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Preface

These proceedings contain the papers presented at the 10th Australasian Symposium on Parallel and Dis-
tributed Computing (AusPDC 2012), held between 31 January — 3 February 2012 in Melbourne, Australia
in conjunction with the Australasian Computer Science Week (ASCW). Over the years, previously known
as Australasian Symposium on Grid Computing and e-Research (AusGrid), and starting 2010, it is being
referred to as AusPDC, has become the flagship symposium for Grid, Cloud, Cluster, and Distributed
Computing research in Australia. Submissions were received, mostly from Australia, but also from New
Zealand, United States, Asia and Europe. The full version of each paper was carefully reviewed by at
least two referees, and evaluated according to its originality, correctness, readability and relevance. A to-
tal of 7 papers were accepted. The accepted papers cover topics from Cloud resource management, grid
inter-operation, multi-processing systems, trusted brokering, performance models, operating systems, and
networking protocols.

We are very thankful to the Program Committee members, and external reviewers for their outstanding
and timely work, which was invaluable for taking the quality of this year’s program to such a high level.
We also wish to acknowledge the efforts of the authors who submitted their papers and without whom
this conference would have not been possible. Due to the very competitive selection process, several strong
papers could not be included in the program. We sincerely hope that prospective authors will continue to
view the AusPDC symposium series as the premiere venue in the field for disseminating their work and
results. We would also like to thank the ACSW Organising Committee, those that submitted papers and
those that attended the conference their work and contributions have made the symposium a great success.

Rajiv Ranjan
CSIRO ICT Centre

Jinjun Chen
University of Technology, Sydney

AusPDC 2012 Programme Chairs
January 2012
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Welcome from the Organising Committee

On behalf of the Australasian Computer Science Week 2012 (ACSW2012) Organising Committee, we
welcome you to this year’s event hosted by RMIT University. RMIT is a global university of technology
and design and Australia’s largest tertiary institution. The University enjoys an international reputation
for excellence in practical education and outcome-oriented research. RMIT is a leader in technology, design,
global business, communication, global communities, health solutions and urban sustainable futures. RMIT
was ranked in the top 100 universities in the world for engineering and technology in the 2011 QS World
University Rankings. RMIT has three campuses in Melbourne, Australia, and two in Vietnam, and offers
programs through partners in Singapore, Hong Kong, mainland China, Malaysia, India and Europe. The
University’s student population of 74,000 includes 30,000 international students, of whom more than 17,000
are taught offshore (almost 6,000 at RMIT Vietnam).

We welcome delegates from a number of different countries, including Australia, New Zealand, Austria,
Canada, China, the Czech Republic, Denmark, Germany, Hong Kong, Japan, Luxembourg, Malaysia, South
Korea, Sweden, the United Arab Emirates, the United Kingdom, and the United States of America.

We hope you will enjoy ACSW2012, and also to experience the city of Melbourne.,

Melbourne is amongst the world’s most liveable cities for its safe and multicultural environment as
well as well-developed infrastructure. Melbournes skyline is a mix of cutting-edge designs and heritage
architecture. The city is famous for its restaurants, fashion boutiques, café-filled laneways, bars, art galleries,
and parks.

RMIT’s city campus, the venue of ACSW2012, is right in the heart of the Melbourne CBD, and can be
easily accessed by train or tram.

ACSW2012 consists of the following conferences:

— Australasian Computer Science Conference (ACSC) (Chaired by Mark Reynolds and Bruce Thomas)

— Australasian Database Conference (ADC) (Chaired by Rui Zhang and Yanchun Zhang)

— Australasian Computer Education Conference (ACE) (Chaired by Michael de Raadt and Angela Car-
bone)

— Australasian Information Security Conference (AISC) (Chaired by Josef Pieprzyk and Clark Thom-
borson)

— Australasian User Interface Conference (AUIC) (Chaired by Haifeng Shen and Ross Smith)

— Computing: Australasian Theory Symposium (CATS) (Chaired by Julidn Mestre)

— Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Jinjun Chen
and Rajiv Ranjan)

— Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Ker-
ryn Butler-Henderson and Kathleen Gray)

— Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Aditya Ghose and Flavio
Ferrarotti)

— Australasian Computing Doctoral Consortium (ACDC) (Chaired by Falk Scholer and Helen Ashman)

ACSW is an event that requires a great deal of co-operation from a number of people, and this year has
been no exception. We thank all who have worked for the success of ACSE 2012, including the Organising
Committee, the Conference Chairs and Programme Committees, the RMIT School of Computer Science
and IT, the RMIT Events Office, our sponsors, our keynote and invited speakers, and the attendees.

Special thanks go to Alex Potanin, the CORE Conference Coordinator, for his extensive expertise,
knowledge and encouragement, and to organisers of previous ACSW meetings, who have provided us with
a great deal of information and advice. We hope that ACSW2012 will be as successful as its predecessors.

Assoc. Prof. James Harland
School of Computer Science and Information Technology, RMIT University

ACSW2012 Chair
January, 2012
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CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2012 in Melbourne. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences - ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s - now share this week with seven other events - ACE, AISC, AUIC, AusPDC, HIKM,
ACDC, and APCCM, which build on the diversity of the Australasian computing community.

In 2012, we have again chosen to feature a small number of keynote speakers from across the discipline:
Michael Kolling (ACE), Timo Ropinski (ACSC), and Manish Parashar (AusPDC). I thank them for their
contributions to ACSW2012. T also thank invited speakers in some of the individual conferences, and the
two CORE award winners Warwish Irwin (CORE Teaching Award) and Daniel Frampton (CORE PhD
Award). The efforts of the conference chairs and their program committees have led to strong programs in
all the conferences, thanks very much for all your efforts. Thanks are particularly due to James Harland
and his colleagues for organising what promises to be a strong event.

The past year has been very turbulent for our disciplines. We tried to convince the ARC that refereed
conference publications should be included in ERA2012 in evaluations — it was partially successful. We
ran a small pilot which demonstrated that conference citations behave similarly to but not exactly the
same as journal citations - so the latter can not be scaled to estimate the former. So they moved all
of Field of Research Code 08 “Information and Computing Sciences” to peer review for ERA2012. The
effect of this will be that most Universities will be evaluated at least at the two digit 08 level, as refereed
conference papers count towards the 50 threshold for evaluation. CORE’s position is to return 08 to a
citation measured discipline as soon as possible.

ACSW will feature a joint CORE and ACDICT discussion on Research Challenges in ICT, which I hope
will identify a national research agenda as well as priority application areas to which our disciplines can
contribute, and perhaps opportunity to find international multi-disciplinary successes which could work in
our region.

Beyond research issues, in 2012 CORE will also need to focus on education issues, including in Schools.
The likelihood that the future will have less computers is small, yet where are the numbers of students we
need?

CORE’s existence is due to the support of the member departments in Australia and New Zealand,
and I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am
grateful to all those who gave their time to CORE in 2011; in particular, I thank Alex Potanin, Alan Fekete,
Aditya Ghose, Justin Zobel, and those of you who contribute to the discussions on the CORE mailing lists.
There are three main lists: csprofs, cshods and members. You are all eligible for the members list if your
department is a member. Please do sign up via http://lists.core.edu.au/mailman/listinfo - we try to keep
the volume low but relevance high in the mailing lists.

Tom Gedeon

President, CORE
January, 2012



ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.
2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.

2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.

2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.

2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.

2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.

2006. Volume 28. Host and Venue - University of Tasmania, TAS.

2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.

2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.

2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue
- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.

2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.

2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,
ACT. First running of AUIC.

1999. Volume 21. Host and Venue - University of Auckland, New Zealand.

1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and
Curtin University. Venue - Perth, WA.

1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.
ADC held with DASFAA (rather than ACSW) in 1997.

1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS
joins ACSW.

1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -
Glenelg, SA.

1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first
time separately in Sydney.

1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.

1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).

1991. Volume 13. Host and Venue - University of New South Wales, NSW.

1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information
Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.

1988. Volume 10. Host and Venue - University of Queensland, QLD.

1987. Volume 9. Host and Venue - Deakin University, VIC.

1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.

1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.

1984. Volume 6. Host and Venue - University of Adelaide, SA.

1983. Volume 5. Host and Venue - University of Sydney, NSW.

1982. Volume 4. Host and Venue - University of Western Australia, WA.

1981. Volume 3. Host and Venue - University of Queensland, QLD.

1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.

1979. Volume 1. Host and Venue - University of Tasmania, TAS.

1978. Volume 0. Host and Venue - University of New South Wales, NSW.



Conference Acronyms

ACDC Australasian Computing Doctoral Consortium

ACE Australasian Computer Education Conference

ACSC Australasian Computer Science Conference

ACSW Australasian Computer Science Week

ADC Australasian Database Conference

AISC Australasian Information Security Conference

AUIC Australasian User Interface Conference

APCCM Asia-Pacific Conference on Conceptual Modelling

AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
CATS Computing: Australasian Theory Symposium

HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections
in respective CRPIT volumes.
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On Supernode Transformations And Multithreading For The Longest Common
Subsequence Problem

Johann Steinbrecher and Weijia Shang
Santa Clara University
500 El Camino Real
Santa Clara, CA 95053

jlsteinbrecher@scu.edu, wshang@scu.edu

Abstract

The longest common subsequence (LCS) problem is
an important algorithm in computer science with many
applications such as DNA matching (bio-engineering) and
file comparison (UNIX diff). While there has been a lot of
research for finding an efficient solution to this problem,
the research emphasis has shifted with the advent of multi-
core architectures towards multithreaded implementations.
This paper applies supernode transformations to partition
the dynamic programming solution of the LCS problem
into multiple threads. Then, we enhance this method by
presenting a transformation matrix that skews the loop nest
such that loop carried dependencies of the inner loop are
eliminated in each supernode. We find that this technique
performs well on microarchitectures supporting out-of-
order execution while in-order execution machines do not
benefit from it. Furthermore, we present a variation of
the supernode transformations and multithreading strategy
which groups entire rows of the index set to form a supern-
ode. The inter thread synchronization is performed by an
array of mutexes. We find that this scheme reduces the
amount of thread management overhead and improves the
data locality. A formula for the total execution time of each
method is presented. The techniques are benchmarked on
a 12 core and a four core machine. At the 12 core machine
the traditional supernode transformation speeds up the
original loop nest 16.7 times. We enhance this technique to
score a 42.6 speedup and apply our new method scoring
a 59.5 speedup. We experience the phenomenon of super-
linear speedup as the the performance gain is larger than
the number of processing cores. Concepts presented and
discussed in this paper on the LCS problem are generally
applicable to regular dependence algorithms.

L. Introduction

The LCS algorithm solves the problem of finding
the LCS shared by two strings. It is well-known for its
application at DNA matching in bio-engineering. Here, two
DNA’s are represented as strings of characters ’ACGT’.
Finding out how similar two DNA’s are is important
when researching the properties of new DNA’s or for
criminal evidence. Furthermore, the LCS problem has its
application in file comparison utilities such as the UNIX
dif f program, data compression, editing error correction
and syntactic pattern recognition as well as the evidence of
plagiarism ( [7], [15]). The dynamic programming solution
to the LCS problem is asymptotically bounded by O(N?)
for N character inputs. Considering the human DNA which
is organized in 23 chromosomes each holding 50 - 10° to
220-10° base pairs, where each base pair is represented by
a character, this generates a significant amount of compu-
tation. This paper discusses multithreaded implementation
of the dynamic programming solution of the LCS problem
to utilize the resources of multiple instruction multiple
data machines (M I M D) as efficient as possible. We apply
previous work on thread partitioning and supernode trans-
formations to this problem, enhance these methods and
present a variation of the supernode transformations and
multithreading strategy. Concepts, ideas and observations
made and presented in this paper on the LCS problem are
generally applicable to regular dependence algorithms.

With the advent of multi-core systems in high per-
formance computing as well as in embedded systems it
is important to understand how to take advantage of the
available resources. In high performance computing, single

Copyright 2012, Australian Computer Society, Inc. This paper ap-
peared at the 10th Australasian Symposium on Parallel and Distributed
Computing (AusPDC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 127. J. Chen and R. Ranjan, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is included.
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instruction multiple data (SIM D) architectures such as
most general purpose graphics processing units (GPGPU)
and MIMD architectures such as many integrated cores
(MIC') provide up to hundreds of cores. In embedded
computing the trend clearly is towards parallel architec-
tures, either by providing multiple cores inside the host
processor or by building a heterogeneous system where
the host processor is supported by a multi-core graphics
processing unit. While supercomputers usually have phys-
ically distributed-memory, GPGPU’s and MIC’s have a
centralized main memory shared by all cores. Cache mem-
ories may be distributed to different cores. For optimizing
the processor utilization of each core, hyperthreading is
used. Hyperthreading is a hardware technique supporting
thread execution switch if the functional units are stalled
by the currently running thread. These technological facts
and trends motivate to understand how the LCS problem
can be implemented to saturate the resources of a multi-
core system.

This paper performs supernode transformations on the
LCS problem in order to utilize the resources of a par-
allel system as efficient as possible. Hodzic and Shang
presented in [10] supernode transformations for loop nests
with regular dependencies. They group iterations in the
index set to form supernodes. Those supernodes are then
scheduled according to a linear schedule, which is respect-
ing the data dependence, to the processing units. While this
paper exploits parallelism amongst supernodes, it does not
consider how to form supernodes in order to exploit the
resources of each processing core. Therefore, we enhance
this method by skewing the loop. We present a transforma-
tion matrix that eliminates the loop carried dependencies of
the inner loop. This enables processing cores (hardware) or
compilers (software) to reorder the instructions for hiding
memory access latencies. Furthermore, we present a vari-
ation of the supernode transformations and multithreading
strategy which groups entire rows of the index set to form
a supernode. The inter thread synchronization is performed
by an array of mutexes. We find that this scheme reduces
the amount of thread management overhead and improves
the data locality. We apply this method then to the original
and skewed loop nest. The total execution time of each
method is presented as a function of the computation time
and communication time assuming systems with infinite
resources and limited resources. The techniques presented
and discussed in this paper are benchmarked on two
multi-core MIMD machines with four cores and 12 cores,
respectively.

The rest of the paper is organized as follows. In sec-
tion II related work and our contribution is discussed. Sec-
tion III presents architecture, programming and algorithm
models and the concepts of linear scheduling. Section IV
gives an overview over the basic ideas and implementation

strategies. The total execution time at systems with limited
resources is discussed in section V. In section VI our
implementations are benchmarked on multi-core machines.
Section VII concludes this paper.

I1. Related work and our contribution

The LCS problem has been studied over the previous
decades from different point of views. The dynamic pro-
gramming solution was originally presented by Hirschberg
in [9] performing the algorithm in an O(N?) complexity,
where N equals the size of the input strings. Based on
this sequential method there have been many efforts for
optimizing the time complexity, the space complexity, im-
plement strategies using special data structures and design
algorithms for special input properties targeting various
systems as summarized in [4]. Our paper investigates
on how to execute the problem on multi-core systems.
Mabrouk presents in [3] a survey on the parallel com-
plexity of the LCS problem on various target machines
referring to papers in the time range from 1990 to 2006.
Furthermore, this paper contributes a greedy strategy to
schedule iterations on available machines in a parallel
system. A summary of systolic algorithms and an efficient
hardware-implementable systolic algorithm for the LCS is
presented in [12]. While most commonly two strings are
analyzed for their LCS, paper [13] discusses an optimal
implementation on how to find the LCS of multiple input
sequences (MLCS). It presents an efficient parallel algo-
rithm for the MLCS based on a dominant points method. A
coarse grained multithreaded implementation of the LCS
is discussed in [7]. Supernode transformations for optimal
running time on loop nests with regular dependencies are
discussed in [10]. The supernode shape, expressed by
the relative side length is discussed in [I1] for optimal
running time and discussed in [8] for minimizing the
communication volume.

Having discussed related work we summarize here our
contributions. While previous work on parallel implemen-
tations of the LCS problem did not consider supernode
transformations we incorporate the concepts from [8], [10]
and [11]. Techniques presented in this paper are based
on several important observations we made. First, we
find that skewing the loop nest, which eliminates inner
loop dependencies, speeds up the algorithm on out-of-
order execution cores while it does not gain a speedup
on in-order architectures. Therefore, we enhance Hodzic’s
method ([10]) by loop skewing. By benchmarking the
technique on a 12 core MIMD machine with out-of-order
pipelines we have found that the original supernode trans-
formations speedup the LCS problem 16.7 times while
our enhancement achieves a 42.6 times speedup over the
original loop nest. As these performance gains are larger
than the number of processing cores, we experience the
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for (i=0; i < M; i++)
for (J=0; J < N; Jj++) {

if (4 =0 || J == 0)
clil[3] = 0;
else if (x[i] == yI[j])
cli][j] = cl[i-11[3-11 + 1;
else
clil[j] = max(c[i][J-1], cl[i-11[31);

}

Fig. 1. The longest common subsequence algorithm [6].

phenomenon of super-linear speedup. This is mainly due
to fortunate memory sharing among threads. The data that
is loaded into cache memory due to one thread can be
reused by other threads, which reduces cache misses. As
the LCS problem is a very data intense algorithm, reducing
cache misses results in a large performance gain. This ob-
servation motivated us to design and present a variation of
the supernode transformations and multithreading strategy
scoring a speedup of 59.5 on the 12 core machine. While
paper [10] presents an expression for the total execution on
systems with infinite resources we contribute a formula for
the total execution time on systems with limited resources
for Hodzic’s method and our new technique. While we find
that the methods presented in this paper score phenomenal
speedups, how to incorporate the concepts and ideas of
paper [7] will be conducted in future work.

ITI. Algorithm, architecture and programming
models

In this section we present an overview on our algorithm
model for the LCS problem, architectural model, program-
ming model and linear scheduling.

A.Algorithm model

The LCS algorithm takes as inputs two sequences
of characters: x[1...M] and y[1...N]. The program then
attempts to find the longest subsequence that is shared by
these two strings, and returns the length of that subse-
quence. For example, for the input strings ’ABCBDAB’
and 'BDCABA’, the program will output four, because
the longest common subsequence is 'BCBA’, which has
a length of four. The dynamic programming version of
the LCS algorithm can be found in [6] and presented in
figure 1.

The LCS problem is an algorithm with regular de-
pendencies [17]. An algorithm with regular dependencies
is one containing array references such that the depen-
dencies remain constant from one iteration to the next.
Such algorithms may be described by two parameters, the
dependence matrix D and the iteration space .J. For the

for (i=0; i < N; i++)
c[i]1[0] = c[0][i] = O;
for (i=0; i < N; i++)
for (Jj=0; Jj < N;j j++) {

if (x[i] == yI[3])
clil[3] = c[i-111[3-11 + 1;
else
clil[3] = max(c[i]1[3-11, cli-11131);

Fig. 2. The peeled original loop nest.

LCS, the dependence matrix equals:

011
D‘<101>

The iteration space is the set of all iteration indexing
vectors and shown in figure 3. The process of establishing
the dependence matrix and the iteration space is beyond the
scope of this paper and can be found in [!7]. Intuitively,
each point in the iteration space corresponds to an iteration
in the loop. An arrow between two points indicates a
dependence between the two iterations. The dependence
matrix D corresponds to the loop carried write after read
(W AR) in figure 1. For the correctness these dependencies
must be respected.

This paper has an emphasis on the overall perfor-
mance of an implementation of the LCS problem. Before
discussing optimal thread partitioning and loop transfor-
mations we analyze the loop body. The code as shown
in figure 1 consists of three if-statements. If-statements
generate branch instructions which reduce the size of basic
blocks in the compiled code. This has a negative impact on
the performance as branches usually require the hardware
pipelines to stall. Hardware techniques such as speculation
and branch prediction reduce this effect but can’t eliminate
it. Therefore, we try to reduce the number of branches
in the loop body. By analyzing the data dependencies
we find the second and third if-statement to hold loop
carried dependencies while the first if-statement does not.
Therefore, we move the first if-statement out to a separate
loop. The resulting code is shown in figure 2 and used
throughout this paper. Furthermore, all codes and examples
used in this paper assume a squared index set.

B.Linear schedule and wavefronts

A linear schedule f (II) is a linear or affine function that
maps multiple dimensional iteration vectors in the iteration
space onto a set of execution times represented by integers.
Multiple independent iterations are assigned the same
execution time for parallel processing. How to identify
linear schedules that respect the data dependencies and
minimize the total execution time is discussed in [17]. For
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Fig. 3. Iteration space for the LCS algorithm.
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the dependence structure of the LCS problem in figure 3,
one feasible linear schedule that respects dependencies is

FEH)=0 D G =ity

The vector (1 1) specifying the linear schedule is
called linear schedule vector and is denoted as II. The
iteration space is partitioned by the linear schedule into
a series of hyperplanes (1 1) (4 j)! = constant. These
hyperplanes are called wave fronts that are perpendicular
to II (see [17]). Such wavefronts may be generated using
CLooG [2], a loop transformation and code generation tool
based on the polyhedral model. One observation is that all
iterations in the same wavefront are independent.

C.Architecture and programming model

For the purpose of this paper, a computer system is
modeled by the parameters p and ¢ where p is the number
of cores in the system and ¢ is the number of hyper threads
each core accommodates. We assume multiple instruction
multiple data architectures (MIMD) with shared memory.
MIMD architectures can be programmed amongst others
with Open MP [5], Intel®Cilk™PIlus or Posix Threads.
In this paper the Posix Thread programming model [1] is
used. The main memory is shared, while each core may
have its own cache. This stands in many aspects in contrast
to the CUDA programming model and architectural model,
where a single instruction multiple data (SIMD) architec-
ture is programmed. One major limitation of CUDA is that
only threads within the same thread block can commu-
nicate with each other efficiently. One of the advantages
of CUDA is an extremely low thread creation overhead
and cache access latency. The programming model in this
paper is especially applicable to future MIC systems ( [14]
and [16]). MIC’s can be classified as MIMD systems
with SIMD and superscalar properties. The system consists
of multiple cores running independent instruction streams
(MIMD). Each core accommodates several functional units
(superscalar) as well as a SIMD unit for fast floating point
calculations.

IV.Basic ideas and concepts

The basic ideas and concepts for speeding up the
dynamic programming algorithm of the LCS problem are
illustrated in this section. Subsection IV-A shows how to
partition the algorithm according to Hodzic’s method. In
subsection I'V-B, we enhance Hodzic’s method by skewing
the loop. In section IV-C we propose a variation of
the supernode transformations and multithreading strategy.
Subsection IV-D discusses the proposed techniques.

A. Traditional supernode transformation and
thread partitioning

Hodzic presents in paper [10] a supernode transforma-
tion for algorithms with regular dependencies. It discusses
the supernode transformation and optimal grain size to
minimize the total running time. Furthermore, in [8], [10]
and [11] the supernode shape is discussed for minimum
running time and minimum communication volume. The
total running time is the sum of the computation time
and the communication cost. Hodzic groups a number of
computation nodes to form a supernode and assigns each
supernode to a processor as an unit for execution. Applying
this concept to our programming model we spawn and
terminate a thread for each supernode. Hodzic’s paper uses
a loop nest in Example 2.1 with the dependence matrix D:

01 1
p=(1 0 1)

As we have shown in section III-A this is the dependence
matrix of the LCS problem. Therefore, we can apply
the method as presented by Hodzic where the index set
is partitioned into rectangular supernodes as shown in
figure 4. Supernodes are formed by rectangles with the side
length w and h. The wavefronts for linear schedule II =
(I 1) are indicated by transparent diagonal lines. In this
technique, each thread executes one supernode. Assuming
a system with infinite resources, all superiterations that
share the same wavefront can be executed simultaneously
on different cores. Therefore, a closed form expression
for the total execution time is presented in section 3 of

paper [10]:
T=P- (Tcomp + Tcomm)

Where P, the number of computation phases, equals
the linear schedule length or the number of wavefronts,
Teomp €quals the computation time per supernode and
Teomm €quals the communication time. Starting with this
technique we will exploit further optimizations. While
the actual computation time per supernode is strongly
dependent on the input strings, this equation assumes that
each computation phase takes the same time to execute.
Furthermore, the aspect of smaller supernodes at the bor-
ders of the index set is not considered. We keep these
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assumptions in all equations presented in this paper.

NS NE] §

DU NN

Fig. 4. The loop nest according to Hodzic’s supernode transfor-
mations (paper [10]).

One observation from this method is that while this
linear schedule exploits parallelism among superiterations,
the iterations within a supernode may hold dependencies.
On out-of-order microarchitectures such as most recent
x86 and ARM CPU’s, this may not perform best as
instructions can not be reordered for hiding memory access
latencies because of dependence. This observation is the
basis for subsection IV-B. Also, this method requires in our
programming model to spawn and terminate a thread for
each supernode. We will present a multithreading strategy
that requires a reduced amount of thread management over-
head, with an improved data access pattern for reducing
cache misses, scoring the same amount of parallelism in
subsection IV-C.

B.Eliminating inner loop carried dependencies

Mabrouk presents in section 2 of [3] how to trans-
form the index set of the LCS in order to eliminate
loop carried dependencies of the inner loop. Using the
loop transformation and code generation tool ClooG, we
experimented with this idea. The LCS is a very data intense
algorithm. Each computation node does at least three loads
(x[4], y[5], c[][]) and one store. Therefore, the bottleneck
of the algorithm are the memory access latencies. For
minimizing stalls in the pipelines due to memory access
latencies, two approaches are possible: hiding the latencies
by loading several data in a pipelined fashion and reducing
memory access latencies by exploring data locality for
minimizing cache misses. In this section we investigate
on hiding the memory access latencies by reordering the
instructions. When skewing the loop nest as presented
in [3] and shown in figure 5, there are no loop carried
dependencies along the inner loop. This enables the soft-
ware, i.e., the compiler or the hardware to reorder the
instructions. One advantage is that multiple data can be
loaded in a pipelined fashion to hide their latencies.

i+]

- v

Fig. 5. The skewed index set.

Figure 5 shows the skewed loop nest. This transfor-
mation can be formally described by the transformation

matrix T R: Lo
Th= (1 1>

The new dependence matrix is indicated by arrows in
figure 5 and can be calculated by

011
Dl—TR-D—<1 1 2)

To support this observation we do a preliminary ex-
periment. In figure 6 and figure 7 we show the re-
sults of executing the original and skewed loop nest on
two out-of-order microarchitectures (x86-64) and one in-
order microarchitecture (x86-64): an Intel® Atom™D510
(Atom microarchitecture; in-order execution; 1.66GHz),
an Intel®CoreTM2 U7300 (Core microarchitecture; out-of-
order execution; 1.30GHz) and an Intel ®Core™i5-2500
(Sandy Bridge microarchitecture; out-of-order execution;
3.3GHz). Using GCC 4.6.1, we compiled the original loop
nest and the skewed loop nest with an input size of 20000
characters per string performing no compiler optimiza-
tions (figure 6) and performing compiler optimizations
(figure 7). Overall the skewed loop nest performs better
on out-of-order execution microarchitectures while the in-
order machine didn’t show any speedup. Noticeable is also
that compiler optimization performed well on the in-order
execution machine while it increases the execution time on
the out-of-order architectures.

Based on this observation we enhance the strategy of
Hodzic. Applying Hodzic’s supernode transformations on
the skewed loop nest keeps the communication time con-
stant while the computation time decreases due to the fact
discovered in the experiment. This strategy is visualized
in figure 8. Here the inner loop which iterates along the
horizontal axis doesn’t have loop carried dependencies.
Skewing the loop nest transforms also the dependence
vectors as indicated by arrows in figure 8. Assuming a
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Fig. 6. The sequential implementation of the LCS problem
performing no compiler optimizations (-O0).
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Fig. 7. The sequential implementation of the LCS problem
performing compiler optimizations (-O3).

speed-up due to loop skewing of s, the total execution
time results in:

T
T=P (2 + Toomm)
s

i+

[

i
Fig. 8. Enhancing Hodzic’s method by loop skewing.

C. Variation of the supernode transformation and
multithreading strategy

The original implementation according to Hodzic has
the disadvantage of grouping iterations with loop carried
dependencies along the inner loop. We eliminated this by
the method presented in section I'V-B. One remaining down
side of this technique is the high amount of thread creation
overhead. For each supernode a thread is spawn and
terminated. Generally, this can be reduced by partitioning
the loop nest into as many supernodes as cores available
in the system. This results in a minimum amount of
thread management overhead but may not score a high

degree of parallelism. Furthermore, the original supernode
transformation does not optimize cache sharing among
threads. The method presented in this subsection evolves
from considering these aspects.

This method partitions the index set in vertical and
horizontal zones of size w and h. While previous methods
scheduled each supernode in terms of a thread to a proces-
sor, this method executes one horizontal zone per thread.
Each group of w X h index nodes is dedicated to a mutex.
Therefore, the mutexes form a [N/w]| x [N/h] matrix M
where NNV is the dimension of the index set. This idea is
illustrated in figure 9.

