
Conferences in Research and Practice in

Information Technology

Volume 127

Parallel and Distributed
Computing 2012

Australian Computer Science Communications, Volume 34, Number 6

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

Parallel and Distributed
Computing 2012

Proceedings of the Tenth Australasian Symposium on
Parallel and Distributed Computing
(AusPDC 2012), Melbourne, Australia,
31 January – 3 February 2012

Jinjun Chen and Rajiv Ranjan, Eds.

Volume 127 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Parallel and Distributed Computing 2012. Proceedings of the Tenth Australasian Symposium on
Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia, 31 January – 3 February 2012

Conferences in Research and Practice in Information Technology, Volume 127.

Copyright c©2012, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Jinjun Chen
Faculty of Engineering and Information Technology
University of Technology, Sydney
Broadway, NSW 2007
Australia
Email: Jinjun.Chen@uts.edu.au

Rajiv Ranjan
Information Engineering Lab
CSIRO ICT Centre
Acton, ACT, 2601
Australia
Email: rajiv.ranjan@csiro.au

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
Simeon J. Simoff, University of Western Sydney, NSW
Email: crpit@scm.uws.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 127.
ISSN 1445-1336.
ISBN 978-1-921770-08-1.

Printed, January 2012 by University of Western Sydney, on-line proceedings
Printed, January 2012 by RMIT, electronic media
Document engineering by CRPIT

The Conferences in Research and Practice in Information Technology series disseminates the results of peer-reviewed
research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Tenth Australasian Symposium on Parallel and Dis-
tributed Computing (AusPDC 2012), Melbourne, Australia, 31 January
– 3 February 2012

Preface . vii

Programme Committee . viii

Organising Committee . x

Welcome from the Organising Committee . xi

CORE - Computing Research & Education . xiii

ACSW Conferences and the Australian Computer Science
Communications . xiv

ACSW and AusPDC 2012 Sponsors . xvi

Contributed Papers

On Supernode Transformations and Multithreading for the Longest Common Subsequence Problem . 3
Johann Steinbrecher and Weijia Shang

Hard-Sphere Collision Simulations with Multiple GPUs, PCIe Extension Buses and GPU-GPU Com-
munications . 13

Ken Hawick and Daniel Playne

A Comparative Study of Parallel Algorithms for the Girth Problem . 23
Michael J. Dinneen, Masoud Khosravani and Kuai Wei

The Use of Fast Approximate Graph Coloring to Enhance Exact Parallel Algorithm Performance . . . 31
John Eblen, Gary Rogers, Charles Phillips and Michael A. Langston

Managing Large Numbers of Business Processes with Cloud Workflow Systems 33
Xiao Liu, Yun Yang, Dahai Cao, Dong Yuan and Jinjun Chen

Use of Multiple GPUs on Shared Memory Multiprocessors for Ultrasound Propagation Simulations . . 43
Jiri Jaros, Bradley E. Treeby and Alistair P. Rendell.

Scaling Up Transit Priority Modeling using High Throughput Computing . 53
Mahmoud Mesbah, Jefferson Tan, Majid Sarvi and Fatemeh Karimirad

Author Index . 63

vi

Preface

These proceedings contain the papers presented at the 10th Australasian Symposium on Parallel and Dis-
tributed Computing (AusPDC 2012), held between 31 January – 3 February 2012 in Melbourne, Australia
in conjunction with the Australasian Computer Science Week (ASCW). Over the years, previously known
as Australasian Symposium on Grid Computing and e-Research (AusGrid), and starting 2010, it is being
referred to as AusPDC, has become the flagship symposium for Grid, Cloud, Cluster, and Distributed
Computing research in Australia. Submissions were received, mostly from Australia, but also from New
Zealand, United States, Asia and Europe. The full version of each paper was carefully reviewed by at
least two referees, and evaluated according to its originality, correctness, readability and relevance. A to-
tal of 7 papers were accepted. The accepted papers cover topics from Cloud resource management, grid
inter-operation, multi-processing systems, trusted brokering, performance models, operating systems, and
networking protocols.

We are very thankful to the Program Committee members, and external reviewers for their outstanding
and timely work, which was invaluable for taking the quality of this year’s program to such a high level.
We also wish to acknowledge the efforts of the authors who submitted their papers and without whom
this conference would have not been possible. Due to the very competitive selection process, several strong
papers could not be included in the program. We sincerely hope that prospective authors will continue to
view the AusPDC symposium series as the premiere venue in the field for disseminating their work and
results. We would also like to thank the ACSW Organising Committee, those that submitted papers and
those that attended the conference their work and contributions have made the symposium a great success.

Rajiv Ranjan
CSIRO ICT Centre

Jinjun Chen
University of Technology, Sydney

AusPDC 2012 Programme Chairs
January 2012

vii

Programme Committee

Chairs

Jinjun Chen, University of Technology, Sydney, Australia
Rajiv Ranjan, CSIRO ICT Centre, Australia

Members

Jemal Abawajy, Deakin of University, Australia
David Abramson, Monash University, Australia
David Bannon, Victoria Partnership for Advanced Computing, Australia
Peter Bertok, RMIT, Australia
Rajkumar Buyya, University of Melbourne, Australia
Phoebe Chen, University of Melbourne, Australia Geoffrey Fox, Indiana University, USA Andrzej Goscinski,
Deakin University, Australia
Kenneth Hawick, Massey University, New Zealand
John Hine, Victoria University of Wellington, New Zealand
Michael Hobbs, Deakin University, Australia
Jiankun Hu, RMIT University, Australia
Zhiyi Huang, Otago University, New Zealand
Nick Jones, University of Auckland, New Zealand
Wayne Kelly, Queensland University of Technology, Australia
Kevin Lee, Murdoch University, Australia
Young Choon Lee, University of Sydney, Australia
Laurent Lefevre, University of Lyon, France
Andrew Lewis, Griffith University, Australia
Jiuyong Li, University of South Australia, Australia
Weifa Liang, Australian National University, Australia
Teo Yong Meng, National University of Singapore, Singapore
Lin Padgham, RMIT University, Australia
Judy Qiu, Indiana University, USA
Paul Roe, Queensland University of Technology, Australia
Justin Rough, Deakin University, Australia
Hong Shen, University of Adelaide, Australia
Jun Shen, University of Wollongong, Australia
Michael Sheng, University of Adelaide, Australia
Gaurav Singh, CSIRO Mathematical and Information Sciences, Australia
Peter Strazdins, Australian National University, Australia
Srikumar Venugopal, University of New South Wales, Australia
Yan Wang, Macquarie University, Australia
Andrew Wendelborn, University of Adelaide, Australia
Yang Xiang, Deakin University, Australia
Jingling Xue, University of New South Wales, Australia
Jun Yan, University of Wollongong, Australia
Yun Yang, Swinburne University of Technology, Australia
Yanchun Zhang, Victoria University, Australia
Rui Zhang, University of Melbourne, Australia
Albert Zomaya, University of Sydney, Australia

Steering Committee

Prof. David Abramson, Monash University, Australia
Prof. Rajkumar Buyya, University of Melbourne, Australia
Dr. Jinjun Chen (Vice Chair), University of Technology Sydney, Australia
Dr. Paul Coddington, University of Adelaide, Australia

viii

Prof. Andrzej Goscinski (Chair), Deakin University, Australia
Prof. Kenneth Hawick, Massey University, New Zealand
Prof. John Hine, Victoria University of Wellington, New Zealand
Dr. Rajiv Ranjan, CSIRO ICT Centre, Australia
Dr. Wayne Kelly, Queensland University of Technology, Australia
Prof. Paul Roe, Queensland University of Technology, Australia
Dr. Andrew Wendelborn, University of Adelaide, Australia

ix

Organising Committee

Members

Dr. Daryl D’Souza
Assoc. Prof. James Harland (Chair)
Dr. Falk Scholer
Dr. John Thangarajah
Assoc. Prof. James Thom
Dr. Jenny Zhang

x

Welcome from the Organising Committee

On behalf of the Australasian Computer Science Week 2012 (ACSW2012) Organising Committee, we
welcome you to this year’s event hosted by RMIT University. RMIT is a global university of technology
and design and Australia’s largest tertiary institution. The University enjoys an international reputation
for excellence in practical education and outcome-oriented research. RMIT is a leader in technology, design,
global business, communication, global communities, health solutions and urban sustainable futures. RMIT
was ranked in the top 100 universities in the world for engineering and technology in the 2011 QS World
University Rankings. RMIT has three campuses in Melbourne, Australia, and two in Vietnam, and offers
programs through partners in Singapore, Hong Kong, mainland China, Malaysia, India and Europe. The
University’s student population of 74,000 includes 30,000 international students, of whom more than 17,000
are taught offshore (almost 6,000 at RMIT Vietnam).

We welcome delegates from a number of different countries, including Australia, New Zealand, Austria,
Canada, China, the Czech Republic, Denmark, Germany, Hong Kong, Japan, Luxembourg, Malaysia, South
Korea, Sweden, the United Arab Emirates, the United Kingdom, and the United States of America.

We hope you will enjoy ACSW2012, and also to experience the city of Melbourne.,
Melbourne is amongst the world’s most liveable cities for its safe and multicultural environment as

well as well-developed infrastructure. Melbournes skyline is a mix of cutting-edge designs and heritage
architecture. The city is famous for its restaurants, fashion boutiques, café-filled laneways, bars, art galleries,
and parks.

RMIT’s city campus, the venue of ACSW2012, is right in the heart of the Melbourne CBD, and can be
easily accessed by train or tram.

ACSW2012 consists of the following conferences:

– Australasian Computer Science Conference (ACSC) (Chaired by Mark Reynolds and Bruce Thomas)
– Australasian Database Conference (ADC) (Chaired by Rui Zhang and Yanchun Zhang)
– Australasian Computer Education Conference (ACE) (Chaired by Michael de Raadt and Angela Car-

bone)
– Australasian Information Security Conference (AISC) (Chaired by Josef Pieprzyk and Clark Thom-

borson)
– Australasian User Interface Conference (AUIC) (Chaired by Haifeng Shen and Ross Smith)
– Computing: Australasian Theory Symposium (CATS) (Chaired by Julián Mestre)
– Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Jinjun Chen

and Rajiv Ranjan)
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Ker-

ryn Butler-Henderson and Kathleen Gray)
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Aditya Ghose and Flavio

Ferrarotti)
– Australasian Computing Doctoral Consortium (ACDC) (Chaired by Falk Scholer and Helen Ashman)

ACSW is an event that requires a great deal of co-operation from a number of people, and this year has
been no exception. We thank all who have worked for the success of ACSE 2012, including the Organising
Committee, the Conference Chairs and Programme Committees, the RMIT School of Computer Science
and IT, the RMIT Events Office, our sponsors, our keynote and invited speakers, and the attendees.

Special thanks go to Alex Potanin, the CORE Conference Coordinator, for his extensive expertise,
knowledge and encouragement, and to organisers of previous ACSW meetings, who have provided us with
a great deal of information and advice. We hope that ACSW2012 will be as successful as its predecessors.

Assoc. Prof. James Harland
School of Computer Science and Information Technology, RMIT University

ACSW2012 Chair
January, 2012

xii

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2012 in Melbourne. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences - ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s - now share this week with seven other events - ACE, AISC, AUIC, AusPDC, HIKM,
ACDC, and APCCM, which build on the diversity of the Australasian computing community.

In 2012, we have again chosen to feature a small number of keynote speakers from across the discipline:
Michael Kölling (ACE), Timo Ropinski (ACSC), and Manish Parashar (AusPDC). I thank them for their
contributions to ACSW2012. I also thank invited speakers in some of the individual conferences, and the
two CORE award winners Warwish Irwin (CORE Teaching Award) and Daniel Frampton (CORE PhD
Award). The efforts of the conference chairs and their program committees have led to strong programs in
all the conferences, thanks very much for all your efforts. Thanks are particularly due to James Harland
and his colleagues for organising what promises to be a strong event.

The past year has been very turbulent for our disciplines. We tried to convince the ARC that refereed
conference publications should be included in ERA2012 in evaluations – it was partially successful. We
ran a small pilot which demonstrated that conference citations behave similarly to but not exactly the
same as journal citations - so the latter can not be scaled to estimate the former. So they moved all
of Field of Research Code 08 “Information and Computing Sciences” to peer review for ERA2012. The
effect of this will be that most Universities will be evaluated at least at the two digit 08 level, as refereed
conference papers count towards the 50 threshold for evaluation. CORE’s position is to return 08 to a
citation measured discipline as soon as possible.

ACSW will feature a joint CORE and ACDICT discussion on Research Challenges in ICT, which I hope
will identify a national research agenda as well as priority application areas to which our disciplines can
contribute, and perhaps opportunity to find international multi-disciplinary successes which could work in
our region.

Beyond research issues, in 2012 CORE will also need to focus on education issues, including in Schools.
The likelihood that the future will have less computers is small, yet where are the numbers of students we
need?

CORE’s existence is due to the support of the member departments in Australia and New Zealand,
and I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am
grateful to all those who gave their time to CORE in 2011; in particular, I thank Alex Potanin, Alan Fekete,
Aditya Ghose, Justin Zobel, and those of you who contribute to the discussions on the CORE mailing lists.
There are three main lists: csprofs, cshods and members. You are all eligible for the members list if your
department is a member. Please do sign up via http://lists.core.edu.au/mailman/listinfo - we try to keep
the volume low but relevance high in the mailing lists.

Tom Gedeon

President, CORE
January, 2012

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.

2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.

2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.
2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.
2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACDC Australasian Computing Doctoral Consortium
ACE Australasian Computer Education Conference
ACSC Australasian Computer Science Conference
ACSW Australasian Computer Science Week
ADC Australasian Database Conference
AISC Australasian Information Security Conference
AUIC Australasian User Interface Conference
APCCM Asia-Pacific Conference on Conceptual Modelling
AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
CATS Computing: Australasian Theory Symposium
HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections

in respective CRPIT volumes.

xv

ACSW and AusPDC 2012 Sponsors

We wish to thank the following sponsors for their contribution towards this conference.

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

CORE - Computing Research and Education,
www.core.edu.au

RMIT University,
www.rmit.edu.au/

Australian Computer Society,
www.acs.org.au

xvi

Contributed Papers

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

1

CRPIT Volume 127 - Parallel and Distributed Computing 2012

2

On Supernode Transformations And Multithreading For The Longest Common
Subsequence Problem

Johann Steinbrecher and Weijia Shang
Santa Clara University
500 El Camino Real

Santa Clara, CA 95053
j1steinbrecher@scu.edu, wshang@scu.edu

Abstract

The longest common subsequence (LCS) problem is
an important algorithm in computer science with many
applications such as DNA matching (bio-engineering) and
file comparison (UNIX diff). While there has been a lot of
research for finding an efficient solution to this problem,
the research emphasis has shifted with the advent of multi-
core architectures towards multithreaded implementations.
This paper applies supernode transformations to partition
the dynamic programming solution of the LCS problem
into multiple threads. Then, we enhance this method by
presenting a transformation matrix that skews the loop nest
such that loop carried dependencies of the inner loop are
eliminated in each supernode. We find that this technique
performs well on microarchitectures supporting out-of-
order execution while in-order execution machines do not
benefit from it. Furthermore, we present a variation of
the supernode transformations and multithreading strategy
which groups entire rows of the index set to form a supern-
ode. The inter thread synchronization is performed by an
array of mutexes. We find that this scheme reduces the
amount of thread management overhead and improves the
data locality. A formula for the total execution time of each
method is presented. The techniques are benchmarked on
a 12 core and a four core machine. At the 12 core machine
the traditional supernode transformation speeds up the
original loop nest 16.7 times. We enhance this technique to
score a 42.6 speedup and apply our new method scoring
a 59.5 speedup. We experience the phenomenon of super-
linear speedup as the the performance gain is larger than
the number of processing cores. Concepts presented and
discussed in this paper on the LCS problem are generally
applicable to regular dependence algorithms.

I.. Introduction
The LCS algorithm solves the problem of finding

the LCS shared by two strings. It is well-known for its
application at DNA matching in bio-engineering. Here, two
DNA’s are represented as strings of characters ’ACGT’.
Finding out how similar two DNA’s are is important
when researching the properties of new DNA’s or for
criminal evidence. Furthermore, the LCS problem has its
application in file comparison utilities such as the UNIX
diff program, data compression, editing error correction
and syntactic pattern recognition as well as the evidence of
plagiarism ([7], [15]). The dynamic programming solution
to the LCS problem is asymptotically bounded by O(N2)
for N character inputs. Considering the human DNA which
is organized in 23 chromosomes each holding 50 · 106 to
220·106 base pairs, where each base pair is represented by
a character, this generates a significant amount of compu-
tation. This paper discusses multithreaded implementation
of the dynamic programming solution of the LCS problem
to utilize the resources of multiple instruction multiple
data machines (MIMD) as efficient as possible. We apply
previous work on thread partitioning and supernode trans-
formations to this problem, enhance these methods and
present a variation of the supernode transformations and
multithreading strategy. Concepts, ideas and observations
made and presented in this paper on the LCS problem are
generally applicable to regular dependence algorithms.

With the advent of multi-core systems in high per-
formance computing as well as in embedded systems it
is important to understand how to take advantage of the
available resources. In high performance computing, single

Copyright 2012, Australian Computer Society, Inc. This paper ap-
peared at the 10th Australasian Symposium on Parallel and Distributed
Computing (AusPDC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 127. J. Chen and R. Ranjan, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is included.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

3

instruction multiple data (SIMD) architectures such as
most general purpose graphics processing units (GPGPU)
and MIMD architectures such as many integrated cores
(MIC) provide up to hundreds of cores. In embedded
computing the trend clearly is towards parallel architec-
tures, either by providing multiple cores inside the host
processor or by building a heterogeneous system where
the host processor is supported by a multi-core graphics
processing unit. While supercomputers usually have phys-
ically distributed-memory, GPGPU’s and MIC’s have a
centralized main memory shared by all cores. Cache mem-
ories may be distributed to different cores. For optimizing
the processor utilization of each core, hyperthreading is
used. Hyperthreading is a hardware technique supporting
thread execution switch if the functional units are stalled
by the currently running thread. These technological facts
and trends motivate to understand how the LCS problem
can be implemented to saturate the resources of a multi-
core system.

This paper performs supernode transformations on the
LCS problem in order to utilize the resources of a par-
allel system as efficient as possible. Hodzic and Shang
presented in [10] supernode transformations for loop nests
with regular dependencies. They group iterations in the
index set to form supernodes. Those supernodes are then
scheduled according to a linear schedule, which is respect-
ing the data dependence, to the processing units. While this
paper exploits parallelism amongst supernodes, it does not
consider how to form supernodes in order to exploit the
resources of each processing core. Therefore, we enhance
this method by skewing the loop. We present a transforma-
tion matrix that eliminates the loop carried dependencies of
the inner loop. This enables processing cores (hardware) or
compilers (software) to reorder the instructions for hiding
memory access latencies. Furthermore, we present a vari-
ation of the supernode transformations and multithreading
strategy which groups entire rows of the index set to form
a supernode. The inter thread synchronization is performed
by an array of mutexes. We find that this scheme reduces
the amount of thread management overhead and improves
the data locality. We apply this method then to the original
and skewed loop nest. The total execution time of each
method is presented as a function of the computation time
and communication time assuming systems with infinite
resources and limited resources. The techniques presented
and discussed in this paper are benchmarked on two
multi-core MIMD machines with four cores and 12 cores,
respectively.

The rest of the paper is organized as follows. In sec-
tion II related work and our contribution is discussed. Sec-
tion III presents architecture, programming and algorithm
models and the concepts of linear scheduling. Section IV
gives an overview over the basic ideas and implementation

strategies. The total execution time at systems with limited
resources is discussed in section V. In section VI our
implementations are benchmarked on multi-core machines.
Section VII concludes this paper.

II.. Related work and our contribution
The LCS problem has been studied over the previous

decades from different point of views. The dynamic pro-
gramming solution was originally presented by Hirschberg
in [9] performing the algorithm in an O(N2) complexity,
where N equals the size of the input strings. Based on
this sequential method there have been many efforts for
optimizing the time complexity, the space complexity, im-
plement strategies using special data structures and design
algorithms for special input properties targeting various
systems as summarized in [4]. Our paper investigates
on how to execute the problem on multi-core systems.
Mabrouk presents in [3] a survey on the parallel com-
plexity of the LCS problem on various target machines
referring to papers in the time range from 1990 to 2006.
Furthermore, this paper contributes a greedy strategy to
schedule iterations on available machines in a parallel
system. A summary of systolic algorithms and an efficient
hardware-implementable systolic algorithm for the LCS is
presented in [12]. While most commonly two strings are
analyzed for their LCS, paper [13] discusses an optimal
implementation on how to find the LCS of multiple input
sequences (MLCS). It presents an efficient parallel algo-
rithm for the MLCS based on a dominant points method. A
coarse grained multithreaded implementation of the LCS
is discussed in [7]. Supernode transformations for optimal
running time on loop nests with regular dependencies are
discussed in [10]. The supernode shape, expressed by
the relative side length is discussed in [11] for optimal
running time and discussed in [8] for minimizing the
communication volume.

Having discussed related work we summarize here our
contributions. While previous work on parallel implemen-
tations of the LCS problem did not consider supernode
transformations we incorporate the concepts from [8], [10]
and [11]. Techniques presented in this paper are based
on several important observations we made. First, we
find that skewing the loop nest, which eliminates inner
loop dependencies, speeds up the algorithm on out-of-
order execution cores while it does not gain a speedup
on in-order architectures. Therefore, we enhance Hodzic’s
method ([10]) by loop skewing. By benchmarking the
technique on a 12 core MIMD machine with out-of-order
pipelines we have found that the original supernode trans-
formations speedup the LCS problem 16.7 times while
our enhancement achieves a 42.6 times speedup over the
original loop nest. As these performance gains are larger
than the number of processing cores, we experience the

CRPIT Volume 127 - Parallel and Distributed Computing 2012

4

for (i=0; i < M; i++)

for (j=0; j < N; j++) {

if (i == 0 || j == 0)

c[i][j] = 0;

else if (x[i] == y[j])

c[i][j] = c[i-1][j-1] + 1;

else

c[i][j] = max(c[i][j-1], c[i-1][j]);

}

Fig. 1. The longest common subsequence algorithm [6].

phenomenon of super-linear speedup. This is mainly due
to fortunate memory sharing among threads. The data that
is loaded into cache memory due to one thread can be
reused by other threads, which reduces cache misses. As
the LCS problem is a very data intense algorithm, reducing
cache misses results in a large performance gain. This ob-
servation motivated us to design and present a variation of
the supernode transformations and multithreading strategy
scoring a speedup of 59.5 on the 12 core machine. While
paper [10] presents an expression for the total execution on
systems with infinite resources we contribute a formula for
the total execution time on systems with limited resources
for Hodzic’s method and our new technique. While we find
that the methods presented in this paper score phenomenal
speedups, how to incorporate the concepts and ideas of
paper [7] will be conducted in future work.

III.. Algorithm, architecture and programming
models

In this section we present an overview on our algorithm
model for the LCS problem, architectural model, program-
ming model and linear scheduling.

A.. Algorithm model

The LCS algorithm takes as inputs two sequences
of characters: x[1...M] and y[1...N]. The program then
attempts to find the longest subsequence that is shared by
these two strings, and returns the length of that subse-
quence. For example, for the input strings ’ABCBDAB’
and ’BDCABA’, the program will output four, because
the longest common subsequence is ’BCBA’, which has
a length of four. The dynamic programming version of
the LCS algorithm can be found in [6] and presented in
figure 1.

The LCS problem is an algorithm with regular de-
pendencies [17]. An algorithm with regular dependencies
is one containing array references such that the depen-
dencies remain constant from one iteration to the next.
Such algorithms may be described by two parameters, the
dependence matrix D and the iteration space J . For the

for (i=0; i < N; i++)

c[i][0] = c[0][i] = 0;

for (i=0; i < N; i++)

for (j=0; j < N; j++) {

if (x[i] == y[j])

c[i][j] = c[i-1][j-1] + 1;

else

c[i][j] = max(c[i][j-1], c[i-1][j]);

}

Fig. 2. The peeled original loop nest.

LCS, the dependence matrix equals:

D =

(
0 1 1
1 0 1

)
The iteration space is the set of all iteration indexing
vectors and shown in figure 3. The process of establishing
the dependence matrix and the iteration space is beyond the
scope of this paper and can be found in [17]. Intuitively,
each point in the iteration space corresponds to an iteration
in the loop. An arrow between two points indicates a
dependence between the two iterations. The dependence
matrix D corresponds to the loop carried write after read
(WAR) in figure 1. For the correctness these dependencies
must be respected.

This paper has an emphasis on the overall perfor-
mance of an implementation of the LCS problem. Before
discussing optimal thread partitioning and loop transfor-
mations we analyze the loop body. The code as shown
in figure 1 consists of three if-statements. If-statements
generate branch instructions which reduce the size of basic
blocks in the compiled code. This has a negative impact on
the performance as branches usually require the hardware
pipelines to stall. Hardware techniques such as speculation
and branch prediction reduce this effect but can’t eliminate
it. Therefore, we try to reduce the number of branches
in the loop body. By analyzing the data dependencies
we find the second and third if-statement to hold loop
carried dependencies while the first if-statement does not.
Therefore, we move the first if-statement out to a separate
loop. The resulting code is shown in figure 2 and used
throughout this paper. Furthermore, all codes and examples
used in this paper assume a squared index set.

B.. Linear schedule and wavefronts

A linear schedule f (Π) is a linear or affine function that
maps multiple dimensional iteration vectors in the iteration
space onto a set of execution times represented by integers.
Multiple independent iterations are assigned the same
execution time for parallel processing. How to identify
linear schedules that respect the data dependencies and
minimize the total execution time is discussed in [17]. For

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

5

i

j

Fig. 3. Iteration space for the LCS algorithm.

the dependence structure of the LCS problem in figure 3,
one feasible linear schedule that respects dependencies is

f ((i j)t) = (1 1)(i j)t = i + j

The vector (1 1) specifying the linear schedule is
called linear schedule vector and is denoted as Π. The
iteration space is partitioned by the linear schedule into
a series of hyperplanes (1 1) (i j)t = constant. These
hyperplanes are called wavefronts that are perpendicular
to Π (see [17]). Such wavefronts may be generated using
CLooG [2], a loop transformation and code generation tool
based on the polyhedral model. One observation is that all
iterations in the same wavefront are independent.

C.. Architecture and programming model

For the purpose of this paper, a computer system is
modeled by the parameters p and t where p is the number
of cores in the system and t is the number of hyper threads
each core accommodates. We assume multiple instruction
multiple data architectures (MIMD) with shared memory.
MIMD architectures can be programmed amongst others
with Open MP [5], Intel R©CilkTMPlus or Posix Threads.
In this paper the Posix Thread programming model [1] is
used. The main memory is shared, while each core may
have its own cache. This stands in many aspects in contrast
to the CUDA programming model and architectural model,
where a single instruction multiple data (SIMD) architec-
ture is programmed. One major limitation of CUDA is that
only threads within the same thread block can commu-
nicate with each other efficiently. One of the advantages
of CUDA is an extremely low thread creation overhead
and cache access latency. The programming model in this
paper is especially applicable to future MIC systems ([14]
and [16]). MIC’s can be classified as MIMD systems
with SIMD and superscalar properties. The system consists
of multiple cores running independent instruction streams
(MIMD). Each core accommodates several functional units
(superscalar) as well as a SIMD unit for fast floating point
calculations.

IV.. Basic ideas and concepts
The basic ideas and concepts for speeding up the

dynamic programming algorithm of the LCS problem are
illustrated in this section. Subsection IV-A shows how to
partition the algorithm according to Hodzic’s method. In
subsection IV-B, we enhance Hodzic’s method by skewing
the loop. In section IV-C we propose a variation of
the supernode transformations and multithreading strategy.
Subsection IV-D discusses the proposed techniques.

A.. Traditional supernode transformation and
thread partitioning

Hodzic presents in paper [10] a supernode transforma-
tion for algorithms with regular dependencies. It discusses
the supernode transformation and optimal grain size to
minimize the total running time. Furthermore, in [8], [10]
and [11] the supernode shape is discussed for minimum
running time and minimum communication volume. The
total running time is the sum of the computation time
and the communication cost. Hodzic groups a number of
computation nodes to form a supernode and assigns each
supernode to a processor as an unit for execution. Applying
this concept to our programming model we spawn and
terminate a thread for each supernode. Hodzic’s paper uses
a loop nest in Example 2.1 with the dependence matrix D:

D =

(
0 1 1
1 0 1

)
As we have shown in section III-A this is the dependence
matrix of the LCS problem. Therefore, we can apply
the method as presented by Hodzic where the index set
is partitioned into rectangular supernodes as shown in
figure 4. Supernodes are formed by rectangles with the side
length w and h. The wavefronts for linear schedule Π =
(1 1) are indicated by transparent diagonal lines. In this
technique, each thread executes one supernode. Assuming
a system with infinite resources, all superiterations that
share the same wavefront can be executed simultaneously
on different cores. Therefore, a closed form expression
for the total execution time is presented in section 3 of
paper [10]:

T = P · (Tcomp + Tcomm)

Where P , the number of computation phases, equals
the linear schedule length or the number of wavefronts,
Tcomp equals the computation time per supernode and
Tcomm equals the communication time. Starting with this
technique we will exploit further optimizations. While
the actual computation time per supernode is strongly
dependent on the input strings, this equation assumes that
each computation phase takes the same time to execute.
Furthermore, the aspect of smaller supernodes at the bor-
ders of the index set is not considered. We keep these

CRPIT Volume 127 - Parallel and Distributed Computing 2012

6

assumptions in all equations presented in this paper.

j

i

h

w

Fig. 4. The loop nest according to Hodzic’s supernode transfor-
mations (paper [10]).

One observation from this method is that while this
linear schedule exploits parallelism among superiterations,
the iterations within a supernode may hold dependencies.
On out-of-order microarchitectures such as most recent
x86 and ARM CPU’s, this may not perform best as
instructions can not be reordered for hiding memory access
latencies because of dependence. This observation is the
basis for subsection IV-B. Also, this method requires in our
programming model to spawn and terminate a thread for
each supernode. We will present a multithreading strategy
that requires a reduced amount of thread management over-
head, with an improved data access pattern for reducing
cache misses, scoring the same amount of parallelism in
subsection IV-C.

B.. Eliminating inner loop carried dependencies
Mabrouk presents in section 2 of [3] how to trans-

form the index set of the LCS in order to eliminate
loop carried dependencies of the inner loop. Using the
loop transformation and code generation tool ClooG, we
experimented with this idea. The LCS is a very data intense
algorithm. Each computation node does at least three loads
(x[i], y[j], c[][]) and one store. Therefore, the bottleneck
of the algorithm are the memory access latencies. For
minimizing stalls in the pipelines due to memory access
latencies, two approaches are possible: hiding the latencies
by loading several data in a pipelined fashion and reducing
memory access latencies by exploring data locality for
minimizing cache misses. In this section we investigate
on hiding the memory access latencies by reordering the
instructions. When skewing the loop nest as presented
in [3] and shown in figure 5, there are no loop carried
dependencies along the inner loop. This enables the soft-
ware, i.e., the compiler or the hardware to reorder the
instructions. One advantage is that multiple data can be
loaded in a pipelined fashion to hide their latencies.

i

i+j

Fig. 5. The skewed index set.

Figure 5 shows the skewed loop nest. This transfor-
mation can be formally described by the transformation
matrix TR:

TR =

(
1 0
1 1

)
The new dependence matrix is indicated by arrows in
figure 5 and can be calculated by

D1 = TR ·D =

(
0 1 1
1 1 2

)
To support this observation we do a preliminary ex-
periment. In figure 6 and figure 7 we show the re-
sults of executing the original and skewed loop nest on
two out-of-order microarchitectures (x86-64) and one in-
order microarchitecture (x86-64): an Intel R©AtomTMD510
(Atom microarchitecture; in-order execution; 1.66GHz),
an Intel R©CoreTM2 U7300 (Core microarchitecture; out-of-
order execution; 1.30GHz) and an Intel R©CoreTMi5-2500
(Sandy Bridge microarchitecture; out-of-order execution;
3.3GHz). Using GCC 4.6.1, we compiled the original loop
nest and the skewed loop nest with an input size of 20000
characters per string performing no compiler optimiza-
tions (figure 6) and performing compiler optimizations
(figure 7). Overall the skewed loop nest performs better
on out-of-order execution microarchitectures while the in-
order machine didn’t show any speedup. Noticeable is also
that compiler optimization performed well on the in-order
execution machine while it increases the execution time on
the out-of-order architectures.

Based on this observation we enhance the strategy of
Hodzic. Applying Hodzic’s supernode transformations on
the skewed loop nest keeps the communication time con-
stant while the computation time decreases due to the fact
discovered in the experiment. This strategy is visualized
in figure 8. Here the inner loop which iterates along the
horizontal axis doesn’t have loop carried dependencies.
Skewing the loop nest transforms also the dependence
vectors as indicated by arrows in figure 8. Assuming a

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

7

Atom Core Sandy Bridge

0
10
20
30
40
50
60
70
80
90

100
original
transformed

tim
e

 /
se

c

Fig. 6. The sequential implementation of the LCS problem
performing no compiler optimizations (-O0).

Atom Core Sandy Bridge

0

10

20

30

40

50

60

70

80

90

100
original
transformed

tim
e

 /
se

c

Fig. 7. The sequential implementation of the LCS problem
performing compiler optimizations (-O3).

speed-up due to loop skewing of s, the total execution
time results in:

T = P · (Tcomp

s
+ Tcomm)

i

i+j

i

i+j

Fig. 8. Enhancing Hodzic’s method by loop skewing.

C.. Variation of the supernode transformation and
multithreading strategy

The original implementation according to Hodzic has
the disadvantage of grouping iterations with loop carried
dependencies along the inner loop. We eliminated this by
the method presented in section IV-B. One remaining down
side of this technique is the high amount of thread creation
overhead. For each supernode a thread is spawn and
terminated. Generally, this can be reduced by partitioning
the loop nest into as many supernodes as cores available
in the system. This results in a minimum amount of
thread management overhead but may not score a high

degree of parallelism. Furthermore, the original supernode
transformation does not optimize cache sharing among
threads. The method presented in this subsection evolves
from considering these aspects.

This method partitions the index set in vertical and
horizontal zones of size w and h. While previous methods
scheduled each supernode in terms of a thread to a proces-
sor, this method executes one horizontal zone per thread.
Each group of w×h index nodes is dedicated to a mutex.
Therefore, the mutexes form a dN/we×dN/he matrix M
where N is the dimension of the index set. This idea is
illustrated in figure 9.

i

j

Thread 0

Thread 1

Thread 2

Thread 3

w

h

Fig. 9. Variation of the supernode transformation and multithread-
ing strategy

Here, the index set is divided in four horizontal zones
0, ..., 3 and four vertical zones 0, ..., 3 of size w = 2 and
h = 2. The inter thread synchronization is performed by
locking and unlocking the mutexes, where M [k][l] corre-
sponds to the mutex for vertical zone k and horizontal zone
l. Using the example from figure 9 we illustrate the method
thoroughly. Initially, Thread0 is created. Having finished
with vertical zone 0 it creates Thread1. Every thread is
executing the same code. Therefore, in general Threadi
creates Threadi+1. To enforce the dependence structure
of the loop nest, Threadk performing vertical zone k
locks M [k][l] when entering horizontal zone l and unlocks
M [k][l] when leaving horizontal zone l. Furthermore, after
its creation Threadk executing vertical zone k, locks all
mutexes M [k + 1][i] with i = 0, ..., 3. Having finished
horizontal zone l, Threadk unlocks mutex M [k+1][l]. To
control the number of active threads Threadi waits until
Threadi−n terminates, where n is the number of threads
that should be active at any time. According to this scheme
the total execution time can be expressed as:

T = (dN
w
e − 1) · Tzone + dN

h
e · Tzone,

where Tzone is the amount of time required for each
thread to execute one w · h group. Depending on h, this
scheme may require a minimum number of thread creation.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

8

Furthermore, a large number of horizontal zones may make
it possible that cache lines, loaded by Threadi, can be
reused by Threadi+1.

