
Conferences in Research and Practice in

Information Technology

Volume 122

Computer Science 2012

Australian Computer Science Communications, Volume 34, Number 1

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

Computer Science 2012

Proceedings of the
Thirty-Fifth Australasian Computer Science Conference
(ACSC 2012), Melbourne, Australia,
30 January – 3 February 2012

Mark Reynolds and Bruce Thomas, Eds.

Volume 122 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Computer Science 2012. Proceedings of the Thirty-Fifth Australasian Computer Science Conference
(ACSC 2012), Melbourne, Australia, 30 January – 3 February 2012

Conferences in Research and Practice in Information Technology, Volume 122.

Copyright c©2012, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Mark Reynolds
School of Computer Science and Software Engineering
Faculty of Engineering, Computing and Mathematics
The University of Western Australia
Crawley, WA 6009
Australia
Email: mark@csse.uwa.edu.au

Bruce Thomas
School of Computer and Information Science
Division of Information Technology, Engineering and the Environment
University of South Australia
Adelaide, SA 5001
Australia
Email: bruce.thomas@unisa.edu.au

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
Simeon J. Simoff, University of Western Sydney, NSW
Email: crpit@scm.uws.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 122.
ISSN 1445-1336.
ISBN 978-1-921770-03-6.

Printed, January 2012 by University of Western Sydney, on-line proceedings
Printed, January 2012 by RMIT, electronic media
Document engineering by CRPIT

The Conferences in Research and Practice in Information Technology series disseminates the results of peer-reviewed
research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Thirty-Fifth Australasian Computer Science Conference
(ACSC 2012), Melbourne, Australia, 30 January – 3 February 2012

Preface . vii

Programme Committee . viii

Organising Committee . ix

Welcome from the Organising Committee . x

CORE - Computing Research & Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xii

ACSW and ACSC 2012 Sponsors . xiv

Contributed Papers

FEAS: A full-time event aware scheduler for improving responsiveness of virtual machines 3
Denghui Liu and Jinli Cao

Boosting Instruction Set Simulator Performance with Parallel Block Optimisation and Replacement . 11
Bradley Alexander, Sean Donnellan, Andrew Jeffrey, Travis Olds and Nicholas Sizer

On the parameterized complexity of dominant strategies . 21
Mahdi Parsa and Vlad Estivill-Castro

Single Feature Ranking and Binary Particle Swarm Optimisation Based Feature Subset Ranking for
Feature Selection . 27

Bing Xue, Mengjie Zhang and Will N. Browne

On the Existence of High-Impact Refactoring Opportunities in Programs . 37
Jens Dietrich, Catherine McCartin, Ewan Tempero and Syed Ali Shah

Declarative Diagnosis of Floundering in Prolog . 49
Lee Naish

Learning Time Series Patterns by Genetic Programming . 57
Feng Xie, Andy Song and Vic Ciesielski

ERA Challenges for Australian University ICT . 63
Paul Bailes

Evolutionary Design of Optical Waveguide with Multiple Objectives . 73
Qiao Shi, Andy Song, Thach Nguyen and Arnan Mitchell

Real-time Evolutionary Learning of Cooperative Predator-Prey Strategies . 81
Mark Wittkamp, Luigi Barone, Phil Hingston and Lyndon While

Trends in Suffix Sorting: A Survey of Low Memory Algorithms . 91
Jasbir Dhaliwal, Simon J. Puglisi and Andrew Turpin

Spectral debugging: How much better can we do? . 99
Lee Naish, Kotagiri Ramamohanarao and Hua Jie Lee

Importance of Single-Core Performance in the Multicore Era . 107
Toshinori Sato, Hideki Mori, Rikiya Yano and Takanori Hayashida

Explaining alldifferent . 115
Nicholas Downing, Thibaut Feydy and Peter Stuckey

Author Index . 125

vi

Preface

The Australasian Computer Science Conference (ACSC) series is an annual forum, bringing together re-
search sub-disciplines in Computer Science. The meeting allows academics and other researchers to discuss
research topics as well as progress in the field, and policies to stimulate its growth. This volume contains
papers being presented at the Thirty-Fifth ACSC in Melbourne, Australia. ACSC 2012 is part of the
Australasian Computer Science Week which runs from January 30 to February 2, 2012.

The ACSC 2012 call for papers solicited 38 submissions from Australia, New Zealand, Iran, Germany,
India, Japan, China and Thailand. The topics addressed by the submitted papers illustrate the broadness
of the discipline. These included algorithms, virtualisation, software visualisation, databases, constraint
programming and PROLOG, to name just a few.

The programme committee consisted of 29 highly regarded academics from Australia, New Zealand,
China, Japan, Canada, France, Italy, and USA. All papers were reviewed by at least three programme
committee members, and, in some cases, external reviewers. Of the 38 papers submitted, 14 (or 37%) were
selected for presentation at the conference.

The Programme Committee determined that the ”Best Paper Award” should go to Mahdi Parsa and
Vlad Estivill-Castro for their paper entitled ”On the parameterized complexity of dominant strategies”.
Congratulations.

We thank all authors who submitted papers and all conference participants for helping to make the
conference a success. We also thank the members of the programme committee and the external referees
for their expertise in carefully reviewing the papers. We are grateful to Professor Simeon Simoff from
UWS representing CRPIT for his assistance in the production of the proceedings. We thank Professor Tom
Gedeon (President) and Dr Alex Potanin (Conference Coordinator) for their support representing CORE
(the Computing Research and Education Association of Australasia).

Thanks to the School of Computer Science and Software Engineering at The University of Western
Australia for web support for advertising and refereeing for the conference.

Last, but not least, we express gratitude to our hosts at the RMIT University in Melbourne and, in
particular, James Harland.

Mark Reynolds
University of Western Australia

Bruce Thomas
University of South Australia

ACSC 2012 Programme Chairs
January 2012

vii

Programme Committee

Chairs

Mark Reynolds, University of Western Australia
Bruce Thomas, University of South Australia

Members

Carole Adam, RMIT University (Australia)
Stephane Bressan, National University of Singapore (Singapore)
Fred Brown, University of Adelaide (Australia)
Rajkumar Buyya, University of Melbourne (Australia)
Curtis Dyreson, Utah State University (USA)
Ansgar Fehnker, NICTA (Australia)
Henry Gardner, Australian National University (Australia)
Ken Hawick, Massey University - Albany (New Zealand)
Michael Houle, National Institute for Informatics (Japan)
Zhiyi Huang, University of Otago (New Zealand)
Paddy Krishnan, Bond University (Australia)
Chiou-Peng Lam, Edith Cowan University (Australia)
Jiuyong Li, University of South Australia (Australia)
Chris McDonald, University of Western Australia (Australia)
Tanja Mitrovic, Canterbury University (New Zealand)
Linda Pagli, University of Pisa (Italy)
Maurice Pagnucco, University of New South Wales (Australia)
Alex Potanin, Victoria University of Wellington (New Zealand)
Yuping Shen, Sun Yat-Sen University, Guangzhou, (China)
Markus Stumptner, University of South Australia (Australia)
Xiaoming Sun, Tsinghua University (China)
David Toman, University of Waterloo (Canada)
Andrew Turpin, University of Melbourne (Australia)
Hua Wang, University of Southern Queensland (Australia)
Burkhard Wuensche, University of Auckland (New Zealand)
Masafumi Yamashita, Kyushu University (Japan)
Xiaofang Zhou, University of Queensland (Australia)

Additional Reviewers

Craig Anslow
Muzammil Mirza Baig
James Birt
Quan Chen
Shiguang Feng
Colin Fyfe
Lindsay Groves
Dirk S. Hovorka

Jiwei Jin
Tuze Kuyucu
Thuc Duy Le
Kai-Cheung Leung
Huawen Liu
Baljeet Malhotra
Stuart Marshall
Krzysztof Onak

David Pearce
A.H.M. Sarowar Sattar
Lili Sun
Antoine Veillard
Hiroshi Wada

viii

Organising Committee

Members

Dr. Daryl D’Souza
Assoc. Prof. James Harland (Chair)
Dr. Falk Scholer
Dr. John Thangarajah
Assoc. Prof. James Thom
Dr. Jenny Zhang

ix

Welcome from the Organising Committee

On behalf of the Australasian Computer Science Week 2012 (ACSW2012) Organising Committee, we
welcome you to this year’s event hosted by RMIT University. RMIT is a global university of technology
and design and Australia’s largest tertiary institution. The University enjoys an international reputation
for excellence in practical education and outcome-oriented research. RMIT is a leader in technology, design,
global business, communication, global communities, health solutions and urban sustainable futures. RMIT
was ranked in the top 100 universities in the world for engineering and technology in the 2011 QS World
University Rankings. RMIT has three campuses in Melbourne, Australia, and two in Vietnam, and offers
programs through partners in Singapore, Hong Kong, mainland China, Malaysia, India and Europe. The
University’s student population of 74,000 includes 30,000 international students, of whom more than 17,000
are taught offshore (almost 6,000 at RMIT Vietnam).

We welcome delegates from a number of different countries, including Australia, New Zealand, Austria,
Canada, China, the Czech Republic, Denmark, Germany, Hong Kong, Japan, Luxembourg, Malaysia, South
Korea, Sweden, the United Arab Emirates, the United Kingdom, and the United States of America.

We hope you will enjoy ACSW2012, and also to experience the city of Melbourne.,
Melbourne is amongst the world’s most liveable cities for its safe and multicultural environment as

well as well-developed infrastructure. Melbournes skyline is a mix of cutting-edge designs and heritage
architecture. The city is famous for its restaurants, fashion boutiques, café-filled laneways, bars, art galleries,
and parks.

RMIT’s city campus, the venue of ACSW2012, is right in the heart of the Melbourne CBD, and can be
easily accessed by train or tram.

ACSW2012 consists of the following conferences:

– Australasian Computer Science Conference (ACSC) (Chaired by Mark Reynolds and Bruce Thomas)
– Australasian Database Conference (ADC) (Chaired by Rui Zhang and Yanchun Zhang)
– Australasian Computer Education Conference (ACE) (Chaired by Michael de Raadt and Angela Car-

bone)
– Australasian Information Security Conference (AISC) (Chaired by Josef Pieprzyk and Clark Thom-

borson)
– Australasian User Interface Conference (AUIC) (Chaired by Haifeng Shen and Ross Smith)
– Computing: Australasian Theory Symposium (CATS) (Chaired by Julián Mestre)
– Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Jinjun Chen

and Rajiv Ranjan)
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Ker-

ryn Butler-Henderson and Kathleen Gray)
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Aditya Ghose and Flavio

Ferrarotti)
– Australasian Computing Doctoral Consortium (ACDC) (Chaired by Falk Scholer and Helen Ashman)

ACSW is an event that requires a great deal of co-operation from a number of people, and this year has
been no exception. We thank all who have worked for the success of ACSE 2012, including the Organising
Committee, the Conference Chairs and Programme Committees, the RMIT School of Computer Science
and IT, the RMIT Events Office, our sponsors, our keynote and invited speakers, and the attendees.

Special thanks go to Alex Potanin, the CORE Conference Coordinator, for his extensive expertise,
knowledge and encouragement, and to organisers of previous ACSW meetings, who have provided us with
a great deal of information and advice. We hope that ACSW2012 will be as successful as its predecessors.

Assoc. Prof. James Harland
School of Computer Science and Information Technology, RMIT University

ACSW2012 Chair
January, 2012

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2012 in Melbourne. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences - ACSC, ADC, and CATS, which formed the basis of ACSW
in the mid 1990s - now share this week with seven other events - ACE, AISC, AUIC, AusPDC, HIKM,
ACDC, and APCCM, which build on the diversity of the Australasian computing community.

In 2012, we have again chosen to feature a small number of keynote speakers from across the discipline:
Michael Kölling (ACE), Timo Ropinski (ACSC), and Manish Parashar (AusPDC). I thank them for their
contributions to ACSW2012. I also thank invited speakers in some of the individual conferences, and the
two CORE award winners Warwish Irwin (CORE Teaching Award) and Daniel Frampton (CORE PhD
Award). The efforts of the conference chairs and their program committees have led to strong programs in
all the conferences, thanks very much for all your efforts. Thanks are particularly due to James Harland
and his colleagues for organising what promises to be a strong event.

The past year has been very turbulent for our disciplines. We tried to convince the ARC that refereed
conference publications should be included in ERA2012 in evaluations – it was partially successful. We
ran a small pilot which demonstrated that conference citations behave similarly to but not exactly the
same as journal citations - so the latter can not be scaled to estimate the former. So they moved all
of Field of Research Code 08 “Information and Computing Sciences” to peer review for ERA2012. The
effect of this will be that most Universities will be evaluated at least at the two digit 08 level, as refereed
conference papers count towards the 50 threshold for evaluation. CORE’s position is to return 08 to a
citation measured discipline as soon as possible.

ACSW will feature a joint CORE and ACDICT discussion on Research Challenges in ICT, which I hope
will identify a national research agenda as well as priority application areas to which our disciplines can
contribute, and perhaps opportunity to find international multi-disciplinary successes which could work in
our region.

Beyond research issues, in 2012 CORE will also need to focus on education issues, including in Schools.
The likelihood that the future will have less computers is small, yet where are the numbers of students we
need?

CORE’s existence is due to the support of the member departments in Australia and New Zealand,
and I thank them for their ongoing contributions, in commitment and in financial support. Finally, I am
grateful to all those who gave their time to CORE in 2011; in particular, I thank Alex Potanin, Alan Fekete,
Aditya Ghose, Justin Zobel, and those of you who contribute to the discussions on the CORE mailing lists.
There are three main lists: csprofs, cshods and members. You are all eligible for the members list if your
department is a member. Please do sign up via http://lists.core.edu.au/mailman/listinfo - we try to keep
the volume low but relevance high in the mailing lists.

Tom Gedeon

President, CORE
January, 2012

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2013. Volume 35. Host and Venue - University of South Australia, Adelaide, SA.

2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.

2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.
2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.
2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.
2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACDC Australasian Computing Doctoral Consortium
ACE Australasian Computer Education Conference
ACSC Australasian Computer Science Conference
ACSW Australasian Computer Science Week
ADC Australasian Database Conference
AISC Australasian Information Security Conference
AUIC Australasian User Interface Conference
APCCM Asia-Pacific Conference on Conceptual Modelling
AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
CATS Computing: Australasian Theory Symposium
HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections

in respective CRPIT volumes.

xiii

ACSW and ACSC 2012 Sponsors

We wish to thank the following sponsors for their contribution towards this conference.

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

CORE - Computing Research and Education,
www.core.edu.au

RMIT University,
www.rmit.edu.au/

Australian Computer Society,
www.acs.org.au

University of Western Australia,
www.uwa.edu.au

xiv

Contributed Papers

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

1

CRPIT Volume 122 - Computer Science 2012

2

FEAS: A full-time event aware scheduler for improving responsiveness
of virtual machines

Denghui Liu, Jinli Cao
Department of Computer Science & Computer

Engineering, Engineering & Mathematical Sciences
La Trobe University, Melbourne Victoria 3086, Australia

d8liu@students.latrobe.edu.au,
j.cao@latrobe.edu.au

Jie Cao

Jiangsu Provincial Key Laboratory of E-Business,
Nanjing University of Finance and Economics

 Nanjing, China

caojie690929@163.com

Abstract
Due to the advances in software and hardware support for
virtualisation, virtualisation technology has been adapted
for server consolidation and desktop virtualisation to save
on capital and operating costs. The basic abstraction layer
of software that virtualises hardware resources and
manages the execution of virtual machines is called virtual
machine monitor (VMM). A critical part of VMM is the
CPU scheduler which slices and dispatches physical CPU
time to virtual machines. Xen’s credit scheduler utilised
blocked-to-boosted mechanism to achieve low latency on
I/O intensive tasks. However, it suppresses event
notifications for the guest domain that is not blocked. This
may delays the response of a guest domain doing mixed
workloads, as its virtual CPU is seldom blocked when
processing CPU-intensive tasks. We enhance the credit
scheduler by making it full-time aware of inter-domain
events and physical interrupt request events. Our proposed
scheduler not only improves the responsiveness of
domains doing mixed workloads, but also minimises the
possibly caused scheduling unfairness. The experimental
evaluation demonstrates the benefits of our proposed
scheduler. .

Keywords: Virtual machine, Xen, Paravirtualization.

1 Introduction
Virtualisation technology involves the virtualisation of
several critical parts of a computer, such as CPU, memory,
network and storage. It partitions the underlying physical
resources and makes them shared among multiple virtual
machines (VMs) (or domains) either by assigning a
portion of physical resources to each VM (e.g. hard disk)
or by switching from one VM to another in a very short
time frame to use the physical resources in turns (e.g.
CPU). These VMs run in parallel on a single physical
machine under the control of virtual machine monitor
(VMM) and they can have different operating systems.

Virtualisation technology opens up the possibility of
server consolidation which increases the efficient use of
server resources by consolidating multiple servers running
different operation systems onto a single physical server.
Desktop virtualization is another major application of the

Copyright © 2012, Australian Computer Society, Inc. This paper
appeared at the 35th Australasian Computer Science Conference
(ACSC 2012), Melbourne, Australia, January-February 2012.
Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 122. M. Reynolds and B. Thomas, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

virtualisation technology, in which case users only need a
thin client to display the desktop interface locally while
have all backend processing done in a dedicated VM that
resides remotely in the Cloud. Both situations involve the
execution of CPU intensive tasks and I/O intensive tasks,
and often need to process a mix of both kinds at one time.
The complexity of workloads makes it a great challenge
for the VMM scheduler to maximise throughput and
minimise latency while ensuring fairness.

This paper is based on the observation of Xen 4.0.1
(Xen 2011) platform. Its default scheduler, named credit
scheduler, employs the BOOST mechanism to achieve low
I/O response latency which works reasonably well when
VMs have relatively monotonous workloads. The
schedulable entities of a VM are the virtual CPUs
(VCPUs) it has. The priority of an idle VCPU is boosted to
get an immediate execution when it receives an event. This
allows VMs performing I/O tasks to achieve lower
response latency. However, the responsiveness of a VM
diverges if it also does CPU intensive tasks at the same
time. A VCPU waiting in the run queue does not get
properly boosted when it receives an incoming event. The
event notification is suppressed and thus has no effect on
the scheduling. This might make the event sender wait
unnecessarily and delay the following jobs.

 An enhanced version of credit scheduler is presented in
this paper to improve the responsiveness of busy VMs by
taking advantage of Xen’s split driver model and even
channels. The device driver in Xen is split into two
portions. Domain 0 or a dedicated driver domain hosts the
front portion that directly interacts with the device, and the
other portion resides in unprivileged guest domains. These
two parts notify each other of waiting data using the Xen
event channel mechanism and exchanged data via the I/O
ring mechanism. The proposed scheduler monitors the
events sent across VMM and boosts the runnable VCPUs
receiving events originating from another domain or
physical interrupt requests (PIRQs). To complement credit
scheduler, the proposed scheduler prioritises not only
blocked VCPUs but also runnable ones, and is called
full-time event aware scheduler (FEAS). A VM processing
mixed workloads can greatly benefits from prompt
scheduling upon receiving an incoming event, particularly
if it is an I/O related event.

The rest of this paper is organized as follows. Section 2
discusses previous research on VM scheduling and relates
the virtual-machine monitor Xen. Section 3 presents the
design of our proposed scheduler for Full-time event
aware scheduling. Some experimental tests have been
conducted to verify/demonstrate the performance

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

3

improvements and the analysis of results has also been
included in Section 4. Finally, the conclusions and future
work are presented in Section 5.

2 Related work
This section firstly discusses previous research on VM
scheduling, then describes the architecture of Xen’s split
driver model and its credit scheduler.

2.1 VM scheduling
Three different VM schedulers have been introduced over
the course of Xen’s history, which are Borrowed Virtual
Time (BVT) scheduler, Simple Earliest Deadline First
(SEDF) scheduler, and Credit Scheduler. All these three
are Proportional Share schedulers which allocate CPU in
proportion to the VMs’ weight. Cherkasova et al. (2007)
comprehensively analysed and compared the impacts of
schedulers and their respective scheduler parameters on
the performance of I/O intensive applications running on
virtual machines.

Ongaro et al. (2008) study the impact of the credit
scheduler with various configurations on the performances
of guest domains concurrently running a mixed workload
of processor-intensive, bandwidth-intensive, and
latency-sensitive applications. They suggest in their work
that latency-sensitive applications should be placed in
their own VMs to achieve the best performance. The
purpose of our paper is to address this problem.

Govindan et al. (2009)’s communication-aware
scheduler monitors the I/O ring and preferentially
schedules the VMs that receive more data packets or are
anticipated to send more data packets. However, the
scheduler relies on accumulating the number of packets
received or sent over a certain period of time and does not
provide the immediate response to an incoming event.

Kim et al. (2009) made scheduler task aware by using
the gray-box knowledge. The scheduler infers the
guest-level I/O tasks by identifying the tasks using the
CR3 register and then monitoring their time slices. A task
is considered to be an I/O task based on two grey-box
criteria: it immediately pre-empts the running task if the
guest VM receives an event and its time slice is short.
However, classifying the tasks just based on the CPU
usage is not enough (Xia et al., 2009).

Xia et al. (2009) propose a pre-emption aware
scheduling (PaS) interface. Same with our scheduler, PaS
also improves the responsiveness of busy VMs by
allowing the VCPU to pre-empt when an event is pending
while it is waiting in the run queue. But in that approach
the event channels on which the pre-empting condition is
based need to be pre-known and registered to the guest
kernel.

2.2 Xen and Split driver model
Xen 4.0.1 is used in our research. Xen adopts the
paravirtualization approach and its guest operating
systems require modifications to be able to run on the Xen
platform. The Xen hypervisor sits between the hardware
and the co-existing virtual machines. It has full control
over hardware resources and dispatches them to different
VMs according to a set of predefined rules.

Device drivers are the essential software for any
operating system to communicate with physical hardware.

Xen’s split driver model divides the device driver into two
portions, the front end and the back end (Figure 1). The
back end handles the physical device and the front end acts
as the proxy of the back end. The back end is typically in
Domain 0 but sometimes in a dedicated driver domain.
Unprivileged guest domains have the front end with which
they can accomplish a network or disk request.

The two portions of device driver notify each other of
critical events using event channels and pass messages
using I/O ring buffers. Event channel is the primitive
notification mechanism within Xen. When the remote
domain is busy or yet to be scheduled, an event is
asynchronously delivered from its source to it to indicate
the relevant event on the source domain. The ring buffers
are implemented in the shared memory pages shared by
both driver ends. Front end and back end exchange data by
sending over the memory addresses of data pages rather
than doing a full copy. This zero-copy feature enables fast
message passing and consequently fast I/O.

Figure 1: Xen split driver model

 Based on the source of events, there are four types of
events sent over the event channel. They are physical
interrupt request (PIRQ) events, virtual IRQ (VIRQ)
events, inter-domain events and intra-domain events.
PIRQ events are mapped to the real IRQs of various
physical devices. As an incoming IRQ generated by a
device is likely not for the currently running domain, its
corresponding PIRQ event is enqueued on the target
domain and then processed when the domain is scheduled.
Only privileged domains, such as domain 0 and driver
domains, can handle PIRQ events. VIRQs are related to
virtual devices created by Xen, like the timer virtual
device. The main use of inter-domain events is for the
front end and the back end of paravirtualised devices to
notify each other of waiting data. Intra-domain events are a
special case of inter-domain events where the events are
delivered between the VCPUs of a single domain.

2.3 Credit scheduler
The current default scheduler of Xen is the credit
scheduler. It allocates fair shares of processor resources to
guest domains. Each slice of physical CPU time is
weighted by a certain number of credits. Thus, if domains
receive the same number of credits, they should expect an
equal amount of CPU time.
 Each VCPU’s state and credits are managed and
scheduled separately. The VCPU’s credit balance can be
positive or negative, and correspondingly its state can be

CRPIT Volume 122 - Computer Science 2012

4

under or over. VCPUs trade credits for CPU time. A tick
interrupt is triggered every 10ms. At each tick event, the
currently running domain is debited some credits for the
period it has run. An accounting event occurs every 30ms.
During the accounting process, VCPUs are recharged with
credits proportional to their weights. Their states are
adjusted accordingly. The under state is assigned for
VCPUs with positive credit balance while the over state
for the ones with negative credit balance. To fully utilise
available CPU resources, the accounting process caps
VCPU’s credits at an amount that is worth one rotation’s
CPU time slice. If a VCPU’s accumulating credits exceeds
the cap, it is marked inactive and will not receive any more
credits until it is active again. Its credits are forfeited and
shared by other active VCPUs. A scheduling event occurs
when a scheduling decision is needed, which triggers a
function that firstly refreshes the current VCPU’s credit
balance based on how long it has run and then decides the
next VCPU to be scheduled. The order of scheduling
VCPUs is based on their priorities. VCPUs with the under
priority are always run before those with the over priority.
VCPUs with same priority are scheduled in a round robin
manner. The scheduled VCPU is allowed to run for 30ms
or until pre-empted by other VCPUs with higher priority
whichever comes first. If a running VCPU runs out of
credits during its scheduled interval, it will not
spontaneously yield the CPU. Contrarily, it will continue
running and its credit simply goes negative.

