelity; in this re-
gard, the preliminary results presented above can be re-
garded as a partial verification of their observations.

A wide range of other techniques have been proposed:
Tembe et al. (2010) represent all possible distinct pairs
of base and quality value using Huffman codes; Christley
et al. (2009) store only the variations between sequences,
coding relative to a reference sequence; and Kozanitis
et al. (2010) divide reads into fragments of a chosen size,
and note that neighboring quality values are correlated and
can be handled using a Markov model.

7 Summary

We have described structures and techniques suitable for
representing SAM-format files containing genomic data.
The next significant step in this project is to implement
the proposed combination of mechanism as an integrated
compression tool, and verify that it is as effective as is
indicated by the results obtained during this feasibility
study. We will also implement the required random ac-
cess operations, and measure their efficiency; beyond that
we plan to seek ways of supporting that capability using
modern succinct data structures so that the cost of the ad-
ditional index information is minimized (or indeed, free).
Our overall objective is to provide fast random interval-
based access and compact storage requirements in a single
package. The work presented here lays the foundations for
such a development, and gives clear guidance as to the fu-
ture path of this project.
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Abstract

We present a new approach for automatically prior-
itizing and distributing test cases on multiple ma-
chines. Our approach is based on a functional depen-
dency graph (FDG) of a web application. We par-
tition the test suite into test sets according to the
functionalities and associate the test sets with each
module of the FDG. The high priority modules and
their associated test sets are then distributed evenly
among the available machines. Moreover, we further
prioritize the test cases by using inter-procedural con-
trol flow graphs within individual functional modules.
Our suggested approach reduces the test suite execu-
tion time and helps in detecting the faults early in
a regression testing cycle. We demonstrate the ef-
fectiveness of our technique through an experimental
study of a web application and measuring the per-
formance of our technique by using the well known
APFD metric.

Keywords: Regression testing, Test case prioritiza-
tion, Web applications, Parallel execution

1 Introduction

Web applications typically use a complex and multi-
tiered, heterogeneous architecture including web
servers, application servers, database servers and
client interpreters. Web applications undergo main-
tenance at a faster rate than any other software sys-
tem (Elbaum et al. 2003), as new functionalities are
introduced depending on user requirements. The
main aim of testing of a web application is to detect
faults in the required services and functionalities and
fix these faults, to enable it to function according to
specifications (Lucca & Fasolino 2006). A test suite
for testing a web application consists of many test
cases. The serial execution of a test suite on a single
machine might take many hours (Lastovetsky 2005)
depending on the size of an application, the machine
where the test suite is run and its workload.

For every new version of a web application re-
leased, regression testing is required to test the com-
patibility of the new features with the previously
tested functionalities. New test cases are generated
to perform regression testing. Since web applications
typically have a rapid turn around time, it becomes

Copyright c©2013, Australian Computer Society, Inc. This
paper appeared at the 36th Australasian Computer Science
Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 135, Bruce Thomas, Ed.
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very difficult to execute all the test cases within a
specified amount of time. The cost of re-running all
test cases may be expensive and not always useful
as sometimes only selected functionalities need to be
tested. Hence, test cases are usually prioritized dur-
ing testing in order to discover the likely vulnerable
parts of the code early so that developers have more
time to identify and debug the faults. Many strategies
have been proposed for prioritizing C (Elbaum et al.
2000) (Elbaum et al. 2002) and Java programs (Har-
rold et al. 2001) (Do et al. 2006) (Jeffrey & Gupta
2006). For web applications, Sampath et al. (Sam-
path et al. 2008) suggested prioritization techniques
using user-session based test cases.

Even though prioritization mitigates some of the
drawbacks of executing a complete set of test cases,
execution of test cases on a single machine may not
achieve the rapid testing criterion of large web appli-
cations. Also, most organizations can afford to de-
ploy multiple machines for testing. Hence, a possible
way of expediting the speed of regression testing is to
run disjoint parts of the same test suite on multiple
machines. In this paper, we investigate the parallel
execution of prioritized test cases. We first construct
a functionality dependency graph (FDG) of the entire
web application from its UML specification. A node
in the FDG is a unique functionality and a directed
edge from node m to node n indicates the functional
dependency of node n on node m. We partition the
entire test suite into test sets such that each test set
is associated with a unique functional module in the
FDG.

Next, we identify a subgraph S of the FDG for
prioritization. This subgraph consists of the nodes
that have been modified after the previous regression
testing cycle and nodes that are dependent on these
modified nodes. We assign priorities to the nodes
of S. The test sets are executed according to these
priorities when a single machine is used for testing.
For multiple machines, we sort the nodes of S in pri-
ority order and allocate nodes from different prior-
ity groups approximately evenly among the available
machines. We further prioritize the execution of test
sets in each machine by using code level control flow
graphs (CFG). We execute the test sets allocated to
each machine simultaneously in parallel. Finally, we
collect the test results in a single machine. In this pa-
per, we suggest our approach using web applications
but our approach is quite general and can be used for
any kind of software application if we can construct a
functionality dependency graph for a software system.

Our main contributions in this paper are: 1. De-
tection of modified functional modules in web appli-
cation. 2. Prioritization of the test cases using FDG
and CFG. 3. Partitioning of the prioritized test suite
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into different test sets for parallel execution on dif-
ferent machines. The rest of the paper is organized
as follows. Section II presents the background study
related to prioritization techniques and parallel exe-
cution of test cases. Section III presents the work re-
lated to generation of functional test cases from UML
Activity diagrams and the generation of the function-
ality dependency graph. Section IV describes our ap-
proach that includes partitioning of test suite into test
sets, prioritization framework, collecting test sets into
groups for distributing to individual machines, paral-
lel prioritization and parallel execution of test cases.
Section V describes the experimental evaluation. The
results are presented in Section VI and the conclu-
sions are presented in Section VII.

2 Background

While there are many possible goals of prioritization,
this paper focuses on the goal of reduction of test suite
execution time and early detection of faults. While
there are many prioritization techniques available for
software testing, very few are available for web ap-
plication testing. Rothermel et al. (Rothermel et al.
2001) first defined the problem of test suite priori-
tization. Srikanth et al. (Srikanth et al. 2005) sug-
gested a cost effective test case prioritization tech-
nique that improves quality of software by consider-
ing defect severity. They suggested to improve the
fault detection rate of severe faults during the testing
of new code and regression testing of existing code.
They called this new approach as PORT (Prioriti-
zation of Requirements for Test). PORT prioritizes
black box tests at the system level when information
between requirements, test case, and test failures is
maintained by the software development team.

Elbaum et al. (Elbaum et al. 2004) proposed a
prioritization technique that improves fault detection
rates. They applied different prioritization techniques
to different programs and identified a technique that
is cost effective for early detection of faults. Their
method is based on total function coverage prioriti-
zation, which orders the test cases according to the
number of functions they cover. If multiple test cases
cover the same number of functions, then this tech-
nique orders them randomly. They found that the
performance of this technique varied according to the
program attributes, change attributes and test suite
characteristics. Rothermel et al. (Rothermel et al.
2000) (Rothermel et al. 2001) suggested the prioriti-
zation of test cases when the software is written in
a single language. Their technique constructs control
flow graphs and uses those graphs to select the test
cases related to the modified versions of the software.

Wong et al. (Wong et al. 1997) prioritized test
cases using the criterion of extending cost per addi-
tional coverage. They proposed a technique that is a
combination of minimization and prioritization to de-
termine which regression tests should be re-run. They
first find the minimal subset in terms of the number
of test cases that preserves the same test coverage as
the original test set. Then they sort the test cases in
order of increasing cost per increasing coverage and
then select the top n test cases for revalidation. The
results suggest that this technique can provide soft-
ware testers with cost-effective alternatives to help
conduct quick regression testing under budget con-
straints and time pressure.

Sampath et al. (Sampath et al. 2008) suggested a
test suite prioritization technique for web applications
by test lengths, frequency of appearance of request
sequences, systematic coverage of parameter values

and their interactions. They considered frequency of
user requests and interaction of parameter values in
the requests. A test case that is designed according
to user sessions is based on a series of HTTP requests
consisting of base requests and name-value pairs that
are used to access that application. A base request
is a HTTP request to access both static and dynamic
content in web pages. They use the entire test suite
for execution but they ordered the test cases on the
basis of user session requests to detect the faults early
in test suite execution.

Existing prioritization techniques related to web
applications prioritize the test cases when the test
cases are a part of a single test suite as there is only
one processing queue that selects the test cases to run.
Qu et al. (Qu et al. 2008) describes the prioritization
problem using parallel scenario. They presented their
results for a standalone application that was installed
on one machine. They tested the Microsoft Power-
Point application as their target application. Their
approach was not designed to test the application ac-
cording to its functional requirements. Hence their
approach is not applicable for regression testing of
complex web applications.

Haftmann et al. (Haftmann et al. 2005) sug-
gested a technique for parallel execution of test cases
but their technique involves the testing of only the
databases. Chakraborty et al. (Chakraborty & Shah
2011) suggested an approach for parallel execution of
test cases by collecting the data from manual test pro-
cesses and they assumed that manual test execution
time and automated test execution time are equal.
In case of complex web applications, manual test ex-
ecution time and automated test execution time may
vary. It is not possible to test the functional require-
ments with the approach suggested by Chakraborty
et al. as they do not consider the functional specifi-
cations while extracting the dependency graph.

None of these papers suggested an automated par-
allel prioritization approach to test web applications
according to the functional specifications for regres-
sion testing of complex web applications. In this pa-
per, we propose a new automated approach for exe-
cution of prioritized test suite by distributing it into
several test sets. The execution of parallel prioritized
test sets reduces the execution time and detects faults
early. Our technique involves two major challenges:
partitioning and ordering. In partitioning a test suite,
we have to decide which test cases need to be executed
on which machine and ordering is used to decide in
which order the subsets of the test cases are executed
in each machine.

3 Related Work

3.1 Generation of test cases

Törsel et al. and Tung et al. suggested automatic
generation of test cases for web applications (Tung
et al. 2010) (Torsel 2011). They described a fully
automated approach to generate test cases for func-
tional testing. We generate functional test cases from
the functional specifications of web applications and
convert them into a C# format readable by the test
tool Selenium. After generating all the test cases, we
partition them into test sets according to the FDG
(defined below). The test cases in one particular test
set belongs to a unique functionality and is associated
with a node of the FDG.
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3.2 Functionality and Functional Modules

Functionality refers to user actions such as keyboard
and mouse events required to navigate through web
applications (Sampath et al. 2007) (Di Lucca et al.
2003). UML sequence diagrams provide information
about functionality and the interaction among dif-
ferent objects in a web application (Cartaxo et al.
2007). Functionality is defined in the specification
documents and is provided by the user interface (Hei-
necke et al. 2010). A functional module is a collection
of different functions (at the code level) to enable
the functionality to behave according to the speci-
fications.
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Figure 1: Control Flow Graph (CFG) for the Reg-
istration node in the FDG of the Online Bookstore
application.

3.3 Functionality dependency graph

A FDG (Zimmermann & Nagappan 2007) (Samuel
et al. 2005) is a directed graph that is used to de-
scribe the relationship between functionalities in web
applications. For an FDG G = {V,E}, the node set V
is the set of functionalities in a web application and
E is the set of directed edges that represents the de-
pendency relationship among the functionalities. A
directed edge from m ∈ V to n ∈ V indicates the
functional dependency of the module n on module m.

3.4 Control flow graph

We assume that each functionality is composed of a
class or a combination of classes in the source code
of a web application. We extracted CFG for every
functional module in the FDG of the Online Book-
store1 application using the algorithm by Rothermel
et al. (Rothermel et al. 2000). Each module in a CFG

1available freely at www.gotocode.com

is either a C# or an ASPX (Active Server Pages Ex-
tended) source code module. We show an example
CFG in Fig. 1.

4 Our approach

We partition the complete test suite into test sets,
each test set is associated with a unique functional
module or node in the FDG. We prioritize the test
cases within each test set using the CFG of the cor-
responding functional module
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Registration
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Editorial
Orders

Shopping

Cart

Books

Search

Figure 2: The Functionality Dependency Graph
(FDG) for the Online BookStore application.

4.1 Partitioning of Test Suite

We extract the FDG of the Online Bookstore appli-
cation from its functional specifications based on our
previous work (Garg & Datta 2012). We captured
various functional requirements using UML. We cap-
tured the interactions between the requirements. We
manually extracted the FDG for the Online Book-
store application from the functional specifications as
shown in Fig. 2 but depending upon the technologies,
other methods of generating FDG could be applied.
Fig. 2 shows the various functional modules for this
web application.

We generate test cases for all these functional mod-
ules and initially randomly store them in a test suite.
We partition the entire test suite into test sets, such
that each test set is associated with a unique func-
tional module. We automatically identify the test
cases that are associated with a particular functional
module by reading the test cases and matching the
statements. If a test case contains the statements
that are required to test some functionality Fi, we
store that test case separately in a test set Ti that
is associated with Fi. This computation is done in a
single machine that we call as the test server.

4.2 Prioritization of test cases for each func-
tional module

Rothermel et al. defined the problem of test suite
prioritization in (Rothermel et al. 2001). Given T as
a test suite, P is the set of all test suites that are the
prioritized orderings of T obtained by permuting the
tests of T and F is a function obtained from P to the
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reals, the problem is to find a permutation, T ′ ∈ P
such that (∀T ′′

)(T
′′ ∈ P )[F (T ′) ≥ F (T

′′
)].

Given a functional module Fi (a node in the FDG),
we prioritize the test cases in the corresponding test
set Ti according to the CFG of Fi. The modules with
the dotted circles in Fig. 3 refer to the modified source
code modules of the Online Bookstore web applica-
tion. Each code module in a CFG is associated with
a test case or series of test cases. The modified code
modules in CFG are executed in priority compared to
the unmodified modules. Our prioritization strategy
is as follows:

• The modified modules closer to the root or the
class definition are given highest priority in exe-
cution of test cases in a test set.

• If two modified modules are at the same level in
CFG, the modules having more dependent mod-
ules will be given priority in execution.

• We randomly order the test cases belonging to
the remaining unmodified modules.

Note that, this prioritization is done for all the
functional modules in the FDG after we generate the
test cases in the test suite. As all the functional mod-
ules in the FDG may be tested in different regression
test cycles, we need to prioritize the test cases for each
module using the corresponding CFG. This computa-
tion is done in the test server.
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Figure 3: Control Flow Graph (CFG) with modified
modules of the Registration functional module of the
Online Bookstore application.

4.3 Extraction of the affected subgraph from
the FDG

We recall that a directed edge from node m to node
n in the FDG indicates that node n is dependent on
node m. We also say node m invokes node n. We

assign priorities to the nodes of the FDG in the fol-
lowing way:

1. A newly introduced node in the FDG is given
the highest priority. If there are multiple newly
introduced nodes, they are assigned the highest
priorities in an arbitrary order.

2. The modified nodes in the FDG are given the
next lower priorities.

3. The next lower priorities are assigned to the
nodes that directly or indirectly invoke the mod-
ified or newly introduced nodes. A higher prior-
ity among these nodes is assigned to a node that
is closer (in terms of path length) to a newly
introduced or modified node. In case of multi-
ple paths, the node that is following the shortest
path to a newly introduced or modified node will
be given priority.

4. All other nodes (except the nodes that are
invoked by the modified or newly introduced
nodes) are assigned the next lower priority in an
arbitrary order.

5. The nodes that are invoked either directly or
indirectly by the modified or newly introduced
nodes are assigned the least priorities. These
nodes have been tested in the previous regres-
sion test cycles and they are unchanged. Hence
we assume that they need not be tested in the
current test cycle. Hence these nodes are called
unaffected nodes. All other nodes are called af-
fected nodes.

We use the following observation for extracting the
affected subgraph of the FDG.

Lemma 1 The affected nodes in the FDG form a
connected subgraph of the FDG.

proof 1 Our prioritization scheme ensures that ev-
ery directed path from the root to a leaf of the FDG
has all the affected nodes as a connected sub-path. We
prove this by contradiction. Consider three consecu-
tive nodes m,n and p on a root to leaf directed path
such that m and p are affected but n is not affected.
Such a situation will make the affected subgraph dis-
connected. However, p is affected and n invokes p
and hence, our prioritization scheme ensures that n
is also affected, a contradiction.

We extract the affected subgraph S of the FDG
by performing a depth-first search. The depth-first
search picks up the subgraph containing only the af-
fected nodes, as the search backtracks whenever it
encounters an unaffected node. The search returns
with the affected subgraph due to Lemma 1. The
nodes in S are distributed to the available machines
in our parallel prioritization scheme. This is discussed
below. This computation is done in the test server.

4.4 Allocating functional modules to ma-
chines

The test server allocates the functional modules to
the machines participating in the parallel test exe-
cution. It is easy to distribute the test sets for the
functional modules to different machines if the num-
ber of functional modules F is less than or equal to
the number of available machines M . Each machine
can be allocated the test set of one functional mod-
ule. However, realistically complex web applications
consist of a large number of functional modules and
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F is usually much greater than M . Hence, we need to
allocate multiple functional modules and their associ-
ated test sets to each available machine. We construct
subsets of functional modules in such a way that each
machine is allocated approximately an equal number
of functional modules as well as the priorities of the
different functional modules in each subset are also
approximately equal.

We construct the subsets in the following way.
Each node in the selected subgraph S of the DFG
has a priority associated with it. We sort the nodes
according to these priorities and store in an array A.
From the discussion in Section 4.3, the nodes can
have four different priorities pi, 1 ≤ i ≤ 4. We de-
note the number of nodes with priority pi as |pi|. We

allocate d |pi|
M e (1 ≤ i ≤ 4) nodes from the priority

class pi to each of the M machines. Though it is
possible that the last machine is allocated less than
|pi|
M nodes, nodes from each priority class are approxi-

mately evenly distributed among the M participating
machines.

4.5 Parallel execution strategy

The functional modules and their associate test sets
are allocated to the participating machines by the
test server according to the strategy discussed in Sec-
tion 4.4.

Fig. 4 shows the setup of the entire test process.
The main machine acts as a hub and stores all the
test case execution data and behaves like a test server.
The other computing nodes execute the allocated test
sets in parallel. Each machine stores the test execu-
tion results and these results are sent to the test server
for constructing the combined test report.
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Figure 4: Parallel execution of test sets

5 Experimental evaluation

In this section, we discuss our experimental set up
using our suggested approach.

To perform the experimental evaluation, we ex-
tended some of the functionalities of this original ap-
plication to make it more complex. This application
is an online shopping portal for buying books. This
application uses ASPX for its frontend and MySQL
for its backend connectivity. The application allows
the users to search for books by different keywords,
add to the shopping cart and proceed to orders.

We randomly seeded 20 faults in various modified
functionalities of the Online Bookstore. The faults
were assumed to have similar cost levels. Three differ-
ent kinds of faults (Guo & Sampath 2008) were seeded
in the application: Logical Faults, Form Faults and
Appearance Faults. A logical fault in the program
code relates to business logic and control flow e.g., if
the user inputs the same string for the password and

confirm password fields, still the application displays
the error message Password and Confirm Password
fields don’t match. Form faults in the program code
modifies and displays name-value pairs in forms. Ap-
pearance faults controls the way in which a web page
is displayed. We seeded faults in the various mod-
ified functionalities like Registration, Members, My-
Info, Login and Books and assumed that the faults
behave like real faults.

We used C# to implement our proposed approach.
We generated 130 test cases from the UML Activ-
ity diagrams for the Online Bookstore and converted
them to C# test scripts readable by the Selenium
test tool for automatic test suite execution (Torsel
2011). The generated test cases were assumed to be
non-redundant and were generated according to the
functional specifications.

We partitioned the test suite into different test sets
and associated these test sets with the different func-
tional modules. Each test set associated with a func-
tional module is composed of test cases related to that
specific functionality. The Online Bookstore applica-
tion has 14 functional modules (Fig. 2) and hence
the test suite was divided into 14 test sets. Though
our framework is general and can be applied when
only some of the functional modules are modified, we
modified all the 14 functional modules to evaluate the
worst-case performance of our parallel prioritization
scheme. Hence according to the discussion in Sec-
tion 4.3, all the nodes had the highest priority. We
used three computers for running the tests. The first
two computers were allocated five functional modules
each and the last was allocated the remaining four
modules. The test cases were executed in parallel on
their respective machines. We performed the experi-
ments using Selenium Grid (Bruns et al. 2009). For
comparing our results with a random distribution of
test cases, we also randomly distributed the test cases
among the three machines and executed them in par-
allel.

Rothermel et al. (Rothermel et al. 2001) presented
the APFD (Average Percentage of Faults Detected)
metric for measuring fault detection rates of test
suites in a given order. APFD values range from 0
to 1; higher numbers imply faster (better) fault de-
tection rates (Elbaum et al. 2001).

APFD can be calculated using the following for-
mula:

APFD = 1− TF 1 + TF 2 + TF 3 + ... + TF n

mn
+

1

2n

TFi is the position of first test in T that exposes fault
i
n= no. of faults
m= no. of test cases

Informally, APFD measures the area under the
curve that is plotted by the percentage of faults de-
tected by prioritized test case order and the test suite
fraction.

We collected the test execution results and used
the APFD metric to determine whether our approach
detects faults earlier and faster compared to the ran-
dom ordering of the test cases. We applied the APFD
metric separately for the test cases run on each of the
three participating machines.
Threats to Validity: We used three different ma-
chines with different hardware configurations to ex-
ecute the test cases in parallel. All these machines
had different workload conditions when we were run-
ning our experiments by publishing the web appli-
cation on the virtual web server of the school. We
noticed that the test execution times differed when
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we repeated our experiments. We manually seeded
the faults in the web application. The faults may
not be evenly distributed among the functionalities.
Although they are considered to be faults of equal
severity, faults with different severity levels may vary
the results. The functional test case execution time
may differ due to the varying lengths of test cases.

6 Results and Analysis

Table 1: Results for Random Ordering
%age
of test
suite
run

Machine
1

Machine
2

Machine
3

10% 0 0 21.68

20% 0 0 61.28

30% 0 0 66.85

40% 0 0 66.85

50% 0 32.44 66.85

60% 19.80 47.06 66.85

70% 46.90 47.06 66.85

80% 46.90 47.06 66.85

90% 46.90 47.06 66.85

100% 50.61 47.06 67.18

We compared the test results for the random ap-
proach with our suggested approach using the APFD
metric. We recall that we distributed the test cases
randomly among the three participating machines in
the random approach. The first two machines were
allocated five modules each and the last machine was
allotted the remaining four modules. Table I shows
the results for the random approach.

We have shown the results in 10% increments. We
use the APFD metric to explain our results. We note
that the random ordering of the test set in the first
machine has not detected any faults for the first 50%
of the test set execution. The APFD results for 100%
test set execution is 50.61. Similarly, the random or-
dering of the test set in the second machine has not
detected any fault for the first 40% of the test set exe-
cution. The APFD result for 100% test set execution
is 47.06.

Table 2: Results from our approach
%age
of test
suite
run

Machine
1

Machine
2

Machine
3

10% 77.64 74.95 97.17

20% 77.64 74.95 97.17

30% 92.35 91.15 97.17

40% 92.35 91.55 97.17

50% 92.35 91.55 97.17

60% 92.35 91.55 97.17

70% 92.35 91.55 97.17

80% 92.35 91.55 97.17

90% 92.35 91.55 97.17

100% 92.35 91.55 97.17

Table II shows the APFD results using our priori-
tization approach. The test sets allocated to the first
machine are able to detect all the faults in the first
30% of the test set execution. The APFD result for
100% test set execution using our prioritization ap-
proach is 92.35. The test sets allocated to the second
machine are able to detect all the faults in the first
30% of the test set execution. The APFD result for
100% test set execution in using our prioritization ap-
proach is 91.55. Similarly, the test sets allocated to
the third machine are able to detect all the faults in
the first 10% of the test set execution. The APFD
result for 100% test set execution for this test set is
97.17.
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Figure 5: Faults detected (Random ordering of test
sets)

Fig. 5 shows the execution results of random or-
dering of all three test sets. Fig. 5 shows that many
faults were detected after executing close to 100% of
the test cases. Fig. 6 shows the execution results of
the test sets that are prioritized using our approach.
Fig. 6 shows that many of the faults were detected in
the first 30% of the test set execution.
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Figure 6: Faults detected (Prioritization Approach)

The execution for the entire test suite on a single
machine took approximately 9 hours. After imple-
menting our suggested approach, we were able to ex-
ecute all the test cases in less than 3 hours and could
detect all the faults in the first hour.
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7 Conclusions and Future Work

We have proposed a novel parallel prioritization ap-
proach for regression testing of complex web applica-
tions in this paper. We prioritize the test case execu-
tions at two levels, by choosing and prioritizing the
functional modules from the functional dependency
graph and then ordering the test cases within each
test set by using the control flow graphs at the code
level. We then distributed the functional modules and
their associated test sets among different machines.
We measured the performance of our approach using
the APFD metric.

We validated the results using various different
test combinations and found that our approach is able
to detect the faults early and within a small amount
of time. In the future, we will validate our results on
several other web applications. We will consider real
faults with different cost levels. As we have shown,
our first 30% execution of test sets detects most of the
faults. In the future, we will suggest a technique that
will select the test cases related only to the modified
functionalities in web applications and execute only
those test cases that will provide maximum fault de-
tection. This may help to reduce the total test exe-
cution time even more, as we need to execute only a
subset of test cases.
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Abstract

Trust and reputation systems are widely adopted in
the e-commerce environment to help buyers choose
trustworthy sellers. It is a normal thought that the
higher the reputation is, the more trustworthy its
holder should be. However, our research discloses
that under certain circumstances, a high-reputation
seller has greater intention to cheat, which means that
buyers should trust the low-reputation sellers better
in those cases. We term this phenomenon Trust-
Reputation Paradox. The theoretical proof, based on
the game theory, is conducted to show the existence of
the paradox. The root causes of this abnormality are
revealed and discussed. In the end, we provide some
guidelines for trust and reputation system designers
to avoid this obscure pitfall.

Keywords: trust, reputation, trustworthiness, para-
dox, game theory

1 Introduction

The research on trust has been taken to the center
stage in the field of electronic commerce, covering a
wide range of topics (Momani & Challa 2010). Af-
ter a long period of deliberation, some agreements
have been made in understanding the concepts of
trust, trustworthiness and reputation. Trust is the
trustor’s, i.e., an online buyer’s, willingness to be
vulnerable to the trustee, i.e., a seller, based on the
belief that the trustee will act in a manner consis-
tent with the trustor’s expectation (Pavlou & Gefen
2004). Trustworthiness is an attribute of a trustee re-
flecting the extent that he/she is worthwhile to trust
(Mayer et al. 1995, Gefen et al 2008). In (Jøsang
et al. 2007), reputation is “what is generally said
or believed about a person’s or a thing’s character
or standing.” The difference between reputation and
trustworthiness is that reputation is a public opinion,
while trustworthiness emphasizes a personal and sub-
jective opinion (Wang & Vassileva 2007). They be-
come two exchangeable concepts when putting them
into the scope of the vast web where usually no private
knowledge is assumed between a trustor and a trustee
(Jøsang et al. 2007), because the absence of private
knowledge makes the public opinions, i.e., reputation

Copyright c©2013, Australian Computer Society, Inc. This
paper appeared at the 36th Australasian Computer Science
Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 135, Bruce H. Thomas, Ed.
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the only channel to get to know the trustee’s charac-
ter. From this perspective, reputation fully represents
trustworthiness. Researchers design trust and reputa-
tion models to better represent the actual character
of trustees so that a trustor can make use of it as
reference.

Currently, two major methodologies are dominat-
ing the construction of trust and reputation models
(Artz & Gil 2007, Bonatti et al. 2005): policy-based
methods and reputation-based methods. Policy-
based methods, such as (Olmedilla et al. 2004) and
(Li et al. 2009), establish trust by exchanging digital
credentials based on the defined policies or protocol-
s. Reputation-based methods like (Maximilien & S-
ingh 2002, Teacy et al. 2006, Rouhomaa et al. 2007),
which this study concerns, predict whether trust can
be formed through measuring reputation scores or a
ranking list calculated by specific algorithms on his-
torical data. Besides, there are some social network
trust models such as (Nguyen et al. 2010) and (B-
huiyan et al. 2010) that use a chain of recommenda-
tions from different nodes to help form trust.

Many reputation models are studied (Wang & Vas-
sileva 2007), although they seem to be quite vulner-
able to attack (Hoffman et al. 2009). The model de-
signers always make an implicit assumption that the
higher the reputation is, the better the reputation
holder can be trusted. Our research starts with veri-
fying the assumption and discloses that the relation-
ship between trust formation and reputation is more
complex. A rational buyer should, sometimes, prefer
trusting a low-reputation seller to a highly reputed
one. We name this seemingly impossible phenomenon
the Trust-Reputation Paradox. A game-theory mod-
el is used to illustrate what the paradox is, why it
happens and how it impacts the reputation policies.
The contributions of this paper are as follows:

• The Trust-Reputation Paradox is disclosed and
proved, which indicates that the relationship be-
tween reputation and trust is not always “the-
higher-the-better”.

• A game-theory model is presented to reveal the
the relationship between trust formation and rep-
utation.

• Several guidelines on how to manage reputation
are provided to help reputation system designers
to avoid the paradox and to improve their mod-
els.

The paper is structured as follows. In Section 2,
the research scenario is given together with some pre-
liminary definitions. In Section 3, we present a model
to illustrate the relationship between reputation and
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trust formation. In Section 4, we make further dis-
cussions on the model and reveal how and why the
paradox would happen. Several guidelines to avoid
falling into the paradox are provided as well. In the
last section we make conclusions, limitation discus-
sions and talk about the future work.

2 Scenario and Preliminaries

Assume that there is a n-seller e-commerce market.
All the sellers provide similarly featured goods that
offer the same functionalities but with different prop-
erties, such as price, quality and after-sale services.
The n sellers hold reputations r1, r2, ..., rn, respec-
tively.

Definition 1 (Reputation Event). In a reputation
system, Reputation Events (RE) are the events whose
occurrences cause reputation change. The set E of all
reputation events is denoted by E = {e1, e2, ..., em}.

The elements in Set E are the specific types of rep-
utation events, like a “positive feedback event” or a
“negative feedback event”. There can be many type-
s of REs in a reputation system. However, they are
generally divided into two groups, the positive REs
that cause reputation increase and the negative REs
causing reputation decrease.

Definition 2 (Reputation Policy). In a reputation
system with RE set E = {e1, e2, ..., em}, Reputation
Policy is the collection of rules defining how reputa-
tion changes (at different reputation values) with the
occurrence of a possible RE. The Reputation Policy is
denoted by a function ρ(r, e), where r is the reputation
of an entity and e ∈ E is the RE causing the change.
ρ(r, e) is the amount of reputation change at reputa-
tion r if e occurs. A good example to demonstrate
reputation event and policy is the systems that use
average of ratings as reputations. A lot of such sys-
tems have been implemented (Amazon 2012, Epinion
2012). Suppose a positive rating deserves +1 and a
negative rating gained −1. Each time a rating being
given to reputation holder is regarded as a reputation
event. The final reputation of an entity is the average
of all its ratings. If we use e+m and e−m to represents
the mth positive and negative ratings, after e+m or e−m
occurs, the reputation will become ri×(m−1)+1

m and
ri×(m−1)−1

m , respectively. Then, the reputation poli-
cy can be represented as

ρ(ri, e
+
m) = ri×(m−1)+1

m − ri = −ri+1
m

ρ(ri, e
−
m) = ri×(m−1)−1

m − ri = −ri−1
m .

(1)

There are also cases in which reputation change
is not related to reputation. For example, in eBay
(eBay 2012) where the reputation system uses a sim-
ple summation method to calculate reputation, every
reputation event (customer rating) will increase or de-
crease 1 point on the reputation. The amount of rep-
utation change is fixed value rather than a function
of reputation r. This can be seen as a special case of
our reputation policy definition where the coefficient
of r is zero.

Although reputation change is reflected by the su-
perficial value marked on each reputation holder, it
has more profound impact varying the potential ben-
efit behind the mask. Because reputation is regarded
as a reference to judge the character of an entity, a
high reputation value represents a better character,
which implies more potential safety and security in
online interactions. These may bring the reputation

Figure 2: An example of a sigmoid function

holder more benefits. To measure the benefit of rep-
utation, we define the concept of reputation utility.