Thread 3 I h
—_—
3

Thread 2
— >

Thread 1

\4

Thread 0 A
—»

-

Fig. 9. Variation of the supernode transformation and multithread-
ing strategy

Here, the index set is divided in four horizontal zones
0,...,3 and four vertical zones 0, ...,3 of size w = 2 and
h = 2. The inter thread synchronization is performed by
locking and unlocking the mutexes, where M [k][l] corre-
sponds to the mutex for vertical zone k and horizontal zone
l. Using the example from figure 9 we illustrate the method
thoroughly. Initially, T'hready is created. Having finished
with vertical zone 0 it creates Thread,. Every thread is
executing the same code. Therefore, in general Thread;
creates T'hread;+1. To enforce the dependence structure
of the loop nest, Thready performing vertical zone k
locks M k][l] when entering horizontal zone [ and unlocks
M k][l] when leaving horizontal zone {. Furthermore, after
its creation Thready, executing vertical zone k, locks all
mutexes Mk + 1][¢] with ¢ = 0,...,3. Having finished
horizontal zone I, T'hready, unlocks mutex M [k+ 1][I]. To
control the number of active threads T hread; waits until
Thread;_, terminates, where n is the number of threads
that should be active at any time. According to this scheme
the total execution time can be expressed as:

N N
T= (|—E~| - 1) . Tzone + |—F-| 'Tzone7

where T.,,,. is the amount of time required for each
thread to execute one w - b group. Depending on h, this
scheme may require a minimum number of thread creation.
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Furthermore, a large number of horizontal zones may make
it possible that cache lines, loaded by Thread;, can be
reused by Thread;.

The technique as presented in figure 9 did not eliminate
the loop carried dependencies. Therefore, we present the
same idea on the skewed loop nest in figure 10. By this
method we expect to decrease 7’,,,., one parameter of the
total execution time.

i+

Thread 3

Thread 2
EEm—

Thread 1
Em—

X
Pl

Thread 0

>
>
[

Fig. 10. Variation of the supernode transformation and multi-
threading strategy on the skewed loop nest

D.Analysis and discussion

In this subsection we analyze the advantages and chal-
lenges of the three methods presented. Applying Hodzic’s
method to the LCS problem gave a general idea on
how to partition the loop nest and how to schedule the
supernodes to the processing units of a multi-core machine.
We enhanced this method by loop skewing for reducing
the computation time of each supernode (subsection [V-B).
While this method improves the performance on architec-
tures supporting out-of-order execution, in-order execution
machines do not benefit from it. Furthermore, both meth-
ods generate an unnecessary high amount of thread control
overhead as each supernode requires to spawn and termi-
nate a thread. Our supernode transformation and threading
strategy presented in subsection IV-C incorporates these
observations. Furthermore, it provides an improved data
access pattern. As Thread; executes the horizontal zone
4 of vertical zone 7 the data of this zone is loaded into
the cache. Once Thread; has left zone j, Thread;iq
can enter it and read some of the required data from
the cache instead of paying the penalty for accessing the
main memory. Therefore, the sizes of the horizontal and
vertical zones w and h are a function of the cache size
and cache associativity. This method can be applied to
the skewed loop nest as well. The technique is suitable
for in-order and out-of-order execution architectures. We
especially see potential for this method at future MIC
architectures where a significant amount of processors and

hardware threads are provided [14]. Such architectures
usually consist of in-order execution architectures such as
the Larrabee architecture [16].

V.The total execution time on systems with p
processing cores

The total execution times used and presented in sec-
tion IV assumed an infinite number of computation cores.
This section enhances Hodzic’s formula used in sec-
tions IV-A and IV-B and the formula for our new methods
presented in section IV-C for the case of p processors.

A.Hodzic’s total execution time

Hodzic presented the total execution time as the number
of phases P, which he defines as the number of wavefronts,
multiplied with the sum of the computation time T, and
communication time 7T,

T=P. (Tcomp + Tcomm)

While this remains generally true, the number of compu-
tation phases needs to be redefined. If all supernodes of a
wavefront can be executed simultaneously, each wavefront
requires one computation phase. If there are not enough
resources in the system, a wavefront may require more than
one computation phase. The total number of computation
phases for this case can be estimated as:

w "
P= Z(max(j,l))
i=1

where p equals the number of processors, W equals
the number of wavefronts and w; equals the number of
supernodes on wavefront i.

B. Total execution time of the new supernode
transformation

In section IV-C we presented the total execution time

as
N N
T = — | =1 'Tz()ne - |- Tzone
(151 = 1) Teone + 5]

We construct the execution time for p processors by
considering the example in figure 11. Assuming p = 4
we execute four threads Thread; with ¢« = 0,...,3. The
execution order is illustrated in figure 12 by staggered
horizontal lines.

Here the thread executing the very last horizontal zone
is Thread,, which requires (([ 2 ]mod4)—1)-T.on. due to
dependencies to start and executes in ([([4']/4)]-[X])-
T.one. Therefore, the total execution time results for the
general case in

(%]

7 = (15 Imod) = 1+ [(-E0)] - [ 1) T

=
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Fig. 11. Example for finding the execution time
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Fig. 12. Staggered execution of threads

VI. Experimental results

We benchmark our techniques on two out-of-order
multi-core x86-64 machines, an Intel ®Xeon®X5670 sys-
tem with 12 cores and 24 threads (p = 12,t =2 @ 2.93
GHz; a Nahelem architecture) and an Intel®Core™i5-
2500 with four cores and four threads (p =4,t =1 @ 3.3
GHz; a Sandy Bridge architecture).

A.The benchmarks

We implemented each technique discussed and pre-
sented in this paper in ANSI C using Posix Threads. The
benchmark performances are compared against each other
and against the unmodified original loop nest according to
the code in figure 2. The input size of all benchmarks is
43500 characters randomly generated stored on the heap
and unmodified across all benchmarks. Four methods are
tested: Hodzic’s method (as shown in figure 4), Hodzic’s
method enhanced (as shown in figure 8) and our variation
of the supernode transformation and threading strategy
applied to the original loop nest as shown in figure 9 and
applied to the skewed loop nest as shown in figure 10.
Implementations based on Hodzic’s method are bench-
marked using squared supernodes as those are optimal for
a squared index set according to [ 1]. For avoiding false
sharing, mutexes which are stored globally are padded.
Each benchmark is implemented with a maximum of four
active threads on the four core machine (p = 4,¢ = 1) and

10

24 active threads on the 12 core machine with 24 hardware
threads (p = 12, t = 2).

To measure the execution time the gettimeo fday linux
system call is used. This kernel routine takes use of the vir-
tual dynamically-linked shared objects library (V DSO) of
the linux kernel. Therefore, no switching from user space
to kernel space is required, which minimizes the mea-
surements overhead. The benchmarks were compiled using
GCC 4.6.1 and tested on linux platforms with kernel ver-
sion 2.6.35. The compilation process took advantage of all
compiler optimizations by using flag —O3. If the unopti-
mized code (compiler flag —O0) performed better than the
optimized code such as in figures 13 and 14 we show those
results as well. Each value in figures 13, 14, 16, 17, 18
and 19 represents the arithmetic average of four repetitive
runs. All values in tables 15, 16, 17, 18 and 19 represent
the execution time in seconds.

B.The results

Machine: 4 core (4 threads)

14 & -00 Hodzic traditional

\ ==-00 Hodzic skewed
V'-03 Hodzic traditional
“#-03 Hodzic skewed

12

10

Execution time / sec
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Dimension of each supernode

Fig. 13. Traditional supernode transformation and our enhance-
ment at the iScore machine (p = 4,t = 1)

Machine: 12 core (24 threads)

B -00 Hodzic traditional
v} =00 Hodzic skewed
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Fig. 14. Traditional supernode transformation and our enhance-
ment at the Xeon machine (p = 12,¢t = 2)

Figures 13 (four core machine) and 14 (12 core ma-
chine) show the benchmarks of Hodzic’s method and our
enhancement of it as described in subsection IV-A and sub-
section [V-B, respectively. The execution time is presented
as a function of the supernode dimension, which is the side
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length of the squared supernodes. In both cases the curves
share the general shape with which the execution time
decreases with the supernode dimension until it reaches an
optimal grain size. The fastest execution time in each graph
is scored by applying Hodzic’s method to the compiler
optimized skewed loop nest. The fastest execution time
of our enhancement to Hodzic’s method in relation to
the fastest execution time of Hodzic’s original supernode
transformation scores a speedup of 3.01/1.80 = 1.67 at the
four core machine and 1.82/1.09 = 1.67 at the 12 core
machine. The optimal tile size for the compiler optimized
transformed loop nest equals 500 at the four core machine
and 260 at the 12 core machine. Interesting is also that
execution times for tile sizes between 230 and 500 are
consistently low at the compiler optimized transformed
curve in figure 13 (4 core) while this benchmark in
figure 14 (12 core) shows a more distinct optimal tile size.

Xeon | iscore |
| 4644 | 5133 |

Fig. 15. Execution times of the original loop nest

Figure 15 shows the execution time of the original
loop nest at each machine as presented in figure 2. Com-
paring the best performance of the traditional supernode
transformation at the four core machine (iScore archi-
tecture) with the original loop nest, it shows a speedup
of 51.33/3.01 = 17.1 and a 51.33/1.80 = 28.5 times
speedup at the enhancement of Hodzic’s method. The
benchmarks for the 12 core machine (Xeon architecture)
score a 46.66/2.79 = 16.7 (traditional supernode trans-
formation) and 46.44/1.09 = 42.6 (enhanced supernode
transformation) speedup. These results are better than
expected. We experience the phenomenon of super-linear
speedup, where the speedup is larger than the the increase
of computation cores. This is mainly due to reduced data
access times. As one thread is performing on specific data
the whole cache line is loaded. Threads may be able to
use data that is still present in the cache as it got loaded
by other threads for reducing cache misses.

Figures 16 and 17 present the results of our variation
of the supernode transformation and threading strategy
on the four core machine applied to the original and
the skewed loop nest. Figures 18 and 19 show the same
techniques on the 12 core machine. We present the results
in tabular form as we experiment with two parameters:
The number of horizontal zones [ N/w] and the number of
vertical zones [N/h]. The results show that the execution
time decreases with an increasing number of vertical
zones and increases after it reached an optimal number
of vertical zones. Furthermore, the benchmarks tend to
perform better with increasing number of horizontal zones.
The fastest execution time for each number of vertical

Number of vertical zones N/h
50 | 2000 | 4000 | 6000 | 8000 | 10000 | 12000 | 14000
20 | 25.19 | 25.90 | 26.95 | 26.48 | 27.44 | 26.97 | 27.29 | 27.20
50 | 7.34 | 839 | 841 | 8.09 | 9.98 9.48 8.35 8.63
80 | 394 | 367 | 391 | 377 | 472 4.06 3.87 4.46
110 | 3.61 | 3.15 | 3.39 | 3.24 | 4.03 | 348 3.21 3.66
140 | 3.63 | 328 | 317 | 3.21 | 412 | 355 3.26 3.68
170 | 3.66 | 3.18 | 3.21 | 3.22 | 4.09 | 3.50 3.22 3.72
200 | 3.75 | 3.24 | 3.22 | 3.27 | 412 3.52 3.24 3.71
230 | 3.69 | 3.43 | 319 | 3.23 | 4.12 3.55 3.24 3.70
260 | 3.69 | 323 | 325 | 3.23 | 414 | 355 3.24 3.70
290 | 3.68 | 323 | 323 | 3.24 | 416 | 355 3.25 3.71
320 | 370 | 321 | 325 | 3.22 | 410 3.55 3.21 3.67
350 | 3.75 | 3.30 | 3.29 | 3.29 | 4.24 3.58 3.27 3.74
380 | 381 | 324 | 328 | 3.27 | 421 3.61 3.28 3.75
410 | 381 | 327 | 325 | 331 | 419 | 360 3.32 3.76
440 | 3.84 | 331 | 331 | 328 | 421 | 360 3.28 3.76
470 | 3.83 | 3.26 | 3.26 | 3.28 | 4.20 3.61 3.28 3.76

Number of horizontal zones N/w

Fig. 16. Our variation of the supernode transformation applied to
the original loop nest at the i5core machine (p = 4,t = 1)

Number of vertical zones N/h
50 | 4000 | 8000 | 12000 | 16000 | 20000 | 24000 | 28000
20 | 856 | 7.70 | 8.18 | 9.97 12.18 | 14.41 | 16.26 | 17.27
50 | 5.80 | 5.07 | 5.98 | 6.59 8.33 | 10.07 | 11.62 | 12.57
80 [3.33| 254 | 2.89 | 3.11 3.97 | 480 | 559 | 6.08
110 | 2.62 | 1.76 | 1.85 1.95 2.49 3.02 3.51 3.84
140 | 2.66 | 1.83 | 1.89 1.93 2.49 3.05 3.51 3.83
170 | 2.67 | 1.77 | 1.85 1.92 2.46 3.00 3.50 3.82
200 | 2.67 | 1.80 | 1.85 | 1.91 245 | 3.00 | 350 | 3.84
230 (270 | 1.79 | 1.84 | 1.91 245 | 2.99 | 350 | 3.82
271179 [ 198 | 1.90 | 244 | 299 | 350 | 3.82
290 | 2.71 | 1.83 | 1.85 1.90 2.45 2.99 3.51 3.83
320 | 2.74 | 1.84 | 1.91 1.90 2.44 2.98 3.50 3.82
350 (327 | 1.83 | 1.92 | 1.89 | 244 | 2.98 | 349 | 3.82
380 | 2.81 | 1.96 | 1.85 | 1.92 244 | 299 | 350 | 3.83
410 | 2.89 | 1.78 | 1.90 1.94 2.44 2.98 3.50 3.83
440 | 2.98 | 1.77 | 1.90 1.92 2.45 3.03 3.51 3.84
470 [ 519 | 411 [ 196 | 1.96 | 246 | 3.00 | 352 | 3.85

Number of horizontal zones N/w
N
[o2]
o

Fig. 17. Our variation of the supernode transformation applied to
the skewed loop nest at the i5Score machine (p = 4,¢t = 1)

Number of vertical zones N/h

10] 50 5001 1000] 2000/ 4000/ 6000] 8000 10000 12000

50 4.29) 3.42) 3.43] 3.45 3.65 3.69 3.73] 4.41 5.29 6.03

250 3.46| 3.03] 2.97| 2.98 2.98 3.04] 3.12| 3.30| 3.46| 4.02

500/ 3.46| 2.95| 294/ 295 3.01] 3.17| 3.18 3.25 3.30) 4.19

750| 2.11] 1.07) 155 175 1.68 1.01] 1.48] 1.95 2.54 2.89

1000| 1.96| 1.06] 1.54| 1.66| 1.41] 1.00] 1.46] 1.92 2.43 2.81

1500/ 1.88 1.09 0.89] 0.92| 0.89] 1.07| 1.44) 1.90 2.52 2.97

2000 1.99| 1.14] 0.88 0.88) 0.85 0.99] 1.45 1.91 2.40 2.88

2500] 2.07] 1.17) 0.89] 0.86| 0.85 0.99 1.44| 2.00 2.34 2.79

3000 2.12| 1.19) 0.87] 0.86) 0.84] 1.13 1.46] 201 2.46 2.78

3500 2.12] 1.17| 0.89] 0.85 0.83] 0.93 1.38] 1.83 2.27 2.80

4000] 2.06| 1.17| 0.85 0.85 0.82 0.87 1.71) 1.85 2.20 2.61

Number of horizontal zones N/w

4500, 2.07| 1.22| 0.85 0.81 0.79] 1.00| 1.20| 1.65| 2.11 2.32

5000 1.99) 1.18 0.80] 0.79 0.84| 0.81) 1.13] 1.48 1.97 2.27

Fig. 18. Our variation of the supernode transformation applied to
the original loop nest at the Xeon machine (p = 12,t = 2)

zones is highlighted bold. While we experienced at the 12
core machine performance increases at larger numbers of
horizontal zones we found that the four core machine has
its performance optimum at lower numbers of horizontal
zones. The data ranges in tables 16, 17, 18 and 19 present
the critical subset out of all tested parameters. The new
supernode transformation applied to the original loop nest
scores a speedup of 51.33/3.17 = 16.2 on the four core
machine and 46.44/0.79 = 58.8 on the 12 core machine
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Number of vertical zones N/h

10| 50‘ 250] 500] 1000| 2000 6000| 10000, 14000, 18000

50| 4.83 2.53‘ 2.07| 3.65 3.74| 3.98 3.54 5.36 7.11 8.61

250/ 1.89] 1.05| 0.81] 1.05 0.83] 0.92] 1.49] 2.37 3.3]] 4.13

500/ 1.96| 1.08 1.29| 0.78 0.81] 1.80] 1.52| 2.45 3.21] 4.08

750| 2.41] 1.50 0.82 0.80, 0.83] 0.92] 1.98] 227 3.09 3.93

1000| 2.41] 1.12| 1.87| 0.80] 0.84| 0.89] 1.84] 2.63 4.46| 4.03

1500/ 2.35] 1.21] 0.84] 1.13] 0.84] 0.89] 1.41 2.30 3.19 4.09

2000| 2.46| 1.81] 0.86] 0.82| 0.85 0.94] 1.47| 2.53 3.27| 4.19

2500] 2.37| 1.32) 0.89] 0.84 0.83] 0.97| 1.48] 2.35 3.31 4.29

3000] 2.43] 1.30 0.88 0.95 0.85 0.93 1.45 2.33 3.29 4.18

3500 2.47| 1.33] 0.88 0.83 1.22| 0.92] 1.80] 2.24 3.09 4.02

4000] 2.56| 1.31] 0.87| 0.82] 0.85 0.90] 1.39, 2.17| 3.18| 3.82

Number of horizontal zones N/w

4500, 2.51) 1.33] 0.91] 0.82 0.83] 0.88 1.65 231 2.84 3.69

5000] 2.56| 1.34) 0.90] 0.82] 0.81] 0.87] 1.63] 2.24 2.76 3.58

Fig. 19. Our variation of the supernode transformation applied to
the skewed loop nest at the Xeon machine (p = 12,¢ = 2)

over the original loop nest. The same method applied to the
skewed loop nest achieves a 51.33/1.76 = 29.2 speedup
on the four core machine and a 46.44/0.78 = 59.5 speedup
on the 12 core machine. One observation is that skewing
the loop nest with this method improved the performance
only at the four core machine.

VII. Conclusion

This paper emphasized on supernode transformations
and multithreading for the LCS problem by applying
and enhancing previous work as well as presenting a
variation of the supernode transformation and threading
strategy. One major observation of this paper is that
multithreaded implementations of the LCS score super-
linear speedups. Applying Hodzic’s method (traditional
supernode transformation) to the LCS problem, it scores a
16.7 times speedup over the original loop nest on a 12 core
MIMD machine. Enhancing this technique to eliminate
loop carried dependencies along the inner loop within each
supernode scored a 42.6 times speedup. To reduce the
thread management overhead and improve the data reusage
of threads we introduced a variation of the supernode
transformation and threading strategy scoring a 59.5 times
speedup. For each method we cited and presented the
functions for the total execution time consider systems
with infinite and systems with limited resources. The tech-
niques presented in this paper are especially applicable to
MIM D architectures. We benchmarked the techniques on
two modern 286 — 64 multi-core machines with four cores
and 12 cores. Techniques, ideas and formulas presented in
this paper on the LCS problem are generally applicable to
regular dependence algorithms.

We especially see potential for this technique at future
MIC systems where a large number of processing cores
are available. As these systems usually consist of in-
order architectures, especially our new variation of the su-
pernode transformation should be applied. The techniques
and concepts presented in this paper may be improved
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by applying software pipelining. Also, how to port the
presented techniques to SIM D architectures such as most
recent GPGPU’s will be conducted in future work.
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Abstract

Simulating particle collisions is an important appli-
cation for physics calculations as well as for various
effects in computer games and movie animations. In-
creasing demand for physical correctness and hence
visual realism demands higher order time-integration
methods and more sophisticated collision manage-
ment algorithms. We report on the use of singe and
multiple Graphical Processing Units (GPUs) to ac-
celerate these calculations. We explore the perfor-
mance of multiple GPUs (m-GPUs) housed on a sin-
gle PCle bus as well as the use of special purpose PCle
bus extender technology using GPU housing chassis
systems such as Dell’s C410x PowerEdge. We de-
scribe how a hard sphere collision system with grav-
itational interactions was developed as a benchmark.
We compare the performance of various GPU models
and show how algorithms that use GPU-GPU com-
munications with NVidia’s Compute Device Unified
Architecture (CUDA 4) can considerably aid commu-
nications amongst multiple GPUs working on a single
simulated particle system.

Keywords: hard-sphere collisions; m-GPU; GPU-
GPU communication; CUDA 4; PCle bus.

1 Introduction

Particle simulation is a technique used heavily in the
computer games industry and also for constructing
animation of sophisticated computer generated scene
effects in the movie industry. Traditionally some
rather poor approximations to the physics have been
used in these applications to save on computational
requirements and in many circumstances these are not
noticed by the viewer or player.

We are interested in software for “physics engines”
(Bourg 2002, Conger & LaMothe 2004) that make
better approximations to the point of being able to
explore the statistical mechanical behaviours or nu-
merical experiments based on particles. We are there-
fore interested in high quality physics engines that
might ultimately be used as games engines(Thorn
2011, Millington 2007, Gregory 2009, Menard 2011)
as well — providing sufficient real time performance
can be achieved.

Graphical Processing Units (GPUs) have found

Copyright (©2012, Australian Computer Society, Inc. This
paper appeared at 10th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2012), Melbourne, Aus-
tralia, January-February 2012. Conferences in Research and
Practice in Information Technology, Vol. 127. Jinjun Chen
and Rajiv Ranjan, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

{k.a.hawick,d.p.playne}@massey.ac.nz
Fax: +64 9 441 8181

Figure 1: Simulated hard spheres, with density:
0.025(red); 0.0025(green).

many widespread recent uses in accelerating the per-
formance of many scientific and simulation calcula-
tions. GPU commodity pricing and ubiquity means
they are widely available in many games comput-
ers, but they are also finding sophisticated uses in
supercomputers and indeed many of the world cur-
rent top supercomputers(Meuer, Strohmaier, Simon
& Dongarra 2010) employ GPU technology as gen-
eral purpose “GPGPU” accelerators - to speed up
calculations and not just graphical rendering(Wright,
Haemel, Sellers & Lipchak 2011).

GPUs come in a number of different models with
different numbers of cores; floating point capabili-
ties and often very importantly different levels and
amounts of memory(Leist, Playne & Hawick 2009,
Playne & Hawick 2011). We have experimented with
a number of individual GPU devices ranging from low
priced game rendering models to top end gamer de-
vices such as the GTX 580/590 series and to blade
quality devices such as the C2050/C2070 series.

GPUs provide a powerful data-parallel architec-
ture for classical N-body particle dynamics simula-
tions which have in fact been used as a benchmark ap-
plication for such devices(Hawick, Playne & Johnson
2011, Playne, Johnson & Hawick 2009, Nyland, Har-
ris & Prins 2007, Stock & Gharakhani 2008, Ka-
vanagh, Lewis & Massingill 2008). We extend this
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idea to the simulation of hard spheres under the in-
fluence of a gravitational field. The use of hard-sphere
collisions(Allen & Tildesley 1987) provides a com-
munications challenge involving correct book keep-
ing management of collisions as well as the compu-
tational challenge of performing accurate numerical
integration(Hawick et al. 2011) of the classical me-
chanical equations of motion for an N-body system.
We are interested in large and complex systems where
there are many particles and interactions, but the sys-
tem density gives us a parameter to vary along with
the number of processing cores to use this application
as a benchmark for exploring performance tradeoffs of
modern GPUs.

An attractive and relatively recent development
involves the use of multiple GPUs that all cooper-
ate to support and accelerate the performance of a
single CPU. NVidia’s Compute Unified Device Archi-
tecture(CUDA) — version 4 — offers software capabil-
ities to manage direct communications between such
cooperating GPUs and without passing data via the
controlling CPU.

Graphical Processing Units (GPUs) are generally
connected to their hosting processors via a Peripheral
Component Interconnect Express (PCle) bus(PCI-
SIG 2010) and usually motherboards will support at
most four PCle devices. Although known as a bus,
the PCle standard is actually structured as point-
to-point serial links with dynamic bandwidth negoti-
ation. We construct a synthetic benchmark applica-
tion to measure the bandwidth, latency and PCle bus
contention issues that arise as a multi-threaded CPU
host program delegates work to m-GPU accelerator
devices. We explore performance properties of differ-
ent models of GPUs as well as that of PCle extender
cards and device chassis that support operation of
more than four GPU devices from one CPU. In addi-
tion to benchmark data we discuss applications and
appropriate software and threading architectures to
make good use of GPUs and GPU-accelerated clus-
ters configured in this manner.

We use this application as a benchmark for a
m-GPU system built using Dell’s C410x PowerEdge
chassis(Dell Inc. 2010) for extending the PCle bus
and compare the performance of various GPU /cluster
combinations. We discuss how the compute to com-
munications ratio of an application that involves hard
inelastic collisions differs from the simple N-body par-
ticle dynamics as a data-parallel benchmark.

Figure 1 shows a rendering of a simulation of sev-
eral thousand colliding hard spherical particles with
a density of around 0.025. This is in fact quite a high
value that gives rise to many collisions in each sim-
ulated time unit. In this paper we explore how the
number of particles in the system can be increased
using multiple GPUs, but also how the performance
changes as we increase the particle system density -
and hence change the communications to computa-
tion ratio.

This paper is organised as follows. We describe
the algorithms for approximating the mechanics of in-
teracting hard cored spherical particles in Section 2.
In Section 3 we describe the GPU configurations we
employed and our GPU code implementations using
CUDA. We present some performance results for var-
ious GPUs at different numbers and densities of sim-
ulated particles in Section 5 and discuss the scalabil-
ity and implications for combining GPUs together in
Section 6. We offer some conclusions and areas for
further work in Section 7.
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2 Hard Core Collisions & Interactions

In addition to game physics engine applica-
tions (Eberly 2006), a number of problems in chem-
istry and physics can be formulated in terms of in-
teracting hard-core bodies. A hard-core body in this
context simply means a rigid body that cannot be de-
formed beyond a certain point. Spheres are particu-
larly useful for many models since they are very easily
parameterised in terms of a position (of the centre)
and a radius. Spheres can be rendered in a 3-D space
with shading or false colour or texture maps and can
be used to approximate planetary dynamical system
or simple molecular models.

The packing density is essentially a measure of
the wasted space when you pack a number of solids
into a (large) box. A limiting fraction (between 0
and 1) gives a universal measure of this for different
shapes. There are some important physical and chem-
ical properties of various materials that relate to the
packing density of their component molecules. The
volume of a single sphere of radius a is just %wag’ so if
there are N non-overlapping spheres in a rectilinear
box of Volume V, it is straightforward to relate the
radius to the density p of the simulated system.

A number of authors have reported on well known
approaches to parallelising the N-body particle dy-
namical problem. Approaches include use of space
dividing oct-trees(Warren & Salmon 1993, Barnes &
Hut 1986) to allow the O(N?) computation to be
reduced to O(Nlog N and data parallel computers
have been applied successfully to this sort of prob-
lem for some years(Brunet, Mesirov & Edelman 1990,
G.Fox, M.Johnson, G.Lyzenga, S.Otto, J.Salmon &
D.Walker 1988, Playne 2008). A common approach
is to divide the particle up amongst processing units
and employ a one-dimensional communicating ring
approach to allow all processors to access all (pos-
sibly reduced) information on the particles they do
not have direct responsibility for updating.

Vector parallel techniques have also been suc-
cessfully employed for updating collision lists of
hard disks and hard spheres(Allen & Tildesley 1987,
Donev, Torquato & Stillinger 2005). In this present
paper we employ a hybrid approach since we use hard
core particles that cannot intersect but also wish to
apply high-order numerical integration methods to
accurately track the changing trajectories of particles
under the influence of gravity.

Our benchmark code is aimed at simulating the be-
haviour of interacting polydisperse hard-core spheres.
The code computes collision dynamics for a system of
N hard spheres, which are contained in a periodically
repeating cell of unit edge length. The spheres, la-
belled by index ¢ have diameters o;, and masses m;.
Their positions r;, velocities v; = Ugj and accelera-
tions ddZt’;‘ are tracked during the simulation. Hard
spheres that only interact via inelastic collisions do
not need accelerations to be recorded. Accelerations
are however required and computed when a global
gravitational field is applied. To make this physically
meaningful we apply fixed boundaries for the roof and
floor of the simulated box, but retain periodicity in
the horizontal dimensions.