Figure 2: Run state transitions

A VCPU in Xen could be in one of the following four
possible run states, running, runnable, blocked and offline.
The VCPU that is currently running on a physical CPU is
in the running state. Since multiple VCPUs share a limited
number of CPUs, VCPUs might not be scheduled on any
physical CPU as soon as they become runnable. These
VCPUs in the runnable state are essentially waiting in a
queue for their turn. In a conventional system an idle
thread occupies the physical CPU when there are no jobs
to do. A virtualised system avoids such a waste by letting
other busy VCPUs have the unused CPU time when some
are idle. Idle VCPUs are given a blocked state. An offline
VCPU is neither runnable nor blocked. Typically it is
paused by the administrator. Figure 2 depicts the transition
of the states that are tightly related to scheduling.

When an event comes, credit scheduler wakes a
blocked VCPU and puts it back to the run queue.
Furthermore, if the waken VCPU is in under priority, its
priority is promoted to boost. So it is high likely that the
boosted VCPU pre-empts the running one and gets
scheduled immediately. This function is carried out by the
boost module which lowers the latency of I/O related
tasks. However, this only benefits blocked VCPUs with
positive credits. A runnable VCPU receiving an I/O
related event cannot be promptly scheduled. This often

happens with the domains doing mixed workloads of CPU
intensive tasks and I/O intensive tasks.

3 Full-time event aware scheduling
This section firstly identifies the problems that cause long
latency of I/O tasks. Then the full-time event aware
scheduler is proposed and detailed.

3.1 Scheduling delays
Figure 3 shows the typical delays happening within a disk
reading process. Delay D1 and D2 are associated with the
scheduling of Domain 0. D1 is the duration between when
the Domain U sends a reading request to Domain 0 and
when Domain 0 is scheduled to actually send the reading
IRQ to the hard disk. D2 is the duration between when the
hard disk notifies Domain 0 the data to be retrieved is
ready and when Domain 0 gets scheduled to set up the I/O
ring and then notifies the Domain U. D3 happens on the
Domain U side. It is the duration between when Domain 0
sends the notification and when Domain U is scheduled to
finish the data reading process. A data writing process is
similar.

Figure 3: Scheduling delays within a disk reading

process

 All aforementioned scheduling delays can be reduced
by scheduling the events’ respective target domains soon
after the events are received. The events of interest are
either inter-domain events or PIRQ events (Chisnall,
2007). The current credit scheduler boosts the VCPU upon
an incoming event call only when the VCPU is blocked
and has not consumed more than its fair share of CPU
time. In other cases, event calls get suppressed and have no
effect on the scheduling. Our enhanced version of credit
scheduler makes the scheduler always aware of event
notifications, in other words, the scheduler is full-time
event aware. Once detecting an eligible incoming event
the scheduler changes the course of scheduling
accordingly.

3.2 FEAS design
In FEAS every physical CPU has two additional queues:
immediate queue and postponed queue, complementing
the original run queue (Refer to Figure 4). VCPUs on the
immediate queue are always preferentially scheduled over
those on the run queue. The postponed queue is the
temporary depository of the VCPUs that need to be
scheduled as soon as possible but they have been
scheduled more often than allowed. Once a designated
trigger fires, postponed queue is swapped with immediate
queue. In other words, postponed queue becomes
immediate queue and the previous immediate queue

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

5

becomes the new postponed queue. Therefore, postponed
VCPUs can get preferential scheduling after the trigger
fires. The VCPU retains its position in run queue when
joining or leaving immediate queue or postponed queue.
VCPUs on the run queue are executed in round robin
fashion. In such way the time slice VCPUs receive each
rotation can be tightly controlled, and the side-effects
caused on scheduling fairness by frequent pre-emption are
kept minimal.

 In general, similar with credit scheduler, FEAS also
consists of three parts, namely en-queuing, queue
processing and de-queuing. Figure 4 depicts the structure
of FEAS. VCPUs that need to run are en-queued. Only
runnable VCPUs can join queues and wait to be executed
by CPU. Thus, blocked VCPUs that receive incoming
events are set to be runnable beforehand. This process is
called being waken. Credit scheduler boosts waken
VCPUs by given them a boost priority to lower response
latency because incoming events are often I/O related.
FEAS prioritises VCPUs differently. It boosts VCPUs by
assigning them to immediate queue or postponed queue
(Explained in Sec. 3.2.2). Queue processing takes on
heavy workloads off the de-queuing process since
de-queuing process is in the critical path and meant to be
fast. After queue processing, the de-queuing process
usually de-queues the head VCPU in a queue straightaway
and scheduled it to run next.

Figure 4: FEAS structure

 The proposed scheduler involves three modules
complementing the original credit scheduler.

3.2.1 New scheduling decision trigger
In credit scheduler a scheduling decision is made when a
VCPU blocks, yields, completes its time slice, or is
awaken (Xen wiki, 2007). A runnable VCPU with an
incoming event call is not prioritised properly. It cannot
process the event until it crawls to the head position of run
queue. This may delay the processing of some events that
are related to latency sensitive tasks. The proposed
scheduler captures the event notifications for runnable
VCPUs and then tickles the scheduler for a new
scheduling decision. When scheduler is tickled, if the
currently running VCPU is rather than prioritised, it is
pre-empted and a new VCPU is selected to run next. Since
the runnable VCPU receiving an event is prioritised, it is
very likely for it to get an immediate execution.

FEAS is configured to react merely on inter-domain
events and PIRQ events received merely by runnable
VCPUs. As such an event may also wake and boost a

blocked VCPU with under priority, a waken flag is set if
the VCPU is woken. The scheduler only promotes
runnable VCPUs whose waken flag is off.

3.2.2 Interchangeable immediate queue and
postponed queue

FEAS prioritises VCPUs doing I/O tasks no matter
whether the VCPU is blocked and whether its priority is
under or over. However, if there is no constraint, an I/O
intensive domain can hold the PCPU for an unfair amount
of time by taking advantage of this preference. So two new
queues: immediate queue and postponed queue, are
introduced to limit the frequency of VCPUs getting
scheduled. A limit on the number of times a VCPU can get
scheduled within a counting cycle is enforced on every
VCPU. Let nlimit denote the upper limit of the number of
scheduling times, c denote the cth counting cycle and ni, c

denote the scheduling times of VCPU i during the cth
counting cycle. A trigger which is usually a timer indicates
the start of a new counting cycle. nlimit is a constant over all
counting cycles and ni, c is initialised to 0 at the start of
every counting cycle. VCPUs join immediate queue or
postponed queue following the two rules below. Note that
FEAS prioritises runnable VCPUs even if they have
negative credits, so that, VCPUs can achieve optimal
responsiveness.

If ni, c < nlimit, then VCPU i joins the immediate queue

If ni, c >= nlimit, then VCPU i joins the postponed queue

On every scheduling decision, the scheduler always
preferentially schedules the VCPUs in the immediate
queue. If the immediate queue is empty, the VCPUs in the
run queue are executed in the decreasing order of their
priorities as usual.

Postponed queue is used as the temporary depository
for those VCPUs that needs prompt execution but have
already run more often than allowed. Upon the start of
each counting cycle, the scheduler checks the status of
immediate queue and postponed queue. If it finds the
immediate queue empty while the postponed queue is not,
it swaps these two queues and then sends a rescheduling
request. As a result, postponed VCPUs can receive
preferential and properly delayed scheduling.

The boost priority of a VCPU in credit scheduler is
replaced by the action of joining the immediate queue. A
waken and boosted VCPU can be recognised by checking
the waken flag (refer to sub-section 3.2.1) and whether it is
in the immediate queue.

Every VCPU also has an is_immediate flag. It is turned
on when a VCPU scheduled from the immediate queue
and turned off when it is de-scheduled or a tick event fired.
Conditional pre-emption of the running VCPU is decided
based on the is_immediate flag instead of by comparing
priorities. A VCPU with the is_immediate flag set cannot
be pre-empted.

3.2.3 Guaranteed VCPU’s time slicing
Credit scheduler is a weighted round-robin (WRR) based
fair scheduler. It achieves proportional fairness by
adjusting VCPU’s credits to control the frequency that the
VCPU is selected to run and by running each VCPU for
the same size of time quantum. Ideally, a VCPU is only

CRPIT Volume 122 - Computer Science 2012

6

pre-empted when its time slicing expires or it
spontaneously yields the CPU. However, credit scheduler
pre-empts the running VCPU when a blocked VCPU is
waken and boosted. Also, in the proposed scheduler the
running VCPU is pre-empted when a runnable VCPU
receives an inter-domain or PIRQ event. Both cases of
pre-emption can happen anytime. So the pre-empted
VCPU becomes the victim of pre-emption, because once
being pre-empted it will lose its remaining time slice in
this rotation and have to wait in the run queue until its next
turn. Time slices allocated to VCPUs are loosely
controlled in credit scheduler and usually the long term
CPU time received by VCPUs is bound and balanced by
the credits they receive. However, this does not work well
with CPU affinity. Scheduling unfairness may be caused
when VCPUs are pinned to some specific CPUs since they
earn more credits than they could spend. Over-earned
credits allow VCPUs that block and wake regularly to
excessively pre-empt their competitors. Also, as FEAS
allows temporary overdraft of future quantum and it
prioritises VCPUs receiving events even if they have
negative credit balance, this module limits the overdraft to
one rotation’s range.

In this module, every VCPU is allocated a quantum of
30ms each rotation and this quantum is guaranteed to be
exhausted in this rotation. The quantum is deducted at the
same time with debiting credits. After being pre-empted,
the VCPU is inserted to the head position of the run queue
if its quantum is still more than 1ms. Therefore, it can keep
consuming its quantum later on. Otherwise, it is inserted
into the run queue in the conventional way. For those
de-scheduled VCPUs de-queued from the immediate
queue, their position in the run queue is reserved. So the
usage of their allocated quantum for each rotation can be
accurately recorded.

FEAS maximises busy VCPUs’ responsiveness by
allowing temporary overdraft of future quantum. A
runnable VCPU receiving many I/O related events may
exhaust its quantum early by frequently joining immediate
queue or postponed queue. If that is the case, the VCPU
can no more be prioritised and have to wait in the run
queue for its turn. When it gets its turn, it is given a minor
slice of 500 microseconds to run. Therefore, the overdraft
is limited within the quantum that is worth one rotation.

4 Performance study
FEAS is implemented based on the credit scheduler of Xen
4.0.1 and tested on Linux-2.6.18.8. Since it works by
monitoring the events sent between domains and between
domain 0 (or driver domain) and physical devices, all
source code modifications made are within the hypervisor
and none is needed within the guest kernel. In our
implementation, nlimit is set to 1 and the tick which fires
every 10ms is reused as the trigger that indicates the start
of a new counting cycle. The machine we are testing with
has an Intel Core2 Duo 3.16 HZ CPU, 3.2 GB RAM and a
Gigabit Ethernet network interface. A separate machine is
used as the client for the network related experiments. The
client machine is guaranteed of no bottleneck in any
experiments. Two machines are connected via a 10/100M
switch.

Four guest domains each of which has one VCPU are
created. They all have the default weight of 256. Domain 0
is chosen as the driver domain. Its VCPU is pinned to CPU
core 1 and VCPUs of four guests are pinned to CPU core 2.
Dedicating a CPU core to Domain 0 can achieve better
system performance since all I/O requests have to go
through Domain 0 and this can reduce the number of CPU
context switches required. This is also a common
configuration in production servers. Guest 4 is connected
to the client machine in all experiments. In the experiments
guest domains, excluding Domain 0, are loaded in groups
with CPU intensive tasks to simulate various production
environments. Table 1 enumerates the different setups.
The VCPUs are kept busy using cpuburn 1.4 (Softpedia
2011).

Domains Explanation

All busy VCPUs of all guest domains are running at 100%.

Others busy VCPUs of all guest domains except Guest 4 are

running at 100%.

All idle VCPUs of all guest domains are idle most of the

time.

Table 1: Experimental setup

4.1 Scheduling fairness
Fairness is one of the main goals of a scheduler, especially
the scheduler of a VMM. Domains should not be starved
and a malicious domain cannot take an unfair amount of
CPU time slicing at any time. When CPU resources are in
contention, each domain should receive CPU time
proportional to their weights. Domains with the same
weights are expected to receive the same amount of CPU
time.

Figure 5: CPU time distribution
This experiment proves the scheduling fairness of

FEAS by keeping all domains busy. Each domain runs
cpuburn and eats as much CPU time as they are given. As
can be seen from Figure 5, every domain can receive
roughly equal amount of physical CPU time. This figure
holds in all experiments where all guest domains are CPU
hogging and guest 4 constantly receives ping or
downloading requests. The CPU time slicing guarantor
module described in section 3.2.3 keeps the influences of
pre-emption on round robin scheduling to a minimum. A
VCPU is marked inactive and its credits are forfeited when
it accumulates too many credits. Ideally, excessive credit
accumulation is due to the VCPU’s little demand.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

7

However, it may also be caused by undesirable starvation.
Undesirable starvation is more frequent in FEAS than in
credit scheduler, since the former boosts runnable VCPUs
greedily to achieve high responsiveness even if its credit
balance is negative. The CPU time slicing guarantor can
efficiently ease this kind of starvation by guaranteeing that
pre-empted VCPUs fully use their CPU slice in every
rotation and that pre-empting VCPUs cannot overdraft
their CPU time too much.

4.2 Latency sensitive processes
This experiment tests the performance of latency sensitive
tasks in a domain doing mixed workloads. The client
machine sends ping requests to the Guest 4 for 100 times
and its response time is recorded.

 All domains including Guest 4 are running CPU
intensive tasks. As a result, they are hardly blocked. So
under credit scheduler, even though Guest 4 constantly
receives ping requests, it is not boosted. It cannot get
scheduled and respond to the request until other VCPUs
ahead of it in the run queue finish execution. So the latency
under the credit scheduler is high and unpredictable.

On the other hand, FEAS can capture the incoming
event notification all the way and scheduled the target
domain immediately. It prioritises runnable VCPUs
receiving an event call at most once per 10ms no matter
whether its priority is under or over. Since the ping request
is sent every second which is way longer than 10ms, the
domain doing CPU intensive tasks can always respond to
ping requests immediately.

Figure 6: Ping Latency

4.3 Network intensive processes
The performance of a CPU-consuming domain on network
intensive tasks is evaluated in this experiment. Guest 4
hosts a FTP server using vsftpd-2.3.4 (vsftpd, 2011) and
the client machine downloads files of different sizes from
it. The average transfer speed is recorded.

Figure 7 illustrates the results achieved in different
situations. Both schedulers achieve similar results when
Guest 4 is idle no matter whether other domains are busy.
The boost mechanism from credit scheduler efficiently
ensures the performance of idle domains on I/O related
tasks when they co-exist on the same server with other
domains that are doing CPU intensive tasks. However,
when Guest 4 is also doing CPU intensive tasks, the
download speed under FEAS doubles that under credit
scheduler. Since Guest 4’s VCPU is runnable most of the
time when fully loaded, credit scheduler does not
discriminate it from other co-currently running busy

domains. Scheduling delays regarding handling I/O related
events are thus much longer than when Guest 4 is idle.
However, FEAS keeps I/O devices busy by promptly
handling of incoming events and thus speeds up the
transmission process.

Figure 7: FTP downloading speed

4.4 Impact of co-working VMs
This experiment examines the I/O performances under
FEAS when multiple co-located VMs concurrently
process mixed workloads. Five duplicated guest domains
are set up for this experiment on the same physical server
used in previous experiments. Also, Domain 0 is pinned to
CPU core 1 and Domain 1-5 are pinned to CPU core 2. All
five guest domains are configured with a FTP server
facilitated by vsftpd-2.3.4, and each hosts a 16384 KB file
ready for download. To keep guest domains’ VCPUs
under constant pressure, they all run cpuburn. A
multi-threaded C# program is designed to simultaneously
download the hosted file from guest domains. Hence,
during the period of concurrent network streaming dense
inter-domain events and PIRQ events are fired across by
all domains at the same time. All these events are caught
by FEAS and its decision has a direct impact on the I/O
performances and CPU fairness.

 The multi-threaded program is modified to run with 1 to
5 threads respectively on the client machine and each
thread downloads the test file from an exclusive VM.
Suppose that n threads simultaneously stream files from n
VMs (where), and that the ith streaming
thread starts at and finishes at (where

). Downloading speed is evaluated to
reflect the system performance as

where
The results are recorded and shown in Figure 8. The

overall system throughput increases when downloading
files from more VMs, and the I/O devices tend to operate
at full speed if downloading files from all VMs. The
reason is that the overall system performance depends on
the CPU time and the scheduling latency of all streaming
VMs. Thus, if all five VMs are delivering files, no matter
which VM is scheduled, they all contribute to the overall
system throughput. All in all, FEAS performs better than
the original credit scheduler in terms of I/O throughput
even when multiple VMs do mixed workloads at the same
time.

CRPIT Volume 122 - Computer Science 2012

8

Figure 8: Download from multiple VMs

4.5 Scheduling overhead

Seconds Others busy All idle Domain 0

Original 32.43754 8.78261 8.123744

FEAS 32.5931 8.80411 8.146923

Table 2: Duration for prime searching in seconds

To quantify the scheduling overhead FEAS causes over
the original credit scheduler, we observe the running time
of the prime searching function which is a lengthy and
CPU-intensive process. This experiment finds all the
664,579 prime numbers less than 10^7 using the trial
division algorithm (Wikipedia, 2011). The time required
to complete the process in three cases is illustrated in Table
2. The percentage increase of running time introduced by
FEAS in all three cases is less than 1%, which indicates
that the overhead is negligible.

5 Conclusion
VMs sharing the same hardware contend for limited
resources. It is important to appropriately allocate shared
resources among VMs that are running simultaneously.
While fairness requires that each VM receives CPU time
proportional to their weights, low latency is achieved by
scheduling a VM as soon as it needs CPU especially if the
VM has I/O tasks pending. Our scheduler is an enhanced
version of credit scheduler that prioritises VCPUs doing
I/O tasks by monitoring inter-domain events and PIRQ
events sent between domains and physical devices. FEAS
makes VMM full-time event aware and promptly
schedules with best effort runnable VCPUs that receive
I/O related events. The experiments show that VMs under
FEAS performs better on I/O intensive tasks than those
under credit scheduler if they also do CPU intensive tasks
at the same time. The cost for the modifications needed to
realise FEAS is proved to be negligible.

Currently, FEAS is only implemented and tested with
the guest domains virtualised in para-virtualisation mode.
Since hardware virtual machine (HVM) does not requiring
the guest operating system to be modified, it can run
proprietary operating systems like Windows as guest. Split
drive model is implemented differently in PV-on-HVM
kernels. Our future research will try to apply FEAS on
fully virtualised virtual machines.

6 References
Barham, P., Dragovic, B., Fraser, K., & et al (2003): Xen

and The Art of Virtualization, ACM Symposium on
Operating Systems Principles.

Cherkasova, L., Gupta, D. & Vahdat, A. (2007):
Comparison of the Three CPU Schedulers in Xen, ACM
SIGMETRICS Performance Evaluation Review, Vol.
35, Iss. 2, pp. 42–51.

Chisnall, D. (2007): The Definitive Guide to the Xen
Hypervisor. Sydney, Prentice Hall.

Goldberg, R.P. (1974), Survey of Virtual Machine
Research, IEEE Computer, Vol. 7, Iss. 6, pp. 34-45.

Govindan, S., Nath, A., Das, A., Urgaonkar, B. and
Sivasubramaniam, A. (2007): Xen and co.:
communication-aware CPU scheduling for consolidated
xen-based hosting platforms, Proceedings of the 3rd
international conference on Virtual execution
environments, New York, USA.

Gupta, D., Cherkasova, L., Gardner, R. & Vahdat, A.
(2006): Enforcing performance isolation across virtual
machines in Xen, In Proceedings of the
ACM/IFIP/USENIX 7th International Middleware
Conference, Melbourne, Australia.

Iyer, R., Illikkal, R., Tickoo, O., Zhao, L., Apparao, P. &
Newell, D. (2009): VM3: Measuring, modeling and
managing VM shared resources, Computer Networks,
Vol. 53, Iss. 17, pp. 2873-2887.

Kim, H., Lim, H., Jeong, J., Jo, H. & Lee, J. (2009): Task
‐ Aware Virtual Machine Scheduling for I/O
Performance, ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environment.
Washington, DC, USA.

Lin, B., Dinda, P. & Lu, D. (2004): User ‐ Driven
Scheduling of Interactive Virtual Machines. 5th
IEEE/ACM International Workshop on Grid.
Washington, DC, USA.

Ongaro, D., Cox, A. and Rixner, S. (2008): Scheduling I/O
in virtual machine monitors, Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, New York, USA.

Softpedia (2011), cpuburn 1.4,
http://www.softpedia.com/get/System/Benchmarks/cpu
burn.shtml, Accessed May, 2011

vsftpd: vsftpd - Secure, fast FTP server for UNIX-like
systems. https://security.appspot.com/vsftpd.html.
Accessed May, 2011.

Weng, C., Wang, Z., Li, M. & Lu, X. (2009): The Hybrid
Scheduling Framework for Virtual Machine Systems,
ACM International Conference on Virtual Execution
Environments. Washington, DC, USA.

Wikipedia: Trial division.
http://en.wikipedia.org/wiki/Trial_division. Accessed
May, 2011.

Xia, Y.B., Yang, C. & Cheng, X. (2009): PaS: A
Preemption-aware Scheduling Interface for Improving
Interactive Performance in Consolidated Virtual
Machine Environment. International Conference on
Parallel and Distributed Systems. Shenzhen, China.

Xen: Home of the Xen Hypervisor. http://xen.org/.
Accessed Jun, 2011.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

9

CRPIT Volume 122 - Computer Science 2012

10

Boosting Instruction Set Simulator Performance with Parallel
Block Optimisation and Replacement

Brad Alexander1 Sean Donnellan1 Andrew Jeffries3 Travis Olds3

Nicholas Sizer1

1 School of Computer Science,
University of Adelaide,

Adelaide 5005,
Email: brad@adelaide.edu.au

2 Ultra Electronics Avalon Systems,
12 Douglas Drive,

Mawson Lakes,South Australia 5095,
Email: andrewj@avalon.com.au

3 Australian Semiconductor Technology
Company,

Level 5, 76 Waymouth Street,
Adelaide, South Australia 5000,

Email: travis.olds@astc-design.com

Abstract

Time-to-market is a critical factor in the commercial
success of new consumer devices. To minimise de-
lays, system developers and third party software ven-
dors must be able to test their applications before the
hardware platform becomes available. Instruction Set
Simulators (ISS’s) underpin this early development
by emulating new platforms on ordinary desktop ma-
chines. As target platforms become faster the per-
formance demands on ISS’s become greater. A key
challenge is to leverage available simulator technol-
ogy to produce, at low cost, incremental performance
gains needed to keep up with these demands. In this
work we use a very simple strategy: in-place-block-
replacement to produce improvements in the perfor-
mance of the popular QEMU functional simulator.
The replacement blocks are generated at runtime us-
ing the LLVM JIT running on spare processor cores.
This strategy provides a very lightweight way to in-
crementally build an alternate code generator within
an existing ISS framework without incurring a sub-
stantial runtime cost. We show the approach is effec-
tive in reducing the runtimes of the QEMU user-space
emulator on a number of SPECint 2006 benchmarks.
Keywords: Instruction Set Simulation, Dynamic Bi-
nary Translation, Background Optimisation, LLVM,
QEMU

1 Introduction

Instruction Set Simulators (ISSs) are software plat-
forms that run on a host hardware architecture and
emulate a guest hardware architectures. An ISS
allows developers to test and use systems and ap-
plication software whenever using the actual hard-
ware platform is not an easy option. ISSs are
used for reasons of security and safety[Vachharajani
et al., 2004], cross-platform-support[Adams and Age-
sen, 2006, Bellard, 2005, Chernoff et al., 1998] or just
because they may be more readily available than the
actual hardware. In the extreme, an ISS can provide

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 35th Australasian Computer Science Con-
ference (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce
Thomas, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

a platform for software development before the corre-
sponding hardware platform exists. This last mode
of use for ISSs permits the parallel-development of
hardware and software for new mobile and embed-
ded devices. Such parallel-development reduces time-
to-market which is vital in the commercial success
of these devices[De Michell and Gupta, 1997]. With
mobile devices becoming faster, and competitive pres-
sures shortening production cycles, there is strong de-
mand for faster emulation from ISSs.

ISSs emulate at a variety of levels. Cycle-accurate
ISSs[Lee et al., 2008] emulate the timing of hardware
devices to allow debugging at the hardware/system
interface. Functional ISSs[Adams and Agesen, 2006,
Bellard, 2005, Magnusson et al., 2002, Cmelik and
Keppel, 1994, Witchel and Rosenblum, 1996] emu-
late architectures at the behavioural level providing a
platform for interactive testing of systems and appli-
cation software. Functional ISSs are generally much
faster than cycle-accurate ISSs making them attrac-
tive for high-level system and application developers.
Functional ISSs can further subdivided into whole-
system simulators, able to emulate an entire operat-
ing system[Adams and Agesen, 2006, Bellard, 2005,
OVP, 2011] and process-VMs or user-mode emula-
tors which can run a single application. This work
describes enhancements to the performance of the
QEMU ISS[Bellard, 2005]. QEMU is one of the most
popular ISS’s. It provides fast emulation for a va-
riety of target and source architecture and forms
the basis of a number of industrial emulators in-
cluding the Android mobile device emulator[Google
.Inc, 2011]. QEMU provides both system-mode em-
ulation for whole-systems and user-mode emulation
for single-applications. In this article we focus on
enhancements to the simpler, and faster, user-mode
QEMU.