Definition 3 (Reputation Utility). Given a rep-
utation holder whose reputation is r, the reputation
utility of the holder, denoted by U(r), is the benefit
brought by its reputation. The function U is termed
reputation utility function. We call µ(r) = U ′(r) the
reputation utility density function.

Reputation utility can be represented in many
forms. For example, it can be expressed as a part
of the profit of an e-commerce seller. Suppose that
a seller’s profit of each goods unit is a constant val-
ue (the price and the cost do not change frequently).
The seller’s total profit depends on how many items
he can sell out. If we further assume that the mar-
ket volume in a certain duration is fixed, the seller’s
total profit is related to how much market share he
seizes. In general, any kinds of benefits brought by
reputation can be viewed as reputation utility.

Intuitively, a better reputation helps the seller
gain more market share, which implies more utilities.
However, different market environments may have d-
ifferent detailed relationships between reputation and
reputation utility. In this case, a sigmoid function,
such as f(t) = 1

1+e−t is often used (Tang et al. 2012,

Michalski et al. 1986).
For example, for a reputation system having the

definition domain in [0, rmax]. The reputation utility
function can be assumed to be a moved sigmoid func-
tion U(r) = Umax

1+e(−r+r∗) , where r∗ is the shift amount

and Umax is the coefficient for scaling. Fig. 1(a)
shows the general trend of such sigmoid function,
whose properties can be generally described by the
following statements.

1. The higher the reputation is, the more reputation
utility it represents. U(r) is a monotone increas-
ing function of r, i.e., if ri ≥ rj U(ri) ≥ U(rj).

2. A threshold reputation utility exists between 0
and Umax, i.e., ∃ 0 ≤ Uo ≤ Umax such that
U(0) = Uo. Even if a seller’s reputation is down
to 0, it still gains some utility.

3. There is r∗ between 0 and rmax such that if
0 ≤ r ≤ r∗, U(r) is a convex function (µ(r) is
increasing) and if r∗ ≤ r ≤ rmax, U(r) is a con-
cave function (µ(r) is decreasing). r∗ is a point
of inflection.

Let us explain the above properties in detail. The
first one complies with our common sense. The better
the reputation is, the more benefit it can bring to its
holder. The second one also reflects a common psy-
chology of the buyers who usually would like to give
new sellers some chances, which means that a new
seller with an entry-level reputation value still gains
some utility. The last property can also be under-
stood from the buyer’s view. A very normal thought
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Figure 1: Reputation Utility Function Curves and Reputation Utility Density Function Curve

is that two sellers both with very high reputations
would be treated as having almost the same level of
trust. Buyers Choosing whom depends on their goods
difference, rather than the reputations. Similarly, t-
wo sellers both with very low reputations are also of
very slight difference, because their reputations are
not worthwhile to notice. This phenomenon implies
that when the reputation goes very high, any incre-
ment of reputation only invites very minor reputation
utility increase and so is for otherwise low reputation
decrease. This also complies with the law of marginal
utility theories in Economics, which forms the reason
of the third property. Note that r∗ may not be ex-
actly in the middle between 0 and rmax. At r∗, the
reputation utility gains the highest changing speed.

The general curve of the density function µ(r) is
in Fig. 1(b). As shown, µ(r) is non-negative in the
entire domain. µ(r) increases with r in [0, r∗] and de-
creases in [r∗, rmax]. Its maximum value is gained at
r∗. Note that µ(rmax) can be greater than, less than
or equal to µ(0). The figure only gives an example.

Definition 4 (Reputation Utility Gain). In a rep-
utation system with utility function U(r), given the
difference of two reputations to be ∆, the incremen-
t of reputation utility along with the reputation in-
crement ∆ is termed the reputation utility gain. Let
G(r,∆) = U(r + ∆) − U(r), G(r,∆) is termed repu-
tation utility gain function.

G(r,∆) is a very important function in our model.
It can be either positive or negative, because ∆ can
be either positive or negative. Please also note that
∆ may not be a fixed value. It can be a function
of r or of other factors, depending on the reputation
environment. We will discuss this later in detail.

The above four definitions pave the way for further
analysis. In the next section, we start modeling buyer
and seller transactions, from with we will draw the
conditions of trust formation between them.

3 Linking Reputation and Trust: the Model
of Online Trust Game

In this section, we propose a two-player two-stage se-
quential game model to describe the process of online
transactions. The purpose is to find the relationship
between reputation and trust formation. By judging
when the equilibrium of the game falls down to “trust-
ed behaviors”, we get the conditions when a seller can
be trusted.

3.1 The online Trust Game

The two players in the game are a buyer and a sell-
er. At beginning, the buyer has to decide whether

to trust the seller. If the buyer chooses not to trust
the seller, the game finishes with zero payoffs for both
players. Otherwise, the buyer must pay the cost to
the seller before the seller delivers any goods/services.
After receiving the payment, the seller decides either
to deliver the promised goods, or to cheat. If the
seller acts as promised, the buyer’s requirements are
fulfilled and the seller gets some benefit plus an in-
crement of reputation utility. If the seller cheats, the
buyer loses its payment and the seller gets a benefit
that is greater than that of acting honestly. However,
the seller’s reputation will decrease which results in a
decrease of reputation utility.

Fig. 3 gives the detailed payoffs, denoted in pairs
by (x, y), in which x is for the buyer and y is for
the seller. Since our focus is the seller’s trustworthi-
ness, the buyer’s payoff is simply denoted as B and
−B′. The payoff of the seller is the benefit from the
sold items plus the utility gain from its reputation
change. We assume that the occurrence of any action-
s as promised trigger a positive reputation event e+
and any cheating actions trigger a negative reputation
event e−. If the seller behaves as promised, the buy-
er gets its benefit B. Meanwhile, the seller also gets
the benefit p. Because the seller keeps the promise,
his/her reputation increases and brings more reputa-
tion utility. Since the reputation change is ρ(r, e+),
the increment of reputation utility can be denoted as
U(r+ρ(r, e+))−U(r) = G(r+ρ(r, e+), ρ(r, e+)). The
utility increment stands for the increased sale volume
caused by reputation increase. If the volume is in the
number of items sold, the utility increment is volume
increment over the total volume of the seller. It is ex-
pected to be a small fraction. By multiplying it with
p, it is transformed into the profit increase of the seller
due to the honest transaction. Similar things happen
when the seller cheats. In that case, the seller will
get the benefit p∗ expected to be greater than p. But
because of the reputation decrease, his/her profit will
also decrease by [U(r−ρ(r, e−))−U(r)]p. Please note
that both ρ(r, e+) and ρ(r, e−) are positive values.

We assume that the game is of complete and per-
fect information (we will discuss this later). Trust
can be formed if and only if the equilibrium yields to
(trust and pay, act as promised). We use backward
induction to find the conditions of such equilibrium
and give the following theorem.

Theorem 1 (Trust Utilization Theorem). In a
buyer-seller online game in Fig.3, the buyer trusts the
seller if and only if the reputation utility gain between
r+ρ(r, e+) and r−ρ(r, e−) is greater than a constant
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Figure 3: Online Trust Game

p∗−p
p , i.e.,

G(r + ρ(r, e+), ρ(r, e+) + ρ(r, e−)) >
p∗ − p
p

(2)

Proof From backward induction, the equilibrium
falls on (trust and pay, act as promised) when the
following inequality holds:

p+ [U(r + ρ(r, e+))− U(r)]p >
p∗ + [U(r − ρ(r, e−))− U(r)]p

Because p+ [U(r+ρ(r, e+))−U(r)]p > 0, the sell-
er has the intention to encourage the buyer to trade
with him/her. If the above inequality holds, the sell-
ers gains less when cheating than acting as promised.
The buyer knows this, so the buyer will choose to
trust and get his requirement fulfilled.

By mathematical manipulation, we have

U(r + ρ(r, e+))− U(r − ρ(r, e−)) > p∗−p
p

According to Definition 4, we have G(r +
ρ(r, e+), ρ(r, e+)+ρ(r, e−)) = U(r+ρ(r, e+))−U(r−
ρ(r, e−)). Therefore,

G(r + ρ(r, e+), ρ(r, e+) + ρ(r, e−)) > p∗−p
p

�

Theorem 1 discloses a very important conclusion:
whether a seller can be trusted does not depend on an
absolute reputation value. It depends on the whether
the difference of reputation utility gain after two d-
ifferent event occurrence is big enough. This invites
two questions regarding to the paradox we mentioned
before: 1)are there any cases that a high reputation
holder, because it has a small reputation utility gain
under the different event occurrences, is not worth-
while to trust? 2)are there any cases that a low repu-
tation holder, because it has a large reputation utility
gain under different reputation events, is trustwor-
thy? Theoretically, we cannot eliminate this possibil-
ity. To further explore the question, we have to put
them into some specific reputation policies.

4 The Conditions of Trust-Reputation Para-
dox Formation

We first adopt the accumulative reputation policy,
which is used by the well-known e-commerce service
provider eBay.com (eBay 2012), to demonstrate the
paradox formation condition. Then we extend the
conclusion into a typical case where linear reputation
policy formulas are used. After that, we discuss on
more general cases.

4.1 Possible Paradox in eBay

Originally, eBay used an accumulative reputation pol-
icy. A positive feedback increases 1 point on the rep-
utation of a seller and a negative feedback decreases 1
point. The reputation of a seller is the summation of
all the past feedback points. Later, eBay added the
positive feedback rate as another indicator to better
represent sellers’ true character. Our analysis is only
on the accumulative reputation policy.

In the eBay’s accumulative reputation policy,
there are only two reputation events e+ and e−, which
represent the positive and negative event, respective-
ly. The policy can be represented by ρ(r, e+) =
ρ(r, e−) = 1. By putting it into the conclusion in
Theorem 1, a seller in eBay is trustworthy if and only
if the follow condition holds.

G(r + 1, 2) > p∗−p
p

Now we want to solve the above inequality of r
to see the trustworthy range of a reputation holder.
Let us first look at the monotonicity of G(r + 1, 2).
As previously defined, we assume the maximum rep-
utation of the current market is rmax, the threshold
reputation to start gaining utility is 0 and the inflec-
tion point is r∗. Since G(r+1, 2) = U(r+1)−U(r−1),
by differentiating the both sides, we have

G′(r + 1, 2) = U ′(r + 1)− U ′(r − 1)

Because U ′(r) = µ(r), so

G′(r + 1, 2) = µ(r + 1)− µ(r − 1)

According to Fig. 1(b), µ(r) is monotone increas-
ing in [0, r∗] and is monotone decreasing in [r∗, rmax].
Because compare with the whole definition domain,
the reputation change caused by one reputation event
is quite minor. Therefore, µ(r+1) is almost the same
as µ(r). So we have µ(r + 1)− µ(r − 1) ≥ 0 in [0, r∗]
and µ(r+1)−µ(r−1) ≤ 0 in [r∗, rmax], which means
the following:{

G′(r + 1, 2) ≥ 0 if 0 ≤ r ≤ r∗
G′(r + 1, 2) ≤ 0 if r∗ < r ≤ rmax (3)

Based on the above formula, in [0, r∗], G(r) is a
monotone increasing function having a minimum val-
ue G(0). In [r∗, rmax], G(r) is a monotone decreasing
function having a minimum value G(rmax). In the w-
hole definition domain, G(r) gains its maximum value
at r∗. This divided the problem into 5 different cases,
as shown in Fig. 4.

If the maximum value G(r∗) is smaller than p∗−p
p ,

as shown in Fig 4(a), G(r) has no chances to satis-
fy the formula 2, which means that the seller always
cheats and the current reputation policy fails to pro-
duce any incentives for the joined sellers.
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Figure 4: The 4 cases of trust-reputation paradox under eBay’s reputation policy

If the minimum value G(0) and G(rmax) are

greater than p∗−p
p , as in Fig 4(b), the trust condi-

tion will always be satisfied. This implies that buy-
ers should trust all the sellers regardless their rep-
utations. All the sellers spontaneously act honestly
and there is no need to impose a reputation policy.

In the third situation shown in Fig. 4(c) where p∗−p
p

is between the maximum and minimum values, there
must be r1 in [0, r∗] and r1 in [r∗, rmax] such that

G(r1) = G(r2) = p∗−p
p . Buyers will only trust the

sellers whose reputations are in [r1, r2]. This is where
the the Trust-Reputation Paradox happens. In such
a case, the buyer will prefer the sellers whose repu-
tations are in [r1, r2] to the sellers whose reputations

are even greater than r2. In Fig. 4(d) where p∗−p
p is

between G(0) and G(rmax) and G(0) > G(rmax), the
paradox also happens. The reputation values that are
greater than r3 should not be trusted. The paradox

also occurs. In Fig. 4(e), p∗−p
p is also between G(0)

and G(rmax) but with G(rmax) and G(0) < G(rmax).
The reputations greater than r3 should be trustwor-
thy. So there is no paradox happening.

So we find something weird that offends our com-
mon sense: sometimes, buyers prefer trusting sellers
with low reputation rather than with high reputa-
tion. Actually, the reason behind the paradox is very
reasonable. U(r) is a concave function in [r∗, rmax],
which means that the higher the reputation is, the
less market it brings for every increment of reputa-
tion. When a reputation point r is less than r1 of
Fig.4 (b), every increment of reputation only increas-
es a so tiny sale volume that is not enough to bring
the benefit to compensate the difference between a
normal product sale and a lemon product sale, the
seller has the motivation to cheat. We here name that
reputation point Utility Upper Limit (UUL). In
the eBay cases, this is r2 in the Fig. 4(c). If the
highest reputation in the entire definition domain is
lower than UUL, the sellers will never get to the up-
per limit. The paradox will never happen as well. On
the other hand, when the reputation is lower than a
certain point from which every increment of reputa-
tion only increases such a small market share that can
not bring enough benefit to compensate the difference
of the benefit between a normal product sale and a
lemon goods sale, the sellers will also cheat. We term
the reputation point Utility Lower Limit (ULL).
The sellers who hold the reputations lower than ULL
do not care to damage their reputation because it is
not worthwhile to cherish. Only the sellers in between
care their reputations.

4.2 The Paradox Formation in Linear Repu-
tation Policies

In section 4.1, we discussed the paradox under the
eBay accumulative reputation policy. In this section,
we consider linear reputation policies. A linear rep-
utation policy means that the reputation change is a
linear function of reputation r.

Reputation, in our common sense, is hard to get
but easy to lose. In practice, most linear reputation
polices also follow this point. This implies that when
reputation is increasing, its increase speed will be-
come lower as the reputation becomes higher. When
reputation is decreasing, its decrease speed will also
become lower as the reputation goes down. Reflected
in the reputation policy functions, ρ(r, e+) is a linear
function of r with a negative gradient and ρ(r, e−) is
a linear function of r with a positive gradient. Sup-
pose ρ(r, e+) = −α · r+β and ρ(r, e−) = α · r+β2, in
which α ≥ 0 and β, β2 ≥ 0. Since we assume the rep-
utation domain is [0, rmax], at r = 0 the reputation
cannot decrease any more. This means that the rep-
utation decrease function is a linear function crossing
the original point. Therefore, we have β2 = 0. Their
curves are presented in Fig. 5(a). The eBay’s reputa-
tion policy function is given in Fig. 5(b), which can be
seen as special case of linear reputation policies. The
trust-reputation paradox for linear reputation poli-
cies can be concluded by the following lemmas and
the theorem.

Lemma 1 (Monotonicity of Reputation Utili-
ty Gain α < 1). In a buyer-seller online game
in Fig.3 with linear reputation policy, let ∆ =
ρ(r, e+) + ρ(r, e−) = β, when α < 1, reputation u-
tility gain function is a monotone increasing function

in [0, r
∗−β
1−α ] and is a monotone decreasing function in

[ r
∗−β
1−α ,

rmax−β
1−α ]. Its maximum value is gained at r

∗−β
1−α .

Proof Based on the definition 4, we have

G(r+ρ(r, e+),∆) = U(r+ρ(r, e+))−U(r−ρ(r, e−)).

By differentiating both sides, we get

G′(r+ρ(r, e+),∆) = U ′(r+ρ(r, e+))−U ′(r−ρ(r, e−)).

Since U ′(r) = µ(r), we have G′(r + ρ(r, e+),∆) =
µ(r + ρ(r, e+))(1 + ρ′(r, e+)) − µ(r − ρ(r, e−))(1 −
ρ′(r, e−)).

Because ρ(r, e+) = −α · r+ β, we have ρ′(r, e+) =
−α. Similarly, ρ′(r, e−) = α, by putting all of them
into the G′(r + ρ(r, e+),∆), we get

G′(r − αr + β, β) = (1− α)[µ(r − αr + β)− µ(r − αr)]
(4)

When α < 1, according to Fig. 1(b), µ(r) is
monotone increasing in [0, r∗] and is monotone de-
creasing in [r∗, rmax]. So µ(r − αr + β) is monotone
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Figure 5: The general trend of linear reputation policies and one of its special case, which is the eBay reputation
policy.

increasing in [0, r
∗−β
1−α ] and is monotone decreasing in

[ r
∗−β
1−α ,

rmax−β
1−α ]. The positive (1−α) does not change

the monotonicity. Therefore,{
G′(r − αr + β, β) ≥ 0 if 0 ≤ r ≤ r∗−β

1−α
G′(r − αr + β, β) ≤ 0 if r∗−β

1−α < r ≤ rmax−β
1−α

(5)
Formula (5) shows that the reputation utility gain

G(r − αr + β, β) is an increasing function when 0 ≤
r ≤ r∗−β

1−α and is an decreasing function when r∗−β
1−α <

r ≤ rmax−β
1−α . The maximum value of G(r−αr+β, β)

is gained at r∗−β
1−α . The minimum value is gained at 0

and rmax−β
1−α . �

Similarly, we can conclude the monotonicity of
reputation utility gain when α > 1 and α = 1, as
in the following Lemmas. The proofs are left out s-
ince they are very similar to Lemma 1.

Lemma 2 (Monotonicity of Reputation Utility
Gain α > 1). Assume all the conditions in Lemma
1 except for α > 1, reputation utility gain function is

a monotone decreasing function in [0, r
∗−β
1−α ] and is a

monotone increasing function in [ r
∗−β
1−α ,

rmax−β
1−α ]. Its

minimum value is gained at r∗−β
1−α .

Lemma 3 (Monotonicity of Reputation Utility
Gain α = 1). Assume all the conditions in Lemma
1 except for α = 1, reputation utility gain between
r + ρ(r, e+) and r − ρ(r, e−) is a constant G(β, β).

Lemma 1 to Lemma 3 give the conclusions about
the monotonicity of reputation utility gain function.
They pave the way for the following discussion on the
trust formation and the paradox occurrence. Basical-
ly, if trust can be formed in a low reputation range
but cannot be formed in a high reputation range, the
Trust-Reputation Paradox will happen. We still use
the conclusion from Theorem 1 to determine whether
a reputation value is trustworthy. According to the
theorem, trust can be formed only if the Formula 2
holds. Under linear reputation policy, Formula 2 is
transformed into the following format.

G(r − αr + β, β) > p∗−p
p

The left side of the above formula is the reputa-
tion utility gain after positive and negative reputation

event. The righthand side p∗−p
p represents how many

times of extra benefit that seller can obtain if he/she
cheats. It varies in different markets for different sell-
ers. The above formula has close relationship with the

equation G(r − αr + β, β) = p∗−p
p . We call the equa-

tion ”KEY equation” and denote R = r1, r2, ...rs to

be the set containing all the real solution for the equa-
tion. Under linear reputation policy and a sigmoid-
like utility function, the equation sometimes does not
have any real solutions and sometimes has 1 or 2 so-
lutions. The trust formation and paradox occurrence
have close relationship with those real solutions. We
conclude them into the following two lemma and the-
orem.

Lemma 4 (Trust Formation for Small Utility
Gain). Assume all the conditions in Lemma 1-3 and
denote the maximum value of reputation utility gain

function to be Gmax, if p∗−p
p > Gmax, there is no

real solutions for KEY Equation. All sellers are not
trustworthy, regardless their reputations.
Proof From Theorem 1, trust can be formed when
the following inequality holds:

G(r + ρ(r, e+), ρ(r, e+) + ρ(r, e−)) >
p∗ − p
p

(6)

Because G(r+ρ(r, e+), ρ(r, e+)+ρ(r, e−)) ≤ Gmax
and p∗−p

p > Gmax, the above inequality will never

hold. So trust can not be formed regardless reputa-
tion. �

Lemma 5 (Trust Formation for Big Utility Gain).
Assume all the conditions in Lemma 1-3 and denote
the minimum value of reputation utility gain function

to be Gmin, if p∗−p
p < Gmin, there is no real solu-

tions for KEY Equation. All sellers are always be
trustworthy, regardless their reputations.

The proof is left out since it is similar to that of
Lemma 4.

The situation becomes more complex if p∗−p
p is

between Gmax and Gmin. It generally divided into
6 cases that are concluded by the following theorem.
The theorem excludes the cases when α = 0, since in
such a case the reputation utility gain is a fixed value
(Lemma 3), which means that we only need to sim-

ply compare a fixed value with p∗−p
p to determine the

trust formation. This situation may incur the occur-
rence of the paradox, therefore we name the following
theorem Trust-Reputation Paradox Theorem.

Theorem 2 (Trust-Reputation Paradox Theo-
rem)In a buyer-seller online game in Fig.3 with linear

reputation policy, if p
∗−p
p is between the minimum val-

ue and the maximum value of reputation utility gain
function in the whole reputation domain, trust can
only be formed at the reputations where the reputa-

tion utility gain is greater than p∗−p
p .

Proof There are 6 different cases as shown in Fig.
6(a)-(f). They can be summarized as follows.

CRPIT Volume 135 - Computer Science 2013

74



Figure 6: The conditions of paradox formation for the linear reputation policies. (a),(b) and (c) are for α < 1.
(d),(e) and (f) are for α > 1.

1) when α < 1, reputation utility gain function

reaches its maximum value (Gmax) at r∗−β
1−α and two

minimum values (Gmin1 and Gmin2) at 0 and rmax−β
1−α ,

respectively

1. if Gmax ≤ p∗−p
p ≤ max(Gmin1, Gmin2) as shown

in Fig. 6(a), there are r1 in [0, r
∗−β
1−α ] and r2 in

[ r
∗−β
1−α , rmax] so that G(r1 − αr1, β) = G(r2 −
αr2, β) = p∗−p

p . Sellers are only trustworthy

when their reputations are between r1 and r2.

2. if Gmax ≥ Gmin1 ≥ Gmin2 and Gmin1 ≤ p∗−p
p ≤

Gmin2 as shown in Fig. 6(b), there is r3 such that

G(r3−αr3, β) = p∗−p
p . Sellers are only trustwor-

thy when their reputations are less than r3.

3. if Gmax ≥ Gmin1 ≥ Gmin2 and Gmin1 ≤ p∗−p
p ≤

Gmin2 as shown in Fig. 6(c), there is r3 such that

G(r3−αr3, β) = p∗−p
p . Sellers are only trustwor-

thy when their reputations are greater than r3.

2) when α > 1, reputation utility gain function reach-

es its minimum value (Gmin) at r∗−β
1−α and two max-

imum values (Gmax1 and Gmax2) at 0 and rmax−β
1−α ,

respectively

1. if Gmin ≤ p∗−p
p ≤ min(Gmax1, Gmax2) as shown

in Fig. 6(d), there are r1 in [0, r
∗−β
1−α ] and r2

in [ r
∗−β
1−α , rmax] so that G(r1 − αr1, β) = G(r2 −

αr2, β) = p∗−p
p . Sellers are only trustworthy

when their reputations are not between r1 and
r2.

2. if Gmax1 ≥ Gmax2 ≥ Gmin and Gmax2 ≤ p∗−p
p ≤

Gmax1 as shown in Fig. 6(e), there is r3 such that

G(r3−αr3, β) = p∗−p
p . Sellers are only trustwor-

thy when their reputations are less than r3.

3. if Gmax2 ≥ Gmin1 ≥ Gmin and Gmax1 ≤ p∗−p
p ≤

Gmax2 as shown in Fig. 6(f), there is r3 such that

G(r3−αr3, β) = p∗−p
p . Sellers are only trustwor-

thy when their reputations are greater than r3.

All the mentioned r1, r2 and r3 are the real solu-

tions of the KEY equation G(r − αr + β, β) = p∗−p
p

in the corresponding cases. The proof for each case
is similar. For example, in the first case as shown in

Fig. 6(a) where Gmax ≤ p∗−p
p ≤ max(Gmin1, Gmin2),

from Theorem 1, trust can be formed when the fol-
lowing inequality holds:

G(r + ρ(r, e+), ρ(r, e+) + ρ(r, e−)) > p∗−p
p

The reputation utility gain between r1 and r2 is

greater p∗−p
p , therefore, only [r1, r2] is a trustworthy

reputation range. The proof of other cases are similar
to this and are left out. �

In the case of Fig. 6(a)(b)(d)(e), paradox will oc-
cur because there are some untrustworthy range in
high reputations but trustworthy range in low repu-
tations. For example, In (a), reputations greater than
r2 are not trustworthy but reputations between r1 and
r2 are trustworthy which gives us a show of paradox.
In some cases (Fig. 6(a)(d)), the equation have two
real solutions. In other cases, it has only one real
solutions. In fact, Lemma 4 and Lemma 5 give the
situations where the equation has no real solutions.
Once given the detailed format of the reputation pol-
icy function ρ and the utility gain function G, we are
able to solve the equation and then discuss the trust
formation issue. In the next section, we will give a
use case to determine these key points.

From Theorem 2, we know that for linear repu-
tation policies, the gradient α of ρ(r, e) is very im-
portant. The numeric relationship between the gra-
dient and 1 determines the monotonicity of utility
gain function, and therefore, determines the condi-
tions that the paradox occur. Up to now, we can

safely conclude that when p∗−p
p is in between the max-

imum utility gain (Gmax in Theorem 2) and the min-
imum utility gain (Gmin in Theorem 2), the paradox
may happen. At that time, the trustworthy range of
reputation is still upon the gradient α.
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Table 1: Seller Information in Use Case
Reputation Utility Market Share

73.2 0.0000075045 0.0000007166
61.3 0.0000000001 0.0000000000
61.0 0.0000000000 0.0000000000
87.5 0.9241418200 0.0882463138
80.0 0.0066928509 0.0006391004
73.9 0.0000151121 0.0000014431
57.0 0.0000000000 0.0000000000
58.1 0.0000000000 0.0000000000
98.5 0.9999986290 0.0954898814
92.4 0.9993891206 0.0954316795
59.2 0.0000000000 0.0000000000
77.1 0.0003706061 0.0000353892
69.8 0.0000002505 0.0000000239
85.4 0.5986876601 0.0571686921
67.2 0.0000000186 0.0000000018
99.8 0.9999996264 0.0954899767
89.5 0.9890130574 0.0944408691
80.1 0.0073915413 0.0007058184
53.8 0.0000000000 0.0000000000
80.6 0.0121284350 0.0011581444
96.5 0.9999898700 0.0954890450
54.2 0.0000000000 0.0000000000
88.4 0.9677045353 0.0924061180
72.5 0.0000037266 0.0000003559
88.7 0.9758729786 0.0931861228
91.9 0.9989932292 0.0953938758
66.0 0.0000000056 0.0000000005
89.8 0.9918374288 0.0947105683
75.3 0.0000612797 0.0000058516
69.1 0.0000001244 0.0000000119

4.3 A Use Case

Now we give a use case to demonstrate how to use
Theorem 2 to distinguish whether a reputation envi-
ronment is sufferring from the trust-reputation para-
dox. The scenario of the use case is artificially created
only for the demonstration purpose.

Suppose that there is a 30-seller reputation-based
e-commerce platform. The sellers are selling “simi-
larly featured goods”, otherwise it makes no sense to
compare their reputations. “Similarly featured good-
s” means that the goods can offer the same type of
functionalities or can fulfill the same sort of require-
ment for customers. For example, when two TV set
sellers supply “similarly featured goods”, their TV
sets are all used in the same way. Similarly featured
goods do not imply that the goods are identical. The
two TV set sellers can provide different brands of TV
sets with different quality attributes and prices.

We artificially generate all the sellers’ reputations
by using a random number generation program. The
reputation definition domain is [0,100]. The generat-
ed reputations follow a normal distribution with the
the mean of 75 and the variance of 15. We use the
sigmoid function U(r) = 1

1+e(−r+85) as reputation u-

tility function. The ith seller’s market share is de-

termined by U(ri)∑30
j=1 U(rj)

, where the denominator is ac-

tually the summation of all the sellers’ reputation u-
tility. Detailed data are given in Table 1. We also
define the reputation policy of this environment to be
linear functions. The positive and negative reputa-
tion change functions are ρ(r, e+) = −0.1r + 10 and
ρ(r, e+) = 0.1r. In a certain period, the whole mar-
ket can sell 100 items, which can be treated as market
volume V = 100.

Now assume that there is a new male seller whose

Figure 7: The condition of paradox in the use case

reputation is r. His average profit (p) of honestly sell-
ing one item is 10. But if he cheats, he will gain more
profit (p∗ = 100). We would like to know whether
the paradox will happen if the given seller’s infor-
mation remains unchanged. If the paradox is going
to happen, what are the reputation range that the
paradox is going to happen? At beginning, the new
seller joins the market with reputation r, his origi-

nal market share will be U(r)
U(r)+10.4722994109 , in which

10.4722994109 is the summation of all the reputa-
tion utility from the Column 2 in Table 1. If he
cheats, his reputation will become r − 0.1r = 0.9r.

Then his market share will be U(0.9r)
U(0.9r)+10.4722994109 .

If he acts honestly, his reputation will become r −
0.1r + 10 = 0.9r + 10. Then his market share will be

U(0.9r+10)
U(0.9r+10)+10.4722994109 . Because U(r) = 1

1+e(−r+85)

and α < 1, according to Theorem 2, the condition of
the seller not cheating is as follows:

(
1

1+e(−0.9r+75)

10.4722994109+ 1

1+e(−0.9r+75)

−
1

1+e(−0.9r+85)

10.4722994109+ 1

1+e(−0.9r+85)

)× V × p >

> p∗−p
p

(7)

By denoting the left side of the above inequality as
f(r), we could draw the curve of it, shown in Fig. 7.
The basic shape of the diagram is quite similar to the
one in Fig 6(a). As we expected, the reputation util-
ity is small. This is determined by the environment
rather than the our calculation method. The y-axis
stands for the reputation utility gain between cheat-
ing and acting honestly. The x-axis is reputation.
The chart shows that between r1 = 80.68526866 and
r2 = 96.88983853, the above inequality holds. That
means if the reputation is lower than 80.68526866 or
greater than 96.88983853, the seller will be not trust-
worthy. Therefore, a paradox turns up that a high
reputation holder with the reputation greater than
96.88983853 should not be trusted. This implies that
the our assumed reputation environment is being im-
pacted by trust-reputation paradox.

4.4 Some Discussion on Non-linear Reputa-
tion Policies

Non-linear reputation policies can be in countless
forms, which means that fixed forms for a general
discussions is not possible. In most cases, we have
to use Theorem 1 as a general extermination rule to
analyze each of them as a specific case. But there
exists a general rule for a small portion of non-linear
policies, which can be summarized as the following
corollary, based on Theorem 2.
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Figure 8: An example of a non-linear reputation pol-
icy

Corollary 1 (About Symmetrical Non-learning
Policy). Assume all conditions of Theorem 2. Let
ρ be symmetric to and cross line u = l (parallel to
r-axis)and is also crossing the intersection of ρ(r, e+)
and ρ(r, e−), the conclusion of Theorem 2 also stand-
s.
Proof Let us paste the formula from Lemma 1 to
here.