We consider a set of N particles, labelled ¢ =
0,1,2,..., N — 1 that interact via pair-wise interac-
tions that are dependent on various properties of the
particles. Central forces that depend solely upon the
relative distance between particles ¢ and j. For exam-
ple the Newtonian gravitational potential arising on
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Algorithm 1

Figure 2: Hard Sphere Collision with gravitational
forces applied.

the i’th particle from the j’th, V (r; j, can be written

as: o

m;m,;
Ve, ,(rij) = ———+ (1)
An alternative pair-wise force law that might model
chemical van der Waal’s force or some other form of
long range attraction between particles (i,j) which
can be approximated using a Lennard-Jones potential

w-sl(2)-(2)]

We can also add in a fixed extra term that depends
solely on height V,(y) = m;g|y| to model an overall
gravitational field so that all particles tend to drift
downwards within the simulated box — this can be
incorporated into the total V(r). The classical (New-
tonian mechanical) force can then be written as the
gradient of the potential:

F=VV(r) (3)

Ti,j

For centralised forces like gravitational systems,
we can simply sum pair-wise forces along a vector
connecting the particle centres, and for a single such
axis the gradient is just a single-variable derivative

and hence:
Fl‘ = Z Gmimjrm (4)
J

Given Newton’s third law: F; = m;a; => a; = F;/m;
and we can employ the separate x,y, z components of
the acceleration in the Newtonian classical rigid body
equations of motion so that we compute changes in
particle i’s velocity and position.

We consider the possibility that particles interact
over long ranges via such a force law, but that they
also have some minimum distance of separation 2a so
that they are hard-cored particles and cannot overlap.

Figure 2 shows the problem of two hard spheres
that collide. The particles are are hard spheres, and
collide inelastically - they do not interact except for
an impulse applied at the point of collision. How-
ever both do experience the externally applied gravi-
tational field force and particle A which has a horizon-
tal initial velocity follows a parabolic trajectory. The
time and point of collision with particle B must be de-
termined to correctly apply the collision behaviour.

Our model is summarised in Algorithm 1.

In effect then, the inelastic hard-core collisions are
impulsive corrections to the time integration of the
usual N-body Newtonian mechanics. We can use any
time-integration algorithm we wish, but higher-order
will yield better energy conservation. The inelastic

initialise NV particles in 3D
for t+ 0 to Tmax do
compute gravitational and pair-wise force sums
on each particle
compute particle accelerations from forces
time integrate all particles by h
check for penetrating core collisions
while collision occurred do
warp time back to earliest collision, undoing
core penetrations
compute impulses for collision, correcting ve-
locities
check for penetrating core collisions
end while
resume time integration
end for

collisions with box boundaries would change the over-
all energy and the simulated system would approach
an equilibrium temperature given the particle core
radii. In this present paper we focus on the GPU
performance and benchmarking aspects and do not
explore these statistical physics effects further.

3 GPU Implementation

Understanding the scaling and communications per-
formance of multi-GPU systems (Spampinato 2009)
is becoming very important as large scale supercom-
puters that use them become more prevalent — as ev-
idenced by those on the present Top 500 world list of
supercomputers(TOP500.org n.d., Meuer et al. 2010).
A key aspect to understanding their behaviour is the
scalability of the Peripheral Component Interconnect
Express (PCle) bus(PCI-SIG 2010) used to commu-
nicate between GPUs and CPU. PCle is a sophisti-
cated technology - it is a point-to-point serial struc-
ture with lanes, dynamic negotiation and has devel-
oped through a number of versions. It is implemented
by a number of different vendors on different GPU
models and boards.

Typically a PC motherboard is limited to hav-
ing at most four PCle slots into which GPU cards
can be located. In some cases this is further limited
by power requirements and physical geometry of the
slots. Dell and other manufacturers are now making
available a number of PCle bus extenders in the form
of an integrated chassis that allows various software
controlled configurations of devices. The Dell C410x
PowerEdge chassis(Dell Inc. 2010) we discuss in this
present paper houses up to 16 GPUs each in its own
bay, and provides power and cooling suitable for a ma-
chine room environment. This is a good deployment
platform to experiment with blade-level GPUs, al-
though much of our earlier work was successfully car-
ried out using the very much cheaper gamer-quality
GPUs that do not have error-corrected memory.

3.1 Single-GPU Implementation

This benchmark makes use of the well-known tiling al-
gorithm to compute the all-pairs gravitational forces
between particles (Nyland et al. 2007, Playne et al.
2009). This algorithm processing the particles in tiles
stored in shared memory. Each block of threads will
load one tile of particles at a time into shared memory
and each thread computes the force of gravity exerted
by each of these particles on the single particle that
threads is responsible for.
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A similar algorithm can be used to detect colli-
sions between particles. Each pair of particles must
be compared to determine if they have collided during
the previous time step. If a collision has occurred, the
time at which it happened is calculated and saved. If
a thread’s particle is involved in multiple collisions,
it will record the time of the first collision and the
index of the particle it collided with. The threads
use atomic operations to compute the time at which
first collision in the entire system occurred. The ker-
nel used to detect these collisions is shown in Algo-
rithm 2. This algorithm will determine the first colli-
sion particle ¢ was involved in and will be computed
for each particle by a separate thread. Each thread
will compute max_times|i] which is how long ago the
first collision of that particle occurred.

Algorithm 2

collision detect kernel
pl <« particles]i]
for j <~ 0to N do
p2 < particles[j]
d + distance from pl to p2
if d < pl.R + p2.R then
t < required step back
if t > max_timesi] then
mazx_timesli] =t
collision_index[i] = j
end if
end if
end for
AtomicMax(system_max _time, max _times|i])

To ensure all collisions are processed correctly,
they are resolved one at a time. Once the time of
the first collision is determined, a kernel is launched
which will test to see if the particle was involved in the
first collision. If the thread’s particle was not involved
in the collision, the kernel will immediately return,
this can be determined by comparing that particle’s
collision time with the time of the first collision. If
the thread’s particle was involved in the collision it
will fetch the index of the other particle involved in
the collision. The thread with the lowest index will
step both particles back in time to the point of the
collision, perform the collision and step both particles
back to the current system time. The kernel to per-
form this collision process is shown in Algorithm 3.

Algorithm 3
collide particles kernel
if max_times[i] == system_max_time then
J + collision_index]i]
if i < j then
pl < particles|i
p2 < particles|j
step particles pl
system_max_time
collide particles pl and p2
step particles pl and p2 forward by
system_max_time

end if
end if

and p2 Dback by

This process of detecting the first collision and re-
solving it must be performed iteratively until no more
collisions occur. The collision detection kernel will
return 0 when no collisions have occurred. These ker-
nels, along with the force calculation and integration
kernels can be used to compute an N-body simulation
with collisions on a single GPU. However, utilising
multiple GPUs is somewhat more difficult.
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Figure 3: A diagram comparing GPUDirect commu-
nication and memory transfer through the host. The
dotted lines show the transfer of the data through
host memory.

3.2 M-GPU Implementation

The main challenge of computing an N-body simula-
tion on an m-GPU system is managing the communi-
cation between them. This m-GPU implementation

evenly distributes N particles between P devices such

that each GPU device is responsible for % particles.

For each device to compute the total force on each
of its particles, it must copy the particle data out of
the other GPUs. Likewise to detect if any collision
have occurred, each device must compare each of its
particle with each other as well as the particles stored
on other GPUs. Including m-GPU communication in
the benchmark allows the test system to be evaluated
in terms of computation as well as communication
throughput.

This implementation makes use of the CUDA
4.0 functionality of peer-to-peer memory transfer.
GPUDirect 2.0 allows data to be copied directly from
one GPU device into another across the PCl-e bus.
Without GPUDirect 2.0, data had to be first copied
out of the device to host memory and then into the
second device. This peer-to-peer communication can
significantly improve the performance of m-GPU ap-
plications.

Algorithm 4 shows the basic algorithm for com-
puting the total force on each particle. Initially a
kernel is called to compute the forces the particles on
the device exert on each other. Once this has been
completed the device will loop through all the other
device. For each iteration of the loop, the device will
copy the particle data out of the other device into
its memory. It then computes the total force those
particles exert on its particles.

Algorithm 4

call compute force kernel
for d + 0 to num_devices do
if i # d then
copy particles from devicey to device;
call compute force kernel
end if
end for
time integrate all particles by h

A similar algorithm is used to detect particle colli-
sions. Initially a kernel is called to detect collisions of
particles on the same device. Once this is completed
the particles on other devices are checked for colli-
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sions. Like the force calculation, the devices are iter-
ated through and their particles copied to the current
device. These particles are then checked for collisions
with this device’s particles. This process is presented
in pseudo code in Algorithm 5

Algorithm 5

max_time; < 0
copy max_time; into device;
call collision detect kernel
for d < 0 to num_devices do
if i # d then
copy particles from devicey to device;
call collision detect kernel
end if
end for
copy max_time; out of device;

To determine when the first overall collision oc-
curred, the first collision times for each device must
be compared. The time of the first collision is found
and the index of the device is recorded. If the collision
occurred between two particles on the same device,
the same kernel as in Algorithm 6 will be launched.
If the collision occurred between particles on differ-
ent devices, the appropriate data will be exchanged
and one kernel on each device will be launched. This
kernel will update the particle on the device that was
involved in the collision. The process for determin-
ing the time of the first collision and computing the
collision is shown in Algorithm 6.

Algorithm 6

system_max_time < 0
for d < 0 to num_devices do
if max_timeg > system_max_time then
system_max_time < max_timey
end if
end for
if collision is on device; then
call collide particles kernel on device;
else if collision is on device; and device; then
copy particles from device; to device;
copy particles from device; to device;
call collide particles kernel on device;
call collide particles kernel on device;
end if

This basic algorithm can be used to implement
an N-body simulation with hard sphere collision on

a m-GPU system. The main point of difference be-
tween the implementations is how the data transfer
is performed. This includes both removing redundant
communication as well as different methods of imple-
menting communication between devices.

When collisions are detected and computed, the
devices must exchange particle data. If multiple colli-
sions occur within a single time step, the devices must
exchange this data multiple times. However, most of
the particle data will remain unchanged. Only the
data about the particles that were involved in the
collision needs to be propagated to the other devices.
This is not a change in the fundamental algorithm,
merely a reduction in the data that is communicated.

The more important difference in implementations
is the method of CUDA communication. Fermi archi-
tecture GPUs have support for GPUDirect 2.0 which
allows data to be directly communicated between de-
vices. This is the preferred communication method
used by the benchmark. However, Tesla architec-
ture GPUs do not support this functionality and any
data transfer must be communicated through the host
memory.

Figure 5: The Dell C410x Chassis - shown with cool-
ing fans exposed, in process of having GPUs installed
and HCI connector cables linking the extended PCI
bus to the internal PCI bus of a hosting PC..
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4 Benchmarking

The benchmark has been used to evaluate a num-
ber of Fermi architecture GPUs in a variety of con-
figurations. The testing has been focused on high-
performance graphics cards and compares the gamer
level GTX480 and GTX580 with the professional
C2050 and C2070 GPUs. Both the single-GPU and
m-GPU implementations have been executed on these
cards to compare their performance. The C2050 and
C2070 cards have been tested both hosted on a tra-
ditional motherboard and on the Dell C410x chassis.

To compare the performance of the different GPU
configurations, the simulations have been run with
three different system configurations which varies the
computation between the highly parallel force compu-
tation and the more restricted collision detection. A
particle configuration with very low density is very
computationally similar to the benchmark without
particle collisions as the computation is almost en-
tirely parallel. Whereas particle configuration with
a high density will have a great deal more collisions
and requires more communication between devices to
resolve these collisions.

To test the difference in performance based on par-
ticle density, three different initialisation configura-
tions have been compared. The first initialises the
particle positions and velocities randomly with a very
low density. This configuration results in almost no
collisions and purely tests the parallel processing per-
formance. The second initialises the particle posi-
tions in a two-dimensional lattice with random ve-
locities, this results in a medium density simulation
with a collision rate of =~0.03 collisions per particle
per step. The final configuration initialises the sys-
tem with the particles laid out in three-dimensional
lattice with random velocities. In this configuration
there are a higher number of collisions, the rate is
~0.06 per particle per step. The number of collisions
vs system size is shown in Figure 6.
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Figure 6: Number of collisions per step for Low
(0.00), Medium (0.03) and High (0.06) density con-
figurations.
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5 Results

We present some selected performance timing data
for the hard core gravitational particle simulation for
a number of GPU devices in both single GPU and m-
GPU configurations. These configurations are evalu-
ated for a number of different system sizes but also
with the three different particle densities discussed in
the previous section - low, medium and high.

The first case is the dilute limit of density where no
collisions occur during the period of the benchmark,
effectively these systems have a collision per particle
per step ratio of 0.00. This test will show the best
possible performance as the computation can be exe-
cuted entirely in parallel. Collisions are still detected
but as they never occur then there is no serial pro-
cess required to resolve them. The single-GPU imple-
mentation has been tested on the GTX480, GTX580,
C2050 and C2070. The multi-GPU implementation
has been tested on 2xGTX480, 2xGTX580, 2xC2050,
2x(C2070, 4xC2050 and 4xC2070 configurations. The
performance plot of this benchmark is shown in Fig-
ure 7.

From this plot it can be seen that the GTX580,
C2050 and C2070 GPUs offer almost indistinguish-
able performance while the GTX480 performs signif-
icantly slower. However, for the m-GPU implemen-
tation the 2xC2050 and 2xC2070 configurations per-
form faster than the 2xGTX480 and 2xGTX580 sys-
tems.

The medium particle density systems (=0.03 col-
lisions per particle per step) shows an interesting
change shift in single-GPU performance. For this
test the gamer level GTX480 and GTX580 both per-
formed faster than the C2050 and C2070 cards. How-
ever, once again the 2xC2050 and 2xC2070 both
showed higher performance for the m-GPU implemen-
tations. The performance plots the medium density
configurations (=~ 0.03) on the different devices can
be seen in Figure 8.

The high particle density (= 0.06) configuration
shows very similar results to the medium density
(= 0.03) systems. The GTX480 and GTX580 cards
both offer the best single-GPU performance but the
Tesla compute cards provide the best m-GPU per-
formance. These results suggest that the C2050
and C2070 Tesla compute cards have faster com-
munication than the GTX480 and GTX580 graphics
cards. NVidia datasheet specifies that Tesla comput-
ing GPUs support faster PCle communication, evi-
denced by these findings (NVIDIA 2011). The per-
formance results for the high-density configurations
are shown in Figure 9.

The performance results for the C2050 and C2070
configuration shown in this section have been hosted
on a Dell C410x chassis. This configuration has been
compared to a configuration hosting the same GPUs
on a traditional motherboard. The results show no
measurable difference between the two configurations
for single or m-GPU implementations and thus have
not been presented separately. For this benchmark,
hosting the devices on a C410x does not degrade per-
formance.
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6 Discussion

Including hard-sphere particle collisions into the N-
body benchmark allows greater insights into the
performance of different GPU configurations. The
gamer-level GeForce cards provided similar or slower
performance compared the Tesla compute cards for
low density configurations where collisions almost
never occurred. However, for medium and higher
density systems the GeForce cards both provided sig-
nificant performance benefits over the Tesla compute
cards.

However, for m-GPU implementations where
device-device communication is required, the results
showed the opposite. The Tesla compute cards pro-
vide a significant performance benefit as compared to
the GeForce graphics cards, this performance differ-
ence is attributed to the Tesla compute cards’ im-
proved PCle communication capabilities (NVIDIA
2011). This difference in performance was more pro-
nounced for configuration medium and high particle
densities as more communication is required to resolve
collisions.

The Tesla compute cards are significantly more
expensive than the consumer-level GeForce graph-
ics cards yet for single-GPU applications where ECC
is not required, the GeForce cards provide compa-
rable or improved performance. However, the Tesla
compute cards are the only GPUs that support ECC
and for m-GPU implementations they provide signif-
icantly higher performance. We believe this is due to
the better DMA transfer capabilities of the Tesla over
GTX cards.

These Tesla compute cards can be hosted in PCle
extender chassis’s such as Dell’s C410x. For the
single-GPU and m-GPU implementations tested in
this research, devices hosted on this chassis provided
performance that was indistinguishable from the same
cards hosted on a traditional motherboard. This
shows that the chassis does not degrade performance
in any way, as was initially feared.

The m-GPU implementation was only tested with
four devices on this chassis. Host machines are now
available which can host multiple HCI cards to allow
a single host to connect to up to eight devices hosted
on the C410x. However, we do not currently own
such a host machines and cannot currently test the
performance of such a configuration.

7 Conclusions

We have described how a three dimensional N-body
interacting particles model with hard-core collisions
can be implemented on single GPU and m-GPU sys-
tems with several parallel algorithmic approaches all
within a single application program. We have used
this application as a parameterised benchmark, using
the particle density and hence the average collisions
per integration time-step as a benchmark parameter
with which to explore computation to communica-
tions ratios.

We have discussed how features of NVidia’s latest
CUDA release aid the performance of this benchmark
— in particular those that support direct GPU-to-
GPU communications without passing through CPU
code. We have also explored the performance capabil-
ities of commodity priced gamer level GPU cards as
well as significantly more expensive blade-quality pro-
duction cards. We found that the gamer-level cards
were better for an m-GPU approach, and that this

20

appears to be due to their enhanced ability to commu-
nicate rather than their floating point performance.

We have shown that the PCle extender bus ap-
proach works well and without significant loss of per-
formance for the regimes we have been able to ex-
plore. We expect performance to degrade with bus
contention as more GPUs are added and we plan to
explore this further as more hardware becomes avail-
able. We also anticipate availability of further im-
proved GPU models that may have even better float-
ing point performance and communications abilities
than those models available to us.

There are open areas of computational physics
such as the phase separation of polydisperse particles
that can potentially be explored through fast simu-
lations such as we describe. We have experimented
with simple spherical particle collisions but there is
scope for important work parallelising other and more
general rigid body collision algorithms on data par-
allel architectures such as GPUs. Collision detection
and particle dynamics continue to be important algo-
rithms deployed in computer games and we anticipate
applications such as we have described as becoming
even more important as it becomes standard practice
for “gamer computers” to have multiple GPUs avail-
able for performance acceleration.
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Abstract

In this paper we introduce efficient parallel algorithms
for finding the girth in a graph or digraph, where girth
is the length of a shortest cycle. We empirically com-
pare our algorithms by using two common APIs for
parallel programming in C++, which are OpenMP
for multiple CPUs and CUDA for multi-core GPUs.
We conclude that both hardware platforms and pro-
gramming models have their benefits.

1 Introduction

Graphs are models widely used in science and engi-
neering, and graph algorithms are the basic blocks of
many algorithmic solutions to real world problems. In
this paper we study the problem of efficiently finding
the girth in a graph or digraph on today’s common
workstations or servers, which often have several pro-
cessing units (CPUs and GPUs). Modern graph ap-
plications require us to find fast algorithms capable of
processing large volume of data. In such cases even a
low-order polynomial time algorithm may not be able
to accomplish a computational task in an acceptable
time limit on a single CPU. As a common solution,
one can deploy a large number of processors to do the
task concurrently. We will discuss how to design and
implement parallel girth algorithms and will present
actual timing results for classes of hard test graphs.

1.1 Background on parallel programming

Designing parallel PRAM algorithms for graph prob-
lems has been the topic of a lot of research; see [3, 18,
19]. Several popular textbooks on parallel computing,
such as [9], now address commonly-used shared mem-
ory parallel models like Pthreads (POSIX Thread
API) and OpenMP (the standard directive-based par-
allel [17]). In addition to utilizing multiple CPU pro-
cessors, recently there are more interests in the re-
search community to explore the power of Graphics
Processing Units (GPU) for solving graph problems.
GPUs are high performance many-core processor de-
vices that were originally designed to handle compu-

Copyright (©2012, Australian Computer Society, Inc. This pa-
per appeared at the Tenth Australasian Symposium on Parallel
and Distributed Computing (AusPDC2012), Melbourne, Aus-
tralia, January-February 2012. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 127, Jinjun
Chen and Rajiv Ranjan, Ed. Reproduction for academic, not-
for-profit purposes permitted provided this text is included.

tation in image processing. General-Purpose compu-
tation on Graphics Processing Units (GPGPU) is the
technique to use GPUs for solving a wider range of
problems.

Among the first concrete results, Harish and
Narayanin [10] introduced some parallel GPU algo-
rithms for various graph problems. In [14], Katz and
Kider presented an algorithm using GPUs for solving
the all-pairs shortest path problem. Checking graph
connectivity was the topic of the paper [20] by So-
man, Kishore and Narayanan. As a final example,
Leist and Playne [11] gave a GPU parallel algorithm
for graph component labeling.

Despite the fact that designing and implement-
ing parallel algorithms have been a major research
topic, there are a few results on comparative stud-
ies of different APIs and architectures. Comparing
CUDA and OpenMP for implementing various par-
allel girth algorithms is another focus of this paper.
With respect to restrictions imposed by the architec-
ture of GPUs, designing and implementing efficient
parallel GPU algorithms for irregular data types is
a challenging task. When one tries to implement a
parallel algorithm for irregular data types on GPUs,
there is a large gap between the theoretical and the
actual results. Since GPGPU follows the Single In-
struction Multiple Data (SIMD) paradigm, as an al-
ternative benchmark, we use the OpenMP API stan-
dard, which supports multi-CPU shared-memory par-
allel programming. It supports C/C++, and Fortran
programming languages on many architectures and
operating systems. We note that CUDA is (currently)
restricted to only NVIDIA graphic cards. However,
OpenCL may also be easily used as an implementa-
tion choice for many other platforms (e.g. ATI Radeon
GPUs) and usually with very little (if any) perfor-
mance loss [6].

1.2 The girth problem

Girth is defined to be the length of a shortest cycle in
a graph if one exists. Generating random graphs with
large girth has applications in modelling and testing
software systems and coding theory. Producing Tan-
ner graphs with large girths is a main step in con-
struction a Low-Density Parity-Check (LDPC) code;
see [2, 12, 15]. A Tanner graph is a bipartite graph
whose adjacency matrix is the parity-check matrix of
a binary code.

Girth and diameter of a graph are related parame-
ters. The diameter of a biconnected graph with girth
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Figure 1: The process of detecting a short cycle via BFS.

2d is at least d. The degree-diameter problem is the
well-known problem of finding the largest possible
graph with a given degree and diameter [5], and each
best-known case usually has a large girth [8]. A large
graph with bounded degree and diameter is a good
model for an interconnection network topology that
has some restrictions on the number of connections
between hubs or routers and its maximum communi-
cation time between any two nodes.

There is an O(mn) sequential algorithm for find-
ing the girth of a graph G, where n is the order and
m is the size of G (see [4]). One basically repeats
a Breadth-First Search (BFS) algorithm from each
node of a graph while tracking the cycles that are
encountered. By imposing some restrictions on the
input graph or relaxing the exactness of the solution,
one can find a faster solution for the girth problem.
For example, Itai and Rodeh [13] presented an O(n?)
algorithm that finds a cycle which may have one edge
more than the minimum. When a graph is restricted
to be planar or has bounded genus, there is a linear
time algorithm for the girth problem; see Djidjev [7].
Recently, Lingas and Lundell [16] presented a new
approximation algorithm for the girth problem.

To our knowledge, this is the first study on parallel
CPU and GPU implementations of the girth problem.
One of our parallel algorithm uses parallel BF'S, while
the other algorithm is based on adjacency matrix mul-
tiplication. For each case we tailor our implementa-
tions to fit the hardware constraints (e.g. number and
speed of processors; memory size and latency) of the
selected platform.

1.3 Organization of the paper

The structure of this paper is as follows. In the next
section, we introduce two parallel algorithms for com-
puting the girth of a graph. Then in Section 3, we
explain how those algorithms have been implemented
by CUDA and OpenMP APIs. This section also de-
scribes a couple of potential optimizations. In Sec-
tion 4, we describe the methods of generating four
different sets of test graph data, specifically designed
to strain our girth algorithms. A discussion on the
results of testing our algorithms is the topic of Sec-
tion 5. At the end of the paper we summarize our
results and suggest topics for further study.
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2 Two Parallel Algorithms

In this section we explain formally our parallel algo-
rithms, including sample pseudo-code, for computing
the girth.

Our first algorithm uses a slightly-modified paral-
lel implementation of BFS, starting from each node.
The algorithm (running in parallel from all roots)
stops when the length of the first cycle is found. The
approaches of detecting the girth in undirected or di-
rected graphs are different.

1. For an undirected graph, a cycle is detected when
a node in the frontier of the BFS has two parents
already visited, or if it finds two nodes at the
same distance (level) that are joined by an edge.

2. For a directed graph, a cycle containing the root
is detected when the root node first appears in a
frontier level of the BFS.

Figure 1 shows how an upper-bound of a smallest
cycle is obtained via BFS. For undirected graphs we
need to finish the current frontier for the two-parent
case (left subfigure; even-length cycle); however, we
can terminate immediately the search for the cross-
edge case (middle subfigure; odd-length cycle). For
directed graphs we can terminate the search when
the root is first revisited (right subfigure; first cycle).
The smallest upper-bound found over all BFSs is the
actual girth of the graph and inter-process synchro-
nization is needed to stop all parallel BF'Ss whenever
the first cycle is found. See Algorithm 1.

Algorithm 1: Parallel girth algorithm via BFS.

Input: A Graph G = (V, E)

Output: The girth of G

girth = |V|+ 1;

foreach node v € G in parallel do
Run BFS algorithm rooted at v;
Let ¢ be the length of first circuit detected;
girth = min(girth, c);

Our second algorithm is based on doing repeated
matrix multiplications of the adjacency matrix of a
digraph. Let M be the adjacency matrix of a digraph
G. It is well-known from graph theory, that the value
of each entry a;; of M k represents the number of
walks of length k£ from nodes i to j. Specially, the
value on the diagonal entry a;; shows the number of
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directed circuits (closed walks) that start and end at i.
This is easily adapted for our directed girth algorithm
(Algorithm 2).

Algorithm 2: Girth via matrix multiplication.
Input: A Directed Graph G = (V, E) as
Adjacency Matrix M
Output: The girth of G

MO =T,
M' = M;
1 =1;

while Trace(M?) =0 do
Compute in parallel (binary matrix
multiplication): M1 = M*® x M;
i =1+ 1;

girth = i;

To use this approach for undirected graphs, we

need to adapt the aforementioned property of the
powers of adjacency matrices to detect the smallest
undirected cycle. First we need to ignore the cir-
cuits of length 2 (e.g. any edge (u,v) implies a circuit
(u,v,u)). Secondly, note that any other smallest cir-
cuit of length at least 3 that we detected is, in fact, a
cycle corresponding to the girth. Furthermore, we are
only interested in knowing that the number of walks
between ¢ and j, i # 7, is at least 2, so a possible op-
timization technique is to restrict to Boolean entries
instead of integer entries.
Let the entry bf) ; of matrix N k denote the num-
ber of walks between i and j that do not traverse the
same edge consecutively; clearly bﬁ ;< af, ; where af’ j
is the entry of M*. We can calculate N* from ma-
trices N¥=1 N*¥=2 and N! = M?', using a simple
recurrence (modified vector products with respect to
N*=2 where a row of N*~! times a column of M yield
an entry of N¥).

=\

a1 —
Vs : ag ;=

k—1 k—2
bi,s A bi,s

We parallelize by data partitioning the output
rows of the matrix N¥; rows assigned to the avail-
able processors. The undirected graph version of Al-
gorithm 2 also uses the two-path idea as illustrated
in Figure 1, where we stop computing when k is half
of the actual girth. The process is to first test if the
following odd-length cycle condition is met:

Hr,u, v} : a}w

Abyoy AD,
Then (if the previous condition is not met) test if the
following even-length cycle condition is satisfied:

1 1 k k
H{T, U, v, w} : au,w A a"u,w N br,u N br}v

Note that all the values of the existential variables
are distinct and both these conditions may be tested
during the generation using the recurrence for N*+1,
Thus, the seemingly extra intra-level detection time
of O(n?) is not required.

We end this section by mentioning the expected
running times of our two algorithms for sparse
graphs—those graphs with m = O(n) edges. Sparse

int undirectedGirth(const Graph &G)

int n = G.order();
int levell[n];

int smallest = n+1; // value for infinity

for (int r=0; r<n-2; r++) // minimum is 3-cycle

{
level[r]=0;

fill(level,level+n,-1); // unseen flags as -1

queue<int> toGrow;
toGrow.push(r) ;

// sequential FIFO queue

while ( !toGrow.empty() )
{

int grow = toGrow.front(); toGrow.pop();

// try next r if this BFS is too deep
if ( level[grow]*2+1 >= smallest ) break;

const vector<int> nbrs = G.neighbors(grow) ;

for (int i=0; i<nbrs.size(); i++)

int u = nbrs[i];

if (u < r ) continue; // optimization

%f ( levell[u] < 0)

level[u]l=level[grow]+1; // now seen
toGrow.push(u) ;

else if ( level[u]l==level[grow] )

if ( level[u]*2+1<smallest )
smallest=level [u] *2+1;
break; // try next r

}
else if ( level[ul==level[grow]+1 )

if ( level[u]l*2 < smallest )
i smallest = level[u]*2;

} // while BFS queue not empty
}

return smallest;

Figure 2: Sequential C++ girth function.

graphs are usually those graphs with large girth and
will be prominent in the test cases for our algorithms.
Also note that sparse n X n matrix multiplication can
be done in time O(n?) if one uses the appropriate
data representation [1, 6].

Theorem 1. Given a sparse input graph G, Algo-
rithm 1 runs on a machine with p processors in time

O(n?/p).

Theorem 2. Given a sparse input graph G, Algo-
rithm 2 runs on a machine with p processors in time
O(gn?/p), where g is the girth of G.