Like many ISSs, QEMU uses Dynamic Binary
Translation (DBT) to translate blocks of guest plat-
form code to host platform code at runtime. Once
blocks are translated, they can be run natively on the
host platform – greatly improving performance over
simple interpretation of guest instructions[Arnold
et al., 2005]. However, good performance is only pos-
sible if translation is done quickly. On single processor
systems, any attempt at optimising translated code
is time-constrained: time spent optimising translated
code is time not spent running translated code. When
emulating on a multi-core host these constraints are

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

11

less severe. After an initial fast translation, idle cores
can be utilised to perform background optimisation
in a separate thread. Such background optimisation
is relatively common in high-level-language process-
VMs[Krintz et al., 2001, Alpern et al., 2005] but rel-
atively rare in DBT-Based ISSs[Qin et al., 2006]. For
simulators where the host and guest Instruction-Set-
Architecture (ISA) is the same, this rarity is unsur-
prising: we would expect gains from further optimi-
sation of already-optimised code in same-ISA simu-
lation to be small[Adams and Agesen, 2006, Arnold
et al., 2005]. However, this rarity is harder to explain
in different-ISA ISSs, the architectural gap between
the guest ISA and the host ISA is usually large enough
to leave room for further optimisation.

In this article we describe an implementation that
experiments with the use of background optimisa-
tion to improve the speed of user-mode QEMU run-
ning ARM binaries on a multi-core x86-64 host. In
our experiments we use LLVM components, running
on a spare core, to perform background optimisa-
tion and replacement of cached blocks of dynamically
translated code. We show that this approach is suc-
cessful in producing speedups in the simulation of a
number of the SPECint 2006[Standard-Performance-
Evaluation-Corporation, 2011] benchmarks.

At this point it should be emphasised that the fo-
cus of this work is in utilising spare cores to improve
code quality and hence the simulation speed of each-
thread of an application. This is in contrast to the
orthogonal, and well-studied, problem of using mul-
tiple cores to help simulate multi-threaded applica-
tions[Jiang et al., 2009, Almer et al., 2011, Wentzlaff
and Agarwal, 2006]. The primary aim of this work
is to improve thread code quality with the goal of
reducing overall execution time.

This paper makes the following contributions:

• It is the first successful attempt to boost the per-
formance of QEMU through background optimi-
sation.

• Moreover, to the best of our knowledge, it is the
second successful attempt to use background op-
timisation of already translated code to boost the
performance of any different-ISA ISS, the other
being SIMIT-ARM[Qin et al., 2006] and the first
to use spare cores on the same machine.

• It demonstrates that background optimisation
can be added cheaply and incrementally and still
achieve faster execution (section 4.5) and bet-
ter quality host-code (section 4.4). Performance
gains can be had before, covering all instructions
instructions and before implementing heuristics
for selecting blocks for replacement. Moreover,
our optimisation is still useful at the level of the
basic block - allowing gains to be enjoyed before
block aggregation and inter-block optimisation is
implemented. In summary, there is a path to
retro-fit changes cheaply, incrementally and pro-
ductively to an existing ISS, using standard tools.

The rest of this paper is structured as follows. In the
next section we describe related work. In section 3
we describe our approach starting with the base com-
ponents of QEMU and LLVM followed by an expla-
nation how these are combined to make Augmented-
QEMU which uses background optimisation for faster
execution. In section 4 we describe our experimental
results. Finally, in section 5 we summarise our results
and propose future directions for research.

2 Related Work

The most closely related work to ours is Scheller’s
LLVM-QEMU project[Scheller, 2008]. Like our work,
LLVM-QEMU used the LLVM Just-in-Time compiler
(LLVM-JIT). However, in his work he uses the LLVM-
JIT to replace the role QEMU’s native code genera-
tor – the Tiny Code Generator (TCG). In our work
we the LLVM-JIT to complement the role of TCG.
We allow TCG to perform a fast initial translation
for immediate execution and use the LLVM-JIT to
replace selected blocks as QEMU is running. Our
work also differs in the use of a separate thread1 to
run the LLVM-JIT. This combination of differences
results in our implementation achieving faster perfor-
mance overall with speedup, rather than slowdown,
on most benchmarks.

Also related is the identically named LLVM-
QEMU project by Chipounov and Candea[Chipounov
and Candea, 2010]. They also used the LLVM-JIT
to bypass TCG in QEMU. They compiled all micro-
operations into C functions which were then trans-
lated into LLVM Intermediate Representation (LLVM
IR) and then optimised before execution. Again, the
overheads of running the LLVM-JIT were substantial,
resulting in slowdown when compared to the original
QEMU.

Again, our work differs most from the above ap-
proaches in leaving TCG intact. By leaving most of
the QEMU infrastructure in place we are able to focus
on incrementally increasing the number of blocks we
handle as we add new, carefully-handwritten, transla-
tions from individual ARM instructions to LLVM-IR
code. These direct hand-written translations appear,
a-priori, easier to optimise than LLVM-IR generated
from C or TCG intermediate code.

Looking more broadly at related DBTs, same-ISA
DBTs[Watson, 2008, Adams and Agesen, 2006] have
the option of preserving most optimisations already
present in the source binary. This can give very
good performance[Adams and Agesen, 2006] though,
in some cases, knowledge gained from runtime pro-
files can be used for even more optimisation[Bruening
et al., 2003]. Unfortunately most ISSs are by ne-
cessity different-ISA DBTs[OVP, 2011, Magnusson
et al., 2002, Qin et al., 2006, Bellard, 2005]. These
face greater challenges than same-ISA DBTs due to
the unavoidable loss of platform-specific optimisa-
tions during translation between ISAs.

The trade-off between running translated code and
optimising translated code means that optimisation
must be done sparingly on a single processor ma-
chine. On multi-core machines, optimisation can be
carried out in a separate thread. Such background op-
timisation relatively common in process VMs for high
level languages such as Java (Kulkarni[Kulkarni et al.,
2007] gives an overview of the impact of these opti-
misations). In contrast, the use of such background
optimisation is rare in different-ISA DBTs.

One exception is SIMIT-ARM[Qin et al., 2006]
which, concurrently with interpretation of guest code,
translates guest code into large, fixed-size blocks of C
code and then compiles these into dynamically-linked-
libraries (DLLs) using gcc running on separate hosts.
As the new DLLs are produced they are loaded in and
run. The amount of optimisation performed by gcc is
trivially controlled using compiler flags. The DLLs in
SIMIT-ARM are persistent between runs which lets
applications run much faster the second time they
are invoked. In earlier experiments[Lee, 2009] it was

1It should be noted that LLVM-QEMU was a short summer-
project and multi-threading was on the list of things to do.

CRPIT Volume 122 - Computer Science 2012

12

found that SIMIT-ARM was able to run at speeds
comparable to QEMU in user-mode when it runs on
these cached DLLs.

Our work differs from SIMIT-ARM in our use of
spare cores rather than separate hosts, and the fo-
cus of optimisation on small basic blocks rather than
large fixed-sized blocks with multiple entry points2.
Our approach, through the use of a lightweight-JIT,
working in a shared memory space, provides a lower
latency on block optimisation – which is likely to be
important in the context of the relatively fast QEMU
simulator.

Finally, there is substantial work that applies op-
timisation to the initial translation phase of an ISS.
Almer [Almer et al., 2011] uses the LLVM-JIT to
translate and optimise hot traces in their multi-
threaded ISS. Wentzlaff[Wentzlaff and Agarwal, 2006]
also performs translation and optimisation of code
blocks in their parallel ISS. Both these works differ
from ours by applying optimisation only during the
initial translation of each trace or block as such they
do not have to perform runtime block-replacement of
translated code.

This concludes our overview of related literature.
In the next section we describe our approach.

3 Approach

In this section we describe the implementation
used in this work: Augmented-QEMU. The goal
of Augmented-QEMU is to provide faster emula-
tion by performing background optimisation of guest
(ARMv5) instructions to host (x86-64) instructions.
Augmented-QEMU is built using the following soft-
ware components:

• QEMU version 0.10.6, running in user-mode,
which we call vanilla-QEMU,

• The LLVM optimisers and x86 code-generator
that are part of the LLVM just-in-time compiler
version 2.6 (LLVM-JIT).

We describe each of these in turn before explaining
how they are combined to form Augmented-QEMU
in section 3.3.

3.1 Vanilla-QEMU

QEMU[Bellard, 2005] is a widely used, versatile and
portable DBT system. QEMU is cross-platform. It
supports a variety of host and guest ISAs. It is able
to exploit the features of its host architecture. For
example, when run on a 64bit host such as the x86-
64 architecture it is able to exploit the extra registers
to provide better performance. QEMU is a functional
simulator, it emulates program behaviour rather than
simulating accurate timings of events in hardware.
QEMU has two modes: a system-mode with detailed
hardware models for emulating entire systems; and a,
somewhat faster, user-mode that acts as a process-
VM on which to run a single application. QEMU
is quite fast, with quoted emulation speeds of 400 to
500 MIPS. In terms of actual runtimes, on our experi-
mental machine, we found that QEMU running cross-
compiled ARM binaries ran approximately ten times
slower than native x86 compiled benchmarks. The

2The approach of SIMIT-ARM is highly original and starkly dif-
ferent from the basic-block-oriented approach taken by most DBTs.
The use of multiple-entry points leads to blocks being cast as large
switch statements. The potential impact of this format on different
levels of optimisation is unknown and warrants further study.

Guest
Basic
Block

two-stage
TCG

codegen

Emulated ARM Machine State

reads/transforms

Host
Translation

Block
(TB)

Figure 1: Basic Translation Schema for QEMU

following is a brief outline of how QEMU CPU simu-
lation works. For a more detailed overview see [Bel-
lard, 2005].

3.1.1 The QEMU Simulation Process

QEMU performs computation by maintaining an ab-
stract CPU state for the guest architecture. This
state includes program counters, stack pointers, con-
trol flags and general-purpose registers. QEMU
translates guest binary code to host code that then
acts on this processor state. At the start of simula-
tion, this state is initialised as it would be at the start
of program execution on the guest architecture. For
Augmented-QEMU, the guest architecture is a 32 bit
ARM machine and the state is called CPUARMState.
Figure 1 illustrates this basic execution schema. Note
that, unlike some other VMs[Bruening et al., 2003,
Krintz et al., 2001], QEMU does not initially di-
rectly interpret guest code. Instead it relies on a
fast translator, called Tiny Code Generator (TCG)
to quickly produce basic blocks of host code. These
blocks, called Translation Blocks (TBs), are cached
in an area called the translation cache and then im-
mediately executed. TCG runs in two-phases. The
first phase translates the guest ISA to TCG code –
a generalised intermediate form. The second phase
converts TCG code to the host ISA. This two-phase
design aids portability by decoupling the source and
host ends of the translation process.

The translation schema described above sits in the
context of the broader control structure for QEMU
shown in figure 2. In the figure, control flows are in-
dicated with thin lines and flows of code with thick
dashed grey lines. At the core of QEMU simulation
is the cpu exec() function. This function is respon-
sible for the controlling the translation and execu-
tion of basic blocks of guest code. During simulation,
cpu exec() operates as follows. First, when a block
of guest code needs to be executed, the source pro-
gram counter (SPC) is read from the guest CPU state
(step (1) in figure 2). Next, the SPC is looked up in
the map table (step (2)). At this point one of two
things can happen:

1. The block starting at the SPC is found to have
already been translated and stored in the transla-
tion cache. In this case the map table will return
the address of the relevant TB in the translation
cache. Or,

2. The block starting at the SPC is not in the trans-
lation cache and so is not found in the map table.
In this case the guest block is new and will need
to be translated prior to execution.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

13

TB TB

Guest BinaryMap Table

Guest CPU State TCG

Prologue Epilogue

cpu_exec()

Translation

Cache

(1)

(2)

(3)

(4) (5)

(6)

(a)

(b)

ARM

x86-84

Figure 2: Control structure for QEMU centred
around the core execution loop: cpu exec(). Show-
ing the actions creating new TBs ((a) and (b)) and
actions to execute extant TB’s ((1) to (7)).

In the case of the relevant TB being found, control is
passed from cpu exec() to a block of prologue code
(step (3)). The prologue saves QEMU’s register state
before jumping to the relevant TB (step (4)). The
TB then executes. In many cases, when the end
of the TB is reached, control is not passed back to
cpu exec() but instead the TB branches to itself or
other TBs. This internal branching within the trans-
lation cache (indicated with thin dashed lines in in fig-
ure 2) is called chaining. Chaining is a simple optimi-
sation that often avoids the overhead of going back to
cpu exec(). QEMU is able to spend substantial time
running in chained TBs of blocks within the transla-
tion cache. Eventually, one of the TBs will return
control back to some epilogue code (step (5)) which
updates the SPC in the guest CPU state and and re-
stores the QEMU register state before returning to
cpu exec() (step (6)).

In the case of the required TB not being found,
a new TB will have to be generated from the guest
binary. This is done by calling TCG with the current
SPC (step (a)) and inserting it into the translation
cache (step (b)). Note that the chaining between TBs
is performed by TCG as blocks are inserted into the
translation cache. Once the new TB is in the cache,
an entry for it is inserted into the map table and its
execution can proceed.

It should be noted that, overall, this simula-
tion infrastructure is quite efficient, in earlier exper-
iments[Jeffery, 2010] we found that QEMU spent a
large majority of its time running in the translated
code cache when run in user-mode on SPECint 2006
benchmarks.

This concludes our brief overview of vanilla
QEMU. It is worth noting that our modifications,
which we describe shortly, leave this basic structure
intact. Our changes basically leverage LLVM-JIT de-
scribed next, to improve the code in the TBs.

3.2 LLVM

The LLVM compiler Infrastructure[Lattner and
Adve, 2004] is a set of open-source components which
can be used as building blocks for custom compilers.
The aim of the LLVM project is to provide modular
components, such as optimisers, and code-generators
that can be reused in different language implementa-
tions. The key to reusability is the use of a general
purpose intermediate representation, LLVM-IR, to

act as an interface between components. The LLVM
project envisages that any compiler using LLVM com-
ponents can have easy access to the frequent improve-
ments made to these components.

LLVM is well-supported and being used in many
significant projects[LLVM-Project, 2011]. In this
work, we combine a short series of optimisation
passes, described in the section below and the LLVM-
JIT code generator to produce blocks of fast x86-64
code from LLVM-IR that our own custom translator
generates from ARM instructions. Next, we describe
the process by which we exploit these components in
Augmented-QEMU.

3.3 Augmented-QEMU

Augmented QEMU performs background optimisa-
tion and replacement of blocks, using LLVM, to im-
prove the performance of QEMU. The modifications
used to produce Augmented-QEMU in the context
of vanilla-QEMU are shown in figure 3. Note, to
provide context, the components of vanilla-QEMU
from figure 2 are shown in grey. The new and mod-
ified components are drawn in black. Control flows
are represented by solid black arrows and data flows
(labelled with their type) by dashed grey arrows.
There are two threads, the original QEMU thread and
a new LLVM thread. Communication between the
threads is managed by two queues, the block trans-
lation queue, which contains pointers to guest binary
blocks awaiting further optimisation; and the block
replacement queue, which contains pointers to opti-
mised replacement TBs. A brief summary of how
Augmented QEMU works follows. Each part of the
summary is cross-referenced to the steps in figure 3.
In addition, more detailed descriptions of these parts
follow this summary.

Steps (i) and (ii), Testing Eligibility: Whenever
TCG produces a new TB from a block of guest
binary code, our modified cpu exec performs an
eligibility check. The eligibility check scans the
block of guest binary and checks that we have im-
plemented LLVM translations for every instruc-
tion in the block (step (i)). If so, a pointer to this
block is queued for translation (step (ii)). This
process is described in section 3.3.1.

Steps (iii) and (iv) , Block Translation: The
addition of a new pointer to the block transla-
tion queue wakes the LLVM thread (step (iii))
which immediately passes the block of guest bi-
nary to our own LLVM-IR code generator for
translation (step (iv)). This process is described
in section 3.3.2.

Steps (v) and (vi), Block-optimisation/Code
Generation: The new block of LLVM IR is
given to the LLVM-JIT (step (v)). The LLVM-
JIT performs a series of optimisations and then
generates a block of host code. This process is
described in section 3.3.3. A pointer to this new
code is added to the block replacement queue
(step (vi)).

Steps (vii),(viii) and (ix), Block-
Replacement: The replace-block function,
de-queues pointers to any newly generated
blocks (step (vii)) and, if the block fits in the
space allocated by the original TB, it uses a
memcopy operation (step (viii)) to overwrite the
original TB block. Finally, a jump instruction
is added from the end of the new code block to
the end of the space occupied by the original

CRPIT Volume 122 - Computer Science 2012

14

TB

Guest BinaryMap Table

Guest CPU State TCG

Prologue Epilogue

cpu_exec()

Translation

Cache

Block Translation Queue

Block Replacement Queue

Block Translation

LLVM-JIT

Eligibility Check

LLVM Opt Passes

Replace Block

Memcopy

Replacement

TB

LLVM Thread

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)(ix)

QEMU Thread

ARM

LLVM-IR

LLVM-IR

x86-64

x86-64x86-64

Figure 3: The modifications used to produce Augmented-QEMU (in black) in the context of vanilla-QEMU
(in grey).

Execution Count
seng

ldr 2594556723
add 618512755
str 595786363
sub 432138506
cmp 428270933
mov 408249153
bne 204144055
lsl 170450711

beq 96700869
bl 94330545
asr 87404495
bx 63627453
and 58944875

Table 1: Top instruction execution counts for seng
SPECint 2006 benchmark (instructions we translate
are in green)

TB (step (ix)). This process is described in
section 3.3.4

More detailed explanations of each of these steps fol-
low.

3.3.1 Testing Eligibility

Augmented-QEMU uses a slightly modified version of
cpu exec() to guide the block-optimisation and re-
placement process. Immediately before any new TB
is formed by TCG, an eligibility check is performed
on the same block of guest binary code to determine
if it can also be translated by the LLVM thread. This
check needs to be done because not all of the guest
binary instruction set is handled by our LLVM op-
timisation thread. The choice of which instructions
to handle first is guided by benchmarking. We ran
a number of the SPECint 2006 benchmarks compiled
to ARM by GCC 4.4.3 (arm-softfloat-linux-gnueabi)
to get counts of each instruction. The counts for the
sjeng chess-playing benchmark on test workload are
shown in table 1. The instructions marked in green
are among the ones currently translated by our block

translator3. Branches, marked in yellow, are excluded
because they appear only after the end of each trans-
lation block, either as part of chaining or jumps back
to the epilogue. Instructions in red are yet to be im-
plemented in the block translator. Other SPECint
2006 benchmarks had roughly similar distributions.
In our tests, data movement, arithmetic and compar-
ison operators tended to dominate guest-code so we
focused on implementing these. Note that only blocks
that we can translate entirely are considered eligible.
By this measure, currently more than half the total
number of blocks in the SPECint 2006 benchmarks
are eligible.

After a guest block is found to be eligible for trans-
lation, a pointer to that block is queued for transla-
tion by the LLVM thread. Access to the translation
queue is guarded by a lock to prevent race-conditions.
No lock is needed for accessing the guest binary code
because it is read-only in this context4.

3.3.2 Block Translation

The addition of the new block-pointer to the queue
wakes up the LLVM thread which de-queues the
pointer and gives it to the block translator. This stage
generates LLVM-IR for each ARM instruction in the
block in the guest binary referenced by the de-queued
pointer. The block translator is hand-written by us
and its creation was the most labour-intensive part
of this project. This block translator is, essentially,
a partially complete ARM binary to LLVM-IR front-
end for the QEMU virtual machine. In detail, the
block-translation:

1. Sets up a function prototype with a call to
LLVMFunctionType(), so that a pointer to the
guest CPU state (CPUARMState) structure is
passed as the first parameter making it accessible
to the code generated by LLVM.

2. Allocates a new empty LLVM IR function using
a call to LLVMAddFunction() with the prototype
created in step 1 above.

3We also implemented translations for a number of logic opera-
tors such as eor and oor not on the list above.

4Any attempt at self-modification by the guest-binary causes
QEMU to flush it’s entire translation cache and map-table.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

15

define { [16 x i32] }* @block_test({ [16 x i32] }*) {
entry:
%tmp1 = getelementptr { [16 x i32] }* %0, i32 0, i32 0, i32 0
%tmp2 = getelementptr { [16 x i32] }* %0, i32 0, i32 0, i32 2
%tmp3 = load i32* %tmp2
store i32 %tmp3, i32* %tmp1
ret { [16 x i32] }* %0
}

Figure 4: LLVM intermediate representation of mov r2, r0

3. Transcribes the ARM instructions one at a
time with the help of an LLVM builder ob-
ject made by a call to LLVMCreateBuilder()
on the function described in step 2 above.
Using this builder LLVM IR instructions can
be added to the function by calling functions
such as: LLVMBuildAdd(), LLVMBuildStore(),
LLVMBuildIntToPtr() and several others.

4. Finally, finishes off the function with a call to
LLVMBuildRet() to build a return statement.

At the end of this process we have a pointer to the
new LLVM IR function.

To help visualise block-translation, consider a hy-
pothetical block consisting of a single ARM instruc-
tion5: mov r2, r0. Our Block Translator would
build the LLVM IR function shown in figure 4.

A short semantics of this code is as follows. %tmp1
holds a pointer into state pointing to r0, while %tmp2
holds a pointer to r2. The value at the address
in %tmp2 is then loaded into %tmp3, which is subse-
quently stored at the location pointed to by %tmp1.
At this stage our mov instruction is complete and the
function returns.

Note that each basic block is mapped by our block
translator to one LLVM-IR function. Each LLVM-IR
function created by the block translator is immedi-
ately passed to the optimisation and code generation
stages. We describe these stages next.

3.3.3 Code optimisation and generation

These stages are calls to pre-existing LLVM compiler
components. Thus, from the implementer’s point of
view, this stage is straightforward. We first add op-
timisation passes to the LLVM JIT and then call the
LLVM JIT to optimise and generate the LLVM IR
block created by the block translator described in the
previous section. In this project, we add optimisation
passes by calling the following functions:

LLVMAddConstantPropagationPass();
LLVMAddPromoteMemoryToRegisterPass();
LLVMAddDeadInstEliminationPass();
LLVMAddDeadStoreEliminationPass();
LLVMAddInstructionCombiningPass();
LLVMAddGVNPass();

The purpose of each of these passes is fairly self-
explanatory except for the LLVMAddGVNPass which
does global value numbering to help eliminate equiv-
alent values.

Once the passes are set up, then the LLVM JIT
can be called on each block to perform translation.
This translation can be triggered simply by calling
LLVMGetPointerToGlobal() which returns a pointer
to the optimised and translated host (x86-64) block.
The host block produced from the code in figure 4
is shown in figure 5. This code bears some explana-

5We actually do get a few such one-instruction blocks in our
benchmarks.

mov %r14, %rdi
mov 0x8(%rdi), %eax
mov %eax, (%rdi)
mov %rdi, %rax
ret

Figure 5: The x86-64 block produced by the LLVM
JIT for the code shown in figure 4.

tion as the first instruction is not in-fact generated
by LLVM. mov %r14, %rdi is related to the LLVM
function prototype outlined previously: The x86-64 C
ABI designates that the first struct pointer provided
as a parameter to a function should be passed in regis-
ter %rdi, however QEMU pins the CPU state pointer
in %r14. As LLVM doesnt support pinned registers6

the mov instruction is introduced as a work-around
to move the CPU state pointer to %rdi where it can
be accessed by the LLVM-generated code. The next
two lines implement the actual move and the last two
lines return the pointer to the register state. These
last two lines are not required when the the code is
copied back to the TB during block replacement so
they are dropped during this process.

Once the x86 block has been generated as above, it
is added to the block-replacement queue. We describe
how block replacement works next.

3.3.4 Block Replacement

The task of block replacement is to copy the host
code blocks made by the LLVM JIT back into the
correct TBs in the translation cache. Block replace-
ment has to be carefully timed so as not to overwrite
the contents of a block while it is running. In our
implementation we took the simple choice of only al-
lowing block replacement just before TCG is called
to translate another new block. This choice guaran-
tees safety – QEMU is guaranteed not to be running
in the code cache when it is about to invoke TCG.
Moreover, as we shall see in section 4.2 it allows for
tolerably fast block replacement.

Block replacement is done by a simple memcopy
back to the address of the original TB. The block
replacing the original TB is usually shorter than the
original TB. When it is shorter, we add code at the
end of our new block to jump to the chaining section
of the original TB (step (ix) of figure 3). In rarer
cases where the optimised block is too big to fit back
into the original TB we simply discard the new block
on the assumption that, being so large, it is unlikely
to be efficient in any case.