The technique as presented in figure 9 did not eliminate
the loop carried dependencies. Therefore, we present the
same idea on the skewed loop nest in figure 10. By this
method we expect to decrease Tzone, one parameter of the
total execution time.

i

i+j

Thread 0

Thread 1

Thread 2

Thread 3

i

i+j

Thread 0

Thread 1

Thread 2

Thread 3

w

h

Fig. 10. Variation of the supernode transformation and multi-
threading strategy on the skewed loop nest

D.. Analysis and discussion

In this subsection we analyze the advantages and chal-
lenges of the three methods presented. Applying Hodzic’s
method to the LCS problem gave a general idea on
how to partition the loop nest and how to schedule the
supernodes to the processing units of a multi-core machine.
We enhanced this method by loop skewing for reducing
the computation time of each supernode (subsection IV-B).
While this method improves the performance on architec-
tures supporting out-of-order execution, in-order execution
machines do not benefit from it. Furthermore, both meth-
ods generate an unnecessary high amount of thread control
overhead as each supernode requires to spawn and termi-
nate a thread. Our supernode transformation and threading
strategy presented in subsection IV-C incorporates these
observations. Furthermore, it provides an improved data
access pattern. As Threadi executes the horizontal zone
j of vertical zone i the data of this zone is loaded into
the cache. Once Threadi has left zone j, Threadi+1

can enter it and read some of the required data from
the cache instead of paying the penalty for accessing the
main memory. Therefore, the sizes of the horizontal and
vertical zones w and h are a function of the cache size
and cache associativity. This method can be applied to
the skewed loop nest as well. The technique is suitable
for in-order and out-of-order execution architectures. We
especially see potential for this method at future MIC
architectures where a significant amount of processors and

hardware threads are provided [14]. Such architectures
usually consist of in-order execution architectures such as
the Larrabee architecture [16].

V.. The total execution time on systems with p
processing cores

The total execution times used and presented in sec-
tion IV assumed an infinite number of computation cores.
This section enhances Hodzic’s formula used in sec-
tions IV-A and IV-B and the formula for our new methods
presented in section IV-C for the case of p processors.

A.. Hodzic’s total execution time
Hodzic presented the total execution time as the number

of phases P , which he defines as the number of wavefronts,
multiplied with the sum of the computation time Tcomp and
communication time Tcomm.

T = P · (Tcomp + Tcomm)

While this remains generally true, the number of compu-
tation phases needs to be redefined. If all supernodes of a
wavefront can be executed simultaneously, each wavefront
requires one computation phase. If there are not enough
resources in the system, a wavefront may require more than
one computation phase. The total number of computation
phases for this case can be estimated as:

P =
W∑
i=1

(max(
wi

p
, 1))

where p equals the number of processors, W equals
the number of wavefronts and wi equals the number of
supernodes on wavefront i.

B.. Total execution time of the new supernode
transformation

In section IV-C we presented the total execution time
as

T = (dN
w
e − 1) · Tzone + dN

h
e · Tzone

We construct the execution time for p processors by
considering the example in figure 11. Assuming p = 4
we execute four threads Threadi with i = 0, ..., 3. The
execution order is illustrated in figure 12 by staggered
horizontal lines.

Here the thread executing the very last horizontal zone
is Thread1, which requires ((dNh emod4)−1)·Tzone due to
dependencies to start and executes in (d(dNh e/4)e · dNw e) ·
Tzone. Therefore, the total execution time results for the
general case in

T = ((dN
h
emod(p))− 1 + d(

dNh e
p

)e · dN
w
e) · Tzone

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

9

i

Thread 0

Thread 1

Thread 2

Thread 3

w
j

Thread 0

Thread 1 h

Fig. 11. Example for finding the execution time

Thread 0

Thread 1

Thread 2

Thread 3

w

Fig. 12. Staggered execution of threads

VI.. Experimental results
We benchmark our techniques on two out-of-order

multi-core x86-64 machines, an Intel R©Xeon R©X5670 sys-
tem with 12 cores and 24 threads (p = 12, t = 2 @ 2.93
GHz; a Nahelem architecture) and an Intel R©CoreTMi5-
2500 with four cores and four threads (p = 4, t = 1 @ 3.3
GHz; a Sandy Bridge architecture).

A.. The benchmarks

We implemented each technique discussed and pre-
sented in this paper in ANSI C using Posix Threads. The
benchmark performances are compared against each other
and against the unmodified original loop nest according to
the code in figure 2. The input size of all benchmarks is
43500 characters randomly generated stored on the heap
and unmodified across all benchmarks. Four methods are
tested: Hodzic’s method (as shown in figure 4), Hodzic’s
method enhanced (as shown in figure 8) and our variation
of the supernode transformation and threading strategy
applied to the original loop nest as shown in figure 9 and
applied to the skewed loop nest as shown in figure 10.
Implementations based on Hodzic’s method are bench-
marked using squared supernodes as those are optimal for
a squared index set according to [11]. For avoiding false
sharing, mutexes which are stored globally are padded.
Each benchmark is implemented with a maximum of four
active threads on the four core machine (p = 4, t = 1) and

24 active threads on the 12 core machine with 24 hardware
threads (p = 12, t = 2).

To measure the execution time the gettimeofday linux
system call is used. This kernel routine takes use of the vir-
tual dynamically-linked shared objects library (V DSO) of
the linux kernel. Therefore, no switching from user space
to kernel space is required, which minimizes the mea-
surements overhead. The benchmarks were compiled using
GCC 4.6.1 and tested on linux platforms with kernel ver-
sion 2.6.35. The compilation process took advantage of all
compiler optimizations by using flag −O3. If the unopti-
mized code (compiler flag −O0) performed better than the
optimized code such as in figures 13 and 14 we show those
results as well. Each value in figures 13, 14, 16, 17, 18
and 19 represents the arithmetic average of four repetitive
runs. All values in tables 15, 16, 17, 18 and 19 represent
the execution time in seconds.

B.. The results

50 80 110 140 170 200 230 260 290 320 350 380 410 440 470 500 530 560 590 620 650 680 710 740

0

2

4

6

8

10

12

14

Machine: 4 core (4 threads)

-O0 Hodzic traditional
-O0 Hodzic skewed
-O3 Hodzic traditional
-O3 Hodzic skewed

Dimension of each supernode

E
xe

cu
tio

n
 ti

m
e

 /
se

c

Fig. 13. Traditional supernode transformation and our enhance-
ment at the i5core machine (p = 4, t = 1)

50 80 110 140 170 200 230 260 290 320 350 380 410 440 470 500 530 560 590 620 650 680 710 740

0

1

2

3

4

5

6

7

Machine: 12 core (24 threads)

-O0 Hodzic traditional
-O0 Hodzic skewed
-O3 Hodzic traditional
-O3 Hodzic skewed

Dimension of each supernode

E
xe

cu
tio

n
 ti

m
e

 /
se

c

Fig. 14. Traditional supernode transformation and our enhance-
ment at the Xeon machine (p = 12, t = 2)

Figures 13 (four core machine) and 14 (12 core ma-
chine) show the benchmarks of Hodzic’s method and our
enhancement of it as described in subsection IV-A and sub-
section IV-B, respectively. The execution time is presented
as a function of the supernode dimension, which is the side

CRPIT Volume 127 - Parallel and Distributed Computing 2012

10

length of the squared supernodes. In both cases the curves
share the general shape with which the execution time
decreases with the supernode dimension until it reaches an
optimal grain size. The fastest execution time in each graph
is scored by applying Hodzic’s method to the compiler
optimized skewed loop nest. The fastest execution time
of our enhancement to Hodzic’s method in relation to
the fastest execution time of Hodzic’s original supernode
transformation scores a speedup of 3.01/1.80 = 1.67 at the
four core machine and 1.82/1.09 = 1.67 at the 12 core
machine. The optimal tile size for the compiler optimized
transformed loop nest equals 500 at the four core machine
and 260 at the 12 core machine. Interesting is also that
execution times for tile sizes between 230 and 500 are
consistently low at the compiler optimized transformed
curve in figure 13 (4 core) while this benchmark in
figure 14 (12 core) shows a more distinct optimal tile size.

Xeon i5core
46.44 51.33

Fig. 15. Execution times of the original loop nest

Figure 15 shows the execution time of the original
loop nest at each machine as presented in figure 2. Com-
paring the best performance of the traditional supernode
transformation at the four core machine (i5core archi-
tecture) with the original loop nest, it shows a speedup
of 51.33/3.01 = 17.1 and a 51.33/1.80 = 28.5 times
speedup at the enhancement of Hodzic’s method. The
benchmarks for the 12 core machine (Xeon architecture)
score a 46.66/2.79 = 16.7 (traditional supernode trans-
formation) and 46.44/1.09 = 42.6 (enhanced supernode
transformation) speedup. These results are better than
expected. We experience the phenomenon of super-linear
speedup, where the speedup is larger than the the increase
of computation cores. This is mainly due to reduced data
access times. As one thread is performing on specific data
the whole cache line is loaded. Threads may be able to
use data that is still present in the cache as it got loaded
by other threads for reducing cache misses.

Figures 16 and 17 present the results of our variation
of the supernode transformation and threading strategy
on the four core machine applied to the original and
the skewed loop nest. Figures 18 and 19 show the same
techniques on the 12 core machine. We present the results
in tabular form as we experiment with two parameters:
The number of horizontal zones dN/we and the number of
vertical zones dN/he. The results show that the execution
time decreases with an increasing number of vertical
zones and increases after it reached an optimal number
of vertical zones. Furthermore, the benchmarks tend to
perform better with increasing number of horizontal zones.
The fastest execution time for each number of vertical

Number of vertical zones N/h
50 2000 4000 6000 8000 10000 12000 14000

N
um

be
r

of
 h

or
iz

on
ta

l z
on

es
 N

/w

20 25.19 25.90 26.95 26.48 27.44 26.97 27.29 27.20
50 7.34 8.39 8.41 8.09 9.98 9.48 8.35 8.63
80 3.94 3.67 3.91 3.77 4.72 4.06 3.87 4.46
110 3.61 3.15 3.39 3.24 4.03 3.48 3.21 3.66
140 3.63 3.28 3.17 3.21 4.12 3.55 3.26 3.68
170 3.66 3.18 3.21 3.22 4.09 3.50 3.22 3.72
200 3.75 3.24 3.22 3.27 4.12 3.52 3.24 3.71
230 3.69 3.43 3.19 3.23 4.12 3.55 3.24 3.70
260 3.69 3.23 3.25 3.23 4.14 3.55 3.24 3.70
290 3.68 3.23 3.23 3.24 4.16 3.55 3.25 3.71
320 3.70 3.21 3.25 3.22 4.10 3.55 3.21 3.67
350 3.75 3.30 3.29 3.29 4.24 3.58 3.27 3.74
380 3.81 3.24 3.28 3.27 4.21 3.61 3.28 3.75
410 3.81 3.27 3.25 3.31 4.19 3.60 3.32 3.76
440 3.84 3.31 3.31 3.28 4.21 3.60 3.28 3.76
470 3.83 3.26 3.26 3.28 4.20 3.61 3.28 3.76

Fig. 16. Our variation of the supernode transformation applied to
the original loop nest at the i5core machine (p = 4, t = 1)

Number of vertical zones N/h
50 4000 8000 12000 16000 20000 24000 28000

N
um

be
r

of
 h

or
iz

on
ta

l z
on

es
 N

/w

20 8.56 7.70 8.18 9.97 12.18 14.41 16.26 17.27
50 5.80 5.07 5.98 6.59 8.33 10.07 11.62 12.57
80 3.33 2.54 2.89 3.11 3.97 4.80 5.59 6.08
110 2.62 1.76 1.85 1.95 2.49 3.02 3.51 3.84
140 2.66 1.83 1.89 1.93 2.49 3.05 3.51 3.83
170 2.67 1.77 1.85 1.92 2.46 3.00 3.50 3.82
200 2.67 1.80 1.85 1.91 2.45 3.00 3.50 3.84
230 2.70 1.79 1.84 1.91 2.45 2.99 3.50 3.82
260 2.71 1.79 1.98 1.90 2.44 2.99 3.50 3.82
290 2.71 1.83 1.85 1.90 2.45 2.99 3.51 3.83
320 2.74 1.84 1.91 1.90 2.44 2.98 3.50 3.82
350 3.27 1.83 1.92 1.89 2.44 2.98 3.49 3.82
380 2.81 1.96 1.85 1.92 2.44 2.99 3.50 3.83
410 2.89 1.78 1.90 1.94 2.44 2.98 3.50 3.83
440 2.98 1.77 1.90 1.92 2.45 3.03 3.51 3.84
470 5.19 4.11 1.96 1.96 2.46 3.00 3.52 3.85

Fig. 17. Our variation of the supernode transformation applied to
the skewed loop nest at the i5core machine (p = 4, t = 1)

Number of vertical zones N/h
10 50 500 1000 2000 4000 6000 8000 10000 12000

N
um

be
r

of
 h

or
iz

on
ta

l z
on

es
 N

/w

50 4.29 3.42 3.43 3.45 3.65 3.69 3.73 4.41 5.29 6.03
250 3.46 3.03 2.97 2.98 2.98 3.04 3.12 3.30 3.46 4.02
500 3.46 2.95 2.94 2.95 3.01 3.17 3.18 3.25 3.30 4.19
750 2.11 1.07 1.55 1.75 1.68 1.01 1.48 1.95 2.54 2.89

1000 1.96 1.06 1.54 1.66 1.41 1.00 1.46 1.92 2.43 2.81
1500 1.88 1.09 0.89 0.92 0.89 1.07 1.44 1.90 2.52 2.97
2000 1.99 1.14 0.88 0.88 0.85 0.99 1.45 1.91 2.40 2.88
2500 2.07 1.17 0.89 0.86 0.85 0.99 1.44 2.00 2.34 2.79
3000 2.12 1.19 0.87 0.86 0.84 1.13 1.46 2.01 2.46 2.78
3500 2.12 1.17 0.89 0.85 0.83 0.93 1.38 1.83 2.27 2.80
4000 2.06 1.17 0.85 0.85 0.82 0.87 1.71 1.85 2.20 2.61
4500 2.07 1.22 0.85 0.81 0.79 1.00 1.20 1.65 2.11 2.32
5000 1.99 1.18 0.80 0.79 0.84 0.81 1.13 1.48 1.97 2.27

Fig. 18. Our variation of the supernode transformation applied to
the original loop nest at the Xeon machine (p = 12, t = 2)

zones is highlighted bold. While we experienced at the 12
core machine performance increases at larger numbers of
horizontal zones we found that the four core machine has
its performance optimum at lower numbers of horizontal
zones. The data ranges in tables 16, 17, 18 and 19 present
the critical subset out of all tested parameters. The new
supernode transformation applied to the original loop nest
scores a speedup of 51.33/3.17 = 16.2 on the four core
machine and 46.44/0.79 = 58.8 on the 12 core machine

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

11

Number of vertical zones N/h
10 50 250 500 1000 2000 6000 10000 14000 18000

N
um

be
r

of
 h

or
iz

on
ta

l z
on

es
 N

/w

50 4.83 2.53 2.07 3.65 3.74 3.98 3.54 5.36 7.11 8.61
250 1.89 1.05 0.81 1.05 0.83 0.92 1.49 2.37 3.31 4.13
500 1.96 1.08 1.29 0.78 0.81 1.80 1.52 2.45 3.21 4.08
750 2.41 1.50 0.82 0.80 0.83 0.92 1.98 2.27 3.09 3.93

1000 2.41 1.12 1.87 0.80 0.84 0.89 1.84 2.63 4.46 4.03
1500 2.35 1.21 0.84 1.13 0.84 0.89 1.41 2.30 3.19 4.09
2000 2.46 1.81 0.86 0.82 0.85 0.94 1.47 2.53 3.27 4.19
2500 2.37 1.32 0.89 0.84 0.83 0.97 1.48 2.35 3.31 4.29
3000 2.43 1.30 0.88 0.95 0.85 0.93 1.45 2.33 3.29 4.18
3500 2.47 1.33 0.88 0.83 1.22 0.92 1.80 2.24 3.09 4.02
4000 2.56 1.31 0.87 0.82 0.85 0.90 1.39 2.17 3.18 3.82
4500 2.51 1.33 0.91 0.82 0.83 0.88 1.65 2.31 2.84 3.69
5000 2.56 1.34 0.90 0.82 0.81 0.87 1.63 2.24 2.76 3.58

Fig. 19. Our variation of the supernode transformation applied to
the skewed loop nest at the Xeon machine (p = 12, t = 2)

over the original loop nest. The same method applied to the
skewed loop nest achieves a 51.33/1.76 = 29.2 speedup
on the four core machine and a 46.44/0.78 = 59.5 speedup
on the 12 core machine. One observation is that skewing
the loop nest with this method improved the performance
only at the four core machine.

VII.. Conclusion

This paper emphasized on supernode transformations
and multithreading for the LCS problem by applying
and enhancing previous work as well as presenting a
variation of the supernode transformation and threading
strategy. One major observation of this paper is that
multithreaded implementations of the LCS score super-
linear speedups. Applying Hodzic’s method (traditional
supernode transformation) to the LCS problem, it scores a
16.7 times speedup over the original loop nest on a 12 core
MIMD machine. Enhancing this technique to eliminate
loop carried dependencies along the inner loop within each
supernode scored a 42.6 times speedup. To reduce the
thread management overhead and improve the data reusage
of threads we introduced a variation of the supernode
transformation and threading strategy scoring a 59.5 times
speedup. For each method we cited and presented the
functions for the total execution time consider systems
with infinite and systems with limited resources. The tech-
niques presented in this paper are especially applicable to
MIMD architectures. We benchmarked the techniques on
two modern x86−64 multi-core machines with four cores
and 12 cores. Techniques, ideas and formulas presented in
this paper on the LCS problem are generally applicable to
regular dependence algorithms.

We especially see potential for this technique at future
MIC systems where a large number of processing cores
are available. As these systems usually consist of in-
order architectures, especially our new variation of the su-
pernode transformation should be applied. The techniques
and concepts presented in this paper may be improved

by applying software pipelining. Also, how to port the
presented techniques to SIMD architectures such as most
recent GPGPU’s will be conducted in future work.

References
[1] 1003.1 standard for information technology portable operating

system interface (posix) rationale (informative). IEEE Std 1003.1-
2001. Rationale (Informative), pages i –310, 2001. 4

[2] C. Bastoul. Code generation in the polyhedral model is easier
than you think. In PACT’13, pages 7–16, Juan-les-Pins, France,
September 2004. 4

[3] B. Ben Mabrouk, H. Hasni, and Z. Mahjoub. Parallelization of the
dynamic programming algorithm for solving the longest common
subsequence problem. In Computer Systems and Applications
(AICCSA), 2010 IEEE/ACS International Conference on, pages 1
–8, may 2010. 2, 5

[4] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common
subsequence algorithms. In String Processing and Information
Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International
Symposium on, pages 39 –48, 2000. 2

[5] B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering
Computation). The MIT Press, 2007. 4

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
algorithms. MIT Press, Cambridge, MA, USA, 2001. 3

[7] T. Garcia, J.-F. Myoupo, and D. Seme. A coarse-grained multi-
computer algorithm for the longest common subsequence problem.
In Parallel, Distributed and Network-Based Processing, 2003. Pro-
ceedings. Eleventh Euromicro Conference on, pages 349 – 356, feb.
2003. 1, 2, 3

[8] G. Goumas, N. Drosinos, and N. Koziris. Communication-aware
supernode shape. Parallel and Distributed Systems, IEEE Transac-
tions on, 20(4):498 –511, april 2009. 2, 4

[9] D. S. Hirschberg. Algorithms for the longest common subsequence
problem. J. ACM, 24:664–675, October 1977. 2

[10] E. Hodzic and W. Shang. On supernode transformation with
minimized total running time. Parallel and Distributed Systems,
IEEE Transactions on, 9(5):417 –428, may 1998. 2, 3, 4, 5

[11] E. Hodzic and W. Shang. On time optimal supernode shape. Parallel
and Distributed Systems, IEEE Transactions on, 13(12):1220 –
1233, dec 2002. 2, 4, 8

[12] S.-H. Hu, C.-W. Wang, and H.-L. Chen. An efficient and hardware-
implementable systolic algorithm for the longest common subse-
quence problem. In Machine Learning and Cybernetics, 2008
International Conference on, volume 6, pages 3150 –3155, july
2008. 2

[13] D. Korkin, Q. Wang, and Y. Shang. An efficient parallel algorithm
for the multiple longest common subsequence (mlcs) problem. In
Parallel Processing, 2008. ICPP ’08. 37th International Conference
on, pages 354 –363, sept. 2008. 2

[14] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammar-
lund, R. Singhal, and P. Dubey. Debunking the 100x gpu vs. cpu
myth: an evaluation of throughput computing on cpu and gpu.
In Proceedings of the 37th annual international symposium on
Computer architecture, ISCA ’10, pages 451–460, New York, NY,
USA, 2010. ACM. 4, 7

[15] J. Liu and S. Wu. Research on longest common subsequence fast
algorithm. In Consumer Electronics, Communications and Networks
(CECNet), 2011 International Conference on, pages 4338 –4341,
april 2011. 1

[16] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Gro-
chowski, T. Juan, and P. Hanrahan. Larrabee: a many-core x86
architecture for visual computing. In ACM SIGGRAPH 2008
papers, SIGGRAPH ’08, pages 18:1–18:15, New York, NY, USA,
2008. ACM. 4, 7

[17] W. Shang and J. A. B. Fortes. Time optimal linear schedules
for algorithms with uniform dependencies. IEEE Trans. Comput.,
40(6):723–742, 1991. 3, 4

CRPIT Volume 127 - Parallel and Distributed Computing 2012

12

Hard-Sphere Collision Simulations with Multiple GPUs, PCIe
Extension Buses and GPU-GPU Communications

K.A. Hawick D.P. Playne

Computer Science, Institute of Information and Mathematical Sciences
Massey University – Albany

North Shore 102-904, Auckland, New Zealand
Email: {k.a.hawick,d.p.playne}@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract

Simulating particle collisions is an important appli-
cation for physics calculations as well as for various
effects in computer games and movie animations. In-
creasing demand for physical correctness and hence
visual realism demands higher order time-integration
methods and more sophisticated collision manage-
ment algorithms. We report on the use of singe and
multiple Graphical Processing Units (GPUs) to ac-
celerate these calculations. We explore the perfor-
mance of multiple GPUs (m-GPUs) housed on a sin-
gle PCIe bus as well as the use of special purpose PCIe
bus extender technology using GPU housing chassis
systems such as Dell’s C410x PowerEdge. We de-
scribe how a hard sphere collision system with grav-
itational interactions was developed as a benchmark.
We compare the performance of various GPU models
and show how algorithms that use GPU-GPU com-
munications with NVidia’s Compute Device Unified
Architecture (CUDA 4) can considerably aid commu-
nications amongst multiple GPUs working on a single
simulated particle system.

Keywords: hard-sphere collisions; m-GPU; GPU-
GPU communication; CUDA 4; PCIe bus.

1 Introduction

Particle simulation is a technique used heavily in the
computer games industry and also for constructing
animation of sophisticated computer generated scene
effects in the movie industry. Traditionally some
rather poor approximations to the physics have been
used in these applications to save on computational
requirements and in many circumstances these are not
noticed by the viewer or player.

We are interested in software for “physics engines”
(Bourg 2002, Conger & LaMothe 2004) that make
better approximations to the point of being able to
explore the statistical mechanical behaviours or nu-
merical experiments based on particles. We are there-
fore interested in high quality physics engines that
might ultimately be used as games engines(Thorn
2011, Millington 2007, Gregory 2009, Menard 2011)
as well – providing sufficient real time performance
can be achieved.

Graphical Processing Units (GPUs) have found

Copyright c©2012, Australian Computer Society, Inc. This
paper appeared at 10th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2012), Melbourne, Aus-
tralia, January-February 2012. Conferences in Research and
Practice in Information Technology, Vol. 127. Jinjun Chen
and Rajiv Ranjan, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

Figure 1: Simulated hard spheres, with density:
0.025(red); 0.0025(green).

many widespread recent uses in accelerating the per-
formance of many scientific and simulation calcula-
tions. GPU commodity pricing and ubiquity means
they are widely available in many games comput-
ers, but they are also finding sophisticated uses in
supercomputers and indeed many of the world cur-
rent top supercomputers(Meuer, Strohmaier, Simon
& Dongarra 2010) employ GPU technology as gen-
eral purpose “GPGPU” accelerators - to speed up
calculations and not just graphical rendering(Wright,
Haemel, Sellers & Lipchak 2011).

GPUs come in a number of different models with
different numbers of cores; floating point capabili-
ties and often very importantly different levels and
amounts of memory(Leist, Playne & Hawick 2009,
Playne & Hawick 2011). We have experimented with
a number of individual GPU devices ranging from low
priced game rendering models to top end gamer de-
vices such as the GTX 580/590 series and to blade
quality devices such as the C2050/C2070 series.

GPUs provide a powerful data-parallel architec-
ture for classical N-body particle dynamics simula-
tions which have in fact been used as a benchmark ap-
plication for such devices(Hawick, Playne & Johnson
2011, Playne, Johnson & Hawick 2009, Nyland, Har-
ris & Prins 2007, Stock & Gharakhani 2008, Ka-
vanagh, Lewis & Massingill 2008). We extend this

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

13

idea to the simulation of hard spheres under the in-
fluence of a gravitational field. The use of hard-sphere
collisions(Allen & Tildesley 1987) provides a com-
munications challenge involving correct book keep-
ing management of collisions as well as the compu-
tational challenge of performing accurate numerical
integration(Hawick et al. 2011) of the classical me-
chanical equations of motion for an N-body system.
We are interested in large and complex systems where
there are many particles and interactions, but the sys-
tem density gives us a parameter to vary along with
the number of processing cores to use this application
as a benchmark for exploring performance tradeoffs of
modern GPUs.

An attractive and relatively recent development
involves the use of multiple GPUs that all cooper-
ate to support and accelerate the performance of a
single CPU. NVidia’s Compute Unified Device Archi-
tecture(CUDA) – version 4 – offers software capabil-
ities to manage direct communications between such
cooperating GPUs and without passing data via the
controlling CPU.

Graphical Processing Units (GPUs) are generally
connected to their hosting processors via a Peripheral
Component Interconnect Express (PCIe) bus(PCI-
SIG 2010) and usually motherboards will support at
most four PCIe devices. Although known as a bus,
the PCIe standard is actually structured as point-
to-point serial links with dynamic bandwidth negoti-
ation. We construct a synthetic benchmark applica-
tion to measure the bandwidth, latency and PCIe bus
contention issues that arise as a multi-threaded CPU
host program delegates work to m-GPU accelerator
devices. We explore performance properties of differ-
ent models of GPUs as well as that of PCIe extender
cards and device chassis that support operation of
more than four GPU devices from one CPU. In addi-
tion to benchmark data we discuss applications and
appropriate software and threading architectures to
make good use of GPUs and GPU-accelerated clus-
ters configured in this manner.

We use this application as a benchmark for a
m-GPU system built using Dell’s C410x PowerEdge
chassis(Dell Inc. 2010) for extending the PCIe bus
and compare the performance of various GPU/cluster
combinations. We discuss how the compute to com-
munications ratio of an application that involves hard
inelastic collisions differs from the simple N-body par-
ticle dynamics as a data-parallel benchmark.

Figure 1 shows a rendering of a simulation of sev-
eral thousand colliding hard spherical particles with
a density of around 0.025. This is in fact quite a high
value that gives rise to many collisions in each sim-
ulated time unit. In this paper we explore how the
number of particles in the system can be increased
using multiple GPUs, but also how the performance
changes as we increase the particle system density -
and hence change the communications to computa-
tion ratio.

This paper is organised as follows. We describe
the algorithms for approximating the mechanics of in-
teracting hard cored spherical particles in Section 2.
In Section 3 we describe the GPU configurations we
employed and our GPU code implementations using
CUDA. We present some performance results for var-
ious GPUs at different numbers and densities of sim-
ulated particles in Section 5 and discuss the scalabil-
ity and implications for combining GPUs together in
Section 6. We offer some conclusions and areas for
further work in Section 7.

2 Hard Core Collisions & Interactions

In addition to game physics engine applica-
tions (Eberly 2006), a number of problems in chem-
istry and physics can be formulated in terms of in-
teracting hard-core bodies. A hard-core body in this
context simply means a rigid body that cannot be de-
formed beyond a certain point. Spheres are particu-
larly useful for many models since they are very easily
parameterised in terms of a position (of the centre)
and a radius. Spheres can be rendered in a 3-D space
with shading or false colour or texture maps and can
be used to approximate planetary dynamical system
or simple molecular models.

The packing density is essentially a measure of
the wasted space when you pack a number of solids
into a (large) box. A limiting fraction (between 0
and 1) gives a universal measure of this for different
shapes. There are some important physical and chem-
ical properties of various materials that relate to the
packing density of their component molecules. The
volume of a single sphere of radius a is just 4

3πa
3 so if

there are N non-overlapping spheres in a rectilinear
box of Volume V , it is straightforward to relate the
radius to the density ρ of the simulated system.

A number of authors have reported on well known
approaches to parallelising the N-body particle dy-
namical problem. Approaches include use of space
dividing oct-trees(Warren & Salmon 1993, Barnes &
Hut 1986) to allow the O(N2) computation to be
reduced to O(N logN and data parallel computers
have been applied successfully to this sort of prob-
lem for some years(Brunet, Mesirov & Edelman 1990,
G.Fox, M.Johnson, G.Lyzenga, S.Otto, J.Salmon &
D.Walker 1988, Playne 2008). A common approach
is to divide the particle up amongst processing units
and employ a one-dimensional communicating ring
approach to allow all processors to access all (pos-
sibly reduced) information on the particles they do
not have direct responsibility for updating.

Vector parallel techniques have also been suc-
cessfully employed for updating collision lists of
hard disks and hard spheres(Allen & Tildesley 1987,
Donev, Torquato & Stillinger 2005). In this present
paper we employ a hybrid approach since we use hard
core particles that cannot intersect but also wish to
apply high-order numerical integration methods to
accurately track the changing trajectories of particles
under the influence of gravity.

Our benchmark code is aimed at simulating the be-
haviour of interacting polydisperse hard-core spheres.
The code computes collision dynamics for a system of
N hard spheres, which are contained in a periodically
repeating cell of unit edge length. The spheres, la-
belled by index i have diameters σi, and masses mi.
Their positions ri, velocities vi = dri

dt and accelera-

tions d2ri
dt2 are tracked during the simulation. Hard

spheres that only interact via inelastic collisions do
not need accelerations to be recorded. Accelerations
are however required and computed when a global
gravitational field is applied. To make this physically
meaningful we apply fixed boundaries for the roof and
floor of the simulated box, but retain periodicity in
the horizontal dimensions.

We consider a set of N particles, labelled i =
0, 1, 2, ..., N − 1 that interact via pair-wise interac-
tions that are dependent on various properties of the
particles. Central forces that depend solely upon the
relative distance between particles i and j. For exam-
ple the Newtonian gravitational potential arising on

CRPIT Volume 127 - Parallel and Distributed Computing 2012

14

B’

A’
gravity

A

B

Figure 2: Hard Sphere Collision with gravitational
forces applied.

the i’th particle from the j’th, V (ri,j , can be written
as:

VGi,j
(ri,j) = −Gmimj

ri,j
(1)

An alternative pair-wise force law that might model
chemical van der Waal’s force or some other form of
long range attraction between particles (i, j) which
can be approximated using a Lennard-Jones potential
as:

VL−J(ri,j) = 4ε

[(
σ

ri,j

)12

−
(
σ

ri,j

)6
]

(2)

We can also add in a fixed extra term that depends
solely on height Vg(y) = mig|y| to model an overall
gravitational field so that all particles tend to drift
downwards within the simulated box – this can be
incorporated into the total V (r). The classical (New-
tonian mechanical) force can then be written as the
gradient of the potential:

F = ∇V (r) (3)

For centralised forces like gravitational systems,
we can simply sum pair-wise forces along a vector
connecting the particle centres, and for a single such
axis the gradient is just a single-variable derivative
and hence:

Fi =
∑
j

Gmimjri,j (4)

Given Newton’s third law: Fi = miai => ai = Fi/mi
and we can employ the separate x, y, z components of
the acceleration in the Newtonian classical rigid body
equations of motion so that we compute changes in
particle i’s velocity and position.

We consider the possibility that particles interact
over long ranges via such a force law, but that they
also have some minimum distance of separation 2a so
that they are hard-cored particles and cannot overlap.

Figure 2 shows the problem of two hard spheres
that collide. The particles are are hard spheres, and
collide inelastically - they do not interact except for
an impulse applied at the point of collision. How-
ever both do experience the externally applied gravi-
tational field force and particle A which has a horizon-
tal initial velocity follows a parabolic trajectory. The
time and point of collision with particle B must be de-
termined to correctly apply the collision behaviour.

Our model is summarised in Algorithm 1.

In effect then, the inelastic hard-core collisions are
impulsive corrections to the time integration of the
usual N-body Newtonian mechanics. We can use any
time-integration algorithm we wish, but higher-order
will yield better energy conservation. The inelastic

Algorithm 1

initialise N particles in 3D
for t← 0 to Tmax do

compute gravitational and pair-wise force sums
on each particle
compute particle accelerations from forces
time integrate all particles by h
check for penetrating core collisions
while collision occurred do

warp time back to earliest collision, undoing
core penetrations
compute impulses for collision, correcting ve-
locities
check for penetrating core collisions

end while
resume time integration

end for

collisions with box boundaries would change the over-
all energy and the simulated system would approach
an equilibrium temperature given the particle core
radii. In this present paper we focus on the GPU
performance and benchmarking aspects and do not
explore these statistical physics effects further.

3 GPU Implementation

Understanding the scaling and communications per-
formance of multi-GPU systems (Spampinato 2009)
is becoming very important as large scale supercom-
puters that use them become more prevalent – as ev-
idenced by those on the present Top 500 world list of
supercomputers(TOP500.org n.d., Meuer et al. 2010).
A key aspect to understanding their behaviour is the
scalability of the Peripheral Component Interconnect
Express (PCIe) bus(PCI-SIG 2010) used to commu-
nicate between GPUs and CPU. PCIe is a sophisti-
cated technology - it is a point-to-point serial struc-
ture with lanes, dynamic negotiation and has devel-
oped through a number of versions. It is implemented
by a number of different vendors on different GPU
models and boards.