G′(r + ρ(r, e+),∆) = µ(r + ρ(r, e+))(1 + ρ′(r, e+))−
µ(r − ρ(r, e−))(1− ρ′(r, e−))

If ρ(r, e+) and ρ(r, e−) are symmetric about a line
that is parallel to r-axis and that also is crossing the
intersection of ρ(r, e+) and ρ(r, e−), at any reputation
point r, ρ′(r, e+) = −ρ′(r, e−). An example curve
is presented in Fig. 8. The above formula can be
reformed as

G′(r + ρ(r, e+),∆) =
(1 + ρ′(r, e+))[µ(r + ρ(r, e+))− µ(r − ρ(r, e−))]

Whether G′(r + ρ(r, e+),∆) is positive is also de-
termined by the monotonicity of µ(r + ρ(r, e+)) and
1 + ρ′(r, e+). The rest of the proof is same as the
process in Theorem 2, except that a fixed α as the
first-order derivative of reputation policy function is
replaced by ρ′(r, e+). So the details are left out.

�

In fact, most non-linear reputation policies are de-
signed in the mentioned symmetrical way. The reason
is that people expect that regardless how much rep-
utation is increased by positive events, they should
be able to be decreased by negative events. A very
common non-linear reputation policy is shown in Fig.
8. In this reputation policy, reputation increase speed
will go down as reputation goes up. But reputation
decreasing speed will go high as reputation goes up.
This implies that in such policies, reputation is very
hard to gain but quite easy to lose. It follows our
common senses towards reputation.

4.5 Some Guidelines to Avoid the Paradox

The Trust-Reputation Paradox makes reputation sys-
tems lose their functionalities to provide references to
buyers. Therefore, we should try our best to avoid
its occurrence. We here provide some guidelines for
reputation system designers to avoid the paradox oc-
currence in their systems.

• Whether trust can be formed from reputations
does not depend on the absolute reputation val-
ue. It depends on how reputation change will

incur the behind utility change. In e-commerce
market, the utility finally manifests into the prof-
it of the sellers. Before starting the system design
work, it is a good idea to know how reputation
is related to reputation utilities.

• Any reputation platforms may involve several
kinds of goods for trading. Note that an effective
reputation policy for a kind of goods does not
have the universal effectiveness for all kinds of
goods. p∗−p

p is a crucial parameter that we used

to compare with reputation utility gain. This
parameter is different from goods to goods. So
make your reputation policy customizable from
goods to goods is also a good choice.

• A clear signal for Trust-Reputation Paradox is
that there is a large amount of sellers who have
their reputations at a certain level and do not
want to improve them.

• It is a good idea to make reputation hard to gain
and easy to lose. However, if it is too hard to
gain, sellers may give up. Because they find that
they have to spend too much cost to gain a de-
cent reputation that cannot bring their adequate
rewards. In that case, the paradox occurs.

• We recommend you to frequently survey the
middle-ranked and low-ranked holder to detect
the strength of their intention to improve their
reputation. We strongly recommend to constant-
ly survey the high-ranked holders to detect the
strength of their intention to maintain their rep-
utation. If the strength is low, the paradox may
be approaching.

• If the paradox is on show in the reputation sys-
tems, try to find whether the reputation policy
makes the reputation utility change too fast or
too slow. Then make adjustment on the policy.

• Using a multi-dimensional indicator as reputa-
tion is a very good idea to avoid the paradox,
since even some of the dimensions have been
trapped in the paradox, others are still function-
ing. The customers still can get a meaningful
references from the reputations.

5 Conclusion, Limitation and Future Work

In this paper, we design a game-theory model to con-
struct the bridge between reputation and trust forma-
tion. Based on the model, we give theoretical proofs
of the existence of the so-called trust-reputation para-
dox, which offends a common sense that reputation
should be ”the higher the better”. Our proofs cov-
er all the situations for linear reputation policies and
parts of non-linear reputation policies. We also pro-
vide some guidelines for reputation policy designer to
better off their work.

Our work has the following limitations:

1. For non-linear reputation policies that are not
symmetric to the line parallel to r-axis and cross-
ing the intersection of ρ(r, e+) and ρ(r, e−), we
can not give a universal conclusion to tell when
the paradox is going to happen.

2. We did not provide methods to determine the
relationship between reputation utility and rep-
utation, which means that detailed format of rep-
utation utility function U(r) is hard to define.
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3. Although the conclusion we give is theoretically
proven, we still need to use real-world data to
test the actual existence of the paradox.

We believe that the non-linear reputation policies
limitation is difficult to solve, since there is no gener-
al regular patterns can be drawn from those reputa-
tion policies. The last two limitations form our future
work. We will do research on 1) determining, or at
least instantiatedly determining the relationship be-
tween reputation and reputation utility; and 2) find-
ing real-world examples to prove the existence of the
paradox in our life.
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Abstract

Aspect-Oriented Software Development (AOSD) fa-
cilitates the modularisation of different crosscutting
concerns in software development. In AOSD, aspect
weaving is the composition mechanism that combines
aspects and components in an aspect-oriented appli-
cation. Aspect weaving can be performed statically,
at load time or at runtime. These different kinds
of weavers may entail a runtime performance and a
memory consumption cost, compared to the classical
object-oriented approach. Using the Dynamic and
Static Aspect Weaving (DSAW) AOSD platform, we
have implemented three different scenarios of security
issues in distributed systems (access control / data
flow, encryption of transmissions, and FTP client-
server). These scenarios were developed in both the
aspect-oriented and object-oriented paradigms in or-
der to evaluate the cost introduced by static and dy-
namic aspect weavers. A detailed quantitative evalu-
ation of runtime performance and memory consump-
tion is presented.

Keywords: Aspect-oriented software development,
runtime performance, memory consumption, aspect
weaving, DSAW.

1 Introduction

The Aspect-Oriented Software Development
(AOSD) (Irwin et al. 1997) paradigm allows
developers to make good use of the Separation of
Concerns (SoC) principle (Hürsch & Lopes 1995)
when developing applications. AOSD offers a direct
support to modularise different functionalities that
cut across system software. The modularisation
of crosscutting concerns prevents tangling of the
application source code, making it easier to de-
bug, maintain and modify (Parnas 1972). Typical
examples of crosscutting concerns are persistence,
authentication, logging and tracing (Ortin et al.
2004). The process of integrating aspects into the

This work has been funded by the Department of Science and
Technology (Spain) under the National Program for Research,
Development and Innovation: projects TIN2008-00276 Improv-
ing Performance and Robustness of Dynamic Languages to de-
velop Efficient, Scalable and Reliable Software, and TIN2011-
25978 Obtaining Adaptable, Robust and Efficient Software by
including Structural Reflection to Statically Typed Program-
ming Languages.
Copyright c©2013, Australian Computer Society, Inc. This
paper appeared at the 36th Australasian Computer Science
Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 135, Bruce H. Thomas, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

main application code is called weaving and an aspect
weaver is the tool that performs it (Ackoff 1971).
The weaving process can be performed statically
(compile time or load time) or dynamically (at
runtime). Dynamic weaving AOSD platforms offer a
powerful mechanism to dynamically adapt running
applications, modifying their functionality while the
system is being executed (Popovici et al. 2002).
Application concerns can be modified, inserted or
removed without stopping the application execution.
However, in some scenarios, the use of AOSD may
involve an increase of runtime performance and
memory consumption (Garcia et al. 2012).

There are specific scenarios where it is necessary
to adapt running applications in response to runtime
emerging requirements (Vinuesa et al. 2008), such
as distributed systems security (Garcia et al. 2012).
Distributed systems involve the interaction between
disparate and independent entities working toward a
common goal (Belapurkar et al. 2009). As the number
and arrangement of these potentially mobile entities
may change, these systems are commonly required to
be flexible and scalable. Under these circumstances,
security in distributed systems is a complex issue to
be considered. The security concerns of distributed
systems can be modularised using AOSD, becoming
possible to adapt the security measures without com-
promising their global security, even when their sizes
and arrangements change at runtime (Garcia et al.
2012).

Our objective is to compare the runtime per-
formance and the memory consumption of aspect-
oriented and object-oriented programming (OOP)
paradigms, evaluating the cost of aspect weaving. For
this purpose, we have assessed three different scenar-
ios of distributed systems security, where both static
and dynamic weaving is appropriate. These exam-
ples consider access control, data flow, and data en-
cryption. The solutions based on AOSD were devel-
oped using the Dynamic and Static Aspect Weaving
(DSAW) (Vinuesa et al. 2008) platform. DSAW is
an AOSD platform that supports both static and dy-
namic weaving, allowing the modification of applica-
tion concerns at runtime. By using this platform,
it is possible to dynamically modify the flow, access
and encryption of data dynamically. Therefore, the
security measures of the distributed systems can be
adapted when required, varying in size and arrange-
ment. Following a statistically performance evalua-
tion methodology (Georges et al. 2007), these imple-
mentations are quantitatively assessed. A comparison
between both paradigms is presented to estimate the
penalty introduced by the AOSD approach, compared
to the OOP one.

The remainder of this paper is structured as fol-
lows. Section 2 describes static and dynamic weaving,
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and the DSAW platform. The implemented applica-
tions used in the assessment are presented in Sec-
tion 3. In Section 4, we evaluate and discuss the
results of both approaches. Section 6 presents the
conclusions and future work.

2 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) (Ir-
win et al. 1997) is a concrete approach to im-
plement the principle of Separation of Concerns
(SoC) (Hürsch & Lopes 1995). AOSD facilitates the
modularisation of different functionalities that cut
across the entire system software (i.e., crosscutting
concerns).

An aspect is a piece of code that cannot be en-
capsulated in a method or procedure, being scattered
throughout the source code of an application. Com-
mon examples of aspects include transaction control,
memory management, threading, persistence or log-
ging (Hürsch & Lopes 1995).

With the classic object-oriented paradigm, cross-
cutting concerns in a system cannot be modularised
as regular classes. AOSD handles this problem, al-
lowing the separation of those concerns whose code
is commonly tangled with the code of other classes.
The major benefits of this approach are higher level
of abstraction, concern reuse, higher legibility and
improved software maintainability (Hürsch & Lopes
1995).

The final application is built by weaving the ap-
plication aspects with the corresponding classes (Fig-
ure 1). The output code mixes the aspect code with
the application functionality modularised in tradi-
tional classes. The aspect weaver performs this code
processing, offering a higher level of modularisation
to the programmer. As shown in Figure 1, the ma-
jor difference between AOSD and OOP is that the
object-oriented programmer has to decide where to
place the code of the crosscutting concerns, whereas
the aspect weaver automates this process. In this pa-
per, we evaluate the cost of this automation in three
different scenarios.

Security

Security

Logging

Main

Logging

Logging

Logging

Security

Main

Security

Security

Main

Logging

Main

Main

Logging

Security

Main

Traditional Object-Oriented Development Aspect-Oriented Software Development

Aspect Weaver

Figure 1: Traditional object-oriented development vs.
aspect-oriented development.

2.1 Aspect Weaving

Once both the application components and the as-
pects are developed, it is necessary to build the fi-
nal program (i.e., aspect weaving). The compiler
of an object-oriented language receives the applica-
tion source code and generates the executable file. In
AOSD, the code (either source or binary) must also
be processed by the aspect weaver to obtain the final
program with full functionality. This process can be
performed statically (at compile time or load time) or
dynamically (at runtime).

Aspects should define the way they are related to
application components, so that the aspect weaver

can generate the final application by mixing the code
of both kinds of modules. There are specific elements
of the programming language semantics where the as-
pect code may be injected. These semantics elements
are stable points of execution called join-points (Irwin
et al. 1997). Therefore, it is necessary to describe the
mapping between join-points and aspect code. For
this purpose, pointcuts are defined as a set of join-
points (usually using regular expressions) plus, op-
tionally, some of the values in the execution context
of those join-points (Kiczales et al. 2001).

2.1.1 Static Weaving

The majority of existing AOSD implementations pro-
vide static weavers. Static weavers combine the as-
pect and component functionality prior to applica-
tion execution. This combination consists in inserting
calls to advice in the components code. An advice is
a method-like construct used to define the additional
behaviour to be injected in the join-points expressed
by a pointcut (Kiczales et al. 2001). An advice is the
part of an aspect that modularises the code of the
crosscutting concern.

This type of weaving commonly causes little per-
formance penalty because all the code is combined
and statically optimized before its execution. Since
the application is woven before its execution, when
a new aspect is required at runtime the applica-
tion should be stopped, recompiled, rewoven and
restarted, losing the non-persistent state of the pro-
cess. There are scenarios where running applications
require the dynamic addition, deletion or modifica-
tion of aspects, and hence a dynamic weaving ap-
proach is more suitable (Ortin & Cueva 2004).

2.1.2 Dynamic Weaving

There are applications that need to be adapted at
runtime in response to changes in their execution en-
vironment (Popovici et al. 2002, Zinky et al. 1997,
Ségura-Devillechaise et al. 2003). An example is the
so-called autonomic software; these systems should
be able to repair, manage, optimise or recover them-
selves (Kephart & Chess 2003).

In the case of dynamic weaving, the program is
compiled in the traditional way and an executable file
is obtained. This program does not need to foresee
which modules may be adapted at runtime. When
the running program needs to be modified, it can be
dynamically woven with new aspects that adapt the
behaviour of the application.

The main advantage of this kind of weaving is that
it supports the dynamic adaptation of programs, plus
the modularisation of the different application con-
cerns. Therefore, the resulting code is more adapt-
able and reusable, and both the aspects and the basic
functionality can evolve independently (Pinto et al.
2001). However, this dynamic adaptation commonly
entails a runtime performance cost (Böllert 1999).

2.2 Dynamic and Static Aspect Weaver

Existing dynamic weaving tools such as AOP/ST,
PROSE, DAOP, JAC, CLAW, LOOM.NET, JAsCo
or DSAW (Vinuesa et al. 2008) can be used to adapt
running applications to new requirements, not fore-
seen at design time. Since we want to evaluate the
cost of both static and dynamic weaving, a plat-
form that supports both approaches may facilitate
our work. That was the main reason why we selected
DSAW (Vinuesa & Ortin 2004, Ortin et al. 2011), an
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Figure 2: Distributed system with different authorisation levels.

aspect-oriented software development platform that
supports homogeneous static and dynamic weaving.
Its main features are:

1. Full dynamic weaving: DSAW instruments appli-
cations enabling all the application join-points.
Since the adaptive JIT compiler of the CLR opti-
mizes the code introduced by DSAW, the penal-
ization is not significant. Then, DSAW allows
runtime (un)weaving of aspects, even at join-
points that were not woven before the application
was executed.

2. Platform independence: It is designed over the
.Net virtual machine reference standard (ECMA
2005). As a result, any .Net application can be
run over DSAW.

3. Language independence: DSAW performs the
adaptation applications at the virtual machine
level, instrumenting the Intermediate Language
(IL) of executable files and libraries. Any .Net
high-level programming language can be used to
program application components and aspects.

4. Weave-time independence: Aspect and compo-
nent implementations do not depend on the type
of weaving to be performed. Therefore, chang-
ing from dynamic to static, and vice versa, is a
straightforward task.

5. Wide range of join-points: DSAW offers a wide
and flexible set of join-points to facilitate the
adaptation of applications for both dynamic and
static scenarios.

3 Use cases

The objective of this paper is to compare runtime per-
formance and memory consumption of the OOP and
AOSD approaches. In order to do this, we have used
both the static and dynamic weavers of DSAW, de-
veloping security issues of distributed systems (Gar-
cia et al. 2012). DSAW has been used to implement
two specific scenarios: access control / data flow and
encryption of transmissions. A third scenario taking
an existing real application, a FTP client and server,
has also been used in our experiments. Details of
these implementations are presented in (Garcia et al.
2012). These three scenarios were developed using
both AOSD and the traditional OOP paradigm.

In the first scenario, we tackle the vulnerabilities
caused by the flow of data through a network. Each
node in the network has an authorization level. The
security policy of the distributed system dictates that
a node with an authorization level can only send and

receive information from those nodes with greater or
equal authorization level (NCSC 1990). The left part
of Figure 2 shows an example. Nodes 1 and 4 can
send information to any other node because the con-
fidential level is the lowest one. Node 2 can only send
information to node 3, since the secret authorization
level is lower than top secret. Finally, node 3 cannot
send information to anyone because it has the highest
authorization level.

The traditional implementation only considers
one-to-one relationships (Lang & Schreiner 2002), im-
plying restrictions on data flow in point-to-point net-
works with changing topologies. For example, nodes 1
and 4 in Figure 2 have the same access level, but they
cannot exchange information because node 3 cannot
relay messages to nodes 2 and 4.

We have used the DSAW static weaver to imple-
ment a distributed system with this security policy,
which guarantees the secure transmission of informa-
tion over changing topologies, tagging data with the
authorization levels of nodes. Applications are built
relying on the classical send and receive operations,
and aspects intercept these two messages to include
the following functionalities:

1. Encryption of information to avoid unauthorized
access to it.

2. Authentication to grant the user the appropriate
authorization level.

3. Data tagging to determine how information flows
across the network and to control the access to
it.

As shown in the right part of Figure 2, all nodes
can now exchange information between them regard-
less of their authorization level, because aspects con-
trol the data flow and restrict the access to data. As
a result, nodes 1 and 4 can securely exchange data
through nodes 2 and 3.

The second scenario is based on distributed sys-
tems made up by mobile devices, where network
topologies and communication channels may dynami-
cally change. If the user is connected to a distributed
system and it is detected that the communication
channel is not secure any more, encryption of trans-
missions may be required. Therefore, a dynamic en-
crypting aspect is woven with the application that
uses the distributed system, while the system is run-
ning. The aspect is even able to forward the chan-
nel to another secure one if the mobile device allows
it. Any kind of encryption or forwarding aspect can
be woven at runtime, because the DSAW dynamic
weaver does not impose any coupling between aspects
and components. Finally, if the mobile device returns
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to a trusted environment, the encryption aspect is un-
woven to avoid the unnecessary overhead of encryp-
tion.

The last scenario is a common client-server FTP
environment1. We have added dynamic aspect weav-
ing to the existing client and server applications in
order to cipher all messages exchanged between them,
when a more secure communication is needed. It is
feasible to cipher the channel when critical informa-
tion is exchanged, e.g. during the client login process,
and to use the default channel when the exchanged
information is not so important. In a standard client-
server FTP communication, the information is sent
and received directly. On the other hand, in an en-
hanced scenario where cipher is enabled using aspects,
all the information passes through the dynamically
woven aspect, responsible for encryption and decryp-
tion. Before either the server or the client sends a
FTP command, the aspect encrypts the message; and
just after a FTP command is received, the same as-
pect decrypts it. Thus, the exchanged information
travels ciphered using the same channel, transpar-
ently to both the client and the server. If the aspect
is then unwoven, the information flows as it does in
the original scenario.

4 Evaluation

In this section, we present an assessment that com-
pares runtime performance and memory consumption
of the DSAW platform and the traditional OOP. The
first subsection outlines the experimental methodol-
ogy employed, describing the hardware, programming
language and the scenarios used. For each use case
described in the previous section, we present data of
the runtime performance and memory consumption
when using the AOSD and OOP paradigms. Finally,
we present a discussion of the measurements obtained.

4.1 Methodology

We have implemented in DSAW the three use cases
described in Section 3, using the aspect-oriented
paradigm to modularise the crosscutting concerns in
the applications. The first scenario (access control
and data flow) is composed of three single nodes, and
the second one (encryption) uses two single nodes and
two encryption/decryption nodes –implementation
details are presented in (Garcia et al. 2012). In or-
der to compare this approach with OOP, we have
also implemented the crosscutting concerns tangling
their code with the rest of modules in the applica-
tion, following the conventional approach of object-
orientation. The two different versions of the three
use cases vary in the way crosscutting concerns are
tangled: by a human or by an aspect weaver. The
objective is to measure the memory consumption and
runtime performance cost of DSAW static and dy-
namic weaving. All the applications were developed
in the C# programming language.

Regarding data analysis, we have followed the
methodology proposed by Georges (Georges et al.
2007) to evaluate the runtime performance of appli-
cations, including those executed on virtual machines
that provide JIT compilation. In this methodology,
the start-up performance measures how quickly a sys-
tem can run a relatively short-running application.
To measure start-up performance, a two step method-
ology is used:

1We have used the FTP.Net client (http://ftpnet.sourceforge.
net) and the SimpleFTP Server (http://www.tudra.net/wp/2007/10/
15/simpleftp-server).

1. We measure the elapsed execution time of run-
ning multiple times the same program. This re-
sults in p (we have taken p = 30) measurements
xi with 1 ≤ i ≤ p.

2. The confidence interval for a given confidence
level (95%) is computed to eliminate measure-
ment errors that may introduce a bias in the eval-
uation. The confidence interval is computed us-
ing the Student’s t-distribution because we took
p = 30 (Lilja 2000). Therefore, we compute the
confidence interval [c1, c2] as:

c1 = x− t1−α/2;p−1 s√
p c2 = x+ t1−α/2;p−1

s√
p

Being x the arithmetic mean of the xi measure-
ments, α = 0.05 (95%), s the standard deviation
of the xi measurements, and t1−α/2;p−1 defined
such that a random variable T , that follows the
Student’s t-distribution with p−1 degrees of free-
dom, obeys Pr[T ≤ t1−α/2;p−1] = 1 − α/2.

The data provided is the mean of the 95% confi-
dence interval.

To measure runtime performance, we have instru-
mented the code with hooks that registers the value
of high-precision time counters provided by the Win-
dows 7 operating system. This instrumentation calls
the native function QueryPerformanceCounter of the
kernel32.dll library. This function returns the ex-
ecution time measured by the operating system Per-
formance and Reliability Monitor (MicrosoftTechnet
2012). We measured the difference between the be-
ginning and the end of exchanging a set of messages
to obtain the total execution time. Tests were made
with different message sizes.

For memory consumption, we measured the maxi-
mum size of working set memory used by the process
(the PeakWorkingSet property). The working set of a
process is the number of memory pages currently vis-
ible to the process in physical RAM memory. These
pages are resident and available for an application to
use without triggering a page fault. The working set
includes both shared and private data. The shared
data comprises the pages that contain all the instruc-
tions that the process executes, including instructions
from the process modules and the system libraries.

These implementations have been compared using
the .Net Framework 2.0 build 50727 for 32 bits, over
a Windows 7 x64 operating system. All tests have
been carried out on a lightly loaded 2.13GHz Intel
Core 2 Duo system with 4GB of RAM.

4.2 Evaluation

To evaluate the cost of static and dynamic weaving
in DSAW, we have developed the three proposed sce-
narios using the traditional object-oriented program-
ming paradigm. Using object-orientation, we have ex-
tended the implementations with access control and
data flow security measures in the first use case, and
encryption in the other two scenarios. These same
functionalities were also developed as separate as-
pects, using the AOSD paradigm.

In the control access and data flow scenario, we
have used static weaving to inject the aspect in the
original system. In the encryption and FTP use cases,
the DSAW dynamic weaver was employed. Following
the start-up methodology presented in Section 4.1, we
measured the influence of the number of messages on
the performance and memory penalties. Since both
penalties remained constant, we used a fixed number
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of 6,000 messages for the first and third applications,
and 100,000 messages for the second one.

Figures 3 to 5 show the runtime performance
penalty in the three scenarios. For each application,
we increase the number of words contained in the mes-
sages in order to analyse the influence of message
sizes in runtime performance. Performance penal-
ties are calculated relative to the corresponding OOP
implementation. Values are the difference between
the DSAW and OOP execution times, divided by
the value of the OOP implementation (expressed in
percentage form) for each message size (expressed in
number of words).
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Figure 3: Runtime performance penalty of the Access
Control / Data Flow application.
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Figure 4: Runtime performance penalty of the En-
cryption application.
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Figure 5: Runtime performance penalty of the FTP
application.

Concerning the memory consumption, Tables 1 to
3 show the memory usage in the three scenarios: ac-
cess control / data flow (OOP vs. DSAW static), en-
cryption (OOP vs. DSAW dynamic) and FTP client-

server (OOP vs. DSAW dynamic). Memory con-
sumption is expressed in KBytes, and message size
in number of words per message.

4.3 Discussion

After presenting the data in Figures 3 to 5 and Ta-
bles 1 to 3, three issues are highlighted. The first one
is related to the runtime performance cost of weaving.
In all scenarios, the performance costs decrease as the
size of messages increases. In the first application, the
performance cost of static weaving varies from 9.35%,
with the minimum message size, to 0.44%, when mes-
sages are 10,000 times greater. In the second scenario,
the cost decreases from 59.81% (10 words per mes-
sage) to 14.28% (50 words per message). Finally, for
the FTP application shows a performance penalty of
25.19% for the smallest message, while this penalty
drops to 12.54% when the message size is multiplied
by 16. Therefore, runtime performance penalty grows
as the size of the message drops. This dependency is
caused by the number of intercepted joinpoints ex-
ecuted, which remains constant in each experiment.
For bigger messages, the overall execution time rises,
but the injection code executed (the number of join-
poits) stays the same. The FTP application shows a
smaller dependency on the message size. This is be-
cause the application executes 10 commands (such as
creating, changing and erasing directories), and only
one is file (message) transmission.

The second discussion is the different performance
penalties depending on the type of weaving. In the
static scenario, runtime performance penalty is be-
tween 9.35% and 0.44%. When the size of mes-
sages is significantly high, the cost of static weaving
is almost negligible. However, the cost of dynamic
weaving is more notable. The encryption application
showed a performance penalty between 59.81% and
14.28%, and 25.19% and 12.54% in the case of FTP.
This higher performance cost of dynamic weaving is
caused by different factors. First, the execution of the
dynamic weaver is included in the overall execution
time. Second, the runtime examination of joinpoint
registration (checking whether there are aspects wait-
ing for a joinpoit to be executed) also implies a per-
formance price. Finally, when a joinpoint is reached,
registered aspects are called by means of an indirec-
tion (a reference); whereas static weaving simply tan-
gles the code, enabling the optimizations performed
by the JIT compiler (Redondo et al. 2008, Ortin et al.
2009).

The last issue is related to memory consumption.
In every scenario, the memory consumption penalty is
not affected by the size of messages: standard devia-
tions of the three applications where 0.14%, 0.34%
and 0.26%, respectively. The static weaving tech-
nique has shown an average memory consumption in-
crease of 2%. This average cost augments to 60%
and 47% when dynamic weaving is used in the two
last scenarios. This difference is due to the additional
code and the registered aspects per joinpoint table im-
plemented by the dynamic weaver to allow dynamic
adaptation of components. Therefore, the cost of dy-
namic weaving examples has been higher than static
ones, for both runtime performance and memory con-
sumption.

5 Related Work

There are some existing works that compare the run-
time performance of different AOSD platforms (Vin-
uesa et al. 2008, Bijker 2005, Vanderperren & Suvée
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Message size 10 100 1,000 10,000 100,000
Object-Oriented 28,001 28,112 29,532 38,272 51,788

DSAW Static 28,735 28,859 30,387 39,400 53,204

Table 1: Memory consumption (KBs) of the Access Control / Data Flow application.

Message size 10 20 30 40 50
Object-Oriented 27,408 27,440 27,524 27,517 27,650
DSAW Dynamic 43,880 43,880 44,187 43,980 44,148

Table 2: Memory consumption (KBs) of the Encryption application.

Message size 500 1,000 2,000 4,000 8,000
Object-Oriented 33,708 33,799 33,799 33,832 33,764
DSAW Dynamic 49,484 49,600 49,768 49,772 49,716

Table 3: Memory consumption (KBs) of the FTP application.

2004), but there are not many that compare AOSD
implementations with equivalent OOP versions. Hils-
dale and Hugunin (Hilsdale & Hugunin 2004) assess
both run-time and compile-time performance of As-
pectJ, introducing a simple logging policy as an as-
pect in a benchmark. In this experiment, the aspect
is woven statically. It logs all the method entries of
the XSLTMark benchmark. The obtained results are
fairly similar to the results presented in this work.
The runtime performance cost of the AOSD version
compared to the hand-coded one is around 3%. More-
over, the authors present a comparison between the
original application (without any modification) and
the AOSD version (with logging) to evaluate the over-
head introduced by the logging aspect. Using dif-
ferent versions of the aspect code, this overhead is
greatly reduced from 2,500% to 22%.

Regarding the use of AOSD to implement and
adapt security measures, Viega (Viega et al. 2001)
proposes an extension of the C programming language
to support aspects. This extension allows the defini-
tion of security policies apart from the application
code. AspectJ has also been used for security issues.
Huang (Huang et al. 2004) presents a generic and
reusable library to introduce security mechanisms in
Java developments. This library provides reusable
and generic aspects in AspectJ, as practical software
components, and a prototype implementation of a
common security-relative API for AOSD. Kim and
Lee (Taeho & Hongchul 2008) also use AspectJ to dis-
cuss how authorisation capabilities could be added to
existing well-structured, object-oriented systems. In
these works, neither run-time performance nor mem-
ory consumption is assessed.

6 Conclusions

Aspect-Oriented Software Development allows the
separation of crosscutting concerns in software de-
velopment. The modularisation of different appli-
cation concerns provides higher level of abstraction,
concern reuse, higher legibility and improved soft-
ware maintainability. However, in some scenarios,
the use of AOSD may involve an increase of runtime
performance and memory consumption. This paper
presents a comparison of runtime performance and
memory consumption between three different applica-
tions developed using AOSD and the classical object-
oriented approach. All the applications were devel-

oped in the DSAW platform and using the C# pro-
gramming language. The three applications apply se-
curity measures to distributed systems: access control
and data flow, communications encryption, and FTP
client-server. The first application is statically woven,
whereas the two last ones require dynamic weaving.

The assessment of runtime performance has shown
that the DSAW static weaver have entailed a per-
formance cost of 9.35%, compared to the traditional
object-oriented development. When the size of the
messages increases, the performance cost decreases to
values near to zero. In the dynamic weaving scenar-
ios, runtime performance penalties were 59.81% and
25.19%, dropping to values around 13% when message
sizes grow. Different factors in the dynamic weaving
technique implemented by DSAW causes this perfor-
mance increase compared to static weaving. In all the
scenarios, memory consumption has not depended on
the size of messages. The memory usage penalty of
static weaving was around 2%, and 60% and 47% in
the case of dynamic weaving.

We plan to apply this evaluation methodology to
commercial aspect-oriented applications developed in
other platforms such as AspectJ, Spring AOP, JAsCo
or JBoss AOP. Regarding the use of AOSD in dis-
tributed systems security, future work will be fo-
cused on applying the AOSD approach to develop
other security measures such as Intrusion Detection
or Load Balancers. A more involved question con-
cerns how our approach can be suitably generalised
in distributed “systems-of-systems” scenarios (Ackoff
1971). We aim to address this challenge in the future
by considering more flexible means of defining point-
cuts, such as by allowing pointcuts to be defined in
a reactive manner, taking into account the results of
analysis of multiple interacting applications within a
network, and using different techniques together with
our approach (Söldner et al. 2008, Tanter et al. 2009).

The current documentation and implementation
of this work can be freely downloaded from (DSAW
2010).
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Abstract

This paper investigates the addition of Clocked Vari-
ables to the X10 Programming Language. Clocked
Variables work well for primitives and objects with
only primitive fields, but incur substantial perfor-
mance penalties for more complex objects. We discuss
ways to deal with these issues.
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1 Introduction

Distribution and parallelization are an important part
of computing today; with the focus of processor man-
ufacturers turning away from higher speeds, and to-
wards larger numbers of cores, proper utilization of
such resources is becoming more and more impor-
tant (Saraswat et al. 2007, Murthy 2008). Unfortu-
nately, many current programming languages don’t
provide the necessary support for easily writing thread-
safe programs. To address this issue, IBM have been
developing a new programming language called X10
(Saraswat et al. 2007, 2011, Charles et al. 2005). X10
is a strongly typed, concurrent, imperative, and object-
oriented programming language, making it quite sim-
ilar to popular existing languages such as Java and
C++. X10 was designed with multi-core and clustered
systems in mind. The goal of X10 is to allow program-
mers to easily produce code that can be distributed
over multiple cores and/or machines, with good scal-
ability (Murthy 2008). This means that concurrent
programs become much easier to write, as the language
has many built-in constructs to aid programmers in
achieving their goals (Ebcioglu et al. 2005).

Many concurrent algorithms maintain two states;
a current state and a next state. Operations are
performed on the current state, and the results cause
the next state to be updated. When the current state
has been fully processed, the next state becomes the
current state, and the algorithm continues. This can
lead to code bloat, as maintaining these two states
requires some extra book-keeping, and there is a risk
of introducing bugs into a program by accidentally
using the wrong state when performing an operation.