There is one more important detail to add. We
had to make a special arrangement for dealing with
the ARM compare instruction: cmp. This instruction
is not easily implemented efficiently in TCG interme-
diate code so, instead, QEMU uses a pre-compiled

6which would have allowed us to use %r14 directly

CRPIT Volume 122 - Computer Science 2012

16

bench total queued gen repl discard

hmmer 5231 2417 2413 2297 116
gcc 69411 40912 40886 37461 3425

sjeng 4717 2529 2525 2460 65

Table 2: Comparison of blocks queued, generated,
replaced and discarded compared to the total number
of blocks in three SPECint 2006 benchmarks.

helper function to implement cmps semantics. How-
ever, when using the LLVM-JIT, by far the easiest
option is to inline the x86 code for cmp. This adds, in
the worst case, 48 bytes of extra space to our compiled
block. To account for this we added a small amount
of logic to the QEMU code that allocates space for
each new block in its code cache. This logic allocates
48 bytes of additional space in each new TB to allow
for a bigger inlined version of the TB to be copied
back in.

This concludes our description of the modifications
made to implement augmented QEMU. Next we as-
sess the impact of these modifications on QEMU per-
formance.

4 Results

This section presents our experimental results. All ex-
periments were carried out on an Intel Core 2 Quad
Processor Q8200, running at 2.3GHz, with 4GB of
memory. This is an x86- 64 architecture providing,
more general purpose registers than IA- 32 architec-
tures.

We summarise our results in terms of code-
coverage (next), measured code size (sec-
tion 4.3),timeliness of block-replacement 4.2,
informal measures of code quality (section 4.4), and,
importantly, code speed (section 4.5). We discuss
each of these in turn.

4.1 Code Coverage

Code coverage is the number of blocks we are able
to replace in our benchmarks. In Augmented QEMU
this is, primarily, a function of choice and number of
instructions supported by our block translator. We
found our code coverage to be quite consistent across
benchmarks. Table 2 presents statistics collected
for three SPECint 2006 benchmarks running on test
data. As can be seen in all three applications slightly
more than half the total number of basic blocks were
found to be eligible for block-translation and queued.
Of these, most had time to be generated and most of
these were small enough to replace the original block.
A very small percentage were discarded because they
were too large - perhaps indicating reasonably effec-
tive optimisation. In summary, Augmented QEMU,
is able to achieve moderately good code coverage with
a small number of implemented instructions. A very
high percentage of eligible blocks go on to be replaced.

4.2 Timeliness of Replacement

As we can see from above, a reasonable number of
blocks are being replaced on the benchmarks. How-
ever, these blocks will not do much good if they are
not being replaced in a timely manner.

To assess the speed of block replacement we plot-
ted a count of blocks queued and blocks replaced over
time during the running of the sjeng benchmark. Fig-
ure 6 shows the blocks queued (blue dots) and the

0	

500	

1000	

1500	

2000	

2500	

3000	

0	
 20000	
 40000	
 60000	
 80000	
 100000	
 120000	
 140000	

Bl
oc
ks
	
 Q
ue

ue
d/
Re

pl
ac
ed

	

Run1me	
 milliseconds	

queued	

replaced	

Figure 6: Cumulative block totals for queueing (blue
dots) and replacement (red dots) over length of sjeng
benchmark on test workload

0	

20	

40	

60	

80	

100	

120	

0	
 50	
 100	
 150	
 200	
 250	
 300	

Bl
oc
ks
	
 Q
ue

ue
d/
Re

pl
ac
ed

	

Run1me	
 milliseconds	

queued	

replaced	

Figure 7: Zoom in on first part of figure 6.

blocks replaced (red dots) over the entire length of
the sjeng benchmark on the test workload. As can be
seen in this benchmark, queueing and replacement of
blocks track each other closely. Moreover the great
majority of blocks are replaced quickly. This fast re-
placement helps maximise their chance of being run.
Note that a small gap grows between blocks queued
and blocks generated as the run proceeds. This gap
is due to the small number of blocks being discarded
for being too large. Our manual tracking of blocks
queued and replaced on other benchmarks revealed a
similar pattern to above.

The sheer number of blocks replaced in the graph
above makes it difficult to discern the pattern of in-
dividual replacements. In order to see some of these
figure 7 zooms in on the first part of of figure 6. As
can be seen, even at this scale, the rate of queue-
ing and replacement is relatively steady. However the
small gaps visible in the graph indicate either:

1. A temporary lack of need to replace blocks due
to the replacement queue being empty; or

2. A temporary lack of opportunity to replace blocks
due to cpu exec() finding all the blocks it
needs in the map table, thus not triggering
TCG/replacement; or

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

17

Benchmark raw size opt size reduction

hmmer 79.7 44.8 41%
gcc 85.44 46.6 42%

sjeng 104.9 56.1 44%

Table 3: Percentage of optimised blocks that are
smaller and larger and the percentage of code saved
on replaced blocks for three benchmarks

0x400818b4: add ip, pc, #0
0x400818b8: add ip, ip, #147456
0x400818bc: ldr pc, [ip, #1796]!

Figure 8: An example ARM code block

3. A temporary lack of opportunity to replace blocks
because QEMU is running inside a chain in the
translation cache and is not passing control to
cpu exec().

The first scenario above is benign. The second and
third are not. The second scenario can occur because
we only trigger replacement when TCG is triggered.
To test the impact of the second scenario we changed
the replacement strategy so replacement could also
occur at regular intervals when TCG is not triggered.
We found that, across a range of benchmarks, this al-
ternative strategy of periodic checking had almost no
impact on the timing of replacements and a negative
impact on runtimes (due to the maintenance of an in-
terval counter in cpu exec()). We tested for the third
scenario and found that, while on most benchmarks
QEMU spends only short intervals running chained
blocks in the translation cache there were some bench-
marks which spent long times. The mcf benchmark
in particular spent a substantial proportion of its ex-
ecution time running within a single chain. Such be-
haviour, while good for performance, has the poten-
tial to impact negatively on the current replacement
strategy of augmented QEMU.

4.3 Code Size

Augmented QEMU produces significant reductions in
the amount of code in the blocks it replaces. Table 3
shows results for three SPECint 2006 benchmarks,
gcc, hmmer and sjeng on test workloads (adjusted for
the inlined cmp instructions mentioned previously).
The results show that almost all blocks that are opti-
mised result in smaller code with substantial savings
in space overall. In general we assume that this reduc-
tion in code size correlates with more efficient code.
We look more closely at this issue next.

4.4 Code Quality

In this context we define code quality by efficiency and
lack of redundancy. To ascertain the relative quality
of the code being produced by the LLVM-JIT we per-
formed a side-by-side inspection of a number of opti-
mised and unoptimised cache blocks. Some of these
revealed very substantial improvements. For example
the ARM code block shown in figure 8 is translated by
TCG into the reasonably compact x86 code shown in
figure 9. However, the code produced by the LLVM-
JIT is much better still, just two instructions:

mov %r14, %rdi
mov 0x400a58bc, 0x30(%rdi)

xor %r12d,%r12d
mov $0x400818bc,%r15d
add %r12d,%r15d
mov %r15d,0x30(%r14)
mov $0x24000,%r12d
mov 0x30(%r14),%r15d
add %r12d,%r15d
mov %r15d,0x30(%r14)

Figure 9: TCG translation of code from figure 8

the first of which is just moving the pointer to the
CPU state struct. The savings come from eliminating
a redundant move of the pc to ip and realising that,
in this case pc can be recognised as a constant and
folded in. These are just standard optimisations but
TCG, which has to stamp its code out very quickly,
doesnt have time to perform optimisations stretching
over more than one ARM instruction.

The LLVM-JIT was also successful in removing a
lot of redundant loads and stores which saved values
out to the CPU state struct only to read them in
again.

4.5 Code Speed

To test the raw speed of Augmented QEMU we ran
11 SPECint 2006 benchmarks on ARM code pro-
duced by GCC 4.4.3 (arm-softfloat-linux-gnueabi).
All benchmarks were run on test workloads with the
exception of specrand, which was run against its refer-
ence workload and gobmk which was run against its
13x13.txt reference workload in order to get longer
runtimes.

Depending on length, each benchmark was run be-
tween 5 and 30 times and averaged. An exception
was the gobmk benchmark which, due to its very
long run-time on a reference workload was run twice.
Absolute runtimes varied between three seconds for
libquantum and 40 minutes for gobmk. In our exper-
iments we measured real runtimes, with all QEMU
logging turned off. The machine was dedicated to
these experiments and so was lightly loaded at the
time giving very consistent results - usually to within
half-a-percent variation.

Figure 10 shows the relative speeds of:

raw-qemu: The time for vanilla-QEMU always nor-
malised to one.

no-replace: The time for augmented-QEMU but
without replacing any blocks – this gives an in-
dication of overhead.

replace: The time for augmented-QEMU – blocks
are replaced.

net: The net cost of augmented-QEMU assuming
that there are no overheads.

Note, in order to make-visible the impact of over-
heads, the y-scale in figure 10 starts at 0.75. Speedup
between vanilla-QEMU and augmented-QEMU var-
ied from negative one percent on gcc, omnetpp,
and specrand to 12 percent on the mcf benchmark.
Speedup seemed not to correlate strongly with the
size of the benchmark in terms of run time or in terms
of the number of blocks it contained. It can be conjec-
tured that the benchmarks that exhibited some regu-
larity in their computation over time gained most but
this will require further investigation to confirm.

The overhead of running augmented-QEMU can
be estimated as the difference between raw-qemu and

CRPIT Volume 122 - Computer Science 2012

18

0.75

0.8

0.85

0.9

0.95

1

1.05

as
ta
r

bz
ip gc

c

go
bm

k

h2
64

hm
m
r

lib
qu

an
tu

m

m
cf

om
ne

tp
p

sje
ng

sp
ec

ra
nd

xla
na

n

re
la

ti
ve

 r
u

n
ti

m
e

raw-qemu
no-replace
replace
net

Figure 10: Relative run-times of various forms of QEMU on SPECint 2006 benchmarks. (note: scale starts at
0.75).

no-replace in figure 10. In our experiments with the
sjeng benchmarks almost all of this overhead is the
cost of detecting which blocks are eligible for transla-
tion. Running the translation and the LLVM-JIT in
a separate thread had no discernible impact on times
and locks on the ring-buffers suffered almost no con-
tention.

If the costs of the overhead are subtracted from the
augmented-QEMU run-times then we have a rough
estimate of the impact of code improvement sans over-
heads. The last net column for each benchmark in
figure 10 represents this measure. In all cases the im-
pact of the code replacement was either positive or
neutral7.

Note that any of the improvements shown above
can only come from TBs that are run after replace-
ment. If a replaced TB is run only for a short time
or not run at all after replacement it can have very
limited impact. We briefly investigated this issue by
modifying the test workload input to the sjeng bench-
mark so it was forced to repeat the computation in-
volved in the test workload three times. This gives
more time for the replaced blocks to have an impact
in reducing runtime. We found that there was very
little reduction in runtime from running with the re-
placed blocks for longer. This seems to indicate, that
on this benchmark, that the replacement-blocks that
reduce runtime appear in the translation-cache early.

5 Conclusions, Limitations and Future work

In this article we have described Augmented-QEMU,
a set of small modifications to QEMU that lever-
age the LLVM-JIT, running on a separate processor
core, to improve simulation performance. This work
demonstrates that it is feasible to improve the speed
of an already-fast ISS by conservative, incremental,
and minimally intrusive changes using an established
compiler framework. While work to date is promising,
it is a work in progress, and there there are a number
of limitations to the current framework that we plan
to address in our future work. These limitations are:

Code Coverage Currently, not all ARM instruc-
tions have translations to LLVM-IR. We will con-
tinue to implement these incrementally to im-
prove coverage and performance.

Single Background Core Currently we only use
one core for optimisation. This limitation is

7Though the libquantum benchmark actually displayed a very
slighly shorter runtime in the no-replace case. This is likely to be
due to sampling noise between runs since libquantum has a very
short run-time.

partly due to LLVM versions 2.6 and, to a
lesser extent, 2.7 not being perfectly amenable
to multi-threaded execution. This limitation ap-
pears to be addressed in version 2.9 and we
plan to expand background optimisation to more
cores using this version.

ARM-only Guest The current implementation is
specialised to translate only ARM guest code.
We made this choice primarily because of the ex-
pressiveness and relative ease of translation in
the LLVM framework of the ARM instruction
set relative to TCG intermediate code. However,
full-portability, could be achieved if we do trans-
late from TCG intermediate code to LLVM IR
and this is a worthy future goal.

Timing of Replacement The limiting of block re-
placement to when TCG is running is safe and is
low-overhead but can potentially lead to blocks
not being replaced until after they are needed. A
better future strategy is to build our own transla-
tion cache, complete with chaining, and perform
thread-safe fix-ups to do indirect jumps to the
translation cache.

Exception Emulation QEMU keeps track of ev-
ery register in the processor state except the SPC
while it runs the the TB. When an exception or
interrupt is triggered vanilla-QEMU rebuilds the
real value of the SPC by abstractly re-executing
from the start of the current TB, keeping track
of what would happen to the SPC on the way.
When the host PC reaches the point at which
the exception was triggered the SPC is recorded
in the processor state and the exception can then
be handled. Our block replacement strategy pre-
vents this abstract-re-execution to get the SPC
value. While this is not an issue for SPECint
benchmarks in user-mode QEMU it will need to
be addressed in future. One good way to address
this is to build our own translation cache, this
would leave QEMU’s Translation Cache intact
allowing QEMU’s current mechanism to work.

Note that the last two of these limitations can be ad-
dressed by building a separate translation-cache for
our LLVM-JIT generated code. A new code cache
would also open up opportunities to improve chain-
ing form and perform new inter-block optimisations.
Finally, using a separate code cache would give us op-
portunity to build super-blocks with the potential to
be efficiently saved either in binary form or as LLVM-
IR to speed up future runs as is done in SIMIT-
ARM. We believe that an incrementally constructed

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

19

combination of background optimisation, building of
large chains, and code persistence has the potential to
greatly increase the execution speed of ISSs in future.

References

K. Adams and O. Agesen. A comparison of software
and hardware techniques for x86 virtualization. In
ASPLOS, pages 2–13, 2006.

O. Almer, I. Böhm, T. E. von Koch, B. Franke,
S. Kyle, V. Seeker, C. Thompson, and N. Topham.
Scalable multi-core simulation using parallel dy-
namic binary translation. In International Sym-
posium on Systems, Architectures, Modelling and
Simulation (SAMOS’11), 2011.

B. Alpern, S. Augart, S. M. Blackburn, M. Butrico,
A. Cocchi, P. Cheng, J. Dolby, S. Fink, D. Grove,
M. Hind, K. S. McKinley, M. Mergen, J. E. B.
Moss, T. Ngo, V. Sarkar, and M. Trapp. The jikes
research virtual machine project: Building an open-
source research community. IBM Systems Jour-
nal, 44(2):399 –417, 2005. ISSN 0018-8670. doi:
10.1147/sj.442.0399.

M. Arnold, S. Fink, D. Grove, M. Hind, and
P. Sweeney. A survey of adaptive optimization
in virtual machines. Proceedings of the IEEE,
93(2):449 –466, 2005. ISSN 0018-9219. doi:
10.1109/JPROC.2004.840305.

F. Bellard. Qemu, a fast and portable dynamic trans-
lator. In USENIX Annual Technical Conference,
FREENIX Track, pages 41–46, 2005.

D. Bruening, T. Garnett, and S. P. Amarasinghe. An
infrastructure for adaptive dynamic optimization.
In CGO, pages 265–275, 2003.

A. Chernoff, M. Herdeg, R. Hookway, C. Reeve,
N. Rubin, T. Tye, S. Bharadwaj Yadavalli, and
J. Yates. Fx!32 a profile-directed binary translator.
Micro, IEEE, 18(2):56 –64, 1998. ISSN 0272-1732.
doi: 10.1109/40.671403.

V. Chipounov and G. Candea. Dynamically Translat-
ing x86 to LLVM using QEMU. Technical report,
2010.

R. F. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution profiling. In
SIGMETRICS, pages 128–137, 1994.

G. De Michell and R. Gupta. Hardware/software co-
design. Proceedings of the IEEE, 85(3):349 –365,
Mar. 1997. ISSN 0018-9219. doi: 10.1109/5.558708.

Google .Inc. Android emulator, 2011.

A. Jeffery. Using the llvm compiler infrastructure
for optimised, asynchronous dynamic translation in
qemu. Master’s thesis, School of Computer Science,
University of Adelaide, 2010.

W. Jiang, Y. Zhou, Y. Cui, W. Feng, Y. Chen, Y. Shi,
and Q. Wu. Cfs optimizations to kvm threads on
multi-core environment. In ICPADS, pages 348–
354, 2009.

We’d like to thank Tillmann Scheller for sharing his insights
from the LLVM-QEMU project; Wanghao Lee for invaluable
early input on this project; and the research team at ASTC for
their expert advice and enthusiastic support.

C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reduc-
ing the overhead of dynamic compilation. Softw.,
Pract. Exper., 31(8):717–738, 2001.

P. A. Kulkarni, M. Arnold, and M. Hind. Dynamic
compilation: the benefits of early investing. In
VEE, pages 94–104, 2007.

C. Lattner and V. S. Adve. Llvm: A compilation
framework for lifelong program analysis & trans-
formation. In CGO, pages 75–88, 2004.

J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim,
and S. Han. Facsim: a fast and cycle-accurate
architecture simulator for embedded systems. In
LCTES, pages 89–100, 2008.

W. H. Lee. Arm instruction set simulation on multi-
core x86 hardware. Master’s thesis, School of Com-
puter Science, University of Adelaide, 2009.

LLVM-Project. Llvm users, 2011. URL
http://llvm.org/Users.html.

P. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50 –58, Feb.
2002. ISSN 0018-9162. doi: 10.1109/2.982916.

OVP, April 2011. URL http://www.ovpworld.org/.

W. Qin, J. D’Errico, and X. Zhu. A multiprocessing
approach to accelerate retargetable and portable
dynamic-compiled instruction-set simulation. In
CODES+ISSS, pages 193–198, 2006.

T. Scheller. LLVM-QEMU, Google Summer of Code
Project, 2008.

Standard-Performance-Evaluation-Corporation. Spec
cpu2006 cint2006 benchmarks, 2011. URL
http://www.spec.org/cpu2006/.

N. Vachharajani, M. J. Bridges, J. Chang, R. Ran-
gan, G. Ottoni, J. A. Blome, G. A. Reis, M. Vach-
harajani, and D. I. August. Rifle: An architectural
framework for user-centric information-flow secu-
rity. In MICRO, pages 243–254, 2004.

J. Watson. Virtualbox: bits and bytes masquerading
as machines. Linux J., 2008, February 2008. ISSN
1075-3583.

D. Wentzlaff and A. Agarwal. Constructing virtual
architectures on a tiled processor. In CGO, pages
173–184, 2006.

E. Witchel and M. Rosenblum. Embra: fast
and flexible machine simulation. SIG-
METRICS Perform. Eval. Rev., 24:68–
79, May 1996. ISSN 0163-5999. doi:
http://doi.acm.org/10.1145/233008.233025. URL
http://doi.acm.org/10.1145/233008.233025.

CRPIT Volume 122 - Computer Science 2012

20

On the parameterized complexity of dominant strategies

Vladimir Estivill-Castro Mahdi Parsa

School of ICT, Griffith University, Queensland, Australia 4111
Email: {v.estivill-castro, m.parsa}@griffith.edu.au

Abstract

In game theory, a strategy for a player is dominant if, re-
gardless of what any other player does, the strategy earns a
better payoff than any other. If the payoff is strictly better,
the strategy is named strictly dominant, but if it is simply
not worse, then it is called weakly dominant.

We investigate the parameterized complexity of two
problems relevant to the notion of domination among
strategies. First, we study the parameterized complexity
of the MINIMUM MIXED DOMINATING STRATEGY SET
problem, the problem of deciding whether there exists a
mixed strategy of size at most k that dominates a given
strategy of a player. We show that the problem can be
solved in polynomial time on win-lose games. Also, we
show that it is a fixed-parameter tractable problem on r-
sparse games, games where the payoff matrices of players
have at most r nonzero entries in each row and each col-
umn. Second, we study the parameterized complexity of
the ITERATED WEAK DOMINANCE problem. This prob-
lem asks whether there exists a path of at most k-steps of
iterated weak dominance that eliminates a given pure strat-
egy. We show that this problem is W [2]-hard, therefore, it
is unlikely to be a fixed-parameter tractable problem.

Keywords: Algorithm, Complexity, Computational game
theory, dominant strategies, parameterized complexity

1 Introduction

Game theory is a mathematical framework for the study of
conflict and cooperation between intelligent agents. This
theory offers models to study decision-making situations
and proposes several long-standing solution concepts.

A game consists of a set of players, a set of strategies
for each player, and a specification of payoffs for each
combination of strategies. Each single strategy in the set
of strategies of a player is called a pure strategy. However,
if a player randomly chooses a pure strategy, we say that
the player is using a mixed strategy. In each game, players
want to optimize their payoff which depends both on their
own choices and also the choices of others.

Here, we use the Prisoners’ Dilemma, a classical ex-
ample in game theory, to introduce the concept of domi-
nant strategy. In this game, two prisoners, the row player
and the column player, are collectively charged with a
crime and held in separate cells with no way of commu-
nicating. Each prisoner has two choices, cooperate (C)
which means not defect his partner or defect (D), which
Copyright c�2012, Australian Computer Society, Inc. This paper ap-
peared at the 35th Australasian Computer Science Conference (ACSC
2012), Melbourne, Australia, January-February 2012. Conferences in
Research and Practice in Information Technology (CRPIT), Vol. 122,
Mark Reynolds and Bruce Thomas, Ed. Reproduction for academic, not-
for-profit purposes permitted provided this text is included.

Table 1: Payoff matrix of the players in Prisoners’
Dilemma.

column player

C D

row player C -1,-1 -10,0
D 0,-10 -9,-9

means betray his partner. The punishment for the crime is
ten years of prison. Betrayal gives a reduction of one year
for the confessor. If a prisoner is not betrayed by its part-
ner, he is convicted to one year for a minor offense. This
situation can be summarized in Table 1. The numbers in
the table represent the payoff for the players and there are
two payoffs at each position: by convention the first num-
ber is the payoff for the row player and the second number
is the payoff for the column player. In this game, the strat-
egy defecting (D) gives a better payoff for both players no
matter how that player’s opponents may play. Strategies
like the strategy (D) are called dominant strategies.

The notion of dominant strategies is a more elemen-
tary than the well-known solution concept Nash equilib-
rium. A Nash equilibrium is a set of strategies, one for
each player, such that all players have no incentive to uni-
laterally change their decision. The elimination of domi-
nated strategies can be used as a preprocessing technique
for computing Nash equilibria. For example, in the Pris-
oners’ Dilemma, after eliminating the dominated strate-
gies C for each player, the remaining respective strategies
D specify a Nash equilibrium.

Gilboa, Kalai and Zemel (Gilboa et al. 1993) used clas-
sical complexity theory and showed that many decision
problems regarding to computation of dominant strategies
are NP-complete for two-player games. Later, other re-
searches (Brandt et al. 2009, Conitzer & Sandholm 2005)
extended their hardness results to other classes of games
such as win-lose games.

In this paper, we study two problems relevant to the
notion of domination from the perspective of parameter-
ized complexity. Hence, we are interested in algorithms
that compute exact optimal solutions, while attempting to
confine the inevitable exponential-running time of such al-
gorithms to an input-length independent parameter.

First, we study the parameterized complexity of MIN-
IMUM MIXED DOMINATING STRATEGY SET problem.

MINIMUM MIXED DOMINATING STRATEGY SET
Instance : Given the row player’s payoffs of a two-
player game G and a distinguished pure strategy i of
the row player.
Parameter : An integer k.
Question : Is there a mixed strategy x for the row
player that places positive probability on at most k
pure strategies, and dominates the pure strategy i?

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

21

A strategy may fail to be dominated by a pure strategy,
but may be dominated by a mixed strategy. Here, we fo-
cus on specializations of two-player games (by revisiting
the original NP-completeness proof (Conitzer & Sand-
holm 2005) we can discover that this is a parameterized
reduction). Thus, the problem is W [2]-hard, and it is un-
likely to be in FPT for general two-player games. First,
we focus on win-lose games, games where the payoff
values are limited to 0 and 1. We show that this prob-
lem can be solved in polynomial time on win-lose games
(Lemma 3.4). Second, we investigate this problem on
r-sparse games. Here the payoff matrices have at most
r nonzero entries in each row and each column. We
show that MINIMUM MIXED DOMINATING STRATEGY
SET is fixed-parameter tractable for r-sparse games (The-
orem 3.5).

Next, we study the parameterized complexity of the
ITERATED WEAK DOMINANCE problem.

ITERATED WEAK DOMINANCE
Instance : A two-player game and a distinguished
pure strategy i.
Parameter : An integer k.
Question : Is there a path of at most k steps of iter-
ated weak dominance that eliminates the pure strat-
egy i?

It is well-known that iterated strict dominance is path-
independent, that is, the elimination process will always
terminate at the same point, and the elimination procedure
can be executed in polynomial time (Gilboa et al. 1993).
In contrast, iterated weak dominance is path-dependent
and it is known that whether a given strategy is elimi-
nated in some path is NP-complete (Conitzer & Sandholm
2005). We show that this problem is W [2]-hard, there-
fore it is unlikely to be fixed-parameter tractable (Theo-
rem 4.1).

