
Conferences in Research and Practice in

Information Technology

Volume 123

Computing Education 2012

Australian Computer Science Communications, Volume 34, Number 2

Client: Computing Research & Education Project: Identity
Job #: COR09100  Date: November 09





Computing Education 2012

Proceedings of the
Fourteenth Australasian Computing Education Conference
(ACE2012), Melbourne, Australia,
31 January – 3 February 2012

Michael de Raadt and Angela Carbone, Eds.

Volume 123 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii



Computing Education 2012. Proceedings of the Fourteenth Australasian Computing Education Conference
(ACE2012), Melbourne, Australia, 31 January – 3 February 2012

Conferences in Research and Practice in Information Technology, Volume 123.

Copyright c©2012, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Michael de Raadt
Moodle Pty Ltd
1/224 Lord St
Perth, WA, 6000
Australia
Email: michaeld@moodle.com[.07in]

Angela Carbone
Office Pro Vice-Chancellor (Learning and Teaching)
Monash University
Caulfield East, VIC, 3145
Australia
Email: angela.carbone@monash.edu

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
Simeon J. Simoff, University of Western Sydney, NSW
Email: crpit@scm.uws.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 123.
ISSN 1445-1336.
ISBN 978-1-921770-04-3.

Printed, January 2012 by University of Western Sydney, on-line proceedings
Printed, January 2012 by RMIT, electronic media
Document engineering by CRPIT

The Conferences in Research and Practice in Information Technology series disseminates the results of peer-reviewed
research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv



Table of Contents

Proceedings of the Fourteenth Australasian Computing Education Conference
(ACE2012), Melbourne, Australia, 31 January – 3 February 2012

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Programme Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Organising Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Welcome from the Organising Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CORE - Computing Research & Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ACSW Conferences and the Australian Computer Science
Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ACSW and ACE 2012 Sponsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Keynote

The Future of Educational Programming Tools What Will Come (Or At Least Should Come) . . . . . . 3
Michael Kölling

Contributed Papers

Perceptions of a gender-inclusive curriculum amongst Australian Information and Communications
Technology academics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Tony Koppi, Madeleine Roberts and Golshah Naghdy

Attrition from Australian ICT Degrees Why Women Leave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Madeleine Roberts, Tanya Mcgill and Peter Hyland

Work Integrated Learning Rationale and Practices in Australian Information and Communications
Technology Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chris Pilgrim and Tony Koppi

Trends in Introductory Programming Courses in Australian Universities Languages, Environments
and Pedgogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Raina Mason, Graham Cooper and Michael de Raadt

Teaching Novice Programming Using Goals and Plans in a Visual Notation . . . . . . . . . . . . . . . . . . . . . . 43
Minjie Hu, Michael Winikoff and Stephen Cranefield

Toward a Shared Understanding of Competency in Programming: An Invitation to the BABELnot
Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Raymond Lister, Malcolm Corney, James Curran, Daryl D’Souza, Colin Fidge, Richard Gluga,
Margaret Hamilton, James Harland, James Hogan, Judy Kay, Tara Murphy, Mike Roggenkamp,
Judy Sheard, Simon and Donna Teague

Introductory programming: examining the exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Simon, Judy Sheard, Angela Carbone, Donald Chinn, Mikko-Jussi Laakso, Tony Clear, Michael
de Raadt, Daryl D’Souza, Raymond Lister, Anne Philpot, James Skene and Geoff Warburton



Student Created Cheat-Sheets in Examinations: Impact on Student Outcomes . . . . . . . . . . . . . . . . . . . . 71
Michael de Raadt

Some Empirical Results for Neo-Piagetian Reasoning in Novice Programmers and the Relationship
to Code Explanation Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Malcolm Corney, Donna Teague, Alireza Ahadi and Raymond Lister

Swapping as the “Hello World” of Relational Reasoning: Replications, Reflections and Extensions . . . 87
Donna Teague, Malcolm Corney, Alireza Ahadi and Raymond Lister

Models and Methods for Computing Education Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Mats Daniels and Arnold Pears

Illustration of Paradigm Pluralism in Computing Education Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Neena Thota, Anders Berglund and Tony Clear

Switchs CAM Table Poisoning Attack: Hands-on Lab Exercises for Network Security Education . . . . . 113
Zouheir Trabelsi

Implementation of smart lab for novice programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Ali Saleh Alammary, Angela Carbone and Judy Sheard

Evaluation of an Intelligent Tutoring System used for Teaching RAD in a Database Environment . . . 131
Silviu Risco and James Reye

Using Quicksand to Improve Debugging Practice in Post-Novice Level Students . . . . . . . . . . . . . . . . . . . 141
Joel Fenwick and Peter Sutton

Coming to terms with Bloom: an online tutorial for teachers of programming fundamentals . . . . . . . . . 147
Richard Gluga, Raymond Lister, Judy Kay, Tim Lever and Sabina Kleitman

An exploration of factors influencing tertiary IT educators’ pedagogies . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Sally Firmin, Judy Sheard, Angela Carbone and John Hurst

Common Areas for Improvement in ICT Units that have Critically Low Student Satisfaction . . . . . . . 167
Angela Carbone and Jason Ceddia

Dimensions and Directions for Strategies to Address IT Students Cheating and Plagiarism Practices . 177
Judy Sheard and Martin Dick

Why the Bottom 10% Just Can’t Do It - Mental Effort Measures and Implications for Introductory
Programming Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Raina Mason and Graham Cooper

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

vi



Preface

Welcome to the Fourteenth Australasian Computing Education Conference (ACE2012). This year, the
ACE2012 conference, which is part of the Australasian Computer Science Week, is being held in Melbourne,
Australia from 31 January to 3 February, 2012.

The Chairs would like to thank the program committee for their excellent efforts in the double-blind
reviewing process which resulted in the selection of 21 full papers from the 43 papers submitted, giving
an acceptance rate of 49%. The number of submissions was slightly less than the 47 papers submitted in
the previous year, however this year we had seven papers submitted by research students, which reflects
the growing research interest in computing education. We again see a strong international presence, with
submissions from Australia, New Zealand, Japan, Sweden, Finland, United Kingdom, United States, United
Arab Emirates, India and Iran.

This year we were successful in bidding for an ACE invited keynote speaker to fill an ACSW plenary
session. Michael Kölling, Professor at the School of Computing, University of Kent, in Canterbury, UK
will be delivering the keynote address. Michael will also deliver a workshop on Introductory Programming
Teaching with Greenfoot prior to the commencement of the conference. Due to the excellent response to
our Call for Papers and the number of accepted papers this year, we have chosen not to have any invited
speakers.

A variety of topics are presented in this year’s papers, including: novice programmer education; gender
issues, tools; work-integrated learning; computing education research; exam standards and pedagogy. Many
of the papers have present new innovations, and many demonstrate high quality research.

As with past ACE conferences, we are continuing to hold workshops at ACE. Five workshops have been
organized. Apart from the above mentioned workshop, others include: Developing an Exam Taxonomy
led by Judy Sheard and supported by the Learning and Teaching Academy created by the Australian
Council of Deans in Information Communication Technology; Road testing the Peer Assisted Teaching
Scheme supported by Australian Learning and Teaching Council (ALTC) Teaching Fellowship led by
Angela Carbone; Improving Teaching: designing and facilitating for learning at the subject level led by Sue
Wright and Jocelyn Armarego and Epistemology of Competency led by Ray Lister and supported by ALTC
Innovation grant.

For the first time, ACE awarded a best paper and best student paper. This year the best paper was
awarded to:

? Some Empirical Results for Neo-Piagetian Reasoning in Novice Programmers and the Relationship to
Code Explanation Questions
Malcolm Corney, Donna Teague, Alireza Ahadi and Raymond Lister

Three other papers were also highly praised during reviews. These commendable papers were:

? Toward a Shared Understanding of Competency in Programming: An Invitation to the BABELnot
Project
Raymond Lister, Malcolm Corney, James Curran, Daryl D’Souza, Colin Fidge, Richard Gluga, Mar-
garet Hamilton, James Harland, James Hogan, Judy Kay, Tara Murphy, Mike Roggenkamp, Judy
Sheard, Simon and Donna Teague

? Introductory programming: examining the exams
Simon, Judy Sheard, Angela Carbone, Donald Chinn, Mikko-Jussi Laakso, Tony Clear, Michael de
Raadt, Daryl D’Souza, Raymond Lister, Anne Philpot, James Skene and Geoff Warburton

? Trends in Introductory Programming Courses in Australian Universities Languages, Environments
and Pedagogy
Raina Mason, Graham Cooper and Michael de Raadt

The best student paper was awarded to:

? Trends in Introductory Programming Courses in Australian Universities Languages, Environments
and Pedagogy
Raina Mason, Graham Cooper and Michael de Raadt

vii



We are grateful to SIGCSE for sponsoring the conference jointly with the ACM. We thank everyone
involved in Australasian Computer Science Week for making this conference and proceedings publication
possible, and we thank CORE, our hosts RMIT, Melbourne, and the Australasian Computing Education
executive for the opportunity to chair the ACE2012 conference.

Michael de Raadt
Moodle

Angela Carbone
Monash University

ACE2012 Conference Co-chairs
January 2012

viii



Programme Committee and Additional Referees

Chairs

Michael de Raadt, Moodle
Angela Carbone, Monash University, Australia

Members

David J. Barnes, University of Kent, UK
Tim Bell, University of Canterbury, New Zealand
Alison Clear, AUT University, New Zealand
Tony Clear, AUT University, New Zealand
Nell Dale, University of Texas at Austin, USA
Mats Daniels, Uppsala University, Sweden
Julian Dermoudy, University of Tasmania, Australia
Sally Fincher, University of Kent, UK
John Hamer, University of Auckland, New Zealand
Margaret Hamilton, RMIT University, Australia
Mikko Laakso, University of Turku, Finland
Raymond Lister, University of Technology, Sydney, Australia
Chris McDonald, University of Western Australia, Australia
Arnold Pears, Uppsala University, Sweden
Anne Philpott, AUT University, New Zealand
Helen Purchase, University of Glasgow, UK
Anthony Robins, Otago, New Zealand
Judy Sheard, Monash University, Australia
Simon, University of Newcastle, Australia
Josh Tenenberg, University of Washington, USA
Jacqueline Whalley, AUT University, New Zealand

Conference Webmaster

Michael de Raadt, Moodle

ix



Organising Committee

Members

Dr. Daryl D’Souza
Assoc. Prof. James Harland (Chair)
Dr. Falk Scholer
Dr. John Thangarajah
Assoc. Prof. James Thom
Dr. Jenny Zhang

x



Welcome from the Organising Committee

On behalf of the Australasian Computer Science Week 2012 (ACSW2012) Organising Committee, we
welcome you to this year’s event hosted by RMIT University. RMIT is a global university of technology
and design and Australia’s largest tertiary institution. The University enjoys an international reputation
for excellence in practical education and outcome-oriented research. RMIT is a leader in technology, design,
global business, communication, global communities, health solutions and urban sustainable futures. RMIT
was ranked in the top 100 universities in the world for engineering and technology in the 2011 QS World
University Rankings. RMIT has three campuses in Melbourne, Australia, and two in Vietnam, and offers
programs through partners in Singapore, Hong Kong, mainland China, Malaysia, India and Europe. The
University’s student population of 74,000 includes 30,000 international students, of whom more than 17,000
are taught offshore (almost 6,000 at RMIT Vietnam).

We welcome delegates from a number of different countries, including Australia, New Zealand, Austria,
Canada, China, the Czech Republic, Denmark, Germany, Hong Kong, Japan, Luxembourg, Malaysia, South
Korea, Sweden, the United Arab Emirates, the United Kingdom, and the United States of America.

We hope you will enjoy ACSW2012, and also to experience the city of Melbourne.,
Melbourne is amongst the world’s most liveable cities for its safe and multicultural environment as

well as well-developed infrastructure. Melbournes skyline is a mix of cutting-edge designs and heritage
architecture. The city is famous for its restaurants, fashion boutiques, café-filled laneways, bars, art galleries,
and parks.

RMIT’s city campus, the venue of ACSW2012, is right in the heart of the Melbourne CBD, and can be
easily accessed by train or tram.

ACSW2012 consists of the following conferences:

– Australasian Computer Science Conference (ACSC) (Chaired by Mark Reynolds and Bruce Thomas)
– Australasian Database Conference (ADC) (Chaired by Rui Zhang and Yanchun Zhang)
– Australasian Computer Education Conference (ACE) (Chaired by Michael de Raadt and Angela Car-

bone)
– Australasian Information Security Conference (AISC) (Chaired by Josef Pieprzyk and Clark Thom-

borson)
– Australasian User Interface Conference (AUIC) (Chaired by Haifeng Shen and Ross Smith)
– Computing: Australasian Theory Symposium (CATS) (Chaired by Julián Mestre)
– Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Jinjun Chen

and Rajiv Ranjan)
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Ker-

ryn Butler-Henderson and Kathleen Gray)
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Aditya Ghose and Flavio

Ferrarotti)
– Australasian Computing Doctoral Consortium (ACDC) (Chaired by Falk Scholer and Helen Ashman)

ACSW is an event that requires a great deal of co-operation from a number of people, and this year has
been no exception. We thank all who have worked for the success of ACSE 2012, including the Organising
Committee, the Conference Chairs and Programme Committees, the RMIT School of Computer Science
and IT, the RMIT Events Office, our sponsors, our keynote and invited speakers, and the attendees.

Special thanks go to Alex Potanin, the CORE Conference Coordinator, for his extensive expertise,
knowledge and encouragement, and to organisers of previous ACSW meetings, who have provided us with
a great deal of information and advice. We hope that ACSW2012 will be as successful as its predecessors.

Assoc. Prof. James Harland
School of Computer Science and Information Technology, RMIT University

ACSW2012 Chair
January, 2012



xii



CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2012 in Melbourne. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences - ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s - now share this week with seven other events - ACE, AISC, AUIC, AusPDC, HIKM,
ACDC, and APCCM, which build on the diversity of the Australasian computing community.

In 2012, we have again chosen to feature a small number of keynote speakers from across the discipline:
Michael Kölling (ACE), Timo Ropinski (ACSC), and Manish Parashar (AusPDC). I thank them for their
contributions to ACSW2012. I also thank invited speakers in some of the individual conferences, and the
two CORE award winners Warwish Irwin (CORE Teaching Award) and Daniel Frampton (CORE PhD
Award). The efforts of the conference chairs and their program committees have led to strong programs in
all the conferences, thanks very much for all your efforts. Thanks are particularly due to James Harland
and his colleagues for organising what promises to be a strong event.

The past year has been very turbulent for our disciplines. We tried to convince the ARC that refereed
conference publications should be included in ERA2012 in evaluations – it was partially successful. We
ran a small pilot which demonstrated that conference citations behave similarly to but not exactly the
same as journal citations - so the latter can not be scaled to estimate the former. So they moved all
of Field of Research Code 08 “Information and Computing Sciences” to peer review for ERA2012. The
effect of this will be that most Universities will be evaluated at least at the two digit 08 level, as refereed
conference papers count towards the 50 threshold for evaluation. CORE’s position is to return 08 to a
citation measured discipline as soon as possible.

ACSW will feature a joint CORE and ACDICT discussion on Research Challenges in ICT, which I hope
will identify a national research agenda as well as priority application areas to which our disciplines can
contribute, and perhaps opportunity to find international multi-disciplinary successes which could work in
our region.

Beyond research issues, in 2012 CORE will also need to focus on education issues, including in Schools.
The likelihood that the future will have less computers is small, yet where are the numbers of students we
need?

CORE’s existence is due to the support of the member departments in Australia and New Zealand,
and I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am
grateful to all those who gave their time to CORE in 2011; in particular, I thank Alex Potanin, Alan Fekete,
Aditya Ghose, Justin Zobel, and those of you who contribute to the discussions on the CORE mailing lists.
There are three main lists: csprofs, cshods and members. You are all eligible for the members list if your
department is a member. Please do sign up via http://lists.core.edu.au/mailman/listinfo - we try to keep
the volume low but relevance high in the mailing lists.

Tom Gedeon

President, CORE
January, 2012



ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0 ). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.

2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.

2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.
2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.
2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.



Conference Acronyms

ACDC Australasian Computing Doctoral Consortium
ACE Australasian Computer Education Conference
ACSC Australasian Computer Science Conference
ACSW Australasian Computer Science Week
ADC Australasian Database Conference
AISC Australasian Information Security Conference
AUIC Australasian User Interface Conference
APCCM Asia-Pacific Conference on Conceptual Modelling
AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
CATS Computing: Australasian Theory Symposium
HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections

in respective CRPIT volumes.

xv



ACSW and ACE 2012 Sponsors

We wish to thank the following sponsors for their contribution towards this conference.

Client: Computing Research & Education Project: Identity
Job #: COR09100  Date: November 09

CORE - Computing Research and Education,
www.core.edu.au

RMIT University,
www.rmit.edu.au/

Australian Computer Society,
www.acs.org.au

Association for Computing Machinery,
www.acm.org

ACM Special Interest Group on
Computer Science Education,

www.sigcse.org

Australian Learning and Teaching Council,
www.altc.edu.au

xvi



Keynote

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

1



CRPIT Volume 123 - Computing Education 2012

2



The Future of Educational Programming Tools – What Will Come  

(Or At Least Should Come) 

Michael Kölling 
School of Computing 

University of Kent 

mik@kent.ac.uk 

 

Abstract 

This talk contains no facts. It is made up entirely of my speculations and opinions about what will (or should) happen in 

the near future of our discipline: Computer Science Education. Since my own personal background is in the area of 

educational software tools, much of it will be commentary on and speculation about the future of software tools. 

However, I will not let my potential ignorance of other topics stop me from making comments on the wider discipline. 
Since I am not any more psychic than the average person in the audience, I might be completely wrong with any 

predictions, and this talk might come down to no more than a collection of unprovable opinions. However, even if 

people disagree with most of what I say, I hope that many get at least some enjoyment out of their disagreement. 
. 

                                                        

Copyright © 2012, Australian Computer Society, Inc. This 

paper appeared at the Fourteenth Australasian Computing 
Education Conference (ACE2012), Melbourne, Australia, 
January 2012. Conferences in Research and Practice in 
Information Technology, Vol.123. Michael de Raadt and 
Angela Carbone, Eds. Reproduction for academic, not-for-
profit purposes permitted provided this text is included. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

3



CRPIT Volume 123 - Computing Education 2012

4



Contributed Papers

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

5



CRPIT Volume 123 - Computing Education 2012

6



Perceptions of a gender-inclusive curriculum amongst Australian 
Information and Communications Technology academics 

 

Tony Koppi   Madeleine Roberts  Golshah Naghdy  
Faculty of Informatics, University of Wollongong, Australia 

tkoppi@uow.edu.au 
mrhr01@uowmail.edu.au  
golshah@uow.edu.au 

 
Abstract  
The lack of female enrolments in ICT is widely 
recognised and has prompted a range of strategies to 
attract more women, most of which do not include 
curriculum changes at any level. Research suggests that 
there are aspects of the ICT curriculum that could appeal 
to females, particularly in relation to benefits to society 
and humanity in general, and that including these 
considerations in the curriculum would be of interest to 
all students. The perceptions of a gender-inclusive ICT 
curriculum in Australia have been ascertained from a 
survey and forum discussions of ICT academic managers 
and leaders of ICT learning and teaching. Although a 
significant proportion of the surveyed academics 
recognises that different features of the ICT curriculum 
appeal to males (mainly technology) and females (mainly 
the benefits of the technology to humanity) this has not 
translated into the practical implementation of a gender-
inclusive curriculum in most institutions. Most 
respondents would welcome informative guidelines on 
developing a gender inclusive curriculum... 
Keywords:  Gender inclusive curriculum, perceptions, 
ICT, academics 

1 Introduction 
This paper is concerned with the perceptions of a gender- 
inclusive ICT curriculum held by Australian ICT 
academic staff as derived from survey and forum data. 
Gender is an issue in ICT – as it is in the related 
Engineering discipline (Mills et al. 2010) – because ICT 
has a male-dominated culture (Vilé and Ellen, 2008). 
Australian Women in Information Technology (OzWIT 
2006) reported that 15% of ICT workers were female and 
that the trend in the employment of female ICT workers 
is downwards, with similar numbers and trends in Europe 
(Valenduc and Vendramin 2005). Lewis et al. (2006) 
reported that the proportion of women in many ICT 
courses in Australia is less than 15%. Some research 
                                                             
Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the 14th Australasian Computing Education 
Conference (ACE 2012), Melbourne, Australia, January–
February 2012. Conferences in Research and Practice in 
Information Technology, Vol. 123. M. de Raadt and A. 
Carbone, Eds. Reproduction for academic, not-for-profit 
purposes permitted provided this text is included. 
 

suggests that few women enrol in ICT because of the 
perceived masculine stereotype (Cory et al. 2006) which 
is reinforced by stereotypical high school teacher 
behaviour (Dee 2007), and compounded by the differing 
societal attitudes and influences brought to bear on boys 
and girls during their development (Dingel 2006). 
Evidence shows that (perhaps as a result of these 
influences) anxiety and lack of confidence in using 
computers is more prevalent among women than men 
(Volman and van Eck 2001), even amongst experienced 
users (Beyer et al. 2003, Broos 2005). 

Part of the definition of a gender inclusive ICT 
curriculum is one that is inclusive of social and human 
concerns and portrays technology in that context without 
lessening the content (Koppi et al. 2010). It is suggested 
that current ICT curricula that are focussed on 
technology-centred topics are biased towards male 
students (Lewis et al. 2007, Lewis et al. 2006, 
Miliszewska and Moore 2010). Other aspects of a gender 
inclusive curriculum include: respecting every student as 
an individual and enabling them to reach their potential; 
recognising and accommodating differences in interests, 
experiences and circumstances of all students; and 
adjusting the curriculum in response to feedback (Mills et 
al. 2010). Furthermore, it has been argued that gender 
inclusivity in decision making in the ICT context may 
result in more balanced and favourable outcomes (Cukier 
et al. 2002). 

The apparent bias towards a masculine-oriented 
curriculum in a male-dominated culture may be a 
contributing factor to the attrition of females from higher 
education ICT courses. There is general concern about 
high attrition rates from ICT (Connolly and Murphy 
2005, Koppi and Naghdy 2009, McMillan 2005), 
including that of women (Miliszewska et al. 2006, Sheard 
et al. 2008). The application of a gender-inclusive 
curriculum is pertinent to this situation. This paper 
examines the prevailing perception of a gender inclusive 
curriculum in ICT in the Australian higher education 
context.  

The notion of ‘Curriculum’ is a broad concept (Hicks 
2007), as are the influences on the curriculum when 
situated within a male-dominated ICT culture that is 
decades old and extends from primary school to the 
workplace and western society at large. Hicks (2007) 
points out that the ‘Curriculum’ is part of this broad 
temporal and spatially connected structure, no part of 
which exists in isolation. To adopt such a holistic context 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

7



of the ICT higher education curriculum, this paper reports 
on what universities are doing with respect to attracting 
(reaching into schools) and retaining students, as well as 
the prevailing perceptions and practices of an inclusive 
curriculum (or otherwise) that imprints on postgraduate 
professionals in education, industry and government and 
feeds back to students and parents. 

A survey and a related workshop were carried out as 
part of a recent project (Ogunbona 2009) funded by the 
Australian Learning and Teaching Council (ALTC) and 
comprised a team from four Australian universities: 
Wollongong (lead institution), Murdoch, Swinburne and 
Queensland. 

2 Survey and Analysis Methods 

2.1 Survey Groups 
The aim of the survey developed by the project team was 
to obtain an understanding of the representative view held 
by Australian ICT academic staff about a gender-
inclusive curriculum. The first targeted group was the 
heads of ICT units at all Australian universities who were 
members of the Australian Council of Deans of ICT. A 
series of four approaches was used in order to obtain their 
participation in the data-gathering exercise: a paper-based 
survey was mailed to each university representative on 
the Council; a fortnight later an email reminder with the 
survey attached was sent to the same people; a telephone 
follow up was undertaken two weeks later and finally 
they were sent an invitation to complete the survey 
online. As a result of these efforts a total of 22 completed 
surveys were received from 18 universities (a few ICT 
heads had distributed the survey to other ICT heads 
internally). The second group to complete the same 
survey was the Associate Deans for Learning and 
Teaching (or their equivalent) in ICT at an Australian 
Council of Deans of Information and Communications 
Technology (ACDICT) forum of 35 attendees 
representing 25 universities, and 24 completed surveys 
were received. In addition, a workshop session on gender 
issues was held at the forum and the recorded discussions 
were also used to inform the project. The total of 46 
completed surveys and forum deliberations are 
considered as representative of Australian ICT academia 
concerning a gender-inclusive ICT curriculum. 

2.2 Survey Analysis 
The survey consisted of a series of questions to be rated 
on a 5-point Likert Scale, where a tick was sufficient to 
indicate the response, to provide quantitative data.  In 
addition, a number of open-ended questions were 
presented to allow free text responses. These free text 
entries were read several times to enable the coding and 
categorisation of responses which were then counted to 
enable quantitative comparisons. This qualitative data 
analysis method was informed by the work of Boyatzis 
(1998), and Bogdan and Bicklen (2002).   

2.3 Workshop Discussions 
During the ACDICT forum workshop, participants were 
organised into small groups to discuss gender issues in 
ICT and invited to focus particularly on the possible 
reasons for the lack of women in ICT, and on the nature 

of a gender-inclusive ICT curriculum. Their deliberations 
were summarised on paper by each group, collected and 
later compiled by the facilitator. Plenary discussions were 
summarised and typed for the whole group to see on 
screen and edit at the time. 

3 Findings  

3.1 Enrolment Trends of Women in ICT 
About half of the survey respondents noted that 
undergraduate enrolments of women are steady (with 
some respondents commenting that these are small 
numbers) and about one third noted that the numbers of 
women were falling. Only five respondents indicated that 
the number of female undergraduate enrolments was 
increasing at their university. Most respondents (76%) 
noted that they were trying to increase the enrolments of 
women in ICT but few (18%) noted that their strategies to 
do so were effective. 

3.2 Strategies for Increasing the Enrolment of 
Females in ICT  

3.2.1  Current Strategies from Survey Responses 
The survey included the open-ended statement: “Our 
strategy for increasing the enrolment of women in ICT 
is:”. The responses indicated that most of the strategies 
being used were apparently not effectively contributing to 
increased enrolments of females. Presumably, the 
situation could be worse without any strategies aimed at 
encouraging females to enrol in ICT. This presumption 
may explain why similar strategies, at a range of 
universities, have been used repeatedly over the years and 
why it is that Craig (2010) has recently recognised that 
strategies intended to attract females must be more 
formally structured and stringently assessed.  

The survey data revealed that the main practices in 
targeting female students from years 9–12 are threefold: 
(1) female ICT staff or students visiting schools as role 
models or ambassadors; (2) inviting female students to 
participate in various ICT activities at universities, such 
as engineering or programming workshops; and (3) 
female specific events, e.g., Go Girl Go For IT, supported 
by Victorian ICT for Women (2010) held bi-annually at 
Deakin University since 2006. This event also includes 
invitations to careers advisors and teachers, has been 
attended by over 2000 people and is, apparently, a 
successful activity (now called ‘Digital Divas’) in 
improving female perceptions of a career in ICT (Lang et 
al. 2010).  

Other strategies mentioned by respondents include 
scholarships for females enrolling in ICT. 
Notwithstanding the success of marketing events or 
inducements, survey respondents noted that females in 
high school still have negative experiences with ICT 
which probably significantly contribute to the overall low 
enrolment rate of females in ICT higher education. Not 
one respondent mentioned whether or not the high school 
curriculum is gender inclusive and the impact this may 
have on female experiences. It would seem that for a 
subject with such a strong gender imbalance, trying to 
attract more females is akin to treating the symptoms and 
not the cause, which still remains to be clearly articulated. 

CRPIT Volume 123 - Computing Education 2012

8



While most of the strategies being used are apparently 
not contributing to increased enrolments of females, the 
situation would presumably be worse without any 
strategies aimed at encouraging females to enrol in ICT. 
This rationale may explain why similar strategies, at a 
range of universities, have been used without 
modification over the years. 

 
3.2.2  Further Desirable Strategies from Survey 
 Responses  
A follow up open-ended statement was “Additional 
activities that we should be doing to attract more women 
into ICT are:”. Common responses included: working 
further with females in high schools; emphasizing 
employment opportunities; and improving perceptions of 
the ICT profession generally. A few respondents 
mentioned working with high school teachers and 
ensuring that relevant enabling subjects are taught. One 
person mentioned an inclusive curriculum in terms of 
being inclusive of different interest areas, one person 
noted gender inclusive projects, and one respondent noted 
that social and business dimensions should be 
emphasized. No one mentioned the desirability of a 
gender inclusive curriculum per se. 

Apart from university strategies, when asked what 
else could be done to entice more women into ICT, it was 
observed that on-going attempts by the ACS (Australian 
Computer Society) professional body were largely 
ineffective, and that the Federal Government should be 
more forthcoming with financial incentives to encourage 
more students into ICT and in helping to drive cultural 
change through government policies. High schools were 
still seen as the primary focus for changing the 
perceptions of ICT and that women professionals in 
industry should be more involved in school visits, as well 
as industry engaging in more marketing and promotional 
activities in general. Revising the high school ICT 
curriculum was seen as essential, and suggestions 
included: less focus on technology; promoting the value 
of mathematics; emphasising the communication and 
‘soft skills’ aspects of ICT; and having gender-inclusive 
projects. 
 
3.2.3  Workshop Deliberations  
During the workshop event, participants discussed the 
issue of the small number of women attracted to ICT. It 
was observed that there was a greater proportion of 
female students in international cohorts than domestic 
students and that this reflected cultural differences. The 
Australian ICT culture was described as male-centred 
(e.g., advertisements portraying men in the profession; 
lack of female role models; and a perception of being 
unsuitable as a female career), geeky, and technology-
centred rather than outcome focused. High schools were 
thought to be reflecting this culture, providing a narrow 
curriculum that focused on technology tools and lacking 
creativity, diversity and failing to present the broad 
ranging functions and roles of ICT. Furthermore, high 
school teachers and careers advisors were thought to have 
a limited understanding of ICT and its potential. Apart 
from gender issues, the high school ICT curriculum was 
considered to lack inclusivity in terms of content, scope 

and application, and probably contributed to domestic 
students deciding, early in their high school education 
(before year 10), against a career in ICT.  

The survey results (essentially of individuals) 
concerned with attracting women into ICT revealed that a 
minority of respondents demonstrated awareness of 
notions of a gender-inclusive curriculum. By contrast, the 
group discussions (which had women at almost every 
table) at the workshop event concerned with the lack of 
women in ICT revealed a greater awareness of gender 
inclusivity. This may have been due to the specific gender 
theme and individual concerns expressed through the 
group work. 

3.3 The Gender-Inclusive ICT Curriculum: 
Theory and Practice 

The survey data (Table 1) revealed that 24% of 
respondents agreed with the statement that there is a link 
between having a gender-inclusive curriculum and the 
low proportion of women studying ICT, while 41% 
disagreed. 28% agreed that they make an effort to have an 
explicitly gender-inclusive curriculum, and 24% agreed 
that an ICT curriculum that appeals to women would be 
different to one that appeals to men. The majority of 
respondents (89%) agreed that they would welcome 
informed guidelines on the practical implementation of a 
gender-inclusive ICT curriculum. In addition, 62% of 
respondents agreed with the statement that they are 
unsure of what a gender-inclusive ICT curriculum would 
really look like – indicating that the majority of ICT 
academic staff is unclear about the nature of a gender-
inclusive curriculum. 
 

Statements regarding an ICT 
curriculum 

SD D N A SA 

We are unsure of what a 
gender-inclusive ICT curriculum 
would really look like 

2 9 6 21 7 

An ICT curriculum that appeals 
to women would be different to 
one that appeals to men  

6 15 13 10 1 

We make an effort to have an 
ICT curriculum that is explicitly 
gender-inclusive 

1 20 10 8 4 

There is a link between having 
a gender-inclusive curriculum 
and the low proportion of 
women studying ICT 

3 14 14 10 0 

We would welcome informed 
guidelines on the practical 
implementation of a gender-
inclusive ICT curriculum 

1 0 4 25 15 

Table 1: Compiled responses to survey statements 
about a gender inclusive curriculum (SD = Strongly 

Disagree to SA = Strongly Agree) 

Margolis and Fisher (2002) have noted that, on the 
whole, women have a different perspective of computer 
science (a part of ICT) to males, and the awareness of any 
such difference amongst Australian ICT academics was 
explored in the survey by asking about the features of the 
ICT curriculum that would appeal to females and males. 
 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

9



3.3.1  Perceptions of an ICT Curriculum that 
 would Appeal to Females  
Respondents to the survey were asked about the features 
of an ICT curriculum that appeal to females (Table 2) and 
35% of respondents either left this field blank or stated 
that they didn’t know. Only 11% stated that there was 
either no difference in what appealed to males and 
females, or that generalising was inadvisable. A little over 
half of the respondents gave some indication of what 
appealed to females in the ICT curriculum. Of the total, 
30% of respondents noted that it was the ‘people’ side of 
ICT that appealed to women, using words such as: 
‘people’, ‘social’, ‘community’, ‘collaborative’, ‘society’ 
and ‘humanity’. These responses are consistent with the 
conclusions of Courtney, Timms and Anderson (2006) 
and Craig, Fisher and Lang (2007) that females are 
particularly interested in the people part of the profession. 
A total of 11% of the respondents mentioned that a focus 
on communication (interpersonal rather than technology) 
appeals to females. That there are differences in 
communication between males and females have been 
reported many times (Monaghan and Goodman 2006, 
Still 2006, Wood 2005), and one would therefore expect 
it to be a relevant factor. A total of 11% of respondents 
also noted that creativity and problem solving, especially 
in a global or big-picture context, would appeal to 
females.  
 
Category of responses regarding 
curriculum aspects appealing to 
females 

Number 
(n = 46) 

% 

Blank  12 26 
Don’t know 4 9 
No difference 2 4 
Unsafe/unwilling to generalise 3 7 
Soft/softer skills 2 4 
People/social/community/society/humanit
y/collaborative 

14 30 

Communication 5 11 
Creative/problem-solving 5 11 
Technology 1 2 

Table 2: Categories of responses to the survey 
question of features of the ICT curriculum that appeal 

to females 

The implication is that these responses are also related 
to the people interests that appeal to women. With respect 
to the skills of problem solving and creativity per se, 
there is apparently little if any difference between males 
and females and that context has a strong influence on the 
expression of many skills (Hyde 2005). It is interesting to 
note that only one respondent mentioned technology itself 
as appealing to women, and there was no mention of 
laboratory work. 

 
3.3.2  Perceptions of an ICT Curriculum that 
 would Appeal to Males  
From the survey, Table 3 shows the categories and 
responses to the open-ended question about the features 
of an ICT curriculum that appeal to males.  

35% of respondents either left this field blank or 
stated that they didn’t know. Of the total responses, 50% 

mentioned some aspect of technology or playing with 
technology with the words: ‘hardware’, ‘networking’, 
‘programming’, ‘games’, ‘competitions’, ‘technology’, 
and ‘shooting’. Only two people thought it was difficult 
to generalise and one noted that not all men like playing 
with technology.  

Various other aspects of the curriculum that appealed 
to males were mentioned, such as laboratory work, solo 
efforts, creativity, problem solving, design, building, and 
project management. There was no mention of males 
having an interest in people or the application of 
technology to social issues. This view that males in ICT 
tend to be more interested in the technology than social 
and human concerns has been reported elsewhere (Lewis 
et al. 2007, Lewis et al. 2006, Moore et al. 2005). 

 
Category of responses regarding 
curriculum aspects appealing to 
males 

Number 
(n = 46) 

% 

Blank  13 28 
Don’t know 3 7 
Difficult/unsafe to generalise 3 7 
Hardware, networking, 
programming, games, competitions, 
technology, shooting, play,  

23 50 

Table 3: Categories of responses to the survey 
question of features of the ICT curriculum that appeal 

to males 
 

3.3.3  Workshop discussions on a Gender-
 Inclusive ICT curriculum  
Three groups of six discussed the issues concerning a 
gender inclusive curriculum before the plenary session 
(35 attendees). Two of the three groups contained both 
men and women and their group summaries identified the 
perception that females were concerned with human 
issues and that they needed to see the benefits of ICT to 
the community on a broad range of fronts such as health, 
education and the environment. The all-male group was 
unable to speculate on what a gender-inclusive 
curriculum would look like.  

The plenary session reinforced the perception that 
women need to know ‘why’ and have people and 
community concerns about how ICT can solve people’s 
problems: women have human concerns about how 
technology can build a better world. These greater 
humanity concerns of females expressed at the workshop 
are consistent with the literature cited above. It was noted 
that business ICT degrees have a greater proportion of 
women than technology-focused degrees. It was also 
concluded that the ICT curriculum problem starts in high 
school.  
 
3.3.4  Measures to Ensure a Gender-Inclusive 
 Curriculum  
From the survey, Table 4 shows the categories and 
responses to the open-ended question about the measures 
taken to ensure a gender-inclusive ICT curriculum.  

39% of respondents either left this blank or indicated 
that they didn’t know or were unsure. 20% noted that 
they had done nothing to make their curriculum gender-
inclusive or that it was not gender-inclusive. A few noted 
that ‘soft skills’ such as teamwork and communication 

CRPIT Volume 123 - Computing Education 2012

10



had been increased, and that stereotypes and male-centred 
examples were avoided. A few also noted that technology 
was presented as part of a systems or society or people 
perspective. Allowing students to select their own 
projects of interest was seen as part of being gender-
inclusive. One person also mentioned the use of female 
role models.  
 

Measures taken to ensure a 
gender-inclusive ICT curriculum 

Number 
(n = 46) 

% 

Blank  14 30 
Don’t know/unsure 4 9 
Done nothing or non-existent 9 20 
Increased soft skills such as 
teamwork, communication 

3 7 

Avoiding stereotypes and male-
centred examples 

3 7 

Technology as part of the 
system/society/people perspective 

3 7 

Project choice 2 4 
Table 4: Categories of responses to the survey 

question of the measures taken to ensure a gender-
inclusive ICT curriculum 

4 Discussion 

4.1 Enrolment Strategies in Relation to a 
Gender-Inclusive Curriculum 

In Australia, it is widely recognised that the ICT culture 
from high schools through to industry is male-dominated 
and that the proportion of females studying ICT is small 
(Craig et al. 2007, Lang et al. 2010, Lasen 2010, Lewis 
2006, McLachlan 2010, Miliszewska 2010, Young, 
2003). Results from this study have shown that the higher 
education ICT curriculum is largely reflective of that 
culture and that a gender-inclusive curriculum is not well 
understood or established. It would seem that the culture 
and the curriculum are related, mutually reinforcing and 
perpetuating. However, only 24% of survey respondents 
agreed with the statement that there is a link between 
having a gender-inclusive curriculum and the low 
proportion of women studying ICT. It is therefore not 
surprising that strategies to increase female participation 
in ICT higher education over the years have not changed 
much and have largely been unsuccessful.  

The survey revealed a range of intervention strategies 
employed by universities in an attempt to encourage more 
females into ICT, including using female ambassadors 
and female-only events at universities. A likely reason for 
the lack of success of these intervention strategies is that 
their evaluation is apparently not usually carried out 
(Craig et al. 2011).  

Other suggested strategies included more effective 
ACS activities (unspecified) or greater Federal 
Government financial incentives and policies to bring 
about cultural change. However, if the curriculum 
remains male-centred, the culture is unlikely to change 
and enrolment strategies will continue to be largely 
ineffective fringe activities with regard to increasing the 
proportion of female enrolments. They may, in fact, be 
effective in maintaining the small numbers.  

4.2 Gender-Inclusive ICT Curriculum 
Perceptions  

The majority of survey respondents agreed that they were 
unsure about what a gender-inclusive ICT curriculum 
would really look like, yet a relatively large proportion 
identified the features of an ICT curriculum that appeal to 
males and females that are consistent with other 
published findings. About 40% of survey respondents 
noted that females tend to be more interested in the 
people side of the discipline and the skills required to 
benefit society and humanity at large, a view that is 
supported by the literature (e.g. Bissell et al. 2002, 
Margolis and Fisher 2002, Tillberg and Cohoon 2005, 
Courtney et al. 2006, Craig et al. 2007). About 50% of 
survey respondents also noted that males tend to be more 
interested in the technology rather than human concerns, 
which is a view also supported by Moore, Griffiths and 
Richardson (2005); Lewis et al. (2006); and Lewis et al. 
(2007). Workshop attendees also expressed similar views. 
These findings are not meant to imply that different 
perspectives are as a result of exclusively masculine or 
feminine characteristics, rather that there is a tendency 
broadly related to gender resulting from societal 
influences which dictate what is feminine and what is 
masculine (Dingel 2006, Jaworski and Coupland 1999, 
Seymour and Hewitt 1997). Undoubtedly there are 
women interested in the technology per se and men 
interested in the social application.  

If the curriculum creators are also affected by these 
societal influences which dictate gender, and are unaware 
of them to an extent (as suggested from these survey 
results) then gender stereotypes are being reinforced and 
contributing to the lack of a gender inclusivity in the 
teaching of ICT. 

 Almost half of the surveyed ICT academic staff is 
aware of gender differences and interests in the discipline 
yet a much smaller proportion indicated that any practical 
measures addressing these issues were in place. There 
appears to be a considerable gap between what is known 
(or at least suspected) and practiced. This is supported by 
the fact that 89% of survey respondents expressed the 
desire for informed guidelines on the practical 
implementation of a gender-inclusive ICT curriculum. 

The issue of a gender inclusive curriculum is not 
confined to ICT. Engineering (a related discipline) is also 
beginning to address these issues (Mills et al. 2010). 
While Engineering and ICT gender curriculum issues 
may be perceived as being different, the similarities 
probably outweigh the differences. A significant factor in 
making the curriculum more gender-inclusive is 
concerned with emphasising the context of the technology 
so that all students may readily perceive its relevance to 
improving society (Koppi et al. 2010). Other curriculum 
aspects such as student experiences, forms of assessment, 
learning and teaching methods and the learning 
environment are also part of gender inclusive 
considerations (Mills et al. 2010). The deliberate 
implementation of gender inclusive practices has been 
shown to make significant differences in attracting and 
benefiting all students (Margolis and Fisher 2002). 
However, changing the curriculum depends on many 
factors, such as individuals, politics and fashion; and 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

11



academic merit and curricula practiced elsewhere are not 
necessarily major concerns (Gruba et al. 2004). 

5 Conclusion 
While there is a broad appreciation amongst a significant 
proportion of ICT academics in Australia that there are 
different gender perspectives and interests in ICT, this 
perception has not necessarily translated into a gender-
inclusive curriculum. The desire for such a curriculum 
has been expressed even though the practical 
development and implementation is unclear and there are 
different perceptions of what a gender-inclusive 
curriculum would entail.  

Given the gender balance amongst ICT academics, it 
is likely that the survey results reflect a male perspective. 

Research has shown that a comprehensive approach to 
curriculum design needs to be adopted to make it more 
inclusive. This is likely to be a protracted process because 
of innate conservatism and the slow pace of curriculum 
change in the sector (Gruba et al. 2004). 

Most universities make a special effort to attract more 
female students into ICT, even though the prevailing 
culture is male-dominated, the majority of academic staff 
is male and the curriculum is apparently largely biased 
towards programmes more appealing to males. The 
culture is reinforced by the lack of a gender-inclusive 
curriculum which can only perpetuate the imbalance. 
Significant increased enrolments of females cannot be 
expected to occur if bias persists at all levels. What is 
needed is a new curriculum that will produce a new style 
of ICT professional so that the cycle can evolve.  

6 Acknowledgements 
The following project team members contributed to the 
survey design: Jocelyn Armarego (Murdoch), Paul Bailes 
(UQ), Tanya McGill (Murdoch), Fazel Naghdy (UOW), 
Philip Ogunbona (UOW) and Chris Pilgrim (Swinburne). 

7 References  
Australian Women in Information Technology (OzWIT) 

(2006): Statistics for the IT Industry in 2006. 
http://www.ozwit.org/version_three/index.php?option
=com_content&task=view&id=15&Itemid=34. 
Accessed 6 April 2011. 

Beyer, S.,  Rynes, K.,  Perrault, J.,  Hay, K. and Haller, S. 
(2003): Gender differences in computer science 
students. SIGCSE Bulletin 35(1):49-53. 

Bissell, C.,  Chapman, D.,  Herman, C. and Robinson, L. 
(2002): Some gender issues in the teaching of the 
information and communication technologies at the 
UK Open University. http://technology.open.ac.uk/tel/ 
people/bissell/gender.pdf. Accessed 23 May 2009. 

Bogdan, R.C. and Biklen, S.K. (2002): Qualitative 
research for education: an introduction to theories 
and methods. 4th edn. London, Allyn & Bacon. 

Boyatzis, R.E. (1998): Transforming qualitative 
information: thematic analysis and code development. 
Thousand Oaks California, Sage Publications. 

Broos, A. (2005): Gender and information and 
communication technologies (ICT) anxiety: male self-

assurance and female hesitation. CyberPsychology & 
Behavior 8(1):21-31. 

Connolly, C. and Murphy, E. (2005): Retention initiatives 
for ICT based courses.  Proc. Frontiers in Education, 
Indianopolis, Indiana, S2C-10. 

Cory, S.N.,  Parzinger, M.J. and Reeves, T.E. (2006): Are 
high school students avoiding the information 
technology profession because of the masculine 
stereotype? Information Systems Education Journal 
4(29):3-13. 

Courtney, L.,  Timms, C. and Anderson, N. (2006): “I 
would rather spend time with a person than a 
machine”: qualitative findings from the girls and ICT 
survey. In Quality and Impact of Qualitative 
Research. 51-57. Ruth, A. (ed). Griffith University, 
Australia. 

Craig, A. (2010): Attracting women to computing: a 
framework for evaluating intervention programmes. 
Saarbrucken, Germany, VDM Publishing.  

Craig, A.,  Fisher, J. and Lang, C. (2007): ICT and girls: 
the need for a large-scale intervention.  Proc. 18th 
Australasian Conference on Information Systems, 
Toowoomba, Australia, 761-769. 

Craig, A., Fisher, J., Forgasz, H. and Lang, C. (2011): 
Evaluation Framework Underpinning the Digital 
Divas Programme. Paper presented at the Innovation 
and Technology in Computer Science Education 
Conference (ITiCSE’11, June 27–29), Darmstadt, 
Germany, 313–317. 

Cukier, W., Shortt, D. and Devine, I. (2002): Gender and 
Information Technology: Implications of Definitions. 
SIGCSE Bulletin, 34(4), 142 –148.   

Dee, T.S. (2007): Teachers and the gender gaps in student 
achievement. Journal of Human Resources 
XLII(3):528-554. 

Dingel, M.J. (2006): Gendered experiences in the science 
classroom. In Removing Barriers: Women in 
Academic Science, Technology, Engineering and 
Mathematics. 161-176. Bystydzienski, J.M. and Bird, 
S.R. (eds). Bloomington, Indiana University Press. 

Gruba, P., Moffat, A., Sondergaard, H. and Zobel, J. 
(2004): What Drives Curriculum Change?. In Proc. 
Sixth Australasian Computing Education Conference 
(ACE2004), Dunedin, New Zealand. CRPIT, 30. 
Lister, R. and Young, A.L., Eds., ACS. 109–117.   

Hicks, O. (2007): Curriculum in higher education in 
Australia – hello? http://altcexchange.edu.au/ 
system/files/Curriculum%20in%20Higher%20Educati
on%20-%20HERDSA%20Full%20Paper.doc. 
Accessed 12 Aug 2010.  

Hyde, J.S. (2005): The gender similarities hypothesis. 
American Psychologist 60(6):581-592. 

Jaworski, A. and Coupland, N. (eds) (1999): The 
discourse reader. 2nd edn. London, Routledge. 

Koppi, T. and Naghdy, F. (2009): Managing educational 
change in the ICT discipline at the tertiary education 
level. http://www.altc.edu.au/system/files/resources/ 
DS6-600%20Managing%20educational%20change 

CRPIT Volume 123 - Computing Education 2012

12



%20in%20the%20ICT%20discipline%20March%202
009.pdf. Accessed 20 March 2010. 

Koppi, T.,  Sheard, J.,  Naghdy, F.,  Edwards, S.L. and 
Brookes, W. (2010): Towards a gender inclusive ICT 
curriculum: a perspective from graduates in the 
workforce. Computer Science Education 20(1):1-18. 

Lang, C., Craig, A., Fisher, J. and Forgasz, H, (2010): 
Creating digital divas: scaffolding perception change 
through secondary school and university alliances. 
Proc. 15th Annual Conference on Innovation and 
Technology in Computer Science Education, Ankara, 
Turkey. 

Lasen, M. (2010): Education and career pathways in 
information communication technology: what are 
schoolgirls saying? Computers and Education 
54(4):1117-1126  

Lewis, S.,  Lang, C. and McKay, J. (2007): An 
inconvenient truth: the invisibility of women in ICT. 
Australasian Journal of Information Systems 
15(1):59-76. 

Lewis, S.,  McKay, J. and Lang, C. (2006): The next 
wave of gender projects in IT curriculum and teaching 
at universities. Proc. Eighth Australasian Computing 
Education Conference, Hobart, Tasmania, 52. 

Margolis, J. and Fisher, A. (2002): Unlocking the 
clubhouse: women in computing. Cambridge, 
Massachusetts, MIT Press. 

McLachlan, C., Craig, A. and Coldwell, J. (2010): 
Student perceptions of ICT: a gendered analysis. 
Proc. 12th Australasian Computing Education 
Conference, Brisbane, Australia.  

McMillan, J. (2005): Course change and attrition from 
higher education. Canberra, Department of Education 
Science and Training. 

Miliszewska, I. and Moore, A. (2010): Encouraging girls 
to consider a career in ICT: a review of strategies. 
Journal. Journal of Information Technology 
Education 9:143-166. 

Miliszewska, I.,  Barker, G.,  Henderson, F. and Sztendur, 
E. (2006): The issue of gender equity in computer 
science – what students say. Journal of Information 
Technology Education 5:107-120. 

Mills, J.,  Ayre, M. and Gill, J. (2010): Gender inclusive 
engineering education. New York, Routledge. 

Monaghan, L. and Goodman, J. (eds) (2006): A cultural 
approach to interpersonal communication. Oxford, 
UK, Blackwell Publishing Ltd. 

Moore, K.,  Griffiths, M. and Richardson, H. (2005): 
Moving in, moving up, moving out? a survey of 
women in ICT. Proc. Third European Symposium on 
Gender and ICT: Working for Change, Manchester, 
UK. 

Ogunbona, P. (2009):  ALTC Project PP9-1274, 
Addressing ICT curriculum recommendations from 
surveys of academics, workplace graduates and 
employers. http://www.altc.edu.au/project-addressing-
ict-curriculum-recommendations-uow-2009. Accessed 
6 June 2010. 

Seymour, E. and Hewitt, N.M. (1997): Talking about 
leaving: why undergraduates leave the sciences, 
Boulder, Colorado, Westview Press. 

Sheard, J.,  Carbone, A.,  Markham, S.,  Hurst, A.J.,  
Casey, D. and Avram, C. (2008): Performance and 
progression of first year ICT students. Proc. Tenth 
Australasian Computing Education Conference, 
Wollongong, Australia. 

Still, L.V. (2006): Gender, leadership and 
communication. In Gender and Communication at 
Work. 183-194. Barrett, M. and Davidson, M. 
Aldershot, UK, Ashgate Publishing Ltd. 

Tillberg, H.K. and Cohoon, J.M. (2005): Attracting 
women to the CS major. Frontiers 26(1):126-140. 

Valenduc, G. and Vendramin, P. (2005): Work 
organisation and skills in ICT professions: the gender 
dimension. Proc. ICT, the Knowledge Society and 
Changes in Work, Den Haag, Netherlands. 

Vilé, S. and Ellen, J. (2008): Australian computer society: 
women members survey 2008: a thematic analysis. 
https://www.acs.org.au/acswomen/docs/ACSWomen
MembersSurveyThematicAnalysisReportAugust2008.
pdf. Accessed 10 Sept 2010. 

Volman, M. and van Eck, E. (2001): Gender equity and 
information technology in education: the second 
decade. Review of Educational Research 71(4):613-
634. 

Victorian ICT for Women (2010): Go Girl Go For IT. 
http://www.vicictforwomen.com.au/www/html/334-
go-girl-go-for-it-2010-.asp. Accessed 17 Sept 2010. 

Wood, J.T. (2005): Gendered lives: communication, 
gender, and culture. Belmont, California, Thomson 
Wadsworth. 

Young, J. (2003): The extent to which information 
communication technology careers fulfil the career 
ideals of girls. Australasian Journal of Information 
Systems 10(2):115-125. 

 
 
 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

13



CRPIT Volume 123 - Computing Education 2012

14



Attrition from Australian ICT Degrees – Why Women Leave 
Madeleine R. H. Roberts 

School of Information Systems and Technology 
University of Wollongong, NSW 
mrhr01@uowmail.edu.au  

Tanya J. McGill 
School of Information Technology 

Murdoch University 
Murdoch, WA 

t.mcgill@murdoch.edu.au  

Peter N. Hyland 
School of Information Systems and Technology 

University of Wollongong, NSW 
phyland@uow.edu.au 

 

Abstract 
Student attrition is of particular concern in the field of 
ICT because the industry faces staffing shortfalls, 
generally and a noticeable lack of female employees. This 
paper explores the reasons female students give for 
leaving their ICT courses. An online survey of early 
leavers from four Australian universities was conducted. 
The results show that, for many female students, it is a 
combination of issues that leads to their withdrawal. 
Contrary to expectations, few female ex-students had 
experienced serious life events that necessitated their 
withdrawal or indicated that negative behaviour or 
attitudes had contributed to their decision to leave. More 
commonly female participants cited reasons associated 
with their lack of expected background knowledge and 
with issues related to the course. Recommendations are 
made to address issues that could be mitigated by 
university action. 
Keywords:  Gender; female; ICT education; student 
attrition; student retention.1

1 Introduction 

 

Student attrition is of particular concern in the field of 
ICT because the industry faces staffing shortfalls (ACS 
2008, e-skills UK 2011). Women have long been under 
represented in ICT employment and in ICT courses 
(Logan & Crump 2007), and there has been little sign of 
improvement (Gras-Velazquez et al. 2009). For example, 
only 1,997 female students commenced an ICT bachelor 
degree in Australia in 2009 compared to 9,106 male 
students (DEEWR 2011a).  Given the low number of 
females entering ICT courses, it is essential that those that 
do enroll successfully complete their studies. Figures 

Copyright © 2012, Australian Computer Society, Inc.  This 
paper appeared at the Fourteenth Australasian Computing 
Education Conference (ACE2012), Melbourne, Australia, 
January-February 2012.  Conferences in Research and Practice 
in Information Technology (CRPIT), Vol. 123. M. De Raadt 
and A. Carbone, Eds. Reproduction for academic, not-for-profit 
purposes permitted provided this text is included. 

from DEEWR show that in Australia approximately 16% 
of commencing female students leave their ICT course 
per year (DEEWR 2011b). This paper explores the 
reasons female students give for leaving their ICT courses 
and makes recommendations to improve their retention.  

Attrition is the central theme of this paper and there 
are numerous definitions of its meaning from Seidman’s 
simple “diminution in numbers of students resulting from 
lower student retention” (Seidman 2005, p. 92) to 
Hinton’s (2007) comprehensive identification of nine 
forms of attrition. In this study the term attrition is used to 
indicate the loss of students from ICT courses either 
because: they leave the institution altogether or because 
they transfer to another non-ICT course at the same 
institution. It is thus used at both the institutional level 
and the course level.  

ICT courses have very high attrition rates. An 
Australian study (Marks 2007) identified ICT as having 
the highest attrition rate with approximately one third of 
students leaving. A similar UK study (Bailey & Borooah 
2007) found a 28% attrition rate. In comparison, medicine 
had an attrition rate of less than 5%, and education 
roughly 14%. Attrition rates of female students from ICT 
courses appear to be consistent with those of males 
(DEEWR 2011). However given the low number of 
female students starting, the industry cannot afford to lose 
them, and universities should do all that they can to retain 
them. 

Numerous studies have investigated the reasons for 
attrition from tertiary education around the world. Many 
of these have focused on only one reason at a time, such 
as financial aid (Stater 2009), the effect of boredom 
(Mann & Robinson 2009) or students with dependent 
children (Marandet & Wainwright 2009) while others 
have attempted to cover a spectrum of reasons. 
Hovdhaugen (2009), for example, focused on both 
personal characteristics (gender, age, social background 
and prior academic achievement) and student goals and 
motivation once enrolled. The study found that personal 
characteristics explained withdrawal more effectively 
than student goals or motivation, while the latter largely 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

15



explained the reasons for transfer. Bennett (2003) and 
Bailey and Borooah (2007) also studied the role of 
personal characteristics in attrition and both studies 
confirmed the importance of financial hardship. Some 
authors (Hagedorn, 2005; Kramer, 2007; Nora et al., 
2005; Price et al., 1992; Tinto, 1993) have chosen to 
examine and discuss students as a homogenous entity 
while others have recognised the differences in 
experiences for male and female students (Barrow et al., 
2009; Charles & Bradley, 2006; Manis et al., 1989; 
Seymour & Hewitt, 1997) and the need to identify, more 
specifically, why their experiences are different and what 
effects that has upon their decision to stay or go. Early 
models such as those proposed by Tinto (1975) and Bean 
(1980) have proved useful in understanding attrition, and 
have been extended by various authors to better predict 
and understand the phenomenon. Cabrera et al. (1993) 
investigated whether Tinto's Student Integration Model 
and Bean's Student Attrition Model could be merged. As 
well as confirming relationships among the commitment, 
social and academic integration factors they also found 
support for the effect of external factors such as 
encouragement from friends and family on the student’s 
commitment to the institution.  

In addition to studies focussing on attrition across a 
range of disciplines, there have been a number of studies 
focussing on attrition in ICT degrees. Barker et al. (2009) 
investigated factors relating to the social experience in 
computer science by exploring the types of interactions 
students had with peers, teachers and staff, and found that 
positive student-student interaction could be enhanced 
through the use of collaborative learning experiences in 
the classroom. Prior experience in programming was 
found to be an important predictor of intention to 
continue in computer science, however, technical ability 
appeared to be less important than soft skills (Lewis et al. 
2008). 

Whilst ICT faces many of the same issues as other 
disciplines, factors such as the low numbers of female 
students enrolling, and reports of higher female attrition 
rates (Barker et al. 2009) differentiate it. There is some 
evidence that these are linked, as an increase in the 
proportion of females has been shown to reduce attrition 
(Cohoon 2001). This finding is unremarkable, however, 
when the culture of computing is considered. Margolis 
and Fisher (2002) amply demonstrate the existence of a 
“Clubhouse” in computing which will, without any 
intention on the part of the male members, exclude 
women on the basis of numerical superiority alone. 
Previous research has shown that, while female ICT 
students do not appear to differ from male students in 
terms of their academic ability to understand the material, 
they lack confidence in their ability to do so (Beyer et al. 
2003) and they may also have had less previous ICT 
experience (Cohoon & Aspray 2006). This view of 
female “deficiency” (Henwood 2000) must, however, be 
challenged and questions must be asked about why the 
computing curriculum contains assumptions about 
previous knowledge and experience. It is also imperative 
to investigate the actual reasons for women’s loss of 
confidence in their abilities, since “lack” and “loss” are 
very different descriptors: the former indicating no 
confidence while the latter indicates confidence that has 

been eroded. Margolis and Fisher (2002) convincingly 
demonstrate the erosion of confidence experienced by 
female computer science students attending Carnegie 
Mellon’s prestigious Computer Science School where 
their very presence is questioned by fellow students who 
boast of their abilities and achievements, resulting in 
female students’ disillusionment and waning enthusiasm. 

Other studies specific to attrition in ICT have explored 
whether technical skills and emotional intelligence 
contribute to students’ “affinity” with their major (Lewis 
et al. 2008). The researchers defined technical skills as 
the ability to: solve problems through abstraction and 
decomposition; develop algorithms; programme; and test. 
Emotional intelligence was defined as the ability to: 
understand emotion; control and express emotion; and 
use emotion in finding solutions. The study found that 
females with technical skills and emotional intelligence 
were most likely to remain in their major and that 
incorporating more soft skills into the curriculum would 
not only benefit all students but also create graduates far 
better suited to the current requirements of industry which 
include the ability to contribute effectively in teamwork. 

The outcomes of these many studies suggest that 
attrition is influenced by both the personal characteristics 
of students and the educational environment. Some 
factors apply across many disciplines, and some are more 
discipline specific. Some factors appear to be gender 
specific. While some factors, such as a student’s personal 
life and financial pressures, may be beyond the control of 
the institution, others, such as collaborative learning 
experiences in the classroom, the amount of contact 
students have with faculty members, and the way in 
which student ability is defined, can be influenced by 
universities. This paper explores the reasons female 
students give for leaving their ICT courses, and in 
particular looks at the difference that gender may make in 
the reasons for attrition. It concludes with 
recommendations to institutions based on these reasons. 

2 Method 
The study reported in this paper was part of a broader 
project investigating attrition. Only those aspects of the 
project relating to the reasons female students leave their 
ICT courses are included in this paper. Four Australian 
universities from different states were involved in the 
study. Registrars at the four universities identified 
students who had either transferred from an ICT degree to 
an unrelated degree, or had left the university altogether, 
between 2005 and mid 2010. Degrees classified as ICT 
covered the full spectrum from information systems 
through to computer science and computer engineering. 
These 2,868 students were then contacted, requesting 
their participation in an online survey. Completion of the 
questionnaire was voluntary and all responses were 
anonymous.    
The online survey comprised 3 main types of questions. 
The first set of questions captured demographic and 
background information such as age, gender, marital 
status, etc. (see Table 1). The second set asked about their 
early participation in the course, including original 
enrolment status, if they had attended orientation events, 
etc. (see Table 1). The third set explored the possible 

CRPIT Volume 123 - Computing Education 2012

16



reasons for participants’ withdrawal from their ICT 
course. This set of questions was presented in four 
sections. Section 1 asked if their main reason for leaving 
their degree was due to personal reasons, or if it related to 
something about the course, or if it was a combination of 
these (see Table 1). Section 2 asked about experiences of 
the university itself (see Table 2). Section 3 asked about 
their course including items relating to academic 
preparedness, the way the course was taught and run, and 
aspects of the teaching environment (see Table 3). 
Section 4 asked about life experiences such as chance 
events, health, finances, etc, (see Table 4). The items in 
sections 2, 3 and 4 were presented as negative statements 
describing possible reasons for attrition (e.g. ‘I lost my 
job‘) and respondents were asked to rate their agreement 
with each statement on a 5-point Likert scale ranging 
from ‘Strongly Disagree’ to ‘Strongly Agree’. 

3 Findings and Discussion 
Approximately 10% of letters and emails to potential 
participants were unable to be delivered due to address 
changes. A total of 154 ex-ICT students (18.8% females 
and 81.2% males) completed the survey, giving a 
response rate of 6% for those students who were able to 
be contacted. The relatively small number of females (29) 
is consistent with the numbers studying ICT at the 
universities involved (DEEWR, 2011a), and with the 
literature on female participation in tertiary ICT 
education in Western countries (Cory et al. 2006, Lewis 
et al. 2007). The female respondents’ individual 
characteristics are shown in Table 1 (note: all percentages 
are percentage of those females who responded to the 
question). 

The majority of the female participants had studied 
full time (69%) and all were domestic students (100%) 
while more than a third had been working over 20 hours 
per week (36%) and caring for dependent children 
(21.5%). The female participants were predominantly 
school leavers (58.6%) and this may partially explain 
their attrition as they may have lacked sufficient maturity 
to undertake an ICT degree. However 37.8% of female 
ex-students were in the 20 and over age range when they 
enrolled, so maturity should not have been an issue. 
Interestingly only 61.5% of females had enrolled in ICT 
as their first choice. It is not unexpected that people might 
leave a non-preferred degree, which would in part explain 
the female attrition. Similarly it was the first attempt at 
university study for only 69.2% of females, meaning that 
a significant proportion of females had either attempted 
or already completed a previous degree, enrolled in an 
ICT degree and then left.  

The majority of participants had attended orientation 
activities (73.1%), but only 16.7% had attended functions 
organised by their school. Many of the students who had 
not attended functions indicated that either none were 
organised, or that they were not aware of any. Most of the 
female students who left their degree had been enrolled in 
IT (64.3%) and were critical of the course content. 
Several students mentioned the emphasis on 
programming and the expectation of prior knowledge as 
contributors to their decision to abandon their ICT 
degree. 

 

Student Characteristics Females % of 
females 

Age: Under 18 7 24.1 
Age: 18 10 34.5 
Age: 19 1 3.4 
Age Range: 20 to 25 5 17.2 
Age Range: 26 to 35 2 6.9 
Age Range: 36 to 45 3 10.3 
Age Range: 46 to 55 1 3.4 
Full-time 20 69.0 
Part-time 9 31.0 
Domestic 26 100.0 
International 0 0.0 
Degree First Choice: Yes 16 61.5 
Degree First Choice: No 10 38.5 
ICT First Degree: Yes 18 69.2 
ICT First Degree: No 8 30.8 
Attended Orientation: Yes 19 73.1 
Attended Orientation: No 9 31.0 
Attended Functions: Yes 4 16.7 
Attended Functions: No 20 83.3 
Enrolled Degree: CS 5 17.9 
Enrolled Degree: EE 0 0.0 
Enrolled Degree: IT 18 64.3 
Enrolled Degree: IS 4 14.3 
Enrolled Degree: SE 1 3.6 
Enrolled Degree: CE 0 0.0 
Hours Worked p/w: 0-10 9 36.0 
Hours Worked p/w: 10-20 7 28.0 
Hours Worked p/w: 20-30 4 16.0 
Hours Worked p/w: 30-40 3 12.0 
Hours Worked p/w: 40+ 2 8.0 
Marital Status: Single 18 64.3 
Marital Status: Partner no 
Child(ren) 

4 14.3 

Marital Status: Single with 
Child(ren) 

1 3.6 

Marital Status: Partner with 
Child(ren) 

5 17.9 

Dropped Course: Personal 
Reasons 

3 10.3 

Dropped Course: The Course 4 13.8 
Dropped Course: Both Personal 
and Course 

22 75.9 

Table 1:  Individual characteristics of respondents 
by gender 

3.1 Reasons for Attrition 
Participants were initially asked if their main reason 

for leaving their degree was due to personal 
circumstances, due to the course itself, or a combination 
of both. The majority of female respondents (75.9%) 
indicated that both personal and course issues had 
influenced their decision. For example: 

“Pressures of changes in workplace increasing work 
hours beyond what I could fit studies around.   The 
tutors did not answer most of the technical questions 
I had regarding the course” Female, 26, InfoSys. 

Personal reasons alone were the cause for only 10% of 
the female participants. For example: 

“The lack of financial aid which caused great stress 
and led to illness” Female, 24, CompSci. 

While 13.8% indicated that the main reason was course 
related. For example: 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

17



“Course content wasn't practical nor business 
focussed enough. Where content overlapped with 
real on the job experience, staff were inflexible and 
unwilling to award credit...” Female, 18 CompSci. 

 
Participants were then asked to respond to a series of 

5-point Likert scales which presented many common 
reasons for attrition. Table 2 below presents the responses 
to reasons for attrition that relate to the university 
experience. The most frequent response was that female 
students could not get help when they needed it (31.4%).  
Other reasons included there being too many distractions 
preventing them from concentrating on their studies 
(24.1%) and the challenge of organising a timetable with 
no clashes (20.6%). 

 
University Experience 

Reasons 
N. SD 

% 
D 
% 

N 
% 

A 
% 

SA 
% 

Lack of help when needed 29 13.9 41.4 10.3 24.1 10.3 
Distractions stopped me 
concentrating on study 

29 17.2 41.4 17.2 24.1 0.0 

Difficulties organising a 
suitable timetable  

29 24.1 41.4 13.8 17.2 3.4 

No opportunities to 
socialise 

29 17.2 31.0 37.9 13.8 0.0 

University staff were not 
friendly 

29 17.2 51.7 17.2 10.3 3.4 

University facilities were 
inadequate 

29 31.0 34.5 24.1 10.3 0.0 

Evening classes posed a 
security risk 

29 34.5 31.0 24.1 10.3 0.0 

Table 2: Reasons for attrition: university experience 
(SD = Strongly Disagree to SA = Strongly Agree) 

The issue of least concern was the possible security 
risk associated with attending evening classes. Although 
security concerns are mentioned in the literature as a 
reason for attrition (Marginson et al., 2010) at 10.3% it 
does not appear to have been a major factor for females in 
this study. 

The next set of reasons for attrition was associated 
with the course experience and is shown in Table 3. The 
most frequent response to the reasons relating to the 
course experience was that classes were boring (51.7%) 
and many females also found the pace of teaching too fast 
(41.3%).  

In a recent Australian survey of over 30,000 students, 
ICT students were found to have the lowest levels of 
academic challenge, higher order thinking and enriching 
educational experiences of all disciplines considered 
(ACER 2010). The results of the current study reflect a 
sense that much ICT teaching may be boring because of 
its focus on transferring content knowledge at a rapid rate 
rather than making use of constructivist approaches; this 
is contributing to attrition. 

Consistent with perceptions that ICT teaching can be 
boring, female participants also frequently showed 
agreement with reasons relating to the balance between 
application and theory: lack of workplace focus (42.9%), 
lack of practical applications (39.3%) and lack of 
business focus (35.7%). Females also saw the courses as 
too theoretical (28.5%).  
 

Course Experience 
Reasons 

N.    SD 
% 

D 
% 

N 
% 

A 
% 

SA 
% 

Teaching 

Classes were boring 29 10.3 17.2 20.7 31.0 20.7 

Pace was too fast 29 13.8 24.1 20.7 24.1 17.2 

Teachers didn't explain 
exercises 

29 10.3 31.0 24.1 24.1 10.3 

Not encouraged to do well 
by teachers 

28 14.3 35.7 25.0 21.4 3.6 

Teachers were not prepared 29 20.7 51.7 20.7 3.4 3.4 

Teachers were out of date 29 13.8 55.2 27.6 3.4 0.0 

Harsh, confrontational 
teaching methods  

29 10.3 51.7 37.9 0.0 0.0 

Course 

Course lacked workplace 
focus 

28 7.1 17.9 32.1 28.6 14.3 

Course lacked practical 
applications 

28 3.6 39.3 17.9 25.0 14.3 

Course too mathematical 28 17.9 25.0 21.4 25.0 10.7 

Course lacked business 
focus 

28 10.7 25.0 28.6 28.6 7.1 

Course was too theoretical 28 10.7 32.1 28.6 21.4 7.1 

Poorly structured course  28 10.7 28.6 35.7 21.4 3.6 

Too many assignments 28 7.1 35.7 35.7 21.4 0.0 

Focus on individual activities 
rather than groups 

28 14.3 39.3 32.1 10.7 3.6 

Teaching environment 

Didn't feel I fitted in  27 18.5 14.8 18.5 29.6 18.5 

Environment didn’t suit my 
learning style 

29 17.2 37.9 6.9 24.1 13.8 

Environment unwelcoming 29 15.1 38.2 21.1 17.1 8.6 

Course was too competitive 28 17.9 32.1 39.3 7.1 3.6 

Preparedness and other issues 

Course didn't meet my 
expectations 

28 7.1 14.3 14.3 35.7 28.6 

Didn't enjoy classes 27 11.1 7.4 22.2 44.4 14.8 

Didn't understand concepts 28 7.1 10.7 25.0 35.7 21.4 

Results were disappointing 28 3.6 28.6 17.9 35.7 14.3 

Didn’t understand terms 
used  

28 14.3 28.6 14.3 32.1 10.7 

Didn't have the expected 
background knowledge 

28 17.9 17.9 21.4 32.1 10.7 

Didn’t make friends with 
classmates 

26 11.5 23.1 26.9 30.8 7.7 

I felt it was unacceptable to 
be smart 

28 42.9 42.9 10.7 3.6 0.0 

Table 3: Reasons for attrition: course experience 
(SD = Strongly Disagree to SA = Strongly Agree) 

ICT courses in Australia have the lowest proportion of 
students undertaking internships (ACER 2010), and a 
study by Koppi et al. (2010) noted that ICT graduates in 
the workplace have recommended that students receive 
more industry related learning. Weng et al. (2010) also 
called for an increased focus on solving business 

CRPIT Volume 123 - Computing Education 2012

18



problems. The following quote reflects a common 
sentiment among students: 

“Degree simply wasn't what I wanted. Realised 
after I started it. Although I love IT and always 
thought I'd study it, I decided a degree combined 
more with business would be more beneficial” 
Female, 18, IT. 

Issues associated with the teaching and learning 
environment were also considered important: some 
females felt that the teaching environment did not suit 
their learning style (37.9%), or was not welcoming 
(25.7%) and 48.1% felt that they did not belong. Barker 
et al.’s (2009) study of predictors of intention to persist in 
computer science found that when students perceive the 
workload as being too heavy they are less likely to pursue 
the major. While this influenced some students (21.4%) it 
was not the major issue. 

Almost two thirds of the female participants also noted 
reasons such as the course not meeting their expectations 
(64.3%) and not enjoying classes (59.2%). These 
sentiments are relatively general and could be associated 
with a variety of other more specific reasons discussed in 
this section. 

More than half the female students felt that they did 
not understand the concepts (57.1%), and many felt they 
did not understand the terms used in the course (42.8%) 
or did not have the expected background knowledge 
(42.8%). For example:  

“I didn't have the expected background knowledge; 
the courses were definitely geared towards those 
with more pre-existing knowledge.”  Female, 18, IT. 

Having the expected background for ICT studies has 
been identified in previous research as an important 
predictor of attrition (Barker et al. 2009).  

As indicated earlier, assumptions of prior experience 
and ability could be modified to prevent the exclusion of 
those who may have an aptitude for ICT without having 
spent every waking minute of their teens using 
computers. This myopic focus on computing (Margolis & 
Fisher 2002) underpins certain expectations built into the 
curriculum which are detrimental to those who do not fit 
the geek stereotype. This issue is explored further below 
in relation to different types of students. 

The social aspect of study also received attention with 
one third of females (38.5%) agreeing that they didn’t 
make friends with classmates. This was also identified by 
Barker et al. (2009), who found that levels of student-to-
student interaction were perceived as ‘unfavourable’ by 
the computer science students in their study, and they 
recommended that faculty focus on incorporating 
activities that support interaction. This issue can be 
addressed in both the nature of the course and in the 
teaching approaches used. 

The responses to possible reasons for attrition that 
relate to the lives of the students are shown in Table 4 
below. More than half of the female participants felt that 
they had picked the wrong degree (62.9%). This 
sentiment implies a lack of interest and engagement with 
the degree content, but could also be associated with a 
variety of other more specific reasons that are discussed 
in this section. 

 

Life Experience 
Reasons 

N SD 
% 

D 
% 

N 
% 

A 
% 

SA 
% 

Picked the wrong degree 27 11.1 11.1 14.8 29.6 33.3 

Attending university was 
too expensive 

27 22.2 29.6 22.2 14.8 11.1 

Conflicts with my work 
commitments 

26 30.8 34.6 11.5 15.4 7.7 

Distance made travel to 
university difficult  

27 25.9 33.3 18.5 14.8 7.4 

Travel to university was 
difficult because of 
transport 

27 25.9 33.3 18.5 11.1 11.1 

Timetable didn't fit my 
work commitments 

26 11.5 38.5 30.8 7.7 11.5 

I couldn't get financial aid 27 25.9 37.0 22.0 0.0 14.8 

My family didn't help me 
to study at home 

27 29.6 33.3 22.2 14.8 0.0 

My partner or I got 
pregnant. 

27 44.4 18.5 29.6 3.7 3.7 

University study wasn’t as 
important as socialising 

27 29.6 48.1 14.8 7.4 0.0 

Death, serious illness or 
accident in the family 

27 51.9 25.9 14.8 7.4 0.0 

I missed my family 27 25.9 40.7 25.9 7.4 0.0 

I lost my job 26 50.0 30.8 15.4 0.0 3.8 

Serious illness or 
accident 

27 37.0 33.3 25.9 0.0 3.7 

Difficulties living at home  27 40.7 33.3 22.2 3.7 0.0 

Living away from home 
was too difficult 

27 18.5 25.9 51.9 3.7 0.0 

My timetable didn't fit with 
the transport timetable 

27 25.9 37.0 33.3 3.7 0.0 

Difficulties living in 
student accommodation  

27 18.5 25.9 55.6 0.0 0.0 

Table 4: Reasons for attrition: students’ lives     
(SD = Strongly Disagree to SA = Strongly Agree) 

Financial pressures are of concern to students in all 
disciplines, and a major predictor of attrition (Bennett 
2003, Cabrera et al. 1993). ICT students are no different 
in this respect. The cost of university education 
influenced many of the participants. It was considered too 
expensive by 25.9% of females while 14.8% agreed or 
strongly agreed that they couldn’t get financial aid. 
Conflicts with work commitments were also a common 
issue; 23.1% of females agreed that they experienced 
conflict with work commitments, and 19.2% noted that 
their study timetable did not fit with their work 
commitments. Various aspects of travel to university 
were also found to be problematic for many: distance was 
an issue for 22.2% of females as was transport 
availability (22.2%). Factors such as these make it 
difficult for students to fully engage with their studies and 
are likely to work in combination with other issues to 
precipitate attrition  

Few female ex-students indicated that they had been 
affected by serious illness (3.7%), death or illness in the 
family (7.4%), loss of their job (3.8%) or pregnancy 
(7.4%). 

The results above demonstrate the range of issues that 
can contribute to female student attrition. It appears that 
individual students rarely withdraw from their studies for 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

19



just one reason. Personal, university and course related 
issues combine to put pressure on students which may 
lead to withdrawal. In some cases ex-students feel they 
have made the decision willingly, but in others they are 
very conscious of the lack of support received. 

3.2 Statistically Significant Gender Differences 
Several possible reasons for attrition relating specifically 
to gender issues were included in the survey. The levels 
of agreement of the female participants are reported in 
Table 5 below. Overall, gender issues did not appear to be 
relatively important to them. Whilst the gender imbalance 
was certainly noted (62.9% agreement), sexist behaviour 
from male staff or students was not rated highly as an 
issue in terms of their withdrawal from the course. For 
example, only one female participant agreed that male 
students or staff spoke in a sexist manner, or that male 
students did not let them participate.  
 

Gender 
Specific 
Reasons 

N SD   
% 

D     
% 

N     
% 

A     
% 

SA 
% 

No or few 
females in 
class 

27 11.1 3.7 22.2 48.1 14.8 

In minority in 
classes 

27 18.5 14.8 14.8 48.1 3.7 

Male-oriented 
course 
content  

29 20.7 24.1 27.6 20.7 6.9 

Students’ 
sexist 
behaviour 

28 28.6 32.1 32.1 3.6 3.6 

Male students 
stopped me 
participating 

27 25.9 40.7 29.6 3.7 0.0 

Male staff not 
encouraging 

27 25.9 33.3 22.2 18.5 0.0 

Male staff’s 
sexist 
behaviour  

27 33.3 37.0 25.9 0.0 3.7 

Table 5: Responses to gender specific                              
(SD = Strongly Disagree to SA = Strongly Agree) 

Some female participants (18.5%) felt that male staff did 
not encourage them to participate, and 27.6% believed 
that the course content was male oriented. The general 
sentiment is captured by the following comment: 

“As a female it was quite daunting being a minority 
in the class but the male students and teachers were 
in no way deliberately sexist.” Female, 17, IT. 

Independent samples t-tests were used to compare the 
responses of female ex-students to the responses of male 
ex-students obtained as part of the larger study. Gender 
was found to have a significant influence on students’ 
agreement with some of the other possible reasons for 
leaving their ICT course as shown in Table 6. 

Females were more likely to believe that they didn't 
have the expected background knowledge for the course 
(t=-2.25, p<0.026), didn't understand the concepts (t=-
3.82, p<0.001), or didn't understand the meaning of terms 
used in the course (t=-2.30, p=0.027). Previous research 
has suggested that female students have no less ability to 
undertake ICT courses than male students (Beyer et al., 

2003), however, it has been found that female ICT 
students lack confidence in their ability to achieve their 
educational goals (Beyer et al. 2003). 

 
Reasons Females Males 

 Mean SD Mean SD Sig. 

Distractions stopped 
me concentrating on 
study 

2.48 1.06 3.06 1.22  0.021 

Didn't understand the 
concepts 

3.54 1.17 2.57 1.21  <.001 

Lacked the expected 
background  

3.00 1.30 2.41 1.24  0.026 

Didn’t understand the 
terms used  

2.96 1.29 2.36 1.02  0.027 

My results were 
disappointing 

3.29 1.15 2.73 1.10  0.018 

I was in the minority in 
my classes 

3.04 1.26 2.41 1.25  0.021 

Picked the wrong 
degree 

3.63 1.36 3.02 1.41  0.043 

Table 6: Reasons with significantly different levels of 
agreement between females and males 

The findings of this study are consistent with this 
previous research although it was suggested earlier that 
there are identifiable reasons for this loss of confidence 
which can be addressed. Lack of confidence in ability to 
undertake study in a discipline that is perceived to be 
challenging is thought to contribute to low enrolment 
rates of females (Manis et al. 1989), however, questions 
should be asked about why computing should be 
challenging and whether this is, again, male modelling of 
computing (Margolis & Fisher 2002) as a field in which 
women do not fit. It also appears to contribute to female 
attrition, preventing female students from accessing the 
benefits that can flow from an ICT career. Actions that 
increase confidence should be pursued. These might 
include mentoring (Cohoon 2001), early exposure to 
work integrated learning or rethinking the expectations 
imposed on students by the current design of computing 
courses whereby students who demonstrate prior 
knowledge take more complex courses in their first year 
while those with less knowledge and skills are brought up 
to the expected level at a less challenging pace (Margolis 
& Fisher 2002). 

Female ex-students were also more likely to say that 
their results were not as high as they had expected (t=-
2.40, p=0.018), and that they felt they had picked the 
wrong degree (t=-2.04, p=0.043). Previous research has 
shown that female students who leave ICT degrees tend 
to have higher grades than males students who do not 
leave (Strenta et al. 1994), yet they are more sensitive to 
perceptions that their grades are lower than those they 
received in high school (Jagacinski et al. 1988). The 
culture of computing must be highlighted, once more, to 
explain why this is the case. Seymour and Hewitt (1997, 
pp241-242) identified a “process of discouragement” 
which manifested itself in female students: doubting their 
abilities; having a reduced capacity to deal with set-
backs; and being more dependent on reassurance from 
other people.  

CRPIT Volume 123 - Computing Education 2012

20



 

 
Figure 1: Dominant reasons for leaving ICT courses 

Differential attrition of female students in this way is a 
major loss to the ICT profession, but it is not purely a 
gender issue, as Strenta et al. (1994) found that in other 
disciplines, such as science and engineering, where 
persistence was the same grades were the same. 

Unexpectedly, there were no significant differences in 
response to most of the life issues: female students were 
not more likely to be affected by issues such as pregnancy 
or dealing with family illness. 

4 Summary and Conclusions 
The results presented in the sections above demonstrate 
the wide range of issues that can contribute to female 
student attrition. Figure 1 summarises those that were 
most frequently cited (25% or higher agreement).  

Student attrition is an issue of serious concern to 
universities around the world. It is of particular concern 
to the field of ICT because of the shortfall of ICT 
professionals (ACS 2008) as it poses current and future 
risks for the ICT industry. Not only is there a lack of 
qualified people in sufficient numbers but, more 
significantly, there is a lack of qualified women able to 
contribute their ideas and assist in steering technological 
developments. This study has attempted to further 
understand the causes of female attrition from ICT 
courses by exploring the reasons female students from 
four Australian universities gave for leaving their ICT 
courses. 

There are many factors that can contribute to the 
attrition of ICT students, and for many students it is a 
combination of issues that leads to their withdrawal. 
Some of the issues identified in this study are beyond the 
control of universities but many could be mitigated by 
universities taking appropriate action. 

Contrary to commonly held beliefs about women as 
those most frequently affected by, and expected to 
manage, serious life events, only a relatively small 
number of female ex-students had experienced events 
such as death or serious injury in the family, pregnancy, 
or loss of their employment, that necessitated their 
withdrawal. They were also no more likely than males to 
consider withdrawing due to these issues. It was much 
more common for the participants to cite reasons 
associated with the university environment, the teaching 
of their ICT course, and their inability to combine their 
studies with other commitments. A theme in issues 
associated with the university environment was the 
difficulty in obtaining help when required. Providing 
greater levels of support during the initial enrolment 
process, and when students need to make changes to their 
enrolment to accommodate other challenges in their lives, 
would address a number of the factors that students have 
indicated influenced their decision to withdraw. As 
female students are very much in the minority, and likely 
to feel isolated, providing ongoing support could be very 
valuable in alleviating their feelings of not fitting in or 
belonging to their ICT course and, thereby, increasing 
their enjoyment of classes.  

The course related issues that made a major 
contribution to female student withdrawal were related to 
the style of teaching and to the focus of the ICT course. 
Many female ex-students had found their classes boring, 
yet they also noted that the pace of teaching was often too 
fast, and exercises were not explained well. These 
sentiments have also been expressed by students who 
continue with their ICT course, resulting in ICT courses 
being ranked as having the lowest levels of enriching 
educational experiences and higher order thinking of all 
courses considered in a survey of over 30,000 students 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

21



(ACER 2010). The way in which ICT is taught clearly 
requires urgent consideration. Recommendations from the 
ICT education literature include increasing the use of 
small group class activities (Barker et al. 2009, Powell 
2008). Small group activities provide students with 
opportunities to undertake more active learning, 
addressing the boredom issue (Schweitzer & Brown, 
2007), but also to increase levels of interaction with other 
students and faculty. Increasing this interaction reduces 
the likelihood of students feeling disconnected from the 
teaching and learning environment, and makes it easier 
for them to ask for support when they need it. These 
kinds of activities are particularly useful as they help 
ensure female students feel they are active participants in 
the class and in their own learning. 

In addition to the style of teaching, the balance 
between application and theory was also of concern. 
Courses were seen to lack a workplace or business focus 
and to lack practical application. This finding is not just 
applicable to students who withdraw; students who have 
successfully completed their course and obtained work in 
the ICT industry have also called for more industry 
related learning (Koppi et al. 2010). Increased use of case 
based teaching can tie ICT content to application, 
enabling students to understand the context in which their 
knowledge will be applied (Mukherjee 2000, Weng et al. 
2010). Providing students with an understanding of the 
social context in which human beings can benefit from 
ICT may be one of the most important changes to 
teaching that can be made for all students (Rosser 1990). 
Better integration of practical and workplace knowledge 
and skills can also be achieved though providing forms of 
work integrated learning (e.g. industry related projects or 
work placements). Team based projects that address 
problems or opportunities provided by companies, 
government departments or community organisations 
enable students to gain professional skills while ensuring 
that curriculum is aligned with industry needs. Work 
placements (or internships) are another way to provide 
students with valuable experience and to strengthen their 
sense of the relevance of their ICT course. Addressing the 
perceived lack of workplace focus will lead to committed 
students who can see where their ICT degree is taking 
them, possibly providing a greater incentive to work 
through issues that might be making students consider 
withdrawing. 

Many female students were influenced by a perception 
that they did not have the expected background 
knowledge and, as a result, did not understand the terms 
and concepts used in the course. Previous ICT experience 
has been found to be an important predictor of attrition 
(Barker et al. 2009). This issue can be successfully 
addressed by implementing alternate pathways, so that 
those students without a strong background take an 
alternative initial unit in their first year that provides the 
opportunity to develop the skills and confidence to be 
successful. This approach has been shown to be 
particularly valuable in addressing the attrition of female 
students, as they are more likely to believe that they do 
not have the necessary background (Powell 2008). 
Increasing their foundational knowledge would also lead 
to better results for female students. Gaining higher 
marks would increase the satisfaction female students 

have with the course, encouraging them to believe they 
have chosen a suitable degree and motivating them to 
continue with their studies. Other strategies that have had 
success in improving female student retention include 
ensuring a gender balance in faculty and providing 
mentoring (Cohoon 2001). 

In order to gain further insight into the issues 
discussed above, it would be useful for future research to 
contrast these results with responses for ICT graduates. 
Some issues may not necessarily be institutional or course 
problems, but relate more to differing student 
perceptions. Approaches to changing these perceptions 
could then be explored. 

5 Acknowledgements 
This research was supported by an ALTC Priority Project 
grant. The following additional project team members 
contributed to the survey design: Tony Koppi, Philip 
Ogunbona and Fazel Naghdy (University of 
Wollongong); Jocelyn Armarego (Murdoch University); 
Chris Pilgrim (Swinburne University of Technology); and 
Paul Bailes (University of Queensland). 

6 References 
ACER (2010): Doing more for students: enhancing 

engagement and outcomes. Australasian Student 
Engagement Report. http://ausse.acer.edu.au/images 
/docs/AUSSE_2009_Student_Engagement_Report.pdf. 
Accessed 6 Apr 2011. 

ACS (2008): The ICT skill forecast project. First report: 
quantifying current and forecast ICT employment. 
http://www.acs.org.au/attachments/ICTSkillsForecast 
ingReportExecSummaryAug08.pdf. Accessed 1 Apr 
2010. 

Bailey, M. and Borooah, V.K. (2007): Staying the course: 
an econometric analysis of the characteristics most 
associated with student attrition beyond the first year of 
higher education. Ulster, Ireland, DELNI. 

Barker, L.J., McDowell, C. and Kalahar, K. (2009): 
Exploring factors that influence computer science 
introductory course students to persist in the major. 
SIGCSE Bulletin 41(2):282-286. 

Barrow, M., Reilly, B. and Woodfield, R. (2009): The 
determinants of undergraduate degree performance: 
how important is gender? British Educational Research 
Journal 35(4):575-597. 

Bean, J.P. (1980): Dropouts and turnover: the synthesis 
and test of a causal model of student attrition.  
Research in Higher Education 12(2):155-187. 

Beekhoven, S., De Jong, U. and Van Hout, H. (2002): 
Explaining academic progress via combining concepts 
of integration theory and rational choice theory. 
Research in Higher Education 43(5):577-600. 

Bennett, R. (2003): Determinants of undergraduate 
student drop out rates in a university business studies 
department. Journal of Further and Higher Education 
27(2):123-141. 

Beyer, S.,  Rynes, K.,  Perrault, J.,  Hay, K. and Haller, S. 
(2003): Gender differences in computer science 
students. SIGCSE Bulletin 35(1):49-53. 

CRPIT Volume 123 - Computing Education 2012

22



Cabrera, A.F., Nora, A. and Castaneda, M.B. (1993): 
College persistence: structural equations modeling test 
of an integrated model of student retention. The 
Journal of Higher Education 64(2):123-139. 

Charles, M. and Bradley, K. (2006): A matter of degrees: 
female underrepresentation in computer science cross-
nationally. In J.M. Cohoon and W. Aspray Women and 
information technology: research on under 
representation. Cambridge, Massachussetts, MIT 
Press. 

Cohoon, J.M. (2001): Toward improving female retention 
in computer science. Communications of the ACM 
44(5):108-114. 

Cohoon, J.M. and Aspray, W. (eds) (2006): Women and 
information technology: research on under-
representation. Cambridge, Massachusetts, MIT Press. 

Cory, S.N., Parzinger, M.J. and Reeves, T.E. (2006): Are 
high school students avoiding the information 
technology profession because of the masculine 
stereotype?  Information Systems Education Journal 
4(29):3-13. 

Crisp, G., Nora, A. and Taggart, A. (2009): Student 
characteristics, pre-college, college, and environmental 
factors as predictors of majoring in and earning a 
STEM degree: an analysis of students attending a 
hispanic serving institution. American Educational 
Research Journal 46(4):924-942. 

DEEWR (2011a): Students, selected higher education 
statistics. Canberra, DEEWR. 

DEEWR (2011b):) Students, selected higher education 
statistics (No. RFI 10-324 Roberts). 

e-skills UK (2011), Technology insights 2011: key 
findings. http://www.e-skills.com/Research /Research-
publications/Insights-Reports-and-videos /Technology-
Insights-2011/Technology-Insights-2011-Key-
findings/. Accessed 1 Apr 2011. 

Frieze, C. (2005): Diversifying the images of computer 
science: undergraduate women take on the challenge! 
SIGCSE Bulletin 37(1):397-400. 

Gras-Velazquez, A., Joyce, A. and Debry, M. (2009): 
Women and ICT: Why are girls still not attracted to 
ICT studies and careers? from 
http://blog.eun.org/insightblog/upload/Women_and_IC
T_FINAL.pdf. Accessed 3 Apr 2011. 

Hagedorn, L.S. (2005): How to define retention: a new 
look at an old problem in A. Seidman College student 
retention: formula for student success. Westport, 
Connecticut, Praeger. 

Hinton, L. (2007): Causes of attrition in first year 
students in science foundation courses and 
recommendations for intervention. Studies in Learning, 
Evaluation, Innovation and Development 4(2):13-26. 

Hovdhaugen, E. (2009): Transfer and dropout: different 
forms of student departure in Norway. Studies in 
Higher Education 34(1):1-17. 

ITU (2010), New ITU report Shows Global Uptake of 
ICTs Increasing, Prices Falling. http://www.itu.int/ 
newsroom/press_releases/2010/08.html. Accessed 3 
Apr 2011. 

Jagacinski, C.M., Lebold, W.K. and Salvendy, G. (1988): 
Gender differences in persistence in computer-related 
fields. Journal of Educational Computing Research 
4(2):185-202. 

Koppi, T.,  Edwards, S.L.,  Sheard, J.,  Naghdy, F. and 
Brookes, W. (2010): The case for ICT work-integrated 
learning from graduates in the workplace. Proc. 
Australasian Conference on Computing Education, 
Brisbane, Australia. 

Kramer, G.L. (2007): Fostering student success in the 
campus community. San Francisco, Jossey-Bass. 

Lewis, S., Lang, C. and McKay, J. (2007): An 
inconvenient truth: the invisibility of women in ICT. 
Australasian Journal of Information Systems 15(1):59-
76. 

Lewis, T.L., Smith, W.J., Belanger, F. and Harrington, 
K.V. (2008): Are technical and soft skills required?: the 
use of structural equation modeling to examine factors 
leading to retention in the CS major. Proc. 
International Workshop on Computing Education 
Research, Sydney, Australia. 

Logan, K. and Crump, B. (2007): The value of mentoring 
in facilitating the retention and upward mobility of 
women in ICT. Australasian Journal of Information 
Systems 15(1):41-58. 

Manis, J., Sloat, B.F., Thomas, N.G. and Davis, C.S. 
(1989): An analysis of factors affecting choices of 
majors in science, mathematics and engineering at the 
University of Michigan. Michigan, University of 
Michigan. 

Mann, S. and Robinson, A. (2009): Boredom in the 
lecture theatre: an investigation into the contributors, 
moderators and outcomes of boredom amongst 
university students. British Educational Research 
Journal 35(2):243-258. 

Marandet, E. and Wainwright, E. (2010): Invisible 
experiences: understanding the choices and needs of 
university students with dependent children. British 
Educational Research Journal 36(5):787-805. 

Marginson, S., Nyland, C.,  Sawir, E. and Forbes-Mewett, 
H. (2010): International student security, Melbourne, 
Cambridge University Press. 

Margolis, J. and Fisher, A. (2002): Unlocking the 
clubhouse: women in computing, Cambridge, 
Massachusetts, MIT Press. 

Marks, G. (2007): Completing university: characteristics 
and outcomes of completing and non-completing 
students. Australian Council of Educational Research. 
http://research.acer.edu.au/lsay_research/55. Accessed 
30 Nov 2009. 

Mukherjee, A. (2000): Effective use of in-class mini case 
analysis for discovery learning in an undergraduate 
MIS course. Journal of Computer  Information 
Systems 40(3):15-23. 

Nora, A., Barlow, E. and Crisp, G. (2005): Student 
persistence and degree attainment beyond the first year: 
the need for research in A. Seidman College student 
retention: formula for student success. Westport, 
Connecticut, Praeger. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

23



Powell, R.M. (2008): Improving the persistence of first-
year undergraduate women in computer science. 
SIGCSE Bulletin 40(1):518-522. 

Price, D., Harte, J. and Cole, M. (1992): Student 
progression in higher education: a study of attrition at 
Northern Territory University. Canberra, Australian 
Government Publication Service. 

Rosser, S. (1990): Female-friendly science: applying 
women’s studies methods and theories to attract 
students. New York, Pergamon Press. 

Schweitzer, D. and Brown, W. (2007): Interactive 
visualization for the active learning classroom. 
SIGCSE Bulletin 39(1):208-217. 

Seidman, A. (ed.) (2005): College student retention: 
formula for student success. Westport, Connecticut, 
Praeger. 

Seymour, E. and Hewitt, N.M. (1997): Talking about 
leaving: why undergraduates leave the sciences. 
Boulder, Colorado, Westview Press. 

Stater, M. (2009): The impact of financial aid on college 
GPA at three flagship public institutions. American 
Educational Research Journal 46(3):782-815. 

Strenta, A.C., Elliott, R., Adair, R., Matier, M. and Scott, 
J. (1994): Choosing and leaving science in highly 
selective institutions. Research in Higher Education 
35(5):513-547. 

Telecompaper (2010): Number of ICT workers in 
Germany at record levels. http://www.telecompaper 
.com/news/number-of-ict-workers-in-germany-at-
record-levels-bitkom. Accessed 19 Oct 2010. 

Tinto, V. (1975): Dropout from higher education: a 
theoretical synthesis of recent research. Review of 
Educational Research 45(1):89-125. 