Typically a PC motherboard is limited to hav-
ing at most four PCIe slots into which GPU cards
can be located. In some cases this is further limited
by power requirements and physical geometry of the
slots. Dell and other manufacturers are now making
available a number of PCIe bus extenders in the form
of an integrated chassis that allows various software
controlled configurations of devices. The Dell C410x
PowerEdge chassis(Dell Inc. 2010) we discuss in this
present paper houses up to 16 GPUs each in its own
bay, and provides power and cooling suitable for a ma-
chine room environment. This is a good deployment
platform to experiment with blade-level GPUs, al-
though much of our earlier work was successfully car-
ried out using the very much cheaper gamer-quality
GPUs that do not have error-corrected memory.

3.1 Single-GPU Implementation

This benchmark makes use of the well-known tiling al-
gorithm to compute the all-pairs gravitational forces
between particles (Nyland et al. 2007, Playne et al.
2009). This algorithm processing the particles in tiles
stored in shared memory. Each block of threads will
load one tile of particles at a time into shared memory
and each thread computes the force of gravity exerted
by each of these particles on the single particle that
threads is responsible for.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

15

A similar algorithm can be used to detect colli-
sions between particles. Each pair of particles must
be compared to determine if they have collided during
the previous time step. If a collision has occurred, the
time at which it happened is calculated and saved. If
a thread’s particle is involved in multiple collisions,
it will record the time of the first collision and the
index of the particle it collided with. The threads
use atomic operations to compute the time at which
first collision in the entire system occurred. The ker-
nel used to detect these collisions is shown in Algo-
rithm 2. This algorithm will determine the first colli-
sion particle i was involved in and will be computed
for each particle by a separate thread. Each thread
will compute max times[i] which is how long ago the
first collision of that particle occurred.

Algorithm 2

collision detect kernel
p1← particles[i]
for j ← 0 to N do
p2← particles[j]
d← distance from p1 to p2
if d < p1.R+ p2.R then
t← required step back
if t > max times[i] then
max times[i] = t
collision index[i] = j

end if
end if

end for
AtomicMax(system max time,max times[i])

To ensure all collisions are processed correctly,
they are resolved one at a time. Once the time of
the first collision is determined, a kernel is launched
which will test to see if the particle was involved in the
first collision. If the thread’s particle was not involved
in the collision, the kernel will immediately return,
this can be determined by comparing that particle’s
collision time with the time of the first collision. If
the thread’s particle was involved in the collision it
will fetch the index of the other particle involved in
the collision. The thread with the lowest index will
step both particles back in time to the point of the
collision, perform the collision and step both particles
back to the current system time. The kernel to per-
form this collision process is shown in Algorithm 3.

Algorithm 3

collide particles kernel
if max times[i] == system max time then
j ← collision index[i]
if i < j then
p1← particles[i]
p2← particles[j]
step particles p1 and p2 back by
system max time
collide particles p1 and p2
step particles p1 and p2 forward by
system max time

end if
end if

This process of detecting the first collision and re-
solving it must be performed iteratively until no more
collisions occur. The collision detection kernel will
return 0 when no collisions have occurred. These ker-
nels, along with the force calculation and integration
kernels can be used to compute an N-body simulation
with collisions on a single GPU. However, utilising
multiple GPUs is somewhat more difficult.

Figure 3: A diagram comparing GPUDirect commu-
nication and memory transfer through the host. The
dotted lines show the transfer of the data through
host memory.

3.2 M-GPU Implementation

The main challenge of computing an N-body simula-
tion on an m-GPU system is managing the communi-
cation between them. This m-GPU implementation
evenly distributes N particles between P devices such
that each GPU device is responsible for N

P particles.
For each device to compute the total force on each
of its particles, it must copy the particle data out of
the other GPUs. Likewise to detect if any collision
have occurred, each device must compare each of its
particle with each other as well as the particles stored
on other GPUs. Including m-GPU communication in
the benchmark allows the test system to be evaluated
in terms of computation as well as communication
throughput.

This implementation makes use of the CUDA
4.0 functionality of peer-to-peer memory transfer.
GPUDirect 2.0 allows data to be copied directly from
one GPU device into another across the PCI-e bus.
Without GPUDirect 2.0, data had to be first copied
out of the device to host memory and then into the
second device. This peer-to-peer communication can
significantly improve the performance of m-GPU ap-
plications.

Algorithm 4 shows the basic algorithm for com-
puting the total force on each particle. Initially a
kernel is called to compute the forces the particles on
the device exert on each other. Once this has been
completed the device will loop through all the other
device. For each iteration of the loop, the device will
copy the particle data out of the other device into
its memory. It then computes the total force those
particles exert on its particles.

Algorithm 4

call compute force kernel
for d← 0 to num devices do

if i 6= d then
copy particles from deviced to devicei
call compute force kernel

end if
end for
time integrate all particles by h

A similar algorithm is used to detect particle colli-
sions. Initially a kernel is called to detect collisions of
particles on the same device. Once this is completed
the particles on other devices are checked for colli-

CRPIT Volume 127 - Parallel and Distributed Computing 2012

16

CPU

Motherboard

PCI/

PCIx

Bus

slots

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

GPU Card

C410 Chassis

Direct

on Bus

or

via extender?

GPU Card

Figure 4: Use of Dell C410x chassis to extend PCI Bus to support more GPUs per CPU.

sions. Like the force calculation, the devices are iter-
ated through and their particles copied to the current
device. These particles are then checked for collisions
with this device’s particles. This process is presented
in pseudo code in Algorithm 5

Algorithm 5

max timei ← 0
copy max timei into devicei
call collision detect kernel
for d← 0 to num devices do
if i 6= d then
copy particles from deviced to devicei
call collision detect kernel

end if
end for
copy max timei out of devicei

To determine when the first overall collision oc-
curred, the first collision times for each device must
be compared. The time of the first collision is found
and the index of the device is recorded. If the collision
occurred between two particles on the same device,
the same kernel as in Algorithm 6 will be launched.
If the collision occurred between particles on differ-
ent devices, the appropriate data will be exchanged
and one kernel on each device will be launched. This
kernel will update the particle on the device that was
involved in the collision. The process for determin-
ing the time of the first collision and computing the
collision is shown in Algorithm 6.

Algorithm 6

system max time← 0
for d← 0 to num devices do
if max timed > system max time then
system max time← max timed

end if
end for
if collision is on devicei then
call collide particles kernel on devicei

else if collision is on devicei and devicej then
copy particles from devicei to devicej
copy particles from devicej to devicei
call collide particles kernel on devicei
call collide particles kernel on devicej

end if

This basic algorithm can be used to implement
an N-body simulation with hard sphere collision on

a m-GPU system. The main point of difference be-
tween the implementations is how the data transfer
is performed. This includes both removing redundant
communication as well as different methods of imple-
menting communication between devices.

When collisions are detected and computed, the
devices must exchange particle data. If multiple colli-
sions occur within a single time step, the devices must
exchange this data multiple times. However, most of
the particle data will remain unchanged. Only the
data about the particles that were involved in the
collision needs to be propagated to the other devices.
This is not a change in the fundamental algorithm,
merely a reduction in the data that is communicated.

The more important difference in implementations
is the method of CUDA communication. Fermi archi-
tecture GPUs have support for GPUDirect 2.0 which
allows data to be directly communicated between de-
vices. This is the preferred communication method
used by the benchmark. However, Tesla architec-
ture GPUs do not support this functionality and any
data transfer must be communicated through the host
memory.

Figure 5: The Dell C410x Chassis - shown with cool-
ing fans exposed, in process of having GPUs installed
and HCI connector cables linking the extended PCI
bus to the internal PCI bus of a hosting PC..

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

17

4 Benchmarking

The benchmark has been used to evaluate a num-
ber of Fermi architecture GPUs in a variety of con-
figurations. The testing has been focused on high-
performance graphics cards and compares the gamer
level GTX480 and GTX580 with the professional
C2050 and C2070 GPUs. Both the single-GPU and
m-GPU implementations have been executed on these
cards to compare their performance. The C2050 and
C2070 cards have been tested both hosted on a tra-
ditional motherboard and on the Dell C410x chassis.

To compare the performance of the different GPU
configurations, the simulations have been run with
three different system configurations which varies the
computation between the highly parallel force compu-
tation and the more restricted collision detection. A
particle configuration with very low density is very
computationally similar to the benchmark without
particle collisions as the computation is almost en-
tirely parallel. Whereas particle configuration with
a high density will have a great deal more collisions
and requires more communication between devices to
resolve these collisions.

To test the difference in performance based on par-
ticle density, three different initialisation configura-
tions have been compared. The first initialises the
particle positions and velocities randomly with a very
low density. This configuration results in almost no
collisions and purely tests the parallel processing per-
formance. The second initialises the particle posi-
tions in a two-dimensional lattice with random ve-
locities, this results in a medium density simulation
with a collision rate of ≈0.03 collisions per particle
per step. The final configuration initialises the sys-
tem with the particles laid out in three-dimensional
lattice with random velocities. In this configuration
there are a higher number of collisions, the rate is
≈0.06 per particle per step. The number of collisions
vs system size is shown in Figure 6.

Figure 6: Number of collisions per step for Low
(0.00), Medium (0.03) and High (0.06) density con-
figurations.

5 Results

We present some selected performance timing data
for the hard core gravitational particle simulation for
a number of GPU devices in both single GPU and m-
GPU configurations. These configurations are evalu-
ated for a number of different system sizes but also
with the three different particle densities discussed in
the previous section - low, medium and high.

The first case is the dilute limit of density where no
collisions occur during the period of the benchmark,
effectively these systems have a collision per particle
per step ratio of 0.00. This test will show the best
possible performance as the computation can be exe-
cuted entirely in parallel. Collisions are still detected
but as they never occur then there is no serial pro-
cess required to resolve them. The single-GPU imple-
mentation has been tested on the GTX480, GTX580,
C2050 and C2070. The multi-GPU implementation
has been tested on 2xGTX480, 2xGTX580, 2xC2050,
2xC2070, 4xC2050 and 4xC2070 configurations. The
performance plot of this benchmark is shown in Fig-
ure 7.

From this plot it can be seen that the GTX580,
C2050 and C2070 GPUs offer almost indistinguish-
able performance while the GTX480 performs signif-
icantly slower. However, for the m-GPU implemen-
tation the 2xC2050 and 2xC2070 configurations per-
form faster than the 2xGTX480 and 2xGTX580 sys-
tems.

The medium particle density systems (≈0.03 col-
lisions per particle per step) shows an interesting
change shift in single-GPU performance. For this
test the gamer level GTX480 and GTX580 both per-
formed faster than the C2050 and C2070 cards. How-
ever, once again the 2xC2050 and 2xC2070 both
showed higher performance for the m-GPU implemen-
tations. The performance plots the medium density
configurations (≈ 0.03) on the different devices can
be seen in Figure 8.

The high particle density (≈ 0.06) configuration
shows very similar results to the medium density
(≈ 0.03) systems. The GTX480 and GTX580 cards
both offer the best single-GPU performance but the
Tesla compute cards provide the best m-GPU per-
formance. These results suggest that the C2050
and C2070 Tesla compute cards have faster com-
munication than the GTX480 and GTX580 graphics
cards. NVidia datasheet specifies that Tesla comput-
ing GPUs support faster PCIe communication, evi-
denced by these findings (NVIDIA 2011). The per-
formance results for the high-density configurations
are shown in Figure 9.

The performance results for the C2050 and C2070
configuration shown in this section have been hosted
on a Dell C410x chassis. This configuration has been
compared to a configuration hosting the same GPUs
on a traditional motherboard. The results show no
measurable difference between the two configurations
for single or m-GPU implementations and thus have
not been presented separately. For this benchmark,
hosting the devices on a C410x does not degrade per-
formance.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

18

Figure 7: Comparison of GPU configurations computing N-body simulations initialised at the dilute limit of
density. Results are shown for system sizes in the range N = {1024, 2048 · · · 65536} in normal scale (left) and
ln-ln scale (right).

Figure 8: Timing data comparing GPU devices computing medium density configuration initialised in
a two-dimensional lattice with random velocities. Results are shown for system sizes in the range N =
{1024, 2048 · · · 65536} in normal scale (left) and ln-ln scale (right).

Figure 9: Timing data for single and m-GPU implementations on various devices with high density configu-
rations initialised in a three-dimensional lattice with random velocities. Results are shown for system sizes in
the range N = {1024, 2048 · · · 65536} in normal scale (left) and ln-ln scale (right).

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

19

6 Discussion

Including hard-sphere particle collisions into the N-
body benchmark allows greater insights into the
performance of different GPU configurations. The
gamer-level GeForce cards provided similar or slower
performance compared the Tesla compute cards for
low density configurations where collisions almost
never occurred. However, for medium and higher
density systems the GeForce cards both provided sig-
nificant performance benefits over the Tesla compute
cards.

However, for m-GPU implementations where
device-device communication is required, the results
showed the opposite. The Tesla compute cards pro-
vide a significant performance benefit as compared to
the GeForce graphics cards, this performance differ-
ence is attributed to the Tesla compute cards’ im-
proved PCIe communication capabilities (NVIDIA
2011). This difference in performance was more pro-
nounced for configuration medium and high particle
densities as more communication is required to resolve
collisions.

The Tesla compute cards are significantly more
expensive than the consumer-level GeForce graph-
ics cards yet for single-GPU applications where ECC
is not required, the GeForce cards provide compa-
rable or improved performance. However, the Tesla
compute cards are the only GPUs that support ECC
and for m-GPU implementations they provide signif-
icantly higher performance. We believe this is due to
the better DMA transfer capabilities of the Tesla over
GTX cards.

These Tesla compute cards can be hosted in PCIe
extender chassis’s such as Dell’s C410x. For the
single-GPU and m-GPU implementations tested in
this research, devices hosted on this chassis provided
performance that was indistinguishable from the same
cards hosted on a traditional motherboard. This
shows that the chassis does not degrade performance
in any way, as was initially feared.

The m-GPU implementation was only tested with
four devices on this chassis. Host machines are now
available which can host multiple HCI cards to allow
a single host to connect to up to eight devices hosted
on the C410x. However, we do not currently own
such a host machines and cannot currently test the
performance of such a configuration.

7 Conclusions

We have described how a three dimensional N-body
interacting particles model with hard-core collisions
can be implemented on single GPU and m-GPU sys-
tems with several parallel algorithmic approaches all
within a single application program. We have used
this application as a parameterised benchmark, using
the particle density and hence the average collisions
per integration time-step as a benchmark parameter
with which to explore computation to communica-
tions ratios.

We have discussed how features of NVidia’s latest
CUDA release aid the performance of this benchmark
– in particular those that support direct GPU-to-
GPU communications without passing through CPU
code. We have also explored the performance capabil-
ities of commodity priced gamer level GPU cards as
well as significantly more expensive blade-quality pro-
duction cards. We found that the gamer-level cards
were better for an m-GPU approach, and that this

appears to be due to their enhanced ability to commu-
nicate rather than their floating point performance.

We have shown that the PCIe extender bus ap-
proach works well and without significant loss of per-
formance for the regimes we have been able to ex-
plore. We expect performance to degrade with bus
contention as more GPUs are added and we plan to
explore this further as more hardware becomes avail-
able. We also anticipate availability of further im-
proved GPU models that may have even better float-
ing point performance and communications abilities
than those models available to us.

There are open areas of computational physics
such as the phase separation of polydisperse particles
that can potentially be explored through fast simu-
lations such as we describe. We have experimented
with simple spherical particle collisions but there is
scope for important work parallelising other and more
general rigid body collision algorithms on data par-
allel architectures such as GPUs. Collision detection
and particle dynamics continue to be important algo-
rithms deployed in computer games and we anticipate
applications such as we have described as becoming
even more important as it becomes standard practice
for “gamer computers” to have multiple GPUs avail-
able for performance acceleration.

8 Acknowledgments

It is with great pleasure the authors note their thanks
to Arno Leist for technical assistance in configuring
the C410x GPU chassis.

References

Allen, M. & Tildesley, D. (1987), Computer simulation of liq-
uids, Clarendon Press.

Barnes, J. & Hut, P. (1986), ‘A hierarchical o(n log n) force-
calculation algorithm’, Nature 324(4), 446–449.

Bourg, D. M. (2002), Physics for Game Developers, number
ISBN 978-0596000066, O’Reilly.

Brunet, J.-P., Mesirov, J. P. & Edelman, A. (1990), An opti-
mal hypercube direct n-body solver on the connection ma-
chine, in ‘Proc. Supercomputing 90’, IEEE Computer So-
ciety, 10662 Los Vaqueros Circle, CA 90720-1264, pp. 748–
752.

Conger, D. & LaMothe, A. (2004), Physics Modeling for Game
Programmers, Thompson.

Dell Inc. (2010), Dell PowerEdge C410x PCIe Expansion Chas-
sis Hardware Owner’s Manual, Dell Inc. http://www.
dell.com/us/enterprise/p/poweredge-c410x/pd.aspx.

Donev, A., Torquato, S. & Stillinger, F. H. (2005), ‘Neigh-
bor list collision-driven molecular dynamics simulation
for nonspherical hard particles: I. algorithmic details’, J.
Comput. Phys. 202(2), 737–764.

Eberly, D. H. (2006), 3D Game Engine Design: A Practi-
cal Approach to Real-Time Computer Graphics, number
ISBN: 978-0122290633, Morgan Kaufmann.

G.Fox, M.Johnson, G.Lyzenga, S.Otto, J.Salmon & D.Walker
(1988), Solving problems on concurrent processors, Vol. 1,
Prentice Hall.

Gregory, J. (2009), Game Engine Architecture, A K Peters.

Hawick, K., Playne, D. & Johnson, M. (2011), Numerical pre-
cision and benchmarking very-high-order integration of
particle dynamics on gpu accelerators, in ‘Proc. Interna-
tional Conference on Computer Design (CDES’11)’, num-
ber CDE4469, Las Vegas, USA.

Kavanagh, G. D., Lewis, M. C. & Massingill, B. L. (2008),
GPGPU planetary simulations with CUDA, in ‘Proceed-
ings of the 2008 International Conference on Scientific
Computing’.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

20

Leist, A., Playne, D. & Hawick, K. (2009), ‘Exploiting Graph-
ical Processing Units for Data-Parallel Scientific Applica-
tions’, Concurrency and Computation: Practice and Ex-
perience 21, 2400–2437. CSTN-065.

Menard, M. (2011), Game Development with Unity, Cengage.

Meuer, H., Strohmaier, E., Simon, H. & Dongarra, J. (2010),
‘36th list of top 500 supercomputer sites’, www.top500.
org/lists/2010/11/press-release.

Millington, I. (2007), Game Physics Engine Development,
Morgan Kaufmann.

NVIDIA (2011), ‘NVIDIA Tesla Datasheet’.
URL: http://www.nvidia.com/object/why-choose-
tesla.html

Nyland, L., Harris, M. & Prins, J. (2007), Fast n-body simula-
tion with cuda, in H. Nguyen, ed., ‘GPU Gems 3’, Addison
Wesley Professional, chapter 31.

PCI-SIG (2010), ‘PCIe Express Base Specification 1.1’, http:
//www.pcisig.com/specifications/pciexpress/base.

Playne, D. & Hawick, K. (2011), Asynchronous communication
for finite-difference simulations on gpu clusters using cuda
and mpi, in ‘Proc. International Conference on Parallel
and Distributed Processing Techniques and Applications
(PDPTA’11)’, number PDP2793, Las Vegas, USA.

Playne, D. P. (2008), Notes on particle simulation and visual-
isation, Hons. thesis, Computer Science, Massey Univer-
sity.

Playne, D. P., Johnson, M. G. B. & Hawick, K. A. (2009),
Benchmarking GPU Devices with N-Body Simulations, in
‘Proc. 2009 International Conference on Computer Design
(CDES 09) July, Las Vegas, USA.’, number CSTN-077.

Spampinato, D. (2009), Modeling communication on multi-gpu
systems, Master’s thesis, Norwegian University of Science
and Technology.

Stock, M. J. & Gharakhani, A. (2008), Toward efficient
GPU-accelerated N-body simulations, in ‘in 46th AIAA
Aerospace Sciences Meeting and Exhibit, AIAA 2008-
608’.

Thorn, A. (2011), Game Engine Design and Implementation,
Jones and Bartlett.

TOP500.org (n.d.), ‘TOP 500 Supercomputer Sites’, http://
www.top500.org/. Last accessed November 2010.

Warren, M. S. & Salmon, J. K. (1993), A parallel hashed oct-
tree n-body algorithm, in ‘Supercomputing’, pp. 12–21.
URL: citeseer.ist.psu.edu/warren93parallel.html

Wright, R. S., Haemel, N., Sellers, G. & Lipchak, B. (2011),
OpenGL Superbible, number ISBN 978-0-321-71261-5,
fifth edn, Pearson.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

21

CRPIT Volume 127 - Parallel and Distributed Computing 2012

22

A Comparative Study of Parallel Algorithms for the Girth Problem

Michael J. Dinneen Masoud Khosravani Kuai Wei

Department of Computer Science,
University of Auckland,

Private Bag 92019, Auckland, New Zealand
mjd,masoud,kuai@cs.auckland.ac.nz

Abstract

In this paper we introduce efficient parallel algorithms
for finding the girth in a graph or digraph, where girth
is the length of a shortest cycle. We empirically com-
pare our algorithms by using two common APIs for
parallel programming in C++, which are OpenMP
for multiple CPUs and CUDA for multi-core GPUs.
We conclude that both hardware platforms and pro-
gramming models have their benefits.

1 Introduction

Graphs are models widely used in science and engi-
neering, and graph algorithms are the basic blocks of
many algorithmic solutions to real world problems. In
this paper we study the problem of efficiently finding
the girth in a graph or digraph on today’s common
workstations or servers, which often have several pro-
cessing units (CPUs and GPUs). Modern graph ap-
plications require us to find fast algorithms capable of
processing large volume of data. In such cases even a
low-order polynomial time algorithm may not be able
to accomplish a computational task in an acceptable
time limit on a single CPU. As a common solution,
one can deploy a large number of processors to do the
task concurrently. We will discuss how to design and
implement parallel girth algorithms and will present
actual timing results for classes of hard test graphs.

1.1 Background on parallel programming

Designing parallel PRAM algorithms for graph prob-
lems has been the topic of a lot of research; see [3, 18,
19]. Several popular textbooks on parallel computing,
such as [9], now address commonly-used shared mem-
ory parallel models like Pthreads (POSIX Thread
API) and OpenMP (the standard directive-based par-
allel [17]). In addition to utilizing multiple CPU pro-
cessors, recently there are more interests in the re-
search community to explore the power of Graphics
Processing Units (GPU) for solving graph problems.
GPUs are high performance many-core processor de-
vices that were originally designed to handle compu-

Copyright c©2012, Australian Computer Society, Inc. This pa-

per appeared at the Tenth Australasian Symposium on Parallel

and Distributed Computing (AusPDC2012), Melbourne, Aus-

tralia, January-February 2012. Conferences in Research and

Practice in Information Technology (CRPIT), Vol. 127, Jinjun

Chen and Rajiv Ranjan, Ed. Reproduction for academic, not-

for-profit purposes permitted provided this text is included.

tation in image processing. General-Purpose compu-
tation on Graphics Processing Units (GPGPU) is the
technique to use GPUs for solving a wider range of
problems.

Among the first concrete results, Harish and
Narayanin [10] introduced some parallel GPU algo-
rithms for various graph problems. In [14], Katz and
Kider presented an algorithm using GPUs for solving
the all-pairs shortest path problem. Checking graph
connectivity was the topic of the paper [20] by So-
man, Kishore and Narayanan. As a final example,
Leist and Playne [11] gave a GPU parallel algorithm
for graph component labeling.

Despite the fact that designing and implement-
ing parallel algorithms have been a major research
topic, there are a few results on comparative stud-
ies of different APIs and architectures. Comparing
CUDA and OpenMP for implementing various par-
allel girth algorithms is another focus of this paper.
With respect to restrictions imposed by the architec-
ture of GPUs, designing and implementing efficient
parallel GPU algorithms for irregular data types is
a challenging task. When one tries to implement a
parallel algorithm for irregular data types on GPUs,
there is a large gap between the theoretical and the
actual results. Since GPGPU follows the Single In-
struction Multiple Data (SIMD) paradigm, as an al-
ternative benchmark, we use the OpenMP API stan-
dard, which supports multi-CPU shared-memory par-
allel programming. It supports C/C++, and Fortran
programming languages on many architectures and
operating systems. We note that CUDA is (currently)
restricted to only NVIDIA graphic cards. However,
OpenCL may also be easily used as an implementa-
tion choice for many other platforms (e.g. ATI Radeon
GPUs) and usually with very little (if any) perfor-
mance loss [6].

1.2 The girth problem

Girth is defined to be the length of a shortest cycle in
a graph if one exists. Generating random graphs with
large girth has applications in modelling and testing
software systems and coding theory. Producing Tan-
ner graphs with large girths is a main step in con-
struction a Low-Density Parity-Check (LDPC) code;
see [2, 12, 15]. A Tanner graph is a bipartite graph
whose adjacency matrix is the parity-check matrix of
a binary code.

Girth and diameter of a graph are related parame-
ters. The diameter of a biconnected graph with girth

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

23

. . .

. . .Queue/Grow Level i . . .

.Frontier Level i+ 1

. . .

.

.

girth ≤ 2i+ 1girth ≤ 2i+ 2

r r
BFS from root r

. . .

.

.

r

r

girth ≤ i+ 1

Figure 1: The process of detecting a short cycle via BFS.

2d is at least d. The degree-diameter problem is the
well-known problem of finding the largest possible
graph with a given degree and diameter [5], and each
best-known case usually has a large girth [8]. A large
graph with bounded degree and diameter is a good
model for an interconnection network topology that
has some restrictions on the number of connections
between hubs or routers and its maximum communi-
cation time between any two nodes.

There is an O(mn) sequential algorithm for find-
ing the girth of a graph G, where n is the order and
m is the size of G (see [4]). One basically repeats
a Breadth-First Search (BFS) algorithm from each
node of a graph while tracking the cycles that are
encountered. By imposing some restrictions on the
input graph or relaxing the exactness of the solution,
one can find a faster solution for the girth problem.
For example, Itai and Rodeh [13] presented an O(n2)
algorithm that finds a cycle which may have one edge
more than the minimum. When a graph is restricted
to be planar or has bounded genus, there is a linear
time algorithm for the girth problem; see Djidjev [7].
Recently, Lingas and Lundell [16] presented a new
approximation algorithm for the girth problem.

To our knowledge, this is the first study on parallel
CPU and GPU implementations of the girth problem.
One of our parallel algorithm uses parallel BFS, while
the other algorithm is based on adjacency matrix mul-
tiplication. For each case we tailor our implementa-
tions to fit the hardware constraints (e.g. number and
speed of processors; memory size and latency) of the
selected platform.

1.3 Organization of the paper

The structure of this paper is as follows. In the next
section, we introduce two parallel algorithms for com-
puting the girth of a graph. Then in Section 3, we
explain how those algorithms have been implemented
by CUDA and OpenMP APIs. This section also de-
scribes a couple of potential optimizations. In Sec-
tion 4, we describe the methods of generating four
different sets of test graph data, specifically designed
to strain our girth algorithms. A discussion on the
results of testing our algorithms is the topic of Sec-
tion 5. At the end of the paper we summarize our
results and suggest topics for further study.

2 Two Parallel Algorithms

In this section we explain formally our parallel algo-
rithms, including sample pseudo-code, for computing
the girth.

Our first algorithm uses a slightly-modified paral-
lel implementation of BFS, starting from each node.
The algorithm (running in parallel from all roots)
stops when the length of the first cycle is found. The
approaches of detecting the girth in undirected or di-
rected graphs are different.

1. For an undirected graph, a cycle is detected when
a node in the frontier of the BFS has two parents
already visited, or if it finds two nodes at the
same distance (level) that are joined by an edge.

2. For a directed graph, a cycle containing the root
is detected when the root node first appears in a
frontier level of the BFS.

Figure 1 shows how an upper-bound of a smallest
cycle is obtained via BFS. For undirected graphs we
need to finish the current frontier for the two-parent
case (left subfigure; even-length cycle); however, we
can terminate immediately the search for the cross-
edge case (middle subfigure; odd-length cycle). For
directed graphs we can terminate the search when
the root is first revisited (right subfigure; first cycle).
The smallest upper-bound found over all BFSs is the
actual girth of the graph and inter-process synchro-
nization is needed to stop all parallel BFSs whenever
the first cycle is found. See Algorithm 1.

Algorithm 1: Parallel girth algorithm via BFS.

Input: A Graph G = (V,E)
Output: The girth of G
girth = |V |+ 1;
foreach node v ∈ G in parallel do

Run BFS algorithm rooted at v;
Let c be the length of first circuit detected;
girth = min(girth, c);

Our second algorithm is based on doing repeated
matrix multiplications of the adjacency matrix of a
digraph. Let M be the adjacency matrix of a digraph
G. It is well-known from graph theory, that the value
of each entry ai,j of Mk represents the number of
walks of length k from nodes i to j. Specially, the
value on the diagonal entry ai,i shows the number of

CRPIT Volume 127 - Parallel and Distributed Computing 2012

24

directed circuits (closed walks) that start and end at i.
This is easily adapted for our directed girth algorithm
(Algorithm 2).

Algorithm 2: Girth via matrix multiplication.

Input: A Directed Graph G = (V,E) as
Adjacency Matrix M

Output: The girth of G
M0 = I;
M1 = M ;
i = 1;

while Trace(M i) = 0 do
Compute in parallel (binary matrix
multiplication): M i+1 = M i ×M ;
i = i + 1;

girth = i;

To use this approach for undirected graphs, we
need to adapt the aforementioned property of the
powers of adjacency matrices to detect the smallest
undirected cycle. First we need to ignore the cir-
cuits of length 2 (e.g. any edge (u, v) implies a circuit
(u, v, u)). Secondly, note that any other smallest cir-
cuit of length at least 3 that we detected is, in fact, a
cycle corresponding to the girth. Furthermore, we are
only interested in knowing that the number of walks
between i and j, i 6= j, is at least 2, so a possible op-
timization technique is to restrict to Boolean entries
instead of integer entries.

Let the entry bki,j of matrix Nk denote the num-
ber of walks between i and j that do not traverse the
same edge consecutively; clearly bki,j ≤ aki,j where aki,j
is the entry of Mk. We can calculate Nk from ma-
trices Nk−1, Nk−2, and N1 = M1, using a simple
recurrence (modified vector products with respect to
Nk−2 where a row of Nk−1 times a column of M yield
an entry of Nk).

bki,j =
∨

∀s : a1
s,j=1

bk−1i,s ∧ bk−2i,s

We parallelize by data partitioning the output
rows of the matrix Nk; rows assigned to the avail-
able processors. The undirected graph version of Al-
gorithm 2 also uses the two-path idea as illustrated
in Figure 1, where we stop computing when k is half
of the actual girth. The process is to first test if the
following odd-length cycle condition is met:

∃{r, u, v} : a1u,v ∧ bkr,u ∧ bkr,v

Then (if the previous condition is not met) test if the
following even-length cycle condition is satisfied:

∃{r, u, v, w} : a1u,w ∧ a1v,w ∧ bkr,u ∧ bkr,v

Note that all the values of the existential variables
are distinct and both these conditions may be tested
during the generation using the recurrence for Nk+1.
Thus, the seemingly extra intra-level detection time
of O(n3) is not required.

We end this section by mentioning the expected
running times of our two algorithms for sparse
graphs—those graphs with m = O(n) edges. Sparse

int undirectedGirth(const Graph &G)
{
int n = G.order();
int level[n];
int smallest = n+1; // value for infinity

for (int r=0; r<n-2; r++) // minimum is 3-cycle
{
fill(level,level+n,-1); // unseen flags as -1
level[r]=0;

queue<int> toGrow; // sequential FIFO queue
toGrow.push(r);

while (!toGrow.empty())
{
int grow = toGrow.front(); toGrow.pop();

// try next r if this BFS is too deep
if (level[grow]*2+1 >= smallest) break;

const vector<int> nbrs = G.neighbors(grow);
for (int i=0; i<nbrs.size(); i++)
{

int u = nbrs[i];
if (u < r) continue; // optimization

if (level[u] < 0)
{
level[u]=level[grow]+1; // now seen
toGrow.push(u);

}
else if (level[u]==level[grow])
{
if (level[u]*2+1<smallest)

smallest=level[u]*2+1;
break; // try next r

}
else if (level[u]==level[grow]+1)
{
if (level[u]*2 < smallest)

smallest = level[u]*2;
}

}
} // while BFS queue not empty

}
return smallest;
}

Figure 2: Sequential C++ girth function.

graphs are usually those graphs with large girth and
will be prominent in the test cases for our algorithms.
Also note that sparse n×n matrix multiplication can
be done in time O(n2) if one uses the appropriate
data representation [1, 6].

Theorem 1. Given a sparse input graph G, Algo-
rithm 1 runs on a machine with p processors in time
O(n2/p).

Theorem 2. Given a sparse input graph G, Algo-
rithm 2 runs on a machine with p processors in time
O(gn2/p), where g is the girth of G.

Note that the girth g is usually much smaller than
the order n. Thus, both algorithms may be more
practical than the other for different types of input
cases.

3 Parallel Implementations

As noted in Section 2, BFS and adjacency matrix
multiplication are the building blocks of our parallel

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

25

girth algorithms. Each program is a modified version
of one of those basic algorithms. The program names
that we introduce in this section correspond to the
column headings of our final timing results of Tables 1
and 2 (at the end of the paper). Note the suffix p
on a program name denotes a “preprocessed” version,
which is explained at the end of this section.

3.1 Cuda BFS program

In our programs cuda BFS and cudaBFS p we assign
one CUDA block of threads (also known as workgroup
in OpenCL) to each node. Each block is responsible
to run one BFS in parallel using inter-block shared
memory in addition to the GPU global memory. Fur-
thermore, different blocks will run in parallel. Since
our device memory size is limited, for large graphs we
have to divide the nodes into separate groups.

The following proposition gives an optimization to
save memory when searching for the girth in sparse
undirected graphs.

Proposition 3. When implementing the BFS-based
algorithm for computing the undirected girth, it only
needs to remember the nodes visited in the last three
levels.

Proof. Suppose we are exploring neighbors at level
i ≥ 1, where the root node is at level 0. By defini-
tion, the frontier level i+1 should only contain nodes
not placed at any level 0 ≤ j ≤ i, as depicted in Fig-
ure 1. Furthermore, a node x at level i can not have
a neighbor y at distance j < i− 1 from the root since
that would imply x should be at level j+1 < i. Thus,
we only need to remember nodes at levels i−1, i, and
i + 1 when doing the BFS search.

Our CUDA programs implement Algorithm 1 by
using three arrays to represent the last three levels
of the BFS search tree: one for parent (of the grow)
level, one for the grow level, and one for the frontier
level. The algorithm initializes the arrays with the
root node as the only item in the parent level and the
neighbors of the root as the grow level. The frontier
level is processed by finding the neighbors of the ele-
ments of the grow level that are not already in either
the parent or grow levels.