The rest of the paper is organized as follows. In Sec-
tion 2 we give formal definitions for games, and param-
eterized complexity theory. In Section 3, we show the
fixed-parameter tractability results. In Section 4 we show
our parameterized hardness results. In Section 5 we dis-
cuss further the implications of our results and some open
problems.

2 Preliminaries

In this section, we review relevant concepts game theory,
and computational complexity theory including parame-
terized complexity.

2.1 Parameterized complexity theory

Parameterized complexity aims at providing an alternative
to exponential algorithms for NP-complete problems by
identifying a formulation where the parameter would take
small values in practice and shifting the exponential ex-
plosion to this parameter while the rest of the computation
is polynomial in the size of the input.

A parameterized problem is a language L ✓ ⌃⇤ ⇥
N where the second part of the problem is called
the parameter. A parameterized problem L is fixed-
parameter tractable if there is an algorithm that decides
in f(k)|x|O(1) time whether (x, k) 2 L, where f is an
arbitrary computable function depending only on the pa-
rameter k. Such an algorithm is called FPT-time algo-
rithm, and FPT denotes the complexity class that contains
all fixed-parameter tractable problems.

In order to characterize those problems that do not
seem to admit an FPT algorithm, Downey and Fel-
lows (Downey & Fellows 1998) defined a parameterized
reduction and a hierarchy of classes W [1] ✓ W [2] ✓ . . .

including likely fixed parameter intractable problems. A
(many-to-one) parameterized reduction from a parameter-
ized problem L to a parameterized problem L0 is an FPT-
time mapping � that transforms an instance (x, k) of L
into an instance (x0, k0) such that, (x, k) 2 L if and only
if (x0, k0) 2 L0, where k0 bounded by some function de-
pends only on the parameter k.

The class W [t] is defined to be the class of all prob-
lems that are reducible to a parameterized version of the
satisfiability problem for Boolean circuits of weft t (see
Downey and Fellows (Downey & Fellows 1998) for the
exact definition).

The above classes may be equal (if NP=P, for exam-
ple); however, there is evidence to suspect (Downey &
Fellows 1998) that W [2]-completeness is a strong indica-
tion of intractability in the FPT sense. The best known
algorithm for any W [2]-complete problem is still just the
brute force algorithm of trying all k subsets which has a
running time O(nk+1).

2.2 Games and dominant strategies

A two-player normal form game G consists of two matri-
ces A = (aij)m⇥n and B = (bij)m⇥n, where aij denotes
the payoff for the first player and bij denotes the payoff
for the second player when the first player plays his i-th
strategy and the second player plays his j-th strategy. We
identify the first player as the row player and the second
player as the column player. Each single strategy in the set
of strategies of a player is called a pure strategy. However,
if a player randomly chooses a pure strategy, we say that
the player is using a mixed strategy.

Definition 2.1 An ordered n-tuple x = (x1, ..., xn) withPn
i=1 xi = 1 and x � 0 is a mixed strategy.

Thus, a mixed strategy is a probability distribution over
the pure strategy space.The support (denoted supp(x)) of
a mixed strategy x is the set of pure strategies which are
played with positive probability, that is {i : 1  i 
n, xi > 0}.

In a two-player game G=(A, B), a strategy i of the row
player is said to weakly dominate a strategy i0 of the row
player if for every strategy j of the column player we have
aij � ai0j and there exists a strategy j0 of the column
player that aij0 > ai0j0 . The strategy i is said to strictly
dominate strategy i0 if for every strategy j of the column
player aij > ai0j . A similar definition is used to define the
domination relation of the column player, but now using
the payoff matrix B.

If a strategy is dominated, the game (and thus the prob-
lem) can be simplified by removing it. Eliminating a dom-
inated strategy may enable elimination of another pure
strategy that was not dominated at the outset, but is now
dominated. The elimination of dominated strategies can
be repeated until no pure strategies can be eliminated in
this manner. In a finite game this will occur after a finite
number of eliminations and will always leave at least one
pure strategy remaining for each player. This process is
called iterated dominant strategies (Gilboa et al. 1993).

Note that a strategy may fail to be strongly eliminated
by a pure strategy, but may be dominated by a mixed strat-
egy.

Definition 2.2 Consider strategy i of the row player in
two-player game (A, B). We say that the strategy i is
dominated by a mixed strategy x = (x1, . . . , xi�1, xi+1,
. . . , xn) of the row player, if the following holds for every
strategy j of the column player

X

i0 6=i

xi0ai0j � aij .

CRPIT Volume 122 - Computer Science 2012

22

3 FPT results on mixed strategy domination

Recall that sometimes a strategy is not dominated by any
pure strategy, but it is dominated by some mixed strate-
gies. Example 3.1 illustrates the differences between these
two types of strategies.

Example 3.1 Consider the payoff matrix of the row
player that is given as follows:

4 0 2
0 4 0
1 1 0

!
.

In this situation, no pure strategy can eliminate any other.
However playing the first and the second strategy with
probability 1/2, dominates the third strategy. Because,
the expected payoff of those two strategies is equal to
1/2 · (4, 0, 2) + 1/2 · (0, 4, 0) = (2, 0, 1) + (0, 2, 0) =
(2, 2, 1).

Moreover, we can test in polynomial time, whether a given
strategy of a player is dominated by a mixed strategy of
the same player. The following proposition shows the
tractability of this issue.

Proposition 3.2 Consider a two-player game G =
(Am⇥n, Bm⇥n), a subset S0 of the row player’s pure
strategies, and a distinguished strategy i for the row
player. We can determine in polynomial time (in the
size of the game) whether there exists a mixed strategy
x, that places positive probability only on strategies in
S0 and dominates the pure strategy i. Similarly, for the
column player, a subset S0 of the column player’s pure
strategies, and a distinguished strategy j for the column
player. We can determine in polynomial time (in the size
of the game) whether there exists a mixed strategy y, that
places positive probability only on strategies in S0 and
dominates the pure strategy j. This applies both for strict
and weak dominance (Conitzer & Sandholm 2005).

Nevertheless, finding such a mixed strategy that dom-
inates a pure strategy with the smallest support size
(MINIMUM MIXED DOMINATING STRATEGY SET) is
computationally hard (NP-complete) (Conitzer & Sand-
holm 2005). Moreover, it is not hard to obtain a
proof of W [2]-hardness for this problem. The original
proof (Conitzer & Sandholm 2005) introduced a reduction
from SET COVER, a W [2]-complete problem, to MINI-
MUM MIXED DOMINATING STRATEGY SET. We just
need to verify that it is a parameterized reduction. Fur-
thermore, this W-hardness result shows that it is unlikely
to find an FPT algorithm for this problem by considering
only the size of the support as the parameter.

Moreover, the review of the proof reveals that the con-
structed instances of the MINIMUM MIXED DOMINAT-
ING STRATEGY SET problem in the reduction have lim-
ited payoffs, which are {0, 1, k + 1}. Therefore, a natural
question to ask next is whether it is possible to find an FPT
algorithm by considering extra conditions on the problem
instances. Our first step would be specializing the games
to win-lose games. Recall that in win-lose games, the
given payoffs are in {0, 1}. The following lemma shows
that this restriction makes the problem easy.

Lemma 3.3 In a win-lose game G=(A, B) every pure
strategy that is weakly dominated by a mixed strategy is
also weakly dominated by a pure strategy.

Proof: Consider a mixed strategy x = (x1, x2, . . . , xm)
that dominates a pure strategy i (without loss of gen-
erality, both of course, of the row player). Clearly, for
any strategy j of the column player where aij = 0,
the expected payoff of playing the mixed strategy in the

column j is at least 0. Therefore, we only need to consider
columns j where aij = 1. Let j0 be a first column where
aij0 = 1. Because x dominates the strategy i there is a
row (strategy) r in the mixed strategy x where xr > 0
and arj0 = 1. We claim that row r weakly dominates row
i. We just need to show that arj = 1 for any column j
where aij = 1. However, if arj = 0, then for the j-th
column we have

Pm
i=1 aijxi =

P
i6=r aijxi + rjxj < 1.

This contradicts the hypothesis that x dominates i. ⇤

Lemma 3.4 MINIMUM MIXED DOMINATING STRAT-
EGY SET is in P (that is, it can be decided in polynomial
time) if it is limited to win-lose games.

Proof: By Lemma 3.3, if a pure strategy i is dominated
by a mixed strategy x, then there exits a pure strategy i0

that dominates i. Therefore, the problem reduces to the
problem of finding a pure strategy that dominates i. This
can be done in polynomial time in the size of the game. ⇤
Our first effort for specializing the problem makes it an
easy problem (class P). Therefore, instead of limiting the
payoffs, we will work on limiting the number of non-zero
entries in each row and each column of the payoff matrix
of the row player. The MINIMUM MIXED DOMINATING
STRATEGY SET problem remains NP-complete even on
r-sparse games with r � 3 (Conitzer & Sandholm 2005,
Garey & Johnson 1979).

Theorem 3.5 MINIMUM MIXED DOMINATING STRAT-
EGY SET problem for r-sparse games (when considering
r as the parameter) is in the class FPT.

Proof: Consider an r-sparse instance of MINIMUM
MIXED DOMINATING STRATEGY SET. Without loss of
generality we can assume the last row of the first player
is the strategy to be dominated by a mixture of another
k strategies. Because of Proposition 3.2, finding a mixed
strategy that weakly dominates the distinguished strategy
reduces to the problem of determining the support of the
mixed strategy. Consider the following procedure.

Step 1: We remove (in polynomial time) all columns
where the last row has a zero payoff. Because, all
payoffs are at least zero in each column, any mixed
strategy that dominates those columns with positive
entries of the distinguished strategy also does so
where the distinguished strategy has zeros. As the
game is r-sparse, this step reduces the size of the
payoff matrix of the row player to a matrix with r
columns.

Step 2: If there is a column where all entries in that col-
umn are less than the last entry in the column, then
the instance is a no-instance.

Step 3: Now remove all rows that are made completely
of zeros. Because there are at most r entries different
than zero in each column, the matrix now has at most
r2 rows. We can test exhaustively all subsets of rows
of size k of the first r2�1 rows for domination of the
now r2-th row. If none of the tests results in domi-
nation, we have a no-instance, otherwise we have a
yes-instance and a certificate of the domination.

The only step that is not polynomial is the exhaustive
verification at the end; however, this is polynomial in r as
there are

�
r2�1
k

�
= O(r2k) such subsets. This problem

can be solved in f(r)poly(n) because k < r2. ⇤

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

23

4 ITERATED WEAK DOMINANCE (IWD)

As discussed earlier, iterated elimination of strictly domi-
nated strategies is conceptually straightforward in a sense
that regardless of the elimination order the same set of
strategies will be identified, and all Nash equilibria of
the original game will be contained in this set. How-
ever, this process becomes a bit trickier with the iterated
elimination of weakly dominated strategies. In this case,
the elimination order does make a difference, that is, the
set of strategies that survive iterated elimination can dif-
fer depending on the order in which dominated strate-
gies are eliminated. Therefore, the problem such as de-
ciding whether a strategy can be eliminated in a path of
iterated weakly dominated absorbed more attention. IT-
ERATED WEAK DOMINANCE is a NP-complete prob-
lem (Conitzer & Sandholm 2005) even in games with pay-
offs in {(0, 0), (0, 1), (1, 0)} (Brandt et al. 2009). Here,
we show its hardness in terms of parameterized complex-
ity theory.

Theorem 4.1 The IWD STRATEGY ELIMINATION prob-
lem is W [2]-hard.

We prove this by providing a parameterized reduction
from SET COVER. Therefore, consider an instance of
SET COVER. That is, we are given a set S = {1, 2, . . . , n}
and a family F of proper subsets S1, . . . , Sr that cover S
(that is, Si ⇢ S, for i = 1, . . . , r and S =

Sr
i=1 Si). The

question is whether there is a sub-family of k or fewer sets
in F that also covers S.

Our proof constructs, a game G = (A,B) and the
question, whether the last row of the matrix A can be elim-
inated by iterated weak domination in k+1 or fewer steps.
Because k is the parameter of the SET COVER instance
and k0 = k + 1 is the parameter of the ITERATED WEAK
DOMINANCE (IWD) this would be a parameterized re-
duction.

We start by describing the payoff matrices of the game
G = (A,B). The number of rows of the matrices is |F|+
1 = r + 1. The number of columns is r + n+ 1.

We first describe the payoff matrix A of the row player.
The last row of A will be

ar+1,j =

⇢
1, j < n+ r + 1,
0, otherwise.

That is, this row has a 1 everywhere except for the last
column.

The last column of A has a similar form.

ai,n+r+1 =

⇢
1, i < r + 1,
0, otherwise.

That is, this column has a 1 everywhere except for the last
row.

Now, the first block of r columns and r rows of A have
a diagonal full with the value 0 and the value 1 everywhere
else. We let the following entries of A defined by

ai,j =

⇢
1, i  r and j  r and i 6= j,
0, i  r and j  r and i = j.

Finally, after the r-th column, the i-row has the char-
acteristic vector of the set Si scaled by k.

ai,j =

⇢
k, j � r 2 Si i  r and r + 1  j  r + n,
0, j � r 2 S \ Si, i  r and r + 1  j  r + n.

We illustrate this construction with an example. Con-
sider the set S = {1, 2, 3, 4, 5, 6, 7, 8}, and the parame-

ter k = 2. The family F is defined as follows

S1 = {1, 2, 3}, S2 = {3, 5, 7}, S3 = {4, 5, 6},
S4 = {6, 7, 8}, S5 = {1, 2, 4}, S6 = {1, 3, 5, 7},
S7 = {2, 4, 6, 8}, S8 = {3, 4, 5}, and S9 = {2}.

Therefore, the matrix A is given by0

BBB@

0 1 1 1 1 1 1 1 1 2 2 2 0 0 0 0 0 1
1 0 1 1 1 1 1 1 1 0 0 2 0 2 0 2 0 1
1 1 0 1 1 1 1 1 1 0 0 0 2 2 2 0 0 1
1 1 1 0 1 1 1 1 1 0 0 0 0 0 2 2 2 1
1 1 1 1 0 1 1 1 1 2 2 0 2 0 0 0 0 1
1 1 1 1 1 0 1 1 1 2 0 2 0 2 0 2 0 1
1 1 1 1 1 1 0 1 1 0 2 0 2 0 2 0 2 1
1 1 1 1 1 1 1 0 1 0 0 2 2 2 0 0 0 1
1 1 1 1 1 1 1 1 0 0 2 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1

CCCA

Observation 4.2 In the resulting matrix A it is impossible
to perform a row elimination to eliminate the r+1-th row.

Any convex combination of strategies in {1, 2, . . . , r}
would add to less than one in one column in {1, 2, . . . , r}.
Thus, there would be one column blocking such elimina-
tion.

Observation 4.3 Consider a yes-instance of the
SET COVER problem, where I is the set of indexes
in {1, 2, . . . , r} such that |I|  k and S ✓

S
i2I Si. Re-

moving the columns in I from A results in a configuration
where the linear combination of rows in I with probability
1/|I| eliminate row r + 1 in one step.

To confirm this observation first note that any convex
combination of rows in {1, 2, . . . , r} produces domination
in the r + 1-th column, and thus in particular the rows in
I .

Now we show that the removal of the columns in I
causes no longer a blockage. First, consider a column
j  r. Since r is not in I , when we consider the con-
vex combination of rows in I , that combination will add
to a payoff of 1, which is equal to the value in row r + 1
and column j.

Finally, consider a column j with r < j < r + n + 1.
Because I is the set of indexes of a cover, all entries in the
rows indexed by I have value k in column j. Therefore the
linear combination with uniform probability 1/|I| on the
rows with index I will have at least one entry with weight
k/|I| � 1 since |I|  k.

To continue, we now need to describe the payoff ma-
trix B for the column player. This matrix is made of two
blocks. The first block is the first r columns, while the
second block is the last n + 1 columns. All values are 0
for the first block and all values are 1 for the second block.

B = (0r+1⇥r|1r+1⇥n+1) .

Observation 4.4 The only columns that can be elimi-
nated by a column elimination are one of the first r
columns.

This observation follows trivially from the structure of
B, since the only dominations are strict dominations from
a column in the later block of columns full of the value 1
to a column in the first r columns full of the value 0.

Observation 4.5 A row elimination cannot happen in ma-
trix A until a set I ✓ {1, 2, . . . , r} of columns is elimi-
nated by column eliminations, and the set I defines a cover
of S.

We know the process of elimination must start with a
column elimination. Because of the structure of the first
r columns of A, the only row elimination possible after
some columns eliminations must be a convex combination
of a subset of indexes of the already eliminated indexes.

CRPIT Volume 122 - Computer Science 2012

24

However, this would be a possible row elimination only if
the linear combination also implies a set cover because of
the structure of the next n columns of matrix A.

Now clearly if there is a path of length k + 1 (or less)
that eliminates row r + 1 in matrix A it must consist of k
(or less) column eliminations defining k (or less) indexes
of the covering sets, and the last elimination is the cor-
responding row elimination with uniform weight on the
same indexes. This completes the proof.

5 Conclusion

There are many interesting decision problems regarding
the notion of dominant strategies (Gilboa et al. 1993,
Conitzer & Sandholm 2005). We showed that one of those
problems is parameterized hard problem (e.g. MINIMUM
MIXED DOMINATING STRATEGY SET). Furthermore,
we showed that special cases of those problems are in
P or FPT. However, many other problems are still open.
For example, the paper “On the Complexity of Iterated
Weak Dominance in Constant-Sum Games” (Brandt et al.
2009) indicates that the ITERATED WEAK DOMINANCE
problem is in P for Constant-Sum games, but still NP-
complete for win-lose games. In fact, the paper is more
precise. If of each pair of actions (i, j), where i is for the
row player and j is for the column player, the correspond-
ing entries in A and B are only (1, 0), (0, 1), (0, 0) the
problem remains NP-complete. Disallowing (0, 0) makes
the problem restricted to constant-sum games and thus be-
comes a problem in P. However, our parameterized hard-
ness proof uses other entries different from {0, 1}. We
do not know the fixed-parameter complexity of ITERATED
WEAK DOMINANCE in win-lose games or in the more re-
stricted class of games where only (1, 0), (0, 1), (0, 0) are
allowed.

References

Brandt, F., Brill, M., Fischer, F. & Harrenstein, P. (2009),
On the complexity of iterated weak dominance in
constant-sum games, in ‘SAGT-09, Proceedings of the
2nd International Symposium on Algorithmic Game
Theory’, Springer-Verlag, Berlin, Heidelberg, pp. 287–
298.

Conitzer, V. & Sandholm, T. (2005), Complexity of (iter-
ated) dominance, in J. Riedl, M. J. Kearns & M. K. Re-
iter, eds, ‘EC-05, Proceedings of the 6th ACM Confer-
ence on Electronic Commerce’, ACM, Vancouver, BC,
Canada, pp. 88–97.

Downey, R. & Fellows, M. R. (1998), Parameter-
ized Complexity, Monographs in Computer Science,
Springer, New York.

Garey, M. R. & Johnson, D. S. (1979), Computers
and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman & Co., New York, USA.

Gilboa, I., Kalai, E. & Zemel, E. (1993), ‘The complex-
ity of eliminating dominated strategies’, Mathematics
of Operations Research 18(3), 553–565.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

25

CRPIT Volume 122 - Computer Science 2012

26

Single Feature Ranking and Binary Particle Swarm Optimisation

Based Feature Subset Ranking for Feature Selection

Bing Xue Mengjie Zhang Will N. Browne

School of Engineering and Computer Science
Victoria University of Wellington, Wellington, New Zealand

Email: (Bing.Xue, Mengjie.Zhang, Will.Browne)@ecs.vuw.ac.nz

Abstract

This paper proposes two wrapper based feature selec-
tion approaches, which are single feature ranking and
binary particle swarm optimisation (BPSO) based
feature subset ranking. In the first approach, indi-
vidual features are ranked according to the classifi-
cation accuracy so that feature selection can be ac-
complished by using only a few top-ranked features
for classification. In the second approach, BPSO
is applied to feature subset ranking to search dif-
ferent feature subsets. K-nearest neighbour (KNN)
with n-fold cross-validation is employed to evaluate
the classification accuracy on eight datasets in the
experiments. Experimental results show that using
a relatively small number of the top-ranked features
obtained from the first approach or one of the top-
ranked feature subsets obtained from the second ap-
proach can achieve better classification performance
than using all features. BPSO could efficiently search
for subsets of complementary features to avoid redun-
dancy and noise. Compared with linear forward se-
lection (LFS) and greedy stepwise backward selection
(GSBS), in almost all cases, the two proposed ap-
proaches could achieve better performance in terms
of classification accuracy and the number of features.
The BPSO based approach outperforms single feature
ranking approach for all the datasets.

Keywords: Feature selection, Particle swarm optimi-
sation, Single feature ranking, Feature subset ranking

1 Introduction

In many fields such as classification, a large number
of features may be contained in the datasets, but not
all of them are useful for classification. Redundant or
irrelevant features may even reduce the classification
performance. Feature selection aims to pick a subset
of relevant features that are sufficient to describe the
target classes. By eliminating noisy and unnecessary

Copyright c⃝2012, Australian Computer Society, Inc. This pa-

per appeared at the 35th Australasian Computer Science Con-

ference (ACSC 2012), Melbourne, Australia, January-February

2012. Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce

Thomas, Ed. Reproduction for academic, not-for-profit pur-

poses permitted provided this text is included.

features, feature selection could improve classification
performance, make learning and executing processes
faster, and simplify the structure of the learned mod-
els (Dash & Liu 1997).

The existing feature selection approaches can be
broadly classified into two categories: filter ap-
proaches and wrapper approaches. The search pro-
cess in filter approaches is independent of a learning
algorithm and they are argued to be computation-
ally less expensive and more general than wrapper
approaches (Dash & Liu 1997). On the other hand,
wrapper approaches conduct a search for the best fea-
ture subset using the learning algorithm itself as part
of the evaluation function. In a wrapper model, a fea-
ture selection algorithm exists as a wrapper around a
learning algorithm and the learning algorithm is used
as a “black box” by the feature selection algorithm.
By considering the performance of the selected fea-
ture subset on a particular learning algorithm, wrap-
pers can usually achieve better results than filter ap-
proaches (Kohavi & John 1997).

A feature selection algorithm explores the search
space of different feature combinations to optimise the
classification performance. The size of search space
for n features is 2n, so it is impractical to search the
whole space exhaustively in most situations (Kohavi
& John 1997). Single feature ranking is a relaxed ver-
sion of feature selection, which only requires the com-
putation of the relative importance of the features and
subsequently sorting them (Guyon et al. 2003). Fea-
ture selection can be accomplished by using only the
few top-ranked features for classification. However,
not much work has been done on wrapper based sin-
gle feature ranking (Neshatian & Zhang 2009). Sin-
gle feature ranking is computationally cheap, but the
combination of the top-ranked features may be a re-
dundant subset. The performance obtained by this
subset could possibly be achieved by a smaller subset
of complementary features.

In order to avoid exhaustive search, greedy al-
gorithms are introduced to solve feature selection
problems such as sequential forward selection (SFS)
(Whitney 1971) and sequential backward selection
(SBS) (Marill & Green 1963). They are the two
most commonly used greedy search algorithms that
are computationally less expensive than other ap-
proaches. Thus they are used as the basis for bench-

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

27

mark techniques to test novel approaches. Existing
feature selection approaches, such as greedy search
algorithms, suffer from a variety of problems, such
as stagnation in local optima and high computational
cost. Therefore, an efficient global search technique is
needed to address feature selection problems. Parti-
cle swarm optimisation (PSO) is such a global search
technique, which is computationally less expensive,
easier to implement, has fewer parameters and can
converge more quickly than other techniques, such as
genetic algorithms (GAs) and genetic programming
(GP). PSO has been successfully applied in many ar-
eas and it has been shown to be a promising method
for feature selection problems (Yang et al. 2008, Un-
ler & Murat 2010, Yang et al. 2008). However, PSO
has never been applied to feature subset ranking (See
Section 4), which is expected to obtain many feature
subsets to meet different requirements in real-world
applications.

1.1 Goals

This paper aims to develop a new approach to feature
subset ranking for feature selection in classification
problems with the goal of using a small number of
features to achieve better classification performance.
To achieve this goal, we will develop two new algo-
rithms for finding a subset of features for classifica-
tion. The two algorithms will be examined and com-
pared with conventional feature selection approaches
on eight benchmark datasets with different numbers
of features and instances. Specifically, we will

• develop a simple wrapper based single feature
ranking algorithm and investigate whether the
combination of some top-ranked features gener-
ated by this algorithm can achieve better perfor-
mance than using all features and can outper-
form conventional approaches; and

• develop a feature subset ranking algorithm us-
ing BPSO with heuristic search and investi-
gate whether this algorithm can outperform the
method of using all features, conventional ap-
proaches and the single feature ranking algo-
rithm.

1.2 Organisation

The remainder of the paper is organised as follow.
Background information is provided in Section 2. Sec-
tion 3 describes the proposed wrapper based single
feature ranking algorithm. The BPSO based feature
subset ranking algorithm is proposed in Section 4.
Section 5 describes experimental design and Section
6 presents experimental results with discussions. Sec-
tion 7 provides conclusions and future work.