Tinto, V. (1993): Leaving college: rethinking the causes 
and cures of student attrition. 2nd edn, Chicago, 
University of Chicago Press. 

Weng, F., Cheong, F. and Cheong, C. (2010): Modelling 
IS student retention in Taiwan:  extending Tinto and 
Bean's model with self-efficacy. ITALICS 9(2):97-108. 

 
 
 

CRPIT Volume 123 - Computing Education 2012

24



Work Integrated Learning Rationale and Practices in Australian 

Information and Communications Technology Degrees 

Chris J Pilgrim 
Centre for Computing and Engineering Software 

Systems, Faculty of ICT 
Swinburne University of Technology 

PO Box 218, Hawthorn, 3122, Victoria 

cpilgrim@swin.edu.au 

Tony Koppi 
Faculty of Informatics 

University of Wollongong 
Northfields Ave, Wollongong, 2522, NSW 

tkoppi@uow.edu.au 

 

 

Abstract 

To obtain a better understanding of WIL rationale and 
practices in Australian ICT degrees, a survey of managers 
and educational leaders of ICT was undertaken. These 
survey results were analysed and informed by discussions 
at a forum of ICT educational leaders. Results indicate 
that WIL practices are broad with a wide range of internal 
(university) and external (industry) combinations to 
provide the student with appropriate professional 
experience.  The majority of respondents indicated that 
their curricula are industry relevant, and that they offer an 
industry-linked final year project.  Virtual or simulated 
work experiences also seem to be commonly practiced. 
The range of options is influenced by local context, staff 
approaches and resource availability. The majority of 
universities regard WIL as important and beneficial and 
apparently have practices that provide for industry 
contribution to the curriculum even though this may not 
be obvious to graduates in the workplace. Support 
provided to students for an industry placement is variable. 
Success measures of placements are that students have 
improved understanding of professional responsibility and 
have gained a variety of work perspectives. That the 
student is employable as a consequence is not seen as 
very important. There appears to be a tension between 
desired outcomes from academia and industry including 
those of ‘work readiness’ and lifelong learning. It seems 
that the range of options provided by universities need to 
be recognised by all stakeholders as contributing to the 
development of an ICT Professional.. 

Keywords:  Work integrated learning, professional 
practice, student experience, industry, academia. 

1 Introduction 
A survey of management and educational leaders of 
Information and Communication Technology (ICT) 
departments and schools from Australian universities was 
carried out as part of a recent project funded by the 
Australian Learning and Teaching Council (ALTC) 
project (Ogunbona, 2009).  One of the key aims of the 
project was to investigate the lack of real-world 

                                                           

Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the 14th Australasian Computing Education 
Conference (ACE 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in 
Information Technology (CRPIT), Vol. 123. M. de Raadt and 
A. Carbone, Eds. Reproduction for academic, not-for profit 
purposes permitted provided this text is included. 

experience that was strongly felt by recent ICT graduates 
in the workplace as reported in a previous related ALTC 
project (Koppi and Naghdy, 2009).  The previous project 
found a significant mismatch (88%) between what the 
graduates in the workplace considered important abilities 
for their work and how they perceived universities had 
prepared them for those abilities.  The aim of the survey 
of management and educational leaders was to obtain an 
understanding of the representative views and practices of 
Work Integrated Learning in ICT in Australian 
universities.  The findings from the survey complement 
those of the previous ALTC study which focused on the 
perceptions of recent graduates in the workplace therefore 
providing a comprehensive picture of WIL practices from 
each perspective. 

The term ‘Work Integrated Learning’ (WIL) is now 
commonly regarded as an umbrella term that covers a 
“range of approaches and strategies that integrate theory 
with the practice of work within a purposefully designed 
curriculum” (Patrick et al, 2009).   An alternative 
definition of WIL is “the process whereby students come 
to learn through experiences in educational and practice 
settings and reconcile and integrate the contributions of 
those experiences to develop the understandings, 
procedures and dispositions, including the criticality and 
reflexivity, required for effective professional practice” 
(Billett, 2011).  The key characteristics drawn from these 
definitions are that WIL involves a range of models of 
learning experiences with the common aim of developing 
student’s professional capabilities and knowledge of the 
workplace to equip them for professional practice. 

The benefits that WIL brings to all stakeholders, 
including students, universities, industry and the economy 
have been well documented (e.g., Poppins, and Singh, 
2005; Pauling and Komisarczuk, 2007).  WIL provides 
students with an opportunity to test the theoretical 
knowledge learnt at university and to put it into action in 
the “complex and pressurized environment of the real 
professional world” (Bates et al, 2007).  Billett (2011) in 
his ALTC report on Integrating Practice-Based 
Experiences identified several reasons for integrating 
work-based learning experiences into the higher 
curriculum including learning about an occupation, 
extending the knowledge learnt in university settings, and 
building the capacities required to engage in and be an 
effective professional practitioner.  WIL provides 
graduates with significant salary advantages with a 
reported median starting salary AUD$13,000 higher for 
those with previous work experience in computing (GCA, 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

25



2010).  University lecturers in Australia have identified 
Industry-Based Learning as the single best feature of their 
degrees because it realized the alignment of their 
programs to industry (Smith et al, 2008).  Similarly, the 
previous related ALTC project (Koppi and Naghdy, 
2009) found that ICT graduates in the workplace strongly 
believe that university courses should contain some form 
of work-integrated learning and also that ICT employers 
believe that students need more work placements to gain 
industry experience.  The government also recognises the 
value of WIL to the economy with the Minister for 
Employment Participation stating “By integrating 
practice and theory, students develop those important 
‘softer’ skills greatly valued by employers, such as team 
work, self-management and initiative. Students are able 
to make an immediate and meaningful contribution to 
increasing productivity and prosperity—for industries, 
businesses and the nation as a whole” (O’Connor, 2008).   

Whilst the University sector recognises and 
acknowledges the significant benefits of the objectives of 
WIL there remains some questions regarding the actual 
work readiness and professional preparation of graduates.  
For example, the related ALTC project (Koppi and 
Naghdy, 2009) identified deficiencies in the workplace 
readiness of new graduates particularly in relation to the 
development of essential generic skills such as 
interpersonal and professional communications, business 
awareness and problem-solving abilities.   Likewise, the 
Business Council of Australia claim that graduates still 
lack the essential attributes especially in leadership, 
teamwork and communication, and that “Universities 
were failing to heed the call” (Hare, 2011; BCA, 2011). 

This paper reports on a survey of academic leaders of 
ICT departments and schools in Australian universities 
regarding the rationale and practices of Work Integrated 
Learning.  The results of this survey are contrasted with 
the results of a related project that surveyed recent 
graduates in the workplace and ICT employers.  The 
perspectives and perceptions reported in this paper will 
assist in the development of a nationally coordinated 
approach to WIL in ICT educational programs that will 
benefit all stakeholders including students, employers and 
universities. 

2 Survey and Analysis Methods 

2.1 Survey Groups 
The aim of the survey designed by the project team was 
to obtain an understanding of the representative views 
and practices of WIL in ICT in Australian universities. 
The first targeted group was the Heads of ICT 
organisational units at the Australian universities who 
were members of the Australian Council of Deans of ICT. 
A series of four approaches was used in order to obtain 
their participation in the data-gathering exercise: a paper-
based survey was mailed to each university representative 
on the Council; a fortnight later an emailed survey was 
sent to the same people; a telephone follow up was 
undertaken two weeks later and finally they were sent an 
invitation to complete the survey online. As a result of 
these efforts a total of 22 completed surveys were 
received from 18 universities (a few ICT heads had 
distributed the survey to other ICT heads internally).  

The second group to complete the same survey was 
the Associate Deans for Learning and Teaching (or their 
equivalent) in ICT at a forum of 36 attendees representing 
25 universities, and 30 completed surveys were received.    

One workshop session at the forum was concerned 
with WIL issues and the recorded discussions were also 
used to inform the project. The total of 52 completed 
surveys and forum deliberations are considered as 
representative of WIL views and practices amongst 
Australian ICT academia. 

2.2 Survey Analysis 
The survey consisted of a number of questions to be rated 
on a 5-point Likert Scale where a tick was sufficient to 
indicate the response and an option to provide further 
comments. Entries to survey tick boxes were compiled to 
provide quantitative data. Free text entries were read 
repeatedly to enable the coding and categorisation of 
responses which were then counted to enable quantitative 
comparisons. This qualitative data analysis method was 
informed by the work of Boyatzis (1998), and Bogdan 
and Bicklen (2002).   

2.3 Forum Discussions 
Participants at the forum were broken into six small 

groups to facilitate workshop discussions on a broad 
range of WIL issues in ICT. Their deliberations were 
summarised on paper by each group, collected and later 
compiled. Plenary discussions were summarised and 
typed for the whole group to see on screen and edit at the 
time. 

3 Findings 
The significant benefits of WIL has incentivised 
universities to develop and implement a range of models 
of WIL extending from the traditional work experience 
placement or internship programs to innovative virtual or 
simulated WIL experiences.   The range of models have 
also been acknowledge by the government with 
O’Connor (2008) noting that WIL comes in many 
different forms including “research, internships, studying 
abroad, student teaching, clinical rotations, community 
service or volunteer work, industry attachments or 
placements, sandwich programs, and professional work 
placements”.   Boud and Symes (2000) regard all models 
of WIL, including those that occur in a workplace, in the 
community, within the university, and real or simulated, 
as valid “as long as the experience is authentic, relevant 
and meaningfully assessed and evaluated” (Boud and 
Symes, 2000).   

12 month paid industry placement 16 

6 month paid industry placement 17 

Industry-linked final year project 43 

Unpaid internships  23 

Industry relevant curricula 44 

Virtual or simulated work experience 22 

Table 1: Survey results showing the WIL 

opportunities available to students 

Table 1 shows the tick-box results from the 52 
respondents regarding the kinds of WIL opportunities 

CRPIT Volume 123 - Computing Education 2012

26



available to students at their institution. Respondents may 
have ticked more than one box. Most respondents 
indicated that their curricula are industry relevant and that 
the final year project is somehow linked to industry. 

Virtual or simulated work experiences seem to be a 
common practice. Forum attendees were overwhelmingly 
in support of WIL models that provided authentic work 
experience for students. However the forum participants 
also discussed alternative opportunities for students 
unable to attend a workplace (such as by means of a 
placement). For those students, a virtual or simulated 
experience may be the next best option. Unpaid 
internships were also indicated by a similar number of 
respondents, and paid industry placements were the least 
available to students and there was little difference 
between the frequency of 6- or 12-month placements.  

Survey respondents also had the opportunity to specify 
other options available to students or comment on the 
tick-box options, and these included: 

• Funded placements through WIL scholarships  

• Placements vary from a few weeks to about three 
months, and may be part-time, e.g., 2.5 days/week 
or a flexible 100 hours during the course 

• Paid internships in research organisations 

• Guest teaching by industry professionals 

• Assignments requiring interviews and interaction 
with ICT professionals in industry 

• Industry certified courses (e.g., CISCO) 
The range of work integrated learning opportunities 

appears broad from a national perspective but the options 
at the local level will depend upon the university location 
(metropolitan or rural), local context, staff approaches 
and resource availability.  The forum participants agreed 
that a range of models was required in order to provide 
the flexibility to accommodate the diversity of student 
capabilities, motivations and interests as well as different 
university resourcing models and priorities. 

3.1 Local WIL Practices and Support: Survey 

Responses 
Table 2 shows local practices within ICT schools or 
departments. Responses range from Strongly Disagree 
(SD) to Strongly Agree (SA) with the proportion (%) of 
entries per box and ranked according to the strength of 
agreement (A + SA) with the given statements.   
According to the academic staff that completed the 
survey, the majority of universities have practices that 
provide for industry contribution to the curriculum. 
However, when ICT graduates in industry were asked 
about their curriculum and workplace preparation, the 
majority stated that an area in need of improvement 
concerned industry involvement in the curriculum (Koppi 
and Naghdy, 2009).  This same study also found that ICT 
employers desired greater input to the curriculum, and is 
consistent with the wishes of ICT employers found in a 
survey by Hagan (2004).  Greater industry and university 
liaison over the curriculum would appear to be a 
challenge.  

The majority of universities regard WIL as a key 
feature of ICT degrees and actively encourage students to 
undertake a placement and will only approve such a 
placement if it provides the student with an appropriate 

learning experience. A little over half of the universities 
actively find and manage placements and believe that 
industry should support the management of such 
programs. About half of school or department academic 
staff provide support for industry engagement with WIL 
although less than half provide support for students with 
an induction program. A similar proportion emphasise the 
development of generic skills during WIL experiences. A 
minority of universities provide a high level of resources 
for WIL. 

 SD D N A SA 

Seeks industry input into 
curriculum design 

 2 8 46 44 

Has policies that require 
industry input into curriculum 
design 

 4 12 46 38 

Requires WIL to provide an 
appropriate learning experience 

 10 14 36 40 

Actively encourages students to 
undertake a placement 

 10 18 37 35 

Regards WIL as a key feature 
of the ICT degrees 

 15 21 42 21 

Actively manages IBL or 
internship placements 

2 24 12 38 24 

Believes that industry should 
financially support WIL 
programs 

2 8 31 37 22 

Finds IBL or internship 
placements for students 

6 23 19 30 23 

Has academic staff who 
support WIL activities 

 30 22 32 16 

Emphasises the development 
of generic skills rather than 
competencies in WIL  

 12 40 40 8 

Has an induction program for 
students entering placements 

4 26 24 30 16 

Provides a high level of 
resourcing for WIL  

8 38 24 22 8 

Table 2: Local university WIL practices and 

support 

3.2 Local WIL Practices and Support: Forum 

Discussions 
While recognising that industry placements provide 
benefits to students, it was acknowledged that they were 
not available to all for a variety of reasons. It was clear 
that placements were more readily available for the better 
students and there was uncertainty about whether or not 
the weaker students would benefit and that hard evidence 
was lacking. From the survey of ICT graduates in 
industry, Koppi and Naghdy (2009) reported that the 
graduates found that industry placements gave them a 
better appreciation of the relevance of university courses 
and provided them with a framework for their studies 
upon returning to university. It could be argued that these 
experiences are precisely what would benefit weaker 
students the most.  

University location and the economic climate affect 
placement opportunities. Regional universities offering 
ICT courses may not be conveniently close to industries 
that could provide placements and in economic 
downturns, even metropolitan universities may find it 
difficult to place students in industries that could be 
shedding staff. Established relationships between 
universities and industry partners provide the most stable 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

27



circumstances for placements even though they may be 
restricted to relatively few students. 

While universities may encourage placements in ICT 
jobs, students themselves may not avail themselves of 
such opportunities because they already have established 
part-time non-ICT jobs that are necessary to maintain 
themselves through university. This is supported by 
recent research that found half of Gen Y students in full-
time study also have paid jobs (AMP-NATSEM 2007). 

It was observed that the development of generic skills 
(sometimes called ‘soft skills’) in industry employment 
may occur in any workplace context and not necessarily 
ICT employment. This same observation was made by 
ICT graduates in industry who reported that they learned 
generic skills such as negotiation with clients, 
communication and teamwork in a variety of workplaces 
(Koppi and Naghdy, 2009). It may be that the Gen Y 
students in paid prolonged employment in any business 
may be developing generic skills (or employability skills) 
to at least the same level as they would in an ICT 
placement, especially where ICT positions are 
unavailable. 

The point was also made that university administration 
of placements was a burden that demanded resources and 
constant effort to maintain relationships with relevant 
industries. 

3.3 Success Measures of Placements 
Table 3 shows the proportional responses (%) of 
academic staff to the statement: ‘The success of an 
Industry-Based Learning or internship placement is 
judged when the student:’.  Responses range from 
Strongly Disagree (SD) to Strongly Agree (SA) with 
ranking according to the strength of agreement (A + SA) 
with the given statements. 

 SD D N A SA 

Has improved understanding of 
professional responsibility 

 2 9 45 45 

Gained a variety of work 
perspectives 

 4 7 62 27 

Has completed work tasks as 
required 

 2 9 72 17 

Has gained new technical skills 
and competencies 

 6 36 47 11 

Did not disrupt normal 
company operations 

7 15 37 30 11 

Is now employable 7 22 35 26 11 

Added value to the company’s 
profitability 

 38 40 22  

Table 3: Success Measures of Placements 

The students who achieved an improved understanding 
of professional responsibility and gained a variety of 
work perspectives are regarded as having achieved the 
strongest learning outcomes. These outcomes would help 
with employability and would be difficult to obtain by 
any other means. However, these outcomes are generic 
and could be acquired from a number of professional 
employment situations; the context would determine ICT 
relevance. One of the benefits of workplace experience is 
employability, as many employers require such 
experience and ‘work readiness’ even in recent graduates 

(Forth and Mason, 2003; Pauling and Komisarczuk, 
2007; Kennan et al., 2008), however this outcome is 
apparently of limited concern to most academic staff who 
did not rate the outcome of the student being employable 
as very high (Table 3).  

Completion of work tasks is a strongly desired 
outcome but these are not necessarily related to gaining 
new technical skills and competencies because the 
proportion of responses to these two outcomes is 
different. On balance, not disrupting normal company 
operations is seen as a success but adding financial gain 
to the company is generally not. 

Additional comments made by survey respondents 
with respect to success measures include the attainment 
of analytical skills, better interpersonal skills, more 
realistic views about the workplace and work politics, and 
improved self-organisation. In addition to not disrupting 
company operations, it was noted that the students should 
not harm university-industry relations.  

Free text responses indicated that there is a broad 
range of placements with a variety of outcomes. Students 
may be on placements for lengthy full-time (6 months or 
more) or part-time periods, or just for a few weeks 
obtaining some form of relevant work experience with a 
report to prove it was carried out. Other placements are 
based on a learning plan with specific learning activities 
and outcomes. 

The forum participants unanimously agreed that WIL 
is beneficial in developing certain ‘professional 
attributes’ in students and would improve student’s 
employment outcomes.   The value of WIL beyond the 
direct employment benefits was discussed at the forum 
with some participants noting that employment outcomes 
should not necessarily be seen as the primary goal of 
university education.  The tension between teaching 
theory and vocational practice when designing of 
curriculum for ICT degree programs has resulted in some 
employers believing that “universities are not interested 
in meeting industry requirements” (Koppi and Naghdy, 
2009).  An academic goal is to develop rounded graduates 
with life-long learning skills whereas some industries 
desire graduates who are trained in the contemporary 
tools and techniques used in current corporate and 
industry environments (Shoikova & Dwishev, 2004). 

Several respondents commented on this tension 
between academic and industry regarding placements and 
these have been summarised in Table 4.   

Many academic staff consider placements as essential 
but recognise the limitations without university and 
industry support. This is particularly so for regional 
universities where there may be insufficient local places 
available to meet student demand. Several participants 
mentioned that an effective placement strategy should be 
at a national level managed by stakeholders including 
universities (especially administrative support), the 
Australian Computer Society, Engineers Australia, the 
Australian Information Industry Association, and 
government. The students themselves are key 
stakeholders and it is unfortunate that the value of 
placements to attain industry experience is often not 
appreciated until after graduation, as noted by survey 
respondents and found by Koppi and Naghdy (2009) in 
their survey of ICT graduates in industry. 

CRPIT Volume 123 - Computing Education 2012

28



Industry Academia 

Work ready Academia ready 

High-level communication 
skills 

Balance between 
communication skills and 
expression of knowledge 

Profit-making environment Knowledge-making 
environment 

Want high-performing 
students 

Have students with a wide 
range of abilities 

Time for effective student 
contribution 

Time away from formal 
teaching 

Variable demand for students Constant requirement for 
places 

Expect universities to provide 
resources 

Would like more industry 
contribution 

Table 4: Tensions between Industry and Academia 

over Placements 

4 Discussion 
The results of the survey and forum discussions indicate 
that there is a range of rationale and practices for WIL in 
Australian universities. Universities recognise the 
educational and employment benefits of WIL and 
generally regard WIL as a key feature of ICT programs.  
Resourcing for WIL varies across the sector possibly 
influencing a variety of models of WIL that extend from 
the traditional work experience placement to new virtual 
or simulated WIL experiences.  Universities appear to 
advocate for more flexibility in WIL models to meet the 
diversity of student capabilities and interests, including 
international students and those students with significant 
part-time jobs. Universities also indicated that appropriate 
models of WIL are required to suit different university 
resourcing models and priorities. 

The results indicate that the most prevalent WIL 
models were the ‘Industry-Linked Final Year Project’ and 
‘Industry Relevant Curricula’.  These models may be 
classified as ‘internal’ using a continuum from the 
traditional ‘external’, industry-based WIL experiences 
such as work experience placements and internships to 
‘internal’, university-based experiences such as project 
work, case studies and experiential learning opportunities.  
Fewer universities provided traditional 6 month or 12 
month paid industry-based learning placements which has 
been the WIL model traditionally preferred by the ICT 
industry (Mather, 2010).     

The use of Industry-Linked Final Year Projects as the 
key method of providing a WIL experience in ICT 
degrees is endorsed by the Australian Computer Society 
in their Accreditation Guidelines (ACS, 2009) which state 
that programs will “include a capstone unit in the final 
year to allow an assessment of the program objectives.”  
The guidelines contain a Policy on Capstone Units 
(Appendix 3) that indicate dual objectives for capstone 
units: 

1. Integrate the skills and knowledge developed 
throughout the program;  

2. Provide a structured learning experience to 
facilitate a smooth transition to professional 
practice or further study in the discipline. 

The Policy does not provide details of the types of 
learning experiences that would be appropriate to achieve 
these objectives apart from a statement regarding the need 
for “authentic learning experiences in relation to its 
intended professional outcomes”. 

The issue of the authenticity of learning experiences is 
central to the success of WIL programs; however 
agreement on what makes a WIL learning experience 
authentic appears to be split between academic and 
industry views.  The results of the survey indicate that 
universities believe that a successful WIL experience 
provides students with an improved understanding of 
professional responsibility and the attainment of generic 
skills.  The forum discussions however raised concerns 
from universities that industry also stresses the need for 
‘work ready graduates’ (Mather, 2010) possibly at the 
expense of a more holistic education with a focus on life-
long learning.  This issue was described as an 
‘expectations gap’ in the ALTC WIL Project (Patrick et 
al, 2009) which recommended a “stakeholder integrated 
approach to the planning and conduct of WIL based on 
formalised, sustainable relationships and a common 
understanding of the procedures and commitment 
required by all those involved.” 

An approach to develop a shared understanding 
regarding the authenticity of the range of learning 
experiences for WIL is required in order to achieve 
industry acceptance and recognition of innovative internal 
and virtual models of WIL.   

The movement towards outcomes-based education in 
engineering education may provide a way forward to 
achieving a common understanding of the value of the 
full spectrum of WIL models.  The focus on educational 
outcomes rather than learning methods is now endorsed 
by both universities and industry in international course 
accreditation processes for engineering and many other 
disciplines.  The approach is based on the demonstrated 
student attainment of stated graduate attributes with the 
focus on outcomes rather than process.  This approach 
encourages diversity and innovation in delivery and has 
brought significant benefits to engineering education 
(Palmer and Ferguson, 2009).   

The outcomes-based approach generally requires a 
linking of course and unit level learning objectives with 
graduate outcomes.  The use of taxonomies such as 
Bloom (1956) are commonly used in computer science 
education to describe learning outcomes and links to 
assessment (Lister, 2000) however the results of this 
survey and forum suggest there may be a lack of a shared 
understanding of the learning objectives for WIL 
experiences. 

Learning objectives for WIL developed jointly by 
universities and industry (professional bodies and 
industry associations) will provide the basis for the 
development of a range of models of WIL each providing 
varying levels of authenticity (Figure 1).  Models should 
include external forms where students go out to industry 
(e.g. industry placements, internships, field visits and 
community projects) as well as internal models where 
industry comes to students (e.g. guest speakers, case 
studies, industry linked projects and simulated 
experiences).   The authenticity of each form of WIL 
should be evaluated according to the achievement of the 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

29



agreed learning objectives rather than just relying on 
personal opinion which in some cases have only 
recognised formal industry placements as the only valid 
form of WIL.  Industry acceptance of the value of 
innovative learning experiences to provide students with 
the necessary understanding of aspects of professional 
practice will benefit all stakeholders. 

 

Figure 1: Learning Objectives and Models of WIL 

This approach is similar to the current Engineering 
Australia accreditation requirements for professional 
engineering degrees (EA, 2008) which require “a 
minimum of 12 weeks of experience in an engineering-
practice environment (or a satisfactory alternative)”.  The 
EA requirements do state that there is “no real substitute 
for first-hand experience in an engineering- practice 
environment, outside the educational institution” however 
the requirements also state that “however it is recognised 
that this may not always be possible”, i.e., engineering 
students do not have to undertake 12 weeks of actual 
industry experience in an external organization in order to 
complete their degree but can achieve this requirement 
through alternative means.   Valid learning experiences 
for professional practice include traditional placements as 
well as the “use of guest presenters, industry visits and 
inspections, an industry based final year project”.  The 
EA requirements go on to indicate that: “The requirement 
for accreditation is that programs incorporate a mix of the 
above elements, and others - perhaps offering a variety of 
opportunities to different students - to a total that can 
reasonably be seen as equivalent to at least 12 weeks of 
full time exposure to professional practice in terms of the 
learning outcomes provided.” 

This liberal interpretation of professional practice 
permits universities to provide a set of university-based 
learning experiences to achieve the ’12 week experience’ 
requirement of EA accreditation.  The professional 
practice requirement could be spread out over the 
duration of the degree program including providing a 
context to engage first year students as well as a 
professional preparation for final year students.  The key 
requirement is that the experiences are authentic and can 

be documented to demonstrate targeted graduate 
capabilities set for the program. 

Using the Engineering Australia experience as an 
example, consideration should be given in the current 
revision of the Australian Computer Society Course 
Accreditation Guidelines to incorporate detailed 
guidelines for professional practice including stated 
learning objectives that have been endorsed by industry.  
Whilst the 12 week requirement appears to work well in 
the context of engineering, it is accepted that a similar 
requirement might not map well to the ICT disciplines.  
However, there would be wide ranging benefits in 
implementing a similar professional practice requirement 
for ICT degrees where the requirement is visible, 
significant and readily understood by the prospective and 
current students, teachers, parents, industry, government 
and the community in general, and provides scope for 
universities to innovate in the design of learning 
experiences and approaches. 

5 Conclusion 
The survey and forum discussions have revealed strong 
academic support for students gaining professional 
practice through a variety of WIL options. While 
placements may be a desirable component of WIL, 
circumstances may dictate alternative practices that may 
not be recognised by industry as authentic. 

The development of a shared set of learning outcomes 
for WIL between academe and industry may provide 
recognition of the authenticity of innovative internal 
models of WIL such as virtual and simulated experiences 
as well as Final Year Projects related to industry needs. 
Learning outcomes that include experience of industry 
practices should be mutually acceptable whatever the 
processes used to produce the desired outcomes.  

Future work in this area may include the identification 
of learning outcomes for WIL in conjunction with 
industry and the incorporation of learning outcomes for 
WIL and/or professional practice into ACS accreditation 
guidelines. 

6 Acknowledgements 

The following project team members contributed to the 
survey design: Jocelyn Armarego (Murdoch), Paul Bailes 
(UQ), Tanya McGill (Murdoch), Fazel Naghdy (UOW), 
Philip Ogunbona (UOW) and Chris Pilgrim (Swinburne). 

7 References 

ACS (2009), ANZ ICT Accreditation Board, 
Accreditation Manual, Document 2A: Application 
Guidelines – Professional Level Courses, February 
2009. 

AMP.NATSEM (2007). Generation whY?, AMP. 
NATSEM Income and Wealth Report, Issue 17. July. 

Bates A., Bates B., and Bates C., 2007.  Preparing 
students for the professional workplace: who has 
responsibility for what?  Asia‐Pacific Journal of 

Cooperative Education, 2007, 8(2), pp. 121‐129. 

BCA (2011)  Lifting the Quality of Teaching and 
Learning in Higher Education, Business Council of 
Australia, from:  
http://www.bca.com.au/DisplayFile.aspx?FileID=725 

CRPIT Volume 123 - Computing Education 2012

30



Billett S. (2011)   Curriculum and pedagogic bases for 
effectively integrating practice-based experiences, 
ALTC Project Final Report, from: 
http://www.altcexchange.edu.au/group/integrating-
practiceexperiences-within-higher-education 

Bloom B. S., (1956). Taxonomy of Educational 
Objectives, Handbook I: The Cognitive Domain. New 
York: David McKay Co Inc. 

Bogdan, R.C. and Biklen, S.K. (2002). Qualitative 

Research for Education: An Introduction to Theories 

and Methods, 4th ed, Allyn & Bacon, London, UK. 

Boyatzis, R.E. (1998). Transforming Qualitative 

Information: Thematic Analysis and Code 

Development, Sage Publications, Thousand Oaks, CA. 

Boud, D. & Symes, C. (2000). Learning for real: work-
based education in universities. In C. Symes & J. 
McIntyre (Eds), Working Knowledge: the new 

vocationalism and higher education, pp.14-29. 
Buckingham: Open University Press. 

EA (2008), Accreditation Criteria Guidelines, Document 
G02, Engineers Australia, August 2008. 

Forth, J. and Mason, G. (2003). The Determinants and 

Effects of High-Level ICT Skill Shortages: Evidence 

from the Technical Graduates Employers Survey. 
National Institute of Economic and Social Research, 
London. from: 
http://www.niesr.ac.uk/research/ICT/TGES- 7.pdf. 

Hagan, D. (2004). ‘Employer satisfaction with ICT 
graduates’. Sixth Australasian Computing Education 
Conference (ACE2004), Dunedin, New Zealand. 
Conferences in Research and Practice in Information 

Technology, vol. 30, pp. 119– 23. 

Hare, J. (2011)   Business takes dim view of academe, 
The Australian Higher Education Supplement, March 
30th 2011. 

Kennan, M.A., Cecez-Kecmanovic, D., Willard, P. and 
Wilson, C.S. (2008). ‘IS knowledge and skills sought 
by employers: a content analysis of Australian IS early 
career online job advertisements’. Australasian Journal 

of Information Systems, 15, pp. 57–78. 

Koppi, T. and Naghdy, F. (2009), Managing Educational 

Change in the ICT Discipline at the Tertiary Education 

Level, from: 
http://www.altc.edu.au/system/files/resources/DS6-
600%20Managing%20educational%20change%20in%
20the%20ICT%20discipline%20March%202009.pdf 

Lister, R. (2000). On Blooming First Year Programming, 
and its Blooming Assessment. Proceedings of the 

Australasian Conference on Computing Education, 

ACM Press, New York, NY, pp. 158-162. 

O'Connor, B.  (2008).  Work Integrated Learning (WIL): 
Transforming Futures Practice... Pedagogy... 
Partnership, Address to: World Association for 
Cooperative Education (WACE) Asia Pacific 
Conference, 1 Oct, 2008, from: 
http://www.deewr.gov.au/Ministers/OConnor/Media/S
peeches/Pages/Article_081003_124044.aspx 

Ogunbona, P (2009),  ALTC Project PP9-1274, 
“Addressing ICT curriculum recommendations from 
surveys of academics, workplace graduates and 
employers”, from: http://www.altc.edu.au/project-
addressing-ict-curriculum-recommendations-uow-
2009. 

Palmer, S. and Ferguson, C. (2008).  Improving 
outcomes-based engineering education in Australia, 
Australasian Journal of Engineering Education, Vol 14 
No 2. 

Patrick, C., Peach, D., Pocknee, C., Webb, F., Fletcher, 
M., Pretto, G., (2008). The WIL [Work Integrated 
Learning] report: A national scoping study [Australian 
Learning and Teaching Council (ALTC) Final report]. 

Pauling, J.W. and Komisarczuk, P. (2007). ‘Review of 
work experience in a Bachelor of Information 
Technology’. Ninth Australasian Computing Education 
Conference (ACE2007), Ballarat, Victoria, January 
2007. Conferences in Research in Practice in 

Information Technology, vol. 66, pp. 125–132. 

Poppins, P. and Singh, M. (2005). ‘Work integrated 
learning in information technology education’. In 
Information and Communication Technologies and 

Real-Life Learning: New education for the knowledge 

society, T. van Weert and A. Tatnall (eds). Springer, 
New York, USA. Pp. 223–30. 

Mather, J (2010), Sector split over on-the-job year for IT 
students, Australian Financial Review, May 30th 2010. 

Shoikova, E. & Dwishev, V.  (2004). University - 
Industry network, Proceedings of the 27th Int’l Spring 

Seminar on Electronics Technology IEEE, pp 510-514 

Smith, R., Mackay, D., Holt D. & Challis, D. (2008).  
Expanding the realm of best practices in cooperative 
industry‐based learning in information systems and 
information technology: an inter‐institutional 
investigation in Australian higher education, 
Asia‐Pacific Journal of Cooperative Education, 9(1), 
73‐80 

 

 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

31



CRPIT Volume 123 - Computing Education 2012

32



Trends in Introductory Programming Courses in Australian 

Universities – Languages, Environments and Pedagogy 

Raina Mason
1
 Graham Cooper

1
 Michael de Raadt

2 

 
1 Southern Cross Business School 

Southern Cross University 
Hogbin Drive, Coffs Harbour, New South Wales 2450 

raina.mason@scu.edu.au  
graham.cooper@scu.edu.au 

 
2 Moodle Pty Ltd 

1/224 Lord St, Perth, WA 6000 
michaeld@moodle.com 

 
 

Abstract 

This paper reports the results of a study of 44 
introductory programming courses in 28 Australian 
universities, conducted in the latter months of 2010. 
Results of this study are compared with two censuses 
previously conducted during 2001 and 2003, to identify 
trends in student numbers, programming language and 
environment/tool use and the reasons for choice of these, 
paradigms taught, instructor experience, text used and 
time spent on problem solving strategies in lectures and 
tutorials. Measures of mental effort experienced during 
the solution of novice programming problems were also 
examined. . 

 

Keywords:  introductory programming, programming 
languages, programming environments, Australian 
university courses, mental effort measures, census, trends. 

1 Introduction 

Programming skills are an essential part of Information 
Technology (IT) and Computer Science (CS) courses. 
Programming is generally regarded to be both complex 
and difficult, and introductory programming courses can 
suffer from high attrition rates and low levels of 
competency (McCracken et al. 2001). There has been 
much debate in the academic community about what 
languages, environments and paradigms should be used 
for students’ first exposure to programming (Bruce, 2005; 
Cooper, Dann, et al., 2003; Kelleher and Pausch, 2005). 

In 2001 a census of introductory programming courses 
at Australian universities was conducted (de Raadt, 
Watson & Toleman, 2002), which reported on the 
languages and environments/tools being used, the reasons 
for the choice of language, student numbers and the 
paradigm being taught. The census covered 57 courses at 
37 of the 39 Australian universities. The other two 
universities did not offer programming courses. The 

                                                           

Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the Fourteenth Australasian Computing 
Education Conference (ACE2012), Melbourne, Australia, 
January 2012. Conferences in Research and Practice in 
Information Technology, Vol. 123. Michael de Raadt and 
Angela Carbone, Eds. Reproduction for academic, not-for-profit 
purposes permitted provided this text is included. 

census was repeated in 2003 (de Raadt, Watson & 
Toleman, 2004) and expanded to include New Zealand 
universities. The 2003 census examined trends in 
languages and reasons for language choice, paradigms 
taught, tools and environments used, as well as new 
questions on texts employed, method of delivery to on-
campus students, instructor experience and information 
about the teaching of problem solving strategies. 

In the latter months of 2010 the census was to be 
repeated with all Australian universities. Participation 
was not as high as had been hoped, with a participation 
rate of 28 universities from the 39 that offered 
programming courses. A total of 44 out of 73 available 
programming courses were covered. While no longer a 
census, the study contains a large sample of the available 
first programming courses offered. The results of this 
2010 study are reported in this paper, and have been 
compared to the results from the 2001 and 2003 censuses 
in order to identify longitudinal trends in language, tools 
and paradigms and to identify reasons for any such 
changes over the 10 year period. The basis for 
constructing interview questions and for conducting the 
study are described in the next section, followed by a 
discussion of the results and implications to teaching 
introductory programming. 

2 Methodology 

The previously collated list of participants from the 2001 
and 2003 studies was used as a starting point for building 
a list of contacts for the current study. Information from 
university websites was also used to identify potential 
university programs and to collect contact numbers of 
administrative staff or academic staff responsible for 
those programs. 

Once identified, each academic responsible for a 
particular introductory programming unit was sent an 
introductory email outlining the past two censuses. 
Participants were then contacted by phone within seven 
days to invite participation in the new census, and to 
arrange a convenient time for a phone interview of 
around 10 to 15 minutes duration. 

All phone interviews were audio-recorded with the 
participant’s permission. Notes on responses and 
comments were also entered manually into paper-based 
census forms as a backup to the recordings. Audio 
recordings were later transcribed and the data analysed. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

33



It was found that the terminology used for a unit of 
study that is completed by students towards a degree 
varies between institutions, for example “subject”, 
“course” or “unit” are used. The interviewer used the 
terminology particular to each institution when 
conducting an interview to reduce possible confusion 
from ambiguity. In the remainder of this paper, the results 
are reported using the description “course” for the basic 
unit of study (usually studied over the period of a 
semester or session, in conjunction with other units of 
study), to be consistent with the last two censuses. 

2.1 Questions 
Questions repeated from the 2001 and 2003 censuses 
probed language and paradigm choice, teaching duration, 
instructor experience, textbooks, problem solving 
strategies and development tools. 

The orbit of enquiry of the 2003 census was expanded 
to include questions regarding the mental effort (Paas and 
van Merrienboer 1993) required to understand and learn 
aspects of programming using the language(s) used in 
each course. 
On this basis, the following question was asked: 

• “How difficult do you think this language is for 
students to learn?” (9 point Likert scale, 1 = 
extremely easy, 9 = extremely difficult) 

If an interviewee indicated that he or she used an 
environment or tool beyond a simple editor and command 
line compiler, then the following questions were asked:  

• “Why was this environment/tool chosen?” 

• “Is this environment/tool used for an initial part 
of the first programming course only, or 
throughout the first programming course?” 

• “Is the environment/tool used in any other 
courses in the degree? If so, how many? Is it 
used in a different way in subsequent courses?” 

• “How difficult do you find the environment to 
use (on a scale of 1 to 9 where 1 is extremely 
easy, 9 is extremely difficult)” 

• “On average how difficult do you believe the 

students find the environment to use?” (9 point 
Likert scale) 

All participants were also asked questions about the 
mental effort expended when solving a novice 
programming problem, on each of three measures: 

• understanding and processing the problem 
statement; 

• navigating or using the environment, tools or 
language; and  

• learning from the problem and reinforcing 
previous concepts. 

Participants were asked to estimate the mental effort 
expended on each of these three measures by themselves, 
by an average student, and by a student in the bottom 
10% of their course. 

3 Results and discussion 

The results of this study are reported below, with 
comparison to the previous two censuses. For more 
accurate comparison, only the data from Australian 
universities in the 2003 census has been used. 

3.1 Universities and courses 

The 2010 study covered 44 of the 73 programming 
courses offered by Australian universities. A total of 28 
of the 39 universities offering programming courses 
participated in the study (see Table 1). 

 
 2001  2003 2010 

Universities 39 40 40 

Universities teaching programming 37 39 39 

Introductory Programming courses 57 71 (44) 73 

Total students in study (approx.) 19900 16300 7743 

Average students per course 349 229 176 

Table 1: University/Course Summary 

3.2 Participation rate 

Three instructors declined to participate. Several 
instructors were employed casually and were not 
available on campus at any time apart from their face-to-
face teaching commitments, two instructors had retired 
recently and were not available for comment, and some 
instructors (and administrative staff) were unavailable 
during the 3 month period of conducting interviews for 
this study. All but one of the participants agreed to the 
audio-recording of the interview. This participant agreed 
to be interviewed with hand-written notes being taken on 
paper-based census forms. 

3.3 Number of courses 

Although the total number of programming courses 
offered has changed little since the 2003 census, 
instructors stated that often business-based IT 
programming courses, computing science programming 
courses and engineering programming courses had been 
amalgamated into one course. The reasons offered by 
participants in several institutions were that management 
had strategically decided to merge different courses and 
associated student cohorts to gain efficiencies due to 
economies of scale. These actions had been in response to 
declining numbers of students. At the same time, 
programming courses have appeared in non-traditional 
programming areas such as visual arts, keeping the 
number of introductory programming courses relatively 
static. 

3.4 Student numbers 

The declining number of students studying programming 
is a serious problem. Average numbers of enrolments per 
course have halved, falling from 349 in 2001 to just 176 
in 2010. This follows a general trend in declining student 
enrolments in all areas and levels of ICT education - 
vocational, undergraduate and postgraduate - with 17 436 
total domestic ICT enrolments in 2001 falling to just 7 
470 domestic students in 2008 (ACS, 2010).  

This is despite strong growth prospects for 
employment in the IT industry, with 7 out of 11 ICT job 
designations in the “Job Prospects Matrix” (DEEWR, 
2011) considered to have ‘strong’ to ‘very strong’ growth 
prospects for future employment. The widening gap 
between increasing demand and declining domestic 
student numbers may give rise to a significant short-fall 

CRPIT Volume 123 - Computing Education 2012

34



of suitably educated and skilled IT professionals in the 
near future. 

3.5 Languages 

3.5.1 Choice of language(s) 

There were 20 different languages being taught by the 
academic staff interviewed, which is a greater diversity of 
languages than displayed in each of the last two studies. 
During 2001, only nine languages were recorded, and in 
2003 this number had reduced to eight languages. In 
2010, the number of languages taught over the duration of 
a course ranged from 1 to 6 (see Table 2), with the vast 
majority teaching just one language. 

 
No. of languages 1 2 3 to 6 

Courses 37 4 3 

Table 2: number of languages in a course 

Some languages were only used for a short time during a 
course, with another language being used for most of the 
course. For example, in one case Alice was used for the 
first two weeks, followed by Java. If only these ‘primary’ 
languages are counted, 12 languages were used by 
instructors. One of these languages is "MaSH", a 
language created as a staged subset approach to Java 
(Rock, 2011). For the purposes of this study, this 
language has been counted as a variant of Java. The 
number and percentage of courses using each primary 
language, as well as the weighted percentage by students, 
are shown in Table 3. 

 

Language Courses %age 
Weighted 

by students 

Java 16 36.4% 38.4% 

Python 6 13.6% 19.2% 

C 5 11.4% 11.7% 

C# 4 9.1% 8.0% 

Visual Basic 4 9.1% 5.1% 

C++ 3 6.8% 4.8% 

Processing 2 4.5% 5.2% 

Alice 1 2.3% 0.9% 

Fortran 1 2.3% 3.9% 

Javascript 1 2.3% 1.5% 

Matlab 1 2.3% 1.3% 

Table 3: 2010 Languages 

The set of top three languages has changed since the 2003 
census. Java continues to hold the place of the most 
popular language, a result which is in accordance with a 
recent survey of programming courses in the USA 
(Davies et al. 2011). C++ and Visual Basic have 
decreased in popularity and fallen out of the top three. 
Python, under development since 1990, is the second 
most popular language in 2010, followed by C. 
According to the TIOBE programming language index 
(TIOBE Software 2011), industry use of Python had the 
greatest growth in popularity of any language in the years 
of 2007 and 2010. 

The relatively new language C# is the fourth most 
popular language, seemingly replacing Visual Basic, 
which has dropped to just 5.1% of student capture. This 
apparent replacement is not surprising, as both Visual 
Basic and C# are Microsoft products and C# is 
considered to be more modern and popular than Visual 
Basic (TIOBE Software 2011). 

A comparison of the language use across the 2001, 
2003 and 2010 studies is provided in descending order by 
percentage of courses (Table 4) and by student numbers 
(Table 5). 

 

Language 2001 2003 2010 

Java 40.4% 40.8% 36.4% 

Python 0.0% 0.0% 13.6% 

C 7.0% 12.7% 11.4% 

C# 0.0% 0.0% 9.1% 

VB 24.6% 26.8% 9.1% 

C++ 14.0% 11.3% 7.0% 

Processing 0.0% 0.0% 4.5% 

Fortran 0.0% 1.4% 2.3% 

Javascript 0.0% 0.0% 2.3% 

Matlab 0.0% 1.4% 2.3% 

Alice 0.0% 0.0% 2.3% 

Haskell 5.3% 4.2% 0.0% 

Eiffel 3.5% 1.4% 0.0% 

Delphi 1.8% 0.0% 0.0% 

Ada 1.8% 0.0% 0.0% 

jBase 1.8% 0.0% 0.0% 

Table 4: language comparison by courses 

Language 2001 2003 2010 

Java 43.9% 44.4% 39.0% 

Python 0.0% 0.0% 19.5% 

C 5.5% 10.6% 11.9% 

C# 0.0% 0.0% 8.2% 

Processing 0.0% 0.0% 5.3% 

VB 18.9% 16.4% 5.2% 

C++ 15.2% 18.7% 4.9% 

Fortran 0.0% 0.7% 3.9% 

Javascript 0.0% 0.0% 1.5% 

Matlab 0.0% 1.0% 1.3% 

Alice 0.0% 0.0% 0.9% 

Haskell 8.8% 6.0% 0.0% 

Eiffel 3.3% 2.1% 0.0% 

Delphi 2.0% 0.0% 0.0% 

Ada 1.7% 0.0% 0.0% 

jBase 0.8% 0.0% 0.0% 

Table 5: Language comparison by students 

Figures 1 and 2 chart the changes in popularity of the top 
4 languages in each of these three studies (Java, VB, C++ 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

35



and Haskell in 2001, Java, VB, C++ and C in 2003, and 
Java, Python, C  and C# in 2010), by percentage of 
courses offering the language, and then weighted by 
students. 

 

Figure 1: Top 4 languages of each study  

(by %age of courses) 

 

Figure 2: Top 4 languages of each study 

(weighted by student numbers) 

3.5.2 Reason for choice of language 

Instructors were asked in the 2001 census and the 2010 
study about the reasons for their choice of language. 
More than one reason could be offered. 

In 2001 the most commonly provided reason for 
choosing a language was industry relevance and/or 
marketability to students (with 56.1% of participants 
identifying this as a reason). The second most commonly 
provided reason for choosing a language was 
“pedagogical benefits”, with one third (33.3%) of the 
instructors presenting this as a reason for language 
choice. The results of the 2010 study presented a 
substantial shift in the frequency of these reasons being 
given for language choice, with industry relevance and 
marketability declining (to 48.8%) and pedagogical 
benefit rising (to 53.5%). 

The 2010 survey also identified the emergence of 
several new reasons. Instructors mentioned “the 
availability of a community and online help”, 
“extendability and libraries available”, “platform 
independence” (as opposed to “limitations of 

OS/machines” as in the 2001 census), “ease of 
installation”, and “interpreted language”, with no need to 
compile. Some of these reasons reflect the rise of the 
open source community over the time period, as well as 
perhaps a greater choice of operating systems by students. 
Table 6 shows the change in percentages of instructors’ 
reasons for language choice between 2001 and 2010, 
ordered by frequency in 2001. 

 

Reason 2001 2010 

Used in industry / marketable 56.1% 48.8% 

Pedagogical benefits of language 33.3% 53.5% 

Structure of degree/dept politics 26.3% 32.6% 

OO language 26.3% 16.3% 

GUI interface 10.5% 7.0% 

Availability/Cost to students 8.8% 4.7% 

Easy to find appropriate texts 3.5% 2.3% 

OS/Machine limitations of dept 1.8% 4.7% 

Online community and help available 0% 9.3% 

Platform independence 0% 9.3% 

Extensions/Libraries available 0% 7.0% 

Interpreted language 0% 4.7% 

Ease of installation 0% 2.3% 

Table 6: Reasons for language choice 

Figure 3 shows the comparative frequencies of reasons 
given in the 2001 census with the 2010 results, ordered 
by the 2010 results.  

 

 

Figure 3: Trends in reasons for language choice 

This figure clearly shows that although “industry 
relevance and marketability to students” is still seen as 
important, the reasons for choosing a language have 

CRPIT Volume 123 - Computing Education 2012

36



shifted to be more strongly inclusive of pedagogical 
factors associated with both ease of learning and 
availability of support. 

The intersection of industry relevance and pedagogy 
can be seen in the reasons given by those instructors who 
chose Python as their teaching language. As previously 
noted, Python is one of the more popular languages 
according to the TIOBE Programming Community Index 
(TIOBE Software 2011), which indicates the popularity 
of programming languages in industry (numbers of 
skilled engineers world-wide and third-party vendors) and 
in training courses. However all of the instructors who 
chose Python commented that the reason they chose the 
language was because it was perceived as easier for 
students to learn. Only one instructor gave ‘industry 
relevance’ as a secondary reason for the choice of Python, 
and this was due to its association with the Google Apps 
engine. The comment was also made that “we have to 
cater for prep [sic] students and keep IT students happy, 
so we have to find a balance between these”. 

The reason “structure of degree/department politics” 
was the only other reason given in 2001 that increased in 
frequency in the 2010 study. As previously mentioned, in 
several cases two or more introductory programming 
courses in various disciplines such as engineering, 
business and computer science had been merged into one 
course. The language that was chosen for this one course 
became either a legacy language from one of the previous 
courses, or a language chosen to try to cater to a broader 
profile of students pushed into a narrower stream of 
programming teaching. Several instructors expressed 
frustration at the need to cater to a range of students with 
differing backgrounds, experience and capabilities. 
Typical comments included “We see students with a 
range of skills - from no experience to some with some 
computing in high school” and “IT students are not the 
same as CS students”. 

3.6 Paradigm taught 

In common with the 2001 and 2003 censuses, the 2010 
study showed that most instructors choose to teach using 
a procedural paradigm. Some instructors - 8 from the 44 
interviewed - also reported that they taught primarily 
procedurally but introduced some object-oriented 
concepts. For example, they may mention objects or use 
the other terminology of object-oriented programming to 
prepare students for further courses that covered OO 
programming. Some used objects but “in a procedural 
way”. For the purposes of comparison and consistency 
with previous studies, these have been designated under 
the procedural paradigm. 

Some instructors described how they used either a mix of 
paradigms - for example they started with procedural and 
then used the last 6 weeks to cover OO concepts - or 
suggested that they taught more than one language and 
taught each language in different ways. The number of 
courses teaching in each paradigm is given in Table 7.  

Longitudinal trends in paradigms taught are shown in 
Figure 4. The downwards trend in the numbers of 
instructors teaching objects-first is clearly shown and the 
use of the functional paradigm has nearly disappeared. 

 

 
Paradigm Courses %age 

Procedural 24 54.5% 

Object-Oriented 11 25.0% 

Mixture 8 18.2% 

Functional 1 2.3% 

Table 7: Paradigms taught 

 

Figure 4: Trends in paradigms taught 

3.7 On-campus hours 

Instructors were asked about the time that on-campus 
students spent in lectures, tutorials and practicals each 
week. Although the average hours spent in each did not 
differ greatly from 2003 (see Table 8), several institutions 
stated that they either have no lectures at all, instead 
presenting in a more interactive ‘workshop’ format, or 
that all lectures were available only online via online 
classroom software and/or audio or video recordings. 
Most instructors commented that all course materials 
were available online and that often students did not 
attend classes, instead choosing to download materials 
from home, even when the course was not offered by 
distance education. 

Several interviewees commented on the success of the 
‘workshop’ approach: “Workshops are a much more 
successful way of teaching programming. Give them 
small bits and then have them do it straight away.” 

 

  Lecture Tutorial Practical TOTAL 

2003 2.2 0.6 1.8 4.6 

2010 2.1 1.1 1.2 4.4 

Table 8: Hours in class on-campus 

3.8 Instructor Experience 

Instructors were asked how many years they had taught 
introductory programming. The average amount of 
experience has risen since 2010 (see Table 9). However it 
should be noted that casual teachers were often not 
available for interviews, and this may have skewed the 
results. 

 
 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

37



  Minimum Average Std Dev Maximum 

2003 0.5 8.6 7.2 30 

2010 2 12.3 7.3 30 

Table 9: Instructor experience in years 

3.9 Texts used 

Of the 44 courses in this current study, 11 used no text at 
all, and many instructors commented that they 
encouraged students to use online resources or to find 
their own text. Most of the remainder used language, or 
environment-specific texts, with no real commonalities. 
Four more generic texts - “Connecting with Computer 
Science” (Anderson, Hilton and Ferro 2010), “Simple 
Program Design” (Robertson 2000), “Programming 
Language Concepts” (Sebesta 2007) and “A simple and 
generic introduction to OO Algorithm Design” (Robey 
undated) - were used, each in only one course. 

3.10 Problem Solving Strategies 

Instructors were asked how much time they dedicated 
during class time to teaching and discussing problem 
solving strategies within the context of programming. 

The average percentage time given to problem solving, 
along with standard deviations, have remained stable 
from 2003 to 2010, and are presented in Table 10. The 
percentage of times given to problem solving in both 
lectures and tutorials remain unchanged in this period. 

 
  Lecture Tutorial 

  Average Std Dev Average Std Dev 

2003 29% 22% 46% 36% 

2010 29% 26% 44% 33% 

Table 10: percentage of class time dedicated to 

problem solving 

It is worth noting that while the means between years 
are very close for both lectures and tutorials, the standard 
deviations on these measures are relatively large, 
indicating substantial variations between different courses 
in how much time they dedicate explicitly to problem 
solving. 

Some participants indicated that ‘problem solving’ had 
been moved into a separate course and so did not deal 
with these strategies in the programming course. In 
contrast, others stated that problem solving was implicit 
in everything they did in the lectures and tutorials, 
although they did not explicitly teach problem solving 
strategies. 

Although the average percentage of time given to 
focusing upon problem solving has remained static from 
2003 to 2010, there may be differences in how problem 
solving is embedded within curriculum structures, 
classroom delivery and learning activities between these 
two dates. This information, however, lies beyond the 
bounds of the current paper. 

3.11 IDEs and tools 

3.11.1 Choice of IDE/tools 

Some languages (including Alice and Processing) require 
the use of a specific environment. Instructors who did 
have a choice of environments or tools chose a wide 
variety or none at all. Microsoft Visual Studio was the 
most popular IDE. The use of the teaching environment 
BlueJ continued to increase, from 4% in 2001 to 17.5% in 
2010. Within the ‘other’ category, note should be made of 
the "IDLE" IDE (for use with Python), at 12.5% and 
Eclipse, used by 7.5% of instructors. 

The largest change has been the movement away from 
using text editors and command line compilers only - 
from approximately 45% of these instructors using no 
IDE/tool in 2001 and 2003, to just 20% in 2010. Figure 5 
shows the trends in environment use over the course of 
the three studies. 

 

Figure 5: Trends in environment use  

Two instructors reported using a specialised learning 
environment (such as Alice or BlueJ) for an initial part of 
the course, followed by a more industry-standard IDE 
such as Visual Studio or Eclipse. Others used the learning 
environment throughout the first programming course. 

3.11.2 Reasons for choice of environment 

At the time of the 2003 census, most instructors were 
choosing to not use an IDE, if they were not forced to do 
so by their choice of language. Anecdotally this was due 
to the perceived overhead of instructing students on that 
tool, hence instructors preferred to use a simple editor and 
command line compiler. During the 2010 study, 
instructors were directly asked about the reason or 
reasons that they had chosen a particular IDE or tool. The 
top 10 reasons for choosing an environment/tool 
(excluding those where the language is part of the 
environment, such as Alice and Processing) is given in 
Table 10. 

Other reasons included “associated text is very good”, 
“cross-platform”, “plugins available”, “ease of 
installation” and “GUI”. Some instructors offered reasons 
as to why they did not choose to use an IDE, even though 
this was not explicitly asked as part of the study. These 
included “students need to become familiar with the 
command line” and “we don’t have time for that”. 

CRPIT Volume 123 - Computing Education 2012

38



 

Reason Count % courses 

Pedagogical reasons 15 41.7% 

Packaged with language 14 38.9% 

Cost to students 13 36.1% 

OS limitations of dept. 7 19.4% 

Uncomplicated/Ease of use 6 16.7% 

Industry relevance 4 11.1% 

Supports OO paradigm 4 11.1% 

Visual cues/Visual debugger 4 11.1% 

Student motivation 3 8.3% 

Open source 3 8.3% 

Table 10: Top 10 reasons for environment choice 

The most frequent reason given for choice of 
environment (provided by 41.7% of instructors) was 
pedagogically-based. This is consistent with the reasons 
provided by participants for choice of language, where 
pedagogical reasons was also identified as the most 
frequent reason for choice (of language). 

Associated comments offered by instructors 
emphasised that some environments assisted learning by 
allowing students to concentrate on the concepts of 
programming, rather than the specifics and nuances of a 
language: 

• “can think about objects instead of thinking about 
the language itself”; 

• “[an] introduction without the stress of having to 
worry about syntax rules. It reinforces what 
happens when you use a loop so the frog jumps 
once or it just keeps jumping. You have to 
understand the concept, so its concept 
reinforcement.”; 

• “We found in the past that students were having 
trouble with understanding what all the features of 
the main method are, and some of the initial 
concepts we had to abstract away – we had to say 
‘treat this as magic, you have to do it’”; 

• “...mostly to encourage students who have no 
programming background, and strengthens the 
concepts of loops, and iterations and all those 
things”. 

Some instructors stressed that the environment chosen 
was simple whilst still including tools to reduce the 
complexity of compiling and building: 

• “it’s really a smarter text editor with buttons for 
compiling and building. Nothing like Visual 
Studio or Eclipse. …so we can concentrate on 
language syntax”; 

• “To reduce the amount that students had to learn 
in order to get to the heart of programming”; 

• “just its simplicity”; 

• “simple, not confusing”. 
Others pointed at an IDE's perceived intrinsic 

superiority to simple editors/command line compilers, 
due to the inclusion of helpful tools: 

• “why get them to travel by horse when they can 
travel by car?”; 

• “the tools that it provides for students are 
wonderful compared to using just a basic text 
editor - they offer nothing”. 

There has been an apparent shift from viewing the use 
of an IDE as an additional overhead, to seeing it as 
reducing the amount a student has to learn, or as a tool to 
help the student to learn. Whether this viewpoint is 
correct is debatable, and may be a function of what is 
being taught (central concepts to programming in general, 
or a language specific syntax), the student’s ability and 
experience, and aspects of the language or environment 
itself. 

3.12 Mental effort 

3.12.1 Novice programming, mental effort and 

cognitive load 

Mental Effort refers to the level of conscious focus of 
attention one has to give to a task, whether it is cognitive, 
physical, or a bit of both (Paas et al. 2003). 

International educational and scientific computing 
body 'The Association for Computing Machinery (ACM)' 
(2008) suggests that learning the three generic concepts 
of sequence, iteration and selection is an integral part of 
all first programming courses. A novice programmer will 
need to acquire this knowledge base as schemas (Chase & 
Simon 1973) and automate them, whereby they can be 
applied with relatively low levels of conscious attention 
(Cooper & Sweller 1987). 

Novice programming problems that require the student 
to learn and use any of these three concepts can be said to 
have three sources of mental effort: 

• understanding the problem and what is required, 
and deciding on the best structures to use to solve 
the problem;  

• navigating and using the environment, tools and 
language, in an attempt to solve the problem; and  

• learning how to best use these structures so they 
can be used in further, more difficult problems. 

These three aspects equate to three identified sources 
of cognitive load on working memory while learning: 
intrinsic, extraneous and germane (Sweller, van 
Merrienboer & Paas 1998). 

Intrinsic cognitive load refers to the innate relative 
difficulty of a body of to-be-learned information. It is 
effectively set, defined by the content. 

Extraneous cognitive load refers to the load generated 
by the format of instructional materials and/or to the 
performance of learning activities. Some formats and/or 
activities hinder learning by loading the learner with 
unnecessary information and/or tasks. This source of 
cognitive load is variable, determined by the learning 
materials. 

Germane cognitive load refers to load devoted to the 
processing, construction and automation of schemas - 
knowledge structures in long-term memory. This is not 
simply a measure of motivation, but refers to the 
dedicated commitment of cognitive resources to the 
successful process of cognitive acquisition of new to-be-
learnt information. 

The general strategy sought in many instructional 
settings is to reduce extraneous load, and to direct the 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

39



subsequently released cognitive resources towards the 
germane efforts associated with schema acquisition and 
automation. The term ‘mental effort’, defined above, is 
used in the current study as a means of evaluating the 
cognitive load (Sweller 1998) associated with various 
aspects of learning programming. 

3.12.2 Measures of mental effort 

Instructors were asked about the three sources of mental 
effort expended whilst solving a novice programming 
problem: 

• understanding and processing the problem 
statement, 

• navigating or using the environment, tools or 
language, and 

• learning from the problem and reinforcing 
previous concepts. 

Instructors were asked to rate their own levels of 
mental effort on each of these three factors using a 9 
point Likert scale, where 1 = "no mental effort" and 9 = 
"extreme mental effort". Instructors were subsequently 
asked to rate their expectations regarding these three 
factors of mental effort for an average student in their 
introductory programming course, and then again, for a 
student in the “bottom 10%” of the course performance. 

Table 11 shows the mean, median and mode for each 
of these cognitive load areas, for instructors, the average 
student and students in the ‘bottom 10%’. 

 

    
instructor 

average 
student 

bottom  
10% student 

in
tr

in
s
ic

 

mode 2 6 9 

median 2 6 8.5 

mean 2.8 6.0 7.8 

std dev 1.8 1.6 2.1 

e
x
tr

a
n

e
o

u
s
 mode 2 5 9 

median 2 5 8 

mean 2.4 4.9 7.7 

std dev 1.1 1.5 1.3 

g
e
rm

a
n

e
 

mode 2 7 9 

median 2 5.5 8.5 

mean 3.2 5.6 7.6 

std dev 2.1 1.9 2.3 

Table 11: Levels of mental effort 

Note that there were some participants who did not 
quantify a response for an aspect of this series of 
questions, particularly for the ‘bottom 10%’. Instead they 
offered comments and discussion. These are removed 
from this first series of analyses, and are beyond the 
scope of the current paper, but will be explored in a 
further paper. 

3.12.3 Comparisons of mental effort 

For each of these three areas of cognition (understanding 
the problem statement, using the environment, and 
reinforcing previous concepts) a series of Wilcoxon 
Signed Rank tests were performed, firstly comparing the 

self-rating of the instructor to that anticipated to be 
experienced by an ‘average student’, and then comparing 
the anticipated level to be experienced by an average 
student to one who is in the “bottom 10% of students”. 

Table 12 shows the results, using Wilcoxen Signed-
rank test (one-tailed) for all measures: 

In summary, these results indicate that for each of 
these three sources of cognitive load, the instructors in the 
introductory programming courses rated their own levels 
of required mental effort to be low, and that they 
expected that average students would need to exert higher 
levels of mental effort than themselves - ‘above average’. 

Additionally, for each of these three sources of 
cognitive load, the participants rated the anticipated 
mental effort to be experienced by a student in ‘the 
bottom 10%’ to be higher again, compared to an average 
student, in the rating of high to extreme mental effort. 

 

Instructor -> average student (greater mental effort) 

  W Ns/r z p n 

Understanding and 
processing the problem 
statement 

811 43 4.39 <0.0001 43 

Navigating/using the 
environment, tools or 
language 

838 41 5.43 <0.0001 43 

Learning from the 
problem/ reinforcing 
previous concepts 

647 40 4.34 <0.0001 42 

Average -> bottom 10% student (greater mental effort) 

  W Ns/r z p n 

Understanding and 
processing the problem 
statement 

207 24 2.95 0.0016 25 

Navigating/using the 
environment, tools or 
language 

276 23 4.19 <0.0001 25 

Learning from the problem/ 
reinforcing previous 
concepts 

144 20 2.68 0.0037 21 

Table 12: Wilcoxen Signed-rank test 

Average students need to “work harder” with their 
cognitive resources than the lecturer, and for less able 
students this is further exacerbated. This indicates that it 
is unlikely that these students will learn effectively, no 
matter how much effort they may put in. 

Further research is needed to explore the reasons why 
some students struggle and the ways in which various 
environments and/or languages may aid or hinder 
learning these generic concepts in programming. 

4 Further discussion 

The shrinking number of students enrolled in introductory 
programming courses continues to be a concern. Average 
numbers of students per course have approximately 
halved in the 10 years since the first census was 
conducted. This is echoed by the ACS (2010) figures 
which show a drop in domestic ICT enrolments of 57% 
over the time period 2001 to 2008.  

However ICT enrolments in Australian universities 
stayed relatively constant over the time period 2006 - 
2008 (the latest figures available), primarily as a result of 
an influx of international student enrolments (ACS 2010). 
At the time of the latest figures in 2008, over 60% of the 
ICT enrolments at Australian universities were 

CRPIT Volume 123 - Computing Education 2012

40



international students, and the number of domestic ICT 
students were still decreasing (Table 13). 

 

  Domestic International Total 

2006 8198 44.8% 10087 55.2% 18285 

2007 7839 43.0% 10384 57.0% 18223 

2008 7470 38.6% 11896 61.4% 19366 

Table 13: ICT enrolments 2006 - 2008 

Languages taught in Australian universities continue to 
be dominated by Java, however there is a much wider 
diversity of languages than at the time of the last census. 
Instructors were also asked whether they had plans to 
change the first language, and although only four from 44 
answered affirmatively, four others communicated that a 
change was being considered. 

Languages that are seen as particularly beneficial for 
learning purposes (rather than for industry use) are 
becoming more popular, such as Python, Alice and 
Processing. This is supported by the stated reasons for 
choice of language or languages - even though “industry 
relevance” is still important, pedagogical factors were the 
reason for most instructors’ language choice.  

Of interest were the few courses that introduced 
novice users to three or more languages. The choice of 
several languages was either made because students 
needed to know these languages for further units, or as an 
attempt to show similarities in constructs and approaches 
in programming problem solving, despite differences in 
syntax and development environment. The mental effort 
results reported in this study suggest that for novices and 
in particular, for less able students, this latter approach is 
problematic at best, resulting in excess cognitive load and 
ineffective learning. 

Online communities and resources have become more 
important. There were 9.3% of instructors gave “online 
community/help” as a factor in their choice of language, 
and a quarter of instructors set no text, many commenting 
that they encouraged students to use online resources. 

Another change that has appeared since the last 
running of census is that students are anecdotally using a 
wider range of operating systems, and this has influenced 
instructors’ choice of languages and environments. 
“Platform independence” was given as a reason for 
language choice by 9.3% of instructors, and was also 
mentioned as a factor in choice of IDE choice. 

The focus on the object-oriented paradigm and the 
objects-first approach to learning programming appears to 
have reduced since the 2003 census. Those teaching 
objects-first dropped from 36.6% of courses in 2003 to 
just 25% in 2010. In addition, the reason “object-oriented 
language” for language choice was given by just 16.3% 
of instructors in 2010 compared to 26.3% in 2001. 
Interestingly, the use of BlueJ, an environment which 
supports the teaching of objects-first using Java, 
increased from 4% of courses to 17.5% over the same 
period. 

The shifts towards greater emphasis upon pedagogy 
and pedagogical reasons for choices of languages and 
environments invites further exploration into some of the 
cognitive overheads experienced by students, particularly 

less able students in the cohort. The mental effort 
measures and differences reported in this paper indicate 
that instructors are aware of the higher levels of mental 
effort experienced by average students over that 
expended by themselves solving the same problem, and 
that less able students are in many cases experiencing 
‘extreme’ cognitive load while trying to solve novice 
programming problems. 

Most instructors indicate that the ‘bottom 10%’ of 
students may represent more than one student profile - for 
example, those who are trying but failing to succeed, 
those who don’t try, and those who are absent. These 
comments are explored further in a separate paper. 

5 Further work 

The numbers of students enrolled in introductory 
programs, as well as domestic ICT enrolments as a 
whole, continue to trend downwards, and more 
investigation is required to determine why this is 
happening. 

Several participants in this study suggested that their 
courses had been formed by the amalgamation of more 
than one course that was originally part of computer 
science, information technology, engineering or business 
programs. An exploration of the current percentages of 
each cohort of students in these new courses, and their 
relative success would be of interest. 

The authors of this paper are also exploring the 
implications of cognitive load, and its three primary 
sources, being intrinsic to the complexity of the content, 
extraneously related to the instructional materials and 
environments, which for programming includes the role 
of languages and environment, and germanely through 
the conscious, deliberate, focus of attention to the 
acquisition and automation of associated schemas. 

Ironically, the students who are most in need of 
acquiring and automating schemas, those in the lower end 
of ability in a student cohort, are those that are least 
capable of doing so, due to excessive levels of cognitive 
load. Of primary interest is the potential for selection of 
language and environment to hold the potential of 
lowering a source of extraneous cognitive load, to thus 
free cognitive resources for application to germane usage, 
with the intent of facilitating learning. 

6 Acknowledgements 

The authors would like to thank the participants in this 
study for their involvement. 

7 References 

Anderson, G., Hilton, R.  & Ferro, D. (2010): Connecting 
with Computer Science. 2nd Ed. Cengage Learning. 

Association for Computing Machinery (2008): 
Computing Curricula - Information Technology 2008. 
Curriculum Guidelines for Undergraduate Degree 
Programs in Information Technology. 
http://www.acm.org//education/curricula/IT2008 
Curriculum.pdf. Accessed 29 Aug 2011. 

Australian Computer Society (ACS) (2010): Australian 
ICT Statistical Compendium 2010, 
http://www.acs.org.au/2010compendium Accessed 18 
Mar 2011. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

41



Bruce, K.B. (2005): Controversy on how to teach CS 1: A 
discussion on the SIGCSE-members mailing list. 
Inroads - The SIGCSE Bulletin 37: 111-117. 

Chase, W.G. & Simon, H.A. (1973): Perception in chess. 
Cognitive Psychology 4 (1): 55–81. 

Cooper, G., & Sweller, J. (1987): Effects of schema 
acquisition and rule automation on mathematical 
problem-solving transfer. Journal of Educational 

Psychology 79 (4): 347–362. 

Cooper, S., Dann, W. and Pausch, R. (2003): Teaching 
objects-first in introductory computer science. Proc. 

ACM 34th SIGCSE technical symposium on Computer 

science education, New York NY, USA, 191-195, 
ACM Press. 

Davies, S., Polack-Wahl, J.A. & Anewalt, K., 2011. A 
snapshot of current practices in teaching the 
introductory programming sequence. SIGCSE  ’11 

Proceedings of the 42nd ACM Technical Symposium 

on Computer Science Education. ACM Press, pp. 625 - 
630.  

De Raadt, M., Watson, R. and Toleman, M. (2002): 
Language trends in introductory programming courses. 
Proc. Informing Science and IT Education Conference, 

Cork, Ireland, Cohen, E. and Boyd, E. (Eds). 
InformingScience.org 

De Raadt, M., Watson, R. and Toleman, M. (2004): 
Introductory programming: what's happening today and 
will there be any students to teach tomorrow? 

Proceedings of the sixth conference on Australasian 

Computing Education. Dunedin, New Zealand, 30:  , 
Australian Computing Society, Inc. 

DEEWR (2011): Australian Jobs 2011. 
http://www.deewr.gov.au/Employment/ResearchStatist
ics/Pages/AustralianJobs.aspx. Accessed 22 Aug 2011. 

Kelleher, C. and Pausch, R. (2005): Lowering the barriers 
to programming: A taxonomy of programming 
environments and languages for novice programmers. 

ACM Computing Surveys (CSUR), 37(2):83-137. ACM 
Press. 

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., 
Hagam, D., Kolikant, Y. B., Laxer, C., Thomas, L., 
Utting, I. and Wilusz, T. (2001): A multi-national, 
multi-institutional study of assessment of programming 
skills of first-year CS students. ACM SIGCSE Bulletin. 

33(4):125-180. 

Paas, F.G.W.C & van Merrienboer, J.J.G. (1993): The 
efficiency of instructional conditions: An approach to 
combine mental-effort and performance measures" 
Human Factors 35(4): 737-743. 

Paas, F, Tuovinen, J. E., Tabbers, H. & Van Gerven, 
P.W.M. (2003): Cognitive Load Measurement as a 
Means to Advance Cognitive Load Theory. 
Educational Psychologist. 38(1):63-71. Lawrence 
Erlbaum Associates, Inc. 

Robey, M. (undated): A simple and generic introduction 
to OO algorithm design. Self-published. 
http://www.computing.edu.au/~mike/ST151Book.pdf 
Accessed 24 Aug 2011. 

Rock, A. (2011): MaSH (Making Stuff Happen). 
http://www.ict.griffith.edu.au/arock/MaSH/ Accessed 
23 Aug 2011. 

Robertson, L.A. (2000): Simple Program Design. Nelson 
Australia. 

Sebesta, R. (2007): Programming Language Concepts. 
Addison Wesley. 

Sweller, J. (1988): Cognitive load during problem 
solving: Effects on learning. Cognitive Science 12 (2): 
257–285. 

Sweller, J., Van Merriënboer, J., & Paas, F. (1998). 
Cognitive architecture and instructional design. 
Educational Psychology Review 10 (3): 251–296. 

TIOBE Software (2011): TIOBE Programming 
Community Index - Long Term Trends. 
http://www.tiobe.com/index.php/content/paperinfo/tpci
/index.html. Accessed 22 Aug 2011. 

 

CRPIT Volume 123 - Computing Education 2012

42



Teaching Novice Programming Using Goals and Plans in a Visual 

Notation 

Minjie Hu 
Department of Information Science 

University of Otago 

PO Box 56, Dunedin 9054 

minjiehu@infoscience. 

otago.ac.nz 

Tairawhiti Campus 

Eastern Institute of Technology  

PO Box 640, Gisborne 4010  

New Zealand 

mhu@eit.ac.nz 

Michael Winikoff 
Department of Information Science 

University of Otago  

PO Box 56, Dunedin 9054  

New Zealand 

mwinikoff@infoscience. 

otago.ac.nz 

Stephen Cranefield 
Department of Information Science 

University of Otago  

PO Box 56, Dunedin 9054  

New Zealand 

scranefield@infoscience. 

otago.ac.nz 

 

 

 

Abstract 

Introductory programming courses have been continuously 

reported as having a high rate of failure or withdrawal. 

This research aims to develop a new approach for teaching 

novice programming, which is both easy to introduce and 

effective in improving novice learning. Our approach 

combines three key ideas: using a visual programming 

language; using strategies, specifically using the concepts 

of ―goal‖ and ―plan‖; and having a well-defined process. 

We present a way of representing goals and plans in a 

visual notation together with a plan library that we 

developed in a visual programming environment (VPE). A 

key feature of the approach is that a design, i.e. an 

unmerged ―plan network‖, is executable and can be tested, 

giving feedback in the VPE. Furthermore, we describe a 

detailed process for using existing plans and building new 

plans in the VPE. This approach had been evaluated 

experimentally and the results indicated its potential to 

significantly improve teaching programming to novices. 
 

. 

Keywords:  Goal, Plan, Visual Notation, Process of 

Programming. 

1 Introduction 
Although a wide range of approaches have been proposed 

to improve novices’ learning of programming (Kay et al. 

2000, Pears et al. 2007, Robins, Rountree, and Rountree 

2003, Rößling et al. 2008), there continues to be a high 

rate of failing or withdrawing from the first programming 

course (Lahtinen, Ala-Mutka, and Järvinen 2005, Sykes 

2007). A number of reasons have been proposed for this, 

such as ―fragile‖ knowledge of programming concepts 

(Lister et al. 2004, McCracken et al. 2001), lack of 

problem-solving strategies and plans (de Raadt 2008, 

Winslow 1996), and lack of detailed mental models (du 

Boulay1989,   Winslow 1996). There seems to be a broad 

consensus that ―novice programmers know the syntax and 

semantics of individual statements, but they do not know 

how to combine these features into valid programs‖ 

                                                           

Copyright © 2012, Australian Computer Society, Inc. This paper 

appeared at the 14th Australasian Computing Education 

Conference (ACE 2012), Melbourne, Australia, 

January-February 2012. Conferences in Research and Practice in 

Information Technology (CRPIT), Vol. 123. M. de Raadt and A. 

Carbone, Eds. Reproduction for academic, not-for profit 

purposes permitted provided this text is included. 

(Winslow 1996, page 17). This research therefore focuses 

on the heart of the matter: how to teach novices to 

construct programs. 

The basis for this work is the hypothesis that what is 

needed is a process that students can follow, along with a 

structured means of representing the parts of a solution 

using an easy-to-use notation. Specifically, we conjecture 

that combining goals and plans with a detailed process will 

yield an effective means for teaching programming. Our 

proposed approach thus combines three ideas: using a 

Visual Programming Environment (VPE), using goals and 

plans, and having a well defined process. This 

combination is novel and carefully motivated. We have 

chosen to use a VPE (Kelleher and Pausch 2005) 

(specifically Scratch
1
 (Resnick et al. 2009)) since VPEs 

aim to provide an attractive, easy, and fun way for novices 

to learn programming. In VPEs, such as Alice (Sykes 

2007) and Scratch, programs are built by dragging and 

dropping statement blocks, which helps to prevent syntax 

errors and avoids the need to learn and memorize syntax. 

The idea of goals and plans is based on the finding that 

experts use strategies to solve programming problems 

(Soloway 1986). We follow other researchers (de Raadt 

2008, Guzdial et al.1998) in using goals and plans. We 

represent them explicitly, by devising a visual notation for 

goals and plans, and extending the Scratch language with 

an explicit representation for plans. Finally, we define a 

detailed process to guide novices through the activities of 

programming. This process is not just a high-level 

sequence of steps, but includes detailed guidance for how 

to perform sub-steps in this process.  

The remainder of this paper is structured as follows. In 

Section 2, we discuss related work, in particular work that 

uses the goal and plan concepts and a programming 

process. Section 3 presents the explicit representation of 

goals and plans. In Section 4, a well defined programming 

process utilising an existing plan library is described, and 

in Section 5, a process for building new plans is given. 

Section 6 presents an evaluation of the proposed approach. 

Finally, we conclude in Section 7. 

2 Literature Review 
A goal is a certain objective that a program must achieve 

in order to solve a problem (Letovsky and Soloway 

                                                           
1
 http://scratch.mit.edu 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

43



Literature Study Goals Plans /Patterns 
/ Schemata 

Detailed 
Process 

Test /Debug Language 

Soloway and his colleagues (1980s & 90s) Yes Plans in Code Weak N/A Pascal 

Porter and Calder (2003) Weak Patterns in Code Weak No C 

de Barros et al. (2005) Weak Patterns in Code Weak Weak C 

Bielikova and Navrat (1998) Weak Schemata Weak No Prolog 

de Raadt (2008) Weak Plans in Code Weak No C 

Glaser et al. (2000) No No Yes Yes ML 

Felleisen et al. (2004) No No Yes Yes Scheme 

Caspersen and Kölling 2009 No No Yes Yes Java 

This Research Yes Plans in VPE Yes Yes Visual Programming 
Language 

Table 1: Comparison of related approaches 

1986), and a plan (Spohrer, Soloway, and Pope 1985) 

corresponds to a fragment of code that performs actions to 

achieve a goal. Goals and plans are key components in 

representing problems and solutions (Soloway 1986). 

In the 1980s, Soloway and his colleagues (Letovsky 

and Soloway 1986, Soloway 1986, Spohrer et al. 1985) 

discovered that experts have strategies to solve problems 

using their library of plans. They advocated teaching these 

strategies and plans explicitly so that novices could have 

sufficient instructions on how to ―put the pieces together‖. 

Concurrently, they proposed (Soloway 1986) to use a goal 

and plan ―language‖ for novices to explicitly construct 

their own plans. Moreover, a tool, GPCeditor (Guzdial et 

al.1998) was created that supported novices to write a 

program based on the decomposition and composition of 

goals and plans. However, there was not a detailed process 

to support the composition of pieces of plan code, and, 

furthermore, the tool’s evaluation did not clearly 

demonstrate a significant advantage.  

Similarly, pedagogical programming patterns were 

advocated by Porter and Calder (2003) by using small 

programming pieces in teaching novice programmers. 

Once again, a tool, ProPAT, was inspired by the idea of 

programming patterns (de Barros et al. 2005) allowing 

novices to insert code from the pedagogical patterns. 

However, there was weak support for how to apply these 

patterns in the goal analysis. Furthermore, there was not a 

detailed process of programming.  Earlier, Bieliková and 

Návrat (1998) attempted to teach students a set of standard 

structures (or program schemata) as well as a method for 

how to apply them, but there was only a weak description 

of the goals achieved by the schema, and testing and 

debugging were not supported.   

Recently, the goal and plan concepts have been taught 

as programming strategies in curricula by de Raadt (2008). 

Each strategy was also called a plan, which was basically 

pattern-like program code with examples.  This approach 

attempted to integrate plans to build the program code 

after explicitly introducing goals and plans. However, it 

lacked a detailed process of programming development 

from goals to program via plans. Firstly, there were no 

clear guidelines for performing goal analysis. Secondly, 

there was no well defined process for merging plans. 

Thirdly, debugging and testing were excluded from the 

strategies in the program implementation. 

As we have seen, a number of approaches that have 

used goals and plans have failed to provide detailed 

processes. On the other hand, there are approaches that 

have provided detailed processes, but they tended not to 

use the concepts of goals and plans. For example, 

―Programming by Numbers‖ (Glaser, Hartel, and Garratt 

2000) provides a clear process to create the smallest 

components of functions. It breaks the programming 

process into a series of well-defined steps and gives 

students a way of ―programming in the small‖.  A similar, 

but more detailed, systematic design method was applied 

by Felleisen et al. (2004) to produce well-specified 

intermediate products in a stepwise fashion called 

―TeachScheme‖. However, although both approaches 

emphasize the detailed process, the goal and plan concepts 

are not included. Additionally, both approaches are 

data-driven and more suited to functional programming 

languages than to mainstream procedural languages. More 

recently, a stepwise improvement process, STREAM 

(Caspersen and Kölling 2009), was developed as a 

conceptual framework with six major steps for teaching 

novice object-oriented (OO) programming together with 

five rules for implementing OO methods in order to break 

the task into smaller steps. 

Table 1 summarizes the related work in terms of 

whether it uses goals and plans, whether a detailed process 

is provided, and whether testing and debugging are 

supported. As can be seen, existing work tends to either 

use goals and plans, but not provide a detailed process for 

guiding novices; or it provides a detailed process but does 

not use goals and plans.  

3 Representing Goals and Plans 

In order to be able to develop designs in terms of goals and 

plans, we need to have a way of representing them. Using a 

VPE such as Scratch, it is thus crucial to develop a visual 

notation for goals and plans. 

3.1 The Visual Notation of Goals 
Every program has a certain number of goals to be 

accomplished. Our visual notation for goals distinguishes 

between three basic types of goals: Input, Process, and 

Output (see Figure 1). A simple program might have one 

goal of each type, and achieve these goals in sequence. 

More generally, a program may have multiple goals of 

each type, and these goals can be combined using a 

mixture of sequential and parallel composition.  This order 

is indicated graphically (see Figure 2), where the order of 

goal processing is left-to-right, and where goal 

decomposition is indicated by nesting. For example, 

Figure 2 shows that Goal 1 (an input goal) is followed by 

an unnamed goal which has been decomposed into three 

processing sub-goals: Goal 2 and 3 (which are achieved in 

CRPIT Volume 123 - Computing Education 2012

44



parallel), followed by Goal 4. These three goals are then 

followed by Goal 5 (an output goal). 

 

Figure 1. Notation for input, process and output goals 

 

Figure 2. Notation for goal ordering 

3.2 The Visual Notation of Plans 
The visual plans are built up in order to implement the 

blueprint of the goals, following the metaphor of a network 

of plans that communicate using dataflow.  

Each goal corresponds to a plan. Accordingly, there are 

three types of plans: input plans, process plans, and output 

plans. An input plan inputs data and then produces an 

output dataflow. Conversely, an output plan consumes the 

dataflow and displays it. A process plan consumes its input 

dataflow, and then processes it to produce a new dataflow 

in order to achieve the goal of the process.  

Each plan is represented by a plan block. Plan blocks 

(see Figure 3) are constructed using BYOB
2
, an extension 

to Scratch that allows you to Build Your Own Blocks. 

Each plan block has a unique name and parameter(s), 

including named ―plan ports‖ (either ―in‖ or ―out‖), which 

are used to connect the dataflow between the plans. A plan 

block also has an internal definition (not shown in Figure 

4) which is just a BYOB process, constructed from 

standard BYOB constructs and the provided scaffolding 

blocks (discussed below). A group of existing plan blocks 

are developed and called a visual plan library. The visual 

plan library supports novices in designing and 

implementing their program (see Figure 4). 

A set of visual plans can be linked by their dataflow 

ports to achieve a given set of goals (see step 2 in Figure 

6). The set of plans is viewed as a network where items of 

data ―flow‖ from one plan to another. The advantage of 

this ―plan network‖ model is that because plans are 

conceptually concurrent, there is no need to worry about 

the correct sequencing of plans. This allows the plan 

network to be executable even before the plans have been 

merged (see Section 4.2). 

In order to allow the plan network to be executable we 

have developed some special blocks which send and 

receive data to and from other plan blocks, and which 

indicate the linkage between the plan blocks. These blocks 

are referred to as ―scaffolding blocks‖ and they are used to 

define the linkages between plan blocks (and also to send 

and receive data between plan blocks – see Section 5). For 

example, a ―Begin Links‖ scaffolding block (See Figure 5 

and step 2 in Figure 6) is followed by a number of ―Link‖ 

scaffolding blocks, which capture the links between the 

plan blocks. Each ―Link‖ block links two plans by its two 

parameters. The first parameter indicates the out-port of a 

plan and the second parameter links this to the in-port of 

                                                           
2
 http://byob.berkeley.edu 

another plan. An ―End Links‖ block indicates the end of 

the collection of ―Link‖ blocks. A further example of using 

scaffolding blocks in the process of converting the 

plan-based solution into a single BYOB program will be 

illustrated in Section 4. The method of applying 

scaffolding blocks to construct new plan blocks will be 

described in Section 5. 

 

Figure 3. Example of plan blocks developed in BYOB 

 

Figure 4. Example of plan library developed in BYOB 

 

Figure 5. Scaffolding blocks for plan block linkage 

developed in BYOB 

4 The Process of Programming  

The process of programming from the visual notation of 

goals and plans to the final program consists of five steps: 

(1) analysing goals; (2) designing a network of plan 

blocks; (3) expanding the plan blocks; (4) merging the 

expanded plan details; and (5) simplifying the merged 

details (see Figure 6). The process is illustrated using the 

following example, which was also used by both Soloway 

(1986) and de Raadt (2008) to analyse goals and plans:  

Write a program that will read in integers and output 

their average. Stop reading when the value -1 is input. 

 

 Goal 2 

 
Goal 5  

 Goal 3 

 

Goal 1  

 

Goal 4 

 

Process 

Goal 

 

Input  

Goal  

 

Output 

Goal 

 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

45



 

 

 
 

 

3) Expanded Plan Details 

 

 

 

 

3 

4 

5 

1 

2 

2 

1 

3 

4 

5 

2) Design Using Executable Plan Networks 

1) Goal Analysis 

 Sum 

Goal 

 
Output 

Goal  

 Count 

Goal  

Input 

Goal  

 

Dividing 

Goal 

 3 

4 5 

2 

1 

Expanding 

Plan 

Details 

Merging 

Plan 

Details 

Designing 

by Plan 

Blocks 

4) Merged Plan Details 5) Final Program 

Figure 6. The process of programming from visual notation of goals and plans to the final program 

Simplifying 

Details 

CRPIT Volume 123 - Computing Education 2012

46



4.1 Analysing Goals 
Analysing goals involves identifying what goals the 

program needs to achieve. Typically these include at least 

one input, one output, and some number of processing 

goals, some of which may have sub-goals.  

Identifying goals is done by a process of problem 

decomposition. For example, in order to achieve the goal 

of displaying the average of a sequence of values, one 

needs to read input, compute the average, and then display 

it. These correspond to goals. The second goal, computing 

the average, can be decomposed further resulting in five 

goals (see step 1 in Figure 6). The first goal is to input the 

values to be averaged. The program then needs to obtain 

both a ―sum‖ and ―count‖ from these values. It then 

accomplishes the goal of dividing the ―sum‖ by the 

―count‖ giving the valid result ―average‖. Finally, the 

result will be displayed. Note that the goal notation is used 

purely as a design aid: we have not (yet) extended the 

BYOB tool to provide support for the goal analysis step. 

4.2 Designing a Network of Plan Blocks 

The network of plans is derived from the goal analysis by 

creating a plan for each goal, and deriving the dataflow 

based on the data requirements, in accordance with the 

goal ordering. For example, the dataflow starts from the 

―input‖ goal. The ―sum‖ goal is after the ―input‖ goal, and 

therefore data can flow from the ―input‖ plan to the ―sum‖ 

plan. Meanwhile data can also flow from the ―input‖ plan 

to the ―count‖ plan. After both goals of ―sum‖ and ―count‖ 

are achieved by the corresponding plans, the goal of 

―average‖ can be completed by a ―dividing‖ plan, 

consuming dataflow from both the ―sum‖ and ―count‖ 

plans. Finally, the goal of displaying the ―average‖ is 

reached by the ―output‖ plan according to the dataflow 

from the ―dividing‖ plan.        

Based on the goal analysis, five plan blocks will be 

applied to build up a ―plan network‖ in order to achieve 

these goals (see step 2 in Figure 6). The resulting design is 

captured using plan blocks and link blocks, with the plan 

blocks being listed in sequence, based on the ordering of 

the goals identified in the goal analysis (since the goals 

may not be in a strict sequence, the ordering is a partial 

one). A set of link blocks is then used to capture the links 

between plan blocks from out-port to in-port, based on the 

order of dataflow between them. For example, ―Link 

values1:out to sum:in‖ links the out-port of the ―input‖ 

plan to the in-port of the ―sum‖ plan. Meanwhile, ―Link 

values1:out to count:in‖ also connects the out-port of the 

―input‖ plan to the in-port of the ―count‖ plan. Therefore, 

the dataflow from the ―input‖ plan is copied and made 

available to both ―sum‖ and ―count‖. Conversely, the 

dataflows from the out-ports of both ―sum‖ and ―count‖ 

plans are joined together into the ―dividing‖ plan by the 

next two link blocks. Finally, the result is linked from the 

―dividing‖ plan to the ―output‖ plan. 

As noted earlier, a key feature of our approach is that 

this design can be tested by running the program 

containing the scaffolding blocks. Furthermore, the 

scaffolding blocks inside the plan block provide feedback 

if the parameters in the ―Link‖ block do not match the 

names in the plan block.  

4.3 Expanding the Plan Blocks 

Expanding plan blocks means replacing each plan block 

with the defined block details within it (see step 3 in Figure 

6).  Whereas the previous two steps, goal analysis and 

designing a network of plan blocks, require human thought 

and creativity, this step is purely mechanical and could be 

automated (although adding this support to BYOB is 

future work). 

The result of expanding the plan blocks is also 

executable and testable, which allows novices to obtain 

feedback rather than having to wait until the end of the 

process. Visualisation of dataflow through the plan-ports 

can be seen on the BYOB ―Stage‖ by stepping the blocks 

to provide feedback.  

4.4 Merging the Plan Details 

Merging plan details aims to combine the plan details of 

the different plans into one program that does not make 

essential use of the scaffolding blocks (although they are 

still present; see step 4 in Figure 6). The merge principle is 

presented as a set of rules and also demonstrated to 

students using examples. Although this process is clearly 

defined, it is somewhat complex, and providing tool 

support for the merging process is a key direction for 

future work. 

The basic steps of merging the plan details are: 

1. collect all the blocks that initialise variables, and 

put them at the start of the program, i.e. 

immediately after the ―End Links‖ block (e.g. the 

first two statements, ―set Sum to 0‖ and ―set 

Count to 0‖,  of the merged plan details in Figure 

6, step 4);  

2. next, put together the statements (including input 

statements) that initialise variables that are used 

in loop conditions (e.g. the 3rd and 4th 

statements, ―ask‖ and ―set‖, in the merged plan 

details in Figure 6, step 4); 

3. merge two loops when the second loop is 

―driven‖ by output from the first loop. 

Specifically, when the first loop outputs values 

via a port that is linked to an input port of a 

second loop, and the second loop has the 

structure ―repeat until NO MORE 

DATA?(in-port)‖. For example, the body of the 

―sum‖ Plan has a loop that gets data from an input 

port (―sum:in‖) which is linked to the output port 

of the ―input‖ plan (―values1:out‖). In other 

words, after the first loop from the ―input‖ plan 

sends data to the out-port ―values1‖, the first loop 

from ―sum‖ plan gets data from the linked in-port 

―sum:in‖. In other words the output from the first 

loop ―drives‖ the second loop. Thus, the loop 

from the ―input‖ plan is merged with the loop 

from the ―sum‖ plan. When merging loops, the 

statements in each of the loops are kept in order, 

with the statements from the second loop being 

placed after those from the first loop. An 

exception is (input) statements that affect 

variables used in the loop condition: these are put 

at the end of the loop. For example, the two ―set‖ 

statements from the second loop (―set Number to 

GET DATA sum:in‖ and ―set Sum to SUM + 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

47



Number‖) are put into the first loop after the 

original statement ―SEND DATA Number 

values1:out‖. However, the input statements 

―ask‖ and ―set‖ affect the loop condition, and so 

are put at the end of the merged loop. Similarly, 

the loop of the ―count‖ plan is also merged.  

4. any loop which is driven by reading a dataflow 

that will only have a single value can be 

simplified by replacing the loop with its body 

(e.g. the fourth and the fifth loops). 

Once more, the result of merged plan details is 

executable and testable with the values of variables being 

visible in the BYOB stage. 

4.5 Simplifying the Merged Details 

The last step in the process is to simplify the merged 

details. This is done by combining variables that deal with 

the same data but have different variable names, and then 

removing all the scaffolding blocks to obtain the final 

program.  The steps are:  

1. if a variable’s value is sent on an output port, and 

subsequently read from the linked input port into 

another variable, then the second variable should 

be consistently replaced with the first one. For 

example, consider the sequence ―SEND DATA 

Sum sum:out‖, and ―set Number1 to GET DATA 

dividing:in.dividend‖. Because the two ports are 

linked, the value of Number1 is taken from Sum, 

and so Number1 should be consistently replaced 

with Sum. Similarly, variable Number2 is 

replaced by variable Count; 

2. remove the use of ports and the associated 

scaffolding blocks (e.g. blocks from ―Begin 

Links‖ to ―End Links‖, all the ―SEND DATA‖ 

blocks, and all the blocks containing block ―GET 

DATA‖). This results in the final program shown 

in Figure 6. 

5 Build Your Own Plan Blocks 

The process presented in the previous section can be used 

by a novice programmer to develop a program using the 

plan blocks in the visual plan library. After the user has 

become familiar with the process of programming from 

goals and plans by using the existing plan blocks in BYOB, 

the next stage is to have them build their own plan blocks 

to add to the plan library. Since the input and output plan 

blocks can be used in most situations, the following only 

describes (very briefly) how to build process plan blocks. 

These are built using Scratch’s constructs (control flow, 

assignment, etc.) and three scaffolding blocks (see Figure 

7): NO MORE DATA? (in-port) which returns a ―true‖ 

or ―false‖ value to indicate whether there is any more data 

from the ―in-port‖; GET DATA(in-port) which returns a 

data value retrieved from the given ―in-port‖ of the current 

plan; and SEND DATA (value, out-port) which sends the 

data value to the linked plan(s) on the ―out-port‖. 

Creating a process plan block which produces a single 

value result can be done by following a pattern (see Figure 

8).  Firstly, it must have at least two parameters, ―in-port‖ 

and ―out-port‖, which have default values ―[plan 

name]:in‖ and ―[plan name]:out‖. Secondly, the plan block 

normally starts with the initialization of variables. Thirdly, 

a ―repeat until‖ loop retrieves a sequence of values from 

the in-port. The loop condition is whether there is more 

data from the in-port using the scaffolding block ―NO 

MORE DATA?‖. Fourthly, inside the loop body, the first 

thing is to get a value from the in-port using the 

scaffolding block ―GET DATA‖ and assign it to the 

variable initialized before the loop. Then it processes the 

value according to the algorithm of this plan, e.g. 

accumulating a running total for a Sum plan block. Finally, 

it sends the result to the out-port using the scaffolding 

block ―SEND DATA‖. The example of the Sum Plan 

block follows this pattern, and is built as in Figure 9. 

Similarly, when a process plan block produces a 

sequence of values to its out-port and each of the output 

values is directly related to a value from the in-port, the 

process of building the plan is similar to that above, but the 

last step of sending a value to the out-port is inside the loop 

body. For example, the Even Number Plan block is created 

to produce even numbers from a sequence of values as in 

Figure 10. 

 

Figure 7. Scaffolding blocks for constructing new 

plan block developed in BYOB 

Plan Name (in-port = [name of plan]:in), (out-port = [name 
of plan]:out) 

Initialize variable 

repeat until  < NO MORE DATA? (in-port) > 

 set (variable) to ( GET DATA (in-port)) 

Process variable according to the algorithm 

SEND DATA (variable, out-port) 

Figure 8. A pattern for a process plan  

   

Figure 9. The sum plan details 

 

Figure 10. The even plan detail 

 

6 Evaluation 

The approach described so far has been evaluated by 

having students use it. This section describes the 

evaluation setting, data collected, analysis method, and 

results. 

CRPIT Volume 123 - Computing Education 2012

48



6.1 Experimental Setting 

The first author taught novice programming at a 

polytechnic (equivalent to TAFE in Australia) from 1997 

to 2009. This teaching used a traditional approach where 

the constructs of a programming language (C++ before 

2000, and Visual Basic from 2000) were introduced and 

then flowchart and pseudocode were taught as techniques 

for program design. Desk-checking, testing and debugging 

were also taught. Although the author had introduced 

various teaching innovations over the years (Hu 2004), 

these pre-date 2006, and during the period which we 

consider (2006-2009), there were no significant changes to 

the teaching content or method.  