All threads are intra-block synchronized at the end
of each level. At this time, we change the roles of the
arrays by doing pointer exchanges to save time by
not having to copy the grow level to the new parent
level and the frontier level to the new grow level. The
old parent level is emptied and becomes the target
for the new frontier. As soon as the first cycle is
detected by one thread, its length is compared (and
atomic exchanged) with the length of the shortest-
known cycle that is stored in shared memory.

We also save the value of the shortest cycle from
shared memory to global memory (inter-block com-
munication) for determining the minimization of all
BFS searches. This allows for early termination of
deep BFS trees and reduces the overall running time
of the implementation.

3.2 Cuda matrix-based algorithms

As explained earlier in Section 2, the programs
cudaMAT and cudaMAT p use the powers of the adja-
cency matrix for finding a smallest cycle originating
from any node. We have only one thread being as-
signed sole ownership in writing the values of the i-th
row of the output matrix of paths of length k. Since,
for large graphs, we have more rows than the total
number of available threads. Thus, we assign a con-
tiguous group of rows to a particular thread. In our
implementation, we have to do block synchronization
(unlike our BFS implementation). This is done by re-
peated kernel launches, as illustrated in the following
CUDA snippet.

for (int dist=1; dist <= order/2; dist++)
{
Girth_Kernel<<<NUM_BLOCKS, NUM_THREADS>>>
(graph, girth_D, DistMAT, DistLens, dist);

cudaMemcpy(&girth_H, girth_D, sizeof(int),
cudaMemcpyDeviceToHost);

if (girth_H <= order) break;
}

3.3 OpenMP implementations

Our OpenMP implementations (ompBFS, openBFS p,
openMAT and openMAT p) of the algorithms follow the
same logic as explained for CUDA implementations.
These were developed by adding #pragma omp direc-
tives to our sequential C++ code (e.g. add one above
the first C++ for loop of Figure 2).

3.4 Final implementation remarks

In some of the implementations (denoted with a suf-
fix p), we first apply a preprocessing procedure to
eliminate all nodes that are not clearly involved in
any cycle of the graph. In other words, we iteratively
delete all nodes of degree at most one. For the digraph
input cases, we iteratively delete all sinks and sources.
Note that the preprocessing times are included in the
reported computational elapsed times.

The speed-up of this procedure is the result of re-
ducing the order of the input graph. If the graph is
not reduced significantly, then the preprocessing pro-
cedure may increase the running time. To explicitly
display the impact of this procedure, we use it for all
our parallel implementations.

The algorithms for finding girth in directed graphs
are implemented by applying proper changes to the
algorithms for the undirected ones. In d cudaBFS and
d ompBFS we discover the directed cycles as soon as a
back edge to the root is detected (see Figure 1).

In d cudaMAT and d ompMAT we use the paral-
lel version of adjacency matrix multiplication as ex-
plained in Algorithm 2.

While processing graphs, we ignore those nodes
that have larger index than the current root. This
helps shrink the search space with no change in the
correctness of the algorithm. Consider a cycle C of
shortest length. If we start a BFS at the node with
smallest index of C we will detect this cycle since
no nodes of C are ignored. This pruning method is
applied for both BFS and adjacency matrix multipli-
cation approaches.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

26

4 Generating Girth Test Data

The standard random graph generators are not de-
sirable because they either produce graphs with no
cycles or very small girth (e.g. dense graphs). To test
the performance and correctness of our algorithms,
we produced several classes of graphs of large order
and large girth.

We have four test suites for undirected graphs:

big cycles We construct random trees in which each
node is replaced by a big cycle. Then we choose
one node from each cycle that represent two
neighboring nodes and connect them by an edge.

Cayley graphs Let S be a set of generator for a
finite group (H, ·). The nodes of a Cayley graph
is the set H and S ⊆ H is used to define edges.
We connect a node h to a node h′ if there is
an element s ∈ S such that h′ = h · s. The
graph is undirected if S is closed under inverses
(e.g. s ∈ S implies s−1 ∈ S). We used the semi-
direct product procedure given in [5] to generate
large sparse graphs.

cycle graphs These graphs are generated by con-
necting a sequence of large cycles on a path and
adding a few extra edges randomly. These ex-
tra edges may span the length of the connected
cycles or may be a chord of one cycle.

sparse graphs These graphs are produced by taking
random trees, generated by using Prüfer codes,
and then randomly connecting pairs of nodes.

We also have three test suites for directed graphs:

directed big cycles These are generated using the
same procedure as big cycles but with each cy-
cle being a directed cycle.

cycle digraphs Each of these digraphs was created
by generating a union of large random directed
cycles.

sparse digraphs These digraphs are created by first
generating a rooted random tree (all arcs di-
rected from parent to children). Then several
random directed edges are added from a descen-
dant node to an ancestor to form directed cycles.

Each test suite1 consists of eight subsets of
[di]graphs, indexed from 0 to 7. Each subset, labeled
by i, consists of 25 [di]graphs with the number of
nodes ranging between 2i · 1000 and 2i+1 · 1000. So
the overall range of our test graphs varies from graphs
with 1000 nodes up to graphs with 256000 nodes.

5 Comparative Study

We implemented our parallel algorithms using C++
(gcc 4.4) with the two APIs: CUDA 3.2 and
OpenMP 3.0. To run our CUDA programs, we used
an Nvidia Tesla C2050 series (Fermi class) graphics
card. The C2050 has Nvidia compute capability 2.0
and consists of 14 multiprocessors (MPs). Each MP

1These test suites are available by request.

has 32 cores and 3Gb cache (global memory). Each
of the 448 cores operates at 1.15 GHz frequency. For
our graphics card, each block (of threads) supports up
to 1024 threads. For running our OpenMP programs,
we used two hyper-threaded quad-core 2.5 GHz In-
tel CPUs which provides at least 8 and up to 16 in-
dependent Pthreads. Due to the hardware available
to us, we are restricted to using a smaller number
of OpenMP threads compared to what our GPU de-
vice has. However, one benefit of using OpenMP over
CUDA is that the memory available is larger (48Gb
vs 3Gb DRAM) and much faster (data transfer rate).

We provide in Table 1 and Table 2 a summary
of our programs. These tables contain the average
running times for each of the 25 graphs per subset
of a test suite, then the average of all 200 graphs in
each test suite, and finally the overall average running
times. These times are wall clock times in seconds.
For the CUDA implementation we do not include the
I/O time for loading the graphs into device memory.
We also do not include any disk I/O time for any
program.

To have a better evaluation of our algorithms, we
also use two sequential algorithms for computing the
girth of a graph. One of them is the Sage’s (Mathe-
matics Software2) algorithm for finding the girth of
undirected graphs [21]. Our other sequential pro-
gram, girthseq, for undirected graphs use the BFS
algorithm that was presented earlier (and listed in
Figure 2). We also have a similar C++ implementa-
tion, d girthseq, for directed graphs.

In general, as expected, the overall average perfor-
mance (the last row in the two tables) of the sequen-
tial algorithms (girthsage and girthseq in Table 1
and d girthseq in Table 2) are much slower than our
parallel implementations.

Our two parallel algorithms running on OpenMP
(ompBFS and ompMAT) perform about the same, which
is about eight times faster than girthseq. On the
other hand, our two parallel implementations run-
ning on the GPU (cudaBFS and cudaMAT) have perfor-
mances that vary for undirected graphs and directed
graphs. Our cudaBFS has the best overall perfor-
mance for undirected graphs (18.6 times speed-up),
and cudaMAT has the best overall performance for di-
rected graphs (31.5 times speed-up).

Even though CUDA programs have the best over-
all performance in both undirected and directed
graphs, the OpenMP still have advantages for solving
small graphs. More specifically, OpenMP programs
always outperform on the smaller graphs (subset 0)
in the four test suites of undirected graphs and (sub-
sets 0–2) in the three test suites of directed graphs.
When the graph orders increase, the CUDA programs
show their advantages.

For both CUDA and OpenMP, we find that the
pre-processed versions are faster for the graphs in
sparse graphs, but increases the computation time
for all other test classes. This is expected because
only the class of sparse graphs contains many nodes
that are not on any cycle. We note that for digraphs,
we could not gain better performance with our chosen

2Note we selected this open-source platform for our base-line

benchmark since it seems to out-perform our commercial software

such as Mathematica 7.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

27

preprocessing implementations.

6 Conclusions and Future Work

In conclusion, both OpenMP and CUDA based paral-
lel programs improve the computation time of detect-
ing the girth in undirected and directed graphs for
our extensive test data. For small graphs/digraphs
OpenMP seems to be faster (can’t exploit multiple
threads) than larger graphs. Both algorithm design
approaches and both implementation APIs are valu-
able.

We note that the amount of human effort for
CUDA is clearly expensive—we are waiting for
higher-level programming tools (like OpenMP but for
GPUs).

For the future we would like to try C# Parallel
Task Library, CUDA 4.0 Thrust Library and new
C++ Patterns Library (PPL). Also, we want to try
other parallel hardware and possible different graph
test cases for the girth problem. Also, we would
like to consider performing performance evaluations
on emerging, virtualized computing models (cloud re-
sources) such as Amazon EC2 or Google AppEngine.

Acknowledgements

The authors would like to thank the Univer-
sity of Auckland for support in an FRDF grant
9843/3626216 for providing the necessary hardware
and a Faculty of Science PhD research stipend for
the second author.

References

[1] Guy E. Blelloch. Programming parallel algo-
rithms. Communications of the ACM, 39:85–97,
March 1996.

[2] Shashi Kiram Chilappagari, Dung Viet Nguyen,
Bane Vasić, and Michael W. Marcellin. Girth of
the Tanner graph and error correction capability
of LDPC codes. In Communication, Control, and
Computing, 2008 46th Annual Allerton Confer-
ence on, pages 1238–1245, September 2008.

[3] Francis Y. Chin, John Lam, and I-Ngo Chen. Ef-
ficient parallel algorithms for some graph prob-
lems. Communications of the ACM, 25:659–665,
September 1982.

[4] Michael J. Dinneen, Georgy Gimel’farb, and
Mark C. Wilson. Introduction to Algorithms,
Data Structures and Formal Languages, 2nd Edi-
tion. Pearson (Education New Zealand), 2009.
ISBN 978-1-4425-1206-1 (pages 264).

[5] Michael J. Dinneen and Paul R. Hafner. New re-
sults for the degree/diameter problem. Networks,
24:359–367, October 1994.

[6] Michael J. Dinneen, Masoud Khosravani, and
Andrew Probert. Using OpenCL for imple-
menting simple parallel graph algorithms. In
Hamid R. Arabnia, editor, Proceedings of the
17th annual conference on Parallel and Dis-
tributed Processing Techniques and Applications
(PDPTA’11), part of WORLDCOMP’11, pages
1–6, Las Vegas, Nevada, July 18–21 2011.
CSREA Press.

[7] Hristo Djidjev. A faster algorithm for computing
the girth of planar and bounded genus graphs.
ACM Transactions on Algorithms, 7(1):3, 2010.

[8] Geoffrey Exoo and Robert Jajcay. On the girth
of voltage graph lifts. European Journal of Com-
binatorics, 32:554–562, May 2011.

[9] Ananth Grama, George Karypis, Vipin Kumar,
and Anshul Gupta. Introduction to Parallel
Computing (2nd Edition). Addison Wesley, 2
edition, January 2003.

[10] Pawan Harish and P.J. Narayanan. Accelerat-
ing large graph algorithms on the GPU using
CUDA. In Srinivas Aluru, Manish Parashar, Ra-
mamurthy Badrinath, and Viktor Prasanna, ed-
itors, High Performance Computing HiPC 2007,
volume 4873 of Lecture Notes in Computer Sci-
ence, pages 197–208. Springer Berlin / Heidel-
berg, 2007.

[11] Kenneth A. Hawick, Arno Leist, and Daniel P.
Playne. Parallel graph component labelling
with GPUs and CUDA. Parallel Computing,
36(12):655 – 678, 2010.

[12] Xiao-Yu Hu, Evangelos Eleftheriou, and Dieter-
Michael Arnold. Regular and irregular progres-
sive edge-growth Tanner graphs. IEEE Trans-
actions on Information Theory, 51(1):386–398,
2005.

[13] Alon Itai and Michael Rodeh. Finding a min-
imum circuit in a graph. SIAM J. Computing,
7(4):413–423, 1978.

[14] Gary J. Katz and Joseph T. Kider, Jr. All-pairs
shortest-paths for large graphs on the GPU. In
Proceedings of the 23rd ACM SIGGRAPH / EU-
ROGRAPHICS Symposium on Graphics Hard-
ware, GH’08, pages 47–55. Eurographics Associ-
ation, 2008.

[15] Sunghwan Kim, Jong-Seon No, Habong Chung,
and Dong-Joon Shin. Quasi-cyclic low-density
parity-check codes with girth larger than 12.
IEEE Transactions on Information Theory,
53(8):2885–2891, 2007.

[16] Andrzej Lingas and Eva-Marta Lundell. Efficient
approximation algorithms for shortest cycles in
undirected graphs. Information Processing Let-
ters, 109(10):493–498, 2009.

[17] OpenMP. The OpenMP API specification for
parallel programming, site visited 2011. http:
//openmp.org.

[18] Michael J. Quinn and Narsingh Deo. Paral-
lel graph algorithms. ACM Computing Survey,
16:319–348, September 1984.

[19] V. Nageshwara Rao and Vipin Kumar. Paral-
lel depth first search. Part I. Implementation.
International Journal of Parallel Programming,
16:479–499, 1987.

[20] Jyothish Soman, Kothapalli Kishore, and P.J.
Narayanan. A fast GPU algorithm for graph con-
nectivity. In IEEE International Symposium on
Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), pages 1–8, 2010.

[21] William Stein. Sage: Open Source Mathematical
Software (Version 4.6). The Sage Group, Octo-
ber 2010. http://www.sagemath.org.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

28

Table 1: Timings in seconds of girth algorithms on undirected graphs.

Subset girth sage girthseq cudaBFS cudaBFS p cudaMAT cudaMAT p ompBFS ompBFS p ompMAT ompMAT p

big 0 0.0212 0.0018 0.0006 0.0007 0.0048 0.0043 0.0003 0.0003 0.0012 0.0023

cycles 1 0.1312 0.0089 0.0017 0.0019 0.0193 0.0141 0.0010 0.0010 0.0057 0.0044

2 0.5884 0.0373 0.0061 0.0065 0.0488 0.0387 0.0036 0.0036 0.0219 0.0196

3 2.2220 0.1516 0.0218 0.0251 0.1202 0.0895 0.0147 0.0144 0.0770 0.0738

4 11.6868 0.7531 0.1144 0.1203 0.3557 0.2623 0.0710 0.0710 0.3720 0.3727

5 49.4324 3.2966 0.4731 0.4977 0.9750 0.7130 0.3387 0.3593 1.6402 1.6643

6 174.0984 12.9000 1.6726 1.7588 3.5142 2.4929 1.2805 1.3231 5.4710 5.7810

7 504.0968 38.1329 4.8217 5.0730 9.8500 6.9969 3.7729 3.8581 17.4768 18.8116

Average 92.7847 6.9103 0.8890 0.9355 1.8610 1.3265 0.6853 0.7039 3.1332 3.3412

Cayley 0 0.0596 0.0038 0.0036 0.0015 0.0352 0.0343 0.0006 0.0007 0.0031 0.0023

graphs 1 0.1724 0.0133 0.0033 0.0036 0.1237 0.1040 0.0019 0.0020 0.0104 0.0084

2 0.5064 0.0430 0.0109 0.0115 0.6081 0.5148 0.0060 0.0062 0.0529 0.0561

3 1.1616 0.1668 0.0263 0.0292 1.1158 0.9550 0.0223 0.0218 0.1280 0.1220

4 4.8736 0.6849 0.1209 0.1221 4.2231 3.6082 0.1106 0.1518 0.5886 0.6021

5 9.2036 2.4132 0.2133 0.2172 5.0933 4.3397 0.3369 0.3764 0.9630 0.9246

6 7.1400 4.9858 0.1338 0.1407 2.2464 1.9095 0.6583 0.7053 0.4896 0.4715

7 12.7224 19.7854 0.1740 0.1836 1.4997 1.1844 2.6333 2.6962 0.6287 0.5478

Average 4.4800 3.5120 0.0858 0.0887 1.8682 1.5812 0.4712 0.4951 0.3580 0.3418

cycle 0 0.0212 0.0016 0.0007 0.0009 0.0027 0.0026 0.0003 0.0029 0.0012 0.0003

graphs 1 0.0588 0.0066 0.0012 0.0035 0.0027 0.0026 0.0008 0.0046 0.0022 0.0049

2 0.2236 0.0316 0.0034 0.0080 0.0039 0.0039 0.0031 0.0079 0.0056 0.0290

3 0.5428 0.1294 0.0068 0.0095 0.0071 0.0050 0.0132 0.0186 0.0200 0.0183

4 1.1220 0.4681 0.0133 0.0142 0.0056 0.0060 0.0494 0.0577 0.0366 0.0307

5 2.0728 1.9861 0.0240 0.0255 0.0077 0.0084 0.2429 0.3891 0.1281 0.2356

6 4.7428 7.9299 0.0533 0.0562 0.0161 0.0182 1.0435 1.2081 0.1983 0.2992

7 7.7152 31.1896 0.0878 0.0905 0.0272 0.0314 4.2280 4.3701 0.3352 0.4226

Average 2.0624 5.2179 0.0238 0.0260 0.0091 0.0098 0.6977 0.7574 0.0909 0.1301

sparse 0 0.0096 0.0011 0.0015 0.0008 0.0175 0.0018 0.0003 0.0004 0.0009 0.0003

graphs 1 0.0520 0.0064 0.0024 0.0010 0.0565 0.0041 0.0011 0.0011 0.0029 0.0010

2 0.2084 0.0321 0.0027 0.0014 0.0571 0.0079 0.0048 0.0036 0.0102 0.0028

3 0.6536 0.1291 0.0076 0.0025 0.2135 0.0132 0.0196 0.0124 0.0404 0.0066

4 1.9240 0.5460 0.0207 0.0051 0.7572 0.0249 0.0848 0.0526 0.1384 0.0195

5 5.6632 2.0746 0.0663 0.0102 2.3316 0.0435 0.2965 0.3819 0.5345 0.1590

6 10.5944 6.4405 0.1040 0.0201 2.8499 0.0694 0.9124 0.9687 0.9201 0.2733

7 34.1212 23.4932 0.4045 0.0382 17.3415 0.1912 3.4374 3.0170 3.4024 0.4003

Average 6.6533 4.0904 0.0762 0.0099 2.9531 0.0445 0.5946 0.5547 0.6312 0.1078

AVERAGE 26.4951 4.9326 0.2687 0.2650 1.6728 0.7405 0.6122 0.6277 1.0533 0.9802

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

29

Table 2: Timings in seconds of girth algorithms on directed graphs.

Subset d girthseq d cudaBFS d cudaMAT d ompBFS d ompBFS p d ompMAT

directed 0 0.0016 0.0268 0.0068 0.0003 0.0005 0.0008
big cycles 1 0.0082 0.4085 0.0121 0.0008 0.0012 0.0051

2 0.0372 0.5955 0.0274 0.0033 0.0042 0.0247
3 0.1682 0.9255 0.0641 0.0143 0.0163 0.1168
4 0.7007 0.2859 0.1419 0.0616 0.0662 0.4696
5 2.7614 0.6990 0.2931 0.2471 0.2596 1.6903
6 9.8746 1.5924 0.6623 0.9421 1.0185 5.5603
7 41.9673 5.7967 2.1259 4.0266 4.2226 25.0513

Average 6.9399 1.2913 0.4167 0.6620 0.6986 4.1149

cycle 0 0.0024 0.0086 0.0638 0.0004 0.0017 0.0061
digraphs 1 0.0076 0.0075 0.0934 0.0010 0.0030 0.0040

2 0.0252 0.0025 0.0135 0.0029 0.0059 0.0015
3 0.1074 0.0016 0.0030 0.0122 0.0158 0.0016
4 0.4542 0.0030 0.0053 0.0505 0.0560 0.0033
5 1.5451 0.0035 0.0025 0.1654 0.1769 0.0054
6 7.4248 0.0083 0.0074 0.9728 1.0582 0.0465
7 26.8069 0.0105 0.0064 3.5560 3.7332 0.1559

Average 4.5467 0.0057 0.0244 0.5952 0.6313 0.0280

sparse 0 0.0013 0.5340 0.0025 0.0003 0.0008 0.0003
digraphs 1 0.0062 0.1696 0.0042 0.0009 0.0018 0.0007

2 0.0287 0.0389 0.0084 0.0034 0.0054 0.0018
3 0.1181 0.0193 0.0083 0.0136 0.0508 0.0038
4 0.4792 0.0139 0.0164 0.0548 0.0630 0.0116
5 1.7474 0.1223 0.0111 0.1933 0.2058 0.0859
6 6.6283 0.0343 0.1097 0.8764 1.0621 0.2391
7 19.8751 0.1582 0.1472 2.6206 2.8045 0.3118

Average 3.6105 0.1363 0.0385 0.4704 0.5243 0.0819

AVERAGE 5.0324 0.4778 0.1599 0.5759 0.6181 1.4083

CRPIT Volume 127 - Parallel and Distributed Computing 2012

30

The Use of Fast Approximate Graph Coloring to Enhance Exact Parallel
Algorithm Performance

John D. Eblen1, Gary L. Rogers Jr.2, Charles A. Phillips3 and Michael A. Langston3

1 Center for Molecular Biophysics
Oak Ridge National Laboratory
Oak Ridge TN 37831 USA

2 National Institute for Computational Sciences
University of Tennessee
Knoxville TN 37996 USA

3 Department of Electrical Engineering and Computer Science
University of Tennessee
Knoxville TN 37996 USA

(Extended Abstract)

Abstract

The significance of graph coloring is considered in
the context of reducing the running time of a paral-
lel branch and bound algorithm to solve the maximum
clique problem. The greedy color preprocessing algo-
rithm produces an upper bound u on the color degree
c of a vertex v. The color degree of a vertex is defined
to be the chromatic number, γ, of the neighborhood
subgraph of vertex v. The graph instance is reduced
by removing any vertex v, such that u < k, where
k is the size of the largest known clique. The use of
this graph coloring is extended and used in the inter-
leaved preprocessing step during the branching phase
of the algorithm. The basic techniques introduced can
be extended to other problems such as minimum vertex
cover and maximum independent set. Finally, results
are presented from experiments using real biological
data.

1 Introduction

Given a graph G = < V , E >, the maximum
clique problem asks what is the largest subset C ⊆
V such that that every pair {u, v} ∈ C, then
{u, v} ∈ E. Finding exact solutions to the maximum
clique problem, MCP, has been extensively studied
(Bomze et al. 1999, Pardalos et al. 1998). Exact solu-
tions to MCP impacts many disciplines such as bioin-
formatics, image processing, and design of quantum
This research has been funded by the U.S. Department of Energy under
the EPSCoR Laboratory Partnership Program. It has also been supported
by an allocation of advanced computing resources provided by the U.S.
National Science Foundation. Computations were performed on Kraken,
a Cray XT5 housed at the National Institute for Computational Sciences,
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Copyright c©2012, Australian Computer Society, Inc. This paper ap-
peared at the 10th Australasian Symposium on Parallel and Distributed
Computing (AusPDC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 127, Jinjun Chen and Rajiv Ranjan, Ed. Reproduction
for academic, not-for-profit purposes permitted provided this text is in-
cluded.

circuits (Tomita & Kameda 2007). Therefore, it is im-
perative to create efficient parallel maximum clique al-
gorithms. Like many parallel algorithms, the basis for
the parallel algorithm presented here is the serial algo-
rithm Maximum Clique Finder, MCF. MCF was first
introduced in (Eblen 2010) and is a derivative of re-
search on the vertex cover problem, VCP, presented in
(Abu-khzam et al. 2006). It is well known that VCP is
fixed-parameter tractable, FPT, and that for any FPT
problem, there exists a problem kernel, which is a re-
duced instance of the original problem. Using this
knowledge, many of the kernelization methods that are
applicable to VCP have been translated into compara-
ble methods forMCP. These kernelizationmethods are
referred to as the preprocessing rules and reduces the
graph instance on whichMCF is applied.
The basic preprocessing rules found in MCF are

based strictly on vertex degrees. These rules include
the (n-1)-degree rule, (n-2)-degree rule, and the low-
degree rule. The (n-1)-degree rule automatically in-
cludes any vertex that has a degree of (n-1) to the
clique, as it is connected to all other vertices in the
graph. The (n-2)-degree rule includes any vertex v that
is connected to all other vertices except vertex u. Ver-
tex v is placed in the clique, while excluding vertex u
from the clique. Finally, the low-degree rule removes
any vertex that has degree less than k − 1, where k is
the size of the largest known clique.
Graph coloring has been used to find an up-

per bound on the size of a maximal clique
(Tomita & Kameda 2007, Bomze et al. 1999,
Ostergard 2002). As exact solutions to the graph
coloring problem can be time consuming, approximate
colorings have been used. In (Tomita & Kameda
2007), an algorithm is presented that incorporates
approximate graph coloring, however, the color-
ing is employed in the branching stage rather than
preprocessing stage. Exploiting graph coloring in
preprocessing, along with interleaving the coloring
during the branching phase, decreases the overall
runtime of the algorithm, as the search tree can be
pruned to retain only the vertices that can generate a
larger clique.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

31

2 Parallel Maximum Clique Finder

The Parallel Maximum Clique Finder, PMCF, is
a parallel implementation based on MCF. The paral-
lelization of the algorithm is exploited in the branching
phase. One common pitfall of parallel algorithms that
are ported from serial algorithms is the lack of proper
load balancing. This is typically due to the fact that
static load balancing only works well when problems
are embarrassingly parallel. Therefore, it is imperative
to have a dynamic load balancing approach that contin-
uously monitors the workload of the nodes and assigns
jobs as needed (Weerapurage et al. 2011). PMCF uses
a simple dynamic load balancing technique that only
distributes jobs to worker nodes if a certain level of
the search tree is reached and only distributes jobs that
are sufficiently small. MCF handles the distribution of
sufficiently small jobs by selecting candidate vertices
in ascending order by degree.

3 Parallel Maximum Clique Finder With Color-
ing

Parallel Maximum Clique Finder with Coloring,
PMCFC, incorporates approximate coloring of graphs
with the PMCF. PMCFC uses a greedy approximate
coloring heuristic in two stages. The first stage is the
preprocessing stage of the initial graph. Along with
other preprocessing rules, such as the low-degree rule,
the color degree rule produces an upper bound on the
size of the maximum clique and any vertex v that has
a color degree less than k − 1 is removed from the
graph. The second stage that exploits graph coloring
is interleaved preprocessing. As the branching phase
traverses the search tree, vertices are continually ex-
cluded from the search space. Interleaving the prepro-
cessing step further reduces the number of vertices that
can be excluded from the search space. In practice, the
interleaved preprocessing stage has a large impact in
the overall running time of the algorithm.

4 Experimental Results

In order to demonstrate the effect of graph coloring on
PMCF, experimentswere conducted on graphs derived
from real biological data (Eblen 2010). The resulting
graph is comprised of 17,338 vertices and 10,406,565
edges. The timings were completed on Kraken, the
world’s fastest academic supercomputer. Each node
contains two 2.6 GHz six-core AMD Opteron proces-
sors (12 cores total) with 16 GB of memory. Figure 1
summarizes run times for a modest number of cores.
The interleaved graph coloring steps have a significant
impact in the overall runtime of the PMCF algorithm.

5 Conclusions and Direction for Future Research

The PMCFC algorithm uses a parallel framework that
was derived from the serial algorithm, MCF. PMCFC
exploits a number of strategies necessary for a parallel
algorithm to be efficient, such as dynamic load bal-
ancing. This algorithm uses a simple dynamic load
balancing algorithm that strives to keep the amount
of overhead to a minimum. More complex and adap-
tive load balancing techniques, however, may increase
the efficiency of the worker nodes. PMCFC also uses

a greedy graph coloring algorithm to generate an ap-
proximate coloring for the initial graph, as well as ap-
proximate colorings for neighborhood subgraphs for a
vertex v. PMCFC prunes the search tree of vertices
that would otherwise not be identified by other prepro-
cessing methods such as the low-degree rule. While
the current greedy coloring algorithm has shown posi-
tive results, it is possible that other approximate color-
ing algorithms could result in better overall algorithm
performance. Improving these two portions of the PM-
CFC algorithm, however, is no trivial task. A balance
must be struck between the time it takes to generate
a load balancing scheme or a graph coloring and the
overall time that is saved by having a better load bal-
ance or a more accurate coloring.
References

Abu-khzam, F. N., Langston, M. A., Shanbhag, P. &
Symons, C. T. (2006), ‘Scalable parallel algorithms
for FPT problems’, Algorithmica 45, 269–284. 1

Bomze, I. M., Budinich, M., Pardalos, P. M. & Pelillo,
M. (1999), The maximum clique problem, in ‘Hand-
book of Combinatorial Optimization’. 1

Eblen, J. D. (2010), The Maximum Clique Prob-
lem: Algorithms, Applications, and Implementa-
tions, PhD thesis, University of Tennessee. 1, 2

Ostergard, P. R. (2002), ‘A fast algorithm for the max-
imum clique problem’,Discrete Applied Mathemat-
ics 120(1-3), 197 – 207. Special Issue devoted to the
6th Twente Workshop on Graphs and Combinatorial
Optimization. 1

Pardalos, P. M., Rappe, J., Mauricio & Resende, M. G.
(1998), An exact parallel algorithm for the maxi-
mum clique problem, in ‘In High Performance and
Software in Nonlinear Optimization’, pp. 279–300.
1

Tomita, E. & Kameda, T. (2007), ‘An efficient branch-
and-bound algorithm for finding a maximum clique
with computational experiments’, J. of Global Opti-
mization 37, 95–111. 1

Weerapurage, D. P., Eblen, J. D., Rogers, G. L. &
Langston, M. A. (2011), Parallel vertex cover: A
case study in dynamic load balancing, in ‘Aus-
tralasian Symposium on Parallel and Distributed
Computing (AusPDC 2011)’, Vol. 118, pp. 25–32.
2







































































































      



































      



































      



















Figure 1: Both algorithms achieve speedup as the num-
ber of cores are increased within the range of this sam-
ple study. But clique finding is much faster with color
preprocessing, and color preprocessing scales consid-
erably better.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

32

Managing Large Numbers of Business Processes with

Cloud Workflow Systems

Xiao Liu1, Yun Yang1, Dahai Cao1, Dong Yuan1, Jinjun Chen2,1
1
Faculty of Information and Communication Technologies

Swinburne University of Technology, Melbourne, Australia
2
Faculty of Engineering and Information Technology

University of Technology Sydney, Sydney, Australia

{xliu, yyang, dcao, dyuan}@swin.edu.au, jijun.chen@uts.edu.au

Abstract

With the emergence of cloud computing which can deliver

on-demand high-performance computing resources over

the Internet, cloud workflow systems offer a competitive

software solution for managing large numbers of business

processes. In this paper, we first analyse the basic system

requirements through a motivating example, and then, the

general design of a cloud workflow system is proposed

with the focus on its system architecture, functionalities

and QoS (quality of service) management. Afterwards, the

system implementation of a peer-to-peer based prototype

cloud workflow system is demonstrated to verify our

design. Finally, experimental results show that with the

dynamic resource provisioning, conventional violation

handling strategies such as workflow local rescheduling

can ensure the on-time completion of large numbers of

business processes in a more cost-effective way.

Keywords: Business Process Management, Workflow

System, Cloud Computing, Cloud Workflow System

1 Introduction

With the rapid development of e-business and

e-government in the global economy, both enterprises and

government agencies are facing large numbers of

concurrent business processes from the private and public

sectors [1, 21]. For examples, a federal government

taxation office receive millions of tax declaration requests

at the beginning and end of the tax return period each year;

a banking enterprise often needs to process millions of

transactions including cheques everyday; and an insurance

company may need to process over thousands of claims on

a daily basis which may peak by a factor of tens or

hundreds when some natural disasters happen, e.g. the

Melbourne hailstorm in March 2010 results in 79,000

claims which worth A$491 million
1
. Failure of completing

these process instances in time is not acceptable and will

often results in significant loss. For example, the

Australian federal government taxation office has to pay a

large amount of interest to tax payers for the delay; the

Copyright 2012, Australian Computer Society, Inc. This paper

appeared at the 10th Australasian Symposium on Parallel and

Distributed Computing (AusPDC 2012), Melbourne, Australia,

January-February 2012. Conferences in Research and Practice in

Information Technology (CRPIT), Vol. 127. J. Chen and R.

Ranjan, Eds. Reproduction for academic, not-for profit purposes

permitted provided this text is included.
1http://www.theage.com.au/national/melbourne-storm-shaping-up-as-on

e-of-australias-costliest-20100320-qnah.html

time delays in stock exchange may result in significant

loss to both sellers and buyers in the stock market.

For time constrained business processes, software

performance (e.g. response time and throughput), as one of

the basic dimensions of software quality, is very important

[24]. To ensure satisfactory performance, enterprises and

government agencies often need to invest a huge amount

of money on their self-owned and self-maintained IT

(Information Technology) infrastructures which are

normally designed to have the capability to meet either the

maximum or at least the average needs of computing

resources. However, for the option to meet the average

needs, the software performance during peak time can be

significantly deteriorated. As for the option to meet the

maximum needs, since the number of process instances

during peak time can often be much larger than the

average, such a design will often result in largely idle of

computing resources, which means a huge waste of

financial investment and energy consumption. In general,

the running of larger numbers of business processes

usually require powerful, on-demand and elastic

computing resources. Specifically, the basic system

requirements for business software can include: 1)

scalable computing resource provision; 2) elastic

computing resource delivery; 3) efficient process

management and 4) effective QoS (quality of service)

monitoring and control. Detailed analysis will be

presented in Section 2.

Cloud computing, an exciting and promising new

computing paradigm, can play an important role in this

regard. In late 2007, the concept of cloud computing was

proposed. Cloud computing, nowadays widely considered

as the “next generation” of IT, is a new paradigm offering

virtually unlimited, cheap, readily available, "utility type"

scalable computing resources as services via the Internet

[4, 6]. As very high network bandwidth becomes

available, it is possible to envisage all the resources needed

to accomplish IT functions as residing on the Internet

rather than physically existing on the clients’ premises.

With effective facilitation of cloud computing, many

sophisticated software applications can be further

advanced to stretch their limits and yet with reduced

running costs and energy consumption. The advantages of

cloud computing, especially its utility computing and SaaS

(software as a service), enable entirely new innovations to

the design and development of software applications [1,

18]. It is generally agreed among many researchers and

practitioners that cloud applications are the future trend for

business software applications since utility computing can

provide unlimited on-demand and elastic computing

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

33

power while SaaS can provide massive software services

with different capabilities [5]. Typical successful stories

include NewYork Times which turns 11 million archived

articles into pdf files in only one day costing $240 by using

Hadoop and computing power on Amazon’s cloud
2

;

Animoto employs Amazon’s cloud to deal with nearly

750,000 new registered clients in three days and 25,000

people online at peak time
3
.

Workflow systems, with the benefits of efficient and

flexible process modelling and process automation, have

been widely used for managing business processes [2, 19].