2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO is an evolutionary computation technique pro-
posed by Kennedy and Eberhart in 1995 (Kennedy &
Eberhart 1995). In PSO, each solution can be rep-
resented as a particle in the search space. A vector
xi = (xi1, xi2, ..., xiD) presents the position of par-
ticle i, where D is the dimensionality of the search
space. The velocity of particle i is represented as
vi = (vi1, vi2, ..., viD). The best previous position of
each particle is recorded as the personal best called
Pbest and the best position obtained thus far is called
Gbest. The swarm is initialised with a population of
random solutions and searches for the best solution by
updating the velocity and the position of each particle
according to the following equations:

xt+1
id = xt

id + vt+1
id (1)

vt+1
id = w ∗ vtid + c1 ∗ r1 ∗ (pid − xt

id)

+ c2 ∗ r2 ∗ (pgd − xt
id) (2)

where t denotes iteration t in the search process. c1
and c2 are acceleration constants. r1 and r2 are
random values uniformly distributed in [0, 1]. pid
presents the Pbest and pgd stands for the Gbest.
w is inertia weight. The velocity vtid is limited by
a predefined maximum velocity, vmax and vtid ∈
[−vmax, vmax].

PSO was originally introduced as an optimization
technique for real-number search spaces. However,
many optimization problems occur in a space fea-
turing discrete, qualitative distinctions between vari-
ables and between levels of variables. To extend the
implementation of the original PSO, Kennedy and
Eberhart (Kennedy & Eberhart 1997) developed a bi-
nary particle swarm optimisation (BPSO) for discrete
problems. The velocity in BPSO represents the prob-
ability of element in the particle taking value 1 or
0. Equation (2) is still applied to update the velocity
while xid, pid and pgd are integers of 1 or 0. A sigmoid
function s(vid) is introduced to transform vid to the
range of (0, 1). BPSO updates the position of each
particle according to the following formulae:

xid =

{
1, if rand() < s(vid)
0, otherwise

(3)

where

s(vid) =
1

1 + e−vid
(4)

where s(vid) is a sigmoid limiting transformation.
rand() is a random number selected from a uniform
distribution in [0,1].

2.2 BPSO for Feature Selection

Generally, when using BPSO to solve feature selection
problems (Unler & Murat 2010, Yang et al. 2008), the
representation of a particle is a n-bit binary string,

CRPIT Volume 122 - Computer Science 2012

28

where n is the number of features and the dimen-
sionality of the search space. The feature mask is in
Boolean such that “1” represents the feature will be
selected and “0” otherwise. Many BPSO based filter
and wrapper feature selection approaches have been
proposed in recent years.

Chakraborty (2008) compares the performance of
BPSO with that of GA in a filter feature selection
approach with fuzzy sets based fitness function. The
results show that BPSO performs better than GA in
terms of classification accuracy.

Inertia weight can improve the performance of
BPSO by properly balancing its local search and
global search. Yang et al. (2008) propose two strate-
gies to determine the inertia weight of BPSO. Ex-
periments on a wrapper feature selection model sug-
gest that the two proposed BPSOs outperform other
methods, including sequential forward search, plus
and take away, sequential forward floating search, se-
quential GA and different hybrid GAs. In order to
avoid the particles converging at local optima, Yang
et al. (2008) propose a strategy to renew the Gbest
during the search process to keep the diversity of
the population in BPSO. In the proposed algorithm,
when Gbest is identical after three generations, a
Boolean operator ‘and(.)’ will ‘and’ each bit of the
Pbest of all particles in an attempt to create a new
Gbest. Experimental results illustrate that the pro-
posed method usually achieves higher classification
accuracy with fewer features than GA and standard
BPSO.

Chuang et al. (2008) also develop a strategy for
Gbest in BPSO for feature selection in which Gbest
will be reset to zero if it maintains the same value
after several iterations. Experiments with cancer-
related human gene expression datasets show that the
proposed BPSO outperforms the algorithm proposed
by Yang et al. (2008) in most cases.

Wang et al. (2007) propose an improved BPSO by
defining the velocity as the number of elements that
should be changed. The performance of the improved
BPSO is compared with that of GA in a filter feature
selection model based on rough sets theories. Experi-
mental results show that the improved BPSO is com-
putationally less expensive than GA in terms of both
memory and running time. They also conclude that
most of the running time is consumed by the compu-
tation of the rough sets, which is a drawback of using
rough sets to solve the feature selection problems.

Unler & Murat (2010) modify the standard BPSO
by extending social learning to update the velocity
of the particles. Meanwhile, an adaptive feature sub-
set selection strategy is developed, where the features
are selected not only according to the likelihood cal-
culated by BPSO, but also according to their con-
tribution to the subset of features already selected.
The improved BPSO is applied to a wrapper fea-
ture selection model for binary classification prob-
lems. Experimental results indicate that the proposed
BPSO method outperforms the tabu search and scat-
ter search algorithms.

Alba et al. (2007) combine a geometric BPSO with
a support vector machine (SVM) algorithm for fea-
ture selection, where the current position, Pbest and
Gbest of a particle are used as three parents in a
three-parent mask-based crossover operator to create
a new position for the particle instead of using the po-
sition update equation. Experiments on high dimen-
sional microarray problems show that the proposed
algorithm could achieve slightly higher accuracy than
GA with SVM in most cases. Meanwhile, experiments
also show that the initialisation of the BPSO had a
great influence in the performance since it introduces
an early subset of acceptable solutions in the evolu-
tionary process.

Talbi et al. (2008) propose a geometric BPSO and
compare it with GA using SVM for the feature selec-
tion in high dimensional microarray data. They con-
clude that the performance of the proposed BPSO
is superior to GA in terms of accuracy. Liu et al.
(2011) propose a multiple swarm BPSO (MSPSO) to
search for the best feature subset and optimise the
parameters of SVM. Experimental results show that
the proposed feature selection methods could achieve
higher classification accuracy with a smaller subset of
features than grid search, standard BPSO and GA.
However, the proposed MSPSO is computationally
more expensive than other three methods because of
the large population size and complicated communi-
cation rules between different subswarms.

Huang & Dun (2008) develop a wrapper feature
selection method based on BPSO and SVM, which
uses BPSO to search for the best feature subset and
continuous PSO to simultaneously optimise the pa-
rameters in the kernel function of SVM, respectively.
Experiments show that the proposed algorithm could
determine the parameters, search for the optimal fea-
ture subset simultaneously and also achieve high clas-
sification accuracy.

Many studies have shown that BPSO is an efficient
search technique for feature selection. Therefore, it is
selected as the basic tool for developing new feature
subset ranking algorithms in this paper.

3 Wrapper Based Single Feature Ranking

We propose a wrapper based single feature ranking
approach, where the relative importance of each fea-
ture is measured by its classification accuracy.

Algorithm 1 shows the pseudo-code of the pro-
posed wrapper based single feature ranking approach.
In this approach, each dataset is divided into two sets:
a training set and a test set. In both the training set
and the test set, K-nearest neighbour (KNN) with n-
fold cross-validation is employed to evaluate the clas-
sification accuracy. A detailed discussion of why and
how n-fold cross-validation is applied in this way is
given by Kohavi & John (1997). In this algorithm,
firstly, in order to make sure n-fold cross-validation is
always performed on the n fixed folds, both the train-
ing set and the test set are divided into n folds when

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

29

Algorithm 1: The wrapper based single feature ranking algorithm

1 begin
2 divide the training set to n folds; // n-fold cross-validation

3 divide the test set to n folds;
4 for d=1 to number of features do
5 keep feature d and remove all the other features from training set ; // training set only

contains feature d
6 use KNN with n-fold cross-validation to evaluate the classification accuracy of feature d for the

training set;
7 end
8 rank the features according to the classification accuracy;
9 for d=1 to number of features do

10 keep d top-ranked features and remove the others from the test set;
11 use KNN with n-fold cross-validation to evaluate the classification accuracy of d top-ranked

features for the test set;
12 end
13 return classification accuracy achieved by each feature;
14 return the order of features;
15 return the classification accuracies achieved by the successive numbers of the top-ranked features;

16 end

Algorithm 2: The BPSO based feature subset ranking algorithm

1 begin
2 divide the training set to n folds // n-fold cross-validation

3 divide the test set to n folds;
4 initialise a feature subset S by randomly selecting 1 feature;
5 for d=1 to number of features do
6 initialise half of the swarm in BPSO with S;
7 initialise the other half of the swarm with a subset randomly selecting d features;
8 while maximum iteration or fitness=1 is not met do
9 for p=1 to number of particles do

10 calculate sum (number of the selected features by particle p);
11 if sum > d then
12 randomly exclude (sum− d) features;
13 end
14 else if sum < d then
15 randomly include (d− sum) features;
16 end
17 use KNN with n-fold cross-validation to evaluate the fitness of particle p

// classification accuracy of d features selected by particle p for the

training set

18 end
19 for p=1 to number of particles do
20 update Pbestp and Gbest;
21 end
22 for p=1 to number of particles do
23 update the velocity of particle p (Equation 2);
24 update the position of particle p (Equations 3 and 4);

25 end

26 end
27 record the evolved feature subset and the corresponding classification accuracy;
28 S ← the recorded feature subset in Line 27;

29 end
30 rank the learnt feature subsets;
31 use KNN with n-fold cross-validation to calculate the classification accuracy of the ranked feature

subsets for the test set;
32 return the order of feature subsets and classification accuracies;

33 end

CRPIT Volume 122 - Computer Science 2012

30

the algorithms starts. Secondly, every feature is used
for classification in the training set individually and
its classification accuracy is calculated by a loop of
n-fold cross-validation on the fixed n folds of training
data (from Line 4 to Line 7 in Algorithm 1). Thirdly,
the features are ranked according to the classification
accuracies they achieve. Finally, based on the order
of the ranked features, successive numbers of the top-
ranked features are selected for classification to show
the utility of single feature ranking in feature selec-
tion and the classification accuracy is calculated by
KNN with n-fold cross-validation on the fixed n folds
of the test data (from Line 9 to Line 12 in Algorithm
1).

The proposed algorithm is simple and easy to im-
plement (around 20 lines of code). In each dataset,
the aim is to determine the number of successive top-
ranked features that can achieve classification accu-
racy close to or even better than the classifier with all
features.

4 BPSO Based Feature Subset Ranking

The top-ranked feature set resulting from the sin-
gle feature ranking algorithm might contain poten-
tial redundancy. For example, the combination of the
two top-ranked features might not perform as well
as the combination of one top-ranked feature and
a low-ranked feature if the two top-ranked features
are highly dependent (redundant). To overcome this
problem, we propose a feature subset ranking algo-
rithm based on BPSO. Different feature subsets are
evolved and ranked according to the classification ac-
curacy on the training set.

Algorithm 2 shows the pseudo-code of BPSO for
feature subset ranking. In this approach, each dataset
is firstly divided into two sets: a training set and
a test set. KNN with n-fold cross-validation is em-
ployed to evaluate the classification accuracy (Kohavi
& John 1997) in both of the training set and the test
set, which are divided into n folds, respectively. If
a dataset includes D features, D feature subsets will
be evolved and ranked. The feature subsets search
process starts from finding the best subset including
1 feature and ends with the feature subset with D
features. The dth feature subset includes d features,
where d is a positive integer from 1 to D. There are
many combinations for a feature subset with a partic-
ular number of features, and we use the dth feature
subset to represent the best combination with d fea-
tures in this method.

The process of selecting a certain feature subset
is one step in this approach. For a dataset includ-
ing D features, D feature subsets will be evolved and
D steps are needed. Each step can be regarded as a
process of using BPSO to select a certain number of
the most relevant features (from Line 8 to Line 26 in
Algorithm 2). The dth step is actually the process
of using BPSO to search for the d most relevant fea-
tures and the fitness function of BPSO is to maximise

Table 1: Datasets

Dataset Number of Number of Number of
features classes instances

Vowel 10 11 990
Wine 13 3 178
Australian 14 2 690
Zoo 17 7 101
Vehicle 18 4 846
German 24 2 1000
WBCD 30 2 569
Sonar 60 2 208

the classification accuracy. During the search process
of BPSO, if a particle selects more than d features,
a deletion strategy is employed to randomly exclude
some features to reduce the number of features to d.
On the other hand, if the number of selected features
is smaller than d, an addition strategy is applied to
randomly include some features to increase the num-
ber of the selected features to d.

During the search process, when searching for the
dth feature subset, half of the population in BPSO is
initialised with the (d− 1)th feature subset achieved
in the (d−1)th step. This is due to the expection that
some of the features in the (d−1)th subset are useful
and should be retained in the dth subset. Meanwhile,
each particle in the other half of the population is
initialised with a feature subset that randomly selects
d features to ensure the diversity of the swarm.

All the evolved feature subsets are ranked accord-
ing to the classification accuracy on the training set
and then their classification performance are evalu-
ated by KNN with n-fold cross-validation on the test
set. In each dataset, the aim is to determine the num-
ber of top-ranked feature subsets that can can achieve
classification accuracy close to or even better than the
classifier with all features.

5 Experimental Design

5.1 Datasets and Parameter Settings

Eight datasets chosen from the UCI machine learn-
ing repository (Frank & Asuncion 2010) are used in
the experiments, which are shown in Table 1. The
eight datasets were selected to have different num-
bers of features, classes and instances as the repre-
sentative samples of the problems that the two pro-
posed approaches could address. For two proposed
approaches, in each dataset, the instances are divided
into two sets: 70% as the training set and 30% as the
test set. Classification accuracy is evaluated by 5NN
with 10-fold cross-validation implemented in Java ma-
chine learning library (Java-ML) (Abeel et al. 2009).
The classification accuracy is determined according
to Equation 5:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

31

where TP, TN, FP and FN stand for true positives,
true negatives, false positives and false negatives, re-
spectively.

The parameters of BPSO are set as follows: in-
ertia weight w = 0.768, acceleration constants c1 =
c2 = 1.49618, maximum velocity vmax = 6.0, popula-
tion size P = 30, maximum iteration T = 100. The
fully connected topology is applied in BPSO. These
values are chosen based on the common settings in
the literature (Van Den Bergh 2002).

For BPSO based feature subset ranking, the exper-
iment has been conducted for 30 independent runs.
The results achieved in different runs are similar to
each other in terms of the classification accuracy of
the evolved feature subsets. Therefore, the results
from a typical run and the best results from 30 inde-
pendent runs are shown in Section 6.

5.2 Benchmark Techniques

Two conventional wrapper feature selection methods,
linear forward selection (LFS) and greedy stepwise
backward selection (GSBS), are used as benchmark
techniques to examine the performance of the two
proposed approaches. They were derived from SFS
and SBS, respectively.

LFS (Gutlein & Frank 2009) is an extension of best
first algorithm. The search direction can be forward,
or floating forward selection (with optional backward
search steps). In LFS, the number of features con-
sidered in each step is restricted so that it does not
exceed a certain user-specified constant. More details
can be seen in the literature (Gutlein & Frank 2009).

Greedy stepwise (Caruana & Freitag 1994), imple-
mented in Waikato Environment for Knowledge Anal-
ysis (Weka) (Witten & Frank 2005), is a steepest as-
cent search. It can move either forward or backward
through the search space. Given that LFS performs
a forward selection, a backward search is chosen in
greedy stepwise to conduct a greedy stepwise back-
ward selection. GSBS begins with all features and
stops when the deletion of any remaining attribute
results in a decrease in evaluation, i.e. the accuracy
of classification.

Weka (Witten & Frank 2005) is used to run the
experiments when using LFS and GSBS for feature
selection. During the feature selection process, 5NN
with 10-fold cross-validation in Weka is employed to
evaluate the classification accuracy. In order to make
fair comparisons, all the feature subsets selected by
LFS, GSBS and two proposed methods are tested by
5NN with 10-fold cross-validation in Java-ML on the
test sets.

When using Weka to run the experiments, all the
settings are kept to the defaults except that backward
search is chosen in the greedy stepwise approach to
perform GSBS for feature selection and 5NN with 10-
fold cross-validation is selected to evaluate the classi-
fication accuracy in both LFS and GSBS.

6 Results

Figure 1 shows the classification accuracy of each fea-
ture achieved by the wrapper based single feature
ranking on the training set. The eight charts corre-
spond to the eight datasets used in the experiments.
In each chart, the horizontal axis shows the feature
index in the corresponding dataset. The vertical axis
shows the classification accuracy.

Figure 2 compares the classification performance
of the two proposed methods, LFS and GSBS on the
test set. Each plot corresponds to one of the eight
datasets. In each plot, the horizontal axis shows the
number of features used for classification and the ver-
tical axis shows the classification accuracy. “SFR” in
the figure stands for the results achieved by the suc-
cessive numbers of top-ranked features in the wrapper
based single feature ranking. For the BPSO based
feature subset ranking, “FSR-Best” shows the best
results in 30 independent runs and “FSR” shows the
results achieved in a typical run. Both LFS and GSBS
produce a unique feature subset, so have a single re-
sult for each test set. The red star denotes the clas-
sification accuracy achieved by LFS and the blue dot
presents the result of GSBS. In addition, the red star
and the blue dot in the plot of Vowel dataset are in the
same position, which means both methods selected
the same number of features and achieved the same
classification accuracy.

6.1 Results of Wrapper Based Single Feature
Ranking

According to Figure 1, classification accuracy
achieved by each feature varies considerably, which
means that they are not equally important for classifi-
cation. In most cases, the difference between the high-
est classification accuracy and the lowest one is more
than 20%, but it varies with the datasets. For ex-
ample, the difference in the WBCD dataset is around
50% while the difference is only about 3% in the Vowel
dataset. This is caused by the different characteristics
in different datasets.

According to the results denoted by “SFR” in Fig-
ure 2, a selection of a small number of top-ranked fea-
tures achieves better results than using all features
in all the datasets. In almost all cases, using more
top-ranked features, not only does not increase the
performance, but actually causes a deterioration, es-
pecially for the Wine and Zoo datasets. The results
suggest that there are interactions between some fea-
tures, so the relevance level of a feature changes in
the presence or absence of some other features.

6.2 Results of BPSO Based Feature Subset
Ranking

According to the results (“FSR” and “FSR-Best”) in
Figure 2, in all the eight datasets, with many of the
feature subsets evolved by BPSO the classifier can
achieve higher classification accuracy than with all

CRPIT Volume 122 - Computer Science 2012

32

Vowel

Feature i

A
cc

ur
ac

y
(%

)

1 2 3 4 5 6 7 8 9 10
83

84

85

86

87

Wine

Feature i

A
cc

ur
ac

y
(%

)

1 3 5 7 9 11 13
55

65

75

85

Australian

Feature i

A
cc

ur
ac

y
(%

)

1 4 6 8 10 12 14

45

55

65

75

85

Zoo

Feature i

A
cc

ur
ac

y
(%

)

1 3 5 7 9 11 13 15 17
60

65

70

75

80

85

Vehicle

Feature i

A
cc

ur
ac

y
(%

)

1 3 6 9 12 15 18
60

65

70

75

German

Feature i

A
cc

ur
ac

y
(%

)

1 3 6 9 12 15 18 21 24
30

40

50

60

70

WBCD

Feature i

A
cc

ur
ac

y
(%

)

1 5 10 15 20 25 30
40

50

60

70

80

90

Sonar

Feature i

A
cc

ur
ac

y
(%

)

1 10 20 30 40 50 60
30

40

50

60

70

Figure 1: Results of single feature ranking

features. In most cases, the feature subset with which
the classifier achieves the best performance contains
a small number of features. For example, in the Aus-
tralian dataset, the second feature subset evolved by
BPSO only includes two features, but achieves the
highest classification accuracy. This suggests that
BPSO can select the relevant features and eliminate
some noisy and irrelevant ones.

6.3 Comparisons Between Two Proposed
Methods

Comparing the two proposed methods for feature se-
lection, leads to the following observations. Firstly,
using all features could not achieve the best perfor-
mance in all the eight datasets. The two proposed
methods could select a relatively small number of fea-
tures with which the classifier could achieve higher

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

33

Vowel

Number of features

A
cc

ur
ac

y
(%

)

SFR
FSR
FSR−Best
LFS
GSBS

1 2 3 4 5 6 7 8 9 10
87

89

91

93

95

Wine

Number of features

A
cc

ur
ac

y
(%

)

SFR
FSR
FSR−Best
LFS
GSBS

1 3 5 7 9 11 13
70

80

90

100

Australian

Number of features

A
cc

ur
ac

y
(%

)

SFR
FSR
FSR−Best
LFS
GSBS

1 4 6 8 10 12 14
65

70

75

80

85

90

Zoo

Number of features

A
cc

ur
ac

y
(%

)
SFR
FSR
FSR−Best
LFS
GSBS

1 3 5 7 9 11 13 15 17
45

55

65

75

85

95

Vehicle

Number of features

A
cc

ur
ac

y
(%

)

SFR
FSR
FSR−Best
LFS
GSBS

1 3 6 9 12 15 18
75

77

79

81

83

German

Number of features

A
cc

ur
ac

y
(%

)

SFR
FSR
FSR−Best
LFS
GSBS

1 3 6 9 12 15 18 21 24
65

70

75

80

WBCD

Number of features

A
cc

ur
ac

y
(%

)

SFR
FSR
FSR−Best
LFS
GSBS

1 5 10 15 20 25 30

92

94

96

98

Sonar

Number of features

A
cc

ur
ac

y
(%

)

SFR
FSR
FSR−Best
LFS
GSBS

1 10 20 30 40 50 60
65

70

75

80

85

Figure 2: Comparisons between single feature ranking (SFR), feature subset ranking (FSR), the best results
of FSR in 30 runs, linear forward selection (LFS) and greedy stepwise backward selection (GSBS)

CRPIT Volume 122 - Computer Science 2012

34

classification accuracy than with all features. Sec-
ondly, in most cases, combining top-ranked features
could not achieve the best performance because this
combination still has redundancy. Thirdly, feature
subset ranking provides an effective way for feature
selection. Using the same number of features, BPSO
based feature subset ranking can achieve higher clas-
sification accuracy than wrapper based single feature
ranking. This suggests that BPSO could find a subset
of complementary features to improve the classifica-
tion performance.

6.4 Further Analysis

Results in Figure 2 show that in almost all cases, the
feature subset evolved by BPSO is not the combina-
tion of the top-ranked features, but a subset of com-
plementary ones.

Considering the Australian dataset as an example,
as can be seen in Figure 1, the order of the ranked
features is F8, F10, F9, F14, F13, F5, F7, F3, F6, F2,
F11, F12, F1, F4, where Fi denotes the ith feature
in the dataset. The second feature subset evolved by
BPSO includes F8 and F12, which are not the two
top-ranked features (F8 and F10). According to Fig-
ure 2, although with F8 and F10 the classifier can
achieve higher classification accuracy than with all
features, with F8 and F12 it can obtain better results
than with F8 and F10. This suggests that the com-
bination of the two top-ranked features is redundant
while the combination of a top-ranked feature (F8)
and a low-ranked feature (F12) is a subset of com-
plementary features. Meanwhile, the other 11 (from
the 3th to the 13th) feature subsets evolved by BPSO
are also not the combinations of the top-ranked fea-
tures. These results suggest that the BPSO based
subset ranking algorithm has great potential to avoid
redundant and/or noisy features and reduce the di-
mensionality of the classifier.

6.5 Comparisons Between Proposed Meth-
ods and Benchmark Techniques

The red star and blue dot in Figure 2 show that the
number of features selected by LFS is smaller than
that of GSBS, but the classification accuracy achieved
by LFS is close to or better than that of GSBS in
most cases. This suggests that LFS starting with an
empty feature subset is more likely to obtain some op-
timality of the small feature subsets than backward
selection methods, but does not guarantee finding the
larger feature subsets. GSBS starts with all features
and a feature is removed only when its removal can
improve the classification performance. The redun-
dant features that do not influence the classification
accuracy will not be removed. Therefore, the feature
subset selected by GSBS is usually larger than the
feature subset selected by LFS because of the redun-
dant features.

Comparing the proposed wrapper based single fea-
ture ranking with the two conventional techniques, it

can be observed that using the same number of fea-
tures, LFS and GSBS could achieve higher classifi-
cation accuracy than single feature ranking in most
cases. This suggests that the combination of top-
ranked features could not achieve the best perfor-
mance because it contains redundancy or noise. How-
ever, in most cases, combing a relatively small number
of top-ranked features could obtain higher accuracy
than LFS and GSBS. The reseason might be that the
feature subsets selected by LFS and GSBS still have
redundancy.

Figure 2 shows that BPSO based feature subset
ranking outperforms LFS and GSBS. In seven of the
eight datasets, feature subsets obtained by feature
subset ranking can achieve higher classification accu-
racy than the subsets obtained by LFS and GSBS (in
the eighth one, the Vowel dataset, the results are al-
most the same). This suggests that BPSO could find
subsets of complementary features that could achieve
better classification performance than other combina-
tions of features.

7 Conclusions

The goal of this paper was to investigate a feature
subset ranking approach to feature selection for clas-
sification. This goal was successfully achieved by de-
veloping two new wrapper based algorithms, namely
a single feature ranking algorithm and a BPSO based
feature subset ranking algorithm. The two algorithms
were examined and compared with the corresponding
method using all features, LFS and GSBS on eight
problems of varying difficulty.