In 2011 the same author taught this course again using 

the proposed approach described in this paper. The first 

part of the course was still traditionally taught in terms of 

syntax, pseudocode, flowchart, desk-check, testing and 

debugging, but using BYOB. However, the second part 

followed the ideas proposed in this paper: teaching the 

ideas of goals and plans, and the process presented in 

Sections 4 and 5. The two parts were separated by a 

mid-term examination. After the mid-term examination 

the experimental method was introduced into the 

curriculum for four weeks, three hours per week, using the 

framework of the plan library and scaffolding blocks in 

BYOB.  

In both 2011 and in previous years students were 

heterogeneous with different age groups and academic 

background. They were taught interactively in a small 

class (held in a lab class) with a mixture of theory and 

practice. The assessments included converting from 

flowchart to pseudocode and also from pseudocode to 

flowchart as well as programming. Similar programming 

questions were used from year to year, such as calculating 

the sum and (positive or negative) count, or the average of 

a sequence numbers.  

In order to assess programming ability we collected the 

answers to the programming question in the final 

examination (and, for 2011, the mid-term test as well). We 

only considered the programming question (the 

examination also had other questions that did not assess 

the students’ ability to develop a complete program, the 

students could have done poorly on the programming 

question, but still may have done well on the examination 

overall). In all years (2006-2009, and 2011 in the mid-term 

and final examinations) the programming question was 

done on a computer, using a programming environment, 

rather than on paper. Note that a standard practice in 

polytechnics is that students who fail the examination are 

given a chance to re-sit the examination (some conditions 

apply). Where students took this opportunity, we only took 

results from their first attempt.  

The students’ answers on the programming question 

were re-marked using a common marking rubric. The 

criteria used were:  

1. identifying all the variables correctly, for 

example when calculating an average, important 

variables included ―sum‖ and ―count‖;  

2. correctly using fragments of key code, for 

example having code to count the number of 

values entered (but for this criteria we assessed 

the presence of essential code fragments, without 

requiring them to be combined correctly);  

3. combining code fragments correctly; and  

4. the final program being tested and bug free.  

Note that these criteria are cumulative in the sense that 

having a tested and bug free final program required the 

presence of correctly combined code fragments. A final 

score out of 100 was calculated by summing these four 

criteria. The weighting used was 10 for the first criteria, 40 

for the second, 30 for the third, and 20 for the final criteria. 

The distribution of students and their scores on the 

re-marked programming question in the examination is 

shown in both Table 2 and Figure 11. The wide range of 

performance, including both very low and very high 

scores, is typical of this sort of paper. The score results 

also support Caspersen and Kölling’s argument (2009) of 

ending up with ―two groups of students‖ with or without 

their own process.  The median and average (Table 2) are 

therefore not particularly useful, and the actual scores for 

the re-marked programming question (Figure 11) give a 

better picture of the performance of students in each year. 

Method Year Number of 
Students 

Average 
Scores 

Median 
value 

Conven-
tional 

Method 

2006 13 33.3 18 

2007 16 53.8 82.5 

2008 13 36.8 0 

2009 8 39.4 22.5 

Mid-term 
2011 

7 52.4 40 

Experi-
ment 

Method 

2011 8 84.8 100 

Table 2: Summary of Results 

We note that there appears to be a ceiling effect: for the 

2011 experimental method a number of students scored 

100%. This is not the case for the other cohorts, who were 

assessed using an equivalent instrument. The impact of 

this ceiling effect is therefore that it reduces the difference 

between the experimental group and the other groups. In 

other words, if we had used a measurement instrument that 

did not exhibit this ceiling effect, we would expect to see a 

more significant difference between the 2011 

experimental cohort and the other cohorts.   

6.2 Statistics Methodology 

The Kruskal-Wallis one-way analysis of variance by ranks 

(Kruskal and Wallis 1952) is a statistical test for 

measuring the likelihood that a set of samples all come 

from populations with the same probability distribution. It 

is a non-parametric test, which means that it does not make 

any assumptions about the shape of the underlying 

probability distribution. This is important for our study 

because the performance of novice programmers is known 

to not follow a normal distribution, so parametric analysis 

of variance techniques are not valid (especially as our 

sample sizes are small). The Kruskal-Wallis test is an 

―omnibus‖ test, which means that a single test is used to 

compare a number of statistics (the medians of the samples 

in this case). It is common to follow a significant omnibus 

test (i.e. if the null hypothesis is rejected) by a family of 

pairwise tests to gain more precise information about the 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

49



Distribution of Re-marked Programming Scores

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Student

S
c
o

re

Year 2011

Mid-term 2011

Year 2009

Year 2008

Year 2007

Year 2006

 

 Figure 11. Distribution of results 

causes of the significant difference. We do this using the 

Mann-Whitney U test, but we only consider the four 

comparisons between the samples from 2011 and each of 

the earlier years. This is because 2011 is the year in which 

the intervention we wish to measure was applied. 

In many cases these pairwise tests are ―post hoc‖ tests 

that were not pre-determined by the experimental design, 

and in this case it is necessary to adjust the individual test 

threshold values to reduce the overall chance of obtaining 

any false positive results (―type 1 errors‖) across the 

family of tests (since performing more tests increases the 

chance of obtaining significant results by pure chance). 

The adjustment can be done using various forms of the 

―Bonferonni correction‖. We use the Holm sequential 

Bonferonni method (Holm, 1979), which is less 

conservative than some other forms of adjustment. While 

we have used this technique (and still obtained a 

significant result), we note that our pairwise tests are not 

post hoc tests - they follow naturally from the nature of our 

experiment, and could arguably have been done without 

this adjustment. That would have resulted in a higher level 

of significance. Both Kruskal-Wallis test and 

Mann-Whitney U test tests have the same assumptions: 

1. The variables of student examination scores have 

a continuous distribution. Although our scores 

are not continuous, they are fine grained (out of 

100);  

2. The measurement scale of assessment score is at 

least ordinal, which clearly is the case here; 

3. Samples of student scores are independent from 

each year. We ensured this by checking for 

students who enrolled in the same course more 

than once, and only considered them the first time 

they participated in the course.    

4. Samples of each year’s scores (i.e. the different 

populations) are ―of approximately the same 

form‖ (Kruskal and Wallis 1952, page 585). In 

other words, these samples come from 

populations with the same shapes and spreads of 

distribution, or from populations with identical 

medians. Since there were no significant changes 

to the course content in 2006-2009, we have no 

reason to expect the distributions to be different, 

and the distribution of scores (Figure 11) do not 

appear to be significantly different.  

6.3 Hypotheses and Results 
Our analysis aimed to determine to what extent the new 

approach for teaching programming made a difference. 

However, in order to draw conclusions about any 

difference between the 2011 results and results from 

earlier years being due to the new teaching approach we 

need to rule out alternative explanations.  

In order to do this we developed two additional 

hypotheses. Firstly, we test the hypothesis that there is no 

significant variance within the years 2006-2009. If this 

hypothesis holds, then it suggests that differences due to 

variances in the cohort across years, or (slightly) different 

assessment questions are not significant. Secondly, we 

hypothesise that there is no significant difference between 

the earlier years and the 2011 mid-term test. If true, this 

suggests that any difference between the 2011 final results 

and earlier years are not due to differences between the 

2011 cohort and the cohorts in earlier years. It would also 

suggest that the use of BYOB was not, of itself, sufficient 

to explain any difference. This finding would support 

Lister (2011), who argued that using Scratch and Alice 

will allow novice programmers to make better initial 

progress compared to using other languages, but that 

without a ―pedagogical rethink of what should happen 

after these tools‖, there would still be issues when students 

are required to perform tasks that require transitive 

inference, such as realising that checking whether an array 

is sorted is equivalent to checking whether each pair of 

consecutive items are in order. In other words, visual 

programming languages may support novices to start 

programming. However, there must be a well defined 

pedagogical method to help novices bridge the gap to 

becoming experts. Finally, we hypothesise that there is a 

significant difference between the final results in 2011 and 

the results in previous years. 

Hypothesis 1:  The null hypothesis is that the 

examination scores from 2006 to 2009 come from 

populations with identical ―locations‖.  In other words, the 

median scores from each year are expected to not be 

significantly different.  

The p-value of the examination scores from 2006 to 

2009 by Kruskal-Wallis Test is 0.689 (> 0.05). It means 

there is not enough evidence to reject the null hypothesis. 

In other words, there are no significant differences in 

median scores in the past (2006-2009). This suggests that 

the examination results are similar in past years when 

teaching by the conventional method and that any 

differences of student cohort and variations of 

examination questions are not significant. 

Hypothesis 2:  The null hypothesis is that the mid-term 

examination scores of year 2011 and the examination 

scores from 2006 to 2009 also come from populations with 

identical ―locations‖.  In other words, the median scores in 

the past years and year 2011 mid-term are expected to not 

be significantly different. 

The p-value from the student scores in the mid-term 

examination of year 2011 and those from 2006 to 2009 is 

0.603 (> 0.05). This suggests that the examination results 

are similar in each year when still teaching by the 

conventional method despite differences of student cohort, 

variances of examination questions, and inconsistencies of 

computer languages (VB vs. BYOB). 

Hypothesis 3: The null hypothesis is that the final 

examination scores from year 2006 to 2009 and year 2011 

CRPIT Volume 123 - Computing Education 2012

50



come from populations with identical ―locations‖.   In 

other words, the median scores of year 2011 based on the 

experimental method and years in the past based on the 

conventional method are hypothesised to not be 

significantly different. 

The p-value from the student scores in the past 

examinations (2006 - 2009) and those from the final 

examination in 2011 is 0.031 (< 0.05). This shows a 

significant difference between the median examination 

score in 2011 and the examination scores in previous 

years, and provides evidence for rejecting Hypothesis 3. 

Since there is no significant difference in the past 

(Hypothesis 1), it implies that the difference comes from 

year 2011. Furthermore, since there is no significant 

difference between the past and the 2011 mid-term 

examinations (Hypothesis 2), it suggests that the 

difference comes from changing to different teaching 

methods after the 2011 mid-term examination.  

Since the above tests did not clearly indicate which 

year(s) causes the difference, we conducted paired 

comparisons. Because the Kruskal-Wallis Test on the data 

from all years except 2011 showed no significant 

difference (Hypothesis 1) we only considered paired 

comparisons between 2011 and other years (2006 -2009). 

We used Holm’s sequential Bonferroni method (Holm, 

1979) in order to reduce the chance of any type 1 errors. 

With this method the p-value (from smallest to largest) by 

Mann-Whitney U Test for each paired comparison needs 

to be smaller than its threshold p-value to be significant, 

where the threshold p-value is divided by (C-i+1), making 

the test more conservative. For example, the first test, 

which is the one with the lowest U-test p-value (comparing 

2011 and 2006) has a threshold p-value of 0.05/4; the 

second comparison has a threshold of 0.05/3, etc. The 

results of these Mann-Whitney tests (see Table 3) 

indicated significant differences of examination scores 

between the year 2011 and each individual year from 2006 

to 2009. 

Paired Comparisons 
( C= 4) 

Threshold  
p- value 

0.05/(C – i + 1 ) 

p-value by U 
test 

between 2011 to 2006 0.013 0.003 (<0.013) 

between 2011 to 2008 0.017 0.01 (<0.017) 

between 2011 to 2007 0.025 0.021 (<0.025) 

between 2011 to 2009  0.05 0.025 (<0.05) 

Table 3: Comparing Paired Examination Scores 

To summarise, through the analysis of past examination 

results we have seen a statistically significant 

improvement in student performance using our new 

approach. We have provided evidence that the difference 

is not due to variation in the cohort, in the examination 

questions, or due to the use of BYOB.  

7 Conclusion 
Our research suggests that the experimental teaching 

method which combines using goals and plans, a 

well-defined process, and a visual notation, has the 

potential to significantly improve learning of 

programming skills. A key feature of our approach is that 

we provide a detailed process that guides novices through 

the process of developing a program, using goals and 

plans. Another key feature that distinguishes our approach 

from other work is that our representation for goals and 

plans is integrated into a (visual) programming language, 

and that this integration is done in such a way as to allow 

an intermediate program to be executable. Once plans are 

defined and linked, the resulting program can be executed, 

even though the plan bodies have not yet been merged to 

produce a final program. We see this as a significant 

advantage for a number of reasons. Firstly, it provides 

earlier feedback, and supports testing and debugging. 

Secondly, plan merging is known to be difficult (Soloway 

1986), and by allowing novices to obtain feedback on their 

unmerged designs, they can improve their design without 

having to perform plan merging. Finally, it allows novices 

to distinguish between errors in their design and errors 

introduced by faulty plan merging.   

A limitation of the evaluation is that we considered the 

new approach as a package. While this makes sense in that 

it is the combination of factors that makes the approach 

effective, it is possible that some factors are less important 

than others. For example, students in 2011 had a plan 

library provided. This clearly assists with completing a 

programming task, and we cannot say to what extent the 

improvements in student performance were due to this 

factor. Another limitation of our evaluation is that we only 

used a programming question in an examination to 

measure performance. We argue that an examination is an 

appropriate choice because it is conservative: it tends to 

underestimate ability (due to time constraints), and it 

eliminates the possibility that exists in assignments that 

students obtained significant assistance from peers, 

family, friends, or tutors. We also did consider assignment 

results, and found that there were no significant 

differences between 2011 and earlier years. Another 

limitation of the evaluation is that we had only a limited 

number of students in each year. Future work could 

include evaluating this framework with more students. 

Other potential issues with the evaluation are that the 

course was taught by an author of this paper, who might be 

expected to be enthusiastic about the new approach. We 

argue that while this is certainly true, the author was 

equally enthusiastic about their past teaching and that 

when conducting teaching in 2006-2009, the approach 

described in this paper had not yet been developed, or even 

conceived. Finally, the students in 2011 were aware that 

they were being taught using a modified experimental 

method (since they had to sign ethics approval forms), but 

any form of Hawthorne effect would be expected to apply 

to the whole course, including performance in the 

mid-term test, since students did not know which part of 

the course was traditional and which was novel.  

There are a number of directions for future work. At the 

moment we have defined visual notation for both goals 

and plans, but only the visual notation for plans has been 

integrated into Scratch. One area for future work is 

therefore completing the integration of the representation 

of goals into Scratch. Additionally, although the plan 

merging process is well-defined, it is somewhat complex, 

and one key area for future work is therefore how to 

support novices in performing plan merging. Because we 

want novices to eventually move away from using our 

framework, it is important that this support not be in the 

form of a ―wizard‖ that does the merging of plans without 

the student gaining any insight into the merging process. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

51



8 References 

Bieliková, M. and Návrat, P. (1998): Learning 

programming in Prolog using schemata. ACM SIGPLAN 

Notices, 33(2): 41-47. 

Caspersen, M. and Kölling, M. (2009): STREAM: A First 

Programming Process, Transactions on Computing 

Education (TOCE) 9(1), 4:1-29,  ACM 

de Barros, L. N., dos Santos Mota, A. P., Delgado, K. V. 

and Matsumoto, P. M. (2005): A tool for programming 

learning with pedagogical patterns. Proc. 2005 

OOPSLA workshop on Eclipse technology eXchange, 

ACM, 125- 129. 

de Raadt, M. (2008): Teaching programming strategies 

explicitly to novice programmers. Doctoral Thesis, 

School of Information Systems, University of Southern 

Queensland. 

du Boulay, B. (1989): Some difficulties of learning to 

program. Chapter In: Studying the Novice Programmer,  

E. Soloway & J. C. Spohrer, Eds. Lawrence Erlbaum 

Associates, Hillsdale, NJ, ISBN-0805800034, 283-299. 

Felleisen, M., Findler, R. B., Flatt, M. and Krishnamurthi, 

S. (2004): The TeachScheme! project: Computing and 

programming for every student. Computer Science 

Education, 14(1):55-77. 

Glaser, H., Hartel, P. H. and Garratt, P. W. (2000): 

Programming by numbers: a programming method for 

novices. The Computer Journal, 43(4):252-265. 

Guzdial, M., Konneman, M., Walton, C., Hohmann, L. 

and Soloway, E. (1998): Supporting programming and 

learning-to-program with an integrated CAD and 

scaffolding workbench. Interactive Learning 

Environments, 6(1/2):143-179. 

Hu, M. (2004): Teaching novices programming with core 

language and dynamic visualisation. Proc. the 17th 

Conference of the National Advisory Committee on 

Computing Qualifications (Christchurch, 6 - 9 July), 

95-104, New Zealand: NACCQ 

Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O., 

Kingston, J. H. and Crawford, K. (2000): 

Problem-based learning for foundation computer 

science courses. Computer Science Education, 

10(2):109-128. 

Kelleher, C. and Pausch, R. (2005): Lowering the barriers 

to programming. ACM Computing Surveys, 

37(2):83-137. 

Kruskal, W. and Wallis, A. (1952):  Use of ranks in 

one-criterion variance analysis, Journal of the American 

Statistical Association, 47(260):583-621. 

Lahtinen, E., Ala-Mutka, K. and Järvinen, H. M. (2005): A 

study of the difficulties of novice programmers. ACM 

SIGCSE Bulletin, 37(3):14-18. 

Letovsky, S. and Soloway, E. (1986): Delocalized plans 

and program comprehension. IEEE Software, 

3(3):41-49. 

Lister, R. (2011): Programming, Syntax and Cognitive 

Load, ACM Inroads, 2011 June, 2(2):21-22 

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, 

J., Lindholm, M., McCartney, R., Moström, J. E., 

Sanders, K. and Seppälä, O. (2004): A multi-national 

study of reading and tracing skills in novice 

programmers. ACM SIGCSE Bulletin, 36(4):119-150. 

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., 

Hagan, D., Kolikant, Y. B. D., Laxer, C., Thomas, L., 

Utting, I. and Wilusz, T. (2001): A multi-national, 

multi-institutional study of assessment of programming 

skills of first-year CS students. ACM SIGCSE Bulletin, 

33(4):125-180. 

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., 

Bennedsen, J., Devlin, M. and Paterson, J. (2007): A 

survey of literature on the teaching of introductory 

programming. Proc. Working group reports on ITiCSE 

on Innovation and technology in computer science 

education, ACM.  

Porter, R. and Calder, P. (2003): A pattern-based 

problem-solving process for novice programmers. Proc. 

Fifth Australasian Computing Education Conference 

(ACE2003), Adelaide, Australia. Greening, T. and 

Lister, R., Eds., ACS. CRPIT, 20:231-238. 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, 

N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, 

E., Silver, J. and Silverman, B. (2009): Scratch: 

programming for all. Communications of the ACM, 

52(11):60-67. 

Robins, A., Rountree, J. and Rountree, N. (2003): 

Learning and teaching programming: A review and 

discussion. Computer Science Education, 

13(2):137-172. 

Rößling, G., Joy, M., Moreno, A., Radenski, A., Malmi, 

L., Kerren, A., Naps, T., Ross, R. J., Clancy, M., 

Korhonen, A., Oechsle, R. and Iturbide, J. Á. (2008): 

Enhancing learning management systems to better 

support computer science education. SIGCSE Bulletin, 

40(4):142-166. 

Soloway, E. (1986): Learning to program = learning to 

construct mechanisms and explanations. 

Communications of the ACM, 29(9):850-858. 

Spohrer, J. C., Soloway, E. and Pope, E. (1985): A 

goal/plan analysis of buggy Pascal programs. 

Human-Computer Interaction, 1(2): 63-207. 

Sykes, E. R. (2007): Determining the Effectiveness of the 

3D Alice Programming Environment at the Computer 

Science I Level. Journal of Educational Computing 

Research, 36(2):223-244. 

Winslow, L. E. (1996): Programming pedagogy—a 

psychological overview. ACM SIGCSE Bulletin, 28(3): 

17-22. 

 

CRPIT Volume 123 - Computing Education 2012

52



 

 

Toward a Shared Understanding of Competency in Programming: 

An Invitation to the BABELnot Project 

Raymond Lister  
Faculty of Engineering and 
Information Technology, 

University of Technology, Sydney, 
Sydney, NSW, Australia  

raymond.lister@uts.edu.au 

Malcolm Corney  
Faculty of Science and Technology, 

Queensland University of 
Technology, 

Brisbane, Qld, Australia  
m.corney@qut.edu.au 

James Curran  
School of Information Technologies, 

University of Sydney, 
Sydney, NSW, Australia 

james.r.curran@gmail.com 

Daryl D’Souza  
School of Computer Science and 

Information Technology,  
RMIT University, 

Melbourne, Vic, Australia  
daryl.dsouza@rmit.edu.au 

Colin Fidge  
Faculty of Science and Technology, 

Queensland University of 
Technology, 

Brisbane, Qld, Australia  
c.fidge@qut.edu.au 

Richard Gluga  
School of Information Technologies, 

University of Sydney, 
Sydney, NSW, Australia 
richard@gluga.com 

Margaret Hamilton  
School of Computer Science and 

Information Technology,  
RMIT University, 

Melbourne, Vic, Australia   
margaret.hamilton@rmit.edu.au 

James Harland  
School of Computer Science and 

Information Technology,  
RMIT University, 

Melbourne, Vic, Australia  
james.harland@rmit.edu.au 

James Hogan  
Faculty of Science and Technology, 

Queensland University of 
Technology, 

Brisbane, Qld, Australia 
j.hogan@qut.edu.au 

Judy Kay  
School of Information Technologies, 

University of Sydney, 
Sydney, NSW, Australia  

judy.kay@sydney.edu.au 

Tara Murphy  
School of Information Technologies, 

University of Sydney, 
Sydney, NSW, Australia 
tm@it.usyd.edu.au 

Mike Roggenkamp  
Faculty of Science and Technology, 

Queensland University of  
Technology, 

Brisbane, Qld, Australia  
m.roggenkamp@qut.edu.au 

Judy Sheard  
Faculty of Information Technology, 
Monash University, Caulfield East, 

Victoria, Australia   
judy.sheard@monash.edu 

Simon  
School of Design, Communication, 

& IT, University of Newcastle, 
Ourimbah, NSW, Australia 

simon@newcastle.edu.au 

Donna Teague  
Faculty of Science and Technology, 

Queensland University of 
Technology, 

Brisbane, Qld, Australia 
d.teague@qut.edu.au 

      
Abstract• 
The ICT degrees in most Australian universities have a 
sequence of up to three programming subjects, or units. 
BABELnot is an ALTC-funded project that will 
document the academic standards associated with those 
three subjects in the six participating universities and, if 
possible, at other universities. This will necessitate the 
development of a rich framework for describing the 

                                                           
Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the 14th Australasian Computing Education 
Conference (ACE2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in 
Information Technology, Vol. 123. M. de Raadt and A. 
Carbone, Eds. Reproduction for academic, not-for-profit 
purposes permitted provided this text is included. 
 

learning goals associated with programming. It will also 
be necessary to benchmark exam questions that are 
mapped onto this framework.  As part of the project, 
workshops are planned for ACE 2012, ICER 2012 and 
ACE 2013, to elicit feedback from the broader 
Australasian computing education community, and to 
disseminate the project’s findings. The purpose of this 
paper is to introduce the project to that broader 
Australasian computing education community and to 
invite their active participation. 
Keywords: programming, objectives, assessment. 

1 Introduction 
It is very common for ICT degrees to incorporate a 
sequence of up to three programming subjects (also 
known as courses, papers, or units of study). 
Traditionally, these three subjects have formed part of the 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

53



 

 

compulsory ‘core’ of ICT degrees, particularly software 
engineering degrees. There is certainly a great deal of 
variety between institutions as to what is covered in the 
subjects. While the first is typically thought of as an 
introduction to programming, the second might be a 
direct continuation of programming concepts, a data 
structures subject, a subject addressing program access to 
databases, and so on; and even more variation can be 
expected in the third subject. Nevertheless, it appears to 
be the case that many ICT degrees identify three specific 
subjects as an effective programming stream, and it is 
these three subjects with which this project is concerned. 
Despite the centrality of these three programming 
subjects, computing academics remain dissatisfied with 
the effectiveness of these subjects.  Many students are 
also dissatisfied: in a widely discussed paper describing 
the educational ‘Grand Challenges’ in computing, 
McGettrick et al (2004) note that: 

“educators cite failure in introductory programming 
courses and/or [student] disenchantment with 
programming as major factors underlying poor 
student retention”. 

In programming subjects, as with most Australian 
university subjects, the semester begins in each 
classroom with the ritual distribution of the subject 
outline, which provides a brief description of the subject, 
the topics to be covered, and the assessment scheme. 
Although such outlines often run to many pages, the 
document can be ambiguous. For example, consider the 
following objective, taken from the outline of an 
introductory programming subject at one of the 
universities participating in this project: 

On successful completion of this subject, the student 
will be able to ... Demonstrate a working knowledge 
of the basic constructs in the object-oriented 
language Java. 

Which constructs are the “basic” constructs?  What does 
it mean to have a “working knowledge”, and how does a 
student “demonstrate” it?  Figure 1 shows an extract from 
Computer Science Curriculum 2008 (ACM/IEEE, 2008), 
which manifests numerous similar ambiguities. 

Furthermore, while students may think of outlines as 
the contract between them and their teacher, outlines are 
conscripted into many roles. For example, outlines are 
presented to professional accreditation committees as 
evidence that the required subject matter is being taught. 
Mappings are sometimes made from subject outlines to a 
university’s graduate attributes. When a student moves to 
a new university and seeks credit for prior study, outlines 
are used to establish subject equivalence between the two 
universities. Very importantly, outlines are also a contract 
between teachers. In a three-semester sequence of 
programming subjects, for example, the second and third 
semester teachers rely upon the outline of the previous 
subject to define what students should know at the start of 
semester – and sometimes those teachers feel justified in 
complaining that the students cannot actually do what the 
previous subject’s outline says they can do. 

If we ignore the relationship of a given subject to other 
subjects, be they different subjects at the same university 
or equivalent subjects at other universities, even a given 

subject varies over time.  A change to the final exam is 
one of the most important yet subtle ways that a subject 
can change. If one loiters long enough in a departmental 
tea room around the time of semester when exams are 
being written, one will hear quite passionate complaints 
that Professor Bloggs has ‘watered down’ the final exam 
in a particular subject (e.g. by changing from free 
response to multiple choice). Changes to an exam often 
do not require changes to the subject outline or any other 
documentation, and can thus be made with little 
management oversight.  Academics who teach 
downstream of that subject may not even be aware of the 
change until well after it has taken place.  

1.1 The Relationship with Software 
Engineering 

Software engineering as a discipline has wrestled with 
problems that are analogous to the pedagogical problems 
described above. A software engineering project usually 
begins with a long negotiation between the software 
developers and the various stakeholders. The negotiation 
culminates in a design document, often called a 
specification, which forms a contract between the 
software developers and the various stakeholders. Even 
the most comprehensive specification documents leave 
implicit some aspects of the proposed system, which are 

PF/Fundamental Constructs [core] 
 
Minimum core coverage time: 9 hours 
 
Topics: 
• Basic syntax and semantics of a higher-level  
   language 
• Variables, types, expressions, and assignment 
• Simple I/O 
• Conditional and iterative control structures 
• Functions and parameter passing 
• Structured decomposition 
 
Learning Objectives: 
1. Analyze and explain the behavior of simple programs 

involving the fundamental programming constructs 
covered by this unit. 

2. Modify and expand short programs that use standard 
conditional and iterative control structures and 
functions. 

3. Design, implement, test, and debug a program that uses 
each of the following fundamental programming 
constructs: basic computation, simple I/O, standard 
conditional and iterative structures, and the definition 
of functions. 

4. Choose appropriate conditional and iteration constructs 
for a given programming task. 

5. Apply the techniques of structured (functional) 
decomposition to break a program into smaller pieces. 

6. Describe the mechanics of parameter passing. 

Figure 1: An extract from Computer Science 
Curriculum 2008 (ACM/IEEE, 2008) 

CRPIT Volume 123 - Computing Education 2012

54



 

 

remembered as shared understandings and oral 
agreements arising from certain meetings. After the 
implementation of the software begins, changes are 
inevitably made to the specification. Some changes are 
documented, while others remain implicit. Almost 
inevitably, not everyone is aware of, or happy with, some 
of the changes.  While software engineering is by no 
means a solved problem, some aspects of the culture of 
software engineering can usefully be adopted to attack the 
problems in ‘pedagogical engineering’ described above.  
Thus academics with an ICT background bring a special 
perspective to specifying academic standards. 

1.2 The BABELnot Project: Desired Outcomes 
The above considerations led the authors to propose the 
BABELnot project. (See section 8 for an explanation of 
the name.) We successfully applied to the Australian 
Learning and Teaching Council (ALTC) for funds to 
support the project across the six participating 
institutions. The funded work of the project began in 
October 2011 and will continue until August 2013. 

Our aim is to achieve consensus on a framework for 
describing learning outcomes in computer programming, 
specifically the teaching of programming in the first three 
semesters, and also on how to map between learning 
outcomes and exam questions. We understand that 
assessment in programming subjects is not restricted to 
written exams, and that some learning outcomes are often 
assessed by way of other forms of assessment such as 
assignments and practical tests; but these other forms of 
assessment are beyond the current scope of the project. 

Our desired outcomes are: 
• The creation of a bottom-up, action research approach 

to articulating learning outcomes, in the context of the 
first three programming subjects 

• A culture of scholarly teaching in ICT, spanning 
institutional boundaries, with a discourse based in 
evidence rather than anecdote 

• Exams that are a more valid and reliable indicator of 
student programming ability 

• Better learning of programming by students 
• Attraction and retention of more students to 

programming and software engineering 
More specifically, our desired, measurable project 
deliverables are: 
• A system for describing learning outcomes and 

assessment by written exam. A method for mapping 
between learning outcomes and exam assessment, 
applicable to the first three programming subjects 

• The learning outcomes of the first three programming 
subjects, from at least the six participating 
universities, re-expressed within the system 

• A document summarising an archive of exam 
questions, with meta-tags mapping the questions to 
the system, serving as examples for use by other 
academics 

• Performance data from real students for a subset of 
the archived exam questions 

In this project, learning outcomes will tend to be 
articulated in terms of a characterisation of suitable 
assessment tasks, for example, 

“On successful completion of this subject, a 
passing student will be able to implement iterative 
algorithms on arrays, such as linear search, 
binary search and quadratic sorting algorithms, in 
approximately half an hour, without reference to 
external notes”. 

Note that this is merely an illustrative example, not a 
recommendation of a standard to be adopted. Like 
Wright, Hadgraft, and Cameron (2010), it is not our 
intention to be prescriptive about what students at a 
particular institution should know, but rather to provide 
the framework within which academics at that institution 
might be prescriptive. 

2 Background 
This section reviews relevant prior work that motivated 
the development of this project and influenced the 
project’s design. 

2.1 The BRACElet Project 
A number of papers about the BRACElet project have 
been presented at past ACE conferences (e.g. Whalley et 
al, 2006). Work on BRACElet started in New Zealand in 
2004. In 2007, the ALTC funded a fellowship project by 
Lister and Edwards to explicitly extend BRACElet into 
Australia (Lister & Edwards, 2010). The final BRACElet 
workshop was held in 2010 (Clear et al, 2011). 

BRACElet recruited academics from multiple 
universities into an action research approach that 
involved the systematic collection of evidence from end-
of-semester programming exams. As part of this process 
the project participants formulated ideas on where the 
problems lay for novice programmers, devised exam 
questions to test these ideas, and collected and analysed 
the data from the end-of-semester exams. This process 
was repeated several times. Contrary to the intuitions of 
many computing academics, the project participants 
found that students tend not to have problems with the 
low level ‘nuts and bolts’ of programming. Instead they 
have difficulties fitting the pieces together to see the 
larger picture − they ‘cannot see the forest for the trees’. 
Many traditional exam questions, however, largely test 
the novice programmer on the lower level nuts and bolts, 
and learning outcomes are often expressed in terms of 
these nuts and bolts. 

Three workshops were held within Australia during 
the funding period of the ALTC fellowship. A total of 21 
Australian academics, from 14 different Australian 
universities, either attended these workshops or actively 
participated in the project electronically. Academics from 
at least seven Australian universities have used end-of-
semester exam questions that were designed as part of 
this project. The project has also attracted international 
attention, with academics from 14 universities in seven 
countries actively participating in data collection and 
analysis. During the ALTC Fellowship funding period, 26 
project participants (co-)authored 16 published papers, 
further disseminating the outcomes of the project. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

55



 

 

2.2 Course and Unit of Study Portal (CUSP) 
The Course and Unit of Study Portal (CUSP) is a 
software product that was developed jointly by three 
faculties of the University of Sydney as a university-
funded project to provide a common curriculum mapping 
framework for a diverse range of professional degrees 
across Engineering, IT, Architecture, Design, Urban 
Planning, and Health Sciences. CUSP is currently used at 
the University of Sydney for over 240 degrees and over 
2,500 units of study across four faculties. (Note: the 
University of Sydney uses the term ‘unit of study’ for 
what some other universities call a ‘subject’ or a ‘course’, 
and the term ‘course’ for what some other universities 
call a ‘degree’ or a ‘program’.) 

CUSP captures the representation of multiple sets of 
graduate attributes and accreditation competencies 
(named curriculum goals or curriculum goal frameworks) 
and maps these to the relevant degrees. Each degree 
structure is modelled into the system as a collection of 
core subjects plus the rules governing the selection of 
elective subjects. Each graduate attribute or accreditation 
competency is in turn mapped to each assessment and 
learning outcome within each subject of a degree. This 
design enables the CUSP system to generate reports that 
visualize the curriculum coverage for entire degrees 
against any of the curriculum goal frameworks attached. 
These reports in turn enable quick identification of any 
gaps in goal coverage or any sequencing problems in the 
degree structure and facilitate accreditation or other 
quality control review processes. This is described in 
greater detail by Gluga et al (2010). 

Richard Gluga, a PhD candidate at the University of 
Sydney, is creating an enhancement of CUSP, known as 
ProGoSs – Program Goal Progression (Gluga et al, 2012), 
which can be used to map the detailed objectives for the 
programming fundamentals curriculum designed by the 
ACM/IEEE (2008). The extension is intended to support 
systematic design, modelling and monitoring of student 
progression as part of curriculum design using Bloom's 
Taxonomy (Bloom, 1956) and neo-Piagetian cognitive 
development theory (Lister, 2011). It also supports 
curriculum design by allowing for the specification of the 
level of achievement of both higher- and lower-achieving 
students, so that institutions can design a curriculum, and 
assess how well it is achieving its learning outcomes, 
with full regard to the range of achievement of the 
students who complete degrees. 

2.3 Exam Question Classification 
The aim of the Exam Question Classification project is to 
investigate the nature and composition of formal 
examination instruments used in summative assessment 
of introductory programming students, and the 
pedagogical intentions of the educators who construct 
these instruments. The project leaders presented their first 
draft of a classification scheme in a half-day workshop at 
the 2011 ACE Conference in Perth. On the basis of the 
feedback received from the 20 or so workshop 
participants, the project leaders revised their initial 
scheme. Subsequently, project members formed pairs and 
applied the revised scheme to analysing a total of twelve 
exams, from nine different universities in Australia, the 
UK, New Zealand, Finland and the USA.  A paper on this 

work was recently presented at the Seventh International 
Computing Education Research Workshop (Sheard et al 
2011) and another is being presented at ACE 2012 
(Simon et al 2012). 

Properties encoded about an exam question in the 
current draft of the classification include type of question 
(e.g. short answer, multiple choice), topics examined (e.g. 
data types, loops, OO concepts, program design), type of 
skill required (e.g. knowledge recall, hand executing 
code, writing code, explaining code), and difficulty (high, 
medium, low). 

Getting academics to agree on classifications of 
specific questions has not proved to be straightforward. 
For example, two of the project participants recently 
classified an introductory programming exam consisting 
entirely of multiple-choice questions.  While computing 
academics are divided on the value and validity of 
multiple-choice questions (Shuhidan et al, 2010), they are 
nevertheless widely used (Simon et al, 2012). On the 
issue of degree of difficulty (high, medium, low) the two 
participants agreed independently on only one third of the 
multiple-choice questions.  On skill required (e.g. 
knowledge recall, hand executing code, explaining code) 
they agreed independently on one quarter of the multiple-
choice questions.  It is hardly surprising that subject 
outlines and other documents are ambiguous, when two 
experienced teachers of introductory programming 
exhibit such a low level of agreement on a set of 
multiple-choice questions.  Before there can be a 
substantive debate on the content and assessment of early 
programming courses, there needs to be greater consensus 
on a framework for the debate – a framework that this 
project aims to provide. 

2.4 Neo-Piagetian Theory 
Wright, Hadgraft and Cameron (2010) describe a 
dialectic in learning outcomes, with one part of the 
dialectic being a “list of discrete outcomes or 
aspirational statements” as opposed to the other part of 
the dialectic, “threshold learning outcomes [that] reflect 
the way engineers and ICT professional approach, think 
and do their work”. In this project we adopt a cognitive 
development perspective to transcend that dialectic. 

Piaget developed a very well known constructivist 
theory about the different levels of abstract reasoning 
exhibited by people as they mature from child to adult. 
While classical Piagetian theory has been largely 
abandoned, neo-Piagetian theory has overcome many of 
the problems that led to that abandonment. The types of 
abstract reasoning are broadly the same in both theories; 
but in neo-Piagetian theory, people, regardless of their 
age, are thought to progress through increasingly abstract 
forms of reasoning as they gain expertise in a specific 
problem domain. Neo-Piagetians attribute the increasing 
abstraction in reasoning not to biological maturity but to 
an increase in the effective capacity of working memory, 
as the learner ‘chunks’ knowledge. Neo-Piagetian theory 
is not esoteric – the popular SOLO taxonomy (Biggs and 
Collis, 1982) is based upon neo-Piagetian theory. 

In a paper presented at the 2011 Australasian 
Computing Education Conference, Lister (2011) 
proposed a way of applying neo-Piagetian theory to the 
learning of programming. He defined the development of 

CRPIT Volume 123 - Computing Education 2012

56



 

 

the novice programmer in terms of three neo-Piagetian 
stages. At a pre-operational stage, students can trace the 
changing values in a piece of code, but do not reason in 
terms of abstraction of that code. At a concrete 
operational stage, students can reason in terms of 
abstractions, but only in the context of specific code. At a 
formal operational stage, students can reason in terms of 
programming abstractions without recourse to explicit 
code examples. Lister’s stage theory has already been 
adopted by CUSP participants at the University of 
Sydney, and empirical results from Queensland 
University of Technology (Corney et al, 2012; Teague et 
al, 2012) add support to the proposal.  

3 Dissemination Strategy 
There is very little point to this project, or to any other 
innovative, education-related project, if the outcomes of 
the project remain private to the direct project 
participants. In many respects, the success of any 
innovative, education-related project should be assessed 
by the degree of dissemination of the outcomes. 

By ‘dissemination’, we do not simply mean the 
distribution of information via publications and seminars 
(although distribution of information is an essential 
component of a successful dissemination).   For the 
authors of this paper, ‘dissemination’ is to be measured 
by the extent of adoption by others of the materials and 
techniques developed by the authors of this paper.  

It is well documented that dissemination, as the term is 
used in this project, is difficult. Few innovative, 
education-related projects have succeeded at 
dissemination (Gannaway et al, 2011; McKenzie et al, 
2005; Southwell et al, 2005 & 2010). To improve 
dissemination, the ALTC explicitly adopted a 
Dissemination Framework (ALTC, 2006), which has also 
guided the authors of this paper. Even with the untimely 
demise of the ALTC, this dissemination framework is 
likely to influence the design of Australasian education 
projects well into the future. 

As advocated within the ALTC Dissemination 
Framework, this project has adopted an ‘engaged’ model 
for dissemination: 

“involving consultation, collaboration and 
support for ongoing dissemination both during the 
project and after the project is completed”  

Consequently, the dissemination of this project begins 
early in the project (indeed, it begins with the publication 
of this paper) and will continue throughout the project, 
based on proposed full-day workshops held at roughly 
six-monthly intervals in conjunction with major 
computing education conferences: 
• ACE 2012 (January, Melbourne) 
• ICER 2012 (August, Auckland) 
• ACE 2013 (January, Adelaide) 
• ITiCSE 2013 (June/July, Canterbury, UK). 
While the first of these workshops is now confirmed, the 
other three will be subject to proposal and acceptance at 
the respective conferences. As the workshops also serve 
to define project stages and milestones, if any of the 

proposals is not accepted, alternative dissemination 
mechanisms will be formulated. 

The workshops will be open to all interested 
academics, and will probably not require a registration 
fee.  

The budget allocation for dissemination and evaluation 
workshops includes a limited number of ‘scholarships’ 
that will pay the registration fee for ACE 2013, to be held 
in Adelaide.  These scholarships will be awarded to 
people outside the project who contribute documents, 
data or other material that manifestly advances the 
project. 

The ITiCSE working group reports are among the 
most influential and highly cited papers in computing 
education. Thus an ITiCSE working group in 2013 will 
maximise the potential for international dissemination. 

3.1 Monthly Meetings 
As part of the project, full-day meetings will be held each 
month in at least two of Melbourne, Sydney and 
Brisbane. 

The project values collaboration, so these meetings are 
not necessarily closed, and researchers not currently 
involved in the project may be invited to attend them. 
However, while the six-monthly workshops are open to 
anyone even if they merely wish to observe, an invitation 
to a monthly meeting will be made on the assumption that 
the invitee will play an active and continuing role. For the 
types of active roles that are suitable, see Section 5.1, 
‘Rules of Engagement’. A person seeking to join the 
project under this arrangement may need to make an 
explicit time commitment. A 10% time commitment is 
roughly two days a month, and with such a level of 
commitment a person might spend one of those days at a 
project meeting in their own city and the other day 
working independently to prepare for the next meeting. 

4 Project Organisation 
This project unifies three existing projects, spread across 
six universities in three Australian states: 
• Exam Question Classification: As described earlier, 

this sub-project is investigating the nature and 
composition of formal examination instruments used 
in summative assessment of introductory 
programming students, and the pedagogical intentions 
of the educators who construct these instruments. 

• Syllabus Specification: This sub-project builds upon 
the CUSP system discussed earlier, to create a new 
system into which we can map the detailed curriculum 
of programming subjects.  

• Exam Question Generation and Benchmarking: 
This sub-project aims to include some common 
questions in exams at participating institutions, and to 
benchmark student performance on those questions. 

Each month there will be up to three one-day meetings in 
Brisbane, Sydney and/or Melbourne.  The ‘major’ 
meeting will be attended by all participants from the city 
where it is held, along with one representative from each 
participating institution outside that city. One or two 
further meetings will be smaller, involving just the 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

57



 

 

project leader and the project participants located in that 
city. 

4.1 Rules of Engagement 
All project participants have agreed to the following rules 
about how they will work together:  
• All members will help to procure the outlines and 

other public documents for the relevant programming 
subjects at their respective universities. 

• All members will assist in rewriting those documents 
into the CUSP-derived system adopted by the project. 

• Project members who teach one of the programming 
subjects will: 
o Provide other project members with the 

opportunity to run short, in-class, formative 
assessment exercises. 

o Give full consideration to using in their summative 
tests and exams the questions devised as part of 
this project.  However, the final decision on the 
inclusion of any summative test or exam question 
remains with that teacher. 

o Consider contributing some of their own questions 
to a common, public pool of questions. 

• All members will approach the (other) teachers of the 
first three programming subjects at their institutions, 
to request test papers, exam papers, and class 
performance data on those papers. Ideally, the papers 
thus solicited will be public domain, but the project 
will also accept and use papers on the understanding 
that they are to remain confidential. 

• At least one member at each participating institution 
will complete any necessary ethical clearance process. 

• Members interested in particular sub-projects will 
undertake tasks related to those sub-projects. 
Specifically: 
o Members most interested in syllabus specification 

will benchmark the enhanced CUSP system by 
encoding information about subjects at other 
institutions. 

o Members most interested in the exam question 
classification/archive will develop meta-tags for 
the classification/archive that has CUSP as its 
starting point, and will archive questions and 
information from the benchmarking of questions. 
They will also conduct and analyse interviews 
with relevant academics to explore the processes 
of writing and marking programming exams. 

o Members most interested in question 
benchmarking will provide their questions and 
student performance data for the classification/ 
archive. 

• In addition to the specific tasks listed above, all 
members will make some contribution across all parts 
of the project, and will actively pursue connections 
between the sub-project of primary interest to them 
and the other sub-projects. 

Further matters still to be agreed by the participants 
include a protocol for authorship in papers produced 
within the project. What level of contribution is required 

to warrant recognition as an author? In what order should 
the authors’ names be listed? To these and similar 
questions Lister and Edwards (2010) propose answers 
that might well be adopted for the BABELnot project. 

5 Evaluation Framework 
A requirement of ALTC-funded projects of this size is 
that they have an external reference group and be 
formally evaluated by an outside evaluator. This is not an 
activity that we plan to leave until the end of the project. 
Instead, formative evaluation throughout will facilitate 
the attainment of better project outcomes.  

While the most obvious role of the six-monthly 
workshops is dissemination, evaluation will also figure 
prominently at all the workshops. For example, by having 
workshop attendees perform training exercises such as 
classifying exam questions in the CUSP-derived 
formalism, we will collect evaluation data on whether the 
formalism can be understood easily and applied reliably. 

The external evaluator will be appointed six months 
after the project begins, and will then work with the 
project team to develop an evaluation plan. The key 
sources of information for the evaluation will be: reports 
from the monthly meetings, dissemination events, and 
reference group review meetings; interviews with project 
members; and feedback sought from project members via 
surveys. 

A working group will be proposed for the ITiCSE 
conference to be held in the UK in mid-2013. If the 
proposal is accepted, this working group will contribute 
to the summative evaluation of the project. An ITiCSE 
working group will provide a fresh set of academics, 
independent of the formative evaluations. 

6 Conclusion 
This paper represents a break in tradition, driven by our 
focus on dissemination. Traditionally, innovative 
education projects focus on their product, and do not 
report on their activities until either those activities are 
over, or at least a significant milestone has been attained. 
We describe that as the ‘disseminate late’ approach, and 
argue that this traditional approach has probably 
contributed to poor dissemination outcomes. Instead, we 
advocate a ‘disseminate early and often’ approach, which 
is what we are implementing in this project, primarily 
through the six-monthly workshops, but also through the 
very act of writing this paper − we are like software 
engineers who advocate writing the software tests early, 
even before writing the code, for well known reasons that 
we believe are analogous to why innovative education 
projects should begin dissemination early. 

Through beginning the dissemination early, we now 
have the luxury of using this paper to invite others to 
participate in this project. Most may elect to attend any of 
the six monthly workshops, but others may accept our 
invitation to take on a more active role, and join us in the 
monthly meetings. 

It is just over 10 years since McCracken et al’s (2001) 
paper appeared. That paper directly and indirectly 
inspired a raft of multi-institutional collaborations in 
computing education. However, most of those projects 
were either short-lived, or (like BRACElet) were loosely 
organised, with much of the work being done without 

CRPIT Volume 123 - Computing Education 2012

58



 

 

formal financial support. Our project may be a prototype 
for new generation of multi-institutional projects. Our 
project is formally funded, and with that comes a 
commitment to deliver. That in turn leads to a more 
formally organised project structure. Also, applying 
lessons that have been learnt over the last ten years, the 
project has dissemination built explicitly into its structure. 

As previously mentioned, this project builds upon the 
University of Sydney’s existing CUSP system, which is 
currently used for over 240 degrees across four faculties 
at that institution. It is therefore possible that, after this 
project is formally over, the extended version of CUSP 
would be adopted by the current users: a cycle of 
innovation would be completed, by applying the 
outcomes and deliverables of this project to disciplines 
other than computing. 

7 The Name BABELnot 
Here is a brief explanation for readers who are curious 
about the name BABELnot. The name is deliberately 
reminiscent of the BRACElet project, of which Raymond 
Lister was a leader. The capitalisation of BRACElet 
reflects its continuation from the BRACE project, in 
which the name BRACE was an acronym. The name 
BABELnot calls to mind the biblical tale of the Tower of 
Babel, whose builders failed in their task because they 
lost the ability to communicate with one another. So 
while Babel highlights the challenge of communication 
when we speak different languages, BABELnot will help 
overcome that challenge by devising a common language 
in which programming educators may better 
communicate with one another on matters of standards 
and assessment within their subjects. 

Acknowledgements  
This project was approved for funding by the Australian 
Learning and Teaching Council, and is funded under the 
auspices of the Australian Federal Government’s 
Department of Education, Employment and Workplace 
Relations (DEEWR).  However, the views expressed in 
this paper are solely those of the authors, and not the 
views of the ALTC or DEEWR. 

References 
ACM/IEEE (2008). Computer Science Curriculum 2008: 

An Interim Revision of CS 2001. http://www.acm.org/ 
education/curricula/ComputerScience2008.pdf . 

Australian Learning and Teaching Council (2006). ALTC 
Dissemination Framework. http://www.altc. edu. 
au/resource-dissemination-framework-altc-2008  

Biggs, JB & KF Collis (1982). Evaluating the quality of 
learning: The SOLO taxonomy (Structure of the 
Observed Learning Outcome). New York: Academic 
Press. 

Bloom, BS (1956). Taxonomy of Educational Objectives: 
Handbook I: Cognitive Domain. Longmans, Green and 
Company.  

Carter, J, J English, K Ala-Mutka, M Dick, W Fone, U 
Fuller, & J Sheard (2003). How shall we assess this? 
SIGCSE Bulletin 35(4):107-121.  

Clear, T, J Whalley, P Robbins, A Philpott, A Eckerdal, 
M-J Laakso, & R Lister (2011). Report on the final 
BRACElet workshop: Auckland University of 
Technology, September 2010. Journal of Applied 
Computing and Information Technology 15(1). 

Corney, M, D Teague, A Ahadi, & R Lister (2012). Some 
empirical results for neo-Piagetian reasoning in novice 
programmers and the relationship to code explanation 
questions. 14th Australasian Computing Education 
Conference (ACE 2012), Melbourne, Australia. 

Gannaway, D, T Hinton, B Berry, & K Moore (2011). A 
review of the dissemination strategies used by projects 
funded by the ALTC Grants Scheme. Sydney: 
Australian Learning and Teaching Council. 

Gluga, R, J Kay, & T Lever (2010). Modeling long term 
learning of generic skills. Tenth International 
Conference on Intelligent Tutoring Systems, 
Pittsburgh, PA, USA, 85-94. 

Gluga, R, J Kay, R Lister, S Kleitman, & T Lever (2012). 
Coming to terms with Bloom: an online tutorial for 
teachers of programming fundamentals. 14th 
Australasian Computing Education Conference (ACE 
2012), Melbourne, Australia. 

Lister, R (2011) Concrete and other neo-Piagetian forms 
of reasoning in the novice programmer. 13th 
Australasian Computing Education Conference, Perth, 
Australia, 9-18. 

Lister R, ES Adams, S Fitzgerald, W Fone, J Hamer, M 
Lindholm, R McCartney, JE Moström, K Sanders, O 
Seppälä, B Simon, & L Thomas (2004). A multi-
national study of reading and tracing skills in novice 
programmers. SIGCSE Bulletin 36(4):119-150. 

Lister, R, T Clear, Simon, DJ Bouvier, P Carter, A 
Eckerdal, J Jacková, M Lopez, R McCartney, P 
Robbins, O Seppälä, & E Thompson (2010). Naturally 
occurring data as research instrument: analyzing 
examination responses to study the novice 
programmer. SIGCSE Bulletin 41(4):156-173. 

Lister, R & J Edwards (2010). Teaching novice computer 
programmers: bringing the scholarly approach to 
Australia − a report on the BRACElet project. 
Australian Learning and Teaching Council. 

Lister, R, C Fidge, & D Teague (2009). Further evidence 
of a relationship between explaining, tracing and 
writing skills in introductory programming. 14th 
Conference on Innovation and Technology in 
Computer Science Education (ITiCSE 2009), Paris, 
France, 161-165. 

McCracken, M, V Almstrum, D Diaz, M Guzdial, D 
Hagen, Y Kolikant, C Laxer, L Thomas, I Utting, & T 
Wilusz (2001). A multi-national, multi-institutional 
study of assessment of programming skills of first-year 
CS students. SIGCSE Bulletin 33(4):125-140. 

McGettrick, A, R Boyle, R Ibbett, J Lloyd, L Lovegrove, 
& K Mander (2005). Grand challenges in computing: 
education – a summary. The Computer Journal 
48(1):42-48. 

McKenzie, J, S Alexander, C Harper, & S Anderson 
(2005). Dissemination, adoption and adaptation of 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

59



 

 

project innovations in higher education. Sydney: 
University of Technology, Sydney. 

Sheard, J, Simon, M Hamilton, & J Lönnberg (2009). 
Analysis of research into the teaching and learning of 
programming. Fifth International Workshop on 
Computing Education (ICER 2009), Berkeley, CA, 
USA, 93-104. 

Sheard, J,  Simon, A Carbone, D Chinn, M-J Laakso, T 
Clear, M de Raadt, D D’Souza, J Harland, R Lister, A 
Philpott, & G Warburton (2011). Exploring 
programming assessment instruments: a classification 
scheme for examination questions. Seventh 
International Computing Education Research 
Workshop (ICER 2011), Providence, RI, USA, 33-38. 

Shuhidan, S, M Hamilton, & D D’Souza (2010). 
Instructor perspectives of multiple-choice questions in 
summative assessment for novice programmers. 
Computer Science Education 20:229-259. 

Simon, A Carbone, M de Raadt, R Lister, M Hamilton, & 
J Sheard (2008). Classifying computing education 
papers: process and results. Fourth International 
Workshop on Computing Education (ICER 2008), 
Sydney, NSW, Australia, 161-171. 

Simon, J Sheard, A Carbone, D Chinn, M-J Laakso, T 
Clear, M de Raadt, D D’Souza, R Lister, A Philpott, J 
Skene, & G Warburton (2012). Introductory 
programming: examining the exams. 14th Australasian 

Computing Education Conference (ACE 2012), 
Melbourne, Australia. 

Southwell, D, D Gannaway, J Orrell, D Chalmers, & C 
Abraham (2005). Strategies for effective dissemination 
of project outcomes.  Carrick Institute for Learning and 
Teaching in Higher Education.  

Southwell, D, D Gannaway, J Orrell, D Chalmers, & C 
Abraham (2010). Strategies for effective dissemination 
of the outcomes of teaching and learning projects. 
Journal of Higher Education Policy and Management 
32(1):55-67. 

Teague, D, M Corney, A Ahadi, & R Lister (2012). 
Swapping as the ‘Hello World’ of Relational 
Reasoning: Replications, Reflections and Extensions. 
14th Australasian Computing Education Conference 
(ACE 2012), Melbourne, Australia. 

Whalley, J, R Lister, E Thompson, T Clear, P Robbins, 
PKA Kumar, & C Prasad (2006). An Australasian 
Study of Reading and Comprehension Skills in Novice 
Programmers, using the Bloom and SOLO 
Taxonomies.  Eighth Australasian Computing 
Education Conference (ACE 2006), Hobart, Australia, 
243-252. 

Wright, S, R Hadgraft, & I Cameron (2010). Learning 
and Teaching Academic Standards Project: 
Engineering and ICT. Australian Learning and 
Teaching Council. 

 

CRPIT Volume 123 - Computing Education 2012

60



Introductory programming: examining the exams 

Simon 
University of Newcastle 

simon@newcastle.edu.au 

Judy Sheard 
Monash University 

judy.sheard@monash.edu.au 

Angela Carbone 
Monash University 

angela.carbone@monash.edu.au 

Donald Chinn 
University of Washington, Tacoma 
dchinn@u.washington.edu 

Mikko-Jussi Laakso 
University of Turku 
milaak@utu.fi 

Tony Clear 
Auckland University of Technology 

tony.clear@aut.ac.nz 

Michael de Raadt 
Moodle 

michaeld@moodle.com 

Daryl D’Souza 
RMIT University 

daryl.dsouza@rmit.edu.au 

Raymond Lister 
University of Technology Sydney 
raymond.lister@uts.edu.au 

Anne Philpott 
Auckland University of Technology 

aphilpot@aut.ac.nz 

James Skene 
Auckland University of Technology 

james.skene@aut.ac.nz 

Geoff Warburton 
Australia 

geoffw173@gmail.com 
 
Abstract 
This paper describes a classification scheme that can be 
used to investigate the characteristics of introductory 
programming examinations. The scheme itself is 
described and its categories explained. We describe in 
detail the process of determining the level of agreement 
among classifiers, that is, the inter-rater reliability of the 
scheme, and we report the results of applying the 
classification scheme to 20 introductory programming 
examinations. We find that introductory programming 
examinations vary greatly in the coverage of topics, 
question styles, skill required to answer questions and the 
level of difficulty of questions. This study is part of a 
project that aims to investigate the nature and 
composition of formal examination instruments used in 
the summative assessment of introductory programming 
students, and the pedagogical intentions of the educators 
who construct these instruments.. 
Keywords: examination papers, computing education, 
introductory programming 

1 Introduction 
There are several common forms of assessment in 
introductory programming courses. In-class computer-
based tests and programming assignments are good ways 
of assessing the interactive skill of designing and writing 
computer programs. Written quizzes and examinations 
are appropriate for assessing students’ familiarity with 
relevant theoretical knowledge. In addition, written tests 
can examine some aspects of program designing and 
coding, although they are perhaps not ideally suited for 
the assessment of these skills. 

                                                           
Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the 14th Australasian Computing Education 
Conference (ACE2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in 
Information Technology, Vol. 123. M. de Raadt and A. 
Carbone, Eds. Reproduction for academic, not-for-profit 
purposes permitted provided this text is included. 

Formal examinations are widely used in the 
summative assessment of students in programming 
courses. Writing an examination paper is an important 
task, as the exam is used both to measure the students’ 
knowledge and skill at the end of the course and to grade 
and rank students. Yet it is often a highly individual task, 
guided by the whims, preferences, beliefs, and perhaps 
inertia of the examiner. Lister (2008) observes that there 
is a great deal of ‘folk pedagogy’ in computing education, 
and acknowledges that his early examinations were based 
upon folk-pedagogic misconceptions. 

In constructing an exam, educators must consider what 
they wish to assess in terms of the course content. They 
must consider the expected standards of their course and 
decide upon the level of difficulty of the questions. Elliott 
Tew (2010) suggests that “the field of computing lacks 
valid and reliable assessment instruments for pedagogical 
or research purposes” (p.xiii). If she is right, and the 
instruments we are using are neither valid nor reliable, 
how can we make any credible use of the results? 

An analysis of research papers about programming 
education published in computing education conferences 
from 2005 to 2008 found that 42% of the studies gathered 
data from formal exam assessment (Sheard, Simon, 
Hamilton & Lönnberg 2009). It seems critical that we 
understand the nature of these assessment instruments. 
Lister (2008) urges computing educators to base their 
decisions upon evidence. At least part of the relevant 
evidence should be an overview of introductory 
programming exams as a whole, and we have therefore 
set out to examine the examinations in introductory 
programming courses. 

In this paper we describe an exam question 
classification scheme that can be used to determine the 
content and nature of introductory programming exams. 
We apply this instrument to a set of exam papers and 
describe the process of establishing a satisfactory inter-
rater reliability for the classifications. We report what we 
have found about the content and nature of the exam 
papers under consideration. This study is the first step of 
large-scale investigation of the nature and composition of 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

61



formal examinations used in introductory programming 
courses, and the pedagogical intentions of the educators 
who write and use these examinations. 

2 Background 
Assessment is a critical component of our work as 
educators. Formative assessment is a valuable tool in 
helping students to understand what they have achieved 
and in guiding them to further achievement. Summative 
assessment is a tool used to determine and report the 
students’ achievement, typically at the end of a course, 
and to rank the students who have completed the course.  
When we write and mark summative assessment 
instruments we are standing in judgment on our students. 
Yet concern has been expressed that very little work has 
gone into understanding the nature of the instruments that 
we use (Elliott Tew & Guzdial 2010). 

A number of research studies have used examination 
instruments to measure levels of learning and to 
understand the process of learning. A body of work 
conducted under the auspices of the BRACElet project 
has analysed students’ responses to examination 
questions (Clear et al 2008, Lister et al 2010, Lopez et al 
2008, Sheard et al 2008, Venables et al 2009). Interest in 
this work stemmed from earlier studies, such as that of 
Whalley et al (2006), which attempted to classify 
responses to examination questions using Bloom’s 
taxonomy (Anderson & Sosniak 1994) and the SOLO 
taxonomy (Dart & Boulton-Lewis 1998). The BRACElet 
project has focused on exam questions that concern code 
tracing, code explaining, and code writing. In an analysis 
of findings from these studies, Lister (2011) proposes that 
a neo-Piagetian perspective could prove useful in 
explaining the programming ability of students; this 
proposal could well guide future investigations into 
assessment in programming courses. 

Few studies were found that investigated the 
characteristics of examination papers and the nature of 
exam questions. A cross-institutional comparative study 
of four mechanics exams by Goldfinch et al (2008) 
investigated the range of topics covered and the perceived 
level of difficulty of exam questions. Within the 
computing discipline, Simon et al (2010) analysed 76 
CS2 examination papers, but considered only particular 
data structures questions, which made up less than 20% 
of the marks available in the exams. Their analysis 
focused on the cognitive skills required and the level of 
difficulty of the questions. Following this study, a further 
analysis of 59 CS2 papers in the same dataset (Morrison 
et al 2011) investigated the range of question styles that 
can be used to test students’ skills in the application of 
data structures.  Petersen et al (2011) analysed 15 CS1 
exam papers to determine the concepts and skills covered. 
They found a high emphasis on code writing questions, 
but with much variation across the exams in the study. 
Shuhidan et al (2010) investigated the use of multiple-
choice questions in summative assessment of four levels 
of programming courses (CS0-CS3) and found that the 
use of these questions remained controversial. 

Our study focuses on introductory programming 
examination papers, developing a classification scheme 
for the purpose of analysing these papers to give a 

comprehensive view of the style of questions that make 
up these instruments. 

The study was initiated at a workshop associated with 
the Fourth International Workshop on Computing 
Education (ICER 2008). A small group developed the 
ideas and a provisional classification scheme, which they 
presented at a subsequent workshop associated with the 
13th Australasian Computing Education Conference 
(ACE 2011). At the second workshop the scheme was 
trialled on a few exam questions and adjusted in the light 
of the trial. Full details of the scheme’s development are 
described elsewhere (Sheard et al 2011). 

3 The classification scheme 
The classification scheme consists of eleven different 
measures, one of which is administrative and the other ten 
of which describe features that we believe are useful in 
trying to form an understanding of an examination.  

The remainder of this section briefly describes each of 
the features, and, where appropriate, the reasons for their 
inclusion. 
Percentage of mark allocated. This is the feature 
described above as administrative. While it might be 
inherently useful, for example in noting whether 
comparable questions are worth comparable marks in 
different exams, its principal purpose in this scheme is for 
weighting, determining what proportion of a complete 
exam covers the mastery of particular topics or skills. 
Topics covered. In the classification system used here an 
exam question is assigned at most three of the following 
topics: data types & variables, constants, strings, I/O, file 
I/O, GUI design and implementation, error handling, 
program design, programming standards, testing, scope 
(includes visibility), lifetime, OO concepts (includes 
constructors, classes, objects, polymorphism, object 
identity, information hiding, encapsulation), assignment, 
arithmetic operators, relational operators, logical 
operators, selection, loops, recursion, arrays, collections 
(other than arrays), methods (includes functions, 
parameters, procedures and subroutines), parameter 
passing, operator overloading.  

In the list above, topics that follow ‘assignment’ tend 
to subsume data types & variables, so any question that is 
categorised with these later topics need not include data 
types & variables. Similarly, a topic such as selection or 
loops usually subsumes operators, and arrays generally 
subsumes loops. Having assigned one of these broader 
topics to a question, we would not also assign a topic 
subsumed by that broader topic. 

The list of topics was compiled from a number of 
different sources, including the computing education 
literature. Dale (2005, 2006) lists the topics that emerged 
from a survey of computing academics; Schulte and 
Bennedsen (2006) surveyed teachers of introductory 
programming to determine the topics that were taught and 
the perceived difficulty of those topics; Elliott Tew and 
Guzdial (2010) identified topics by analysing the content 
of relevant textbooks. 
Skill required to answer the question. Some questions 
can be answered purely by recalling knowledge that has 
been imparted during the course. Others require the 
application of different skills: tracing code (which 

CRPIT Volume 123 - Computing Education 2012

62



includes evaluating expressions), explaining code, writing 
code, modifying code (which includes refactoring or 
rewriting code), debugging code, designing programs, 
and testing programs. When classifying a question we 
require a single skill to be nominated. If a question 
appears to require two or more skills (for example, 
designing programs and writing code), we would classify 
it with the skill that appears dominant: in a question 
involving program design and code-writing, the code-
writing would probably dominate. 
Style of question. This feature indicates what form of 
answer is expected by the question. The choices are: 
multiple choice, short answer (including definitions, 
results of tracing or debugging, and tables), program 
code, Parsons problem (Parsons & Haden 2006), and 
graphical representation (for example, concept, flow 
chart, class diagram, picture of a data structure). Only one 
of the above can be chosen. Similar categories were used 
by Petersen et al (2011). 
Open/closed. A question that has only one possible 
correct answer is classified as closed. All others are 
classified as open. 
Cultural references. Is there any use of terms, activities, 
or scenarios that may be specific to a cultural group and 
may influence the ability of those outside the group to 
answer the question? There might be references to a 
particular ethnic group and their customs, but a cultural 
reference need not be ethnic. For example, a question 
might use vocabulary or concepts that refer to a specific 
sport, such as cricket. 
Degree of difficulty. Low, medium, or high. This is an 
attempt to estimate how difficult the average student 
would find the question at the end of an introductory 
course. This classification is similar to that used by 
Simon et al (2010) in their analysis of CS2 exam papers 
and Goldfinch et al (2008) in their analysis of mechanics 
examination papers. 

For reasons explained in the next section, the 
remaining five measures were not used in the current 
analysis, and therefore their description here is far more 
brief than the description given to and used by the 
classifiers. 
Explicitness. Low, medium, or high. Extent to which the 
question states explicitly what the students need to know 
in order to answer the question. A question with low 
explicitness will assume that students already know, or 
can deduce, much about the task to be completed. 
Operational complexity. Low, medium, or high. The 
number and sophistication of the tasks to be performed. 
Conceptual complexity. Low, medium, or high. The 
types and combinations of the concepts that must be 
known in order to correctly answer the question. 
Linguistic complexity. Low, medium, or high. The 
length, sophistication, and general comprehensibility of 
the question. 
Intellectual complexity. Where the question fits into 
Bloom’s taxonomy (Anderson & Sosniak 1994). 

The measures of complexity were originally used by 
Williams and Clarke (1997) in the domain of 

mathematics, and were applied to the computing domain 
by Carbone (2007). 

4 Inter-rater reliability 
As mentioned in Section 2, a number of studies have 
classified examinations in various ways. However, none 
of those studies has really established whether their 
classification systems are reliable across multiple raters. 

Simon et al (2010) report at least 80% agreement on 
their classification, but in each instance this was between 
just two classifiers, one of whom classified a full set of 
questions and the other of whom classified 20% of those 
questions to check the level of agreement. Furthermore, 
their analysis deals only with questions in highly specific 
topics, and the questions classified by each main 
classifier were all in the same topic area. It is conceivable 
that all of these factors would contribute to a higher level 
of agreement than might be expected among a large 
number of classifiers analysing a broader range of 
questions. 

Petersen et al (2011) did not conduct an inter-rater 
reliability test. After classifying the questions they were 
considering, the individual classifiers discussed their 
classifications in an attempt to reach consensus. Even 
then, they report difficulty in reaching consensus on most 
of the measures they were applying. 

Goldfinch et al (2008) do not report an attempt to 
measure agreement among the classifiers. Like Petersen 
et al (2011) they classified individually and then 
attempted to reach consensus, and like Petersen et al they 
found it remarkably difficult to do so. 

For this project we chose to conduct a formal and 
transparent test of inter-rater reliability. With few such 
tests reported in the computing education literature, we 
felt it important to conduct and to report on this test. 

4.1 Reliability test 1: individual 
The first test of inter-rater reliability was carried out on 
the full scheme of 11 categories. All 12 participants 
independently classified the 33 questions of the same 
examination in all 11 categories. 

All categories but one were analysed using the Fleiss-
Davies kappa for inter-rater reliability (Davies & Fleiss 
1982). Because the scheme permits multiple topics to be 
recorded for a question, the Topics category could not be 
analysed by this measure, which depends upon the 
selection of single values. 

Table 1 shows the results of the inter-rater reliability 
test. On kappa measurements of this sort, an agreement of 
less than 40% is generally considered to be poor; between 
40% and 75% is considered fair to good; and more than 
75% is rated excellent (Banerjee et al 1999). 

Perhaps the most startling figure in Table 1 is the 73% 
agreement on the percentage mark for each question. This 
was simply a matter of copying the mark for each 
question from the exam paper to the spreadsheet used for 
classifying. The bulk of the disagreement was due to one 
classifier who neglected to enter any values for the 
percentage mark. Once this was remedied, the agreement 
was still only 98%, because two classifiers had each 
wrongly copied one value. This is a salutary reminder that 
data entry errors do happen, and we resolved that all of 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

63



our subsequent classifying would be conducted by pairs, 
in the expectation that this would help to eliminate such 
errors. 

While we did not expect full agreement on the other 
measures, we were still surprised at the extent of 
disagreement. More often than not, each classifier felt 
reasonably confident that they could at least determine 
how difficult a question is; yet agreement on that measure 
was an uninspiring 43%. Like Goldfinch et al (2008) and 
Petersen et al (2011) we realised that the difficulty of a 
question is strongly dependent on what was taught in the 
course and how it was taught, and without that 
information we could only rate the questions according to 
how difficult we believed our own students would find 
them. 

Following this rather disappointing result, the five 
categories dealing with complexity, marked in Table 1 
with asterisks, were dropped from the scheme until we 
could find a way to improve the reliability of 
classification on those measures. 

In view of its exceedingly poor agreement, it might 
seem strange that we did not drop the cultural references 
category at this point. One reason is that the nature of the 
disagreements was different. On the complexity measures 
the classifications tended to be spread more or less evenly 
across the possible values, and we hope that with further 
clarification and practice it will be possible to reduce the 
spread. On the cultural references measure the 
disagreement was invariably that one classifier saw a 
reference that others had not seen, but tended to 
acknowledge after discussion. This is discussed further in 
section 5.6. 

4.2 Reliability test 2: individual 
Having thoroughly classified one exam paper in the first 
inter-rater reliability test, we classified a further ten 
exams according to the remaining categories. Classifiers 
worked in pairs, first classifying each question 
individually, then discussing their classifications and 
seeking consensus where there was disagreement. 

A second inter-rater reliability test was then conducted 
to determine whether the additional practice and the 
experience of working in pairs had improved the level of 
agreement. Again all 12 participants classified a single 
complete examination, this one consisting of 28 
questions. For completeness, it should be noted that at 
this point one of the original 12 members became 
unavailable to continue with the work, and a new member 
joined the project. 

4.3 Reliability test 3: pairs 
When two classifiers disagree, this is either because one 
of them has made a minor error, which should be picked 
up immediately, or because there is genuine scope for 
disagreement. In the latter case, two people discussing the 
question might be more likely than one person alone to 
reach the same conclusion as others. For this reason, 
immediately following the second inter-reliability test the 
individual classifiers were formed into pairs and asked to 
agree on each of the classifications of that same 
examination. 

The pairs for this third test were not self-selected, and 
were generally not the same as the pairs that had worked 
together on the first set of classifications. Instead they 
were selected by their order of completion of the 
individual reliability test. When the first two classifiers 
had completed their individual classification of the exam 
questions, they were formed into a pair and asked to 
come up with an agreed classification for the same 
questions; when the next two individuals had finished, 
they were formed into the second pair; and so on. 

4.4 Comparing the reliability tests 
Table 2 shows the results of all three inter-rater reliability 
tests on the six categories that they have in common. 

It is pleasing to see that between the first two tests, 
reliability generally improved with time and practice. 

It is also pleasing to see that the agreement between 
pairs in the third test was an improvement on the 
agreement between individuals in the second test. On the 
basis of this finding, we conclude that pair classification 
is more reliable than individual classification. 

Neither of these findings is surprising, but such 
findings are seldom reported, so we feel that there is 
value in explicitly reporting them here. On the basis of 
the second finding, we plan to conduct all of our 
subsequent classification in pairs. 

Category Reliability Reliability 
range 

Percentage 73% fair to good 
Skill required 73% fair to good 
Style of question 90% excellent 
Open/closed 60% fair to good 
Cultural references 15% poor 
Degree of difficulty 43% fair to good 
*Explicitness 31% poor 
*Operational complexity 52% fair to good 
*Conceptual complexity 34% poor 
*Linguistic complexity 47% fair to good 
*Intellectual complexity 27% poor 

Table 1: Inter-rater reliability for 11 categories of 
the initial scheme (the 12th cannot be analysed by 
this measure). The categories marked with asterisks 

were dropped for the classifying reported in this paper. 

 Fleiss-Davies Kappa 
Category Test 1 

(solo) 
Test 2 
(solo) 

Test 3 
(pair) 

Percentage 73% 100% 100% 
Skill required 73% 73% 84% 
Style of question 90% 89% 93% 
Open/closed 60% 73% 86% 
Cultural references 15% 33% 37% 
Degree of difficulty 43% 54% 60% 
Table 2: Inter-rater reliability for six categories of 

the interim scheme (the seventh cannot be 
analysed by this measure) 

CRPIT Volume 123 - Computing Education 2012

64



5 Results 
This section presents the results of analysing 20 
introductory programming exam papers using the exam 
classification scheme. A total of 469 questions were 
identified in these exams, with the number of questions in 
an exam ranging from 4 to 41. For each question the 
percentage mark allocated was recorded, and this was 
used as a weighting factor when calculating the 
contribution of each question to the values in each 
category. 

5.1 Exam paper demographics 
The 20 exam papers in the study were sourced from ten 
institutions in five countries. They were all used in 
introductory programming courses, eighteen at the 
undergraduate level and two at the postgraduate level. 
Course demographics varied from 25 students on a single 
campus to 800 students over four domestic and two 
overseas campuses. Most courses used Java with a variety 

of IDEs (BlueJ, JCreator, Netbeans, Eclipse), one used 
JavaScript, one used C# with Visual Studio, one used 
Visual Basic, one used VBA (Visual Basic for 
Applications) and one used Python. Table 3 shows further 
specific information about the 20 papers and the courses 
in which they are used. 

5.2 Topics covered 
For each question we recorded up to three topics that we 
considered were central to the question. From our original 
set of 26 topics, two topics (algorithm complexity and 
operator overloading) did not appear in the data set; and 
during analysis we added four further topics (events, 
expressions, notional machine and class libraries), giving 
a final list of 28 topics. 

Table 4 shows the topics classified and their 
percentage coverage over the exams in the sample. 
Topics with the greatest coverage were OO concepts, 
methods, loops, arrays, program design, I/O and 

Paper 

Paper 
source Exam characteristics Teaching context 

Country Format  Style 
% of 
final 
mark 

Duration 
(hrs) 

 
Enrolment Mode Approach 

Program
ming 

language 
1 New 

Zealand 
Paper Closed  book 40 2 150-200 Campus Objects first Java 

2 New 
Zealand 

Paper Closed  book 40 2 180 Campus Objects first Java (Karel 
the robot) 

3 Australia Paper Closed  book 40 3 240 Campus Objects first Java 

4 Australia Paper Closed book 50 2 450 Online Programming 
logic, then Java 

Alice, Java

5 Australia Paper Closed  book 50 3 120 Campus Objects later Java 

6 Australia Paper Closed  book 50 3 250 Campus Objects later Visual 
Basic 

7 Australia Paper Closed  book 50 3 50 Mixed Objects first Java 

8 Australia Paper Closed  book 50 3 255 Campus Objects later C# 

9 Australia Paper Closed  book 60 2 250 Campus Objects first Java 

10 Australia Paper Closed  book 60 2.5 60 Campus Objects later VBA 

11 Australia Paper Closed  book 60 3 700-800 Campus Objects later Java 

12 Australia Paper Closed  book 60 3 700-800 Mixed Objects later Java 

13 Australia Paper Closed  book 60 3 700-800 Mixed Objects later Java 

14 Finland Paper Closed  book 70 3 20 Campus Procedural Python 

15 Finland Paper Closed  book 80 3 60 Mixed Objects later Java 

16 England Paper Closed  book 80 3 100 Campus Objects later Java 

17 Australia Paper Mixed 50 2 180 Mixed Web script, 
procedural 

JavaScript

18 Australia Paper Mixed 70 2 337 Campus Objects first Java 

19 USA Paper & 
online 

Open  book 25 2 25 Campus Objects later Java 

20 USA Paper & 
online 

Open  book 25 4 30 Campus Objects later Java 

Table 3: Exam papers classified in this study 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

65



selection. Eleven topics had less than 2% coverage. 
The study conducted by Elliott Tew and Guzdial 

(2010) identified a set of eight concepts most commonly 
covered in CS1 courses; six of these appear in the top 
seven topics listed in Table 4. Their top eight concepts 
did not include program design, but included recursion 
and logical operators, which we found had low coverage 
(0.7% and 0.9% respectively). 

5.3 Skill required 
From a list of eight skills, each question was classified 
according to the main skill required to answer the 
question. Figure 1 shows the overall percentage coverage 
of each required skill over the 20 exams in the dataset. 
The most frequently required skill was code writing 
(48%). The five skills concerning code (writing, tracing, 
explaining, debugging and modifying) together covered 
81% of all exams, the remainder being taken by 
knowledge recall (10%), design (7%) and (2%) testing. 
We recognise that writing code often also involves a 
degree of program design, but we classified questions 
under program design only if they did not involve coding. 

Figure 3 shows a summary of the skills required in 
each exam. In this graph the five skills associated with 
coding have been combined into a single coding category. 
The graph shows that coding in these various forms is the 
predominant skill assessed in introductory programming 
exams. 

The four exams that exceed 100% do so because they 
include some choice, so students do not have to complete 
all questions to score 100%. The one exam that falls 
below 100% does so because it includes material other 
than programming, and we analysed only the 
programming-related questions. 

5.4 Question style 
The most common question style involved producing 
code, with 54% of the marks allocated for code-writing 
questions (including Parson’s problems). Short-answer 
questions make up 28% of the exams, multiple-choice 
questions 17%, and graphical style less than 2% (see 
Figure 2). These findings are somewhat comparable with 
those of Petersen et al (2011), whose study of CS1 exam 
content found that 59% of the exam weight was for 
coding questions, 36% for short answer, 7% for multiple 
choice, and 3% for graphical questions.  

Figure 4 summarises the question styles in each exam, 
and shows a wide variation across the exams. One exam 
consists entirely of multiple choice questions, while more 
than half have no multiple choice questions. It is 
interesting to note that although coding is the 
predominant style overall, in two exams there is no code 
writing required. Petersen et al (2011) also found that the 
percentage of code writing varied across the CS1 exams 
they studied. 
5.5 Open/closed 
The questions were coded according to whether they were 
open or closed in nature. More marks were allocated to 
questions that were open (61%) than closed (39%), but 
this varied markedly over the exams in our sample, as 
shown in Figure 5. In two exams all questions were 
closed, and in one exam all questions were open. 

Topic % 
Coverage 

OO concepts (includes constructors, 
classes, objects, polymorphism, object 
identity, information hiding, 
encapsulation) 

35.8 

Methods (includes functions, parameters, 
procedures and subroutines) 34.5 

Loops (subsumes operators) 32.3 
Arrays 26.3 
Program design 16.9 
I/O 12.3 
Selection (subsumes operators) 11.3 
Assignment 8.2 
File I/O 6.8 
Parameter passing 6.7 
Strings 6.2 
data types& variables 4.4 
Arithmetic operators 3.5 
Error handling 3.1 
Collections (other than arrays) 2.8 
Relational operators 1.9 
Scope (includes visibility) 1.8 
GUI 1.8 
Testing 1.3 
Constants,  Events, Expressions, Lifetime, 
Logical operators, Programming 
standards, Recursion 

< 1 each 

Table 4: Topics and their coverage over the 20 
exams 

Figure 1: Skills required to answer questions 

CRPIT Volume 123 - Computing Education 2012

66



5.6 Cultural references 
Cultural references were identified in only eight of the 
469 questions analysed, making up a little more than 2% 
of the available marks. This is so small as to suggest that 
it might not be worth assessing or reporting – especially 
as the trial classification showed that any cultural 
references tended to be spotted first by a single classifier, 
and only then agreed to by others. However, one likely 
extension of this work will be to establish a repository of 
exam questions for the use of educators. In such a 
repository, this category would serve to alert users that 
somebody feels a particular question may cause problems 
for some students outside a particular context or culture. 

5.7 Level of difficulty 
The questions were classified according to the perceived 
level of difficulty for a student at the end of an 
introductory programming course. Overall, half of the 
marks (50%) were allocated to questions rated as medium 

difficulty, while low difficulty (26%) and high difficulty 
(24%) scored about the same. As with other categories, 
levels of difficulty varied greatly over the exams in our 
sample, as shown in Figure 6. By comparison, in the data 
structures questions that they analysed, Simon et al 
(2010) classified more questions as high (42%), fewer 
questions as medium (40%), and about the same 
proportion as low in difficulty. 

6 Discussion 
A number of computing education research groups are 
undertaking classification of various kinds, presumably 
sharing our belief that being able to accurately describe a 
concept is an important step on the road to understanding 
it. However, there is little point to a classification system 
unless it can be clearly established that the system is 
reliable across multiple classifiers. 

In this paper we lay out the steps that were taken to 
assess the reliability of our scheme for classifying exam 
questions. We explicitly apply a recognised inter-rater 
reliability measure, developed and verified by 
statisticians, and we explain at which stages of the 
classification we applied this measure. We explain our 
decision to drop several categories of our scheme until we 
can find a way to improve the inter-rater reliability of 
those categories. 

We are therefore able to provide evidence that 
reliability appears to improve as the classifiers do more 
classifying, and that classifying in pairs is more reliable 
than classifying by individuals. 

We believe that an approach of this rigour is essential 
if readers are to have faith in the findings that we report. 

The exams that we have analysed show a very heavy 
emphasis on coding skills, and the topics covered are 
concerned mainly with programming elements and 
constructs. This is not surprising in courses that teach 
programming, but it is worth noting that, while there was 
some coverage of the related topic of program design, 
there was very little focus on examining programming 
standards and program testing. 

Figure 2: Marks awarded for each style of question 

Figure 3: Skills required in each exam 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

67



Of course the skills being examined might not 
represent the full extent of what is taught in the course. 
Further material might be covered by assessment items 
other than the final exam, or indeed might not be assessed 
at all, even though it is explicitly taught. It is worth 
noting that a recent study by Shuhidan et al (2010) found 
that half the instructors surveyed believed that summative 
assessment was a valid measure of a student’s ability to 
program. 

We have found a wide variation in the styles of 
question used in exams. Within a single exam, this 
variety could offer students a number of different ways to 
demonstrate what they have learned. Between exams it 
raises the question of whether different forms of 
questions are equally valid assessments of acquired 
programming skills. For example, more than half of the 
exams we analysed had a multiple choice component, and 
one of them was entirely multiple choice. The study by 

Shuhidan et al (2010) found that the use of multiple 
choice questions is controversial. At this stage of our 
study we have not tried to determine why particular styles 
of question were used; we intend to pursue this question 
in our future work.  

The variation among raters in the trial raises some 
interesting questions. Most of the participants are or have 
been involved in teaching introductory programming 
courses, yet the agreement on level of difficulty was only 
43% in the first trial and 54% in the second, rising to 60% 
for the pair classification. Essentially, there was little or 
no consensus on whether questions were easy, moderate, 
or difficult. Both at the workshop and following the trial, 
discussion of specific questions brought out good 
arguments for each possible level of difficulty, making it 
clear that what we are trying to determine is highly 
subjective, and depends not just upon the feelings of 
individual participants but on their knowledge of the 

Figure 4: Marks for styles of question in each exam 

Figure 5: Marks for open and closed questions for each exam 

CRPIT Volume 123 - Computing Education 2012

68



courses that they teach and how their students would 
therefore respond to those particular questions. Perhaps it 
is also influenced in some small way by aspects of the 
culture of the institutions at which the individual 
participants are employed. 

It is a consequence of this line of thought that, even 
with the appropriate training, the author of an exam is 
unlikely to classify it as we do except on the trivial 
measures. The author is fully conversant with the course 
and its context, and is thus better able to classify the exam 
within that context. Our classification, on the other hand, 
is being conducted in the context of the other introductory 
programming exams that we classify, with no detailed 
knowledge of how each individual course was taught. We 
are exploring the range of exams and exam questions that 
we encounter, from what we hope is a reasonably 
consistent perspective. 

7 Future work 
We have classified 20 introductory programming 
examinations, but this is not yet a large enough set to 
furnish a general picture of examinations in introductory 
programming courses. For example, all of these exams 
are in procedural and/or object-oriented programming. 
We plan to classify a broader set of examinations, 
including some from functional programming courses and 
some from logic programming courses. With this 
expanded data set we hope to be able to form a broad 
view of what introductory programming exams consist of. 

In parallel with this further classification we intend to 
explore the role of formal examinations in programming 
courses. It is not obvious that a written examination of 
short duration is the best way to assess students’ 
acquisition of a skill that is arguably best applied while 
working for longer periods at a computer. Why, then, do 
so many programming courses include a written exam as 
a major component of their assessment? We intend to 
interview a number of teachers of introductory 
programming courses in the hope of eliciting an answer 
to this question. 

In addition, we hope that the interviews will give us an 
insight into how academics design and create their exams, 
and to what extent that process is tied in with the stated 
learning objectives of the course. 

Once we have completed the additional classification 
and the interviews, we hope to be able to present a rich 
picture of the nature and role of examinations in 
introductory programming courses. 

8 References 
Anderson, LW & LA Sosniak (1994). Excerpts from 

“Taxonomy of Educational Objectives, The 
Classification of Educational Goals, Handbook I: 
Cognitive Domain”. In Bloom’s Taxonomy: A Forty 
Year Retrospective, LW Anderson and LA Sosniak, 
Eds. Chicago, Illinois, USA: The University of Chicago 
Press, 9-27. 

Banerjee, M, M Capozzoli, L McSweeney, & D Sinha 
(1999). Beyond kappa: a review of interrater agreement 
measures, Canadian Journal of Statistics 27:3-23. 

Carbone, A (2007). Principles for designing programming 
tasks: how task characteristics influence student 
learning of programming. PhD dissertation, Monash 
University, Australia. 

Clear, T, J Whalley, R Lister, A Carbone, M Hu, J 
Sheard, B Simon, & E Thompson (2008). Reliably 
classifying novice programmer exam response using 
the SOLO taxonomy. 21st Annual Conference of the 
National Advisory Committee on Computing 
Qualifications (NACCQ 2008), Auckland, New 
Zealand, 23-30. 

Dale, N (2005). Content and emphasis in CS1. SIGCSE 
Bulletin 37:69-73. 

Dale, N (2006). Most difficult topics in CS1: Results of 
an online survey of educators. SIGCSE Bulletin 38:49-
53. 

Dart, B & G Boulton-Lewis (1998). The SOLO model: 
Addressing fundamental measurement issues. Teaching 
and Learning in Higher Education, M. Turpin, Ed. 
Camberwell, Victoria, Australia: ACER Press, 145-176. 

Figure 6: Level of difficulty for questions in each exam 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

69



Davies, M & JL Fleiss (1982). Measuring agreement for 
multinomial data, Biometrics 38:1047-1051. 

Elliott Tew, A (2010). Assessing fundamental intro- 
ductory computing concept knowledge in a language 
independent manner. PhD dissertation, Georgia 
Institute of Technology, USA. 

Elliott Tew, A & M Guzdial (2010). Developing a 
validated assessment of fundamental CS1 concepts. 
SIGCSE 2010, Milwaukee, Wisconsin, USA, 97-101. 

Goldfinch, T, AL Carew, A Gardner, A Henderson, T 
McCarthy, & G Thomas (2008). Cross-institutional 
comparison of mechanics examinations: a guide for the 
curious. Conference of the Australasian Association for 
Engineering Education, Yeppoon, Australia, 1-8. 

Lister, R (2008). After the gold rush: toward sustainable 
scholarship in computing. Tenth Australasian 
Computing Education Conference (ACE 2008), 
Wollongong, Australia, 3-17. 

Lister, R (2011). Concrete and other neo-Piagetian forms 
of reasoning in the novice programmer. 13th 
Australasian Computing Education Conference (ACE 
2011), Perth, Australia, 9-18. 

Lister, R, T Clear, Simon, DJ Bouvier, P Carter, A 
Eckerdal, J Jacková, M Lopez, R McCartney, P 
Robbins, O Seppälä, & E Thompson (2010). Naturally 
occurring data as research instrument: analyzing 
examination responses to study the novice programmer. 
SIGCSE Bulletin 41:156-173. 

Lopez, M, J Whalley, P Robbins, & R Lister (2008). 
Relationships between reading, tracing and writing 
skills in introductory programming. Fourth 
International Computing Education Research 
Workshop (ICER 2008), Sydney, Australia, 101-112. 

Morrison, B, M Clancy, R McCartney, B Richards, & K 
Sanders (2011). Applying data structures in exams. 
SIGCSE 2011, Dallas, Texas, USA, 631-636. 

Parsons, D & P Haden (2006). Parson’s programmimg 
puzzles: a fun and effective learning tool for first 
programming courses. Eighth Australasian Computing 
Education Conference (ACE 2006), Hobart, Australia, 
157-163. 

Petersen, A, M Craig, & D Zingaro (2011). Reviewing 
CS1 exam question content. SIGCSE 2011, Dallas, 
Texas, USA, 631-636. 

Schulte, C & J Bennedsen (2006). What do teachers teach 
in introductory programming? Second International 
Computing Education Research Workshop (ICER 
2006), Canterbury, UK, 17-28. 

Sheard, J, A Carbone, R Lister, B Simon., E Thompson, 
& J Whalley (2008). Going SOLO to assess novice 
programmers. 13th Annual Conference on Innovation 
and Technology in Computer Science Education 
(ITiCSE 2008), Madrid, Spain, 209-213. 

Sheard, J, Simon, M Hamilton, & J Lönnberg (2009). 
Analysis of research into the teaching and learning of 
programming. Fifth International Computing Education 
Research Workshop (ICER 2009), Berkeley, CA, USA, 
93-104. 

Sheard, J,  Simon, A Carbone, D Chinn, M-J Laakso, T 
Clear, M de Raadt, D D’Souza, J Harland, R Lister, A 
Philpott, & G Warburton (2011). Exploring 
programming assessment instruments: a classification 
scheme for examination questions. Seventh 
International Computing Education Research 
Workshop (ICER 2011), Providence, RI, USA, 33-38. 

Shuhidan, S, M Hamilton, & D D’Souza (2010). 
Instructor perspectives of multiple-choice questions in 
summative assessment for novice programmers, 
Computer Science Education 20:229-259. 

Simon, A Carbone, M de Raadt, R Lister, M Hamilton, & 
J Sheard (2008). Classifying computing education 
papers: process and results. Fourth International 
Computing Education Research Workshop (ICER 
2008), Sydney, NSW, Australia, 161-171. 

Simon, B, M Clancy, R McCartney, B Morrison, B 
Richards, & K Sanders (2010). Making sense of data 
structures exams. Sixth International Computing 
Education Research Workshop (ICER 2010), Aarhus, 
Denmark, 97-105. 

Venables, A, G Tan, & R Lister (2009). A closer look at 
tracing, explaining and code writing skills in the novice 
programmer. Fifth International Computing Education 
Research Workshop (ICER 2009), Berkeley, CA, USA, 
117-128. 

Whalley, J, R Lister, E Thompson, T Clear, P Robbins, 
PKA Kumar, & C Prasad (2006). An Australasian study 
of reading and comprehension skills in novice 
programmers, using the Bloom and SOLO taxonomies, 
Eighth Australasian Computing Education Conference 
(ACE 2006), Hobart, Australia, 243-252. 

Williams, D & D Clarke (1997). Mathematical task 
complexity and task selection. Mathematical 
Association of Victoria 34th Annual Conference, 
Clayton, Vic, Australia, 406-415. 

 

 

CRPIT Volume 123 - Computing Education 2012

70



Student Created Cheat-Sheets in Examinations: 

Impact on Student Outcomes 

Michael de Raadt 
Moodle 

michaeld@moodle.com 

 

Abstract 

Examinations have traditionally been classified as “open-

book” or “closed-book” in relation to the freedom for 

students to bring resources into examinations. Open-book 

examinations can have benefits, such as reduced anxiety, 
de-emphasis of memorisation and reduced cheating. But 

open-book examinations can also have disadvantages 

such as reduced preparation and the need for time during 

examinations to look up facts. An emerging alternative 

allows students to bring a „cheat-sheet‟ of hand-written 

notes. This form of examination has the potential to offer 

many of the benefits of an open-book examination while 

overcoming some of its failings. There has been little 

evidence showing that cheat-sheets can have an impact, 

and what exists is contradictory. This study reveals that 

students who create and use cheat-sheets performed 

better, on average, in an introductory programming 
examination. Certain features of cheat-sheets were found 

to be related to superior performance, which may relate to 

student understanding.. 

Keywords: cheat-sheet, examination, open-book, 

computing education, introductory programming 

1 Introduction 

Resources available to students can be controlled in order 
to allow students access to information during an 

examination. In a closed-book examination, students are 

not permitted to bring any information into the 

examination that may assist them; they are required to 

rely on their memory to recall the information they need. 

In the 1950s educationalists began to explore new forms 

of examination and one form suggested was the open-
book examination. “In such an examination the student is 

allowed to make use of any materials at his disposal, 

including textbooks, lecture notes and dictionaries, but 

does not obtain answers directly or indirectly from other 

students” (Kalish, 1958, p. 200). Between these extremes, 

examiners can constrain students‟ access to materials to 

varying degrees; this form of examination can be referred 

to as a restricted examination. One form of restricted 

examination allows students to access a teacher created 

set of notes that summarise facts needed during the 

examination. Another form of restricted examination 

allows students to bring their own prepared notes, or 
„cheat-sheets‟, into the examination setting. The purpose 

                                                        

Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the Fourteenth Australasian Computing 
Education Conference (ACE2012), Melbourne, Australia, 
January 2012. Conferences in Research and Practice in 

Information Technology, Vol.123. Michael de Raadt and 
Angela Carbone, Eds. Reproduction for academic, not-for-profit 
purposes permitted provided this text is included. 

of this study is to explore the potential benefits of student 

created cheat-sheets within the context of an introductory 

programming examination. 

This paper will first present an overview of research in 

the area of examinations relative to students‟ freedom to 

bring materials. This will be followed by the description 

of a study of the use of cheat-sheets in an introductory 

programming course and the results of that study. Finally, 
conclusions and recommendations will be made. 

1.1 Open Book Examinations 

The use of textbooks and teacher-prepared notes has been 
a topic of study for some time, with published discussions 

dating back over 60 years. Tussing (1951) suggested that 

the advantages of open-book examinations can include: 

 reduced anxiety in the form of “fear and emotional 

blocks”; 

 a shift in emphasis from memorisation to 
reasoning; and 

 reduction of cheating. 

Experimental studies have reported that open-book 

examinations can have benefits. Schumacher et al. (1978) 

ran a controlled experiment to compare performance on 

open-book and closed-book examinations. They found 

significantly higher average scores when students had 

access to a textbook during their examination. 

Theophilides and Koutselini (2000) found evidence that 

student attitudes towards a course improve where there is 

an open-book examination. 
There are also counter-arguments to the use of open-

book examinations. These include a degradation of the 

seriousness of examinations that can lead to superficial 

learning (Kalish, 1958). Rather than benefitting students, 

allowing students to have access to textbooks or teacher-

prepared notes can be a hindrance. Boniface (1985) 

compared the time spent referring to open-book materials 

and their results. He found that students who spend more 

time than others referring to such materials tend to end up 

with poorer marks. It tends to be students who have 

performed poorly on prior assessment items that rely 
more on these materials during an examination.  

In an experimental evaluation of open book 

examinations, Kalish (1958) found that average scores 

were not affected when comparing open-book and closed-

book examinations, and concluded that open-book 

examinations may benefit some students more than 

others. These findings were echoed by Bacon (1969). 

According to Feldhusen (1961), students prepare less for 

an open-book examination, which may ultimately 

decrease their overall learning. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

71



1.2 Student Created Cheat-Sheets 

A student created cheat-sheet is simply a sheet of notes 
produced while preparing for an examination. The size of 

the sheet can be specified and a common size is double-

sided A4. While students are generally free to add 

whatever information they believe is relevant, the 

production of the sheet may be constrained; for example a 

teacher may specify that the sheet must be hand-written. 

Forcing students to hand-write their cheat-sheet is a 

mechanism to ensure that students make some effort to 
produce the sheet, rather than simply printing course 

notes or photocopying another student‟s sheet. 

The effect of student created cheat-sheets has been less 

well explored than open-book examinations, but work in 

this area is more recent. Dickson and Miller (2005) 

explored students‟ use of cheat-sheets in psychology 

examinations, finding evidence that suggested cheat-

sheets did not improve performance and did not reduce 

student anxiety. Dickson and Miller later revisited student 

created cheat-sheets using a different experimental 

approach and focused on the suggestion that preparing 
such sheets may encourage learning. They allowed 

students to prepare cheat-sheets, and then at the 

examination Dickson and Miller removed the cheat-

sheets from students and asked them to take the 

examination. After this, they returned the cheat-sheets 

and allowed the students to take the examination again. 