Given the recent and rapid growth of cloud computing, we

can envisage that cloud computing based workflow

systems, or cloud workflow systems for short, can be a

suitable solution for managing large numbers of business

processes. Hence, the design of a cloud workflow system

deserves systematic investigation. In this paper, we first

employ a securities exchange business process as a

motivating example to analyse the system requirements.

Based on that, we propose the general design of a cloud

workflow system with the focus on its system architecture,

basic functionalities and QoS management. Afterwards,

the system implementation of our SwinDeW-C prototype

cloud workflow system is demonstrated. Finally,

simulation experiments evaluate the effectiveness of

SwinDeW-C in the running of large numbers of

time-constrained business processes.

The remainder of this paper is organised as follows.

Section 2 presents a motivating example and system

requirements. Section 3 proposes the design of a novel

cloud workflow system. Section 4 describes the prototype.

Section 5 demonstrates the evaluation results. Section 6

introduces some related work. Finally, Section 7 addresses

the conclusion and points out the future work.

2 Motivating Example and Basic System

Requirements

2.1 Motivating Example

Securities exchange in the stock market is a typical

instance intensive business process which involves a large

number of transactions between different organisations

and each of them is a relatively short process instance with

only a few steps. Most steps of a process instance are

executed in parallel. The example illustrated in Figure 1 is

a securities exchange business process for the Chinese

Shanghai A-Share Stock Market (http://www.sse.com.cn/

sseportal/en/). There are more than one hundred securities

corporations in this market and each corporation may have

more than one hundred branches nation wide. It consists of

six major stages (sub-process) in the securities exchange

process. Due to the space limit, we only introduce the main

facts here while leaving details in [15].

(1) The first stage is “lodge client entrustment” (Step 1).

Every trading day, there are millions of clients online. The

peak number of transactions can reach several millions per

second and the average is around several thousands.

2http://open.blogs.nytimes.com/2008/05/21/the-new-york-times-archive

s-amazon-web-services-timesmachine/
3 http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-ani

moto/

(2) The second stage is “fit and make deal” (Step 2 to Step

3). The raw entrustment data are first validated to check

whether the clients have enough money to make the deal.

After validation, the dealing results are recorded into the

database in the securities corporation. This sub-process

needs to complete in several minutes.

Fig. 1. A Typical Securities Exchange Business Process

 (3) The third stage is “register shares variation and

calculate capital variation” (Step 4 to Step 6). After 3:00

pm (closing time) of the trading day, all the completed

deals need to be archived and summed up by securities

corporations for clearing. The size of the output file is

about 50G with tens of millions of transactions and the

duration of the procedure is about 1.5 hours. All the

trading data will be transferred to Shanghai Stock

Depository and Clearing Corporation of China

(http://www.chinaclear.cn/).

(4) The fourth stage is “settle the trades” (Step 7 to Step

9). The output files of the last step are divided by

corporation ID and delivered to the securities corporations

concurrently. There are three levels of clearings: the first

level clearing is between Clearing Corporation and

securities corporations, the second one is between

securities corporations and their branches, and the third

one is between branches and clients. For example, in the

second level of clearing, the clearing system deals with a

50M size data file with about 500k transactions in roughly

2 hours. The clearing result of each level should match

with each other.

(5) The fifth stage is “transfer capital” (Step 10 to Step

12). The output of the clearing process is the money

CRPIT Volume 127 - Parallel and Distributed Computing 2012

34

transfer details for each client who made deals during the

day. It is a 20M size data file with about 200k transactions

and it should be sent to the designated banks. The

designated banks check the bills in about 30 minutes at

both the client level and the branch level to ensure each

entity has enough money to pay for the shares. The money

is then transferred between banks and clients, and between

banks and the Clearing Corporation, which takes around

50 minutes.

(6) The last stage is “produce clearing files” (Step 13 to

Step 14). Both securities corporations and designated

banks should produce the clearing files for the Clearing

Corporation. The balance of all the capital transferred

should be zero at the Clearing Corporation level.

Otherwise, exception handling should be conducted with

manual intervention. The whole securities exchange

workflow is ended afterwards.

To summarise, the securities exchange is a typical

business process which involves many parallel process

instances with strict performance requirements such as fast

response time and high throughput. Failures of meeting

these performance requirements could result in serious

financial loss to both clients and securities corporations

2.2 System Requirements

Based on the above motivating example, we can identify

the following four basic system requirements for

managing large numbers of business processes.

1) Scalable computing resource provision. The running

of large numbers of business processes requires powerful

computing resources. To deal with millions of concurrent

requests (e.g. the first and second stage) and processing

these transactions after trading hours (e.g. the fifth and

sixth stage), computing resources with high processing

power and fast IO speed is required. Only in such a case,

the satisfactory performance of the system such as short

response time for each request and high throughput for

processing massive transactions can be achieved.

2) Elastic computing resource delivery. The amount of

computing resources required at peak-time (e.g. over

millions of requests per second at the beginning and the

end of the trading hours) is much higher than the average

(e.g. thousands of requests per second in off-peak time).

To ensure satisfactory system performance, huge capital

investment is often spent on the IT infrastructure to meet

the resource requirement during peak-time. However, this

will result in large idle of computing resources and a huge

waste of energy. Therefore, the elasticity in resource

delivery, i.e. the resource pool can easily increase its size

when necessary and decrease immediately after use, is

very important for reducing the system running cost.

3) Efficient process management. Process automation is

the key to improve the performance of running business

processes. Besides, in the real world, the specific process

structures may be subject to changes. For example, the

introduction of new products and the practice of new

market regulations may result in some process changes

from the third stage to fifth stage. Therefore, the software

system needs to have some flexibility for business process

change, as well as some new functional and non-functional

(quality) requirements coming with it [19]. To this end,

efficient process management (e.g. process modelling,

process redesign, service selection, and task coordination)

plays a significant role in process automation.

4) Effective QoS monitoring and control. Since a

business software system needs to deal with massive

processes with flexible business requirements, how to

ensure that all the processes are running with satisfactory

QoS requirements is a challenge. For example, if the

response time for the second stage (fit and make deal) in

the securities exchange process is over the time constraints,

e.g. 5 minutes, it will probably result in the failure of the

client’s requests, and thus will bring substantial loss to

both the client and the securities corporation. Therefore,

effective QoS monitoring and control is essential.

Specifically, QoS monitoring is to constantly observe the

system execution state and detect QoS violations while

QoS control is to tackle detected QoS violations so as to

ensure the specified QoS constraints can be satisfied.

3 The General Design of a Cloud Workflow

System

Given the four basic system requirements discussed in

Section 2.2, in this paper, we propose that a cloud

workflow system is a competitive solution for managing

large numbers of business processes. Naturally, a cloud

workflow system is running in a scalable and elastic cloud

computing environment (satisfying the first and second

system requirements), and it is generally designed to have

the basic system components for process modelling,

resource management, runtime workflow monitoring and

control (satisfying the third and fourth system

requirements). Our strategy is to start with prototyping a

core cloud workflow system, and then extend its structure

and capabilities to meet the requirements for managing

large numbers of business processes. In this section, we

focus on the general system architecture, functionalities

and QoS management, while leaving the details in the

system implementation to be demonstrated in Section 4.

3.1 System Architecture

As depicted in Figure 2, the general cloud system

architecture consists of four basic layers from the top to

bottom: application layer, platform layer, unified resource

layer, and fabric layer.

As shown in Figure 2, the general cloud workflow

architecture can be a mapping of the general cloud system

architecture [10]. Specifically, the application layer

consists of cloud workflows (workflow applications for

real-world business processes), the platform layer is the

cloud workflow system which provides a development and

deploymenet platform for cloud workflows. All the system

functionalities of a cloud workflow system such as

workflow management, cloud resource management and

QoS management are included. The application layer and

the platform layer are usually self-maintained by the

business organisation
4
. The unified resource layer consists

of both software services and hardware services that are

required for the running of cloud workflows. Specifically,

SaaS (software as a service) can provide massive number

of software capabilities for processing different business

4A cloud workflow system can be encapsulated as a platform service, i.e.

PaaS (platform as a service). In such a case, the platform layer is

maintained by external cloud service providers.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

35

tasks, while IaaS (infrastructure as a service) can provision

on-demand and elastic computing power to meet the

resource requirements for processing business activities.

In practice, software and hardware services can also be

integrated together and encapsulated to be delivered as

VMs (virtual machines). The fabric layer is composed of

low level hardware resources such as computing, storage

and network resources. The unified layer and fabric layer

are often maintained by external cloud service providers
5
.

Application

Platform

Unified Resource

Fabric

Cloud Architecture

Cloud Workflows

(Business Processes)

Cloud Workflow System

(System Functionalities,

QoS Management)

Software Services

Hardware Services

Compute, Storage and

Network Resources

Cloud Workflow Architecture

Fig. 2. Cloud Workflow Architecture

3.2 System Functionalities

A cloud workflow system is the combination of workflow

system and cloud services. The workflow reference model

[2] suggested by WfMC (workflow management coalition,

http://www.wfmc.org/) defines the general components

and interfaces of a workflow system. Therefore, instead of

building from the scratch, we can design the basic system

functionalities of a cloud workflow system by extending

the workflow reference model with functionalities

required for the integration of cloud services, such as cloud

resource management and QoS management components.

Given its critical importance in cloud workflow systems,

the QoS management components will be introduced

separately in Section 3.3.

QoS Management Tools

Modelling Tool

Workflow

Engines

Worklist

Handler

User Interface

External Cloud

Service Providers

Workflow

Data

Local Software

ApplicationsWorkflow

Enactment

Service

Interpreted by

Workflow

Specification

Generates

Administration

& Control Communicate

& Control

System

Administrator

Interact via

Components for Cloud Resource Management and QoS Management

Components defined in WFMC reference model

Invokes

generates QoS Requirement

Specification

QoS-Aware

Service Selection

QoS Consistency

Monitoring

QoS Violation

Handling
Controls

Monitors

QoS

Constraints

contains

refer to

Build time

Runtime

Invokes

Workflow

Execution

States

System User

Tool Agents &

Cloud Resource

Brokers
Cloud Software Services

Fig. 3. System Functionalities and QoS Management in

Cloud Workflow System

As depicted in Figure 3, the basic system functionalities

of a cloud workflow system can be organised in the same

way as the workflow reference model. Here, due to the

space limit, we only focus on several key components. In a

cloud workflow system, the workflow modelling tool

provides the system clients an efficient way to create their

business applications with the help of visual modelling

components and/or scripting languages. Workflow

5The fabric layer can also be a virtual collection of local computing

infrastructure (i.e. private cloud) and the commercial computing

infrastructure (i.e. public cloud), i.e. hybrid cloud.

specifications created by the clients normally contain the

information about the business process structures, the task

definitions and the QoS requirements. The workflow

enactment service is a collection of multiple parallel

workflow engines which are in charge of interpreting

workflow specifications and coordinating all the

management tools and necessary resources for the

workflow execution, such as the administration and

control tools, work-list monitoring tools, workflow data

and control flows, and software services. The workflow

engines can invoke local software applications stored in

the local repository (or private cloud) and external cloud

software services. The workflow engines can search for

cloud resources using the cloud resource brokers which

perform the searching, reserving and auditing of cloud

resources. After successful reservation of a cloud resource,

a tool agent will be created which is in charge of the

communications with external cloud service providers,

and the control of cloud software services according to the

instructions it received from the workflow engines.

3.3 QoS Management

Due to the dynamic nature of cloud computing, effective

QoS management in a cloud workflow system is very

important. Specifically, for managing large numbers of

business processes, service performance (e.g. short

response time for every client request and high throughput

for processing massive concurrent client requests), service

reliability (e.g. minimal failure rate for activity execution)

and service security (e.g. stringent policies for the lifecycle

protection of client data in its storage, transfer and

destroy), are among the most important QoS dimensions

which should be given higher priority in cloud workflow

QoS management [17-19, 24]. Meanwhile, since a cloud

workflow instance needs to undergo several stages before

its completion, a lifecycle QoS management needs to be

established.

In general, a lifecycle QoS management consists of four

basic steps, viz. QoS requirement specification,

QoS-aware service selection, QoS monitoring and QoS

violation handling [16]. As depicted in Figure 3, as part of

workflow built-time functionalities, QoS requirement

specification and QoS-aware service selection are mainly

interacted with the workflow modelling tool. The QoS

requirement specification component would generate the

QoS constraints, which are part of the workflow

specification and the basic criteria for QoS-aware service

selection. The QoS-aware service selection component

will return the available (best and backup) software

services satisfying the QoS constraints, through the cloud

resource brokers. After the workflow specifications are

submitted to the workflow enactment services, workflow

instances can be executed by invoking software services

which are managed by the tool agents. During workflow

runtime, the workflow execution state will be constantly

observed by the QoS monitoring component. The

workflow execution state can be displayed to the client and

system administrator by a watch list which contains

runtime information such as time submitted, time finished,

percentage of completion, service status and many other

real-time and possible statistic data. When the QoS

violations are detected, alert messages would be sent to

invoke the QoS violation handling component. This

CRPIT Volume 127 - Parallel and Distributed Computing 2012

36

component will analyse the workflow execution state and

the QoS requirement specification to decide further

actions. Generally speaking, for QoS violation handing,

firstly, we should try to minimise the existing loss through

compensation, and secondly, we should prevent similar

violations from happening in the subsequent workflow as

much as possible [16, 19]. It is evident that due to the

complexity of instance intensive business processes and

the dynamic nature of cloud computing, satisfactory

service quality of a cloud workflow system can only be

achieved through such a lifecycle QoS management.

4 System Implementation: A Prototype P2P

based Cloud Workflow System

Based on the general design of a cloud workflow system

presented in Section 3, this section demonstrates the

implementation of a prototype cloud workflow system.

SwinDeW-C (Swinburne Decentralised Workflow for

Cloud) [17] is running in SwinCloud which is built on the

computing facilities in Swinburne University of

Technology and takes advantage of the existing SwinGrid

infrastructure, a grid computing test bed [17].

Fig. 4. SwinCloud Infrastructure

The migration of SwinGrid to SwinCloud is achieved in

two steps. First, VMWare (http://www.vmware.com/) is

installed in existing SwinGrid nodes so that they can offer

unified computing and storage resources. Second, we set

up data centres on the groups of SwinGrid nodes which

can host different cloud services. In each data centre,

Hadoop (http://hadoop.apache.org/) is installed to

facilitate Map-Reduce computing paradigm and

distributed data management. Different from SwinGrid,

SwinCloud is a virtualised computing environment, where

cloud services run on unified resources. By dynamically

acquiring computing and storage units from VMWare,

cloud services can flexibly scale up and down according to

system requirements. SwinDeW-C inherits many features

of its ancestor SwinDeW-G [23] but with significant

modifications in its functionalities to accommodate the

cloud computing paradigm and the system requirements

for managing instance intensive business processes. Figure

4 depicts the SwinCloud infrastructure. More details about

the system environment can be found in [17].

4.1 Architecture of SwinDeW-C

In order to overcome the problems of centralised

management such as performance bottleneck, lack of

scalability and single point of failure, SwinDeW-C is

designed in a decentralised, or more specifically,

structured peer-to-peer fashion where all the workflow

data and control flows are transferred among SwinDeW-C

peers. Such a design can greatly enhance the performance

and reliability of a workflow system in managing large

na 1na

2na

3na 4n
a

5na 6na
Na

ma 1ma

2ma

3ma 4ma

5ma 6ma Ma

Fig. 5. Architecture of SwinDeW-C

numbers of workflows since all the system functionalities

are implemented with distributed SwinDeW-C peers

which will be introduced in Section 4.2.

The architecture of SwinDeW-C is depicted in Figure 5

[17]. Clients can access SwinDeW-C Web portal via any

electronic devices such as PC, laptop and mobile phone as

long as they are connected to the Internet. Compared with

SwinDeW-G which can only be accessed through a

SwinDeW-G peer with pre-installed client-side programs,

SwinDeW-C Web portal can greatly improve the usability.

Here, we describe the lifecycle of an abstract workflow

application through its modelling stage, instantiation stage

and execution stage to illustrate the system architecture.

At the modelling stage, given the cloud workflow

modelling tool provided by the Web portal on the

application layer, workflow applications are modelled by

clients as cloud workflow specifications (consisting of

such as task definitions, process structures and QoS

constraints). After workflow specifications are created,

they will be submitted to one of the coordinator peers on

the platform layer. Here, an ordinary SwinDeW-C peer is a

cloud service node which has been equipped with specific

software services similar to a SwinDeW-G peer. However,

while a SwinDeW-G peer is deployed on a standalone

physical machine with fixed computing units and memory

space, a SwinDeW-C peer is deployed on a virtual

machine of which its computing power can scale

dynamically. As for the SwinDeW-C coordinator peers,

they are super nodes which are equipped with additional

management functionalities.

At the instantiation stage, the cloud workflow

specification is submitted to one of the SwinDeW-C

coordinator peers. A coordinator peer conducts an

evaluation process on the submitted cloud workflow

instance to determine whether it can be accepted or not

given the workflow specification, the available cloud

services, and the resource prices. It is generally assumed

that functional requirements can normally be satisfied

given the unlimited scalable computing resources and

software services in the cloud. In the case where clients

need to run their own special programs, they can upload

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

37

them through the Web portal and these programs can be

automatically deployed in the cloud data centre. However,

the QoS requirements may not be always satisfied. Due to

the natural limitations of cloud service quality and the

unacceptable offers on budgets, a negotiation process

between the client and the cloud workflow system may be

conducted. The final negotiation result can be either the

compromised QoS requirements or a failed submission of

the cloud workflow instance. If it is successful, the

workflow activities will be assigned to suitable

SwinDeW-C peers through p2p based communication.

The peer management such as peer join, peer leave and

peer search, as well as the p2p based workflow execution

mechanism, are the same as in SwinDeW-G system

environment which are detailed in [23]. After all the

workflow activities are successfully allocated (i.e.

confirmation messages are sent back to the coordinator

peer from all the allocated peers), a cloud workflow

instance is successfully instantiated.

Finally, at the execution stage, each workflow activity

is executed by a SwinDeW-C peer. Clients can get access

to the final results as well as the running information of

their submitted workflow instances through the

SwinDeW-C Web portal. Each SwinDeW-C peer utilises

the computing power provided by its virtual machine

which can easily scale up and down according to the

requests of workflow activities. As can be seen in Figure 4,

SwinCloud is built on the previous SwinGrid

infrastructure at the fabric layer. Meanwhile, some of the

virtual machines can be created with external commercial

IaaS (infrastructure as service) cloud service providers

such as Amazon, Google and Microsoft.

4.2 Functionalities of SwinDeW-C Peers

The architecture and functionalities of SwinDeW-C peers

are depicted in Figure 6. As mentioned above, the system

functionalities of SwinDeW-C are distributed to its peers.

SwinDeW-C is developed based on SwinDeW-G, where a

SwinDeW-C peer has inherited most of the functionalities

in a SwinDeW-G peer, including the components of task

management, flow management, data management, and

the group management [23]. Hence, a SwinDeW-G peer

plays as the core of a SwinDeW-C peer. A SwinDeW-G

peer is developed by Java with the Globus toolkit

(http://www.globus.org/toolkit/) and JXTA (http://www.

sun.com/software/jxta/).

Fig. 6. Architecture and Functionalities of SwinDeW-C Peers

To accommodate cloud resources and the system

requirements for instance intensive business processes, a

coordinating peer is introduced to the SwinDeW-C system

and significant modifications also have been made in other

normal peers. Besides the those functionalities inherited

from SwinDeW-G peers, some new cloud resource

management components are developed for SwinDeW-C

peers based on the APIs offered by VMWare and Hadoop,

and some existing components such as QoS management

are further enhanced. Specifically:

First, a resource provisioning component is added to

every SwinDeW-C peer. In SwinDeW-C, to meet the

scalable and elastic resource requirement, a SwinDeW-C

peer can scale up or down with more or fewer computing

units. Meanwhile, through the SwinDeW-C coordinate

peer, it can also scale out or in if necessary, i.e. to request

the distribution of workflow activities to more or fewer

SwinDeW-C peers in the same group. This is mainly

realised through the APIs of VMWare management tools.

Second, the resource pricing and auditing components

are equipped in SwinDeW-C coordinator peers. Since

different cloud service providers may offer different prices,

during the instantiation stage, a coordinator peer needs to

have the pricing component to negotiate the prices with

external service providers and set its own offered prices to

its clients. Meanwhile, since the cloud workflow system

needs to pay for the usage of external cloud resources, at

the execution stage, an auditing component is required to

record and audit the usage of cloud resources. These

functionalities are mainly realised through the APIs of

resource brokers and the external service provider’s

monitoring services such as the Amazon CloudWatch

(http://aws.amazon.com/cloudwatch/).

Third, QoS management components in a SwinDeW-C

coordinator peer have been extended to support for

multiple QoS dimensions, viz. performance, reliability and

security, which are regarded as three major QoS

dimensions for running business processes. Specifically,

performance management is mainly for the response time

and throughput of business processes, reliability

management is mainly for the reliability and cost of data

storage services, and security management is mainly for

transaction security and the protection of client privacy

data. According to the lifecycle QoS management

introduced in Section 3.3, these components need to

interact with many other system build-time and runtime

functional components which are implemented as parts of

the SwinDeW-C coordinator peers.

4.3 QoS Management in SwinDeW-C

The major workflow QoS dimensions supported in

SwinDeW-C are performance, reliability and security.

Details can be found in [17]. In this section, we take the

performance management component as an example. In

our previous work, the performance management only

focuses on the response time of a single workflow instance.

In this paper, for the running of large numbers of

time-constrained business processes, we also focus on the

throughput of the cloud workflow system. Specifically,

there are four basic tasks for delivering lifecycle

performance management in SwinDeW-C:

Temporal Constraint Setting: In SwinDeW-C, temporal

constraints consist of two types, viz. constraints for

workflow response time, and constraints for system

throughput. A probabilistic strategy is designed for setting

constraints for workflow response time in SwinDeW-C.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

38

Specifically, one overall deadline and several milestones

are assigned based on the negotiation result between

clients and cloud workflow service providers. Afterwards,

fine-grained constraints for individual workflow activities

can be derived automatically [13]. Besides the constraints

for the workflow response time, we also need to setup

some throughput constraints to monitor system

throughputs along the workflow execution. Currently, we

adopt a setting strategy where throughput constraints are

defined as the percentage of completion and assigned at

pre-defined time points with fixed equal time intervals.

For example, given a set of 1,000 business processes (each

with 10 activities) start at 10:00am and have an overall

deadline by 12:00pm, the throughput constraints can be

specified as at 10:30am, 25% of the total business

processes should be finished, and 50% of them should be

finished by 11:00pm, and so forth. Note that here 50%

completion does not necessarily mean a total of 500

processes should be finished but rather mean a total of

5,000 activities are completed since significant delays

often occur in the running of some business processes.

Temporal-Aware Service Selection: Given the

fine-grained constraints for response time assigned in the

first step, a set of candidate services which satisfy the

constraints can be searched by the cloud resource broker

from the cloud [6, 24]. Meanwhile, since different service

providers may offer different prices, and there are often

other QoS constraints such as reliability and security to be

considered at the same time, a ranking strategy is designed

to determine the best candidate for runtime execution.

Furthermore, considering to the dynamic nature of cloud

computing as well as the performance and reliability

requirements for managing large numbers of business

processes, a set of backup/redundant services should also

be reserved during service selection. In fact, many cloud

service providers such as Amazon provides special

discount price for reserved instances
6
, which can be used

as a source of riliable standby capacity.

Temporal Checkpoint Selection and Verification:

During workflow runtime, the workflow execution state

should be monitored against the violation of temporal

constraints. Temporal verification is to check the temporal

correctness of workflow execution, i.e. to detect temporal

violations of workflow response time and system

throughput. The verification of workflow response time

constraints is conducted at the activity level and the

verification of system throughput is conducted at the

workflow level. In SwinDeW-C, a minimum time

redundancy based checkpoint selection strategy [8] is

employed which selects only necessary and sufficient

checkpoints to detect the violations of workflow response

time. Here, necessity means only the activity points with

temporal violations are selected, and sufficiency means

there are no omitted ones, hence the strategy is highly

efficient for the monitoring of large numbers of workflow

activities. As for throughput verification, it is conducted at

the pre-defined time points which are specified at the

constraint setting stage, hence in a static fashion.

Temporal Violation Handling: After a temporal

violation is detected, violation handling strategies are

6 http://aws.amazon.com/ec2/reserved-instances/

required to recover the error states such as the larger

response time and lower system throughput. In

SwinDeW-C, to decrease the overall violation handling

cost on workflow response time, a three-level temporal

violation handling strategy is designed. Specifically, for

minor temporal violations, the TDA (time deficit

allocation) strategy [7] is employed which can remove the

current time deficits by borrowing the time redundancy of

the subsequent activities. For moderate temporal

violations, the ACOWR (ant colony optimisation based

two stage workflow local rescheduling) strategy [12] is

employed which can decrease the execution time of the

subsequent workflow activities through the optimisation

of resource allocation. As for major temporal violations,

the combined strategy of TDA and ACOWR is employed

which conducts TDA in the first step and followed by

several iterations of ACOWR until the temporal violation

is recovered. Based on such a design, the overall violation

handling cost on workflow response time can be

significantly reduced compared with a single expensive

exception handing strategy [12]. However, since it has

been well observed that short response time does not

necessarily guarantee an overall high system throughput,

we still need some violation handling strategies to recover

throughput violations. Meanwhile, since most violation

handling strategies such as TDA and ACOWR target the

reduction of the response time of a single workflow

instance, it may not be directly effective for the increase of

system throughput. One of the options is to conduct these

strategies repeatedly for many business processes so that

the system throughput can be increase by the reduction of

the average workflow response time. But this option is

evidently very expensive. Currently, in SwinDeW-C, we

adopt a simple elastic resource provision strategy which is

to dynamically provision the reserved resources when

throughput violations are detected, and release these

resources when the system throughput is back to normal.

In such a case, since many awaiting workflow activities

will be processed immediately, the system throughput can

be increased in a short period time. Details will be further

illustrated in our experiments demonstrated in Section 5.

5 Evaluation

Based on the SwinDeW-C prototype system, the general

design of a cloud workflow system proposed in Section 3

is successfully implemented to satisfy the basic system

requirements discussed in Section 2.2. Specifically, the

four-layer cloud workflow system architecture and the

structured p2p based decentralised workflow management

ensures efficient provision of scalable and elastic cloud

computing resources for running instance intensive

business processes (for the first and second system

requirements); the visual modelling tool for workflow

specification, the workflow enactment service and the

application provision service, can effectively support the

efficient process management (for the third system

requirement); and the QoS management components can

facilitate the effective QoS monitoring and control (for the

fourth system requirement).

At the moment, to evaluate and improve its

performance, a number of test cases with simulated large

scale instance intensive workflows are designed and being

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

39

tested in SwinDeW-C, including the securities exchange

workflow and some large scale high performance

applications with larger number of sub-processes such as a

weather forecast workflow [13] and a pulsar searching

workflow in Astrophysics [14].

On the setting of business processes and resources: In

order to evaluate the performance of SwinDeW-C, we

have simulated a large number of business processes

running in parallel. The total number of business processes

is 10K, which is similar to the total number of securities

corporation branches nation wide. In our experiments, we

focus on the offline processing part, i.e. from the step 4 to

step 14, where all the daytime transaction data are to be

batch-processed over night at the stock depository and

clearing corporation. For the ease of simulation, we

assume that each process has 20 activities to represent the

basic batch processing steps, and correspondingly there

are 20 types of cloud services in charge of running these

activities. The total number of cloud service instances is

set as 200, i.e. 10 instances for each type of service.

Additionally, there is 1 reserved instance for each type of

service to handle temporal violations. As for the resource

price, we adopt the Amazon EC2 price model as a

reference (http://aws.amazon.com/ec2/pricing/). The price

for the primary services (similar to the EC2 Quadruple

Extra Large Hi-Memory On-Demand Instances) is $2.00

per hour, and the price for the reserved services (similar to

the EC2 Large Standard Reserved Instances for 1 year

fixed term) is about $0.12 per hour.

The simulation will start from the parallel running of

100 business processes, i.e. the maximum workload for

each service instance is set as 10. The activity durations

are generated based on the statistics and deliberately

extended by a mixture of representative distribution

models such as normal, uniform and exponential to reflect

the performance of different cloud services. The mean

activity durations are randomly generated in a wide range

of 30 milliseconds to 30 seconds. Meanwhile, some noises

are also added to a random selected activity in each

business process to simulate the effect of system

uncertainties such as network congestion and performance

down time. Different ratio of noises (the added time delays

divided by the activity durations) from 5% to 30% are

implemented. The process structures are specified as DAG

graphs similar to the securities exchange business process.

On the setting of temporal constraints and monitoring

strategies: For each business process, an overall temporal

constraint is assigned. The strategy for setting temporal

constraint is adopted from the work in [13] where a normal

percentile is used to specify temporal constraints and

denotes the expected probability for on-time completion.

Here, we specify the normal percentiles as 1.28 which

denotes the probability of 90.0% for on-time completion if

without any temporal violation handling. This setting can

be regarded as the norm, i.e. the satisfactory performance

for most clients and service providers. We employ the

state-of-the-art checkpoint selection strategy introduced in

[8] as the strategy for detecting the violations on workflow

response time. As for the monitoring of system throughput,

we pre-define a set of time points with the equal fixed time

interval as introduced in Section 4.3. Specifically, the

fixed time interval in our experiments is set as 60 seconds,

i.e. around 20% of the average duration of a business

process. Therefore, at the first 60 seconds, the system will

verify whether 20% of the total activities (i.e.

20%*100*20=400) have been finished, and at the next

time point, i.e. at the time points for 120 seconds, the

system will verify whether 40% (i.e. 800) of the total

activities have been finished, and so on so forth until the

completion of all the 10,000 business processes. The

throughput verification will be conducted at every

pr-defined time points.

On the setting of temporal violation handling strategies:

For the comparison purpose, we record the global

violation rates under natural situations, i.e. without any

handling strategies (denoted as NIL). The violation

handling strategies we implemented including the

standalone Workflow Local Rescheduling strategy, the

standalone Extra Resource Recruitment strategy, and the

combined of the two strategies. The Workflow Local

Rescheduling strategy is based on ACOWR and the Extra

Resource Recruitment strategy is based on the simple

elastic resource provision strategy (denoted as SERP), as

introduced in Section 4.3. For the standalone ACOWR or

SERP, the same strategy will be applied both to the

violations of response time and system throughput. As for

the combined strategy (denoted as ACOWR+SERP),

ACOWR will handle the violations of response time and

SERP will handle the violations of system throughput

respectively. The parameter settings for ACOWR are same

as in [14]. As for SERP, we employ one additional

instance for each type of service when a throughput

violation is detected, and immediately release them when

the system throughput is back to normal at the next

throughput constraint. Based on the resource settings

mentioned above, the average cost for ACOWR is

$3.08*10-3 per time, which is mainly the computation cost

for running the rescheduling strategy. Note that the cost for

the re-allocation of workflow activities after rescheduling

is not accounted here since the data transfer within a data

centre is free in Amazon cloud. As for SERP, the cost is

$16.7 per round where 20 cloud services are reserved and

dedicated for the entire running period, i.e. an average of 8

hours per day.
TABLE 1. Numbers of Temporal Violations

Based on the above experimental settings, 10 rounds of

experiments are implemented and each runs for 100 times

to get average values. Table 1 shows the number of

temporal violations recorded in each round of experiment.

Clearly, the number of response time violations for

workflow instances and the number of throughput

violations for the workflow system both increase rapidly

with the increase of noise, i.e. the embedded time delays to

represent various system uncertainties. For example, with

the every 5% increase of noise, the average increase of

response time violations is around 200. The distribution of

CRPIT Volume 127 - Parallel and Distributed Computing 2012

40

service performance seems to have less effect on the

temporal violations. For example, given the same noise,

the average difference of throughput violations (e.g. R4

and R5, R6 and R7, R8 and R9) is around 20.

Fig. 7. Temporal Violation Rate with Different Violation

Handling Strategies

Figure 7 depicts the temporal violation rates (the

unsuccessful rate for on-time completion of the entire 10K

business processes) with different violation handling

strategies. For comparison purpose, the results of NIL

represent the natural condition, i.e. without any handling

strategies, where the violation rates increase from 37% to

84% with an average of 65%. Both the combined strategy

of ACOWR+SERP and the standalone ACOWR can

ensure a very close to 0% violation rate. The standalone

SERP strategy can also maintain a very low violation rate,

i.e. with an average around 4%. The reason for such a

difference is mainly because of the different granularity

between ACOWR and SERP. Since ACOWR is triggered

at every necessary and sufficient checkpoint while SERP

only take place at pre-defined time points (a ratio around

13% according to the results shown in Table 1), there are

some chances that significant time delays cannot be

handled in time by SERP, and thus result in some

unsuccessful on-time completion of business processes.

Fig. 8. Temporal Violation Cost with Different Violation

Handling Strategies

Figure 8 demonstrate the total temporal violation

handling cost for each type of handling strategies. The cost

for the standalone SERP is static with $16.7 in each round

because only the reserved service instances are used. The

cost for the combined strategy of ACOWR+SERP is also

very stable from $31.7 to $35.1 with an average of $33.7.

In contrast, the cost for the standalone ACOWR increases

significantly from $16.2 to $56.8 with an average of $32.1.

This is mainly because the standalone ACOWR needs to

run many times (from 2 to 10 times in our experiments) to

handle throughput violations, and hence the cost increases

rapidly with the number of throughput violations.

In summary, according to the experimental results

presented above, we can see that the combined strategy of

ACOWR+SERP is the best one which can maintain the

close to 0% violation rate while having the moderate cost

among the three. Meanwhile, since our experimental

settings actually allow for a probability of 10% violations

(i.e. 90.0% for on-time completion), if a small violation

rate is tolerable by the clients, e.g. below 5%, the

standalone SERP strategy is also applicable and can

significantly reduce the violation handling cost. In general,

we can see that thanks to the dynamic and elastic resource

provision provided by cloud computing, conventional

violation handling strategies such as ACOWR can ensure

the on-time completion of large numbers of business

processes in a more cost-effective way.

6 Related Work

Traditional workflow systems are normally designed to

support the business processes in a specific domain such as

bank, hospital and school. Therefore, they can only invoke

existing software applications (or software components)

which have already developed and stored in the local

repository, which limits the flexibility in the support of

general and agile business processes [2, 18]. In the last

decade, with the rapid development of Web services, the

employment of remote software services from external

service providers becomes possible. Therefore, the design

and application of Web service based workflow systems

starts to attract most of the attention from both researchers

and practitioners, for example, the Windows Workflow

Foundation (http://www.windowsworkflowfoundation.eu/)

and the Kepler project (http://kepler-project.org/). In

recent years, with the fast growth of high performance

computing (HPC) and high throughput computing (HTC)

such as cluster and grid, workflow systems are also being

used as a type of middleware service which often underlies

many large-scale complex e-science applications such as

climate modelling, astrophysics, and chemistry [9, 20].

The work in [24] proposes a taxonomy and summaries a

number of grid workflow systems such as Condor

(http://www.cs.wisc.edu/condor/), Gridbus (http://www.

gridbus.org/), Pegasus (http://pegasus.isi.edu/), and Triana

(http://www.trianacode.org/). However, they mainy target

at processing data and computation intensive activities for

a single scientific workflow instance, rather than massive

concurrent workflow instances for business processes.