The results suggest that both methods can sub-
stantially improve the classification performance over
the same classifier using all features. In almost all
cases, the two proposed approaches could achieve
higher classification accuracy whilst using fewer fea-
tures than LFS and GSBS. The BPSO based feature
subset ranking algorithm outperforms the simple sin-
gle feature ranking algorithm on all the datasets re-
garding the classification performance. The results
also show that on all the eight problems investigated
here, it was always possible to find a subset with a
small number of features that can achieve substan-
tially better performance than using all features.

The proposed BPSO based algorithm has one lim-
itation, that is, the evolutionary training time is rel-
atively long. While this is usually not a problem as
many situations allow offline training (as the test time
is shorter using a subset of features than using all fea-
tures), it might not be suitable for online (real-time)
applications. We will investigate efficient feature sub-
set ranking methods for effectively selecting good fea-
tures in the future.

References

Abeel, T., de Peer, Y. V. & Saeys, Y. (2009), ‘Java-
ML: A Machine Learning Library’, Journal of Ma-

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

35

chine Learning Research 10, 931–934.

Alba, E., Garcia-Nieto, J., Jourdan, L. & Talbi, E.G.
(2007), Gene selection in cancer classification us-
ing PSO/SVM and GA/SVM hybrid algorithms,
in ‘IEEE Congress on Evolutionary Computation’,
pp. 284–290.

Azevedo, G.L.F., Cavalcanti, G.D.C. & Filho, E.C.B.
(2007), An approach to feature selection for
keystroke dynamics systems based on PSO and fea-
ture weighting, in ‘IEEE Congress on Evolutionary
Computation’, pp. 3577–3584.

Caruana, R. & Freitag, D. (1994), Greedy Attribute
Selection, in ‘In Proceedings of International Con-
ference on Machine Learning’, pp. 28–36.

Chakraborty, B. (2008), Feature subset selection by
particle swarm optimization with fuzzy fitness func-
tion, in ‘3rd International Conference on Intelli-
gent System and Knowledge Engineering’, Vol. 1,
pp. 1038–1042.

Chuang, L.Y., Chang, H.W., Tu, C.J.& Yang, C.H.
(2008), ‘Improved binary PSO for feature selection
using gene expression data’, Computational Biology
and Chemistry 32(29), 29–38.

Clerc, M. & Kennedy, J. (2002), The particle swarm
- explosion, stability, and convergence in a multi-
dimensional complex space, in ‘IEEE Congress on
Evolutionary Computation’, Vol. 6, pp. 58–73.

Dash, M. & Liu, H. (1997), ‘Feature selection for clas-
sification’, Intelligent Data Analysis 1, 131–156.

Frank, A. & Asuncion, A. (2010),
UCI Machine Learning Repository,
[http://archive.ics.uci.edu/ml]. Irvine, CA: Uni-
versity of California, School of Information and
Computer Science.

Gutlein, M., Frank, E., Hall, M. & Karwath, A.
(2009), Large-scale attribute selection using wrap-
pers, in ‘IEEE Symposium on Computational In-
telligence and Data Mining’, pp. 332–339.

Guyon, I., Elisseeff, A. & Liu, H. (2003), ‘An in-
troduction to variable and feature selection’, The
Journal of Machine Learning Research 3, 1157–
1182.

Huang, C.J. & Dun, J.F. (2008), ‘A distributed PSO-
SVM hybrid system with feature selection and
parameter optimization’, Applied Soft Computing
8(4), 1381–1391.

Kennedy, J. & Eberhart, R. (1995), Particle swarm
optimization, in ‘IEEE International Conference on
Neural Networks’,Vol. 4, pp. 1942–1948.

Kennedy, J. & Eberhart, R. (1997), A discrete bi-
nary version of the particle swarm algorithm, in
‘IEEE International Conference on Systems, Man,
and Cybernetics’,Vol. 5, pp. 4104–4108.

Kennedy, J. & Spears, W.M. (1998), Matching algo-
rithms to problems: an experimental test of the
particle swarm and some genetic algorithms on the
multimodal problem generator, in ‘IEEE Congress
on Evolutionary Computation’,pp. 78–83.

Kohavi, R. & John, G.H. (1997), ‘Wrappers for
feature subset selection’, Artificial Intelligence
97, 315–333.

Langley, P. (1994), Selection of relevant features in
machine learning, in ‘Proceedings of the AAAI Fall
symposium on relevance’,pp. 127–131.

Liu, Y.N., Wang, G., Chen, H.L., & Dong, H. (2011),
‘An Improved Particle Swarm Optimization for
Feature Selection’, Journal of Bionic Engineering
8(2), 191–200.

Marill, T., & Green, D.M. (1963), ‘On the effec-
tiveness of receptors in recognition systems’, IEEE
Transactions on Information Theory 9(1), 11–17.

Neshatian, K. & Zhang, M.J. (2009), Genetic Pro-
gramming for Feature Subset Ranking in Binary
Classification Problems, in ‘European Conference
on Genetic Programming’, pp. 121–132.

Talbi, E.G., Jourdan, L., Garcia-Nieto, J. & Alba,
E. (2008), Comparison of population based meta-
heuristics for feature selection: Application to mi-
croarray data classification, in ‘ACS/IEEE Interna-
tional Conference on Computer Systems and Appli-
cations’, pp. 45–52.

Unler, A.& Murat, A. (2010), ‘A discrete particle
swarm optimization method for feature selection in
binary classification problems’, European Journal
of Operational Research 206, 528–539.

Van Den Bergh, F. (2002), An analysis of particle
swarm optimizers, Ph.D., University of Pretoria,
South Africa.

Wang, X.Y., Yang, J., Teng, X.L. & Xia, W.J. (2007),
‘Feature selection based on rough sets and particle
swarm optimization’, Pattern Recognition Letters
28(4), 459–471.

Whitney, A.W. (2007), ‘A direct method of nonpara-
metric measurement selection’, IEEE Transactions
on Computers 20(4), 1100–1103.

Witten I.H. & Frank E. (2005), Data Mining: Prac-
tical Machine Learning Tools and Techniques., 2nd
Edition, Morgan Kaufmann, San Francisco.

Yang, C.S., Chuang, L.Y. & Ke, C.H. (2008), Boolean
binary particle swarm optimization for feature se-
lection, in ‘IEEE Congress on Evolutionary Com-
putation’, pp. 2093–2098.

Yang, C.S., Chuang, L.Y. & Li, J.C. (2008), Chaotic
maps in binary particle swarm optimization for fea-
ture selection, in ‘IEEE Conference on Soft Com-
puting in Industrial Applications’, pp. 107–112.

CRPIT Volume 122 - Computer Science 2012

36

On the Existence of High-Impact Refactoring Opportunities in Programs

Jens Dietrich1 Catherine McCartin1 Ewan Tempero2 Syed M. Ali Shah1

1 School of Engineering and Advanced Technology
Massey University, Palmerston North, New Zealand

Email: {j.b.dietrich,c.m.mccartin,m.a.shah}@massey.ac.nz
2 Department of Computer Science

University of Auckland, Auckland, New Zealand
Email: e.tempero@cs.auckland.ac.nz

Abstract

The refactoring of large systems is difficult, with the pos-
sibility of many refactorings having to be done before any
useful benefit is attained. We present a novel approach
to detect starting points for the architectural refactoring of
large and complex systems based on the analysis and ma-
nipulation of the type dependency graph extracted from
programs. The proposed algorithm is based on the simul-
taneous analysis of multiple architectural antipatterns, and
outputs dependencies between artefacts that participate in
large numbers of instances of these antipatterns. If these
dependencies can be removed, they represent high-impact
refactoring opportunities: a small number of changes that
have a major impact on the overall quality of the system,
measured by counting architectural antipattern instances.
The proposed algorithm is validated using an experiment
where we analyse a set of 95 open-source Java programs
for instances of four architectural patterns representing
modularisation problems. We discuss some examples
demonstrating how the computed dependencies can be re-
moved from programs. This research is motivated by the
emergence of technologies such as dependency injection
frameworks and dynamic component models. These tech-
nologies try to improve the maintainability of systems by
removing dependencies between system parts from pro-
gram source code and managing them explicitly in config-
uration files.

1 Introduction

Software systems are subject to change. However, chang-
ing software is risky and expensive. The development of
methodologies and tools to deal with change, and to min-
imise risks and expenses associated with change is one of
the great challenges in software engineering. Refactor-
ing is a successful technique that has been developed in
order to facilitate changes in the code base of programs.
First developed in the late 90s, code refactoring tools have
become commodities for many programmers, and refac-
toring is one of the main supportive technologies for agile
process models such as Scrum and extreme programming.
The first generation of refactoring tools has focused on
the manipulation of source code, using the structure of the
source code (in particular the abstract syntax tree (AST))
as the data structure that is being manipulated. In recent
years, refactoring has been studied in different contexts, in
particular the refactoring of models representing other as-

Copyright c©2012, Australian Computer Society, Inc. This paper ap-
peared at the 35th Australasian Computer Science Conference (ACSC
2012), Melbourne, Australia, January-February 2012. Conferences in
Research and Practice in Information Technology (CRPIT), Vol. 122,
Mark Reynolds and Bruce Thomas, Ed. Reproduction for academic, not-
for-profit purposes permitted provided this text is included.

pects of software systems such as design, architecture and
deployment.

The need to refactor systems on a larger scale arises
from changing business requirements. Examples include
moves from monolithic products to product lines, system
integration, or the need to improve some of the “ilities”
of systems such as maintainability, security or scalability.
While the refactoring of systems at the large scale is dif-
ficult, it is a common belief amongst software engineers
that the pareto principle, also known as the 80-20 rule, ap-
plies: a few targeted actions can have an over-proportional
impact.

The main question we would like to answer is, can the
pareto principle apply at all? If the answer to this ques-
tion is no, even with very generous assumptions, then this
would be a very important result with significant conse-
quences for when refactoring can be profitably used. If the
answer is yes, then, due to our assumptions, that would
not necessarily mean efficient refactoring of large scale
systems would always be possible, but it would at least
provide support for pursuing that goal. Our approach is
to create a mathematical model of the systems we would
like to refactor, and examine whether small changes to the
model will have large impacts on the overall quality of the
design.

As a motivating example, consider the program de-
picted in figure 1. The design of this program can be con-
sidered as a graph, the so-called dependency graph (DG).
The vertices in this graph are types, and the edges are re-
lationships between these types. This particular program
consists of four classes A,B,C and D and three name spaces
package1, package2 and package3. It contains several
antipatterns [6] that represent design problems:

1. A circular dependency between the packages 1,2 and
3, caused by the path A→extends B→uses C→uses A

2. A circular dependency between the packages 2 and
3, caused by the path B→uses C→uses D

3. A subtype knowledge pattern where a type references
its own subtype, caused by the edges A→extends B and
B→uses C→uses A

All three antipattern instances can be removed from
the graph with the removal of the single edge B→uses C.
An algorithm for finding this edge is simple: for each
edge, record the number of occurrences in all instances
of each antipattern, then remove one of the the edges with
the highest score. This method would assign the highest
score of three only to the edge B→uses C. All other edges
participate in only one or two pattern instances.

The edge B→uses C indicates a good starting point for
architectural refactoring: changing the structure of the
system without changing its external behaviour. A refac-
toring that gives rise to a new system that is modelled by
the dependency graph DG\ (B→uses C) would be a high-
impact refactoring in the following sense: this particular

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

37

!"#!$%&

'&!&

'&!& !"#"

()*+),!- ()*+),!.

()*+),!/

0 1 2

3

Figure 1: Simple program DG

refactoring removes significantly more (in this case: all)
antipattern instances from the model, and can therefore
be considered more valuable than alternative refactorings.
Such a refactoring would have the highest impact on the
overall quality of the system, measured by the number of
architectural antipattern instances.

In general, there is no guarantee that such a refactoring
can be achieved. However, the fact that a small change
in the model has a large impact on the overall quality of
the design, in this case, suggests that the pareto principle
could apply here. Our aim is to discover whether or not
the pareto principle applies in general.

One particular class of architectural refactorings we
are interested in is modularisation, and in particular the
refactoring of monolithic Java programs into dynamic
component models such as OSGi [1] and its clones and ex-
tensions. This is a very timely issue, as some of the most
complex systems including the Java Development Kit it-
self [2], and the leading commercial application servers
WebLogic and WebSphere [17], are currently being modu-
larised. In our previous work [8], we assessed the scope of
the problem by investigating a set of antipatterns that hin-
der modularisation using an OSGi-style framework. The
work presented here has grown out of this approach. We
aim to generalise from our previous work to develop a
generic approach for using sets of antipatterns to com-
pute refactoring opportunities. The opportunities identi-
fied correspond to operations which are applied to a model
representing the system. After application, the antipattern
analysis is repeated in order to assess whether or not cer-
tain characteristics of the system have improved. It turns
out that, using this approach, we can compute candidates
for high impact refactorings.

The rest of the paper is organised as follows. In Section
2 we review related work. We continue in Section 3 with
a short introduction to the framework we have developed
for describing antipatterns, and the algorithmic tools used
to detect these antipatterns. In Section 4 we motivate our
choice of a particular set of antipatterns that hinder mod-
ularisation and discuss the algorithm used to detect po-
tential refactoring opportunities. We then describe the or-
ganisation of an experiment used to validate our approach,
where we analyse a large corpus of open-source Java pro-
grams [25] for instances of four antipatterns representing
modularisation problems. An analysis of the results of our
experiment is presented in Section 5. A discussion of open
questions related to our work concludes this contribution.

2 Related Work

2.1 Antipattern and Motif Detection

In our work, we propose to use sets of antipatterns as start-
ing points for architectural refactoring. These patterns can
be viewed as the equivalent of smells [10] that are used
as starting points for code-level refactorings. While early
work on smells and antipatterns has focused on the anal-

ysis of source code, many of these concepts can also be
applied to software architecture [18]. Research into code-
level antipattern and smell detection has resulted in a set of
robust tools that are widely used in the software engineer-
ing community, including PMD [7] based on source code
analysis, and FindBugs [16] based on byte code analysis.
A closely related area is the detection of design patterns
[13]. Several solutions have been proposed to formalise
design patterns in a platform-independent manner. A good
overview is given in [33].

Garcia et al. describe a set of architectural smells [14]
using a format similar to the original Gang of Four pat-
tern language [13]. These smells are somewhat different
from our patterns. The definitions given by the authors in
[14] do not seem to be precise enough for tool-supported
detection.

Our approach is based on the detection of antipatterns
in the dependency graph extracted from a program. The
use of dependency graphs as a basis for program analysis
has been investigated by several authors (e.g. [19, 4]).

Patterns in graphs can be formalised as motifs. Detec-
tion of graph motifs has been widely studied in bioinfor-
matics, and there is a large body of recent work in this
area. The concept has also been proposed in the context
of complex networks (e.g., Milo et al. [21]). The motifs
used in both of these areas are simpler than those that we
propose, in that we do not only consider local sets of ver-
tices directly connected by edges, but also sets of vertices
indirectly connected by paths.

We have investigated in previous work [9] the potential
of the Girvan-Newman clustering algorithm [15] to detect
refactoring opportunities in dependency graphs.

2.2 Refactoring

Architectural refactorings were first discussed by Beck
and Fowler (“big refactorings”) [10], and then discussed
by Roock and Lippert (“large refactorings”) [18]. Their
work defines the framework for our contribution: starting
with the detection of architectural smells by means of an-
tipatterns (for example, cycles) or metrics in architectural
models, systems are modified to improve their characteris-
tics while maintaining their behaviour. Large scale refac-
torings can be broken down (decomposed into smaller
refactorings). Our approach fits well into this framework;
we compute a sequence of base refactorings that can be
performed step by step, using the dependency graph as
the architectural model.

Our work is related to the use of graph transformations
and graph grammars [27], an area that has been applied in
many areas of software engineering such as model trans-
formations. The manipulations of the graphs we are inter-
ested in are simple: we only remove single edges. This
does not justify the use of the full formalism of a graph
grammar calculus. In work by Mens et al. graph trans-
formations are directly used to detect refactorings [20].
There, the focus is on code-level refactoring and the de-
tection and management of dependencies between those
refactorings.

Simon et al. try to formalise the notion of smells
[30]. The authors use metrics for this purpose, while we
use patterns. Tsanatalis and Chatzigeorgiou have identi-
fied opportunities to apply the “move method” refactoring
[36]. Their proposed algorithm is based on the Jaccard
metric between feature sets and preconditions for the re-
spective refactoring. Their aim is to remove only one par-
ticular smell (feature envy) from programs. Seng at al.
use a genetic algorithm to detect code-level refactorings
[29]. Their work is also restricted to the “move method”
refactoring. O’Keeffe and O’Cinneide represent object-
oriented design as a search problem in the space of alter-
native designs [22]. They use several search algorithms to

CRPIT Volume 122 - Computer Science 2012

38

search this space for designs which improve the existing
design with respect to a set of given metrics. The refactor-
ings used to traverse the search space are all inheritance-
related (extract and collapse hierarchies, move feature up
and down the hierarchy) and, therefore, not very expres-
sive.

Bourqun and Keller present a high-impact refactoring
case study [5]. They first define the layered architecture
of the program to be refactored, and then use Sotograph
to detect violations of this architecture. They focus refac-
toring activities on packages associated with those viola-
tions, and validate their approach using violation counts
and code metrics. They present their approach as a case
study using an enterprise Java application developed by
a Swiss telecommunication company. The approach dis-
cussed here can be seen as a generalisation of Bourqun
and Keller’s work [5]: the architecture violations can be
expressed using patterns, and the algorithm to compute
the artefacts to be refactored from the violations can be
recast in our edge-scoring idiom. While our general ap-
proach supports and encourages the use of project-specific
patterns derived from system architecture, we use a set
of general, project-independent patterns for the empirical
study.

3 Methodology

3.1 Motifs

As stated earlier, our approach to detect high-impact refac-
toring opportunities is based on the detection of antipat-
terns in the program dependency graph (DG). In the fol-
lowing paragraphs, we formally define this graph and re-
lated concepts.

A dependency graph DG = (V,E) consists of a set
of vertices, V , representing types (classes, interfaces and
other types used in the programming language), and a set
of directed edges, E, representing relationships between
those types. Both vertices and edges are labelled to pro-
vide further information. Vertices have labels providing
the name, the name space, the container (library), the ab-
stractness (true or false) and the kind (interface, class, enu-
meration or annotation) of the respective type. Edges have
a type label indicating whether the relationship is an ex-
tends, implements or uses relationship.

We formalise architectural antipatterns as network mo-
tifs in the dependency graph. Given a dependency graph,
a motif can be defined as follows:

A motif m = (V R,PR,CV ,CP) consists of four finite
sets: vertex roles (V R) and path roles (PR), vertex con-
straints CV and path constraints CP. If n is the cardinality
of V R, a vertex constraint cV ∈ CV is defined as an n-ary
relation between vertices, cV ⊆ ×i=1..nV . If n is the car-
dinality of PR, a path constraint is cP ∈ CP is defined as
an n-ary relation between sequences of edges (SEQ(E)),
cP ⊆ ×i=1..nSEQ(E). Intuitively, constraints restrict the
sets of possible vertex and path assignments. While ver-
tex constraints are always defined with respect to vertex
labels, there are three different types of path constraints:

1. Source and target constraints restricting, respectively,
the start and end vertices of a path.

2. Cardinality constraints restricting the length of a
path, usually defined using restrictions on the min-
imum and the maximum length of a path.

3. Constraints defined with respect to edge labels.
These constraints have to be satisfied for all edges
within a path.

A binding is a pair of functions 〈instV , instP〉, where
instV : V R→ V and instP : PR→ SEQ(E). A binding as-

sociates vertex roles with vertices and path roles with se-
quences of edges. A motif instance is a binding such that
the constraints are fulfilled, i.e. the following two condi-
tions must be true:

• (instV (vr1), .., instV (vrn))) ∈ cV for all vertex con-
straints cV ∈CV

• (instP(pr1), .., instP(prn))) ∈ cP for all path con-
straints cP ∈CP

3.2 Motif Definition and Detection

The detection of motif instances in non-trivial dependency
graphs is complex. The worst-case time complexity for
the type of motif search that we do is O(nk), where n
and k are the number of vertices in the dependency graph
and the number of roles in the motif, respectively. This
worst-case time complexity is a consequence of the NP-
hardness of the subgraph isomorphism problem, which is
essentially the problem that we must solve each time we
successfully find an instance of a query motif in a depen-
dency graph. Note that the algorithm that we use to de-
tect motif instances returns all possible bindings of vertex
roles, but for each such binding only one selected binding
for path roles. Formally, we consider only classes of in-
stances (instv, instp) modulo (instancep). This means that
two instances are considered as being equal if and only if
they have the same vertex bindings.

To detect motifs in the dependency graph we use the
GUERY1 tool. The tool represents dependency graphs
in memory, and employs an effective solver to instantiate
motifs. The solver used takes full advantage of multi-core
processors, and uses various optimisation techniques. It
is scalable enough to find motifs in large programs with
vertex counts of up to 50000 and edge counts of up to
200000. This kind of scalability is required to analyse
real world programs, such as the runtime library of the
Java Development Kit, consisting of 17253 vertices and
173911 edges.

Listing 1 shows a motif definition. This motif has two
vertex roles V R = { type, supertype} and two path roles
PR = {inherits, uses}. The paths roles have source and
target constraints defined by the from and to attributes
in the connectedby elements, and edge constraints de-
fined in the expressions in line 4. The edge constraints
state that all edges in paths instantiating the inherits
role must be extends or inherits relationships, and
that all edges in paths instantiating the uses role must be
uses relationships. The length of the paths is not con-
strained in this example, but the language would support
this through the minLength and maxLength attributes de-
fined for the connectedBy element. The default values
are 1 for minLength and -1, representing unbound, for
maxLength.

3.3 Edge Scoring

Motif detection in dependency graphs can be used to as-
sess the quality of architecture and design of systems. The
classical example is the detection of circular dependen-
cies between packages, modules and types that has been
widely discussed [32, 24]. In general terms, we aim to
use motifs to formalise antipatterns and smells and thus
facilitate detection of design problems. For a single motif,
the number of separate motif instances in a dependency
graph can be very large. However, edges can simultane-
ously participate in many instances.

This raises the question of whether, for a given set
of motifs representing antipatterns, there are some edges

1http://code.google.com/p/gueryframework/

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

39

1 m o t i f s t k
2 s e l e c t type , s u p e r t y p e
3 c o n n e c t e d by i n h e r i t s (type>s u p e r t y p e) and u s e s (s u p e r t y p e>t y p e)
4 where ” u s e s . t y p e == ’ uses ’ ” and ” i n h e r i t s . t y p e == ’ e x t e n d s ’ | | i n h e r i t s . t y p e == ’ implements ’ ”

Listing 1: The Subtype knowledge motif (STK)

which participate in large numbers of overlapping mo-
tif instances. It also raises the question of whether such
“high-scoring” edges participate in instances arising from
more than one of the motifs in the set. If so, refactorings
of the system resulting in the removal of those edges from
the dependency graph would be an effective way to im-
prove the overall quality of the architecture and design of
the underlying system.

In general, given a dependency graph DG = (V,E), a
motif m = (V R,PR,CV ,CP) and a set of motif instances
I(m) = {(inst i

V , inst i
P)} of m in DG, we define a scoring

function as a function associating edge-instance pairs with
natural numbers, score : E × I(m)→ N. We also require
that a positive score is only assigned if the edge actually
occurs in one of the paths instantiating a path role in the
motif:

∀i : score(e,(inst i
V , inst i

P))> 0⇒∃pr∈PR : e∈ inst i
P(pr).

For a given set of motifs M = {m j} with sets of instances
{I(m j)} of M in DG, the overall score of an edge with
respect to M is defined as the sum of all scores for each
instance of each motif:

scoreM(e) := ∑
m∈M

∑
inst∈I(m)

score(e, inst).

The simplest scoring function is the function that just
scores each occurrence of an edge in a motif instance as 1.
We call this the default scoring function. Given a depen-
dency graph, a set of motifs representing antipatterns and
a scoring function, we can define the following generic al-
gorithm to detect edges in the dependency graph that may
be associated with high impact refactorings of the under-
lying system:

1. Compute all instances for all motifs.

2. Compute the scores for all edges.

3. Sort the edges according to their scores.

4. Remove some edges with the highest scores from the
graph.

5. Recompute all instances for all motifs and compare
this with the initial number to validate the effect of
edge removals.

Note that this algorithm has several variation points
that affect its outcome:

1. The set of motifs used.

2. The scoring function used.

3. If only one edge is to be removed, the selection func-
tion that selects this edge from the set of edges with
the highest scores.

Depending on the decisions made for these variation
points, the effects of edge removal will be different. How-
ever, the existence of these variation points supports the
customisation of this algorithm in order to adapt it to
project-specific settings. For instance, domain-specific
antipatterns and scoring functions can be used to rep-
resent weighted constraints penalising dependencies be-
tween certain classes or packages.

The selection of the edge from the set of edges with
high scores can also take into account the difficulty of per-
forming the actual refactoring on the underlying system
that would result in the removal of this edge from the de-
pendency graph .