Results showed that students performed better when they 

had access to their cheat-sheets and from this they 

concluded that cheat-sheets did not encourage greater 

learning, but did assist students during an examination 

(Dickson & Miller, 2008). Dickson and Miller failed to 
take into account that cheat-sheets are intended to relieve 

students of the burden of memorisation, yet memorisation 

seems to be what their experiment was measuring. 

Almost in complete opposition to Dickson and Miller 

is the work of Erbe (2007), who suggests that student 

created cheat-sheets can reduce examination anxiety 

while increasing learning, particularly in courses that 

assess on the first three levels of Bloom‟s taxonomy 

(Bloom, 1956). Erbe emphasises that examinations do 

more than assess learning; the way examinations are 

structured and implemented can cause student learning, a 

thought also shared by Yu, Tsiknis and Allen (2010). 
Erbe suggests that open-book examinations can cause 

students to be lulled “into too much of a sense of security 

and, if they had not prepared adequately, the book was 

not very useful anyway” (p. 97). Erbe quotes Boniface 

(1985) in relation to this. Erbe noticed variety in the 

content and composition of cheat-sheets constructed by 

her students and now awards a prize for the best cheat-

sheet; doing this also helps to reduce the tension around 

the examination. Erbe states that while students spend a 

lot of time preparing their cheat-sheets, they do not 

actually refer to them often in the examination: 
“Preparing the cheat sheets proved to be sufficient for 

learning what was on the test. This was the major 

difference between handing out information composed by 

me and having the students find their own. Students 

tailored the information to their own needs and wrote 

down information they still needed to learn. The act of 

writing and organizing the information for the cheat sheet 

allowed most students to fill in the holes in their 

knowledge” (p. 97). A number of other educationalists 

share the same view (Janick, 1990; Weimer, 1989), 

however there does not appear to be objective, empirical 

evidence to support this view. 

There can be diversity in the quality and composition 
of student created cheat-sheets. Visco et al. (2007) 

analysed the cheat-sheets that students created for a 

chemical engineering examination. They found great 

variety among students‟ cheat-sheets and suggested that 

the “goodness” of a cheat-sheet does not necessarily map 

to examination performance. 

1.3 Examinations in Computing Education 

Since 1988 when Bagert asked the question: Should 

computer science examinations contain “programming” 
problems? (Bagert Jr., 1988), instructors of programming 

have been considering how students should be assessed, 

particularly in examinations. The nature and content of 

examinations are currently a topical issue in Computing 

Education research (Lister et al., 2004; Lister et al., 2006; 

Sheard et al., 2008; Sheard et al., 2011; Whalley et al., 

2006). Related to the make-up of examinations are the 

conditions under which examinations are conducted, such 

as the length of examinations and what resources students 

have access to during examinations. 

In a review of introductory programming assessment, 

Daly and Waldron (2004) suggest allowing “students to 
bring in a handwritten A4 'cheat-sheet' which can contain 

whatever they want. The process of creating the 'cheat-

sheet' may also be educational” (p. 211). Daly and 

Waldron do not mention how they believe cheat-sheets 

are educational. No studies have reported on the use of 

cheat-sheets in computing education examinations. 

1.4 Research Questions 

In real-world circumstances, programmers rely on 

resources for specific information, such as syntax 
specifications and examples of solutions to problems. 

While expert programmers possess a wealth of tacit 

solutions to problems (Soloway, 1986), they are not 

expected to memorise specific information, so it is 

unrealistic to expect students to do so for an examination. 

Student created cheat-sheets may overcome the need 

for memorisation and bring about other benefits, but this 

idea needs to be explored and analysed. To achieve this, 

the following research questions are proposed. 

 Do students who create and use a cheat-sheet 

perform better than students who do not? 

 Does a student created cheat-sheet lift a student‟s 

performance compared to earlier course 

assessment? 

 What features can be identified on student created 

cheat-sheets? 

 Do these  identifiable features relate to 

examination performance? 

2 Methodology 

In order to answer the above research questions, an 
analysis is to be performed on the cheat-sheets created by 

students and used in an examination. 

CRPIT Volume 123 - Computing Education 2012

72



2.1 Setting 

The examination was conducted at the end of an 
introductory programming course run at the University of 

Southern Queensland. There were 89 students who sat the 

examination including a mix of on-campus (21%) and 

external (79%). Students sat the examination at numerous 

examination centres around the world. 

Leading up to the examination, students were provided 

with a sample examination that mirrored the style of the 

final examination but included different questions. The 
sample examination included a reference to language 

specific functions, similar to what students had used 

during the course, but customised for the examination. 

Students were informed about the topics covered by 

questions in the examination. Both the sample 

examination and final examination included a mix of 

code writing and short answer questions. All questions 

were new and could not be answered by simply copying 

from a cheat-sheet. 

Students were informed about the conditions of the 

examination, including the ability for them to bring a 
student created cheat-sheet. The cheat-sheet requirements 

were specified as: 

 hand-written; 

 A4, double-sided; and 

 containing any information they saw as relevant. 

Students were told that the final examination would 

include a language reference, similar to the sample 

examination, so they need not include such information in 

their cheat-sheets. 

Students were required to submit their cheat-sheet 

with their examination papers. The cheat-sheets were 
collected by examination invigilators, who had specific 

instructions to do so. 

From an experimental perspective, there was no 

mechanism for ensuring that there would be groups with 

and without cheat-sheets and there was no attempt to 

control the membership of these groups when they 

emerged. 

 

2.2 Method of Analysis 

The analysis of cheat-sheets was conducted by: 

1. identifying each sheet with a code number, 

2. separating them from their accompanying 
examination answers, and then 

3. identifying features in each (see Coding Scheme 
section below), which were recorded against the 

code numbers. 

All feature analysis was conducted before comparing 

the use of cheat-sheets, and the contained features, 

against student performance. 

2.2.1 Coding Scheme 

Before attempting to identify features in all cheat-sheets, 
a subset of the cheat-sheets was examined and a number 

of common features were identified. No pre-existing 

schema was used. These features are described in Table 

1. There were two categories of features: those that 

related to layout (how information was organised on 

cheat-sheets) and content (what information was found on 

cheat-sheets). 

The features were then checked in the entire collection 

of cheat-sheets. Each of the features was identified in a 

simple binary fashion, being either present or absent.  

3 Results 

From the 89 students who sat the examination 72 cheat-
sheets were collected, which indicates that 81% of 

students chose to create a cheat-sheet and 19% of 

students either chose not to create a cheat-sheet or missed 

the fact that they could.  

3.1 Relative Performance 

Relative performance of students with and without cheat 
sheets was measured. There was no control over how 

students fell into these groups, however the range in both 

groups‟ marks was roughly equal, as indicated by the 

minima and maxima in Table 2. 

 

 

Layout 

Features 

Dense A cheat-sheet was dense when both sides of the paper were covered, leaving little 
vacant space. This is a measure of the amount of information on the paper and 

possibly the effort invested in creating the sheet. 

Organised A cheat-sheet was organised when the space on the paper was compartmentalised to 

make fuller use of space, usually with boundaries and identifiers for compartments. 

Order matches 

course content 

If the ordering of the content on the student‟s cheat-sheet followed the ordering of 

content presented in the course, this feature was seen as present. 

Content 

Features 

Code 

examples 

Relevant to a programming examination, the presence of program code examples in 

the cheat-sheet was measured. 

Abstract 

representations 

Marked as present when concepts were represented in a general way, using text or 

diagrams rather than program code for specific examples. 

Sample 

answers 

Where students included answers to sample examination questions, this feature was 

considered present. 

Language 

reference 

duplication 

This feature was marked as present when students included information that 

duplicated information provided in the language reference in the paper. 

Table 1: Features measured in cheat-sheets 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

73



 Min Max Mean StdDev 

With cheat-sheet 3 47 32.5 11.9 

Overall 0 47 29.0 13.2 

Without cheat-sheet 0 47 23.9 15.7 

Table 2: Performance with and without cheat-sheets 

In a t-test for equality of means, with roughly equal 

variance, there was a significant difference between the 

two groups (t=2.5, p=0.016). This indicates that students 

who produced and used a cheat-sheet performed 

significantly better than those who did not. 
The overall average performance in the examination 

was 29.0 out of 50 possible marks. Students with cheat-

sheets performed, on average, higher than this mean and 

students without cheat-sheets performed worse, as shown 

in Table 2. 

 

Figure 1: Comparison of performance by students 

with and without cheat-sheets 

The distribution of marks by each group (with and 

without cheat-sheets) is represented in Figure 1. The box-

plot on the left relates to students without cheat-sheets. 

This group had a lower mean at 23.9. The box-plot on the 

right shows the performance of students who created and 

used a cheat-sheet. This group had a higher mean at 32.5 

and generally performed above a “passing” mark of 25, 

with a narrower standard deviation (see Table 2). 

3.2 Improvement 

Improvement was measured by comparing each student‟s 
performance in prior assessment (relative to the mean 

prior assessments) and their performance in the 

examination (relative to the mean examination mark). 

On average, students who used a cheat-sheet improved 

their performance, with the opposite effect demonstrated 

by students without cheat-sheets, as shown in Table 3. In 

other words, preparing and using a cheat-sheet helped 

students to improve their level of performance between 

prior assessment and the examination. 

 

 

 

 

 

 Examination 

Marks 

Improvement 

Overall 

Assessment 

Improvement 

With cheat-sheet +5.3 +2.6% 

Without cheat-sheet -2.2 -1.1% 

Table 3: Improvement in performance by students 

with and without cheat-sheets 

3.3 Identified Features 

In the 72 cheat-sheets collected, features were identified. 

A total of seven common features were identified in 

students‟ cheat-sheets. The list of features is given in the 

Coding Scheme section above, with a description of how 
each feature was identified. The occurrence of each 

feature is given in Table 4 together with the measured 

impact of each feature. 

  
Occurrences 

Difference 

to mean 

Layout 
Features 

Dense 43 (60%) +1% 

Organised 49 (68%) -2% 

Order matches 
course content 

14 (19%) +13% 

Content 
Features 

Code 
examples 

52 (72%) -7% 

Abstract 

representations 

34 (47%) +21% 

Sample 
answers 

15 (21%) -30% 

Language 

reference 

duplication 

7 (10%) +3% 

Table 4: Occurrence and impact of identified 

features 

The analysis of features shows that the presence of 

some features relates to higher or lower examination 

performance, on average, by the creators of the cheat-

sheets that contain them. Other features do not seem to 

relate to a difference in performance. The impact of each 

feature was calculated by comparing the average of the 

group of students whose cheat-sheets exhibited that 

feature with the overall mean and finding the difference. 

In layout features, the density and organisation of 

information in a cheat-sheet did not seem to relate to any 

major difference in performance. Students who ordered 
the content of their cheat-sheets to match the ordering of 

course content performed, on average, 13% better than 

the mean. 

The analysis of content features showed that students 

included code examples as well as abstract 

representations of content presented in the course. While 

some students included both (22%), most students 

included only one or the other. Students who included 

code examples in their cheat-sheets tended to perform 

slightly lower than average. Students who included 

abstract representations of concepts tended to perform 
21% higher than the average. 

CRPIT Volume 123 - Computing Education 2012

74



Ignoring advice to the contrary, some students 

included information already provided in a language 

reference. Despite the fact that this content took up space 

that could have been dedicated to other content, such 

students did not seem to be negatively impacted by doing 

so. 

4 Conclusions 

The findings of this study indicate that the preparation 
and use of student created cheat-sheets does have an 

impact on student performance. This contradicts the 

findings of Dickson and Miller (2005) and provides 

evidence that supports the suggestions of Erbe (2007) and 

Daly and Waldron (2004) that the process of creating a 

cheat-sheet can improve student outcomes. 

This study found variety in features in student‟s cheat-
sheets, which echoes the findings of Visco et al. (2007). 

Ordering cheat-sheet content to match course content 

relates to higher examination performance. This may 

indicate that students who create cheat-sheets in such an 

ordered fashion are undertaking a more thorough, start-to-

finish approach when creating their sheets, and perhaps 

learning more from this experience. It may also be the 

case that when content was ordered in a way that was 

familiar to the student‟s experience, less effort was 

required to find information on the cheat-sheet during the 

examination, which relates to the concern of Boniface 

(1985) who suggested that time used referring to 
information in examinations degrades performance. 

Students who included abstract representations of 

content in their cheat-sheets were more successful. This 

may be due to abstract representations being more 

adaptable to new problems than specific examples. In 

order to include and use abstract representations students 

would need to have reached the higher SOLO relational 

or extended abstract levels (Biggs & Collis, 1982), while 

students who relied on coding examples may be working 

at the lower multistructural level. Answering at a higher 

SOLO level has been related to understanding in 
introductory programming (Lister et al., 2006). 

The inclusion of sample examination answers in cheat-

sheets was related to poorer performance. It seems likely 

that students who did this hoped that questions in the final 

examination would be the same as questions in the 

sample examination, which was not the case. This seems 

to reveal a poorer understanding of concepts by students. 

The sample examination was intended to be a test of 

student learning after revision and not the only instrument 

for revision itself. 

Where students included material that duplicated what 

was available in the language reference included in the 
examination paper, there was no major impact on 

performance, even though the space used by this content 

could have been used for other, more necessary content. 

This perhaps indicates that revising such references may 

have aided student understanding, and having their own 

descriptions of such references may have made them 

easier to look up and use. 

4.1 Recommendations 

From the results of this study, it is recommended that 
examiners consider allowing students to use cheat-sheets 

in examinations as this may increase learning, reduce 

anxiety and, as shown in the results of this study, lead to 

improved performance. 

When creating their cheat-sheets, students should be 

advised to: 

 conduct a thorough review and order the content 
of their sheet to match the ordering of course 

content; 

 attempt to record generalised, abstract 

representations of concepts, rather than specific 

examples, so that ideas can be adapted during 

examinations; and 

 avoid hoping that answers to sample examinations 

will match final examination questions. 

4.2 Future Work 

The findings of this study would benefit from wider 
analysis in other introductory programming courses with 

more control over experimental group membership. It 

would be interesting to see if the findings of this study 

continued longitudinally. For more generally applicable 

results, experimentation in other knowledge domains 

would be needed. 

5 References 
Bacon, F. (1969): Open book Examinations. Education 

and Training, 11(9):363. 

Bagert Jr., D. J. (1988): Should computer science 

examinations contain “programming” problems? 

Proceedings of the nineteenth SIGCSE technical 

symposium on Computer science education 

(SIGCSE'88), Atlanta, Georgia, USA, February 25-26, 
1988. 288 - 292. 

Biggs, J. B., & Collis, K. F. (1982): Evaluating the 

quality of learning: The SOLO taxonomy (Structure of 

the Observed Learning Outcome). New York, 

Academic Press. 

Bloom, B. S. (1956): Taxonomy of Educational 

Objectives, Edwards Bros., Ann Arbor, Michigan. 

Boniface, D. (1985): Candidates' use of notes and 

textbooks during an open-book examination. 

Educational Research, 27(3):201 - 209. 

Daly, C., & Waldron, J. (2004): Assessing the 
Assessment of Programming Ability. Proceedings of 

the 35th SIGCSE technical symposium on Computer 

science education  (SIGCSE '04), Norfolk, Virginia, 

USA, March 3 - 7, 2004 210 - 213. 

Dickson, K. L., & Miller, M. D. (2005): Authorized Crib 

Cards Do Not Improve Exam Performance. Teaching of 

Psychology, 32(4):230 - 233. 

Dickson, K. L., & Miller, M. D. (2008): Do Students 

Learn Course Material During Crib Sheet 

Construction? Teaching of Psychology, 35(2):117 - 

120. 

Erbe, B. (2007): Reducing Text Anxiety while Increasing 
Learning - The Cheat Sheet. College Teaching, 

55(3):96 - 98. 

Feldhusen, J. F. (1961): An Evaluation of College 

Students' Reactions to Open Book Examinations. 

Educational and Psychological Measurement, 

21(3):637 - 646. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

75



Janick, J. (1990): Crib Sheets. Teaching Professor, 

4(6):2. 

Kalish, R. A. (1958): An Experimental Evaluation of the 

Open Book Examination. Journal of Educational 

Psychology, 49(4):200 - 204. 

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, 
J., Lindholm, M., et al. (2004): A multi-national study 

of reading and tracing skills in novice programmers. 

ACM SIGCSE Bulletin, 36(4):119 - 150. 

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & 

Prasad, C. (2006): Not seeing the forest for the trees: 

novice programmers and the SOLO taxonomy. ACM 

SIGCSE Bulletin, 38(3):118 - 122. 

Schumacher, C. F., Buztin, D. W., Finberg, L., & Burg, 

F. D. (1978): The Effect of Open- vs. Closed-Book 

Testing on Performance on a Multiple-Choice 

Examination in Pediatrics. Pediatrics, 61(2):256 - 261. 

Sheard, J., Carbone, A., Lister, R., & Simon, B. (2008): 
Going SOLO to assess novice programmers. SIGCSE 

Bulletin, 40(3):209 - 213. 

Sheard, J., Simon, Carbone, A., Chinn, D., Laakso, M.-J., 

Clear, T., et al. (2011): Exploring Programming 

Assessment Instruments: a Classification Scheme for 

Examination Questions. Proc. Proceedings of the 

International Conference on Educational Research 

(ICER) 2011. 

Soloway, E. (1986): Learning to program = learning to 

construct mechanisms and explanations. 

Communications of the ACM, 29(9):850 - 858. 

Theophilides, C., & Koutselini, M. (2000): Study 

Behavior in the Closed-Book and the Open-Book 

Examination: A Comparative Analysis. Educational 

Research and Evaluation, 6(4):379 - 393. 

Tussing, L. (1951): A Consideration of the Open Book 

Examination. Educational and Psychological 
Measurement, 11(4):597 - 602. 

Visco, D., Swaminathan, S., Zagumny, L., & Anthony, H. 

(2007): Interpreting Student-Constructed Study Guides. 

Proceedings of the 114th Annual ASEE Conference & 

Exposition, Honolulu, Hawaii, USA, June 24 - 27, 

2007. 1 - 9. 

Weimer, M. (1989): Exams: Alternate ideas and 

approaches. Teaching Professor, 3(8):3 - 4. 

Whalley, J. L., Lister, R., Thompson, E., Clear, T., 

Robins, P., Kumar, P. K. A., et al. (2006): An 

Australasian Study of Reading and Comprehension 

Skills in Novice Programmers, using the Bloom and 
SOLO Taxonomies. Proceedings of the Eighth 

Australasian Computing Education Conference 

(ACE2006), Hobart, Australia, January 2006. 243 - 252. 

Yu, B., Tsiknis, G., & Allen, M. (2010): Turning Exams 

Into A Learning Experience. Proc. Proceedings of the 

41st ACM technical symposium on Computer science 

education (SIGCSE2010). 

 

 

CRPIT Volume 123 - Computing Education 2012

76



 

Some Empirical Results for Neo-Piagetian Reasoning in Novice 
Programmers and the Relationship to Code Explanation Questions 

Malcolm Corney and Donna Teague   
Faculty of Science and Technology 

Queensland University of Technology, 
Brisbane, QLD, Australia  

 
{m.corney,d.teague}@qut.edu.au 

Alireza Ahadi and Raymond Lister  
Faculty of Engineering and Information Technology, 

University of Technology, Sydney, 
Sydney, NSW, Australia  

 
Raymond.Lister@uts.edu.au 

 

Abstract•••• 
Recent research on novice programmers has suggested 
that they pass through neo-Piagetian stages: sensorimotor, 
preoperational, and concrete operational stages, before 
eventually reaching programming competence at the 
formal operational stage.  This paper presents empirical 
results in support of this neo-Piagetian perspective.  The 
major novel contributions of this paper are empirical 
results for some exam questions aimed at testing novices 
for the concrete operational abilities to reason with 
quantities that are conserved, processes that are 
reversible, and properties that hold under transitive 
inference.  While the questions we used had been 
proposed earlier by Lister, he did not present any data for 
how students performed on these questions.  Our 
empirical results demonstrate that many students struggle 
to answer these problems, despite the apparent simplicity 
of these problems.  We then compare student 
performance on these questions with their performance 
on six explain in plain English questions. 
Keywords: Novice programmer, CS1, neo-Piagetian. 

1 Introduction 
It is well documented within the research literature that 
many CS1 students around the world struggle to learn to 
program.  For example, McCracken’s (2001) multi-
national ITiCSE working group collected data from over 
200 CS1 students.  The students were required to write 
code to evaluate arithmetic expressions.  The average 
student score was only 21%.  Most tellingly, many of the 
students did not write any code, as they spent their 
allotted 90 minutes trying to come up with a design for 
the program.  Inspired by the McCracken working group, 
the ITiCSE 2004 “Leeds” Working Group (Lister et al., 
2004) tested the reading and tracing skills of over 500 
end-of-CS1 students, from twelve universities in seven 
countries.  The average score for the students was 60%, 
with a quarter of the students performing at a level 
consistent with choosing options at random. 

The literature on the novice programmer also abounds 
with reports on puzzling behaviours exhibited by novice 
programmers.  For example, Thomas, Ratcliffe, and 
                                                           
Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the 14th Australasian Computing Education 
Conference (ACE 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in 
Information Technology (CRPIT), Vol. 123. M. de Raadt and 
A. Carbone, Eds. Reproduction for academic, not-for profit 
purposes permitted provided this text is included. 
 

Thomasson (2004) wrote about their frustrations at 
getting novices to use diagrams:  

... when they might appropriately use [diagrams] 
themselves, weaker students fail to do so.  They 
are often impatient when the instructor resorts to 
drawing a diagram, then amazed that the 
approach works.  ... [also] providing [students] 
with what we considered to be helpful diagrams 
did not significantly appear to improve their 
understanding. ... This was completely unexpected.  
We thought that we were ‘practically doing the 
question for them’... 

Perkins et al. (1986) described the behaviours of students 
who are “movers” or “stoppers”: 

Many students disengage from the task whenever 
trouble occurs, neglect to track closely what their 
programs do by reading back the code as they 
write it, try to repair buggy programs by 
haphazardly tinkering with the code, or have 
difficulty breaking problems down into parts 
suitable for  separate chunks of code. 

Ginat (2007) described a similar approach to that of the 
tinkerer, but in more advanced students: 

A hasty design may be based on some simplistic 
application of a familiar design pattern … based 
... on some premature association that seems 
relevant.  Errors are not always discovered, as the 
test cases on which the program is tested are very 
limited.  The devised program is batched, and 
“seems correct”.  Then, an outside source (e.g., a 
teacher) points out a falsifying input.  A patch is 
offered.  Sometimes the patch is sufficient for 
yielding correctness, but more often than not, the 
patch is insufficient.  An additional patch is 
offered; and the cycle of batch−&−patch 
continues. 

1.1 Overview 
Results such as those cited above recently led Lister 
(2011) to describe a neo-Piagetian perspective of the 
novice programmer.  In the next section of this paper, we 
review his neo-Piagetian perspective.  In section 3 we 
report upon empirical results for some neo-Piagetian 
inspired exam questions suggested by Lister.  Section 4 
then examines the relationship of those questions to code 
explanation questions. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

77



 

2 Background: Neo-Piagetian Development 
Lister (2011) proposed four stages of cognitive 
development of the novice programmer, based on neo-
Piagetian theory.  In the following subsections, we outline 
those neo-Piagetian stages.  For a more detailed 
description, the reader should see Lister (2011). 

2.1 Sensorimotor Stage 
The first neo-Piagetian stage is the sensorimotor stage.  
Based upon the empirical results from Philpott, Robbins 
and Whalley (2007), Lister proposed that novices who 
trace code with less than 50% accuracy are at the 
sensorimotor stage.  The afore-mentioned Leeds Working 
Group (Lister et al., 2004) demonstrated that there 
certainly exist students who cannot trace code with 50% 
reliability at the end of their first semester of learning to 
program. 

Without the ability to reliably produce consistent 
results via tracing, novices at the sensorimotor stage see 
code as somewhat magical.  That is, they do not 
experience an executing program as a deterministic 
machine. 

2.2 Preoperational Stage 
At the next stage of development, the preoperational 
stage, novice programmers can reliably trace code, but 
they do not routinely abstract from the code to see a 
meaningful computation performed by that code.  Again, 
the Leeds Working Group (Lister et al., 2004) described 
students who were able to trace code reliably, but...    

“... While working out their answer, none of these 
students volunteered any realization of the intent 
of the code ...” (p. 138). 

Novice programmers at this stage are the novices that 
Thomas et al. (2004) wrote about:  

“... providing [students] with what we considered 
to be helpful diagrams did not significantly appear 
to improve their understanding.” 

For the preoperational novice, the lines in a piece of code 
are only weakly related.  This stage in the development of 
the novice programmer is like the stage that Piaget 
identified in a child’s understanding of machines, such as 
bicycles, where the various parts are known to be 
necessary, but how the parts work together is not 
understood (Piaget, 1930, pp. 205–210).  In an interview 
extract given in Traynor, Bergin, and Gibson (2006) a 
student described his approach to answering coding 
questions in an exam:  

“… you usually get the marks by making the 
answer look correct.  Like, if it’s a searching 
problem, you put down a loop and you have an 
array and an if statement.  That usually gets you 
the marks … not all of them, but definitely a 
pass”.  

That student quoted by Traynor et al. was perhaps being 
cynical, but in the context of this paper, that student is 
describing all that a preoperational novice can do when 
they are required to write code – put down the elements 
that they recognise must be there, but not be able to fit 

those elements together in a way that produces correct 
code. 

Without being able to see how the lines in a piece of 
code relate, a novice at the preoperational stage is likely 
to struggle with describing the purpose of a piece of code 
(“explaining”).   

2.3 Concrete Operational Stage 
Unlike students at the preoperational stage, students at the 
concrete operational stage can reason about abstractions 
of their code.  They can, for instance, relate code to 
diagrams.  They can also see how the individual lines in a 
piece of code work together to perform some overall 
computation.  However, a defining characteristic of 
concrete thinking is that the abstract thinking is restricted 
to familiar situations (hence “concrete”).   

The three archetypal manifestations of concrete 
thinking are the abilities to reason (1) about processes 
that are reversible, (2) with quantities that are conserved 
and (3) properties that hold under transitive inference.  In 
the next three subsections, we review three exam 
questions that Lister (2011) identified as requiring these 
three types of reasoning. 

2.3.1 Reversing 
Figure 1 contains a question that Lister (2011) nominated 
as requiring the novice programmer to reason about 
reversing.   

 
Figure 1: A question that requires the concrete 

operational ability to reason about reversing (from 
Lister, 2011). 

2.3.2 Conservation 
Lister (2011) identified one type of conservation in 
programming, which is the preservation of a specification 
across variation in the implementation. Figure 2 contains 
a question he nominated as requiring the novice 
programmer to reason about conservation.  In that 
question, either of the options in each box could be right, 
depending upon what choices the novice has made in the 
other boxes.  Thus, the novice needs to be able to see how 
the lines of code are related.   

The purpose of the following code is to move all 
elements of the array x one place to the right, with 
the rightmost element being moved to the leftmost 
position:   

 int temp = x[x.length-1]; 

 for (int i=x.length-2; i>=0; --i) 
     x[i+1] = x[i]; 

 x[0] = temp; 

Write code that undoes the effect of the above code. 
That is, write code to move all elements of the array 
x one place to the left, with the leftmost element 
being moved to the rightmost position. 

CRPIT Volume 123 - Computing Education 2012

78



 

In plain English, explain what the following segment 
of Java code does: 

bool bValid = true; 

for (int i = 0; i < iMAX-1; i++) 
{ 
  if (iNumbers[i] > iNumbers[i+1]) 

     bValid = false; 

} 

 
Figure 2: A question that requires the concrete 

operational ability to reason about conservation of 
specification under variation of implementation (from 

Lister, 2011). 

2.3.3 Transitive Inference 
Transitive inference is the type of reasoning where, in 
general terms, if a certain relationship holds between 
object A and object B, and if the same relationship holds 
between object B and object C, then the same relationship 
also holds between object A and object C.  For example, 
Piaget would sometimes ask a child a question like, “If 
Adam is taller than Bob, and Bob is taller than Charlie, 
who is the tallest?”   

Figure 3 contains the “explain in plain English” 
problem used in many BRACElet studies (Whalley et al., 
2006; Lister et al., 2006). Lister (2011) nominated this 
question as requiring the novice programmer to perform 
transitive inference, since the novice must realise that if 
all consecutive array element pairs are ordered, then the 
entire array is ordered. 

2.4 Formal Operational Stage 
The formal operational stage is the most advanced and 
most abstract stage of cognitive development.  It can be 
defined succinctly thus: formal operational reasoning is 
what competent programmers do, and what we’d like our 
students to do. 

Figure 3: A question from several BRACElet studies, 
which requires the concrete operational ability of 

transitive inference (from Lister, 2011). 
This paper focuses on the types of reasoning that precede 
formal operational reasoning, so in this paper it is only 
necessary to further sharpen the reader’s understanding of 
concrete operational reasoning by describing how people 
who reason at the formal operational level differ from 
people reasoning at the concrete operational reasoning: 

 
• They can reason about unfamiliar situations. 
• They tend to begin with the abstract and move to the 

concrete. 
• They reason with abstractions routinely, logically, 

consistently and systematically. 
• They have a reflective capacity — an ability to think 

about their own thinking.   
• They can perform hypothetico-deductive reasoning.  

In the context of programming, hypothetico-
deductive reasoning is nicely illustrated by an extract 
from Edwards (2004), in a paper where he argued 
that novice programmers needed... 

“... practice in hypothesizing about the 
behavior of their programs and then 
experimentally verifying (or invalidating) 
their hypotheses.  ... These activities are at 
the heart of software testing.”  (p. 27) 

• They reliably manifest problems solving skills on 
unfamiliar problems.  McCracken et al. (2001) 
defined problem solving as a five step process: (1) 
abstract the problem from its description; (2) generate 
subproblems; (3) transform subproblems into 
subsolutions; (4) recompose; and (5) evaluate and 
iterate. 

2.5 Note: Development vs. Pedagogy 
The above neo-Piagetian stages do not imply pedagogy.  
For example, these stages do not imply that a novice 
should first be taught to trace code, before the novice is 
allowed to write any code.  The above neo-Piagetian 
stages are descriptions of the order in which a novice’s 
competence in certain skills will be manifested, 
irrespective of how that novice is taught.   
 

Below is incomplete code for a method which returns 
the smallest value in the array x.  The code scans 
across the array, using the variable minsofar to 
remember the smallest value seen thus far.  There are 
two ways to implement remembering the smallest 
value seen thus far: (1) remember the actual value, or 
(2) remember the value’s position in the array.  Each 
box below contains two lines of code, one for 
implementation (1), the other for implementation (2). 
First, make a choice about which implementation you 
will use (it doesn’t matter which).  Then, for each 
box, draw a circle around the appropriate line of code 
so that the method will correctly return the smallest 
value in the array.   

public int min(int x[] ){ 
 

   int minsofar =              ; 
         

for ( int i=1 ; i<x.length ; ++i ) 
{ 
  if ( x[i] <                     ) 
 

 
     minsofar =             ; 
   
} 

  return                     ; 
 
} 

(g) minsofar 
(h) x[minsofar] 
 

(a) 0 
(b) x[0] 

(e) i 
(f) x[i] 

(c) minsofar 
(d) x[minsofar] 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

79



 

3 Results for Reversing and Conserving 
We placed into our end of semester exam the questions in 
Figures 1 and 2 which Lister (2011) had proposed as 
requiring concrete operational reasoning.  This section 
discusses the results for those two questions. 

3.1 Screening 
Before performing the analysis below, we screened 
students, using two tracing questions from that same end 
of semester exam.  The purpose in the screening was to 
eliminate from further study any students who were at the 
sensorimotor stage.  Students who answered either of the 
two tracing questions incorrectly were eliminated from 
further study. 

One of the two screening questions required students 
to determine the final values in five variables after a 
series of ten assignment statements.  The first five 
assignment statements initialised each variable.  The 
remaining five statements assigned values between these 
variables, and were designed to detect students who had 
any of the well known misconceptions about variables 
and assignment statements (du Boulay, 1988). 

The other screening question required students to 
reason about two nested if statements. The conditions in 
the if statements involved comparisons among three 
integer variables, a, b and c.  Each then and else part 
of the if statements results in the output of one of those 
variables.  The question was framed as a multiple choice 
question, where students had to reason backward, from 
output to input.  Specifically, students were asked “Which 
of the following values for the variables will cause the 
value in variable b to be printed?” 

After this screening, 93 students remained in the 
sample for further analysis.  These 93 students were 
considered to be reasoning at a level no lower than 
preoperational. 

3.2 Reversing 
When writing the solution to the problem in Figure 1, the 
student must recognise that the assignment x[i+1] = 
x[i] in the loop body needs to be replaced with either 
x[i] = x[i+1] or x[i-1] = x[i].  We feel that 
such a change is the simplest of all the changes required, 
and is even a change within the grasp of any exam-savvy 
student reasoning at the preoperational level.  Rather than 
indicating a low level of neo-Piagetian reasoning, an error 
on that line of code might simply be due to a student 
misunderstanding the question, perhaps because of poor 
English language reading skills.  Therefore, we 
eliminated from the analysis of this question any student 
who did not make a correct change to that assignment 
statement in the loop body, which left us with 70 students 
in our sample.  All of these students provided a four-line 
solution that resembled the code provided in the question.   

Of the 70 students, only 45 (64%) provided a correct 
first line, in which they saved the leftmost element of the 
array to the temporary variable, and 38 students (54%) 
provided a correct final line, in which they assigned the 
temporary value to the rightmost position in the array.  
Only 37 students (53%) provided both a correct first line 
and a correct last line.  We classify the 33 students (47%) 
who did not provide correct versions of both lines as 

clearly exhibiting preoperational reasoning.  (Recall that 
these 33 students did provide a correct assignment in the 
loop body, and thus showed some understanding of the 
problem.) 

Of the 37 students who provided a correct first, third 
and fourth line, 15 (41%) provided a correct version of 
the second line, the for loop.  We classify those 15 
students as clearly exhibiting concrete operational 
reasoning.  We consider the remaining 22 of these 37 
students to be exhibiting some degree of concrete 
operational reasoning.  Among these 22 students, the 
most common errors were off-by-one errors.  Often, the 
values specified in line 2 through which the control loop 
variable i would iterate were appropriate, in isolation, 
and so was the assignment statement on line 3, in the 
body of the loop.  However, those two lines, in 
combination, were often not compatible.  Perhaps with a 
little more careful checking, at least some of those 
students might have provided a correct solution.  

In summary, for this question we see evidence for 
preoperational and concrete operational reasoning among 
our sample of students, who had passed a screen for 
sensorimotor reasoning. 

3.3 Conservation 
Table 1 shows student performance in the final exam on 
the concrete operational “choose from each box” task 
shown in Figure 2.  The 40% of students who provided a 
correct solution (i.e. either ADEH or BCFG) are clearly 
exhibiting concrete operational reasoning.  The 32% of 
students who provided ACFG show some signs of 
concrete operational reasoning, by virtue of choosing 
CFG.  The remaining 28% of students are clearly 
exhibiting preoperational reasoning.   

A possible threat to the validity of this question is the 
lengthy English instructions prior to the code.  A student 
who reads English as a second language may be 
disadvantaged. 

ADEH (correct) 8 % 

BCFG  (correct) 32 % 

ACFG  (close) 32 % 

Others  (all wrong) 28 % 

Table 1: Student performance in the final exam on the 
concrete operational “choose from each box” task 

shown in Figure 2. (n=93) 

3.4 Comparing Reversing and Conservation 
Table 2 shows the relationship between student 
performance on these two questions, as a contingency 
table.  Given that few students answered the code reversal 
problem with complete accuracy, we elected to just use 
the data on that question for how many students handled 
the end element correctly (i.e. lines 1 and 4).  A 2 test 
yielded p=0.08, which is higher than the traditional 
p=0.05 threshold for statistical significance. 

With the given data, it is unclear whether the absence 
of a statistical relationship between the two questions is 
due to competence differences (i.e. the two questions 

CRPIT Volume 123 - Computing Education 2012

80



 

require different sorts of reasoning skills) or performance 
differences (i.e. the framing of the two questions test 
skills other than the ability to reason about code; see 
Chomsky, 1965).  One obvious potential performance 
difference is the greater demands placed upon a student’s 
English language reading ability by the “select from the 
boxes” task.  A more detailed study of this issue is 
warranted.  An essential element of such a study is the 
use of two or more questions of each type, to assess the 
consistency of student performance within each type of 
question, before assessing the significance of consistency 
of student performance between these two types of 
questions. 

Select code from 
boxes 

(see Figure 2) 

Write the reverse of a given 
shift; correct treatment of end 
element (i.e. correct line 1 and 
line 4, analogous to Figure 1) 

wrong right  

wrong 36 20    56 

right 17 20 37 

 
53 40 93 

Table 2: The contingency table for student 
performance on the two concrete operational 

questions. (2 = 3.06, p = 0.08) 

4 Code Explanation and Concrete Reasoning 
This section explores the relationships between the two 
concrete operational questions studied in the previous 
section and explain in plain English questions. 

Explain in plain English questions were used 
extensively in the BRACElet project (Whalley, et al., 
2006; Lister et al., 2006).  However there has been some 
controversy as to whether these questions are really 
testing the ability of students to read and understand code 
(i.e. competence) or the ability of the students to express 
themselves in English (i.e. performance; see Simon, et 
al., 2009; Simon, 2009; Simon and Snowdon, 2011).  If 
we see in our data a direct relationship between how well 
our students answer the concrete operational questions in 
Figures 1 and 2 and how well they answer explain in 
plain English questions, then that would suggest that the 
explain in plain English question requires, at the 
minimum, concrete operational reasoning skills. 

4.1 The Six Explanation Questions 
Our end of semester exam contained six explain in plain 
English questions.  These questions, labelled (a) to (f) are 
shown in Figures 4 and 5, along with handwritten 
answers from a student who did the exam: 

 (a) This question was intended to be a benchmark of 
each student’s ability to express themself in 
English.  Since the code does not contain either 
loops or arrays, it is simpler than the remaining 
explanation questions. 

 (b) This question was intended to test the student’s 
ability to explain code operating on arrays, using 
an if statement within a loop.   

 (c) In addition to the skills required to explain the 
previous question, this question required the 
student to reason about the effect of a return 
statement within a loop. The purpose in including 
this question was that it requires the same skills as 
question (f), with the exception of transitive 
inference.  

 (d) We regard this as our simplest question on loops 
and arrays. 

 (e) The basic purpose of this code is relatively simple 
 to find the position of a target value in a list.  
However, there are two details required in a 
completely correct answer.  The first detail 
concerns the behaviour of the code if the target 
value is not found.  The second detail concerns the 
behaviour of the code when the target value occurs 
more than once in the list. 

 (f) This question is similar to the question in Figure 3, 
that Lister asserted required transitive inference. 
However, our code in the exam was different from 
Figure 3 in two ways.  The first difference is that 
the code we used in our exam was in Python.  The 
second difference is our Python code does not set 
a flag, but instead (as in question (c)) breaks out of 
the loop with a return statement.  A comparison 
of student performance on questions (c) and (f) is 
a test of Lister’s assertion that this question 
requires transitive inference. 

4.2  Reversing and Explanation Questions 
Row 1 of Table 3 shows the performance of the 93 
students who passed our sensorimotor screening test, 
which was described earlier.  For example, the column 
headed “(a)” shows that 89% of the whole sample 
answered the explanation question “(a)” correctly.  The 
two hardest explanation questions (by far), were 
explanation questions (c) and (f), with only 36% and 31% 
of our whole sample answering those questions correctly.  
(Note that students' answers to question (f) were marked 
as correct even if they failed to mention the indexing 
error that may be generated.)  The remaining rows of 
Table 3 show the percentage of students who answered 
correctly each explanation question, given their 
performance on aspects of the concrete operational “shift 
left” question in Figure 1.   

Row 2 of Table 3 shows the performance of the 33 
students who (in addition to passing the sensorimotor 
screening test) provided a correct assignment statement 
within the body of the loop, but failed to provide a correct 
handling of the end element of the array (i.e. code like 
lines 1 and 4 in Figure 1).  Only a quarter of these 
students could answer explanation questions (c) and (f) 
correctly.  Less than half (45%) of these students 
answered explanation question (e) correctly.   

Earlier in the paper, we surmised that writing the 
correct assignment in the for loop lay within the grasp 
of exam-savvy students reasoning at the preoperational 
level.  The statistical data for Row 2 is consistent with 
that claim.  Over half the students in Row 2 are able to 
correctly answer the two explanation questions (b) and 
(d).  To do so, we believe a student need not understand  

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

81



 

 

Figure 4: The first .three of the six explanation questions used in the exam paper. 

CRPIT Volume 123 - Computing Education 2012

82



 

 
 

 Figure 5: The final three of the six explanation questions used in the exam paper. 
 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

83



 

R
o
w 

Description n 
Explain in Plain English Questions (a) to (f) 

(a) (b) (c) (d) (e) (f) 
1 Whole sample 93 89% 76% 36% 82% 60% 31% 
2 Correct assignment in for loop 33 82% 58% 24% 67% 45% 24% 
3   p < 0.04* p < 0.01* p = 0.8 p = 0.01* p = 0.01* p = 0.3 
4 End element handled correctly 22 100% 95% 27% 95% 68% 23% 
5   p = 0.22 p = 0.78 p < 0.01* p = 0.78 p = 0.20 p < 0.03* 
6 Code entirely correct 15 93% 93% 73% 93% 87% 60% 
Table 3: The percentages of students who answered each explain in plain English question correctly, given their 

performance on aspects of the concrete operational “shift left” question in Figure 1. The shaded cells indicate 
statistically significant differences in the percentages shown in the cells above and below the shaded cell.  

Explain in Plain English Questions (a) to (f) 

 (a) (b) (c) (d) (e) (f) 
w right w right w right w right w right w right 

6 27 (82%) 14 19 (58%) 25  8 (24%) 11 22 (67%) 18 15 (45%) 29   4 (12%) 33 

0 22(100%) 1 21 (95%) 16  6 (27%) 1 21 (95%)  7 15 (68%) 17   5 (23%) 22 

6 49 (89%) 15 40 (73%) 41 14 (25%) 12 43 (78%) 25 30 (55%) 46   9 (16%) 55 

p < 0.04* p < 0.01* p = 0.8 p = 0.01* p = 0.01* p = 0.3 
Table 4: Complete contingency tables used to calculate the 2 test probabilities in row 3 of Table 3. The column 
heading “w” (wrong) indicates data for students who answered that particular explanation question incorrectly. 

Explain in Plain English Questions (a) to (f) 

 (a) (b) (c) (d) (e) (f) 
w right w right w right w right w right w right 

0 22(100%) 1 21 (95%) 16   6 (27%) 1 21 (95%)  7 15 (68%) 17  5 (23%) 22 

1 14  (93%) 1 14 (93%)   4 11 (73%) 1 14 (93%) 2 13 (87%) 6  9 (60%) 15 

1 36 (97%) 2 35 (95%) 20 17 (46%) 2 35 (95%) 9 28 (76%) 23 14 (38%) 37 

p =0.22 p = 0.78 p < 0.01* p = 0.78 p = 0.20 p < 0.03* 
Table 5: Complete contingency tables used to calculate the 2 test probabilities in row 5 of Table 3. 

  Explain in plain English question (f) 
 

wrong right 

Explain in plain English question (c) 
wrong 3 1  4 
right 3 8 11 

 6 9 15 

Table 6: Contingency table comparing the performance on explanation questions (c) and (f) of the n=15 students 
who answered entirely correctly the concrete operational “shift left” question in Figure 1 (2 test, p = 0.1). 

 
 

n 
Explain in Plain English Questions (a) to (f) 

(a) (b) (c) (d) (e) (f) 
4 Handled end element 22 100% 95% 27% 95% 68% 23% 
5 Select boxes correct 37 92% 92% 51% 86% 73% 41% 
6 Entire shift correct 15 93% 93% 73% 93% 87% 60% 

Table 7: The middle row shows the percentages of students who answered each explain in plain English question 
correctly, given correct performance on the “select from the boxes” question in Figure 2. The rows beginning 

“4” and “6” are the same rows as in Table 3, for comparison. 

CRPIT Volume 123 - Computing Education 2012

84



 

every aspect of that code.  Like the student we quoted 
earlier from the paper by Traynor et al., who knew how 
to get half marks on a code writing task, without 
understanding the code he put down, a student doesn’t 
need to understand every aspect of the for statements in 
(b) or (d) to guess that the code will run across all 
elements of the list.  After making such an assumption, a 
student can then answer the question by focussing solely 
upon the if within the loop, and its associated 
assignment statement. 

4.2.1 Rows 2 & 4: Preoperational to Concrete  
Row 4 of Table 3 shows the performance of the 22 
students who succeeded at all the same tasks on the 
“shift” problem that the students in Row 2 were able to 
do, and who were also able to correctly handle the end 
element of the list (i.e. lines like 1 and 4 in Figure 1).  
However, these 22 students did not provide a suitable 
for statement (i.e. a line like line 2 in Figure 1). As 
discussed in section 3.2, these 22 students comprising 
row 4 exhibit some degree of concrete operational 
reasoning, whereas the students in row 2 exhibit 
preoperational reasoning. 

A chi-square test was performed on each of the data 
forming rows 2 and 4 of the table.  That is, for each 
explanation question, the raw data from which the two 
percentages in rows 2 and 4 were derived were used to 
perform a chi-square test.  The resultant probability 
values for each column are shown in Row 3.  (To assist 
others who may attempt to replicate our findings, the full 
contingency tables from which the probabilities were 
calculated are provided in Table 4.) 

The shaded cells in Row 3 indicate the explanation 
questions for which the percentage in Row 2 is 
significantly different (i.e. p < 0.05) to the percentage in 
Row 4.  All four of the easier explanation questions show 
a statistically significant improvement from Row 2 to 
Row 4.  However, the two harder explanation questions 
(i.e. c and f) do not show a statistically significant 
improvement.  Also, although the percentage of 
explanation question (e) rises between Rows 2 and 4 
(from 45% to 68%), even with that increase almost one 
third of the students who could correctly handle the end 
element in the “shift” problem could not answer this 
explanation question.  While explanation questions (b) 
and (d) are too difficult for quite a large percentage of the 
students in Row 2, these two questions were answered 
correctly by almost every student in Row 4. 

To summarize this subsection: some degree of 
concrete operational reasoning tends to be both necessary 
and sufficient for answering correctly explanation 
questions (b), (d) and (e).  

4.2.2 Rows 4 & 6: Growing Concrete Skills  
Row 6 of Table 3 shows the performance of the 15 
students who were able to provide a completely correct 
solution to the “shift left” problem.  These 15 students 
comprising row 6 exhibit solid concrete operational 
reasoning, perhaps even formal operational reasoning. 

A chi-square test was performed on each of the data 
forming rows 4 and 6 of the table.  (As before, to assist 

others who may attempt to replicate our findings, full 
contingency tables for calculating these probabilities are 
provided in Table 5.)  The resultant probability values for 
each column are shown in Row 5 of Table 3. The shaded 
cells in Row 5 indicate a statistically significant 
improvement on the two harder explanation questions 
(i.e. c and f) from Row 4 to Row 6. 

A substantial minority of Row 6 students cannot 
answer these explanation questions.  From our reading of 
incorrect student responses to (c), we conclude that many 
of these students did not understand that executing a 
return statement within a loop will immediately 
terminate the loop.  Such a weak grasp of the return 
statement is consistent with Lister et al. (2004), who 
reported that misconceptions about return statements 
were the only misconceptions observed in that study. 

4.2.3 Transitive Inference and Explanation 
Recall that the purpose of explanation question (c) was 
that it required the same reasoning skills as question (f), 
with the exception of transitive inference.  In this 
subsection, we compare student performance on those 
two explanation questions.  

Student performance on both (c) and (f) is so poor that 
it is difficult to make any comparisons.  In Row 2 of 
Table 3, only 24% of the students answered each of (c) 
and (f) correctly.  In Row 4 of Table 3, only 27% and 
23% of the students answered (c) and (f) correctly.  These 
two explanation questions are too hard for most students 
represented in those two rows. 

Row 6 of Table 3 is the only row where any 
comparison of (c) and (f) is at all viable.  Here, the 
respective percentages are 73% and 60%, but that is for a 
tiny sample of only 15 students.  Table 6 is a contingency 
table for that data.  The resultant probability value is p = 
0.1, which is above the standard p = 0.05 threshold.  
However, p = 0.1 does mean that the chance that the 
difference in the percentages is a statistical fluke is only 1 
in 10.  Given that, and the small sample size, our data 
does not fundamentally contradict Lister’s assertions 
about transitive inference, but it is at best only very 
weakly supportive.  Further work is warranted. 

4.3 Conservation and Explanation 
Row 5 in Table 7 shows the percentages of students who 
answered each explanation question correctly, given 
correct performance on the "select from the boxes" 
question in Figure 2.  The rows beginning “4” and “6” are 
the same rows as in Table 3, from the “shift” problem, for 
comparison. 

Of particular interest in Table 7 is the data for the two 
harder explanation questions, (c) and (f).  The 
percentages for “select from the boxes” on questions (c) 
and (f) lie between the percentages for the rows 
beginning “4” and “6”, from the “shift” problem — 
which may indicate that the difficulty of this particular 
conservation problem is beyond some concrete 
operational students who can handle the end element in 
the “shift” problem, but lies within the grasp of most 
concrete operational students who can correctly solve the 
entire “shift” problem.   That, in turn suggests (but does 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

85



 

not prove) that the “select from the boxes” task used in 
this paper requires concrete operational reasoning. 

5 Conclusion 
Our empirical results support the claims made by Lister 
(2011).  We see students who manifest preoperational 
reasoning skills by their poor performance on a reversal 
task (“shift left”) and a conservation task (“fill in the 
boxes”).  However, while our data does not 
fundamentally contradict Lister’s assertions about 
transitive inference, our limited data is at best only very 
weakly supportive.  For transitive inference, a larger 
study will be required. 

While there may be some controversy as to whether 
the nature of the problem that students face with 
explanation questions is competence-related or 
performance-related, there is less doubt about students 
who, when explicitly supplied with code that moves all 
elements of a list (or array) one place to the right, cannot 
alter that supplied code to move all the elements one 
place to the left.  Thomas et al. (2004) described the 
diagrams they gave their students as “practically doing 
the question for them”  how much more so for the 
“shift left” problem we gave our students?  Such a 
question clearly establishes that there are students in our 
class who, at the end of their first semester of 
programming, are at the preoperational level of reasoning 
about code.  It would be very interesting to see if the 
same is the case at other universities — we suspect that it 
is the case. 

Preoperational students are woefully under-prepared 
for the rigours of traditional programming assignments.  
On such assignments, preoperational students can only 
flail about, exhibiting the behaviours described by 
Perkins et al. (1986), Thomas et al. (2004), and Ginat 
(2007)  behaviours which have puzzled and 
exasperated many, many CS1 teachers around the world.  
A neo-Piagetian perspective on the novice programmer 
actually positions these behaviours as normal behaviours 
to be expected in the long and torturous cognitive 
development of the novice programmer. 

References 
Chomsky, N. (1965). Aspects of the Theory of Syntax. 

Cambridge, MA: MIT Press. 
Du Boulay, B. (1988) Some Difficulties in Learning to 

Program. In Studying the Novice Programmer, 
Soloway, E. and Spohrer, J. C. (eds), Lawrence 
Eribaum, 1988, pp. 283–299. 

Edwards, S.  (2004) Using Software Testing to Move 
Students from Trial-and-Error to Reflection-in-Action. 
SIGCSE Bulletin 36, 1, 26–30. 

Ginat, D. (2007). Hasty Design, Futile Patching and the 
Elaboration of Rigor. SIGCSE Bull. 39, 3 (June), pp. 
161–165. 

Lister R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, 
J., Lindholm, M., McCartney, R., Moström, E., 
Sanders, K., Seppälä, O., Simon, B., and Thomas, L. 
(2004) A Multi-National Study of Reading and 
Tracing Skills in Novice Programmers.  SIGCSE Bull. 
36, 4 (June), pp. 119–150. 
http://doi.acm.org/10.1145/1041624.1041673   

Lister, R., Simon, B., Thompson, E., Whalley, J., & 
Prasad, C. (2006). Not Seeing the Forest for the 
Trees: Novice Programmers and the SOLO 
Taxonomy. SIGCSE Bulletin 38(3): pp. 118–122. 

Lister, R. (2011) Concrete and Other Neo-Piagetian 
Forms of Reasoning in the Novice Programmer.  
Thirteenth Australasian Computing Education 
Conference (ACE 2011), Perth, Australia, January 
2011. pp. 9–18. 

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., 
Hagen, D., Kolikant, Y., Laxer, C., Thomas, L., 
Utting, I., and Wilusz, T. (2001) A Multi-National, 
Multi-Institutional Study of Assessment of 
Programming Skills of First-year CS Students. 
SIGCSE Bull., 33(4). pp. 125–140.  

Perkins, D., Hancock, C., Hobbs, R., Martin, F., and  
Simmons, R. (1986) Conditions of Learning in Novice 
Programmers. In Soloway and Sphorer (eds), 
Studying the novice programmer. Lawrence Erlbaum. 
pp. 261–279. 

Philpott, A, Robbins, P., and Whalley, J. (2007): 
Accessing The Steps on the Road to Relational 
Thinking. 20th Annual Conference of the National 
Advisory Committee on Computing Qualifications, 
Nelson, New Zealand, p. 286. 

Piaget, J. (1930) The Child’s Conception of Physical 
Causality. London, K. Paul, Trench, Trubner & Co. 

Simon, Lopez, M., Sutton, K. and Clear, T. (2009). Surely 
We Must Learn to Read before We Learn to Write!. In 
Proc. Eleventh Australasian Computing Education 
Conference (ACE 2009), Wellington, New Zealand. 
CRPIT, 95. Hamilton, M. and Clear, T., Eds., ACS. 
pp. 165–170.  

Simon (2009). A Note on Code-Explaining Examination 
Questions. Ninth International Conference on 
Computing Education Research – Koli Calling 2009, 
Koli, Finland, November 2009, pp. 21–30. 

Simon and Snowdon, S. (2011) Explaining Program 
Code: Giving Students the Answer Helps – But Only 
Just. Seventh International Computing Education 
Research Workshop (ICER), Providence, Rhode 
Island, pp. 93–99. 

Thomas, L., Ratcliffe, M., and Thomasson, N. (2004) 
Scaffolding with Object Diagrams in First Year 
Programming Classes: Some Unexpected Results.  
35th SIGCSE technical symposium on Computer 
science education (SIGCSE '04). pp. 250–254. 

Traynor, D., Bergin, S., and Gibson, J. P. (2006) 
Automated Assessment in CS1. 8th Australian 
Conference on Computing Education (ACE), Hobart, 
Australia, ACM International Conference Proceeding 
Series, 165: pp. 223–228. 

  http://crpit.com/confpapers/CRPITV52Traynor.pdf 
Whalley, J. L., Lister, R., Thompson, E., Clear, T., 

Robbins, P., Kumar A. P. K. & Prasad, C., (2006): An 
Australasian Study of Reading and Comprehension 
Skills in Novice Programmers, using the Bloom and 
SOLO Taxonomies. Proceedings of the 8th Australasian 
Computing Education Conference, pp. 243–252. 

CRPIT Volume 123 - Computing Education 2012

86



 

Swapping as the “Hello World” of Relational Reasoning:  

Replications, Reflections and Extensions  

Donna Teague and Malcolm Corney  
Faculty of Science and Technology 

Queensland University of Technology, 

Brisbane, QLD, Australia  
 

{d.teague,m.corney}@qut.edu.au 

Alireza Ahadi and Raymond Lister  
Faculty of Engineering and Information Technology, 

University of Technology, Sydney, 

Sydney, NSW, Australia  
 

Raymond.Lister@uts.edu.au 

Abstract

 

At the previous conference in this series, Corney, Lister 

and Teague presented research results showing 

relationships between code writing, code tracing and code 

explaining, from as early as week 3 of semester.  We 

concluded that the problems some students face in 

learning to program start very early in the semester.  In 

this paper we report on our replication of that experiment, 

at two institutions, where one is the same as the original 

institution.  In some cases, we did not find the same 

relationship between explaining code and writing code, 

but we believe this was because our teachers discussed 

the code in lectures between the two tests.  Apart from 

that exception, our replication results at both institutions 

are consistent with our original study. 

Keywords: Novice programmer, tracing, explaining, 

writing. 

1 Introduction 
A number of recent research results have demonstrated a 

relationship between the ability of novice programmers to 

manually execute (“desk check” or “trace”) code, their 

ability to explain the purpose of a piece of code, and their  

ability to write similar code.  Lopez et al. (2008) found 

that, when tracing and explaining were each used 

separately in a single regression model, neither tracing 

code nor explaining code were strong indicators of code 

writing ability. However, when combined in a multiple 

regression, tracing code and explaining code accounted 

for 46% of the variance in marks awarded to a code 

writing question in an exam.  Venables, Tan and Lister 

(2009) performed a similar study, and also found a strong 

relationship between tracing, explaining and writing, as 

illustrated in Figure 1. 

Lister, Fidge and Teague (2009) also studied the 

relationship between tracing, explaining and writing, but 

they used a non-parametric approach.  As part of their 

results, they effectively screened students on their code 

tracing ability, which allowed them to isolate and study 

the relationship between code explaining and code 

                                                           

Copyright © 2012, Australian Computer Society, Inc. This 

paper appeared at the 14th Australasian Computing Education 

Conference (ACE 2012), Melbourne, Australia, January-

February 2012. Conferences in Research and Practice in 

Information Technology (CRPIT), Vol. 123. M. de Raadt and 

A. Carbone, Eds. Reproduction for academic, not-for profit 

purposes permitted provided this text is included. 

 

writing for a sample of students with a tracing 

performance >50%.  For those students, Lister, Fidge and 

Teague found that students with ≤50% score on code 

explaining tasks performed statistically worse on a code 

writing task than students who scored >50% on the code 

explaining tasks (see Table 1).  Similar results have since 

been reported for students at other educational institutions 

(Lister et al., 2010).  From these studies, it seems 

plausible (but not proven) that a student is ill prepared to 

write code if that student also does not have reliable code 

tracing skills, or code explanation skills. If asked to 

design and write code, such a student may have little 

alternative but to engage in programming by “random 

mutation”, as the student may lack the analytic skills 

necessary to systematically debug their own code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A multiple regression, from Venables, Tan 

and Lister (2009), with score on code writing as the 

dependent variable, and the combination of scores on 

tracing and explaining as the independent variables. 

 

Number of good answers on 

four explanation questions 

 
Success on a code 

writing question 

> 50%  (n = 98) 67% 

≤ 50%   (n = 24) 46% 

χ
2
  test p = 0.05 

Table 1:  Empirical results from Lister, Fidge and 

Teague (2009), showing the relationship they found 

between code explaining and code writing.  (This table 

is derived from Table 7 of their paper.) 

0

10

20

30

0 10 20 30

1.24Tracing2 + 1.68Explain - 3.12

Q
34

+Q
35

 

R2 = 0.66,  p < 0.001 

Writing 

\

  

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

87



 

1.1 Corney, Lister and Teague (2011) 
The above empirical studies all collected data from 

students at the end of their first semester of learning to 

program.  In earlier work (Corney, Lister and Teague, 

2011), we tested a class of CS1 students at three points in 

their development – at week 3, again at week 5, and at the 

end of semester.  One of the questions in the week 3 test 

required students to answer the code explanation question 

shown in Figure 2. 

 

Figure 2: A question from the week 3 test of Corney, 

Lister and Teague (2011). 

In the week 5 test, one of the questions required 

students to write code to swap the values of two variables 

(i.e. code similar to that shown in Figure 2).  After 

eliminating from that sample those students who had 

performed poorly on some code tracing tasks, we found 

that students who had successfully explained the above 

swapping code in week 3 were much more likely to write 

correct code for swapping two variables in week 5 than 

the students who could not explain the code in week 3.  In 

addition, the students who performed better on these 

questions in week 3 and week 5 performed better on a 

code writing task at the end of the semester.  These 

results led us to conclude that the problems some students 

face in learning to program begin very early in semester. 

1.2 Overview  

In this paper, we present replications of our earlier work 

(Corney, Lister and Teague, 2011), performed at two 

institutions.  One of the institutions is the Queensland 

University of Technology (QUT), which was the source 

of the data in the original study.  The other institution is 

the University of Technology, Sydney (UTS).  The QUT 

replication is very similar to the original study, while the 

UTS replication contains some variations from the 

original study. 

2 Replication at QUT 
In the replication at QUT, students were tested at week 3 

and week 5 of semester, the same weeks as in the original 

study.  As in the original study, these students were 

learning Python.  In both weeks, we used the same test 

questions as in our original study.  Also, we screened for 

and eliminated novices, using the same tracing questions 

as in our original study.  After that screening, 51 students 

remained in our sample. 

2.1 Writing a Swap  

Table 2 summarises the results from this replication.  The 

percentages shown in the brackets (and preceded by 

“cf.”) are the percentages from our original study.  Our 

replication results do not support the results in our 

original study.  The most notable difference in our data is 

that a far higher percentage of our students who could not 

explain a swap at week 3 could write a swap at week 5 

(i.e. 71% cf. 57%).  

 

Week 3, 

Explain a swap between two 

variables 

(see Figure 2) 

 

Week 5, 

Successfully wrote an 

equivalent swap between 

two variables 

Wrong  (n = 21) 71%          (cf. 57%) 

Right   (n = 30) 83%          (cf. 92%) 

χ
2
  test p = 0.3        (cf. p = 0.001) 

Table 2: Results from the replication at QUT, with 

comparative percentages shown in brackets from our 

original study (Corney, Lister and Teague, 2011).  

 

Week 3, 

Explain a swap between 

two variables 

(see Figure 2) 

 

Week 5, 

Successfully wrote a swap 

between two variables 

 failure success 

Wrong (n = 21) 6  15   (i.e. 71% of 21) 

Right  (n = 30) 5 25   (i.e. 83% of 30) 

Table 3: The contingency table for calculating the chi-

square value in Table 2. 

2.1.1 Reflections 
We suspect that the difference in our results is due to the 

way in which these tests were integrated with our 

teaching.  In the original study, the week 3 test was not 

discussed with the class by the lecturer (i.e. co-author 

Corney).  In contrast, our week 3 test was followed by a 

lengthy discussion of the test by the lecturer.  (There was 

nothing pedagogically novel about that discussion.  

Corney discussed swapping in the same way a lecturer 

might discuss any piece of code.)  Assuming our 

explanation for the difference is correct, our result may be 

encouraging, as it may indicate that the problems students 

face are amenable to pedagogical intervention.  However, 

the question would still remain as to whether a student 

can transfer that learning to other programming problems.  

This is an issue to which we return in section 2.2.2. 

The purpose of the following three lines of code is 

to swap the values in variables a and b: 

c = a 

a = b 

b = c 

The three lines of code below are the same as the 

lines above, but in a different order: 

a = b 

b = c  

c = a 

In one sentence that you should write in the box 

below, describe the purpose of those second set of 

three lines. NOTE: Tell us what the second set of 

three lines of code do all by themselves. Do NOT 

think of those second three lines as being executed 

after the first three lines of code. 

 
Sample answer:  “it swaps the values in b and c” 

CRPIT Volume 123 - Computing Education 2012

88



 

In Table 2, we have presented our data in the same 

format we used in our original work.  That format is an 

unusual format for presenting data that is then tested 

statistically by a chi-square test.  Table 3 reproduces our 

data from Table 2 as the more traditional contingency 

table.  In this paper, we will present our results in both 

forms. 

2.2 Explaining a Sort of Three Variables 

Another question in the week 5 test from our original 

study is shown in Figure 3.  In that study, we reported a 

statistically significant result (p < 0.05) for student 

performance on this question in week 5 and the 

explanation question in week 3.  Our replication results 

are shown in Tables 4 and 5.  While our percentages in 

the replication are very similar to the percentages in our 

original study, our replication results do not quite meet 

the traditional 0.05 threshold of statistical significance, 

perhaps due to our smaller sample size.  

Opinions vary on the interpretation of the 0.05 

threshold for statistical significance.  Some people view it 

as a rigid threshold − a result is either significant (i.e. 

below 0.05) or it is not significant.  We are inclined to the 

alternative view, also commonly held, that the traditional 

0.05 threshold is somewhat arbitrary (Cohen, 1994). The 

standard 0.05 threshold means that the chance of a data 

sample being a fluke is 1 in 20; whereas our 0.06 result 

simply means that the chance of our data sample being a 

statistical fluke is only slightly higher, at 1 in 17.  We 

therefore argue that our replication results are weakly 

supportive of our original study.  However, we also 

acknowledge it is possible that the effect we have 

observed in both the original study and this replication is 

on the margin of significance. 

Alternately, one can argue that a p value around 0.05 

is an encouragingly strong result, given that we are 

comparing student performance on just two explanation 

questions, one in week 3 and another in week 5. A more 

comprehensive test would involve asking several 

explanation questions in each of weeks 3 and 5.   

2.2.1 Reflections 
The results in Tables 4 and 5 support our suspicion that 

the earlier null result (i.e. Tables 2 and 3) may be due to 

how we taught the class.  That is, even though the 

students may have rote learnt the swap code because of 

the emphasis we placed upon it in the lecture, the 

performance of students at explaining code in weeks 3 

and 5 are consistent (albeit marginally consistent, at p = 

0.06).    

Even though the performance on the week 3 and week 

5 explanation questions are (marginally) consistent, forty 

percent of students who answered well the week 3 

explanation question did not answer well the week 5 

explanation question.  Such a backward step suggests  

(unsurprisingly) that some students who could reason 

correctly about the simpler code in week 3 could not 

transfer that reasoning to the week 5 problem containing 

an if statement.   

Further to the point made in the previous paragraph, 

we wonder whether our use of a chi-square test is a 

pessimistic way of establishing the relationship between 

student performance on the week 3 and week 5 questions; 

 
Figure 3: A question from the week 5 test of Corney, 

Lister and Teague (2011). 

 

 

Week 3, 

Explain a swap between two 

variables 

(see Figure 2) 

 

Week 5, 

Successfully explained a sort 

of three variables 

(see Figure 3) 

Wrong  (n = 21) 33%          (cf. 36%) 

Right   (n = 30) 60%          (cf. 62%) 

χ
2
  test p = 0.06     (cf. p = 0.03) 

Table 4: Results from the replication at QUT, with 

comparative percentages shown in brackets from the 

original study.  

If you were asked to describe the purpose of the code 

below, a good answer would be “It prints the smaller 

of the two values stored in the variables a and b”. 

if (a < b): 

    print a 

else: 

    print b 

In one sentence that you should write in the empty 

box below, describe the purpose of the following 

code. 

Do NOT give a line-by-line description of what the 

code does. Instead, tell us the purpose of the code, 

like the purpose given for the code in the above 

example (i.e. “It prints the smaller of the two values 

stored in the variables a and b”).  

Assume that the variables y1, y2 and y3 are all 

variables with integer values. 

In each of the three boxes that contain sentences 

beginning with “Code to swap the values  

…”, assume that appropriate code is provided instead 

of the box – do NOT write that code. 

 

if (y1 < y2): 

 

 

 

if (y2 < y3): 

 

 

 

if (y1 < y2): 

 

 

 

print y1 

print y2 

print y3 

 

Code to swap the values in y1 

and y2 goes here.  

 

Code to swap the values in y2 

and y3 goes here. 

Code to swap the values in y1 

and y2 goes here. 

Sample answer:  “it sorts the values so that 

                             y1 >  y2 > y3” 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

89



 

 

Week 3, 

Explain a swap between 

two variables 

(see Figure 2) 

 

Week 5, 

Successfully explained a sort of 

three variables 

(see Figure 3) 

 failure Success 

Wrong (n = 21) 14   7   (i.e. 33% of 21) 

Right  (n = 30) 12 18   (i.e. 60% of 30) 
 

Table 5: The contingency table for calculating our chi-

square value in Table 4.  

for example, consider Table 5.  A chi-square test focuses 

on consistency − whether most students answer both 

questions incorrectly (i.e. 14 in Table 5) or correctly (i.e. 

18).  It is not contrary to our argument, however, that 

some students would answer the week 3 question 

correctly, but the week 5 question incorrectly (i.e. 12).  

Our argument is merely that, in the absence of a 

pedagogical intervention, students who answer the week 

3 question incorrectly will tend not to answer the week 5 

question correctly (i.e. 7, which is 33% of 21) 

2.2.2 Write the Swap but Explain the Code 

To further test the idea that students had rote learnt the 

swap code in week 5, we looked at the n = 40 students  

who wrote the swap code correctly in week 5, and 

considered how well those students did on the week 3 and 

week 5 explanation tasks.  The results are shown in 

Tables 6 and 7.  These large differences in the two 

percentages (33% vs. 64%) do suggest that students who 

struggled to explain previously unseen code in week 3 

tended to continue to struggle to explain previously 

unseen code in week 5.  However, these percentages are 

not conclusive, as a χ
2
 test produces a p value that is just 

over the traditional 0.05 threshold of statistical 

significance.  We suspect that, with a slightly larger 

sample, the p value would meet the traditional 0.05 

criterion. 

Earlier, we suggested that the results in Tables 2 and 3 

may be pedagogically encouraging, as those results may 

indicate that the problems students face are amenable to 

pedagogical intervention.  In contrast, the results in 

Tables 6 and 7 are pedagogically discouraging − while 

students may have rote learnt how to swap the values of 

two variables, those students did not then manifest a 

strong ability to answer the week 5 explanation question.    

3 Replication at UTS 
In the replication at UTS, students were tested a little 

later in semester, at weeks 5 and 7.  This was because the 

students were being taught an objects-early introduction 

to Java, so some of the concepts in the two tests were 

taught a little later in the semester. 

In the week 5 test we used slightly different tracing 

questions to screen the students, but our questions also 

only involved assignment statements, and we do not 

regard these questions as being significantly different.  

After screening, 64 students remained. 

We made one change in the replication that is arguably 

non-trivial.  We changed one of the week 3 questions 

from the version shown in Figure 2 to the version shown 

in Figure 4. 

 

Week 3, explain a swap − 

for the n=40 who wrote a 

correct swap in week 5 

 

Week 5, explain a sort of 

three variables 

Wrong (n = 15) 33%  right 

Right  (n = 25) 64%  right 

χ
2
   test p = 0.06 

 

Table 6: Performance of the 40 students who wrote a 

correct swap in week 5, on the week 3 and week 5 

explanation problems.  

 

Week 3, explain a swap − 

for the n=40 who wrote a 

correct swap in week 5 

 

Week 5, explain a sort of 

three variables 

 

failure success 

Wrong (n = 15) 10  5  (33% of 15) 

Right  (n = 25) 9 16 (64% of 25) 
 

Table 7: The contingency table for calculating the chi-

square value in Table 6. 

 
Figure 4: The modified question used in the 

replication at UTS.  The original form of the question 

is in Figure 2. 

3.1 Writing a Swap  

Table 8 summarises our results from this part of the 

replication, where we consider student performance on 

explaining the swap code at week 5 and writing swap 

code at week 7.  These results in Table 8 do not support 

our original results.  As for the QUT replication, we 

suspect this null result is due to the week 5 test being 

followed by a lengthy discussion of the swap code by the 

lecturer (i.e. co-author Lister). 
 

The purpose of the following three lines of code is to swap 

the values in variables a and b, for any set of possible 

initial integer values stored in those variables: 

c = a; 

a = b; 

b = c; 

In one sentence that you should write in the box below, 

describe the purpose of the following three lines of code, 

for any set of possible initial integer values stored in those 

variables: 

j = i; 

i = k; 

k = j; 

Sample answer:  “it swaps the values in i and k” 

CRPIT Volume 123 - Computing Education 2012

90



 

1) a b and c have the same value 

2) assigns a to b, b to c, c to b.  No overwriting 

3) b overwrites a; c overwrites b; then a overwrites c.  

b ends up in c 

4) in the end, a will equal c, and c will equal a, both a 

and c hold same values 

5) replaces c with b 

6) sets a b and c to the value of b 

7) swap values in b and a 

8) to change every variable's value to that of b 

 

 

Week 5, 

Explain a swap between two 

variables 

(see Figure 4) 

 

Week 7, 

Successfully wrote an 

equivalent swap between 

two variables 

Wrong  (n = 11) 82%     (cf. 57%) 

Right   (n = 30) 79%     (cf. 92%) 

χ2  test p = 0.8  (cf. p = 0.001) 

Table 8: Results from the replication at UTS, with 

comparative percentages shown in brackets from the 

original study by Corney, Lister and Teague (2011). 

3.2 Explaining a Sort of Three Variables 

In our original study, we reported a statistically 

significant result for student performance on explaining 

swapping in week 3 and explaining the sorting of three 

variables in week 5.  The results from our replication are 

shown in Tables 9 and 10.  Our results emphatically 

confirm the results of the original study.  As with the 

equivalent results from the replication at QUT, these 

results support our suspicion that the earlier null result 

(i.e. Table 8) is due to the lengthy lecture discussion 

about the swap code that followed the week 5 test. 

 

Week 5, 

Explain a swap between two 

variables 

(see Figure 4) 

 

Week 7, 

Successfully explained a sort 

of three variables 

(see Figure 3) 

Wrong (n = 11) 27%     (cf. 36%) 

Right (n = 53) 91%     (cf. 62%) 

χ
2
  test   p < 0.001 

Table 9: Results from the replication at UTS, with 

comparative percentages shown in brackets from our 

original study (Corney, Lister and Teague, 2011). 

Week 5, explain 

a swap between two 

variables (see 

Figure 6) 

Week 7, explain a sort of three 

variables (see Figure 5) 

 failure success 

Wrong (n = 11) 8 3    (i.e. 27% of 11) 

Right (n = 53) 5       48    (i.e. 91% of 53) 

Table 10: The contingency table for calculating the 

chi-square value in Table 9. 
 

4 Reflection: Ambiguity in Natural Language 
A common concern among academics about “Explain in 

Plain English” questions is the possibility of ambiguity in 

student responses (e.g. Simon and Snowdon, 2011). 

We found little ambiguity in our student responses – 

most answers were clearly right or wrong.  For example, 

for the question on swapping values of two variables 

shown in Figure 2, some student responses that we judged 

as correct are: 

    swap b and c 

    swap contents of b and c using a as temp 

    swap values of c and b; leaving original value of b in a 

Figure 5 shows some wrong answers given by students 

for this question.  Most of these answers are clearly 

wrong.  

For the question on sorting the values of three 

variables shown in Figure 3, some student responses that 

we judged as correct are: 

    orders in descending 

    places in descending 

    prints in order of highest to lowest 

    reorders in descending 

    sorts from largest to smallest 

    sorts in descending 

    swaps into descending 

 

Figure 6 shows some wrong answers given by students 

for this question.  Again, most of these answers are 

clearly wrong.  Our experience is that grading student 

responses to explain in plain English questions is 

straightforward – arguably more straightforward than 

reading the confused code that students often write in 

exams. 

Figure 5: A selection of wrong answers given by 

students at QUT for the code that swaps the values 

between two variables (see Figure 2). 

 

Figure 6: A selection of wrong answers given by 

students at QUT for the Figure 3 code that sorts three 

variables. 

1) assigns y3 the smallest value, y2 winds up with the 

default value 

2) determines if a value is lower than another, then 

prints them all 

3) if variables are smaller it will swap them to be 

larger at the end 

4) printing, swapping y1 and y3 if y1 smaller 

5) prints larger of 2 variables 

6) prints largest value if one variable is smaller than 

the other 

7) removes lowest and replaces with a value higher 

than it originally had 

8) swap y1 and y3 

9) swaps and prints 

10) swaps codes for smaller value then print 

11) swaps values y1 and y3, but y2 remains the same 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

91



 

5 Extension: A Third in-Class Test 
At QUT, we went beyond the original study (Corney, 

Lister and Teague, 2011), but in a fashion very much in 

the same style as the original study, by conducting a third 

test in week 7 (i.e. mid-semester).  In this week 7 test, we 

asked the students to write code to sort the values in an 

array with three elements.  The code they needed to write 

is the same, algorithmically, as code they were asked to 

explain in week 5 (see Figure 3).  However, the code they 

had to write in week 7 was not identical to the week 5 

code, for the following reasons: 

 Whereas the code in week 5 used three separate 

variables, the code in week 7 used a list of three 

elements. 

 Students were required to write the actual assignment 

statements to swap values among the variables.   

There were 48 students who did both the week 5 and 

week 7 tests.  The results for all 48 students are shown in 

Table 11.  It is not surprising that a low percentage (12%) 

of students who could not explain the code in week 5 

could not also write similar code in week 7.  More 

surprising was that only 35% of students who could 

explain the code in week 5 could write similar code in 

week 7.  Once again, our p = 0.06 is just above the 

traditional 0.05 threshold for statistical significance, but 

as before we are inclined to believe that our results are 

weakly consistent with our original study, without 

meeting the traditional 0.05 threshold. 

 
Week 5, explain 

a sort of three variables 

(see Figure 5) 

Week 7, successfully wrote a 

correct sort of an array with 3 

elements 

Wrong (n = 25) 12%  

Right (n = 23) 35%  

χ
2
  test p = 0.06 

Table 11: Results from week 7 test at QUT. 

6 Replication: End of Semester Exam 
In our original study, we reported a statistically 

significant relationship between student performance on 

their in-class tests and a code writing task in the final 

exam.  In this section, we report our replication, again 

carried out at QUT. 

In this replication, the code writing question in our end 

of semester exam was not the same as the question used 

in our original study.  Our question in the replication 

required students to write code to move the elements of 

an array one place to the left, wrapping the leftmost 

element around to the rightmost position.  One possible 

solution to this question is shown in Figure 7.  

We screened students, using two tracing questions 

from the week 7 test.  Both of these screening questions 

required students to trace iterative code operating on an 

array.  If a student answered correctly at least one of 

those two questions, the student was judged as having 

demonstrated (as early as week 7) an understanding of the 

semantics of loops and lists.  Since tracing iterative code 

is an error prone activity, especially as early as week 7, 

we felt that success on one question was sufficient 

evidence of understanding. Furthermore, tracing code 

with 50% accuracy is consistent with Lister’s (2011) 

definition of the pre-operational stage in the novice 

programmer.  

 

Figure 7: A solution, in Python, to the code writing 

question in the final exam. 

When writing the solution to the problem in Figure 7, 

a student must provide a suitable assignment for the loop 

body, either  x[i] = x[i+1] as shown in Figure 7, or 

x[i-1] = x[i].  We feel that students who failed to 

provide such an assignment statement demonstrated a 

profound misunderstanding of the question (perhaps due 

to English being their second language), so we also 

eliminated from our analysis any student who did not 

provide one of those two suitable assignment statements.  

The screening left us with a sample of 40 students. 

Since this paper has emphasised the concept of 

swapping, our analysis of this exam question focuses 

upon the swapping component in this final exam 

question, especially the first and last lines as shown in 

Figure 7.  The first line saves the leftmost element to a 

temporary variable, and the fourth line copies that 

temporary value back into the array. 

(We note in passing that few students in the class gave 

a completely correct solution to this code writing 

problem.  The most common errors in near-correct 

solutions were off-by-one errors in the loop.  Often, the 

values through which the control loop variable “i” would 

iterate were appropriate, in isolation, and so was the 

assignment statement in the body of the loop.  However, 

those two lines, in combination, were often not 

compatible.) 

Table 12 breaks down the performance of students on 

this code writing task from Figure 7, according to 

whether the students were able to explain similar code in 

the week 7 test.  Among students who could not explain 

that code in week 7, only 42% correctly handled the end 

element in the final exam, compared to 86% of students 

who did explain that code in week 7.  A χ
2
 test produces a 

statistically significant p value.  Our result is therefore 

strongly supportive of our original findings. 

   
Week 7, 

explained  

a shift  

(see code in 

Figure 3) 

End of semester exam, 

write code to shift elements in an array 

(see Figure 7),  

correct treatment of the end element 

in lines 1 and 4   

Wrong (n = 26) 42%  

Right  (n = 14) 86%  

χ
2
  test p < 0.01 

Table 12: Relative performance on the explanation 

task in week 7 and writing similar code in the final 

exam, at institution A (n=40).    

temp = x[0] 

for i in range(0, len(x)-1, 1) 

  x[i] = x[i+1] 

x[len(x)-1] = temp 

 

CRPIT Volume 123 - Computing Education 2012

92



 

7 Conclusion 
Our empirical results support our original findings, with 

the following caveats. 

In replications at both of our institutions, we did not 

find a relationship between students being able to explain 

swap code and being able to write similar code two weeks 

later.  We believe this failure was because our teachers 

talked about the swap code between the two tests.  In 

general, we think the relationship between explaining 

code and writing code found in our original study will 

only occur when there is not a pedagogical intervention 

between the two tests.   

Some of our results were just outside the traditional 

0.05 boundary of statistical significance, at p = 0.06.  

How readers will regard those results depends upon their 

view of the traditional 0.05 boundary.  Some readers will 

maintain that a result is either significant (i.e. p < 0.05) or 

it is not significant.  As we have argued earlier in the 

paper, we are inclined to the alternative view, which we 

believe is more statistically sophisticated, that the 

standard 0.05 threshold means that the chance of a data 

sample being a fluke is 1 in 20; whereas our 0.06 result 

simply means that the chance of our data sample being a 

statistical fluke is only slightly higher, at 1 in 17.  We 

therefore argue that those replication results with p = 0.06 

are weakly supportive of our original study, while 

acknowledging that our results do not meet the traditional 

p = 0.05 criterion.  However, it is also possible that the 

effects we have reported in both the original study and in 

these replications are on the margin of significance.  

Further replication work, at other institutions, is 

warranted.  Especially interesting would be further 

replication work that uses more than a single explanation 

question in each of the two weeks under comparison, as 

using only a single explanation question in each week 

may be the source of the statistical uncertainty. 

One of our empirical results strongly supports our 

earlier findings, without the need for any caveats – we 

found that students who could not demonstrate an ability 

to explain a piece of code in week 7 of semester tended to 

do more poorly at attempting to write similar code at the 

end of semester. 

Overall, this replication study and its minor extensions 

has increased our confidence in the conclusions we drew 

in the original study – the problems some students face in 

learning to program are not due to the more complex 

programming constructs they are taught in the second half 

of semester, but instead begin in the first half of semester. 

References 

Cohen, J. (1994) The Earth is Round (p < .05) American 

Psychologist, 49(12). pp 997-1003.  

Corney, M., Lister, R., and Teague, D. (2011) Early 

Relational Reasoning and the Novice Programmer: 

Swapping as the "Hello World" of Relational 

Reasoning. Thirteenth Australasian Computing 

Education Conference (ACE 2011), Perth, Australia, 

January 2011. pp. 95-104. 

Lister, R., Fidge C. and Teague, D. (2009) Further 

Evidence of a Relationship between Explaining, 

Tracing and Writing Skills in Introductory 

Programming. Fourteenth Annual Conference on 

Innovation and Technology in Computer Science 

Education, Paris, France. pp. 161-165 

Lister, R., Clear, T., Simon, Bouvier. D., Carter, P., 

Eckerdal, A., Jackova, J., Lopez, M., McCartney, R., 

Robbins, P., Seppala, O., and Thompson, E. (2010) 

Naturally occurring data as research instrument: 

analyzing examination responses to study the novice 

programmer. SIGCSE Bull. 41, 4 (January), 156-173. 

Lister, R. (2011). Concrete and Other Neo-Piagetian 

Forms of Reasoning in the Novice Programmer. 

Thirteenth Australasian Computing Education 

Conference (ACE 2011), Perth, Australia. CRPIT, 114. 

John Hamer and Michael de Raadt Eds., ACS. 9-18.  

Lopez, M., Whalley, J., Robbins, P., and Lister, R. (2008) 

Relationships between reading, tracing and writing 

skills in introductory programming. Fourth 

International Workshop on Computing Education 

Research, Sydney, Australia, 101–112. 

Simon and Snowdon, S. (2011) Explaining program 

code: giving students the answer helps – but only just. 

Seventh International Computing Education Research 

Workshop (ICER), Providence, Rhode Island, pp. 93-

99. 

Venables, A., Tan, G. and Lister, R. (2009) A Closer 

Look at Tracing, Explaining and Code Writing Skills in 

the Novice Programmer. Fifth International Computing 

Education Research Workshop (ICER), Berkeley, CA. 

pp. 117-128. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

93



CRPIT Volume 123 - Computing Education 2012

94



Models and Methods for Computing Education Research 

Mats Daniels and Arnold Pears 

Department of Information Technology 
Uppsala University 

PO Box 327, 751 05 Uppsala, Sweden 

mats.daniels@it.uu.se, arnold.pears@it.uu.se 

 

Abstract
1
 

We have been engaged in computing education research 
for close to two decades.  One characteristic of the field 
has been a preponderance of exploratory research, Marco 
Polo papers as Valentine termed them.  Even considering 
the entire research corpus it is hard to discern a clear trend 
in terms of models and methods for conducting research.  
While some prominent researchers, such as Fincher, have 
established a tradition of mixed method research and 
multi-institutional studies, these approaches form a branch 
of the discipline and do not constitute a dominant 
paradigm.  Indeed computing education research 
demonstrates an observable eclecticism in relation to 
method, combining as it does approaches from a range of 
qualitative and quantitative research traditions.  A 
consequence of this is that we have spent time on thinking 
about the research area as a whole.  We believe that a key 
defining feature of computing education research is the 
focus on learning in the discipline.  The point of departure 
for much computing education research is consequently a 
need to address educational challenges in the discipline, 
rather than a standpoint in an educational tradition.  This 
places the research objective, or question, in focus and 
makes the choice of method a secondary concern for 
many computing education researchers.  In this article we 
discuss the nature of a broader emerging paradigm for 
conducting educational research, and a framework which 
can scaffold working within this paradigm. 

Keywords: Paradigm, Educational Research, research 
Framework 

1 Introduction 
Since much of computing education research is driven by 
a pragmatic goal to understand learning phenomena 
associated with complex disciplinary knowledge/concepts 
it can be hard to associate the resulting scholarly output 
with an established research paradigm.  In fact we 
propose that a certain degree of methodological 
eclecticism may be inherent in the practice of research, 
and scholarly practice in teaching and learning in our 
discipline. 

                                                             

Copyright © 2012, Australian Computing Society, Inc. 
This paper appeared at the Fourteenth Australasian 
Computing Education Conference (ACE2012), 
Melbourne, Australia, January 2012. Conferences in 
Research and Practice in Information Technology, Vol. 
123. Michael de Raadt and Angela Carbone, Eds. 
Reproduction for academic, not-for-profit purposes 
permitted provided this text is included. 

This derives from the fact that the framing of research 
questions is based on a desire to better understand 
learning in a context, thus the choice of method often 
depends on the type of insight deemed most useful in that 
particular context.  As a consequence it is not unusual for 
a single researcher to conduct both qualitative and 
quantitative studies, and subsequently drawing on 
elements of action research, phenomenography and 
statistical analysis to substantiate claims. 

We have pursued the following question 

How can research-based computing 
educational development be structured? 

during the past two decades and have in that pursuit built 
a general education research foundation to complement 
our competence in the computing area.  We will in this 
paper first reason generally about computing education 
research in terms such as its context, how it could be 
conducted, and the philosophy behind it.  This is followed 
by presenting a framework for research in computing 
education and for conducting development in an action 
research manner.  We will conclude with a case study 
based on using action research. 

Our work can be seen as developing a paradigm for 
conducting educational research and our framework can 
be seen as illustrating how to scaffold working according 
to such a paradigm. 

2 Computing Education Research in Context 

Computing education research provides a bridge between 
education research and computer science research, 
contextualizing educational research to help to facilitate 
student learning of computer science knowledge, research 
concepts and general theory.  We argue that disciplinary 
educational research provides insight into the application 
of general educational theory to learning in a specific 
domain.  The combination of disciplinary depth in both a 
scientific field and education research allows researchers 
to identify and investigate teaching and learning 
challenges in a way that is richer in terms of its 
disciplinary content.  

Education at research universities is characterized by 
research informed teaching, where high level research 
permeates the educational environment.  In this context 
high performance learning depends on research in both 
the scientific subject matter itself and in the learning of 
advanced computing concepts.  Educational research 
alone is not sufficiently accessible to many science 
researchers, which presents challenges in terms of 
adapting new educational models to teaching.  Likewise, 
educational researchers often have little exposure to 
advanced research concepts in computing, which affects 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

95



CRPIT Volume 123 - Computing Education 2012

96



3.4 Methods 

Methods are the techniques or procedures used to gather 
and analyze data related to some research question or 
hypothesis.  Sampling, questionnaire, participant 
observation, interview, focus group, case study, narrative, 
statistical analysis, interpretative methods, and content 
analysis are examples of methods.  It is important to be 
specific in describing how a method is used, e.g. stating 
what interview technique is used, and in what setting, 
instead of just describing it as carrying out interviews. 

4 A Framework for Educational Research and 

Development 

Educational research results stem from a wide range of 
different research traditions.  Computing educators are 
often unfamiliar with the kind of results educational 
research produces and these results can be non-trivial to 
use as a basis for development.  The difficulties originate 
from educators having specific questions related to a 
particular course unit or to general issues regarding some 
particular aspects of the computing or engineering 
domains, whereas educational research results often are at 
an abstract level regarding learning in general.  Practical 
models with which to pursue research-based development 
of computing education are needed as a result. 

There are also issues to consider when computing 
educators conduct educational research.  One example, 
from our experience in reading the literature, is that they 
seldom document the learning environment and 
especially not the context in which it exists.  This might 
be due to space limitations on conference papers, but 
could also depend on the authors being too focused on 
their own learning environment.  Neglecting to do this 
reduces the trustworthiness and usefulness of the research 
results. 

The questions of interest to computing educators are 
mostly related to the development of a course unit, both 
in terms of how to construct a learning environment and 
understanding what is happening during, or after, an 
instance of a course unit.  The ways to find answers to 
these types of questions vary, but are often based on using 
qualitative methods (Berglund et al. 2006). 

In order to understand and evaluate results it is 
important to know which research methods were used, 
which research methodologies they belong to, and the 
epistemology and theoretical perspective that underpins 
the study.  This section is based on early work on 
defining a framework for how to conduct computing 
education research (Pears et al. 2002, Pears and Daniels 
2003).  That there is a place for such a framework can be 
deduced from this statement by Crotty (1998): 

Research students and fledging researchers – 
and, yes, even more seasoned campaigners – 
often express bewilderment at the array of 
methodologies and methods laid out before 
their gaze.  These methodologies and methods 
are not usually laid out in highly organized 
fashion and may appear more as a maze than as 
pathways to orderly research.  There is much 
talk of their philosophical underpinnings, but 
how the methodologies and methods relate to 
more theoretical elements is often left unclear.  

To add to the confusion, the terminology is far 
from consistent in research literature and 
social science texts.  One frequently finds the 
same term used in a number of different, 
sometimes even contradictory, ways. (p. 1) 

4.1 Learning environment 

The context of a research question is an essential part in 
understanding results for a broader community than the 
local colleagues.  The context includes, for instance, the 
degree program in which a course unit exists and the 
formal specification of the course unit, e.g. learning 
objectives and content.  The students taking the course 
unit and especially the educators responsible for an 
instance of a course unit also constitute part of the 
learning environment. 

The influences the educators bring to the learning 
environment are both explicit, for instance the selection 
of examination methods and tools provided, and implicit 
in the influence of their epistemology regarding learning 
and knowledge.  Tools are to be understood as 
representing anything that is brought in to the learning 
environment to aid the students’ learning, and the range 
of what is considered a tool is almost limitless, examples 
being assignments, books, clickers, labs, quizzes, and 
web-based self-study material.  The importance in 
capturing the epistemological view derive from that it 
may influence how much students are encouraged to be 
active in their learning and also what constitutes learning 
in the view of the educator(s). 

The research questions can range from concrete 
aspects of a particular course unit to general educational 
issues, e.g. in computing education how to establish a 
learning environment for novices learning to program.  
Another example is questions related to aspects of using 
open problems in a computing learning environment.  
These questions are better understood if a reader has a 
clear view of the intended learning environment. 

A visual representation of the context influencing the 
development of a research question, i.e. the external 
scope, is given in figure 3:  

Figure 3: The learning environment for the research 

question 

Figure 3 is part of a graphical approach to describing 
the context and influences that have a bearing on the 
development and conduct of educational research.  This 
figure provides a detailed view of one aspect of the more 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

97



general framework presented in figure 4, that has grown 
out of discussions in Uppsala Computing Education 
Research Group (UpCERG). 

Figure 3 is intended to capture the relation between the 
overall learning environment, especially how it is viewed 
by the educator (or educators) involved, and the research 
question.  The researcher is reminded to consider and 
explicitly document the external scope in terms of for 
instance: 

• Formal specifications of learning objectives for 
the course unit. 

• Educational context in the form of degree 
program. 

• Information about the students attending the 
unit. 

• General issues related to the research question 
such as the educators: 

o Interest in learning. 
o Desire to find transferable answers. 
o Striving for quality assurance. 

An important objective is to capture issues with 
respect to the educators involved:  

• Explicit choices such as the most appropriate 
means of assessing students and the available 
educational tools. 

• Tacit influences, such as epistemology and their 
view on what constitutes learning. 

4.2 Research Setting 

Capturing the relevant aspect of the learning environment 
is an important step in the process of developing research 
questions.  The next step is to find a suitable method with 
which to find an answer to the formulated question.  
There is no underlying assumption in terms of 
epistemology or theoretical perspective in the research 
framework, nor on which research methodology to base 
the use of the selected methods on.  The framework is 
intended to support the researcher in selecting methods 
and documenting the theoretical rationale for the choice.  
That is, the framework should be used to provide the 
researcher with a clear connection between the aspect of 
the research question addressed by the chosen research 
method and associated research methodology and the 
assumed theoretical base, i.e. epistemology and 
theoretical perspective, for the answers provided. 

Making well-informed choices of which method to use 
is often beyond an individual computing educator wishing 
to conduct a research study and the communication with 
scholars from other disciplines to learn more about the 
available methods might be problematic.  This problem 
is, in our experience, to a large extent based on not 
sharing a common research terminology, nor having the 
same research interests.  The framework is intended to 
support both making the choice and facilitating 
communication, by providing a base to place the question 
and scaffold thinking about where to find ways to reason 
about the question and the limits and possibilities of 
different approaches to investigating the question. 

The epistemology and theoretical perspective are 
associated with the person who formulated the question, 
although it is of course possible for a person to choose 
between different theoretical perspectives depending on 

which aspect of a research question they might wish to 
address.  The choice of epistemology and theoretical 
perspective is not part of this framework, but we have 
introduced choice of discipline as a level in the 
framework.  This is done in order to get a frame of mind 
about where to find suitable research methodologies and 
methods, e.g. that different disciplines within social 
sciences might be a good place to start if one wants to 
find out something about cultural influences in a learning 
environment. 

The next step is to find a suitable research 
methodology that has promise with regard to the question.  
The discipline lens might be useful in finding this, 
perhaps through interaction with researchers in that 
discipline.  The first steps in the process, i.e. to capture 
the relevant aspects of the learning environment, phrasing 
the research question, and selecting the potential 
discipline to aid in finding an answer, provides the start 
for creating a common ground between the computing 
educator(s) formulating the question and the researchers 
in the selected discipline(s).  This could typically lead to 
changes in how the learning environment is viewed, e.g. 
that more aspects should be documented. 

In the framework we depict computing education 
research (CER) as the outermost layer, in which the 
studies based on the chosen research methods are 
performed.  It is here that the questions are answered. 

Figure 4: The educational research framework 

An objective of this framework is to raise the level of 
scholarliness among educators and educational 
researchers in the computing discipline.  The idea is to 
provide a structure for integrating development and 
research and aid in capturing the relevant issues that will 
make development and research efforts more transferable.  
The work reported on in this paper, apart from presenting 
the framework as a result, is an example of the influence 
arising from this general framework for the work of a 
computing education researcher.  This is done by 
illustrating how the framework provides a context for 
addressing learning environment questions based on a 
variety of learning theories, as well as setting the stage for 
working in an action research manner. 

CRPIT Volume 123 - Computing Education 2012

98



4.2.1 A Course Unit Perspective 

Many questions stem from the context of a course unit.  
Figure 5 illustrates a view that is derived from the 
framework intended to capture some of the issues and 
actions that relate to conducting discipline education 
research. 

Figure 5: Course unit centered research elements 

The center of the illustration is the actual course unit, 
with its influx of students taking the course unit and the 
knowledge, skills and competencies that are supposed to 
be developed by the incoming student cohort. 

The triangle contain aspects of research questions that 
typically surfaces when dealing with issues related to a 
course unit.  The syllabus and outcomes are either the 
external limits which a researcher has to adhere to, or 
which to change.  It is essential to base the question on 
theories of teaching and learning, or in some cases it 
might be that such theories are developed. 

The lower part of figure 5 illustrate the type of 
research that is done to investigate the question at hand.  
This includes deciding on an evaluation framework that 
will give a setting in which the question can be addressed, 
the means with which to collect data, and not least how to 
perform an analysis of the collected data and reflect on 
the results. 

The research context captured by the design illustrated 
in figure 5 fit well with conducting a cycle in an action 
research study.  A short presentation of action research 
and a case study is given below. 

5 Action Research 

The term action research is attributed to Kurt Lewin at 
MIT, who used it in his paper “Action research and 
minority problems” (Lewin 1946).  He described the 
methodology as comparative research on the conditions 
and effects of various forms of social action and research 
leading to social action that uses a spiral of steps, each of 
which is composed of a circle of planning, action, and 
fact-finding about the result of the action, or in other 
words experimenting by making changes and 

simultaneously studying the results, in a cyclic process of 
planning, action, and fact gathering.  Lewin had a strong 
positivist view and our example is based on a 
constructivistic view.  Action research is thus an excellent 
example of a research methodology that is connected to 
different theoretical perspectives. 