The design of a cloud workflow system, as the

combination of workflow system and cloud computing,

comes from the natural needs for efficient and effective

management of large numbers of business processes.

However, as a cutting-edge research issue, the

investigation on cloud workflow systems is so far still in

its infancy. Besides SwinDeW-C, there are currently a few

existing grid workflow systems investigating the

migration from grid to cloud such as Pegasus in the cloud

(http://pegasus.isi.edu/pegasus_cloud.php) and GridBus to

CloudBus (http://www.cloudbus.org/cloudbus_flyer.pdf),

but most of them are for scientific applications. Response

time and system throughput are the most important

measurements for the performance analysis of cloud

workflow systems [3]. The work in [11] proposes a

throughput maximisation strategy for transaction intensive

cloud workflows. The work in [22] investigates the

dynamic resource allocation for efficient parallel data

processing in the cloud.

To the best of our knowledge, this is the first paper that

proposes the solution of a cloud workflow system to

address the management of running large numbers of

time-constrained business processes.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

41

7 Conclusions and Future Work

The concurrency of large numbers of client request has

been widely seen in today’s e-business and e-government

systems. Based on the analysis of a securities exchange

business process, we have identified four basic system

requirements for managing large numbers of business

processes, viz. scalable computing resource provision,

elastic computing resource delivery, efficient process

management, and effective QoS monitoring and control.

Based on that, the cloud workflow system is proposed as a

competitive solution. We first present the general design

of a cloud workflow system with the focus on its system

architecture, basic functionalities and QoS management.

Afterwards, based on such a general design, we have

implemented a peer-to-peer based cloud workflow system

prototype, SwinDeW-C. The architecture of SwinDeW-C

(four-layered architecture), the system functionalities

(realised in the functional components of SwinDeW-C

coordinator and ordinary peers), and the QoS management

(with the illustration of the performance management

components) have been demonstrated to verify the

effectiveness of our system design. The experimental

results for the evaluation of system performance have

shown that satisfactory on-time completion rate and better

cost-effectiveness can be achieved with the dynamic and

elastic provision of cloud resources.

In the future, the monitoring and violation handling

strategies for the system throughput will be further

enhanced. Meanwhile, the SwinCloud test bed will be

extended in its size and capacity so that real world large

scale business processes can be tested to further evaluate

and improve our system design.

 Acknowledgments. We are grateful for the discussions

with Mr. Zhangjun Wu and his colleagues on the securities

exchange business process. This work is partially

supported by Australian Research Council under Linkage

Project LP0990393.

References

1. Australian Academy Of Technology Science and Engineering,

Cloud Computing: Opportunities and Challenges for Australia,

http://www.atse.org.au/component/remository/ATSE-Reports/In

formation-Technology/CLOUD-COMPUTING-Opportunities-a

nd-Challenges-for-Australia-2010/, accessed on 1st Aug. 2011

2. Aalst, W.M.P. van der, Hee, K.M.V.: Workflow Management:

Models, Methods, and Systems. The MIT Press (2002)

3. Iosup, A., Ostermann, S., Yigitbasi, N., and et al.: Performance

Analysis of Cloud Computing Services for Many-Tasks

Scientific Computing. IEEE Transactions on Parallel and

Distributed Systems 22(6), 931-945, (2011)

4. Armbrust, M., Fox, A., Griffith, R., Joseph, and et al: Above

the Clouds: A Berkeley View of Cloud Computing. Technical

Report, UCB/EECS-2009-28, University of California at

Berkeley (2009)

5. Buyya, R., Bubendorfer, K.: Market Oriented Grid and Utility

Computing. Wiley Press, New York, USA (2009)

6. Buyya, R., Yeo, C.S., Venugopal, and et al: Cloud Computing

and Emerging IT Platforms: Vision, Hype, and Reality for

Delivering Computing as the 5th Utility. Future Generation

Computer Systems 25, 599-616 (2009)

7. Chen, J., Yang, Y.: Multiple States based Temporal

Consistency for Dynamic Verification of Fixed-time Constraints

in Grid Workflow Systems. Concurrency and Computation:

Practice and Experience, Wiley 19, 965-982 (2007)

8. Chen, J., Yang, Y.: Temporal Dependency based Checkpoint

Selection for Dynamic Verification of Temporal Constraints in

Scientific Workflow Systems. ACM Transactions on Software

Engineering and Methodology, 20(3), article 9, (2011)

9. Deelman, E., Gannon, D., Shields, and et al.: Workflows and

e-Science: An Overview of Workflow System Features and

Capabilities. Future Generation Computer Systems 25, 528-540

(2008)

10. Foster, I., Yong, Z., Raicu, I., and et al: Cloud Computing and

Grid Computing 360-Degree Compared. In: Grid Computing

Environments Workshop, 1-10. (2008)

11. Liu, K., Chen, J., Yang, Y., and et al: A Throughput

Maximization Strategy for Scheduling Transaction-Intensive

Workflows on SwinDeW-G. Concurrency and

Computation-Practice & Experience 20, 1807-1820 (2008)

12. Liu, X., Chen, J., Wu, Z., and et al: Handling Recoverable

Temporal Violations in Scientific Workflow Systems: A

Workflow Rescheduling Based Strategy. In: 10th IEEE/ACM

International Symposium on Cluster, Cloud and Grid

Computing, pp. 534-537. (2010)

13. Liu, X., Chen, J., Yang, Y.: A Probabilistic Strategy for

Setting Temporal Constraints in Scientific Workflows. In: 6th

International Conference on Business Process Management

(BPM08), pp. 180-195. Springer-Verlag, (2008)

14. Liu, X., Ni, Z., Wu, Z., and et al: A Novel General

Framework for Automatic and Cost-Effective Handling of

Recoverable Temporal Violations in Scientific Workflow

Systems. Journal of Systems and Software 84(3), 492-509,

(2011)

15. Liu, X., Ni, Z., Yuan, D., and et al: A Novel Statistical

Time-Series Pattern based Interval Forecasting Strategy for

Activity Durations in Workflow Systems. Journal of Systems and

Software 84(3), 354-376, (2011)

16. Liu, X., Yang, Y., Jiang, Y., and et al: Preventing Temporal

Violations in Scientific Workflows: Where and How. IEEE

Transactions on Software Engineering , published online http://

doi.ieeecomputersociety.org/10.1109/TSE.2010.99, (2010)

17. Liu, X., Yuan, D., Zhang, G., and et al: SwinDeW-C: A

Peer-to-Peer Based Cloud Workflow System. In: Furht, B.,

Escalante, A. (eds.), Handbook of Cloud Computing. Springer

(2010)

18. Melvin B. Greer, J.: Software as a Service Inflection Point.

iUniverse (2009)

19. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and

Validation of Process Constraints for Flexible Workflows.

Information Systems 30, 349-378 (2005)

20. Taylor, I.J., Deelman, E., Gannon, D.B., and et al: Workflows

for e-Science: Scientific Workflows for Grids. Springer (2007)

21. Wang, L., Jie, W., Chen, J. (eds.): Grid Computing:

Infrastructure, Service, and Applications. CRC Press, Talyor &

Francis Group (2009)

22. Warneke, D., Kao, O.: Exploiting Dynamic Resource

Allocation for Efficient Parallel Data Processing in the Cloud.

IEEE Transactions on Parallel Distributed Systtems 22(6),

985-997 (2011)

23. Yang, Y., Liu, K., Chen, J., Lignier, J., Jin, H.: Peer-to-Peer

Based Grid Workflow Runtime Environment of SwinDeW-G.

In: 3rd International Conference on e-Science and Grid

Computing, 51-58. (2007)

24. Yu, J., Buyya, R.: A Taxonomy of Workflow Management

Systems for Grid Computing. Journal of Grid Computing 3,

171-200 (2005)

CRPIT Volume 127 - Parallel and Distributed Computing 2012

42

Use of Multiple GPUs on Shared Memory Multiprocessors for
Ultrasound Propagation Simulations

Jiri Jaros1, Bradley E. Treeby2 and Alistair P. Rendell1

1Research School of Computer Science, College of Engineering and Computer Science
The Australian National University

Canberra, ACT 0200, Australia

jiri.jaros@anu.edu.au, alistair.rendell@anu.edu.au

2Research School of Engineering, College of Engineering and Computer Science
The Australian National University

Canberra, ACT 0200, Australia

bradley.treeby@anu.edu.au

Abstract
This paper outlines our effort to migrate a compute inten-
sive application of ultrasound propagation being devel-
oped in Matlab to a cluster computer where each node has
seven GPUs. Our goal is to perform realistic simulations
in hours and minutes instead of weeks and days. In order
to reach this goal we investigate architecture characteris-
tics of the target system focusing on the PCI-Express sub-
system and new features proposed in CUDA version 4.0,
especially simultaneous host to device, device to host and
peer-to-peer transfers that the application is going to high-
ly benefit from. We also present the results from a CPU
based implementation and discuss future directions to
exploit multiple GPUs..

Keywords: Ultrasound simulation, 7-GPU system, CUDA,
Matlab, FFT, PCI-Express, bandwidth, multi-core.

1 Introduction
In 1994 Becker and Sterling (1995) proposed the con-
struction of supercomputer systems through the use of
off-the-shelf commodity parts and open source software.
Over the ensuing year, the so called Beowulf cluster
computer systems came to dominate the top 500 list of
most powerful systems in the world. The advantages of
such systems are many, including ease of creation, ad-
ministration and monitoring, and full support of many
advanced programming techniques and high performance
computing libraries such as OpenMPI. Interestingly,
however, what was originally a major advantage of these
systems, namely price and running costs, is now much
less so. This is because for even a small to moderately
sized cluster it is necessary to house the system in spe-
cially air-conditioned machine rooms.

Recently, developments in Graphics Processing Units
(GPUs) have prompted another revolution in high-end
computing, equivalent to that of the original Beowulf
cluster concept. Although these chips were designed to

Copyright 2012, Australian Computer Society, Inc. This paper
appeared at the 10th Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia,
January-February 2012. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 127. J. Chen and R.
Ranjan, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

accelerate rasterisation of graphic primitives such as lines
and polygons, their raw computing performance has at-
tracted a lot of researchers to utilize them as acceleration
units for special kind of mathematical operations in many
scientific applications (Kirk and Hwu 2010). Compared
to a CPU, the latest GPUs are about 15 times faster than
six-core Intel Xeon processors in single-precision calcula-
tions. Stated another way, a cluster with a single GPU per
node offers the equivalent performance of a 15 node CPU
only cluster. Even more interestingly, the availability of
multiple PCI-Express buses even on very low cost com-
modity computers means that it is possible to construct
cluster nodes with multiple GPUs. Under this scenario,
a single node with multiple GPUs offers the possibility of
replacing fifty or more nodes of a CPU only cluster.

On the other hand, the development tools for debug-
ging and profiling of GPU-based applications are in their
infancy. Obtaining the peak performance is very difficult
and sometimes impossible for a lot of real-world prob-
lems. Moreover, only a few basic GPU libraries such as
LAPACK and BLAS have so far been developed, and
these are only able to utilize one GPU in a node (CUDA
Math Libraries 2011). GPU-based applications are also
limited by the GPU architecture and memory model mak-
ing general-purpose computing much more difficult to
implement than a CPU-based application.

The purpose of this paper is to outline our efforts to
migrate a compute intensive application for ultrasound
simulation being developed in Matlab to a cluster com-
puter where each node has seven GPUs. The utilised nu-
merical methods are very memory efficient compared to
conventional finite-difference approaches, and the Matlab
implementation already outperforms many of the other
codes in the literature (Treeby 2011). However, for large
scale simulations, the computation times are still prohibi-
tively long. Our overall goal is to perform realistic simu-
lations in hours or minutes instead of weeks or days. This
paper provides an overview of the ultrasound propagation
application, the development of an optimised C++ ver-
sion of the original Matlab code for the CPU that exploits
streaming extensions, our attempts to characterise the
multi-GPU target system, and a preliminary plan for the
GPU code to run on that system.

Section 2 provides background on ultrasound simula-
tion, the simulation method used here, and the time con-
suming operations. Section 3 introduces the architecture

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

43

of our 7-GPU Tyan servers that will be used for testing
and benchmarking our implementations written in C++
and CUDA. Section 4 gives preliminary results of the
first C++ implementation using only CPUs and investi-
gates the bottlenecks. Section 5 focuses on the GPU side
of the Tyan servers and measures the basics parameters of
them in order to acquire necessary experience and inves-
tigate the potential architecture limitations. The last sec-
tion summarizes open questions and issues that will be
dealt with in the future.

2 Ultrasound Propagation Simulations
The simulation of ultrasound propagation through biolog-
ical tissue has a wide range of practical applications. The-
se include the design of ultrasound probes, the develop-
ment of image processing techniques, studying how ultra-
sound beams interact with heterogeneous media, training
ultrasonographers to use ultrasound equipment, and
treatment planning and dosimetry for therapeutic ultra-
sound applications. Here, ultrasound simulation can mean
either predicting the distribution of pressure and energy
produced by an ultrasound probe, or the simulation of
diagnostic ultrasound images. The general requirements
are that the models correctly describe the different acous-
tic effects whilst remaining computationally tractable.

In our work, the k-space pseudospectral method is
used to reduce the number of grid points required per
wavelength for accurate simulations (Tabei 2002). The
system of governing equations used is described in detail
by Treeby (2011). These are derived from general con-
servation laws, discretised using the k-space pseudospec-
tral method, and then implemented in Matlab (Treeby
2010). In order to be able to simulate real-world systems,
both huge amounts of memory and computation power
are required.

Let us calculate a hypothetical execution time request-
ed for simulating a realistic ultrasound image using
Matlab on a dual six-core Intel Xeon processor. The ul-
trasound image is created by steering the ultrasound beam
through the tissue and recording the echoes received from
that particular direction. The recorded signal from each
direction is called an A-line, and a typical image is con-
structed from at least 128 of these. This means we need
128 independent simulations with slightly modified input
parameters. Using a single computer, these must be com-
puted sequentially. Every simulation is done over the 3D
domain with grid sizes starting at 768x768x256 grid
points and 3000 time steps. From preliminary experi-
ments performed using the Matlab code, each simulation
takes about 27 hours of execution time and consumes
about 17 GB of memory. Thus to compute one ultrasound
image would require roughly 145 days. The objective of
this work is to reduce this time to hours or even minutes
by exploiting the parallelism inherent in the algorithm.

2.1 k-space Pseudospectral Simulation Method
Implemented in Matlab

The Matlab code simulating non-linear ultrasound propa-
gation using the k-space pseudospectral method is based
on the forward and inverse 3-dimensional fast Fourier
transformation (FFT) supported by a few 3D matrix oper-
ations such as element-wise multiplication, addition, sub-

traction, division, and a special bsxfun operation. This
function replicates a vector in particular dimensions to
create a 3D matrix on the fly and then performs a defined
element-wise operation with another 3D matrix (such as
multiplication denoted by @times). Most operations
work over the real domain, however, some of them are
done over the complex one.

The time step loop in a simplified form is shown in
Figure 1. This listing identifies all the necessary mathe-
matical operations and presents all matrices, vectors, and
scalar values necessary for computation. For the compu-
tation, it is necessary to maintain the complete dataset in
main memory. This data set is composed of 14 real matri-
ces, 3 complex matrices, 6 real and 6 complex vectors.

An iteration of the loop represents one time step in the
simulation of ultrasound propagation over time. The
computation can be divided into a few phases correspond-
ing to the particular code statements:

(1) A 3D FFT is computed on a 3D real matrix repre-
senting the acoustic pressure at each point within the
computational domain. Despite the fact the matrix p is
purely real, a 3D complex-to-complex FFT is executed in
Matlab.

(2) - (4) New values for the local particle velocities in
each Cartesian dimension x, y, z are computed. These
velocities describe the local vibrations due to the acoustic
waves. The result of fftn(p) is element-wise multi-
plied by a complex matrix kappa and then multiplied by
a vector expanded into a 3D matrix in the given directions
using bsxfun. After that, the 3D inverse FFT is com-
puted. As we are only interested in real signals, the com-
plex part of the inverse FFT is neglected. Other element-
wise multiplications and subtractions are further applied.
Note that the old values of the particle velocities are nec-
essary for determining the new ones.

(5) The particle velocities in the x-direction at particu-
lar positions are modified due to the output of the ultra-
sound probe. (Note, additional source conditions are also
possible, only one is shown here for brevity). The matrix
ux_sgx is transformed to a vector and mask-based ele-
ment-wise addition is executed.

(6) - (8) The gradient of the local particle velocities in
each Cartesian direction is computed. First, the 3D FFT
of the particle velocity is computed, then, the result is
multiplied by kappa and a vector in the complex do-
main. After that, the inverse 3D FFT is calculated. Only
the real part of the FFT is used in the difference matrix.

(9) - (11) The mass conservation equations are used to
calculate the rhox, rhoy and rhoz matrices (acoustic
density at each point within the computational domain).
All operations are done over the real domain on 3D ma-
trices. If an operand is a scalar or a vector, it is expanded
to a 3D matrix on the fly.

(12) The new value of pressure matrix is computed
here using data from all three dimensions. Two forward
and inverse 3D FFTs are necessary for intermediate re-
sults. All other operations are done over the real domain.

(13) The pressure matrix is sampled and the samples
are stored as the final result.

In summary, at a high level we need to calculate
6 forward and 8 inverse 3D FFTs, and about 50 other
element-wise operations, mainly multiplications.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

44

% start time step loop
for t_index = 2:Nt

 % compute 3D fft of the acoustic pressure
1 p_k = fftn(p);

 % calculate the local particle velocities in
 % each Cartesian direction
2 ux_sgx = bsxfun(@times, pml_x_sgx,

bsxfun(@times, pml_x_sgx, ux_sgx)
 - dt./rho0_sgx .* real(ifftn(
 bsxfun(@times, ddx_k_shift_pos,
 kappa .* p_k)))

);
3 uy_sgy = bsxfun(@times, pml_y_sgy,

bsxfun(@times, pml_y_sgy, uy_sgy)
 - dt./rho0_sgy .* real(ifftn(
 bsxfun(@times, ddy_k_shift_pos,
 kappa .* p_k)))

);
4 uz_sgz = bsxfun(@times, pml_z_sgz,

bsxfun(@times, pml_z_sgz, uz_sgz)
 - dt./rho0_sgz .* real(ifftn(
 bsxfun(@times, ddz_k_shift_pos,
 kappa .* p_k)))

);

 % add in the transducer source term
5 if transducer_source >= t_index
 ux_sgx(us_index) = ux_sgx(us_index) +
 transducer_input_signal(delay_mask);
 delay_mask = delay_mask + 1;
 end

 % calculate spatial gradient of the particle
 % velocities
6 duxdx = real(ifftn(bsxfun(@times,
 ddx_k_shift_neg, kappa .* fftn(ux_sgx))));
7 duydy = real(ifftn(bsxfun(@times,
 ddy_k_shift_neg, kappa .* fftn(uy_sgy))));
8 duzdz = real(ifftn(bsxfun(@times,
 ddz_k_shift_neg, kappa .* fftn(uz_sgz))));

 % calculate acoustic density rhox, rhoy and
 % rhoz at the next time step using a
 % nonlinear mass conservation equation
9 rhox = bsxfun(@times, pml_x, (rhox -
 dt.*rho0 .* duxdx) ./ (1 + 2*dt.*duxdx));
10 rhoy = bsxfun(@times, pml_y, (rhoy -
 dt.*rho0 .* duydy) ./ (1 + 2*dt.*duydy));
11 rhoz = bsxfun(@times, pml_z, (rhoz -
 dt.*rho0 .* duzdz) ./ (1 + 2*dt.*duzdz));

 % calculate the new pressure field using a
 % nonlinear absorbing equation of state
12 p = c.^2.*(...
 (rhox + rhoy + rhoz)
 + absorb_tau.*real(ifftn(
 absorb_nabla1 .*
 fftn(rho0.*(duxdx+duydy+duzdz))))
 - absorb_eta.*real(ifftn(
 absorb_nabla2 .*
 fftn(rhox + rhoy + rhoz)))
 + BonA.*(rhox + rhoy + rhoz).^2
 ./(2*rho0)
);

 % extract and save the required storage data
13 sensor_data(:, t_index)= p(sensor_mask_ind);

end

Figure 1: Matlab code for the k-space pseudospectral
method showing the necessary operations.

3 Architecture of Tyan 7-GPU Servers
This section describes the architecture of the Tyan servers
targeted for use in the ultrasound propagation simula-
tions. The Tyan servers are 7-GPU servers based on the
Tyan barebones TYAN FT72B7015 (Tyan 2011). The
barebones consist of a standard 4U rack case and three
independent hot-swap 1kW power supplies.

A schematic of the Tyan 7-GPU server configuration
can be seen in Figure 2. The motherboard of the servers
offers two LGA 1366 sockets for processors based on the
Core i7 architecture in a NUMA configuration. The serv-
er is populated with two six-core Intel Xeon X5650 pro-
cessors offering 12 physical cores in total (24 with Hy-
perThreading technology). As each processor contains
three DDR3 memory channels, the server is equipped
with six 4GB modules (24 GB RAM). The memory ca-
pacity can be expanded up to 144GB using 12 additional
memory slots.

Communication among CPUs and attached memories
is supported by the Intel QuickPath Interconnection (QPI)
with a theoretical bandwidth of 12 GB/s. This intercon-
nection also serves as a bridge between CPUs and two
Intel IOH chips that offer various I/O connections includ-
ing four PCI-Express links.

By themselves, the four PCI-Express x16 links are in-
sufficient to connect 7 GPUs and an Infiniband card at
full speed. (We would have needed 128 PCI-E links, but
unfortunately, had only 64.) Therefore, intermediate PEX
bridges were placed between the IOH chips and other
devices to double the number of PCI-E links. One PEX
bridge is shared between two GPUs (or a GPU and an
Infiniband card). The PEX bridges allocate PCI-Express
links to the GPUs based on their actual requirements. If
one GPU is idle the other one can use all 16 links.

As the servers are designed as a cutting edge GPGPU
platform, the most powerful NVIDIA GTX 580 cards
with 512 CUDA cores and 1.5GB of main memory have
been used. These cards, based on the Fermi architecture,
support the latest NVIDIA CUDA 4.0 developer kit and
represent the fastest cards that can currently be acquired.

The operating system and user data are stored on two
500GB hard disks, one of which serves as a system disk
and the other one as temporary disk space for users. The
servers are interconnected using the Infiniband links and
a 48 port QLogic Infiniband switch, and to the internet
using one of four Gb Ethernet cards.

The operating system the servers are running is Ub-
untu 10.04 LTS server edition. For our implementation
we have decided to use standard GNU C++ compiler and
the latest CUDA version 4.0. This introduces a lot of new
features mainly targeted to multi-GPU systems, such as
peer-to-peer communication among GPUs, zero-copy
main memory accesses from GPUs, etc. OpenMPI is used
to communicate between servers and OpenIB layer to
directly access the infiniband network card.

4 CPU-based C++ Implementation
In order to accelerate the execution of the Matlab code,
the time critical simulation loop has been re-implemented
in C++ while paying attention to the underlying architec-
ture to exploit all available performance. A good CPU
implementation will serve as a starting point for a GPU

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

45

Figure 2: Architecture of 7-GPU server used for
the acceleration of ultrasound simulations.

implementation, revealing all the hidden difficulties and
ineffectiveness in the Matlab code while also providing
ideas on how to improve the Matlab code.

First of all, the import and export of data structures
from Matlab to C++ and back has to be designed. Fortu-
nately, all Matlab matrices can be transformed into linear
arrays (solving the problem with column-first ordering of
multidimensional arrays in Matlab) and saved into sepa-
rated files using an ASCII or binary format.

All imported matrices as well as six temporary matri-
ces are maintained in main memory during the computa-
tion. In the C++ code, the matrices are treated as linear
vectors and allocated using the malloc function. This
organisation simplifies the computation because there is
no need to use three indices in element-wise operations.
The complex matrices are stored in an interleaved form
(even indices correspond to real parts and odd indices the
imaginary part of the elements). Another advantage of
this data storage format is compatibility with FFTW and
CUDA routines when implementing the GPU version.

The C++ code benefits from using an object oriented
programming pattern. Each matrix is implemented as
a class inheriting basic operations from base classes (real
matrix class, complex matrix class) and introducing new
methods reflecting the simulation method.

The C++ code does not follow the Matlab code in
a verbatim way. Some intermediate results have been
precomputed and several temporary matrices have been
introduced and reused to save computational effort.

4.1 Complex-to-Complex FFT
Apart from easy to implement element-wise operations,
the multidimensional FFT is computed many times in the
code. Instead of creating a new implementation, the well-
known FFTW library has been employed (FFTW 2011).
This library is optimized for a huge number of CPU ar-
chitectures including multi-core systems with shared
memory and clusters with message passing and their
streaming extensions such as MMX, SSE, AVX, etc.

A special class encapsulating the FFTW library has
been designed in the C++ code. As Matlab uses complex-
to-complex 3D FFTs even for real input matrices, the first
version of the C++ code also employed the complex-to-
complex in-place version of the 3D FFT. First, the input
matrix is copied into the FFTW object and transformed

 into a complex matrix. Then, the forward FFT is com-
puted. As the FFTW class is compatible with other matrix
classes, it serves as a temporary storage. Having comput-
ed the FFT, a few element-wise operations are performed
on this complex matrix, and finally, the inverse FFT is
computed. As FFTW does not use normalization, each
element has to be divided by the product of the matrix
dimension sizes.

4.2 Operation Fusion
The naïve C++ implementation, created at first, encodes
each mathematical operation as a separate method paral-
lelized using OpenMP directives. It allows us to under-
stand the algorithm and validate the code. On the other
hand, this implementation is extremely ineffective. It is
caused by a very poor calculation to memory access ratio
while processing very large matrices in the order of hun-
dreds of MBs, and high thread management overhead.

The operation fusion reduces the memory accesses by
performing multiple mathematical operations on corre-
sponding elements at once and saving the temporary re-
sults in cache memories. As a result, memory bandwidth
is saved enabling better scalability at the expense of more
complicated code.

4.3 Real-to-Complex FFT
As all the forward FFTs take only real 3D matrices as an
input, the results of the forward FFTs are symmetrical.
Analogously, as we are only interested in real signals, the
imaginary parts of the inverse FFTs are of no use.

Substituting complex-to-complex FFTs with real-to-
complex ones saves nearly 50% of the memory and com-
putation time related to FFTs. Moreover, as other opera-
tions and matrices are applied to the result of the FFT, we
save additional computation effort and memory because
of not having to store the symmetrical parts of auxiliary
matrices such as kappa.

4.4 SSE Optimization and NUMA Support
The final version of the C++ code benefits from a careful
optimization of all element-wise operations in order to
utilize streaming extensions such as SSE and AVX. Some
of the routines were revised so that the C++ compiler
could utilize automatic vectorization to produce a highly
optimized code. In the cases it was not possible to do so,
the compiler intrinsic functions had to be used for rewrit-
ing the particular routines from scratch.

Finally, as the Tyan servers are based on the Non-
Uniform Memory Access (NUMA) architecture, some
policies preventing threads and memory blocks to migrate
among cores and local memories have been incorporated
into the code. First, all the threads are locked on CPU
cores using an OS affinity property. Secondly, the shared
memory blocks for all the matrices are allocated by the
master thread and immediately initialized and distributed
into local memories using a parallel first touch policy
(Terboven, C., Mey, D., et.al. 2008). As the access pat-
tern remains unchanged for element-wise routines, the
static OpenMP scheduling guarantees all the matrices
remain in the local memories. The only exception is the
FFT computation, fortunately handed by FFTW library.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

46

4.5 Execution Time Comparison
This section presents the first results of the C++ imple-
mentation and compares the execution time with the
Matlab version on a dual Intel Xeon system with 12 phys-
ical cores and 24GB RAM memory.

Figure 3 shows the relative speed-ups of four different
C++ implementations against Matlab and their dependen-
cy on the number of CPU threads. All the C++ versions
utilize the FFTW library compiled with OpenMP and
SSE extensions under single precision. Matlab could use
all CPU cores (12) and worked also with single precision
in all cases. It can also be noted the server is equipped
with the Intel Turbo technology raising the core frequen-
cy up to 3.2GHz under one thread workload and decreas-
ing the frequency to 2.66GHz under full 12 thread load.

The C2C, naïve implementation represents the sim-
plest implementation of the problem. Although very sim-
ple, it is able to outperform Matlab by about 26%. Opera-
tion fusion brings an additional significant improvement.
Utilizing all 12 cores, the results are produced in 2.7
times shorter execution time. Replacing Complex-to-
Complex (C2C) FFTs with the Real-to-Complex (R2C)
ones and reducing some matrices sizes led to an addition-
al reduction in execution time. This version of C++ code
is up to 5.2 times faster than Matlab. Finally, revising all
element-wise operations to exploit vector extensions of
the CPUs and implementing basic NUMA policy, we
reached speed-ups of 8.4 times.

Analysing and profiling the C++ code, we learn that
nearly 58% of execution time is consumed by FFTs (see
Table 1). The other operations take only a fraction of the
time. Unfortunately, they cannot be optimized as one,
because of intermediate FFTs.

For larger problems, the memory requirements of the
complex-to-complex C++ and Matlab codes are very
close. The reduction of memory requirements in the real-
to-complex version is about 20% considering that most of
matrices remained unchanged.

A real-word example has also been examined. The
domain size was set to 768x768x256 grid points and 3000
time steps simulated. Matlab needed 27 hours and 11
minutes to compute the result and consumed about 17GB
of RAM memory. C2C version with operation fusion
took 8 hours and 16 minutes to complete the task and
16.8GB of RAM memory. R2C version finished after 4
hours and 55 minutes using 13.3GB of RAM. The final
version of the code reduced the execution time to 3 hours
and 22 minutes. Recalling our hypothetical simulation
example mentioned earlier, this would decrease the com-
putational time from 145 days to 17 days.

Another important observation is the execution time
necessary to perform an iteration of the loop. Assuming
the real-world simulation space size of 768x768x256, and
3000 time steps, every iteration takes about 4.1s. As it is
not possible to execute multiple iterations at a time, this is
the granularity of parallelisation. Moreover, during this
time the entire 13GBs of memory will be touched at least
once.

Naturally, the outputs from the C++ version and
Matlab version have been cross-validated with relative
error lower than 10-6 for the domain sizes up to 2563, and
10-4 for domain sizes up to 768x768x256 grid points.

Figure 3: Relative speed-up of C++ against Matlab
using a domain size of 2563 and 1000 time steps.

% of time Routine

30.84 Inverse FFT

26.73 Forward FFT

3.61 BonA.*(rhox + rhoy + rhoz).^2./(2*rho0)

3.46 Sum_subterms_on_line_12

3.10 rho0.*(duxdx+duydy+duzdz)

2.81 rhox + rhoy + rhoz

2.67 Compute_rhox

2.52 Compute_rhoy

2.42 Compute_rhoz

2.30 Compute_uy_sgy

2.16 Compute_uy_sgx

2.02 Compute_uy_sgz

15.36 Other operations

Table 1: Execution time composition of the C++ code.

5 Towards the Utilization of Multiple GPUs
In order to be able to solve real-world ultrasound propa-
gation simulations in reasonable time, we need to reduce
the execution time by an order of magnitude at least. For
this reason we would like to utilize up to 7 GPUs placed
in the Tyan server to provide the necessary computational
power as well as very high memory bandwidth.

First, we would like to start with one GPU and create
a CUDA implementation of the simulation code. The
most time consuming operations are the fast Fourier
transformations. On the CUDA platform, the cuFFT li-
brary can be used. This library is provided directly by
NVIDIA and runs on a single GPU (CUDA Math Librar-
ies 2011). All other element-wise operations can be di-
rectly implemented as simple kernels, as the element-wise
operations are embarrassingly parallel. On the other hand,
these operations cannot benefit from the on-chip shared
memory exploitation of which is often the key factor in
reaching peak performance (Sanders and Kandrot 2010).
This limitation can be partially alleviated by employing
CUDA texture memory and its automatic caching.

There are a few strategies how to split the work among
multiple GPUs. The obvious way is to calculate each di-
mension independently on a different GPU with the final
pressure calculation performed on a single one. Looking
at the listing shown in Figure 1, we can notice that nearly
entire loop can be dimensionally decomposed. That is
within each time step, the calculations for the x, y and z
dimensions can be done independently. The only excep-

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12

R
el

at
iv

e
sp

ee
d-

up

Number of CPU threads

Speed-up of the C++ code against Matlab

C2C, naïve

C2C, fusion

R2C, fusion

R2C, SSE, NUMA

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

47

tion is line 12, where all three dimensions are necessary
to compute the new pressure matrix. This could potential-
ly utilize 3 GPUs for dimension independent calculations
while only a single GPU for the final calculation.

Another strategy is to divide the computation of each
operation among multiple GPUs. There is another reason
to go this way. Utilizing only a single GPU or dimension
partition scheme we are strictly limited by the GPU on-
board main memory size, which is 1.5GB per GPU in our
situation. This value is pretty small compared with 24GB
of server main memory and does not allow us to treat
larger simulation spaces. If we cut the loop into the
smallest meaningful operations we would need two
source 3D matrices and a destination one to reside in on-
board GPU memory. This would allow us to solve prob-
lems with dimensions sizes up to 5123 grid points in sin-
gle precision. Our hypothetical example would be intrac-
table because total memory required would be 1.7GB.

Dividing element-wise operations among multiple
GPUs is straightforward. We can employ a farmer-
workers strategy where a farmer (CPU) divides chunks of
work to do. We can imagine a chunk as several rows of
multiple 3D matrices that are necessary to compute sev-
eral rows of a temporary result.

Currently, cuFFT does not run over multiple GPUs.
Fortunately, the 3D FFT can be decomposed into a series
of 1D FFTs calculated in the x, y and z dimensions and
interleaved by matrix transpositions. Considering this,
one possible scenario is that the CPU distributes batches
of 1D FFTs over all 7 GPUs to compute the 1D FFT in
the x dimension. Then a data migration is performed via
CPU main memory or using the newly introduced CUDA
peer-to-peer transfers followed by calculation of 1D FFTs
in the y dimension etc. (An alternative strategy would be
to use 2D FFTs on each GPU, with a transpose at the end
of the 2D FFTs.)

As in many other distributed schemes, the overall per-
formance will be highly limited by memory traffic, and in
this case, also by the PCI-Express bandwidth. We must
not forget that we will need to force tens of GBs through
the PCI-Express which has a theoretical peak bandwidth
of 8GB/s.

In order to gain necessary experience with our Tyan
servers with 7-GPUs, we have designed several bench-
marks to verify the key parameters of the servers such as
PCI-Express bandwidth, zero-copy memory scheme, and
peer-to-peer transfers among multiple GPUs. All these
operations are going to be utilized in our future ultra-
sound code.

5.1 Peak PCI-Express Bandwidth with Respect
to CPU Memory Allocation Type.

Having a good knowledge about PCI-Express characteris-
tics, behaviour and performance is a key issue when de-
signing and implementing GPGPU applications. As all
data processed on the GPU (device) has to be transported
from CPU (host) memory to device memory and the re-
sults back to the host memory to interpret on the CPU,
PCI-Express can easily become a bottleneck debasing any
acceleration gained using this massively parallel hard-
ware. Considering the peak CPU-host memory bandwidth
is 25GB/s and the peak GPU-device memory bandwidth

is 160GB/s, the theoretical throughput of PCI-Express
x16 of 8GB/s is likely to be a place of congestion.