Clocked Variables allow variables to have different
states depending on how they are used. This allows
the prevention of race-conditions as each thread is
guaranteed a consistent view of the clocked variables.

Copyright c©2013, Australian Computer Society, Inc. This
paper appeared at the 36th Australasian Computer Science
Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 135, Bruce H. Thomas, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

This is achieved by requiring that updates to a clocked
variable do not become visible until every thread has
indicated that they are ready to progress to the next
state. In the case of clocked Primitives, this reduces
the requirement of having two explicit states to simply
maintaining a single object in memory that automat-
ically performs updates and state transitions at the
appropriate times. More interesting is the case of
Clocked References, which require a more complex
clocking mechanism—it is these that we investigate in
this paper. We implement Clocked Variables in X10,
guided by the X10 Design Document (Saraswat 2011).
While this paper is written with X10 in mind, the
concepts it presents are applicable to any program-
ming model that uses phased execution controlled by
barriers.

The rest of this paper is structured as follows: Sec-
tion 2 introduces the X10 Language, and details some
of the language-specific constructs that are required
to understand this paper. Section 3 discusses Clocked
Variables, with a focus on how Clocked References
are handled. Section 4 describes the experimental
setup used to benchmark the performance of clocked
variables, and Section 5 evaluates the performance of
Clocked Variables. Section 6 gives further discussion
of the results, and the paper is then is concluded by
Section 7.

The main contributions of this paper are:

• Extension of the X10 programming language to
include Clocked Variables,

• Case studies that use the new Clocked Variables,

• Performance evaluation of Clocked Variables in
X10.

2 The X10 Programming Language

X10 contains several language constructs that allow
programmers to readily, and easily, write concurrent
code (Ebcioglu et al. n.d.). Places, which can be
thought of as analogous to processes, provide a shared
memory environment in which concurrent code can be
executed. This memory is not shared between Places,
which allows Places to be parallelised, and distributed
across multiple machines. Within Places, concurrent
execution is achieved by the use of Activities, which
are analogous to Threads.

A Clock is an object that provides a programmer
with a means of synchronizing concurrently execut-
ing threads—an important idea in a distributed sys-
tem (Lamport 1978). In X10, this synchronization is
achieved through the use of a barrier-style structure
based on Lamport’s Logical Clock (Lamport 1978);
the clock object maintains a total count of the number
of Activities (threads) that have registered with the

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

87



clock, and a separate count of the number of activities
that are currently active—i.e, not currently waiting
for the clock to advance to the next phase. When
an activity wishes to advance to the next phase, the
clock first decrements the count of alive activities, and
if this is zero, atomically advances the phase of the
clock. The calling activity is blocked by placing it in
a loop until the clock advances (busy-waiting).

Clocks in X10 maintain an invariant GlobalRef
field that refers explicitly to the original instance of
the Clock, so that no matter where any copies may
end up, they can always refer to the same Clock object.
By forcing all updates to the internal fields of the clock
to always execute at the root Clock object, the same
state is seen by all copies of the clock at all times—an
important part of ensuring proper synchronization!

X10 is built primarily as an extension to Java,
using Polyglot (Nystrom et al. 2003) to handle the
translation from X10 source code to Java source code.
X10 can also be compiled to C++ source code. The
X10 Runtime is written primarily in X10 itself, giv-
ing it the ability to be compiled into one of several
back-ends. Currently, there is a Java-based runtime
environment (using the X10 Runtime as libraries for
the JVM), a C++ based runtime environment, and
a CUDA (Compute Unified Device Architecture—a
parallel computing architecture developed by Nvidia,
that can be executed on GPUs) runtime environment.

3 Clocked Variables

The clocked variables described in this paper are based
on the design outlined in the X10 Design Document
(Saraswat 2011). There, the intent is for only val (final
variables that can be altered once per clock phase)
and stack local variables to be able to be clocked,
as dealing with object references was considered too
hard. The intent of this paper is to explore that claim
and to investigate if it is possible to have any form of
variable able to be clocked. Extensions are proposed
in the Design Document to allow methods, objects,
fields and types to be clocked as well; but we do not
consider these in this paper. We deal only with the
idea of clocked primitives and references, and how
interactions with them might proceed.

A clocked variable is functionally similar to a nor-
mal, unclocked variable—a location in memory in
which a primitive value, or a reference to an object, is
stored and can be accessed. However, in a clocked en-
vironment, a clocked variable becomes quite different
to an unclocked variable, in terms of how and when it
can be updated and accessed.

3.1 Design of Clocked Variables

During a single clock phase, the value of a clocked
variable remains fixed. If the variable is written to,
or updated in some way, the change does not become
visible until the end of the clock phase. Figure 1 gives
an example of code that demonstrates this.

We require that clocked variables only be written
to once during any given clock phase—writing to a
clocked variable more than once in a given clock phase
is a runtime exception. Clocked variables may be read
any number of times during a given clock phase, but
we require that this value remains constant for the
duration of the phase. If a clocked variable is written
to, or updated in any way, the new value must take
effect between the clock phases. The idea, then, is
that clocked variables provide the same functional-
ity as manually maintaining two separate states in

c locked var i : Int = 5 ;
i = 6 ;
Console .OUT. p r i n t l n ( i ) ; //Prints 5
Clock . advanceAll ( ) ;
Console .OUT. p r i n t l n ( i ) ; //Prints 6
i = 0 ;
Console .OUT. p r i n t l n ( i ) ; //Prints 6
Clock . advanceAll ( ) ;
Console .OUT. p r i n t l n ( i ) ; //Prints 0

Figure 1: Example of Clocked Code

a concurrent algorithm, but without all of the extra
book-keeping.

Only allowing one write per phase may appear to
be an odd design decision; primarily this was done
to meet the proposal for Clocked Variables given in
the X10 Design Document (Saraswat 2011). However,
that document specifies this behaviour for variables
marked with the keyword val—that is, variables that
are final, but when clocked, can be updated once per
phase. In this case, it is an error to write to the
variable more than once per phase, as the variables
are final. Under clocking, the original design allows
such variables to be re-initialised once per phase. We
did not adhere strictly to this design, as we allow the
clocking of non-val variables, and allowing more than
one write per phase was considered. However, this
limit was deemed necessary to deal with some of the
issues raised by clocking reference types, as discussed
later.

3.2 Clocked Primitive Types

The design of clocked variables started with primitives,
as they are conceptually easier to deal with than ob-
jects and references. Our design for clocked primitives
is based on the outline for clocked vals given in the
X10 Design Document, but has been extended to cover
non-local vars and fields as required. We also depart
from the Design Document in that clocked primitives
can still be used outside of a clocked environment
(ie: with a block encapsulated by clocked(Clock),
clocked finish, or clocked async)—they simply
revert to behaving like an unclocked variable of the
appropriate type.

The basic design is that of wrapper classes—instead
of dealing with the primitive variable directly, all in-
teractions are abstracted away by “Clocked Primitive”
objects that sit between the primitive variable and
the rest of the program. One of these wrapper classes
is needed for each of the thirteen primitive types avail-
able in X10.

The design of the wrapper classes is reasonably sim-
ple. Each class contains two fields of the appropriate
primitive type: one to hold the current value of the
clocked variable, and one to hold the next value. Only
two operations are supported on clocked primitives:

read returns the current value of the clocked variable.
Can be performed any number of times.

write updates the next value of the clocked variable.
Can only be performed once per clock phase.

3.3 Clocked References

Like Clocked Primitives, Clocked References are ex-
pected to maintain a constant value during a clock
phase, and then to update that value at the end of
each clock phase. Unlike Clocked Primitives, this is
not a simple matter of just executing current = next.
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Clocked References are not dealt with in the design
document, save for defining the concept of a “clocked
field” that might exist inside such an object. Thus,
the design for Clocked References is entirely our own,
and is based on the design of Clocked Primitives.

As a Clocked Reference must encapsulate a refer-
ence type (not a primitive), using generics to describe
a general “Clocked Reference” was deemed the best
approach. The bigger issue is that an object may con-
tain references to other objects. Clearly updating such
a complex structure would not be a simple task. So,
how do we successfully update a Clocked Reference?

Figure 2: A clocked LinkedList behaves oddly under
a call to add(node)

The answer is not simple. Figure 2 shows the
behaviour of a clocked LinkedList during a call to add.
Notice that we have a clocked reference to the head
of the list. A call to add a node to the list, executed
on the head node, adds a node to the list—but this
alteration is not visible yet, as any reads of the graph
are done from the current state, and the alteration is
performed on the next state. Another add call is made;
how do we resolve this? We need to ensure that we
have access to a up-to-date version of the list, but the
first change has not yet been commited. We cannot
set the next field of the Node correctly, and the list
enters an inconsistent state. Ideally, we would require
all such alterations to be performed on a version of
the graph that is kept up-to-date. It becomes clear
that we cannot simply just maintain two states for
the object being referenced by the clocked reference;
we need to do this for the entire object graph it is
connected to. But how, then, do we propagate changes
to the current state when the clock advances?

There are many ways in which a Clocked Reference
could update its value—the simplest of which is a deep-
clone of the entire object graph. In fact, X10 readily
provides a method to perform exactly that operation;
one which even takes cycles into account. This is
the method used in the design of Clocked References
within this paper, as time constraints meant other
avenues could not be fully explored. To avoid issues
caused by calling multiple updates on the graph in one
clock phase, the write operator was limited to only one
write per phase, as specified in the Design Document
(Saraswat 2011). With the näıve deep-cloning method
of updating Clocked References, however, it could be
argued that this was unnecessary, as the two states
are completely separate object graphs. In the inter-
est of exploring more interesting update mechanisms,
however, we felt it was necessary to enforce this limit.

Having chosen a solution to the problem of up-
dating a clocked reference, we turn to the operations
that can be performed on a clocked reference. Im-
mediately we can see that the operations used with
clocked primitives are not going to suffice. Read still
functions well enough, as it now just returns a ref-

erence to the current value of the clocked reference.
Write proves a little more troublesome. We don’t
want to support an operation that replaces the next
value wholesale—instead, we want to be able to give
out a reference to the next value to allow programs
to alter it in less destructive ways (such as updating
a field, or calling a method, etc). After some con-
sideration, it was decided that Clocked References
would not support any operations, as there was no
easy way to pass only the required changes to the
graph as a parameter. Instead, direct access to the
current and next values of the clock reference would
be performed via method calls (readableObject()
and writableObject() respectively).

3.4 Back-end Design

Having described the design of clocked primitives and
references, we now describe the design of the actual
clocking mechanism itself, and how it fits into the
overall X10 architecture. This is not touched on at all
in the X10 Design Document, and as such, is entirely
our own design.

There are two main alternatives for the back-end
of this system. The first puts the onus on the Clock
to keep track of Clocked Variables and perform the
updates. The second shifts this responsibility to the
spawning Activity itself.

3.4.1 The GlobalRef Method

The first implementation of Clocked Variables uses the
GlobalRef structure (an X10 type that can be used to
access objects across Place boundaries) to ensure that
all operations performed on the object are executed
in the correct place—this is especially vital, otherwise
the state of the object becomes inconsistent.

A list of GlobalRef objects is maintained by the
Clock object. When a clocked variable is registered on
that clock, its GlobalRef object is copied to the “root”
of the clock (the Place it uses for its fields) and added
to the list. Then, when the Clock advances from one
phase to the next, it calls the next() method on all of
the members of the list. Figure 3 illustrates this.

3.4.2 The Map Method

For this design, the onus of keeping track of clocked
variables falls on the activity in which they were de-
clared. Each clocked variable is assigned an integer id
upon construction, and a mapping from this id to the
clocked variable is stored in a HashMap within the ac-
tivity. The activity then registers the clocked variable
on the same clock (if any) that the activity is regis-
tered on. This is accomplished simply by passing the
integer id to the clock, which stores it in an ArrayList
in the ”root” Clock. Since the id is invariant, the fact
that this value crosses places during this action does
not raise any concerns.

At the end of the clock advancement step, the
clock passes its internal list to each activity that it
is associated with. Then, each activity scans the list
for any ids that exist in the Map—if it finds any, the
activity issues a call to next() on that clocked variable.
Figure 4 illustrates this.

This design has the advantage of storing very little
state within the Clock object itself: a list of primi-
tive integers, rather than a larger struct. Since the
burden of updating the clocked variables falls on the
activity itself, there is also no need to switch places in
order to update them—and this way, clocked variables
in different places (and thus Activities) are updated
concurrently, rather than consecutively

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

89



Place 1 (Program Execution) Place 2 (clock.root)
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val c = Clock.make();
ClockedVar1.register(c);
ClockedVar3.register(c);
ClockedVar4.register();

Clock

List of GlobalRefs to ClockedVars

Global 
Ref  to 

Clocked
Var 1

Global 
Ref  to 

Clocked
Var 3

Global 
Ref  to 

Clocked
Var 4

Copies GlobalRefs into
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Executes in Place 1

at(Var1Ref.home())
Var1Ref().next();

at(Var3Ref.home())
Var3Ref().next();

at(Var4Ref.home())
Var4Ref().next();

Figure 3: An activity in Place 1 using 4 ClockedVars under the GlobalRef method
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Figure 4: An activity in Place 1 using 4 ClockedVars under the Maps method
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Model Dell Optiplex GX780
CPU Intel(R) Core(TM)2 Duo @ 3.00GHz
RAM 4GB
OS ArchLinux (3.2.4-1-ARCH)

HDD 250GB Serial ATA 7200rpm
Ethernet Intel On-Board 1 Gigabit

Table 1: Hardware specifications for the benchmark
applications

It was decided that the Map method would be
used to implement Clocked Variables, as the cost of
switching places is quite high in terms of efficiency.
The Map method does this much less often than the
Global Ref method (once per calling activity, rather
than once per clocked variable).

4 Benchmarks and Evaluation

The performance of both types of clocked variable was
measured through the use of four benchmarks, each of
which tested a different form of reference type. Each
benchmark was implemented in two different ways;
using the clocked references described in Section 3,
and not using clocked references. For the “unclocked”
case, synchronization and state updates were handled
manually—the term refers to the absence of clocked
variables, not the absence of clocks themselves. Care
was taken to ensure that all versions of the bench-
mark programs operated correctly, and that the use of
clocked/unclocked references was the only difference
between the two versions of each benchmark. Each
benchmark was executed 100 times, on a range of
different values. The results shown here give the av-
erage values of those executions. Table 1 details the
specifications for the hardware these benchmarks were
executed on.

4.1 Conway’s Game of Life

Conway’s Game of Life is a fairly simple cellular au-
tomaton, originally described by the mathematician
John Conway (Gardner 1970). The automaton con-
sists of a two-dimensional grid-based world, with each
cell of the grid having two states (dead or alive). Cells
live or die according to fixed rules that are only reliant
on the current state of the board. At each step, the
rules are applied simultaneously to each cell in the
grid. This is done in X10 by using the async structure
to parallelise the application of the rules to each cell.
Each cell is given its own thread, the state of each cell
is calculated concurrently with the state of each other
cell.

This was implemented in X10 using an array of
integers to represent the grid. The clocked version used
a single array of clocked integers, and the unclocked
version used two arrays of normal integers (one to
represent the current state, and one to represent the
next state). The update mechanism for the unclocked
version is essentially the same as for the clocked version
(but coded manually): a loop copies the value from
the next board state to the current board state.

Figure 5 gives the results for Conway’s Game of
Life for boards of various sizes. There is no signifi-
cant difference between the clocked version and the
unclocked version. This outcome was expected, as
clocked and unclocked primitives are both updated
via the same mechanism—directly copying the new
value over the old value.
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Figure 5: Conway’s Game of Life: Clocked vs Un-
clocked execution times
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Figure 6: N-Body Simulation: Clocked vs Unclocked
execution times

4.2 N-Body Simulation

An N-Body simulation is a physical simulation of a sys-
tem of many interacting particles. N-Body problems
are computationally intensive, as calculating the next
state of a particle involves determining its interactions
with every other particle in the system. Generally,
these interactions take the form of forces exerted be-
tween the particles—usually gravitational (in the case
of uncharged particles or large bodies, like planets) or
electrostatic (in the case of charged particles) or both.

This benchmark was implemented as a N-Body
system of uncharged particles (i.e. the only interac-
tion between the particles was gravitational). The
particles were represented as a simple object with
several primitive fields and an update method. In
the clocked version of this benchmark, these particles
were clocked. The update method executed on the
next state of the object, and wrote directly to the
fields. In the unclocked version, two additional fields
had to be added to hold the information required to
update the particle, and a new method, next() was
added to the Particle class so this update could be
performed. Similar to Conway’s Game of Life, this
was done after ensuring that all of the next states had
been calculated.

Figure 6 shows the results for the N-Body Bench-
mark, for various numbers of particles. As one would
expect, execution time scales with the number of par-
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Figure 7: Sparse Matrix: Clocked vs Unclocked exe-
cution times

ticles present in the system (as this is an O(n2) al-
gorithm). Interestingly, however, the clocked and
unclocked versions clearly have a very different gradi-
ent. The update mechanism for the clocked version
is a simple deep clone of the object (which only has
primitive fields—essentially a struct), whereas the up-
date mechanism for the unclocked version was method
call on the object that performed two minor calcula-
tions and updated the fields. For smaller numbers of
objects, the cloning method is much faster, but the
time cost increases at a faster rate than the method-
call update. The two methods are equal at around
800-850 objects, and the method-call update is faster
for object numbers above that. From the graph, it ap-
pears that the method-call update has a constant cost
associated with it (hence it starting at a much higher
y value). This may be due to the update threads
having to synchronize between the calculation phase
and the update phase—something that doesn’t need
to happen in the clocked version.

4.3 Sparse Matrix Convolution

A Sparse Matrix allows more compact storage by stor-
ing only the non-zero values within the matrix. We
used a linked-list style structure, in which each row of
the matrix is represented by a single list. Rows are
then linked by their first node. This allows access to
any cell within the matrix by following the links from
the root node.

In this benchmark, a sparse matrix was used to
represent an image which then had three filters applied
to it via convolution. Much like Conway’s Game of
Life, the “next” (in this case “filtered”) state of a given
pixel in the image is calculated from the value of the
pixel and its immediate neighbours, and this must be
done “simultaneously” for each pixel. The difference
here is one of representation; whereas Conway’s Game
of Life was an array of primitive integers, the images
used in this benchmark are represented by a complex
linked object structure. In the clocked version, the
entire object graph is clocked via the reference to the
root node of the matrix. In the unclocked version,
it is necessary to update the current image state by
replacing the reference with a reference to the next
image state, and then re-initialising the next state to
be an empty matrix.

Figure 7 gives the results for Sparse Matrix Convo-
lution. Only a small number of points were sampled
due to the very long execution time of this benchmark—
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Figure 8: Linked List: Clocked vs Unclocked execution
times

but enough data were gathered to show that the
clocked version of the Sparse Matrix is vastly slower
than the unclocked version. Due to the single-write-
per-phase nature of clocked variables, the Sparse Ma-
trix was very slow to update. Each thread had to
calculate the next value of its cells before any other
thread could actually write to the matrix (as each cell
insert necessitated a phase advancement, which—if
peformed while threads were reading—breaks the con-
volution algorithm). After the values were calculated,
each thread then inserts the new cell, advancing the
phase after each insertion. Obviously this reduces the
behaviour of the matrix to exactly that of the un-
clocked version—but with the high overhead of having
to deep-copy the matrix at every clock advancement!
Under a single-write-per-phase scheme, complex ob-
jects seem to perform quite slowly.

4.4 Linked List Microbenchmarks

For this benchmark, for linked lists of various sizes,
the add and remove methods were executed a number
of times. This benchmark mostly tests the overhead
introduced by forcing the clocked list to be updated
after every method call, as both were implemented in
the exact same fashion, and both required the clock
to advance after every method called on the list.

Figure 8 gives the results for clocked and unclocked
Linked Lists. We can see that the clocked version of
this data structure is much slower than the unclocked
version. Every add, every remove—every operation
that changes anything about the list—requires that
the clock phase be advanced. This overhead simply
does not exist in the unclocked version!

While clocked variables seem to offer some sort of
benefit when used with primitives and objects with
only primitive fields, they incur performance penalties
with more complex data structures—at least, if we’re
restricted to one write per phase. Allowing multiple
writes per clock phase might offer some performance
improvements.

5 Alternate Approaches

It is obvious from the results presented in Section
5 that the performance of certain applications (i.e.
Linked Lists) is heavily impacted by the inability to
write to a clocked reference multiple times per phase.
Why is this a restriction? If it can be shown that a
given write is “safe”, then what good reason is there
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Figure 9: Approach 1: Clocking objects individually

for not allowing it? But before we can discuss that,
we should look at what it means to be “safe”. A
“safe” write is any write to any part of a clocked object
graph that (1) does not change the structure of the
graph, and (2) does not involve a value that has been
written to already during this phase. For example,
it would be unsafe to add or remove a node from a
linked list of integers, but it would be safe to alter
the integer value store within a node—provided that
value has not already been changed this phase. From
this, we can immediately see that the Sparse Matrix
benchmark is not safe, as some operations change the
structure of the object graph (setting the value of a
previously zero entry to a non-zero value). This was
taken into account in the benchmark, and all updates
to the object graph are performed atomically and are
immediately visible to all threads—but this will not
always be the case.

Once this difference in safety has been established,
we can amend the requirement of a clocked reference
to only allowing one unsafe write per clock phase.
The issue then becomes determining what is a safe
update, and what is not. Ideally, this would be done
automatically by the compiler with no extra work
required on the part of the programmer—but this
would be require a means of determining every possible
interaction that could occur with an object. Certainly
possible for very simple objects, but the difficulty
escalates quite rapidly.

5.1 Two Possible Approaches

Consider Figure 9. Under this approach, each object
is individually clocked, allowing multiple updates to
occur to the list—provided the updates don’t affect
the same object twice. Consider the example shown
in the Figure: adding an item into a linked list cannot
be safely done more than once per clock phase, as the
second add operation simply cannot know about the
previous addition, as it uses the readable versions of
the objects to determine the current state of the list—
these versions of the objects do not have any links to
the new node! Thus the add operation replaces the
next pointer of the old last node with a pointer to the
second new node, erasing the first new node from the
list. Multiple writes are unsafe under this approach.

(a) Linked List with root node clocked

(b) Insert called

(c) Clock Advanced

Figure 10: Approach 2: Single point-of-entry, clocking
entire object graph

A second approach (Figure 10) attempts to solve
this problem by splitting the object graph into two dis-
parate graphs: a writable graph and a readable graph.
This is the approach to Clocked References used earlier
in this paper. We can see that doing this solves the
issue of data loss, as each write operation is performed
on the writable object graph, which is always the most
up-to-date version of the object. The add operation
is safe here, as the entire operation uses the writable
object graph. But what about other operations? If
we were maintaining a sorted list, adding a new node
may not be safe, especially if the location that a node
must be inserted is determined prior to calling any
methods on the writable graph—instead, the location
would be determined by the readable object graph,
and so multiple additions—while no data would be
lost—may result in the list no longer being sorted. We
also see that this approach is not thread-safe, as multi-
ple threads attempting to add nodes to the list would
be prone to the usual issues of concurrent lists. To
eliminate this, we must then state that every thread
that wishes to use the writable object graph must
obtain a lock on the root node in order to proceed.
Thus every write is atomic and uninterruptable—but
we have sacrificed parallelisation. This becomes a
large issue with problems like the Game of Life, or
image convolution: if each thread is only updating
one node, and no node is being updated by more than
one thread, then why shouldn’t the threads be able to
do this concurrently?

5.2 Two Better approaches

We can build on the first approach outlined above in
order to make it slightly safer: we require that each
thread lock the objects it needs to update. While
these objects are locked, the thread uses the writable
version of the object for all operations. This ensures
that no data is lost, but brings new difficulties in ascer-
taining which objects a thread needs to lock in order
to perform the operation successfully. It also raises
concurrency issues: deadlock needs to be avoided, as
it could be caused by two threads needing the same
two objects, and locking them in different orders.

Our final approach attempts to solve this dead-
locking problem by providing a single point of entry,
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Figure 11: A Sparse Matrix Convolution

similar to the second approach outlined above. When
a thread needs to lock objects, it first locks the root
object; thus any thread that needs to lock objects
within the graph can do so without interfering with
any other threads. This doesn’t solve the issue of
multiple threads needing to write to the same object.
In this case, such a thread must wait until the next
clock phase. So, what do these approaches look like
in practice? A working implementation has not yet
been developed, but Approach 3 lends itself well to
simulation.

Figure 11 shows, we still cannot perform sparse
matrix convolution—at least, not with this representa-
tion of sparse matricies. To understand this, we need
to take a closer look at what is happening when a cell
is updated. In the example shown, thread 2 is tasked
with updating cell (0,1). To do this, it must first read
cells (0,0), (0,1), (0,2), (1,0), (1,1), and (1,2). The
result (1.00) is then written into cell (0,1)—but cell
(0,1) does not currently exist in memory. So, the root
of the matrix must be written to so that the cell can
be inserted. The root holds a reference to the first
non-zero cell in the first non-zero row, so currently it
is pointing to cell (1,1). This reference needs to be
updated, so we acquire a write-lock on the root node
and insert the new cell.

Then, thread 1 attempts to update cell (0,0) via
the same process. As this cell is before (0,1) in the row,
the root needs to be updated again. Note that we have
not yet advanced the clock. This requires obtaining
a write-lock on the root, which throws an exception
as the root has already been written to during this
phase. We cannot solve this problem by advancing
the clock before inserting (0,0), as this breaks the
convolution algorithm. Cell (0,1) would be inserted
into the matrix, and would thus affect any threads
that have not yet read the old value of that location.

A solution could be to require all threads to per-
form their reads before any thread can write to the
matrix. This would break each clock phase into two
sub-phases—a read phase and a write phase. Dur-
ing this write phase, the clock can be advanced any
number of times, as the old values are no longer re-
quired by the updating threads. However, this would
result in the same level of performance as shown in
Figure 7, as clock advancement is costly for a sparse
matrix (Figure 12). It also renders the object unsafe
to read from during the write phase, so any threads
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Figure 12: Clock Advancement Performance for a
Sparse Matrix
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Figure 13: Using Approach 3 to solve the Sparse
Matrix Performance Issue

external to this process would be forced to wait until
the update process had finished in its entirety.

As we can see from Figure 13, the performance of
Sparse Matrix Convolution is much improved—but
this relies on a safe way to update the matrix.

Another solution, perhaps, is to implement things
in a safer way. If a Sparse Matrix were implemented
such that the first cell in each row was always present,
even if zero-valued, a lock could be acquired on an en-
tire row of the matrix, making structural changes safer.
This would require that each row be updated strictly
by one thread, so we have lost some concurrency here—
but the performance would surely be better.

5.3 Related Work

The basic concept underlying clocked variables is not
a new one. Software Transactional Memory (STM)
(Shavit & Touitou 1995) provides database-like trans-
actions for operations on shared memory. A transac-
tion consists of one or more write operations performed
on an object, which is then committed once the trans-
action is complete, causing an atomic update on the
object to be performed. Transactions can be aborted
at any time, and the pending changes are lost. This
is similar, in many respects, to how Clocked Variables
work—with some key differences. Both operate in a
”phased” fashion; for STM, these phases are trans-
actions, and for Clocked References, the phases are
literal clock phases. Both maintain the old version
of the memory location for reading purposes during
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these phases, and both ”commit” changes to memory
at the end of each phase.

For X10 specifically, there has been work to develop
Phasor Accumulators (Shirako et al. 2009). These ac-
cumulators provide support for the accumulation of
multiple values during a single clock phase (thus allow-
ing multiple updates to a value) while maintaining the
value from the previous state for reading purposes—
similar to the Clocked Variables described in this
paper. However, Phasor Accumulators were only de-
signed with Number types in mind, and do not address
Reference Types.

The use of revisions and isolation types (Burck-
hardt et al. 2010) offers a similar functionality to the
scheme presented in this paper. Programmers can
declare data they wish to be shared between tasks by
using isolation types. Tasks are then executed and
merged using revisions: isolated instances that can
only read and modify the shared data locally. When
the tasks are finished, the runtime merges the results,
automatically resolving any conflicts that occur. The
result is a concurrent programming model that can
distribute and share data without concern over concur-
rent modifications, and successfully merge this shared
data back into a coherent whole. Under such a scheme,
it would be possible to split an array (such as in the
Game Of Life case study) across multiple tasks, have
each task read and update their assigned cells, and
have the array merged successfully back into a con-
sistent board state. Such a process may be used to
provide high-performance concurrent programs (Bur-
ckhardt et al. 2011) that greatly improve upon the
expected performance gained by parallelization alone.
However, it is unclear how Revisions handle complex
object graphs, as this has not been specifically ad-
dressed; nor does it seem to address the case where
objects have reference types as fields.

6 Conclusion

Clocked Primitives are the most viable form of clocked
variable presented in this paper, and offer no significant
change in performance. The benefit gained from using
them is a cleaner way of updating dual-state variables
often found inside concurrent code.

Clocked References, however, were the main focus
of this paper. While our initial attempts at solving
this problem were not entirely successful, we have
presented our results and offered insights into what
could be done to solve this issue. There are many
options for future work with Clocked References, and
many new avenues to explore.

The implementation presented in this paper is
available from
http://ecs.vuw.ac.nz/~atkinsdani1/
x10-clocked.tar.gz.
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Abstract

Hardware Trojans pose a credible and increasing
threat to computer security, with the potential to
compromise the very electronics that ostensibly pro-
vide the security primitives underpinning various
computer architectures.

The discovery of stealthy Hardware Trojans within
Integrated Circuits by current state-of-the-art pre-
and post-manufacturing test and verification tech-
niques cannot be guaranteed. Therefore electronic
systems, especially those controlling safety or secu-
rity critical systems should be designed to operate
with integrity in the presence of any Hardware Tro-
jans, and regardless of any Trojan activity.

We present an architecture that fragments and
replicates computation over a pool of Commercial-
Off-The-Shelf processors with widely heterogeneous
architectures. Processors are loosely synchronised
through their use of a voted, architecture-independent
message box mechanism to access a common memory
space. A minimal Trusted Computing Base abstracts
the processors as a single computational entity that
can tolerate the effects of arbitrary Hardware Trojans
within individual processors. The architecture pro-
vides integrity, data confidentiality, and availability
for executing applications.

1 Introduction

Hardware Trojans are malicious modifications to In-
tegrated Circuits (ICs) that can compromise the se-
curity of a hardware platform or any software running
on it. They are persistent in nature and can operate
continuously or be triggered into one or more actions,
including modification of functionality, modification
of specification, leaking of sensitive information, or
Denial of Service (DoS) (Rajendran et al. 2010). The
severity of Hardware Trojan action can range from
minor through to catastrophic, such as the disabling
of a major financial system causing economic loss or
affecting a critical electro-mechanical system (Tsang
2009), leading to potential loss of human life.

Many different types of Hardware Trojans
have been demonstrated, (Lin, Burleson & Paar
2009)(Baumgarten et al. 2011)(Jin et al. 2009), in-
cluding malicious modifications to CPUs that have
enabled privilege elevation and password stealing at-
tacks (King et al. 2008). Whilst not a malicious

Copyright c©2013, Commonwealth of Australia. This paper
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Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
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Trojan, the Intel Pentium f00f bug (Collins 1998)
demonstrated how a small design flaw in an IC could
render a system vulnerable to a DoS attack.

The Hardware Trojan threat is increasing, es-
pecially amongst Commercial-Off-The-Shelf (COTS)
components, where much of the IC development
chain has been outsourced, relinquishing control over
many potential Hardware Trojan insertion vectors.
The past six years have seen increased research into
methods for detecting Hardware Trojans. The pri-
mary methods involve self-checking systems, side-
channel analysis and destructive reverse-engineering
(Chakraborty et al. 2009). Even with the most re-
cent advances in detection techniques, there are no
guarantees that an IC is free of Hardware Trojans
(Abramovici & Bradley 2009).

Economic and political rationale are driving in-
creased globalisation, pushing untrusted COTS com-
ponents into many electronic devices, including safety
critical systems and sensitive military equipment
(Young 2011). The cost of developing a Trojan-free
IC is immense, requiring trust in many areas in-
cluding design tools and teams, fabrication facilities,
supply chains and anti-tamper technology. This ap-
proach is currently both technologically and econom-
ically infeasible, especially in an Australian Military
context. To track technological advances, especially
in relation to the latest processor architectures, ac-
creditation of all components is not practicable, thus
the use of COTS elements cannot be avoided. In-
stead, we advocate coupling the latest COTS tech-
nology with some small, accreditable trusted logic to
form a Trojan-hardened system.