Note that the girth g is usually much smaller than
the order n. Thus, both algorithms may be more
practical than the other for different types of input
cases.

3 Parallel Implementations

As noted in Section 2, BFS and adjacency matrix
multiplication are the building blocks of our parallel
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girth algorithms. Each program is a modified version
of one of those basic algorithms. The program names
that we introduce in this section correspond to the
column headings of our final timing results of Tables 1
and 2 (at the end of the paper). Note the suffix _p
on a program name denotes a “preprocessed” version,
which is explained at the end of this section.

3.1 Cuda BFS program

In our programs cuda_BFS and cudaBFS_p we assign
one CUDA block of threads (also known as workgroup
in OpenCL) to each node. Each block is responsible
to run one BFS in parallel using inter-block shared
memory in addition to the GPU global memory. Fur-
thermore, different blocks will run in parallel. Since
our device memory size is limited, for large graphs we
have to divide the nodes into separate groups.

The following proposition gives an optimization to
save memory when searching for the girth in sparse
undirected graphs.

Proposition 3. When implementing the BFS-based
algorithm for computing the undirected girth, it only
needs to remember the nodes visited in the last three
levels.

Proof. Suppose we are exploring neighbors at level
i > 1, where the root node is at level 0. By defini-
tion, the frontier level ¢ + 1 should only contain nodes
not placed at any level 0 < 5 <4, as depicted in Fig-
ure 1. Furthermore, a node x at level i can not have
a neighbor y at distance j < i — 1 from the root since
that would imply = should be at level j+1 < i. Thus,
we only need to remember nodes at levels i —1, ¢, and
i+ 1 when doing the BFS search. O

Our CUDA programs implement Algorithm 1 by
using three arrays to represent the last three levels
of the BFS search tree: one for parent (of the grow)
level, one for the grow level, and one for the frontier
level. The algorithm initializes the arrays with the
root node as the only item in the parent level and the
neighbors of the root as the grow level. The frontier
level is processed by finding the neighbors of the ele-
ments of the grow level that are not already in either
the parent or grow levels.

All threads are intra-block synchronized at the end
of each level. At this time, we change the roles of the
arrays by doing pointer exchanges to save time by
not having to copy the grow level to the new parent
level and the frontier level to the new grow level. The
old parent level is emptied and becomes the target
for the new frontier. As soon as the first cycle is
detected by one thread, its length is compared (and
atomic exchanged) with the length of the shortest-
known cycle that is stored in shared memory.

We also save the value of the shortest cycle from
shared memory to global memory (inter-block com-
munication) for determining the minimization of all
BFS searches. This allows for early termination of
deep BFS trees and reduces the overall running time
of the implementation.
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3.2 Cuda matrix-based algorithms

As explained earlier in Section 2, the programs
cudaMAT and cudaMAT_p use the powers of the adja-
cency matrix for finding a smallest cycle originating
from any node. We have only one thread being as-
signed sole ownership in writing the values of the -th
row of the output matrix of paths of length k. Since,
for large graphs, we have more rows than the total
number of available threads. Thus, we assign a con-
tiguous group of rows to a particular thread. In our
implementation, we have to do block synchronization
(unlike our BF'S implementation). This is done by re-
peated kernel launches, as illustrated in the following
CUDA snippet.

for (int dist=1; dist <= order/2; dist++)

Girth_Kernel<<<NUM_BLOCKS, NUM_THREADS>>>
(graph, girth D, DistMAT, DistLens, dist);

cudaMemcpy (&girth_H, girth_D, sizeof(int),
cudaMemcpyDeviceToHost) ;
if (girth_H <= order) break;

3.3 OpenMP implementations

Our OpenMP implementations (ompBFS, openBFS p,
openMAT and openMAT_p) of the algorithms follow the
same logic as explained for CUDA implementations.
These were developed by adding #pragma omp direc-
tives to our sequential C++ code (e.g. add one above
the first C++ for loop of Figure 2).

3.4 Final implementation remarks

In some of the implementations (denoted with a suf-
fix _p), we first apply a preprocessing procedure to
eliminate all nodes that are not clearly involved in
any cycle of the graph. In other words, we iteratively
delete all nodes of degree at most one. For the digraph
input cases, we iteratively delete all sinks and sources.
Note that the preprocessing times are included in the
reported computational elapsed times.

The speed-up of this procedure is the result of re-
ducing the order of the input graph. If the graph is
not reduced significantly, then the preprocessing pro-
cedure may increase the running time. To explicitly
display the impact of this procedure, we use it for all
our parallel implementations.

The algorithms for finding girth in directed graphs
are implemented by applying proper changes to the
algorithms for the undirected ones. In d_cudaBFS and
d_ompBFS we discover the directed cycles as soon as a
back edge to the root is detected (see Figure 1).

In d_cudaMAT and d_ompMAT we use the paral-
lel version of adjacency matrix multiplication as ex-
plained in Algorithm 2.

While processing graphs, we ignore those nodes
that have larger index than the current root. This
helps shrink the search space with no change in the
correctness of the algorithm. Consider a cycle C' of
shortest length. If we start a BFS at the node with
smallest index of C' we will detect this cycle since
no nodes of C are ignored. This pruning method is
applied for both BFS and adjacency matrix multipli-
cation approaches.
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4 Generating Girth Test Data

The standard random graph generators are not de-
sirable because they either produce graphs with no
cycles or very small girth (e.g. dense graphs). To test
the performance and correctness of our algorithms,
we produced several classes of graphs of large order
and large girth.

We have four test suites for undirected graphs:

big cycles We construct random trees in which each
node is replaced by a big cycle. Then we choose
one node from each cycle that represent two
neighboring nodes and connect them by an edge.

Cayley graphs Let S be a set of generator for a
finite group (H,-). The nodes of a Cayley graph
is the set H and S C H is used to define edges.
We connect a node h to a node A’ if there is
an element s € S such that ' = h-s. The
graph is undirected if S is closed under inverses
(e.g. s € S implies s~ € S). We used the semi-
direct product procedure given in [5] to generate
large sparse graphs.

cycle graphs These graphs are generated by con-
necting a sequence of large cycles on a path and
adding a few extra edges randomly. These ex-
tra edges may span the length of the connected
cycles or may be a chord of one cycle.

sparse graphs These graphs are produced by taking
random trees, generated by using Priifer codes,
and then randomly connecting pairs of nodes.

We also have three test suites for directed graphs:

directed big cycles These are generated using the
same procedure as big cycles but with each cy-
cle being a directed cycle.

cycle digraphs Each of these digraphs was created
by generating a union of large random directed
cycles.

sparse digraphs These digraphs are created by first
generating a rooted random tree (all arcs di-
rected from parent to children). Then several
random directed edges are added from a descen-
dant node to an ancestor to form directed cycles.

Each test suite! consists of eight subsets of
[di]graphs, indexed from 0 to 7. Each subset, labeled
by 4, consists of 25 [diJgraphs with the number of
nodes ranging between 2¢ - 1000 and 27! . 1000. So
the overall range of our test graphs varies from graphs
with 1000 nodes up to graphs with 256000 nodes.

5 Comparative Study

We implemented our parallel algorithms using C++
(gcc 4.4) with the two APIs: CUDA 3.2 and
OpenMP 3.0. To run our CUDA programs, we used
an Nvidia Tesla C2050 series (Fermi class) graphics
card. The C2050 has Nvidia compute capability 2.0
and consists of 14 multiprocessors (MPs). Each MP

! These test suites are available by request.

has 32 cores and 3Gb cache (global memory). Each
of the 448 cores operates at 1.15 GHz frequency. For
our graphics card, each block (of threads) supports up
to 1024 threads. For running our OpenMP programs,
we used two hyper-threaded quad-core 2.5 GHz In-
tel CPUs which provides at least 8 and up to 16 in-
dependent Pthreads. Due to the hardware available
to us, we are restricted to using a smaller number
of OpenMP threads compared to what our GPU de-
vice has. However, one benefit of using OpenMP over
CUDA is that the memory available is larger (48Gb
vs 3Gb DRAM) and much faster (data transfer rate).

We provide in Table 1 and Table 2 a summary
of our programs. These tables contain the average
running times for each of the 25 graphs per subset
of a test suite, then the average of all 200 graphs in
each test suite, and finally the overall average running
times. These times are wall clock times in seconds.
For the CUDA implementation we do not include the
I/0 time for loading the graphs into device memory.
We also do not include any disk I/O time for any
program.

To have a better evaluation of our algorithms, we
also use two sequential algorithms for computing the
girth of a graph. One of them is the Sage’s (Mathe-
matics Software?) algorithm for finding the girth of
undirected graphs [21]. Our other sequential pro-
gram, girthseq, for undirected graphs use the BFS
algorithm that was presented earlier (and listed in
Figure 2). We also have a similar C++ implementa-
tion, d_girthseq, for directed graphs.

In general, as expected, the overall average perfor-
mance (the last row in the two tables) of the sequen-
tial algorithms (girthsage and girthseq in Table 1
and d_girthseq in Table 2) are much slower than our
parallel implementations.

Our two parallel algorithms running on OpenMP
(ompBFS and ompMAT) perform about the same, which
is about eight times faster than girthseq. On the
other hand, our two parallel implementations run-
ning on the GPU (cudaBFS and cudaMAT) have perfor-
mances that vary for undirected graphs and directed
graphs. Our cudaBFS has the best overall perfor-
mance for undirected graphs (18.6 times speed-up),
and cudaMAT has the best overall performance for di-
rected graphs (31.5 times speed-up).

Even though CUDA programs have the best over-
all performance in both undirected and directed
graphs, the OpenMP still have advantages for solving
small graphs. More specifically, OpenMP programs
always outperform on the smaller graphs (subset 0)
in the four test suites of undirected graphs and (sub-
sets 0-2) in the three test suites of directed graphs.
When the graph orders increase, the CUDA programs
show their advantages.

For both CUDA and OpenMP, we find that the
pre-processed versions are faster for the graphs in
sparse_graphs, but increases the computation time
for all other test classes. This is expected because
only the class of sparse_graphs contains many nodes
that are not on any cycle. We note that for digraphs,
we could not gain better performance with our chosen

2Note we selected this open-source platform for our base-line
benchmark since it seems to out-perform our commercial software
such as Mathematica 7.
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preprocessing implementations.

6 Conclusions and Future Work

In conclusion, both OpenMP and CUDA based paral-
lel programs improve the computation time of detect-
ing the girth in undirected and directed graphs for
our extensive test data. For small graphs/digraphs
OpenMP seems to be faster (can’t exploit multiple
threads) than larger graphs. Both algorithm design
approaches and both implementation APIs are valu-
able.

We note that the amount of human effort for
CUDA is clearly expensive—we are waiting for
higher-level programming tools (like OpenMP but for
GPUs).

For the future we would like to try C# Parallel
Task Library, CUDA 4.0 Thrust Library and new
C++ Patterns Library (PPL). Also, we want to try
other parallel hardware and possible different graph
test cases for the girth problem. Also, we would
like to consider performing performance evaluations
on emerging, virtualized computing models (cloud re-
sources) such as Amazon EC2 or Google AppEngine.
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Table 1: Timings in seconds of girth algorithms on undirected graphs.

‘ Subset girth_sage | girthseq | cudaBFS ‘ cudaBFS_p ‘ cudaMAT | cudaMAT_p ‘ ompBFS ‘ ompBFS_p | ompMAT ompMAT_p

big 0 0.0212 0.0018 0.0006 0.0007 0.0048 0.0043 0.0003 0.0003 0.0012 0.0023
cycles 1 0.1312 0.0089 0.0017 0.0019 0.0193 0.0141 0.0010 0.0010 0.0057 0.0044
2 0.5884 0.0373 0.0061 0.0065 0.0488 0.0387 0.0036 0.0036 0.0219 0.0196

3 2.2220 0.1516 0.0218 0.0251 0.1202 0.0895 0.0147 0.0144 0.0770 0.0738

4 11.6868 0.7531 0.1144 0.1203 0.3557 0.2623 0.0710 0.0710 0.3720 0.3727

5 49.4324 3.2966 0.4731 0.4977 0.9750 0.7130 0.3387 0.3593 1.6402 1.6643

6 174.0984 12.9000 1.6726 1.7588 3.5142 2.4929 1.2805 1.3231 5.4710 5.7810

7 504.0968 38.1329 4.8217 5.0730 9.8500 6.9969 3.7729 3.8581 17.4768 18.8116

Average 92.7847 6.9103 0.8890 0.9355 1.8610 1.3265 0.6853 0.7039 3.1332 3.3412

Cayley 0 0.0596 0.0038 0.0036 0.0015 0.0352 0.0343 0.0006 0.0007 0.0031 0.0023
graphs 1 0.1724 0.0133 0.0033 0.0036 0.1237 0.1040 0.0019 0.0020 0.0104 0.0084
2 0.5064 0.0430 0.0109 0.0115 0.6081 0.5148 0.0060 0.0062 0.0529 0.0561

3 1.1616 0.1668 0.0263 0.0292 1.1158 0.9550 0.0223 0.0218 0.1280 0.1220

4 4.8736 0.6849 0.1209 0.1221 4.2231 3.6082 0.1106 0.1518 0.5886 0.6021

5 9.2036 2.4132 0.2133 0.2172 5.0933 4.3397 0.3369 0.3764 0.9630 0.9246

6 7.1400 4.9858 0.1338 0.1407 2.2464 1.9095 0.6583 0.7053 0.4896 0.4715

7 12.7224 19.7854 0.1740 0.1836 1.4997 1.1844 2.6333 2.6962 0.6287 0.5478

Average 4.4800 3.5120 0.0858 0.0887 1.8682 1.5812 0.4712 0.4951 0.3580 0.3418

cycle 0 0.0212 0.0016 0.0007 0.0009 0.0027 0.0026 0.0003 0.0029 0.0012 0.0003
graphs 1 0.0588 0.0066 0.0012 0.0035 0.0027 0.0026 0.0008 0.0046 0.0022 0.0049
2 0.2236 0.0316 0.0034 0.0080 0.0039 0.0039 0.0031 0.0079 0.0056 0.0290

3 0.5428 0.1294 0.0068 0.0095 0.0071 0.0050 0.0132 0.0186 0.0200 0.0183

4 1.1220 0.4681 0.0133 0.0142 0.0056 0.0060 0.0494 0.0577 0.0366 0.0307

5 2.0728 1.9861 0.0240 0.0255 0.0077 0.0084 0.2429 0.3891 0.1281 0.2356

6 4.7428 7.9299 0.0533 0.0562 0.0161 0.0182 1.0435 1.2081 0.1983 0.2992

7 7.7152 31.1896 0.0878 0.0905 0.0272 0.0314 4.2280 4.3701 0.3352 0.4226

Average 2.0624 5.2179 0.0238 0.0260 0.0091 0.0098 0.6977 0.7574 0.0909 0.1301

sparse 0 0.0096 0.0011 0.0015 0.0008 0.0175 0.0018 0.0003 0.0004 0.0009 0.0003
graphs 1 0.0520 0.0064 0.0024 0.0010 0.0565 0.0041 0.0011 0.0011 0.0029 0.0010
2 0.2084 0.0321 0.0027 0.0014 0.0571 0.0079 0.0048 0.0036 0.0102 0.0028

3 0.6536 0.1291 0.0076 0.0025 0.2135 0.0132 0.0196 0.0124 0.0404 0.0066

4 1.9240 0.5460 0.0207 0.0051 0.7572 0.0249 0.0848 0.0526 0.1384 0.0195

5 5.6632 2.0746 0.0663 0.0102 2.3316 0.0435 0.2965 0.3819 0.5345 0.1590

6 10.5944 6.4405 0.1040 0.0201 2.8499 0.0694 0.9124 0.9687 0.9201 0.2733

7 34.1212 23.4932 0.4045 0.0382 17.3415 0.1912 3.4374 3.0170 3.4024 0.4003

Average 6.6533 4.0904 0.0762 0.0099 2.9531 0.0445 0.5946 0.5547 0.6312 0.1078
AVERAGE 26.4951 4.9326 0.2687 0.2650 1.6728 0.7405 ‘ 0.6122 ‘ 0.6277 1.0533 0.9802
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Table 2: Timings in seconds of girth algorithms on directed graphs.

’ \ Subset \ d_girthseq | d_cudaBFS | d_cudaMAT \ d_ompBFS ‘ d_ompBFS_p | d_ompMAT

directed 0 0.0016 0.0268 0.0068 | 0.0003 0.0005 0.0008
big cycles | 1 0.0082 0.4085 0.0121 | 0.0008 0.0012 0.0051
2 0.0372 0.5955 0.0274 | 0.0033 0.0042 0.0247

3 0.1682 0.9255 0.0641 | 0.0143 0.0163 0.1168

4 0.7007 0.2859 0.1419 | 0.0616 0.0662 0.4696

5 2.7614 0.6990 0.2931 | 0.2471 0.2596 1.6903

6 9.8746 1.5924 06623 | 0.9421 1.0185 5.5603

7 41.9673 5.7967 21250 | 4.0266 42226 | 25.0513

Average | 6.9399 1.2013 0.4167 | 0.6620 0.6986 4.1149

cycle 0 0.0024 0.0086 0.0638 | 0.0004 0.0017 0.0061
digraphs 1 0.0076 0.0075 0.0934 | 0.0010 0.0030 0.0040
2 0.0252 0.0025 0.0135 | 0.0029 0.0059 0.0015

3 0.1074 0.0016 0.0030 | 0.0122 0.0158 0.0016

4 0.4542 0.0030 0.0053 | 0.0505 0.0560 0.0033

5 1.5451 0.0035 00025 0.1654 0.1769 0.0054

6 7.4248 0.0083 0.0074 | 0.9728 1.0582 0.0465

7 26.8069 0.0105 0.0064 | 3.5560 3.7332 0.1559

Average | 4.5467 0.0057 0.0244 | 0.5952 0.6313 0.0280

sparse 0 0.0013 0.5340 0.0025 | 0.0003 0.0008 0.0003
digraphs 1 0.0062 0.1696 0.0042 | 0.0009 0.0018 0.0007
2 0.0287 0.0389 0.0084 | 0.0034 0.0054 0.0018

3 0.1181 0.0193 0.0083 | 0.0136 0.0508 0.0038

4 0.4792 0.0139 0.0164 | 0.0548 0.0630 0.0116

5 1.7474 0.1223 0:0111 | 0.1933 0.2058 0.0859

6 6.6283 0.0343 0.1097 | 0.8764 1.0621 0.2391

7 19.8751 0.1582 01472 2.6206 2.8045 0.3118

Average | 3.6105 0.1363 0.0385 | 0.4704 0.5243 0.0819

AVERAGE 5.0324 04778 | 0599 | 0.5759 0.6181 1.4083
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(Extended Abstract)

Abstract

The significance of graph coloring is considered in
the context of reducing the running time of a paral-
lel branch and bound algorithm to solve the maximum
clique problem. The greedy color preprocessing algo-
rithm produces an upper bound u on the color degree
c of a vertex v. The color degree of a vertex is defined
to be the chromatic number, ~, of the neighborhood
subgraph of vertex v. The graph instance is reduced
by removing any vertex v, such that v < k, where
k is the size of the largest known clique. The use of
this graph coloring is extended and used in the inter-
leaved preprocessing step during the branching phase
of the algorithm. The basic techniques introduced can
be extended to other problems such as minimum vertex
cover and maximum independent set. Finally, results
are presented from experiments using real biological
data.

1 Introduction

Given a graph G = < V, I >, the maximum
clique problem asks what is the largest subset C' C
V' such that that every pair {u,v} € C, then
{u,v} € E. Finding exact solutions to the maximum
clique problem, MCP, has been extensively studied
(Bomze et al. 1999, Pardalos et al. 1998). Exact solu-
tions to MCP impacts many disciplines such as bioin-
formatics, image processing, and design of quantum

This research has been funded by the U.S. Department of Energy under
the EPSCoR Laboratory Partnership Program. It has also been supported
by an allocation of advanced computing resources provided by the U.S.
National Science Foundation. Computations were performed on Kraken,
a Cray XTS5 housed at the National Institute for Computational Sciences,
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Copyright (©2012, Australian Computer Society, Inc. This paper ap-
peared at the 10th Australasian Symposium on Parallel and Distributed
Computing (AusPDC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 127, Jinjun Chen and Rajiv Ranjan, Ed. Reproduction
for academic, not-for-profit purposes permitted provided this text is in-
cluded.

circuits (Tomita & Kameda 2007). Therefore, it is im-
perative to create efficient parallel maximum clique al-
gorithms. Like many parallel algorithms, the basis for
the parallel algorithm presented here is the serial algo-
rithm Maximum Clique Finder, MCF. MCF was first
introduced in (Eblen 2010) and is a derivative of re-
search on the vertex cover problem, VCP, presented in
(Abu-khzam et al. 2006). It is well known that VCP is
fixed-parameter tractable, FPT, and that for any FPT
problem, there exists a problem kernel, which is a re-
duced instance of the original problem. Using this
knowledge, many of the kernelization methods that are
applicable to VCP have been translated into compara-
ble methods for MCP. These kernelization methods are
referred to as the preprocessing rules and reduces the
graph instance on which MCF is applied.

The basic preprocessing rules found in MCF are
based strictly on vertex degrees. These rules include
the (n-1)-degree rule, (n-2)-degree rule, and the low-
degree rule. The (n-1)-degree rule automatically in-
cludes any vertex that has a degree of (n-1) to the
clique, as it is connected to all other vertices in the
graph. The (n-2)-degree rule includes any vertex v that
is connected to all other vertices except vertex u. Ver-
tex v is placed in the clique, while excluding vertex
from the clique. Finally, the low-degree rule removes
any vertex that has degree less than & — 1, where k is
the size of the largest known clique.

Graph coloring has been used to find an up-
per bound on the size of a maximal clique
(Tomita & Kameda 2007, Bomze etal. 1999,
Ostergard 2002). As exact solutions to the graph
coloring problem can be time consuming, approximate
colorings have been used. In (Tomita & Kameda
2007), an algorithm is presented that incorporates
approximate graph coloring, however, the color-
ing is employed in the branching stage rather than
preprocessing stage. Exploiting graph coloring in
preprocessing, along with interleaving the coloring
during the branching phase, decreases the overall
runtime of the algorithm, as the search tree can be
pruned to retain only the vertices that can generate a
larger clique.
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2 Parallel Maximum Clique Finder

The Parallel Maximum Clique Finder, PMCF, is
a parallel implementation based on MCF. The paral-
lelization of the algorithm is exploited in the branching
phase. One common pitfall of parallel algorithms that
are ported from serial algorithms is the lack of proper
load balancing. This is typically due to the fact that
static load balancing only works well when problems
are embarrassingly parallel. Therefore, it is imperative
to have a dynamic load balancing approach that contin-
uously monitors the workload of the nodes and assigns
jobs as needed (Weerapurage et al. 2011). PMCF uses
a simple dynamic load balancing technique that only
distributes jobs to worker nodes if a certain level of
the search tree is reached and only distributes jobs that
are sufficiently small. MCF handles the distribution of
sufficiently small jobs by selecting candidate vertices
in ascending order by degree.

3 Parallel Maximum Clique Finder With Color-
ing

Parallel Maximum Clique Finder with Coloring,
PMCFC, incorporates approximate coloring of graphs
with the PMCF. PMCFC uses a greedy approximate
coloring heuristic in two stages. The first stage is the
preprocessing stage of the initial graph. Along with
other preprocessing rules, such as the low-degree rule,
the color degree rule produces an upper bound on the
size of the maximum clique and any vertex v that has
a color degree less than k£ — 1 is removed from the
graph. The second stage that exploits graph coloring
is interleaved preprocessing. As the branching phase
traverses the search tree, vertices are continually ex-
cluded from the search space. Interleaving the prepro-
cessing step further reduces the number of vertices that
can be excluded from the search space. In practice, the
interleaved preprocessing stage has a large impact in
the overall running time of the algorithm.

4 Experimental Results

In order to demonstrate the effect of graph coloring on
PMCF ,experiments were conducted on graphs derived

from real biological data (Eblen 2010). The resulting
graph is comprised of 17,338 vertices and 10,406,565
edges. The timings were completed on Kraken, the
world’s fastest academic supercomputer. Each node
contains two 2.6 GHz six-core AMD Opteron proces-
sors (12 cores total) with 16 GB of memory. Figure 1
summarizes run times for a modest number of cores.
The interleaved graph coloring steps have a significant
impact in the overall runtime of the PMCF algorithm.

5 Conclusions and Direction for Future Research

The PMCFC algorithm uses a parallel framework that
was derived from the serial algorithm, MCF. PMCFC

exploits a number of strategies necessary for a parallel
algorithm to be efficient, such as dynamic load bal-
ancing. This algorithm uses a simple dynamic load
balancing algorithm that strives to keep the amount
of overhead to a minimum. More complex and adap-
tive load balancing techniques, however, may increase
the efficiency of the worker nodes. PMCFC also uses
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a greedy graph coloring algorithm to generate an ap-
proximate coloring for the initial graph, as well as ap-
proximate colorings for neighborhood subgraphs for a
vertex v. PMCFC prunes the search tree of vertices
that would otherwise not be identified by other prepro-
cessing methods such as the low-degree rule. While
the current greedy coloring algorithm has shown posi-
tive results, it is possible that other approximate color-
ing algorithms could result in better overall algorithm
performance. Improving these two portions of the PM-
CFC algorithm, however, is no trivial task. A balance
must be struck between the time it takes to generate
a load balancing scheme or a graph coloring and the
overall time that is saved by having a better load bal-
ance or a more accurate coloring.
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Abstract

With the emergence of cloud computing which can deliver
on-demand high-performance computing resources over
the Internet, cloud workflow systems offer a competitive
software solution for managing large numbers of business
processes. In this paper, we first analyse the basic system
requirements through a motivating example, and then, the
general design of a cloud workflow system is proposed
with the focus on its system architecture, functionalities
and QoS (quality of service) management. Afterwards, the
system implementation of a peer-to-peer based prototype
cloud workflow system is demonstrated to verify our
design. Finally, experimental results show that with the
dynamic resource provisioning, conventional violation
handling strategies such as workflow local rescheduling
can ensure the on-time completion of large numbers of
business processes in a more cost-effective way.

Keywords: Business Process Management, Workflow
System, Cloud Computing, Cloud Workflow System

1 Introduction

With the rapid development of e-business and
e-government in the global economy, both enterprises and
government agencies are facing large numbers of
concurrent business processes from the private and public
sectors [1, 21]. For examples, a federal government
taxation office receive millions of tax declaration requests
at the beginning and end of the tax return period each year;
a banking enterprise often needs to process millions of
transactions including cheques everyday; and an insurance
company may need to process over thousands of claims on
a daily basis which may peak by a factor of tens or
hundreds when some natural disasters happen, e.g. the
Melbourne hailstorm in March 2010 results in 79,000
claims which worth A$491 million'. Failure of completing
these process instances in time is not acceptable and will
often results in significant loss. For example, the
Australian federal government taxation office has to pay a
large amount of interest to tax payers for the delay; the
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time delays in stock exchange may result in significant
loss to both sellers and buyers in the stock market.

For time constrained business processes, software
performance (e.g. response time and throughput), as one of
the basic dimensions of software quality, is very important
[24]. To ensure satisfactory performance, enterprises and
government agencies often need to invest a huge amount
of money on their self-owned and self-maintained IT
(Information Technology) infrastructures which are
normally designed to have the capability to meet either the
maximum or at least the average needs of computing
resources. However, for the option to meet the average
needs, the software performance during peak time can be
significantly deteriorated. As for the option to meet the
maximum needs, since the number of process instances
during peak time can often be much larger than the
average, such a design will often result in largely idle of
computing resources, which means a huge waste of
financial investment and energy consumption. In general,
the running of larger numbers of business processes
usually require powerful, on-demand and elastic
computing resources. Specifically, the basic system
requirements for business software can include: 1)
scalable computing resource provision; 2) elastic
computing resource delivery; 3) efficient process
management and 4) effective QoS (quality of service)
monitoring and control. Detailed analysis will be
presented in Section 2.

Cloud computing, an exciting and promising new
computing paradigm, can play an important role in this
regard. In late 2007, the concept of cloud computing was
proposed. Cloud computing, nowadays widely considered
as the “next generation” of IT, is a new paradigm offering
virtually unlimited, cheap, readily available, "utility type"
scalable computing resources as services via the Internet
[4, 6]. As very high network bandwidth becomes
available, it is possible to envisage all the resources needed
to accomplish IT functions as residing on the Internet
rather than physically existing on the clients’ premises.
With effective facilitation of cloud computing, many
sophisticated software applications can be further
advanced to stretch their limits and yet with reduced
running costs and energy consumption. The advantages of
cloud computing, especially its utility computing and SaaS
(software as a service), enable entirely new innovations to
the design and development of software applications [1,
18]. It is generally agreed among many researchers and
practitioners that cloud applications are the future trend for
business software applications since utility computing can
provide unlimited on-demand and elastic computing
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power while SaaS can provide massive software services
with different capabilities [5]. Typical successful stories
include NewYork Times which turns 11 million archived
articles into pdf files in only one day costing $240 by using
Hadoop and computing power on Amazon’s cloud?;
Animoto employs Amazon’s cloud to deal with nearly
750,000 new registered clients in three days and 25,000
people online at peak time”.