Any data structure (3D matrix or 1D vector in our
case) designated for host-device data exchange has to be
allocated on the host and device separately. Allocating
memory on the device (GPU) side is easy as there is only
one CUDA routine for this purpose. On the other hand,
we need to distinguish between three different types of
host memory allocation each intended for a different pur-
pose:

• C/C++ memory allocation routines
• Pinned memory allocation with a CUDA routine
• Zero-copy memory allocation with a CUDA routine
C/C++ memory allocation routines such as malloc

or new serve well for simple CUDA (GPGPU) applica-
tions. Their advantages are compatibility with non-
CUDA applications and simple porting of C/C++ code
onto the CUDA platform. However, using C/C++
memory allocation leads to PCI-Express throughput deg-
radation caused by a temporary buffer for DMA introduc-
ing a redundant data movement in host memory. Moreo-
ver, only synchronous data transfers can be employed
preventing communication-computation overlapping and
sharing of host structures by multiple GPU and CPU
cores.

A pinned memory allocation routine provided by
CUDA marks an allocated region in host memory as non-
pageable. This region is thus permanently presented in
host memory and cannot be swapped onto disk. This ena-
bles Direct Memory Access (DMA) to this buffer, pre-
venting any redundant data movement and allowing the
buffer to be shared between multiple CPU cores and
GPUs.

Zero-copy memory is a special kind of host memory
that can be directly accessed by a GPU. No GPU memory
allocations and explicit data transfers are needed any
more. Data is streamed from host memory on demand.
This is useful for GPU applications only reading input
data or writing results once. However, this kind of
memory allocation is extremely unsuitable for iteration-
based kernels. It is important to note this has an impact on
the ability of the CPU to cache this data and thus repeated
accesses to the same data locations tend to be very slow.
A possible scenario is that a CPU thread fills an input
data structure for a GPU and never touches it again; the
GPU reads it only once using zero-copy memory allow-
ing a good level of computation and communication over-
lap.

Figure 4 shows the influence of host memory alloca-
tion type on the execution time needed to compute an
element wise multiplication of 128M elements (5123).
First, three matrices are allocated on the host using a par-
ticular allocation type. After that, the matrices are up-
loaded into device memory (not in the case of zero-copy).
Now, an element-wise multiplication kernel is run. The
result is written into device memory and then transferred
to host memory (not in case of zero-copy). The figure
clearly shows the overhead of standard C memory alloca-
tion routines over the CUDA ones.

Zero-copy memory seems to be very suitable for our
purposes. Although, the k-space method is iterative by
nature, we are limited by the device memory size that
does not allow us to store all global data (13GB) in

CRPIT Volume 127 - Parallel and Distributed Computing 2012

48

Figure 4: Time necessary to transfer two vectors of
128M elements to the GPU, perform element-wise

multiplications, and transfer the resulting vector back
to the CPU.

device memory even if we distribute the data over all 7
GPUs. Instead, we can leave some constant matrices in
host memory and stream them to particular GPUs on de-
mand. This perfectly suits line no. 6 in Figure 1, see be-
low:

duxdx = real(ifftn(bsxfun(@times

 ddx_k_shift_neg, kappa .* fftn(ux_sgx))));

First, the 3D FFT of the matrix ux_sgx is calculated

using a distributed version of cuFFT. The result is left in
the device memory. Now we need to multiply the result
of the forward FFT by the matrix kappa. As we need
any element of kappa exactly once, there is no benefit in
transferring the kappa matrix to the GPU. Instead, we
could stream it from host memory using zero-copy
memory. After that, we upload ddx_k_shift_neg
vector into texture memory, because each element is read
many times while expanding it to a 3D matrix on the fly
and multiplying with the temporary result of the previous
operation. Finally, the inverse 3D FFT is started using the
data placed in the device memory.

5.2 Peak Single PCI-Express Transfer Band-
width

Having chosen an appropriate memory allocation on the
host side, we focused on measuring PCI-Express band-
width between CPU and GPU taking into account differ-
ent data block sizes starting at 1KB and finishing at
65MB. As the CPU has to serve multiple GPUs simulta-
neously, it is crucial to know the speed at which the CPU
could feed the GPUs.

As the Tyan servers are special-purpose servers with
a unique architecture using two IOH north bridges and
PEX bridges, the peak bandwidth between the host and
single devices was investigated in order to verify the
throughput of different PCI-Express slots in both direc-
tions.

The experimental results are summarized in Figure 5.
The measurements were repeated 100 times and averaged
values were plotted. It can be seen that for small data
blocks the PCI-Express bandwidth is degraded and reach-
es only a small fraction of the theoretical value of 8GB/s
in one direction. In order to utilize the full potential of
PCI-Express, data blocks with sizes of 500KB and larger

 have to be transferred. The smallest chunk of data we can
possibly upload to the GPU is one row of a 3D matrix,
which for the size of interest represents 3KB. This is ob-
viously too fine-grained a decomposition and we will
have to send hundreds of lines in one PCI-Express trans-
action. This does not pose a problem, because a typical
number of rows to process is in order of hundreds of
thousands. The figure also reveals that device to host
transfers are slightly faster than host to device ones.

A surprising variation in the peak bandwidth when
communicating with different devices was observed. On
one Tyan server, the first three GPUs are 2GB/s slower
than the other four when transferring data from GPU to
CPU memory. Although there are small oscillations from
experimental run to experimental run, the results did not
change significantly. We tried to physically shuffle the
GPUs between slots but the results remained virtually
unchanged. One explanation is that first three GPUs are
connected to the Intel IOH chipset that is also responsible
for HDDs, LANs, VGA, etc. On the other hand this does
not explain the situation on the second Tyan server where
GPUs 3, 4, 5 and 6 are significantly slower. Considering
that both motherboards are the same, other peripheries
should be connected to the same Intel IOH chipset. These
results have also been cross validated with well-known
SHOC benchmark proposed by Danalis at al. (2010).

5.3 Peak PCI-Express Bandwidth under Mul-
tiple Simultaneous Transfers

The second set of benchmarks investigates the PCI-
Express bandwidth when communicating with multiple
GPUs that is essential for work distribution over multiple
GPUs. In all instances, pinned memory was used and four
different transfer controlling (farmer) patterns considered:

• A single CPU thread distributes the data over multi-
ple devices using synchronous transfer.

• Multiple CPU threads distribute the data over multi-
ple devices using synchronous transfers. Each de-
vice is served by a private CPU thread.

• A single CPU thread distributes the data over multi-
ple devices employing asynchronous transfers.

• Multiple CPU threads distribute the data over multi-
ple devices by asynchronous transfers.

As each pair of GPUs share 16 PCI-Express links via
a PEX bridge and different pairs are connected to differ-
ent chipsets with NUMA architecture, we have investi-
gated communication throughput in these configurations:

(1) A pair of devices communicating with the host.
(2) Two devices belonging to different pairs com-

municating with the host.
(3) All even devices communicating with the host.
(4) Two pairs of devices communicating with the host.
(5) All seven devices communicating with the host.
The experimental measurements shown in Figure 6

demonstrate that a single CPU thread with synchronous
transfers cannot saturate the PCI-Express subsystem of
the Tyan servers; the peak bandwidth always freezes at
the level of a single transfer. On the other hand, all re-
maining approaches are comparable, so there is no need
to use multiple CPU threads to feed multiple GPU with
data. We can employ the remaining CPU cores to work
on tasks that are not worth processing on a GPU.

1.967

0.274 0.238

0

0.4

0.8

1.2

1.6

2

C malloc Pinned Zero-copy

T
im

e
to

 c
om

pu
te

 [
s]

Time to compute an element-wise multiplication
with 128M elements

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

49

The second observation that can be made reveals the
difference between the host to device and the device to
host peak bandwidth. Whereas device to host transfers are
limited by the 5.8GB/s, transfers managed by host scale
up to 10.2GB/s (see Figure 6). We can conclude the de-
vice to host transfers are limited by the throughput of
a single PCI-Express 16 cannel while host to device by
the QPI interconnection.

Table 2 presents the peak bandwidth in different con-
figurations using one CPU thread and asynchronous
transfers with respect to the numbering above. In all cas-
es, device to host transfers cannot exploit the potential of
the underlying architecture. In case (4), two different val-
ues were observed depending on the location of the pair.
As we have mentioned before, the first three PCI-Express
slots are slower than the other four. This leads to the fact
that the first two pairs are slower than the other ones. The
upper limit for host to device transfers lies around the
10GB/s level possibly limited by the QPI interconnection.

5.4 Peak Peer-to-Peer Transfers Bandwidth
One of the new features introduced in CUDA 4.0 is
a peer-to-peer transfer. This feature enables Fermi based
GPUs to directly access memory of another device via
PCI-Express bypassing host memory. Data can be re-
motely read, written or copied. As peer-to-peer (p2p)
transfers could serve the data exchange phase of distrib-
uted FFTs, we have investigated the performance of this
technique and compared the results with user implement-
ed device-host-device (d-h-d) transfers.

The Fermi GPU cards are only equipped with one
copy engine, this device cannot act as source and destina-
tion of a peer-to-peer (p2p) transfer at the same time.
Nevertheless, having seven GPUs we can create several
scenarios where multiple devices are performing p2p
transfers simultaneously. Also, we can use synchronous
and asynchronous p2p transfers.

Figure 7 shows a comparison of p2p and d-h-d trans-
fers running on two devices in different pairs, namely
GPU 0 and GPU 1. We can see that the new p2p tech-
nique brings a significant improvement over the d-h-d
transfer where the data has to be downloaded from the
source device and, after that, uploaded on the destination
device. The situation rapidly changes when performing
multiple p2p transfers. The synchronous transfers become
a bottleneck and asynchronous ones exploit more band-
width. Figure 8 presents the performance of three simul-
taneous pairwise transfers (GPU 1 -> GPU 2, GPU 3 ->
GPU 4, and GPU 5 -> GPU 6) where each device is either
source or destination and all sources and destination are
connected to different PEXs.

A d-h-d transfer in its asynchronous form consists of
two phases. In the first phase, data packages are down-
loaded from all source devices and placed in host
memory in asynchronous way. After synchronization the
data packages are distributed over destination devices
also in asynchronous way (more transfers at a time).

From the figure, CUDA 4.0 does not seem to be opti-
mized for multiple simultaneous p2p transfers and user
managed device-host-device transfers win. The difference
is about 800MB/s. Taking into account this finding, it
appears that it is better to implement highly optimized

Pattern Host to Device Device to Host
(1) 6GB/s 6.5GB/s

(2) 10GB/s 6.8GB/s

(3) 10GB/s 5.2GB/s

(4) 10GB/s 5.2 / 6.8GBs

(5) 10GB/s 5.4GB/s

Table 2: Peak bandwidth of multiple simultaneous
transfers in different configurations.

device-host-device transfers that also involve CPU cores
in data rearrangement and migration.

6 Discussion and Conclusion
This paper outlines our effort to migrate a compute inten-
sive application of ultrasound propagation simulation to
a cluster computer where each node has seven NVIDIA
GPUs. The preliminary results from the CPU implemen-
tations have shown a speed-up of up to 8.4 compared to
the original Matlab implementation. Given the computa-
tional benefits of using the k-space method compared to
other approaches, this is a significant step towards creat-
ing an efficient model for large scale ultrasound simula-
tion.

As the architecture of the Tyan 7-GPU server is not
very common, we have examined a number of its specifi-
cations. We have designed several benchmarks that have
revealed the behaviour of the PCI-Express subsystem.

In order to achieve the highest possible performance,
we have to distribute the work over all seven GPUs. The
CPU implementation of the code has revealed a low
computation-memory access ratio. The asymptotic time
complexity is only O(n) = n log n. From the realistic ex-
periments we found the CPU time for a single iteration is
about 4.1s while global data of almost 13GBs has to be
touched at least once.

Considering we could rework the code to access any
element exactly once, and taking into account reachable
CPU-GPU bandwidth, a naïve GPU based implementa-
tion would spend 2.1s or 1.3s distributing the data over
one or multiple GPUs, respectively. Assuming all com-
munication can be overlapped by computation using zero
copy memory and the presence only one copy engine on
a GPU, the realistic speed-up of a naïve implementation
over a CPU one would be limited by 1.5 or 3.2 for one or
multiple GPUs respectively.

On the other hand, if we accommodated all data in the
on-board GPU memory we could reach much higher
speed-up. Such an experiment has been carried out using
a Matlab CUDA extension and a single NVIDIA Tesla
GPU with 6 GB of memory and 448 CUDA cores. Using
a domain size of 2563 we have reached a speed-up of
about 8.5 (compared to Matlab code), which is close to
our CPU C++ implementation. Assuming we can opti-
mize the GPU implementation in a similar way as in the
CPU case, we may be able to improve on the Matlab
CUDA code significantly.

The appropriate data distribution is going to play a key
role in the application design. One way to reduce the data
set is to calculate some matrices on the fly, exchanging
spatial complexity for time complexity. Another possibil-
ity is to employ fast real-time compression and decom-
pression of the data making the chunks smaller to transfer

CRPIT Volume 127 - Parallel and Distributed Computing 2012

50

through PCI-Express and between GPU on-board and on-
chip memory. As many of the matrices are constant, the
compression would have to be done only once. As long as
we know that using asynchronous transfer one CPU core
is sufficient to feed all seven GPUs, the remaining cores
could execute other tasks that are not worth migrating to
GPUs.

Data migration between GPUs will play another key
role. Provided that we also need to perform data migra-
tion as a part of distributed FFT, we have revealed that
the present CUDA 4.0 is not optimized for multiple sim-
ultaneous peer-to-peer transfers bypassing the host
memory and thus, this communication pattern will have
to be implemented as a composition of common device to
host and host to device transfers.

7 Acknowledgments
This work was supported by the Australian Research
Council/Microsoft Linkage Project LP100100588.

8 References
Becker, D., Sterling, T., et al. (1995): Beowulf: A Parallel

Workstation for Scientific Computation, Proc. Interna-
tional Conference on Parallel Processing, Ocono-
mowoc, Wisconsin, 11-14.

Kirk, D., and Hwu, W. (2010): Programming Massively
Parallel Processors: A Hands-on Approach, Morgan
Kaufmann.

Danalis, A., Marin, G., McCurdy, C., Meredith, J., Roth,
P., Spafford, K., Tipparaju, V., Vetter, J (2010). The
Scalable HeterOgeneous Computing (SHOC) Bench-
mark Suite. Proceedings of the Third Workshop on
General-Purpose Computation on Graphics Processors
(GPGPU 2010).

Sanders, J. and Kandrot E. (2010): CUDA by Example:
An Introduction to General-Purpose GPU Program-
ming, Addison-Wesley Professional.

Treeby, B. E. and Cox, B. T. (2010): k-Wave: MATLAB
toolbox for the simulation and reconstruction of photo-
acoustic wave fields. Journal of Biomedical Optics.
15(2):021214.

Treeby, B. E., Tumen, M. and Cox, B. T. (2011): Time
Domain Simulation of Harmonic Ultrasound Images
and Beam Patternsin 3D using the k-space Pseudospec-
tral Method. Medical Image Computing and Computer-
Assisted Intervention, 6891(1): 369-376, Springer, Hei-
delberg.

Tabei M., Mast T. D. and Waag, R. C. (2002): A k-space
method for coupled first-order acoustic propagation
equations. Journal of Acoustical Society of America.
111(1):53-63.

Terboven, C., Mey, D., et.al. (2008): Data and Thread
Affinity in OpenMP Programs. Proceedings of the
2008 workshop on Memory access on future processors
(MAW ’08), New York, NY, ACM, 377–384.

CUDA: Parallel computing architecture, NVIDI
http://www.nvidia.com/object/cuda_home_new.html,
Accessed 15 Sep 2011.

CUDA Math Libraries Performance 6.14, NVIDIA,
http://developer.nvidia.com/content/cuda-40-library-
performance-overview, Accessed 15 Sep 2011

FFTW: Free FFT library, http://www.fftw.org/. Accessed
13 Sep 2011.

Matlab: The Language of technical computing, Math-
Works, http://www.mathworks.com.au/products/matlab
/index.html, Accessed 15 Sep 2011.

OpenMPI: Open Source High Performance Computing,
The Open MPI project, http://www.open-mpi.org/, Ac-
cessed 15 Sep 2011.

TYAN Computer: Tyan FT72B7015 server barebone,
http://www.tyan.com/product_SKU_spec.aspx?Product
Type=BB&pid=439&SKU=600000195, Accessed 15
Sep 2011.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

51

Figure 5: Peak bandwidth between host and a single device in both directions influenced by transported block
size.

Figure 6: Peak bandwidth when host is communicating with all 7 GPUs in both directions.

Figure 7: Peak bandwidth of a single peer-to-peer transfer and device-host-device transfer.

Figure 8: Peak bandwidth of multiple p2p and d-h-d transfers using three disjoint source-destination pairs.

0

1

2

3

4

5

6

7
1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Host to Device Bandwidth

GPU 0 GPU 1

GPU 2 GPU 3

GPU 4 GPU 5

GPU 6

0

1

2

3

4

5

6

7

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Device to Host Bandwidht

GPU 0 GPU 1

GPU 2 GPU 3

GPU 4 GPU 5

GPU 6

0

2

4

6

8

10

12

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Host to Device Bandwidth
All 7 GPUs

SEQ_SYNC

SEQ_ASYNC

PAR_SYNC

PAR_ASYNC

0

1

2

3

4

5

6

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Device to Host Bandwidth
All 7 GPUs

SEQ_SYNC

SEQ_ASYNC

PAR_SYNC

PAR_ASYNC

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Peer-to-peer and device-host-device transfer
using GPU0 and GPU1

p2p

d-h-d

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 7 10 13 16 19 24 30 36 42 48 70 10
0

40
0

70
0

10
00

31
48

62
20

92
92

12
36

4
15

43
6

20
55

6
26

70
0

32
84

4
45

13
2

57
42

0

GB/s

Block size [KB]

Peer-to-peer and device-host-device transfer
GPUs transfers: 1 ->2, 3 ->4, 5 ->6

p2p, sync

d-h-d, sync

p2p, async

d-h-d, async

CRPIT Volume 127 - Parallel and Distributed Computing 2012

52

Scaling Up Transit Priority Modelling Using High-Throughput
Computing

Mahmoud Mesbah
School of Civil Engineering,
University of Queensland,

Australia
Mahmoud.Mesbah@uq.edu.au

Majid Sarvi
Dept. of Civil Engineering,

Monash University,
Australia

Majid.Sarvi@monash.edu

Jefferson Tan
Faculty of I.T.,

Monash University,
Australia

Jefferson.Tan@monash.edu

Fateme Karimirad
Dept. of Mechanical and
Aerospace Engineering,

Monash University,
Australia

Fatemeh.Karimirad@monash
.edu

Abstract
The optimization of Road Space Allocation (RSA) from a
network perspective is computationally challenging. An
analogue to the Network Design Problem (NDP), RSA
can be classified NP-hard. In large-scale networks when
the number of alternatives increases exponentially, there
is a need for an efficient method to reduce the number of
alternatives while keeping computer execution time of the
analysis at practical levels. A heuristic based on genetic
algorithms (GAs) is proposed to efficiently select Transit
Priority Alternatives (TPAs). The proposed framework
allows for a TPA to be analysed by a commercial package
that is a significant provision for large-scale networks in
practice. We explore alterative parallel processing
techniques to reduce execution time: multithreading and
High-Throughput Computing (HTC). Speedup and
efficiency are compared with that of traditional sequential
GA, and we discuss both advantages and limitations. We
find that multithreading is better when using the same
number of processors, but HTC provides expandability.
Keywords: transport modelling, genetic algorithm, high-
throughput computing, high-performance computing

1 Introduction
With ever-increasing travel demands, traffic congestion
has become a challenge for many cities around the world.
Construction of new roads or mass transit is not always
possible, and reallocation of road space between transit
vehicles and cars has emerged as a solution. Mesbah et al.
(2011a, 2011b) proposed a bi-level optimization program
for road space allocation (RSA). The objective was to
identify the roads on which a bus lane should be
introduced. The authors showed that this Mixed Integer
Non-Linear (MINL) formulation is an NP-hard problem
and is therefore computationally challenging. For large-
scale networks, a heuristic approach is adapted to find
reasonable solutions. This problem can be classified
under the umbrella of Network Design Problems (NDP)
that has a wide range of applications in Engineering. The
network can be for roads, communication, power, water,
or any network with a set of connected nodes and links.

 Copyright 2012, Australian Computer Society, Inc. This paper
appeared at the 10th Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia,
January-February 2012. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 127. J. Chen and R.
Ranjan, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

The goal is to find the optimal combination of links to be
added/modified to minimize a certain objective function.

The RSA problem is NP-hard, so the proposed
optimization methods to large-scale problems requires
extensive computational power, feasible with advanced
techniques such as High-Performance Computing (HPC)
(Strohmaier et al., 2005). While the term was applied
broadly at first (Dongarra et al., 2005), HPC today
typically applies to a tightly coupled system of many
shared memory processors, particularly important when
jobs must communicate among themselves. An
alternative is High-Throughput Computing (HTC), aimed
at providing large amounts of processing capacity taken
together over a long period of time (Thain et al, 2005).
Many Task Computing bridges the gap between HPC and
HTC (Raicu et al., 2010), whether or not there are many
long duration tasks, and regardless of the number of
processors per computer. The common goal is to support
simultaneous computations, where a long process is
divided into small tasks, which are distributed across a set
of interconnected processors to execute separately,
simultaneously. Results are then gathered and combined.
While HPC taken broadly may apply, the work described
in this paper focuses on the HTC approach to distinguish
the use of several independent computers on a network,
as against our previous work using a single
multiprocessor (Mesbah et al., 2011a). We demonstrate
the application of HTC to solve a large-scale optimization
problem in Transportation Engineering.

The proposed RSA is formulated as bi-level
optimization. The upper level formulates an objective
function and a set of constraints from the system
managers’ perspective. The lower level consists of user
behavioural models, which requires a complex
optimization program on its own. A number of
commercial packages are available in order to analyse the
user behaviour at the lower level, one of which is
employed in this research. Many transport networks are
already modelled in commercial packages, so there are
benefits to sticking with them. Transport authorities have
invested heavily in developing these models and already
have confidence in their performance. Moreover, many
transport planners are already trained to work with them.
However, there are certain challenges in dealing with
commercial applications such as we have had to do. We
use a package called Visum. It requires Microsoft
Windows, and uses a dongle for license management. The
installer is more than 700MB, and requires interactive
installation. While it can use multithreading on a machine
with many processors (cores) and lots of memory, the

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

53

cost of such a machine can be prohibitive, and there are
physical upper limits on cores and memory on any given
machine. On the other hand, like other packages, it is not
designed for HTC environments. Apart from a cluster,
HTC can also be through a computational grid. This is an
extensible aggregation of computational resources, such
as clusters, belonging to independent organizations
(Foster et al., 2001). Grids traditionally consist of Linux
resources, while many engineering applications run on
the Windows platform. Grids commonly support non-
commercial applications with standard libraries provided
almost out of the box, so a distributed execution of such
applications is normally straightforward. RSA
computations speed up if workload is distributed across
such environments, but the nature of grids conflicts with
the conditions for commercially licensed software.
Licenses are typically limited to individual organizations
while grids span across a virtual organization (VO) of
several member organizations that remain autonomous.
One cannot install or execute on just any resource, and
such resources are normally not uniform anyway. We
therefore have these three interesting challenges:

1. We use Visum, which requires Windows.
2. This is a commercial package and the source code

is not accessible for reprogramming.
3. It must be pre-installed on each compute node

with a large installer of over 700MB.
The proposed method can apply to many engineering

applications where an iterative procedure is carried out
using a commercial software package. A point we wish to
make is that, despite the challenges, HTC can make many
engineering applications scalable for large problems,
even where the long runtime used to be a limiting factor.

The next section starts with a limited literature review
on transit priority and continues with the bi-level
optimization formulation. Then a solution algorithm is
presented, based on a genetic algorithm (GA). It is
implemented for (1) a single CPU on one machine, (2)
multiple CPUs on one machine, and (3) multiple CPUs on
multiple machines. Details are discussed subsequently, as
is an example. In the last section, the results are discussed
and the major findings are summarized.

2 Research Background

2.1 Road Space Allocation
The introduction of exclusive lanes to transit vehicles is
one way to prioritize transit, an approach known as Road
Space Allocation (RSA) (Black 1991, Currie et al., 2004).
The literature on RSA can be classified into evaluation
studies and optimization studies (see Figure 1).

Some evaluation studies focus on the local level, i.e. a
link or corridor, e.g., Black (1991) presented a model on
an urban corridor, evaluating several predefined scenarios
based on total user travel time. Jepson and Ferreira (2000)
assessed different road space priority treatments such as
bus lane and setbacks based on delays in two consecutive
links. Currie et al. (2007) considered a comprehensive list
of impacts of RSA including travel time, travel time
variability, initial and maintenance costs in a local
priority project.

Figure 1. Classification of RSA studies.

Having compared performance measures in the literature,
they proposed an approach to evaluate transit priority
projects. Using the concept of intermittent bus lanes
(Viegas 1996, Viegas and Lu 2004), Eichler and Daganzo
(2006) suggested a new analysis method based on
kinematic wave theory, which can be applied to a long
arterial. At the network level, Bly et al. (1978) explored
exclusive bus lanes to a link in different conditions, and
the impact on the network was assessed using sensitivity
analysis. Waterson et al. (2003) presented a macro-
simulation approach which evaluates a given priority
scenario at the network level. This approach considered
rerouting, retiming, modal change, and trip suppression.
Liu et al. (2006) proposed a similar approach with micro-
simulation. Stirzaker and Dia (2007) applied micro-
simulation to evaluate a major bus lane project in
Brisbane. These studies evaluated a limited number of
alternatives that do not necessarily include the best
possible RSA over the network, and do not propose an
optimization method to find the best set of bus lanes.

A number of studies have approached the problem
using combined RSA optimization in Transit Network
Design Problem (TNDP). Duff-Riddle and Bester (2005)
applied a trip focusing process to design transit routes.
The iterative method was able to put transit routes on the
shortest travel time and shortest distance. The issue of
express buses was also included with minute changes in
the model. Chen et al. (2007) presented a design method
in the form of a mathematical programming model.
However, similar to Duff-Riddle and Bester (2005), the
aim of their method was to design a new bus route.

Having first explored optimal TPAs in an existing
transit network (Mesbah et al., 2008) with a general
framework to find the optimal TPA at the network level,
we have since then introduced a decomposition approach
and a GA approach (Mesbah et al., 2011a, 2011b). This
paper extends our work by employing HTC to reduce the
runtime for large-scale transit networks.

2.2 High-Throughput Computing
HPC is a broad umbrella for a number of different
environments (Strohmaier et al., 2005), but when
performance is measured for many tasks across long
periods of time, we may speak of high-throughput
computing (HTC) (Thain et al., 2005). A neutral term
bridging HPC and HTC is many task computing (MTC),
with little distinction about the size of tasks (Raicu et al.,
2010). Commodity computers can also be organized on
high-speed networks. They are relatively low expenditure
resources, compared to supercomputing facilities.

Road Space Allocation Studies

Evaluation Optimization

Local level Network level Existing
Transit

Network

Transit
Network
Design

CRPIT Volume 127 - Parallel and Distributed Computing 2012

54

Beowulf-class clusters were probably the first (Sterling et
al., 1998) of such environments, providing a queuing
system for submitting and managing computational jobs.
Another environment is the Sun Grid Engine (Gentzsch,
2001), and there are others, which uniformly share a
preference for the UNIX or Linux environment.

Condor (Thain et al., 2005) uses computers that are
normally used for other purposes, e.g., a desktop, and
supports Windows nodes. Condor was originally dubbed
“hunter for idle workstations” (Litzkow et al., 1988), i.e.,
when the user leaves the console for extended periods,
e.g., after hours. This is the case for Monash University’s
SPONGE resource, with up to 1000 cores running on
computer laboratories across campuses during lean
periods and after hours. While most nodes have two cores
with modest memory, SPONGE collectively provides a
considerable HTC resource.

3 Transit Priority Optimization
The RSA problem can be modelled as a ‘Stackelberg
competition’ in which the system manager is the leader
and transport users are followers (Simaan 1977, Bard and
Falks 1982, Yang and Bell 1998, Liu et al., 2008). The
system manager chooses a TPA, and in the subsequent
system, users would choose their mode of travel and a
path in order to maximize their own benefit.

The above design approach is formulated in this paper
as a bi-level optimization program (Shimizu et al., 1997,
Bard, 1998) (see Figure 2). At the upper level are the
objective function and constraints from the system
manager perspective. The upper level determines the TPA
or the links on which priority would be provided for
transit vehicles (decision variables). The aim of the upper
level is to achieve System Optimal (SO) (Sheffi, 1984),
thus the objective function includes a combination of
network performance measures. The corresponding
constraints are included in the upper level constraints.
The upper level can be formulated as follows:

(1)

s.t.,

 (2)

 (3)

Variable definitions can be found in the annotation
section. Note that , where ξp,a is an

element of the bus line-link incident matrix with ξp,a=1 if
bus line p travels on link a and ξp,a=0 otherwise. The in-
vehicle travel time is .

The first two terms in the objective function are the
total travel time by car and bus. The next two terms
represent the various other impacts of these two modes
including emission, noise, accident, and reliability of
travel time. The factors α, β, γ, and η not only convert the
units, but also enable the formulation to attribute different
relative weights to the components of the objective
function (Mesbah et al., 2010). Equation (2) states that

the cost of the implementation should be less than or
equal to the budget. The decision variable is φa by which
the system managers try to minimize their objective
function (Ζ). If φa=1, then a bus lane is introduced on link
a and buses can speed up to free flow speed, while the
capacity of the link for cars is reduced from to

. If φa=0, then buses will travel in the mixed traffic

on a link with a capacity of . They are users who
determine the link flows (x). Link flows are related to the
decision variables by the lower level models.

Figure 2. Outline of the proposed methodology.

At the lower level, it is the users’ turn to maximize
their benefit. Based on the decision variables determined
at the upper level, users make their trips. The traditional
four-step method (Ortúzar and Willumsen, 2001) is
adapted in this paper for transport modelling. It is
assumed that the travel demand and the distribution of
demand are not affected by the location of bus lanes
(these conditions can be relaxed in future studies).
Therefore, the origin-destination matrix remains constant.
The lower level consists of three models: (1) modal split
model, (2) traffic assignment model (car demand), and (3)
transit assignment model (bus demand). Once the demand
is determined, users choose their travel mode. Then, the
car demand segment of the total demand is assigned to
the network. The last step at the lower level formulation
is the assignment of transit demand. Without loss of
generality, in this study, a Logit model is used for the
mode choice (Papacostas and Prevedouros, 1993), a User
Equilibrium (UE) model is adapted for traffic assignment
(Sheffi, 1984), and frequency-based assignment is applied
to transit assignment (PTV AG, 2009). While these
models are used for mode choice and assignment steps,
the proposed HTC framework can be implemented by
many other transport planning models. The lower level
calculations are performed in Visum (PTV AG, 2009). As
previously stated, many cities already use commercial
packages. The proposed framework incorporates them
instead of having to convert the models to other formats.

The bi-level structure, with a linear objective function
and constraints, is NP-hard (Ben-Ayed and Blair, 1990).
To complicate things further, the upper level objective
function and the UE traffic assignment are non-linear. We
employ a GA to find an approximate solution. The output

∑∑∑∑∑
∈∈∈∈∈

++++=
Ba

b
aa

Aa

c
ac

c
a

Ii

b

Ba

b
a

b
a

Aa

c
a

c
a ImpsfImpl

Occ
xwxtxxtxMinZ

i
ηγβα))(()(

BdgExc
Aa

aa ≤∑
∈ '

2

φ

2 1or 0 Aaa ∈∀=φ

∑
∈

=
Lp

appa ff ,ξ

)(xtba

c
aCpc ,0

c
aCpc ,1

c
aCpc ,0

Choose a TPA

Lower Level
(Transport Modelling)

Choose
another

TPA

Upper Level
Calculate the Upper level Objective

Function, Eq (1)

Is the convergence
criterion met? End

No Yes

Start

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

55

of the model is the combination of transit exclusive lanes
which minimizes the proposed objective function.

4 The Genetic Algorithm Solution
A Genetic Algorithm (GA) is an iterative search method
in which new answers are produced by combining two
predecessor answers (Russell and Norvig 2003). Inspired
from evolutionary theory in nature, the GA starts with a
set of answers referred to as the population. Each
individual answer in the population, a chromosome, is
assigned a survival probability, based on the value of the
objective function. The algorithm selects individual
chromosomes based on this probability to breed the next
generation of the population. GA uses crossover and
mutation operators to breed the next generation, which
replaces the predecessor generation. The algorithm is
repeated with the new generation until a convergence
criterion is satisfied. A number of studies applied GA to
transit networks. Two recent examples are a transit
network design problem considering variable demand
(Fan and Machemehl, 2006) and minimization of transfer
time by shifting time tables (Cevallos and Zhao, 2006).

In applying GA to the RSA problem, we define a gene
to represent the binary variable φa, and a chromosome is
the vector of genes (φ) which represents a TPA. A
chromosome (TPA) contains a combination of links on
which an exclusive lane may be introduced (set A2).
Therefore, the length of the chromosome is equal to the
size of A2. The algorithm starts with an initial population
with n chromosomes. The chromosomes of the initial
population are produced randomly. When an initial
chromosome population is produced, they are evaluated
using the lower level models, i.e. the transport planning
models of mode split, traffic assignment, and transit
assignment. This evaluation is the time consuming
component in the GA. Using the flow and travel time
from the lower level, the values of the upper level
objective function (Z) for all chromosomes are
determined. Once the evaluated, the chromosomes are
ranked from the lowest Z value to the highest. The fitness
function, which determines the probability of a
chromosome selection for breeding, is assumed to be an
arithmetic series with the highest probability assigned to
the top chromosome. The probability of the top ranked
chromosome is assumed to be naP /1)1(0 += where 0a
is a constant and n is the population size. Subsequently,
other terms can be calculated using iPiP ×−=> γ)1()1(

where γ is the reduction factor so that 1)(
1

=∑ =

n

i
iP .

11
1)1(

1))1(()1()(

0

21

−

×
=

−

−×
=⇒

=×−+= ∑∑ ==

n
an

n
Pn

iPPiP n

i

n

i

γ

γ

A one point crossover is used in all experiments. The
mutation involves flipping the value of a gene from 0 to 1
or vice versa. When a chromosome is selected for
mutation, one gene from each set of 5 to 8 genes are
flipped. That is about 12 to 20 flips for a chromosome
100 genes long. A common convergence criterion
adapted here is to terminate if the number of iterations
exceeds a predetermined value (maxg) or if the best
objective function value found remains constant for a

number of generations (m). The process above is
summarized in this algorithm:

0. Initialization: Set iteration number (n) to 1, best
solution value or upper bound (UBD) to ∞. Set max
generations (maxg), and number of generations
with same UBD, m.

1. Generate initial population.
2. Evaluation: Calculate the objective function value

for all chromosomes (or TPAs) in the population,
using the transport planning models at the lower
level.