In previous work, the SAFER PATH architec-
ture (Beaumont et al. 2012), a Hardware Trojan-
resistant general computing platform, was proposed
as a trusted drop-in replacement for a potentially
compromised processor. The architecture combines
many similar, cycle-accurate processors with a small
Trusted Computing Base (TCB) to achieve replicated
and fragmented execution. The architecture provides
integrity and availability through majority voting of
execution and protects data confidentiality by limit-
ing any individual processor’s access to program code
and data. It relies on obtaining variations of the same
processor for protection against identical Trojans.

In this paper, we introduce a modified version
of the SAFER PATH architecture that abstracts a
single computational entity from the collective be-
haviour of a pool of COTS Processing Elements (PEs)
with widely heterogeneous architectures. Computa-
tion across multiple PEs is loosely synchronised via an
architecture-independent message box (mbox) mech-
anism, allowing voted execution of an application.
This execution is also fragmented in time across many
different sets of PEs, limiting access to sensitive infor-
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mation for any individual PE. A software interpreter
is demonstrated that provides a software abstraction,
allowing a single, architecture-independent applica-
tion to be collectively executed and fragmented across
a pool of architecturally different processors.

The replication and fragmentation logic are part
of a minimal TCB, providing the root of trust for
the architecture. As such, effort must be put into
ensuring that this logic is free of Hardware Trojans.
Development and accreditation of the TCB logic is far
more economically feasible than pursuing a complete
trusted processor.

Trustworthiness is targeted at the expense of cost,
performance, power usage and size. This is a design
decision, but one that we believe needs to be made,
especially for critical systems.

Our focus is on Hardware Trojans present within
PEs, e.g. a CPU with local memory, and we aim to
provide a broad spectrum defence against the effects
of any Trojans present within these circuits. While
we assume that any given PE may be infected, the
likelihood of having identically functioning, or collab-
orative Hardware Trojans across many processors is
considered very low, decreasing as the number of dif-
ferent processors is increased.

External to our abstracted computational entity,
we provide no protection against Hardware Trojans in
other ICs such as system-wide memory, or Input/Out-
put (IO) circuitry. The architecture ensures that any
given software is executed correctly as determined by
the collective behaviour of multiple PEs. This archi-
tecture can be used as a trusted replacement process-
ing element, with other defences able to be incorpo-
rated to protect the system as a whole, e.g., Bloom et
al. (2009) protect against Trojans residing in memory
using a double guard on the memory bus.

The paper is organised as follows: Section 2 dis-
cusses related work, Section 3 details our proposed
solution and Section 4 describes our experimental im-
plementation and results. Section 5 discusses some
potential extensions while Section 6 summarises our
work.

2 Related Work

There are existing commercial and industrial systems
that provide availability, and protect functional in-
tegrity and data confidentiality. They often incorpo-
rate one or more of the following techniques: hetero-
geneous processors, redundant processing, software
dissimilarity, voting, and data fragmentation. Hard-
ware Trojan research has also incorporated some of
these mechanisms.

Recently, the SAFER PATH architecture was
developed incorporating fragmented execution and
replication as a defence mechanism. SAFER PATH
relies on obtaining variability between operationally
equivalent processors to combat Hardware Trojans.
Ensuring there is enough variability between proces-
sors to prevent the same Hardware Trojan appearing
is difficult, requiring sufficient orthogonality between
the design teams, design software, and fabrication fa-
cilities. It is also difficult to obtain this variability off-
the-shelf, meaning that processors would need to be
customised. Utilising a new type of processor would
require significant effort. The same Hardware Trojan
might also be more easily inserted into variants post-
manufacture, given that all processors must adhere to
the same operational interface.

In contrast, the architecture presented here uses
truly heterogeneous, unmodified COTS processors,
allowing new types of processors to be easily added.

Every processor in the architecture can be different,
increasing the barrier for any collaborative Hardware
Trojan insertion.

Yeh (1996) describes the use of triple modular re-
dundancy using heterogeneous PEs, majority voting
and N-version dissimilar software to achieve high lev-
els of reliability in the Boeing 777 primary flight com-
puter. A low-level communications bus is used for
synchronisation between varying processor channels.
The system is only used to process simple inputs and
outputs, and only outputs are voted on. Saxena and
McClusty (1998) use redundant simultaneous multi-
threading to achieve fault detection and recovery at a
software level. In more recent work, Reis et al. 2005
employ compiler-based transforms that duplicate in-
structions and insert checkpoints for fault detection.
These systems provide protection against transient
faults, as opposed to Hardware Trojans which may
not manifest as a fault, but rather a subtle change
to a processor’s behaviour, or the leaking of sensitive
information.

McIntyre et al. (2010) propose a software fault-
tolerant technique, the Trojan Aware Distributed
Scheduling (TADS) system. TADS operates on a
multi-core compute platform potentially containing
one or more Hardware Trojans. A scheduler is used
to execute functionally equivalent subtask variants
on different cores within the processor. Results are
evaluated for equivalence and any disparity is used
as an indicator of Hardware Trojan presence. This
process is repeated and the scheduler is able to pro-
gressively establish trust in the circuitry of each core.
Software variants provide course-grained protection
and require program diversity through recompilation.
This architecture protects against simple Hardware
Trojans, but is vulnerable to more sophisticated Tro-
jans (e.g., King et al. 2008) that may be replicated
across processing cores.

Other research has proposed Data Guards (Bloom
et al. 2009) (Waksman & Sethumadhavan 2011) and
reconfigurable logic (Baumgarten et al. 2010) to
counter the presence of Hardware Trojans within ICs.
These solutions are focused on protecting against spe-
cific Hardware Trojan triggers or actions. We make
no such assumptions about the type of triggers that
may exist or the actions that may result, and pre-
sume Hardware Trojans may be active within all our
processors.

3 Architecture

Modern computing systems typically entrust one or
more COTS Processing Elements (PEs) to reliably ex-
ecute programs. Our assumption is that any of these
individual PEs may be infected by one or more Hard-
ware Trojans, consequently compromising security by
modifying the behaviour of the program or leaking
data.

Our architecture uses a pool of many architec-
turally different PEs together with a small Trusted
Computing Base (TCB), to collectively execute a
given application. The architecture enables the exter-
nal behaviours of simultaneously executing PEs to be
supervised, making no assumptions about the inter-
nal operation of individual PEs. All PEs run indepen-
dently of each other, executing their own code from
a locally attached memory. Low-level computation
is not replicated, instead, some of the external be-
haviours of the PEs are replicated and arbitrated by
the TCB to coordinate a collective behaviour across
the pool of PEs.
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Figure 1: A set of PEs collectively execute a given application.

To support this behavioural replication across dif-
ferent architectures, a Hardware Abstraction Layer
(HAL) provides independent access to a common
memory and IO space. The HAL unifies accesses us-
ing a message box (mbox ) associated with each PE.
Mboxes provide a register-style interface to access the
common resources. The architecture is shown in Fig-
ure 1.

Software applications are independently compiled
for each PE architecture, and all accesses to the
common memory and IO space are made through
architecture-specific mbox routines. The compiled
applications execute concurrently across a set of PEs,
but execute different machine code and have different
mbox access timing. To obtain collective behaviour
from a subset requires the mbox accesses to be strictly
ordered. At any instance in time, execution is loosely
synchronised across a set of PEs, enforced by the TCB
which arbitrates access to the common memory space
using a simple voting mechanism.

The TCB also facilitates time-domain fragmenta-
tion of program behaviour across multiple indepen-
dent sets of PEs from the pool, protecting against
side-channel data leakage attacks (Lin, Burleson &
Paar 2009) (Lin, Kasper, Paar & Burleson 2009). Ap-
plication synchronisation between sets is maintained
by storing selected elements of program state in the
common memory.

3.1 Processing Elements

Our architecture supports the use of almost any type
of COTS processing element, e.g., ARM, MIPS, x86,
SPARC, to form a large resource pool. This architec-
tural diversity minimises the probability of colluding
or replicated Hardware Trojans existing within differ-
ent PEs.

Independently infected PEs alone cannot compro-

mise the integrity of the computation; an adversary
would need to influence multiple designs, fabrication
facilities, or supply chains to bypass this diversity.
New types of PEs can always be incorporated into
the architecture to maintain this diversity and track
technological developments.

3.2 Message Boxes

Heterogeneous PEs have different bus interfaces, tim-
ing characteristics and byte orderings, making it dif-
ficult to combine their behaviours, especially at a low
level. The mboxes ensure each architecture can ac-
cess the common memory and IO space, facilitating
synchronisation and voting. The mboxes form a trust
boundary between a PE and the TCB. A simple inter-
face enables easy system integration, promotes simple
TCB design and allows the architecture to scale to a
large number of PEs.

Figure 2: mbox register interface.

Access to common memory and IO is abstracted
through a transaction style approach using registers
for address, data, control and status as shown in Fig-
ure 2. When a PE wishes to read or write to the com-
mon memory, it writes the address (together with the
data for a write) and then signals through the con-
trol register for the operation to be performed. The
TCB decodes the address and forwards the request
to the appropriate memory or IO resource. Once the

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

99



operation is complete (and data returned for a read)
a status register bit is set.

Individual PEs could potentially communicate
with an mbox using any available communication in-
terface, for example a memory bus, GPIO port, or
USB or PCIe interface. However, the implementa-
tion must consider potential Hardware Trojan inter-
ference. Strict separation between mbox communica-
tion channels must be maintained, and, where mboxes
are not part of the TCB, they also require diversity
in their design and manufacture to counter replicated
or colluding Hardware Trojans.

3.3 Loosely Synchronised Execution

The TCB interfaces with the mboxes and combines
the multiple access requests into a single collective
request to the common memory and IO space. Read
accesses result in the same data being returned to all
PEs. Figure 3 shows a set of PEs writing data to
a common memory address; specifically shown is the
asynchronous nature of the requests from the different
PEs.

The same, single application is independently com-
piled for and subsequently run on each PE. Although
compilation is generally from the same source code,
there may be significant differences in the respective
machine code representations. Loose synchronisa-
tion between the executing programs is maintained
by ensuring each PE attempts the same mbox ac-
cesses in the same order. This strict ordering is en-
forced during the software development for the ar-
chitecture, with consideration given to different ar-
chitectures, programming languages, and compilers.
The TCB generally blocks on these access requests
until all PEs have updated their respective mboxes.
The TCB then votes on the requests and performs
the actual memory access to the common memory
space. This synchronises execution of the application
on all mbox operations and ensures voting occurs on

the same accesses.
Voted output guards against Hardware Trojans

attempting to modify program behaviour. It also
prevents leakage of confidential data through logical
channels, either common memory or IO. While we im-
plement a majority voting mechanism in our concept
demonstrators (Section 4), different access aggrega-
tion policies may be used. Individual PE accesses
may be weighted or even ignored by the TCB when
generating the voted output. Such voting schemes
can help protect against potential DoS attacks. The
voting algorithm can be adaptive and designed with
potential risk profiles for different PE architectures
taken into account. Changes to the TCB need to bal-
ance performance and complexity.

3.4 Fragmentation

Even when the direct outputs of a collective program
are protected, Hardware Trojans may still be able to
leak data through side-channels. To combat this, the
execution of the collective program, i.e. its behaviour,
is fragmented in time across many different sets of
PEs. A given set runs a fragment of the collective
program before execution of that program is switched
to another set of PEs. Fragmentation of program ex-
ecution is achieved by transferring the currently ex-
ecuting program context from one set of PEs to a
different set of PEs.

In contrast to the SAFER PATH architecture, an
individual PE’s program code itself is not fragmented.
Instead, all PEs in the architecture run continuously,
however only a subset have access to the common
memory and IO space at any given time. The TCB
assembles these subsets of PEs and enables or disables
their access to the common memory.

Application instances, on any particular PE, are
informed when they become connected to the com-
mon memory space. Application support for frag-
mentation involves the unique instances running on

Figure 3: The TCB arbitrates a write access to common memory.
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the currently active set of PEs saving collective pro-
gram context to the common memory. The TCB can
then switch its mbox interfacing to a new set of PEs.
The application instances running on the new set of
PEs load the saved context from the common mem-
ory and continue the collective execution. Saving and
loading of this program context is implicit if all nec-
essary program variables are permanently stored and
accessed through the TCB protected common mem-
ory. A context switch can either be initiated from the
software application, or mandated at periodic inter-
vals by the TCB.

This form of context switching restricts an indi-
vidual PE’s access to sensitive data, limiting what in-
formation a potentially infected PE may leak. It also
restricts any Hardware Trojans from understanding
the broader scope of executing applications, making
it difficult to interpret what data is currently being
processed by a PE, and thereby increasing the com-
plexity requirements of such Trojans. For example,
execution may be fragmented to restrict individual
PE access to an encryption key or sensitive report.

3.5 Trusted Computing Base

The TCB contains minimal logic to enforce the collec-
tive behaviour. A benefit of our architecture is that
the TCB is a small, generic design that can be used
with many different PEs, providing a more tractable
and flexible solution than developing a custom trusted
processor. While the TCB provides integrity, avail-
ability and confidentiality, the outputs are not neces-
sarily correct; rather they reflect collective behaviour.
As the number of PEs is increased, the outputs be-
come probabilistically correct and more resistant to
Hardware Trojans.

The design consists primarily of voting and switch-
ing logic plus additional ancillary circuits for the pur-
pose of enforcing time-windows on mbox accesses.
The simplicity and small size of the TCB relative to
an individual PE assists both accreditation and sub-
sequent design and fabrication free of Hardware Tro-
jans. The TCB may include the mboxes or just an
interface to the mboxes. This decision is dependent
on obtaining variant mboxes that do not need to be
trusted.

The TCB must also prevent misuse of the architec-
ture. Rogue PEs may delay or insert additional mbox
accesses in an attempt to degrade service. The hetero-
geneous processing nature of the architecture requires
the TCB to aggregate accesses that are asynchronous.
The TCB can use a time-window to ensure timely ac-
cess synchronisation. If PEs violate this timing they
can be blacklisted and removed from the set, or in
the worst case, the TCB can reset all processors. A
larger pool of PEs reduces the influence of this issue.

In our proposed architecture, the TCB arbitrates
access to common memory and IO devices. Other
peripherals could also be supported, such as system
timers and interrupts, to enhance software applica-
tion support, and enable more complete systems to be
protected by the architecture. The trade-off for this
convenience is the size and complexity of the TCB.

4 Experimentation and Results

The architecture was prototyped within a Xilinx Vir-
tex 6 FPGA. A pool of embedded soft-core proces-
sors, an mbox for each processor, the TCB logic, and
the common memory were all implemented within
the FPGA. Three different processor architectures

were used: leon3 (Aeroflex Gaisler AB 2010), a 32-
bit SPARCv8 processor; mblite (Kranenburg & van
Leuken 2010), a 32-bit MIPS based processor; and
zpu (Zylin Consulting 2008), a tiny, 32-bit stack based
processor.

Each type of processor was configured with enough
local memory (leon3 : 16kB, mblite: 16kB/16kB, zpu:
32kB) for the example programs to run natively.

The mboxes associated with each processor were
connected using a GPIO port native to each architec-
ture. Each mbox consisted of a 32-bit address port, a
32-bit data-in port, a 32-bit data-out port and a con-
trol/status port. The mapping of memory and IO pe-
ripherals in this address space is application-specific.

Developing an application for the architecture re-
quires identifying important information or compu-
tational actions to protect. Important computations
need to be replicated and voted upon. Likewise, sen-
sitive information must be fragmented across differ-
ent sets of processors. For a custom application this
normally entails voting on all accesses to the system
inputs and outputs and supporting the fragmentation
of the application across multiple subsets of proces-
sors. To achieve this, each natively executing proces-
sor in the currently executing set must perform the
same common memory accesses in the same order.

Two example programs were developed. The first
is a software interpreter where the interpreted pro-
gram is stored and accessed through the TCB pro-
tected common memory. The output of the inter-
preted program occurs through a serial port, which is
also mapped into the TCB protected common mem-
ory space. The second example program is a VNC
client, where the network IO, keyboard and mouse
inputs, and framebuffer outputs are mapped into the
common IO space and protected by the TCB.

4.1 Software Interpreter

A consequence of using many different processor ar-
chitectures is that programs need to be compiled
for each architecture. To alleviate this requirement,
we employed a software interpreter. Though the in-
terpreter itself runs natively on each processor and,
hence, needs to be compiled for each different archi-
tecture, once this has been done, many different pro-
grams can be run on top of this interpreter without
needing to be rewritten or recompiled for the under-
lying architectures. A secondary benefit of the inter-
preter is that it also allows computation to be voted
upon and fragmented, in addition to just the system
IO. The fragmentation is trivially achieved because
the interpreted program and interpreted state is en-
tirely stored and accessed through the TCB protected
common memory.

We utilised a pool of 12 processors divided into
four sets, with each set containing one mblite, one
leon3, and one zpu processor, each running at 25MHz.
Input and output to the architecture is provided by
an asynchronous serial port that is mapped into the
common IO space. Synchronisation and fragmenta-
tion are supported by a 16kB TCB protected common
memory.

The ubasic (Dunkels 2007) BASIC interpreter was
ported to the each native processor architecture. The
native code for each interpreter is stored in and exe-
cuted from the local memory attached to each proces-
sor, i.e., 12 separate instances running in our exper-
imental set up. Collectively, the processors interpret
a single, architecture-independent BASIC program.
The BASIC program to be interpreted (e.g., List-
ing 2), is stored in the common memory space. The
ubasic implementation was modified so that calls to
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Figure 4: Operation of the software interpreter.

memory accesses associated with the BASIC program
were replaced with accesses through the mboxes.

Simple asynchronous serial output was also pro-
vided through the common memory space. The BA-
SIC program was able to write out this serial port
using the print keyword. An instructive example of
accessing the serial port via an mbox is given in List-
ing 1. When the print keyword is interpreted, the
outbytem function is called for each character to be
printed. The mbox read and mbox write calls en-
sure that reads from the serial port status register,
and writes to the data (output) register are synchro-
nised and voted on across the currently active set of
heterogeneous processors.

void outbytem (char c ) {
do {
} while ( ( mbox read (STATUS REG) &

BIT SET(SERIAL XMIT) ) == 0 ) ;
mbox write (SERIAL REG, c ) ;

}

Listing 1: Mbox access to a collectively controlled
serial port.

In the demonstrator, all processors concurrently
execute the ubasic interpreter, however, only a se-
lected set of processors are connected to the common
memory and thus interpret the instructions of the
BASIC program at any one time. The ubasic soft-
ware running on processors that are not connected
remains in a waiting state until their connection to
the common memory is restored. A read of a status
bit through the processor’s mbox indicates whether
the common memory is connected. Once connected,
the interpreters exit their waiting state and continue
interpreting the BASIC program.

Enabling fragmentation of the BASIC program re-
quired further modification of ubasic to allow the ex-
ecution context of the interpreter to be passed from
the current subset to the next subset of processors. To
support saving and loading of this execution context,
some of the interpreter’s state, including the program
counter (a pointer into the BASIC program), stack
pointers and global variables, is stored in and accessed
through the common memory. A new keyword, con-
text, was added to the ubasic instruction set that al-

lows software to initiate fragmentation to a different
set of processors. This is achieved via a write to an
mbox control register bit. As with all mbox accesses,
this write is voted on before being performed by the
TCB, ensuring the context switch is a collective re-
quest.

The operation of the software interpreter is shown
in Figure 4. A subset of processors connected to the
common memory space accesses and interprets the
BASIC program. The keyword context initiates a
context switch to a new subset of processors and fi-
nally the new processors continue interpretation of
the BASIC program. In this example, the program
counter stored in the common memory is utilised to
pick-up execution where the previous processors fin-
ished.

4.1.1 Performance

An example program (Listing 2) calculates prime
numbers in a simple manner, performing an execu-
tion switch (line number 70) after printing the value
of each successive prime.

5 print ”Prime No . Gen”
10 a = 1
15 print ”2”
20 a = a + 2
25 i = 2
30 t = ( a % i )
35 i f t = 0 then goto 60
40 b = a / i
45 i f i > b then goto 65
50 i = i + 1
55 goto 30
60 i f i < a then goto 20
65 print a
70 context

75 goto 20

Listing 2: BASIC prime number generator.

The performance of the ubasic interpreter on our
architecture was analysed, using the BASIC program
in Listing 2. The blocking nature of the mbox calls
means a side-effect of loose synchronisation is to re-
duce the performance of the architecture to that of
the slowest processor, the zpu processor in our exper-
iments. This is not a problem if all processors used in
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the architecture have sufficient performance. Access-
ing the common memory also incurs a performance
cost as a result of the overheads involved with mbox
indirection.

Different types of interpreted programs will require
different numbers of mbox calls. Highly algorithmic
programs would spend more time executing native
calculations and would see less of a performance hit
compared with memory access intensive programs.

The benchmark was to find all the prime num-
bers less than 5000 and was run on three architectural
variants: a single zpu processor; a set containing all
three different processors without any context switch-
ing, and the full architecture of four sets of all three
processors. The results are shown in Figure 5.

Figure 5: Performance benchmarking of the software
interpreter.

The overhead of the mbox accesses increases run
time for the example program from 732 seconds to
1436 seconds, this equates to a performance decrease
of around 49%. However, even this kind of perfor-
mance decrease would be acceptable in many safety
or security critical applications. The addition of
fragmentation through context switches adds no dis-
cernible run-time to the application. This is due to
the context switch requiring no explicit state saving
or restoring to occur.

Also of interest is the total number of read and
write accesses through the mbox interface for the
benchmark; this information is shown in Table 1.

Lines of Interpreted Code 264697
Number of mbox Read Accesses 42678143
Number of mbox Write Accesses 10278655
Avg. mbox Read Accesses per line 161.23
Avg. mbox Write Accesses per line 38.83

Table 1: Analysis of mbox accesses.

The zpu implemented in our experiment is a very
poor performing processor. With the zpu executing
natively at 25MHz, the average mbox access takes ap-
proximately 330 clock cycles. A typical mbox read()
call as shown in Listing 3 expands to over 70 instruc-
tions on the zpu, which are executed at between four
and five clock cycles per instruction.

The mbox read() call comprises four fixed
mbox register writes (three to mbox ctrl, one
to mbox addr), one fixed mbox register read
(mbox datai), and potentially multiple reads from
the mbox status register (mbox sts). In our exper-
imental architecture once the address (mbox addr)
and control (mbox ctrl) registers have been written

it takes 3 clock cycles for the TCB to return the data,
hence for the slowest performing zpu processor it will
only need to read the status register (mbox sts) once.

unsigned long mbox read (unsigned long addr )
{

unsigned long returnValue ;

∗mbox addr = addr ;
∗mbox ctr l = 0x0 ;
∗mbox ctr l = MBOXREAD | MBOXENABLE;

while ( (∗mbox sts & MBOXRDY) != MBOXRDY) ;

returnValue = ∗mbox datai ;
∗mbox ctr l = 0x0 ;

return ( returnValue ) ;
}

Listing 3: mbox read() call.

Increasing the amount of data and state stored
in common memory, and hence the required num-
ber of mbox accesses, facilitates easy fragmentation
and better restricts an individual processor’s access
to program code and data. Decreasing what is stored
in the common memory improves native performance,
at the expense of more complex software support for
fragmentation and lower data confidentiality.

No effort was placed into optimising the ubasic in-
terpreter code to reduce the number of mbox calls, or
increase the general efficiency of the program. Oppor-
tunity exists to perform multiple computations with
global variables without having to read and write
them back to the common memory, thereby reduc-
ing the number of mbox calls, and increasing perfor-
mance.

4.1.2 Trojan Resistance

The example program fragmented the generation of
prime numbers, with the TCB randomly selecting a
new subset of processors to calculate every new prime
number. On average, each processor only had access
to one in every four prime numbers. This approach
demonstrates that as the number of processors is in-
creased, and with the use of judicious context switch-
ing, this architecture is capable of successfully parti-
tioning sensitive information across different proces-
sors.

We developed several other BASIC programs to
run on our architecture. These included a pi esti-
mation program and a simple “access” type program
that asked for a password and granted or denied ac-
cess based on whether a hash of the supplied pass-
word matched a stored hash value. Context switches
occurred after each character was read from the key-
board and the generated hash updated. Again, in a
simplistic manner this demonstrates how individual
processors, and hence any associated Hardware Tro-
jans might be prevented from having access to sensi-
tive data in its entirety.

Using the common memory to store shared pro-
gram code and data enables execution state to be
switched between different sets of processors. The
protection against data leakage then depends on the
frequency and granularity of fragmentation. Perfor-
mance is affected by the amount of data accessed
through the common memory and there is a trade-off
between security and efficiency. This trade-off is able
to be managed by the software developer. The mbox
architecture features can be used to protect only the
most important data structures, thereby minimising
the performance hit, or they can be broadly used as
is the case for the software interpreter.
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The replication of execution prevents any minor-
ity set of processors from modifying the behaviour of
the program (either outputs or execution of the BA-
SIC program) or from leaking data through a logi-
cal system interface. A unanimous voting mechanism
was implemented in the TCB for our experiments.
Whenever any one of the three processors in the cur-
rently active subset was reset, or attempted an in-
correct (unordered) mbox access, the system halted.
For protection against DoS attacks, and functional
and behavioural modification, different voting mech-
anisms would need to be prototyped.

4.1.3 TCB Analysis

The TCB for this architecture consists of a multi-
plexer/demultiplexer and voting arrangement oper-
ating on the mbox interfaces. The architecture of the
TCB exhibits similar properties to that of SAFER
PATH. Table 4.1.3 compares synthesised resource us-
age within the Xilinx Virtex 6 FPGA for a mini-
mal processor core (Leon3) against the TCB for one
(b = 1) and four (b = 4) subsets (or banks) respec-
tively. Each subset contains 3 different processors.

LUT6s Registers
Single Leon3 core 2516 1221
TCB, 3 PEs (b=1) 125 334
TCB, 12 PEs (b=4) 557 1158
TCB2, 3 PEs (b=1) 213 71
TCB2, 12 PEs (b=4) 708 76
1 Results obtained using Xilinx ISE Re-
lease 14.2

2 SAFER PATH TCB

Table 2: TCB size analysis.

The TCB logic remains smaller than a single pro-
cessor up to a threshold number of processors. The
TCB is made up of simple, replicated circuitry that
can more easily be checked for correctness than for ex-
ample a CPU Arithmetic Logic Unit (ALU). As the
number of processors increases, the TCB scales lin-
early due to the increasing size of multiplexers and de-
multiplexers. In contrast to SAFER PATH, the cur-
rent design implementation registers external memory
and message box inputs and outputs thus resulting in
a high register count. With further optimisation, reg-
ister usage could be reduced with minimal impacts on
design performance.

The mboxes have not been optimised for perfor-
mance, however they could be tailored either for spe-
cific applications or processor architectures. Mboxes
with deep data registers and increased voted block
size could also be considered.

4.2 VNC Client

The software interpreter shows how the architecture
can be used, and even abstracted from a software
point of view. This second experiment was performed
to demonstrate how a larger, more complex applica-
tion could be ported to the architecture. The ratio-
nale behind choosing a VNC Client is to provide a
simple thin-client, where Hardware Trojans residing
within the processing elements could not compromise
the session.

A VNC client was implemented on a version of
the architecture that included only three processors.
To support this, a serial port, PS2 keyboard, PS2
mouse, and framebuffer memory were mapped into

the common memory and IO space, with access su-
pervised by the TCB. The VNC client communicates
with a server through the serial interface, reads in
keyboard and mouse events through the PS2 inter-
faces, and writes to a display via a double-buffered
800x600 framebuffer memory. The mbox connected
peripheral hardware is shown in Figure 6.

Figure 6: VNC client architecture.

The fbvnc (Weidner 2000) VNC client was mod-
ified and ported to each of our three implemented
architectures (leon3, mblite and zpu). Minor
architecture-specific code differences are required and
the generated machine code is vastly different for each
processor, but the ordering of mbox accesses to the
common memory space is maintained. For example,
as the program executes on each architecture, each
processor reads from the keyboard, mouse or serial
ports, and writes to the display or serial ports in the
same order.

The VNC client communicates over a 1Mbps se-
rial link, proxied via a network connection to a VNC
server. Using hextile encoding, acceptable perfor-
mance is obtained running the processors at 100MHz.

In arranging our architecture in this manner, we
are able to ensure that each VNC client is provided
with identical inputs, and that those inputs generate
identical outputs. The synchronised execution and
voting provides protection from malicious modifica-
tion via the untrusted processors. However, in this
instance, sensitive information that is being processed
by the VNC client may be able to be leaked by an in-
fected processor. The VNC communications protocol
is modular, so fragmentation could be added to im-
prove data confidentiality. Access to keyboard and
mouse inputs, and data destined for the framebuffer
would then be limited to small windows for each pro-
cessor, helping to mitigate the damage of any data
leakage.

The VNC client shows a how a more complex ap-
plication can be implemented. Here the architecture
is usefully applied to protect the inputs and outputs
of a system from Hardware Trojan interference.

4.3 Summary

The two demonstrators show how applications can be
protected against the threats of Hardware Trojans.

The software interpreter maintains all the protec-
tion properties of the earlier SAFER PATH architec-
ture; a single program code, in this instance a BA-
SIC program, can have its execution replicated and
fragmented over many different processors. Sufficient
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performance remains in the architecture for success-
ful application within a security critical system, while
the TCB remains simple enough for accreditation.

Interpreting a program is inherently slower than
native execution; this is true for all platforms. How-
ever, interpretation brings us the benefits of program-
ming language abstraction and allows us to write a
program once and run it anywhere. This is espe-
cially true for this architecture where the overheads of
writing a custom application are high. The utility of
a generic interpreter was demonstrated when newly
written BASIC programs were able to immediately
take advantage of our architecture’s replication and
fragmentation properties, with minimal to no work
required of the programmer.

Although the use of the ubasic interpreter has
merit for our experimentation, a different interpreter,
for example a Java Virtual Machine (JVM), that has a
more efficient byte code representation and better ex-
ecution efficiency may provide improved performance.
This improved performance comes at the cost of a
larger initial effort to port the code to multiple archi-
tectures and to add support for fragmentation. The
complexity of the TCB also increases if support is
required for real-time features, e.g., timers and inter-
rupts. However, a JVM would also provide the op-
portunity to access the large existing Java byte-code
application base.

Increasing the barrier for successful Hardware Tro-
jan operation forces Hardware Trojans to become
more complex, usually translating into a larger im-
plementation footprint. This makes them more easily
detected through current Hardware Trojan detection
mechanisms.

5 Further work

Our experimentation ran native applications on bare
metal processors. The architecture works equally
as well for more complex processors running multi-
threaded operating systems. This holds as long as
strict ordering is maintained through a dedicated
mbox interface for any specific application that is to
be protected on the architecture. Hence protected ap-
plications can run along-side less trustworthy applica-
tions on the same processor. The multi-threading na-
ture of the underlying operating system also ensures a
processor can still be usefully occupied while blocking
on mbox accesses of the protected application. Fur-
ther, whilst our experimentation was focused around
FPGA development, the architecture is not limited
to FPGA instantiation. Discrete processors could be
combined, either at a macro level or together on a
PCB like substrate to form a Hardware Trojan resis-
tant computing platform.

Improving application design, mbox design and
link speed, or enabling concurrent use of all avail-
able PEs could improve performance. Mboxes could
be extended to distribute interrupts via register style
interfaces, with consideration given to the impact on
synchronised execution.

Algorithms for tuning fragmentation to achieve
optimal data confidentiality properties should be in-
vestigated. These may be instrumented through the
software build process or by source to source trans-
forms enabled through formal methods.

6 Conclusion

The architecture presented allows computation to be
replicated and fragmented across a pool of widely het-
erogeneous processors. Unlike SAFER PATH, there

is no longer a requirement to obtain variants in man-
ufacturing or design. Our updated architecture can
be implemented using entirely COTS processors.