Workflow systems, with the benefits of efficient and
flexible process modelling and process automation, have
been widely used for managing business processes [2, 19].
Given the recent and rapid growth of cloud computing, we
can envisage that cloud computing based workflow
systems, or cloud workflow systems for short, can be a
suitable solution for managing large numbers of business
processes. Hence, the design of a cloud workflow system
deserves systematic investigation. In this paper, we first
employ a securities exchange business process as a
motivating example to analyse the system requirements.
Based on that, we propose the general design of a cloud
workflow system with the focus on its system architecture,
basic functionalities and QoS management. Afterwards,
the system implementation of our SwinDeW-C prototype
cloud workflow system is demonstrated. Finally,
simulation experiments evaluate the effectiveness of
SwinDeW-C in the running of large numbers of
time-constrained business processes.

The remainder of this paper is organised as follows.
Section 2 presents a motivating example and system
requirements. Section 3 proposes the design of a novel
cloud workflow system. Section 4 describes the prototype.
Section 5 demonstrates the evaluation results. Section 6
introduces some related work. Finally, Section 7 addresses
the conclusion and points out the future work.

2 Motivating Example and Basic System
Requirements

2.1 Motivating Example

Securities exchange in the stock market is a typical
instance intensive business process which involves a large
number of transactions between different organisations
and each of them is a relatively short process instance with
only a few steps. Most steps of a process instance are
executed in parallel. The example illustrated in Figure 1 is
a securities exchange business process for the Chinese
Shanghai A-Share Stock Market (http://www.sse.com.cn/
sseportal/en/). There are more than one hundred securities
corporations in this market and each corporation may have
more than one hundred branches nation wide. It consists of
six major stages (sub-process) in the securities exchange
process. Due to the space limit, we only introduce the main
facts here while leaving details in [15].

(1) The first stage is “lodge client entrustment” (Step 1).
Every trading day, there are millions of clients online. The
peak number of transactions can reach several millions per
second and the average is around several thousands.

*http://open.blogs.nytimes.com/2008/05/21/the-new-york-times-archive
s-amazon-web-services-timesmachine/

* http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-ani

moto/
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(2) The second stage is “fit and make deal” (Step 2 to Step
3). The raw entrustment data are first validated to check
whether the clients have enough money to make the deal.
After validation, the dealing results are recorded into the
database in the securities corporation. This sub-process
needs to complete in several minutes.
Directed Acyclic Graph

Organisations Steps and Statistics

1. Millions of clients
are online at one time
2. About one hundred
securities corporations deal
with the entrusts concurrently

Clients

Securities
Corporation

Stock
Exchange

3. From several thousands to
millions transactions per second

Fit and make deal

4.Tens of millions of transactions;
Size of file:50G; Duration:1.5 hours

Generate
trading data

Generate fee
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Stock
Exchange

5.Size of transactions:500K
Size of file:50M; Duration:0.5 hours

Stock
Exchange
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Clearing Corp.

Gltuate
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Stock Depository and
Clearing Corp.

and details
Fig. 1. A Typical Securities Exchange Business Process

(3) The third stage is “register shares variation and
calculate capital variation” (Step 4 to Step 6). After 3:00
pm (closing time) of the trading day, all the completed
deals need to be archived and summed up by securities
corporations for clearing. The size of the output file is
about 50G with tens of millions of transactions and the
duration of the procedure is about 1.5 hours. All the
trading data will be transferred to Shanghai Stock
Depository and Clearing Corporation of China
(http://www.chinaclear.cn/).

(4) The fourth stage is “settle the trades” (Step 7 to Step
9). The output files of the last step are divided by
corporation ID and delivered to the securities corporations
concurrently. There are three levels of clearings: the first
level clearing is between Clearing Corporation and
securities corporations, the second one is between
securities corporations and their branches, and the third
one is between branches and clients. For example, in the
second level of clearing, the clearing system deals with a
50M size data file with about 500k transactions in roughly
2 hours. The clearing result of each level should match
with each other.

(5) The fifth stage is “transfer capital” (Step 10 to Step
12). The output of the clearing process is the money
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transfer details for each client who made deals during the
day. It is a 20M size data file with about 200k transactions
and it should be sent to the designated banks. The
designated banks check the bills in about 30 minutes at
both the client level and the branch level to ensure each
entity has enough money to pay for the shares. The money
is then transferred between banks and clients, and between
banks and the Clearing Corporation, which takes around
50 minutes.

(6) The last stage is “produce clearing files” (Step 13 to
Step 14). Both securities corporations and designated
banks should produce the clearing files for the Clearing
Corporation. The balance of all the capital transferred
should be zero at the Clearing Corporation level.
Otherwise, exception handling should be conducted with
manual intervention. The whole securities exchange
workflow is ended afterwards.

To summarise, the securities exchange is a typical
business process which involves many parallel process
instances with strict performance requirements such as fast
response time and high throughput. Failures of meeting
these performance requirements could result in serious
financial loss to both clients and securities corporations

2.2 System Requirements

Based on the above motivating example, we can identify
the following four basic system requirements for
managing large numbers of business processes.

1) Scalable computing resource provision. The running
of large numbers of business processes requires powerful
computing resources. To deal with millions of concurrent
requests (e.g. the first and second stage) and processing
these transactions after trading hours (e.g. the fifth and
sixth stage), computing resources with high processing
power and fast IO speed is required. Only in such a case,
the satisfactory performance of the system such as short
response time for each request and high throughput for
processing massive transactions can be achieved.

2) Elastic computing resource delivery. The amount of
computing resources required at peak-time (e.g. over
millions of requests per second at the beginning and the
end of the trading hours) is much higher than the average
(e.g. thousands of requests per second in off-peak time).
To ensure satisfactory system performance, huge capital
investment is often spent on the IT infrastructure to meet
the resource requirement during peak-time. However, this
will result in large idle of computing resources and a huge
waste of energy. Therefore, the elasticity in resource
delivery, i.e. the resource pool can easily increase its size
when necessary and decrease immediately after use, is
very important for reducing the system running cost.

3) Efficient process management. Process automation is
the key to improve the performance of running business
processes. Besides, in the real world, the specific process
structures may be subject to changes. For example, the
introduction of new products and the practice of new
market regulations may result in some process changes
from the third stage to fifth stage. Therefore, the software
system needs to have some flexibility for business process
change, as well as some new functional and non-functional
(quality) requirements coming with it [19]. To this end,
efficient process management (e.g. process modelling,

process redesign, service selection, and task coordination)
plays a significant role in process automation.

4) Effective QoS monitoring and control. Since a
business software system needs to deal with massive
processes with flexible business requirements, how to
ensure that all the processes are running with satisfactory
QoS requirements is a challenge. For example, if the
response time for the second stage (fit and make deal) in
the securities exchange process is over the time constraints,
e.g. 5 minutes, it will probably result in the failure of the
client’s requests, and thus will bring substantial loss to
both the client and the securities corporation. Therefore,
effective QoS monitoring and control is essential.
Specifically, QoS monitoring is to constantly observe the
system execution state and detect QoS violations while
QoS control is to tackle detected QoS violations so as to
ensure the specified QoS constraints can be satisfied.

3  The General Design of a Cloud Workflow
System

Given the four basic system requirements discussed in
Section 2.2, in this paper, we propose that a cloud
workflow system is a competitive solution for managing
large numbers of business processes. Naturally, a cloud
workflow system is running in a scalable and elastic cloud
computing environment (satisfying the first and second
system requirements), and it is generally designed to have
the basic system components for process modelling,
resource management, runtime workflow monitoring and
control (satisfying the third and fourth system
requirements). Our strategy is to start with prototyping a
core cloud workflow system, and then extend its structure
and capabilities to meet the requirements for managing
large numbers of business processes. In this section, we
focus on the general system architecture, functionalities
and QoS management, while leaving the details in the
system implementation to be demonstrated in Section 4.
3.1 System Architecture

As depicted in Figure 2, the general cloud system
architecture consists of four basic layers from the top to
bottom: application layer, platform layer, unified resource
layer, and fabric layer.

As shown in Figure 2, the general cloud workflow
architecture can be a mapping of the general cloud system
architecture [10]. Specifically, the application layer
consists of cloud workflows (workflow applications for
real-world business processes), the platform layer is the
cloud workflow system which provides a development and
deploymenet platform for cloud workflows. All the system
functionalities of a cloud workflow system such as
workflow management, cloud resource management and
QoS management are included. The application layer and
the platform layer are usually self-maintained by the
business organisation®. The unified resource layer consists
of both software services and hardware services that are
required for the running of cloud workflows. Specifically,
SaaS (software as a service) can provide massive number
of software capabilities for processing different business

*A cloud workflow system can be encapsulated as a platform service, i.e.
PaaS (platform as a service). In such a case, the platform layer is
maintained by external cloud service providers.
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tasks, while [aaS (infrastructure as a service) can provision
on-demand and elastic computing power to meet the
resource requirements for processing business activities.
In practice, software and hardware services can also be
integrated together and encapsulated to be delivered as
VMs (virtual machines). The fabric layer is composed of
low level hardware resources such as computing, storage
and network resources. The unified layer and fabric layer
are often maintained by external cloud service providers”.
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Fig. 2. Cloud Workflow Architecture
3.2 System Functionalities

A cloud workflow system is the combination of workflow
system and cloud services. The workflow reference model
[2] suggested by WEMC (workflow management coalition,
http://www.wfmc.org/) defines the general components
and interfaces of a workflow system. Therefore, instead of
building from the scratch, we can design the basic system
functionalities of a cloud workflow system by extending
the workflow reference model with functionalities
required for the integration of cloud services, such as cloud
resource management and QoS management components.
Given its critical importance in cloud workflow systems,
the QoS management components will be introduced
separately in Section 3.3.
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Fig. 3. System Functionalities and QoS Management in
Cloud Workflow System

As depicted in Figure 3, the basic system functionalities
of a cloud workflow system can be organised in the same
way as the workflow reference model. Here, due to the
space limit, we only focus on several key components. In a
cloud workflow system, the workflow modelling tool
provides the system clients an efficient way to create their
business applications with the help of visual modelling
components and/or scripting languages. Workflow

SThe fabric layer can also be a virtual collection of local computing
infrastructure (i.e. private cloud) and the commercial computing
infrastructure (i.e. public cloud), i.e. hybrid cloud.
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specifications created by the clients normally contain the
information about the business process structures, the task
definitions and the QoS requirements. The workflow
enactment service is a collection of multiple parallel
workflow engines which are in charge of interpreting
workflow specifications and coordinating all the
management tools and necessary resources for the
workflow execution, such as the administration and
control tools, work-list monitoring tools, workflow data
and control flows, and software services. The workflow
engines can invoke local software applications stored in
the local repository (or private cloud) and external cloud
software services. The workflow engines can search for
cloud resources using the cloud resource brokers which
perform the searching, reserving and auditing of cloud
resources. After successful reservation of a cloud resource,
a tool agent will be created which is in charge of the
communications with external cloud service providers,
and the control of cloud software services according to the
instructions it received from the workflow engines.

3.3 QoS Management

Due to the dynamic nature of cloud computing, effective
QoS management in a cloud workflow system is very
important. Specifically, for managing large numbers of
business processes, service performance (e.g. short
response time for every client request and high throughput
for processing massive concurrent client requests), service
reliability (e.g. minimal failure rate for activity execution)
and service security (e.g. stringent policies for the lifecycle
protection of client data in its storage, transfer and
destroy), are among the most important QoS dimensions
which should be given higher priority in cloud workflow
QoS management [17-19, 24]. Meanwhile, since a cloud
workflow instance needs to undergo several stages before
its completion, a lifecycle QoS management needs to be
established.

In general, a lifecycle QoS management consists of four
basic steps, viz. QoS requirement specification,
QoS-aware service selection, QoS monitoring and QoS
violation handling [16]. As depicted in Figure 3, as part of
workflow built-time functionalities, QoS requirement
specification and QoS-aware service selection are mainly
interacted with the workflow modelling tool. The QoS
requirement specification component would generate the
QoS constraints, which are part of the workflow
specification and the basic criteria for QoS-aware service
selection. The QoS-aware service selection component
will return the available (best and backup) software
services satisfying the QoS constraints, through the cloud
resource brokers. After the workflow specifications are
submitted to the workflow enactment services, workflow
instances can be executed by invoking software services
which are managed by the tool agents. During workflow
runtime, the workflow execution state will be constantly
observed by the QoS monitoring component. The
workflow execution state can be displayed to the client and
system administrator by a watch list which contains
runtime information such as time submitted, time finished,
percentage of completion, service status and many other
real-time and possible statistic data. When the QoS
violations are detected, alert messages would be sent to
invoke the QoS violation handling component. This
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component will analyse the workflow execution state and
the QoS requirement specification to decide further
actions. Generally speaking, for QoS violation handing,
firstly, we should try to minimise the existing loss through
compensation, and secondly, we should prevent similar
violations from happening in the subsequent workflow as
much as possible [16, 19]. It is evident that due to the
complexity of instance intensive business processes and
the dynamic nature of cloud computing, satisfactory
service quality of a cloud workflow system can only be
achieved through such a lifecycle QoS management.

4 System Implementation: A Prototype P2P
based Cloud Workflow System

Based on the general design of a cloud workflow system
presented in Section 3, this section demonstrates the
implementation of a prototype cloud workflow system.
SwinDeW-C (Swinburne Decentralised Workflow for
Cloud) [17] is running in SwinCloud which is built on the
computing facilities in Swinburne University of
Technology and takes advantage of the existing SwinGrid
infrastructure, a grid computing test bed [17].

Cloud Simulation Environment

Data Centres with Hadoop

VMware
Astrophysics Swinburne Swinburne
Supercomputer CS3 ESR
o GT4 o GT4 * GT4
o SuSE Linux o CentOS Linux o CentOS Linux
== | EE -2

Swinburne Computing Facilities

Fig. 4. SwinCloud Infrastructure

The migration of SwinGrid to SwinCloud is achieved in
two steps. First, VMWare (http://www.vmware.com/) is
installed in existing SwinGrid nodes so that they can offer
unified computing and storage resources. Second, we set
up data centres on the groups of SwinGrid nodes which
can host different cloud services. In each data centre,
Hadoop (http://hadoop.apache.org/) is installed to
facilitate Map-Reduce computing paradigm and
distributed data management. Different from SwinGrid,
SwinCloud is a virtualised computing environment, where
cloud services run on unified resources. By dynamically
acquiring computing and storage units from VMWare,
cloud services can flexibly scale up and down according to
system requirements. SwinDeW-C inherits many features
of its ancestor SwinDeW-G [23] but with significant
modifications in its functionalities to accommodate the
cloud computing paradigm and the system requirements
for managing instance intensive business processes. Figure
4 depicts the SwinCloud infrastructure. More details about
the system environment can be found in [17].

4.1 Architecture of SwinDeW-C

In order to overcome the problems of centralised
management such as performance bottleneck, lack of
scalability and single point of failure, SwinDeW-C is
designed in a decentralised, or more specifically,

structured peer-to-peer fashion where all the workflow
data and control flows are transferred among SwinDeW-C
peers. Such a design can greatly enhance the performance
and reliability of a workflow system in managing large

Application
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Platform
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Unified
Resource
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Fabric
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SwinDeW-G / Commercial / Microsoft
. Grid Computing /* ~ Cloud
Infrastructure ; Infrastructure
Fig. 5. Architecture of SwinDeW-C

numbers of workflows since all the system functionalities
are implemented with distributed SwinDeW-C peers
which will be introduced in Section 4.2.

The architecture of SwinDeW-C is depicted in Figure 5
[17]. Clients can access SwinDeW-C Web portal via any
electronic devices such as PC, laptop and mobile phone as
long as they are connected to the Internet. Compared with
SwinDeW-G which can only be accessed through a
SwinDeW-G peer with pre-installed client-side programs,
SwinDeW-C Web portal can greatly improve the usability.
Here, we describe the lifecycle of an abstract workflow
application through its modelling stage, instantiation stage
and execution stage to illustrate the system architecture.

At the modelling stage, given the cloud workflow
modelling tool provided by the Web portal on the
application layer, workflow applications are modelled by
clients as cloud workflow specifications (consisting of
such as task definitions, process structures and QoS
constraints). After workflow specifications are created,
they will be submitted to one of the coordinator peers on
the platform layer. Here, an ordinary SwinDeW-C peer is a
cloud service node which has been equipped with specific
software services similar to a SwinDeW-G peer. However,
while a SwinDeW-G peer is deployed on a standalone
physical machine with fixed computing units and memory
space, a SwinDeW-C peer is deployed on a virtual
machine of which its computing power can scale
dynamically. As for the SwinDeW-C coordinator peers,
they are super nodes which are equipped with additional
management functionalities.

At the instantiation stage, the cloud workflow
specification is submitted to one of the SwinDeW-C
coordinator peers. A coordinator peer conducts an
evaluation process on the submitted cloud workflow
instance to determine whether it can be accepted or not
given the workflow specification, the available cloud
services, and the resource prices. It is generally assumed
that functional requirements can normally be satisfied
given the unlimited scalable computing resources and
software services in the cloud. In the case where clients
need to run their own special programs, they can upload
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them through the Web portal and these programs can be
automatically deployed in the cloud data centre. However,
the QoS requirements may not be always satisfied. Due to
the natural limitations of cloud service quality and the
unacceptable offers on budgets, a negotiation process
between the client and the cloud workflow system may be
conducted. The final negotiation result can be either the
compromised QoS requirements or a failed submission of
the cloud workflow instance. If it is successful, the
workflow activities will be assigned to suitable
SwinDeW-C peers through p2p based communication.
The peer management such as peer join, peer leave and
peer search, as well as the p2p based workflow execution
mechanism, are the same as in SwinDeW-G system
environment which are detailed in [23]. After all the
workflow activities are successfully allocated (i.e.
confirmation messages are sent back to the coordinator
peer from all the allocated peers), a cloud workflow
instance is successfully instantiated.

Finally, at the execution stage, each workflow activity
is executed by a SwinDeW-C peer. Clients can get access
to the final results as well as the running information of
their submitted workflow instances through the
SwinDeW-C Web portal. Each SwinDeW-C peer utilises
the computing power provided by its virtual machine
which can easily scale up and down according to the
requests of workflow activities. As can be seen in Figure 4,
SwinCloud is built on the previous SwinGrid
infrastructure at the fabric layer. Meanwhile, some of the
virtual machines can be created with external commercial
laaS (infrastructure as service) cloud service providers
such as Amazon, Google and Microsoft.

4.2 Functionalities of SwinDeW-C Peers

The architecture and functionalities of SwinDeW-C peers
are depicted in Figure 6. As mentioned above, the system
functionalities of SwinDeW-C are distributed to its peers.
SwinDeW-C is developed based on SwinDeW-G, where a
SwinDeW-C peer has inherited most of the functionalities
in a SwinDeW-G peer, including the components of task
management, flow management, data management, and
the group management [23]. Hence, a SwinDeW-G peer
plays as the core of a SwinDeW-C peer. A SwinDeW-G
peer is developed by Java with the Globus toolkit
(http://www.globus.org/toolkit/) and JXTA (http://www.
sun.com/software/jxta/).
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To accommodate cloud resources and the system
requirements for instance intensive business processes, a
coordinating peer is introduced to the SwinDeW-C system
and significant modifications also have been made in other
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normal peers. Besides the those functionalities inherited
from SwinDeW-G peers, some new cloud resource
management components are developed for SwinDeW-C
peers based on the APIs offered by VMWare and Hadoop,
and some existing components such as QoS management
are further enhanced. Specifically:

First, a resource provisioning component is added to
every SwinDeW-C peer. In SwinDeW-C, to meet the
scalable and elastic resource requirement, a SwinDeW-C
peer can scale up or down with more or fewer computing
units. Meanwhile, through the SwinDeW-C coordinate
peer, it can also scale out or in if necessary, i.e. to request
the distribution of workflow activities to more or fewer
SwinDeW-C peers in the same group. This is mainly
realised through the APIs of VMWare management tools.

Second, the resource pricing and auditing components
are equipped in SwinDeW-C coordinator peers. Since
different cloud service providers may offer different prices,
during the instantiation stage, a coordinator peer needs to
have the pricing component to negotiate the prices with
external service providers and set its own offered prices to
its clients. Meanwhile, since the cloud workflow system
needs to pay for the usage of external cloud resources, at
the execution stage, an auditing component is required to
record and audit the usage of cloud resources. These
functionalities are mainly realised through the APIs of
resource brokers and the external service provider’s
monitoring services such as the Amazon CloudWatch
(http://aws.amazon.com/cloudwatch/).

Third, QoS management components in a SwinDeW-C
coordinator peer have been extended to support for
multiple QoS dimensions, viz. performance, reliability and
security, which are regarded as three major QoS
dimensions for running business processes. Specifically,
performance management is mainly for the response time
and throughput of business processes, reliability
management is mainly for the reliability and cost of data
storage services, and security management is mainly for
transaction security and the protection of client privacy
data. According to the lifecycle QoS management
introduced in Section 3.3, these components need to
interact with many other system build-time and runtime
functional components which are implemented as parts of
the SwinDeW-C coordinator peers.

4.3 QoS Management in SwinDeW-C

The major workflow QoS dimensions supported in
SwinDeW-C are performance, reliability and security.
Details can be found in [17]. In this section, we take the
performance management component as an example. In
our previous work, the performance management only
focuses on the response time of a single workflow instance.
In this paper, for the running of large numbers of
time-constrained business processes, we also focus on the
throughput of the cloud workflow system. Specifically,
there are four basic tasks for delivering lifecycle
performance management in SwinDeW-C:

Temporal Constraint Setting: In SwinDeW-C, temporal
constraints consist of two types, viz. constraints for
workflow response time, and constraints for system
throughput. A probabilistic strategy is designed for setting
constraints for workflow response time in SwinDeW-C.
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Specifically, one overall deadline and several milestones
are assigned based on the negotiation result between
clients and cloud workflow service providers. Afterwards,
fine-grained constraints for individual workflow activities
can be derived automatically [13]. Besides the constraints
for the workflow response time, we also need to setup
some throughput constraints to monitor system
throughputs along the workflow execution. Currently, we
adopt a setting strategy where throughput constraints are
defined as the percentage of completion and assigned at
pre-defined time points with fixed equal time intervals.
For example, given a set of 1,000 business processes (each
with 10 activities) start at 10:00am and have an overall
deadline by 12:00pm, the throughput constraints can be
specified as at 10:30am, 25% of the total business
processes should be finished, and 50% of them should be
finished by 11:00pm, and so forth. Note that here 50%
completion does not necessarily mean a total of 500
processes should be finished but rather mean a total of
5,000 activities are completed since significant delays
often occur in the running of some business processes.

Temporal-Aware  Service Selection: Given the
fine-grained constraints for response time assigned in the
first step, a set of candidate services which satisfy the
constraints can be searched by the cloud resource broker
from the cloud [6, 24]. Meanwhile, since different service
providers may offer different prices, and there are often
other QoS constraints such as reliability and security to be
considered at the same time, a ranking strategy is designed
to determine the best candidate for runtime execution.
Furthermore, considering to the dynamic nature of cloud
computing as well as the performance and reliability
requirements for managing large numbers of business
processes, a set of backup/redundant services should also
be reserved during service selection. In fact, many cloud
service providers such as Amazon provides special
discount price for reserved instances6, which can be used
as a source of riliable standby capacity.

Temporal Checkpoint Selection and Verification:
During workflow runtime, the workflow execution state
should be monitored against the violation of temporal
constraints. Temporal verification is to check the temporal
correctness of workflow execution, i.e. to detect temporal
violations of workflow response time and system
throughput. The verification of workflow response time
constraints is conducted at the activity level and the
verification of system throughput is conducted at the
workflow level. In SwinDeW-C, a minimum time
redundancy based checkpoint selection strategy [8] is
employed which selects only necessary and sufficient
checkpoints to detect the violations of workflow response
time. Here, necessity means only the activity points with
temporal violations are selected, and sufficiency means
there are no omitted ones, hence the strategy is highly
efficient for the monitoring of large numbers of workflow
activities. As for throughput verification, it is conducted at
the pre-defined time points which are specified at the
constraint setting stage, hence in a static fashion.

Temporal Violation Handling: After a temporal
violation is detected, violation handling strategies are

® http://aws.amazon.com/ec2/reserved-instances/

required to recover the error states such as the larger
response time and lower system throughput. In
SwinDeW-C, to decrease the overall violation handling
cost on workflow response time, a three-level temporal
violation handling strategy is designed. Specifically, for
minor temporal violations, the TDA (time deficit
allocation) strategy [7] is employed which can remove the
current time deficits by borrowing the time redundancy of
the subsequent activities. For moderate temporal
violations, the ACOWR (ant colony optimisation based
two stage workflow local rescheduling) strategy [12] is
employed which can decrease the execution time of the
subsequent workflow activities through the optimisation
of resource allocation. As for major temporal violations,
the combined strategy of TDA and ACOWR is employed
which conducts TDA in the first step and followed by
several iterations of ACOWR until the temporal violation
is recovered. Based on such a design, the overall violation
handling cost on workflow response time can be
significantly reduced compared with a single expensive
exception handing strategy [12]. However, since it has
been well observed that short response time does not
necessarily guarantee an overall high system throughput,
we still need some violation handling strategies to recover
throughput violations. Meanwhile, since most violation
handling strategies such as TDA and ACOWR target the
reduction of the response time of a single workflow
instance, it may not be directly effective for the increase of
system throughput. One of the options is to conduct these
strategies repeatedly for many business processes so that
the system throughput can be increase by the reduction of
the average workflow response time. But this option is
evidently very expensive. Currently, in SwinDeW-C, we
adopt a simple elastic resource provision strategy which is
to dynamically provision the reserved resources when
throughput violations are detected, and release these
resources when the system throughput is back to normal.
In such a case, since many awaiting workflow activities
will be processed immediately, the system throughput can
be increased in a short period time. Details will be further
illustrated in our experiments demonstrated in Section 5.

5 Evaluation

Based on the SwinDeW-C prototype system, the general
design of a cloud workflow system proposed in Section 3
is successfully implemented to satisfy the basic system
requirements discussed in Section 2.2. Specifically, the
four-layer cloud workflow system architecture and the
structured p2p based decentralised workflow management
ensures efficient provision of scalable and elastic cloud
computing resources for running instance intensive
business processes (for the first and second system
requirements); the visual modelling tool for workflow
specification, the workflow enactment service and the
application provision service, can effectively support the
efficient process management (for the third system
requirement); and the QoS management components can
facilitate the effective QoS monitoring and control (for the
fourth system requirement).

At the moment, to evaluate and improve its
performance, a number of test cases with simulated large
scale instance intensive workflows are designed and being
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tested in SwinDeW-C, including the securities exchange
workflow and some large scale high performance
applications with larger number of sub-processes such as a
weather forecast workflow [13] and a pulsar searching
workflow in Astrophysics [14].

On the setting of business processes and resources: In
order to evaluate the performance of SwinDeW-C, we
have simulated a large number of business processes
running in parallel. The total number of business processes
is 10K, which is similar to the total number of securities
corporation branches nation wide. In our experiments, we
focus on the offline processing part, i.e. from the step 4 to
step 14, where all the daytime transaction data are to be
batch-processed over night at the stock depository and
clearing corporation. For the ease of simulation, we
assume that each process has 20 activities to represent the
basic batch processing steps, and correspondingly there
are 20 types of cloud services in charge of running these
activities. The total number of cloud service instances is
set as 200, i.e. 10 instances for each type of service.
Additionally, there is 1 reserved instance for each type of
service to handle temporal violations. As for the resource
price, we adopt the Amazon EC2 price model as a
reference (http://aws.amazon.com/ec2/pricing/). The price
for the primary services (similar to the EC2 Quadruple
Extra Large Hi-Memory On-Demand Instances) is $2.00
per hour, and the price for the reserved services (similar to
the EC2 Large Standard Reserved Instances for 1 year
fixed term) is about $0.12 per hour.

The simulation will start from the parallel running of
100 business processes, i.e. the maximum workload for
each service instance is set as 10. The activity durations
are generated based on the statistics and deliberately
extended by a mixture of representative distribution
models such as normal, uniform and exponential to reflect
the performance of different cloud services. The mean
activity durations are randomly generated in a wide range
of 30 milliseconds to 30 seconds. Meanwhile, some noises
are also added to a random selected activity in each
business process to simulate the effect of system
uncertainties such as network congestion and performance
down time. Different ratio of noises (the added time delays
divided by the activity durations) from 5% to 30% are
implemented. The process structures are specified as DAG
graphs similar to the securities exchange business process.