Action research includes a strong relationship between 
the researcher(s) and the practitioner(s) and an open 
attitude to which data collection methods to use 
(Rasmussen 2004, Reason 2006, McKay and Marshall 
2001).  The essence of action research is well captured by 
Carr and Kemmis (1983) who state that an action research 
activity has two essential aims, i.e. to improve and to 
involve, and that the focus of the improvement lies in 
three key areas: improving a practice; improving the 
understanding of a practice, and improving the situation 
in which the practice takes place. 

The rather open description of action research lends 
itself to different interpretations.  Approaches to action 
research are widely discussed in the literature, e.g. 
(Reason and Bradbury 2007, Elden and Chisholm 1993, 
Cajander 2010), where it is pointed out that there is a 
common core that has been adapted to different contexts.  
The way action research is carried out is heavily 
influenced by the specific problem addressed, the 
relationship between the researcher(s) and practitioner(s), 
and the discipline within which the research is situated. 

The role of the researcher in action research is also a 
topic of discussion.  Extreme positions on the role of the 
researcher include a focus on the research aspect and data 
gathering, almost to the point of being a spectator in the 
process, or a focus on the service aspect by fully 
collaborating with the practitioners in solving the problem 
(Westlander 2006).  In practice a situated approach which 
is a mixture of the two poles is often used, typically due 
to the complexity and situated nature of the problems 
addressed (Cajander 2010). 

A duality of the role of the researcher is discussed by 
McKay and Marshall using a model with two different 
cycles; an explicit problem solving cycle and a research 
cycle (McKay and Marshall 2001).  McKay and Marshall 
also emphasize another aspect of action research; that one 
result of working in this manner can be seen as 
developing a theory around the issue addressed. 

The role of the practitioners in action research is also 
discussed in the literature (Elden and Chisholm 1993), 
with a growing interest in considering practitioners as 
peers in the research process.  Examples of practitioners 
are students, clients, educators and other experts who 
contribute with their knowledge and understanding.  The 
extent of involvement typically varies depending on the 
problem addressed. 

5.1 Action Research in the IT in Society Course 

Unit 

An illustration of the steps within a single action research 
cycle in the context of developing the IT in Society 
course unit (Laxer et al. 2008) is given in figure 6.  This 
course is based on the Open-Ended Group Project 
concept (OEGP)  (Daniels 2011) and has among its aims 
to develop the students’ inter-cultural competence. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

99



Figure 6: The Action Research Cycle (adapted from 

Suman and Evered 1978) 

A starting point for a description of the action research 
cycle can be the top box, where identification and an 
initial analysis of the specific problem to be addressed are 
done.  The next box in the cycle represents the process of 
preparing for setting up an action plan addressing the 
identified problem.  This involves, apart from describing 
different alternative actions, documenting the theoretical 
underpinnings for selecting an action.  The “action 
taking” box represents the selection process, where the 
alternatives are compared in order to find the most 
appropriate action for addressing the identified problem.  
This process also involves reasoning about the methods to 
be used in evaluating the outcome of the action.  The next 
step is to carry out the selected action plan, including 
gathering and analyzing data generated from the chosen 
research method.  The last box before returning to the 
starting point represents abstracting answers relative to 
the identified problem, answers that will be used in 
starting the next cycle by looking at the problem with the 
added information from the action research cycle at hand. 

Taking a lap around the action research cycle has some 
clear connections to activities described in the research 
framework.  For instance, the starting point can be seen as 
selecting the research question: selection of research 
methods and documenting the theoretical underpinnings 
is an activity that is made easier by the research 
framework.  Making answers more transferable typically 
involves anchoring them in a theoretical context and this 
is an activity that is facilitated by the research framework. 

This model describes a rational and systematic inquiry 
action research, however, we concur with Reason (2006) 
who argues that these cycles are slightly "messier" than 
the neat diagrams drawn.  Our own research has typically 
elements of being more diffuse and tacit as described by 
Reason (2006), even though the academic year provides a 
natural planning window, e.g. in the case of the 
development of the IT in Society course unit, for an 
action research cycle. 

The academic year cycle provides an opportunity for 
reflection, taking stock of the progress made and learning 
gained in the previous cycle and serving as a logical 
planning point for the subsequent cycle.  Outcomes and 
observations arising from an action plan for the current 
course instance naturally feed through into the design of 
the next. 

The areas of the course unit addressed in the action 
plan for the following course instance might by different, 

at least partially, from those addressed in the current (and 
previous) instance(s).  There might also be a difference 
between cycles due to changes in the pedagogical and 
conceptual framework between consecutive course 
instances.  These changes are an integral part of the 
analysis for each action cycle. 

Five elements are emphasized within an action 
research framework inspired by McKay and Marshall 
(2001), which enable a conscious separation of the 
practice components from the research elements.  They 
point out that this enables the researcher to avoid a 
common trap in action research: having the work 
described as “consultancy”.  That is, they worry about not 
being taken seriously and argue that using their action 
research framework to anchor the answering of research 
questions in an applicable theoretical context provides a 
“visible” rigor to action research and thus address the 
issue of not being taken seriously.. 

The five elements are:  
• F, the research framework or conceptual 

element informing the research, which in the 
terms used in this paper correspond to 
epistemology, theoretical perspective and 
concepts underpinning the research; 

• MR, the research methodology to be adopted;  
• MPS, the problem solving method that will be 

used in the practice situation;  
• A, the problem situation of interest to the 

researcher (the research questions);  
• P, the problem situation in which we are 

intervening (the practice questions of interest 
to the practitioners).  

Examples of application of this action research 
framework to the work on the IT in Society course unit is 
presented in table 1 by giving an overview of different 
issues and approaches used to develop the course unit 
over the years. 

This cyclical pattern of action-research-based 
development produces a progressive improvement of the 
theoretical base for creating a learning environment 
suitable for the selected learning outcomes. 

This example can be complemented by viewing it 
according to Figure 5.  Such a view results in a more 
concrete caption on one cycle in the action research 
process.  This can be illustrated by the introduction of an 
expert on cultural awareness as an intervention in the 
course unit.  This intervention was thus our instructional 
design as depicted by the cloud in Figure 5. 

The intervention was based on us identifying that we 
wanted to address the learning outcome to be able to 

evaluate and analyze one’s abilities and competencies 

regarding working in a multi cultural project.  
Constructivism (Piaget 1970) was identified as a suitable 
theory to the view of learning associated with the 
intervention.  We identified trust to be an important factor 
in collaboration based on educational research studies 
(Jarvenpaa et al. 1998, Panteli and Duncan 2004, Coppola 
et al. 2004). 

Based on the identified intervention and the theoretical 
foundation captured by the triangle part of Figure 5 we 
designed the components of the study needed to evaluate 
the intervention.  Part of the evaluation framework box 

CRPIT Volume 123 - Computing Education 2012

100



was to identify a suitable definition of intercultural 
competence (Byram, Nichols, and Stevens 2001), since it 
was important in understanding what it was to be learnt.  
The method for data collection was asking the students to 
reflect on the value of the seminar with the cultural 
awareness expert and this was followed by the researchers 
analyzing the reflections and themselves reflecting on the 
learning outcome.  Further reading relative this example 
is given in Daniels’ thesis (2011).  

 

Table 1: Examples of elements of research 

investigating the IT in Society course unit 

6 Conclusions 

This paper discusses the nature of the computing 
education research (CER), arguing that the difference 
between CER research studies and those more prevalent 
in education research lies in the point of departure, or 
focus of the research. CER addresses concrete teaching 
and learning challenges in the discipline drawing on those 
methods appropriate to the context of the question being 
investigated,  

We argue that it is this pragmatic focus on the question 
as paramount, that characterizes CER and other discipline 
based education research.  The question, and the nature of 
useful answers, dictate the choice of methods for data 
collection and analysis to a much greater extent than is 
normal in education research.  As a result there is a need 
for a framework which assists researchers in 
contextualizing their study, and describing the context at 
a level of detail that permits generalization.  

In this paper we have described a framework that we 
believe is useful as a guide in describing the critical 
features of pragmatic research in CER.  While we 
acknowledge that this is not the only possible model, the 
need to engage in a methodological dialogue is clear. 
Without higher order research frameworks systematic 
research in CER will ultimately lack power and 
credibility.  We encourage further dialogue on the nature 
of the CER research paradigm.  

References 

Berglund, A., Daniels, M., and Pears, A. (2006) 
Qualitative research projects in computing education 
research: An overview, Australian Computer Science 
Communications, vol. 28, no. 5, 25-34. 

Byram, M., Nichols, A., and Stevens, D. (red) (2001): 
Developing Intercultural Competence in Practice, 
Multilingual Matters Ltd., Clevedon, UK. 

Cajander, Å. (2010) Usability – who cares? The 
introduction of user-centred systems design in 
organisations. Acta Universitatis Upsaliensis. Digital 
Comprehensive Summaries of Uppsala Dissertations 
from the Faculty of Science and Technology 740, 
Uppsala. 

Carr, W. and Kemmis, S. (1983) Becoming Critical: 
Knowing Through Action Research. Deakin University 
press, Melbourne. 

Coppola, N., Hiltz, S., and Rotter, N. (2004) Building 
Trust in Virtual Teams, IEEE Transactions on 

Professional Communication, vol. 47, 95-104. 
Crotty, M. (1998) The Foundations of Social Research, 

Sage publications, London. 
Daniels, M. (2011) Developing and Assessing 

Professional Competencies: a Pipe Dream? 
Experiences from an Open-Ended Group Project 
Learning Environment, Digital Comprehensive 

Summaries of Uppsala Dissertations from the Faculty 

of Science and Technology 808, Uppsala, Sweden. 
Elden, M. and Chisholm, R. (1993) Emerging varieties of 

action research: Introduction to the special issue, 
Human relations, vol. 46, no. 2, 121-142. 

Jarvenpaa, S., Knoll, K., and Leidner, D. (1998) Is 
Anybody Out There? Antecedents of Trust in Global 
Virtual Teams, Journal of Management Information 
Systems, vol. 14, 29-64. 

Laxer, C., Daniels, M., Cajander, Å., and Wollowski, M. 
(2009) Evolution of an International Collaborative 
Student Project, Australian Computer Science 
Communications, vol. 31, no. 5, 111-118. 

Lewin, K. (1946) Action research and minority problems, 
Journal of social issues, vol. 2, no. 4, 34-46. 

Maynard, M. (1994) Methods, practice, and 
epistemology: The debate about feminism and research, 
in Researching women’s lives from a feminist 
perspective, eds. Maynard and Purvis, Taylor and 
Francis, London, 10-26. 

McKay, J. and Marshall, P. (2001) The dual imperatives 
of action research, Information Technology and People, 
vol. 14, 46-59. 

Panteli, N. and Duncan, E. (2004) Trust and temporary 
virtual teams: alternative explanations and 
dramaturgical relationships, Information Technology 
and People, vol. 17, 423-441. 

Element Description 

F 
(Framework) 

Constructivism, the OEGP concept, 
threshold concepts, conceptual change, 
communities of practice, cognitive load, 
collaborative technology fit, etc. 

MR 
(Research 
Methodology
) 

Action Research 

MPS 
(Problem 
solving 
method) 

ITiS course unit and task design, 
international collaborations, local sponsor, 
reflective practitioner model 

A 
(problem 
situation of 
interest to the 
researcher) 

How does OEGP support or hinder the 
work of global student teams? 

How does OEGP develop student skills in 
global collaboration? 

How does OEGP develop each student’s 
professional skills and ability to cope with 
ambiguity and complexity, and to take 
responsibility for his/her own learning? 

P (a 
problem 
situation in 
which we are 
intervening) 

Improving teaching and learning through 
active learning approaches 

Students as active co-researchers 
Collaborative learning models 
Developing student capabilities in 

teamwork, cross cultural communication and 
use of IT 

Providing an interesting and meaningful 
learning experience 

Improving viability of student teams 
engaged in international teamwork 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

101



Pears, A., Daniels, M., and Berglund, A. (2002) 
Describing Computer Science Education Research: An 
Ac Pears, A. and Daniels, M. (2003) Structuring CSEd 
research studies: Connecting the pieces, ACM SIGCSE 
Bulletin, vol. 35, no. 3, 149-153. 

Pears, A. and Daniels, M. (2003) Structuring CSEd 
research studies: Connecting the pieces, ACM SIGCSE 
Bulletin, vol. 35, no. 3, 149-153. 

Piaget, J. (1970) Science of Education and the 
Psychology of the Child, Orion. 

Rasmussen, L. (2004) Action research – Scandinavian 
experiences, AI and society, vol. 18. no. 1, 21-43. 

Reason, P. (2006) Choice and quality in action research 
practice, Journal of management inquiry, vol. 15, no. 2, 
187-203. 

Reason, P. and Bradbury, H. (2007) Handbook of action 
research, Sage, London. 

Westlander, G. (2006) Researcher roles in action research, 
in Action an interactive research – Beyond practice and 
theory, eds Nielsen and Svensson, Shaker, Maastricht, 
45-62. 

 

CRPIT Volume 123 - Computing Education 2012

102



Illustration of Paradigm Pluralism in Computing Education Research 

Neena Thota 

School of Intelligent Systems and 
Technology 

University of Saint Joseph 
Macau, S.A.R. 

neenathota@usj.edu.mo 

 

Anders Berglund 
Uppsala Computing Education 

Research Group, UpCERG 
Department of Information Technology 

Uppsala University  
Uppsala, Sweden 

Anders.Berglund@it.uu.se 

Tony Clear 
School of Computing and 

Mathematical Sciences 
Faculty of Design and Creative 

Technologies 
AUT University  

Auckland, New Zealand 

tony.clear@aut.ac.nz

 

Abstract 

This paper argues for paradigm pluralism in computing 
education research. The value of mixing paradigms, and 
the choice of methodological eclecticism and mixed 
methods is explored using pragmatic knowledge claims. 
A research study, which focused on the design of an 
introductory object-oriented programming (OOP) course 
for undergraduate students, is introduced as an illustration 
of paradigm pluralism. The study demonstrates 
methodological eclecticism and use of mixed methods for 
data collection and analysis. Meaningful outcomes 
resulting from the choice of the research design are 
described. A framework that focuses on the research 
problem and research questions to guide research design 
is presented as the outcome of the study. Through the 
discussion and demonstration of paradigm pluralism, this 
paper contributes to increased awareness of theoretically 
anchored research in computer science.. 

Keywords:  Paradigm, methodology, mixed methods. 

1 Introduction 

Methodological issues are becoming more important as 
the field of Computing Education Research (CER) 
matures. The move from single-method studies to multi-
method studies in all disciplines in the social and 
behavioural sciences over the past decade (Teddlie and 
Tashakkori, 2010) calls for a reinterpretation of the 
procedures for selecting research approaches in 
computing education. The need to clarify the intent for 
inclusion of multiple methods of data collection and 
multiple forms of analysis, and the complexity of 
designing multi-method studies, calls for more explicit 
procedures focused on understanding the research 
problem and the philosophical foundation for the choice 
of methodology. A pragmatic viewpoint (Johnson and 
Onwuegbuzie, 2004, Creswell and Plano Clark, 2007), 
which seeks appropriateness of research methods or 
approaches to answering the research question, is a 
suitable foci for the integration of quantitative and 
qualitative research strands.  

                                                           

Copyright © 2012, Australian Computer Society, Inc.  This 
paper appeared at the 14th Australasian Computing Education 
Conference (ACE 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in 
Information Technology (CRPIT), Vol. 123. M. de Raadt and 
A. Carbone, Eds. Reproduction for academic, not-for-profit 
purposes permitted provided this text is included. 

The suitability and feasibility of multi-paradigm and 
mixed methods studies in computing education research 
has been discussed in the literature. A multi-paradigm 
approach to computer science education can provide a 
panoptic view (Greening, 1996) leading to valuable 
insights into teaching and learning within the computing 
discipline. Multi-method research can increase rigor 
through triangulation within a single study or across a 
series of studies (Fincher and Petre, 2004). The 
practicality of using mixed methods in computing 
education to conduct research in stages to answer 
quantitative or qualitative questions is evident (Hazzan et 
al., 2006). Computing educators are urged to adopt a 
pragmatic approach employing mixed methods, with 
triangulation of data from different sources, student 
grades, and student and teacher perspectives (Clear, 
2001). An analysis of research papers (Sheard et al., 
2009), published in computing education conferences in 
the years 2005 to 2008, found that mixed methods 
approaches were favoured for studies that investigated 
programming ability, aptitude, or understanding, and for 
those that dealt with teaching, learning, assessment 
techniques, or tools for programming.  

Some examples of mixed research approaches and 
methods in CER studies can be found. Berglund (2005), 
who interviewed students in an international distributed 
computer course, used phenomenographic research 
approach to analyze the data and activity theory to 
synthesize the results. Meisalo et al. (2003) integrated 
qualitative analysis of interview data with statistical 
analysis of questionnaire data and logs of action to 
evaluate the study process in virtual programming 
courses. Kinnunen and Malmi (2005) coded observations, 
interviews, questionnaires, and course results into 
categories and sequence of numbers to analyze the 
interactions in problem-based learning. Soh et al. (2007) 
evaluated a framework for improving programming 
placements through examinations in a pre-test/post-test 
research design, laboratory assignments, and 
questionnaires to assess students’ self-efficacy and 
motivation. However, the existing CER literature lacks a 
knowledge base that examines worldview stances and 
mixed method design considerations, and that provides an 
example of a carefully considered study which evaluates 
the methodological choices with an emphasis on 
standards. The interaction of paradigms, methodology, 
and methods has not been explored adequately in CER. 
This paper redresses the paucity of such a knowledge 
base by developing and demonstrating a framework for 
the design of multi-method studies.  

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

103



The main contributions of this paper are: (a) the 
demonstration of a study that encompasses paradigm 
pluralism, methodological eclecticism, and mixed 
methods, increases awareness of how such studies can be 
conducted, and illustrates the kind of educational 
outcomes that such studies can be expected to generate; 
and (b) the framework contributes to advances in the 
discipline by being grounded in established educational 
practices and theory, and by providing a structured 
overview of the inter-disciplinary components of research 
necessary to address complex research situations. 

The intent of this paper is to present the theoretical and 
methodological aspects of the design of the exemplar 
study, rather than discuss the findings in detail. The 
remainder of this paper is organised into 6 sections. 
Section 2 deals with the arguments for the adoption of a 
multi-paradigm, multi-method approach. The design 
considerations for a research framework are described in 
section 3. In section 4, an example of a research study is 
given as a demonstration of the design. Section 5 
discusses the implications of using the design framework 
and the paper concludes with section 6. 

2 Building the case 

Paradigms or worldviews denote a set of beliefs about 
how we view the world and conduct research (Guba, 
1990). Within worldviews, ontological assumptions give 
rise to epistemological perspectives, which guide 
methodological considerations and the determination of 
the choice of instrumentation, data collection methods, 
and data analysis techniques (Hitchcock and Hughes, 
1989).  

The emergence of different worldviews has led to the 
expansion of the paradigms of positivism and 
constructivism to now include critical theory, 
postpositivism, participatory research (Guba and Lincoln, 
2005, Lincoln et al., 2011), pragmatism (Johnson and 
Onwuegbuzie, 2004, Creswell and Plano Clark, 2007), 
and transformative paradigm (Mertens, 2007). 
Paradigmatic strands of research can come together and 
generate the potential for multiple interpretive practices 
for the researcher who works between competing 
paradigms (Guba and Lincoln, 2005). Morgan’s (2007) 
stance on paradigms as shared beliefs in a research 
community is echoed by Denzin’s (2010, p. 420) call for 
a “new paradigm dialog” that transcends paradigms, 
methodologies, and epistemologies, and honours 
cooperation and collaboration among the community of 
scholars. Paradigm pluralism (Teddlie and Tashakkori, 
2010) thus denotes the adoption of a variety of paradigms 
as the philosophical foundation for a study. 

The pragmatic worldview (Morgan, 2007) is a 
deliberate choice for practitioners who practice a 
pluralistic orientation towards paradigms focused on the 
primary importance of the research question and multi-
method data collection and analysis.  Pragmatism, as a 
research paradigm, accepts multiple realities and orients 
itself toward solving practical problems (Creswell and 
Plano Clark, 2007). The tenets of pragmatism include the 
adoption of a value-oriented approach to research 
(Johnson and Onwuegbuzie, 2004). The pragmatic stance 
offers flexibility in addressing a range of research 
questions that arise, promotes collaboration among 

researchers regardless of philosophical orientation, and 
enables the combination of empirical precision with 
descriptive precision (Onwuegbuzie and Leech, 2005).  

A distinction can be made between methodology, 
which connotes a broad inquiry logic or general approach 
to an inquiry, and methods, which are specific techniques 
for design, sampling, data collection, data analysis, and 
interpretation of findings (Crotty, 1998). Methodological 

eclecticism (Johnson and Onwuegbuzie, 2004, Teddlie 
and Tashakkori, 2010) is the pragmatic selection and 
integration of qualitative and quantitative techniques to 
investigate a research problem. Methodological 
eclecticism stems from the choice of an ontology of 
multiple realities that repudiates the incompatibility thesis 
(Howe, 1988) which posits qualitative and quantitative 
research paradigms are mutually exclusive. 
Methodological eclecticism is a key feature of mixed 

methods, a practice of combining quantitative and 
qualitative research techniques, methods, approaches, 
concepts or language into a single study (Johnson and 
Onwuegbuzie, 2004).  

The mixed methods approach embraces multiple 
philosophical paradigms and multiple ways of making 
sense of the world (Greene, 2008). Mixed methods 
provide quantitative and qualitative research strengths 
and enable a researcher to answer a broader and more 
complete range of research questions by drawing 
conclusions and inferences from convergent and 
divergent results (Teddlie and Tashakkori, 2010). Mixed 
methods can be exploratory, explanatory, confirmatory, 
action, transformative, or critical (Christ, 2009). 
Combining different research methods from different 
existing paradigms by using a critical pluralistic position 
enriches and adds to the reliability of results in multi-
phase research studies (Mingers, 2001). Within the action 
research methodology, mixed methods allow researchers 
and participants to use a multiplicity of data collection 
instruments to accumulate evidence from multiple 
accounts (Cohen et al., 2007). Action research itself can 
be viewed as a form of mixed methods where the 
theoretical lens of critical realism can be applied to 
multiple forms of data (Christ, 2010). 

3 Framework for a research study 

Research models or frameworks have been suggested for 
the design of mixed methods studies. Collins et al. (2006) 
outlined 13 steps in three stages: (a) research formulation 
(determining the research goal, objectives, rationale, 
purpose, and research questions); (b) research planning 
(selecting the sampling and study design); and (c) 
research implementation (data collection, analysis, 
validation, and interpretation). These stages are followed 
by research dissemination and possible reformulation of 
the research question. Collins and O’Cathain (2009) later 
refined the stages to 10 steps. Many of the steps are 
considered sequential. However, research studies that 
include data collection from qualitative as well as 
quantitative methods are generally iterative as the 
phenomenon undergoes deeper levels of understanding 
when findings and inferences get synergistically 
integrated (Maxwell and Loomis, 2003, Teddlie and 
Tashakkori, 2010). The framework that this paper 
suggests, for a research study that spans paradigms and 

CRPIT Volume 123 - Computing Education 2012

104



methodologies, was the outcome of a cyclic research 
process that was integrative of the research steps from the 
research formulation, planning, and implementation 
stages. 

Figure 1 depicts the research framework based on an 
explicit consideration of the research questions as a 
pragmatic guide to define the philosophical foundation 
and the development of the research design. The 
centrality of the research purpose, the underlying 
philosophical assumptions, and the research procedures 
constitute the elements of the study. The figure shows the 
interaction of the elements that can help researchers not 
only to clarify their conceptual foundations, but also to 
document their design choices.  

In figure 1, the primacy of the researcher’s theoretical, 
personal and/or professional goals in determining a 
problem and formulating researching questions is 
emphasized. The philosophical assumptions include the 
worldviews held by the researcher, the methodological 
choices, and the research validity and credibility criteria 
that stem from the conceptual orientations. The research 
purposes and the underlying philosophical assumptions 
determine the nature of the design typology, and the 
selection of the data collection and analysis methods that 
a researcher applies. The synthesis of the conclusions and 
inferences from the study stems from the interactive 
nature of the various research study elements.  

4 Example of research study 

The research study (Thota, 2011) discussed in this paper 
tracked the iterative design, implementation, and 
evaluation of an introductory object-oriented 
programming (OOP) course using the java programming 
language. In addition, to emphasizing constructive 
alignment of outcomes and assessments, use of variation 
theory, and the utilization of learning technologies in the 
first iteration, the course design focused on balancing 
theoretical with experiential understanding, on building 
connections with students, and on the deliberate inclusion 
of student perspectives in the course design in the second 
iteration.  

The OOP course was taught in two semesters (2008 to 
2009) to first year programming students in the 
University of Saint Joseph, Macau, which is affiliated to 
the Catholic University of Portugal. The students were 
majors in Information Systems, Business Technology 
Management, Business Administration, and Design. 
Twenty six students in the first iteration and 72 students 
in the second iteration participated in the research study. 

Figure 2 shows the research framework for the study, 
laid out in block diagram format to aid readability. The 
research purposes, the philosophical assumptions and the 
design procedures in the figure are described in the 
following sub-sections.  

 
 
 

 

 

Figure 1: Framework for research study with mixed paradigms, methodologies, and methods. 

 
 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

105



 

 

Figure 2: Framework with research purposes, philosophical assumptions, and design procedure 

4.1 Research purposes 

Theoretical, personal, and pragmatic orientations led to 
the identification of the research problem that was tackled 
in this study:  

How can knowledge of students’ approaches to 

learning to program enhance learning and teaching in 

introductory OOP courses?  
A review of the literature had revealed that learning 

programming is a perennial problem that continues to be 
discussed (Carbone et al., 2009, Robins, 2010). A number 
of studies did exist on factors that influence learning in 
programming (Chamillard, 2006, Rountree et al., 2004, 
Wiedenbeck, 2005, Bergin and Reilly, 2006) as well as 
attempts to improve learning through changes in teaching 

strategies (Soh et al., 2007, Caspersen and Bennedsen, 
2007, Gries, 2008). However, course designs have failed 
to incorporate phenomenographic research findings of 
students’ approaches and conceptions of  programming 
(Marton and Booth, 1997, Booth, 1992), specific 
attention to the critical aspects of learning programming 
(Bruce et al., 2004, Eckerdal and Berglund, 2005), and 
the influence of the learning and teaching context on 
students’ learning approaches (Biggs, 1987, Ramsden, 
2005).  

A coherent course design for object oriented 
programming (OOP), that was founded in an awareness 
of how students learn to program and which incorporated 
the technological demands and the needs of novice 

CRPIT Volume 123 - Computing Education 2012

106



programmers, did not exist. It was evident that there was 
a requirement for developing a teaching environment 
conducive to the adoption of deep learning approaches 
leading to successful learning outcomes in OOP. 

The background of the field established the context 
and purpose for the research. However, the researcher’s 
personal situation provided the motivation for the inquiry. 
The contradiction between the researcher’s passion for 
the subject and the vapid experiences of the students 
strengthened the resolve to improve the teaching practice 
and the learning outcomes of the students.  

Many institutional factors also influenced the initiation 
of the research study. There was a need for a course 
design that integrated outcomes, assessments, teaching, 
and learning activities to motivate students from mixed 
majors taking the introductory programming course. The 
advances in information technology necessitated the 
integration of OOP software, visualization, and animation 
tools with the technological infrastructure of the 
university. There was also the expectation that the 
students, who hailed from multi-cultural backgrounds, 
should be trained to participate in distributed and 
collaborative programming projects. Thus, professional 
and institutional considerations provided pragmatic 
impetus for the research. The research issues, which were 
identified for investigation, can be seen in figure 2 and 
are discussed further in the next section.  

4.2 Philosophical assumptions 

Paradigm perspective (Crotty, 1998) can be explicated in 
terms of the researcher’s stance on the nature of reality 
(ontology), the nature of knowledge (epistemology), and 
ethics and values (axiology). The beliefs and basic 
elements that underpinned this study were pragmatically 
driven. The deliberate choice of ontology of multiple 
realities led to the adoption of a pragmatic approach to a 
research design that favoured methodological 
appropriateness (Patton, 1990). Action research, as a 
methodological choice, was considered suitable for 
producing both personal action and theoretical research as 
intended outcomes (Dick, 1997), and served as the 
interface between the underlying theory and the choice of 
mixed methods. The adoption of an interpretivist stance 
emphasized that realities are multiple, constructed and 
holistic, that knowledge was jointly constructed by the 
participants and the researcher, and that the inquiry was 
value laden (Lincoln and Guba, 1985).  

The pragmatic link to the research questions is 
described below. 

RQ1. How can students’ approaches to programming 

be aligned with desirable learning outcomes in an 

introductory OOP course?  
A theoretical framework derived from the literature 

review (Thota and Whitfield, 2010) was devised for:  

• Constructive alignment of intended learning 
outcomes with assessment tasks;  

• Design of learning and teaching activities to 
encourage students to use deep learning approaches 
to achieve the learning outcomes. 

RQ2. How can the learning/teaching activities in an 
introductory OOP course enhance the ways in which 

students learn to program?  
The theoretical framework, derived from the literature 

review, was further extended for:  

• Creation of a learning context to enable students to 
experience a variety of educationally critical ways of 
learning to program;  

• Creation of a learning context with multiple media to 
enhance the learning experiences.  

The action research project, with two cycles, was 
planned for the implementation of the OOP course and to 
investigate the remaining research questions: 

RQ3. To what extent does the learning context 

influence the learning approaches of the students? 

RQ4. How does the learning environment influence 

the learning experiences of the students?   
The methodological decision to pursue action research 

was grounded in the notion of a self-reflective 
practitioner intent on rigorous research (McNiff and 
Whitehead, 2002) through cycles of planning, action, 
observation, reflection, and evaluation. The hallmark of 
the study was the adoption of a pragmatic-constructivist 
approach to connect theory and data, the focus on the 
intersubjectivity of the relationships in the research 
process, and the acceptance of transferability of inference 
from quantitative and qualitative data (Morgan, 2007). 
The researcher’s position as an insider (Anderson and 
Herr, 2005) established that there was no separation of 
the study of practice and self, from the study of the 
outcomes of the actions that were initiated (Bullough and 
Pinnegar, 2001).  

In this study, all claims to improvement were based 
solely on the researcher’s professional judgment. 
Formative, summative, and illuminative evaluations 
(Jacobs, 2000), inclusive of reflection during and after the 
practice (Schön, 1983), were undertaken to assess the 
outcomes of the action research project. The study itself 
was evaluated using criteria uniquely suited to the 
purposes and procedures of practitioner research, rather 
than by criteria established within other paradigms. A set 
of validity criteria (Anderson and Herr, 1999) that are 
linked to the goals of insider action research (dialogic, 
outcome, catalytic, democratic, and process) were applied 
as summative evaluation of the research study. Implicit in 
these standards of judgment are the processes of personal, 
empathetic, social, institutional, and ethical validity that 
can be found in the works of theorists such as Lather 
(1986), Winter (1996), and McNiff and Whitehead 
(2002).  

Issues of rigour and reflexivity were addressed 
through pilot trials that were undertaken to assess the 
functionality of the mixed methods data-gathering 
techniques, and by writing a reflective journal on the 
critical episodes (McNiff et al., 1996) in the research 
process. Informed consent was obtained from the 
participants, and the nature of the research was 
disseminated to all participants (Cohen et al., 2007).

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

107



4.3 Design procedures 

Within the action research project, two cycles of planning 
and acting led to the implementation of the OOP course. 
To provide authentic descriptions of the action (McNiff et 
al., 1996), student and teacher artefacts were incorporated 
as data sources for the study. Formative feedback and 
summative evaluation provided ways to gather data for 
research questions 3 and 4. In each cycle, formative 
feedback was obtained from:  

• The reflective journals that students wrote about their 
course experience.  

• Data from course questionnaires that the students 
answered during the teaching period. (A range of 
influences on learning outcomes was investigated 
including prior knowledge, perceptions of learning to 
program, motivation and self-efficacy levels, beliefs 
about collaborative work, and views about 
technologies.) 

• The grades obtained by students on the programming 
quizzes, exam, assignments, and project.  

• Observations of classroom interactions.  

• Feedback from validation groups: critical friend, 
student tutor, and colleagues at the university.  

The students’ programming experiences (from 
journals) were interpreted and categorized through 
thematic analysis (Ezzy, 2002, Patton, 1990). Within each 
cycle, the two-phase mixed methods sequential 
explanatory design with participant selection model 
(Creswell and Plano Clark, 2007) was utilized to gather 
data for the summative evaluation. The linkages between 
the research questions and the data collection and analysis 
methods are outlined next. 

RQ3. To what extent does the learning context 

influence the learning approaches of the students?  
In the mixed methods quantitative phase, the data 

collection instrument and analysis procedures were:  

• The two-factor Revised Study Process Questionnaire 
(R-SPQ-2F), which is grounded in student learning 
theories, to identify students’ learning approaches 
(Biggs et al., 2001).  

• Computation of deep/surface learning approach 
scores; correlation of approach scores with course 
grades; correlations of course grades with exam 
marks.  

• Identification of a cross-section of students 
purposefully selected for a follow-up, in-depth study 
of their perceptions of the learning environment. 
(Students who obtained the highest and lowest scores 
on the correlated measures were identified, and these 
students were invited for interviews in the next 
primarily qualitative phase of the study.) 

RQ4. How does the learning environment influence 

the learning experiences of the students?  
In the mixed methods primarily qualitative phase, the 

data collection instrument and analysis procedures were:  

• Semi-structured interviews, using the repertory grid 
technique (Kelly, 1955), to elicit views about the 
phenomenon under investigation. (The technique is 
grounded in personal construct theory and yields 
qualitative and numeric data.) 

• Collection of the descriptive constructs and numeric 
ratings from the repertory grids.  

• Data transformation using Honey’s (1979) content 
analysis technique. 

• Thematic categorization of the qualitized data, 
inductively analyzed to identify themes (Ezzy, 2002, 
Patton, 1990). 

The mixed methods design was characterized by the 
use of quantitative participant characteristics to guide 
purposeful sampling for the primarily qualitative second 
phase. The purpose of the two phases in the research 
study was to investigate the learning approaches of the 
students, and then to understand the ways in which 
students with different learning approaches experienced 
the OOP course. Figure 3 shows the research design with 
mixed methods embedded in the action research study. 

 

Figure 3: Action research study with mixed methods. 

Note. QUAL stands for qualitative; QUAN/quan stands for 
quantitative. Capital letters denote high priority or weight; lower case 
letters denote lower priority or weight; → stands for sequential process. 
Adapted from Morse (2003).  

Since the goal of this study was not to generalize to 
other contexts, but to obtain insights into the 
programming phenomenon, participants who had 
experienced the central phenomenon of introductory 
programming were selected purposively by utilizing a 
homogenous sampling scheme (Patton, 1990). The 
population thus comprised first year undergraduate 
students representing homogenous characteristics i.e. 
studying in the introductory Programming Concepts 
course. In cycle one, 21 of the 26 students enrolled in the 
course answered the questionnaire. Fourteen students 
were interviewed using the repertory grid technique. In 
cycle two, 72 of the 85 students enrolled in the course 
answered the questionnaire, and 15 students were 
interviewed. The theoretical lens through which the 
analyses, research practices, and conclusions were 
presented was mainly interpretivist (Crotty, 1998). The 
opportunity to synthesize the results from the action 
research cycles led to meta-inferences from the 
qualitative and quantitative data that was gathered.  

5 Discussion 

In this study, the adoption of a multi-paradigm approach, 
grounded in epistemology and pedagogy, led to workable 
solutions that were related to the theoretical, personal, 
and professional goals of the researcher. The emphasis on 
an approach driven by research questions determined the 

CRPIT Volume 123 - Computing Education 2012

108



specific methods of data collection that informed the 
problem under study. The quality criteria used to evaluate 
the outcomes of the research showed how effectively the 
inferences answered the research purposes.  

The development of an explicit research model while 
investigating a research problem has the potential to 
enhance the relevance, worth, and applicability of the 
research (Pears and Daniels, 2003). The framework that 
was developed in this study was in itself an outcome of 
the research process and led to valuable results. The 
framework can be refined and adapted for different 
settings with different research questions.  

The choice of methodological eclecticism in this 
research study enabled insights that would not have been 
possible with a dogmatic stance. Action research afforded 
an appropriate methodology in a study aimed at iterative 
improvements in teaching and learning introductory 
programming. Learning and contextual issues were 
identified from the feedback that was received during the 
course, and proved valuable for understanding and 
complementing the data which was gathered as 
summative evaluation at the end of the course. The 
findings from the first action research cycle served to 
inform the course redesign in the second cycle. The 
findings from the second cycle acted as beacons for 
future development. Doing and writing about the action 
research project produced knowledge that was grounded 
in the lived experience of the situation, was co-
contributed by the student participants and researcher, 
and validated through peer and public scrutiny (McNiff 
and Whitehead, 2009). 

In this study, the quantitative data about the 
approaches of the students relating to the programming 
course, and the subjective interpretation of their 
experiences (qualitatively determined, and statistically 
and qualitatively interpreted through the repertory grid 
data analysis) made the inferences from the study much 
stronger. The utilization of mixed methods allowed 
enrichment and triangulation with self-reported data that 
showed how students approached and experienced the 
programming course. The collection of the qualitative 
data in the form of multiple perspectives and divergent 
views allowed an understanding of the varied ways of 
experiencing the phenomena under discussion. The use of 
a standard well validated questionnaire to identify 
learning approaches, and the use of the repertory grid 
interviews to elicit personal constructs about the learning 
experience served the purposes of complementarity and 
expansion (Greene et al., 1989). Complementarity led to 
elaboration and enhancement from the methods to 
increase the interpretability and meaningfulness of the 
questionnaire results and the personal constructs of the 
students, while the breadth and scope of the research was 
expanded by using different methods for different 
research issues.  

The rationale and purposes (Collins et al., 2006), for 
using mixed methods in this study led to (a) participant 
enrichment (students were selected with clearly 
identifiable surface and deep approaches for interviews 
about their learning experiences); (b) treatment integrity 
(fidelity with the underlying theory and principles of 
constructive alignment and phenomenographic pedagogy 

guiding the course design); and (c) significance (thick, 
rich data from the qualitative and quantitative data 
collection methods). 

The emergence of both convergent and divergent 
results from the data analysis provided greater insights 
into the phenomenon of teaching and learning 
introductory programming and opened up previously 
unexplored aspects of the research.  The findings from the 
observations and reflective journals suggested that 
students underwent transformations in their thinking 
about programming, which was not obvious from the 
statistical data collected from the questionnaire. The 
journals that the students submitted during the course also 
contained rich descriptions that shed light on the tacit 
understandings of novice programmers. These 
conceptions informed the course developer to design 
meaningful learning and teaching activities to encourage 
reflective thinking about programming.   

The numeric scores from the questionnaires revealed 
that students employed a range of learning approaches 
depending on the contextual influences they perceived as 
assisting learning to program. The findings open the way 
for further investigations about the learning approaches of 
novice programmers in cross-cultural situations.  

The qualitative and quantitative findings from the 
repertory grid interviews revealed that the students found 
the learning process (reflection and experiencing), 
learning content (information, coding, assessment), and 
learning support (scaffolding and collaboration) helpful 
for programming. The students’ constructs of their course 
experience served to improve the course developer’s 
understanding of the contextual influences on students’ 
learning. This understanding was then rechanneled to 
make improvements to the learning environment. 

Using mixed methods in action research is 
challenging, as both the quantitative and qualitative 
strands bring their own unique challenges to the study 
(Collins et al., 2007). With respect to the quantitative 
instrument, the sample sizes in this study were too small 
to detect statistically significant differences or 
relationships. The crisis of representation (Denzin and 
Lincoln, 2005) in the qualitative strand was the challenge 
to capture the lived experience of the participants in 
textual format. Therefore, a rigorous procedure for 
developing the thematic categories for construct analysis 
was established with three independent coders achieving 
acceptable levels of inter-rater reliability for agreement of 
construct categories. 

Researchers who blend methodologies when they 
study their own practice bear the onus of establishing 
scholarly integrity as writers and methodologists 
(Bullough and Pinnegar, 2001). In this study, evidence of 
scholarly writing was presented by recording participants’ 
thinking and feelings in an authentic manner, and by 
selecting, framing, and evaluating the outcomes of the 
study within a written document (Thota, 2011), that 
provided the structure and coherence for argumentation. 
The development of some necessary skills for repertory 
grid practitioners (Fransella, 2005), such as credulous 
listening, reflexivity, and construct interpretation, became 
part of the learning experience for the researcher. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

109



6 Conclusion 

In this paper, an argument was put forth for paradigm 
pluralism and methodological eclecticism in computing 
education research. Pragmatism was advocated for its 
practical relevance to mixing paradigms and methods. A 
framework with a focus on the research problem and 
research questions to guide methodological choices was 
presented. The detailed description of a mixed methods 
research design, along with a discussion of issues, was 
provided to illustrate the framework.  

Emerging trends in integrated research methodology 
necessitate that computing education researchers are 
conversant with contemporary orientations in mixing 
paradigms and methods. Through the discussion and 
demonstration of a multi-paradigm approach and mixed 
methods data collection design embedded in practitioner-
led action research, this paper contributes to furthering a 
scholarly enquiry and methodological awareness among 
computing educators. The design of this research study 
merits consideration by educators who wish to understand 
how mixing paradigms, the adoption of methodological 
eclecticism, and the use of mixed methods can be utilised 
to investigate research issues in computing education. 

7 References 

Anderson, G. L. & Herr, K. (1999): The new paradigm 
wars: Is there room for rigorous practitioner knowledge 
in schools and universities? Educational Researcher, 
28(5): 12-40. 

Anderson, G. L. & Herr, K. (2005): The action research 

dissertation: A guide for students and faculty. 

Thousand Oaks, CA, Sage. 

Bergin, S. & Reilly, R. (2006): Predicting introductory 
programming performance: A multi-institutional 
multivariate study. Computer Science Education, 
16(4): 303-323. 

Berglund, A. (2005): Learning computer systems in a 

distributed project course: The what, why, how and 

where. Uppsala, Sweden, Acta Universitatis 
Upsaliensis. 

Biggs, J. B. (1987): Student approaches to learning and 

studying. Hawthorn, Victoria, Australian Council for 
Educational Research. 

Biggs, J. B., Kember, D. & Leung, D. (2001): The revised 
two-factor Study Process Questionnaire: R-SPQ-2F. 
British Journal of Educational Psychology, 71(1): 133-
149. 

Booth, S. (1992): Learning to program: A 

phenomenographic perspective. Göteborg, Sweden, 
Acta Universitatis Gothoburgensis. 

Bruce, C., Mcmahon, C., Buckingham, L., Hynd, J., 
Roggenkamp, M. & Stoodley, I. (2004): Ways of 
experiencing the act of learning to program: A 
phenomenographic study of introductory programming 
students at university. Journal of Information 

Technology Education, 3: 143-160. 

Bullough, R. V., Jr. & Pinnegar, S. (2001): Guidelines for 
quality in autobiographical forms of self-study 
research. Educational Researcher, 30(3): 13-21. 

Carbone, A., Hurst, J., Mitchell, I. & Gunstone, D. 
(2009): An exploration of internal factors influencing 
student learning of programming. In Proc. 11th 

Australasian Computing Education Conference (ACE 

2009). 25-34. Hamilton, M. & Clear, T. (eds). 
Darlinghurst, Australia, ACS. 

Caspersen, M., E & Bennedsen, J. (2007): Instructional 
design of a programming course: A learning theoretic 
approach. Proc. Third International Computing 

Education Research Workshop (ICER 2007), Atlanta, 
GA, 111-122, ACM. 

Chamillard, A. T. (2006): Using student performance 
predictions in a computer science curriculum. Proc. 

11th Annual Conference on Innovation and Technology 

in Computer Science Education (ITiCSE 2006), 
Bologna, Italy, 260-264, ACM. 

Christ, T. W. (2009): Designing, teaching, and evaluating 
two complementary mixed methods research courses. 
Journal of Mixed Methods Research, 3(4): 292-325. 

Christ, T. W. (2010): Teaching mixed methods and action 
research: Pedagogical, practical, and evaluative 
considerations In Handbook of Mixed Methods in 

Social & Behavioral Research. 643-676. Tashakkori, 
A. & Teddlie, C. (eds). 2nd ed. Thousand Oaks, CA, 
Sage. 

Clear, T. (2001): Research paradigms and the nature of 
meaning and truth. ACM SIGCSE Bulletin, 33(2): 9-10. 

Cohen, L., Manion, L. & Morrison, K. (2007): Research 

methods in education. New York, NY, Routledge. 

Collins, K. M. T. & O'Cathain, A. (2009): Introduction: 
Ten points about mixed methods research to be 
considered by the novice researcher. International 

Journal of Multiple Research Approaches, 3(1): 2-7. 

Collins, K. M. T., Onwuegbuzie, A. J. & Jiao, Q. G. 
(2007): A mixed methods investigation of mixed 
methods sampling designs in social and health science 
research. Journal of Mixed Methods Research, 1(3): 
267-294. 

Collins, K. M. T., Onwuegbuzie, A. J. & Sutton, I. L. 
(2006): A model incorporating the rationale and 
purpose for conducting mixed-methods research in 
special education and beyond. Learning Disabilities: A 

Contemporary Journal, 4(1): 67-100. 

Creswell, J. W. & Plano Clark, V. L. (2007): Designing 

and conducting mixed methods research. Thousand 
Oaks, CA, Sage. 

Crotty, M. (1998): The foundations of social research: 

Meaning and perspective in the research process. 

Thousand Oaks, CA, Sage. 

Denzin, N. & Lincoln, Y. (2005): Introduction: The 
discipline and practice of qualitative research. In 
Handbook of Qualitative Research. 1-32. Denzin, N. K. 
& Lincoln, Y. S. (eds). 3rd ed. Thousand Oaks, CA, 
Sage. 

Denzin, N. K. (2010): Moments, mixed methods, and 
paradigm dialogs. Qualitative Inquiry, 16(6): 419-427. 

Dick, B. (1997). Approaching an action research thesis: 

An overview. http://www.uq.net.au/action_research/ 
arp/phd.html. Accessed 20 Aug 2011. 

CRPIT Volume 123 - Computing Education 2012

110



Eckerdal, A. & Berglund, A. (2005): What does it take to 
learn 'programming thinking'? Proc. First International 

Computing Education Research Workshop (ICER 

2005), Seattle, WA, USA, 135-142, ACM. 

Ezzy, D. (2002): Qualitative analysis: Practice and 

innovation. London, UK, Routledge. 

Fincher, S. & Petre, M. (Eds). (2004): Computer science 

education research. London, UK, RoutledgeFalmer. 

Fransella, F. (2005): Some skills and tools for personal 
construct users. In The Essential Practitioner's 

Handbook of Personal Construct Psychology. 41-56. 
Fransella, F. (ed). West Sussex, UK, Wiley.  

Greene, J. C. (2008): Is mixed methods social inquiry a 
distinctive methodology? Journal of Mixed Methods 

Research, 2(1): 7-22. 

Greene, J. C., Caracelli, V. J. & Graham, W. F. (1989): 
Toward a conceptual framework for mixed-method 
evaluation designs. Educational Evaluation and Policy 

Analysis, 11(3): 255-274. 

Greening, T. (1996): Paradigms for educational research 
in computer science. Proc. Second Australasian 

Conference on Computer Science Education (ACSE), 
University of Melbourne, Australia, 47-51, ACM Press. 

Gries, D. (2008): A principled approach to teaching OO 
first. Proc. 39th SIGCSE Technical Symposium on 

Computer Science Education, Portland, OR, USA, 31-
35, ACM. 

Guba, E. (1990): The alternative paradigm dialog. In The 

Paradigm Dialog. 17-27. Guba., E. G. (ed). Newbury 
Park, CA, Sage. 

Guba, E. & Lincoln, Y. (2005): Paradigmatic 
controversies, contradictions, and emerging 
confluences. In Handbook of Qualitative Research. 
191-215. Denzin, N. K. & Lincoln, Y. S. (eds). 3rd ed. 
Newbury Park, CA, Sage. 

Hazzan, O., Dubinsky, Y., Eidelman, L., Sakhnini, V. & 
Teif, M. (2006): Qualitative research in computer 
science education. ACM SIGCSE Bulletin, 38(1): 408-
412. 

Hitchcock, G. & Hughes, D. (1989): Research and the 

teacher. Routledge Kegan & Paul. 

Honey, P. (1979): The repertory grid in action: How to 
use it to conduct an attitude survey. Industrial and 

Commercial Training, 11(11): 452-459. 

Howe, K. (1988): Against the quantitative-qualitative 
incompatibility thesis or dogmas die hard. Educational 

Researcher, 17(8): 10. 

Jacobs, C. (2000): The evaluation of educational 
innovation. Evaluation, 6(3): 261-280. 

Johnson, R. B. & Onwuegbuzie, A. J. (2004): Mixed 
methods research: A research paradigm whose time has 
come. Educational Researcher, 33(7): 14-26. 

Kelly, G. A. (1955): The psychology of personal 

constructs. New York, NY, Norton. 

Kinnunen, P. & Malmi, L. (2005): Problems in problem-
based learning- Experiences, analysis and lessons 
learned on an introductory programming course. 
Informatics in Education, 4(2): 193-212. 

Lather, P. (1986): Issues of validity in openly ideological 
research: Between a rock and a soft place. Interchange, 
17(4): 63-84. 

Lincoln, Y. S. & Guba, E. G. (1985): Naturalistic inquiry. 

Newbury Park, CA, Sage. 

Lincoln, Y. S., Lynham, S. A. & Guba, E. G. (2011): 
Paradigmatic controversies, contradictions, and 
emerging confluences, revisited. In Handbook of 

Qualitative Research. 97-128. Denzin, N. K. & 
Lincoln, Y. S. (eds). 4th ed. Thousand Oaks, CA, Sage. 

Marton, F. & Booth, S. (1997): Learning and awareness. 

Mahwah, NJ, Laurence Erlbaum Associates. 

Maxwell, J., A. & Loomis, D., M. (2003): Mixed 
methods design: An alternative approach. In Handbook 

of Mixed Methods in Social and Behavioral research. 
241-272. Tashakkori, A. & Teddlie, C. (eds). Thousand 
Oaks, CA. 

McNiff, J., Lomax, P. & Whitehead, J. (1996): You and 

your action research project. London, UK, 
RoutledgeFalmer. 

McNiff, J. & Whitehead, J. (2002): Action research: 

Principles and practice. London, UK, 
RoutledgeFalmer. 

McNiff, J. & Whitehead, J. (2009): Doing and writing 

action research. London, UK, Sage. 

Meisalo, V., Sutinen, E. & Torvinen, S. (2003): Choosing 
appropriate methods for evaluating and improving the 
learning process in distance programming courses. 
Proc. 33rd ASEE/IEEE Frontiers in Education 

Conference, Boulder, Colorado, 11–16. 

Mertens, D., M. (2007): Transformative paradigm: Mixed 
methods and social justice. Journal of Mixed Methods 

Research, 1(3): 212-225. 

Mingers, J. (2001): Combining IS research methods: 
Towards a pluralist methodology. Information Systems 

Research, 12(3): 240-259. 

Morgan, D., L. (2007): Paradigms lost and pragmatism 
regained: Methodological implications of combining 
qualitative and quantitative methods. Journal of Mixed 

Methods Research, 1(1): 48-76. 

Morse, J. M. (2003): Principles of mixed methods and 
multimethod research design. In Handbook of Mixed 

Methods in Social & Behavioral Research. 189-208. 
Tashakkori, A. & Teddlie, C. (eds). Thousand Oaks, 
CA, Sage. 

Onwuegbuzie, A. J. & Leech, N. L. (2005): On becoming 
a pragmatic researcher: The importance of combining 
quantitative and qualitative research methodologies. 
International Journal of Social Research Methodology, 
8(5): 375-387. 

Patton, M. Q. (1990): Qualitative evaluation and 

research methods. Newbury Park, CA, Sage. 

Pears, A. & Daniels, M. (2003): Structuring CSEd 
research studies: Connecting the pieces. Proc. Eighth 

Annual Conference on Innovation and Technology in 

Computer Science Education (ITiCSE 2003), 
Thessaloniki, Greece, 149-153, ACM Press. 

Ramsden, P. (2005): The context of learning in academic 
departments. In The Experience of Learning: 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

111



Implications for Teaching and Studying in Higher 

Education 198-216. Marton, F., Hounsell, D. & 
Entwistle, N. (eds). 3rd Internet ed. Edinburgh, 
University of Edinburgh, Centre for Teaching, 
Learning and Assessment. 

Robins, A. (2010): Learning edge momentum: A new 
account of outcomes in CS1. Computer Science 

Education, 20(1): 37-71. 

Rountree, N., Rountree, J., Robins, A. & Hannah, R. 
(2004): Interacting factors that predict success and 
failure in a CS1 course. ACM SIGCSE Bulletin, 36(4): 
101-104. 

Schön, D. A. (1983): The reflective practitioner: How 

professionals think in action. New York, NY, Basic 
Books. 

Sheard, J., Simon, Hamilton, M. & Lönnberg, J. (2009): 
Analysis of research into the teaching and learning of 
programming. Proc. Fifth International Workshop on 

Computing Education Research (ICER 2009), 
Berkeley, CA, USA, 93-104, ACM. 

Soh, L., Samal, A. & Nugent, G. (2007): An integrated 
framework for improved computer science education: 
Strategies, implementations, and results. Computer 

Science Education, 17(1): 59-83. 

Teddlie, C. & Tashakkori, A. (2010): Overview of 
contemporary issues in mixed methods research. In 
Handbook of Mixed Methods in Social & Behavioral 

Research. 1-41. Tashakkori, A. & Teddlie, C. (eds). 
2nd ed. Thousand Oaks, CA, Sage. 

Thota, N. & Whitfield, R. (2010): Holistic approach to 
learning and teaching introductory object-oriented 
programming. Computer Science Education, 20(2): 
103-127. 

Thota, N. (2011): Developing a holistic approach to 
learning and teaching introductory object-oriented 
programming. Ph.D. thesis. University of Saint Joseph, 
Macau. 

Wiedenbeck, S. (2005): Factors affecting the success of 
non-majors in learning to program. Proc. First 

International Computing Education Research 

Workshop (ICER 2005), Seattle, WA, USA, 13-24, 
ACM Press. 

Winter, R. (1996): Some principles and procedures for 
the conduct of action research. In New Directions in 

Action Research. 13-27. Zuber-Skerritt, O. (ed). 
Washington, D.C., Falmer Press. 

 

CRPIT Volume 123 - Computing Education 2012

112



Switch’s CAM Table Poisoning Attack:  Hands-on Lab Exercises for 

Network Security Education 

Zouheir Trabelsi 
Faculty of Information Technology 

UAE University 

Al-Ain, UAE 

  
 trabelsi@uaeu.ac.ae 

 

 

Abstract 

Teaching offensive techniques is a necessary component 

of a computer security education and yields better 

security professionals than teaching defensive techniques 

alone. In this paper, we describe a case study of the 

implementation of comprehensive hands-on lab exercises 

that are essential to security education. The first hands-on 

lab exercise is about how to perform a Denial of Service 

(DoS) attack based on the poisoning of the CAM tables 

(Content Access Memory) of Local Area Network (LAN) 

switches.  The second exercise is about how to prevent 

CAM table poisoning attack. The hands-on labs 

confirmed further the ethical and legal concerns regarding 

the teaching of offensive techniques in the academic 

environment. In fact, the number of injected malicious 

traffic targeting the university switches‘ CAM tables, 

increased considerably each time the students experiment 

the DoS attack. That is why every course in IT security 

should be accompanied by a basic discussion of legal 

implications and ethics.  

 

Keywords: Switch CAM table poisoning, DoS attack, 

Security port. 

1 Introduction 

Network security courses are often taught as concepts, at 

relatively abstract levels. A curriculum that covers the 

concepts of network security without giving suitable 

coverage to practical implementation deprives the student 

of the opportunity to experience the technologies and 

techniques required to ensure security. A hands-on 

approach to disseminating knowledge of network security 

will prepare the student for the complexities of 

conducting research and development in this field. Such 

an approach is rarely seen in most graduate and 

undergraduate courses. Even when the hands-on approach 

is advocated, by some, it is usually dominated by 

exercises using defensive techniques. 
1
Recently, offensive techniques, originally developed by 

hackers, are gaining widespread approval and interest  

                                                           

Copyright © 2012, Australian Computer Society, Inc. This 

paper appeared at the 14th Australasian Computing Education 

Conference (ACE 2012), Melbourne, Australia, January-

February 2012. Conferences in Research and Practice in 

Information Technology (CRPIT), Vol. 123. M. de Raadt and 

A. Carbone, Eds. Reproduction for academic, not-for profit 

purposes permitted provided this text is included. 

  

 

(Yuan, and Zhong 2008, Bishop 1997, Frincke 2003, Hill, 

Carver, Humphries, and Pooch 2001, Mullins, Wolfe,  

Fry, Wynters, Calhoun, Montante, and Oblitey 2002). It 

is often criticized that offensive methods should not be 

taught to students as this only increases the population of 

"malicious hackers". Many educators in this field feel that 

hands-on courses that teach security attacks in detail are 

unethical, and create the potential for some to use the 

tools and techniques in an irresponsible manner (Harris 

2004, Caltagirone, Ortman, Melton, Manz, King, and 

Oman 2006, Livermore 2007). The social implication is 

to restrict the injection of new hackers into society. 

However, others claim that teaching offensive 

techniques yields better security professionals than those 

that are taught only defensive techniques (Mink and 

Freiling 2006, Arce and McGraw 2004, Arnett and 

Schmidt 2005, Dornseif, Holz, and Mink 2005, Vigna 

2003, Yuan, Matthews, Wright, Xu, and Yu 2010, 

Livermore 2007). It is important to note that the corporate 

businesses employ experts that use offensive techniques 

for penetration testing, to ensure their security. The use of 

offensive techniques to provide secure environments for 

large corporate entities has created the new genre of 

hackers, the ―ethical hacker‖!  

We believe that offensive techniques are central, to 

better understand security breaches and system failures. 

Teaching network attacks with hands-on experiments is a 

necessary component of education in network security. 

Moreover, we believe that security students need to 

experiment attack techniques to be able to implement 

appropriate and efficient security solutions. This 

approach to education will enable the student to provide 

confidentiality, integrity, and availability for computer 

systems, networks, resources, and data. One cannot 

perfectly design or build defenses for attacks that one has 

not truly experienced, first-hand. However, we agree that 

offensive techniques must not be taught as the primary 

focus of a course. Every course in IT security must be 

accompanied by discussion of legal implications and 

cover the ethical responsibilities of the student towards 

their community and society at large.  

Network security lacks sufficient and contemporary 

textbooks and technical papers that describe in detail 

hands-on exercises that include both offensive and 

defensive implementation within an isolated network 

laboratory environment. To contribute to fill this void in 

security education, this paper proposes comprehensive 

hands-on lab exercises that are essential to security 

education. The first lab exercise is about how to perform 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

113



a DoS attack based on the poisoning of the CAM table of 

a LAN switch. The second lab exercise is about how to 

prevent the poisoning of the switch‘s CAM table. The lab 

exercises allow students to better anatomize and elaborate 

the discussed offensive and defensive techniques. The lab 

exercises can be offered to students during security 

courses related to intrusion detection and prevention 

techniques, particularly to DoS attacks. It is designed to 

accompany and complement any existing trade or 

academic press text.  

The paper is organized as follows: Section 2 includes a 

brief understanding of switch‘s CAM table, to form the 

base for subsequent sections. Section 3 discusses the first 

hands-on lab. Section 4 discusses the second hands-on 

lab. Section 5 discusses some ethical concerns related to 

teaching offensive techniques. Section 6 discusses the 

student satisfaction and the effect of offering the hands-

on lab exercises on the student performance.  Finally, 

Section 7 concludes the paper. 

2 Background: Switch’s CAM Table 

To form the base for subsequent sections, this section 

includes a brief understanding of the switch‘s CAM table. 

LAN‘s switches maintain a table called the CAM 

table, and maps individual MAC addresses on the 

network to the physical ports on the switch. This allows 

the switch to direct data out of the physical port where the 

recipient is located, as opposed to indiscriminately 

broadcasting the data out of all ports as a hub does. The 

advantage of this method is that data is bridged 

exclusively to the network segment containing the 

computer that the data is specifically destined for. 

Figure 1 shows an example of entries in the CAM 

table of a switch. Four hosts are connected to the switch. 

For example, the first host (whose MAC address is 

00:0F:1F:C0:EB:49) is connected to Port #1 (Interface: 

FastEthernet0/1) on the switch. 

 

Figure 1: The entries of a CAM table 

When the switch receives a packet from a host, it 

extracts first the destination MAC address from the 

header of the Ethernet frame. Using this MAC address, 

the switch gets the corresponding port number from the 

CAM table. Then, the packet is sent only to the host 

connected to that port. Therefore, even by setting a 

computer‘ network interface card (NIC) into the 

promiscuous mode, sniffing traffic in a switched LAN 

network is not possible. However, hackers use the Man-

in-the-Middle (MiM) attack technique to intercept and 

sniff traffic in switched LAN network (SwitchSniffer 

2011, Winarp 2011, and WinArpAttacker 2011). 

3 Lab exercise: DoS attack based on CAM 

Table Poisoning 

This hands-on lab exercise is about DoS attack using 

CAM table poisoning technique. The learning objective 

of this lab exercise is for students to learn how to poison 

the CAM table of a LAN‘s switch in order to perform 

DoS attack on target LAN‘s hosts. 

3.1 Attack Description 
This attack intends to corrupt the entries in the switch‘s 

CAM table, so that the network traffic will be redirected. 

That is, a malicious host (connected to Port #a in a 

switch), sends a fake packet, with the source MAC 

address in the packet‘s Ethernet header set to the MAC 

address of a target host (connected to Port #b). The 

destination MAC address in the packet‘s Ethernet header 

can be any address. Once the switch receives the packet, 

it updates its CAM table. Therefore, the CAM table‘s 

entry for that target host‘s MAC address will be 

corrupted. Hence, the target host will be considered as a 

host connected to Port #a. Any packet sent to the target 

host (destination MAC address in the packet‘s Ethernet 

header is equal to the target host‘s MAC address) will be 

forwarded to Port #a; that is, to the malicious host. 

As example of CAM table poisoning attack, Figure 1 

shows that in the CAM table of a switch, there are four 

hosts connected to the switch. Host #1, the malicious 

host, attacks the switch‘s CAM table using 3 fake 

packets. The three packets are almost the same, but they 

have different source MAC addresses in the Ethernet 

headers. The information of the packets is as follows: 

1. First fake packet: Source MAC address in the 

Ethernet header = 00:08:74:04:BC:4A  (Host 

#2).  

2. Second fake packet:  Source MAC address in the 

Ethernet header = 00:08:74:05:AD:20 (Host #3).  

3. Third fake packet: Source MAC address in the 

Ethernet header = 00:03:0D:38:79:57 (Host #4).  

 

After this attack, the switch‘s CAM table becomes 

corrupted, as shown in Figure 2. The CAM table shows 

that all four hosts are connected to the switch‘s Port#1 

(FastEthernet 0/1). However, physically only Host#1 is 

connected to Port#1. 

 

Figure 2: The content of the CAM table after the 

CAM table poisoning attack 

Once a packet is sent to one of these three hosts 

(Host#2, Host#3 and Host#4), the switch will forward it 

to Port#1; that is, to Host#1. This situation may create a 

DoS situation, since the switch is not forwarding the 

packets, issued from these three hosts, to their 

destinations (Figure 3). 

CRPIT Volume 123 - Computing Education 2012

114

http://en.wikipedia.org/wiki/CAM_Table
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/Broadcasting_(computing)
http://en.wikipedia.org/wiki/Network_hub
http://en.wikipedia.org/wiki/Bridging_(networking)
http://en.wikipedia.org/wiki/Network_segment


 

Figure 3: A DoS attack based on CAM table poisoning  

3.2 Experiment 

The following experiment describes how to poison the 

CAM table of a target switch. A simple network is used 

in the experiment. Three Windows XP based hosts are 

connected to a switch and each host is assigned a static IP 

address, as shown in Figure 4. The experiments discussed 

here use a switch device from a leader in the market 

namely Cisco, but the knowledge can be easily adapted to 

any other available switches with similar security 

features, such as Juniper switches.  

 

Figure 4: Network architecture 

The experiment consists of the following two steps:  

Step 1: View the CAM table contents 

Step 2: Poison the CAM table contents  

3.2.1 Step 1: View the CAM table contents  

To view the CAM table contents of a switch, simply 

perform the following steps: 

 Connect a LAN‘s host to the console port on the 

switch. 

 Run the Terminal Application program (For 

example: HyperTerminal) in the host. 

 Under "Connect Using:" option, select one of the 

appropriate communication port (COM1, 

COM2, etc.) that the console cable is attached. 

 Select OK and a "Port Settings" window will 

pop-up prompting you to define the data rate and 

communication setting as defined by the vendor. 

(Most vendors have the following settings: 

9600-Bits per second, 8-Data Bits, None-Parity, 

1-Stop bits and None-Flow control.) 

 Select OK. This will place you in the Terminal 

Window.  

 Depress the "Enter" key a few times until a 

menu from the switch appears in the Terminal 

Window. 

 If the menu appears, then you are ready to 

configure the switch as needed. 

 In case of a Cisco switch (Cisco 2011), type the 

following command to view the contents of the 

CAM table: 

 

Switch>enable //enter the enable command to access 

privileged EXEC mode. 

Switch# show mac-address-table 

 

 The CAM table content is:   

 

 

This screen shows that three hosts, whose MAC 

addresses are displayed, are connected on Port #2, Port 

#4, and Port #6, respectively. 

3.2.2 Step 2:  Poison the CAM table contents 

We assume that Host A wants to poison the switch‘s 

CAM table, by inserting the invalid entry: MAC address 

of Host B Switch‘s Port 0/2 (Fa0/2). This invalid entry 

will tell the switch that Host B is now located at Port 0/2 

(Fa0/2). However, physically, Host B is still located at 

Port 0/4 (Fa0/4). Hence to perform this attack, Host A 

should send to any destination host in the LAN network a 

fake packet (IP or ARP packet) whose Ethernet source 

MAC address is equal to the MAC address of Host B: 

 

IP or ARP packet 

Ethernet header: 

 Source MAC address MAC address of Host B 

 Destination MAC address Any MAC address  

 

Using any packet builder tool, such as CommView 

Packet Builder or Engage Packet Builder, the above fake 

packet can be easily built. In this lab exercise, we use 

CommView Packet Builder, since it provides a very 

friendly GUI interface to build IP, TCP, ICMP, UDP and 

ARP packets. For example, the following screenshot 

shows that a fake ICMP echo packet, whose MAC source 

is equal to the MAC address of Host B, is built at Host A: 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

115



 
 

After sending the fake ICMP echo packet, the CAM 

table becomes corrupted, as follows: 

 

 

The above screenshot shows that Host B is connected 

on Port #2. However, physically, Host B is still connected 

on Port #4.  Consequently, when a host in the LAN 

network sends packets to Host B, the switch will not 

forward them to Host B; in contrast they will be forward 

to Host A. This is a DoS attack, since the LAN network‘s 

hosts are not able to communicate properly with Host B. 

3.3 MAC Flood Attack 

An old attack technique for sniffing traffic in a switched 

LAN network is based on MAC flooding. MAC flooding 

is a technique employed to compromise the security of 

network switches. In a typical MAC flooding attack, a 

switch is flooded with many Ethernet frames, each 

containing different source MAC addresses, by the 

attacker. The intention is to consume the limited memory 

set aside in the switch to store the MAC address table. 

That is, some CAM tables of old switch models may be 

overflowed and revert to broadcast mode (hub mode 

known also as the ‗fail open mode‘) as a consequence 

after which sniffing can be easily performed. After 

launching a successful MAC flooding attack, a malicious 

user could then use a packet analyser (a sniffer) to capture 

sensitive data being transmitted between other computers, 

which would not be accessible when the switch operates 

normally. 

4 Lab exercise: Prevention of CAM Table 

Poisoning 
This lab exercise is about preventing the poisoning of the 

switch‘s CAM table. The learning objective of this lab 

exercise is for students to learn how to protect switches 

from CAM table poisoning attack. 

To prevent CAM table poisoning, security 

administrators usually rely on the presence of one or 

more features in their switches. With a feature often 

called "port security" by vendors, many advanced 

switches can be configured to limit the number of MAC 

addresses that can be learned on ports connected to end 

stations.  A smaller table of "secure" MAC addresses is 

maintained in addition to (and as a subset to) the 

traditional CAM table. 

For example, Cisco Catalyst 3560 Series switches 

(Cisco 2011) allow to restrict the number of legitimate 

MAC addresses on a port (or an interface) using the port 

security feature. When that number is exceeded, a 

security violation would be triggered and a violation 

action would be performed based on the mode configured 

on that port. Therefore, any unauthorized MAC addresses 

would be prevented from accessing and corrupting the 

CAM table. 

A switch‘s port can be configured for one of three 

violation modes, based on the action to be taken if a 

violation occurs: 

 Protect—when the number of secure MAC addresses 

reaches the maximum limit allowed on the port, 

packets with unknown source addresses are dropped 

until the switch administrator removes a sufficient 

number of secure MAC addresses. The switch 

administrator is not notified that a security violation 

has occurred. 

 Restrict—when the number of secure MAC 

addresses reaches the maximum limit allowed on the 

port, packets with unknown source addresses are 

dropped until the switch administrator removes a 

sufficient number of secure MAC addresses. In this 

mode, the switch administrator is notified that a 

security violation has occurred. 

 Shutdown—A port security violation causes the 

interface to shut down immediately. When a secure 

port is in the error-disabled state, the switch 

administrator can bring it out of this state by entering 

the err disable recovery cause psecure_violation 

global configuration command or he can manually 

re-enable it by entering the shutdown and no shut 

down interface configuration commands. This is the 

default mode.  The switch administrator can also 

customize the time to recover from this state. 

4.1 Experiment 

The following experiment describes how to configure and 

test the port security feature in Cisco Catalyst 3560 Series 

switches to prevent the poisoning of the CAM table. The 

experiment uses the same network architecture described 

in the previous lab, and consists of the following steps:  

 Step 1: Configure the Restrict Mode Security 

Port in the switch. 

 Step 2: Generate a malicious packet to poison 

the CAM table. 

CRPIT Volume 123 - Computing Education 2012

116

http://en.wikipedia.org/wiki/Network_switch
http://en.wikipedia.org/wiki/Ethernet_frame
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Packet_analyzer


 Step 3: Configure the Shutdown Mode Security 

Port in the switch. 

4.1.1 Step 1: Configure the Restrict Mode 

Security Port in the switch 

The following steps allow configuring the Restrict Mode 

Security Port: 

 Connect a host to the console port on the switch 

 Run the Terminal Application program in the 

host  

 Type the following commands:  

Switch>enable //enter the enable command to access 

privileged EXEC mode 

Switch# Configure terminal 

Switch(config)# interface fastethernet 0/2 // port security 

feature is applied on the host connected on Port #2 

Switch(config-if)# switchport mode access 

Switch(config-if)# switchport port-security 

Switch(config-if)# switchport port-security violation 

restrict 

Switch(config-if)# end 

Switch# copy running-config startup-config 

 

 To display the port security mode, type the 

following command: 

Switch# show port-security 

 

 The following results will appear: 

 

4.1.2 Step 2: Generate a malicious packet to 

poison the CAM table 

Use any packet generator tool to generate a malicious 

packet whose MAC source in the Ethernet frame is equal 

to a fake MAC address. For example, we use the same 

fake ICMP echo packet generated in the previous hands-

on lab exercise.  

 

 Type the following command to view the CAM 

table contents after the poisoning attempt: 

Switch# show mac-address-table 

 

This screenshot shows clearly that the CAM table has 

not been corrupted. 

 

 Display again the port security mode: 

 

 

This screenshot shows that there have been 27 packets 

that attempted to violate the security feature implemented 

on Port #2. These packets attempted to corrupt the CAM 

table; however, the switch has blocked them. 

4.1.3 Step 3: Configure the Shutdown Mode 

Security Port in the switch 
Type the following commands to configure the Shutdown 

Mode Security Port: 

Switch(config)# interface fastethernet 0/2 

Switch(config-if)# switchport mode access 

Switch(config-if)# switchport port-security 

Switch(config-if)# switchport port-security violation 

shutdown 

Switch(config-if)# end 

Switch# copy running-config startup-config 

 

 Display the port security mode: 

 

 

 Generate the same fake ICMP packet of the 

previous test, and then display the port security 

mode: 

 

 

This screen shows clearly that there has been a packet 

that attempted to violate the security feature implemented 

on Port #2. The switch has blocked the malicious packet 

and shut down the port. 

The following screen shows clearly that Host A has 

lost its connection to the switch (Interface Fa0/2 has been 

shutdown), and a warning message appeared on Host A‘s 

desktop, as follow: 

 

 

5  Ethical Concern 
The hands-on lab exercises have been used in our 

intrusion detection and response course in the last three 

years. A major ethical concern has been identified when 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

117



analysing the number of malicious IP and ARP packets 

injected in the university network.  

We used the intrusion detection sensors installed in the 

network segments to collect malicious packets and detect 

potential attack traffic. Figure 5 shows that the total 

average number of malicious packets targeting the 

university switches‘ CAM tables over the three years 

increased during the days following the hands-on lab 

exercises practice. This is a dilemma when offering 

hands-on lab exercises about offensive techniques.  

 

 

Figure 5: Evolution of the number of detected 

malicious IP and ARP packets targeting the switches’ 

CAM tables 

On the other hand, a survey showed that most of the 

students said that they have experiment the DoS attack 

using the CAM table poisoning technique, outside the 

university isolated network laboratory environment, 

particularly at their home‘s networks. The victims were 

mainly their sisters and brothers‘ computers. They used 

the DoS attack to prevent their victim computers from 

accessing the Internet. Table 1 shows the result of the 

survey conducted over the last three years on about 110 

students enrolled in the intrusion detection and responses 

course.  

 
Questions Responses 

Did you experiment the DoS 
attack, outside the university 
isolated network laboratory 
environment, after the hands-
on lab exercises practice? 

 82% of the students said 
“Yes” 

 13% of the students said 
“No” 

 5% abstained 
If yes, where did you 
experiment the attacks? 

 At the home’s network 
(72%) 

 At the university’s network 
(25%) 

 At other networks (3%) 
What were your objectives of 
attacking your victims? 

 For fun (76%) 
 Deny the victim from 

accessing the Internet 
(24%) 

Table 1: Student survey results  

(Number of students = 110) 

 

It is often criticized that offensive methods should not 

be taught to students since this only increases the 

population of "malicious hackers". We feel that this line 

of argument is flawed. Any security technique can be 

simultaneously used and abused. The trend towards 

penetration testing in corporate businesses shows that 

offensive techniques can be used to increase the level of 

security of an enterprise. So students trained in offensive 

techniques must not necessarily become black hats 

(malicious hackers), but rather can also become white 

hats (good security professionals). However, we agree 

that offensive techniques should not be taught in a 

standalone fashion. As with defensive techniques, every 

course in IT security should be accompanied by a basic 

discussion of legal implications and ethics. Students 

should be educated on their ethical responsibilities. 

Ethical behaviour is a mandatory part of information 

security curriculums.  

6 Student’s performance and satisfaction 

From fall 2006 to spring 2008 (a two years period), 

students enrolled in the intrusion detection and response 

course were not offered hands-on lab exercises about 

CAM table poisoning attack technique. Only the 

conceptual part of the technique has been described in the 

class.  

However, from fall 2008 to spring 2011 (a three years 

period), students were offered the hands-on lab exercises 

described in this paper. Over the last five years period, 

each semester the students were also given one quiz about 

switch‘s CAM table poisoning attack technique. Figure 6 

shows the students total average grades for the quiz, per 

semester. It is clear that from fall 2008, the students‘ total 

average grade has started improving. This is mainly due 

to the fact that the hands-on lab exercises allowed 

students to better anatomize the attack technique and 

assimilate further the concepts learned from the lecture. 

The students have learned better with the hands-on lab 

exercises which had a positive effect on their grading 

performance. 

 

 

Figure 6: Student total average grades in the quiz 

On the other hand, the students were given a 

questionnaire survey to assess their overall satisfaction 

with the hands-on labs and get their feedback. The 

student survey results are listed in Table 2. Overall the 

students‘ feedback was positive. 

 

CRPIT Volume 123 - Computing Education 2012

118



Questions Responses 
Did you envoy the labs?  87% strongly agree 

 10% agree 
 2% neither agree or 

disagree 
 1% disagree 

Do you think the labs are easy 
to follow and straightforward? 

 82% strongly agree 
 10% agree 
 5% neither agree or 

disagree 
 3% disagree 

Do you feel you understand 
the concepts better after 
performing the labs? 

 85% strongly agree 
 13% agree 
 1% neither agree or 

disagree 
 1% disagree 

How likely are you to 
recommend the labs to others? 

 86% strongly agree 
 11% agree 
 2% neither agree or 

disagree 
 1% disagree 

Would you like to see these 
labs (or similar labs) used in 
your network security classes? 

 87% strongly agree 
 8% agree 
 4% neither agree or 

disagree 
 1% disagree 

Laboratory exercises helped 
me to learn how to apply 
security principles and tools in 
practice. 

 85% strongly agree 
 8% agree 
 5% neither agree or 

disagree 
 2% disagree 

Table 2: Student survey results  

(Number of students = 40) 

 

7 Conclusion 
This paper described in detail two hands-on lab exercises. 

The first hands-on lab exercise is about how to perform 

practically DoS attack using switch‘s CAM table 

poisoning. The second hands-on lab exercise is about the 

implementation of ―Security port‖ feature available in 

common switches for preventing the attack. The two 

hands-on lab exercises allow students to better anatomize 

and elaborate the attack in an isolated network laboratory 

environment. They are designed to be used as a part of an 

undergraduate-level course on network security and 

intrusion detection and prevention course. 

However, a major ethical concern has been identified 

when analysing the alert logs generated by the intrusion 

detection sensors installed in the university networks. 

This is a dilemma when security students are exposed to 

offensive hands-on lab exercises. However, the ethical 

concerns of teaching students ―hacking‖ are dwarfed by 

the need for knowledgeable, competent, and, above all, 

experienced computer security professionals in industry 

and government.  

8 References 
 

Harris, J. (2004): Maintaining ethical standards for 
computer security curriculum. Proc. of the 1st Annual 
Conference on Information Security Curriculum 
Development, NY, USA, 46-48, ACM Press. 

SwitchSniffer:  

   http://switchsniffer.en.softonic.com/. Accessed 26 Oct 
2011. 

Winarp:  

   http://www.arp-sk.org/. Accessed 25 Oct 2011.  

WinArpAttacker:  

   http://www.mobile-download.net/Soft/Soft_2641.htm/. 
Accessed 20 October 2011. 

Cisco Systems, Catalyst 3560 Series Switch Cisco IOS 
Software Configuration Guide: http://www.cisco.com/. 
Accessed 20 Oct 2011.  

Mink, M. and Freiling, F. (2006): Is Attack Better Than 
Defense? Teaching Information Security the Right 
Way, Proc. of the 3rd Annual Conference on 
Information Security Curriculum Development, 
Kennesaw, Georgia, USA, 44-48, ACM Press. 

Arce, I. and McGraw, G. (2004): 

   Guest Editors' introduction: Why attacking systems is a 
good idea. IEEE Security & Privacy. 2(4):17-19.  

Arnett, K. P. and Schmidt, M. B. (2005): 

   Busting the ghost in the machine. Communications of 
the ACM, 48(8):92-95. 

Dornseif, M., Holz, T. and Mink, M. (2005): An 
offensive approach to teaching information security: 
Aachen Summer School Applied IT Security. Technical 
Report AIB-2005-02, RWTH Aachen. 

Vigna. G. (2003): Teaching network security through live 
exercises. Proc. of the Third Annual World Conference 
on Information Security Education (WISE 3) 3-18, 
Monterey, CA, USA, Kluwer Academic Publishers. 

Yuan, D. and Zhong, J. (2008): 

   A lab implementation of SYN flood attack and defense. 

Proc. of the 9th ACM SIGITE conference on 

Information Technology Education, SIGITE '08, 

Cincinnati, Ohio, USA, 57-58, ACM Press. 

Caltagirone, S., Ortman, P., Melton, S., Manz, D., King, 

K. and Oman, P. (2006):     

Design and implementation of a multi-use attack-

defend computer security lab.  Proc. of the 39th Annual 

Hawaii International Conference on System Sciences, 

Hawaii,  USA, 9:220c. 

Bishop, M. (1997): The state of INFOSEC education in 

academia: Present and future directions. Proc. of the 

National Colloquium on Information System Security 

Education, 19–33.  

Frincke, D. (2003): Who watches the security educators? 

IEEE Security & Privacy. 1(3): 56–58. 

Hill, J., Carver, C., Humphries, J. and Pooch, U.  (2001):  

   Using an isolated network laboratory to teach advanced 

networks and security. Proc. of the 32nd SIGCSE 

Technical Symposium on Computer Science Education, 

Charlotte, North Carolina, USA, 36–40, ACM Press. 
Mullins, P., Wolfe, J., Fry, M., Wynters, E., Calhoun, W., 

Montante, R. and Oblitey, W. (2002): Panel on 
integrating security concepts into existing computer 
courses. Proc. of the 33rd SIGCSE Technical 
Symposium on Computer Science Education, NY, 
USA, 34(1), 365–366, ACM Press. 

Yuan, X., Matthews, D., Wright O., Xu, J., and Yu, H.  
(2010): Laboratory Exercises for Wireless Network 
Attacks and Defenses. Proc. of the 14

th
 Colloquium for 

Information Systems Security Education. Baltimore, 
Maryland, USA, 116-123. 

Livermore J. (2007): What are faculty attitudes toward 
teaching ethical hacking and penetration testing? Proc. 
of the 11

th
 Colloquium for Information Systems Security 

Education, Boston, MA, USA, 111-116. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

119

http://portal.acm.org/author_page.cfm?id=81342516926&coll=DL&dl=ACM&trk=0&cfid=28926251&cftoken=42254112
http://portal.acm.org/author_page.cfm?id=81310499767&coll=DL&dl=ACM&trk=0&cfid=28926251&cftoken=42254112
http://academic.research.microsoft.com/Conference/736/hicss-hawaii-international-conference-on-system-sciences
http://academic.research.microsoft.com/Conference/736/hicss-hawaii-international-conference-on-system-sciences


CRPIT Volume 123 - Computing Education 2012

120



Implementation of a Smart Lab for Teachers of Novice Programmers 

Ali Alammary, Angela Carbone and Judy Sheard 

Faculty of Information Technology 

Monash University, Melbourne, Australia  

Asala3@monash.edu.au, angela.carbone@monash.edu, judy.sheard@monash.edu   

 

Abstract 

Communication between students and their instructors in 
the lab is a limited commodity. With limited access to the 

tutor, students can sometimes spend a long time trying to 

fix simple errors, continually revisiting and repeating the 

same errors. Instructors, on the other hand, find 

themselves explaining the same mistakes over and over 

again. It is often not clear to them how well individual 

students are progressing toward meeting the task 
objectives. This paper introduces a new implementation 

of Smart Classroom technology for introductory 

programming computer laboratories. The Smart Lab is 

intended to make the computer lab a better educational 

environment for both students and instructors. In the 

Smart Lab instructors are provided with information 

about each student‟s progress as they perform 

programming tasks, enabling the instructors to readily 

respond to individual student‟s problems and assess the 

overall progress of the class. Two different evaluation 

approaches were used to test the new implementation: an 
expert review session and a lab study. The evaluation 

found that the Smart Lab improved instructors 

understanding of their students‟ problems enabling them 

to provide timely and appropriate feedback. It also 

provided instructors with better understanding of their 

students‟ programming strategies and compilation 

behaviours. . 

Keywords:  Smart Classroom, introductory programming, 
learning technology, tutoring, feedback. 

1 Introduction 
Learning programming is a difficult task for most 

students. Novice programming students experience many 

problems which contribute to high dropout and failure 

rates in introductory programming courses (Lister et al., 

2004; McCracken et al., 2001). According to Gomes and 

Mendes (2007), these problems start in the early stages of 

learning when students are trying to understand and apply 

basic programming concepts, such as loops and control 

statements. A common argument used to explain the 

difficulties students face is that programming is a 

multifaceted skill. Learning to program requires 
knowledge about programming languages, programming 

                                                        

Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the Fourteenth Australasian Computing 
Education Conference (ACE2012), Melbourne, Australia, 
January-February 2012. Conferences in Research and Practice 

in Information Technology (CRPIT), Vol. 123. M. de Raadt and 
A. Carbone, Eds. Reproduction for academic, not-for-profit 
purposes permitted provided this text is included.   

tools and problem solving (Robins, Rountree and 

Rountree, 2003; Carbone, Mitchell and Hurst, 2009).  

One way to assist students overcome difficulties in 

learning to program is by providing them with 

programming tasks to solve in the computer lab with 

support from a tutor. A tutor can inspect the students‟ 

code, investigate the problem and then provide the 

students with the appropriate help. However, 

communication between students and their instructors in 

the lab is a limited commodity. As the number of students 

in the lab increases, the amount of time that instructor can 
devote to each student decreases. With limited access to 

the tutor, students can sometimes spend a long time trying 

to fix simple errors, continually revisiting and repeating 

the same errors. They may have difficulty understanding 

the compiler messages, making code correction a 

frustrating experience. Instructors, on the other hand, find 

themselves repeatedly explaining the same mistake. It is 

often not clear to them how well individual students are 

progressing toward meeting the task objectives. 

Furthermore, they are not easily able to assess the errors 

that students are most commonly encountering.  

A number of tools have been developed to assist 
instructors in giving feedback to students about their 

work. All tools found in a search of the literature were 

designed to provide feedback about students‟ assignments 

after they had completed and submitted their work, and 

not for their work on programming activities in lab 

classes. In view of this, we have developed a Smart Lab 

that is intended to improve the assistance instructors 

provide to their students in their lab classes. It allows 

tutors to better understand their students‟ problems, 

programming strategies and compilation behaviours. As a 

result, students can be provided with appropriate help 
when they need it and common mistakes can be realised 

and explained. 

This paper investigates a Smart Classroom technology 

for introductory programming computer laboratories, 

implemented as a Smart Lab. Section 2 details the Smart 

Lab development, with features of a new Smart Lab 

described in section 3. In section 4 details of the 

evaluation of Smart Lab are provided, followed by a 

discussion, conclusion and suggestions for future work.  

2 Related work 

As background to the development of the Smart Lab we 
have investigated two areas:  i) implementations of Smart 

Lab technology ii) approaches to helping address the 

difficulties faced by students when working on a 

programming task. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

121



2.1 Smart Lab technology 

A Smart Lab can be defined as a lab equipped with tools 
designed to enhance instruction and learning (Di, Gang 

and Juhong, 2008). The idea behind the Smart Lab is to 

employ technology to provide students and teachers with 

tools to extend their ability to communicate effectively 

and to enable them to engage successfully with the 

curriculum. A Smart Lab can be implemented in different 

ways to achieve different goals. As an example, 

Tissenbaum and Slotta (2009) describe a lab which was 
developed in several layers using a variety of approaches 

and devices. The main goal of that implementation was to 

enable students to visualize problems and their solutions 

on a large display screen in the lab. This visualization 

was intended to help students connect and understand the 

relationships between these problems and their solutions. 

The most common implementation of smart lab 
technology is for distance learning and is concerned with 

making distance education an exciting experience and as 

effective as face-to-face instruction. A notable example of 

this implementation is the work of Di et al. (2008) who 

presented what they called the blending-reality 

classroom. This system was designed to provide the 

instructors with intellectualized human-computer 

interaction technology for their teaching purposes, and 

also to provide the distance education students with an 

appropriate study environment. 

In general, the different implementations of smart lab 

technology found in the literature were complex and 

contained many different components. They also required 

expensive hardware such as video cameras, servers and 

display screens. Of the smart lab technology reviewed, 
none were found to deal specifically with a computer 

programming lab, rather they were designed to work in 

any kind of lab or classroom. 

2.2 Approaches to address the difficulties faced 

by programming students  
Many studies have been conducted to address the 

difficulties faced by programming students when working 

on programming tasks (Carbone, 2007; Sheard et al., 

2009). These studies can be classified into three areas: 1) 

identification of the difficulties encountered by novice 

programmers, 2) provision of automated help to students 

via their development platforms, and 3) provision of tools 

that help instructors monitor their students‟ progress. The 
motivation for much of this work is to reduce the 

workload of instructors and to enhance students‟ learning 

experiences. The following provides examples of studies 

from these three areas. 

Many studies have investigated the difficulties 

encountered by novice programmers. For example, Jadud 

(2006) studied the ways in which novice programmers 

write their programs. He examined which errors were 

most often generated by novices and the time they would 

spend to fix these. Another work by Flowers, Carver and 

Jackson (2004) captured and explained syntax and 
semantic errors made by programming students. They 

determined the fifty most common programming errors 

and found that even the „stronger‟ students continued to 

make these fifty errors late into the semester.  The main 

reason for this, according to Flowers et al, is that the Java 

compiler error messages do not help students to 

understand and fix their errors.  These studies have 

provided valuable information about the obstacles 

students face in writing programs and the approaches they 

take to overcome these.  

Another body of work has focused on development of 
tools to provide automated help to students. An example 

is the web-based application WebToTeach developed by 

Arnow and Barshay (2002) that enables automated 

checking of students‟ assignments. WebToTeach provides 

students with a list of programming tasks written by their 

tutor. Students write their answers to each exercise in a 

dedicated form and then wait for the system to provide 

feedback. If the answer passes a certain number of system 

checks, the student will be informed by the system that no 

extra work is needed. Otherwise, the answer will be 

rejected and the student will be provided with an 

explanation and hints to correct their submission. Another 
example is the tool Expresso, which is targeted at 

students studying introductory Java programming. 

Expresso provides students with easy to read error 

messages (Hristova et al., 2003). Expresso does not 

eliminate the need for compiler messages; rather it 

enhances the compiler functionalities by generating 

detailed and easy to read error messages and providing 

suggestions on how to fix the errors.     

A further body of work has focused on development of 

tools to enable instructors to monitor their students‟ 

progress. Spacco et al. (2006) developed a tool called 
Marmoset that provides instructors with detailed feedback 

on the development process of their students‟ 

programming assignments. Snapshots of students‟ code 

are captured and stored on a central repository each time 

students save their files. This process enables generation 

of development histories for each student. These histories 

offer a detailed perspective of students‟ progress while 

doing a programming task. Another tool Retina (Murphy 

et al., 2009) does a similar job as Marmoset but focuses 

more on the compilation and run time errors. Retina 

collects data about students‟ programming activities and 

stores these in a central database. It then processes this 
data to provide instructors with detailed information 

about students‟ progress. Karam, Awad and Carbone 

(2010) developed a tool to analyse students‟ code and 

extract what they termed actions. Each single statement 

or declaration in the program is considered as an action. 

After extracting the actions from the student code, the 

tool extracts actions from the solution code provided by 

the instructor. It finally compares the actions from the 

student‟s code to those from the solution code, to 

generate a list with the missing and completed actions.  

The tools that were found to assist instructors have 
been developed to investigate student code away from a 

class situation, for example, their assignment work. 

However, the number of assignments that students do in a 

semester is relatively small compared to the number of 

tasks they attempt in the programming lab sessions. 

Despite this, no tools were found that could be used in a 

teaching situation in a computer lab.  Furthermore, except 

for the last mentioned tool, all the other tools rely on the 

code‟s output and the compilation attempts to evaluate 

the students‟ code. Such evaluation is insufficient to 

provide comprehensive insight into students‟ 

CRPIT Volume 123 - Computing Education 2012

122



programming behaviors and the different types of 

difficulties they experience. 

Our work fills this gap by developing a Smart Lab 

implementation which incorporates and builds upon the 

code analysis tool of Karam, Awad and Carbone (2010). 

The Smart Lab is essentially a tool for use in a computer 

lab which provides instructors with detailed information 
about each student‟s progress in writing computer 

programs. 

3 Our Smart Lab solution 
 

Our Smart Lab is a computer lab containing a set of 

networked workstations equipped with specially designed 

software. Code on student machines is captured, analysed 

and a summary displayed on the instructor‟s machine. 

The instructor is thus able to monitor progress of each 

student in the class from one central point. 

The Smart Lab was designed to be simple and easy to 

use. It does not require any extra hardware and can be 

easily installed on any workstation in a lab. It needs to be 

configured one time only in the lab. All configuration 
setting is stored in a single text file called BlueJSetting. 

To configure the workstation, this file can be easily 

copied to the C drive on the workstation.  The 

architecture of the Smart Lab is shown in Figure 1. It 

analyses the compilation attempts and the code output, 

and then further analyses the code to provide deeper 

insights into the students‟ problems and programming 

behaviour. There are two main components to the Smart 

Lab: the Code Transferer component, used to transmit 

real-time information about the students‟ code and their 

programming activities to a central database, and the 

Analyser/Visualiser software component, that interacts 

with the central database to provide information to the 

instructor on the students‟ progress and the problems they 
experience. Each of these is explained in detail in the 

sections that follow. 

3.1 Code Transferer 

The aim of the Code Transferer is to send real-time 

snapshots of students‟ code and their programming 

activities to the central database. Currently, the Code 

Transferer is associated with the BlueJ IDE, but it can be 

easily modified to work with other IDEs. When the Code 

Transferer starts, it registers three types of listeners: 
Package Listener, Compile Listener and Class Listener.  

Package listener does two main tasks: it captures a 

snapshot of the students‟ code and detects the current 

class that students are working on at the moment and 

stores this information in the database. Compile Listener 
in turn captures and stores detailed information about 

both successful and unsuccessful compiling attempts. The 

Class Listener is used to detect the changes to the state of 

each of the classes that students are implementing. The 

state of the class changes when the class has been opened 

in the editor, compiled, uncompiled or renamed. 

 

 

Figure 1: The Smart Lab architecture 

 

 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

123



3.2 Analyser/Visualiser 
The Analyser/Visualiser allows tutors to monitor their 

students‟ progress in real-time when they are working on 

programming tasks in the lab. It also allows other 

teaching staff to access students‟ captured data at a later 

stage to view the different strategies that students used to 

implement solutions, as well as the common difficulties 
they encountered. These features can help tutors to 

understand students‟ needs and provide each of them with 

more appropriate and focused assistance. Lecturers can 

also utilise this feature to identify topics and concepts that 

students are experiencing problems with and tailor their 

instruction to those areas. 

The Analyser/Visualiser offers seven different 

features. These include: 

1. Graphical representation of the lab setting 

2. Common Missing Action box 

3. Common Syntactic Errors box 
4. Highlighting which students require the most and 

the least help 

5. Highlighting students who remain idle for 

extended periods 

6. Detailed information about a particular student‟s 
activities 

7. Students‟ final reports 

Each of these features is explained in detail in the 

remainder of this section. 

3.2.1 Graphical representation of the lab 
Each student in the lab is represented by a label in the 

Analyser/Visualiser’s main window (Figure 2). To enable 

easy mapping of each label to each student, the position 

of each label on the screen is related to the actual location 

of the student in the lab.  Each label contains a summary 

of the student‟s activities. This includes the current 

exercise that the student is working on, the number of 

successfully implemented actions, the number of actions 

not yet implemented, the number of compilation attempts 
of the current exercise and the result of the last 

compilation attempt.  

The missing and implemented actions are identified by 

using the tool developed by Karam, Awad and Carbone 

(2010) which was described in the related work section. 

The graphical representation is designed to help the tutor 

readily observe the amount of progress that each student 

 
 

Figure 2: The Analyser/ Visualiser main window 

CRPIT Volume 123 - Computing Education 2012

124



has achieved in solving a programming exercise, 

understand the strategy that each student used to solve the 

programming exercise, and identify the exercise that took 
students the longest time to implement. 

3.2.2 Common Missing Actions box 

This box appears at the bottom left-hand corner of the 
Analyser/Visualiser main window and it shows the four 

most common missing actions that the students failed to 

implement (see Figure 2). This box is meant to help the 

tutor identify the actions that students find difficult to 

implement and to identify programming concepts that 

require additional clarification.   

3.2.3 Common Syntactic Errors box 

This box appears at the bottom right-hand corner of the 
Analyser/Visualiser main window and it highlights the 

four most common syntactic errors that the students made 

(see Figure 2). This box is meant to aid the identification 

of common syntactic errors that students make, thereby 

enabling the tutor to focus more on these errors and to 

advise the students how to avoid them. 

3.2.4 Highlighting students who require the 

most and the least help 

The Analyser/Visualiser changes the border colour of the 
labels that represent the students to red for the students 

that need most help and to green for the students who 

need the least help. This highlighting is meant to help 

tutors focus teaching efforts on the students in the lab 

according to the level of help they may need. Figure 2 

indicates that students 2, 6 and 8 need the most help while 

students 5 and 9 need the least help. Note that the main 
window shows the missing actions for the current 

exercise only, while the application looks to the whole 

missing actions across all exercises to determine which 

students need the most or least help. 

3.2.5 Highlighting students who remain idle for 

extended periods 

The Analyser/Visualiser software changes the 
background colour of the labels to orange if a student has 

remained idle for more than two minutes. Highlighting 

the idle students is meant to provide tutors with more 

insight into students‟ programming behaviours and they 

 

 
 

Figure 3: Detailed window with detailed information on a student’s activities. 

 

 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

125



may then investigate the source of their inactivity. Figure 

2 shows an example of this functionality; the system has 

changed the background colour of student 8 who 
remained idle for a period of time.   