A minimal TCB, amenable to accreditation, votes
on loosely synchronised, but replicated behaviour.
This collective behaviour is probabilistically correct,
providing integrity and availability in the presence of
active Hardware Trojans. Further, fragmenting this
behaviour limits individual processor access to data
and defends against data leakage attacks.

A prototype implementation within an FPGA and
two software applications were developed to demon-
strate the utility of the architecture. The first was
a software interpreter executing arbitrary programs,
with an acceptable performance decrease for intended
security critical applications. Extending the software
interpreter from BASIC to a more sophisticated plat-
form, such as a JVM would dramatically increase the
utility of the system. The second application was de-
signed to protect a VNC session executing on a thin
client with untrusted COTS processors.

These applications demonstrate the use of the ar-
chitecture as a replacement for an embedded or desk-
top processor, especially in circumstances where sys-
tem operation needs to be guaranteed, or where sen-
sitive data is being processed.
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Abstract

We present a straighforward proof that the uniform orien-
tation Steiner tree problem, also known as the λ-geometry
Steiner tree problem, is NP-hard whenever the number of
orientations, λ, is a multiple of 3. We also briefly outline
how this result can be generalised to every λ > 2.

Keywords: Steiner tree problem, λ-geometry, computa-
tional complexity, NP-hard.

1 Introduction

Given a set of points N and set of λ ≥ 2 uniformly dis-
tributed (legal) orientations in the plane, we consider the
problem of constructing a minimum-length tree that inter-
connects N with the restriction that the tree is composed
of line segments using legal orientations only. The focus
of this paper is mainly on the case where λ is a multi-
ple of 3, however we will also discuss the problem for the
more general λ ≥ 2 case. This so-called uniform orienta-
tion (or λ-geometry) Steiner tree problem is equivalent to
computing a minimum Steiner tree for N under a metric
where the unit circle is a regular 2λ sided polygon. In the
Steiner problem the interconnection network may contain
nodes other than the points in N . Computing the optimal
locations of these nodes and the topology of the network
makes this a computationally challenging problem.

The uniform orientation Steiner tree problem has im-
portant applications in micro-chip design, where millions
of nets need to be routed on a (small) number of chip lay-
ers. On each routing layer, all wires generally use the same
orientation in order to make joint routing of multiple nets
feasible. In optimising the routing, the design of each net
is usually treated as a planar geometric optimisation prob-
lem in λ-geometry, where the cost of transition between
layers is treated as negligable. Today, most chip design
technologies use only two perpendicular routing orienta-
tions (the so-called Manhattan routing where λ = 2), but
the increasing number of available routing layers has made
the use of multiple orientations relevant in practice (Chen
et al. 2005, Teig 2002).

One of the great challenges in the design of integrated
circuits for micro-chips is the continuing increase in den-
sity of these circuits, where the number of transistors on
a chip tends to double approximately every two years (an
observation known as Moore’s law). This means that it

Copyright c⃝2013, Australian Computer Society, Inc. This paper ap-
peared at the 36th Australasian Computer Science Conference (ACSC
2013), Adelaide, South Australia, January-February 2013. Conferences
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is essential not only to devise optimisation algorithms that
allow the nets to be designed as compactly as possible, but
also to understand the computational complexity of such
algorithms, since the scaling of these problems is a major
issue. It is this question of computational complexity that
this paper addresses.

It is well-known that the λ-geometry Steiner tree prob-
lem is NP-hard for the rectilinear metric (λ = 2) (Garey &
Johnson 1977) and the Euclidean metric (λ → ∞) (Garey,
Graham & Johnson 1977). More recently, an NP-hardness
proof was given for the λ-geometry Steiner tree problem
for λ = 4 (Müller-Hannemann et al. 2007); this proof
adapts the proof for the Euclidean case to the λ = 4 case.

Rubinstein et al. (1997) have given an elegant proof of
the NP-hardness of a special case of the Euclidean Steiner
tree problem — where the terminals are restricted to lying
on two parallel lines. This approach was adapted by Brazil
et al. (1998) to show that the gradient constrained Steiner
tree problem is NP-hard, and the arguments have been
simplified and further generalised in a later paper (Brazil
et al. 2000).

Our Contribution.

We show that a method similar to that pioneered by Ru-
binstein et al. (1997) can be applied to the λ-geometry
Steiner tree problem, to show that the λ-geometry Steiner
tree problem is NP-hard whenever λ is a multiple of 3. We
also briefly outline the generalisation of this result to ev-
ery λ > 2. All of these NP-hardness results are new, apart
from the result for λ = 4 (the octilinear norm), and even
in that case the proof is significantly simpler than the very
technical proof given by Müller-Hannemann et al. (2007).

Organisation of the Paper.

In Section 2 we summarise a number of structural results
for Euclidean and λ-geometry Steiner trees that are rele-
vant for the NP-hardness proof. The main result follows in
Section 3, with a focus on the case where λ is a multiple of
3. We conclude with a brief discussion of generalisations
of these results.

2 Preliminaries

The well-known Euclidean Steiner tree problem is defined
(as a decision problem) as follows:

EUCLIDEAN STEINER TREE PROBLEM
Instance: A finite set of points N lying in the Euclidean
plane and a positive integer L.
Question: Is there a tree T interconnecting the set N
such that the length of T is at most L?
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s1

s2

s3

Figure 1: Full Steiner tree for five terminals and λ = 4.
Black vertices are terminals and white vertices (s1, s2 and
s2) are Steiner points. The tree has six straight edges and
one bent edge (s1, s2). Edges are colored by their colors
in the corresponding direction set.

By the length of a tree T , we mean the sum of the
lengths of the edges of T . A tree T with length L satis-
fying the Euclidean Steiner tree problem, where L is as
small as possible for a given set N , is called a minimum
Steiner tree for N . The given points N are called the ter-
minals in T , and other vertices of T (of degree at least 3)
are called Steiner points.

Let λ ≥ 2 be a given positive integer. Given λ orien-
tations jω (j = 1, 2, ..., λ) in the Euclidean plane, where
ω = π/λ is a unit angle, we represent these orientations
by the angles with the x-axis of corresponding straight
lines. A line or line segment with one of these orienta-
tions is said to be in a legal direction. Objects composed
of line segments in legal directions are said to belong to a
λ-geometry.

For any given λ-geometry we define the following
Steiner tree problem:

λ-GEOMETRY STEINER TREE PROBLEM
Instance: A finite set of points N in the Euclidean plane
and a positive integer L.
Question: Is there a λ-geometry Steiner tree T with
terminal set N such that the length of T is at most L?

Again, a minimum length tree T satisfying this prob-
lem for a given set N is known as a λ-geometry minimum
Steiner tree for N .

The main part of the NP-hardness proof makes use
of some key properties of Euclidean Steiner tree prob-
lem (Gilbert & Pollak 1968) and λ-geometry Steiner tree
problem (Brazil et al. 2006, 2009). These properties are
summarised below.

2.1 Direction Sets in λ-Geometry

Consider a λ-Geometry minimum Steiner tree T for a
given set N . The Steiner points in T necessarily each
have degree 3 or 4. In our NP-hardness proof only Steiner
points that have degree 3 are relevant; degree 4 Steiner
points (which only exist in very restricted cases) cannot
occur as part of the minimum Steiner trees for the in-
stances we construct.

Edges in T consist of line segments that use either a
single legal orientation (straight edge) or two neighbour-
ing legal orientations (bent edge); in the latter case we may
assume that the edge consists of exactly two line segments
(separated by angle ω = π/λ and called half-edges) that
meet at a corner point (Figure 1).

Consider the set of legal orientations of the line seg-
ments of the edges that are adjacent to some Steiner point
s of degree 3 in T ; more precisely, consider each line seg-
ment as being oriented away from s, and let D be the cor-
responding set of directions. The set D is denoted a direc-

tion set if it is maximal under inclusion, i.e., there exists
no minimum Steiner tree with some Steiner point that has
a set of directions that is a superset of D. Local optimal-
ity conditions at Steiner point imply that direction sets can
be characterized precisely (Brazil et al. 2006, 2009) (see
Figure 2); when λ is a multiple of 3, the direction set has
6 directions and otherwise it has has 4 directions. The
first pair of directions forms the so-called red edge, and
the other directions are part of the remaining green and
blue edges. The red, green and blue edges are separated
by angles that are as close to 120◦ as possible (Figure 1).
The total number of possible direction sets is 2λ — one
for each pair of possible assignment of neighbouring red
directions.

λ Directions

3m
Red: 0, ω
Green: 2mω, (2m + 1)ω
Blue: 4mω, (4m + 1)ω

3m + 1
Red: 0, ω
Green: (2m + 1)ω
Blue: (4m + 2)ω

3m + 2
Red: 0, ω
Green: (2m + 2)ω
Blue: (4m + 3)ω

Figure 2: Feasible directions in a direction set (up to rota-
tion by a multiple of ω).

A minimum Steiner tree can be decomposed into com-
ponents in which every terminal is a leaf, known as full
components, or full minimum Steiner trees. This decom-
position is unique for a given minimum Steiner tree, but
is not unique for a given terminal set. A minimum Steiner
tree is said to be fulsome if it has the maximum possi-
ble number of full components for the given terminal set.
Hence, a minimum Steiner tree is full and fulsome if there
is no minimum Steiner tree on the same set of terminals
with two or more full components.

Our interest in direction sets stems from the fact that
all Steiner points in a full minimum Steiner tree use the
same direction set; more precisely, we have the follow-
ing theorem (Brazil et al. 2006) — a generalisation of this
theorem to general weighted fixed orientation metrics has
been given by Brazil et al. (2009):

Theorem 2.1 (Brazil et al. 2006) Given a fulsome full
minimum Steiner tree in λ-geometry, there exists a single
direction set that is used by every Steiner point in the tree
(where direction sets that can be obtained from each other
by reflecting all directions through the Steiner point are
considered to be equivalent).

2.2 Zero-Shifts in λ-Geometry

A consequence of Theorem 2.1 is that the edges in a full
minimum Steiner tree can be colored red, green and blue
in such a way that all edges with the same colour use the
same orientations (either a single orientation or two neigh-
bouring orientations). Let e be a straight edge or half-edge
in a full minimum Steiner tree T , oriented in direction jω.
Then e is said to be primary if (j − 1)ω is not a feasible
direction with the same colour as e. Similarly, e is said to
be secondary if (j + 1)ω is not a feasible direction with
the same colour as e. If λ ̸= 3m then it is possible for an
edge to be both primary and secondary. We say that e is
exclusively primary (or exclusively secondary) if it is pri-
mary, but not secondary (or, respectively, secondary, but
not primary).

A minimum Steiner tree T is usually not unique in λ-
geometry since the metric is not strictly convex. We define
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eab

ba

Rab

Figure 3: One of the two possible regions Rab for two
given points a and b. The other region is obtained by re-
flecting the diagram through the line through a and b.

a zero-shift as a perturbation of one or more Steiner points
in T such that the perturbation does not increase the length
of T . The identification of primary/secondary edges plays
an important role for zero-shifts:

Theorem 2.2 (Brazil et al. 2009) Let e1 and e2 be two
edges in a full and fulsome minimum Steiner tree T such
that e1 has an exclusively secondary component and e2
has an exclusively primary component. Then there exists
a zero-shift acting on the Steiner points on the path from e1
to e2 in T , such that the shift can continue to be performed
until either e1 has no exclusively secondary component or
e2 has no exclusively primary component. Furthermore,
this shift preserves the direction of all straight edges ex-
cept (possibly) e1 and e2.

A straightforward corollary of this theorem is that if,
for a given set of terminals N , there exists a full and ful-
some minimum Steiner tree, then there exists a minimum
Steiner tree for N that has at most one bent edge.

2.3 Empty Regions for Euclidean Minimum Steiner
Trees

Given two distinct points a and b in the Euclidean plane,
let eab be the third vertex of an equilateral triangle with
vertices a and b, let Cab be the open finite region bounded
by the circumcircle of △abeab, and let Rab be the union
of Cab and the open half plane defined by the line through
a and b and containing eab, as illustrated in Figure 3. Note
that Rab is not uniquely defined; there are two possibili-
ties for eab resulting in two possible choices for the region
Rab.

Proposition 2.3 Let a and b be terminals of a Euclidean
minimum Steiner tree T . If there exists a region Rab, as
defined above, containing no terminals of T then that re-
gion also contains no Steiner points of T .

Proof. This is a simple extension of the “wedge property”
introduced and proved by Gilbert & Pollak (1968). The
wedge property states that any open wedge-shaped region
having an angle of 2π/3 and containing no terminals of
T also contains no Steiner point of T . Region Rab is an
infinite union of such wedges, all with a and b on their
boundary.

3 NP-Hardness of the λ-Geometry Steiner Tree
Problem

In this section we prove that the λ-geometry minimum
Steiner tree problem is NP-complete for the cases where
λ = 3m. We establish this result, in Corollary 3.2 below,
by first proving a strictly stronger theorem, namely that the
following class of problems is NP-complete for λ = 3m.

PARALLEL LINES λ-GEOMETRY STEINER TREE PROB-
LEM

Instance: A finite set of points N lying on two parallel
lines in the Euclidean plane and a positive integer L.
Question: Is there a λ-geometry Steiner tree T with
terminal set N such that the length of T is at most L?

In order to avoid issues related to the theoretical com-
plexity of computing with exact real arithmetic, we in fact
consider a discretised version of the problem as described
later; in the construction below we initially ignore this
technical difficulty.

We will show that for any given integer λ which
is a multiple of 3 the PARALLEL LINES λ-GEOMETRY
STEINER TREE PROBLEM is NP-complete. The main idea
is to show that the problem can be used to polynomi-
ally encode an instance of the SUBSET SUM PROBLEM,
which is well-known to be NP-complete (Garey & John-
son 1979):

SUBSET SUM PROBLEM
Instance: A set S = {d1, . . . , dn} of integers and an
integer d.
Question: Is there a set J ⊆ {1, . . . , n} such that∑

i∈J di = d?

The main result is as follows. In the proof we
let d(a, b) represent the Euclidean distance between the
points or parallel lines a and b.

Theorem 3.1 The parallel lines λ-geometry Steiner tree
problem is NP-complete for any given λ = 3m (where m
is a positive integer).

Proof. Let S = {d1, . . . , dn} and d <
∑n

i=1 di := D be
a given instance of the SUBSET SUM PROBLEM. We first
show how to use this instance to construct (in polynomial
time) an instance of the PARALLEL LINES λ-GEOMETRY
STEINER TREE PROBLEM, and then show that the in-
stance for the SUBSET SUM PROBLEM is a “yes” instance
if and only if the corresponding instance for the PARAL-
LEL LINES λ-GEOMETRY STEINER TREE PROBLEM is a
“yes” instance. The statement of the theorem then follows.

The construction of the instance for the PARALLEL
LINES λ-GEOMETRY STEINER TREE PROBLEM is as fol-
lows. We describe the construction in four stages:

1: Let V1, V
′
1 , V ′

2 , V2 be four vertical lines ordered from
left to right such that

d(V1, V2) ≫ d(V1, V
′
1) = d(V ′

2 , V2) ≫ D. (1)

Let u0 be a fixed point on V2, and construct a zigzag
path P between u0 and a point on V1 (labelled v),
such that: P is composed of line segments with alter-
nating polar angles 2π/3 and π/3; P has 2n internal
vertices (where n is the cardinality of S); and these
internal vertices lie alternatively on V ′

1 and V ′
2 . See

Figure 4.

2: Now from each internal vertex of P on V ′
1 extend

a horizontal line segment to a point on V1. Label
these n points x1 to xn in ascending order. Similarly,
from each internal vertex of P on V ′

2 extend a hori-
zontal line segment to a point on V2, and label these
points u1 to un in ascending order. Again, this is il-
lustrated in Figure 4. This results in a λ-geometry
Steiner tree interconnecting u0, the ui’s, xi’s and v
(where in each case i runs from 1 to n). We call this
tree the base tree Tx.

3: The next stage of the construction is to replace each
point xi by three points on V1 labeled, from bottom to
top, ai, bi and ci, satisfying: |aibi| = di; |bici| = di;
and xi is the midpoint of aibi (Figure 5). We also
alter the Steiner tree constructed in Stage 2, so that
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v

x2

un

u1

x1

u0

V1
V

′

1
V

′

2 V2

Figure 4: Construction for the case λ = 3m. The initial
two stages of the construction result in the tree shown, the
base tree Tx.

it connects to ai, bi and ci, instead of xi. This is
done by shortening the horizontal edge by di/(2

√
3)

on the left and creating a Steiner point at that new
left endpoint with two new incident edges with polar
angles 2π/3 and π/3 and each with length di/

√
3

connecting to ai and bi. Finally we connect bi to ci
with a single (geodesic) edge in λ-geometry, which is
a vertical line segment (if m is even) or a bent edge
using the two legal directions closest to vertical (if m
is odd). This is illustrated in Figure 5(a), for the case
where m is odd. Let Nv be the set consisting of u0,
the ui’s, ai’s, bi’s, ci’s and v. We denote the above λ-
geometry Steiner tree (interconnecting the elements
of Nv) by Tv . We will refer to the topology of the
base tree Tx (from Stage 2) as the base topology of
Tv .

Before completing the construction, we establish the
following claim:
Claim 1. Tx and Tv are each the unique minimum Steiner
λ-tree for their respective terminal sets.
Proof of Claim 1. Given the differences in scale in In-
equality (1), consider the limiting case where d(V1, V

′
1) =

V1
V

′

1

ai

bi

ci

xidi

di

(a)

V1
V

′

1

ai

bi

ci

xidi

di

(b)

Figure 5: Stage 3 construction for the case λ = 3m. Di-
agram (a) shows how TV connects to each triple ai, bi, ci
for the case where m is odd. Diagram (b) is the alternative
connection possible in the tree T0, used in Claim 2.

d(V ′
2 , V2) = 0. In that case each of Tx and Tv

becomes a single zigzag path with polar angles 2π/3
and π/3 between terminals {x1, . . . , xn, v} on V1 and
{u0, u1, . . . un} on V2. The fact that this path is a Eu-
clidean minimum Steiner tree (and hence a minimum
Steiner λ-tree) on its vertices follows from Proposition 2.3
by constructing suitable regions: Ruiui+1 for each i ∈
{0, . . . , n − 1}; Rxixi+1 for each i ∈ {1, . . . , n − 1}; and
Rxnv . Taking the union of these regions, it is clear that
any Steiner points must coincide with terminals, hence the
minimum Steiner tree coincides with the minimum span-
ning tree. Furthermore, this minimum spanning tree is
easily seen to be unique.

The result now follows immediately by continuity, and
the fact that Tx and Tv (in the non-limiting case) are each
locally minimal at every Steiner point.

Note that it is straightforward to compute the total Eu-
clidean length of Tv (i.e., |Tv|) in terms of d(V ′

1 , V ′
2),

d(V1, V
′
1) and S. Let Lv := |Tv|. Also, we observe that

the main full component of Tv , containing all the Steiner
points, uses only three legal directions (and hence has no
bent edges). We describe such a tree as a 3-direction
Steiner tree.

The final stage of our initial construction is as follows.

4: Let v0 be the point on V1 below v such that |v0v| =
2d. Let N0 be the set Nv where v has been replaced
by v0. Let T0 be a minimum Steiner λ-tree for N0.
In other words, we can think of T0 as being the new
minimum Steiner tree obtained from Tv by moving
the terminal v vertically downwards by 2d.
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We next establish some properties of the tree T0.

Claim 2. The minimum Steiner λ-tree T0 has the same
base topology as Tv . Furthermore, for each triple, ai, bi
and ci, the main full component of T0 either connects di-
rectly to ai and bi only, as in Figure 5(a), or to bi and ci
only, as in Figure 5(b).

Proof of Claim 2. The first statement follows by the rela-
tive scale of the distances involved in Inequality (1), using
the same argument as in the proof of Claim 1. For the
second statement, it is an easy exercise to show that the
configurations shown in Figure 5(a) and (b) are the only
locally minimal ways of connecting the main full compo-
nent of T0 to ai, bi and ci.

Claim 3. The following three statements are equivalent;

1. The answer to the given instance of the SUBSET SUM
PROBLEM is “yes”.

2. There exists a 3-direction minimum Steiner λ-tree on
N0 with the same base topology as Tv .

3. There exists a Steiner λ-tree on N0 with length at
most Lv −

√
3d.

Proof of Claim 3. The equivalence of the three statements
is shown in four steps.

Step 1: (1) ⇒ (2). Let Tx be the minimum Steiner λ-
tree constructed in Stage 2 of the main construction. Sup-
pose we treat v and one of the terminals xi as ‘moveable’
points, able to move along V1. Then consider the follow-
ing question: If we move xi vertically upwards by a dis-
tance δ, how does the position of v on V1 change so that Tx
remains a 3-direction tree? As Figure 6 shows, each hor-
izontal edge incident with a terminal uj (for j such that
i ≤ j ≤ n) increases in length by 2δ/

√
3. In particular,

the horizontal edge incident with un increases in length by
2δ/

√
3 which implies that v moves downwards by 2δ.

We now apply a similar argument to Tv . Again, allow v
to be a ‘moveable’ point, and consider the effect of chang-
ing the connection of the tree at one of the triples ai, bi, ci
(from the original connection as shown in Figure 5(a) to
the alternative connection shown in Figure 5(b)) while
keeping the tree a 3-direction Steiner tree. By the sym-
metry of the two connection types this is equivalent in its
effect on v to moving xi upwards by di in Tx; that is, v
moves downwards by 2di. This effect is additive across all
of the triples, meaning that if we change to the alternative
connection scheme at each i ∈ J where J ⊆ {1, . . . , n} is
a set solving the given instance of the SUBSET SUM PROB-
LEM, then v moves downwards by 2d to v0, giving the
required 3-direction minimum Steiner λ-tree on N0.

Step 2: (2) ⇒ (1). The argument here is similar to that
in Step 1. This time we begin with a 3-direction minimum
Steiner λ-tree on N0 with the same base topology as Tv ,
and treat the terminal v0 as being a ‘moveable’ point on
V1. Since v0 ̸= v it follows that there must be at least
one i ∈ {1, . . . , n} such that the connection of the tree to
ai, bi, ci uses the alternative connection scheme shown in
Figure 5(b). Let J ′ ⊆ {1, . . . , n} be the set of all such
i where this alternative connection scheme is used. If for
any i ∈ J ′ we change to the original connection scheme
(as shown in Figure 5(a)) while keeping the tree as a 3-
direction tree then, by the same argument as in Step 1, v0
moves upwards by 2di. Now if for every i ∈ J ′ we change
to the original connection scheme while keeping the tree
as a 3-direction tree then it is clear that v0 now coincides
with v (since the position of v0 is uniquely determined by
the positions of the other terminals, the topology of the

v

xi+1

un

ui

xi

V1
V

′
1

V
′
2 V2

δ {

2δ {

2δ√
3

Figure 6: Construction for proof of Claim 3 (Step 1).

tree and the three directions). Since d(v0, v) = 2d it fol-
lows that

∑
i∈J′ di = d, and hence J ′ gives a ‘yes’ solu-

tion to the given instance of the SUBSET SUM PROBLEM.

Step 3: (2) ⇒ (3). We first analyse the change in
length to Tx under the movement of xi by δ described
in Step 1 and illustrated in Figure 6. For the horizontal
edges: the edge incident with xi decreases in length by
δ/
√

3; each edge incident with xj for i + 1 ≤ j ≤ n de-
creases in length by 2δ/

√
3; and each edge incident with

uj for i ≤ j ≤ n increases in length by 2δ/
√

3. Hence
the total length of the horizontal edges increases by δ/

√
3.

For the main zigzag path: its height decreases by 2δ and
hence its length decreases by 4δ/

√
3. Together, these re-

sult in an overall decrease in length of 3δ/
√

3 =
√

3δ for
the whole tree.

It follows for the tree Tv that if we treat v as a ‘move-
able’ point, and consider the effect of changing to the
alternative connection of the tree at one of the triples
ai, bi, ci, while keeping the tree a 3-direction Steiner tree,
the tree decreases in length by

√
3di. Hence, by additivity,

the 3-direction minimum Steiner λ-tree on N0 has length
Lv −

√
3d.

Step 4: ¬(2) ⇒ ¬(3). To prove this last statement, we
argue as follows: Suppose we have a Steiner tree T0 on
N0 with the same base topology as Tv , but which is not
a 3-direction tree. Colour all edges containing a horizon-
tal component red. As described in Section 2.1, we can
assume that there is only one bent edge; furthermore, the
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bent edge is the red edge connecting to the triple ai, bi, ci.
Now, suppose we replace this bent red edge by the orthog-
onal projection of this edge onto the line extending the
horizontal component of the edge. It is easy to see, by the
same argument as in Step 3, that the length of the resulting
(disconnected) 3-direction λ-network is again Lv −

√
3d.

The tree T0 has length strictly longer than this, giving the
required conclusion.

Discretisation and scaling. Above we have pre-
sented a transformation of any instance of the SUBSET
SUM PROBLEM to show that the parallel lines λ-geometry
Steiner tree problem is NP-hard if one ignores arithmetic
precision issues. Furthermore, by the straightforward con-
structive nature of this transformation it is clear that the
problem belongs to NP, and hence is NP-complete, up to
issues of artihmetic precision. Here we demonstrate that
the result remains true when applying a discretisation and
scaling that resolves the issues related to computing with
exact real arithmetic. A similar discretisation and scaling
step has been described in detail in a number of previ-
ous papers (Brazil et al. 2000, Garey, Graham & Johnson
1977, Rubinstein et al. 1997), and so will only be sketched
here.

In the discretisised problem Euclidean distances are
rounded up to the nearest integer. Also, it is assumed that
terminals and Steiner points can only have integer coordi-
nates. Thus for a given Steiner tree T , performing discreti-
sation increases or decreases the length of every edge by
at most 3. Since all trees considered have at most 7n + 1
edges, every tree is at most length 3 · (7n + 1) longer or
shorter than before the discretisation.

We need to be able to distinguish between ‘yes’ and
‘no’ instances in the discretisised problem. More pre-
cisely, as shown in the proof of Claim 3 above, we need
to be able to distinguish between 3-direction minimum
Steiner trees and non 3-direction minimum Steiner trees.
The last part of the proof of Claim 3 shows that non 3-
direction minimum Steiner trees have a length that is at
least ϵλ = (1 − cos ω)/(2 sinω) above Lv −

√
3d, the

length of 3-direction minimum Steiner trees.
The problem is now scaled by multiplying all terminal

coordinates by an integer K. One can distinguish between
‘yes’ and ‘no’ instances, if Kϵλ − 2 · 3 · (7n + 1) ≥ 1.
Choosing K ≥ (42n + 7)/ϵλ suffices, and results in a
polynomial scaling.

Finally, since every instance of the parallel lines λ-
geometry Steiner tree problem is also an instance of the
λ-geometry Steiner tree problem, we immediately get the
following corollary.

Corollary 3.2 The λ-geometry Steiner tree problem is
NP-complete for any given λ = 3m (where m is a pos-
itive integer).

4 Conclusion and Generalisations

The proof of Theorem 3.1 in the previous section relies, to
a large extent, on the properties of the base tree Tx con-
structed in the course of the proof. A key property of the
base tree is that if we perturb a single terminal xi up or
down along V1 the resulting minimum Steiner tree on the
new terminal set is strictly longer than Tx. If xi is per-
turbed downwards (away from v) then the only change to
the tree Tx is that the edge incident with xi becomes a bent
edge via the introduction of a new secondary direction; all
other edges in the tree are straight primary edges. On the
other hand, if xi is perturbed upwards (towards v) then the
edge incident with xi again becomes a bent edge but this
time via the introduction of a new primary direction; all
other edges in the tree are straight secondary edges. This
is possible due to the symmetry in the direction set for

λ = 3m, which means that in a 3-direction Steiner tree
such as Tx it is ambiguous as to whether the edges are all
primary or all secondary (see Figure 2).

The difficulty in generalising Theorem 3.1 to other val-
ues of λ lies in the fact that the direction sets no longer
exhibit this symmetry when λ ̸= 3m. If we construct a
base tree for one of these other values of λ (as in the proof
of Theorem 3.1) using primary directions (as in the table
in Figure 2) then it is no longer true that perturbing xi in
either direction along V1 always reduces the length of the
Steiner tree; for one of the two directions an edge other
than the edge incident with xi will become bent (i.e., the
colour labeling changes), and it can be shown that the new
minimum Steiner tree that results is shorter than the origi-
nal base tree.

This problem, however, can be successfully circum-
vented via a slight alteration to the construction. If in-
stead of choosing the lines V1, V

′
1 , V ′

2 , V2 to be vertical,
we choose them to have a polar slope of π/2 − π/(3λ),
then it is possible to show that any perturbation of xi along
V1 reduces the length of the corresponding base tree. The
details of this somewhat technical argument will appear in
a forthcoming paper (Brazil et al. 2012). The conclusion
is that the parallel lines λ-geometry Steiner tree problem
is NP-complete for all λ > 2.
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Abstract

This paper explores the practical aspects associated
with visual-geometric reconstruction of a complex 3D
scene from a sequence of unconstrained and uncali-
brated 2D images. These image sequences can be ac-
quired by a video camera or a handheld digital camera
without the need for camera calibration. Once sup-
plied with the input images, our system automatically
processes and produces a 3D model. We propose a
novel approach, which integrates uncalibrated Struc-
ture from Motion (SfM), shape-from-silhouette and
shape-from-correspondence, to create a quasi-dense
scene geometry of the observed scene. In the sec-
ond stage, surface and texture are applied onto the
generated scene geometry to produce the final 3D
model. The advantage of combining silhouette-based
and correspondence-based reconstruction approaches
is that the new hybrid system is able to deal with
both featureless objects and objects with concaved
regions. These classes of objects usually pose great
difficulty for shape-from-correspondence and shape-
from-silhouette approach. As the result, our approach
is capable of producing satisfactory results for a large
class of objects. Our approach does not require any
a priori information about camera and image acquisi-
tion parameters. We tested our algorithm using a
variety of datasets of objects with different scales,
textures and shapes acquired under different lighting
conditions. The results indicate that our algorithm is
stable and enables inexperienced users to easily cre-
ate complex 3D content using a standard consumer
level camera.

Keywords: image-based modelling, correspondence-
based reconstruction, silhouette-based reconstruction

1 Introduction

There is an increasing amount of applications that
require high quality 3D representations, e.g. for
arts, commerce, virtual heritage, training, education,
computer games, virtual environments, documenta-
tion, exchanging information, and social networking
applications. Conventionally, 3D digital models are
constructed using modelling tools such as Maya,
3D Max or Blender. Although these applications
enable graphic designers to construct highly realistic
and complex 3D models, they have a steep learning

Copyright c©2013, Australian Computer Society, Inc. This
paper appeared at the 36th Australasian Computer Science
Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 135, Bruce H. Thomas, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

curve and often require a considerable amount of
training and artistic skills to use. These restrictions
render them unsuitable for non-professionals. The
introduction of specialised hardware, such as laser
scanners, has simplified the creation of models from
real physical objects. However, while many of these
systems deliver highly accurate results, they are
usually extremely costly and often have restrictions
on the size and surface properties of objects in the
scene. Consequently, there is a critical need to
improve on the status quo by making 3D content
creation available to a wider group of users.

In recent years image-based modelling has
emerged as a new approach to simplify 3D content
creation. In contrast to traditional geometry-based
modelling and hardware-heavy approaches, the
image-based modelling techniques confront the
formidable, and still unanswered, challenge of creat-
ing a comprehensive representation of 3D structure
and appearance of a scene from visual information
encoded in 2D still images. Image-based modelling
techniques are usually less accurate, but offer very
intuitive and low-cost methods for recreating 3D
scenes and models.

The ultimate goal of our work is to create
a low-cost system that allows users to obtain
3D reconstruction of the observed scene using a
consumer-grade camera. The idea behind the system
is very simple: Once supplied with the input images,
our system will automatically process and produce
a 3D model without any a priori information about
the scene to be reconstructed.

Reconstructing 3D scenes from a collection of 2D
photographic images requires knowing where each
photo was taken. A common approach to obtain
this information is to perform camera calibration
manually. However, this method requires a setup
and preparations that are usually too sophisticated
for inexperienced users. Furthermore, this method
places a restriction on the types of scenes that can
be reconstructed since it is not always feasible to
perform camera calibration for a large and complex
scene. For this reason, for each input image, our
algorithm needs to automatically estimate the
intrinsic and extrinsic parameters of the camera
being used and compute the 3D coordinates of a
sparse set of points in the scene (the scene geome-
try or point cloud). Surfaces and texture are then
applied to this point cloud to produce the final model.