On the setting of temporal constraints and monitoring
strategies: For each business process, an overall temporal
constraint is assigned. The strategy for setting temporal
constraint is adopted from the work in [13] where a normal
percentile is used to specify temporal constraints and
denotes the expected probability for on-time completion.
Here, we specify the normal percentiles as 1.28 which
denotes the probability of 90.0% for on-time completion if
without any temporal violation handling. This setting can
be regarded as the norm, i.e. the satisfactory performance
for most clients and service providers. We employ the
state-of-the-art checkpoint selection strategy introduced in
[8] as the strategy for detecting the violations on workflow
response time. As for the monitoring of system throughput,
we pre-define a set of time points with the equal fixed time
interval as introduced in Section 4.3. Specifically, the
fixed time interval in our experiments is set as 60 seconds,
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i.e. around 20% of the average duration of a business
process. Therefore, at the first 60 seconds, the system will
verify whether 20% of the total activities (i.e.
20%*100%20=400) have been finished, and at the next
time point, i.e. at the time points for 120 seconds, the
system will verify whether 40% (i.e. 800) of the total
activities have been finished, and so on so forth until the
completion of all the 10,000 business processes. The
throughput verification will be conducted at every
pr-defined time points.

On the setting of temporal violation handling strategies:
For the comparison purpose, we record the global
violation rates under natural situations, i.e. without any
handling strategies (denoted as NIL). The violation
handling strategies we implemented including the
standalone Workflow Local Rescheduling strategy, the
standalone Extra Resource Recruitment strategy, and the
combined of the two strategies. The Workflow Local
Rescheduling strategy is based on ACOWR and the Extra
Resource Recruitment strategy is based on the simple
elastic resource provision strategy (denoted as SERP), as
introduced in Section 4.3. For the standalone ACOWR or
SERP, the same strategy will be applied both to the
violations of response time and system throughput. As for
the combined strategy (denoted as ACOWR+SERP),
ACOWR will handle the violations of response time and
SERP will handle the violations of system throughput
respectively. The parameter settings for ACOWR are same
as in [14]. As for SERP, we employ one additional
instance for each type of service when a throughput
violation is detected, and immediately release them when
the system throughput is back to normal at the next
throughput constraint. Based on the resource settings
mentioned above, the average cost for ACOWR is
$3.08%107 per time, which is mainly the computation cost
for running the rescheduling strategy. Note that the cost for
the re-allocation of workflow activities after rescheduling
is not accounted here since the data transfer within a data
centre is free in Amazon cloud. As for SERP, the cost is
$16.7 per round where 20 cloud services are reserved and
dedicated for the entire running period, i.e. an average of 8
hours per day.

TABLE 1. Numbers of Temporal Violations

Number of Number of
Rounds | Normal | Uniform | Exponential | Noise | Response Time Throughput
Violations Violations
R1 30% 50% 20% 0% 4892 63
R2 30% 50% 20% 5% 5108 252
R3 40% 50% 10% 10% 5322 473
R4 40% 50% 10% 15% 5601 690
RS 40% 40% 20% 15% 5446 671
R6 40% 50% 10% 20% 5715 890
R7 40% 40% 20% 20% 5687 886
R8 30% 50% 20% 25% 5719 1057
R9 40% 50% 10% 25% 5973 1104
R10 30% 50% 20% 30% 5895 1257

Based on the above experimental settings, 10 rounds of
experiments are implemented and each runs for 100 times
to get average values. Table 1 shows the number of
temporal violations recorded in each round of experiment.
Clearly, the number of response time violations for
workflow instances and the number of throughput
violations for the workflow system both increase rapidly
with the increase of noise, i.e. the embedded time delays to
represent various system uncertainties. For example, with
the every 5% increase of noise, the average increase of
response time violations is around 200. The distribution of
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service performance seems to have less effect on the
temporal violations. For example, given the same noise,
the average difference of throughput violations (e.g. R4
and R5, R6 and R7, R8 and R9) is around 20.
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Fig. 7. Temporal Violation Rate with Different Violation
Handling Strategies

Figure 7 depicts the temporal violation rates (the
unsuccessful rate for on-time completion of the entire 10K
business processes) with different violation handling
strategies. For comparison purpose, the results of NIL
represent the natural condition, i.e. without any handling
strategies, where the violation rates increase from 37% to
84% with an average of 65%. Both the combined strategy
of ACOWR4+SERP and the standalone ACOWR can
ensure a very close to 0% violation rate. The standalone
SERP strategy can also maintain a very low violation rate,
i.e. with an average around 4%. The reason for such a
difference is mainly because of the different granularity
between ACOWR and SERP. Since ACOWR is triggered
at every necessary and sufficient checkpoint while SERP
only take place at pre-defined time points (a ratio around
13% according to the results shown in Table 1), there are
some chances that significant time delays cannot be
handled in time by SERP, and thus result in some
unsuccessful on-time completion of business processes.
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Fig. 8. Temporal Violation Cost with Different Violation
Handling Strategies

Figure 8 demonstrate the total temporal violation
handling cost for each type of handling strategies. The cost
for the standalone SERP is static with $16.7 in each round
because only the reserved service instances are used. The
cost for the combined strategy of ACOWR+SERP is also
very stable from $31.7 to $35.1 with an average of $33.7.
In contrast, the cost for the standalone ACOWR increases
significantly from $16.2 to $56.8 with an average of $32.1.
This is mainly because the standalone ACOWR needs to
run many times (from 2 to 10 times in our experiments) to
handle throughput violations, and hence the cost increases
rapidly with the number of throughput violations.

In summary, according to the experimental results
presented above, we can see that the combined strategy of
ACOWR+SEREP is the best one which can maintain the
close to 0% violation rate while having the moderate cost
among the three. Meanwhile, since our experimental
settings actually allow for a probability of 10% violations
(i.e. 90.0% for on-time completion), if a small violation

rate is tolerable by the clients, e.g. below 5%, the
standalone SERP strategy is also applicable and can
significantly reduce the violation handling cost. In general,
we can see that thanks to the dynamic and elastic resource
provision provided by cloud computing, conventional
violation handling strategies such as ACOWR can ensure
the on-time completion of large numbers of business
processes in a more cost-effective way.

6 Related Work

Traditional workflow systems are normally designed to
support the business processes in a specific domain such as
bank, hospital and school. Therefore, they can only invoke
existing software applications (or software components)
which have already developed and stored in the local
repository, which limits the flexibility in the support of
general and agile business processes [2, 18]. In the last
decade, with the rapid development of Web services, the
employment of remote software services from external
service providers becomes possible. Therefore, the design
and application of Web service based workflow systems
starts to attract most of the attention from both researchers
and practitioners, for example, the Windows Workflow
Foundation (http://www.windowsworkflowfoundation.eu/)
and the Kepler project (http://kepler-project.org/). In
recent years, with the fast growth of high performance
computing (HPC) and high throughput computing (HTC)
such as cluster and grid, workflow systems are also being
used as a type of middleware service which often underlies
many large-scale complex e-science applications such as
climate modelling, astrophysics, and chemistry [9, 20].
The work in [24] proposes a taxonomy and summaries a
number of grid workflow systems such as Condor
(http://www.cs.wisc.edu/condor/), Gridbus (http://www.
gridbus.org/), Pegasus (http://pegasus.isi.edu/), and Triana
(http://www.trianacode.org/). However, they mainy target
at processing data and computation intensive activities for
a single scientific workflow instance, rather than massive
concurrent workflow instances for business processes.

The design of a cloud workflow system, as the
combination of workflow system and cloud computing,
comes from the natural needs for efficient and effective
management of large numbers of business processes.
However, as a cutting-edge research issue, the
investigation on cloud workflow systems is so far still in
its infancy. Besides SwinDeW-C, there are currently a few
existing grid workflow systems investigating the
migration from grid to cloud such as Pegasus in the cloud
(http://pegasus.isi.edu/pegasus_cloud.php) and GridBus to
CloudBus (http://www.cloudbus.org/cloudbus_flyer.pdf),
but most of them are for scientific applications. Response
time and system throughput are the most important
measurements for the performance analysis of cloud
workflow systems [3]. The work in [11] proposes a
throughput maximisation strategy for transaction intensive
cloud workflows. The work in [22] investigates the
dynamic resource allocation for efficient parallel data
processing in the cloud.

To the best of our knowledge, this is the first paper that
proposes the solution of a cloud workflow system to
address the management of running large numbers of
time-constrained business processes.
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7 Conclusions and Future Work

The concurrency of large numbers of client request has
been widely seen in today’s e-business and e-government
systems. Based on the analysis of a securities exchange
business process, we have identified four basic system
requirements for managing large numbers of business
processes, viz. scalable computing resource provision,
elastic computing resource delivery, efficient process
management, and effective QoS monitoring and control.
Based on that, the cloud workflow system is proposed as a
competitive solution. We first present the general design
of a cloud workflow system with the focus on its system
architecture, basic functionalities and QoS management.
Afterwards, based on such a general design, we have
implemented a peer-to-peer based cloud workflow system
prototype, SwinDeW-C. The architecture of SwinDeW-C
(four-layered architecture), the system functionalities
(realised in the functional components of SwinDeW-C
coordinator and ordinary peers), and the QoS management
(with the illustration of the performance management
components) have been demonstrated to verify the
effectiveness of our system design. The experimental
results for the evaluation of system performance have
shown that satisfactory on-time completion rate and better
cost-effectiveness can be achieved with the dynamic and
elastic provision of cloud resources.

In the future, the monitoring and violation handling
strategies for the system throughput will be further
enhanced. Meanwhile, the SwinCloud test bed will be
extended in its size and capacity so that real world large
scale business processes can be tested to further evaluate
and improve our system design.
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Abstract accelerate rasterisation of graphic primitives such as lines

. . . . _and polygons, their raw computing performance has at-
T.h|s paper oytllnes our effort to migrate a compute INtey aq 5 ot of researchers to utilize them as acceleration
sive application of ultrasound propagation being develits for special kind of mathematical operations in many
oped in Matlab to a cluster computer where each node Rag, vific applications (Kirk and Hwu 2010). Compared
seven GPUs. Our goal is to perform realistic simulations 5 cpy, the latest GPUs are about 15 times faster than
in hours and minutes instead of weeks and days. In ordgy ;e Intel Xeon processors in single-precision calcula-

to reach this goal we investigate architecture characterjss, .« stated another way, a cluster with a single GPU per
tics of the target system focusing on the PCI-Express s ' ’

d ; di . yde offers the equivalent performance of a 15 node CPU
system and new features proposed in CUDA version 4(9(Ey cluster. Even more interestingly, the availability of

especially simultaneous host to device, device to host 3 itiple PCI-Express buses even on very low cost com-
peer-to-peer transfers that the application is going to highyo iy computers means that it is possible to construct
ly benefit from. We also present the results from a CPl ster nodes with multiple GPUs. Under this scenario,
based implementation and discuss future directions f0gingje node with multiple GPUs offers the possibility of
exploit multiple GPUs. replacing fifty or more nodes of a CPU only cluster.
Keywords Ultrasound simulation, 7-GPU system, CUDA, On the other hand, the development tools for debug-

Matlab, FFT, PCI-Express, bandwidth, multi-core. ging and profiling of GPU-based applications are in their
i infancy. Obtaining the peak performance is very difficult
1 Introduction and sometimes impossible for a lot of real-world prob-

In 1994 Becker and Sterling (1995) proposed the cofems. Moreover, only a few basic GPU libraries such as
struction of supercomputer systems through the use WAPACK and BLAS have so far been developed, and
off-the-shelf commodity parts and open source softwarthese are only able to utilize one GPU in a node (CUDA
Over the ensuing year, the so called Beowulf clustddath Libraries 2011). GPU-based applications are also
computer systems came to dominate the top 500 list lirhited by the GPU architecture and memory model mak-
most powerful systems in the world. The advantages ofg general-purpose computing much more difficult to
such systems are many, including ease of creation, aghplement than a CPU-based application.
ministration and monitoring, and full support of many The purpose of this paper is to outline our efforts to
advanced programming techniques and high performangggrate a compute intensive application for ultrasound
computing libraries such as OpenMPI. Interestinglysimulation being developed in Matlab to a cluster com-
however, what was originally a major advantage of thegmiter where each node has seven GPUs. The utilised nu-
systems, namely price and running costs, is now mucherical methods are very memory efficient compared to
less so. This is because for even a small to moderatelgnventional finite-difference approaches, and the Matlab
sized cluster it is necessary to house the system in sp@plementation already outperforms many of the other
cially air-conditioned machine rooms. codes in the literature (Treeby 2011). However, for large
Recently, developments in Graphics Processing Uniggale simulations, the computation times are still prohibi-
(GPUs) have prompted another revolution in high-entively long. Our overall goal is to perform realistic simu-
computing, equivalent to that of the original Beowulflations in hours or minutes instead of weeks or days. This
cluster concept. Although these chips were designed paper provides an overview of the ultrasound propagation
application, the development of an optimised C++ ver-
sion of the original Matlab code for the CPU that exploits
Copyright 2012, Australian Computer Society, Inc. This papettreaming extensions, our attempts to characterise the
appeared at the 10th Australasian Symposium on Parallel amlti-GPU target system, and a preliminary plan for the
Distributed Computing (AusPDC 2012), Melbourne, AustraliaGPU code to run on that system.
January-February 2012. Conferences in Research and PracticeSection 2 provides background on ultrasound simula-
in Information Technology (CRPIT), Vol. 127. J. Chen and Rtjon, the simulation method used here, and the time con-

Ranjan, Eds. Reproduction for academic, not-for profit purpos@g;ming operations. Section 3 introduces the architecture
permitted provided this text is included.

43



CRPIT Volume 127 - Parallel and Distributed Computing 2012

of our 7-GPU Tyan servers that will be used for testingraction, division, and a specibkxf un operation. This
and benchmarking our implementations written in C+function replicates a vector in particular dimensions to
and CUDA. Section 4 gives preliminary results of thereate a 3D matrix on the fly and then performs a defined
first C++ implementation using only CPUs and investielement-wise operation with another 3D matrix (such as
gates the bottlenecks. Section 5 focuses on the GPU sidgltiplication denoted by@ i mes). Most operations

of the Tyan servers and measures the basics parameterg@k over the real domain, however, some of them are
them in order to acquire necessary experience and invggme over the complex one.

tigate the potential architecture limitations. The last sec- The time step loop in a simplified form is shown in

tion summarizes open questions and issues that will Bggure 1. This listing identifies all the necessary mathe-

dealt with in the future. matical operations and presents all matrices, vectors, and
. . . scalar values necessary for computation. For the compu-
2 Ultrasound Propagation Simulations tation, it is necessary to maintain the complete dataset in

The simulation of ultrasound propagation through biolognain memory. This data set is composed of 14 real matri-
ical tissue has a wide range of practical applications. Thees, 3 complex matrices, 6 real and 6 complex vectors.
se include the design of ultrasound probes, the develop-An iteration of the loop represents one time step in the
ment of image processing techniques, studying how ultraimulation of ultrasound propagation over time. The
sound beams interact with heterogeneous media, trainiogmputation can be divided into a few phases correspond-
ultrasonographers to use ultrasound equipment, aimd) to the particular code statements:

treatment planning and dosimetry for therapeutic ultra- (1) A 3D FFT is computed on a 3D real matrix repre-
sound applications. Here, ultrasound simulation can meaanting the acoustic pressure at each point within the
either predicting the distribution of pressure and energymputational domain. Despite the fact the maprixs
produced by an ultrasound probe, or the simulation @iurely real, a 3D complex-to-complex FFT is executed in
diagnostic ultrasound images. The general requirememkatlab.

are that the models correctly describe the different acous- (2) - (4) New values for the local particle velocities in
tic effects whilst remaining computationally tractable. each Cartesian dimensioq y, z are computed. These

In our work, thek-space pseudospectral method iselocities describe the local vibrations due to the acoustic
used to reduce the number of grid points required p@aves. The result of ft n(p) is element-wise multi-
Wavelength for a-CCUrate S.imulations- (Tabel 2002) Thﬂ|ed by a Comp|ex ma‘[rikappa and then mu|t|p||ed by
system of governing equations used is described in detgil,ector expanded into a 3D matrix in the given directions
by Treeby (2011). These are derived from general cofising bsxf un. After that, the 3D inverse FFT is com-
servation laws, discretised using thepace pseudospec- ,ted. As we are only interested in real signals, the com-
tral method, and then implemented in Matlab (Treebyjex part of the inverse FFT is neglected. Other element-
2010). In order to be able to simulate real-world systemg;se multiplications and subtractions are further applied.
both huge amounts of memory and computation powgfote that the old values of the particle velocities are nec-
are required. _ o essary for determining the new ones.

Let us calculate a hypothetical execution time request- (5y'The particle velocities in the x-direction at particu-
ed for simulating a realistic ultrasound image using, hositions are modified due to the output of the ultra-
Matlab on a dual six-core Intel Xeon processor. The Uk, ng probe. (Note, additional source conditions are also
trasound image is created by steering the ultrasound beBH!;sible, only one is shown here for brevity). The matrix
through the tissue and recording the echoes received from sgx is transformed to a vector and mask-based ele-
that p_arti<_:u|ar direction. _The recorded_ signal fror_n each cnt-wise addition is executed.
direction is called an A-line, and a typical image is con- gy _(g) The gradient of the local particle velocities in

struqted from at Iegst 12.8 of these.. This means we neggch Cartesian direction is computed. First, the 3D FFT
128 independent simulations with slightly modified inputy¢ {he particle velocity is computed, then, the result is

parameters. U;ing a single_comp_uter-, these must be ¢ Ultiplied by kappa and a vector in the complex do-
puted sequentially. Every simulation is done over the 3 ain. After that, the inverse 3D FFT is calculated. Only

do.mf"” V‘gthgogor'od t_slzes tstartlan at 768|.X7.68X256 grlqhe real part of the FFT is used in the difference matrix.
points an IMme 'Steps. From preéliminary experi- (9) - (11) The mass conservation equations are used to

ments performed using the Matlab code, each S'mUIatl%%Iculate thea hox, r hoy andr hoz matrices (acoustic

takes about 27 hours of execution time and CONSUMERnsity at each point within the computational domain)
about 17 GB of memory. Thus to compute one ultrasou%f y P P '

image would require rouahly 145 davs. The obiective | operations are done over the real domain on 3D ma-
1ag . q gnty yS: JECUVE Qices. If an operand is a scalar or a vector, it is expanded
this work is to reduce this time to hours or even mmute[s

S 2 . . 0 a 3D matrix on the fly.
by exploiting the parallelism inherent in the algorithm. (12) The new value of pressure matrix is computed

2.1 k-space Pseudospectral Simulation Method here using data from all three dimensions. Two forward
' Implemented in M atlab and inverse 3D FFTs are necessary for intermediate re-
P sults. All other operations are done over the real domain.

The Matlab code simulating non-linear ultrasound propa- (13) The pressure matrix is sampled and the samples
gation using the&-space pseudospectral method is basege stored as the final result.

on the forward and inverse 3-dimensional fast Fourier |5 symmary, at a high level we need to calculate

transformation (FFT) supported by a few 3D matrix opefs forward and 8 inverse 3D FFTs, and about 50 other
ations such as element-wise multiplication, addition, suljement-wise operations, mainly multiplications.
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%start tine step | oop
for t_index = 2: Nt

% conpute 3D fft of the acoustic pressure
1 p_k =fftn(p);

% cal cul ate the local particle velocities in
% each Cartesian direction
2 ux_sgx = bsxfun(@ines, pm _x_sgx
bsxfun( @i nes, pm _x_sgx, ux_sgx)
- dt./rhoO_sgx .* real (ifftn(
bsxfun( @i nmes, ddx_k_shift_pos
kappa .* p_k) ))

)
3 uy_sgy = bsxfun(@ines, pnm _y_sgy,
bsxfun(@i mes, pm _y_sgy, uy_sgy)
- dt./rho0O_sgy .* real (ifftn(
bsxfun( @i mes, ddy_k_shift_pos,
kappa .* p_k) ))

4 uz_sgz = bsxfun(@ines, pm_z_sgz,
bsxfun(@imes, pm _z_sgz, uz_sgz)
- dt./rho0O_sgz .* real (ifftn(
bsxfun( @i nes, ddz_k_shift_pos,
kappa .* p_k) ))

% add in the transducer source term
5 if transducer_source >= t_index
ux_sgx(us_i ndex) = ux_sgx(us_index) +
transducer _i nput _si gnal (del ay_mask) ;
del ay_mask = del ay_mask + 1;
end

% cal cul ate spatial gradient of the particle
% vel ocities
6 duxdx = real (ifftn( bsxfun(@i nes,
ddx_k_shi ft_neg, kappa .* fftn(ux_sgx)) ));
duydy = real (ifftn( bsxfun(@i nes,
ddy_k_shift_neg, kappa .* fftn(uy_sgy)) ));
8 duzdz = real (ifftn( bsxfun(@i nes,
ddz_k_shift_neg, kappa .* fftn(uz_sgz)) ));

~

% cal cul ate acoustic density rhox, rhoy and
%rhoz at the next tine step using a
% nonl i near nass conservation equation
9 rhox = bsxfun(@imes, pm_x, (rhox -
dt.*rho0 .* duxdx) ./ (1 + 2*dt.*duxdx));
10 rhoy = bsxfun(@imes, pm _y, (rhoy -
dt.*rho0 .* duydy) ./ (1 + 2*dt.*duydy));
11 rhoz = bsxfun(@imes, pm _z, (rhoz -
dt.*rho0 .* duzdz) ./ (1 + 2*dt.*duzdz));

% cal cul ate the new pressure field using a
% nonl i near absorbing equation of state
12 p=c.n2.*%( ...
(rhox + rhoy + rhoz)
+ absorb_tau. *real (i fftn(
absorb_nablal .*
fftn(rhoO. *(duxdx+duydy+duzdz)) ))
- absorb_eta. *real (ifftn(
absorb_nabl a2 .*
fftn(rhox + rhoy + rhoz) ))
+ BonA. *(rhox + rhoy + rhoz).”"2
.1 (2*rho0)
)

% extract and save the required storage data
13 sensor_data(:, t_index)= p(sensor_nask_ind);
end

Figure 1. Matlab code for the k-space pseudospectral
method showing the necessary oper ations.

3 Architectureof Tyan 7-GPU Servers

This section describes the architecture of the Tyan servers
targeted for use in the ultrasound propagation simula-
tions. The Tyan servers are 7-GPU servers based on the
Tyan barebones TYAN FT72B7015 (Tyan 2011). The
barebones consist of a standard 4U rack case and three
independent hot-swap 1kW power supplies.

A schematic of the Tyan 7-GPU server configuration
can be seen in Figure 2. The motherboard of the servers
offers two LGA 1366 sockets for processors based on the
Core i7 architecture in a NUMA configuration. The serv-
er is populated with two six-core Intel Xeon X5650 pro-
cessors offering 12 physical cores in total (24 with Hy-
perThreading technology). As each processor contains
three DDR3 memory channels, the server is equipped
with six 4GB modules (24 GB RAM). The memory ca-
pacity can be expanded up to 144GB using 12 additional
memory slots.

Communication among CPUs and attached memories
is supported by the Intel QuickPath Interconnection (QPI)
with a theoretical bandwidth of 12 GB/s. This intercon-
nection also serves as a bridge between CPUs and two
Intel IOH chips that offer various 1/0 connections includ-
ing four PCI-Express links.

By themselves, the four PCI-Express x16 links are in-
sufficient to connect 7 GPUs and an Infiniband card at
full speed. (We would have needed 128 PCI-E links, but
unfortunately, had only 64.) Therefore, intermediate PEX
bridges were placed between the I0H chips and other
devices to double the number of PCI-E links. One PEX
bridge is shared between two GPUs (or a GPU and an
Infiniband card). The PEX bridges allocate PCI-Express
links to the GPUs based on their actual requirements. If
one GPU is idle the other one can use all 16 links.

As the servers are designed as a cutting edge GPGPU
platform, the most powerful NVIDIA GTX 580 cards
with 512 CUDA cores and 1.5GB of main memory have
been used. These cards, based on the Fermi architecture,
support the latest NVIDIA CUDA 4.0 developer kit and
represent the fastest cards that can currently be acquired.

The operating system and user data are stored on two
500GB hard disks, one of which serves as a system disk
and the other one as temporary disk space for users. The
servers are interconnected using the Infiniband links and
a 48 port QLogic Infiniband switch, and to the internet
using one of four Gb Ethernet cards.

The operating system the servers are running is Ub-
untu 10.04 LTS server edition. For our implementation
we have decided to use standard GNU C++ compiler and
the latest CUDA version 4.0. This introduces a lot of new
features mainly targeted to multi-GPU systems, such as
peer-to-peer communication among GPUs, zero-copy
main memory accesses from GPUs, etc. OpenMPI is used
to communicate between servers and OpenIB layer to
directly access the infiniband network card.

4  CPU-based C++ Implementation

In order to accelerate the execution of the Matlab code,
the time critical simulation loop has been re-implemented
in C++ while paying attention to the underlying architec-
ture to exploit all available performance. A good CPU
implementation will serve as a starting point for a GPU
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16 links shared
between 2 GPUs

into a complex matrix. Then, the forward FFT is com-
puted. As the FFTW class is compatible with other matrix

Memory & classes, it serves as a temporary storage. Having comput-
{0+

wwm, ed the FFT, a few element-wise operations are performed
- between 2 52U STX 550 on this complex matrix, and finally, the inverse FFT is

8647 < i computed. As FFTW does not use normalization, each
PCI-E x 16

element has to be divided by the product of the matrix
ol dimension sizes.

25,8GB/s
CPU
Xeon X5650

16 links shared
between 2 GPUs

4.2 Operation Fusion

The naive C++ implementation, created at first, encodes
each mathematical operation as a separate method paral-
lelized using OpenMP directives. It allows us to under-
stand the algorithm and validate the code. On the other
Figure 2: Architecture of 7-GPU server used for hand, this implementation is extremely ineffective. It is
the acceleration of ultrasound simulations. caused by a very poor calculation to memory access ratio
implementation, revealing all the hidden difficulties andvhile processing very large matrices in the order of hun-
ineffectiveness in the Matlab code while also providingireds of MBs, and high thread management overhead.
ideas on how to improve the Matlab code. The operation fusion reduces the memory accesses by
First of all, the import and export of data structureperforming multiple mathematical operations on corre-
from Matlab to C++ and back has to be designed. Fortaponding elements at once and saving the temporary re-
nately, all Matlab matrices can be transformed into lineaults in cache memories. As a result, memory bandwidth
arrays (solving the problem with column-first ordering ofs saved enabling better scalability at the expense of more
multidimensional arrays in Matlab) and saved into sepaomplicated code.
rated files using an ASCII or binary format.
All imported matrices as well as six temporary matri4.3 Real-to-Complex FFT
ces are maintained in main memory during the computas all the forward FFTs take only real 3D matrices as an
tion. In the C++ code, the matrices are treated as lingaput, the results of the forward FFTs are symmetrical.
vectors and allocated using th&l | oc function. This Analogously, as we are only interested in real signals, the
organisation simplifies the computation because there ilmaginary parts of the inverse FFTs are of no use.
no need to use three indices in element-wise operations.Substituting complex-to-complex FFTs with real-to-
The complex matrices are stored in an interleaved foroomplex ones saves nearly 50% of the memory and com-
(even indices correspond to real parts and odd indices {metation time related to FFTs. Moreover, as other opera-
imaginary part of the elements). Another advantage ¢ibns and matrices are applied to the result of the FFT, we
this data storage format is compatibility with FFTW andave additional computation effort and memory because
CUDA routines when implementing the GPU version.  of not having to store the symmetrical parts of auxiliary
The C++ code benefits from using an object orienteghatrices such dsappa.
programming pattern. Each matrix is implemented as
a class inheriting basic operations from base classes (réa¢ SSE Optimization and NUMA Support

matrix class, complex matrix class) and introducing neéwhe final version of the C++ code benefits from a careful
methods reflecting the simulation method. optimization of all element-wise operations in order to
The C++ code does not follow the Matlab code iRytjlize streaming extensions such as SSE and AVX. Some
averbatim way. Some intermediate results have begp the routines were revised so that the C++ compiler
precomputed and several temporary matrices have begfyid utilize automatic vectorization to produce a highly

introduced and reused to save computational effort.  gptimized code. In the cases it was not possible to do so,
the compiler intrinsic functions had to be used for rewrit-
4.1  Complex-to-Complex FFT ing the particular routines from scratch.