3.2.6 Detailed information about a particular 

student’s activities 

Clicking on a particular student‟s label in the main 

window opens a new window with detailed information 

about that student‟s programming activities (see Figure 
3). This window contains: the name of the current 

exercise the student is implementing, the last captured 

snapshot of code, a list of completed and missing actions 

and compilation attempts for that class. The window also 

allows the instructor to navigate forwards and backwards 

through the code snapshots by clicking the navigation 

buttons at the bottom of the window. It also has a drop-

down list to allow tutors to navigate to the other exercises 

that the student has already attempted. 

The information in this window sheds additional light 
on the student‟s progress. It pinpoints the nature of the 

assistance that the student requires, tracks the amount of 

progress that a student is making in the task and aids 

understanding of the student‟s programming strategy. 

3.2.7 Student’s final report 

The final report (see Figure 4) shows the amount of time 

the student spent on each exercise, the final analysis of 

the student code and detailed information on the 

compilation attempts. It provides an indication of the 

amount of effort that student has put into solving each 

programming task, the programming concepts that the 
student had problems with and his\her compilation 

behaviour.  

4 Evaluation approach 

The evaluation of the Smart Lab solution combined two 

evaluation techniques: an expert review session and a lab 

study. This approach of using two evaluation techniques 

is recommended by Krug, Burghardt and Edwards (2002) 

to provide a better assessment of computer systems rather 

than just using one technique. 

4.1 Expert review 

Four lecturers who teach programming units in the 
Faculty of Information Technology at our University 

were invited to evaluate the Smart Lab system in an 

 

 
Figure 4: Student’s final report. 

 

 

CRPIT Volume 123 - Computing Education 2012

126



expert review session. Each lecturer had had many years 

of experience in teaching introductory programming units 

both in lecturing and tutoring in lab situations. During the 

session, each participant had the opportunity to take on 

the role as a tutor and use the Analyser/Visualiser 

software to monitor the programming activities of other 
participants who act as students working on programming 

exercises. At the end of the session each participant was 

interviewed on their experiences of using the Smart Lab 

system.  

The evaluation questions were divided into three 

different sections, with each section focusing on a 

different part of the Smart Lab interface. 

1. Analyser/Visualiser main window. Questions in 

this section were designed to investigate: 1) the 

usefulness of the information in the main window 

and whether it provided sufficient understanding 

of the programming activities of the other 
participants, 2) the ease of the mapping between 

the labels representing the other participants and 

their actual location in the lab, and 3) the 

helpfulness of highlighting the students who 

required the most and the least help. 

2. Detailed window (see Figure 3). Questions in this 

section investigated the participants‟ opinions 

about whether the information in the detailed 

window provided an understanding of the 

programming strategies and compilation 

behaviour of the other participants and whether it 
was helpful in spotting the different kinds of 

problems encountered by the participants 

performing the programming tasks. 

3. Students’ final reports (see Figure 4). Questions 

in this section were designed to investigate 

whether the report information was helpful in 

identifying the amount of effort each participant 

put into solving the programming tasks and 

whether the report information provided an 

understanding of the programming strategies and 

compilation behaviour of the other participants.

   

4.2 Lab Study 

Novice programming students in an introductory 
programming unit taught within a Masters program in the 

Faculty of Information Technology at our University 

were invited to participate in this study. The study was 

conducted in two laboratory classes each with a different 

tutor and different groups of students. In each session the 

tutor used the Smart Lab system to monitor their 

students‟ programming activities. At the end of each 
laboratory session the tutors were interviewed about the 

system. 

The interview questions were divided into three 

sections: 

1. The purpose of this section was to solicit the 
tutor‟s reactions to the Smart Lab system and 

gather their opinions of the positive and negative 

aspects of the Smart Lab system. 

2. This section explored the tutor‟s experiences 

while using the Smart Lab system and with each 

of the Smart Lab features.  

3. In this section the tutor was asked to rate the 

usefulness of the system. He/she was then asked 

to discuss the benefits of the system and 

suggestions for improvement. 

5 Results and discussion 
In the expert review session, all four lecturers reported 

that the Analyser/Visualiser software provided them with 

useful information about the programming activities of 

the other participants who were playing the role of 

students. They all also agreed that it helped them to 
identify the participants who were not progressing on 

their programming task and to understand their 

compilation behaviour and programming strategies. Three 

lecturers claimed that it was easy for them to do mental 

mapping between the labels representing the other 

participants and their actual location in the lab, and to 

identify the different kinds of problems they were facing. 

In the lab study, the tutors stated that the graphical 

representation of the lab helped them identify the 

students‟ programming activities. They agreed that the 

missing actions and syntax error boxes were useful in 
spotting the common problems that students encountered. 

The colour change in the labels and their borders also 

helped the tutor identify which students needed the most 

help. However, a couple reported that analysis of the 

missing and completed actions did not accurately reflect 

the students‟ actual actions. This identified a problem 

with the Karam, Awad and Carbone (2010) tool used for 

the analysis. 

The tutors also agreed that the students‟ detailed 

window helped them to understand the students‟ 

programming strategies and the problems encountered by 
each student. They found the final report useful in helping 

them to identify the amount of effort that individual 

students put into each task.  

On a 10 point scale, where 1= useless and 10= very 

useful, the tutors both gave the system a 9 rating. One 

commented that “we might have rated it even higher if we 

had been able to use it for longer time”. 

Overall, the experts and tutors found the Smart Lab 

system a valuable tool to helping instructors identify the 

common problems that the participants encountered with 

their code. They also found that the system enabled them 

gain a better understanding of the programming 
difficulties that the participants were having with their 

code. The tutors from the study lab commented that each 

student‟s problems were easy to identify.    

The Smart Lab system also seemed to provide enough 

information to the instructor to effectively help the 

students when the need arose. Both experts and tutors 

agreed that, based on the information provided by the 

system, they could better prioritize their time to help 

those students in need of most help. They were also able 

to provide the right type of help.    

The experts and tutors agreed that the system is 
potentially very useful for gaining understanding of the 

students‟ programming strategies and compilation 

behaviour. They found the detailed information that 

appeared when clicking on a particular helpful them in 

fully understanding the students‟ programming and 

compiling strategies.  

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

127



Finally, both experts and tutors agreed that the 

information in the final report was of great help in 

discovering the progress made by each student towards 

completing the exercise. 

6 Future work and conclusion 
This study produced the first implementation of a smart 

classroom technology for the introductory programming 

units‟ labs. The implementation of the Smart Lab system 

was successful in achieving its intended aim of providing 

instructors with specific, timely and detailed information 
about their students‟ performance on programming tasks 

during the lab class sessions. The Smart Lab facilitated 

the communication between the tutors and their students 

in the lab, and improved the overall effectiveness of the 

lab session in achieving the learning objectives. Results 

indicate that it is a useful aid for laboratory instructors by 

helping them:  

 find the common problems that students faced 
with their code;  

 address their students‟ difficulties when the need 

arose;  

 understand their students‟ programming strategies 

and compiling behaviours; 

 identify the progress made by each student in 
solving the programming exercises. 

This study has opened up new research areas for 
further improvements and future work. The Smart Lab 

system could be extended in three different ways:  

1. by allowing the tutor to provide online help and 

feedback directly to the students in their 

development platform. This saves the need to 

always go to the students‟ machines or disturb the 
whole class by explaining a problem on the board, 

as it the case with the normal programming labs.  

2. by providing automated help to the students about 

the errors they make and the actions they miss. 

The feedback could come in the form of hints. 

These hints would be generated as easy to read 
messages, based on the actions students have not 

yet implemented and their syntax errors. 

1. by discovering whether use of such monitoring 

tool actually has an impact on students' behaviour. 

The fact that there is someone looking over your 

shoulder could be inhibiting. The impact might 

even be positive - take a little more time to think 

about each error rather than repeating the 

tinker/compile cycle every fifteen seconds.  

7 References 

Arnow, D. & Barshay, O. (2002): WebToTeach: an 
interactive focused programming exercise system. 29th 

ASEWIEEE Frontiers in Education Conference  San 

Juan, Puerto Rico, 12A9, IEEE. 

Carbone, A. (2007): Principles for designing 
programming tasks: How the nature of task 

characteristics influence students learning of 

programming. PhD Dissertation, Monash University. 

Carbone, A., Mitchell, I., & Hurst, J. (2009): An 

exploration of internal factors influencing student 

learning of programming. Proceedings of the 11th   

Australasian Computing Education Conference 

(ACE2009), Wellington, New Zealand. 

Di, C., Gang, Z., & Juhong, X. (2008): An introduction to 
the technology of blending-reality smart classroom. 

2008 International Symposium on Knowledge 

Acquisition and Modeling, Wuhan, 516-519, IEEE 

Computer Society. 

BlueJ - Teaching Java - Learning Java. Retrieved August  

  2010 from http://www.bluej.org. 

Flowers, T., Carver, C., & Jackson, J. (2004): 
Empowering students and building confidence in novice 

programmers through Gauntlet. 34th ASEE/IEEE 

Frontiers in Education conference, T3H-10 - T3H-13, 

IEEE. 

Gomes, A. & Mendes, A. J. (2007). Problem solving in 
programming: 19th Annual Workshop of the Psychology 

of Programming Interest Group (PPIG2007), 216-228. 

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. 
(2003): Identifying and correcting Java programming 

errors for introductory computer science students. 

Proceedings of the 34th SIGCSE Technical Symposium 

on Computer Science Education, 153-156, ACM Press. 

Jadud, M. C. (2006): Methods and tools for exploring 
novice compilation behaviour. Proceedings of the 

second International Workshop on Computing 

Education Research, Canterbury, United Kingdom, 73 

– 84, ACM Press. 

Karam, M., Awa, M., Carbone, A., & Dargham, J. 
(2010): Assisting Students with Typical Programming 

Errors During a Coding Session, Seventh International 

Conference on Information Technology, Las Vegas, 

Nevada, USA, 42-47. 

Krug, K., Burghardt, D., & Edwardes, A. (2002): 

Usability Testing Template, D2.2.3. WebPark. 

Lister, R., S. Adams, E., Fitzgerald, S., Fone, W., Hamer, 

J., Lindholm, M., et al. (2004): A multi-national study 

of reading and tracing skills in novice programmers. In 

Working Group Reports from Innovation and 

Technology in Computer Science Education (ITiCSE-

WGR '04), 117-150.  

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., 

Hagan, D., Kolikant, Y.-D., et al. (2001): A Multi-

National, Multi-Institutional Study of Assessment of 

Programming Skills of First-year CS Students. Working 

Group Reports from Innovation and Technology in 
Computer Science Education (ITiCSE-WGR '01), 

SIGCSE Bulletin, 125-140. 

Murphy, C., Kaiser, G., Loveland, K., & Sahar, H. 

(2009): Retina: Helping Students and Instructors Based 

on Observed Programming Activities. Proceedings of 

the 40th ACM SIGCSE Technical Symposium on 
Computer Science Education, Chattanooga, TN, USA, 

178-182, ACM Press. 

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., 

Hollingsworth, J. K., & PaduaPerez, N. (2006): 

Experiences with Marmoset: Designing and Using an 

Advanced Submission and Testing System for 
Programming Courses. Proceedings of the 11th Annual 

CRPIT Volume 123 - Computing Education 2012

128



SIGCSE Conference on Innovation and Technology in 

Computer Science Education, Bologna, Italy, 13-17, 

ACM. 

Robins, A., Rountree, J., & Rountree, N. (2003): 
Learning and Teaching Programming: A Review and 

Discussion. Journal of Computer Science Education, 13 

(2), 137-172.  

Sheard, J., Simon, M. Hamilton, and J. Lönnberg, 
Analysis of research into the teaching and learning of 

programming. Proceedings of International Workshop 

on Computing Education (ICER 2009), Berkeley, 

California, USA, 2009, 93-104. 

Tissenbaum, M., & Slotta, J. D. (2009). A new 
framework for smart classroom research: Co-designing 

curriculum, research and technology. Proceedings of 9th 

International Conference on Computer Supported 

Collaborative Learning, Rhodes, Greece: International 

Society of the Learning Sciences, 91-93. 

 

 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

129



CRPIT Volume 123 - Computing Education 2012

130



Evaluation of an Intelligent Tutoring System used for
Teaching RAD in a Database Environment

Silviu Risco, Jim Reye

Computer Science Discipline, Faculty of Science and Technology
Queensland University of Technology (QUT),

GPO Box 2434, Brisbane, QLD 4001,
Email: {s.risco, j.reye}@qut.edu.au

Abstract

This paper presents an evaluation of the Personal
Access Tutor (PAT), an Intelligent Tutoring System
(ITS) for Learning Rapid Application Development
(RAD) in a database environment. We first give an
overview of Microsoft Access, the environment that
PAT uses. After describing related work in the field,
we discuss the architecture of PAT and the services
that PAT offers to the students, together with a short
introduction of how students use PAT. After present-
ing the evaluation methodology, the results of a sum-
mative evaluation are discussed. Additional evalu-
ation using data gathered from students by PAT is
analysed as a pre-post test. The paper concludes with
a summary and describes further work.

Keywords: ITS evaluation, Intelligent Tutoring Sys-
tems, Student Modelling.

1 Introduction

1.1 Microsoft Access overview

Microsoft Access (aka Microsoft Office Access) is a
Relational Database Management System (RDBMS)
developed by Microsoft Corporation. From this point
on, to simplify the text, Microsoft Access will be
called Access. Access is the most widely used Win-
dows desktop RDBMS.

Figure 1: Microsoft Access - graphical inter-
face

Several versions of Access have been developed by
Microsoft Corporation. The latest version is Access

Copyright c⃝2012, Australian Computer Society, Inc. This pa-
per appeared at the Fourteenth Australasian Computing Edu-
cation Conference (ACE2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 123, Michael de Raadt and
Angela Carbone, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

2010. PAT was initially developed for Access 2003
and later ported to Access 2007 and 2010. PAT can
now be installed on any of the combinations of Ac-
cess 2003 - Access 2010 and Windows XP, Vista or
Windows 7.

Access is based on the Microsoft Jet Database En-
gine and provides a graphical user interface to cre-
ate and use databases - see Figure 1. Through the
graphical interface, the users can create several types
of objects such as forms and reports to easily inter-
rogate or update the database. Figure 2 and 3 show
examples of forms and reports created in Access.

Figure 2: Microsoft Access - example of a form

Forms are objects used to enter, view or edit records
in a database; reports are formatted printouts of
the content of one or more tables or queries from a
database (Adamski & Finnegan 2008).

Figure 3: Microsoft Access - example of a re-
port

Access users can use built-in wizards to create simple

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

131



forms and reports, but these have restricted layouts
and functionality. While using the wizards provides
an easy start for users who have just started to learn
Access, the wizards cannot be used to automatically
create more complex and more advanced forms and
reports. Such forms and reports must be manually
created, although the wizards can be used to create
a basic version, as a starting point. Users can also
design forms and reports from scratch.

1.2 Teaching RAD using Access

“Databases” is a first year subject at Queensland Uni-
versity of Technology (QUT). While the first part
of the subject covers SQL, the second part provides
the opportunity to use a commercial RDBMS for
Rapid Application Development (RAD) while apply-
ing knowledge learned about SQL. Because it is a
widely used RDBMS, students learn how to use Ac-
cess. Students have weekly practicals where they are
required to solve exercises related to that week’s topic.

For the Access part, students learn how to create
queries, forms and reports. First, they have to cre-
ate simple forms and reports using the wizards, then
they are required to improve the initial forms and re-
ports, adding more functionality and improving their
appearance.

1.3 Using PAT as an additional tool

PAT, an ITS for Access, aids students’ learning, com-
plementing the lectures and practicals. PAT is freely
available for QUT students. Students can use PAT
both during the practicals or at home, in their own
time and place.

It can be used to learn how to create forms and
reports in Access, using PAT’s built-in exercises. It
can also be used for assistance when working on as-
signments for the Databases subject.

1.4 Related work

Although of a limited number, other ITSs for learn-
ing about databases exist. These ITSs focus on
teaching database domains such as Structured Query
Language (SQL) and Database Design. SQL is a
database language program designed for data man-
agement and manipulation for relational database
management systems. Database Design is the pro-
cess of creating a model of the information that will
be held in the database. In this section we briefly
describe some of these ITSs.

DB-suite (Mitrovic et al. 2004, Mitrovic et al.
2008) consist of three web-based intelligent tutoring
systems in the area of databases:

• SQL-Tutor: teaches the SQL query language;

• NORMIT: a data normalization tutor; and

• KERMIT: teaches conceptual database mod-
elling using the ER model.

These tutors are constraint-based tutors (Mitrovic &
Ohlsson 1999,Mitrovic & Weerasinghe 2009, Ohllsson
1992). In the case of constraint-based tutors, the sys-
tem analyses the student’s solution, checking if any
constraints from the domain model are violated. The
constraints are both for correctness and completeness.
If a solution does not violate any constraints, then the
solution is considered correct and complete.

The DB-suite tutors are designed to be used as an
additional tool, to complement classroom teaching.

SQL Tutor (Mitrovic 1998, Mitrovic & team 2008)
is a constraint-based ITS for students learning SQL.
When using the tutor, the students have to complete
SQL statements satisfying the given requirements.

The system contains definitions of several
databases and a set of problems, together with their
ideal solutions. The domain model of SQL Tutor con-
tains more than 700 constraints.

Kermit (Suraweera & Mitrovic 2002, 2004) is an
ITS for teaching Database Design using the Entity-
Relationship (ER) data model. The students have
to create an ER diagram based on the requirements
given by the system. Kermit provides feedback to the
students by request only.

The students can ask for a hint or can ask for the
solution to be evaluated.

The feedback level is automatically increased each
time the student asks for help, up to the hint level.
Kermit contains over 200 constrains, both syntactic
and semantic constraints.

Normit (Mitrovic 2002) is an ITS for students
learning Database Normalisation. Normalisation is
part of the database design. Data normalization is
concerned with data optimisation, to minimise redun-
dancy. Because Database Normalisation is a procedu-
ral task, the students have to follow a strict sequence
of steps to solve the problem and the system does not
need to store a correct solution.

The domain model of NORMIT contains more
than 80 constraints (both syntactic and semantic) to
check the student’s solution.

The hints have only two levels: a general hint and
a more detailed hint. On the first time of violating
a constraint, the system presents the general hint.
When the rules are violated again, the more detailed
hint is presented.

Acharya (Bhagat et al. 2002) is an web-based ITS
for learning SQL. Acharya only analyses SQL for
database querying, not updating.

This ITS uses Java servlet technology on a web-
based front-end and PostgreSQL as a back-end.

Acharya contains a student module and a peda-
gogical module. The architecture has two separate
databases, one for the student model, and the other
one for the rest of the models - including the prob-
lems and their solutions. The student model contains
general information about the student, history of con-
cepts learned, with a confidence factor (the system’s
belief that the student acquired the concept), knowl-
edge level and number of hints received.

In contrast to SQL Tutor, Acharya uses a real
RDBMS to run the students’ solutions and the re-
sult of the query is returned back to the student -
if the query is correct. However, the students must
still use the tutor’s interface to write the parts of the
select statement.

Acharya stores in its student model general infor-
mation about the student and history of information
about the concepts learned (Bhagat et al. 2002). The
concepts learned are recorded with a certainty factor
which is a measure of Acharya’s belief that the stu-
dent has acquired the concept. In addition, Acharya
also records a knowledge level and the number of hints
asked by the student.

Acharya can propose problems to the student
based on pre-requisite relations. If the student’s solu-
tion is correct, the result of the SQL is displayed. If
the student’s solution has errors, the most basic ones
are addressed.

Showing the results of the query the students cre-
ated as returned by a real RDBMS is very beneficial
for the students as they can see exactly the result of
their work.

CRPIT Volume 123 - Computing Education 2012

132



SQL Lightweight Tutoring Module (SQL-LTM)
(Dollinger 2010) is a system that can provide seman-
tic feedback on SQL statements, pointing out their
logic flows, even if they are syntactically correct. It
can detect most conceptual errors that SQL learners
can make (Dollinger 2010).

SQL-LTM is integrated with a Web based AJAX
universal query tool called AJAX Enabled Query
(AEQ) (Dollinger et al. 2009).

SQL-LTM consists of two modules: a query parser
which converts the SQL query into an XML represen-
tation, and an analyser which compares the test query
provided by the student against the reference query
created by the instructor - also provided in an XML
representation.

One of the difficult issues in analysing SQL queries
is the possibility that the students can provide solu-
tions that even though are different than the optimal
solution, they can still be syntactically and semanti-
cally correct. The analyser recognises the semantic
equivalence of such queries and provides recommen-
dations on how to get to the expected solution.

Similar to Acharya, SQL-LTM uses a real RDBMS
to run the queries from the students’ solution. How-
ever, SQL-LTM does not have a student model nor
does it keep track of student’s history; hence the sys-
tem cannot individualise the feedback. For the same
error, different students receive the same advice.

2 Personal Access Tutor (PAT)

2.1 Architecture and components

An ITS architecture usually contains a simulation
module which is used to replicate the real environ-
ment that the student is learning about. The archi-
tecture of PAT is different from this because it uses
the real working environment (Access) instead of a
simulation module.

Figure 4 1 presents the architecture and main com-
ponents of PAT.

User

Instructional
Expert

U
se

r 
In

te
rf

ac
e

A
cc

es
s

In
te

rf
ac

e

R
ea

l W
or

ki
ng

E
nv

iro
nm

en
t

In
te

lli
ge

nt
 T

ut
or

in
g

S
ys

te
m

E
xe

rc
is

es
 M

od
el

Domain Model

Student Model

Access

Figure 4: PAT’s architecture

The Domain Model represents the knowledge about
the domain to be taught, knowledge that an expert
in the field should know. It is the foundation for the
entire knowledge base. Because PAT’s focus is on
helping students to learn how to create forms and re-
ports, all the objects (together with their properties)
that can be created in a form or a report are present
in the Domain Model.

1based on the general architecture of an ITS presented by Burns
& Parlett (1991)

The Student Model contains the system’s beliefs re-
garding the student’s knowledge of the domain (Holt
et al. 1994) and additional information about the stu-
dent, such as personal characteristics and learning
style (Beck et al. 1996). In PAT, the Student Model
includes information about student’s preferences for
learning from diagrams or text, their interests in the
subject and in several topics from the domain. Every
time PAT analyses the student’s solution, the Student
Model is updated with new information.

The Instructional Expert, based on knowledge
both about the domain and the student, diagnoses the
student’s attempted solution and provides individu-
alised feedback. As part of the Instructional Expert,
the Tutoring Model contains information about teach-
ing the domain such as tutoring goals and hints for
students. The Tutoring Model must be able to take
advantage of the information provided from the Stu-
dent Model (e.g. student’s learning style and personal
characteristics). The Instructional Expert in PAT
is based on principles from the Minimalist Frame-
work for designing instructional materials for com-
puter users (Carroll 1990); the GOMS model (Card
et al. 1983); and Andragogy, “the art and science of
helping adults learn” (Knowles 1980, p. 43) - a stu-
dent centred approach for adults.

Access / Access Interface: because PAT is im-
plemented as an add-in for Access, the student can
utilise PAT from within Access. After installation,
PAT appears as a new group in the Access’s ribbon.
In this way, the student can actually work on each
exercise, test their solution and receive feedback from
PAT without leaving Access’s main window.

Figure 5: PAT’s My Profile window

2.2 Services that PAT offers

VanLehn (2006) presents a global approach to ITSs
behaviour. Based on the concepts of Task (a multi-
minute activity that can be skipped or interchanged
with other tasks) and Step (multiple user interface
events that together can complete a task), an ITS is
presented as having 2 loops: the outer and the inner
loop. The outer loop is responsible for the task selec-
tion, similar to the “elaborative function” identified
by Self (1987). The inner loop consists of the steps
inside the task: assessment of knowledge (diagnostic

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

133



Figure 6: PAT’s This Exercise window

function), feedback and hints (corrective function),
etc.

PAT’s outer loop (task selection) gives the student
two choices: the student can select an exercise or can
ask PAT to suggest the next exercise (or the first ex-
ercise, if the student did not try any exercises yet).
The selection can be narrowed down by specifying the
difficulty of the exercises or whether the exercise was
previously attempted. The exercises are categorised
by topics (and subtopics) to be learned and contain
(beside the exercise description) the exercise difficulty
and what the user will achieve by completing the ex-
ercise. Figure 5 shows the MyProfile window, which
is the interface from where the user can choose which
exercise to do next.

PAT can propose an exercise based on the infor-
mation from the student model and considering the
following principles:

• The exercises should contain topics not mastered
yet by the student.

• The topics not known yet should help to com-
plete broader teaching concepts.

PAT’s inner loop relates to the steps within a task
and can be grouped in two main categories of ser-
vices offered to the user: step generation and step
analysis. While the step generator is about what the
user should do next, the step analyser is responsible
for other actions such as answering the question “Is it
correct?”, and other types of feedback. In PAT, the
user can access these services from the ThisExercise
window (left hand side of Figure 6).

• Is my solution correct?

• What is wrong with my solution?

• How do I fix this?

Is my solution correct? gives the user an overall pre-
sentation of what is correct and what is incorrect with
their solution. PAT displays the “Traffic Lights” im-
age (Figure 7) where there is a row for each important
task in the exercise. A green light means the task
is correctly done, while a red light means the task
is completely wrong or missing. Because a task can
consist of a series of steps, a yellow light means that
only some steps are correct, not all of them.

What is wrong with my solution? gives minimal feed-
back - it only describes what the error is. How do
I fix this? gives the user feedback about the actions
that should be done to correct an error. This type
of feedback is not enabled the first time the user asks
for help. Generally, the user has to first choose What
is wrong with my solution?, and only after that can
they ask for help on how to fix the error. In the case
where PAT detects that the user will not benefit from
receiving a general (vague) hint, a more specific hint
will be provided. That could be about how to fix the
error, rather than what is wrong.

The feedback for the last two services above is
grouped on several levels of specificity, starting from a
general hint and leading to more specific hints. How-
ever, not even the most specific feedback gives away
the correct solution because PAT can be used even
for assignments.

In addition to the services described above, PAT
can display a diagram depicting the context of the er-
ror (Figure 8). PAT can also give users references to
readings related to the topic where the error occurred.
The additional readings are from lecture notes, rec-
ommended books or lecture slides.

                                            

                                                   

                                                   

                                                   

Control Control

Form

Subform control

A Suborm control holds ...
another form!

Control

Form

Control Control

A form can hold many
(different) controls

One of the controls a form can
hold is the Subform control

Add a Subform object to a Form

Figure 8: Example of a diagram that PAT dis-
plays

CRPIT Volume 123 - Computing Education 2012

134



Figure 7: PAT’s This Exercise window

3 How PAT is used

PAT is freely available to QUT students enrolled in
the Database subject and can be downloaded from the
learning content management used at QUT. PAT can
be installed on home computers or laptops, as well in
computer labs. However, to take maximum advantage
of the Student Model, installing PAT on students’
laptops or home computers is recommended.

There are two ways in which PAT can be used:

• go through enough exercises to cover (and mas-
ter) the entire curriculum; and

• use the system mainly to work through the as-
signments.

The first option is more suitable for students who do
not have any previous knowledge working with Access
or other RDBMS. The second option is preferred by
students with some previous knowledge with Access
or students with less interest in the subject. The two
options of using PAT are presented next.

3.1 Best way to work with PAT

The best way to work with PAT is to take full advan-
tage of the Student Model that PAT will update dur-
ing the student-system interaction. This implies both
following the exercises that PAT will propose and also
keeping the Student Model. While the first only needs
the student to ask PAT for the next exercise instead
of manually select one, the second requires the stu-
dent to consistently use the same installation of PAT
- same computer. In this way, every exercise that the
student will attempt will be recorded in the Student
Model.

As the student works on the exercise that PAT
proposes, (s)he can check if their solution is correct.
By displaying the traffic lights, the student has a good
indication of what (if anything) is wrong with their
solution. If the error is not obvious, the student can
ask PAT what is wrong.

Before asking for more help, the student should
first check the helping diagrams and more readings
section, trying to discover by themself what to do
next. Only if the student is still stuck after more
readings, should they ask PAT for hints on how to fix
the problem.

3.2 Using PAT for assignments

PAT is released to the students at the same time as
the assignments. Because there are three Access as-
signments, there are three releases of PAT, which in-
clude (in addition to the existing exercises) the re-
quirements and solutions for the assignments. The
solutions are kept hidden from student view, via en-
cryption and other security mechanisms.

Students’ previous experience with Access or other
RDBMSs can vary significantly. We understand that
some students have already used Access. Therefore
assuming that they will go through the entire process
described in the previous section would be wrong. In
these circumstances, we allow the students a different
approach. They can try to use only the Is my solution
correct feature, and keep working without spending
time on more readings - assuming that they have the
required knowledge.

4 Initial evaluation of PAT

Evaluations were conducted with students who used
PAT. A survey was used to provide both qualitative
and quantitative data.

Students enrolled in this subject have diverse back-
grounds and their previous experience with Access (if
any) varies significantly. For an accurate interpre-
tation of students’ answers, we distinguish between
students who have used Access before and those who
haven’t. Another important aspect that has to be
considered is how much they used PAT during the
semester. If some students only seldomly used PAT
they will not be in the same category as students who
used PAT extensively.

4.1 Objectives and Methodology

Iqbal et al. (1999) suggested that the evaluation
method for an ITS should be chosen by what is be-
ing evaluated (the entire system or only a part of
the system) and the number of available students.
We wanted to analyse PAT as a system and we had
185 students enrolled in the Databases subject in sec-
ond semester 2008. We used questionnaires as an
exploratory research method. During one of the lec-
tures, the students present in the lecture theatre were
asked to fill in a two pages questionnaire. Of 185 stu-
dents enrolled in the subject, 84 responded to the

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

135



questionnaire. However, only 51 of the students an-
swered all questions.

The objectives for the evaluation were:

1. Get students’ backgrounds.

2. Does PAT’s architecture (receiving help when
solving real problems) make learning easier?

3. Is the feedback provided helpful for students? Is
PAT offering enough types of help?

4. Is PAT accepted by students?

4.2 Conclusions for Summative Evaluation

This section describes the summative evaluation of
PAT. We present the results from the evaluation with
students, then the results from the evaluation with
teaching staff. The results from both students and
teaching staff are summarised below, grouped by the
evaluation’s objective. Because objective 4 measures
the overall rating of PAT, it is presented first.

Objective 4 - Is PAT accepted by students and
teaching staff?

As shown in Figure 9, we can see that both stu-
dents and staff found PAT helpful. Furthermore, from
questions 9 and 10 for students and question 6 for staff
we see:

• the majority of students and staff members think
that PAT is easy to use; and

• students would like to have software similar to
PAT in other subjects.

StronglyDislike Dislike Undecided Like it Like it VeryMuchStaff 0 0 2 1 4Students 0 3 12 18 1702468101214161820
Number of staf
f/students

Overall, did you find PAT helpful?

Figure 9: Students and teaching staff answers
for questions 11 and 7.

Objective 1 - Students and staff members’ background
Two thirds of the students enrolled in the subject

have used Access before, with more than 50% of them
being Somewhat Confident in using it. Interestingly,
the answers to the questions between the two groups
(students that used Access before and students that
didn’t use Access before) are similar in the majority
of the questions.

The question where the results are different are:

• Q7 - Which type of feedback did you like least?

• Q11 - Overall, did you find PAT helpful?

Students who used Access before were not really inter-
ested in additional materials such as Diagrams, More
Readings and not even in How to Fix while students
who haven’t use Access before did not likeMore Read-
ings and What is Wrong but were happy with Dia-
grams and How to Fix.

Although one might expect that PAT would be
more useful for beginners (students who had not used
Access before), the results show that 56% of them
answered that they like or like very much PAT and
38% answered that they are undecided. In contrast,
76% of the students that used Access before answered
that they like or like very much PAT with only 18%
undecided.

Objective 2 - Does the approach of having PAT
embedded in Access make learning easier?

Both students and teaching staff considered that
using PAT directly from Access, while using the real
software (no simulation) to work on real problems,
is very useful. Students’ answers for question 10 can
also be seen as a confirmation - the students would
like to have software similar to PAT in other subjects.

Objective 3 - Is the feedback provided helpful for
students? Does PAT offer enough types of help?

Questions 6 and 7 show students’ preferences for
the types of feedback provided. The Traffic Lights
(error indication) are by far the most liked type of
feedback see Figure 10. While the students who used
Access before were looking more for a simple way of
indicating what is wrong, the students who didn’t use
Access before were looking not only for an indication
of “what is wrong” but also for an indication on the
overall performance and progress.

Trafficlights What iswrong How to fix Diagrams MorereadingsLike most 34 12 5 0 0Like least 0 7 10 14 120510152025303540
Number of stu
dents

Questions 6 and 7: Which type of feedback from 
PAT did you like most/least

Figure 10: Type of feedback that students like
most/least.

The least preferred types of feedback are More
Readings and Diagrams: More Readings for the stu-
dents who hadn’t used Access before, while Diagrams
for the students who had used Access before. Some
teaching staff and students did not indicate any type
of feedback as disliked (Question 7 for students and
Question 4 for staff): “N/A - no particular dislike” or
simply “none”. The only suggestion for improvements
from staff members (Question 3) was to not only have
general diagrams describing the overall concept but
also screen-shots from Access on how to solve some
of the possible issues.

Some students were unhappy with the content of
the feedback received. One possible explanation is the
fact that PAT only gives hints, not the solution (cor-
rect answer) for assignments. However, future work
could look at ways to improve the feedback.

5 Pre-Post test evaluation

In addition to the evaluation described in the pre-
vious section, we gathered measurements of the stu-
dents’ knowledge before and after using PAT. During
the interaction between the student and PAT, PAT
records every click on any of its interfaces, together
with additional information about students solution

CRPIT Volume 123 - Computing Education 2012

136



at that time such as: the current error, the advice
given, etc. The information is recorded in another
Access database containing the student model. When
submitting the assignment, the students were asked
to also submit this database containing their student
model.

Because PAT helps with the assignments, we could
not ask any of the students not to use PAT just to
have a control group. For this reason, we evaluated
PAT using the approach described by Woolf (2008,
p. 191) as “C1. Tutor alone”. This evaluation was
conducted during the second semester of 2010, with
a different set of students.

5.1 Information sources

To analyse the improvement engendered in students’
learning while using PAT we have two available
sources of information: data gathered by PAT dur-
ing student-system interactions and the students’ so-
lutions to the assignments.

During each interaction between the student and
the system, PAT will record not just the current ses-
sion, the error that was addressed, the advice type,
advice code, etc. (as part of the student model) but
also the name of the dialog box and the button - any
time the student clicks on one of those. The data
is recorded in the database containing the student
model. The information in this database allows us
to see which topics were not initially understood (not
known) by students while they were using PAT - ei-
ther practicing on the helping exercises or working on
the assignments.

Additionally, the students’ solutions to the assign-
ment provides us with information not just about the
topics not understood by the students (not known),
but also the topics shown as understood (known) by
the students.

The first source of information (student-system in-
teraction) was used to provide pre-test data, while the
information from the second source (the assignments)
was used to provide post-test data.

5.2 The student population

Of the 235 students enrolled in the Databases subject
in the second semester 2010, 199 students submitted
all the assignments and student models. Because us-
ing PAT was optional, the information received from
some of these 199 students was insufficient for an ac-
curate evaluation of the data for those students.

Possible criteria for selecting the relevant students
(students that used PAT enough to provide useful
data) are:

• number of interactions (clicks on PAT’s inter-
faces) - a maximum of 1598 and a mean of 182.5;

• number of advice messages received - a maximum
of 394 and a mean of 30; and

• number of sessions started - a maximum 151 and
a mean of 11.

The first criterion above is a good measure of how
much a student used PAT, in order to distinguish be-
tween significant and insignificant data. This crite-
rion was used to determine the best set of data - that
for the first 100 students, in descending order of their
numbers of interactions.

5.3 The topics considered

From the 38 topics (object-properties) existing in the
exercises used during both the pre and post tests,
we selected the 10 most relevant ones based on the
following criteria:

• the topic should require the student to set a cor-
rect value (i.e. not topics that can be easily gen-
erated by the wizards or using default values);
and

• the topic should be important from a teaching
perspective (i.e. some object-properties are more
important than others).

5.4 Results of the pre-post evaluation

In Section 5.1, we explained that the data being used
for pre-test purposes provides information about top-
ics not known initially. Where students did not need
help, we take it for granted that they already knew
the topic. The post test data provides information
about topics known and unknown.

From this data, we obtained the average number of
topics known on the pre-test versus average number
of topics known on the post-test. These values are
shown in Figure 11.

Figure 11: Topics known at pre and post tests.

On average, the number of topics known increased
from 5.4 to 9.9, after using PAT, i.e. the average
number of topics learned is 4.5. The mode is 4 topics
learned, with a standard deviation of 1.87.
Woolf (2008, p. 191) lists for a “tutor alone” evalua-
tion the questions that should be addressed:

• Do learners with high or low prior knowledge
benefit more?

• Do help messages lead to a better performance?

To address the first question, we analysed the pre-post
results for students with prior knowledge of Access
versus students with no prior knowledge of Access.
When a student starts using PAT for the first time,
it asks the student if they are confident with using
Access. The answer is recorded in the student model.

Based on this information, 55 students (out of 100
students analysed) had prior knowledge of Access -
i.e. they answered “yes” to the question if they are
confident with using Access. The results of the pre-
post test for the two categories of students are shown
in Figure 12
It can be seen from the graph that the students with
no prior knowledge had a slight increase in the num-
ber of topics learned in comparison with students with
prior knowledge of access. Students with no prior
knowledge had an average of almost 6 topics learned
compared with 5 topics learned by students with prior
knowledge of access.

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

137



PreTest PostTestConfident using Access 5.7 9.9New to Access 5.1 1002
46
810

Nu
mb

er
 of

 To
pic

s

Pre-Post Test
Students with no prior knowledge of Access versus 

students with prior knowledge of Access

Figure 12: Students confident using Access vs
students new to Access.

Regarding the second question that Woolf (2008)
recommends that should be addressed, as we stated at
the beginning of this section, we could not ask some
of the students not to use PAT or to use a version
of PAT without feedback messages or with different
feedback messages. However, in Section 5.1, we have
shown the students’ opinion about messages received.

The distribution of number of students by the
number of topics learned, is depicted in Figure 13.

Figure 13: Distribution of students by topics
learned.

The graph shows how many students learned 1 topic,
2 topics, and so on up to 9 topics - the maximum num-
ber of topics learned out of the 10 topics analysed. It
can be clearly seen that the majority of them (about
70%) learned between 3 and 6 topics.

6 Conclusions and further work

The results of the evaluation showed PAT’s usefulness
for students’ learning, as well as PAT’s acceptance by
both students and staff members.

These results also showed differences between stu-
dents who had used Access before starting the sub-
ject, and those who had not. The differences were in
the way the students used PAT and in the type of
feedback they prefer. In addition, from the results of
the evaluation it can be seen that the students would
like to have ITSs similar to PAT for other subjects.

In addition, to show the improvement that PAT
engenders in student learning, we used the data that
PAT gathers as a pre-post test. The results from the
test show that the students who used PAT had an
average number of topics learned of 4.5 (out of the 10
most important topics analyzed), with a mode of 4
topics learned and a standard deviation of 1.87.

Because of PAT’s modular structure, further en-
hancements can be made. The enhancements to PAT
from which the students could benefit are:

• analyze (and provide help on) not just the cor-
rectness of the solution but also the readability
and usability of the form or report;

• an open student model; and

• reports and statistics for teaching staff about stu-
dents’ learning performances.

Each of these is elaborated below.
A). When analysing the student’s form or report, PAT
analyses its correctness from a functional point of
view. I.e. is the form or report producing the cor-
rect data? From a human user perspective though,
the readability and usability of the form or report
could also be analyzed.

From a readability point of view, the objects in the
form should have the same size, should be aligned,
and should be grouped by their meaning or function.
From an usability perspective, the fields should be
displayed in the most meaningful order i.e. in the
same order in which the data will be entered - first
name, last name and address; not last name, address,
and only then the first name.

This approach would involve PAT analysing other
aspects such as the relative position and size of each
of the objects in the form or report.
B). An open student model would allow the students
to check their profiles. This would help the students’
learning by facilitating metacognitive processes and
providing them with an opportunity to reflect on their
progress.
C). A benefit to the teaching staff would be to gen-
erate reports and statistics about students’ learning
performances. Aggregated data collected by PAT
could help the teaching staff identify topics that are
hard to learn, suggesting areas for future improve-
ments.

References

Adamski, J. J. & Finnegan, K. T. (2008), New Per-
spective Microsoft Office Access 2007 - Comprehen-
sive, Thomson Course Technology.

Beck, J., Stern, M. & Haugsjaa, E. (1996),
‘Applications of ai in education’, Web
Page; http://www1.acm.org/crossroads/xrds3-
1/aied.html. last visited 05 Oct 2011.

Bhagat, S., Bhagat, L., Kavalan, J. & Sasikumar, M.
(2002), Acharya: An intelligent tutoring environ-
ment for learning sql, in ‘Proceedings of Vidyakash
2002 International Conference on Online learning’.

Burns, H. L. & Parlett, J. W. (1991), The evolution of
intelligent tutoring systems: Dimensions of design,
in H. L. Burns, J. W. Parlett & C. L. Redfield, eds,
‘Intelligent tutoring systems : evolutions in design’,
Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 1–
12.

Card, S. K., Moran, T. P. & Newell, A. (1983), The
psychology of human-computer interaction, L. Erl-
baum Associates, Hillsdale, N.J.

Carroll, J. M. (1990), The Nurnberg funnel : design-
ing minimalist instruction for practical computer
skill, MIT Press,, Cambridge, Mass.

Dollinger, R. (2010), Sql lightweight tutoring module
- semantic analysis of sql queries based on xml rep-
resentation and linq, in ‘Proceedings of World Con-
ference on Educational Multimedia, Hypermedia
and Telecommunications 2010’, AACE, Toronto,
Canada, pp. 3323–3328.

CRPIT Volume 123 - Computing Education 2012

138



Dollinger, R., Ford, R., Helf, B. & Reimer, K. (2009),
‘Ajax enabled query tool the capstone experience’,
Information Systems Education Journal 7(49).
URL: http://isedj.org/7/49/

Holt, P., Dubs, S., Jones, M. & Greer, J. (1994), The
state of student modeling, in J. E. Greer & G. Mc-
Calla, eds, ‘Student modelling : the key to individ-
ualized knowledge-based instruction’, Vol. 125 of
NATO ASI Series F: Computer and Systems Sci-
emces, Springer-Verlag, pp. 3–35.

Iqbal, A., Oppermann, R., Patel, A. & Kin-
shuk (1999), A classification of evaluation meth-
ods for intelligent tutoring systems, in ‘Software-
Ergonomie 99, Design von Informationswelten,
Gemeinsame Fachtagung des German Chapter of
the ACM, der Gesellschaft fur Informatik (GI) und
der SAP AG’, Teubner, pp. 169–181.

Knowles, M. S. (1980), The modern practice of adult
education : from pedagogy to andragogy, Cambridge
Adult Education, New York.

Mitrovic, A. (1998), Learning sql with a computerized
tutor, in ‘Proceedings of the twenty-ninth SIGCSE
technical symposium on Computer Science Educa-
tion’, ACM Press, Atlanta, Georgia, United States,
pp. 307–311.

Mitrovic, A. (2002), Normit, a web-enabled tutor for
database normalization, in ‘Proceedings of the In-
ternational Conference on Computers in Education
ICCE’, Vol. 2, Auckland, New Zealand, pp. 1276–
1280.

Mitrovic, A., Suraweera, P. & Martin, B. (2004), ‘Db-
suite: Experiences with three intelligent, web-based
database tutors’, Journal of Interactive Learning
Research 15, 409–432.

Mitrovic, A. & team, T. I. (2008), Constraintbased
tutors, in B. P. Woolf, E. Aimeur, R. Nkambou &
S. Lajoie, eds, ‘9th International Conference on In-
telligent Tutoring Systems’, number (LNCS) 5091
in ‘Lecture Notes in Computer Science’, Springer-
Verlag, Montreal, Canada, pp. 29–32.

Self, J. (1987), Student models: what use are they?,
in P. Ercoli & R. Lewis, eds, ‘Artificial Intelligence
Tools in Education’, Frasacati, pp. 73–86.

Suraweera, P. & Mitrovic, A. (2002), Kermit: A
constraint-based tutor for database modeling, in
S. A. Cerri, G. Gouarderes & F. Paraguacu, eds,
‘Intelligent Tutoring Systems’, Vol. 2363 of Lec-
ture Notes in Computer Science, Springer-Verlag,
pp. 377–387.

Suraweera, P. & Mitrovic, A. (2004), ‘An intelligent
tutoring system for entity relationship modelling’,
International Journal of Artificial Intelligence in
Education 14, 375–417.

VanLehn, K. (2006), ‘The behavior of tutoring sys-
tems’, International Journal of Artificial Intelli-
gence in Education 16, 227–265.

Woolf, B. P. (2008), Building Intelligent Interactive
Tutors: Student-centered Strategies for Revolution-
izing E-learning, Morgan Kaufmann.

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

139



CRPIT Volume 123 - Computing Education 2012

140



Using Quicksand to Improve Debugging Practice in Post-Novice
Level Students

Joel Fenwick Peter Sutton

The University of Queensland, The University of Queensland,
Earth Systems Science School of ITEE
Computational Centre,

joelfenwick@uq.edu.au p.sutton@itee.uq.edu.au

Abstract

The ability to debug existing code is an important
skill to develop in student programmers. However,
debugging may not receive the same amount of ex-
plicit teaching attention as other material and the
main expression of debugging competence is students’
ability to undo problems which they themselves have
injected into their assignments. Further, as the liter-
ature points out, debugging skills do not necessarily
develop at the same rate as code writing skills.

This paper discusses an intervention in a second
year course designed to improve students’ applica-
tion of simple debugging techniques. We use a puzzle
based approach where students are graded based on
the number of attempts they take to locate misbehav-
ing code in a program which they did not write but
whose function they understand. An existing assign-
ment component addresses another aspect of debug-
ging practice.

1 Introduction

The context for this work is a second year course in
systems programming (networks and operating sys-
tems). Because of its place in the degree program,
it also does triple duty as a means to force students
to improve their programming skills and to learn the
language used in the course (C). All students enrolling
in the course have some exposure to C but much of
their basic training has been in Python or Java.

This setting is a little different from the typical set-
ting in the literature (McCauley et al. 2008, Fitzger-
ald et al. 2008), in that we are not (or should not
be) dealing with absolute novices any more. These
are students who have some level of programming
skill even if they do not have much initial famil-
iarity with C. However, “debugging is a skill which
does not immediately follow from the ability to write
code.” (Kessler & Anderson 1986)[p208]. Follow-
ing on from an earlier working group, an ITiCSE
2004 group (Lister et al. 2004) considered whether
deficiencies in programming ability after initial pro-
gramming courses were due to lack of problem solv-
ing skill or were in fact due to a fragile knowledge of
programming and code reading ability. However, “re-
ports on interventions designed to improve students’
debugging skills have not been common in recent lit-
erature.” (McCauley et al. 2008)[p83]

Copyright c©2012, Australian Computer Society, Inc. This
paper appeared at the 14th Australasian Computing Educa-
tion Conference (ACE 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 123, Michael de Raadt and
Angela Carbone, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

The course has four assignments. The first, third
and fourth assignments are traditional programming
assignments where the students must write whole pro-
grams (possibly making use of a provided solution for
the previous assignment). The focus of the second
assignment is debugging. In 2011, it consisted of two
components: the binary bomb and quicksand (both
explained below). Both parts were conducted elec-
tronically and only required a network connection to
a school server.

The binary bomb is a modified version of an as-
signment run at Carnegie Mellon University (Bryant
& O’Hallaron 2001). This component tests students’
ability to use a debugger. Students are given a pre-
compiled program with some of the debug symbols
removed as well as a small part of the source code.
They must use the debugger to examine the work-
ings of the program to determine the passwords to
“defuse” the bomb. We have used the binary bomb
for a number of years and it seems popular with the
students with the puzzle solving aspect mentioned in
particular.

However, debuggers are only as useful as the ques-
tions they are asked and some students start to view
the debugger as the first port of call in solving any
problem even when they do not know what they are
looking for. Further, some students would reach the
end of the course and still start their requests for help
with “My program doesn’t work.” That is, they did
not seem to be able to locate or describe the prob-
lem more precisely. There is also a school of thought
[typified by Linus Torvalds’ refusal to incorporate ker-
nel debuggers into the Linux Kernel (Torvalds 2000)],
that over reliance on a debugger produces sloppy pro-
grammers. James et al. note that “the more tools
offered, the less students think for themselves. They
try to get the tool to do the thinking. . . ”. (James
et al. 2008)[p28]

Addressing these and other problems is the pur-
pose of the quicksand component, and the focus of
this paper. However, since this is not an introductory
course, some of the students do already have good de-
bugging technique and care must be taken not to bore
these students while trying to lift the others.

1.1 Debugging Challenges in C

Debugging programs written in C presents some chal-
lenges. These are by no means unique to C but when
they happen in C (and similar languages) they tend
to be more spectacular and less help is available. Pos-
sible problems include:

1. Compilers (more specifically optimisers) can
change things and sometimes they get it wrong.

2. Functions can have bugs or undocumented be-
haviour.

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

141



3. A badly written statement can create problems
which only appear much later in seemingly unre-
lated places (e.g. heap corruption).

4. The lack of structured error handling.

5. Corruption from non-thread safe actions.1

Regarding the first point, (some) students seemed
to believe quite strongly that the compiler was trans-
parent. The idea that what was executing could be
different to what they saw when they looked at the
source was problematic. One of the authors’ first ex-
periences with this as a student was realising that an
optimiser had decided to run a loop in reverse.

This is not to say that trusting the compiler or doc-
umentation is a bad starting heuristic, but it seemed
to be a weakness in the students’ understanding that
translation failure was unthinkable. It may be that
even just allowing for that possibility might enable
students to perform the necessary testing to discover
the real problem.

2 Quicksand

The quicksand component (created by us) is intended
to develop and test a complementary set of skills to
that of the binary bomb. Instead of using the de-
bugger to step through and examine variables, the
students can make small modifications to a piece of
source code (typically printing the values of vari-
ables), then request that the code be recompiled and
run against a set of tests. The students can use out-
put from this run to locate bugs in the program.

The students were told quite explicitly that they
were looking for the original cause of the bug not just
the location where symptoms became apparent. For
example an uninitialised variable might not cause any
obvious effect until much later.

As in the work by Fitzgerald et al. (Fitzgerald
et al. 2008), we only require students to identify the
line on which problems occur and not to actually fix
the problem. Firstly, as they note (citing Kessler
and Anderson), “the skills required to understand the
system are not necessarily connected to the skills re-
quired to locate the error.”[p95] Secondly, it may not
be possible to theorise about the cause of a prob-
lem until its location has been constrained. Much
time has been wasted looking for a problem in the
wrong place because programmers jump to conclu-
sions. Finally, since the students are supplied with
code to debug rather than writing it themselves, we
need to address the issues of understanding and con-
text (Fitzgerald et al. 2008). To this end, the supplied
code is a (suitably buggy) sample solution to Assign-
ment 1. This means that the students will be familiar
with the purpose of the program and what it should
be doing. It is also sufficiently large that the entire
program cannot be held in mind at one time and some
investigation is required to locate bugs precisely.

Lines which may contain bugs have a “tag” at
the end in the form of a right-justified comment (e.g.
/* QS:f8y5d */). We use tags rather than line num-
bers because line numbers will vary when students
add new lines to the source. Also tags are harder to
mistype. Lines which are not possible bug locations
do not receive a tag but are marked /* QS: */. This
makes it easy to distinguish lines which are in the sup-
plied source as opposed to lines added by students.

When editing the source, students may insert ad-
ditional lines but may not modify any existing lines.

1This is another thing which can cause seemingly inexplicable
behaviour — we do not address thread safety issues in this exercise.

This is to discourage students from trying to reimple-
ment sections they are suspicious of. In practice such
an approach would only work in a limited number of
instances.

We also limit the number of extra lines which the
students can have in the source at any one time. This
is to discourage the creation of massive quantities of
debug information which is then impossible to follow.
Instead, we want students to focus their attention and
refine their theories as to the location of the problem.
If they exceed this limit, they must remove some lines
or get a clean copy of the source before they will be
able to recompile.

2.1 The quicksand tool

The quicksand tool itself has four commands:

• get — puts a “clean” copy of the source to be
debugged in the current directory.

• test — processes and compiles the student’s
modified source and runs the set of tests. The
outputs from the tests are placed in the student’s
directory. At no time does the student have ac-
cess to the compiled binary itself.

• guess tag — Records the student’s “guess” that
the tagged line contains a bug. It will tell the
student if their guess is correct.

• status — Reports how many attempts the stu-
dent required to locate each bug as well as their
current and maximum possible marks.

To encourage students to use online documenta-
tion, the assignment specification and tool instruc-
tions were only available as a man page.

2.2 Marking

The marks gained for correctly determining the loca-
tion of a bug were

T

B
· 0.9g−1

where T is the total marks for this part, B is the
number of bugs in the system and g is the number
of guesses since the previous correct guess. This fol-
lows a similar “exponential decay” scheme used in
the bomb and ensures that more wrong answers will
decrease the mark but eventually answering correctly
still gives more marks than giving up. Since the num-
ber of tags in the program is limited though, we did
impose a limit of 40 on the total number of guesses for
all bugs. Only eleven of approximately 140 students
used all 40 guesses.

Note that editing and testing are free actions, the
students can do as much testing as they wish without
it influencing their marks.

2.3 Bugs

All students were given the same piece of code as a
starting point but different combinations of bugs were
introduced for each student. The bugs were chosen so
that any one of the bugs would cause at least one of
the tests to fail. That is, the students could use test
failures as the starting point to trace the bug.

Bugs introduced by quicksand fall into two broad
categories:

CRPIT Volume 123 - Computing Education 2012

142



• Visible in source — the source given to the stu-
dent has a logic error in it. The student could
find it by inspection. Examples include:

– Uninitialised or incorrectly initialised vari-
ables.

– incorrect loop limits or steps

– inverted if conditionals

– invalid memory access.

• Hidden — These can not be found by inspec-
tion since they do not appear in the source which
the students are given. When the student runs
quicksand’s test command, their source is trans-
formed. Some lines are replaced or modified be-
fore the program is finally compiled. For exam-
ple:

– Statements can be skipped (removed from
the source).

– Assignments and initialisations changed to
assign different values.

– Loops can finish early or skip iterations
(modified limits or step)

– Variables can be modified unexpectedly.

It is important to understand that while the pre-
cise details and causes of these “hidden bugs” are ar-
tificial, the symptoms are not unreal. Although some
types (e.g. statements being skipped) are thankfully
rare2 “in the wild”.

The “hidden” bugs are representative of instances
where either the mental model of the programmer
(expressed in code) does not match what is actually
there; or where the documentation is incorrect or (in
rare cases) where the compiler or standard libraries
have bugs.

The possibility of bugs in code not written by the
students represents a point of difference between be-
ginner and later programmers. Courses for beginners
will focus on a relatively small, well tested and well
understood subset of the standard libraries for their
language. Later on however, programmers need to be
able to make a distinction between source and run-
ning code; between what documentation or their un-
derstanding suggests and what is actually there.

Some work (Lee & Wu 1999, Ahmadzadeh et al.
2007) used debugging exercises as a means to im-
prove general programming skill. There is nothing
wrong with this approach and training programmers
to write less bugs is a good goal. However, debug-
ging is not solely a means to rectify one’s own coding
faults, which could be avoided by writing more care-
fully. Even a perfect programmer needs to be able to
debug. Debugging is also an independent skill which
may be required whenever code is brought together
or when some part of the environment changes.

So how do the students find bugs that they can’t
see? Actually, whether the bugs are immediately vis-
ible is not immediately relevant to finding them. At
this stage in their development, students are writ-
ing programs which are too large to be completely
comprehended at one time. Eisenstadt’s “war sto-
ries” article (Eisenstadt 1997) contains a number of
memorable terms for difficulties in finding bugs: the
“Cause/Effect Chasm” where the cause and effect
were too far apart to be easily found; and WYSIPIG
— “what you see is probably illusory guv’nor” where

2One of the authors has encountered such errors a number of
times including, in an unrelated piece of code while developing
quicksand.

the programmer misreads or misunderstands what
they are looking at. In a large system without knowl-
edge of the (general) location of the problem, finding
problems by inspection is not feasible. So initially,
visibility is not critical. Instead, all the bugs intro-
duced by quicksand can be located using two gener-
ally applicable techniques.

• Strategically placed output statements to trace
execution flow. Once the symptom has been
identified (e.g. a crash or incorrect output).

• “binary search” — output the values of critical
expressions at and before the symptom location,
choose a point between them and repeat until the
cause of the symptom is found.

These are pretty rudimentary methods but they are
useful and (some) students do not seem to be apply-
ing them. But why not use more advanced tools for
this exercise? After all Lieberman wrote that “It is
a sad commentry on the state of the art that many
programmers identify ‘inserting print statements’ as
their debugging technique of choice.” (Lieberman
1997)[p27] Firstly, we want to encourage students
to use hypothesis testing rather than trial and er-
ror (Ahmadzadeh et al. 2007). This constrained en-
vironment prevents them from relying on other tools
too much. Secondly, James et al. (James et al. 2008)
suggest that more advanced tools may actually hin-
der students from learning good technique. Thirdly,
there are a number of common environments (such as
web programming) where more advanced tools may
not be available but simple techniques work every-
where (James et al. 2008).

In part, this is an application (although not a rig-
orous one) of the malicious adversary concept from
theoretical computer science. That is, if you can find
bugs using these techniques when you are being de-
liberately sabotaged, then they will be useful under
normal conditions as well.

3 Security and Integrity

This exercise combines two factors which make the
security of the system a concern. Firstly, quicksand
needs sufficient privileges to access the database and
record attempts. Secondly, students will be able to
inject “arbitrary” code into the test program.

With this in mind we tried to impose limits to
make the code they could inject less arbitrary. Lines
added by students could not contain #3, any of a
number of system functions nor any raw assembly or
system calls.

Privilege issues were dealt with by dropping to
student privileges whenever interacting with student
code and by preventing students from attaching a de-
bugger to any of the programs involved. Further tech-
nical details are beyond the scope of this paper.

There are other issues related to the integrity of
the system that don’t relate to security. It is not
enough that the students work out the answers, we
want them to use the correct technique in doing so.
An example of an incorrect technique is removing
“suspicious” lines and by means of comments, loop
bodies which never execute and so on. Our intent is
that the students insert small “probes” to determine
what is going on, not switch out chunks of code. For
this reason the real source (as opposed to the version
the students edit) contains extra calls to check that
statements are not being executed out of order. Fur-
ther, some bugs add additional calls to enact their

3or any of its equivalents

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

143



bad behaviour. If the student inserts an incomplete
line immediately before such a call, then the com-
piler may “helpfully” tell the student that the next
line contains garbleData(). To avoid this, only the
line number of compile errors are reported back to
students.

While a number of students noticed the forbid-
den words and symbols list, only one student (that
we know of) accidentally ran into the anti-reordering
checks.

A non-technical aspect of assessment integrity is
the possibility of collusion. What if the students dis-
cuss their bugs? Does this disadvantage students who
start work early? While sharing answers is possible4,
it presents a number of difficulties for students. First,
students would need to know that they had been as-
signed the same bug. Even if they establish that they
have some bugs in common, this does not allow them
to infer that any of their other bugs are the same. Es-
tablishing with certainty that you share a bug with
someone else (without using an attempt) requires the
same skills as finding the bug “the proper way.” Now,
other types of collusion are possible, such as one stu-
dent doing much of the work for another student but
this risk is (we believe) no higher than a traditional
assignment.

Secondly, sharing answers with students who have
not put the work in acts against the students’ self-
interest. Suppose Student A took 3 attempts to iden-
tify the location of a bug, and they establish that
Student B also has this bug (not withstanding the
difficulties in doing so). Now suppose that Student A
gives the answer to Student B who has made less than
3 attempts, Student A has given Student B an advan-
tage, B will now get more marks for that bug than
A.

Thirdly, students who start work early are perhaps
less likely to cheat.

4 Results and Reflection

The biggest teaching challenge here is to get the stu-
dents to not blindly trust their intuition but rather
to test the safety of their ground before relying on
it too heavily5. At the same time, we need to show
them that reason and logic still apply in debugging
situations.

Fitzgerald et al. describe students in their study
as having a “stubborn desire to understand and debug
code through reading alone.” (Fitzgerald et al. 2008)
This was borne out in this work where students took
the source, worked on it and tested it entirely outside
of quicksand. This created confusion when the code
ran differently under the normal compiler as opposed
to the malicious quicksand. In future this would need
to be prevented. The easiest approach would be to
ensure that the students are not given the source for
all routines and hence would not be able to compile
independently.

We have a number of sources of information to use
in evaluating quicksand.

1. Anonymous surveys taken immediately after the
assignment.

2. Logs of the types of questions asked in tutorials.

3. Questions asked on the course online discussion
group.

4. Teacher impressions.

4We have no evidence that this occurred.
5Hence “quicksand”.

We also have university end-of-course surveys but
the responses did not reveal anything about this as-
signment.

Since the survey was voluntary and students were
not required to attend tutorials or post to the discus-
sion group, we need to be careful about what con-
clusions we draw. A student who has no problems
that they can not fix for themselves will not show up.
Also, considering only those students who ask for help
in tutorials tends to give a worst case approximation
of how things are going. A lack of more sophisticated
questions could either mean that people are better
able to fix their own problems and do not need to
ask or that they are getting stuck at a basic level.
Taken together, this means that we may only be able
to consider a lower bound on improvements.

We will now discuss each information source in
more detail.

4.1 Assignment surveys

This survey asked the students a number of questions
about quicksand and the binary bomb. Some were to
be answered on a five point scale while others were
free text. Of the 77 respondents, 49% said that they
had learned a lot from quicksand, while 57% said that
quicksand had improved their confidence in their de-
bugging abilities.

Interestingly 12% of students said that they al-
ready knew and used such techniques (and as such are
unlikely to report learning a lot) and some of them
still reported improved confidence.

The importance of retaining the binary bomb com-
ponent is shown by the fact that 51% of respondents
said that they did not know how to use the debugger
prior to this course6.

Taking both parts of the assignment (quicksand
and binary bomb) together, 60% said that they had
learned techniques that they could have used in the
previous programming assignment. 52% said that
they were more systematic when debugging now.

The free text responses indicate that some stu-
dents were not convinced that programs could go
wrong in the way that our exercises did. As such a
wider set of possible problems is probably indicated.
For example, a bigger focus on function calls mis-
behaving (where they can not see the source) would
probably be more acceptable to them. A number of
students seemed to believe that using printf wasn’t
real debugging. This seems to put even simple tech-
niques in the category of fragile knowledge for some
students. Students did not seem to be surprised or
confused when these techniques are pointed out, but
did not seem to have considered applying them to
solve their problems so we are dealing specifically with
“inert knowledge” (Perkins & Martin 1986).

4.2 Tutorial Logs

Each tutor logged the number of questions they an-
swered by category. Questions about debugging were
classified into the following categories. They are or-
dered by the sophistication of the question (roughly
how much work the student has put in before they
ask the question):

• debugA — Questions of the form “It doesn’t
work.” or “I’m failing test #5.”7. Here there

6It is not clear from these answers whether all of those students
are referring to all symbolic debuggers or just non-IDE ones.

7Students were given a set of automated tests which they could
use to test their assignments against some parts of the spec.

CRPIT Volume 123 - Computing Education 2012

144



 0

 5

 10

 15

 20

 25

 30

 35

P1 C2 P2 C3 P3 C4 P4 C5 P5 C6 P6 C7 P7 C8 P8 C9 P9 C10
P10

C11
P11

C12
P12

C13
P13

Debug question types by halfweek

debugA
debugB

debugC
debugD

technique

Figure 1: Cn denotes tutorials conducted in
the first half of the week while Pn denotes tu-
torials from the second half.

is no description of the problem and no work ap-
parent towards identifying the location, cause or
triggers for the problem.

• debugB — Some basic effort has been made to
locate the problem. Some ability to describe the
specifics of the problem.

• debugC — The student demonstrated good tech-
nique.

• debugD — The student did all the right things
but were prevented from finding the problem due
to missing some knowledge or a misunderstand-
ing. Essentially, their technique was not the
problem.

• technique — the student was not asking for help
fixing a particular problem but wanted to know
about debugging techniques in general.

Tutorials in this course were run in two half-weeks
(Monday to Wednesday morning and Wednesday af-
ternoon to Friday afternoon). Students were required
to enrol in one session in each half-week. However,
tutorials were not compulsory and while some weeks
were set aside for the tutors to teach extra material,
the majority were general help sessions. As such, the
attendance varied significantly depending on the time
to deadline.

The breakdown can be seen in Figure 4.2. The as-
signments were due at the end of Weeks 4, 7, 10 & 13
respectively. Note that once the questions start to in-
crease again for Assignment 3, the more sophisticated
categories dominate the debugA questions.

4.3 Discussion Posts

The course had a very active online discussion group.
We separated out the threads which asked for help
or suggestions for fixing bugs in Assignments 1, 3, 4.
These were classified according to the initial question
using the same scheme used for tutorial questions.
The number of questions (and the number of different
students asking them) increased from Assignment 1
to Assignment 3 (the assignment the students seemed
to find most difficult) and then dropped below the
level of Assignment 1 for Assignment 4. The major-
ity of the questions fit into debugA — either little
description of the problem or a request for sugges-
tions about where to get started. In Assignment 4,

there was an increase in the proportion of questions
which described features of the system the students
were trying to fix rather than a particular test failure.

4.4 Teacher Impressions

As well as visiting tutorials from time to time one
of the authors conducted intensive help sessions just
before the deadline for Assignments 3 and 4. Unfor-
tunately the question types from these sessions were
not logged. The first session was not particularly well
attended. The second session saw at least 40 students
and from memory, the majority of questions were de-
bugB or above.

5 Implementation Considerations

What is required in order to run an assignment like
this? In terms of software infrastructure, A database
for storing marks and infrastructure (quicksand in
our case) for distributing source and compiling stu-
dent modified versions will be needed. The following
should also be considered.

• The security of the marks record.
Students must not be able to coerce the system
into modifying marks for themselves or other stu-
dents. They must not be able to view the marks
of other students.

• Backdoor solutions.
What mechanisms are available for bringing
other code into the test program? For example,
in Java, it would not be sufficient to block import
since classes could be pulled in via their full name
or using Java’s reflection API8. In Python there
is eval(), the pdb debugger and probably oth-
ers. This is not to suggest that these languages
can not be secured9 but the implications of these
features need to be considered.

Can your hidden modifications be exposed in
compile errors or exception traces?

• Types of Bugs to inject.
Firstly, the bugs must be plausible in your source
language10. For example a string changing for
no apparent reason in Python or Java (where
String objects are immutable) would be a bad
choice. Secondly, bugs that do not require modi-
fication of the student’s submitted source require
much less machinery and are less fragile than
things like skipping particular statements. Lim-
iting oneself to function calls which misbehave
under certain conditions would save a lot of work.

6 Conclusions

From the survey, more than half the students reported
increased confidence in their debugging abilities as
a result of quicksand. This and more than half re-
porting they were more systematic in their debug-
ging from the assignment as a whole, are encourag-
ing. Looking at the online discussion is less positive
but students may have been less willing to post de-
tailed questions. Either because they weren’t sure
how to express them in text or because of the warn-
ings they were given about posting code. Overall, for
non-pathological bugs this approach shows promise.

8API = Application Programming Interface
9A reviewer suggests SecurityManager in the case of Java.

10That is, the language of the program the students are editing

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

145



The possibility that the compiler or libraries mis-
behave should be part of the students’ thinking. It
appears though that more explanation needs to be
given, perhaps with real world examples, for students
to accept this.

Acknowledgements

This work was supported in part under AuScope sus-
tainability funding.

References

Ahmadzadeh, M., Elliman, D. & Higgins, C. (2007),
‘The impact of improving debugging skill on pro-
gramming ability’, ITALICS 6(4), 72–87.

Bryant, R. E. & O’Hallaron, D. R. (2001), ‘Introduc-
ing computer systems from a programmer’s per-
spective’, SIGCSE Bull. 33, 90–94.
URL: http://doi.acm.org/10.1145/366413.364549

Eisenstadt, M. (1997), ‘My hairiest bug war stories’,
Commun. ACM 40, 30–37.
URL: http://doi.acm.org/10.1145/248448.248456

Fitzgerald, S., Lewandowski, G., McCauley, R., Mur-
phyd, L., Simon, B., Thomas, L. & Zander, C.
(2008), ‘Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers’,
Computer Science Education 2(18), 93–116.

James, S., Bidgoli, M. & Hansen, J. (2008), ‘Why
Sally and Joey can’t debug: next generation tools
and the perils they pose’, Journal of Computing
Sciences in Colleges 24, 27–35.
URL: http://portal.acm.org/citation.cfm?id=
1409763.1409770

Kessler, C. M. & Anderson, J. R. (1986), A model
of novice debugging in lisp, in ‘Papers presented at
the first workshop on empirical studies of program-
mers on Empirical studies of programmers’, Ablex
Publishing Corp., Norwood, NJ, USA, pp. 198–212.
URL: http://act-r.psy.cmu.edu/publications/
pubinfo.php?id=220

Lee, G. C. & Wu, J. C. (1999), ‘Debug it: A debug-
ging practicing system’, Computers & Education
32(2), 165 – 179.
URL: http://www.sciencedirect.com/science/
article/pii/S0360131598000633

Lieberman, H. (1997), ‘Introduction to the special
issue on the debugging scandal’, Commun. ACM
40, 26–29.
URL: http://doi.acm.org/10.1145/248448.248455

Lister, R., Adams, E. S., Fitzgerald, S., Fone,
W., Hamer, J., Lindholm, M., McCartney, R.,
Moström, J. E., Sanders, K., Seppälä, O., Simon,
B. & Thomas, L. (2004), ‘A multi-national study of
reading and tracing skills in novice programmers’,
SIGCSE Bull. 36, 119–150.
URL: http://doi.acm.org/10.1145/1041624.1041673

McCauley, R., Fitzgerald, S., Lewandowski, G., Mur-
phy, L., Simone, B., Thomas, L. & Zanderg, C.
(2008), ‘Debugging: a review of the literature from
an educational perspective’, Computer Science Ed-
ucation 2(18).

Perkins, D. & Martin, F. (1986), Fragile knowledge
and neglected strategies in novice programmers,
in S. E. & I. S., eds, ‘Empirical Studies of Pro-
grammers’, Norwood, NJ: Ablex Publishing Co.,
pp. 213–229.

Torvalds, L. (2000), ‘Re: Availability of kdb’, Linux
Kernel Mailing List.
URL: http://lkml.org/lkml/2000/9/6/65

CRPIT Volume 123 - Computing Education 2012

146



 Coming to terms with Bloom: an online tutorial for teachers of 

programming fundamentals 
 

Richard Gluga  
School of Information Technologies 

University of Sydney 

Sydney NSW 2006 Australia 
rgluga@it.usyd.edu.au 

 

Judy Kay 
School of Information Technologies 

University of Sydney 

Sydney NSW 2006 Australia 
judy.kay@sydney.edu.au 

 

Raymond Lister 
Faculty of Information Technology 

University of Technology 

Sydney NSW 2006 Australia 
raymond.lister@uts.edu.au 

Sabina Kleitman  
School of Psychology 

University of Sydney 

Sydney NSW 2006 Australia 
sabinak@psych.usyd.edu.au 

Tim Lever  
Faculty of Engineering and Information Technologies 

University of Sydney 

Sydney NSW 2006 Australia 
tim.lever@sydney.edu.au 

 

Abstract 

This paper describes a web-based interactive tutorial that 

enables computer science tutors and lecturers to practice 

applying the Bloom Taxonomy in classifying 

programming exam questions. The structure, design and 

content of the tutorial are described in detail. The results 

of an evaluation with ten participants highlight important 

problem areas in the application of Bloom to 

programming assessments. The key contributions are the 

content and design of this tutorial and the insights derived 

from its evaluation. These are important results in 

continued work on methods of measuring learning 

progression in programming fundamentals. 

Keywords: programming, Bloom, maturity, competence, 

learning progression, assessment 

1 Introduction 

A typical university
1
Computer Science Bachelor degree 

is three to five years long (in the case of combined/double 

degrees). The degree consists of a series of semester-long 

subjects. The design of the curriculum for a degree must 

enable students to steadily progress in acquiring 

discipline skills, as reflected in the ACM/IEEE CS 

Curriculum (2008). So, for example the first 

programming subject in this sequence, (CS1) may assume 

no computing pre-knowledge; students typically learn 

basic programming fundamentals (e.g., variables, loops, 

control structures, functions, syntax). A later 

programming subject in the sequence, such as Data 

Structures, typically assumes students have basic 

competence in using these programming fundamentals. 

This Data Structures subject would enable students to 

learn new concepts (e.g., lists, maps, sets, sorting 

algorithms). At the same time, students should increase 

their level of competence on the programming 

fundamentals introduced in the first programming 

subject. 

                                                           

Copyright © 2012, Australian Computer Society, Inc. This 

paper appeared at the Fourteenth Australasian Computing 

Education Conference (ACE 2012), Melbourne, Australia, 

January-February 2012. Conferences in Research and Practice 

in Information Technology (CRPIT), Vol. 123. M. de Raadt and 

A. Carbone, Eds. Reproduction for academic, not-for profit 

purposes permitted provided this text is included. 

This example highlights the progressive nature of skill 

development and maturity in a Computer Science degree. 

Students are not expected to immediately master all new 

concepts in a subject. Rather, their competence level 

should increase as they progress from one subject to the 

next. In order to support this progressive learning model, 

learning activities, assessment tasks and exams need to be 

appropriately structured to teach and assess students at the 

appropriate level of competence. That is, a final exam in 

the first programming fundamentals subject should be 

designed to assess whether students have reached the 

competence level that is appropriate for that stage. This 

design should also account for the range of learning 

achievements across the class. Any student who earns a 

passing grade should have basic levels of competence. 

The top-performing students should be able to 

demonstrate a more advanced level of competence. The 

second subject (CS2) should then have assessed learning 

activities and exams that require a more advanced level of 

competence of programming fundamentals and a more 

basic level of competence of the new concepts. 

The issue that arises out of this discussion is how to 

classify teaching activities and assessments at a particular 

level of competence. That is, how can a lecturer write an 

exam question that assesses a programming fundamentals 

concept at a novice level vs. a more advanced level? 

Additionally, given an existing exam paper, how can a 

lecturer judge what level of competence is required to 

correctly answer a particular exam question? 

Several theories exist that can be used in this 

classification, the most prominent of which are Bloom‟s 

Taxonomy (Bloom 1956), the SOLO Taxonomy (Biggs 

and Collis 1982, Sheard et. al. 2008) and Neo-Piagetian 

development theory (Morra et. al. 2007, Lister 2011). In 

this paper we focus on Bloom, as it is currently used in 

the ACM/IEEE CS Curriculum (2008) and will be used in 

the revised 2013 Curriculum (ACM/IEEE 2013). Bloom's 

taxonomy is also commonly recommended by university 

teaching support services as a guide for learning outcome 

specification (e.g., Centre for Learning and Professional 

Development, University of Adelaide, 2011; Learning & 

Teaching Centre, Macquarie University, 2008; Centre for 

the Advancement of Teaching and Learning, University 

of Western Australia, 2005). Bloom offers the potential 

for more principled design of the curriculum as it helps 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

147



classify the level of learning to be achieved in each 

subject and the curriculum design can ensure that there is 

progression. Additionally, Bloom should help a lecturer 

design examination questions so that they assess learning 

at the appropriate level of competence. 

To do this though, a lecturer requires an understanding 

of the Bloom Taxonomy, how it applies in a computer 

science context, and how it can be used to classify 

programming assessment tasks. Our motivation is to 

enable lecturers to gain this understanding of Bloom so 

that they can apply it to their own exam questions. This 

will enable computer science lecturers to review existing 

exam papers and design future exam papers with a greater 

awareness of progression and competency levels, thus 

avoiding either overly-high or under-ambitious 

expectations. 

To this end, our contribution is a computer science 

contextualized web-based tutorial on the Bloom 

Taxonomy with interactive examples, user self-

explanation and self-reflection. The tutorial is a useful 

resource in training computer science educators on the 

application of Bloom in classifying programming 

assessment questions. The results from the evaluation of 

this tutorial are useful in identifying where Bloom is used 

inconsistently due to different assumptions about the 

learner, different interpretations of the Bloom categories, 

or a misunderstanding of the categories. The tutorial and 

Bloom insights are important inputs to future work on 

measuring learner progression in computer science and 

future revisions of the ACM/IEEE Computer Science 

Curriculum. 

2 Background 

Benjamin Bloom himself once said that the original 

Bloom Handbook (Bloom 1956) was “one of the most 

widely cited yet least read books in American education” 

(Anderson 1994). The taxonomy is a behavioral 

classification system of educational objectives. The 

framework specifies six categories, namely, Knowledge, 

Comprehension, Application, Analysis, Synthesis and 

Evaluation. Knowledge is the simplest behavior, with 

each category thereafter being more sophisticated. That 

is, a Knowledge level objective or assessment task 

requires a student to simply recall information from 

memory. In contrast, a Synthesis level task requires 

students to apply what they have learnt to create new and 

unique works. A very brief description of the categories 

follows (adapted from Anderson 1994): 

 Knowledge – recalling of information 

 Comprehension – interpreting, translating or 

reordering of concepts, applying a given 

abstraction 

 Application – identifying an appropriate 

abstraction to solve a problem without being 

prompted 

 Analysis – breaking down a problem or 

communication into parts and identifying the 

relationships between the parts 

 Synthesis – Identifying and putting together 

abstractions to create a new and unique artifact 

or solution to a non-trivial problem 

 Evaluation – Commenting on the validity of a 

work with respect to implicit or explicit criteria  

Lister (2001) discussed the problem of first year 

subjects being overly-ambitious and requiring students to 

manifest competence at the Bloom Synthesis or 

Evaluation levels. This is an unrealistic expectation if 

students have not had the chance to steadily progress 

through the first four levels of mastery. The consequence 

of this is that first year CS subjects specify learning 

objectives that require a high-level of competence, but 

consequently have lax assessment marking schemes that 

allow students to pass under false pretences with very 

little competence in the specified objectives. Lister also 

argued that the sequencing of material should be based 

explicitly on a model of learning progression, and 

proposed Bloom‟s Taxonomy (Bloom 1956) as a potential 

model.  

Further, Lister (2001) suggested CS1 students should 

be expected to primarily operate at the first two Bloom 

levels (Knowledge and Comprehension). “CS1 cannot 

produce accomplished programmers. That is the task of an 

entire sequence of programming subjects.” Students 

should thus not be expected to operate at the higher 

Bloom levels (Synthesis/Evaluation) by writing original 

code in a first semester subject, yet this appears to be a 

common occurrence.  

This trend towards overly ambitious first year subjects 

was also noted by Oliver and colleagues (2004). Here the 

authors took six subjects from a single Australian IT 

degree, and invited four lecturers to categorize the 

assessment questions on the original Bloom Taxonomy 

scale. The authors used the weighting of each question 

and the Bloom categorization to calculate a Bloom Rating 

for each subject as a whole. The results showed a first 

year, first semester programming subject had a weighted 

Bloom Rating of 3.9, i.e., somewhere between 

Application and Analysis. The first year, second semester 

subject had a rating of 4.5. Students in this stream were 

thus expected to rapidly progress through the lower levels 

of the scale.  

Oliver and colleagues (2004) also highlighted the 

inconsistencies in applying Bloom to computer science 

exam questions. For the one example question presented 

in the paper, the four participating lecturers identified four 

distinct Bloom classifications, ranging from Knowledge 

to Analysis. Whalley and colleagues (2006) found the use 

of Bloom‟s taxonomy for rating the cognitive complexity 

of programming MCQ‟s “challenging even to an 

experienced group of programming educators.” The 

difficulty was attributed to either some deficiencies in 

Bloom, or “the authors current level of understanding of 

how to apply the taxonomy.” 

The ACM/IEEE CS Curriculum (2008) supports the 

notion of gradual student progression, although it does not 

give direction as to how this progression should be 

implemented. The curriculum specifies a collection of 

learning objectives and topics, organized by knowledge 

area. The learning objectives are based on the revised 

Bloom Taxonomy (Anderson et al, 2001). As an example, 

the Programming Fundamentals / Data Structures 

knowledge area specifies the following nine learning 

CRPIT Volume 123 - Computing Education 2012

148



objectives (the italicized verbs are indicative of the Bloom 

levels): 

 Describe the representation of numeric and 

character data. 

 Understand how precision and round-off can 

affect numeric calculations. 

 Discuss the use of primitive data types and built-

in data structures. 

 Describe common applications for each data 

structure in the topic list. 

 Implement the user-defined data structures in a 

high-level language. 

 Compare alternative implementations of data 

structures with respect to performance. Write 

programs that use each of the following data 

structures: arrays, strings, linked lists, stacks, 

queues, and  hash tables. 

 Compare and contrast the costs and benefits of 

dynamic and static data structure 

implementations. 

 Choose the appropriate data structure for 

modeling a given problem. 

These objectives show a spread of competence levels 

ranging from Bloom Knowledge (describe) to Bloom 

Synthesis and Evaluation (write, implement, compare & 

contrast). The 2013 curriculum is expected to continue 

along similar lines, but will likely use a simplified Bloom 

Taxonomy consisting of only three categories to identify 

the depth of understanding: Knowledge, Application and 

Evaluation (IEEE/ACM CS 2013).  

Thompson and colleagues (2008) attempted to 

contextualize the revised Bloom Taxonomy to computer 

science. They ran an experiment where five educators 

were asked to analyze six first-year computer science 

final exam papers and categorize each question on the 

Bloom scale. The results showed significant disagreement 

between the rankings performed by different educators. 

This was attributed to some having implicit knowledge of 

how the subject was taught, and hence had a better 

understanding of the cognitive processes of the students 

undertaking the exam papers.  

Thompson and colleagues (2008) however did not 

discuss the educators‟ prior knowledge of the Bloom 

Taxonomy, or its application in a computer science 

context. It was only after the educators had a chance to 

collaborate and discuss each classification that they 

reached consensus on each exam question.  

3 Programming Bloom Tutorial  

3.1 Introduction 

ProGoSs (Program Goal Progression) is a research 

project on curriculum mapping and learning progression 

in university degree programs. It is an online web-based 

system that allows university educators to tightly link the 

teaching activities and assessments in each subject to 

important curriculum learning objectives, such as those 

specified in the ACM/IEEE CS Curriculum (2008). This 

enables educators to optimize the sequence of subjects, 

topics and assessments, so as to provide maximum 

curriculum coverage. It also aims to distinguish between 

the bare-passing student and the top-performing student 

in terms of the learning objectives covered and the level 

of competence for each. 

In this particular experiment, we are evaluating the use 

of the Bloom Taxonomy for classifying computer science 

assessment/exam questions. 

The experiment requires participants (computer 

science educators) to complete our interactive Bloom 

Taxonomy tutorial. The intention of this tutorial is to 

bring participants up to speed on how to apply Bloom in 

introductory programming. Participants are asked to read 

about the Bloom Taxonomy and practice some 

classification examples. Participants are asked for self-

explanations and self-reflections on their understanding 

during the tutorial. The experiment takes less than sixty 

minutes to complete.  

3.2 Pre-Survey 

The tutorial commences with a short pre-survey 

containing three questions, as shown in Figure 1. 

 

Figure 1: Pre-Survey 

After completing and submitting the pre-survey, 

participants are presented with an introduction to Bloom, 

which is reproduced in the following section. 

3.3 Bloom Introduction 

The Bloom Taxonomy is a framework for classifying 

learning objectives into different categories of cognitive 

behaviors. It describes six categories as follows (from the 

most sophisticated to the least sophisticated): 

 

Figure 2: Tutorial Bloom Categories 

Each category builds upon the cognitive behaviours 

found in the preceding categories. The six levels form 

three pairs where the lower element of a pair focuses upon 

providing an artifact and the second element in the pair is 

used to demonstrate understanding of such an artifact. 

Students are typically expected to climb up through the 

Bloom Taxonomy as their mastery of a discipline 

deepens. That is, novices would start at the knowledge 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

149



level, whereas seniors would be expected to perform at 

the higher levels. 

3.4 Category Descriptions 

Participants were required to click on each tab (as seen in 

Figure 3) to read the category description and self-rate 

their understanding for each category before proceeding 

to the next tab. A progress bar filled up as they completed 

each tab. A note informed participants that they were not 

expected to become an expert in Bloom just by reading 

these descriptions, but hopefully they should improve 

their understanding as they progressed through the 

tutorial. 

 

Figure 3: Category Description 

The categories are described and exemplified within 

the tutorial system as follows. 

3.4.1 Knowledge 

Knowledge emphasizes the recall of information. The 

recall situation is very similar to the original learning 

situation. The knowledge category differs from the others 

in that remembering is the major psychological process 

involved, while in the others the remembering is only one 

part of a much more complex process of relating, judging 

and reorganizing. 

Key Verbs: know, define, memorise, repeat, recall, 

record, list, name, relate, review, tell. 

Example: What is the return data type of the following 

function? 

 
Explanation: This is a knowledge level question as the 

student needs to recall what a return type is to answer 

correctly. 

3.4.2 Comprehension 

Comprehension requires an understanding of the literal 

message contained in a communication. In reaching such 

understanding, the student may change the 

communication in his mind to some parallel form more 

meaningful to him. That is, the student may translate the 

communication into another language or other terms. The 

student may also interpret the individual parts of a 

communication and re-order the ideas into a structure 

more meaningful to him. 

Comprehension differs from Application in that the 

thinking is based on what is explicitly given, rather than 

on some abstraction the student brings from other 

experiences to the situation. 

Key Verbs: restate, discuss, describe, recognise, 

explain, express, identify, locate, report, operate, 

schedule, shop, sketch. 

Example: What is the return value of the function 

below when called with the following input data array: 

{3,7,2,9,4}. 

 
Explanation: This is a comprehension level question as 

the student is required to understand and trace through the 

code to derive at the correct answer. 

3.4.3 Application 
Application requires the student to apply an 

appropriate abstraction without having to be prompted as 

to which abstraction is correct or without having to be 

shown how to use it in that situation. In a comprehension 

problem the student would be specifically told which 

abstraction he should use. 

Key Verbs: translate, interpret, apply, employ, use, 

demonstrate, dramatise, practice, illustrate, criticise, 

diagram, inspect, debate, inventory, question, relate, 

solve, examine. 

Example: Write a function to return the minimum 

value from an integer array that is passed as a parameter. 

Explanation: This is an application level question as 

the student is required to write the code using an 

abstraction that's not already there (e.g., a loop, an if 

statement, a local variable). 

3.4.4 Analysis 
Analysis emphasizes the breakdown of the material 

into its constituent parts and detection of the relationships 

of the parts and of the way they are organized to form the 

whole. In comprehension, the emphasis is on the grasp of 

the meaning and intent of the material. In application it is 

on remembering and bringing to bear upon given material 

the appropriate generalizations or principles. 

Analysis is the ability to identify unstated and/or 

incorrect assumptions in code, to recognize software 

design patterns and best practices. 

Key Verbs: distinguish, analyse, differentiate, 

appraise, calculate, experiment, test, compare, contrast, 

create, design, setup, organise, manage, prepare. 

CRPIT Volume 123 - Computing Education 2012

150



Example: The following function will always return a 

correct result. True or False? Please justify your answer. 

 
Explanation: This is an analysis level question as the 

student is required to break down the code and 

understand the relationships and assumptions between 

each part. In this case, the student must realize that a zero 

length array or a null array will both cause an exception 

to be thrown. 

3.4.5 Synthesis 

Synthesis is defined as putting together of elements and 

parts so as to form a whole, in such a way as to create a 

program or a program design not clearly there before. 

This category recognizes creative behavior and student 

responses are expected to have a degree of variation and 

uniqueness. 

Comprehension, application and analysis also involve 

the putting together of elements and the construction of 

meanings, but these tend to be more partial and less 

complete than synthesis in the magnitude of the task. Also 

there is less emphasis upon uniqueness and originality in 

these other classes than in synthesis. 

Key Verbs: compose, plan, propose, design, 

formulate, arrange, assemble, collect, construct, choose, 

assess, estimate, measure. 

Example: Write a program that will read in an 

arithmetic expression from the console and print out the 

result. For example, given the input 3*8/4+(6-(4/2+1)), 

your program should output the answer 9 on a new line. 

The program should gracefully handle all exceptions. 

Explanation: This is a synthesis level question as 

students could come up with many different correct 

implementations (e.g., using different tokenizer methods, 

recursive descent trees and other design patterns). The 

answers are expected to include a level of creativity. 

3.4.6 Evaluation 
Evaluation is defined as the making of judgments 

about the value of a program or program design. It 

involves the use of criteria as well as standards for 

appraising the extent to which the program or program 

designs are accurate, effective, economical, or satisfying. 

The judgments may be either quantitative or qualitative, 

and the criteria may be either those determined by the 

student or those which are given to him. Only those 

evaluations which are or can be made with specific 

criteria in mind are considered. Such evaluations are 

highly conscious; require adequate comprehension and 

analysis of the program or program design; and are 

primarily based on considerations of efficiency, economy, 

utility or specific means for particular ends. 

Key Verbs: judge, appraise, evaluate, rate, compare, 

value, revise, score, select 

Example: The function below is required to return the 

most frequently occurring character from a given input 

stream. You are a senior developer asked to review the 

implementation of this function as coded by a junior staff 

member. What comments would you make in regards to 

performance, correctness, assumptions, style and quality 

of the overall solution?  

 

3.5 Interactive Examples 

After reading the six category descriptions above, and 

self-rating their understanding of each, participants were 

then asked to classify some examples of examination 

questions. Participants had to provide answers, 

explanations and ratings on each of the twelve examples, 

such as the example seen in Figure 4. Participants were 

encouraged to scroll back to refer to the category 

definitions if needed.  

 

 

Figure 4: Tutorial Example Question 

For each example, the participants classified the exam 

question on the Bloom scale. Participants were then 

required to self-rate their confidence in their 

classification, as well as to justify answers and comment 

on any uncertainties in their confidence. This was done in 

accordance with work by Chi M.T.H and colleagues 

(1994) showing that “Eliciting self-explanations improves 

understanding”.  

The twelve example questions, and earlier category 

descriptions, were created by our Bloom expert - a 

computer science academic, one of this paper 

„s authors, with an active research interest in the 

application of Bloom, SOLO and Neo-Piagetian 

frameworks to programming. Out of the twelve example 

questions, three were targeted as Knowledge, two as 

Comprehension, two as Application, two as Analysis, one 

as Synthesis and two as Evaluation. The unequal numbers 

were used so that participants would not be able to guess 

the last few by discerning the pattern and counting 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

151



answers. The order in which the questions were presented 

was randomized, but always in the same sequence for all 

participants. The following is a listing of these twelve 

examples and classification explanations (note that 

participants had to attempt classifying each example first 

before being shown the expected classification and 

explanation). 

3.5.1 Example 1 - Application 

Question: Write a function that will return a boolean 

indicating if the given integer array is sorted in ascending 

order. Use the following header as a starting point. 

 

Explanation: Here the student is required to identify 

the necessary abstractions for completing this task, 

namely a loop to go over the array elements, an if 

statement to compare the values, and a local variable or 

return statement to terminate the loop and return the 

correct result. 

3.5.2 Example 2 – Knowledge 

Question: Circle the primitive data types in the following 

code snippet. 

 

Explanation: Here the student is required to simply 

recall the primitive data types as previously studied. This 

can be answered fully via memorization alone, without 

any need for understanding what a primitive data type is, 

or how it differs from other data types, or the differences 

between each of the eight data types. That is, if the 

student knows an `int` is a primitive data type, he can 

circle it in the code. 

3.5.3 Example 3 – Evaluation 

Question: A video rental store has implemented an online 

system where customers can login, browse through 

movies, select available movies, and rent movies online 

using a credit card. The video store has recently become 

concerned about security due to high profile events in the 

media. They have hired you as a security consultant to 

analyze their authentication and payment code and 

identify any vulnerabilities. Go through the code below 

and comment on its security. If not secure, why, and how 

should it be re-written to make it more secure? 

Explanation: Here the student is required to 

comprehend and analyze the code by breaking it down 

into individual parts, then evaluate each part against 

security best practices. The student may identify 

buffer/integer overflows, SQL injection attacks, storing of 

plain-text passwords or weak encryption mechanisms, 

etc. The student can make a number of recommendations 

on how to fix these. Note that even though the question 

uses the word `analyze`, this is actually an evaluation 

level task. 

3.5.4 Example 4 – Analysis 

Question: The following function takes an array of strings 

as inputs, and prints out each string and the number of 

times it appears in the array, in descending order. The 

code however throws a runtime exception when executed. 

Explain why. How would you fix it?  

 

Explanation: Here the student must first comprehend 

the question and intended behavior, then break down the 

function into logical parts (counting, sorting and printing), 

then identify if each part would operate as expected. The 

student should identify the bug in the counting loop in 

that the Map key values are not initialized and the code 

would throw a NullPointerException in line four. This 

could be fixed by prepending an if-not-contains-insert-key 

construct before line four. 

3.5.5 Example 5 – Comprehension 

Question: What is the output of the following code? 

 

Explanation: Here the student is required to read the 

code, interpret the individual parts, understand what it 

does, and trace the execution to derive the right answer. 

To do this the student requires knowledge of 

programming syntax, control structures and variable 

scope as a pre-requisite. 

3.5.6 Example 6 – Comprehension  

Question: What is the output of the following code 

snippet? 

CRPIT Volume 123 - Computing Education 2012

152



 

Explanation: Here the student is required to read the 

code, interpret the individual parts, understand what it 

does, and trace the execution to derive the right answer. 

To do this the student requires knowledge of 

programming syntax, control structures and variable 

scope as a pre-requisite. 

3.5.7 Example 7 – Knowledge 

Question: The javac.exe command is used to compile 

java code. True or False? 

Explanation: Here the student is required to simply 

recall the function of the javac.exe command, or which 

command is used to compile java code. This can be done 

by rote memorization without any further understanding 

of the compilation process or other java internals. 

3.5.8 Example 8 – Synthesis 

Question: A video store has a list of movies in a CSV file 

with the following header: "movie title", "year released", 

"genre", "main actor/s", "rating (1-5)". The main actor/s 

field can contain a single name, or multiple names 

separated by a comma. An example line is: 

"The Social Network", "2010", "Jesse Eisenberg, 

Andrew Garfield, Justin Timberlake", "4.5"  

The store has hired you to write a command-line 

program that will return the top three most popular actors 

in each genre (i.e., highest average ratings of all movies 

they appeared in in that genre). Assume the path to the 

CSV file is passed in as the first command-line argument. 

Explanation: Here the student must comprehend and 

analyze the scenario, then apply the correct programming 

abstractions to parse the CSV and process the data to 

derive the correct answer. There are multiple ways of 

implementing this correctly, and the task description 

leaves students open to use some creativity in coming up 

with unique solutions. 

3.5.9 Example 9 – Knowledge 

Question: Write a SortedHashMap implementation. As 

discussed in lectures and practised in tutorials, the sorted 

map should expose two iterators: one that loops through 

all key/value pairs sorted in ascending key order, the 

other that loops through all key/value pairs sorted in 

ascending value order. The Map should work with any 

object that implements Comparable. 

Explanation: This would be a non-trivial problem 

which could be solved in many different ways if the 

student had never come across a SortedHashMap before. 

However, the question states ``as discussed in lectures 

and tutorials``, which implies the student has had 

sufficient practice at this exercise. So even though this 

could be a complex problem with unique solutions (i.e., 

Synthesis), since the students have had significant prior 

practice at this exact problem, it is actually a Knowledge 

question as it can be completed via rote memorization. 

3.5.10 Example 10 – Analysis 

Question: An employee at your company writes the 

following function, which takes a java InputStream as a 

parameter and returns the average word-count of 

sentences. The function sometimes returns incorrect 

results however. Why? How would you fix it? 

 
Explanation: Here the student must first comprehend 

the question and intended behavior, then break down the 

function into logical parts, and identify if each part would 

operate as expected. This is not evaluation however, as 

the student is not asked to comment on the algorithm 

implemented, but rather to break down the algorithm to 

find the incorrect assumption that leads to the bug. 

3.5.11 Example 11 – Application 

Question: Fill in the missing code in the following 

function that calculates and returns n! (factorial). 

 
Explanation: Here the student is required to identify 

that the use of a loop is needed to compute the right 

answer, without being hinted of this. This is assuming 

that the student has not rote memorized the code for n!, in 

which case this would be a knowledge question. 

3.5.12 Example 12 – Evaluation 

Question: You are a senior developer in a company that 

creates iPhone games. A junior developer is tasked with 

creating a love score calculator which takes two names as 

input and returns a compatibility rating score based on the 

following rules [omitted]. The junior developer submits 

the following code as a solution. You are tasked with 

reviewing the code for quality, correctness, efficiency and 

style. What comments would you make and why? 

Explain in as much detail as you can. 

 

Explanation: Here the student is required to 

comprehend and analyze the code by breaking it down 

into individual parts, then evaluate each part against a 

series of metrics. The student may identify a number of 

potential bugs (divide by zero, integer overflow), identify 

unspecified assumptions (treatment of space and other 

special characters, treatment of repeating characters), 

suggest graceful error handling, suggest better named 

variable names, etc. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

153



3.6 Post-Survey 

Upon completing all twelve example classifications, 

participants were asked to complete a two-question post 

survey: 

1. Based on your new understanding of the Bloom 

Taxonomy, how confident are you in being able to 

correctly classify programming exam questions at the 

correct level (out of the six possible levels)? 

2. Did you find this tutorial useful and effective in 

increasing your understanding of the Bloom 

Taxonomy? Why or not? 