3. Fitness: Determine survival probabilities (fitness)
and update UBD.

4. Convergence: If n>maxg or UBD is constant for m
generations, then stop.

5. Reproduction: Breed a new generation by
performing selection, crossover, and mutation. Go
to Step 2.

5 Implementation of the Genetic Algorithm
The most computationally intensive part of the GA is
Step 2 where TPAs are evaluated. One evaluation
involves running the four-step modelling for a network,
which may take as long as a few hours on a typical
desktop. Furthermore, the GA requires a large number of
TPA evaluations, depending on the number of decision
variables and attributes, e.g., probabilities of crossover
and mutation. At this point, we decompose the processes
in order to execute them in distributed fashion. This
approach significantly reduces execution time.

The steps of Genetic algorithm in terms of dependency
of processes are of two types. First is the evaluation step
(Step 2). The evaluation of an individual chromosome (or
TPA) is independent of other chromosomes (or TPAs) in
a generation, which gives us a number of processes that
can be executed independently. The second part of the
GA involves fitness, convergence, and reproduction
(Steps 3 to 5). These steps integrate the individual
evaluations of Step 2 where the processes are
interdependent. On the basis of the dependency attribute,
two variants of the GA are proposed in the literature
(Haupt et al., 2004, Goldberg, 2002, Cantú-Paz, 2000):
serial (SGA) and parallel (PGA). Figure 3 illustrates
these two variants. In SGA, all processes are carried out
in a sequence, which means that, in Step 2, evaluation of
a chromosome is completed before the evaluation of
another chromosome is started. Then Steps 3, 4, and 5 are
completed to produce another generation and then we
cycle back to Step 2 (Figure 3 (a)). However, in PGA,
evaluations are performed simultaneously. Therefore,
Step 2 is executed in parallel, which is then followed by
Steps 3, 4, and 5 in a sequence (see Figure 3(b)). SGA is
simpler to implement, and details are explained in the
next section. For PGA, we use two techniques of
implementation: multithreading with multiple cores on
one machine or HTC over several machines in a network.

5.1 Parallel GA - Multithreading (MT)
An operating system (OS) creates threads to run
software. To run multiple applications simultaneously,
multiple threads can be processed at a time, i.e.,

CRPIT Volume 127 - Parallel and Distributed Computing 2012

56

multithreading, if the machine supports multiple cores
(Akhter and Roberts 2006, Evjen, 2004). To implement
PGA by multithreading, the architecture of Figure 3(b) is
used. The number of threads is selected equal to the
number of processing cores on a machine (say p) plus a
main thread. The main thread is reserved to control the
flow of the GA from the start to the end. The main thread
performs the fitness, convergence, and reproduction
steps. The remaining p threads are used to execute TPA
evaluations (objective function). When a generation is
produced (see Figure 3(b)), n TPAs are queued for
evaluation. The first p jobs in the queue are assigned p
available threads. Once these p TPAs are evaluated, the
next p TPAs are assigned. The next generation is
produced when all TPAs are evaluated.

The speedup achieved depends on the number of cores
on a machine and the efficiency of the OS in supporting
multithreading. We implemented multithreading in
Windows since the TPAs are evaluated by Visum, which
requires Windows. The latter is commonly criticized for
its performance, but there will always be cases where
performance declines when the number of threads
exceeds the number of cores (Akhter and Roberts, 2006),
regardless of the OS. In that case, the OS must time-share
the limited cores among so many executing threads, and
we incur “time slicing” overhead. Moreover, the
maximum number of cores that can go into one machine
is subject to space and temperature constraints. There can
also be a limit to gains due to memory latency and cache
conflicts (Athanasaki et al., 2008). There is thus a cap on
the speedup in multithreading, and the cost of purchasing
many cores and supporting hardware can be high.

However, with TPA evaluations performed with
commercial software, multithreading saves considerably
on license costs for some packages. For example, one

Visum license is sufficient for one multithreading
execution of the entire model on one machine, but
performance will be constrained to what that machine can
deliver. The next section discusses our HTC approach to
avoid some of the limits of multithreading, although it
requires multiple licenses. Our implementations are in
Visual Basic .NET environment in this study.

A distributed computing approach such as HTC
schedules TPA evaluations to several nodes on a network,
each node having its own set of cores and local memory.
Therefore, there is less of a limit on the number of tasks
that can be executed simultaneously, as the number of
computers in a network is not so tightly bounded. The
trade-off is the complexity of distributing the task to
available computers in the network, manage the queue,
data transfers, provide an inter-process message-passing
system in some cases, then collect and integrate the
results.

5.2 Parallel GA –HTC with Condor
In Figure 3(b), p out of n evaluations in a population can
be run in parallel. The ideal case is when p is equal to n,
which means all n evaluations are done at the same time.
However, as mentioned earlier, the number of threads
supported on a given machine is limited. There are a
number of existing systems for these, such as Condor. It
was originally developed to use computers during idle
periods (Thain et al., 2005), but is now one of the most
flexible and powerful HTC platforms. Computers
participate within a Condor pool. Owners can configure
nodes to donate only some of their time. For example, as
in the case of Monash University, the SPONGE pool
consists of nodes that run from computer labs.

Figure 3. Sequence of components in serial genetic algorithm and parallel genetic algorithm.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

57

They are only used when no one is currently using the
desktop. These lab nodes are all running Windows XP or
Windows 7, which works for us since our TPA
evaluations are performed by Windows-based software.
While issues emerging in adopting a general tool
(HPC/HTC) tool to the RSA problem are tool-specific,
important lessons can be learned. A license server
restricts simultaneous runs of Visum with a hardware.
The license server can run anywhere on the network, and
need not be in the Condor pool. If x computers are in the
network and y licenses are available, the maximum
number of parallel TPA evaluations is p=min(x, y).

The parallel scheduling used in this HTC approach is
to queue n TPA evaluations (the jobs) when a generation
is produced (see Figure 3(b)). The jobs are assigned to the
first set of available nodes. For instance, if p<n nodes are
available, p jobs are assigned and the remaining n-p will
wait in the queue. As soon as a job finishes on one node,
the next queued job is assigned to that node. The next
generation is produced when all TPAs are evaluated.

To evaluate the TPAs, a user submits jobs from the
submission machine. For each job, Condor will copy
input files and the objective evaluation program to the
worker node and execute the program. Once completed,
output data are copied back will be downloaded back to
the submission machine. Some applications can be
launched as a self-contained package, but Visum is not in
that category. It requires interactive installation, with a
700-MB installer, which would require a considerable
amount of time to copy to an execution node, even on a
fast network. The solution was pre-installation of Visum
on a subset of Sponge, where the owners were willing.
Condor’s scheduler must be told, upon submission, to
send jobs only to nodes with Visum installed. This can be
effected with Condor’s ClassAd mechanism using custom
ClassAd attributes, but in our implementation, we instead
identified specific Visum-installed machines by name.

Windows differentiates between the local or remote
launch of an application. Windows also consults the user
permissions to run an application either locally or
remotely. A COM server was configured to grant suitable
permissions to launch Condor jobs from a remote user.

6 Numerical Example
Three GA implementations (SGA, PGA-MT, and PGA-
HTC) are applied to an example transit network, the
layout of which is in Figure 4. This grid network consists
of 86 nodes and 306 links. All circumferential nodes
together with Centroid 22, 26, 43, 45, 62, and 66 are
origin and destination nodes. A ‘flat’ demand matrix of
30 persons/hr is traveling from all origins to all
destinations. The total demand for all the 36 origins and
destinations is 37,800 persons/hr. There are 10 bus lines
covering transit demand in the network (see Figure 4).
The frequency of service for the bus lines is 10 minutes.
Parameters used are extracted from those calibrated for
the Melbourne Integrated Transport Model (MITM), a
four-step model used by the Victorian State Government
for planning in Melbourne (Department of Infrastructure,
2004). Vertical and horizontal links are 400m long with
two lanes in each direction and a speed limit of 36 km/hr.
It is assumed that if an exclusive lane is introduced on a
link on one direction, it may not necessarily be introduced

in the opposite direction. There are 120 links (uni-
directional) in the network on which an exclusive lane
can be introduced. These links are highlighted in black
solid line. The following Akcelik cost functions (Ortúzar
and Willumsen, 2001) are assumed for links with an
exclusive lane (Equation (4)) and without (Equation (5)).

(4)

(5)

where t0 determines travel time with free flow
speed, a is length of observation period, b is a
constant, d is lane capacity, and other terms are as
in the Section 8. Each link has 2 lanes, and:

Mode share is determined using a Logit model.

Traffic User Equilibrium (UE) and a frequency-
based assignment is employed to model traffic and
transit assignments, respectively. All these lower
level transport models are implemented using
Visum (PTV AG, 2009). The upper level objective
function includes total travel time and total vehicle
distance. The absolute value of the objective
function can therefore be very large. A constant
value is subtracted from the objective function value
for all evaluations. Hence, the objective function
value is relative. The weighting factors of the
objective function are assumed to be 0.01.
Regarding constraints the budget is assumed to
allow for all candidate links for the provision of bus
priority. The GA includes many parameters to tune.
We suggest a particular set of values as a guideline
in this example. It was assumed that population
size, crossover probability (cp), and mutation
probability (mp) are 40, 0.98, 0.01, respectively.
The example demonstrates the HTC speedup
compared to the serial approach. Although selection
of the GA parameters may vary the absolute value
of the execution time, the time differences on a
relative basis are useful indicators to highlight the
efficiency of the HTC approach. Table 1 describes
seven computers we used in terms of the number of
CPUs, versions of Windows, and of Visum. It
demonstrates HTC incorporating diverse types of
computers and software. Note that some processors
can support two simultaneous threads per core. The
first machine listed has four cores but can support
eight threads, and perform up to eight TPA
evaluations at a time. If all computers were
allocated, 32 evaluations can be carried out
simultaneously, requiring 32 licenses. The last
column in Table 1 is the time spent evaluating one
TPA on each machine. Machine 1 took the least
time at 65 seconds, and Machine 7 was the slowest
at 226 seconds. SGA, PGA by multithreading (MT),
and PGA by HTC are explored.

a
t
bc

a

c
a

c
a

c
a

c
a

c
a

a
c
a tt

Cap
x

ad
b

Cap
x

Cap
xatt ,0,1

,1

2

,1,1
,0,1],)(8)1()1[(

4
3600

=+−+−+=

])(8)1()1[(
4

3600

,0

2

,0,0
,0,0,0 c

a

t
a

c
a

c
a

t
a

c
a

c
a

t
a

c
a

a
b
a

c
a Cap

xx
ad
b

Cap
xx

Cap
xxattt +

+−
+

+−
+

+==

hrvehCap

hrvehCap
hrvehdbhra

c
a

c
a

/900

/1800
/800,4.1,1

,1

,0

=

=

===

CRPIT Volume 127 - Parallel and Distributed Computing 2012

58

Figure 4. Example network with link numbers, origin destination nodes in boxes, and bus lines in parenthesis

Machine CPU Cores Threads Windows Visum Evaluation
Time (s)

1 Intel Core i7
CPU 860 @ 2.8
GHz

4 8 7 64-bit 11.03
64-bit

65

2 Intel Core i7
CPU Q820 @
1.73 GHz

4 8 7 64-bit 11.03
64-bit

147

3 Intel Core 2 Quad
CPU Q6600 @
2.4 GHz

4 4 7 64-bit 11.03
64-bit

101

4 Intel Core 2 Quad
CPU Q6600 @
2.4 GHz

4 4 XP 64-
bit

11.01
32-bit

122

5 Intel Core 2 Quad
CPU Q6600 @
2.4 GHz

4 4 XP 64-
bit

11.01
32-bit

121

6 Intel Core 2 Duo
CPU E8500 @
3.16 GHz

2 2 XP 64-
bit

11.01
32-bit

88

7 Intel Pentium 4
CPU @ 3.2 GHz

2 2 XP 32-
bit

11.01
32-bit

226

Table 1. Computers used in the experiments.

The base experiment (datum) for the MT approach is
performed on Machine 4 with four threads, and for the
HTC approach on Machines 1, 2, 3, and 6, with a total of
22 threads. The approach taken does not affect either the
number of evaluations or the rate of improvement in the
objective function. It does, however, affect the evaluation
time. The minimum objective function value found in a
run with 400 generations was -4.757.

The execution time of SGA is prohibitively long, being
sequential. The number of generations was not carried
past 300. All our four runs evaluated about 1700 TPAs
each by the 50th generation. Although these runs do not
follow exactly the same path in finding minimum, the
trend shows that the value improves gradually at each
successive evaluation. Figure 5 demonstrates the descent
towards the minimum of the objective function value for
two MT and two HTC runs. For comparison purposes, the
SGA runs are also graphed. All approaches take the same
downward trend to the minimum, but the implementation
of the evaluation step results in different execution times.
Three sets of experiments were organized with a
population size of 40, crossover probability (cp) of 0.98,
and mutation probabilities (mp) of 0.005, 0.01, and 0.02.
The change in mp can change the number of evaluated
TPAs. Figure 5 shows the quickest descent to the
minimum of about 7.0 for HTC-1 and HTC-2 at about
100,000 seconds, with up to 32 simultaneous threads
possible. MT-1 and MT-2 are not far behind at about
135,000 and 150,000 seconds, respectively, also to
descend to a minimum of about 7.0. SGA runs went for
much longer. For example, to reach a value of 30, SGA-3
takes about 170,000 seconds (two days) while HTC needs
only 2,000 seconds. SGA-4 with 300 generations
exceeded 5 days!

(10) (10) (10) (10) (10) (10) (10) (10)

(40) (40) (40) (50,60) (50,60) (50,60) (50) (50)

(30) (30) (30) (60) (60)

(50) (50) (50) (30,40) (30,40) (30,40) (40) (40)

(60) (60) (60) (30) (30)

(80) (80) (80) (80) (80) (80) (80) (80)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (3
)

 (3
)

 (3
)

 (3
)

 (3
)

 (3
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (3
0)

 (6
0)

 (3
,3

0)

 (3
,6

0)

 (3
,3

0,
40

,5
0,

60
)

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

59

Figure 5. TPA evaluations in different modes.

Three measures were used in this study: (1) average time
per evaluation (ATE), (2) speedup, which is the ratio of
ATE in one run to the ATE of one SGA run, and (3)
efficiency, which is the ratio of the speedup to the
number of available threads. The speedup and efficiency
of SGA runs are 1. Table 2 shows that ATE does not
change significantly with mp. The number of cores are
more significant, so the ATE for SGA, MT, and HTC
runs are approximately 140, 40, and 14 seconds,
respectively, where the number of cores are 1, 4 and 10,
respectively. The efficiency measure demonstrates that in
return for adding each thread in the MT approach, the
execution time has improved by 80-90%. However, the
efficiency in the HTC approach was just above 50% for
the addition of each thread. There is considerable
overhead incurred with distribution and queuing in HTC.
Table 3 presents the effects of the number of available
threads. Experiment E228 has the lowest ATE at 11.7
seconds. There are some important results in Table 3. The
ATE did not improve when the number of threads went
from 22 to 26. Experiment logs reveal that about 1650
TPA evaluations are performed in each run, to an average
of 33 evaluations per generation. Nevertheless, this is not
uniformly distributed. The TPA evaluations are recorded
to prevent evaluating a TPA twice. Therefore, while the
average number of evaluations per generation is 33, the
first generations evaluate close to 40 (which is the
population size) evaluations, while the last generations
evaluate just over 20 TPAs. When close to 40 TPAs are
being evaluated, both experiments E228 and E230 may
allocate two or less evaluations to a thread. This means
about two evaluations run in sequence. Similarly, when
just above 20 TPAs are being evaluated, both E228 and
E230 have enough threads to run all evaluations
simultaneously. Therefore, an increase of four threads
does not improve execution time. Accordingly, the ATE
in experiment E231 should be similar to E228 and E230,
but it increases instead. We added a very slow Machine 7
to the pool. In the time it takes for it to evaluate one TPA,
other machines can evaluate between two to four.
Machine 7 holds up the other available threads, extending
the evaluation time of each generation.

7 Conclusions and Future Work
We presented a solution to Road Space Allocation using
serial GA, parallel GA with multithreading, and parallel
GA with HTC. The optimum was found regardless of the
GA variant, but performance varied. PGA-MT with four
threads reduced execution time by 3.2 to 3.7 times
compared to SGA, and PGA-HTC with 18 threads by 9.3
to 9.8 times. MT is more efficient, but challenging to use
for large-scale, realistic networks since the number of
threads on a computer is generally constrained. In
contrast, there is practically no limit in the HTC approach
via incremental expansion.

A novel outcome is the successful implementation of
HTC with commercial software on Windows. However,
the overhead of pre-installed commercial software like
Visum cannot be taken for granted. There is considerable
benefit in grid computing, but it is not so accommodating
to commercial packages. A logical follow-up is to explore
cloud computing (Foster et al., 2008) with standard or
custom settings and applications on the cloud resources.
The framework is generic enough to apply to the entire
family of Network Design Problems (NDPs). Applying
the framework to NDP problems in large-scale networks
can be a challenge. Moreover, substitution and
comparison of other heuristic methods with the GA could
be another area of future studies.

8 Notations

: Set of all links in the network,

: Set of links in the network where provision of
priority is impossible,

: Set of links where the provision of priority
(introducing exclusive lane) is possible,

: Set of links with a bus line on them, walking links,

and transfer links,

: Set of bus lines,

: Sum of frequency of service for bus lines on link ,

: Frequency of service for bus line ,

: Length of link ,

 : GA Population size

: Bus service time on link which is equal to running
time plus duel time at stops,

: Travel time on link by mode car () or bus
(), which is a function of flow, with no exclusive lane
(0), with exclusive lane (1)

: Passenger flow on link by car () or bus (),

: Waiting time and transfer time at stops.

: Available budget,

A 21 AAA ∪=

1A

2A

B

L

af a

pf p

al a

n

as a

)(,
,10 xt bc
a− a c

b

bc
ax
, a c b
b
i
w

Bdg

CRPIT Volume 127 - Parallel and Distributed Computing 2012

60

mp
Experiment

Code Approach

Number of
Evaluations on
Generation 50

Execution
Time (sec)

Average time
per

evaluation
Number
of Cores

Number of
Threads

Speed
up Efficiency

0.005 E218 SGA 1649 240618 145.9 1 1 1 1

0.005 E220 MT 1513 59865 39.6 4 4 3.687 0.922

0.005 E219 HTC 1454 21607 14.9 10 18 9.821 0.546

0.01 E210 SGA 1680 241475 143.7 1 1 1 1

0.01 E223 MT 1543 66480 43.1 4 4 3.335 0.834

0.01 E227 HTC 1626 24918 15.3 10 18 9.378 0.521

0.02 E215 SGA 1721 231197 134.3 1 1 1 1

0.02 E224 MT 1714 72237 42.1 4 4 3.187 0.797

0.02 E214 HTC 1683 24204 14.4 10 18 9.343 0.519

Table 2. Comparison of the speedup using MT and HTC approaches.

Ex
pe

rim
en

t
C

od
e

N
o.

 o
f

C
or

es

N
o.

 o
f

Th
re

ad
s

M
ac

hi
ne

 ID

Ev
al

ua
tio

ns

on
 G

en
. 5

0

Ex
ec

. T
im

e
(s

ec
)

A
TE

 (s
ec

)

Sp
ee

du
p

Ef
fic

ie
nc

y

Table 3. Comparison of HTC speedup, varying cores.

: Capacity of link for mode car () or bus (
) with no exclusive lane (0), with exclusive lane (1)

: Cost of implementing an exclusive lane on link ,

: Aggregate weight of operation costs of a car ()
or bus () to the community including: emissions, noise,
accident, and reliability impacts.

: Average occupancy rate for the car mode,

: Weighting factors to convert the units and
adjust the relative importance of each impact in the
objective function, ,

: Equals to 1 if there is an exclusive lane on link , 0
otherwise

9 Acknowledgment
We received generous support from PTV AG, the
Monash e-Research Centre (MeRC), and the Australian
Research Council (ARC) for partial support.

10 References
Akhter, S. and Roberts, J. (2006): Multi-core

Programming: Increasing Performance through
Software Multi-threading, Intel Press.

Athanasaki, E., Anastopoulos, N., Kourtis, K. and
Koziris, N. (2008): Exploring the performance limits of
simultaneous multithreading for memory intensive
applications. Journal of Supercomputing, 44:64-97.

Bard, J. F. (1998): Practical Bilevel Optimization :
Algorithms and Applications, Kluwer, Dordrecht, The
Netherlands.

Bard, J. F. and Falks, J. E. (1982): Explicit solution to the
multi-level programming problem. Computers and
Operations Research, 9:77-100.

Ben-Ayed, O. and Blair, C. E. (1990): Computational
difficulties of bilevel linear programming. Operations
Research, 38(3):556-560.

Black, J. A. (1991): Urban arterial road demand
management - environment and energy, with particular
reference to public transport priority. Road Demand
Management Seminar 1991, Melbourne, Australia.
Haymarket, NSW, Australia, AUSTROADS.

Bly, P. H., Webster, F. V. and Oldfield, R. H. (1978):
Justification for bus lanes in urban areas. Traffic
Engineering and Control, Feb. 1978, 19(2):56-59.

Cantú-Paz, E. (2000) Efficient and Accurate Parallel
Genetic Algorithms, Boston, Mass., Kluwer.

Cevallos, F. and Zhao, F. (2006): Minimizing transfer
times in public transit network with genetic algorithm.
Transportation Research Record, 1971:74-79.

Chen, Q., Shi, F., Yao, J.-L. and Long, K.-J. (2007): Bi-
level programming model for urban bus lanes' layout.
Int. Conf. on Transportation Engineering, ICTE 2007,
Chengdu, China, 394-399.

Currie, G., Sarvi, M. and Young, B. (2007): A new
approach to evaluating on-road public transport priority
projects: Balancing the demand for limited road-space.
Transportation, 34:413-428.

Currie, G., Sarvi, M. and Young, W. (2004) A
comprehensive approach to balanced road space
allocation in relation to transit priority. 83rd TRB
annual meeting. Washington DC, Transportation
Research Board.

Department of Infrastructure (2004): Melbourne Multi-
modal Integrated Transport Model (MITM), User
Guide.

Dongarra, J., Sterling, T., Simon, H. and Strohmaier, E.
(2005): High-performance computing: clusters,
constellations, MPPs and future directions. Computing
in Science and Engineering, IEEE Computer Society,
7:51-59.

Duff-Riddell, W. R. and Bester, C. J. (2005): Network
modeling approach to transit network design. Journal
of Urban Planning and Development, 131:87-97.

Eichler, M. and Daganzo, C. F. (2006): Bus lanes with
intermittent priority: Strategy formulae and an

bc
aCpc ,
,10− a c b

aExc a
bcImp , c
b

cOcc

ηγβα ,,,

0,,, ≥ηγβα

aφ a

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

61

evaluation. Transportation Research Part B:
Methodological, 40:31-744.

Evjen, B. (2004): Professional VB.NET 2003,
Indianapolis, IN, J. Wiley.

Fan, W. and Machemehl, R. B. (2006): Optimal transit
route network design problem with variable transit
demand: genetic algorithm approach. Journal of
Transportation Engineering, 132:pp 40-51.

Foster, I. T., Kesselman, C. and Tuecke, S. (2001): The
anatomy of the Grid: enabling scalable virtual
organizations. Int. Journal of Supercomputer
Applications, 15(3):200-222.

Foster, I. T., Zhao, Y., Raicu, I. and Lu, S. (2008): Cloud
computing and grid computing 360-degree compared.
Grid Computing Environments Workshop (GCE '08),
1-10.

Gentzsch, W. (2001): Sun Grid Engine -- Towards
creating a compute power grid. First IEEE/ACM Int.
Symp. on Cluster Computing and the Grid, 35-36.

Goldberg, D. E. (2002): The Design Of Innovation:
Lessons From and For Competent Genetic Algorithms,
Boston, Kluwer Academic Publishers.

Haupt, R. L., Haupt, R. L. and Haupt, S. E. (2004):
Practical Genetic Algorithms, NY, Wiley Interscience.

Monash University: SPONGE – Harvesting Spare CPU
cycles.
http://www.monash.edu.au/eresearch/activities/sponge.
html (last visited 2011).

Jepson, D. and Ferreira, L. (2000): Assessing travel time
impacts of measures to enhance bus operations. Part 2:
Study methodology and main findings. Road and
Transport Research, 9:4-19.

Litzkow, M. J., Livny, M. and Mutka, M. W. (1988):
Condor – a hunter for idle workstations. 8th Int. Conf.
on Distributed Computing Systems, 104-111.

Liu, R., Van Vliet, D. and Watling, D. (2006):
Microsimulation models incorporating both demand
and supply dynamics. Transportation Research Part A:
Policy and Practice, 40:125-150.

Liu, W.-M., Jiang, S. and Fu, L.-F. (2008): Bi-level
program model for multi-type freeway discrete
equilibrium network design. Zhongguo Gonglu
Xuebao/China Journal of Highway and Transport,
21:94-99.

Mesbah, M., Sarvi, M. and Currie, G. (2008): A new
methodology for optimizing transit priority at the
network level. Transportation Research Record:
Journal of the Transportation Research Board,
2089:93-100.

Mesbah, M., Sarvi, M. and Currie, G. (2011):
Optimization of transit priority in the transportation
network using a genetic algorithm. IEEE Transactions
on Intelligent Transportation Systems, 12:908-919.

Mesbah, M., Sarvi, M., Currie, G. and Saffarzadeh, M.
(2010): A policy making tool for optimization of transit
priority lanes in an urban network. Transportation
Research Record, 2197:54-62.

Mesbah, M., Sarvi, M., Ouveysi, I. and Currie, G. (2011):
Optimization of transit priority in the transportation

network using a decomposition methodology.
Transportation Research Part C: Emerging
Technologies, 19: 363-373.

Ortúzar, J. D. D. and Willumsen, L. G. (2001): Modelling
Transport, Chichester NY, J. Wiley.

Papacostas, C. S. and Prevedouros, P. D. (1993):
Transportation Engineering and Planning, Englewood
Cliffs, NJ, Prentice-Hall.

PTV AG (2009): VISUM 11 User Manual, 11th ed.
Karlsruhe, Germany.

Raicu, I., Foster, I. T. and Zhao, Y. (2010) Many-task
computing for grids and supercomputers. IEEE
Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS), 1-11.

Russell, S. J. and Norvig, P. (2003): Artificial
Intelligence: a modern approach, Upper Saddle River,
N.J., Prentice-Hall.

Sheffi, Y. (1984): Urban Transportation Networks:
Equilibrium Analysis With Mathematical Programming
Methods, Englewood Cliffs, N.J., Prentice-Hall.

Shimizu, K., Ishizuka, Y. and Bard, J. F. (1997):
Nondifferentiable And Two-Level Mathematical
Programming, Boston, Kluwer Academic Publishers.

Simaan, M. (1977): Stackelberg optimization of two-level
systems. IEEE Transactions on Systems, Man and
Cybernetics, SMC-7:554-559.

Sterling, T., Becker, D., Warren, M., Cwik, T., Salmon, J.
and Nitzberg, B. (1998): An assessment of Beowulf-
class computing for NASA requirements: initial
findings from the first NASA workshop on Beowulf-
class clustered computing. Proceedings of IEEE
Aerospace Conference, 4:367-381.

Stirzaker, C. and Dia, H. (2007): Evaluation of
transportation infrastructure management strategies
using microscopic traffic simulation. Journal of
Infrastructure Systems, 13:168-174.

Strohmaier, E., Dongarra, J. J., Meuer, H. W. and Simon,
H. D. (2005): Recent trends in the marketplace of high
performance computing. Parallel Computing, 31:261-
273.

Thain, D., Tannenbaum, T. and Livny, M. (2005):
Distributed computing in practice: the Condor
experience: Concurrency and Computation: Practice
and Experience, 17:323-356.

Viegas, J. (1996): Turn of the century, survival of the
compact city, revival of public transport. In Meersman,
H. and Van De Voorde, E. (Eds.) Transforming the
Port and Transportation Business, Antwerp, Belgium.

Viegas, J. and Lu, B. (2004): The intermittent bus lane
signals setting within an area. Transportation Research
Part C: Emerging Technologies, 12:453-469.

Waterson, B. J., Rajbhandari, B. and Hounsell, N. B.
(2003): Simulating the impacts of strong bus priority
measures. Journal of Transportation Engineering,
129:642-647.

Yang, H. and Bell, M. G. H. (1998) Models and
algorithms for road network design: a review and some
new developments. Transport Reviews, 18:257-278.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

62

Author Index

Cao, Dahai, 33
Chen, Jinjun, iii, 33

Dinneen, Michael J., 23

Eblen, John, 31

Hawick, Ken, 13

Jaros, Jiri, 43

Karimirad, Fatemeh, 53
Khosravani, Masoud: Wei, Kuai, 23

Langston, Michael A., 31
Liu, Xiao, 33

Mesbah, Mahmoud, 53

Phillips, Charles, 31
Playne, Daniel, 13

Ranjan, Rajiv, iii
Rendell, Alistair P., 43
Rogers, Gary, 31

Sarvi, Majid, 53
Shang, Weijia, 3
Steinbrecher, Johann, 3

Tan, Jefferson, 53
Treeby, Bradley E., 43

Yang, Yun, 33
Yuan, Dong, 33

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

63

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 113 - Computer Science 2011
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia. January 2011. 978-1-920682-93-4.

Contains the proceedings of the Thirty-Fourth Australasian Computer Science
Conference (ACSC 2011), Perth, Australia, 1720 January 2011.

Volume 114 - Computing Education 2011
Edited by John Hamer, University of Auckland, New Zealand
and Michael de Raadt, University of Southern Queensland,
Australia. January 2011. 978-1-920682-94-1.

Contains the proceedings of the Thirteenth Australasian Computing Education
Conference (ACE 2011), Perth, Australia, 17-20 January 2011.

Volume 115 - Database Technologies 2011
Edited by Heng Tao Shen, The University of Queensland,
Australia and Yanchun Zhang, Victoria University, Australia.
January 2011. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Second Australasian Database Conference
(ADC 2011), Perth, Australia, 17-20 January 2011.

Volume 116 - Information Security 2011
Edited by Colin Boyd, Queensland University of Technology,
Australia and Josef Pieprzyk, Macquarie University, Aus-
tralia. January 2011. 978-1-920682-96-5.

Contains the proceedings of the Ninth Australasian Information Security
Conference (AISC 2011), Perth, Australia, 17-20 January 2011.

Volume 117 - User Interfaces 2011
Edited by Christof Lutteroth, University of Auckland, New
Zealand and Haifeng Shen, Flinders University, Australia.
January 2011. 978-1-920682-97-2.

Contains the proceedings of the Twelfth Australasian User Interface Conference
(AUIC2011), Perth, Australia, 17-20 January 2011.

Volume 118 - Parallel and Distributed Computing 2011
Edited by Jinjun Chen, Swinburne University of Technology,
Australia and Rajiv Ranjan, University of New South Wales,
Australia. January 2011. 978-1-920682-98-9.

Contains the proceedings of the Ninth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2011), Perth, Australia, 17-20 January 2011.

Volume 119 - Theory of Computing 2011
Edited by Alex Potanin, Victoria University of Wellington,
New Zealand and Taso Viglas, University of Sydney, Aus-
tralia. January 2011. 978-1-920682-99-6.

Contains the proceedings of the Seventeenth Computing: The Australasian Theory
Symposium (CATS 2011), Perth, Australia, 17-20 January 2011.

Volume 120 - Health Informatics and Knowledge Management 2011
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Tony Sahama, Qeensland University of Technol-
ogy, Australia. January 2011. 978-1-921770-00-5.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2011), Perth, Australia, 17-20 January 2011.

Volume 121 - Data Mining and Analytics 2011
Edited by Peter Vamplew, University of Ballarat, Australia,
Andrew Stranieri, University of Ballarat, Australia, Kok–
Leong Ong, Deakin University, Australia, Peter Christen,
Australian National University, , Australia and Paul J.
Kennedy, University of Technology, Sydney, Australia. De-
cember 2011. 978-1-921770-02-9.

Contains the proceedings of the Ninth Australasian Data Mining Conference
(AusDM’11), Ballarat, Australia, 1–2 December 2011.

Volume 122 - Computer Science 2012
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia and Bruce Thomas, University of South Aus-
tralia. January 2012. 978-1-921770-03-6.

Contains the proceedings of the Thirty-Fifth Australasian Computer Science
Conference (ACSC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 123 - Computing Education 2012
Edited by Michael de Raadt, Moodle Pty Ltd and Angela
Carbone, Monash University, Australia. January 2012. 978-
1-921770-04-3.

Contains the proceedings of the Fourteenth Australasian Computing Education
Conference (ACE 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 124 - Database Technologies 2012
Edited by Rui Zhang, The University of Melbourne, Australia
and Yanchun Zhang, Victoria University, Australia. January
2012. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Third Australasian Database Conference
(ADC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 125 - Information Security 2012
Edited by Josef Pieprzyk, Macquarie University, Australia
and Clark Thomborson, The University of Auckland, New
Zealand. January 2012. 978-1-921770-06-7.

Contains the proceedings of the Tenth Australasian Information Security
Conference (AISC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 126 - User Interfaces 2012
Edited by Haifeng Shen, Flinders University, Australia and
Ross T. Smith, University of South Australia, Australia.
January 2012. 978-1-921770-07-4.

Contains the proceedings of the Thirteenth Australasian User Interface Conference
(AUIC2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 127 - Parallel and Distributed Computing 2012
Edited by Jinjun Chen, University of Technology, Sydney,
Australia and Rajiv Ranjan, CSIRO ICT Centre, Australia.
January 2012. 978-1-921770-08-1.

Contains the proceedings of the Tenth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 128 - Theory of Computing 2012
Edited by Julián Mestre, University of Sydney, Australia.
January 2012. 978-1-921770-09-8.

Contains the proceedings of the Eighteenth Computing: The Australasian Theory
Symposium (CATS 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 129 - Health Informatics and Knowledge Management 2012
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Kathleen Gray, University of Melbourne, Aus-
tralia. January 2012. 978-1-921770-10-4.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 130 - Conceptual Modelling 2012
Edited by Aditya Ghose, University of Wollongong, Australia
and Flavio Ferrarotti, Victoria University of Wellington, New
Zealand. January 2012. 978-1-921770-11-1.

Contains the proceedings of the Eighth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2012), Melbourne, Australia, 31 January – 3 February 2012.

Volume 131 - Advances in Ontologies 2010
Edited by Thomas Meyer, UKZN/CSIR Meraka Centre
for Artificial Intelligence Research, South Africa, Mehmet
Orgun, Macquarie University, Australia and Kerry Taylor,
CSIRO ICT Centre, Australia. December 2010. 978-1-921770-
00-5.

Contains the proceedings of the Sixth Australasian Ontology Workshop 2010 (AOW
2010), Adelaide, Australia, 7th December 2010.

	04_grogers_auspdc2012-paper4.pdf
	Introduction
	Parallel Maximum Clique Finder
	Parallel Maximum Clique Finder With Coloring
	Experimental Results
	Conclusions and Direction for Future Research

	04_grogers_auspdc2012-paper4.pdf
	Introduction
	Parallel Maximum Clique Finder
	Parallel Maximum Clique Finder With Coloring
	Experimental Results
	Conclusions and Direction for Future Research