Apart from easy to implement element-wise operations, Finally, as the Tyan servers are based on the Non-
the multidimensional FFT is computed many times in thelniform Memory Access (NUMA) architecture, some
code. Instead of creating a new implementation, the wepolicies preventing threads and memory blocks to migrate
known FFTW library has been employed (FFTW 2011)among cores and local memories have been incorporated
This library is optimized for a huge number of CPU arinto the code. First, all the threads are locked on CPU
chitectures including multi-core systems with sharedores using an OS affinity property. Secondly, the shared
memory and clusters with message passing and thaiemory blocks for all the matrices are allocated by the
streaming extensions such as MMX, SSE, AVX, etc.  master thread and immediately initialized and distributed
A special class encapsulating the FFTW library haato local memories using a parallel first touch policy
been designed in the C++ code. As Matlab uses complg¥erboven, C., Mey, D., et.al. 2008). As the access pat-
to-complex 3D FFTs even for real input matrices, the firsern remains unchanged for element-wise routines, the
version of the C++ code also employed the complex-tgtatic OpenMP scheduling guarantees all the matrices
complex in-place version of the 3D FFT. First, the inputemain in the local memories. The only exception is the
matrix is copied into the FFTW object and transforme@FT computation, fortunately handed by FFTW library.
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45 Execution Time Comparison .. Speed-up of the C++ code against Matlab

This section presents the first results of the C++ imple- 2, naive

mentation and compares the execution time with the | == czc,fusion

Matlab version on a dual Intel Xeon system with 12 phy$z R2C, fusion

ical cores and 24GB RAM memory. I R2C, SSE, NUMA .* e
Figure 3 shows the relative speed-ups of four differeng

C++ implementations against Matlab and their depender:gr ‘

cy on the number of CPU threads. All the C++ version§ ° e

utilize the FFTW library compiled with OpenMP and| *7] .+

SSE extensions under single precision. Matlab could use* /

_all CPU cores (12) and worked also with smgle_ precisign T s 4 s e 4 8 e 1 u »

in all cases. It can also be noted the server is equipged Number of CPU threads

with the Intel Turbo technology raising the core frequen-
cy up to 3.2GHz under one thread workload and decreasFigure 3: Relative speed-up of C++ against Matlab
ing the frequency to 2.66GHz under full 12 thread load.  using a domain size of 256° and 1000 time steps.
The C2C, naive implementation represents the sim-
plest implementation of the problem. Although very sim-

S % of time Routine
ple, it is able to outperform Matlab by about 26%. Opera- 3084 Inverse FFT
Ejo_rlw_ f_u5|on”bgggs an ad(rj]|t|onal T|gn|flcant w(n;pro:j/e_megt.7 26.73 Forward FET
Jtilizing a cores, the results are produced in 2. 361 BonA.(thox + thoy + thoz) 72./(2"rho0)
times shorter execution time. Replacing Complex-to- 3.46 Sum subterms on line 12
Complex (C2C) FFTs with the Real-to-Complex (R2C) : < ==
. . . L 3.10 rho0.*(duxdx+duydy+duzdz)
ones and reducing some matrices sizes led to an addition
. . . . . . 2.81 rhox + rhoy + rhoz
al reduction in execution time. This version of C++ code
. . . . 2.67 Compute_rhox
is up to 5.2 times faster than Matlab. Finally, revising all e Compute o
element-wise operations to exploit vector extensions of ' pute_Thoy
. . . . 2.42 Compute_rhoz
the CPUs and implementing basic NUMA policy, we
. 2.30 Compute_uy_sgy
reached speed-ups of 8.4 times. > 16 Combute Uy S
Analysing and profiling the C++ code, we learn that e c put =UY_SgX
nearly 58% of execution time is consumed by FFTs (see ' omptte_ty_sgz
15.36 Other operations

Table 1). The other operations take only a fraction of the
time. Unfortunately, they cannot be optimized as oneTable 1: Execution time composition of the C++ code.
because of intermediate FFTSs.

For larger problems, the memory requirements of tHe  Towardsthe Utilization of Multiple GPUs

complex-to-complex C++ and Matlab codes are verj, order to be able to solve real-world ultrasound propa-
close. The reduction of memory requirements in the reglation simulations in reasonable time, we need to reduce
to-complex version is about 20% considering that most @fe execution time by an order of magnitude at least. For
matrices remained unchanged. , this reason we would like to utilize up to 7 GPUs placed
A real-word example has also been examined. Thg the Tyan server to provide the necessary computational
domain size was set to 768x768x256 grid points and 3o%gwer as well as very high memory bandwidth.
time steps simulated. Matlab needed 27 hours and 11fjrst we would like to start with one GPU and create
minutes to compute the result and consumed about 17GE~pa implementation of the simulation code. The
of RAM memory. C2C version with operation fusionmost time consuming operations are the fast Fourier
took 8 hours and 16 minutes to complete the task agdnsformations. On the CUDA platform, the cuFFT li-
16.8GB of RAM memory. R2C version finished after 4yrary can be used. This library is provided directly by
hour_s and 55 minutes using 13.3GB o_f RAM. The fina\\vIDIA and runs on a single GPU (CUDA Math Librar-
version of the code reduced the execution time to 3 hoygs; 2011). All other element-wise operations can be di-
and 22 minutes. Recalling our hypothetical simulatiofectly implemented as simple kernels, as the element-wise
example mentioned earlier, this would decrease the cogherations are embarrassingly parallel. On the other hand,
putational time from 145 days to 17 days. ~_ these operations cannot benefit from the on-chip shared
Another important observation is the execution time,emory exploitation of which is often the key factor in
necessary to perform an iteration of the loop. Assumingaching peak performance (Sanders and Kandrot 2010).
the real-world simulation space size of 768x768x256, anfhs |imitation can be partially alleviated by employing
3000 time steps, every iteration takes about 4.1s. As itd§ pA texture memory and its automatic caching.
not possible to execute multiple iterations at a time, this is There are a few strategies how to split the work among
the granularity of parallelisation. Moreover, during thi%ultiple GPUs. The obvious way is to calculate each di-
time the entire 13GBs of memory will be touched at leaghensijon independently on a different GPU with the final
once. , cgressure calculation performed on a single one. Looking
Naturally, the outputs from the C++ version andy the Jisting shown in Figure 1, we can notice that nearly
Matlab version have been cross-validated with relativgqire loop can be dimensionally decomposed. That is
error lower than 18 for the domain sizes up to 25@nd  yithin each time step, the calculations for the x, y and z

10" for domain sizes up to 768x768x256 grid points.  gimensions can be done independently. The only excep-
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tion is line 12, where all three dimensions are necessasy 160GB/s, the theoretical throughput of PCI-Express
to compute the new pressure matrix. This could potentiat16 of 8GB/s is likely to be a place of congestion.
ly utilize 3 GPUs for dimension independent calculations Any data structure (3D matrix or 1D vector in our
while only a single GPU for the final calculation. case) designated for host-device data exchange has to be
Another strategy is to divide the computation of eachllocated on the host and device separately. Allocating
operation among multiple GPUs. There is another reasaremory on the device (GPU) side is easy as there is only
to go this way. Utilizing only a single GPU or dimensiorone CUDA routine for this purpose. On the other hand,
partition scheme we are strictly limited by the GPU onwe need to distinguish between three different types of
board main memory size, which is 1.5GB per GPU in ourost memory allocation each intended for a different pur-
situation. This value is pretty small compared with 24GRose:
of server main memory and does not allow us to treat « C/C++ memory allocation routines
larger simulation spaces. If we cut the loop into the ¢ Pinned memory allocation with a CUDA routine
smallest meaningful operations we would need two < Zero-copy memory allocation with a CUDA routine
source 3D matrices and a destination one to reside in on-C/C++ memory allocation routines such asl | oc
board GPU memory. This would allow us to solve prober new serve well for simple CUDA (GPGPU) applica-
lems with dimensions sizes up to 81id points in sin- tions. Their advantages are compatibility with non-
gle precision. Our hypothetical example would be intrac2UDA applications and simple porting of C/C++ code
table because total memory required would be 1.7GB. onto the CUDA platform. However, using C/C++
Dividing element-wise operations among multiplememory allocation leads to PCI-Express throughput deg-
GPUs is straightforward. We can employ a farmerradation caused by a temporary buffer for DMA introduc-
workers strategy where a farmer (CPU) divides chunks @fg a redundant data movement in host memory. Moreo-
work to do. We can imagine a chunk as several rows gér, only synchronous data transfers can be employed
multiple 3D matrices that are necessary to compute sgyteventing communication-computation overlapping and

eral rows of a temporary result. sharing of host structures by multiple GPU and CPU
Currently, cuFFT does not run over multiple GPUs¢ores.

Fortunately, the 3D FFT can be decomposed into a seriesA pinned memory allocation routine provided by
of 1D FFTs calculated in the x, y and z dimensions andUDA marks an allocated region in host memory as non-
interleaved by matrix transpositions. Considering thisageable. This region is thus permanently presented in
one possible scenario is that the CPU distributes batch@sst memory and cannot be swapped onto disk. This ena-
of 1D FFTs over all 7 GPUs to compute the 1D FFT ibles Direct Memory Access (DMA) to this buffer, pre-
the x dimension. Then a data migration is performed vigenting any redundant data movement and allowing the
CPU main memory or using the newly introduced CUDAyuffer to be shared between multiple CPU cores and
peer-to-peer transfers followed by calculation of 1D FFTgPUSs.
in the y dimension etc. (An alternative strategy would be Zero-copy memory is a special kind of host memory
to use 2D FFTs on each GPU, with a transpose at the aRgt can be directly accessed by a GPU. No GPU memory
of the 2D FFTs.) allocations and explicit data transfers are needed any
As in many other distributed schemes, the overall pefore. Data is streamed from host memory on demand.
formance will be highly limited by memory traffic, and inThis is useful for GPU applications only reading input
this case, also by the PCI-Express bandwidth. We mugita or writing results once. However, this kind of
not forget that we will need to force tens of GBs throughemory allocation is extremelynsuitable for iteration-
the PCI-Express which has a theoretical peak bandwidiased kernels. It is important to note this has an impact on
of 8GB/s. the ability of the CPU to cache this data and thus repeated
In order to gain necessary experience with our Tyagccesses to the same data locations tend to be very slow.
servers with 7-GPUs, we have designed several bengh-possible scenario is that a CPU thread fills an input
marks to verify the key parameters of the servers such @gta structure for a GPU and never touches it again; the
PCI-Express bandwidth, zero-copy memory scheme, a®buU reads it only once using zero-copy memory allow-
peer-to-peer transfers among multiple GPUs. All thesfg a good level of computation and communication over-
operations are going to be utilized in our future ultraggp.
sound code. Figure 4 shows the influence of host memory alloca-
. . tion type on the execution time needed to compute an
5.1 Peak PCI-Express Bandwidth with Respect  glement wise multiplication of 128M elements (312
to CPU Memory Allocation Type. First, three matrices are allocated on the host using a par-
Having a good knowledge about PCI-Express characterigsular allocation type. After that, the matrices are up-
tics, behaviour and performance is a key issue when deaded into device memory (not in the case of zero-copy).
signing and implementing GPGPU applications. As alNow, an element-wise multiplication kernel is run. The
data processed on the GPU (device) has to be transportesult is written into device memory and then transferred
from CPU (host) memory to device memory and the rdéo host memory (not in case of zero-copy). The figure
sults back to the host memory to interpret on the CPWlearly shows the overhead of standard C memory alloca-
PCI-Express can easily become a bottleneck debasing dign routines over the CUDA ones.
acceleration gained using this massively parallel hard- Zero-copy memory seems to be very suitable for our
ware. Considering the peak CPU-host memory bandwidgiurposes. Although, thk-space method is iterative by
is 25GB/s and the peak GPU-device memory bandwidttature, we are limited by the device memory size that
does not allow us to store all global data (13GB) in
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Time to compute an dement-wise multiplication havg to be transferred. The s_mallest chunk of data we can

1.967  Wwith 128M elements possibly upload to the GPU is one row of a 3D matrix,
which for the size of interest represents 3KB. This is ob-
viously too fine-grained a decomposition and we will
have to send hundreds of lines in one PCI-Express trans-
action. This does not pose a problem, because a typical
number of rows to process is in order of hundreds of
thousands. The figure also reveals that device to host
0.274 0.238 transfers are slightly faster than host to device ones.

A surprising variation in the peak bandwidth when
- - communicating with different devices was observed. On
€ malloc Pinned Zero-copy one Tyan server, the first three GPUs are 2GB/s slower
than the other four when transferring data from GPU to
CPU memory. Although there are small oscillations from
multiplications, and transfer the resulting vector back experimental_ run to experimental run, t_he results did not
to the CPU change significantly. We tried to phy5|cally_ shuffl_e the
: GPUs between slots but the results remained virtually

device memory even if we distribute the data over all inchanged. One explanation is that first three GPUs are
GPUs. Instead, we can leave some constant matricescitnnected to the Intel IOH chipset that is also responsible
host memory and stream them to particular GPUs on dier HDDs, LANs, VGA, etc. On the other hand this does
mand. This perfectly suits line no. 6 in Figure 1, see b&ot explain the situation on the second Tyan server where

N

g
o

=
[N

o
©

Time to compute[s]

©
IS

Figure 4: Time necessary to transfer two vectors of
128M elementsto the GPU, perform element-wise

low: GPUs 3, 4, 5 and 6 are significantly slower. Considering
that both motherboards are the same, other peripheries
duxdx = real (ifftn( bsxfun(@inmes should be connected to the same Intel IOH chipset. These

ddx_k_shift_neg, kappa .* fftn(ux_sgx)))):  regults have also been cross validated with well-known

. _ . SHOC benchmark proposed by Danalis at al. (2010).
First, the 3D FFT of the matritx_sgx is calculated

using a distributed version of cuFFT. The result is left i53  Peak PCI-Express Bandwidth under Mul-
the device memory. Now we need to multiply the result tiple Simultaneous Transfers
of the forward FFT by the matrikappa. As we need

. . The second set of benchmarks investigates the PCI-
any element of kappa exactly once, there is no benefit

: : Ig]xpress bandwidth when communicating with multiple
ggﬂlzfe;rgpega:nheitk?r%? ?:St:'xnfgrégf GuPs% lnzséfgi’owéPUs that is essential for work distribution over multiple
y 9 P:pUs. In all instances, pinned memory was used and four

memory. After that, we uploadldx_k_shi ft_neg_ digerent transfer controlling (farmer) patterns considered:
vector into texture memory, because each element is read,” 5 single CPU thread distributes the data over multi-

many tim_es _While_ expanding it to a 3D matrix on thg fly ple devices using synchronous transfer.
and m_ultlply!ng with th_e temporary reSl.JIt of the prévious Multiple CPU threads distribute the data over multi-
operation. Finally, the inverse 3D FFT is started using the ple devices using synchronous transfers. Each de-

data placed in the device memory. vice is served by a private CPU thread.
52 Peak Single PCI-Express Transfer Band- * Asingle CPU thread distributes the data over multi-
. ple devices employing asynchronous transfers.
width « Multiple CPU threads distribute the data over multi-

Having chosen an appropriate memory allocation on the ple devices by asynchronous transfers.
host side, we focused on measuring PCI-Express band-As each pair of GPUs share 16 PCI-Express links via
width between CPU and GPU taking into account differa PEX bridge and different pairs are connected to differ-
ent data block sizes starting at 1KB and finishing aint chipsets with NUMA architecture, we have investi-
65MB. As the CPU has to serve multiple GPUs simultagated communication throughput in these configurations:
neously, it is crucial to know the speed at which the CPU (1) A pair of devices communicating with the host.
could feed the GPUs. (2) Two devices belonging to different pairs com-

As the Tyan servers are special-purpose servers with municating with the host.
a unique architecture using two IOH north bridges and (3) All even devices communicating with the host.
PEX bridges, the peak bandwidth between the host and(4) Two pairs of devices communicating with the host.
single devices was investigated in order to verify the (5) All seven devices communicating with the host.
thl’OUghpUt of different PCI-Express slots in both direc- The experimental measurements shown in Figure 6
tions. demonstrate that a single CPU thread with synchronous

The experimental results are summarized in Figure fransfers cannot saturate the PCI-Express subsystem of
The measurements were repeated 100 times and averagrdTyan servers; the peak bandwidth always freezes at
values were plotted. It can be seen that for small dafige level of a single transfer. On the other hand, all re-
blocks the PCI-Express bandwidth is degraded and reaghaining approaches are comparable, so there is no need
es only a small fraction of the theoretical value of 8GB/&% use multiple CPU threads to feed multiple GPU with
in one direction. In order to utilize the full potential ofdata. We can employ the remaining CPU cores to work
PCI-Express, data blocks with sizes of 500KB and largeh tasks that are not worth processing on a GPU.
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The second observation that can be made reveals the¢ Pattern Host to Device Device to Host
difference between the host to device and the device to 1) 6GBI/s 6.5GB/s
host peak bandwidth. Whereas device to host transfers arg ) 10GB/s 6.8GB/s
limited by the 5.8GB/s, transfers managed by host scale ) 10GB/s 5.2GB/s
up to 10.2GB/s (see Figure 6). We can conclude the de- (4) 10GB/s 5.2/ 6.8GBs
vice to host transfers are limited by the throughput of (5) 10GB/s 5.4GB/s
a single PCI-Express 16 cannel while host to device by ] ] ]
the QP! interconnection. Table 2: Peak ba_ndV\_ndth of mult_lples_multaneous
Table 2 presents the peak bandwidth in different con- transfersin different configurations.

figurations using one CPU thread and asynchronoggvice-host-device transfers that also involve CPU cores
transfers with respect to the numbering above. In all cagr data rearrangement and migration.

es, device to host transfers cannot exploit the potential of
the underlying architecture. In case (4), two different valb  Discussion and Conclusion

ues were observed depending on the location of the paiyis paper outlines our effort to migrate a compute inten-
As we have mentioned before, the first three PCI-Expregge application of ultrasound propagation simulation to
slots are slower than the other four. This leads to the fagt,|,ster computer where each node has seven NVIDIA
that the first two pairs are slower than the other ones. Th& )5 The preliminary results from the CPU implemen-

upper limit for host to device transfers lies around thgyiinns have shown a speed-up of up to 8.4 compared to
10GB/s level possibly limited by the QPI interconnection,o original Matlab implementation. Given the computa-

. tional benefits of using thk-space method compared to
54  Peak Peer-to-Peer Transfers Bandwidth other approaches, this is a significant step towards creat-

One of the new features introduced in CUDA 4.0 ifng an efficient model for large scale ultrasound simula-
a peer-to-peer transfer. This feature enables Fermi basgs.
GPUs to directly access memory of another device via As the architecture of the Tyan 7-GPU server is not
PCI-Express bypassing host memory. Data can be Kgsry common, we have examined a number of its specifi-
motely read, written or copied. As peer-to-peer (P2Rations. We have designed several benchmarks that have
transfers could serve the data exchange phase of distiByealed the behaviour of the PCI-Express subsystem.
uted FFTS, we have investigated the performance of this In order to achieve the h|ghest possib|e performance'
technique and compared the results with user implemeRje have to distribute the work over all seven GPUs. The
ed device-host-device (d-h-d) transfers. CPU implementation of the code has revealed a low
The Fermi GPU cards are only equipped with ongomputation-memory access ratio. The asymptotic time
copy engine, this device cannot act as source and destiggmplexity is onlyO(n) = n log n. From the realistic ex-
tion of a peer-to-peer (p2p) transfer at the same timgeriments we found the CPU time for a single iteration is
Nevertheless, having seven GPUs we can create sevefgbut 4.1s while global data of almost 13GBs has to be
scenarios where multiple devices are performing p2@uched at least once.
transfers simultaneously. Also, we can use synchronous Considering we could rework the code to access any
and asynchronous p2p transfers. element exactly once, and taking into account reachable
Figure 7 shows a comparison of p2p and d-h-d trangpy-GPU bandwidth, a naive GPU based implementa-
fers running on two devices in different pairs, namelyion would spend 2.1s or 1.3s distributing the data over
GPU 0 and GPU 1. We can see that the new p2p te@he or multiple GPUs, respectively. Assuming all com-
nique brings a significant improvement over the d-h-ghunication can be overlapped by computation using zero
transfer where the data has to be downloaded from tbgpy memory and the presence On|y one copy engine on
source device and, after that, uploaded on the destinatigiispu, the realistic speed-up of a naive implementation
device. The situation rapidly changes when performingyer a CPU one would be limited by 1.5 or 3.2 for one or
multiple p2p transfers. The synchronous transfers becomgiltiple GPUs respectively.
a bottleneck and asynchronous ones exploit more band-QOn the other hand, if we accommodated all data in the
width. Figure 8 presents the performance of three simudn-board GPU memory we could reach much higher
taneous pairwise transfers (GPU 1 -> GPU 2, GPU 3 3peed-up. Such an experiment has been carried out using
GPU 4, and GPU 5 -> GPU 6) where each device is eithgivatlab CUDA extension and a single NVIDIA Tesla
source or destination and all sources and destination &eyU with 6 GB of memory and 448 CUDA cores. Using
connected to different PEXSs. a domain size of 256we have reached a speed-up of
A d-h-d transfer in its asynchronous form consists G§pout 8.5 (compared to Matlab code), which is close to
two phases. In the first phase, data packages are dowr CPU C++ implementation. Assuming we can opti-
loaded from all source devices and placed in hogize the GPU implementation in a similar way as in the
memory in asynchronous way. After synchronization thepu case, we may be able to improve on the Matlab
data packages are distributed over destination devic€®DA code significantly.
also in asynchronous way (more transfers at a time). The appropriate data distribution is going to play a key
From the figure, CUDA 4.0 does not seem to be optiple in the application design. One way to reduce the data
mized for multiple simultaneous p2p transfers and useet is to calculate some matrices on the fly, exchanging
managed device-host-device transfers win. The differeng@atia| complexity for time complexity. Another possibil-
is about 800MB/s. Taklng into account this finding, |i]ty is to emp|oy fast real-time Compression and decom-
appears that it is better to implement highly optimized  pression of the data making the chunks smaller to transfer
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through PCI-Express and between GPU on-board and ofreeby, B. E. and Cox, B. T. (2010): k-Wave: MATLAB
chip memory. As many of the matrices are constant, thetoolbox for the simulation and reconstruction of photo-
compression would have to be done only once. As long asacoustic wave fieldsJournal of Biomedical Optics
we know that using asynchronous transfer one CPU corel5(2):021214.

is sufficient to feed all seven GPUs, the remaining coreégeeby, B. E., Tumen, M. and Cox, B. T. (2011): Time

could execute other tasks that are not worth migrating topomain Simulation of Harmonic Ultrasound Images

GPUs. ) and Beam Patternsin 3D using the k-space Pseudospec-
Data migration between GPUs will play another key tr3] Method.Medical Image Computing and Computer-

role. Provided that we also need to perform data migra- assisted Interventiqr6891(1): 369-376, Springer, Hei-
tion as a part of distributed FFT, we have revealed thatge|perg.

the present CUDA 4.0 is not optimized for multiple Slm_Tsﬁbei M., Mast T. D. and Waag, R. C. (2002): A k-space

ultaneous peer-to-peer transfers bypassing the host . 't couoled first-order acoustic propagation
memory and thus, this communication pattern will have . P X X propage
equations.Journal of Acoustical Society of America

to be implemented as a composition of common device t0111(1):53—63.

host and host to device transfers.
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Abstract

The optimization of Road Space Allocation (RSA) from a
network perspective is computationally challenging. An
analogue to the Network Design Problem (NDP), RSA
can be classified NP-hard. In large-scale networks when
the number of alternatives increases exponentially, there
is a need for an efficient method to reduce the number of
alternatives while keeping computer execution time of the
analysis at practical levels. A heuristic based on genetic
algorithms (GAs) is proposed to efficiently select Transit
Priority Alternatives (TPAs). The proposed framework
allows for a TPA to be analysed by a commercial package
that is a significant provision for large-scale networks in
practice. We explore alterative parallel processing
techniques to reduce execution time: multithreading and
High-Throughput Computing (HTC). Speedup and
efficiency are compared with that of traditional sequential
GA, and we discuss both advantages and limitations. We
find that multithreading is better when using the same
number of processors, but HTC provides expandability.

Keywords: transport modelling, genetic algorithm, high-
throughput computing, high-performance computing

1 Introduction

With ever-increasing travel demands, traffic congestion
has become a challenge for many cities around the world.
Construction of new roads or mass transit is not always
possible, and reallocation of road space between transit
vehicles and cars has emerged as a solution. Mesbah et al.
(2011a, 2011b) proposed a bi-level optimization program
for road space allocation (RSA). The objective was to
identify the roads on which a bus lane should be
introduced. The authors showed that this Mixed Integer
Non-Linear (MINL) formulation is an NP-hard problem
and is therefore computationally challenging. For large-
scale networks, a heuristic approach is adapted to find
reasonable solutions. This problem can be classified
under the umbrella of Network Design Problems (NDP)
that has a wide range of applications in Engineering. The
network can be for roads, communication, power, water,
or any network with a set of connected nodes and links.
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The goal is to find the optimal combination of links to be
added/modified to minimize a certain objective function.

The RSA problem is NP-hard, so the proposed
optimization methods to large-scale problems requires
extensive computational power, feasible with advanced
techniques such as High-Performance Computing (HPC)
(Strohmaier et al., 2005). While the term was applied
broadly at first (Dongarra et al., 2005), HPC today
typically applies to a tightly coupled system of many
shared memory processors, particularly important when
jobs must communicate among themselves. An
alternative is High-Throughput Computing (HTC), aimed
at providing large amounts of processing capacity taken
together over a long period of time (Thain et al, 2005).
Many Task Computing bridges the gap between HPC and
HTC (Raicu et al., 2010), whether or not there are many
long duration tasks, and regardless of the number of
processors per computer. The common goal is to support
simultaneous computations, where a long process is
divided into small tasks, which are distributed across a set
of interconnected processors to execute separately,
simultaneously. Results are then gathered and combined.
While HPC taken broadly may apply, the work described
in this paper focuses on the HTC approach to distinguish
the use of several independent computers on a network,
as against our previous work wusing a single
multiprocessor (Mesbah et al., 2011a). We demonstrate
the application of HTC to solve a large-scale optimization
problem in Transportation Engineering.

The proposed RSA is formulated as bi-level
optimization. The upper level formulates an objective
function and a set of constraints from the system
managers’ perspective. The lower level consists of user
behavioural models, which requires a complex
optimization program on its own. A number of
commercial packages are available in order to analyse the
user behaviour at the lower level, one of which is
employed in this research. Many transport networks are
already modelled in commercial packages, so there are
benefits to sticking with them. Transport authorities have
invested heavily in developing these models and already
have confidence in their performance. Moreover, many
transport planners are already trained to work with them.
However, there are certain challenges in dealing with
commercial applications such as we have had to do. We
use a package called Visum. It requires Microsoft
Windows, and uses a dongle for license management. The
installer is more than 700MB, and requires interactive
installation. While it can use multithreading on a machine
with many processors (cores) and lots of memory, the
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cost of such a machine can be prohibitive, and there are
physical upper limits on cores and memory on any given
machine. On the other hand, like other packages, it is not
designed for HTC environments. Apart from a cluster,
HTC can also be through a computational grid. This is an
extensible aggregation of computational resources, such
as clusters, belonging to independent organizations
(Foster et al., 2001). Grids traditionally consist of Linux
resources, while many engineering applications run on
the Windows platform. Grids commonly support non-
commercial applications with standard libraries provided
almost out of the box, so a distributed execution of such
applications is normally  straightforward. = RSA
computations speed up if workload is distributed across
such environments, but the nature of grids conflicts with
the conditions for commercially licensed software.
Licenses are typically limited to individual organizations
while grids span across a virtual organization (VO) of
several member organizations that remain autonomous.
One cannot install or execute on just any resource, and
such resources are normally not uniform anyway. We
therefore have these three interesting challenges:

1.  We use Visum, which requires Windows.

2. This is a commercial package and the source code

is not accessible for reprogramming.

3. It must be pre-installed on each compute node

with a large installer of over 700MB.

The proposed method can apply to many engineering
applications where an iterative procedure is carried out
using a commercial software package. A point we wish to
make is that, despite the challenges, HTC can make many
engineering applications scalable for large problems,
even where the long runtime used to be a limiting factor.

The next section starts with a limited literature review
on transit priority and continues with the bi-level
optimization formulation. Then a solution algorithm is
presented, based on a genetic algorithm (GA). It is
implemented for (1) a single CPU on one machine, (2)
multiple CPUs on one machine, and (3) multiple CPUs on
multiple machines. Details are discussed subsequently, as
is an example. In the last section, the results are discussed
and the major findings are summarized.

2 Research Background

2.1 Road Space Allocation

The introduction of exclusive lanes to transit vehicles is
one way to prioritize transit, an approach known as Road
Space Allocation (RSA) (Black 1991, Currie et al., 2004).
The literature on RSA can be classified into evaluation
studies and optimization studies (see Figure 1).

Some evaluation studies focus on the local level, i.e. a
link or corridor, e.g., Black (1991) presented a model on
an urban corridor, evaluating several predefined scenarios
based on total user travel time. Jepson and Ferreira (2000)
assessed different road space priority treatments such as
bus lane and setbacks based on delays in two consecutive
links. Currie et al. (2007) considered a comprehensive list
of impacts of RSA including travel time, travel time
variability, initial and maintenance costs in a local
priority project.
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Figure 1. Classification of RSA studies.