4 Results 

A total of ten participants completed our interactive 

tutorial and example classifications. These consisted 

mostly of computer science tutors and one computer 

science professor. The average participant Initial 

Confidence (measured in the pre-survey) score was 30.8% 

(sd. 23.36) (only 2 participants self-rated at 70%, and one 

at 40%, while the rest self-rated at 30% or lower). 

Prediction Confidence (measured during the initial 

reading of the category descriptions) ranged between 67 

and 71%. The results after participants had classified all 

of the twelve examples are summarized in Figure 5. 

 

Figure 5: Prediction Confidence, On-Task Confidence 

and Accuracy 

This chart shows the six Bloom categories along the 

horizontal axis. Each category is sub-divided into three 

columns. These are, from left to right, Prediction 

Confidence, On-Task Confidence and On-Task Accuracy 

(i.e., confidence for each category after reading each 

description in the introduction, confidence given in each 

interactive example, and number of times when 

participant classifications matched the expected expert 

classifications). The On-Task Accuracy is the percentage 

of participants who agreed with our expert classification 

for each question. For the purposes of evaluating the 

tutorial system, we treated the expert‟s classifications as 

the correct (or expected) classification.   

4.1 Participant Responses to the 12 Examples 

The following is a listing of the participant classifications 

and comments for each of the twelve examples.  

Example 1: Nine participants classified this as 

Application (the expert classification). One participant 

however argued that this was a Synthesis task as “creating 

a solution requires putting lots of ideas together”. This 

participant expressed a 95% confidence in this answer, 

and disagreed with our explanation as to why our expert 

classified it as Application. The participant wrote “I think 

the rating as application would only apply if the student 

had been taught some recipes for problems like this, and 

had a good reason to think that the question would fit a 

recipe.” 

Example 2: Nine participants classified this as 

Knowledge (the expert classification). One participant 

classified it as Comprehension as “the student is required 

to understand and trace through the code to circle the 

primitive data types”, but subsequently agreed with our 

expert‟s explanation. 

Example 3: Eight participants classified this as 

Evaluation (the expert classification). Two participants 

labelled it as Analysis as “It requires the student to look 

through the code snippet and comment on what security 

flaws it has”. These two participants did not specify if 

they subsequently agreed with our expert classification. 

Example 4: Eight participants classified this as 

Analysis (the expert classification), but two picked 

Comprehension. One of these two wrote “It could be in 

analysis, but it asks how it would be fixed which wouldn`t 

suggest it’s an analysis”. It seems this participant took a 

strict definition of the term analysis and assumed that 

since the student had to fix/write code, then it had to be a 

different category. Both subsequently agreed with our 

expert classification. 

Example 5: Nine participants classified this as 

Comprehension (the expert classification). The other 

marked it as Knowledge, stating “This code seems to be 

absolutely standard, so the student should have seen it 

often, and know what it does. (find the max) They then just 

have to look at the input (I assume that knowing the max 

of numbers is trivial at this level)”. This participant 

assigned a 50% confidence score to this answer, and 

justified this as “If the student actually traces the code, 

that would be application in my view.” After being shown 

our expert‟s classification and explanation, the participant 

commented “As noted, I think this code would be very 

familiar, and not need to be broken down and treated as 

parts.” 

Example 6: Seven participants classified this as 

Comprehension (the expert classification). Two marked it 

as Application and one as Analysis. One participant 

justified the choice of Application with “As noted, I see 

tracing as requiring more than knowledge; it requires 

complex abstractions of the machine model, and using 

them on the code that is given.” Another participant 

commented that “it could be comprehension” and the 

other participant believed that tracing had to be 

Application. 

Example 7: Seven participants classified this as 

Knowledge (the expert classification). One participant 

classified it as Analysis and one as Application. The 

comments left by these two did not adequately describe 

their reasoning. The last participant labelled it as 

Comprehension, stating “the student is required to 

understand the how to compile java program”. This 

suggests a misreading of the question or incorrect 

CRPIT Volume 123 - Computing Education 2012

154



assumption about the knowledge required to answer the 

question. 

Example 8: Six participants classified this as Synthesis 

(the expert classification). One picked Analysis and stated 

that "Could be anything from Application up to Synthesis 

but I`m guessing somewhere in between". The other three 

participants all marked it as Application. One stated that 

“I assume that the student knows well the available 

commands, and just has to adjust the flags and then string 

them together in the right order … if actual problem 

solving was needed, i would rate it as synthesis.” Another 

participant stated “implementation questions most likely 

are application ... not an analysis, nor evaluation as it 

doesn`t ask for the students opinion”. 

Example 9: No participants classified this as 

Knowledge (the expert classification). Instead, four 

picked Synthesis, five Application and one Analysis. 

From inspecting the comments, the two main reasons for 

this were either that the participants “missed the clue that 

the student had seen this exact problem” or assumed that 

“this question is hard for students who are in knowledge 

level”. This second comment implies that a student in the 

Knowledge level cannot rote learn complex solutions. 

Five participants agreed with the expert classification 

after being shown the justification. The rest either 

disagreed on the basis mentioned above or did not 

elaborate further. 

Example 10: Seven participants classified this as 

Analysis (the expert classification). Three however 

marked it as Evaluation. One stated “I am evaluating 

another colleague’s code, which requires judgements in 

order to apply fixes to it”. Another commented “It could 

be just analysis, but it's also working out what might be 

wrong with the code and suggesting alternatives.” The 

third incorrect participant stated “too much abstraction”. 

Example 11: Five participants classified this as 

Application (the expert classification). One marked it as 

Knowledge and stated “If the student hasn't memorized 

this, I would see it as synthesis, unless they have a pattern 

that they know would be used to solve the problem. Only 

if they know which pattern to use is application the 

suitable level.” One participant labelled it as Analysis 

with 100% certainty, stating that “It requires that I break 

the problem down”. Two participants labelled it as 

Synthesis because “students could come up with many 

different correct implementations”. One participant 

marked it as Comprehension because “the student needs 

to comprehend the code before answering”. 

Example 12: All twelve participants classified this as 

Evaluation (the expert classification). 

4.2 Final Confidence and Participant Feedback 

After completing the twelve examples, the average 

participant Final Confidence score was 75% (sd. 11.55), 

an increase from the 30.8% Initial Confidence before 

starting the tutorial. All participants responded positively 

in the final feedback question. The common trend in these 

comments was that the category descriptions were good 

for gaining a basic grasp, but the interactive examples 

with justified answers were very useful in consolidating 

their understanding. 

5 Discussion 

Most of our participants had very little exposure to 

Bloom prior to taking the tutorial, hence the low average 

Initial Confidence of 30.8%. The intention of the tutorial 

was to be quick but sufficient for participants to be able to 

apply Bloom to Programming Fundamentals; hence the 

small set of simple examples for each Bloom category. 

After completing our tutorial however, the Final 

Confidence average increased to 75%. Participants 

however still did not feel entirely confident in being able 

to do this consistently. An analysis of the self-reflection 

ratings is presented and discussed in greater detail in 

Gluga and colleagues (2012).  

Overall the tutorial was successful in training 

participants on how to apply Bloom to programming 

questions. Participants that had little confidence prior to 

the tutorial came out with a much higher understanding of 

Bloom. However, the evaluation confirms ambiguity in 

the interpretation of the Bloom categories due to 

dependence on knowledge of the learning context and due 

to different assumptions made by participants.  

Example 9 demonstrates a challenging case. The 

information supplied indicates that the learners are very 

familiar with the algorithm and associated code. However, 

it is unlikely students would rote-memorize the amount of 

code needed to answer this question. While our expert 

coded this as Knowledge level, it may be more likely that 

a student may need to recall the pseudo-code or algorithm 

and translate it into the appropriate syntax to derive the 

answer. This would place the task at the Comprehension 

level (translating from one form into another, using 

recalled abstractions). The role of such questions in future 

versions of the system will be reviewed. Perhaps the role 

of such a question could be to highlight how the difficulty 

in coding the Bloom level may point to problems with the 

question. 

Evidence showed that some participants also confused 

the literal definition of the Bloom category labels with the 

classification of some questions. More example exercises 

for each category type may have been useful to indicate 

whether these participants learnt to apply the categories 

with greater consistency. 

6 Conclusion and Future Work 

There is growing recognition that computer science 

educators are over-estimating the ability of CS1 students 

and are often setting programming-fundamentals 

assessment exercises that are overly-ambitious in the 

number of concepts and level of competence tested (Lister 

2000 and 2001, Oliver 2004, Petersen et. al. 2011). The 

aim of this paper was to explore ways to measure learning 

progression in the programming fundamentals sequence 

of subjects, to ensure that content is taught and assessed at 

an appropriate level of competence.  

The Bloom Taxonomy is a framework for specifying 

the sophistication of learning objectives, which is already 

part of the ACM/IEEE CS Curriculum (2008) 

specification, and can be used as a tool to classify the 

competence level of assessment questions. Bloom is often 

not well understood however. We thus created an 

interactive tutorial to train computer science educators on 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

155



how to apply Bloom in classifying programming 

questions and evaluated the results.  

The evaluation showed that the tutorial was effective 

in developing participants' confidence in identifying the 

level of performance involved in programming exam 

questions. The evaluation also confirmed previously 

documented ambiguities in the application of Bloom to 

cases where knowledge about the learning context is 

required for accurate classification. Participant feedback 

comments at the same time revealed other reasons as to 

why consensus is not always reached, namely due to pre-

conceived misunderstandings of the categories, or 

different interpretations about the complexity of tasks and 

sophistication required to solve them.  

The study had 10 participants and all gained 

confidence in using Bloom to classify assessment tasks. 

These results are promising and the qualitative results will 

be of value for informing refinements to the interface and 

examples. It will then be important to evaluate with a 

larger number of participants, including people who 

actually design curricula and design exam questions. 

Additionally, the experiment can be repeated with a 

different cognitive development framework, e.g., Neo-

Piagetian Theory, to see how this compares to Bloom in 

terms of classification consistency and user satisfaction.   

We believe that our ProGoSs system's Bloom tutorial 

is the first such system that helps teachers of 

programming fundamentals have greater understanding of 

Bloom, as a foundation for more systematic design of 

teaching and learning materials and assessment of how 

well student learning meets the intended goals. An 

enhanced version of this tutorial may soon be made 

openly available online.  

Acknowledgements 

We would like to thank the Smart Services CRC who 

is partially sponsoring this project and all our colleagues 

that we have collaborated with throughout the project. 

7 References 

Anderson, W.L., Krathwohl, D. R. (Eds.). Airasian, P. W., 

Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J. and 

Wittrock, M. C. (2001). A taxonomy for learning, teaching 

and assessing: A revision of Bloom's Taxonomy of 

Educational Objectives. New York: Allyn Bacon Longman. 

Anderson, W.L., Sosniak, A.L, Bloom, B.S. (1994). Bloom‟s 

taxonomy: a forty-year retrospective. Chicago: University of 

Chicago Press 

Biggs JB & Collis KF (1982) Evaluating the quality of learning: 

the SOLO taxonomy (Structure of the Observed Learning 

Outcome). New York, Academic Press. 

Bloom, B.S. (Ed.) (1956) Taxonomy of Educational Objectives: 

Handbook I: Cognitive Domain, Longmans, Green and 

Company. 

Centre for the Advancement of Teaching and Learning, 

University of Western Australia (2005). A Basic Guide to 

Writing of Student Outcome Statement. Retrieved 24 August 

2011 from 

http://www.catl.uwa.edu.au/current_initiatives/obe/ outcomes 

Centre for Learning and Professional Development, University 

of Adelaide (2011). Writing learning objectives. Retrieved 24 

August 2011 from http://www.adelaide.edu.au/clpd/ 

curriculum/objectives/ 

Chi, M.T.H., Leeuw, N.D., Chiu, M.H., Lavancher, C. (1994). 

Eliciting self-explanations improves understanding. 

Cognitive Science, pages 439-477. Vol. 18. 

Computer Science Curriculum 2008: An Interim Revision of CS 

2001. Association for Computing Machinery and IEEE 

Computer Society, 2008. http://www.acm.org/education/ 

curricula/ComputerScience2008.pdf 

Computer Science Curriculum 2013, Association for Computing 

Machinery and IEEE Computer Society, http://www. 

sigart.org/CS2013-EAAI2011panel-RequestFor Feedback.pdf 

Gluga, R., Kay, J., and Lever, T (2010). Modeling long term 

learning of generic skills. In V. Aleven, J. Kay, and J. 

Mostow, editors, ITS2010, Proceedings of the Tenth 

International Conference on Intelligent Tutoring Systems, 

pages 85-94. Springer, 2010. 

Gluga, R., and Kay, J. (2009) Largescale, long-term learner 

models supporting flexible curriculum definition. In 

Proceedings of the Workshop on Scalability Issues in AIED, 

held in conjunction with AIED2009, pages 10-19, 2009. 

Learning and Teaching Centre, Macquarie University (2008). 

Writing learning outcomes.  Retrieved 24 August 2011 from 

http://www.mq.edu.au/ltc/about_lt/assess_docs/ 

writing_learn_out.pdf 

Lister, R., (2000), On Blooming First Year Programming, and 

its Blooming Assessment. In Proceedings of the Fourth 

Australasian Computing Education Conference (ACE2000), 

Melbourne, pages 158-162. 

Lister, R., (2001) Objectives and Objective Assessment in CS1. 

Proc. SIGCSE Technical Symposium on Computer Science 

Education, Charlotte NC, USA, pages 292-296, ACM Press. 

Lister, R. (2011). Concrete and Other Neo-Piagetian Forms of 

Reasoning in the Novice Programmer. Australasian 

Computing Education Conference (ACE2011), pages  9-14. 

Vol. 114. 

Morra, S., Gobbo, C., Marini, Z. and Sheese, R. (2007) 

Cognitive Development: Neo-Piagetian Perspectives. 

Psychology Press. 

Oliver, D., Dobele, T., Greber, M., and Roberts, T. 2004. This 

course has a Bloom Rating of 3.9. In Proceedings of the Sixth 

Australasian Computing Education Conference (ACE2004), 

pages 227-231, Vol. 30.  

Petersen, A., Craig, M., and Zingaro, D. (2011). Reviewing CS1 

Exam Question Content. In Proceedings of the 42nd ACM 

technical symposium on Computer science education 

(SIGCSE2011), pages.631-636 

Sheard, J., Carbone, A., Lister, R. and Simon, B. (2008), Going 

SOLO to assess noice programmers. In Proceedings of the 

13th annual conference on Innovation and technology in 

computer science education (ITiCSE2008), pages 209-213, 

Vol. 40. 

Thompson, E., Luxton-Reilly, A., Whalley, J.L., Hu, M., 

Robbins, P. (2008). Bloom‟s Taxonomy for CS Assessment. 

In Proceedings of the Tenth Conference on Australasian 

Computing Education (ACE2008), Vol. 78 

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, P., 

Kumar, P.K.A. and Prasard, C. (2006). An Australasian 

Study of Reading and Comprehension Skills in Novice 

Programmers, using the Bloom and SOLO Taxonomies. In 

Proceedings of the Eighth Australasian Computing Education 

Conference (ACE2006), pages 243-252, Vol. 165.  

R.Gluga, J. Kay, R.Lister, S.Kleitman, T.Lever. Over 

Confidence and Confusion in using Bloom for programming 

fundamentals assessment. Special Interest Group in 

Computer Science Education, 2012 (SIGCSE2012 

CRPIT Volume 123 - Computing Education 2012

156

http://www.sigart.org/CS2013-EAAI2011panel-RequestFor
http://www.sigart.org/CS2013-EAAI2011panel-RequestFor


An exploration of factors influencing tertiary IT educators' 
pedagogies 

Sally Firmin 1, Judy Sheard2, Angela Carbone3, and John Hurst2 
1School of Science, Information 

Technology and Engineering 
University of Ballarat 

PO Box 663, Ballarat 3353, 
Victoria 

s.firmin@ballarat.edu.au 

2Faculty of Information 
Technology 

Monash University 
Victoria, 3800 

Judy.Sheard@monash.edu, 
John.Hurst@monash.edu 

3Office of the Pro Vice-
Chancellor (Learning and 

Teaching) 
Monash University 

Victoria, 3800 

Angela.Carbone@monash.edu 

Abstract 
This paper presents factors that influence and shape 
tertiary IT educators underpinning teaching philosophy. 
This work is the first part of a larger project investigating 
ways tertiary IT educators think about their teaching and 
develop their practice focusing on experiences and 
influences of technology, and the emergence of digitally 
based pedagogies. A qualitative grounded theory 
approach utilised semi structure interviews as the data 
source. Preliminary investigation identified four emergent 
themes from the data. The theme, 'pedagogical 
foundations' is explored in this paper. This theme 
provides details of tertiary IT educators' underpinning 
ideals, values and philosophy of teaching, grounded by 
thoughts, reflections and comments of their experiences. 
Exploring these ideas can improve the quality of teaching, 
better utilise new and emerging technologies, and nurture 
contemporary student-centred learning environments. . 

Keywords:  pedagogy, IT academics, teaching philosophy, 
qualitative research, grounded theory. 

1 Introduction 
Pedagogy is a complex and vague term. Its meaning has 
been the source of debate in the discourse of many 
educators over recent times. This is partly due to the 
volatile higher education teaching and learning 
environment within which tertiary educators currently 
operate. This changing environment has manifested a 
shift from the traditional didactic teacher-focussed 
approach, to a technology-enhanced student-centred 
collaborative approach. 

Developing an understanding of pedagogy and the 
factors influencing its formation can help to improve 
teaching practice. Harris (2005) claims that most 
academics (apart from those in education schools) do not 
have a background or formal training in education theory 
and pedagogy. Many educators are overwhelmed by the 
complexity of pedagogy (Ramsden, 2003). Harris (2005) 
found that by introducing academics to education theory 
and pedagogy, such as Bloom’s taxonomy, the academics 
were better equipped to begin improving teaching and 

                                                           
Copyright © 2012, Australian Computer Society, Inc. This 
paper appeared at the 14th Australasian Computing Education 
Conference (ACE 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in 
Information Technology (CRPIT), Vol. 123. M. de Raadt and 
A. Carbone, Eds. Reproduction for academic, not-for profit 
purposes permitted provided this text is included. 

learning outcomes. These authors promote the notion that 
an awareness of teaching philosophy can better equip 
educators in a tertiary educational context. 

There are many factors influencing pedagogy 
formation. This provides the impetus for the research 
reported in this paper. By unravelling the notion of 
pedagogy and its development, through research, it is 
proposed that we can build an understanding of factors 
that may help improve teaching practice. The work of 
Ramsden (2003) and Harris (2005) provide supportive 
evidence for the importance of this research.  

An additional and important consideration is that 
various disciplines have different pedagogies. Disciplines 
such as medicine and law have reported distinctive 
pedagogies. Shulman (2005) terms these signature 
pedagogies. In our research, we investigate current 
pedagogical influences of tertiary IT educators. 

This paper reports on phase one of a two-phase study. 
Phase one of the study focuses on factors that influence 
tertiary information technology (IT) educators’ 
pedagogical development. Phase two of the study will 
investigate tertiary IT educators' experiences of using 
technologies in teaching and the role technology plays in 
shaping their pedagogies. The specific research question 
being investigated in phase one is:  

How do tertiary IT educators develop their pedagogy? 

The structure of this paper is as follows. Section 2 
reviews the literature relating to defining pedagogy, and 
factors influencing its development. Section 3 gives a 
justification for the use of the grounded theory research 
approach. This is followed by a detailed description of the 
implementation of a Straussian Grounded Theory (GT) 
study in Section 4. The results of this study are presented 
in Section 5, discussed in Section 6 and followed by 
conclusions in Section 7. 

Four categories emerged from the GT analysis. The 
category which describes teachers underpinning ideals, 
values and philosophy of teaching, and their thinking 
behind the practice, is discussed in this paper. 

2 Pedagogy Research 
The aim of this section is to examine current research 
pertaining to pedagogy in a tertiary education 
environment. The literature shows that over time 
educators’ views of the concept of pedagogy have 
become more complex and show a divergence from 
teacher-directed instruction to student-centred learning. 
The context for this research is a tertiary education 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

157



setting; however, other educational levels will be 
encompassed in an informative basis. Understanding the 
evolution of pedagogy will assist in providing us with 
pedagogical themes and identify the development 
journey. 

2.1 A Review of Pedagogy 
Pedagogy is a complex, misunderstood, ill-defined word, 
with its meaning evolving overtime (Canning, 2007). 
According to Beetham and Sharpe (2007) “despite its 
etymological connection with children (paidia), 
contemporary use of the term has lost its exclusive 
reference to childhood while retaining the original sense 
of leading or guiding to learn” (p. 1). Academics have 
needed to alter their thinking and recognise how 
pedagogical concepts and practices have altered (Schilb, 
1999). For centuries the pedagogy of the classical 
curriculum was a dry and sterile pedagogy of grammar 
instruction, whereas contemporary thinking is one of 
ideas, values, critical thinking, moral deliberation, and 
logical reasoning (Gregory, 2001). 

Historically pedagogy has been associated with the 
teaching of children as its background emanates from the 
Greek word ‘paid’, meaning child, and ‘agogus’ meaning 
leader of (Conner et al., 1996). As defined by Smith and 
Lowrie (2002) pedagogy refers to the teacher’s 
relationships with children. More explicitly, it refers to 
“appropriate ways of teaching and giving assistance to 
children and young people” (Loughran, 1999, p. 14). 
Traditional notions of pedagogy were associated with 
teacher-centred instruction (Conner, et al., 1996). This is 
thought to have originated from the Calvinists who 
believed wisdom was evil. They advocated adults 
monitor, control, and restrict childrens’ learning to keep 
them innocent (Conner, et al., 1996). In this traditional 
pedagogic model, teachers held responsibility for making 
decisions about what will be learned, how it will be 
learned, and when it will be learned. Teachers directed 
the learning (Conner, et al., 1996). 

Contemporary definitions describe pedagogy as the 
art, profession or science of teaching (Beetham & Sharpe, 
2007; Chapuis, 2003). Pedagogy is often represented as 
the philosophy and instructional approaches associated 
with good teaching (Kemmis & Smith, 2006). However, 
pedagogy is often seen as a nebulous concept, with some 
educators using it as a synonym for teaching (Conner, et 
al., 1996), but pedagogy means more than teaching. As 
reported by Ladwig and King (2003) pedagogy is about 
how teaching is done rather than what is taught. 
Pedagogy is about the teaching and learning activities 
teachers use and how they assess their students’ progress. 
Smith and Lowrie (2002) also support this concept and 
indicate that pedagogy can be an effective way of 
describing the relationships between teaching, learning 
and assessment in classrooms, they believe to talk of 
pedagogy is to talk of the appropriate ways teachers 
interact with learners. Beetham and Sharpe (2007) argue 
that some educators are still at odds with the emphasis on 
teaching, with their preference on the activity of learning, 
suggesting that in a learner-centred environment teaching 
should not be the focus of concern.  

Contemporary writers suggest that the traditional 
teacher-centred view of pedagogy is not only becoming 

student-centred but more complex. Mortimore (1999) 
contends that academics’ and researchers’ notions of 
pedagogy have become more complicated over time. He 
argues that a deepening in our understanding of cognition 
and meta-cognition have influenced the conceptualisation 
of pedagogy. He describes the current model of pedagogy 
as being a complex one which includes relationships 
between the teacher, learning context, content, and 
learning. Chapuis (2003) suggests pedagogy requires a 
broad repertoire of strategies and sustained attention to 
what produces student learning in a specific context. 
Smith and Lowrie (2002) believe pedagogy embodies 
“the relational, emotional, moral and personal dimensions 
of the teaching and learning process” (p. 6). Whilst 
Waters (2005) endorses pedagogy as encompassing both 
formal and informal knowledge about teaching and 
learning and is reliant on both the learner and the teacher.  

These authors all provide evidence of a growing 
conception of what pedagogy embodies. Note the gradual 
change from teacher-focused to student-centred learning, 
and the co-relationship between educator and student. It 
is this expanded, broader vision encompassing learning, 
relationships and student-centredness that will underpin 
this research. 

2.2 Factors Influencing Pedagogy 
Some of the factors that influence educators’ pedagogies 
include perception of teaching and learning roles, folk 
pedagogies, personal learning experiences, educational 
technology, government and institutional policy, peer 
evaluation, reflective practices, student evaluations, 
teaching and learning context, and, understanding of 
teaching. A brief overview of each follows. 

The educators’ perspective of the teaching role is an 
important factor in determining teaching approach. Biggs 
(2007) suggests these are divided by who is in major 
control – the teacher or the student. These roles have been 
characterised in educational language as ‘Sage on the 
stage’ (teacher-directed) and ‘Guide on the Side’ 
(student-directed) (King, 1993). Biggs suggests that each 
approach results in very different engagement from the 
learner. Furthermore, the way educators have been taught 
is likely to have an impact on the way they teach. 
According to Shulman (2004) educators own learning 
experiences influence their approach to teaching.  

Educators’ existing beliefs about teaching influence 
their approach (Raths, 2001). These beliefs have been 
termed 'folk pedagogies'. According to Olson and Bruner 
(1998) folk pedagogies are lay theories or intuitive beliefs 
teachers have about the way students learn. 

Educational technology has played a significant role 
in shaping many educators contemporary pedagogies. 
Newson (1999) coined the term techno-pedagogy 
describing it as models of teaching and learning 
associated with instructional technology. The notion of 
technology-enhanced teaching shows a shift in teacher’s 
role from controller to coach of learning (Jonassen, 
Howland, Marra, & Crismond, 2008). 

Government and institutional policies have been 
reported as influencing factors on tertiary IT educators’ 
teaching approaches. Tutty, Sheard and Avram (2008) 
reported a lack of support and encouragement for IT 
academics, restricting them with teacher-centred policies 

CRPIT Volume 123 - Computing Education 2012

158



which are counter to their preferred student-centred 
styles. 

Peer evaluation and observation can provide educators 
with useful commentary about the quality of course 
content, structure, and assessment (Bain, 2004). Carbone 
and Kaasbooll (1998) found that peer observers could 
also offer feedback on teaching based organisational and 
communication issues providing a chance for educators to 
reflect and compare without the pressure of performance. 
Ladwig (2005) suggests that peer review can provide 
analysis and thinking at a pedagogical level and that this 
process can lead to improved educational outcomes. 

Reflective practice influences the different ways 
educators think about teaching and function as teachers. 
Burn et al (cited in Marsh, 2008) found that critical self 
reflection is an essential tool for teachers to utilise as it 
helps them undertake informed action and provides a 
rationale for practice. Ramsden (2003) found that just 
thinking about teaching is not enough, the challenge is to 
merge the thinking and doing. Ramsden found this could 
have likely implications for student learning outcomes. 

Evaluation tools can provide educators with an 
opportunity to reflect on the quality of their teaching. 
Kaplan (cited in Bain, 2004) suggests that by asking 
students the right questions, their answers can aid 
educators to make judgements about the quality of their 
teaching. Bain stresses that the student ratings are not by 
themselves evaluations.  

Educational learning spaces are complex busy 
environments in which varying groups of students must 
be organised. Teachers require a highly developed ability 
to manage these complex situations, multiple activities 
and unpredictable events (Doyle cited in Mortimore, 
1999). 

Finally, educators’ knowledge of teaching can 
influence pedagogical development. University teaching 
is very complex and Ramsden (2003) proposes that most 
educators feel they have a better grasp on its complexities 
than they actually do. There are increasing demands on 
educators in terms of teaching skills (Biggs, 2007). 
Traditional approaches no longer work with a much more 
diverse student population. Biggs believes a fresh look at 
teaching is necessary. 

2.3 Tertiary IT Education Context Gap 
There is wealth of literature in the education field about 
tertiary teaching pedagogy, but a scarcity of work in the 
discipline of IT, particularly in an Australian context. 
There are a few studies that provide examples of teaching 
experiences of IT educators (Lister et al., 2007) but few 
were found that have investigated factors influencing 
tertiary IT educators’ pedagogical development. 

The work reported in this paper is inspired from 
published work of several studies within the IT discipline. 
These include work on scholarship pursuits of IT 
academics by Lynch, Sheard, Carbone and Collins (2005) 
and, work by Tutty, Sheard and Avram (2008) which 
presented a model of IT academics teaching experiences. 
Of significant influence is work by Kutay and Lister 
(2006), whose research aimed at facilitating a community 
of practice to foster ways of discussing pedagogy in a 
higher education IT school, and the work of Lister et al 

(2007) who investigated ways tertiary IT educators 
understand teaching. 

This section provided an outline of the background 
literature regarding theory and factors influencing 
pedagogy. The next section provides a brief outline of the 
research design approach. 

3 Research Design 
The aim of this section is to provide a description and 
justification of the research design approach adopted in 
this study. 

3.1 Qualitative Inquiry 
A qualitative approach has been adopted for this work. 
Qualitative inquiry is typically used for the exploration of 
social phenomena or situations in which individuals are 
involved with various types of processes, such as 
educational processes (Hazzan, Dubinsky, Eidelman, 
Sakhnini, & Teif, 2006; Myers, 1997). In the context of 
this research factors, influencing the development and 
formation of tertiary IT educators’ pedagogies is the 
phenomenon being investigated. 

3.2 Interpretivism 
An interpretive philosophical view underpins the work 
done on this project. Interpretivism is a view that cultures 
can be understood by examining peoples’ beliefs, their 
ideas, and the meanings that are significant to them. All 
knowledge is a matter of interpretation (Crotty, 1998). 
Interpretivism is an appropriate choice because tertiary IT 
educator’s knowledge of their world is formed through 
their teaching and learning experiences (epistemology). 

3.3 Grounded Theory Methodology 
A GT approach will be modelled on this project. 
According to Strauss and Corbin (1990) “A grounded 
theory is one that is inductively derived from the study of 
the phenomenon it represents. That is, it is discovered, 
developed, and provisionally verified through systematic 
data collection and analysis of data pertaining to that 
phenomenon” (p. 23).  

GT is appropriate for research studies when all the 
concepts pertaining to the given phenomenon have not 
been identified in a particular context (Strauss & Corbin, 
1990), as is the case with this project.  

A review of the genealogy of GT reveals the 
following major approaches: 

• Glaserian GT: Glaser and Strauss (1967) and 
Glaser (1978) 

• Straussian GT: Strauss (1987) and, Strass and 
Corbin (1990, 1998, 2008) 

The Straussian GT approach was chosen for this 
project as it best matched the parameters of the research, 
as follows: it allows the researcher to enter the research 
field with preconceived ideas, a predetermined problem 
statement, extensive review of the literature, and an 
interview protocol (Charmaz & Bryant, 2007). The 
researcher had previously undertaken all of these tasks. 

GT has been used in many discipline areas. Within the 
context of IT education, GT has been used in a number of 
studies. For example, it was used as a research 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

159



methodology to investigate IT student capstone projects 
(Kollanus & Isomottonen, 2008a). GT was used by 
Kollanus and Isomottonen (2008b) in several studies on 
using test driven development in extreme programming 
There are also several notable studies by Kinnunen and 
Simon (2010) and Dunican (2006) who used GT to 
investigate the learning and teaching of novice computer 
programming.  

While this section provided an explanation and 
justification of the research approach used in this study, 
the following section provides details of the 
implementation of the GT approach. 

4 Implementation of GT 

4.1 Research Approach 
This section provides an explanation of the 
implementation of phase one of the two-phase study, 
applying the theoretical approach discussed in the 
previous section. A detailed description of the first two 
coding stages of GT is presented. This explains the 
research techniques used and in doing so illustrates the 
Straussian GT approach. Data gathered through phase one 
is presented in section 5 results. 

The Straussian model of GT data collection and 
coding processes was applied in an integrative iterative 
fashion during phase one of this project. This approach 
was based on modelling presented by McNabb (2010, p. 
256) and Hoda, Nobel and Marshall (2010, p. 1). See 
adaptation in Figure 1. 

 
 

Data Collection: 
Initial Sampling 

 
 
 Initial Coding: Memoing 
 Open Codes  
 
 

Constant Comparison 
Method 

 
 

Intermediate Coding: 
Axial Codes 

 

Figure 1: Phase 1 Grounded Theory Approach 

4.1.1 Data Collection: Initial Sampling 
Data collection in phase one consisted of four one-hour 
interviews with tertiary IT educators from a regional 
Australian university. The approach taken followed the 
work of Golding (2007) who advises initial data sampling 
in GT studies be conducted openly with a broad section 
of participants. Participants were recruited based on a 
range of demographic characteristics such as gender, age, 
teaching experience, and year level.  

Four academics, a male and female with over 40 years 
teaching experience and a male and female with 10-20 
years teaching experience were selected. All academics 
had experience in teaching both undergraduate and post 
graduate programs. 

The interview protocol consisted of eight questions 
divided into two sections. The first section was designed 
to build a profile of the teacher, and gathered information 
concerning, mentors, teaching career highlights, 
perceived characteristics of good teachers, course 
preparation, assessment and delivery. Questions included: 

• How did you get into teaching? 
• Can you describe key moments, experiences or 

people that have influenced your teaching 
philosophy? 

• Can you think of any other factors (e.g. 
circumstances) that have influenced your 
teaching? 

• What are the most important characteristics you 
believe a good teacher must have? 

• How do you go about teaching a course? 

These questions gathered information aimed at 
answering the research question, which is the focus of 
this paper: How do tertiary IT educators develop their 
pedagogy?  

Data from the second section of the interview protocol 
will be further developed in phase two of this project, and 
is outside the scope of this paper. 

4.1.2 Initial Coding: Open Codes 
After data collection, the initial coding process was 
undertaken, an open coding approach, consistent with 
Straussian GT was implemented. According to Strauss 
and Corbin (1990) open coding is “the process of 
breaking down, examining, comparing, conceptualizing, 
and categorizing data” (p. 61). 

The open coding process in this study consisted of 
several iterations. A sentence-by-sentence technique was 
utilised. Each interview was coded with the previous 
interview in mind, this is known as a constant 
comparative approach (Glaser & Strauss, 1967). The first 
interview transcript was coded in a sequential fashion. 
Subsequent interview transcripts were coded in an 
iterative fashion using the constant comparative method 
to revisit, revise and identify additional codes.  

4.1.3 Memoing 
The process of memo writing was conducted in parallel 
with the data collection, coding and constant comparison 
method. In this project, consistent with the work of 
Charmaz (2006), memo writing was undertaken in order 
to capture thoughts containing analysis, comparisons, 
connections about codes, and categories or relationships 
which link the categories. Continued writing of memos 
throughout the research process assisted to elevate the 
level of abstraction of ideas, and codes began to stand out 
and take shape into theoretical categories. Memos 
developed in MS Word were chronologically dated and 
themed for efficient future comparison, reflection and 
retrieval. 

4.1.4 Intermediate Coding: Axial Codes 
The final step in phase one was the intermediate coding 
phase. During this phase, axial coding was completed. 
Axial coding, as defined by (Strauss & Corbin, 1990, p. 
96), is “a set of procedures whereby data are put back 

CRPIT Volume 123 - Computing Education 2012

160



together in new ways after open coding, by making 
connections”. The axial coding process was conducted 
using the following steps, commencing with the grouping 
of open codes (identified during initial coding) into axial 
codes. Axial codes were then grouped into emergent 
categories (themes). Each axial code was further defined 
through the identification of dimensions and properties 
and the development of a paradigm model. 

The axial coding process was used to extend the 
analytic work of initial coding and strategically 
reassemble fractured data into emergent categories. Each 
axial code was deconstructed into a number of properties. 
Strauss and Corbin define properties as “attributes or 
characteristics pertaining to a category, and dimensions 
are the location of properties along a continuum (Strauss 
& Corbin, 1990). Dimensions will be uncovered in phase 
two of the project, as more data is collected and the 
constant comparative method applied. For details of the 
axial codes and properties generated in this study, refer to 
section 5.2.  

As part of the axial coding process a paradigm model 
was developed. Paradigm modelling is recommended by 
Strauss and Corbin (2008) to be useful in providing 
answers to questions of context and developing insight 
into a phenomenon (Dunican, 2006). In this project it was 
used to deconstruct and reframe data uncovered in the 
‘pedagogical foundations’ category. It was used to gain 
insight into pedagogical development in terms of the 
conditions in which pedagogy is reflected upon, by the 
interactions causing the reflection, and, the resultant 
change. For details of the paradigm model developed in 
this study, refer to section 5.2. 

During the proposed second phase of the project, the 
GT process will be continued, utilising a theoretical 
sampling data collection technique. The selective coding 
approach will be applied iteratively and integrated with 
the GT memoing technique and constant comparison 
method, until data saturation point is reached, at which 
point memos will be sorted and a theory developed. 

This section has provided a description of the 
practical application of GT implemented in phase one. 
The next section will provide details of results of phase 
one, in particular, the category ‘pedagogical foundations’, 
which emerged from this analysis. 

5 Results 
This section provides results of the analysis conducted in 
phase one, in particular, a description of the emergent 
category, ‘pedagogical foundations’. This discussion 
outlines details of the category’s axial codes, 
descriptions, properties and paradigm model. 

5.1 Open Coding 
As previously described, the open coding process 
consisted of several iterations. This first pass of the data 
identified 111 open codes (free nodes). This is consistent 
with other GT studies, which typically generate a large 
number of codes during the first pass (Kinnunen & 
Simon, 2010). 

5.2 Axial Coding 
The axial coding process, the second pass of the data, 
consisted of several iterations. During these iterations 
both axial codes and open codes were identified, some 
were refined and some were new, this is consistent with 
Strauss and Cobin’s approach documented in the latest 
version of their methodology (2008). Kinnunen and 
Simon (2010) also found this to be true when completing 
the axial coding phase of their project.  

Four categories emerged from the axial coding 
process as follows: 

• pedagogical foundations 

• teaching practice 

• technology adoption  

• techno-pedagogical nexus 

The ‘pedagogical foundations’ category will now be 
described in detail. Seven axial codes were used to 
describe this category. Refer to table 1 for details. The 
‘pedagogical foundations’ category describes teachers 
underpinning ideals, values and philosophy of teaching. 
This includes thoughts, reflections or comments that 
demonstrate the thinking behind the practice. This 
category tells a story of factors and influences which 
underpin why educators teach the way they do.  

Axial Code Description 
Causal factors The relationship, counsel, guidance, and 

lessons learned from various teaching 
role models such as mentors, professional 
development activities, formal education 
experiences, conferences etc... 

Discipline 
preference 

Identification of learning and teaching 
techniques tailored to various sub-
discipline areas and how that translates 
into educators own experiences and 
preferences 

Educational 
language 

Examples of educators using educational 
language to describe practice 

Pedagogical 
development 
constraints 

Perceived obstacles and fears 
constraining or limiting the development 
of pedagogical philosophy 

Quality teaching 
attributes 

Thoughts, reflections and comments 
about attributes of quality teachers and 
what constitutes quality teaching practice 

Reflective focus Describes elements educators reported 
reflecting on in relation to the 
development or influence of their 
teaching philosophy and underpinning 
values 

Understanding of 
students  

Encapsulates educator’s reflections and 
perceptions and emulation of student 
learning approaches 

Table 1: Axial Codes 

Within each, axial code of the ‘pedagogical 
foundations’ category a number of properties were 
identified these properties form the characteristics or 
features that distinguish this category. Refer to table 2 for 
details. 

Axial Codes Properties  
Causal factors mentor influence 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

161



Axial Codes Properties  
literature 
professional development 

Discipline preference logic based  
skills based  
theoretical 

Educational language learning theory 
methodology  
teaching theory 

Pedagogical 
development 
constraints 

industry experience 
self confidence 
technology 
university policy 

Quality teaching 
attributes 

communicator 
empathy 
entertaining 
honest 
passion 
respect 

Reflective focus student learning 
teaching knowledge 
technology use 

Understanding of 
students  

engagement 
motivation 
learning approach 

Table 2: Axial Properties 

The paradigm model tool helps to develop a deeper 
understanding of the categories, and functions as a lens, 
promoting viewing of categories from different 
perspectives. For example, instead of thinking about 
categories, axial codes and dimensions in a hierarchical 
sense, the paradigm model promotes viewing in a 
contextual sense. Contextual factors include the 
conditions, interactions and consequences in which 
factors influence the pedagogy of tertiary IT educators. 
The contextualisation factors will aid theory development 
during phase two of this study. Details of the paradigm 
model for ‘pedagogical foundations’ is shown in table 3. 
 
Element Description 
Phenomenon: Pedagogical Foundations 

Conditions Educators reflect on teaching approach in 
response to publication of allocated teaching 
load, (particularly for a new course not taught 
before), when interacting with students, and 
when using technology to facilitate teaching 
and learning. 

Interactions 
and Emotions 

Educators read literature, attend conferences 
and discuss concepts with other IT educators. 

Consequences  Reflection and change in practice arises in 
response to educator’s experiences, and 
interactions.  

Table 3: Paradigm Model 

6 Discussion 
The aim of this section is to provide an analysis and 
discussion of the ‘pedagogical foundations’ category. 
Seven axial codes emerged from the data, these codes 
describe factors influencing the development, growth and 
formation of tertiary IT educator’s pedagogies and form a 

scaffold of support upon which tertiary IT educators 
reported in this study build their practice. 

6.1 Causal Factors 
Causal factors describe determining or causal elements or 
factors. For example education is an important 
determinant of one’s outlook on life (Farlex Inc., 2011). 
In terms of this study, causal factors reported include, the 
influence of and relationships with mentors, engagement 
with the literature, and participation in professional 
development activities.  

A strong relationship with mentors from early on 
instils a sense of collegiality and a preference for working 
with others in team based teaching and learning 
environments. 

“I always tend to work with other people, rather 
than in isolation, in some ways I have had lots of 
mentors” 

Educators’ own learning experiences from very early 
on help them to discern between approaches and develop 
a tool kit of their own learning and teaching techniques. 

“I found him fantastic because he just had that 
really good teaching style” 

“very enthusiastic, always available to talk to 
you about things, even beyond what was actually 
being taught in the course at the time ... made an 
impact on me” 

Educators found they assimilated valuable techniques, 
which enhanced their teaching practice through 
attendance at conferences, professional development 
activities, observing others, and, participating in peer 
review sessions.  

 “I went to a conference and they highlighted the 
idea of early assessment” 

“I watched her give a presentation one day, I 
watched her pause, and I thought ah yes that’s 
effective” 

Educators indicated they apply research techniques 
and use the work of others to guide and direct their own 
practice. 

“So I went through and decided, ok, what are the 
topics that we need to go through. What’s a good 
order, I looked in text books, and online and I 
looked at other courses that people had 
delivered” 

“the educationally critical aspects. Somehow 
they need to be determined. Often it’s by reading 
the research of other people” 

This data provides evidence that causal factors play a 
role in shaping tertiary IT educator’s pedagogies. In order 
to maximise the potential of mentoring relationships, it is 
important to build an environment, which fosters both 
formal and informal connections between teachers. In 
addition, educators can benefit from peer review and 
observation of other teachers in action (see Carbone & 
Kaasboll, 1998). This observation is supported by the 
literature, confirming peer reviews provide professional 

CRPIT Volume 123 - Computing Education 2012

162



development opportunities for teachers and a forum to 
share information about teaching (Marsh, 2008). 
Educators need ready access to current discipline based 
educational literature, training programs and support to 
attend practice based teaching and learning conferences 
where current theoretical frameworks, tools and 
techniques are shared. 

Possible implications of causal factors: Tertiary IT 
educators could benefit from access to an environment 
that fosters relationships with mentors, facilitates access 
to teaching and learning literature and encourages 
attendance at professional teaching and learning 
development activities. 

6.2 Discipline Preference 
The participants reported three reasons why they were 
attracted to teaching sub-discipline areas of IT: the 
theoretical knowledge, the underpinning logic of the 
content, and having success learning it during their own 
educational pursuits.  

Educators indicated they liked teaching sub-
disciplines of IT due to the theoretical content or the 
logical thinking required.  

“I placed a very heavy emphasis on 
understanding rather than memory work, and, I 
was interested in how things worked from the 
theoretical point” 

“programming is a completely different way of 
thinking, it’s very logical” 

An underpinning theme reported by educators was the 
attraction in having been successful in their own studies. 
The knowledge that they could do it well was an 
empowering factor for wanting to teach it. 

“I think that I felt more on top of the content” 

“I mean I was successful at it and I think that 
was the reason that I decided that I wanted to 
continue” 

This data suggests that educators feel most confident 
in teaching content that they are familiar with and that 
suits their own learning approach and interests, whether 
that is theory based, logic based or skills based within the 
IT discipline. By enjoying what they are teaching, and 
feeling confident in their knowledge of the content, 
tertiary IT educators are more likely to deliver quality 
teaching and learning outcomes. 

Possible implications of discipline preference: 
Tertiary IT educators feel most confident teaching 
content they are familiar with and find interesting. 

6.3 Educational Language 
The participants described a range of teaching 
frameworks and theories reported in literature but did not 
appear to be consistent with the language required to 
connect their descriptions to identifying educational 
labels. For example, problem-based and applied learning, 
student-centred learning, constructivism, and learning 
styles were all described using everyday language. This is 

consistent with observations of other researchers (see 
Harris, 2005). 

Educators described attributes of constructivist 
learning theory without providing the label. 

“they go to a lecture, maybe do the homework 
problems, build up that foundation, build on it 
for the next portfolio. So it’s a building process” 

“I would try and design it so that they could 
work on small parts each week, and encourage 
them in the class” 

Educators understood the need for applied real world 
problems, but without providing the labels. 

“to get good understanding of the way in which 
IT is used in the world” 

Use of educational language will encourage 
exploration of the theoretical frameworks underpinning 
these, leading to a more sophisticated informed approach 
to solving teaching and learning problems. We encourage 
this with our students, for example, one participant 
reported the following about a programming class: 

“I had them working on terminology, because 
I’m a firm believer in that they understand what 
the terms are and that they can talk about them” 

By modelling this behaviour ourselves alongside the 
expert language of our disciplines, we move into the 
realm of expert teaching and learning educators. 

An environment, which encourages tertiary IT 
educators’ use of contemporary teaching and learning 
language will strengthen the use of educational terms in 
collegial discussions. Use of educational language 
facilitates a move in educational decision making from a 
sub-conscious level to a conscious level. It is important to 
be aware of why we teach the way we do. Intuitive 
practice is a great base however, by becoming aware, we 
can access and trial a range of strategies and approaches 
which can lead to better learning outcomes for students. 

Possible implications of educational language: 
Tertiary IT educators could benefit from using 
contemporary educational language and conscious 
decisions to access a range of teaching and learning 
strategies. 

6.4 Pedagogical Development Constraints 
Educators reported being constrained in their practice by 
a number of factors including a lack of industry exposure, 
lack of self-confidence in front of students during 
teaching, frustration with technology and infrastructure, 
and limitations imposed by university policy 
requirements. These factors worked to undermine their 
sense of satisfaction and control, and in some cases led to 
perceptions of unsatisfactory teaching and learning 
experiences. 

A lack of real world commercial experience was 
reported as a concern. Teachers reported no real world 
commercial IT experience with which to enrich teaching 
and learning experiences. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

163



“I have never been involved, apart from minor 
projects, with the commercial and business side 
of IT” 

“I just think that a well rounded lecturer will 
have research interests and research experience, 
will have commercial experience, to get good 
understanding of the way in which IT is used in 
the world, as well as a good theoretical 
knowledge of IT” 

Some educators reported a lack of self-confidence and 
feeling under pressure when teaching students, and 
claimed that this affected the quality of the students 
learning.  

“when you are out the front of the class you are 
in a stress situation, and I find when I am doing 
solutions on the board that sometimes I make 
mistakes, and I think those mistakes are 
particularly confusing for the weaker students” 

Educators reported a lack of confidence in technology 
reliability, useability and prior negative experiences when 
using technology. 

“I’m too afraid of everything going wrong. I 
didn’t buy a CD player until they had been on 
the market for four or five years, I am a 
generation behind in my games consoles, I just 
have never been the person to go out and grab 
the technology straight away. I let someone else 
find all the problems first then adopt it” 

“I ran into some issues using a multimedia unit a 
couple of years ago so I tend not to use that 
anymore” 

“with the console, you can actually see the 
image of what’s on the screen in front of you I 
tend to stick pretty close to the console” 

There was a sense of inflexibility at traditional 
teacher-centric teaching and learning policies as not 
accommodating contemporary pedagogy. 

“You must have a fifty percent exam and that 
changes assessment from being formative to 
being summative, and when it is summative it is 
too late to fix problems and so I would prefer to 
have portfolio sessions, mid semester test, and a 
final test, and have the final test not actually 
worth very much at all” 

This data suggests that there are inhibiting factors, 
which restrict tertiary IT educator’s ability to enact their 
preferred pedagogy. Educators need an environment 
where they can access career long connections with 
industry. This will enable currency, and embedding of 
real life experiences. A reliable technology infrastructure 
is essential to solicit and maintain educator confidence 
and encourage explorative practice. A move from 
teacher-centric policy to learner-centred policies will 
provide educators with flexibility to develop innovative 
practice. This is supported by Tutty, Sheard and Avram 
(2008) who found many IT academics are constrained by 
current government and institution policy resulting in 

unsatisfying teaching and learning experiences for both 
teachers and students. 

Possible implication of pedagogical development 
constraints: Tertiary IT educators’ pedagogies may be 
inhibited by a lack of confidence in technological 
infrastructure and traditional university teaching and 
learning policies. 

6.5 Reflective Focus 
Teachers reflect on learning that they see occurring in 
their classes and this shapes their approach in future 
teaching and learning encounters. 

“Last year teaching the same course I found that 
during tutorials students were often working on 
their portfolio questions with each other, and 
that kind of talking is good, so I’m not too sure 
whether on the alternative weeks whether some 
sort of group assessment discussion task might 
be appropriate, that I emphasize assessment is 
what makes them work” 

The opportunity for some continuity in teaching the 
same or similar courses gives tertiary IT educators time to 
reflect on their approach so that it can be refined and 
improved in future iterations of teaching. 

Possible implication of reflective focus: Tertiary IT 
educators may benefit from the opportunity to teach the 
same or similar content to enable reshaped teaching 
approaches to be trialled. 

6.6 Quality Teaching Attributes 
Commonality was observed in the notion of what makes a 
quality teacher. Educators identified a caring empathetic 
approach, honesty, enthusiasm, and passion as being the 
main attributes for great teachers.  

“Well they have to be a good communicator, and 
to different levels, so it can’t just be, being able 
to, they have to be able to explain things in ways 
that various different people understands” 

“keep it entertaining, so you will engage the 
students” 

“but admitting to something when you are out of 
your depth” 

“demonstrating a passion for my students, and 
for what I am teaching” 

“enthusiasm an absolute must. If the teacher 
doesn’t seem to be interested in the topic it is 
very hard to expect the students to be enthused 
about it either” 

“treat students with respect” 

In research by Biggs and Moore (1993), these 
attributes appear as items in the top fifteen functions of 
great teachers. Biggs and Moore emphasise that these 
attributes are consistent with the social side of teaching 
and the connection to students. Given our notion of 
pedagogy as becoming student centred, it is essential 
contemporary teaching and learning environments foster 

CRPIT Volume 123 - Computing Education 2012

164



and encourage growth of these attributes, by helping to 
shape teaching in student focussed way. 

Possible implication of quality teaching attributes: 
Tertiary IT educators could benefit from access to 
teaching and learning environments (communities of 
practice) which foster and encourage development of 
these values. 

6.7 Understanding of Students 
Educators reported trying to imagine the learning process 
for students and model their practice around this. In this 
way educators’ pedagogies are influenced by their 
understanding of students needs. 

“I have been more interested in thinking of ways 
in which I could help students to understand” 

“I’ve always thought about students. Are 
students going to be able to cope with this? Have 
they got sufficient support to be do this?” 

This data suggests that teachers make assumptions 
about student learning and mould their practice around 
these. The difficulty here is getting it correct. Marzano 
(2007) suggests “A teacher’s beliefs about students’ 
chances of success in school influences the teacher’s 
actions with students, which in turn influence student’s 
achievement” (p. 162). Marzano suggests this is perhaps 
one of the most powerful factors influencing teaching 
because educators are typically unaware – this is an 
unconscious activity. It is important then for educators to 
be encouraged to spend some time reflecting on their 
approach. 

Possible implication of understanding students: 
Tertiary IT educators could benefit from a conscious 
awareness of making assumptions about student learning 
in order to avoid limiting learning options. 

7 Conclusion 
Current research suggests that educators’ understandings 
of pedagogy have become more complex, and show a 
move toward technology-enhanced student-centred 
practices. A variety of influences on pedagogy have been 
reported in the literature (see section 2.2).  

Using a Grounded Theory approach, results from our 
study show a number of factors that influence how 
tertiary IT educators develop their pedagogy. Findings 
from our study suggest that tertiary IT educators think 
about their teaching and develop their practice in distinct 
ways, through prioritisation of aspects of teaching and 
learning that they deem important. One surprising finding 
was IT educators’ approaches to technology-enhanced 
teaching, in particular their lack of comfort with it. 
Keeping in mind these findings are from a pilot study of 
four participants, this techno-pedagogical relationship 
within a tertiary IT teaching context warrants further 
investigation. 

A holistic approach to encouraging tertiary IT 
educators to reflect on the factors reported is suggested. 
By adopting an integrated approach, the key elements can 
be systematically incorporated in to educational support 
systems, policy and practice. As tertiary IT educators, we 

need to move ourselves from the subconscious doing to 
the conscious knowing. 

8 References 
Bain, K. (2004). What the best college teachers do. 

Cambridge, Massachusetts: Harvard University. 

Beetham, H., & Sharpe, R. (2007). Rethinking pedagogy 
for a digital age. Milton Park, Oxon: Routledge. 

Biggs, J. (2007). Teaching for quality learning at 
university: What the student does (2nd ed.). 
Maidenhead, Berkshire: Open University Press. 

Biggs, J., & Moore, P. (1993). The process of learning 
(3rd ed.). Melbourne, Vic: Prentice-Hall. 

Canning, J. (2007). Pedagogy as a discipline: Emergence, 
sustainability and professionalisation. Teaching in 
Higher Education, 12(3), 393-403.  

Carbone, A., & Kaasboll, J. (1998). A survey of methods 
used to evaluate computer science teaching. In G. 
Davies & M. ÓHigeartaigh (Eds.), Proceedings of 
the Third Annual Conference on Innovation and 
Technology in Computer Science Education (pp. 41-
45). Dublin, Ireland: ACM. 

Chapuis, L. (2003). Pedagogy. ACT: Education and 
Training. 

Charmaz, K. (2006). Constructing grounded theory - A 
practical guide through qualitative analysis. 
Trowbridge, Wiltshire: Sage. 

Charmaz, K., & Bryant, A. (Eds.). (2007). The SAGE 
handbook of grounded theory. London, UK: SAGE. 

Conner, M. L., Wright, E., Curry, K., DeVries, L., Zeider, 
C., Wilmsmeyer, D., et al. (1996). Learning - The 
critical technology. St. Louis, Missouri: Wave 
Technologies International Inc. 

Crotty, M. (1998). The foundations of social research - 
Meaning and perspective in the research process. 
London, UK: SAGE. 

Dunican, E. (2006). Initial experiences of using grounded 
theory research in computer programming education. 
In P. Romero, J. Good, E. Acosta Chaparro & S. 
Bryant (Eds.), Proceedings of the 18th Workshop of 
the Psychology of Programming Interest Group (pp. 
183-197). Sussex: University of Sussex. 

Farlex Inc. (2011). The free dictionary. Retrieved August, 
26, 2011, from http://www.thefreedictionary.com 

Glaser, B. (1978). Advances in the methodology of 
grounded theory - Theoretical sensitivity. Mill 
Valley, California: Sociology. 

Glaser, B., & Strauss, A. (1967). The discovery of 
grounded theory: Strategies for qualitative research. 
Piscataway, NJ: Rutgers. 

Goulding, C. (2007). Grounded theory - A practical guide 
for management, business and market researchers. 
London, England: SAGE. 

Gregory, M., W. (2001). Curriculum, pedagogy, and 
teacherly ethos. Pedagogy, 1(1), 69-89.  

Harris, C. R. (2005). Developing basic online teaching 
skills, encouraging experimentation. Distance 
Education Report, 9(11), 5-8.  

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

165



Hazzan, O., Dubinsky, Y., Eidelman, L., Sakhnini, V., & 
Teif, M. (2006). Qualitative research in computer 
science education. In D. Baldwin, P. Tymann, S. 
Haller & I. Russell (Eds.), Proceedings of the 37th 
SIGCSE Technical Symposium on Computer Science 
Education (pp. 408-412). Houston, Texas, USA: 
ACM. 

Hoda, R., Noble, J., & Marshall, S. (2010). Using 
grounded theory to study the human aspects of 
software engineering. Paper presented at the Human 
Aspects of Software Engineering, Reno, Nevada.  

Jonassen, D., Howland, J., Marra, R., & Crismond, D. 
(2008). Meaningful learning with technology (3rd 
ed.). Upper Saddle River, New Jersey: Pearson 
Prentice Hall. 

Kemmis, R., & Smith, E. (2006). Discipline specific 
pedagogy. Retrieved 11 April, 2009, from 
http://www.icvet.tafensw.edu.au/ezine/year_2006/jul
_aug/litreview_discipline.htm 

King, A. (1993). From sage on the stage to guide on the 
side. College Teaching, 41(1), 30-35.  

Kinnunen, P., & Simon, B. (2010). Building theory about 
computing education phenomena: A discussion of 
grounded theory. In C. Schulte & J. Suhonen (Eds.), 
Proceedings of the Tenth Koli Calling International 
Conference on Computing Education Research (pp. 
37-42 ). Koli, Finland: ACM. 

Kollanus, S., & Isomottonen, V. (2008a). Test-driven 
development in education: Experiences with critical 
viewpoints. In J. Amillo & C. Laxer (Eds.), 
Proceedings of the 13th Annual Conference on 
Innovation and Technology in Computer Science 
Education (pp. 124-127). Madrid, Spain: ACM. 

Kollanus, S., & Isomottonen, V. (2008b). Understanding 
TDD in academic environment: Experiences from 
two experiments. In A. Pears & L. Malmi (Eds.), 
Proceedings of the 8th International Conference on 
Computing Education Research (pp. 25-31). 
Uppsala, Sweden: Uppsala University. 

Kutay, C., & Lister, R. (2006). Up close and pedagogical: 
Computing academics talk about teaching. In D. 
Tolhurst & S. Mann (Eds.), Proceedings of the 
Eighth Australasian Computing Education 
Conference (pp. 125-134). Hobart, Tasmania: ACS. 

Ladwig, J. (2005). Monitoring the quality of pedagogy. 
Leading & Managing, 11(2), 70-83.  

Ladwig, J., & King, M. B. (2003). Quality teaching in 
NSW public schools - An annotated bibliography. 
Sydney, NSW: Department of Education and 
Training. 

Lister, R., Berglund, A., Box, I., Cope, C., Pears, A., 
Avram, C., et al. (2007). Differing ways the 
computing academics understand teaching. In S. 
Mann & Simon (Eds.), Proceedings of the Ninth 
Australian Computing Education Conference (pp. 
97-106). Ballarat, Victoria: ACS. 

Loughran, J. (Ed.). (1999). Researching teaching: 
Methodologies and practices for understanding 
pedagogy. Abingdon, Oxon: Routledge Farmer. 

Lynch, J., Sheard, J., Carbone, A., & Collins, F. (2005). 
Individual and organisational factors influencing 
academics’ decisions to pursue the scholarship of 
teaching ICT. Journal of Information Technology 
Education, 4(1), 219-236.  

Marsh, C. (2008). Becoming a teacher - Knowledge, skills 
and issues. Frenchs Forest, NSW: Pearson/Prentice 
Hill. 

Marzano, R. (2007). The art and science of teaching: A 
comprehensive framework for effective instruction. 
Alexandria, VA: ASCD. 

McNabb, D. (2010). Research methods for political 
science: quantitative and qualitative approaches 
(2nd ed.). Armonk, New York: M.E. Sharpe. 

Mortimore, P. (Ed.). (1999). Understanding pedagogy 
and its impact on learning. Thousand Oaks, 
California: Sage. 

Myers, M., D. (1997). Qualitative research in information 
systems. MS Quarterly, 21(2), 241-242.  

Newson, J. (1999). Techno-pedagogy and disappearing 
context. Academe, 85(5), 52-56.  

Olson, D., R, & Bruner, J., S. (1998). The handbook of 
education and human development. In D. Olson, R & 
N. Torrance (Eds.), Folk psychology and folk 
pedagogy. Malden, Massachusetts: Blackwell. 

Ramsden, P. (2003). Learning to teach in higher 
education (2nd ed.). Abingdon, Oxon: Routledge 
Falmer. 

Raths, J. (2001). Teachers' beliefs and teaching beliefs. 
Early childhood research and practice, 3(1), 1-9.  

Schilb, J. (1999). Histories of pedagogy. College English, 
61(3), 340-346.  

Shulman, L. (2004). The wisdom of practice: Essays on 
teaching, learning, and learning to teach. San 
Francisco, CA: Wiley. 

Shulman, L. (2005). Pedagogies. Liberal Education, 
91(2), 18-25.  

Smith, T., & Lowrie, T. (2002). What is pedagogy 
anyway? Practically Primary, 7(3), 6-9.  

Strauss, A., & Corbin, J. (1990). Basics of qualitative 
research - Grounded theory procedures and 
techniques. Newbury Park, California: Sage. 

Strauss, A., & Corbin, J. (2008). Basics of qualitative 
research (3rd ed.). Thousand Oaks, California: 
SAGE. 

Tutty, J., Sheard, J., & Avram, C. (2008). Teaching in the 
current higher education environment: Perceptions of 
IT academics. Computer Science Education, 18(3), 
171-185.  

Waters, M. (2005). Pedagogy in VET - A background 
paper. Melbourne, Victoria: William Angliss 
Institute of TAFE. 

 

 

CRPIT Volume 123 - Computing Education 2012

166



Common Areas for Improvement in ICT Units that have Critically 
Low Student Satisfaction 

Angela Carbone, Jason Ceddia 
Office of the Pro Vice-Chancellor (Learning and Teaching) 

Monash University 
PO Box 197, Caulfield East 3145, Victoria 

angela.carbone@monash.edu, jason.ceddia@monash.edu 

 

Abstract1 
Unit evaluations across many Australian universities 
indicate that close to 10% of units in Information and 
Communication Technology (ICT) disciplines are 
flagged as needing critical attention. Poor unit 
evaluation results may lead to a number of negative 
consequences including poor student learning. To 
develop an understanding of the reasons why students 
rate some ICT units as poor, qualitative responses to 
Monash’s unit evaluation questionnaire were examined 
from 13 ICT units for semester 2, 2010 that were 
deemed needing critical attention. Responses from 
students to the question “What aspects of this unit are 
most in need of improvement?” were analysed.  A 
partial grounded theory based approach was used to 
code 281 responses to determine common re-occurring 
themes. Results show eight broad areas in which units 
can be improved. However the top concern for students 
in these units is the lecture content. The implications of 
our results will help ICT lecturers with planning their 
next unit offering, and will offer some empirical 
evidence to central teaching preparation programming. 
 
Keywords:  ICT Education, education quality in ICT, 
teaching strategy, ground theory analysis 

1 Introduction 
There is an increasing amount of attention on the 
quality of teaching and student satisfaction of units 
across universities globally.   Evaluations of teaching 
and student experiences within units and courses are 
now standard practice in Australian universities. 
Student evaluation of teaching and units, often referred 
to as  SETU, are collected in many institutions.  

SETU type instruments are usually administered 
towards the end of each semester, and results are 
analysed to provide a “snapshot” of students’ 
perceptions of their teachers, the unit and their learning. 
Most data is gathered via simple to use and administer 

                                                           
1 Copyright © 2012, Australian Computer Society, Inc. 
This paper appeared at the Fourteenth Australasian 
Computing Education Conference (ACE 2012), 
Melbourne, Australia, January-February 2012. 
Conferences in Research and Practice in Information 
Technology (CRPIT), Vol. 123. M. de Raadt and A. 
Carbone, Eds. Reproduction for academic, not-for profit 
purposes permitted provided this text is included. 
 

unit evaluation questionnaires. Students rate a unit on a 
Likert scale, followed by opened ended questions in 
which they can state the best aspects of the unit and 
areas for improvement. 

The nature and composition of unit evaluation 
instruments used by tertiary intuitions across Australia 
offering ICT degrees were recently discussed at a 
workshop on unit evaluation practices, at the 2011 
Australia Council of Deans of Information 
Communication Technology (ACD ICT), Learning and 
Teaching Forum (Australia Council of Deans of 
Information Communication Technology (ACD ICT), 
2011).  Unit evaluation instruments from fourteen 
universities, across five Australian states (Victoria, 
NSW, Queensland, Tasmania and South Australia) were 
reviewed by 24 workshop attendees. Attendees mainly 
comprised Deans, Associate Deans Education(ADE’s), 
Heads of schools, and academics in leading education 
roles.   

In a workshop activity, the nature and composition 
of unit evaluation instruments was discussed along with 
the educational intentions of those who use the data 
from these instruments. Across all institutions the 
nature of the instrument was broken into a set of closed 
questions followed by a small number, usually two or 
three, open ended questions, with one of the open ended 
questions asking students to identify what aspects of the 
unit need improvement. 

Participants also agreed that many stakeholders use 
the unit evaluation results in the following ways: 
academics use the results to make practical 
improvements to their units and course; some Heads of 
School use the results to determine an academic’s 
funding allocation, and to identify the type of support 
they can offer their staff; Deans and ADEs determine 
whether educational targets are met; Faculty Education 
Committees identify whether their faculty is performing 
well, and University Education Committees use the 
results to compare performance of faculties against 
other faculties within the university and to  determine 
whether educational targets have been met. 

Unfortunately, unit evaluations across many 
Australian universities indicate that close to 10% of 
units in ICT disciplines are flagged as needing critical 
attention (Australian Graduate Survey - Course 
Experience Questionnaire (CEQ) 2005-2009). Low 
performing units can affect student learning, have a 
negative effect on the morale of the lecturer, place 
pressure on Deans and ADEs to improve educational 
performance and can cause universities to fail to meet 
national targets on educational performance which may 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

167



result in reduced government funding to universities. 
Consequently, ICT faculties often struggle to meet 
university and national targets on educational 
performance. 

In order to help academics improve units in need of 
critical attention a Peer Assisted Teaching Scheme 
(PATS) was developed (PATS, 2010). PATS was 
originally piloted in the Faculty of Information 
Technology (FIT) in 2008 at Monash University, 
Caulfield Campus, Australia (Carbone, 2011b). The 
scheme builds upon peer facilitation and how it 
contributes to the development of academics (Ashwin, 
2003) and developing mentoring relationships (Gratch, 
1998). Following its initial success, PATS was funded 
by a 2010 ALTC Teaching Fellowship (Carbone, 2010) 
so that now PATS is open to all academics who wish to 
improve the health and quality of their units. The 
scheme aims to inform and equip academics with skills 
and strategies to improve their units and build peer 
capacity to enhance learning and teaching (Carbone, 
2011a, Ashwin, 2003, Gratch, 1998)  

The challenge though, is to develop an 
understanding of why some ICT units are rated low on 
unit evaluations and to build a picture of the ‘critical 
issues’ or areas that need improvement, so that these are 
at the forefront of academics’ minds when planning, 
implementing and delivering units.  

This paper reports on a partial grounded theory 
approach to analyse the SETU unit evaluation 
qualitative comments in the ICT discipline for unit that 
students perceive as needing critical attention at 
Monash University.   

2 Background 
At the 2011 ACD ICT Learning and Teaching Forum, it 
was evident that most ICT faculties administered some 
form of SETU instrument. This widely used instrument 
usually contains two components: the teaching 
evaluation instrument, and the unit evaluation 
instrument. In this study we focus on the responses to 
the unit evaluation instrument at Monash University. 

The unit evaluation component of SETU focuses on 
student perceptions of units.  These surveys are 
extremely important in identifying units that are 
meeting students' expectations and needs, as well as 
units that can be improved. 

2.1 Monash Unit Evaluation Instruments 
Like most universities, Monash University distributes 
SETU surveys at the end of each semester.  In the 
Faculty of IT all units are evaluated every semester 
using an online survey. There are five university wide 
(UW) unit evaluation items.  These are: 

 
UW-Item 1 The unit enabled me to achieve its 

learning objectives 
UW-Item 2 I found the unit to be intellectually 

stimulating 
UW-Item 3 The learning resources in this unit 

supported my studies 
UW-Item 4  The feedback I received in this unit was 

helpful 

UW-Item 5  Overall I was satisfied with the quality of 
this unit 

Responses to these questions use a five point Likert 
scale ranging from Strongly Agree (5) to Strongly 
Disagree (1) and with 3 representing “Neutral”. Options 
for Not Applicable (6) and Don’t Know (7) are also 
provided to respondents and are not counted in the 
means for questions.  

Reports generated from the analysis of the closed 
question responses for all units are publicly accessible 
by Monash staff and students (Monash University, 
2011b). One of the key measures used in the reports is 
the ‘median'. The median is calculated under the 
assumption that the five point scale represents a 
continuous random variable rather than five discrete 
categories. 

Immediately following the closed questions, there 
are two open-ended questions: 
1. What were the best aspects of this unit? 
2. What aspects of this unit are most in need of 

improvement? 
Only academic staff, and their superiors have access to 
these comments. 

2.2 Monash Unit Quality Indicators 
Monash University focuses on item 5 (reporting overall 
satisfaction) in providing university managers with a 
quick way of monitoring aggregate performance of the 
unit. Using item 5 as the key question, a “traffic light” 
indicator was then developed to interpret the results. 

Any unit with a median value of 3.0 or below to the 
UW-Item 5 "Overall I am satisfied with the quality of 
the unit" is flagged as needing critical attention. Any 
unit between 3.01 and 3.59 indicates that the unit needs 
improvement because responses are generally “neutral” 
or bimodal with no clear trend. Any unit between 3.6 
and 4.69 indicates that the unit is meeting aspirations 
because responses are generally above “neutral”, and 
the great majority are “agree” or “strongly agree”. Any 
unit scoring above 4.7 indicates that the majority of 
responses are in strong agreement that the unit is 
outstanding. Table 1 summarises the meaning of the 
unit quality indicators.   

 

Table 1: Monash unit quality indicators 

Colour 
Code Meaning Unit 

Measure 
Characteristics of 

unit response  
Purple Outstanding Median ≥ 

4.7 
Majority of 

responses are 
“strongly agree” 

Green Meeting 
aspirations 

Median 
between 

3.6 – 4.69 

Responses are 
generally above 

“neutral”, the great 
majority are “agree” 
or “strongly agree” 

Orange Need to 
improve 

Median 
between 

3.01 – 3.59 

Responses are 
generally “neutral” 
or bimodal with no 

clear trend 

Red Needing 
critical 

attention 

Median ≤ 
3.0 

Responses 
generally below 

“neutral”, majority 
“disagree” or 

“strongly disagree” 

CRPIT Volume 123 - Computing Education 2012

168



The target set by Monash University is that 5% or 
more units should be rated as “outstanding”, 80% or 
more should “meet aspirations”, 10% or less should 
“need improvement” and 5% or less should “need 
critical attention”. At the end of each semester a “red 
report” is produced flagging units that fall in the 
needing critical attention zone. For these units, the 
academic policy on Student Evaluation of Teaching and 
Units (SETU) (Monash University, 2011c) Procedures 
requires that:  

“Each unit-owning faculty reviews the published 
reports and data files of the unit evaluation 
data and prepares an action plan to address 
areas for improvement for faculty-wide 
issues.”   

and that 
“The department/school prepares an action plan 

to address areas for improvement where unit 
issues are identified.” 

 
Units that fall in the “red” for three consecutive 

offerings are deemed non viable and are discontinued, 
unless the Dean or ADE argue a case for their 
continuation along with a detailed action plan. 

Monash University has set a target of less than 5% 
for units requiring critical attention.  Unfortunately, 
figures from 2008 to 2010 ICT unit evaluation surveys 
show that approximately 10% of units within ICT need 
urgent attention (Monash University, 2011d). 

3 Research Approach 
This section describes how the responses to the open 
ended questions in the unit evaluation data was 
obtained, and details the process followed to analyse the 
data. Since the raw data was not collected by the project 
team, the team sought permission to use the data 
gathered by University Statistics (Strategic Analysis 
and Surveys), from of the Office of Pro Vice-
Chancellor (Planning & Quality), (OPVCPQ). 

Human ethics approval was obtained to analyse the 
unit evaluation qualitative comments for the units 
needing critical attention before commencement of the 
project. 

3.1 Unit vs. Unique Unit Offering 
To obtain the data from the OPVCPQ a clarification 
was required about the term unit. FIT teaches its units 
across multiple campuses. Monash has six campuses, 
four domestic campuses within Victoria and two 
international campuses, Malaysia and South Africa.  

This essentially means that the same unit can be 
offered at six different campuses.  In a Unit Evaluation, 
a 'unit' is defined in a slightly different way; it is a 
'unique unit offering', which is a unique identifier 
comprising the following components: 

unique unit offering = unit code + teaching period + 
mode (eg. face-to-face or off-campus) + location (eg. 
campus) 
 

For example, as shown in Table 2, the fictitious unit 
FIT1234, may have four unique unit offerings, with  

different overall satisfaction ratings across the different 
campuses, some of which may be above 3, and some 
below.  “Mode” in Table 2 refers to the delivery mode; 
‘f2f’ refers to face–to–face and OCL refers to ‘Off 
Campus Learning”. 
 

Unit 
Code Sem Year  Mode  Campus UW-

Item 5 
FIT1234  2 2010 f-2-f campus-A 3 
FIT1234  2 2010 OCL campus-B 2.7 
FIT1234  2 2010 f-2-f campus-C 4.7 
FIT1234  2 2010 mixed campus-D 3.9 

Table 2: The same unit offered at four campuses 

The average median for all the unique unit offerings 
is 3.57, which is well above 3. However, there are two 
unique unit offering (FIT1234 campus-A and campus-
B) with median 3 or below. For this study, the 
qualitative comments for all the unique unit offerings of 
ICT units that were taught in semester 2, 2010 that 
scored 3.0 or below were requested. 

3.2 The Data Collection  
The OPVCPQ extracted the comments from the 'unique 
unit offerings' with median of 3 or below for all 
faculties. Comments relating to the same unit were 
consolidated into one file and put into a folder of the 
unit owning faculty. In the above example, the 
comments of FIT1234 as surveyed at campus A and 
Campus B were put together in one file and stored in 
the folder of ‘ICT’, though they are treated as two 
unique unit offerings.  

Ten faculty folders containing comments from 
various unique unit offerings with the same 'unit code' 
were provided.  However, for this study only student 
comments relating to the ICT units were analysed.  

The OPVCPQ provided comment files with campus 
and unit information removed from the files.   The 
majority of the comments that were provided came 
from online surveys, however, a small portion of the 
hand written comments taken from the paper surveys 
where provided as images. Some 'unique unit offerings' 
had no comments at all. The comments in the provided 
files were partially de-identified, with unit and campus 
information being removed.  However, some files 
contained students’ comments with sensitive 
information that could possibly lead to the identification 
of staff, so all identifying information was removed 
before using these comments in this study. 

3.3 Method of Analysis 
Once the data was converted into a non-identifiable 
form a consistent analysis approach was needed. Two 
methods of analysis were considered. These were: 
i) Using a similar approach to that reported in the 

Course Experience Questionnaire comments 
summary report by Monash Quality Unit, where a 
count of the positive to negative comments is 
undertaken and then a ratio calculated (Monash 
University, 2011a). The ratio would provide an 
indication of ‘balance of opinion’ but not the areas 
in which students saw as needing critical attention.  

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

169



ii) Using a grounded theory based approach to code 
the data to determine common re-occurring themes 
in need of critical attention (Dick, 2005, Strauss 
and Corbin, (1990). ) 
 

Since the aim is to develop an understanding of 
common areas for improvement in units needing critical 
attention, the grounded approach (ii) was adopted. 
However, only open coding was performed as this is 
still an exploratory study and so no causal connections 
have been postulated between categories i.e. no axial 
coding has been done. Thirteen ICT units were 
identified by OPVCPQ as needing critical attention and 
these units were referred to as unit 1 to unit 13. The 
student comments to the following open ended question 
were analysed: 

 “What aspects of this unit are most in need of 
improvement?”  

The main categories were arrived at by the two 
researchers independently reading through all the 
comments for the unit with the most comments and 
listing common themes. The main categories were 
straightforward to identify as they were effectively 
‘keywords’ in the comment.  For example, a comment 
may begin with “The lecturer was...” indicating that this 
comment is in the ‘lecturer’ category. This process was 
repeated for a further two units, those with the second 
and third most comments. Comparison of coding 
showed little disagreement amongst the researchers. 
The category/sub category comment frequency per unit 
as well as the number of unique unit offerings for the 
unit is shown in Table 3; the top three units with the 
most comments were units 2, 1 and 11.  

 

Unit Category Comment 
Frequency 

Number of 
unique 

offerings 
2 62 5 

1 50 6 

11 35 1 

13 33 2 

5 28 3 

8 22 2 

9 13 3 

12 12 1 

7 9 1 

4 7 2 

3 6 2 

10 2 2 

6 1 1 

Table 3: Comments per unit in decreasing frequency 
order 

For each category, the researchers identified a set of 
category attributes. Arriving at a common set of 
attributes required considerable negotiation between the 
researchers. Once the main categories and the category 
attributes were agreed, the researchers divided the 
remaining units and each coded the units separately. 

While there was scope to add categories and attributes 
should they appear in the subsequent coding of 
comments, this did not occur. 

During the final phase of coding, each researcher 
checked a random set of codes from the other 
researcher, and discrepancies were discussed; of the 25 
checked only 2 were discussed giving an error rate of 
8% which was deemed acceptable. 

This coding exercise has similarities to the World 
Health Organisation (WHO) coding the cause of death 
from pathologist’s reports. WHO uses a coding system 
called the International Classification of Diseases (10th 
revision) abbreviated to ICD10 (World Health 
Organisation, 2011). Coders are required to undergo a 
training course on using the coding scheme to ensure 
consistency between coders. 

To avoid breaching ethical requirements in our 
reporting we could not report on the total unit 
enrolment in Table 3. By specifying the unit enrolment 
and also knowing that the unit scored below 3.0 on 
UW-Item 5, the year it was taught and the faculty it 
belonged to, it would be possible for in-house 
academics and students to identify the unit.   We have 
therefore expressed this concern as a limitation of our 
study in section 4.5. 

 

4 Results and Discussion 
A total of 281 qualitative comments from thirteen ICT 
units were categorised and coded.  The actual number 
of individual students giving feedback is less than 281 
as some students commented on multiple areas and 
these were coded as separate comments into their 
respective areas. 

4.1 Note About the Units 
Of the thirteen units analysed, Table 3 shows that five 
units (units 6, 7, 10, 11, 12) were delivered as single 
unit offerings while the others were delivered as 
multiple unit offerings. The extreme cases were unit 1 
being delivered as 6 offerings simultaneously and unit 2 
as 5 offerings. No conclusions will be presented for an 
individual offering as the data has been de-identified so 
it is not possible to say which comments relate to which 
offering. Also, different staff were involved in unit 
delivery at the different locations and again no 
comment can be made about specific staff. 

4.2 The Main Categories 
There were eight main categories that emerged from the 
analysis process. Table 4 contains the eight categories 
and the number of comments recorded against that 
category. The percentage figure is the frequency as a 
fraction of the 281 comments made. 

The ‘lecturer’ and ‘lecture’ categories differ in that 
‘lecturer relates to items like the presentation style, 
apparent knowledge of the subject matter in answering 
audience questions and availability to students. 
‘Lecture’ refers to the content of the actual lecture as 
gauged by how much material was presented, the 
logical flow to the material and the originality of the 
material. 

CRPIT Volume 123 - Computing Education 2012

170



Likewise the ‘tutor’ and ‘tutorial’ categories differ in 
that ‘tutor’ relates to how prepared and knowledgeable 
the tutor was and how responsive to students were they 
in terms of answering questions and emails. ‘Tutorial’ 
refers the relevance or alignment of the material to the 
lecture, the type of exercises, the complexity of 
exercises and the duration of the tutorial. 

 
Category Frequency % 
Lecturer 48 17.1 

Lecture 80 28.4 

Tutorial 55 19.6 

Assessment 53 18.9 

Tutor 14 5.0 

Off Campus 7 2.5 

LMS 15 5.3 

Resources 9 3.2 

Table 4: Main categories 

The ‘assessment’ category refers to items like clarity 
of the assignment specification, alignment with lectures, 
detailed and clear marking guidelines and quality of 
feedback. The ‘LMS’ (Learning Management System) 
category refers to items like ease of navigation, amount 
of material and accuracy of the material. The ‘Off 
campus’ category refers to the level of support 
specifically for off campus students. This may be via 
the LMS or availability of lecturers and tutors for 
consultation. The ‘resources’ category refers to the 
currency of recommended readings, the availability of 
readings and references from the library and the sheer 
quantity of readings and references.  

4.3 The Attributes of the Main Categories 
Each of the main categories contained a set of sub-
categories or attributes. Tables 5 to 12 contain the list of 
attributes from each main category, the total number of 
comments for each attribute, and percentage expressed 
as a fraction of the category comments. 

 
Category Attribute Frequency % 
Lecturer-knowledge 4 8.3 

Lecturer-presentation 
style/engagement 20 41.7 
Lecturer-support 

(availability, attitude) 13 27.1 

Lecturer-organisation 10 20.8 
Lecturer-response time 1 2.1 

Lecturer 48 100% 

Table 5: Lecturer attributes – 48 comments 

Under the main category of lecturer, five attributes 
emerged from the students’ comments.  These were the 
lecturer’s knowledge, presentation style, the support 
provided, organisation and response time. In this 
category, overwhelmingly the lecturers’ presentation 
style was most frequently mentioned. Typical responses 
from students about the presentation style included: 

• The lectures were incredibly dull and presented 
poorly. 

• THE TEACHING! We just sit in class without any 
proper guidelines. They expect us to learn from 
somewhere and just come in and do exercises.  

• Needs more engaging teaching methods.  
• I believe that the lecturer's delivery could use some 

improvement. It's just the delivery of his lectures 
tends to drone. 
 

Category Attribute Frequency % 
Lecture-structure 15 18.7 
Lecture-access 2 2.5 
Lecture-content 51 63.7 

Lecture-challenge 5 6.3 
Lecture-quantity 7 8.8 

Lecture 80 100% 

Table 6: Lecture attributes – 80 comments 

Under the main category of lecture, five attributes 
emerged from the students’ comments.  These were the 
lecture structure, access to the material, the content, the 
level of challenge, the amount of material and the 
accuracy of the material. Overwhelmingly the lecture 
content was most frequently mentioned. Typical 
responses from students about the lecture content 
included: 
• The overall content of the course was very "ideal 

situation" theory and not real world practicalities. 

 Many students have mentioned they find the content 
superficial and not aimed at “the right” level. 
• The lecture's content should be more detail and 

more reading lists suggested 
• The content seems to be outdated. 
• The content of this unit should be altered for 

students to be able to see the relevance of the 
information given in the REAL world ie how to 
apply the information in the real world. 

• Lectures should not refer to SAP screens, 
especially when using text-only (no screen shots) to 
explain navigation of SAP interface. 
 

Category Attribute Frequency % 
Tutorial-type of activity 12 21.8 

Tutorial-clarity 7 12.7 
Tutorial-alignment 16 29.1 
Tutorial-available 

software 16 29.1 

Tutorial-length 1 1.8 
Tutorial-scheduling 3 5.5 

Tutorial 55 100% 

Table 7: Tutorial attributes – 55 comments 

Under the main category of tutorial, six attributes 
emerged from the students’ comments.  These were the 
type of activity, the clarity of the tutorial questions, 
alignment of the tutorial activity with the lecture 
content, the available of software to complete the 
activity, the length of the activity and when the tutorial 
class was scheduled. The tutorial alignment and 
availability of software were most frequently 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

171



mentioned. Typical responses from students about the 
tutorial alignment included: 
• Unbelievable amount of incoherence between all 

elements of the subject-lecturers, tutorial and 
assignments. 

• Tutorials not too directly related to what is covered 
in class or in the book. 

• tutorials/structure of work is completely unrelated 
to weekly classes. 

• Overall structure and ensuring the work in 
tutorials is relevant to the exam. 

• Tutorials should be aimed towards learning 
objectives. 

 
Category Attribute Frequency % 
Assessment-marking 

(consistency of marking, 
quality of feedback, 
timeliness, clarity of 

marking criteria) 

20 37.7 

Assessment-alignment 8 15.1 
Assessment-specification 25 47.2 

Assessment 53 100% 

Table 8: Assessment attributes – 53 comments 

Under the main category of assessment, three 
attributes emerged from the students’ comments.  These 
were related to the consistency of marking, the 
alignment of the assessment to the learning objectives 
and the clarity in the assessment specification. In this 
category, the specification was most frequently 
mentioned followed by the marking criteria. Typical 
responses from students about the assessment 
specification and marking included: 
• The assessments were in great need of updating -

outdated directions for use of software that had 
changed. Non-standardized submission formats 
that made assessments a frustration. 

• Clarity of the assessment tasks and assignments 
• the marking system in this unit is very 

disappointing and the feedback is terrible. For 
most assignments; they have not even stated what is 
done wrong, but just given a grade! 
 

Category Attribute Frequency % 
Tutor-knowledge 1 7.2 

Tutor-presentation style 2 14.2 
Tutor-support 10 71.4 

Tutor-response time 1 7.2 
Tutor 14 100% 

Table 9: Tutor attributes – 14 comments 

Under the main category of tutor, four attributes 
emerged from the students’ comments.  These were 
related to the tutor’s knowledge of the subject material 
(or preparation before the tutorial), presentation style to 
the students (discussion of questions or just giving 
answers), how supportive or helpful the tutors were to 
students and how long did they take before replying to 
questions. Tutor support was of the most concern to 
students. Typical comments included: 

• TEACHER SUPPORT! I have not spoken to ANY 
teacher or tutor in my entire time with this subject. I 
don't even know if I have a tutor let alone their 
names. The level of help offered was slim to none for 
me,  

• In a Two hour tutorial for this unit. My tutor would 
spend the first hour checking emails and 'surfing' 
the web while we completed the tutorial exercises 
(he did not offer any help or guidance). 

• we would spend 20 minutes going through the 
answers where the tutor read off the answer sheet he 
had and could not provide any greater 
understanding.. Then the tutor left after 1 hour and 
20 minutes EVERY WEEK..  

 
Category Attribute Frequency % 
Off-Campus-support 6 85.7 

Off-Campus-availability 
recordings 1 14.3 

Off-campus 7 100% 

Table 10: Off-campus attributes – 7 comments 

Under the main category of off-campus, two 
attributes emerged from the students’ comments.  These 
were related to the amount of support for distance 
education students and availability of resources that 
captured what occurred in the lecture. Typical 
comments included: 
• The off campus lecturer was unavailable to answer 

questions -repeated posts on Blackboard were 
ignored. On one occasion, after posting the same 
question twice and waiting almost two weeks for an 
answer 

• There needed to be a recorded lecture made 
available to students (especially for off campus 
students). Sometimes, reading something does not 
achieve the same effect compared to hearing 
someone talk about it, or describe it more in detail.  

 
Category Attribute Frequency % 

LMS-ease of use 4 26.7 
LMS-quantity 1 6.7 
LMS-accuracy 10 66.6 

LMS 15 100% 

Table 11: LMS attributes – 15 comments 

Under the main category of LMS, three attributes 
emerged from the students’ comments.  These were 
related to the ease of navigation and finding materials 
(comparing Blackboard to Moodle), the amount of 
material that was actually on the LMS and accuracy of 
the material. LMS-Accuracy was the biggest concern as 
students rely on this information if they missed lectures. 

 
• The content of the course is a mess. There are old 

files from previous semesters sitting in the 
Blackboard which makes it very confusing. 

•  Use of blackboard was poor for this unit. Lecture 
notes on blackboard were frequently not the ones 
used in the lecture. When asked for updated notes, 

CRPIT Volume 123 - Computing Education 2012

172



these were emailed to individuals rather than put 
up on Blackboard.  

The resources category dealt with issues like how 
many readings were there for the unit as well as how 
available they were in the library or other sources. 
 

Category Attribute Frequency % 
Resources-relevance 5 55.6 
Resources-Quantity 1 11.1 

Resources-Availability 3 33.3 
Resources 8 100% 

Table 12: Resource attributes – 9 comments 

Typical comments included: 
• Readings clearly not considered this semester - 

with the library list it was difficult to determine 
which was intended for which week, with lecture 
notes "key readings" some were just unable to be 
sourced..  

• Disappointed that most of the reading material for 
a multimedia unit was ~ 10 years old..  

4.4 The Most Frequently Mentioned 
Categories 

Table 13 lists the most frequently occurring areas of 
concern to the students. These areas have been 
aggregated across the 13 ICT units. So, across all 13 
units, 51 of the 281 total comments related to lecture-
content. Clearly this is the main concern for ICT 
students, followed by assessment-specification, and 
then two similarly ranked items: lecturer-presentation 
style and assessment-marking. 
 

Rank Frequency % Category Description 

1 51 18.2 Lecture-content 

2 25 8.9 Assessment-specification 

3 20 7.1 Lecturer-presentation 
style/engagement 

3 20 7.1 Assessment-marking  

4 16 5.7 Tutorial-alignment 

4 16 5.7 Tutorial-available resources 

5 15 5.4 Lecture-structure 

6 13 4.6 Lecturer-support 

7 12 4.3 Tutorial-type of activity 

8 10 3.6 Lecturer-organisation 

8 10 3.6 Tutor-support 

8 10 3.6 LMS-Accuracy 

9 8 2.9 Assessment-alignment 

10 7 2.5 Lecture-quantity 

10 7 2.5 Tutorial-clarity 

Table 13: Top ten category attributes  

Although, not all areas listed in Table 13 applied to 
every unit, many of these areas were raised by students 
in 2008 and 2009 “red” units.  The outcome of this 
study confirms the preliminary findings already 

obtained from earlier PATS participants that are 
reported in (Carbone, 2011b). Participants in the PATS 
program typically focused on and addressed one of 
those areas related to improving the lecturer content, 
linking the lecture to the tutorial material and improving 
the clarity of assessment items (Carbone, 2011b). 

4.5 Limitations of Study 
When interpreting the data it should be noted that units 
which had a large student cohort could distort 
perceptions across the faculty. Table 13 shows that 
lecture content is the biggest concern for ICT units. 
However, this finding is heavily influenced by unit 2 
which had the most comments (62), as listed in Table 3. 
Table 14 shows the top four concerns for unit 2 as 
lecture content, lecturer presentation, tutorial alignment 
and assessment alignment. In tables 14, 15 and 16, the 
column “% of category” indicates how much this unit 
influenced the category attribute overall. For example, 
in Table 14, fourteen comments from a total of 51 
comments related to lecture content (ie. 27.5%) come 
from Unit 2; 10 comments from a total of 20 comments 
related to lecturer presentation (ie. 50%) also come 
from Unit 2.   
 

Category 
description 

Unit 2 
category 

frequency 

Overall 
category 

frequency 

% of 
category  

Lecture-content 14 51 27.5 
Lecturer-

presentation 
style/engage 

10 20 50.0 

Tutorial-
alignment 7 16 43.7 

Assessment-
alignment 4 8 50.0 

Table 14: Top 4 category attributes for unit 2 

Table 15 has the top four concerns for unit 1, which 
has the second highest number of comments. For unit 1, 
assignment specification is the top concern, whereas 
lecture content is the fourth concern.  

 
Category 

description 

Unit 1 
category 

frequency 

Overall 
category 

frequency 

% of 
category  

Assessment-
specification 10 25 40.0 

Tutorial-available 
software 9 16 56.3 

Lecturer-
presentation 

style/engagement 
6 20 30.0 

Lecture-content 4 51 7.8 

Table 15: Top 4 category attributes for unit 1 

However, for unit 8, with the sixth most number of 
comments and hence chosen as a ‘more average’ unit, 
resource relevance is of the most concern. 

 
 
 
 
 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

173



Category 
description 

Unit 8 
category 

frequency 

Overall 
category 

frequency 

% of 
category  

Resources-
relevance 

4 6 66.7 

Lecture-content 3 51 5.8 

Lecture-structure 2 15 13.3 
Tutorial-

alignment 2 16 12.5 

Table 16: Top 4 category attributes for unit 8  

Hence, while the top concerns are listed in Table 13, 
it should be noted that they do not necessarily apply to 
all units and certainly not in that order. 

Another limitation of the study relates to response 
rates. As explained in section 2.1, the Monash SETU 
instrument has two components; 5 Likert scale 
(quantitative) questions and 2 open ended (qualitative) 
questions. A student response is included in calculating 
the response rate even if the student only responds to 
the University Items 1-5 (quantitative questions) and 
leaves the qualitative questions blank. For example, in 
unit 11, there were 72 enrolments with 22 responses 
giving a response rate of 30.6%. However, there were 
only 13 actual qualitative comments, giving a response 
rate of 18.1%. As shown in Table 3, these 13 qualitative 
comments gave rise to 35 category/sub category 
comments. At this stage, the breakdown for unit 11 has 
only  been possible because it had only one unique unit 
offering. Obtaining these statistics is an area for further 
investigation, without breaching ethical considerations. 

5 Conclusion and Future Work 
Close to 10% of units in Information and 
Communication Technology (ICT) disciplines across 
Australia are flagged as needing critical attention. Such 
results may lead to a number of negative consequences 
including poor student learning. This study aimed to 
take a first step in developing an understanding of the 
areas that students perceive as needing critical attention.  
This understanding was achieved by analysing the 
qualitative responses to Monash’s unit evaluation 
questionnaire that were deemed needing critical 
attention.  

A partial grounded theory based approach was used 
to code 281 responses from across 13 ICT units for 
semester 2, 2010 to the question “What aspects of this 
unit are most in need of improvement?”. The 13 ICT 
units selected were those in the “red zone” as measured 
by the Monash unit quality indicators in Table 1.  
Responses from students were used to determine 
common re-occurring themes, which covered eight 
broad areas in which units can be improved. These 
related to the lecturer, the lecture, the tutor, the tutorial, 
assessment, the LMS, off-campus support and 
resources. Students identified aspects of units most need 
of improvement. The units examined by the authors 
were ones that the students’ perceived lacked quality.  
So by grouping these aspects into categories, the 
authors have identified eight categories which impact 
on students’ perception of ‘unit quality’. 

However, the three top concerns for students in 
these units are the lecture content, the assignment 
specification and equal third, the lecturer’s ability to 
engage students and the assessment marking which 
includes consistency of marking, quality of feedback, 
timeliness, and clarity of marking. The implications of 
our results will help ICT lecturers with planning their 
next unit offering, and will offer some empirical 
evidence to central teaching preparation programming. 
This understanding will inform the design and 
development of professional staff training programs, to 
improve units, teaching practice, the student experience 
and unit evaluations. 

The next phase of project is repeat the qualitative 
comment analysis process described above with unit 
evaluation data from the remaining faculties. This will 
be tackled by initially analysing the data from low 
performing units in the Faculty of Engineering and 
Faculty of Education, since these faculties generally 
perform below the university average at Monash 
University.  This process will be followed by a further 
analysis on the data derived from faculties who 
generally are top performers (ie. the Faculty of Law, the 
Faculty of Business and Economics and the Faculty of 
Arts).  

In semester 2, 2010, the reported number of poorly 
performing units were:  

• 19 for Art and Design; 
• 33 for Arts 
• 20 for Business and Economics 
• 29 for Education 
• 9 for Engineering 
• 1 for Law;  
• 37 for Medicine, Nursing and Health Sciences 
• 2 for Pharmacy and 
• 9 for Science  

It is expected that the main eight categories will still 
be applicable as they are generic to educational 
concerns across any discipline but that the attributes 
may change for each category. Of interest is whether 
the priorities of the categories and attributes remain the 
same as those identified in the ICT units.  

It is also expected that as more faculty units are 
analyses that some axial coding of the categories should 
emerge. For example, if the assessment specification is 
poor then assignment marking may also be a concern. 

6 Acknowledgements 
The authors wish to thank the Australian Learning 

and Teaching Council (ALTC) Teaching Fellowship 
Program for funding an extension grant to the Peer 
Assisted Teaching Scheme (PATS) to analyse 
qualitative SETU data for units perceived as needing 
critical attention across all faculties of Monash 
University.  A special thank-you goes to Ms Jessica 
Wong for her administrative assistance throughout the 
project. 
 

CRPIT Volume 123 - Computing Education 2012

174



 

 

7 References 
Ashwin, P. 2003. 'Peer facilitation and how it 

contributes to the development'. Research in Post-
Compulsory Education, 8, 5-18. 

Australia Council of Deans of Information 
Communication Technology (Acd Ict) 2011. 
Learning and Teaching Forum, University of 
Adelaide. 

Australian Graduate Survey - Course Experience 
Questionnaire (Ceq). National CEQ data - Survey 
Items Results: 2005-2009 [Online]. Available: 
http://www.opq.monash.edu.au/us/pivot-table/ 
[Accessed Jan 2011]. 

Carbone, A. 2010. Peer Assisted Teaching Scheme 
(PATS). Australian Learning and Teaching Council 
(ALTC). 

Carbone, A. 2011a. Building peer assistance capacity in 
faculties to improve student satisfaction of units. 
Higher Education Research and Development 
Society of Australasia (HERDSA). Gold Coast, 
Queensland, Australia. 

Carbone, A., Ceddia J. And Wong J. 2011b. A Scheme 
for Improving ICT Units with Critically Low 
Student Satisfaction. Innovation and Technology in 
Computer Science Education ( ITiCSE ). Darmstadt, 
Germany. 