Due to the sparseness of the scene geometry, prob-
lems such as surface artifacts, noise, and blurry tex-
tures might arise during the surface and texture re-
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construction processes. Most previous works ap-
proached these problems by constraining the types of
objects and requiring manual user inputs to aid their
systems in deducing the structure of the object to be
reconstructed. However, these requirements breach
our goal of creating an easy-to-use system and pro-
viding the capability of reconstructing any type of ob-
ject. We overcome these problems by using a hybrid
approach that integrates shape-from-correspondence
and shape-from-silhouette methods. The system will
perform 3D reconstruction using the following steps:

1. Camera parameter estimation

2. Initial point cloud generation from extracted key
features

3. Increase the density of the point cloud by exploit-
ing silhouette information

4. Reconstruct the object’s surface and texture to
produce the final model

The remainder of this paper is organised as follows.
After a description of the related work on image-based
modelling, a discussion about the algorithms used in
our system is presented in section 3. Results are dis-
cussed in section 4. Section 5 concludes and sum-
marises the paper and gives a brief outlook on direc-
tions for future research.

2 Related Work

Although there has been much interest and study of
3D modelling techniques over the last few decades,
robustly and automatically obtaining 3D models is
still a difficult task. For the past 30 years, creation of
artiticial 3D models using conventional graphics and
animation software such as Maya and 3D Max has
continued to be the most popular approach. To this
end, various tools have been proposed to assist the
human designer by using images of the object to be
modelled [THP08]. The reason why manual creation
of 3D models remains the prevalent approach despite
intensive study and research is that, in fact, there is
no computer vision or graphics technique that works
for every object. The difficulty in selecting the most
suitable 3D reconstruction technique that works for a
large class of objects justifies the abundant literature
that exists on this subject [Est04, REH06].

Various multiple view reconstruction techniques
have been explored in recent years. Amongst them,
the most well-known and successful class of tech-
niques have been shape from silhouette and shape
from correspondence.

The shape from silhouette class of algorithms
exploits silhouette information to create intersected
visual cones, which are subsequently used to derive
the 3D structure of an object. Shape from silhouette-
based methods are popular for shape estimation due
to their good approximation qualities for a large
number of objects, their stability with respect to the
object’s material properties and textures, as well as
their ease and speed of implementation. Exploiting
silhouette information for 3D reconstruction was first
considered by Baumgart in 1974. In his pioneering
work [Bau74], the author computed polyhedral shape
approximations of a baby doll and a toy horse by
intersecting silhouette cones. Following Baumgart’s
work, many different variations of the shape from
silhouette paradigm have been studied and proposed.

Aggarwal et al. [MA83] proposed a method
that used an intensity threshold-based segmentation
method to separate the object foreground and
background in each input image. A connected
component analysis of the segmented image produces
the silhouette. In order to compute the intersection
of different silhouette cones, the authors used a
run-length encoded, uniformly discretised volume.
The idea behind this is to consider each image point
as a statistical occupancy sensor. The point obser-
vations are then analysed to deduce where matter is
located in the observed scene. This is achieved by
discretising the scene into three dimensional voxels,
which are then projected into silhouette images. The
task is to mark the individual voxels as either “in”
or “out”. If the projection of a voxel belongs to the
foreground in all silhouette images, then the voxel is
labeled as “in” otherwise it is labeled as “out”. If a
voxel is labeled as “out”, it is excluded from further
computations of the object structure.

Matusik et al. [MBR+00] improve the efficency
of shape from silhouette techniques by taking ad-
vantages of epipolar geometry. In their method,
3D silhouette-intersection computation is reduced
to 2D by projecting one silhoutte onto another.
The intersection is then carried out in image space.
Franco et al. [FB10] attempted to improve the
effciency of Matusik’s method and to produce a
water-tight model. Their method involves two main
steps. First, point clouds of the observed scene are
generated by back-projecting viewing edges of the
visual hull. Next, missing surface points are recov-
ered by exploiting local orientation and connectivity
rules. A final connection walkthrough is then carried
out to construct the planar contours for each face of
the polyhedron.

In recent years, various correspondence-based
techniques have been explored. However, most of
these methods were designed to tackle reconstruction
problems related to a particular class of objects. As
a result, their use is often limited.

Fruh et al. [FZ03] used a combination of aerial
imagery, ground colour, and LIDAR scan data to
create textured 3D models of an entire city. While
the proposed method produces visually acceptable
results, it suffers from a number of drawbacks that
render it impractical for consumer-level applications.
In particular, the method requires intensive use of
special hardware during the data acquisition step.
This includes a vehicle equipped with fast 2D laser
scanners and a digital camera to acquire texture data
for an entire city at the ground level and a LIDAR
optical remote sensor. Additionally, the required
manual selection of features and the correspondence
in different views is very tedious, error-prone, and
cannot be scaled up well.

Xiao et al. [XFT+08] presented a semi-automatic
image-based approach to recover 3D structure of
façade models from a sequence of street view images.
The method combines a systematic and automatic
decomposition scheme of façades for analysis and
reconstruction. The decomposition is accomplished
by recursively splitting the complete façades into
small segments, while still preserving the overall
architectural structure. Users are required to provide
feedback on façade partitioning. This method
demonstrated excellent results.

Quan et al. [QTZ+06] presented a method for
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modelling plants. In their method, segmentation is
performed in both image space (by manually select-
ing areas in input images) and in 3D space. Using
the segmented images and 3D data, the geometry of
each leaf is recovered by setting a deformable leaf
model. Users are also required to provide hints on
segmentation. The main disadvantage of this method
is that it requires full coverage of the observed model
(360 degree capture), which may not always be
possible in practice due to obstructions and space
limitations. Branches are modelled through a simple
user interface.

Tan et al. [TZW+06, LQ02] introduced a method
for creating 3D models of natural-looking trees from
a collection of images. Due to the large leaf count,
small image footprint and widespread occlusions,
it is not possible to recover accurate geometric
representation for each leaf. In order to overcome
this problem, the authors populate the manufactured
tree with leaf replicas from segmented input images
to reconstruct the overall tree shape.

3 Algorithms

Our proposed approach uses a coarse-to-fine strategy
where a rough model is first reconstructed and
then sequentially refined through a series of steps.
The approach consists of two main stages: scene
geometry extraction and visualisation. Both of these
stages are achieved by dividing the main problem
into a number of more manageable subproblems,
which can then be solved by separate modules. The
entire reconstruction process is illustrated in Figure 1.

The objective of the first stage is to recover the
scene geometry from the input images. This stage
begins with the camera parameters for each view be-
ing estimated. This is accomplished by the automatic
extraction of distinctive features and establishment
of point correspondences in stereo image pairs. We
then isolate all matching images, selecting those that
view a common subset of 3D points. Given a set
of matching images, a scene geometry (point cloud)
and camera pose can be estimated simultaneously
by Structure from Motion and subsequently refined
by Bundle Adjustment. Next, additional points
are added to the computed scene geometry by
exploiting the silhouette information to produce
a more complete geometry. In the final step, a
resampling technique is applied onto the point clouds
to produce the final scene geometry. In contrast to
an initial version of this algorithm [NWDL11] we
integrate silhouette information, which is used in the
point cloud generation and the surface reconstruction.

In the second stage, we tackle the problem of
how to transform the scene geometry recovered in
the preceding stage into a realistic representation of
the scene. This is accomplished by applying surfaces
and texture to the resulting scene geometry. The
outcome of this stage is a complete 3D representation
of the observed scene.

3.1 Camera Parameter Estimation

One key challenge in extracting 3D representation
of a scene from a sequence of 2D images is that
the process requires knowing where each photo
was taken and in what direction the camera was

Figure 1: Overview of our algorithm for reconstructing 3D
models from a set of unconstrained and uncalibrated images.

pointed (extrinsic parameters), as well as the internal
camera settings, such as zoom and focus (intrinsic
parameters), which influence how incoming light is
projected onto the retinal plane.

In order to recover such information, the system
will first detect and extract points of interest such
as corners (edges with gradients in multiple direc-
tions) in the input images. This is accomplished
using the SIFT feature detector [Low06]. Feature
points extracted by SIFT are highly distinctive, and
invariant to different transformations and changes
in illumination, and additionally have a high in-
formation content [HL07, BL05]. Once features
have been identified and extracted from all the
images, they are matched. This is known as the
correspondence problem. Given a feature in an
image I1, what is the corresponding feature (the
projection of the same 3D feature) in the other image
I2. This can be solved by using a Euclidean distance
function to compare the two feature descriptors.
All the detected features in I2 will be tested and
the one with minimum distance is selected [HQZH08].

Once all interest points have been found, we
match them across views and estimate the camera
parameters and 3D coordinates of the matched
points simultaneously using the Structure from
Motion (SfM) technique. Structure from Motion
designates the computation of the camera poses and
scene geometry (3D points) simultaneously from a set
of images and their feature correspondences. More
precisely, SfM can be formulated as an optimisation

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

117



problem, where the goal is to determine the configu-
ration of cameras and 3D points that, when related
through the equations of perspective projection, best
agree with the detected feature correspondences.
This computation is carried out by exploiting a
constraint between correspondences and the physical
configuration of the two cameras. This is a powerful
constraint, as two 3D rays chosen at random are
very unlikely to pass close to one another. Given
enough point correspondences between two images,
the geometry of the system is sufficiently constrained
to determine the camera poses (up to scale). The
key to the success of this procedure is that successive
images must not vary significantly, i.e. must contain
overlapping visual features.

Our solution takes an incremental approach, in
which a pair of images is selected to initialise the se-
quence. This initial pair should have a large num-
ber of matches, but must also have a large baseline.
This is to ensure that the 3D coordinates of observed
points are well-conditioned. The remaining images
are added to the optimisation one at a time ordered
by the number of matches [REH06, SSS06]. The Bun-
dle Adjustment technique is followed to refine and im-
prove the obtained solution. The accuracy of the re-
construction depends critically on the final step. Fig-
ure 2 demonstrates a scene geometry created using
Structure from Motion and Bundle Adjustment.

Figure 2: Two views of the scene geometry generated from 37
input images.

3.2 Scene Geometry Enhancement

At this stage, we have successfully acquired both
camera parameters and scene geometry. As the
scene geometry is derived from distintive features of
the input images, they are often sparse. In order
to produce a more complete and comprehensive
model, the obtained scene geometry needs to be
enhanced. This can be accomplished by exploiting
the silhouette information of the observed scene to
generate additional 3D points.

The process is as follows: First, silhouette in-
formation of the observed scene in each view is
extracted using the Marching Squares algorithm
[Lor95] producing sets of silhouette points. Each of
these sets represents an exhaustive point-by-point
isoline list of every pixel which constitutes a sil-
houette contour. To define a silhouette using an
enormous contour point set will inevitably upsurge
the computational expense. To avoid this, silhouette
data must be preprocessed to reduce the number
of silhouette contour points. We achieve this by
first performing a Delaunay triangulation of the
contour points. The output triangular mesh frame-
work is then fed to a mesh simpification algorithm
[Mel98] to decrease the number of triangles, which in

turn effectively reduces the number of contour points.

Each set of contour points together with the
camera centre of that view defines a viewing cone,
whose apex is located at the camera’s optical centre.
Each viewing cone consists of a number of cone
lines. A cone line represents a 3D line formed by
a silhouette contour point and the camera’s optical
centre. The polyhedral visual hull information can
be obtained by calculating the intersection of these
viewing cones. However, 3D polygon intersection
is non-trivial and often computationally expensive.
Matusik et al. [MBR+00] proved that equivalent
results can be obtained by the following steps:

Assume that we want to compute the intersection
of silhoutte A and B.

1. Projecting each cone line of the viewing cone A
onto the silhoutte B.

2. Calculate the intersection of the projected line
and the silhouette B in 2D.

3. Lifting the computed intersection points from 2D
to 3D yields a set of 3D points, which defines a
face of the polyhedral visual hull.

Projecting a cone line onto another silhou-
ette As each of these rays (cone lines) is defined
by the camera’s optical centre and the projecting ray−−−→
OASi, the projection of a ray onto the image B is
computed as follows:

Projecting the camera’s optical centre of A onto
B (epipole of B)

ẽB = PB

[
OA
1

]
(1)

where PB = [QB , qB ] is the 3 × 4 projection
matrix of B.

Projecting the point Di at the infinity of the pro-

jecting ray
−−−→
OASi onto B

d̃B = PB

[
DA
0

]
= PB

[
Q−1
A Si
0

]
(2)

These two points define a 2D line on image
B, which will subsequently be used to compute
intersections.

Line-Silhouette Intersection The naive
approach of computing intersections of a line and
a silhouette requires the traversal of each pair of
silhouette contour points and performing a line-line
intersection with the given line. This method,
however, proves to be very inefficient. We use
an alternative method [15], which is based on the
observation that all projected rays intersect at one
common point, the epipole. This makes it possible
to subdivide the reference image into partitions so
that each projected ray will intersect all the edges
and only the edges in that partition. This way we
only have to traverse edges in a particular partition
when computing intersections. The algorithm to
partition the reference image into regions is as follows:

First, the epipole of the reference image B is
computed by projecting the camera’s optical centre
of A onto B. Each silhouette contour point along
with the epipole forms a line segment. The slopes
of all the line segments are stored in a sorted list
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in ascending order. Two consecutive line segments
in the list create a partition or a bin. Each bin is
defined by a minimum and maximum slope value
(αmin and αmax) and a set of edges associated with it.

To determine the set of edges allocated to each
bin, we traverse through the silhoutte contour points
while maintaining a list of edges in the current bin.
When a contour point is examined, we eliminate
from the current bin all edges ending at that contour
point and append all edges starting at that contour
point. A start of an edge is characterised as the edge
end point that has a smaller slope value.

The intersections of a given line and a silhouette
can be determined by first examining the slope of the
input line segment to establish the bin to which the
line segment belongs. Once the corresponding bin is
found, we iterate through the edges assigned to that
bin and perform line-to-line intersection. The result
of this stage is a collection of 2D intersection points.

2D points to 3D points Given a 2D in-
tersection point in the reference image, we want
to compute the corresponding 3D point of this
point. This is accomplished by shooting a ray
from the camera’s optical centre of the reference
image through the intersection point and compute
the intersection point of the newly created 3D
rays with the original 3D ray. The intersection
point of the two 3D ray is the 3D point we want to
find. Figure 3 shows an example of the lifting process.

Figure 3: Lifting 2D points to 3D points.

A problem arises when the two rays do not
intersect as a result of noise. We can handle this
by finding the point with the smallest distance to
the two rays using a Least Square method. Figure 4
illustrates the newly generated 3D points of the dog
dataset. These point clouds together with those of
the previous stage form a much more comprehensive
geometric representation of the observed scene.

3.3 Surface and Texture Reconstruction

The final step is to reconstruct surfaces from the
obtained point clouds. Surface reconstruction is
the process of automated generation of a smooth
surface that closely approximates the underlying 3D
models from which the point clouds were sampled.
The reconstructed surface is usually represented
by a polygon mesh. Many sophisticated surface
reconstructions have been proposed and extensively
studied. In our system, we employ the Poisson sur-
face reconstruction algorithm [KBH06] for remeshing

Figure 4: Additional 3D points generated by exploiting the
silhouette information.

the surface.

The Poisson reconstruction method [Bol10] ex-
tracts surfaces by taking advantage of the integral
relationship between oriented points sampled from
the surface of an unknown model and the indicator
function χ of the model. The indicator function is
defined as 1 at points that lie inside the model and
as 0 for points that lie outside the model.

Formally, the problem can be formulated as:
Given an oriented point set P = {s1, s2, ..., sN},
where a point sample si consists of a position p and
an inward facing normal n and is assumed to lie
on or near the surface ∂M of an unknown model
M . The aim is to create a smooth and watertight
approximation to the original surface by computing
the indicator function χ of the model and then
extract an appropriate isosurface [Bol10].

This is accomplished by first deriving a relation-
ship between an integral of the normal field over the
surface and the gradient of the model’s indicator
function. The gradient of the indicator function
is defined as a vector field that is zero almost
everywhere as the indicator function is constant
practically everywhere except at points near the
surface, where it points in the direction of the inward
surface normal. Hence, the input oriented point
samples can be thought of as samples of the gradient
of the indicator function [Bol10, Kaz05]. An example
of Poisson Surface reconstruction is shown in Figure
5.

Figure 5: Poisson reconstruction. The input point samples are
on the left, while the reconstructed mesh is shown on the right.

After the surface reconstruction phase, the re-
sulting model is a shaded and textureless polygonal
mesh. Such a representation is usually not an accu-
rate reflection of the object in the input images. A
more realistic representation is obtained by creating
a surface texture from the colour information in the
input images. In texture reconstruction, each vertex
of the polygonal mesh has the RGB colour of the
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corresponding vertex in the attached point clouds.
The resulting triangle mesh with vertex colours is
rendered using Gouraud shading. Since the triangle
mesh is very dense, the colour interpolation over
triangles gives acceptable results.

4 Results

We evaluated our system using a wide range of data
sets at different scales of both indoor and outdoor
scenes. In most test cases, the system produces
qualitatively good results. The geometries recovered
using our system appear to retain high resemblance
to that of the original models even for objects
with smooth, uniform and limited-feature surfaces
or concave regions. Datasets with both smooth,
uniform surfaces and concave regions often resulted
in an unsatisfied geometry since the silhouettes did
not contain sufficient geometry information, and
there were too few unambiguous features to allow full
surface reconstruction. The size of our test datasets
varies from as few as 6 images to hundreds of images,
which were all taken with a simple handheld camera.

Owl Dataset The first dataset consists of 32
images (3648 × 2736 pixels) taken from arbitrary
view directions using a normal consumer-level SONY
DSC-W180 camera of a paper model of an Owl.
Three of the 32 input images are shown in Figure 6.
This Owl object is highly decorated with texture. On
average, each image contains over 53,000 features,
which would aid the reconstruction greatly.

Figure 6: Owl dataset input images.

The resulting reconstructed model, illustrated in
figure 7, is of excellent quality. The overall shape,
along with details such as feathers, and the texture of
the original model are reconstructed with no visual
difference to the original model. This is due to the
high number of distinct features of the original object.
The resulting model has 678,210 faces in total. The
process took approximately 3 hours and 30 minutes
to complete on an Intel Quad Core i7 with 6GB RAM.

Lady Statue Dataset This dataset consists of
17 images taken from the frontside of a black copper
statue. The backside was not accessible. The images
were taken with the same camera as in the previous
case and under very complex lighting conditions.

Some of the images which were used for the
reconstruction are shown in Figure 8. The resolution
of each image in this dataset is 3648 × 2736 pixels.
Notice that the surface of the model contains few
texture details.

The reconstructed model has 268,892 faces and
is of moderate quality (Figure 9). This result is

Figure 7: 3D reconstruction of the Owl model.

Figure 8: Two of seventeen input images of the Lady model
taken at the Auckland Art Gallery.

surprisingly good considering the relatively low
number of input images and the lack of distinct
visual features for correspondence matching. The
geometry was predominantly obtained from the
silhouette information. This shows that our system
is capable of producing good results for feature-poor
models and few input images.

The reconstructed texture shows several sig-
nificant differences to the original model. This is
caused by changes in lighting conditions within the
gallary. Some white patches also appear around
the head region of the reconstructed model due to
the lack of images from that particular direction.
The current systems only computes surface colours,
rather than material properties, and hence works
best for diffuse surfaces and lighting conditions
resulting in few isolated highlights. The recon-
struction process required approximately 1 hour and
47 minutes on an Intel Quad Core i7 with 6GB RAM.

Bunny Dataset This data set comprises
49 images (2592 × 1944 pixels) taken from many
different views of a bunny model using a normal
consumer-level SONY DSC-W180 camera. The
original model has a very bumpy surface, which is
extremely difficult to reconstruct (Figure 10). The
objective of this test is to determine if the system
can effectively deal with rough surfaces and high
illumination variations due to surface roughness and
self shadowing.
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Figure 9: 3D reconstruction of the Lady Statue.

Figure 10: Two of 31 input images of a bunny model.

The reconstruction result (shown in Figure 11)
is of very good quality. The final model, which is
composed of 528,637 faces, bears a high resemblance
to the original object.

This result demonstrates that our approach is
able to recover realistic 3D models of shapes with
complex surface geometries. The overall computation
time is approximately 4 hours and 40 minutes on an
Intel Quad Core i7 with 6GB RAM.

Figure 11: 3D Reconstructed model of the Bunny dataset.

Cat Dataset This data set was obtained from
a ceramic statue of a cat. There are 44 images with
a resolution of 2592 × 1944 pixels. This object
has a very shiny, reflective, smooth and uniform
surface. These surface characteristices pose a major
problem for correspondence-based methods as very
few features are available. Added to that, the
observed object’s surface also contains a number
of concave regions, which also cause problems for
silhouette-based methods. Three of the 44 input
images are presented in Figure 12.

Figure 12: Input images of the Cat dataset.

The visual quality of the reconstruction is not
satisfactory. While the object is recognisable, im-
portant features such as the eyes and ears are not
reconstructed well, and the colour distribution varies
from the original object.

This reconstruction results (Figure 13) demon-
strate that our approach is able to recover 3D
geometry even for models with shiny, reflective and
uniform surfaces, but problems exist with concave
regions. The overall computation time was approx-
imately 2 hours and 55 minutes on an Intel Quad
Core i7 with 6GB RAM.

Figure 13: 3D reconstruction of the Cat model.

Comparison with Commercial Systems
Over the past 2-3 years a couple of prototypes

of commercial systems have emerged, which are
currently at various stages of user testing. While
none of the commercial systems has published any in-
formation about the utilised approach, we performed
an analysis, which suggest that most of them use pre-
dominantly a silhouette-based approach [NWDL12].
In this section we provide a short comparison of
our novel hybrid approach with some of the most
promising alternative image-based modelling systems
(123D Catch and Agisoft) currently in development.

In order to evaluate these systems, we used a
repository of over 40 objects. After initial tests
using different objects we selected one object which
reflected the main shortcomings of all tested algo-
rithms. For this test, 44 input images of the above
cat model were supplied to these systems. The
reconstruction results from these two systems are
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shown in Figure 14 and 15.

Figure 14: 3D reconstruction of the Cat model using Agisoft
System.

Agisoft ’s model is almost unrecognisable. The
reconstruction is very incomplete and retains no
visual resemblance to the original object. Large
portions of the object geometry are missing. This is
mostly due to the fact that the system is not able to
register views when there is only a limited number
of features in the input images. Additionally, the
reconstructed textures are also inadequate with many
black patches covering the reconstructed surfaces.

123D Catch produces more a complete geometry
of the reconstructed model. The resulting model still
somewhat reflects the structure of the original object.
Compared to our reconstruction result, the recon-
structed geometry appears much rougher. Regions
around the back, the head and the tail of the recon-
structed model are mostly distorted.

Figure 15: 3D reconstruction of the Cat model using the 123D
Catch System.

5 Conclusion and Future Work

Our research was motivated by the observation that
there is an increasing demand for virtual 3D models.
Existing modelling packages, such as Blender and

Maya, enable the construction of realistic and com-
plex 3D models, but have a steep learning curve and
require a high level of artistic skills. Additionally,
their use is very time-consuming and often involves
tedious manual manipulation of meshes. The use
of specialised hardware for 3D model reconstruction
(laser scanners) makes it possible for inexperienced
users to acquire 3D digital models. However, such
hardware is very expensive and limited in its ap-
plications. Based on this, we concluded that the
most promising approach for a general, affordable
content creation process is to use an image-based
modelling approach using images obtained with a
consumer-level uncalibrated camera.

We demonstrated our system’s ability to pro-
duce qualitatively good results for a wide range of
objects including those with smooth, uniform, and
textureless surfaces or containing concave regions.
The system has also demonstrated its robustness in
the case that there are illumination variations and
shadows in the input images.

Problems, such as missing textures in some
regions, still exist with the resulting 3D models.
This is caused by insufficient input images of those
regions. We aim to overcome this problem by
employing image in-painting and exemplar-based
texture synthesis techniques.

Although we have demonstrated that our system
can create 3D content inexpensively and conveniently,
the high computation cost partially offsets its advan-
tages. For example, our system takes approximately
2 hours to process 17 images, and roughly 5 hours for
31 images on a Intel Quad Core i7 with 6GB RAM.
The computational cost rises quadratically with the
number of input images. For the current state-of-the-
art of hardware technology, real time processing is
impossible on consumer-level machines. However, we
can reduce the processing time considerably by par-
allelising the computations as much as possible and
executing them on the GPU.
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Abstract

Software Product Line Engineering (SPLE) is a e-
merging software reuse paradigm. SPLE focuses on
systematic software reuse from requirement engineer-
ing to product derivation throughout the software de-
velopment life-cycle. Feature model is one of the most
important reusable assets which represents all design
considerations of a software product line. Feature
model will be used in the product configuration pro-
cess to produce a software. The product configuration
is a decision-making process, where all kinds of rela-
tionships among configurable features will be consid-
ered to select the desired features for the product. To
improve the efficiency and quality of product configu-
ration, we are proposing a new approach which aims
at identifying a small set of key features. The prod-
uct configuration should always start from this set of
features since, based on the feature dependencies, the
decisions made on these features will imply decisions
on the rest of the features of the product line, thus
reduce the features visited in the configuration pro-
cess. We have also conducted some experiments to
demonstrate how the proposed approach works and
evaluate the efficiency of the approach.

Keywords: Software Product Line; Feature Model;
Product Configuration; Minimum Vertex Cover.

1 Introduction

During the last decade, software product line (SPL)
engineering has emerged as an effective software de-
velopment methodology to promote systematic soft-
ware reuse. An SPL is a collection of software prod-
ucts that share common characteristics as a family.
The key idea of software product line engineering is
to discover and exploit commonalities across a prod-
uct family, thus to improve the reusability of various
software engineering assets. A successful SPL based
software development will improve the development
productivity and the quality of software, and signifi-
cantly reduce development cost and time-to-market.
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In addition to the commonalities shared by al-
l the products in an SPL, individual products may
somehow vary from each other. The variabilities a-
mong products in an SPL must be appropriately rep-
resented and managed. Feature oriented modelling
approaches have been widely used in software product
line engineering for this purpose. Features are promi-
nent and distinctive system requirements or charac-
teristics that are visible to various stakeholders in a
product line (Lee et al. 2002). A feature model spec-
ifies the features, their relationships, and the con-
straints of feature selections for product configura-
tion. A product in an SPL is defined by a unique valid
combination of selected features. Product configura-
tion is a process of selecting features for developing a
product in an SPL.

A feature model is usually represented as a tree in
which the variabilities of features are represented as
variation points (VPs). A variation point (Pohl et al.
2005) consists of a parent feature, a group of child
features, called variants, and a multiplicity specify-
ing the minimum and maximum number of variants
that can be selected from the variation point when
configuring a product. The selection of variants at a
variation point is not only constrained by the multi-
plicity but also by the dependencies between the vari-
ants at this variation point and the variants at other
variation points. Dependencies are the constraints on
configurations in a product line. The following two
dependencies have been defined by Kang et al. (1990).

1. Requires: If a feature requires, or uses, anoth-
er feature to fulfil its task, there is a Requires
relationship between these two features.

2. Excludes: If a feature has conflicts with anoth-
er feature, they cannot be chosen for the same
product configuration, i.e. they mutually exclude
each other. There is a bi-directional Excludes re-
lationship between two features.

Many other types of dependencies have been
considered as well, such as Impact, Mandatory,
Optional, Alternative and Or (Benavides et al. 2010,
Ye et al. 2008). It does not seem that there is an
agreeable industry standard for the types of depen-
dencies to be included in the feature model.

A valid feature model describes the configuration
space of a system family (Czarnecki et al. 2005). Dur-
ing product configuration process, application engi-
neers specify member products by selecting the de-
sired features from a feature model based on customer
requirements and constraints such as feature depen-
dencies. However, the traditional product configura-
tion becomes a time-consuming and error-prone task
because of the large number of features and feature
relationships. In literature, several approaches have
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been proposed to improve the traditional product
configuration method. Czarnecki et al. (2005) pro-
pose staged configuration which allows incremental
configuration of cardinality-based feature model by
performing a step-wise specialization of feature mod-
els. White et al. (2009) provide automated support
of staged configuration based on constraint satisfac-
tion problem (CSP). Mendonca et al. (2008) develop
a collaborative product configuration method which
decomposes a feature model into several configuration
spaces. Each type of stakeholder makes feature selec-
tion in a corresponding configuration space and finally
the selected features in different configuration spaces
are merged to get the final configuration. Loesch et al.
(2007) simplify product configuration by reclassifying
variable features based on their usage and by restruc-
turing feature model to simplify variabilities. The
above proposed approaches have improved product
configuration process from different aspects.

In this paper, we propose an approach to improve
the efficiency of product configuration. The idea of
our approach is that, by taking into account of fea-
ture dependencies, it is possible to identify a small set
of variation points from a feature model. Selecting
variants from this variation point set implies the vis-
iting of all the variation points in the feature model,
thus we have reduced the number of variation points
to visit during the configuration process. As a result,
the number of decisions and rollbacks in the config-
uration process are significant reduced. We have not
found any other works along the same line and we
believe our method is an innovative approach.

The remainder of the paper is organized as fol-
lows. Section 2 and 3 define the basic concepts and
propose our approach. Section 4 discusses the adapt-
ed simulated annealing algorithm that is the core of
the proposed approach. In Section 5, we use an ex-
ample to demonstrate how our approach works. In
Section 6 and 7 we present experiments results which
demonstrate the efficiency of our proposed approach.
Section 8 concludes the paper and discusses future
works.

2 Feature Model and Product Configuration

Feature Model is a key artifact of the software prod-
uct line engineering. It tells the commonalities and
differences among the member products. As we have
already mentioned, various types of relationships a-
mong the features have been considered to be includ-
ed in the feature model, many of them are not pre-
cisely defined. Indeed, the relationships among the
features are complex and hard to describe.

For example, the “Requires” and “Excludes” rela-
tionships are simple and most understandable ones,
however, the “Impact” relationship is somehow more
complex. Feature A has impact on feature B could
mean several things, e.g. the selection of feature A
suggests in certain degree of selection of feature B, or
the implementation of feature A depends on the im-
plementation of feature B etc. So, the “Impact” re-
lationship is defined less precisely and harder to deal
with.

If we only consider the simple relationships, i.e.
the relationships we could define precisely, then many
mathematical approaches could be involved to im-
prove the efficiency of software engineering process.
Mannion (2002) uses propositional logic expressions
to detect “void feature model” errors and Zhang et al.
(2004) develop a propositional logic-based approach
to verify partially customized feature models at any
binding time. For detecting dead features and false

optional features, Czarneck et al. (2005) transform a
feature model into an CSP problem which includes
a set of variables and a set of constraints over the
variables and then uses CSP solvers to automate the
identification process. Trinidad et al. (2008) further
develop a CSP-based approach to explain the identi-
fied feature model errors. To improve the efficiency
of CSP-based approaches, we have developed a con-
straint propagation-based method to identify and ex-
plain dead features and false variable features (Zhang
et al. 2011). We can use the above mentioned ap-
proaches to obtain a valid feature model by detecting
and correcting feature model errors and then perform
product configuration in the valid feature model.

As we would like to improve the efficiency of prod-
uct configuration by applying some mathematical ap-
proaches, we need to limit us to the dependencies
which can be defined properly. In this paper, we only
consider the “Requires” and “Excludes” dependen-
cies. We also like to point out that our approach
is extendable to cover other types of dependencies if
they are defined accurately and the logical operations
involving these dependencies are defined precisely.