Having compared performance measures in the literature,
they proposed an approach to evaluate transit priority
projects. Using the concept of intermittent bus lanes
(Viegas 1996, Viegas and Lu 2004), Eichler and Daganzo
(2006) suggested a new analysis method based on
kinematic wave theory, which can be applied to a long
arterial. At the network level, Bly et al. (1978) explored
exclusive bus lanes to a link in different conditions, and
the impact on the network was assessed using sensitivity
analysis. Waterson et al. (2003) presented a macro-
simulation approach which evaluates a given priority
scenario at the network level. This approach considered
rerouting, retiming, modal change, and trip suppression.
Liu et al. (2006) proposed a similar approach with micro-
simulation. Stirzaker and Dia (2007) applied micro-
simulation to evaluate a major bus lane project in
Brisbane. These studies evaluated a limited number of
alternatives that do not necessarily include the best
possible RSA over the network, and do not propose an
optimization method to find the best set of bus lanes.

A number of studies have approached the problem
using combined RSA optimization in Transit Network
Design Problem (TNDP). Duff-Riddle and Bester (2005)
applied a trip focusing process to design transit routes.
The iterative method was able to put transit routes on the
shortest travel time and shortest distance. The issue of
express buses was also included with minute changes in
the model. Chen et al. (2007) presented a design method
in the form of a mathematical programming model.
However, similar to Duff-Riddle and Bester (2005), the
aim of their method was to design a new bus route.

Having first explored optimal TPAs in an existing
transit network (Mesbah et al., 2008) with a general
framework to find the optimal TPA at the network level,
we have since then introduced a decomposition approach
and a GA approach (Mesbah et al., 2011a, 2011b). This
paper extends our work by employing HTC to reduce the
runtime for large-scale transit networks.

2.2 High-Throughput Computing

HPC is a broad umbrella for a number of different
environments (Strohmaier et al., 2005), but when
performance is measured for many tasks across long
periods of time, we may speak of high-throughput
computing (HTC) (Thain et al., 2005). A neutral term
bridging HPC and HTC is many task computing (MTC),
with little distinction about the size of tasks (Raicu et al.,
2010). Commodity computers can also be organized on
high-speed networks. They are relatively low expenditure
resources, compared to supercomputing facilities.
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Beowulf-class clusters were probably the first (Sterling et
al., 1998) of such environments, providing a queuing
system for submitting and managing computational jobs.
Another environment is the Sun Grid Engine (Gentzsch,
2001), and there are others, which uniformly share a
preference for the UNIX or Linux environment.

Condor (Thain et al., 2005) uses computers that are
normally used for other purposes, e.g., a desktop, and
supports Windows nodes. Condor was originally dubbed
“hunter for idle workstations” (Litzkow et al., 1988), i.e.,
when the user leaves the console for extended periods,
e.g., after hours. This is the case for Monash University’s
SPONGE resource, with up to 1000 cores running on
computer laboratories across campuses during lean
periods and after hours. While most nodes have two cores
with modest memory, SPONGE collectively provides a
considerable HTC resource.

3 Transit Priority Optimization

The RSA problem can be modelled as a ‘Stackelberg
competition’ in which the system manager is the leader
and transport users are followers (Simaan 1977, Bard and
Falks 1982, Yang and Bell 1998, Liu et al., 2008). The
system manager chooses a TPA, and in the subsequent
system, users would choose their mode of travel and a
path in order to maximize their own benefit.

The above design approach is formulated in this paper
as a bi-level optimization program (Shimizu et al., 1997,
Bard, 1998) (see Figure 2). At the upper level are the
objective function and constraints from the system
manager perspective. The upper level determines the TPA
or the links on which priority would be provided for
transit vehicles (decision variables). The aim of the upper
level is to achieve System Optimal (SO) (Sheffi, 1984),
thus the objective function includes a combination of
network performance measures. The corresponding
constraints are included in the upper level constraints.

The upper level can be formulated as follows:

X (M
MinZ =a'y xit;(x) + ﬂ(Zxﬁtf(x) + Zwb) +1y ==L Imp +r]2fﬂ s, Imp’
;4 € = ;40“7 Fs
s.t.,
2 Exc,¢, < Bdg )
a€d,
¢, =0orl Va€A4, ©)

Variable definitions can be found in the annotation
section. Note that f, =thp§p,a, where &,, is an
P

element of the bus line-link incident matrix with &, ,=1 if
bus line p travels on link a and &§,,=0 otherwise. The in-

vehicle travel time is ”(x) .

The first two terms in the objective function are the
total travel time by car and bus. The next two terms
represent the various other impacts of these two modes
including emission, noise, accident, and reliability of
travel time. The factors a, B, v, and 1 not only convert the
units, but also enable the formulation to attribute different
relative weights to the components of the objective
function (Mesbah et al., 2010). Equation (2) states that

the cost of the implementation should be less than or
equal to the budget. The decision variable is ¢, by which
the system managers try to minimize their objective
function (2). If ¢,=1, then a bus lane is introduced on link
a and buses can speed up to free flow speed, while the

capacity of the link for cars is reduced from Cpcg, to
Cpcl“a. If ¢,=0, then buses will travel in the mixed traffic

on a link with a capacity of Cpcj,. They are users who

determine the link flows (x). Link flows are related to the
decision variables by the lower level models.

o
d Start » Choose a TPA

v
Lower Level

(Transport Modelling)

v
o r Upper Level

Choose
another
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A A v

Calculate the Upper level Objective
Function, Eq (1)

L Is the convergence »ﬂ End
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Figure 2. Outline of the proposed methodology.

At the lower level, it is the users’ turn to maximize
their benefit. Based on the decision variables determined
at the upper level, users make their trips. The traditional
four-step method (Ortuzar and Willumsen, 2001) is
adapted in this paper for transport modelling. It is
assumed that the travel demand and the distribution of
demand are not affected by the location of bus lanes
(these conditions can be relaxed in future studies).
Therefore, the origin-destination matrix remains constant.
The lower level consists of three models: (1) modal split
model, (2) traffic assignment model (car demand), and (3)
transit assignment model (bus demand). Once the demand
is determined, users choose their travel mode. Then, the
car demand segment of the total demand is assigned to
the network. The last step at the lower level formulation
is the assignment of transit demand. Without loss of
generality, in this study, a Logit model is used for the
mode choice (Papacostas and Prevedouros, 1993), a User
Equilibrium (UE) model is adapted for traffic assignment
(Sheffi, 1984), and frequency-based assignment is applied
to transit assignment (PTV AG, 2009). While these
models are used for mode choice and assignment steps,
the proposed HTC framework can be implemented by
many other transport planning models. The lower level
calculations are performed in Visum (PTV AG, 2009). As
previously stated, many cities already use commercial
packages. The proposed framework incorporates them
instead of having to convert the models to other formats.

The bi-level structure, with a linear objective function
and constraints, is NP-hard (Ben-Ayed and Blair, 1990).
To complicate things further, the upper level objective
function and the UE traffic assignment are non-linear. We
employ a GA to find an approximate solution. The output
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of the model is the combination of transit exclusive lanes
which minimizes the proposed objective function.

4  The Genetic Algorithm Solution

A Genetic Algorithm (GA) is an iterative search method
in which new answers are produced by combining two
predecessor answers (Russell and Norvig 2003). Inspired
from evolutionary theory in nature, the GA starts with a
set of answers referred to as the population. Each
individual answer in the population, a chromosome, is
assigned a survival probability, based on the value of the
objective function. The algorithm selects individual
chromosomes based on this probability to breed the next
generation of the population. GA uses crossover and
mutation operators to breed the next generation, which
replaces the predecessor generation. The algorithm is
repeated with the new generation until a convergence
criterion is satisfied. A number of studies applied GA to
transit networks. Two recent examples are a transit
network design problem considering variable demand
(Fan and Machemehl, 2006) and minimization of transfer
time by shifting time tables (Cevallos and Zhao, 2006).

In applying GA to the RSA problem, we define a gene
to represent the binary variable ¢,, and a chromosome is
the vector of genes (¢) which represents a TPA. A
chromosome (TPA) contains a combination of links on
which an exclusive lane may be introduced (set A,).
Therefore, the length of the chromosome is equal to the
size of A,. The algorithm starts with an initial population
with n chromosomes. The chromosomes of the initial
population are produced randomly. When an initial
chromosome population is produced, they are evaluated
using the lower level models, i.e. the transport planning
models of mode split, traffic assignment, and transit
assignment. This evaluation is the time consuming
component in the GA. Using the flow and travel time
from the lower level, the values of the upper level
objective function (Z) for all chromosomes are
determined. Once the evaluated, the chromosomes are
ranked from the lowest Z value to the highest. The fitness
function, which determines the probability of a
chromosome selection for breeding, is assumed to be an
arithmetic series with the highest probability assigned to
the top chromosome. The probability of the top ranked

chromosome is assumed to be P()= a, + 1/n where a,

is a constant and n is the population size. Subsequently,
other terms can be calculated using P(i > 1) = P(1) — y xi

where ¥ is the reduction factor so that E"I—l P(i)=1.
E;P(i) =P(1)+ E;(P(l) —yxi)=1

e nx P(1)-1 _nxa,

n-1 n-1

A one point crossover is used in all experiments. The
mutation involves flipping the value of a gene from 0 to 1
or vice versa. When a chromosome is selected for
mutation, one gene from each set of 5 to 8 genes are
flipped. That is about 12 to 20 flips for a chromosome
100 genes long. A common convergence criterion
adapted here is to terminate if the number of iterations
exceeds a predetermined value (maxg) or if the best
objective function value found remains constant for a

56

number of generations (m). The process above is
summarized in this algorithm:

0. Initialization: Set iteration number (n) to 1, best
solution value or upper bound (UBD) to . Set max
generations (maxg), and number of generations
with same UBD, m.

1. Generate initial population.

2. Evaluation: Calculate the objective function value
for all chromosomes (or TPAs) in the population,
using the transport planning models at the lower
level.

3. Fitness: Determine survival probabilities (fitness)
and update UBD.

4. Convergence: If n>maxg or UBD is constant for m
generations, then stop.

5. Reproduction: Breed a new generation by
performing selection, crossover, and mutation. Go
to Step 2.

5 Implementation of the Genetic Algorithm

The most computationally intensive part of the GA is
Step 2 where TPAs are evaluated. One evaluation
involves running the four-step modelling for a network,
which may take as long as a few hours on a typical
desktop. Furthermore, the GA requires a large number of
TPA evaluations, depending on the number of decision
variables and attributes, e.g., probabilities of crossover
and mutation. At this point, we decompose the processes
in order to execute them in distributed fashion. This
approach significantly reduces execution time.

The steps of Genetic algorithm in terms of dependency
of processes are of two types. First is the evaluation step
(Step 2). The evaluation of an individual chromosome (or
TPA) is independent of other chromosomes (or TPAs) in
a generation, which gives us a number of processes that
can be executed independently. The second part of the
GA involves fitness, convergence, and reproduction
(Steps 3 to 5). These steps integrate the individual
evaluations of Step 2 where the processes are
interdependent. On the basis of the dependency attribute,
two variants of the GA are proposed in the literature
(Haupt et al., 2004, Goldberg, 2002, Canta-Paz, 2000):
serial (SGA) and parallel (PGA). Figure 3 illustrates
these two variants. In SGA, all processes are carried out
in a sequence, which means that, in Step 2, evaluation of
a chromosome is completed before the evaluation of
another chromosome is started. Then Steps 3, 4, and 5 are
completed to produce another generation and then we
cycle back to Step 2 (Figure 3 (a)). However, in PGA,
evaluations are performed simultaneously. Therefore,
Step 2 is executed in parallel, which is then followed by
Steps 3, 4, and 5 in a sequence (see Figure 3(b)). SGA is
simpler to implement, and details are explained in the
next section. For PGA, we use two techniques of
implementation: multithreading with multiple cores on
one machine or HTC over several machines in a network.

5.1 Parallel GA - Multithreading (MT)

An operating system (OS) creates threads to run
software. To run multiple applications simultaneously,
multiple threads can be processed at a time, i.e.,
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multithreading, if the machine supports multiple cores
(Akhter and Roberts 2006, Evjen, 2004). To implement
PGA by multithreading, the architecture of Figure 3(b) is
used. The number of threads is selected equal to the
number of processing cores on a machine (say p) plus a
main thread. The main thread is reserved to control the
flow of the GA from the start to the end. The main thread
performs the fitness, convergence, and reproduction
steps. The remaining p threads are used to execute TPA
evaluations (objective function). When a generation is
produced (see Figure 3(b)), n TPAs are queued for
evaluation. The first p jobs in the queue are assigned p
available threads. Once these p TPAs are evaluated, the
next p TPAs are assigned. The next generation is
produced when all TPAs are evaluated.

The speedup achieved depends on the number of cores
on a machine and the efficiency of the OS in supporting
multithreading. We implemented multithreading in
Windows since the TPAs are evaluated by Visum, which
requires Windows. The latter is commonly criticized for
its performance, but there will always be cases where
performance declines when the number of threads
exceeds the number of cores (Akhter and Roberts, 2006),
regardless of the OS. In that case, the OS must time-share
the limited cores among so many executing threads, and
we incur “time slicing” overhead. Moreover, the
maximum number of cores that can go into one machine
is subject to space and temperature constraints. There can
also be a limit to gains due to memory latency and cache
conflicts (Athanasaki et al., 2008). There is thus a cap on
the speedup in multithreading, and the cost of purchasing
many cores and supporting hardware can be high.

However, with TPA evaluations performed with
commercial software, multithreading saves considerably
on license costs for some packages. For example, one

I Production of Generation 0 'ﬂ]

@ ®)

TPA 1 Evaluation *

Visum license is sufficient for one multithreading
execution of the entire model on one machine, but
performance will be constrained to what that machine can
deliver. The next section discusses our HTC approach to
avoid some of the limits of multithreading, although it
requires multiple licenses. Our implementations are in
Visual Basic .NET environment in this study.

A distributed computing approach such as HTC
schedules TPA evaluations to several nodes on a network,
each node having its own set of cores and local memory.
Therefore, there is less of a limit on the number of tasks
that can be executed simultaneously, as the number of
computers in a network is not so tightly bounded. The
trade-off is the complexity of distributing the task to
available computers in the network, manage the queue,
data transfers, provide an inter-process message-passing
system in some cases, then collect and integrate the
results.

5.2 Parallel GA -HTC with Condor

In Figure 3(b), p out of n evaluations in a population can
be run in parallel. The ideal case is when p is equal to n,
which means all n evaluations are done at the same time.
However, as mentioned earlier, the number of threads
supported on a given machine is limited. There are a
number of existing systems for these, such as Condor. It
was originally developed to use computers during idle
periods (Thain et al., 2005), but is now one of the most
flexible and powerful HTC platforms. Computers
participate within a Condor pool. Owners can configure
nodes to donate only some of their time. For example, as
in the case of Monash University, the SPONGE pool
consists of nodes that run from computer labs.
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Figure 3. Sequence of components in serial genetic algorithm and parallel genetic algorithm.
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They are only used when no one is currently using the
desktop. These lab nodes are all running Windows XP or
Windows 7, which works for us since our TPA
evaluations are performed by Windows-based software.
While issues emerging in adopting a general tool
(HPC/HTC) tool to the RSA problem are tool-specific,
important lessons can be learned. A license server
restricts simultaneous runs of Visum with a hardware.
The license server can run anywhere on the network, and
need not be in the Condor pool. If x computers are in the
network and y licenses are available, the maximum
number of parallel TPA evaluations is p=min(x, y).

The parallel scheduling used in this HTC approach is
to queue n TPA evaluations (the jobs) when a generation
is produced (see Figure 3(b)). The jobs are assigned to the
first set of available nodes. For instance, if p<n nodes are
available, p jobs are assigned and the remaining n-p will
wait in the queue. As soon as a job finishes on one node,
the next queued job is assigned to that node. The next
generation is produced when all TPAs are evaluated.

To evaluate the TPAs, a user submits jobs from the
submission machine. For each job, Condor will copy
input files and the objective evaluation program to the
worker node and execute the program. Once completed,
output data are copied back will be downloaded back to
the submission machine. Some applications can be
launched as a self-contained package, but Visum is not in
that category. It requires interactive installation, with a
700-MB installer, which would require a considerable
amount of time to copy to an execution node, even on a
fast network. The solution was pre-installation of Visum
on a subset of Sponge, where the owners were willing.
Condor’s scheduler must be told, upon submission, to
send jobs only to nodes with Visum installed. This can be
effected with Condor’s ClassAd mechanism using custom
ClassAd attributes, but in our implementation, we instead
identified specific Visum-installed machines by name.

Windows differentiates between the local or remote
launch of an application. Windows also consults the user
permissions to run an application either locally or
remotely. A COM server was configured to grant suitable
permissions to launch Condor jobs from a remote user.

6  Numerical Example

Three GA implementations (SGA, PGA-MT, and PGA-
HTC) are applied to an example transit network, the
layout of which is in Figure 4. This grid network consists
of 86 nodes and 306 links. All circumferential nodes
together with Centroid 22, 26, 43, 45, 62, and 66 are
origin and destination nodes. A ‘flat’ demand matrix of
30 persons/hr is traveling from all origins to all
destinations. The total demand for all the 36 origins and
destinations is 37,800 persons/hr. There are 10 bus lines
covering transit demand in the network (see Figure 4).
The frequency of service for the bus lines is 10 minutes.
Parameters used are extracted from those calibrated for
the Melbourne Integrated Transport Model (MITM), a
four-step model used by the Victorian State Government
for planning in Melbourne (Department of Infrastructure,
2004). Vertical and horizontal links are 400m long with
two lanes in each direction and a speed limit of 36 km/hr.
It is assumed that if an exclusive lane is introduced on a
link on one direction, it may not necessarily be introduced
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in the opposite direction. There are 120 links (uni-
directional) in the network on which an exclusive lane
can be introduced. These links are highlighted in black
solid line. The following Akcelik cost functions (Ortuzar
and Willumsen, 2001) are assumed for links with an
exclusive lane (Equation (4)) and without (Equation (5)).

¢ : “4)
; 3600a ., x, X,
tl.a = t(].a t [( ¢ _1) t ( . 1)

4 Cap La Cap La

c
xa

2+%(
ad Capy,

)]J]I,b = t[).a

3600a

0,a = 0,a = 0,a + 4 (

4 ! c ! C ! 5
Y +Jxa+xa_12+8b o O

Cap;,, Cap;, ad Cap,,
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speed, a is length of observation period, b is a

constant, d is lane capacity, and other terms are as

in the Section 8. Each link has 2 lanes, and:
a=1hr,b=1.4,d =800veh/hr
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Mode share is determined using a Logit model.
Traffic User Equilibrium (UE) and a frequency-
based assignment is employed to model traffic and
transit assignments, respectively. All these lower
level transport models are implemented using
Visum (PTV AG, 2009). The upper level objective
function includes total travel time and total vehicle
distance. The absolute value of the objective
function can therefore be very large. A constant
value is subtracted from the objective function value
for all evaluations. Hence, the objective function
value is relative. The weighting factors of the
objective function are assumed to be 0.01.
Regarding constraints the budget is assumed to
allow for all candidate links for the provision of bus
priority. The GA includes many parameters to tune.
We suggest a particular set of values as a guideline
in this example. It was assumed that population
size, crossover probability (cp), and mutation
probability (mp) are 40, 0.98, 0.01, respectively.
The example demonstrates the HTC speedup
compared to the serial approach. Although selection
of the GA parameters may vary the absolute value
of the execution time, the time differences on a
relative basis are useful indicators to highlight the
efficiency of the HTC approach. Table 1 describes
seven computers we used in terms of the number of
CPUs, versions of Windows, and of Visum. It
demonstrates HTC incorporating diverse types of
computers and software. Note that some processors
can support two simultaneous threads per core. The
first machine listed has four cores but can support
eight threads, and perform up to eight TPA
evaluations at a time. If all computers were
allocated, 32 evaluations can be carried out
simultaneously, requiring 32 licenses. The last
column in Table 1 is the time spent evaluating one
TPA on each machine. Machine 1 took the least
time at 65 seconds, and Machine 7 was the slowest
at 226 seconds. SGA, PGA by multithreading (MT),
and PGA by HTC are explored.
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Figure 4. Example network with link numbers, origin destination nodes in boxes, and bus lines in parenthesis

Machine | CPU Cores | Threads | Windows | Visum | Evaluation
Time (s)

1 Intel Core 7|4 8 7 64-bit | 11.03 | 65
CPU 860 @ 2.8 64-bit
GHz

2 Intel Core 7|4 8 7 64-bit [ 11.03 | 147
CPU Q820 @ 64-bit
1.73 GHz

3 Intel Core 2 Quad | 4 4 7 64-bit [ 11.03 | 101
CPU Q6600 @ 64-bit
2.4 GHz

4 Intel Core 2 Quad | 4 4 XP 64-|11.01 [122
CPU Q6600 @ bit 32-bit
2.4 GHz

5 Intel Core 2 Quad | 4 4 XP 64-|11.01 [121
CPU Q6600 @ bit 32-bit
2.4 GHz

6 Intel Core 2 Duo | 2 2 XP 64-|11.01 |88
CPU EB500 @ bit 32-bit
3.16 GHz

7 Intel Pentium 4|2 2 XP 32-|11.01 [226
CPU @ 3.2 GHz bit 32-bit

Table 1. Computers used in the experiments.

The base experiment (datum) for the MT approach is
performed on Machine 4 with four threads, and for the
HTC approach on Machines 1, 2, 3, and 6, with a total of
22 threads. The approach taken does not affect either the
number of evaluations or the rate of improvement in the
objective function. It does, however, affect the evaluation
time. The minimum objective function value found in a
run with 400 generations was -4.757.

The execution time of SGA is prohibitively long, being
sequential. The number of generations was not carried
past 300. All our four runs evaluated about 1700 TPAs
each by the 50™ generation. Although these runs do not
follow exactly the same path in finding minimum, the
trend shows that the value improves gradually at each
successive evaluation. Figure 5 demonstrates the descent
towards the minimum of the objective function value for
two MT and two HTC runs. For comparison purposes, the
SGA runs are also graphed. All approaches take the same
downward trend to the minimum, but the implementation
of the evaluation step results in different execution times.
Three sets of experiments were organized with a
population size of 40, crossover probability (cp) of 0.98,
and mutation probabilities (mp) of 0.005, 0.01, and 0.02.
The change in mp can change the number of evaluated
TPAs. Figure 5 shows the quickest descent to the
minimum of about 7.0 for HTC-1 and HTC-2 at about
100,000 seconds, with up to 32 simultaneous threads
possible. MT-1 and MT-2 are not far behind at about
135,000 and 150,000 seconds, respectively, also to
descend to a minimum of about 7.0. SGA runs went for
much longer. For example, to reach a value of 30, SGA-3
takes about 170,000 seconds (two days) while HTC needs
only 2,000 seconds. SGA-4 with 300 generations
exceeded 5 days!
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Figure 5. TPA evaluations in different modes.

Three measures were used in this study: (1) average time
per evaluation (ATE), (2) speedup, which is the ratio of
ATE in one run to the ATE of one SGA run, and (3)
efficiency, which is the ratio of the speedup to the
number of available threads. The speedup and efficiency
of SGA runs are 1. Table 2 shows that ATE does not
change significantly with mp. The number of cores are
more significant, so the ATE for SGA, MT, and HTC
runs are approximately 140, 40, and 14 seconds,
respectively, where the number of cores are 1, 4 and 10,
respectively. The efficiency measure demonstrates that in
return for adding each thread in the MT approach, the
execution time has improved by 80-90%. However, the
efficiency in the HTC approach was just above 50% for
the addition of each thread. There is considerable
overhead incurred with distribution and queuing in HTC.
Table 3 presents the effects of the number of available
threads. Experiment E228 has the lowest ATE at 11.7
seconds. There are some important results in Table 3. The
ATE did not improve when the number of threads went
from 22 to 26. Experiment logs reveal that about 1650
TPA evaluations are performed in each run, to an average
of 33 evaluations per generation. Nevertheless, this is not
uniformly distributed. The TPA evaluations are recorded
to prevent evaluating a TPA twice. Therefore, while the
average number of evaluations per generation is 33, the
first generations evaluate close to 40 (which is the
population size) evaluations, while the last generations
evaluate just over 20 TPAs. When close to 40 TPAs are
being evaluated, both experiments E228 and E230 may
allocate two or less evaluations to a thread. This means
about two evaluations run in sequence. Similarly, when
just above 20 TPAs are being evaluated, both E228 and
E230 have enough threads to run all evaluations
simultaneously. Therefore, an increase of four threads
does not improve execution time. Accordingly, the ATE
in experiment E231 should be similar to E228 and E230,
but it increases instead. We added a very slow Machine 7
to the pool. In the time it takes for it to evaluate one TPA,
other machines can evaluate between two to four.
Machine 7 holds up the other available threads, extending
the evaluation time of each generation.

60

7  Conclusions and Future Work

We presented a solution to Road Space Allocation using
serial GA, parallel GA with multithreading, and parallel
GA with HTC. The optimum was found regardless of the
GA variant, but performance varied. PGA-MT with four
threads reduced execution time by 3.2 to 3.7 times
compared to SGA, and PGA-HTC with 18 threads by 9.3
to 9.8 times. MT is more efficient, but challenging to use
for large-scale, realistic networks since the number of
threads on a computer is generally constrained. In
contrast, there is practically no limit in the HTC approach
via incremental expansion.

A novel outcome is the successful implementation of
HTC with commercial software on Windows. However,
the overhead of pre-installed commercial software like
Visum cannot be taken for granted. There is considerable
benefit in grid computing, but it is not so accommodating
to commercial packages. A logical follow-up is to explore
cloud computing (Foster et al., 2008) with standard or
custom settings and applications on the cloud resources.
The framework is generic enough to apply to the entire
family of Network Design Problems (NDPs). Applying
the framework to NDP problems in large-scale networks
can be a challenge. Moreover, substitution and
comparison of other heuristic methods with the GA could
be another area of future studies.

8 Notations

A : Set of all links in the network, 4=4, U4,

A, : Set of links in the network where provision of
priority is impossible,

A,: Set of links where the provision of priority
(introducing exclusive lane) is possible,

B : Set of links with a bus line on them, walking links,
and transfer links,

L : Set of bus lines,

[, : Sum of frequency of service for bus lines on link a ,

S, : Frequency of service for bus line p,

l,: Length of link a,

n : GA Population size

S, : Bus service time on link @ which is equal to running
time plus duel time at stops,

c,b
ZLO—],a

(b ), which is a function of flow, with no exclusive lane
(0), with exclusive lane (1)

(x): Travel time on link a by mode car (c) or bus

x;’b : Passenger flow on link a by car (¢ ) or bus (b ),

w” : Waiting time and transfer time at stops.

Bdg : Available budget,
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Number of Average time
Experiment Evaluations on Execution per Number Number of Speed
mp Code Approach Generation 50 Time (sec) evaluation of Cores Threads up Efficiency
0.005 E218 SGA 1649 240618 145.9 1 1 1 1
0.005 E220 MT 1513 59865 39.6 4 4 3.687 0.922
0.005 E219 HTC 1454 21607 14.9 10 18 9.821 0.546
0.01 E210 SGA 1680 241475 143.7 1 1 1 1
0.01 E223 MT 1543 66480 43.1 4 4 3335 0.834
0.01 E227 HTC 1626 24918 153 10 18 9.378 0.521
0.02 E215 SGA 1721 231197 134.3 1 1 1 1
0.02 E224 MT 1714 72237 42.1 4 4 3.187 0.797
0.02 E214 HTC 1683 24204 14.4 10 18 9.343 0.519
Table 2. Comparison of the speedup using MT and HTC approaches.
~ w [5) — . 101 3
g - v % £g B 5 = 2; Bard, J: F. and Falks, J. E‘. (1982): Explicit solution to the
£E8 °8% ©°% g £ E9 2 S 8 multi-level programming problem. Computers and
88 S8 S E £ 285 s 8 m 8 5 .
&U zZO Zg g 2 &< z & i Operations Research, 9:77-100.
4| = @S m M . .
Ben-Ayed, O. and Blair, C. E. (1990): Computational
E210 1 1 4 1680 241475 1437 1 1 difficulties of bilevel linear programming. Operations
E225 6 10 2,6 1724 37296 216  6.643  0.664 Research, 38(3):556-560.
E226 10 14 2,4,6 1481 28013 18.9 7.597 0.543 .
E227 10 18 1,2,6 1626 24918 153 9378  0.521 Black, J. A. (1991): Urban arterial road demand
E228 16 22 1,2,4,6 1659 19335 117 12331  0.560 management - environment and energy, with particular
E2%0 2026 12,456 1614 19053 1L8 12173 0468 reference to public transport priority. Road Demand
E231 22 28 1.2.45.6.7 1645 26235 15.9 9.011 0.322

Table 3. Comparison of HTC speedup, varying cores.

c,b

Cpcgly .- Capacity of link a for mode car (¢ ) or bus (b

) with no exclusive lane (0), with exclusive lane (1)

Exc,: Cost of implementing an exclusive lane on link a ,

Imp“": Aggregate weight of operation costs of a car (¢)

or bus (b ) to the community including: emissions, noise,
accident, and reliability impacts.

Occ‘: Average occupancy rate for the car mode,

a,p,7,n + Weighting factors to convert the units and

adjust the relative importance of each impact in the
objective function, &, 8,7,7 =0,

@, : Equals to 1 if there is an exclusive lane on link a , 0

otherwise
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