Dick, B. 2005. Grounded theory - A thumbnail sketch. 
[Online]. Available: 
http://www.scu.edu.au/schools/gcm/ar/arp/grounded
.html. [Accessed July 26 2011]. 

Gratch, A. 1998. Beginning Teacher and Mentor 
Relationships. Journal of Teacher Education, 49. 

Monash University. 2011a. CEQ reporting data 
[Online]. Available: 
http://www.opq.monash.edu.au/us/surveys/ags/ceq-
comments-analysis/index.html [Accessed August 
2011]. 

Monash University. 2011b. SETU survey results 
[Online]. Available: 
http://opq.monash.edu.au/us/surveys/unit-
evaluations/distribution-administration.html 
[Accessed August 2011]. 

Monash University. 2011c. Student Evaluation of 
Teaching and Units (SETU) Procedures [Online]. 
Available: http://www.policy.monash.edu/policy-
bank/academic/education/quality/student-
evaluation-of-teaching-and-units-procedures.html) 
[Accessed August 2011]. 

Monash University. 2011d. Unit evaluation reports 
[Online]. Available: 
https://emuapps.monash.edu.au/unitevaluations/wr/u
ewr_rp1_public_yearseme.jsp [Accessed August 
2011]. 

Pats. 2010. Peer Assisted Teaching Scheme Resources 
[Online]. Available: 
http://opvclt.monash.edu.au/educational-
excellence/peerassistedteachingscheme/resources.ht
ml [Accessed August 2011]. 

 

Strauss, A. & Corbin, J. (1990). . Basics of qualitative 
research - Grounded theory procedures and 
techniques., Newbury Park, California:, Sage. 

World Health Organisation. 2011. International 
Classification of Diseases [Online]. Available: 
http://www.who.int/classifications/icd/en/ [Accessed 
August 2011]. 

 
 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

175

http://www.opq.monash.edu.au/us/pivot-table/
http://www.scu.edu.au/schools/gcm/ar/arp/grounded.html
http://www.scu.edu.au/schools/gcm/ar/arp/grounded.html
http://www.opq.monash.edu.au/us/surveys/ags/ceq-comments-analysis/index.html
http://www.opq.monash.edu.au/us/surveys/ags/ceq-comments-analysis/index.html
http://opq.monash.edu.au/us/surveys/unit-evaluations/distribution-administration.html
http://opq.monash.edu.au/us/surveys/unit-evaluations/distribution-administration.html
http://www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-of-teaching-and-units-procedures.html
http://www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-of-teaching-and-units-procedures.html
http://www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-of-teaching-and-units-procedures.html
http://opvclt.monash.edu.au/educational-excellence/peerassistedteachingscheme/resources.html
http://opvclt.monash.edu.au/educational-excellence/peerassistedteachingscheme/resources.html
http://opvclt.monash.edu.au/educational-excellence/peerassistedteachingscheme/resources.html
http://www.who.int/classifications/icd/en/


CRPIT Volume 123 - Computing Education 2012

176



Directions and Dimensions in Managing Cheating and Plagiarism of IT 

Students 

Judy Sheard 
Faculty of Information Technology 

Monash University 

PO Box 197, Caulfield East 3145, Victoria 

judy.sheard@monash.edu 

Martin Dick 
School of Business Information Technology  

and Logistics 

RMIT University 

GPO Box 2476, Melbourne 3001, Victoria 

martin.dick@rmit.edu.au 

 

 

 

Abstract 
The problem of cheating at university is a widespread and 

long-standing issue. There are a variety of strategies that 

are used to address the problem which broadly fall into 

the areas of education, prevention, detection and 

consequence. An important consideration when deciding 

to tackle the problem of cheating is that the effectiveness 

of methods for addressing cheating are not necessarily 

the same for the different types of cheating. This paper 

presents an investigation of cheating practice of 

undergraduate IT students using a factor analysis to 

determine categories of cheating behaviour and 

influences on this behaviour. The implications arising 

from this analysis for addressing cheating are then 

examined and recommendations made for strategies 

which are appropriate for particular types of cheating.  

 
.
Keywords: cheating, plagiarism, undergraduate students. 

1 Introduction 

The problem of cheating is a difficult one to address as in 

many ways it is a negative-sum activity for academics. 

Time and effort devoted to preventing, detecting and 

punishing students who have been cheating is time that is 

not being used to teach and to improve the learning 

experience for students. It is important therefore for 

academics to determine a balance in their educational 

activities so as to reduce the incidence of cheating in their 

classes, but without distorting or at least minimally 

distorting the educational experience that is being 

provided to the students. 

In order to achieve this aim, it is necessary to consider 

a range of issues. Previous work by the authors (Dick et 

al., 2003; Dick, Sheard, & Hasen, 2008) proposed that 

activities for managing cheating fall into four main 

conceptual areas: 

 

                                                           

Copyright © 2012, Australian Computer Society, Inc. This 

paper appeared at the 14th Australasian Computing Education 

Conference (ACE2012), Melbourne, Australia, January-

February 2012. Conferences in Research and Practice in 

Information Technology, Vol. 123. M. de Raadt and A. 

Carbone, Eds. Reproduction for academic, not-for-profit 

purposes permitted provided this text is included. 

 Education – primarily focused on activities that 

educate students on what cheating is and why it is 

bad for them to cheat, but also educating academics 

on the issue of cheating and how to address it in their 

teaching 

 Prevention – activities which assist in the design of 

curriculum and assessment tasks so as to minimise 

the need for, and the benefit to be gained from, a 

variety of cheating types, and also providing tools 

for students to manage their studies 

 Detection – the development of tools and procedures 

to detect when cheating has taken place and the 

processes by which these tools are used in teaching 

 Consequence – the procedures in place to handle 

cases of cheating, the punishments which are 

allocated for cheating and to publicise the results of 

those procedures 

 

The academic needs to make decisions on the level of 

effort that they allocate to the above four areas. In doing 

so, the academic has to consider the type of cheating that 

may occur in their classes. The effectiveness of strategies 

for addressing cheating are not necessarily the same for 

the different types of cheating. For example, students are 

often confused about plagiarism (McCabe, 2005) and 

strategies which focus on education will probably be the 

most effective to address this issue; however, education-

focused strategies may be quite ineffective in addressing 

situations where students arrange for other people to sit 

their exam for them. In that case, a focus on consequence 

and the potential punishments may be the best strategy to 

adopt. 

This paper builds on the results of a survey undertaken 

at an Australian University (Sheard & Dick, 2011) by 

using a factor analysis to determine the commonalities in 

three areas of the survey: the attitudes towards different 

cheating practices, the reasons that students indicate 

would cause them to cheat and the reasons that students 

indicate would cause them not to cheat. These three sets 

of factors were then analysed to determine whether there 

are statistically significance differences in influences on 

different types of cheating practices between the students 

who claimed to have cheated and those who claimed not 

to have cheated. The focus of the analysis is on the 

undergraduate student cohort of the dataset. A similar 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

177



analysis on a postgraduate cohort was conducted by the 

authors in a previous survey (Sheard & Dick, 2003). 

The implications arising from the analysis for 

strategies and focus to be taken to address particular 

types of cheating practice are then examined. 

2 Background 

In order to set the scene for the analysis, this section 

looks at the extent of the cheating problem and the 

influences on cheating practices as has been discovered 

in past research, and then examines some of the strategies 

that have been put forward to address the four conceptual 

areas. The following is not an exhaustive description of 

the literature, but does provide a representative sampling 

of the work in each area. 

2.1 The extent of the cheating problem 

The literature on cheating in universities report 

alarmingly high rates of cheating practice and a problem 

that is long-standing and widespread. For example, an 

early study of 5,422 North American undergraduate 

students in 1963 by Bowers (1964) found that 75% 

admitted to having committed at least one of 13 specific 

cheating acts. These ranged from copying a few 

sentences of material without footnoting in a paper (43%) 

to taking an exam for another student (1%). Another 

major study in 1993 of 6,096 undergraduate students by 

McCabe and Trevino (1993) found that 67% admitted to 

cheating at least once in their course. Around that time a 

UK study by Newstead, Franklyn-Stokes and Armstead 

(1996) found that 88% of 943 students admitted to 

cheating in at least 1 of 21 cheating behaviours, ranging 

from paraphrasing material without acknowledgement 

(54%) to sitting an exam for someone else (1%). More 

recently, Australian studies have reported similar high 

rates of cheating. For example, in 2001 Marsden, Carroll 

and Neill (2005) report a study which found that 81% of 

954 students admitted to plagiarism and 41% to exam 

cheating on at least one occasion. Curtis and Popal 

(2011) report levels of plagiarism of 81% in 2004 and 

74% in 2009. 

2.2 Factors influencing cheating practice 

Cheating practice varies across disciplines, with IT 

students along with engineering, science and business 

students engaging in the highest rates of cheating 

(Bowers, 1964; Davis & Ludvigson, 1995; Roberts, 

Anderson, & Yanish, 1997). Focusing specifically on IT 

students, Sheard, Carbone and Dick (2003) found that 

79% of 504 undergraduate students admitted to at least 1 

of 16 different cheating practices. Other studies have also 

reported high rates of cheating in IT courses (Barrett & 

Malcolm, 2006; Simon, 2005). 

Studies have identified a number of factors which 

influence cheating behaviour. These may be personal 

characteristics, attitudinal or situational factors. The 

study of IT students by Sheard, Markham and Dick 

(2003) found time pressure and fear of failing as the main 

influences. Similar reasons have been found in other 

studies. For example, the studies by Newstead et al 

(1996) and Wilkinson (2009).  

2.3 Strategies  

As can be imagined, there are many suggestions for 

strategies to address the cheating problem, often drawn 

from considering the factors that are believed to influence 

cheating behaviour. Bennett (2005) proposes that 

strategies to address cheating should be tailored 

according to the type of cheating and this research 

follows that proposal. We now provide an overview of 

strategies under each conceptual area identified in the 

Introduction. 

2.3.1 Education 

Recently, strategies have focused on education about the 

problems associated with cheating and awareness of 

policies and possible consequences. A couple of 

examples of strategies which have been developed for IT 

students are: an electronic plagiarism tool to educate 

students about correct use of source material (Barrett & 

Malcolm, 2006) and a resource to assess IT students‟ 

understanding of plagiarism and help them understand 

how it can be avoided (Joy, Cosma, Sinclair, & Yau, 

2009). McCabe (2005) argues strongly that the emphasis 

should be on using education to develop a culture of 

academic integrity. Honour codes have been used for this 

purpose with reported success; however, these are not 

possible or appropriate for all contexts. Hutton (2006) 

makes several recommendations about using education to 

develop a culture of academic integrity to reduce 

cheating.  

2.3.2 Prevention 

An important strategy in addressing the problem of 

cheating is to actively seek ways to prevent cheating. 

Carroll (2004) comments:  

„Catch and punish’ approaches are self-defeating in 

that they absorb huge amounts of staff time, do not 

lessen the overall incidence of plagiarism, and deflect 

students from a focus on learning to one devoted to 

not breaking rules or not getting caught.  

Carroll proposes that instead educators should focus on 

deterrence. McCabe, Trevino and Butterfield (2001) also 

found that reducing opportunities for cheating was an 

important tool in reducing academic dishonesty. 

McDowell and Brown (2001) list a variety of assessment 

designs that can be used to reduce the opportunity for 

cheating by students. Davis (1993) provides a useful 

resource with many ideas for preventing academic 

dishonesty. Dick, Sheard and Hasen (2008), based on a 

series of focus groups with 72 IT students, also present a 

series of assessment design suggestions to prevent and 

deter cheating by students.  

2.3.3 Detection 

This area has seen considerable interest over the last ten 

years with many commercial services being developed 

such as Turnitin ("Turnitin.com," 2011) and 

CRPIT Volume 123 - Computing Education 2012

178



Blackboard‟s SafeAssign ("SafeAssign," 2011) along 

with many individual systems produced by academics 

and universities to detect cheating, primarily plagiarism. 

Kohler and Weber-Wulff (2010) have tested the 

effectiveness of these types of systems to detect 

plagiarism on several occasions. In the most recent effort 

in 2010, Kohler and Weber-Wulff tested 47 different 

plagiarism detection systems. The test found that only 5 

of the 47 systems could be classified even as ‘partially 

useful’, with 9 out of 47 being classified as „barely 

useful’ and the rest as „useless’. Nevertheless, their use 

has become common in many universities with Turnitin 

claiming to be used in over 10,000 educational 

institutions around the world. 

In terms of software plagiarism, an area of particular 

concern to IT academics, a wide range of tools have been 

developed. Two of the most commonly used are JPlag 

("JPlag," 2011) and MOSS ("MOSS: A System for 

Detecting Software Similarity," 2011). 

2.3.4 Consequence 

Consequence involves two aspects: what types of 

consequence are useful in deterring cheating and how to 

develop a system that manages cases of cheating 

effectively. Bennet (2005), based on the results of an 

empirical study, claims that punishment is a deterrent to 

major plagiarism; however, it is not necessarily effective 

against minor forms of plagiarism. As well, Genereux 

and McLeod (1995) found that fear of punishment was 

one of the most important factors in decreasing planned 

and spontaneous cheating in their survey of 365 US 

college students. 

Carroll (2002, 2004) and Carroll and Appleton (2001) 

from Oxford Brookes University provides much guidance 

on the approaches that universities can take to handle 

cheating and plagiarism processes. She advocates that 

effective procedures for managing these issues are ones 

that: 

 

 Staff are willing to use and trust  

 Students experience as fair, transparent, 

consistent and appropriate  

 Can be followed without difficulty  

 Deliver decisions quickly to (potentially) large 

numbers of students  

 Produce decisions that can be recorded and 

defended 

 

3 Research approach 

Students from selected courses in a Faculty of 

Information Technology were surveyed near the end of 

second semester 2010. Courses were chosen at each year 

level of the undergraduate and postgraduate degrees. For 

the study reported in this paper only data from the 

undergraduate students were used. 

A paper questionnaire was administered in tutorial 

classes by one of the authors who was not involved in 

teaching these classes. Participation was voluntary and to 

encourage honest responses the questionnaire was 

anonymous. Most students chose to participate and a total 

of 117 students from the undergraduate cohort returned 

completed questionnaires. 

Ethics approval for the study was gained from the 

Monash University Human Research Ethics Committee 

(MUHREC). 

3.1 Survey questionnaire 

The questionnaire was developed by the authors and first 

used for a study in 2000. It was used in the current study 

with a couple of minor modifications. The questionnaire 

contained questions to determine: 

 demographic information 

 students‟ rating of the acceptability of various 

questionable work practices described in 18 

different scenarios 

 students‟ practice and knowledge of others‟ 

practice of each questionable work practice 

 factors which could cause cheating 

 factors which could prevent cheating 

Other questions sought students‟ responses to the 

cheating behaviour of other students, and their opinions 

of staff and University attitudes to cheating. These results 

have been reported elsewhere (Sheard & Dick, 2011). 

3.2 Questionable work practice scenarios 

The questionable work practices and factors which could 

influence cheating were situations which the authors and 

their colleagues had experienced or were sourced from 

other studies of cheating, for example, studies by 

Maramark and Maline (1993) and Newstead et al (1996). 

To encourage discrimination in ratings of acceptability, 

the scenarios ranged from practices that would generally 

not be considered cheating (e.g. showing assignment 

work to a lecturer for guidance) to serious forms of 

cheating (e.g. hiring someone to write an assignment). 

The scenarios were referred to as “questionable” rather 

than “cheating” practices so as not to prejudice students‟ 

judgements of their acceptability. Scenarios to gauge 

student reactions to cheating have been used in other 

studies of academic dishonesty, for example, studies by 

Sierra and Hyman (2008) and Stepp and Simon (2010). 

3.3 Analysis  

Considering the many possible cheating practices that 

students may engage in, and the different influences on 

cheating behaviour, cheating is a complex issue. This 

study used factor analysis to identify categories of 

cheating behaviours and influences on cheating 

behaviour. A similar method was used by the authors in a 

study of postgraduate cheating behaviour in a previous 

survey (Sheard & Dick, 2003). Factor analysis is an 

exploratory technique used to find meaningful structure 

underlying a number of variables. It is used to reduce a 

set of variables to a manageable number of dimensions or 

factors. There are typically two stages to a factor 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

179



analysis: an extraction, which is used to determine the 

number of factors, and a rotation, which is used to obtain 

a clearer view of the factors thus making these factors 

more interpretable. The number of factors that are chosen 

to be interpreted from the extraction depends on whether 

meaningful interpretations can be placed on the set of 

factors produced.  

Before a factor analysis is performed, it should be 

determined if the correlation matrix of variables is 

factorable. This can be determined from the Bartlett‟s test 

of sphericity and the Kaiser-Meyer-Olkin Measure of 

Sampling Adequacy test.  If the Bartlett test of sphericity 

is significant at p < 0.05 and the Kaiser-Meyer-Olkin 

measure of sampling adequacy is greater than 0.6 then we 

consider that the correlation matrix is factorable. 

The factor analysis performed in this study used a 

Principal Axis Factoring extraction and a Varimax 

rotation with Kaiser normalization. 

4 Results 

The analysis of the 2010 survey data to determine 

influences on undergraduate cheating behaviour was 

conducted in several stages. First, a factor analysis was 

conducted on the students‟ ratings of acceptability of the 

questionable work practice scenarios to reduce the set of 

cheating practices to a smaller number of cheating 

categories. Next, for each category, the students who 

claimed they had performed any of the practices in the 

category were determined. This gave a group of cheating 

and a group of non-cheating students for each cheating 

category.  

Factor analyses were then performed on the reasons 

for cheating variables and the reasons for not cheating 

variables, reducing these to smaller sets of influence 

constructs. The mean of each rating was determined 

within each construct for each student. 

Finally, the influence of the reasons for cheating and 

reasons for not cheating on the cheating behaviour of 

students within each cheating category was determined 

by comparing the mean ratings of reasons for each 

influence construct of the cheating and non-cheating 

groups. 

4.1 Categories of cheating 

This section explains the process of using a factor 

analysis to establish a set of cheating categories from the 

questionable work practices described by the scenarios. 

For this analysis 16 of the 18 scenarios were used as two 

scenarios that we do not consider to be cheating practices 

(i.e. showing assignment work to a lecturer for guidance 

and posting to an Internet newsgroup for assistance) were 

not included. For each scenario, the students were asked 

to rate how acceptable the work practice was using a 

5-point Likert scale, where 1 indicates acceptable and 5 

indicates not acceptable. A Bartlett‟s test of sphericity 

was significant at p < 0.05 and the Kaiser-Meyer-Olkin 

Measure of Sampling Adequacy test was 0.894, 

indicating that the dataset was factorable. 

.  

 

 

Scenario 
Factor 

1 2 3 4 
Hiring someone to sit an exam for you .866    
Copying all of an assignment given to you by a friend .832    
Taking a student’s assignment from a lecturer’s pigeonhole and copying it .831    
Using a hidden sheet of paper with important facts during an exam .774    
Hiring a person to write your assignment for you .750    
Swapping assignments with a friend, so that each does one assignment, instead of doing 
both 

.732    

Copying another student’s assignment from their computer without their knowledge and 
submitting it 

.725    

Using the answer to a tutorial exercise worth 5% by a class mate if the computer you used 
has problems 

.625    

Submitting an assignment based on a friend’s assignment from a past running of the 
subject 

 .769   

Copying the majority of an assignment from a friend’s assignment, but doing a fair bit of 
work yourself 

 .655   

Two students collaborating on an assignment meant to be completed individually  .643   
Resubmitting an assignment from a previous subject in a new subject  .452   
Copying material for an essay from a text book .452  .626  
Copying material for an essay from the Internet .539  .612  
Obtaining a medical certificate from a doctor to get an extension when you are not sick    .649 
Not informing the tutor that an assignment has been given too high a mark    .647 
Eigenvalues 5.71 2.73 1.35 1.33 
Percentage of variance 31.71 15.19 7.51 7.37 

Table 1: Acceptability of cheating: rotated factor matrix 

 

CRPIT Volume 123 - Computing Education 2012

180



An initial factor analysis of the students‟ ratings of 

acceptability of the scenarios yielded three factors with 

eigenvalues
1
 greater than 1.0. However, the fourth 

eigenvalue was very close to 1.0 and an examination of 

the scree plot
2
 showed a point of inflection between the 

fourth and fifth factor, indicating that a four factor 

solution could be investigated. Examination of the 

variable loadings within the rotated factor matrix of the 

four factor solution indicated interpretable results for 

each factor, and this was deemed more interpretable than 

the three factor solution. 

The factor structure for the four factor solution is 

shown in Table 1. This solution accounted for 62% of 

the total variance. Using a minimum variable loading of 

|0.45|, fourteen scenarios show a clear loading on one 

factor. Two scenarios loaded on factors 1 and 3; 

however, it was decided to include these scenarios only 

in factor 3, as their loading was stronger on factor 3 and 

this made an interpretable factor structure.  

The interpretation of the four factors is as follows:  

Factor 1: Illegal practices (fraud, stealing) 

Factor 2: Collusion (involving assignment work) 

Factor 3: Copying (from a book or the Internet)  

Factor 4: Deception (administrative – not about the 

assessment task)  

The first three factors could be mapped to the four 

indexes of cheating found by Lipson and McGavern 

(1993) in their large study of undergraduate cheating. 

 

4.2 Extent of cheating 

For each cheating category established in the previous 

section, the percentages of students who had performed 

at least one of the cheating practices was determined. 

These results are shown in Table 2. 

. 

Cheating factor 
% students  

admitting to cheating 

Illegal practices  10 
Collusion  51 
Copying 13 
Deception 19 

Table 2: Percentages of students in each cheating 

category 

 

4.3 Acceptability of cheating 

For each cheating category, the mean ratings of 

acceptability were calculated for each student. A 

                                                           
1
 An eigenvalue is a measure of how much variance in 

the data is explained by a single factor 
2
 A scree plot is produced by plotting the eigenvalues 

against the factor number 

comparison of means between the cheating and non-

cheating groups was determined using t-tests. These 

showed that the students who admitted to have cheated 

in practices involving collusion or deception found these 

practices more acceptable than the students who claimed 

to have not cheating. These results are shown in Table 3.  

 

Cheating factor Mean acceptability 
ratings 

t-test 

 non-
cheaters cheaters  

Illegal practices  4.57 4.57  
Collusion  3.80 2.89 5.55* 
Copying  4.42 4.09  
Deception 3.99 3.41 2.90* 

* indicates significant difference (p<0.05) 

Table 3: Mean ratings of acceptability for non-

cheating and cheating groups within each cheating 

category 

 

4.4 Reasons for cheating 

This section explains the process of using a factor 

analysis to establish a set of influences on cheating 

constructs from the 14 reasons for cheating. For each 

reason the students nominated the likelihood that the 

reason would cause them to cheat using a 5-point Likert 

scale where 1 indicates not at all and 5 indicates highly 

likely. A Bartlett‟s test of sphericity was significant at p 

< 0.05 and the Kaiser-Meyer-Olkin Measure of 

Sampling Adequacy test was 0.886, indicating that the 

dataset was factorable. 

An initial factor analysis of the ratings of the 

likelihood of each reason causing cheating yielded two 

factors with eigenvalues greater than 1.0. However, the 

third and fourth eigenvalues were close to 1.0 and an 

examination of the scree plot showed a point of 

inflection between the fourth and fifth factor, indicating 

that a four factors solution should be investigated. 

Examination of the variable loadings within the 

rotated factor matrix of the four factor solution, using a 

minimum variable loading of |0.45|, indicated 

interpretable results for each factor. Two variables 

loaded on both factors 1 and 3; however, it was decided 

to include these scenarios only in factor 3, as their 

loading was stronger on factor 3 and this made an 

interpretable factor structure. One variable “Everybody 

does it” did not load on any factor. The factor structure 

is shown in Table 4. This solution accounted for 65% of 

the total variance. The interpretation of each factor is as 

follows:  

Factor 1: Workload pressure 

Factor 2: External pressure 

Factor 3: Avoiding failure 

Factor 4: Altruism/compensation 

The first and third factors which described pressure of 

workload and concerns about failure were similar 

influences to those found in studies of undergraduate 

students by Newstead et al (1996).  

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

181



 

Reason 
Factor 

1 2 3 4 
Too great a workload at 
university 

.883    

Not enough time .733    
Will fail otherwise .669    
Need to get better marks  .737   
Parental pressure  .670   
Lazy  .665   
For monetary or other reward  .536   
Assignments are too hard   .638  
Exams are too hard     .575  
Can’t afford to fail .507  .563  
Afraid of failing .509  .551  
Missed classes due to ill 
health 

   .861 

To help a friend    .521 
Everyone does it     
Eigenvalues 3.13 2.66 1.84 1.47 
Percentage of variance 22.33 18.97 13.12 10.49 

Table 4: Reasons for cheating: rotated factor matrix 

 

For each influence on cheating factor, the mean 

ratings of likelihood of causing cheating were calculated 

for each student. Comparisons of means between the 

cheating and non-cheating groups were determined 

using t-tests. These showed that the students who 

admitted to having cheated found all types of reasons 

more likely to cause cheating than the non-cheating 

students. These results are shown in Table 5.  

 
Reason for cheating 

factor 
Mean likelihood 

ratings 
t-test 

 non-
cheaters cheaters  

Workload pressure 2.16 3.27 -5.04* 

External pressure 1.46 1.93 -2.72* 

Avoiding failure 2.05 2.94 -3.66* 

Altruism/ 
compensation 

1.79 2.65 -4.10* 

* indicates significant difference (p<0.05) 

Table 5: Comparison of means of ratings of 

influences on cheating between the non-cheating and 

cheating groups 

4.5 Reasons for not cheating 

This section explains the process of using a factor 

analysis to establish a set of influences on preventing 

cheating constructs from the 10 reasons for not cheating. 

For each reason the students nominated the likelihood 

that the reason would cause them to not cheat using a 5-

point Likert scale where 1 indicates not at all and 5 

indicates highly likely. A Bartlett‟s test of sphericity was 

significant at p < 0.05 and the Kaiser-Meyer-Olkin 

Measure of Sampling Adequacy test was 0.797, 

indicating that the dataset was factorable. 

A factor analysis of the ratings of the likelihood of 

each reason preventing cheating yielded three factors 

with eigenvalues greater than 1.0. Examination of the 

variable loadings within the rotated factor matrix, using 

a minimum variable loading of |0.45|, indicated 

interpretable results for each factor. This factor structure 

is shown in Table 6. This solution accounted for 57% of 

the total variance. The interpretation of each factor is as 

follows:  

Factor 1: Valuing learning 

Factor 2: Personal integrity 

Factor 3: Fear of consequences 

The first factor which describes pride and ownership of 

work have been found to be the main factors in 

preventing cheating in studies of undergraduate students 

(Newstead et al., 1996). 

 
Reason Factor 

 1 2 3 
Pride in your work .940   
Want to know what your work is 
worth  

.677   

Can get good marks without 
cheating 

.563   

Never thought about it  .699  
Don’t know how to  .620  
Fairness to other students  .605  
Against your religious beliefs  .577  
Against your moral values  .496  
Penalties if caught are too high   .859 
Fear of being found out   .649 

Eigenvalues 2.74 2.07 1.43 
Percentage of variance 21.74 20.71 14.31 

Table 6: Reasons for not cheating: rotated factor 

matrix 

 

For each influence on preventing cheating factor, the 

mean ratings of likelihood of preventing cheating were 

calculated for each student. Comparisons of means 

between the cheating and non-cheating groups were 

determined using t-tests. These showed that personal 

integrity was a stronger factor in preventing cheating for 

the students who claimed to have not cheated than the 

students who had claimed to have cheated. These results 

are shown in Table 7. 

 

Reason for not cheating 
factor 

Mean likelihood 
rating 

t-test 

non-
cheaters cheaters  

Valuing learning 4.28 3.97  

Personal integrity 3.56 2.84 3.59* 

Fear of consequences 3.98 3.78  

* indicates significant difference (p<0.05) 

Table 7: Comparison of means of ratings of 

influences which may prevent cheating between the 

non-cheating and cheating groups 

CRPIT Volume 123 - Computing Education 2012

182



 

4.6 Influences on cheating behaviour 

The influences on different types of cheating behaviours 

were explored using the reasons for cheating factors and 

the reasons for not cheating factors identified in the 

previous section.  

For each of the four categories of cheating behaviour 

the mean ratings for the reasons for cheating and reasons 

for non-cheating were compared. These differences were 

tested using t-tests for independent groups. The results 

are presented under the four cheating categories: 

Factor 1: Illegal practices (fraud, deception, stealing)  

This type of cheating involves cheating in exam 

situations, stealing work from other students and fraud. 

These practices were seen as the most serious forms of 

cheating by the students and were the scenarios that had 

been practised the least. Despite this, 10% of the 

students in the study admitted to having practiced one of 

these scenarios at least once.  

The students that had performed these practices 

indicated that there were a number of influences on their 

cheating. They indicated that they were significantly 

more likely than the non cheating students to be 

influenced by external pressures (t (110) = -2.86, p < 

0.05), and the need to avoid failure (t (110) = -3.45, p < 

0.05). However, examination of the factors that could 

prevent cheating showed that there were no differences 

between the two groups for these influences. These 

findings are in line with Bennett‟s study (Bennett, 2005) 

which found that fear of failure appeared to drive major 

plagiarism.  

Factor 2: Collusion, unacceptable assistance  

This type of cheating involves cheating on 

assignment work. For example, collusion between 

students on assignment work, submitting a friend‟s 

assignment or resubmission of work from a previous 

running of a subject. This was not seen as a serious form 

of cheating and 51% of the students admitted to this 

practice. 

The students that had performed these practices 

indicated that there were many reasons that would cause 

them to cheat. They indicated that they were 

significantly more likely than the non cheating students 

to be influenced by workload pressures (t (110) = -3.85, 

p < 0.05), external pressures (t (110) = -2.13, p < 0.05), 

the need to avoid failure (t (110) = -2.91, p < 0.05) and 

altruism/compensation (t (109) = -3.84, p < 0.05). 

Bennett (Bennett, 2005) also found that minor forms of 

plagiarism were associated with a wide range of 

influences.  

However, the non cheating students stated that they 

were significantly more likely than the cheating students 

to find that personal integrity would influence them not 

to cheat (t (111) = 2.56, p < 0.05).  

Factor 3: Plagiarism (copying from a book or Website) 

The cheating practices in this factor describe 

plagiarism where material is taken from books or the 

Web and not directly from other students. In contrast to 

the more serious forms of plagiarism described in Factor 

2, in these practices the plagiarised material only forms 

part of the assessment work. The students rated this type 

of cheating as more serious than the collusion practices 

in Factor 2 and 13% of the students reported that they 

had performed one of these practices. 

The students that had performed these practices 

indicated that they were significantly more likely than 

the non cheating students to be influenced by workload 

pressures (t (110) = -2.46, p < 0.05), external pressures 

(t (110) = -3.73, p < 0.05) and the need to avoid failure 

(t (110) = -2.85, p < 0.05). However, the non cheating 

students stated that they were significantly more likely 

than the cheating students to find that personal integrity 

would influence them not to cheat (t (111) = 2.23, p < 

0.05). 

Factor 4: Deception.  

The students that had performed these practices 

indicated that they were significantly more likely than 

the non cheating students to be influenced by workload 

pressures (t (110) = -2.89, p < 0.05) and 

altruism/compensation (t (109) = -2.53, p < 0.05). 

However, the non cheating students stated that they were 

significantly more likely than the cheating students to 

find that personal integrity would influence them not to 

cheat (t (111) = 2.12, p < 0.05). 

5 Implications for educational practice 

The above analysis, especially that of 4.6, gives us 

leverage in determining where the educator should focus 

their efforts in terms of our model of the cheating 

process and in regards to the differing types of cheating. 

It should be noted that none of these are a „silver bullet‟ 

but they are a means to effectively address the relevant 

problem. 

5.1 Illegal practices 

Looking at the first factor of illegal cheating, we find 

that none of the reasons for not cheating have a 

significant effect on whether a student performs the 

practice and we see that the two reasons for cheating are 

the need to avoid failure and external pressures. In 

terms of external pressures, there is little that can be 

done in the context of a single subject to affect these. 

For need to avoid failure, some elements of this are 

amenable to change. Overall, it would seem that a focus 

on prevention would achieve the best outcomes in 

reducing this type of cheating, as it reduces the 

opportunity and/or the benefit of cheating, thereby 

impacting on those students influenced by external 

pressures. For those students influenced by need to 

avoid failure to cheat in this way, prevention will work 

by providing relevant scaffolding in the subject so that 

students do have the resources (time and capability) to 

succeed without the need for cheating. As well, some 

emphasis on detection is also likely to be necessary, as 

some students, regardless of prevention, will probably 

attempt this sort of cheating. This is emphasised by the 

fact that students that practice this type of cheating find 

it equally unacceptable as non-cheating students, but 

nevertheless do it anyway. 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

183



5.2 Collusion 

For the collusion cheating type, the factors identified as 

impacting on this practice are different to those in the 

first factor. In this case, the reason for not cheating 

factor personal integrity has an impact on the 

performance of these factors. This indicates that the use 

of education to emphasise the student‟s need to maintain 

their personal integrity will probably be useful in 

reducing this type of cheating. The fact that students 

who perform this type of cheating find it more 

acceptable to perform than non-cheating students also 

indicates that there is opportunity to educate them on its 

unacceptability. 

All the reasons for cheating factors impact upon the 

likelihood of a student cheating in this way. This 

indicates that this type of cheating will probably be the 

most difficult to reduce. Education will probably be 

useful in reducing cheating based on the 

altruism/compensation factor, by raising the issue that 

helping others to cheat is also considered to be cheating. 

Again, prevention is also likely to be useful, as is putting 

in place a scheme by which detection of collusion can be 

achieved. 

5.3 Copying 

This factor is very similar to the previous factor, but 

with the exception that it is not affected by the 

altruism/compensation factor. As such the emphasis on 

education relating to altruism/compensation will 

probably not be of use in reducing this factor. This is 

reinforced by the result that cheating students are not 

significantly different in their level of acceptability for 

these types of cheating practices than non-cheating 

behaviour. Though as with the previous factor, 

education reinforcing personal integrity may help. 

Similarly as with the collusion factor, a focus on 

prevention and detection will probably be of value in 

reducing this type of cheating. 

5.4 Deception 

The final type of cheating is influenced again by the 

personal integrity factor and the workload pressures 

factor and the need to avoid failure factor. This implies 

that a focus on education to emphasise the personal 

integrity factor would be of value in reducing this type 

of cheating. It also implies that prevention by designing 

into the curriculum reasonable workloads and 

scaffolding to help students avoid failure would also be 

useful. As well, prevention on the part of the teacher to 

avoid situations like incorrect marks would also be 

useful. 

5.5 Other implications 

An interesting aspect of the results is that the aspect of 

consequences does not seem to provide much if any 

leverage for the educator to influence cheating practice. 

For no cheating type does the reason for not cheating 

fear of consequences have any impact on the level of 

cheating, indicating that a focus on consequences such 

as punishments will not be of value in reducing 

cheating. Another interesting result was that the reason 

for not cheating factor valuing learning also did not 

significantly differentiate between cheaters and non-

cheaters for any cheating type, this indicates that 

cheating practices are probably driven by short-term 

issues as opposed to a deliberate strategy on the part of 

students. As such, education based upon valuing 

learning is unlikely to be effective, in the main, in 

reducing cheating practices. 

In comparison, a similar analysis of a survey of 

postgraduate students conducted in 2000 showed that 

valuing learning and fear of consequences influenced 

the students not to engage in major and minor forms of 

plagiarism; however, as for the undergraduate students 

in this study, there were influences found for preventing 

serious forms of cheating.  

6 Conclusion 

In this paper, we have used factor analysis to determine 

the factors arising from a survey of IT undergraduate 

students in a number of key areas: cheating practices, 

reasons for cheating and reasons for not cheating. By 

determining the relationships between these three sets of 

factors, it has been possible to determine the specific 

focus an educator may take to reduce the various types 

of cheating practices in their class. 

7 References 

 

Barrett, R. & Malcolm, J. (2006) Embedding plagiarism 

education in the assessment process. International 

Journal for Educational Integrity 2(1). 

Bennett, R. (2005) Factors associated with student 

plagiarism in a post-1992 university. Assessment & 

Evaluation in Higher Education 30(2), 137-162. 

Bowers, W. J. (1964) Student Dishonesty and its Control 

in College (No. CRP-1672). New York: Columbia 

University. 

Carroll, J. (2002) A Handbook for Deterring Plagiarism 

in Higher Education. Oxford: OCSLD, Oxford 

Brookes University. 

Carroll, J. (2004) Institutional issues in deterring, 

detecting and dealing with student plagiarism: JISC 

briefing paper. 

Carroll, J., & Appleton, J. (2001) Plagiarism: A Good 

Practice Guide: Oxford Brookes University. 

Curtis, G. & Popal, R. (2011) An examination of factors 

related to plagiarism and a five-year follow-up of 

plagiarism at an Australian university. International 

Journal for Educational Integrity 7(1), 30-42. 

Davis, B. (1993) Tools for Teaching. San Francisco: 

Jossey-Bass. 

Davis, S. F. & Ludvigson, H. W. (1995) Faculty Forum: 

Additional data on academic dishonesty and a 

proposal for remediation. Teaching of Psychology 

22(2), 119-121. 

Dick, M., Sheard, J., Bareiss, C., Carter, J., Joyce, D., 

Harding, T. & Laxer, C. (2003) Addressing student 

cheating: Definitions and solutions. ACM SIGCSE 

Bulletin 35(2), 172-184. 

Dick, M., Sheard, J. & Hasen, M. (2008) Prevention is 

better than cure: Addressing cheating and plaiarism 

CRPIT Volume 123 - Computing Education 2012

184



based on the IT student perspective. In T. S. Roberts 

(Ed.), Student Plagiarism in an Online World: 

Problems and Solutions (pp. 160-182). Hershey, 

PA, USA: Information Science Reference. 

Genereux, R. L. & McLeod, B. A. (1995) Circumstances 

surrounding cheating: A questionnaire study of 

college students. Research in Higher Education 

36(6), 687-704. 

Hutton, P. (2006) Understanding student cheating and 

what educators can do about it. College Teaching 

54(1), 171-176. 

Joy, M., Cosma, G., Sinclair, J., & Yau, J. Y.-K. (2009) 

A taxonomy of plagiarism in computer science. In 

proceedings of the EDULEARN09, Barcelona, 

Spain. 

JPlag. 2011. https://www.ipd.uni-karlsruhe.de/jplag/ 

[accessed 26 August 2011]  

Köhler, K. & Weber-Wulff, D. (2010) Plagiarism and 

Detection Test. 

Lipson, A. & McGavern, N. (1993) Undergraduate 

academic dishonesty at MIT. Results of a study of 

attitudes and behaviour of undergraduates. In 

proceedings of the Annual Forum of the Association 

of Institutional Research, Chicago, USA. 

Maramark, S. & Maline, M. B. (1993) Academic 

dishonesty among college students. Issues in 

education. (Information analyses No. OR-93-3082). 

Washington, DC: Office of Educational Research 

and Improvement (ED). 

Marsden, H., Carroll, M. & Neill, J. (2005) Who cheats 

at university? A self-report study of dishonest 

academic behaviours in a sample of Australian 

university students. Australian Journal  of  

Psychology 57(1), 1-10. 

McCabe, D. L. (2005) Cheating among college and 

university students: A North American perspective. 

International Journal for Educational Integrity 

1(1). 

McCabe, D. L. & Trevino, L. K. (1993) Academic 

dishonesty: Honor codes and other contextual 

influences. Journal of Higher Education 64(5), 522-

538. 

McCabe, D. L., Trevino, L. K. & Butterfield, K. D. 

(2001) Cheating in academic institutions: A decade 

of research. Ethics & Behavior 11(3), 219-232. 

McDowell, L. & Brown, S. (2001) Assessing students: 

cheating and plagiarism: The Higher Education 

Academy. 

MOSS: A System for Detecting Software Similarity. 

2011. http://theory.stanford.edu/~aiken/moss/ 

[accessed 26 August 2011]  

Newstead, S. E., Franklyn-Stokes, A. & Armstead, P. 

(1996) Individual differences in student cheating. 

Journal of Educational Psychology 88(2), 229-241. 

Roberts, P., Anderson, J. & Yanish, P. (1997) Academic 

misconduct: Where do we start? In proceedings of 

the Northern Rocky Research Association, Jackson, 

Wyoming. 

SafeAssign. 2011. http://www.safeassign.com/ [accessed 

26 August 2011]  

Sheard, J., Carbone, A. & Dick, M. (2003) 

Determination of factors which impact on IT 

students' propensity to cheat. In proceedings of the 

fifth Australasian Computing Education conference, 

Adelaide, Australia. 

Sheard, J. & Dick, M. (2003) Influences on cheating 

practice of IT students: What are the factors? In 

proceedings of the eighth Annual conference on 

Innovation and Technology in Computer Science 

Education, Thessaloniki, Greece. 

Sheard, J. & Dick, M. (2011) Computing student 

practices of cheating and plagiarism: A decade of 

change. In proceedings of the 16th Annual 

conference on Innovation and Technology in 

Computer Science Education, Darmstadt, Germany. 

Sheard, J. Markham, S., & Dick, M. (2003) 

Investigating differences in cheating behaviours of 

IT undergraduate and graduate students: The 

maturity and motivation factors. Journal of Higher 

Education Research and Development 22(1), 91-

108. 

Sierra, J. & Hyman, M. (2008) Ethical antecedents of 

cheating intentions: Evidence. Journal of Academic 

Ethics 51-55. 

Simon. (2005) Electronic watermarks to help 

authenticate soft-copy exams. Australian Computer 

Science Communications 27(5), 7-13. 

Stepp, M. & Simon, B. (2010) Introductory computing 

students' conceptions of illegal student-student 

collaboration. In proceedings of the SIGCSE'10, 

Milwaukee, Wisconsin, USA. 

Turnitin.com. 2011. 

https://www.turnitin.com/static/index.php [accessed 

26 August 2011]  

Wilkinson, J. (2009) Staff and student perceptions of 

plagiarism and cheating. International Journal for 

Educational Integrity 20(2), 98-105. 

 

  
 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

185

http://www.ipd.uni-karlsruhe.de/jplag/
http://theory.stanford.edu/~aiken/moss/
http://www.safeassign.com/
http://www.turnitin.com/static/index.php


CRPIT Volume 123 - Computing Education 2012

186



Why the bottom 10% just can't do it -  
Mental Effort Measures and Implication for Introductory Programming Courses 

Raina Mason
1
 Graham Cooper

1 

 

1 Southern Cross Business School 
Southern Cross University 

Hogbin Drive, Coffs Harbour, New South Wales 2450 

raina.mason@scu.edu.au 
graham.cooper@scu.edu.au 

 

Abstract 

This paper reports the results of mental effort measures 
and comments collected as part of a study of 44 
introductory programming courses in 28 Australian 
universities, conducted in the latter months of 2010. 
Academic staff were interviewed regarding their 
perceptions of the mental effort that is required by 
themselves, an average student, and a low-performance 
student while attempting to solve and learn from a novice 
programming problem.  

Qualitative responses were also gathered from academics 
to gain insight into the various student profiles and 
impediments to learning for low-performing students. 
Mental effort results indicated that many low-
performance students typically experience high to 
extreme levels of mental effort. Verbal responses obtained 
from academics also indicate an awareness that for many 
low-performance students learning fails due to excessive 
demands being placed upon their cognitive resources. 

It is suggested that for many low-performance students 
learning fails due to cognitive overload. The implications 
for the selection of languages and environments and for 
the design of introductory programming courses (units) 
are discussed. . 

Keywords:  introductory programming, programming 
success, pedagogy, Australian university courses, mental 
effort measures, cognitive load, cognition. 

1 Introduction 

A survey of introductory programming courses (units) 
offered in Australian universities was conducted at the 
end of 2010. This was designed to repeat similar studies 
regarding introductory programming courses within 
Australian universities that had been conducted in 2001 
(de Raadt, Watson & Toleman, 2002) and 2003 (de 
Raadt, Watson & Toleman, 2004). The findings of the 
2010 survey are reported in Mason et al. (In press). 

The primary focus of the 2010 survey was to identify 
the programming language(s) used within Australian 
university courses, along with teaching-learning support 
factors such as development environment, textbook used 

                                                           

Copyright © 2012, Australian Computer Society, Inc.  This 
paper appeared at the Fourteenth Australasian Computing 
Education Conference (ACE2012), Melbourne, Australia, 
January 2012.  Conferences in Research and Practice in 
Information Technology (CRPIT), Vol. 123. Michael de Raadt 
and Angela Carbone, Eds. Reproduction for academic, not-for-
profit purposes permitted provided this text is included. 

(if any), hours of teaching and focus upon problem 
solving. Differences between the 2001/2003 censuses and 
the 2010 study are suggestive of trends in approaches to 
teaching introductory programming within Australian 
universities. The major changes were shifts towards some 
languages (Python and C#) at the expense of other 
languages (Visual Basic and C++). There was also an 
increased usage of IDEs and other tools. Discussion was 
also provided regarding perceived reasons offered by 
interviewees (academics teaching introductory 
programming courses) for such changes, which were 
predominately reported to be pedagogical. 

A secondary focus of the survey was to investigate the 
evaluations by introductory programming academics of 
the level of “mental effort” that would be required by 
students studying in these programming courses. The 
primary outcome of the study in this regard is that 
academic staff instructing in introductory programming 
courses rated their own levels of mental effort in dealing 
with the course (unit) content to be “low”, the mental 
effort of average students to be “above average”, and the 
mental effort of students in “the bottom 10% of 
performance levels” to be “very high to extreme”. 

The current paper further explores the role of mental 
effort within the cohort of “the bottom 10% of 
performance”. 

2 The Role of Mental Effort in Learning 

2.1 Mental Effort 

Mental effort is a cognitive construct that has its 
derivation in Cognitive Load Theory (Sweller 1999) and 
refers to the deliberate focus of attention and level of 
cognitive resources that are allocated to a task (Kirschner 
2002). 

Mental effort is closely related to cognitive load. 
Cognitive load is a “count” of the number of elements 
that must be held within working memory for any 
particular processing task (Sweller 1999). Each element 
will be in the form of a schema (Chi, Glaser & Rees 
1982) as it exists for an individual based upon their 
current personalised knowledge base. Schemas are well 
organised hierarchical networks of conceptual and 
procedural information. As ones’ expertise in a content 
domain expands, organises and intercepts, so too does 
ones’ schemas become larger, more well organised and 
more interrelated. A novice in a content domain only 
holds small disconnected schemas, and so needs to hold a 
larger number of elements in working memory, than does 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

187



an “expert” in the area, when consciously attending to the 
same body of content. 

“Mental effort” is a term considered to be more 
accessible to lay persons due to its alignment to a general 
enquiry regarding “how hard one is thinking”, rather than 
a more load-orientated enquiry of “how many things one 
is thinking about”. Mental effort has historically been 
used as a measure to evaluate cognitive load (Paas & Van 
Merrienboer 1993). 

2.2 The Targets of Mental Effort 

Not all content is equally challenging to learn. There are 
three distinct factors which may contribute to a student’s 
experienced ease or difficulty in learning a body of to-be-
learned content. These may be identified as intrinsic, 
extraneous and germane factors. 

Some content, by its intrinsic nature, is considered to 
be “difficult”, and thus requires a high level of mental 
effort to comprehend and learn. This is primarily due to 
the inherent complexities, interrelations and subtleties of 
the information. Both mathematics and computer 
programming are such intrinsically difficult areas 
(Sweller & Chandler 1994). 

In the context of learning computer programming 
there are at least five distinct domains that must be 
mastered at the same time. These have been identified by 
du Boulay (1989) as: general orientation, the notional 
machine, notation (syntax and semantics), structures, and 
pragmatics (developing, debugging, etc). The current 
paper argues that this multi-domain aspect of 
programming is a primary contributor to its reputation as 
being difficult to learn. 

Another potential source of difficulty in learning 
content lies in the way in which to-be-learnt information 
is presented. This is extraneous to the conceptual 
understanding of content, yet needs to be processed by a 
learner’s cognitive resources because it is the means by 
which information is presented to the learner. On this 
basis it may be the “materials”, or “media”, or “activities” 
involved in the teaching-learning transaction (Ayres & 
Sweller 2005). 

For example, text based instructions specifying how to 
travel from one location to another are usually more 
difficult to understand than an equivalent-content source 
based around the use of visual maps. This is true 
regardless of whether one is travelling from home to a 
friend’s house, or from one city to another. Maps have an 
obvious spatial relation to the 2-dimensional landscape 
which they represent, while the textual form does not. 

Similarly, different programming languages and 
environments may present differing levels of visual 
representations of core programming concepts, such as 
loops (iterations). The choice of computer programming 
language and/or environment may have a direct impact 
upon the ease of comprehending, learning and applying 
underlying programming concepts. The language itself is 
extraneous to understanding these core programming 
concepts, yet it is the primary vehicle by which these are 
usually presented to a student. A student who does not 
hold schemas for core programming concepts and who 
falters on aspects of language or syntax, will likely be 
unable to distinguish between such core concepts versus 
aspects of the language, as to why he or she has faltered. 

The third factor that gives rise to mental effort is from 
the conscious focus of attention that a learner brings to a 
task to deliberately “remember” and/or “understand” to-
be learnt content. In addition to this, a learner may also 
seek to proceduralise this newly acquired knowledge base 
through strategies such as drill-and-practice and mental 
rehearsal (Cooper, Tindall-Ford, Chandler & Sweller 
2001). In this context mental effort is germane to the 
tasks of schema acquisition and automation (Paas & Van 
Merrienboer 1994). These activities generally consist of 
making mental comparisons and contrasts between one’s 
already-held knowledge base (their schemas)  and the 
newly presented information, along with some form of 
practice to proceduralise the application of these evolving 
schemas. A broad instructional strategy that benefits 
learning is to maximise the level of cognitive resources 
dedicated to such germane activities (Paas, Renki & 
Sweller 2003). 

Depending upon the nature of the to-be-learnt content 
germane activities may range from shallow processing 
tasks such as rote-learning to deep processing elaboration 
strategies. For example, consider a student studying 
chemistry. The elements of the periodic table may be 
rote-learnt as a simple sequence, or more deeply 
processed and linked to other facts that may already be 
held, or developing, such as atomic weight, valency and 
chemical reactions.  

Similarly, programming may be viewed as a set of 
isolated base concepts to be rote-learnt, or analysed, 
abstracted and re-organised into a wide range of 
algorithms that are utilised within programming 
structures. In general, the deeper the level of processing, 
the more able will the learner be in recalling and applying 
the information due to the level of “understanding” that 
has taken place, rather than only memorisation. 

The bottom line, from a Cognitive Load Theory 
perspective (Paas, Renki & Sweller 2004), is that these 
three demands of mental effort compete for cognitive 
resources. An issue arises because human cognitive 
resources are strictly limited (Miller 1956) and so the 
combined demands of these three targets of mental effort 
cannot always be met. The reality is that students, in 
attempting to deal with the broad complexity of 
programming, in conjunction with a specific 
programming language and/or environment, may have 
insufficient cognitive resources left available to dedicate 
to the primary purpose of the teaching and learning 
transaction - that of actually engaging in germane tasks 
such as comprehending, learning and proceduralising the 
newly presented to-be-learnt content regarding core 
programming concepts. 

It is important to note that these potential difficulties 
described in comprehending and learning may be greatly 
amplified for students at the lower end of the 
performance spectrum. 

The next section briefly outlines some of the key 
features of human cognitive architecture and Cognitive 
Load Theory, before returning to the findings of the 2010 
survey, and the inclusion of questions regarding mental 
effort. 

CRPIT Volume 123 - Computing Education 2012

188



3 Human Cognitive Architecture 

3.1 Cognition, Memory, Schemas and 

Automation 

Human Cognitive Architecture is often described as an 
information processing model with operational relations 
between the separate conceptual functions of Long Term 
Memory and Working Memory (Sweller 1999). There are 
added complexities to the model with the inclusion of 
Sensory Memory to handle, very briefly, the input from 
our senses, and modality specific slave-systems for 
management and integration of distinct visual and 
auditory information components within Working 
Memory (Mayer 2005). While these have significant 
implications for the processing of instructional materials, 
they will be left largely unexplored in the current paper. 

Long term memory is a virtually permanent store of 
knowledge. It is effectively unlimited in its capacity, with 
knowledge stored in the form of “schemas” which are 
hierarchically structured information networks that gather 
and interrelate throughout a person’s lifetime (Sweller 
1999). 

In contrast, Working Memory is dedicated to the 
conscious processing of information. It is where activities 
such as thinking and problem solving take place. The 
elements of knowledge, which are held in the Long Term 
Memory store as schemas, are utilised within working 
memory processing tasks (Sweller 1999). 

Working memory is strictly bounded in its capacity 
with 7 elements (+/-2) representing typical performance 
by adults on random memory tasks (Miller 1956). This 
number will be further reduced when attending to 
elements that are not random, but hold well-defined 
relations. For example, the formula “F=ma” does not only 
require holding of the concepts of force, mass and 
acceleration, but also their relation as defined by the 
formula. 

The limitations of Working Memory may be worked-
around by humans through selecting “larger” size 
elements to process. These elements are the schemas that 
one already holds in Long Term Memory. For example, 
the schema for “alphabet” can easily be decoded into a set 
sequence of 26 letters that most readers will well know. 

A second primary performance aspect of human 
cognitive processing models is “automation”, which 
refers to a person’s ability to proceduralise and apply 
their schemas while needing only very low levels of 
conscious attention (Shiffrin & Schneider 1977). 

Models of expertise typically reduce the primary traits 
of expertise to the possession of relatively large well-
structured networks of schemas, and the capacity to 
access and apply the knowledge and skills held in these 
schemas, with low levels of conscious attention. These 
two attributes are sufficient to explain virtually all aspects 
of expert performance, including transfer and problem 
solving (Cooper & Sweller 1987). 

Cognitive Load Theory (Paas, Renki & Sweller 2004) 
explores the application of information processing models 
to the processes of learning, and more importantly, to the 
design of instructional materials and activities, with the 
purpose of facilitating learning. Central to this approach 
of instructional design is the limitations of working 

memory. If the mental processing load placed upon these 
limited resources are exceeded at any point during a 
learning transaction (“overloaded”), then learning will 
falter due to the dropping of information that was 
currently being processed. 

There are many apparent similarities between this 
model of human cognitive architecture and its manner of 
information processing, with those associated with 
computer architectures and data processing. This is not 
accidental. There have long been identified relations 
between these two areas that have effectively evolved in 
parallel (Hunt 1982). If you (the reader) have a high 
knowledge base in computer programming and 
architecture, but a relatively low knowledge base in 
human cognitive architecture, then you may think of 
“cognitive overload” as being akin to a “buffer 
overflow”. Overloading means that some data is dropped. 
Once dropped, it is lost -irretrievably - and so while some 
form of processing may still occur, the nature of the 
information now being handled is incomplete, or worse 
still, incorrect and can result in an effective program 
crash, or memory access errors. 

3.2 Sources of Cognitive Load 

There are three identified sources of cognitive load. 
These are Intrinsic, Extraneous and Germane (Paas, 
Renki & Sweller 2003). Each was described in lay form 
earlier in this paper in the context of mental effort. Each 
is dealt with again from a more technical perspective. 

3.2.1 Intrinsic Cognitive Load 

Intrinsic cognitive load refers to the innate difficulty of a 
body of to-be-learned content. Information that contains 
many internal relationships between knowledge elements 
(element interactivity) imposes a higher level of cognitive 
load than information that can be considered to be a series 
of simple, unrelated facts (Sweller & Chandler 1994). 
This is because it is not only the separate discrete 
elements that need to be consciously attended to, but also 
the relations between those elements. A popular example 
to consider is the learning of a second language -- not a 
second programming language, but a second spoken 
language. Assume that you, the reader, are relatively 
expert at English, and learn Indonesian, French or 
Spanish. Each is written in a similar script to English and 
has a large level of overlap in phonemes. 

In learning a second language (or a third, fourth and so 
on), there at least two distinct aspects that need to be 
learned. These are the vocabulary of the language and the 
syntax (or grammar) of the language. The vocabulary is 
relatively simple, being in general terms a one-to-one 
word-swap for “me”, “you”, “good”, “bad”, “morning”, 
“evening” and so on. There are several hundred, perhaps 
thousand, such word-swaps required in order to be able to 
communicate meaningfully at a conversational level. The 
second aspect , the syntax, if far more difficult to learn, 
because to construct a sentence such as “How are you this 
morning?” is generally not just a process of swapping 
words. All of the words may need to be considered 
simultaneously, along with their inter-relations. Note, too, 
that this is a simple, common sentence! If there are more 
subtle aspects being included such as personal 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

189



relationship, respect associated with maturity (age of the 
persons involved), time of day being said, and the gender 
of the items (not the people, but the items such as table, 
chair, food) in question (of which there is no meaningful 
equivalent in English) then the translation can become 
much more difficult if there is a requirement to “be 
grammatically correct”. 

A question such as “Have you eaten dinner this 
evening?” needs much more than a simple word-swap 
process to be translated into many languages because the 
order of the words may need to be re-sequenced, there are 
likely issues of verb conjugation, there is a need to be 
mindful of the “respect-relationship” between the players 
(akin to using “sir”, “Mr” or “mate” in the Australian 
context), and we have not even yet considered aspects of 
enunciation and emphasis. 

The purpose of this discussion of language is to 
indicate that learning a second language contains a mix of 
intrinsically relatively “easy” content - the one-to one 
word swaps - plus the relatively “difficult” content of 
syntax, which is difficult due to the element interactivity 
between the separate words. On top of this there may be 
physical performance difficulties such as recognising and 
producing specific sounds (phonemes). We will return to 
the issue of learning a language later in this paper, 
although the context will then move to that of computer 
programming languages. 

3.2.2 Extraneous Cognitive Load 

Extraneous cognitive load refers to the load generated by 
the format of instructional materials and/or to the 
performance of learning activities. Some formats and 
activities hinder learning by loading the learner with 
unnecessary information processing (unnecessary to the 
task of acquiring schemas and automating them). 
Extraneous cognitive load is open to being manipulated 
by the instructional designer. There are several common 
effects that have been investigated by Cognitive Load 
Theory. Two that are relevant for discussion here in the 
context of introductory programming are the Worked-
Example Effect (Cooper & Sweller 1987) and the Split-
Attention Effect (Chandler & Sweller 1992). 

Many studies have indicated that a relatively high 
weighting upon problem solving tasks is less effective at 
facilitating learning than studying a set of similar worked 
examples (Renki 2005). The underlying theoretical 
analysis is based upon the argument that novices use 
means-ends-analysis to solve problems, that this process 
imposes a relatively high level of cognitive load, directs 
attention to the answer, rather than the process of 
obtaining the answer, and consequently impedes learning 
(Sweller 1988). It was observed though the survey that 
many introductory programming courses still place a 
relatively high emphasis upon problem solving. By this 
we mean that a core, central activity within the learning 
materials, is to require students to be actively engaged in 
producing a solution to a computer programming problem 
solving task. Such a focus on problem solving may hinder 
learning. 

The Split Attention Effect (Chandler & Sweller 1992) 
argues that split formats of instruction, whereby two or 
more mutually referring sources of instruction are 
presented in isolation, and thus need to be mentally 

integrated to enable comprehension, will be less effective 
at facilitating learning than an equivalent-content 
integrated format where all mutually referring sources of 
information have been integrated into a single source. 

For example, consider a split attention format that may 
result from a physical layout of instructional materials 
that “splits” the location of instructional text from the 
location of a text-referenced diagram which usually sits 
beside or below the text. This will impose a level of 
visual search and require a mental integration of meaning 
between the textual and graphical components of 
instruction to enable comprehension. This search and 
mental integration is not required for an equivalent-
content presentation where the textual information has 
been integrated (embedded) within the diagram. The 
added cognitive load due to the visual search and mental 
integration of the two mutually referring sources of 
information in a split format causes additional taxing of 
cognitive resources, and so reduces the cognitive 
resources available to be applied to the germane activities 
associated with schema acquisition and automation. As a 
direct result of such an instructional design, learning is 
reduced. This effect has been demonstrated to be present 
in many instructional settings and is highly robust 
(Sweller 1999). 

We will return later to the split attention effect, not to 
discuss the physical integration of materials, but to 
discuss the split-attention between learning underlying 
concepts of computer programming compared to the 
learning of a specific computer programming language 
(along with syntax). A common feature of introductory 
programming courses appears to be that the core 
programming concepts are “cocooned” within a specific 
computer programming language and syntax. 

3.2.3 Germane Cognitive Load 

Germane cognitive load refers to load devoted to the 
processing, construction and automation of schemas. This 
application of cognitive load is beneficial to learning. A 
general strategy in many instructional settings is to reduce 
extraneous load, and to direct the released cognitive 
resources towards the germane efforts associated with 
schema acquisition and automation (Paas, Renki & 
Sweller 2004). 

In situations where both intrinsic and extraneous loads 
are high it is likely that this will effectively block the 
capacity for germane load, and thus block learning. 

It is argued in the current paper that this is the 
situation experienced by many low performing students 
who are undertaking introductory programming courses. 
These students, who lack schemas in programming, are 
faced with the intrinsic complexity of core programming 
concepts embedded within an instructional presentation 
that involves aspects of computer language and syntax 
which are extraneous to this task. It is likely that these 
students will have insufficient cognitive resources 
available to enable the process of learning. 

4 Cognitive Load and Novice Programming 

Problems 

The current survey explored aspects of cognitive load 
associated with the teaching and learning of programming 

CRPIT Volume 123 - Computing Education 2012

190



concepts within introductory programming courses 
offered by Australian universities. 

Specifically, in the context of learning the generic 
concepts of programming through completing computer 
programming problem solving tasks, there are three 
separate components of processing that need to be 
attended to, and it is argued that these broadly align to the 
three different sources of cognitive load. These are: 

• Intrinsic load, associated with the concepts and 
interpretation of problem statements; 

• Extraneous load, determined by the language and 
environment, along with associated constraints 
such as syntax; and 

• Germane load, associated with the cognitive 
processing to acquire and automate new schemas. 

The term “mental effort” has been used to communicate 
with participants rather than “cognitive load”. This self-
reported assessment of perceived mental experience is 
taken as a measure of the cognitive load associated with a 
task performance. 

Participants in the survey were asked to rate their own 
levels of mental effort on each of the three components of 
cognitive load, using a 9 point Likert scale (where 1 = ‘no 
mental effort’ and 9 = “extreme mental effort”). 
Participants were also asked to estimate the levels of 
mental effort on each of these components experienced 
by an average student in their introductory programming 
course and that experienced by a student in the ‘bottom 
10% of performance” in their course. 

There were some participants who did not 
immediately offer a response for all, or an aspect, of this 
series of questions, particularly for the “bottom 10% of 
performance”. These were removed from the first series 
of analyses, but will be commented upon further below. 

An initial analysis was performed on the mental effort 
scores given by participants (instructors), for each of 
these three components of cognition -- understanding the 
problem statement, using the environment, and 
reinforcing previous concepts. A series of comparisons 
between, firstly, the self-rating of the participant (a first 
year programming instructor) and the rating anticipated to 
be experienced by an ‘average student”; and then between 
the anticipated average student’s rating and the 
anticipated level to be experienced by a student in the 
bottom 10% of the class’s performance. The comparisons 
were performed using a series of Wilcoxon Signed Rank 
tests. 

These results were reported in Mason et al. (In press), and 
are replicated here to enable further analysis and 
discussion. Table 1 shows the mean, median and mode 
for each of these cognitive load areas for instructors, the 
average student and students “in the bottom 10%”. The 
data was heavily skewed, so measures of central tendency 
provided are modes and medians.  

Table 2 below shows the results of the Wilcoxen Signed-
rank tests (one-tailed) for within-subject comparisons 
between instructors and average students, and between 
average students and students in the bottom 10%. 

 
 
 

    
instructor 

average 
student 

bottom  
10% student 

in
tr

in
s
ic

 

mode 2 6 9 

median 2 6 8.5 

e
x
tr

a
n

e
o

u
s

 

mode 2 5 9 

median 2 5 8 

g
e
rm

a
n

e
 

mode 2 7 9 

median 2 5.5 8.5 

Table 1: Levels of mental effort reported 

 

Instructor < average student (greater mental effort) 

  W Ns/r z p n 

Understanding and 
processing the problem 
statement 

811 43 4.39 <0.0001 43 

Navigating/using the 
environment, tools or 
language 

838 41 5.43 <0.0001 43 

Learning from the 
problem/ reinforcing 
previous concepts 

647 40 4.34 <0.0001 42 

Average < bottom 10% student (greater mental effort) 

  W Ns/r z p n 

Understanding and 
processing the problem 
statement 

207 24 2.95 0.0016 25 

Navigating/using the 
environment, tools or 
language 

276 23 4.19 <0.0001 25 

Learning from the problem/ 
reinforcing previous 
concepts 

144 20 2.68 0.0037 21 

Table 2: Wilcoxen Signed-Rank Tests 

These results indicate that for each of the three sources of 
cognitive load, the instructors in the introductory 
programming courses rated their own levels of required 
mental effort to be low, and that they expected that 
average students would need to exert higher levels of 
mental effort than themselves - ‘above average’. 

Additionally, again for each of the three sources of 
cognitive load, the participants rated the anticipated 
mental effort to be experienced by a student in “the 
bottom 10%” to be higher than that of an average student, 
rating at very high to extreme mental effort. 

These results are consistent with the argument 
provided earlier regarding cognitive overload. Students 
who are in the bottom 10% of performance are perceived 
by the introductory programming instructors to be 
effectively swamped in mental effort on each of the three 
measures. As these three areas compete for cognitive 
resources it is unlikely that students can allocate such 
high levels to all three components, despite their desires 
to do so, and despite the instructors perceptions that 
students are attempting to do so. 

Human cognitive processes are limited. Student have 
no option but to try and understand and respond to the 
programming problem statement, as this is the primary 
task to which they have been explicitly directed to engage 
with. The student also has no option but to navigate, as 
best he or she can, the programming language and syntax, 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

191



as this is the environment which they have explicitly been 
directed to operate within. Given that these two tasks are 
each placing very heavy processing burdens upon mental 
resources it may be expected that the third area, those of 
germane activities, are effectively strangled for 
processing resources. 

Recall that not all participants gave a score for the 
mental effort measures, instead choosing to provide 
comment. The second layer of analysis, now pursued, 
focuses upon the verbal comments provided by all 
participants regarding their perceptions of mental effort 
for the different student cohorts. 

4.1 Participants that did not give a score for all 

or any of the cognitive load aspects 

A total of 44 participants took part in the survey, and all 
of these participants answered the questions regarding the 
mental effort experienced by themselves on each of the 
three factors while solving a novice programming 
problem. One of the participants declined to answer the 
questions regarding average and ‘bottom 10%” students 
as he/she indicated that he/she believed “that the ‘average 
student’ could be designated as any of the scores on the 
Likert scale” We consider this to indicate a 
misinterpretation of our line of enquiry, and no further 
consideration is given to the responses provided by this 
participant. Of the 43 remaining participants, one 
declined to give a score for the “germane” aspect for the 
“average student”, whilst offering the scores for the other 
aspects. 

Only 25 participants gave any scores for the “bottom 
10%” and often this was coupled with qualifying 
statements. Only 21 of these participants were willing to 
specify a score for mental effort for the germane aspect 
for students in this bottom 10% of performance in the 
course. 

5 Participants' Comment Analysis 

Many participants indicated that providing an estimate of 
mental effort for lower performing students was a much 
more complex scenario than could be expressed by a 
simple numerical answer to a Likert scale question. Even 
those who did give a score often added comments to 
qualify their answer. 

5.1 Methodology of further analysis 

The phone interviews with the 44 participants in the 
survey were audio-recorded with their permission, with 
the exception of one participant, who agreed to be 
surveyed but did not give permission to be recorded. For 
this particular interview, comprehensive notes were taken 
and recorded by hand on the interview script. The 
remaining audio-recordings were then transcribed. 

Truncated versions of each interview transcript were 
created for the purposes of further analysis, temporarily 
disregarding data on languages, textbooks, on-campus 
hours and other aspects of introductory programming 
courses within Australian universities, which have been 
reported elsewhere (Mason et al. In press). Data retained 
included mental effort measures for “students in the 
bottom 10% of the course” (where given), any transcribed 
comments that offered insight into mental effort (or lack 

of such) used by students, and any other comments that 
were offered by participants throughout the course of the 
interview that had bearing on possible reasons for success 
or failure of students in the bottom 10% of the course. 

Interviews were confidential and participants were 
encouraged to be open, frank and fearless. On this basis 
the researchers have redacted phrases that may be 
considered to be disrespectful of students as clients of the 
education system. Thematic analysis of the comments has 
been performed, but in some cases specific terminology 
has been withheld. In these cases, “[redacted]” has been 
used. This indicates terminology (not profanity) that may 
be interpreted as offensive to the people thus identified 
and labelled. 

5.2 Student Profiles 

This survey asked for Likert scale measures for mental 
effort for students in the bottom 10% of course 
performance. If the instructor asked the interviewer for 
clarification of type of student targeted, then the 
interviewer (using the terminology used by the instructor) 
indicated that the mental effort expended by a less 
capable student who is trying was required. 

[Instructor] “by effort do you mean students that apply 

themselves that are [redacted]? Or students that don’t 

apply themselves?”  

[Interviewer] “apply themselves that are [redacted]” 

However, some instructors offered two values (one for 
students who did not try, and those who were trying), and 
others stated that one simple measure couldn’t be given 
and instead offered comments. For this reason, the 
comments associated with all of the types of student 
profiles, as well as mental effort measures for the student 
profile of “students who are less capable but are trying”, 
have been analysed. 

The interview summaries were examined for 
commonalities between participants regarding the profiles 
of students composing the bottom 10% of their course. 
Responses indicated that 34% (15/44) of participants 
explicitly indicated that more than one student profile 
existed in the student composition of the bottom 10% of 
their course. All participant summaries were examined to 
identify the range of profiles of these students. 

The profiles of students that were identified by 
instructors were: 

• ‘Strivers’ - less capable students who are actually 
trying - identified by 75% of participants; 

• ‘Idlers’ - those students who attend class but who 
do not try - identified by 40% of participants; 

• ‘Ghosts’ - students who do not attend class/ are 
not seen by instructors - identified by 14% of 
participants. 

Each profile type was then examined separately using 
thematic analysis across participants to determine 
possible reasons given by participants for lack of success 
by these students. 

5.2.1 Ghosts - students who are not there 

A relatively small number of participants (14%) 
identified that some or all of the students in the bottom 
10% of the course were never seen by the instructor, or 

CRPIT Volume 123 - Computing Education 2012

192



disappeared early.  We have designated this cohort of 
students “Ghosts”. Reasons offered for this disappearance 
revolved around the students’ perceived lack of 
motivation and desire to participate in the course or their 
perceived lack of choice in studying programming as part 
of their degree structure. Participants have been identified 
throughout this paper by transcript number -- for example 
[1] -- to show that comments have been sourced from a 
range of participants. Comments provided regarding the 
“Ghost” cohort include: 

• “Enrolled because [they] “have to” - they are 
required to be enrolled full-time. Students are 
embarrassed to tell parents they’ve made the wrong 
decision about a university course (as opposed to a 
TAFE course) and just stop going. Only 1% of 
students choose to do the unit, for the rest its core. 
They don’t really want to be there.” [25] 

• “they don't want to come onto a university campus, 
they see this as an enormous burden that gets in the 
way of their crappy part-time job, and basically their 
commitment is (on average) pathetic" [31] 

• “it’s coming back to the students’ desire and 
motivation to learn, and that’s the main problem we 
are having at the moment. I don’t think that teaching 
or learning programming is a difficult thing, I think 
it’s the students that are the problem at the moment.” 
[2] 

 

5.2.2 Idlers - students who do not apply 

themselves 

Instructors identified two separate profiles of students 
who did attend classes or were ‘seen’, within the bottom 
10% of students.  A cohort of “students who attend class 
but don’t try” were identified by 40% of participants. We 
have designated this profile of students as “Idlers”. 
“Strivers” - the remaining profile of students - are 
examined in the next section of this paper. 

Some of the reasons offered by instructors for the 
Idlers’ lack of progress were similar to those offered for 
the Ghosts. 

Students’ lack of motivation and desire to learn was 
given as a reason in many cases: 

• “... there is very little mental effort because they 
don’t do anything. In workshops they are on 
Facebook or chatting or getting the answers from 
their mates rather than working it out for 
themselves." [5] 

• “Don’t try. Hand in other people’s assignments, 
don’t attend, don’t do tasks, are on facebook.” 
[23] 

• “not motivated enough to try” [26] 
 

Several instructors offered the reason for this lack of 
effort to be that some students were forced to do the unit 
by their degree requirements, had no intent of going 
further, did not enjoy programming and that these 
students didn’t apply themselves to learning: 

• “Only about 20% of students [in the course] 
intend to progress with programming” [23] 

• “Students enrol and discover they don’t like 
programming, so the effort they expend is 
minimal” [28] 

Mason et al. (In press) reported on the falling numbers of 
students in programming courses and ICT programs as a 
whole. Some universities have responded to this trend by 
lowering entrance score cut-offs, and instructors 
identified this as a source of “Idlers” those students who 
perhaps were not suited to university study, but had 
managed to enter the course: 

• “... quite a low entry bar into our computing degrees" 
[29] 

• “we have ‘OP [Overall Position Tertiary Entrance 
Rank] ridiculous’ as a large cohort” [31] 

More concerning were the comments offered by some 
instructors that indicated that these “Idlers” were 
predisposed to believe it was impossible to succeed, or 
became frustrated so early in the course that they gave up: 

• “Students come in and say "I've heard programming 
is so bad and its the end of the world" ... And so they 
are defeated before they get here [emphasis added]. 
But they just don't do any work ...They are 
completely directionless. ”[34] 

• “there are some students who are too frustrated with 
it to really try that hard, and dismiss the learning. “ 
[38] 

 

5.2.3 Strivers - students who are less capable 

but are trying 

Most (75%) instructors indicated that the bottom 10% of 
students in their course contained students who were less 
capable but were trying to succeed. We have designated 
these students “Strivers”. Recall from Table 1 that the 
mode on each of the three mental effort measures for the 
students in the bottom 10% was reported as “9”, the 
maximum value available on the Likert scales. 

Instructors also often offered indicative comments 
about the level of mental effort for Strivers, regardless of 
whether they gave a Likert scale number. These 
comments are offered below to show the general 
agreement that for this profile of students the mental 
effort required for all three aspects was very high to 
extreme, and in some cases “off the scale”. These 
include: 

• “off the scale” [11] 

• “putting all their effort in” [15] 

• “try very very hard” [16] 

• “expend more energy for borderline pass - more 
effort in getting that borderline pass than others 
use to get higher marks” [28] 

• “very high level of mental effort” [30] 

• “factor of 10 at the very minimum” [34] 

• “try but can’t solve the problem at all” [35] 

• “a lot more effort” [41] 

Given that these Strivers are often being reported as 
trying as hard as they can, it is important to consider the 
reasons given for why they find it so difficult, or fail (if 
any reasons were given). 

One group of instructors offered the opinion that 
students had an innate aptitude (or lack of aptitude) for 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

193



programming and that if this was missing, those students 
would never understand programming - no matter how 
hard they tried. These comments are presented below: 

• “some of them pick it up quickly, some take 
longer and some never pick it up at all.” [7] 

• “they struggle - they genuinely try and they put a 
lot of work in but it’s not how their brains are 
wired” [22] 

• “There are those that get it … and some people 
for some reason just don’t get it and they are 
hopelessly lost, and they just never seem to be 
able to get it at all.” [23] 

• “some students have some sort of mental block as 
far as programming is concerned. They might find 
it difficult to even follow a set of sequenced step-
by-step instructions.” [27] 

• “they try really hard but the penny doesn’t drop” 
 [22] 

Other instructors commented that the Strivers lacked 
literacy, comprehension and analysis skills prior to 
entering the introductory programming course, and that 
this compounded the difficulty of learning the material 
for this cohort:  

• “they have very poor literacy and comprehension 
skills” [15] 

• “[Programming] is really a bit harder than the 
other units - it requires some analysis and some 
mathematical nous almost. And they simply don’t 
have it.” [34] 

Strivers from a non-English-speaking background had a 
particularly hard time, according to some participants. 
Some of these students may be more capable (than their 
programming performance indicates) but the additional 
cognitive load imposed by working in English as a 
second language means that they fail to learn or perform: 

• “high level of overseas students - sometimes what 
seems plain to us is not plain to them” [27] 

• “often their problem may be that they are not so 
fluent in English” [41] 

• “Non-English students struggle with dealing with 
the help systems. They are familiar with synonyms 
so unless the word is exactly the same as the one 
they have typed in they cannot find it.” [43] 

Often instructors offered comments about the difficulties, 
confusion and extreme mental effort experienced by the 
Strivers, but did not offer a reason that this was 
occurring: 

• “Extremely difficult for the bottom ones to 
understand. It’s hard for them. The bottom ones 
avoid it [learning from the problem].” [8] 

• “Often have no idea what to do. Shows to me that 
they are really not able to read the problem and try 
to understand the components – I guess that’s “off 
the scale.” [11] 

Several instructors commented on the additional load 
imposed by the complexity of the language syntax or the 
environment, particularly if students had not encountered 
them previously: 

• “some get stuck on syntax - if you look at how it’s 
written, it won’t compile and run, so we find it 
hard to teach them to pinpoint errors in the code .. 

they are distracted by debugging and ultimately 
they lose the motivation to look further.” [36] 

• “the bottom 10% of students are usually 
unfamiliar with the programming environment 
including strict logic, so they have to put in a lot 
more effort.” [41] 

• “they don’t have the [programming] language 
skills so its about 9, and the rest of it becomes 
impossible because they get stuck and they can’t 
go any further.” [44] 

• " What we find with the students is if the 
environment is too complicated then they don’t 
know the difference between the environment and 
the language, and if its too simple, then it’s not 
giving them any help. Like the command line – it's 
not a good way of teaching because they have to 
come to grips with the file structure, and things, so 
you need an environment that takes away those 
sort of mechanical elements but still is not full of 
hundreds of different features that confuse them. " 
[7] 

• “it requires an enormous mental effort because it’s 
so new, both the language and the environment” 
[9] 

 
Another broad observation by participants is the general 
lack of concept generalisation displayed. The high 
cognitive load experienced by these students is shown in 
their inability to form schema, and hence to generalise 
and notice patterns.  No transfer is shown by these 
students: 

• “..generalisation ... or noticing patterns, is 
extremely difficult for students. Plenty of times I 
give them identical problems which to me are 
identical and then the students see them as 
completely different problems that are unrelated 
to previous ones. They just don’t see it. What do 
they learn from that ... ? “ [1] 

• “They can do the same problem 4 times in a row 
and trip over the same bug. Very frustrating 
actually." [22] 

• “there are students in the bottom portion of the 
class who will spend a lot more time trying to 
work out a problem than the average student, but 
they won’t learn from the experience. And there 
are students that will.” [38] 

The view that students in the bottom 10% of a 
programming course are simply without the capacity to 
learn this content, is lamented in a comment by 
Participant Number 19: 

• “the bottom 10% just can’t do it - they flounder” 
[19] 

The final theme offered by instructors concerned the 
structure of materials or the course expectations. They 
indicated that in some cases, the bottom 10% of students 
are expected to fail, and accommodations are not made 
for these students. 

• “most coordinators running these type of courses 
focus too much on the stronger students: and they 
should focus on the weaker students.” [41] 

• “the bottom 10% of students wouldn’t be 
expected to pass the unit anyway” [43] 

CRPIT Volume 123 - Computing Education 2012

194



• “the assignments are set as a challenge, but not 
something that is impossible. The good students 
find them easy, the poor students struggle, and 
that’s the way it is, we can’t have them too easy 
or too hard.” [7] 

5.2.4 Summary 

The comments offered by participants may be 
summarised as follows: 

• many identify multiple profiles of students within 
the bottom 10% of a programming course; 

• some students (Ghosts) are enrolled but never 
have any intention of attending classes, let alone 
learning content; 

• some students (Idlers) are attending classes, but do 
not apply themselves to designated tasks (for 
various reasons) and as such,  do not apply 
sufficient mental effort to enable learning of 
content; 

• some students (Strivers, who were identified by 
the majority of participants as existing  in the 
bottom 10% of performance within a course) are 
attending classes, are motivated, are completing 
(as best they can) designated tasks, are exerting 
very high to extreme levels of mental effort on 
everything ... and yet are not demonstrating 
learning. 

We argue that, despite the mental effort measures being 
based on perceptions by instructors of their student 
cohort, it is important to note that when probed, many of 
the instructors made a clear distinction in student failure 
due to non-engagement with the materials versus those 
who failed despite their focussed application and effort to 
the learning resources. 

The comments from participants indicate that their 
perceptions of the Strivers are that they are suffering from 
excessive mental effort (cognitive overload). Specific 
themes identified by participants within this profile 
included: 

• Lack of ability in problem solving 

• Lack of innate aptitude for programming 

• Lack of literacy, comprehension, and analysis 
skills 

• Lack of English due to English being a second 
language 

• Difficulty of the computer language and/or 
environment being used 

• Lack of capacity to generalise concepts 

• Instructional materials that do not cater for their 
needs. 

6 Discussion 

The results of the current paper are disturbing.  
A clear majority (75%) of participants who are 

academics teaching introductory computer programming 
courses (units) indicated explicitly the view that there are 
students in the "bottom 10% of performance" of these 
courses who are applying themselves to the set learning 
activities, are completing the assignments (as best they 
can) and yet they are failing to learn. 

Moreover, the reported measures of perceived mental 
effort by the most frequent (modal) participant response 

indicates that these very same students who are failing to 
learn are putting in extreme levels of mental effort. These 
students cannot be asked to do more. 

If these students are to have success in learning 
computer programming then aspects of the instructional 
design for introductory programming courses (units) must 
change. 

Many participants indicated that such changes have 
already occurred as demonstrated by selection of 
programming language and the increased use of IDEs 
over the period 2003 to 2010, predominately for 
pedagogical benefits - that is, to help students’ learning. 
Yet students still fail to learn, despite their best (mental) 
efforts. 

It is likely that a range of factors contribute to the 
difficulty of learning computer programming in the 
current regime. These include the nature of programming 
itself, the apparent necessity to house activities within a 
computer language (with associated syntax) and often the 
inclusion of problem-solving activities. 

Cognitive Load Theory warns that the limitations of 
human cognitive resources means that learning is prone to 
fail if these resources are not carefully managed in a 
teaching-learning transaction. The results of the current 
paper indicate that many students in the lower end of 
performance within introductory programming courses 
need to apply large tracts of their cognitive resources to 
cope with the intrinsic nature of the to-be-learnt content. 
These students are also required to deploy large, and 
possibly unnecessary whilst learning basic concepts, 
levels of cognitive resources to extraneous aspects of 
instruction, such as the nuances of a programming 
language and syntax. With such high levels of cognitive 
resources already deployed it is likely that there is, 
effectively, nothing left to give to the processes of 
learning. 

Cognitive Load Theory has proven to be an extremely 
effective utility in engineering better instructional designs 
for traditionally complex and difficult areas of study such 
as mathematics, physics and electrical circuitry (see 
Sweller 1999). Possibilities of improving the instructional 
design of introductory programming courses may also 
follow by embracing cognitive analysis of the processes 
and dynamics associated with learning computer 
programming. 

Perhaps all people associated with teaching 
introductory programming need to revisit the question 
"What are the objectives of an introductory programming 
course?". The extent to which the answer involves the 
gaining of core programming concepts, as opposed to 
skills in any particular language and syntax, may assist in 
better focussing upon available and effective instructional 
strategies.  

There is also clear theoretical argument that some of 
the traditional strategies used, such as a focus on 
problem-solving, may actively block learning, In other 
technically complex domains such as mathematics 
(Sweller & Cooper 1985), engineering (Moreno et al. 
2006) , and psychology (Renkl et al. 2004) the benefits of 
using worked examples compared to problem solving as a 
strategy for effective teaching and learning has been 
demonstrated. It has also been suggested that worked 
examples and faded worked examples will be beneficial 

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

195



for teaching introductory programming (Gray et al. 2007) 
though this remains to be tested. 

Greater awareness and understanding of learning 
through the lens of Cognitive Load Theory, with 
particular focus on the learning dynamics of novice 
programmers, may aid in identifying an appropriate 
response to the design, development and delivery of 
introductory programming courses. 

7 References 

Ayres, P., & Sweller, J. (2005): The split-attention 
principle in multimedia learning. In The Cambridge 

Handbook of Multimedia Learning 135-146. Mayer R. 
(Ed.), New York, Cambridge University Press. 

Chandler, P. & Sweller, J. (1992): The split-attention 
effect as a factor in the design of instruction. British 

Journal of Educational Psychology, 62(2):233-246. 

Chi, M., Glaser, R. & Rees, E. (1982): Expertise in 
problem solving. In Advances in the Psychology of 

Human Intelligence 7-75. Sternberg R. (Ed.). Hillsdale, 
NJ: Erlbaum. 

Cooper, G. & Sweller, J. (1987): The effects of schema 
acquisition and rule automation on mathematical 
problem solving transfer. Journal of Educational 

Psychology, 79: 347-362. 

Cooper, G., Tindall-Ford, S., Chandler, P. & Sweller, J. 
(2001): Learning by imagining. Journal of 

Experimental Psychology Applied. 7(1):68-82. 

De Raadt, M., Watson, R. and Toleman, M. (2002): 
Language trends in introductory programming courses. 
Proc. Informing Science and IT Education Conference, 

Cork, Ireland, Cohen, E. and Boyd, E. (Eds). 
InformingScience.org 

De Raadt, M., Watson, R. and Toleman, M. (2004): 
Introductory programming: what's happening today and 
will there be any students to teach tomorrow? 

Proceedings of the sixth conference on Australasian 

Computing Education. Dunedin, New Zealand, 30:277-
284, Australian Computing Society, Inc. 

Du Boulay, B (1989): Some difficulties in learning to 
program. In Studying the Novice Programmer. 283-
299. Soloway, E. & Spohrer, J.C. (Eds.). Hillsdale, NJ: 
Lawrence Erlbaum. 

Gray, S. et al., 2007. Suggestions for graduated exposure 
to programming concepts using fading worked 
examples. Proceedings of the third international 
workshop on Computing education research. 

Hunt, M. (1982). The Universe Within. Great Britain, The 
Harvester Press. 

Kirschner, P.A. (2002): Cognitive load theory: 
implications of cognitive load theory on the design of 
learning. Learning and Instruction. 12(1):1-10. 

Mason, R., Cooper, G. & de Raadt, M., in press. Trends 
in Introductory Programming Courses in Australian 
Universities – Languages, Environments and 
Pedagogy. Proceedings of the Fourteenth Australasian 

Computing Education Conference (ACE2012). 
Melbourne, Australia: Australian Computer Society, 
Inc. 

Mayer, R. E. (2005): Cognitive theory of multimedia 
learning. In The Cambridge Handbook of Multimedia 

Learning. 31-48. R. Mayer (Ed.). New York, 
Cambridge University Press. 

Miller, G. (1956): The Magical Number Seven, Plus or 
Minus Two: Some Limits on Our Capacity for 
Processing Information. The Psychological Review. 
63:81-97 

Moreno, R., Reisslein, M. & Delgoda, G., 2006. Toward 
a Fundamental Understanding of Worked Example 
Instruction: Impact of Means-Ends Practice, 
Backward/Forward Fading, and Adaptivity. In 
Proceedings of the 36th Annual Frontiers in Education 
Conference. San Diego, CA: IEEE, pp. 5-10. 

Paas, F., Renkl, A., & Sweller, J. (2003): Cognitive load 
theory and instructional design: Recent developments. 
Educational Psychologist 38(1):1-4. 

Paas, F., Renkl, A. & Sweller, J. (2004): Cognitive Load 
Theory: Instructional implications of the interaction 
between information structures and cognitive 
architecture. Instructional Science 32:1-8. 

Paas, F. & Van Merriënboer, J. (1993): The efficiency of 
instructional conditions: An approach to combine 
mental effort and performance measures. Human 

Factors 35(4):737-743. 

Paas, F. & Van Merriënboer, J. (1994): Variability of 
worked examples and transfer of geometrical problem 
solving skills: A cognitive load approach. Journal of 

Educational Psychology 86:122-133. 

Renkl, A., Atkinson, R.K. & Große, C.S., 2004. How 
Fading Worked Solution Steps Works – A Cognitive 
Load Perspective. Instructional Science, 32, pp.59-82. 

Renkl, A. (2005): The worked-out example principle in 
multimedia learning. In The Cambridge Handbook of 

Multimedia Learning 229-245. R. Mayer (Ed.). New 
York, Cambridge University Press. 

Shiffrin, R. & Schneider, W. (1977): Controlled and 
automatic human information processing II. Perceptual 
learning, automatic attending and a general theory. 
Psychological Review 84:127-190. 

Sweller, J. (1988): Cognitive load during problem 
solving: Effects on learning. Cognitive Science, 
12:257-285. 

Sweller, J. (1999): Instructional Design in Technical 

Areas. Melbourne, Australia, ACER Press. 

Sweller, J. & Chandler, P. (1994): Why some material is 
difficult to learn. Cognition and Instruction 12(3):185-
233. 

Sweller, J. & Cooper, G., 1985. The Use of Worked 
Examples as a Substitute for Problem Solving in 
Learning Algebra. Cognition and Instruction, 2(1), 
pp.59-89.

 

CRPIT Volume 123 - Computing Education 2012

196



Author Index

Ahadi, Alireza, 77, 87
Alammary, Ali Saleh, 121

Berglund, Anders, 103

Carbone, Angela, iii, 61, 121, 157, 167
Ceddia, Jason, 167
Chinn, Donald, 61
Clear, Tony, 61, 103
Cooper, Graham, 33, 187
Corney, Malcolm, 53, 77, 87
Cranefield, Stephen, 43
Curran, James, 53

D’Souza, Daryl, 53, 61
Daniels, Mats, 95
de Raadt, Michael, iii, 33, 61, 71
Dick, Martin, 177

Fenwick, Joel, 141
Fidge, Colin, 53
Firmin, Sally: Sheard, Judy, 157

Gluga, Richard, 53, 147

Hamilton, Margaret, 53
Harland, James, 53
Hogan, James, 53
Hu, Minjie, 43
Hurst, John, 157
Hyland, Peter, 15

Kölling, Michael, 3
Kay, Judy, 53, 147

Kleitman, Sabina, 147
Koppi, Tony, 7, 25

Laakso, Mikko-Jussi, 61
Lever, Tim, 147
Lister, Raymond, 53, 61, 77, 87, 147

Mason, Raina, 33, 187
Mcgill, Tanya, 15
Murphy, Tara, 53

Naghdy, Golshah, 7

Pears, Arnold, 95
Philpot, Anne, 61
Pilgrim, Chris, 25

Reye, James, 131
Risco, Silviu, 131
Roberts, Madeleine, 7, 15
Roggenkamp, Mike, 53

Sheard, Judy, 53, 61, 121, 177
Simon, 53, 61
Skene, James, 61
Sutton, Peter, 141

Teague, Donna, 53, 77, 87
Thota, Neena, 103
Trabelsi, Zouheir, 113

Warburton, Geoff, 61
Winikoff, Michael, 43

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

197



Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 113 - Computer Science 2011
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia. January 2011. 978-1-920682-93-4.

Contains the proceedings of the Thirty-Fourth Australasian Computer Science
Conference (ACSC 2011), Perth, Australia, 1720 January 2011.

Volume 114 - Computing Education 2011
Edited by John Hamer, University of Auckland, New Zealand
and Michael de Raadt, University of Southern Queensland,
Australia. January 2011. 978-1-920682-94-1.

Contains the proceedings of the Thirteenth Australasian Computing Education
Conference (ACE 2011), Perth, Australia, 17-20 January 2011.

Volume 115 - Database Technologies 2011
Edited by Heng Tao Shen, The University of Queensland,
Australia and Yanchun Zhang, Victoria University, Australia.
January 2011. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Second Australasian Database Conference
(ADC 2011), Perth, Australia, 17-20 January 2011.

Volume 116 - Information Security 2011
Edited by Colin Boyd, Queensland University of Technology,
Australia and Josef Pieprzyk, Macquarie University, Aus-
tralia. January 2011. 978-1-920682-96-5.

Contains the proceedings of the Ninth Australasian Information Security
Conference (AISC 2011), Perth, Australia, 17-20 January 2011.

Volume 117 - User Interfaces 2011
Edited by Christof Lutteroth, University of Auckland, New
Zealand and Haifeng Shen, Flinders University, Australia.
January 2011. 978-1-920682-97-2.

Contains the proceedings of the Twelfth Australasian User Interface Conference
(AUIC2011), Perth, Australia, 17-20 January 2011.

Volume 118 - Parallel and Distributed Computing 2011
Edited by Jinjun Chen, Swinburne University of Technology,
Australia and Rajiv Ranjan, University of New South Wales,
Australia. January 2011. 978-1-920682-98-9.

Contains the proceedings of the Ninth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2011), Perth, Australia, 17-20 January 2011.

Volume 119 - Theory of Computing 2011
Edited by Alex Potanin, Victoria University of Wellington,
New Zealand and Taso Viglas, University of Sydney, Aus-
tralia. January 2011. 978-1-920682-99-6.

Contains the proceedings of the Seventeenth Computing: The Australasian Theory
Symposium (CATS 2011), Perth, Australia, 17-20 January 2011.

Volume 120 - Health Informatics and Knowledge Management 2011
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Tony Sahama, Qeensland University of Technol-
ogy, Australia. January 2011. 978-1-921770-00-5.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2011), Perth, Australia, 17-20 January 2011.

Volume 121 - Data Mining and Analytics 2011
Edited by Peter Vamplew, University of Ballarat, Australia,
Andrew Stranieri, University of Ballarat, Australia, Kok–
Leong Ong, Deakin University, Australia, Peter Christen,
Australian National University, , Australia and Paul J.
Kennedy, University of Technology, Sydney, Australia. De-
cember 2011. 978-1-921770-02-9.

Contains the proceedings of the Ninth Australasian Data Mining Conference
(AusDM’11), Ballarat, Australia, 1–2 December 2011.

Volume 122 - Computer Science 2012
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia and Bruce Thomas, University of South Aus-
tralia. January 2012. 978-1-921770-03-6.

Contains the proceedings of the Thirty-Fifth Australasian Computer Science
Conference (ACSC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 123 - Computing Education 2012
Edited by Michael de Raadt, Moodle Pty Ltd and Angela
Carbone, Monash University, Australia. January 2012. 978-
1-921770-04-3.

Contains the proceedings of the Fourteenth Australasian Computing Education
Conference (ACE 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 124 - Database Technologies 2012
Edited by Rui Zhang, The University of Melbourne, Australia
and Yanchun Zhang, Victoria University, Australia. January
2012. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Third Australasian Database Conference
(ADC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 125 - Information Security 2012
Edited by Josef Pieprzyk, Macquarie University, Australia
and Clark Thomborson, The University of Auckland, New
Zealand. January 2012. 978-1-921770-06-7.

Contains the proceedings of the Tenth Australasian Information Security
Conference (AISC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 126 - User Interfaces 2012
Edited by Haifeng Shen, Flinders University, Australia and
Ross T. Smith, University of South Australia, Australia.
January 2012. 978-1-921770-07-4.

Contains the proceedings of the Thirteenth Australasian User Interface Conference
(AUIC2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 127 - Parallel and Distributed Computing 2012
Edited by Jinjun Chen, University of Technology, Sydney,
Australia and Rajiv Ranjan, CSIRO ICT Centre, Australia.
January 2012. 978-1-921770-08-1.

Contains the proceedings of the Tenth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 128 - Theory of Computing 2012
Edited by Julián Mestre, University of Sydney, Australia.
January 2012. 978-1-921770-09-8.

Contains the proceedings of the Eighteenth Computing: The Australasian Theory
Symposium (CATS 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 129 - Health Informatics and Knowledge Management 2012
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Kathleen Gray, University of Melbourne, Aus-
tralia. January 2012. 978-1-921770-10-4.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 130 - Conceptual Modelling 2012
Edited by Aditya Ghose, University of Wollongong, Australia
and Flavio Ferrarotti, Victoria University of Wellington, New
Zealand. January 2012. 978-1-921770-11-1.

Contains the proceedings of the Eighth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2012), Melbourne, Australia, 31 January – 3 February 2012.

Volume 131 - Advances in Ontologies 2010
Edited by Thomas Meyer, UKZN/CSIR Meraka Centre
for Artificial Intelligence Research, South Africa, Mehmet
Orgun, Macquarie University, Australia and Kerry Taylor,
CSIRO ICT Centre, Australia. December 2010. 978-1-921770-
00-5.

Contains the proceedings of the Sixth Australasian Ontology Workshop 2010 (AOW
2010), Adelaide, Australia, 7th December 2010.


	Vol123_contributed_papers.pdf
	03_ace2012_submission_29.pdf
	1 Introduction
	2 Method
	3 Findings and Discussion
	3.1 Reasons for Attrition
	3.2 Statistically Significant Gender Differences

	4 Summary and Conclusions
	5 Acknowledgements
	6 References

	20_ace2012_submission_16.pdf
	1 Introduction
	2 Background
	2.1 Monash Unit Evaluation Instruments
	2.2 Monash Unit Quality Indicators

	3 Research Approach
	3.1 Unit vs. Unique Unit Offering
	3.2 The Data Collection 
	3.3 Method of Analysis

	4 Results and Discussion
	4.1 Note About the Units
	4.2 The Main Categories
	4.3 The Attributes of the Main Categories
	4.4 The Most Frequently Mentioned Categories
	4.5 Limitations of Study

	5 Conclusion and Future Work
	6 Acknowledgements
	7 References