When configuring a product, we usually need to go
through the feature model and make a configuration
decision at each variation point to select variant(s).
Usually a depth-first traversal of a feature tree will be
employed to make decision at each variation point.
Assuming that there are two variation points, VP1
and VP2, we first encounter VP1 during the traversal
and select a variant at VP1. If the selected variant
at VP1 has “Requires” dependency with a variant at
VP2, then the required variant at VP2 has to be s-
elected based on the “Requires” dependency. Thus,
we do not need to visit this variant at VP2 later. In
this case a selection of variants at one variation point
may already cover the selections at other variation
points. If those variation points with greater cover-
age are processed first, obviously, there will be less
number of decisions to make, thus the configuration
process is more efficient. Another advantage of do-
ing configuration this way is that we can reduce the
mistakes made during configuration. For the above
mentioned example, assume that we make configura-
tion decision at VP2 first and mistakenly decide not
to include this variant in the final product. We will
not realize this is a wrong decision until we make con-
figuration decision at VP1. In this case, we have to
go back to VP2 again to correct the wrong selection
made before. And in a worse situation, the correc-
tions might propagate, thus could be time consuming
to fix. Thus, in terms of configuration efficiency and
quality, it is better to visit VP1 first in the configu-
ration

The sequence of the variation points following
which we make our configuration decisions has sig-
nificant impact on the efficiency of product configu-
ration. Getting the correct sequence is the key idea
of our approach.

3 The Proposed Approach

As discussed in the precede section, the sequence of
variation points follow which we select the variants is
important for improving the efficiency of product con-
figuration. The sequence of the variation points can
be determined based on a parameter which we cal-
l Configuration Coverage. Configuration Coverage
(CC) of a variation point refers to what extent a con-
figuration decision made at a variation point covers
the configuration decisions of the remainder variation
points in a feature model. To improve the efficiency of
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configuration process, it is crucial to identify a mini-
mum set of variation points, where the decisions made
at this set of variation points cover the decisions to be
made at all the variation points in a feature model.
This set of variation points will be sorted based on
their configuration coverage and we will start mak-
ing configuration decision at the variation point with
the biggest configuration coverage. However, as the
feature model could be very complex, and the feature
dependency model could be hard to trace, it is not
always straightforward to find such a minimum set of
variation points for product configuration. We pro-
pose to employ some well studied mathematical tech-
niques to help identify the minimum variation point
set from a feature model. Before we present the pro-
posed approach, we first define some measurements
used in the approach.

As mentioned, each variation point consists of a
set of variants and a multiplicity. For a variant
v, we define two measurements, one is called the
Positive Coverage PC(v), another one is called the
Negative Coverage NC(v). When the variant v is
included in a product configuration, the positive cov-
erage of variant v (PC(v)) is a set of variable fea-
tures which will be automatically included or exclud-
ed based on their dependent relationships with vari-
ant v. Similarly, when the variant v is excluded in a
product configuration, the negative coverage of vari-
ant v (NC(v)) is a set of variable features which will
be automatically included or excluded based on the
multiplicity constraint between these variants. To
work out the positive coverage and negative coverage,
we need to examine the dependency relationships a-
mong the variants in a feature model. For example,
if variant v requires variant w, then we know w is
in PC(v), furthermore, if w requires variant u, then
u is also in PC(v) since if v is included in the final
product, then u will be included as well. If variant t
requires variant v, then we know t is in NC(v), since
if v is not included in the final product, then t can
not be included as well.

For a variation point in a feature model, the mul-
tiplication rule restricts the selection of the variants
associated with the variation point. For example, a
multiplicity of 1..n means only up to n variants can
be selected in the final product. For all the variants
associated with a variation point, we call a subset of
variants a valid selection if it obeys the multiplici-
ty. The complement of a valid selection is the set
of variants that are not included in the selection at
the variation point. When a certain valid selection
has been made at a variation point, the configura-
tion coverage of the selection is the union of all the
positive coverage of the variants in the valid selection
and all the negative coverage of the variants in the
complement of the selection. Below is an example
to illustrate how do we calculate these parameters.
Note a variation point may have different configura-
tion coverage when different valid selections are made
at the variation point.

Included in Fig. 1 is a fraction of a feature model.
There are four variants v1, v2, v3 and v4 associated
with the variation point V P , and the multiplicity re-
stricts the selection, i.e. only up to two variants can
be included in the final product. From the dependen-
cy relationship Fig. 2, we know that:

PC(v1) = {u1, u3}, NC(v1) = ∅, PC(v2) =
{u2, u4, u7, u8}, NC(v2) = ∅, PC(v3) = {u5},
NC(v3) = {u6}, PC(v4) = {u4, u8} and NC(v4) =
{u6}.

All possible selections based on the multiplicity at
the V P are listed below,

v1, v2, v3, v4, v1 ∪ v2, v1 ∪ v3, v1 ∪ v4, v2 ∪ v3,

v1

VP

v2 v3 v4

1..2

Figure 1: A Variation Point (V P ) and its Variants.

require

v1 v2 v3 v4

u1 u2 u3 u4 u5 u6

require require require requirerequire

require

u7 u8

require require

Figure 2: The Dependencies among Variants.

v2 ∪ v4, v3 ∪ v4.
The configuration coverage (CC) of each selection

is listed as following:

CC(v1) = PC(v1) ∪NC(v2) ∪NC(v3) ∪NC(v4)

= {u1, u3, u6},
CC(v2) = {u2, u4, u7, u8, u6},

CC(v3) = {u5, u6}, CC(v4) = {u4, u8, u6},
CC(v1∪v2) = PC(v1)∪PC(v2)∪NC(v3)∪NC(v4)

= {u1, u2, u3, u4, u7, u8, u6},
CC(v1 ∪ v3) = {u1, u3, u5, u6},
CC(v1 ∪ v4) = {u1, u3, u4, u6},

CC(v2 ∪ v3) = {u2, u4, u7, u8, u5, u6},
CC(v2 ∪ v4) = {u2, u4, u7, u8, u6},

CC(v3 ∪ v4) = {u5, u6}.
The maximum from the above sets is the CC

when v1 and v2 are selected at this variation point,
we call this Maximum Configuration Coverage
(MAXCC). The Configuration Coverage of a varia-
tion point is the MAXCC of all the valid selections
at the variation point. If a selection of variants at a
variation point can result in MAXCC, we call the s-
election a Max Coverage Selection (MCS). For the
above example, MCS = v1 ∪ v2, MAXCC = CC
(v1 ∪ v2)= {u1, u2, u3, u4, u7, u8, u6}.

The MAXCC of a variation point indicates how
much a decision made at the variation point covers
the decisions at the other variation points of a feature
model. The bigger the coverage of a variation point,
the (potentially) more variant features will be includ-
ed/excluded as the result of including or excluding
the variation point, therefore, it is more important to
visit the variation point earlier in the configuration
process. Using the MAXCC of variation points, we
can construct a small set of variation points from a
feature model, the union of whose MAXCC will cov-
er all the variant features in the feature model. Soft-
ware engineers should start with this set of variation
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points when configuring a product from the feature
model. This set of variation points represents the key
decisions for configuring a member product. Focusing
on this set of variation points will reduce the config-
uration effort.

One thing we would like to point out is that, in
the configuration process, the MAXCC of a varia-
tion point might not correspond to the CC of the ac-
tual selection. i.e. the actual selection might not give
the MAXCC. The MAXCC of a variation point on-
ly indicates the potential importance of the variation
point in the configuration process.

Our approach works like this, we firstly work out
the MAXCC of every variation point in the feature
model and then calculate the smallest set of variation
points that covers the whole feature model. In other
words, the union of the MAXCC of this set of vari-
ation points includes all the variants of the feature
model. The software engineers could start from this
set of variation points to configure the final product.
Once a decision is made on a variation point (or a set
of variation points), we then work out the coverage
of the selection(s), this is a straightforward task as
we already know the positive coverage and negative
coverage of each variable feature. For the rest of the
uncovered features in the feature model, we will then
repeat this process until all the variants are covered.

To identify a minimum set of variation points
which covers a feature model, there are many ways to
do it. One of the simple but less optimal approach-
es would be using greedy algorithm, i.e. selecting the
variation points with the biggest coverage until the u-
nion of the coverage covers the feature model. A more
precise approach is to model the problem as the min-
imum vertex cover problem and use some approxima-
tion algorithm to solve the problem, minimum vertex
cover problem is a well studied mathematic problem,
there are many approximation algorithms we could
use. In the following section, we will discuss this top-
ic.

4 Vertex Cover Problem and Simulated An-
nealing Algorithm

Before we discuss the vertex cover problem, we first-
ly describe how do we transfer a feature model into
a direct graph. The transformation is quite straight-
forward, every variable feature in the feature model
become a vertex in the resulting graph and the de-
pendencies between two variable features become the
arcs in the resulting graph. For example, if feature
A requires feature B, then there are two vertices in
the resulting graph, say vertex A and vertex B. And
also there is an arc goes from vertex A to vertex B in
the graph. If feature A excludes feature B, then there
will be two arcs between vertex A and B. Once we can
model the feature model into a direct graph, we can
then apply some discrete optimization techniques.

In graph theory terms, a “vertex-cover” of a direct-
ed graph (digraph) is a set of vertices such that each
arc of the digraph is incident to at least one vertex
of the set. A minimum vertex-cover is a vertex-cover
of the smallest size. The problem of finding a mini-
mum vertex-cover is a classical optimization problem
in computer science. This problem is a typical exam-
ple of a NP-hard optimization problem and an opti-
mal solution is very hard to obtain in general. Nor-
mally randomized algorithms become the first choice.
For example, Simulated Annealing and Genetic Algo-
rithm have been used very often in solving the vertex
cover problem. The algorithms are efficient and very
often can produce reasonable good solutions.

The problem we are dealing with here is very sim-
ilar to the classical Vertex Cover problem. The key
difference is the coverage in the classical minimum
vertex cover problem is the immediate neighbor of
the node, where in our problem, the coverage can ex-
tend to the nodes beyond the immediate neighbor.
However, this difference does not introduce much dif-
ficulties into the original problem. We believe that a
Simulated Annealing algorithm would still be suitable
for solving our problem, as the algorithm can produce
reasonable good solutions in a given time frame.

Simulated Annealing (SA) is a well known ran-
domized algorithm in approximating optimal solu-
tions. The technique was proposed by Metropolis
et al. (1958) and then been further developed for com-
binatoric optimization by Pincus (1970).

The technique was originally used as a means of
finding the equilibrium configuration of a collection
of atoms at a given temperature. Analogy with the
physical process, each step of the SA algorithm re-
places the current solution by a random “nearby” so-
lution, chosen with a probability that depends on the
difference between the solutions and on a global pa-
rameter T (called the temperature), that is gradually
decreased during the process. The current solution
changes almost randomly when T is large, but in-
creasingly “downhill” as T goes to zero. Occasional-
ly, we allow the current solution to go worst, which
prevents the method from becoming stuck at local
minimum.

The pseudo code of the Simulated Algorithm 4.1
for solving the minimum vertex cover problem is
given below. In the inner “for loop”, an original
vertex-cover is created at random using “Breadth-
First Search” (BFS). BFS is a graph searching al-
gorithm that begins at a root vertex (also selected at
random base) and explores all the neighboring ver-
tices. Then for each of those neighboring vertices,
it explores their unexplored neighbor vertices, and so
on, until it exhausts all the vertices. Once the for loop
terminates, we have an vertex cover which might not
be optimal. Next, we start the SA process, staring
from the vertex-cover found before, we shall random-
ly choosing a vertex from the original vertex-cover to
be replaced, in order to obtain a new vertex-cover. If
a smaller vertex-cover is produced, then we continue
from the new vertex-cover. Otherwise, with certain
probability, say e−∆/T , we still continue from the new
vertex-cover, where T is a global time-varying param-
eter called the Temperature and ∆ is the increase in
cost (i.e., |V C(G)| − |V Cmin(G)|). A limited number
of iteration is accepted at each Temperature level.
The optimality of the results depends on the number
of iterations. The more iterations we run, the results
we found are closer to the optimal results, however,
the more running time it will consume.

The HSAGA algorithm is an improvement of the
standard SA algorithm and was introduced by Tang
et al. (2008). The algorithm combines the Genetic Al-
gorithm (GA) and Simulate Annealing (SA) algorith-
m. The HSAGA algorithm have multiple iterations,
in each iteration, we start from multiple instances,
i.e, solutions or partial solutions, and we apply SA
on these instances to produce the offsprings. The off-
springs will then be crossed over in the GA algorithm
and producing instances for next iteration. The key
idea is to balance the effort in local optimization and
multiple probing. The algorithm has demonstrated
its efficiency in several classical discrete optimization
problems, for more details on the HSAGA algorithm,
please see works by Tang et al. (2008).

We have applied the HSAGA algorithms in finding
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the minimum cover of the feature model. We have
modified the algorithm and the algorithm will start
from a random selected variable feature in the feature
model, since we know it is coverage, i.e. the set of
vertices covered by the vertex, so we can remove the
vertex and also the set of vertex it covers, and then we
randomly select another vertex and repeat the same
process. When this process finishes, we will have a
cover of the feature model. We will produce multiple
covers in the same way and then apply the HSAGA
algorithm on the instances. We would like to note
that the HSAGA do not out perform the standard
SA algorithm if the instance is small, for example, if
the graph has less than a few thousand nodes.

Algorithm
4.1: Simulated Annealing(G)

comment: T = 1.0, CR = 0.75, V Cmin(G) = {}
while No change in VCmin(G)

do



for i← 0 to Iteration-length

do


Generate a VC(G)
∆← |VC(G)| − |VCmin(G)|
if ∆ < 0
then VCmin(G)← VC(G)
else if random[0; 1) < e−∆/T

then VCmin(G)← VC(G)
T=T*CR;

return (VCmin(G))

• V C(G) - A vertex-cover of a directed graph G.

• V Cmin(G) - the minimum vertex-cover of a di-
rected graph G.

• T - Temperature, usual the initial value of Tem-
perature is 1.0.

• CR - Cooling-rate, typical values for Cooling-
rate are in the range from 0.75 to 0.98.

• Iteration-length - A limited number of iteration
is accepted at each Temperature level. For better
results, we use 100∗|V (G)| as the maximum num-
ber of iteration, where V (G) is the total number
of vertices in G.

In this paper, we use 100∗|V (G)| as the maximum
number of iteration. Once the maximum number of
iteration has been reached, the temperature is lowered
and a new iteration begins. If a more accurate solu-
tion is expected, then the number of iteration should
be increased.

5 Case Study

In this section, we will introduce a case study to illus-
trate how our approach works. In Fig. 4, we present
a modified version of a Library System feature model
based on our previous work (Lin et al. 2010), where
19 variant points are added to make the feature model
non-trivial. As we can see, there are over 60 variable
features under 42 VPs. Each variation point is repre-
sented by a name, such as VP1 and VP2. A hollow
circle indicates the variation point that is linked to
a set of variants. Features linked to a solid circle in
the figure are mandatory features. The dependencies
among the variants are presented in Table 1. Each
variant listed in the table is assigned with a Vari-
ant ID, called V ID. The “Requires” and “Excludes”
columns represent the dependencies among the vari-
ants. We use this dependency information to create

a directed graph shown in Fig. 3. In this directed
graph each variant is represented as a node labeled
by its V ID, dependencies among the variants are
represented as arcs among them. For example, the
“Requires” relationship between the variant “Reward
Point” (V ID =11) and the variant “Reward Policy”
(V ID=3) shown in Table 1 corresponds to an arc
from the node 11 to 3 in Fig. 3.

Using this directed graph, we calculate the
MAXCC for each variation point. Table 2 shows the
MAXCC of each variation point and the correspond-
ing MCS. The MCS column in the table means
the corresponding selection of variants that results in
MAXCC for the variation point. For example, for
V P7, the MCS is 4∪¬5, it means that if we include
variant 4 but do not include variant 5, this selection of
variants at V P7 will result in the inclusion/exclusion
of another 4 variants from other variation points as
shown in the table. This set of variants is MCS of
V P7.

Based on the MAXCC of each variation point, we
can find a set of variation points which covers the fea-
ture model, and the set is the smallest as possible. If
the MCS of each variation point in this set is select-
ed the whole feature model will be covered, i.e. we
do not need to go through other variation points for
the product configuration. If in the configuration pro-
cess, at a variation point, the selection is not the one
giving the MAXCC, then we will have to recalculate
the covering set.

A minimum covering set for the Library software
product line has been identified and sorted into a se-
quence in terms of the size of their CC which are
shown in Table 3. We can see that the variation
points V P35, V P9, V P2, V P8, V P11, V P10, V P30,
V P15, V P6, V P27, V P34, V P31, V P40, V P41 and
V P39 covers all the variants of the feature model. In
this particular feature model, some of V P s do not
have any dependency relationships with other vari-
ants except their own parent or children variants, such
as V P4, V P5, V P26, V P32 and V P42, which are not
listed in Table 2 and we will deal with these V P s after
we processed the others.

Since V P35 has the biggest coverage in the se-
quence, so software engineers should start the con-
figuration by examining the variants associated with
the V P35 and making selections. Assuming that the
selection of variants at V P35 is the same of its MCS,
the configuration will continue to select variants from
V P9 that is the second in the sequence. The con-
figuration process is going to continue until all the
variation points in the sequence have been visited, we
then get a product configuration. This is an ideal
situation where the MCS of each variation in the se-
quence is selected. However, if the selected variant
set at a variation point is not its MCS then the cov-
ering set should be recalculated. Suppose that the
selection of variants at V P8 is 6 that is not MCS of
V P8, in this case, we will first work out the coverage
of the new selection, which is {5, 46}, and remove this
set of variants from the directed graph we have gen-
erated at the beginning of this section. Then we will
recalculate the cover for the left over variant features.
This cover is shown in Table 4.

Using MAXCC of a variation point as its Config-
uration Coverage works for those large feature models
which contain dense dependency relationships. How-
ever, for small and simple feature models, we rec-
ommend to use the Average CC instead. The rea-
son is that, for small and simple feature model, very
often the MAXCC of a variation point significant-
ly larger than the CC of the other selections, giv-
ing somehow false indication of how important is
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Table 1: The Dependency Relationships among Variants in Feature Model.
VID Variant Requires Excludes VID Variant Requires Excludes
0 Payment 31 Overdue Fee 0,2,12,17
1 eBook 41,51 48 32 Damage Cost 0,2
2 Fee Policy 33 Reserve Fee 0,2
3 Reward Policy 34 Online Reserve 51,57 48
4 Registration Fee 0,2 35 Online Cancel 51,57 48
5 Issue Library Card 46 36 Overdue Notification 12,17
6 Replace Library Card 5,46 37 Fee Notification 2,12,17
7 Renew Fee 0,2 38 Email 10
8 Phone Number 39 Post 9
9 Address 40 SMS 8
10 Email Address 41 Digital Library 51,53 48
11 Reward Point 3,12 42 On-site Explore 51,57 48
12 Borrowing History 43 Web Explore 51,57 48

13
Update Phone

8 44 On-site Print 50 48
Number

14 Update Address 9 45 Download 51,57 48
15 Update Email Address 10 46 Library Card Device
16 Loan Fee 0,2 47 Self-check Device

17 Record Check 12 48 Non-Network
1,22,24,25,26,

28,29,34,35,41,42,
43,44,45,49,57

18 Pops-up Reminder 12 49 Network Based 48
19 Loan Restriction 12,17 50 LAN Based
20 Front Desk 12,17,18 51 Internet Based 53
21 Self-check 12,17,18,47 52 Wireless Device
22 Web Search 51,57 48 53 Network Security
23 View Account 12 54 Message Encryption
24 Website 51,57 48 55 Use Library Card 5,46
25 On-site Computer 50 48 56 Use Digital Certificate 59
26 Inter-Library 48 57 User Web Interface 51,53 48
27 Onsite Loan 58 Credit Card 54
28 Web Request 51,57 48 59 Digital Device
29 InterLibrary Search 56 30,48 60 Firewall
30 External Database 29 61 Proxy Server

Table 2: Max Configuration Coverage of Each VP.

VPID MCS MAXCC VPID MCS MAXCC

VP1 ¬0 {4,7,16,31,32,33} VP22 35 {48,51,57}
VP2 ¬2 ∪ ¬3 {4,7,11,16,31,32,33,37} VP23 36 ∪ 37 {2,12,17}
VP3 1 {41,48,51} VP24 38 ∪ 39 ∪ 40 {8,9,10}
VP6 11 {3,12} VP25 23 {12}
VP7 4 ∪ ¬5 {0,2,6,55} VP27 24 ∪ 25 {48,50,51,57}
VP8 6 ∪ 7 {0,2,5,46} VP28 26 {48}

VP9 ¬12 {11,17,18,19,20,
VP29 28 {48,51,57}

21,23,31,36,37}
VP10 ¬8 ∪ ¬9 ∪ ¬10 {13,14,15,38,39,40} VP30 29 {30,48,56}
VP11 13 ∪ 14 ∪ 15 {8,9,10} VP31 41 {48,51,53}
VP12 16 {0,2} VP33 42 ∪ 43 ∪ 44 ∪ 45 {48,50,51,57}
VP13 ¬17 {19,20,21,31,36,37} VP34 ¬46 ∪ ¬47 ∪ ¬52 {5,6,21,52,55}

VP14 19 {12,17} VP35 48
{1,22,24,25,26,28,29,34,
35,41,42,43,44,45,49,57}

VP15 21 {12,17,18,47} VP36 50 ∪ ¬51 {1,22,24,28,34,35,
41,42,43,45,57}

VP16 ¬18 {20,21} VP37 ¬57 {22,24,28,34,35,42,43,45}
VP17 22 {48,51,57} VP38 ¬53 {41,51,57}
VP18 31 {0,2,12,17} VP39 ¬54 {58}
VP19 32 {0,2} VP40 55 ∪ 56 {5,46,59}
VP20 33 {0,2} VP41 58 {54}
VP21 34 {48,51,57}

the variation point to the configuration process. So
the Average CC gives better guide in the process.
Average CC is defined as the set which includes the
variants that appear more than once in the CC of
all the valid selections at the variation point. For
example, there are four possible selections at V P2,
¬2 ∪ ¬3 = {4, 7, 11, 16, 31, 32, 33, 37}, 2 ∪ 3 = ∅,
¬2 ∪ 3 = {4, 7, 16, 31, 32, 33, 37}, 2 ∪ ¬3 = {11}. So
the average CC is {4, 7, 16, 31, 32, 33, 37}.

We have tested our approach on this specific li-
brary system feature model. We also conducted ex-

Table 3: A Sequence of VPs which covers Feature
Model.

VP MCS MAXCC

VP35 48
{1,22,24,25,26,28,29,34,
35,41,42,43,44,45,49,57}

VP9 ¬12 {11,17,18,19,20,21,23,31,36,37}
VP2 ¬2 ∪ ¬3 {4,7,11,16,31,32,33,37}
VP8 6 ∪ 7 {0,2,5,46}
VP11 13 ∪ 14 ∪ 15 {8,9,10}
VP10 ¬8 ∪ ¬9 ∪ ¬10 {13,14,15,38,39,40}
VP30 29 {30,48,56}
VP15 21 {12,17,18,47}
VP6 11 {3,12}
VP27 24 ∪ 25 {48,50,51,57}
VP34 ¬46 ∪ ¬47 ∪ ¬52 {5,6,21,52,55}
VP31 41 {48,51,53}
VP40 55 ∪ 56 {5,46,59}
VP41 58 {54}
VP39 ¬54 {58}

periments on several random generated feature mod-
els. All experiments generated good results on cor-
responding feature models. According to the results,
our approach reduces the configuration efforts spent
on feature decisions significantly. In next two section-
s, we will introduce the processes of our experiments
and explain the related results.
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Figure 3: Dependencies among Variants in Library Systems.

Table 4: A Sequence of VPs after Decision made at
VP8.

VP MCS MAXCC

VP35 48
{1,22,24,25,26,28,29,34,
35,41,42,43,44,45,49,57}

VP9 ¬12 {11,17,18,19,20,21,23,31,36,37}
VP2 ¬2 ∪ ¬3 {4,7,11,16,31,32,33,37}
VP11 13 ∪ 14 ∪ 15 {8,9,10}
VP10 ¬8 ∪ ¬9 ∪ ¬10 {13,14,15,38,39,40}
VP30 29 {30,48,56}
VP15 21 {12,17,18,47}
VP6 11 {3,12}
VP27 24 ∪ 25 {48,50,51,57}
VP34 ¬46 ∪ ¬47 ∪ ¬52 {5,6,21,52,55}
VP31 41 {48,51,53}
VP40 55 ∪ 56 {5,46,59}
VP12 16 {0,2}
VP41 58 {54}
VP39 ¬54 {58}

6 Experiment Results

We had conducted an experiment by using the Li-
brary System feature model. Firstly, we developed
the requirement documents for two library systems
based on the feature model. One with our universi-
ty library in mind, the library is not only available
for students and staff, but also available for public
access. The other library system is a medium sized
community library for local residents. The university
library is more complex than the community library,
for example, the digital library access is part of the
university library but not for the community library.

The requirement documents of two systems serve
two purposes, 1) to give users some general ideas of
what features the library system might include, 2) to
control the scope of the final product. Because the
final products are configured using the same feature
model, we presume that, for a given library require-
ment, the products will be similar, i.e. with minor
differences in terms of features included. If one of
the final products been configured in the experiment

is significantly different from other products, for in-
stance, contains a lot more features than the average
case, then it is not a valid sample and we will reject
the product. The reason to do so is to have some con-
sistency among the configured products so we could
compare the result. Furthermore, as the economical
concerns, such as software development cost, are not
included in the feature model, the configured product
could be unrealistic and having too many or too little
features, thus we have reject these products in our ex-
periment. To better simulate the real world situation,
where the requirements are very often not clear and
exact, some vague descriptions and even misleading
information are introduced to the requirement docu-
ments.

The experiment consisted of two focus groups with
20 university students. Users were picked random-
ly without SPL experience to make sure they are on
the same level of background. The basic idea of S-
PL and purpose of experiment were explained to all
the users in two groups. One group used tradition-
al configuration method (depth-first traversal to get
through each variant) and the other group used our
approach based on variant points sequence generated
from Average CC. The experiment was carried out
in pairs, i.e. one user from each group. Based on
the functional and non-functional requirements listed
in the requirement document, users made their se-
lections on the feature model. Each user is given a
computer program that could record all the decisions
he/she have made, when the computer program iden-
tified the conflicts among the selected features, the
computer program will remind the experiment con-
ductor who then explains the conflict and help user
to change their selections. If there was anything user
feels unclear about, then he/she could ask questions
during the experiments, the information was shared
with the peer in the experiments. This parallel pro-
cess was able to provide a direct comparison of two
methods. For each group, 50% of users configured
the university library system and the other half con-
figured the community library.

Several key data sets were collected during exper-
iment process. Including the number of Decisions
(users’ selection of variants), the number of Rollback-
s (users has realized that they had made a mistake
and modified their previous selection) and Time con-
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sumed for configuration. The number of Decisions
would be the most important figure to demonstrate
the efficiency of our approach.

Considering the variant features involved in the
dependency relationships, they form trees/chains. In
our approach, configuration decision is always made
at the root of the tree/chain, thus, less number of
Rollbacks. Rollback represents errors in the config-
uration, where the impact of one improper selection
does not reflect immediately but afterwards. It seems
little happened in our approach. Time is a parameter
to support configuration procedure somehow. It only
reflects the process to some extent because there are
so many factors may influence the time consumed.
For instance, users’ understanding of the features.

Table 5 shows critical parameters collected for ran-
domly selected 10 pairs of users in our experiment.
Data for each pair is included in a row in Table 5 for
comparison. Rollbacks did not happen at all for the
user using our approach. Time consumed by user-
s using our approach is much less than group using
traditional approach when configuring the same prod-
uct. From the “Decision” column of two groups, we
can see the gaps between this two approaches are ob-
vious even for this simple feature model. Figures in
this experiment may vary slightly but we can still see
the tendency. Our approach definitely has advantage
in terms of the number of decision to make and the
number of Rollbacks. Table 6 shows average value
comparison of two approaches.

Table 5: Tradition Configure Group(left) and Opti-
mization Configure Group(right).

User No. Decision Rollback Time(mins) User No. Decision Rollback Time(mins)
1 42 0 30 2 34 0 23
3 43 1 25 4 34 0 21
5 42 0 23 6 34 0 20
7 42 0 28 8 33 0 22
9 43 1 30 10 34 0 26
11 42 0 28 12 32 0 24
13 42 0 24 14 33 0 16
15 42 1 20 16 33 0 15
17 44 2 28 18 32 0 22
19 42 0 30 20 33 0 24

Table 6: Average Figures Comparison.

Group Average steps Average time Average decision reduced(%)
Traditional 42.4 26.6

21.7%
Optimization 33.2 21.3

7 Experiment on Random graphs

In the literature (Segura et al. 2010), there are some
works using random generated feature model as the
testing environment. Here we have also conducted an
experiment on random generated feature model. The
random feature model is generated in three steps, first
a random graphs is generated based on the simple ran-
dom graph model by Erdos and Renyi (Erdos et al.
1959), where we start with a fixed set of vertices and
add edges to the graph based on a edge probabili-
ty parameter. In here, a vertex represents a variable
feature, an edge represents a dependency relationship
in a graph. In the second step, we randomly gener-
ated the relationships between the features. Excep-
t “Requires” and “Excludes” relationships, we also
included parent-children relationships and the mul-
tiplicity constraints between variants in the random

feature models. Of cause, it is easy to see that here,
very likely, large number of conflicts will be generat-
ed, so we have to run through the third step, where
we go through all the cycles in the generated graphs
to check for inconsistency. As explained before, a cy-
cle possibly represents a conflict, therefore, we have
to randomly remove an edge a cycle to destroy the
cycle, thus to remove the conflict. Once we complete
these three steps, we then have a valid feature model
for configuration.

The configuration process is automated as well,
a computer program randomly selects a feature and
then check if the selection conflicts with previous de-
cisions, if yes, then the program will make a different
selection or randomly change the previous decision-
s to remove the conflicts. The program repeats the
process until all the features are visited. When using
our proposed approach, there will be no rollbacks.

Obviously, the final products generated by the ran-
dom configuration can be quite different. i.e. a prod-
uct could contain large number of features while the
others might contain significantly less number of fea-
tures. To maintain the similarity of the final products,
we reject those products (i.e. invalid products) which
contain more than 85% of features or less than 50%
of features of the feature model.

We have conducted our experiments on a series of
random systems. We have generated three random
systems of 800 nodes, 2000 nodes and 3000 nodes of
different edge probabilities. We then configure 1000
valid products using each of the configuration meth-
ods on the three random systems. And we include the
exact numbers of the decisions of our approach/the
traditional approach in Table 7 below.

Table 7: Experiment Results of Random Systems.

Edge Random graph Random graph Random graph
Probability with 800 nodes with 2000 nodes with 3000 nodes

0.01 264/413 330/473 361/498
0.02 219/307 255/374 298/411
0.1 124/169 145/186 167/199
0.2 91/112 122/157 133/145

The result is displayed in Table 7. Columns rep-
resent three random systems of 800, 2000 and 3000
nodes. Rows indicate edge probability when creating
the random graph and corresponding cells represen-
t the exact decision numbers of both approaches (i.e
our approach vs traditional). With the growth of the
edge probability, we can see that the decisions made
between two approaches becoming closer. This is be-
cause that the number of edges is growing, and the de-
pendencies relationships among the variation points
become dense, thus more likely the random selection
has large coverage, and the gaps decrease. From Ta-
ble 7, it is quite clear that using our approach is more
efficient in the product configuration.

8 Conclusions and Future Works

In this paper, we have presented an approach to im-
prove the efficiency of product configuration in soft-
ware product line. Using this approach, a set of vari-
ant points (VPs) is identified from the feature model.
This set only contains small number of VPs but the
union of CC of these VPs will cover all the variants of
the feature model. To configure a product, instead of
making configuration decision at every VP of the fea-
ture model, we only go through small number of VPs
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to make configuration decisions. In this way, the num-
ber of decisions is reduced, thus the effort of decision
making is saved. Furthermore, using this approach,
it is less likely to make mistakes in the configuration,
as the we have already incorporated the dependency
relationships among the variants in our approach.

However, as we have pointed out, that our ap-
proach only considers two simple relationships among
the variable features, therefore, how to extend our ap-
proach to cover other types of relationships is a chal-
lenge and we would like to consider this in our fu-
ture works. Meanwhile, we would like to perform our
experiments on some publicly available and complex
feature models to further evaluate our approach, we
believe that the results must be interesting to many
researchers.
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