4 Case Study: Detecting High-Impact Refactorings
to Improve System Modularity

To demonstrate the use of our generic algorithm, we
present a case study that is based on a particular set of
antipatterns representing barriers to modularisation. The
presence of instances of these antipatterns in dependency
graphs implies that packages (name spaces) are difficult to
separate (poor name space separability), in particular due
to the existence of circular dependencies, and that imple-
mentation types are difficult to separate from specification
types (poor interface separability). Both forms of separa-
bility are needed in modern dynamic component models
such as OSGi, and in this sense the presence of these mo-
tifs represents barriers to modularity. For more details, the
reader is referred to Dietrich et al. [8].

4.1 Motif Set

4.1.1 Overview

We use the following four antipatterns that represent de-
sign problems in general, and barriers to the modularisa-
tion in particular:

1. Abstraction Without Decoupling (AWD)

2. Subtype knowledge (STK)

3. Degenerated inheritance (DEGINH)

4. Cycles between name spaces (CD)

These antipatterns can easily be formalised into graph
motifs. We discuss each of these motifs in the follow-
ing subsection. For a more detailed discussion, the reader
is referred to Dietrich et al. [8]. We use a simple vi-
sual syntax to represent antipatterns. Vertex roles are rep-
resented as boxes. Path roles are represented by arrows
connecting boxes. These connections are labelled with ei-
ther uses (uses relationships) or inherits (extends or imple-
ments relationships). They are also labelled with a num-
ber range describing the minimum and maximum length
of paths, with “M” representing unbound (“many”). If ver-
tex roles have property constraints, these constraints are
written within the box in guillemets.

4.1.2 Abstraction Without Decoupling (AWD)

The Abstraction Without Decoupling (AWD) pattern des-
cribes a situation where a client uses a service represented
as an abstract type, and also a concrete implementation of
this service, represented as a non-abstract type extending
or implementing the abstract type. This makes it hard to
replace the service implementation and to dynamically re-
configure or upgrade systems. To do this, the client code
must be updated. The client couples service description
and service implementation together.

Techniques such as dependency injection [12] could be
used to break instances of this pattern. Fowler discusses

CRPIT Volume 122 - Computer Science 2012

40

how patterns can be used to avoid AWD [11]. This in-
cludes the use of the Separated Interface and the Plugin
design patterns. The visual representation of this pattern
is shown in figure 2.

Figure 2: AWD

4.1.3 Subtype Knowledge (STK)

In this antipattern [26], types have uses relationships to
their subtypes. The presence of STK instances compro-
mises separability of sub- and supertypes. In particular, it
implies that there are circular dependencies between the
name spaces containing sub- and supertype. Instability in
the (generally less abstract) subtype will cause instability
in the supertype, and the supertype cannot be used and un-
derstood without its subtype. The visual representation of
this pattern is shown in figure 3, the definition is given in
listing 1.

Figure 3: STK

4.1.4 Degenerated Inheritance (DEGINH)

Degenerated inheritance [28, 31], also known as diamond,
repeated or fork-join inheritance, means that there are
multiple inheritance paths connecting subtypes with su-
pertypes. For languages with single inheritance between
classes such as Java, this is caused by multiple interface
inheritance. The presence of instances of DEGINH makes
it particularly difficult to separate sub- and superclasses.

The visual representation of this pattern is shown in
figure 4.

Figure 4: DEGINH

4.1.5 Cycles between Name Spaces (CD)

Dependency cycles between name spaces (CD) is a special
instance of cycles between modules [32]. This antipattern
implies that the participating name spaces cannot be de-
ployed and maintained separately. In particular, if these
name spaces were deployed in several runtime modules
(jars), this would create a circular dependency between

Figure 5: CD

those jars. This antipattern is stronger than the usual cir-
cular dependency between name spaces A and B which
requires that there be two paths, one connecting A to B
and the other connecting B to A. CD requires the exis-
tence of one path from A, through B, back into A. The
weaker form of circular dependency can sometimes be re-
moved by simply splitting the names spaces involved. CD
is more difficult to remove as the path must be broken
through refactoring.

The visual representation of this pattern is shown in
figure 5. Note that the cardinality constraint for the
path connecting outside1 and outside2 is [0,M]. This
means that the path can have a length of 0. In this case,
the antipattern instance has a triangular shape and the two
outside roles are instantiated by the same vertex.

4.2 Scoring Functions

In this experiment, we have used the default scoring func-
tion that increases the score by one for each edge encoun-
tered in any path instantiating any path role in each in-
stance for each of the four motifs.

4.3 Data Set

For the validation of our approach we have used the Qual-
itas Corpus, version 20090202 [34]. For many programs,
the corpus contains multiple versions of the same pro-
gram, sometimes with only minor differences between
those versions. We have therefore decided to keep only
one version of each program in the data set. We de-
cided to use the latest version available. There are
two programs in this set that do not have instances for
any antipattern in the set used: exoportal-v1.0.2.jar
and jmeter-2.3.jar. We have removed those two
programs from the data set. We have also removed
eclipse SDK-3.3.2-win32 and jext-5.0 — these pro-
grams already use a plugin-based modularisation model
(e.g., through the Eclipse extension registry and the
Equinox OSGi container) and therefore many of the an-
tipatterns we are interested in will not be present. Fi-
nally, we have removed the Java Runtime Environment
(JRE, jre- 1.5.0 14-linux-i586) — it turns out that
our tools are not yet scalable enough to do a full analysis
due to the size to the JRE. However, we have done a par-
tial analysis of the JRE, the results are discussed below.
This has given us the final set of the 95 programs.

The dependency graphs extracted from the programs
in the corpus differ widely in size. The largest graph,
extracted from azureus-3.1.1.0, has 6444 vertices
and 35392 edges. The smallest graph, extracted from
ivatagroupware-0.11.3, has 17 vertices and 22 edges.
The average number of vertices in graphs extracted from
corpus programs is 660, the average number of edges
3409.

4.4 Graph Preparation

The dependency graphs can be extracted from different
sources, such as byte code and source code of programs

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

41

written in different programming languages. We have
used the dependency finder library [35] to extract depen-
dency graphs from Java byte code. Dependency graphs
built from byte code are slightly different from graphs
built from source code. For instance, relationships defined
by the use of generic types are missing due to erasure by
the Java compiler2. We do not see this as a problem as
the focus of our investigation is to find refactoring oppor-
tunities to improve the runtime characteristics of deployed
systems.

Graphs are represented as instances of the JUNG [23]
type edu.uci.ics.jung.graph.DirectedGraph. This
has caused some issues related to the repeatability of re-
sults. The GUERY solver we have used to detect motif
instances returns all possible bindings of vertex roles, but
for each such binding, only one selected binding for path
roles. It is possible to override this behaviour and com-
pute all possible path role assignments as well. However,
we have found that this is only feasible for very small mo-
tifs or graphs and that the combinatorial explosion in the
number of possible paths makes a scalable implementa-
tion impossible for graphs of a realistic size. Formally,
we consider only classes of instances (instv, instp) modulo
(instancep), i.e., two instances are considered equivalent
if they have the same vertex bindings.

The problem arising from this is that, when the compu-
tation is repeated, in some cases different path role bind-
ings are computed for the same binding of vertex roles,
since the query engine traverses outgoing/incoming paths
in a different order. This is caused by the internal index-
ing of incoming/outgoing edges in the JUNG API that uses
hashing. For this reason, we have modified the JUNG API
and to represent outgoing and incoming edges as lists with
predictable order. We have also added a method to set a
comparator to sort incoming/outgoing edges for all ver-
tices in the graph. In the experiment presented here we
have used a comparator that sorts edges according to their
betweenness score [15]. If the betweenness value is the
same for two edges, they are sorted by the fully qualified
names of source and target vertices. The objective of us-
ing this particular comparator function is to make it more
likely that edges that are more active in the overall topol-
ogy of the graph will be bound to path roles and thereby
gain an increase in score. Thus, this idea should promote
the identification of edges with high global impact.

5 Results

5.1 Impact of Edge Removal

Figure 6 shows the decline of numbers of antipattern in-
stances after removing the edges with the highest score.
Data were obtained using the simple scoring function
score1.

The number of instances is scaled to 100%. Initially,
all programs have 100% of their antipattern instances. The
values on the x-axis represent the number of edge removal
iterations performed. In each iteration, one edge with the
highest score is removed, and then the antipattern counts
and the edge scores are recomputed. If there is more than
one edge with the same highest score, these edges are
sorted according to the fully qualified names of source and
target vertices, and the first edge is removed. The main
reason for using this selection function is to make the ex-
periment repeatable, and to remove only one edge at a time
in order to observe the effects of single edge removals cor-
responding to atomic architectural refactorings.

The chart is a boxplot. The dots in the middle rep-
resent the medians in the distribution, and the bold bars

2Generic type information is only stored using the signature attribute in Java
byte code, this information can be used for reflection, but is not used by the Java
runtime when loading, linking and initialising classes and objects.

15	

28	
 51	

1	

1	
 pa(ern	

2	
 pa(erns	

3	
 pa(erns	

4	
 pa(erns	

Figure 7: Number of antipatterns instantiated by edge with
highest score

0	

10	

20	

30	

40	

50	

60	

70	

80	

AWD	
 CD	
 DEGINH	
 STK	

Figure 8: Number of programs with highest scored edge
instantiating a given antipattern

around the median represent areas containing 50% of the
population.

It is remarkable that the median falls below 50% af-
ter only 8 iterations. This means that for half of the pro-
grams from the data set, only 8 or fewer edge removals
are necessary to remove half of the pattern instances from
the model. This suggests that applying refactorings cor-
responding to these edge removals to the actual programs
would have a similarly dramatic effect. The argument is
purely statistical: this method works well for most, but not
all, programs — the chart shows several outliers.

5.2 Pattern Distribution

The question arises whether high scores are caused by sin-
gle antipatterns, or whether there is an “overlay effect”
— edges have high scores because they participate in in-
stances of more than one antipattern. Analysis shows that
the latter is the case. For the 95 programs analysed, there
are only 15 programs for which the edge with the highest
score only participates in instances of a single antipattern.
For the majority of programs (51/95), this edge partici-
pates in instances of three different antipatterns (figure 7).

Figure 8 shows participation by pattern. For all four
patterns we find a significant number of programs where
the highest scored edge participates in instances of the re-
spective pattern. This is an indication that we picked a
favourable set of patterns in the sense that the combina-
tion of these patterns yields synergy effects when detect-
ing edges corresponding to possible high impact refactor-
ings.

The next question we have investigated is whether the
simultaneous analysis of multiple patterns yields better re-
sults than using one pattern at a time. To answer this ques-
tion we have created a scoring function for each single pat-
tern. This scoring function increases the score of an edge
by one whenever the edge participates in an instance of the
respective pattern, and by zero otherwise. That means that

CRPIT Volume 122 - Computer Science 2012

42

iterations

pe
rc
en
ta
ge
 o
f p
at
te
rn
 in
st
an
ce
s
re
m
ai
ni
ng

Figure 6: Number of antipattern instances by number of refactorings performed !"#$%&'

$()*+,

- ,- .- /- 0- 1- 2- 3- 4- 5- ,--

-

.-

0-

2-

4-

,--

,.-

%678!787'9:;<8=>? %67 !7 7'9:;< =>?

@A*B(A@CDE

F
*
BG
*
D
A(
)
*
+C
H+
F
(
AA
*
BD
+@
D
E
A(
D
G
*
E
+B
*
I
(
@D
@D
)

Figure 9: Comparison of antipattern instance removal using analysis based on single and combined antipatterns

only this one pattern is used to compute the edge to be
removed. We have then measured how the total number
of pattern instances found for all patterns drops. Figure
9 shows the results for the first 50 iterations — the val-
ues are the means of pattern instances remaining after the
respective number of edge removals. This figure shows
that by using the combined strategy (the data series with
the label “AWD,CD,DEGINH,STK”) better results can be
obtained. The curves representing the single pattern scor-
ing strategies flatten out — indicating that all instances of
the respective patterns are eventually removed, but that a
significant number of instances of other patterns remain.

5.3 Dependency on Program Size

The question arises of whether the trend depends on pro-
gram size. To address this issue, we have divided the set
of programs into two new sets, consisting of relatively
small and relatively large programs. The difference be-
tween the larger and smaller halves of the programs is rel-
atively small (to remove 50% of the initial number of an-
tipatterns, the mean of edges to be removed is 8 for larger
programs and 6 for smaller programs). That indicates that
our approach may be particularly useful to guide the refac-
toring of larger programs: the effort (to apply refactorings
corresponding to the removal of edges in the dependency
graph) only increases slowly with program size.

This is surprising, since the number of antipattern in-
stances increases significantly with program size. The av-

erage number of instances in the smaller (larger) half is
335 (15423) for AWD, 2748 (140254) for CD, 153 (1605)
for DEGINH and 27 (356) for STK, respectively. The
large numbers for some antipatterns are caused by the
combinatorial explosion of the number of paths defined
by references (edges in the dependency graph). It turns out
that many of these antipattern instances can be considered
as variations of a much smaller number of “significant”
instances [8].

Figure 10 shows the number of iterations that are nec-
essary to remove 50% of antipattern instances, depending
on program size measured by the number of vertices in the
dependency graph. This chart shows that, for most pro-
grams, only few edge removals are necessary to achieve
the goal. However, there are a few programs that require a
very large number of edge removals.

One of these programs is the spring framework, a well
known dependency injection container. Here, the fact that
there are no high-impact refactorings can be seen as an in-
dicator of good design — those refactoring opportunities
have already been detected and the respective refactorings
have been performed by moving dependencies into con-
figuration files. Those dependencies are not part of the
dependency graph.

5.4 Scalability

We have found that for average size programs our im-
plementation of the algorithm scales very well. Anal-

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

43

!"#$%"&'$(&)*+,

-*."&/

0 /000 1000 2000 3000 4000 5000 6000

0

10

30

50

70

/00

/10

/30

89&%"!'":&;$<='&>&=<#?"!&$,&'@("A&B=&(!$.!*#

C
<
#
?
"
!&
$
,&
!"
,*
;
'$
!B
=
.
A
&=
"
;
"
A
A
*
!@
&'
$

!"
#
$
%
"
&4
0
D
&$
,&
(
*
''
"
!=
&B
=
A
'*
=
;
"
A

E<!"<A>2F/F/F0FG!

H!G*%*>100407/3FG*!
G!",*;'$!@>1FIF/IFG*!

A(!B=.,!*#"J$!K>/F1F6FG*!

G;)"#(*B='>1F0F/1FG*!

!AA$J+>/F1FG*!

Figure 10: Number of refactorings necessary to remove
50% of antipattern instances

program vertices edges iter. 1 iter. 10 iter. 100
azureus-3.1.1.0 6444 35392 717718 275599 73288
jruby-1.0.1.jar 2093 11016 90713 89101 31226
derby-10.1.1.0 1198 11174 27882 8468 3898
xerces-2.8.0.jar 878 4782 3448 1533 738
ant-1.70 752 3326 6553 1838 659
lucene-1.4.3.jar 231 930 479 456 430
junit-4.5.jar 188 648 439 432 426

Table 1: Performance Data (times in ms)

ysis typically finishes within a few seconds or minutes.
We have used a MacBook Pro with a 2.8 GHz Intel
Core 2 Duo with 4GHz of memory. We have used the
Java(TM) SE Runtime Environment (JRE build 1.6.0 17-
b04-248-10M3025) with the Java HotSpot(TM) 64-Bit
Server VM, and a multithreaded solver running on two
threads for analysis. For the largest programs in the data
set, azureus-3.1.1.0, the time needed to finish the ini-
tial iteration was about 12min (717718ms). Table 1 shows
performance data for some selected, widely-used pro-
grams. The time to run an iteration decreases significantly
as more edges are removed, in particular for larger pro-
grams. As more and more edges are removed, the depen-
dency graph becomes more and more disconnected and
the solver has to iterate over fewer sets of paths.

We have also tried to analyse the JRE itself, consist-
ing of the three libraries rt.jar, jce.jar and jsse.jar.
The dependency graph extracted from these libraries is
large, consisting of 17253 vertices and 173911 edges. The
algorithm can still be applied, but computing the first it-
eration alone took approximately 4.5 hours. Note that the
solver algorithm takes full advantage of multi-core proces-
sors and can be easily distributed on grids. We therefore
think that it is still possible to use our approach for excep-
tionally large programs by utilising distributed computing
environments such as Amazon’s EC2.

5.5 Classifying Edge Removals

An edge in the dependency graph represents a dependency
from a source type to a target type in the program. Depen-
dencies arise in a number of ways from the source code.
The edge removal we have performed corresponds to an
actual refactoring that has to be applied to the original
program. We expect that a template based approach can
be used for this purpose, based on the kind of dependency.
For this purpose, we have classified the edges according
to the source code pattern detected that has caused this
dependency.

We classify the edges into eight categories as follows:

1. Variable Declaration (VD): The target type is used

Figure 11: Dependency classification results

to declare a field or a temporary variable.

2. Constructor Invocation (CI): A target type con-
structor is invoked with the keyword new.

3. Static Member Invocation (SMI): Invocation of a
static member (method or field) of the target type.

4. Method Return Type (MR): The target type is used
as a method return type.

5. Method Parameter Type (MP): The target type is
used as a parameter type in the method signature.

6. Method Exception Type (ME): The target type is
used as an exception type with throws keyword.

7. Superclass (SC): The target type is used as a super-
type by using extends keyword.

8. Interface (IN): The target type is used as an interface
by using the implements keyword.

We have analyzed a high-scoring subset of the re-
moved edges in order to classify them according to the
dependencies giving rise to those edges. The edges in the
dependency graph contain one of the three different labels
i.e. uses, extends and implements. A uses edge can
be involved in multiple dependency categories. This is be-
cause a source type can use the target type in a number of
above-mentioned ways.

Figure 11 shows the distribution of the percentage of
non-zero values in every dependency category. We anal-
ysed all 95 programs and in every program the first 30 re-
moved edges, with a few exceptions where the total num-
ber of edges removed was less than 30. We scaled the
non-zero values of every category to 100% with respect
to the number of edges analysed. For example, if, in the
top 30 relationships (edges) SMI is encountered 15 times,
then, for the given program the usage of SMI would be
50%. We can see from figure 11 that most of the depen-
dencies are caused by inheritance relationships, while the
lowest number of dependencies comes from the method
exception types.

In order to see how often we have multiple refer-
ence types, we calculated the participation of the first re-
moved edge for every program in different dependency
categories. We found that 41% of the programs have edges

CRPIT Volume 122 - Computer Science 2012

44

that participate in multiple dependency categories. This
suggests that refactoring of these programs will be more
challenging.

5.6 Implementing Edge Removals

The algorithm presented here operates only on models (the
dependency graphs), not programs. The refactorings rec-
ommended by the algorithm are operations to remove arte-
facts from the model rather than from the program itself.
The question arises as to how these refactorings can be im-
plemented so that the actual program can be transformed.

In general, implementing refactorings of the program
corresponding to edge removals in the dependency graph
is a difficult problem as it requires a very detailed under-
standing of the design of the respective program. There
are situations when nobody has this understanding, for in-
stance if projects evolve, many people are involved, par-
ticipants change, and design is neither documented nor
planned. However, there are some edge removals that
can easily be interpreted. The first edge tagged for re-
moval from the Java Runtime Environment (OpenJDK
version 1.6.0 b 14 for Windows) is the reference from
java.lang.Object to java.lang.Class. This is caused
by the fact that all classes reference Object and Class
has outgoing edges as well. It is probably very difficult
and not necessarily desirable to refactor the JRE in or-
der to get rid of this particular edge. However, the sec-
ond and third targeted edges are references from AWT
to Swing: java.awt.Component uses javax.swing.-
JComponent and java.awt.Container uses javax.-
swing.JInternalFrame. These references point to a real
problem. While it is understandable that Swing references
the older AWT toolkit, it is hard to see why AWT has
to reference the newer Swing toolkit. This makes it im-
possible to deploy AWT applications without the more
resource-demanding Swing. There are several use cases
for this: AWT uses the more efficient platform widget
toolkits, and AWT applets are at least partially compati-
ble with Microsoft Internet Explorer.

It is interesting to see that those two references are not
present in the alternative Apache Harmony [3] implemen-
tation of the Java development kit (version 6.0, r917296-
snapshot). This implies that it is really possible to “break”
the respective edges in the model without compromising
the behavioural integrity of the respective system. In this
case, a comprehensive set of test suites is used to ensure
compatibility between Apache Harmony and the Open-
JDK, which is the reference implementation of the Java
Development kit.

Another interesting example is azureus-3.1.1.0, the
largest program in the data set. It has a large initial number
of pattern instances in the model (846147) that suddenly
drops to 271166 (32.05% of the initial count) after only 5
edge removals. The first five edges removed are:

The first edge is a reference from the plu-
gin manager interface org.gudy.azureus2.plugins.-
PluginManager that orchestrates the application to its
concrete subclass org.gudy.azureus2.pluginsimpl.-
local.PluginManagerImpl. There are five references in
the compilation unit, all sharing the same structure: static
method calls are delegated to the implementation class.
These dependencies can be easily removed through the use
of a service registry: the plugin manager can obtain the
name of the implementation class from the registry, load
this class and invoke the respective method using reflec-
tion. The next four edges are similar, and can be removed
using the same strategy.

We believe that it may not be possible to auto-
mate, or even always implement, the refactorings rec-
ommended by the proposed algorithm. Actual refactor-
ing is about manipulating program source code or mod-

els close to source code (such as abstract syntax trees),
and is therefore programming language dependent. How-
ever, we can observe certain patterns causing depen-
dencies between classes which occur in all mainstream
programming languages. These are the categories dis-
cussed in section 5.5. For some of these categories,
there are common refactoring techniques that can be ap-
plied. These include the use of design patterns and dy-
namic programming techniques that have been developed
to avoid or reduce dependencies, such as factories, prox-
ies, service registries and dependency injection contain-
ers. These techniques are particularly useful to remove
dependencies between client classes and service imple-
mentation classes. Examples include general-purpose
frameworks such as the Spring framework, Guice, the
java.util.ServiceLoader class, OSGi and its exten-
sions such as declarative services and the Eclipse exten-
sion registry, and specialist solutions such as the JDBC
driver manager and the JAXP Document Builder Factory.

Often, referenced types can be replaced by their super-
types if those supertypes define the part of the interface
of the type that is being referenced by the client. This
is possible in all modern mainstream programming lan-
guages that use dynamic method lookup. For instance, if a
(Java) method references a method with a parameter type
java.util.ArrayList, the parameter type can usually
safely be replaced by java.util.List.

There are limitations to this approach that make it un-
likely that this can be completely automated. In particu-
lar, the use of dynamic programming techniques such as
reflection makes it sometimes difficult to predict the be-
havioural changes caused by these transformations. This
implies that firstly, refactoring activities must be safe-
guarded by verification techniques, such as post refactor-
ing testing; and secondly, that it is an empirical question to
find out to what extent these refactorings can be automated
in real world systems.

A comprehensive study to determine to what extent
refactorings corresponding to our edge removal operations
can be automated is subject to further research.

6 Conclusion

We have presented an algorithm that can be used to detect
potential high-impact refactorings based on the participa-
tion of references in sets of antipatterns that are seen as
design flaws. We have validated our approach by using
a set of four antipatterns that are known to compromise
modularisation of programs, applied to a set of 95 pro-
grams. The main result presented in this paper is that,
in most cases, the algorithm will be able to detect high-
impact refactoring opportunities.

We have demonstrated that the respective refactorings
can be applied without changing the program behaviour,
for some examples, using the largest and most complex
programs in our data set. We did not discuss an ac-
tual algorithm to automatically perform refactorings cor-
responding to edge removal. This question has to be ex-
plored in future investigations. We believe that the classifi-
cation of dependency types in section 5.5 is a good starting
point for such a study. We have realistic expectations here
— while we expect that in many cases the refactorings
are easy to describe and can be automated (for instance,
by introducing dependency injection or replacing concrete
type references by references to interfaces), this will not
always be the case. The research challenge is to define
refactorings that can be automated in restricted situations
where certain prerequisites are fulfilled, and then to find
the weakest prerequisites. The difficulty of performing
dependency-breaking refactorings represents a cost that
could be taken into account when defining the scoring
functions used in our approach.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

45

Investigating alternative combinations of antipattern
sets and scoring functions is an interesting and promising
field. There is no evidence that the combination we have
used is optimal. Unfortunately, the validation for each set
of parameters against the corpus is computationally ex-
pensive and takes several hours to complete, this makes a
trial and error approach difficult.

There are several interesting theoretical aspects related
to this work that can be explored further. For instance,
how does the pattern density found in the dependency
graphs of typical Java programs compare to that for ran-
domised graphs? For the simpler notion of motifs used
in bio-informatics, a study of this kind has been done by
Milo et al. to detect the Z-score [21].

References

[1] OSGiTM— the dynamic module system for Java.
http://www.osgi.org/.

[2] Project jigsaw. http://openjdk.java.net/projects/jigsaw/.

[3] Apache Harmony, 2010. http://harmony.apache.org/.

[4] D. Beyer, A. Noack, and C. Lewerentz. Efficient
relational calculation for software analysis. IEEE
Transactions on Software Engineering, 31(2):137–
149, 2005.

[5] F. Bourqun and R. K. Keller. High-impact refactor-
ing based on architecture violations. In Proceedings
CSMR ’07.

[6] W. J. Brown, R. C. Malveau, and T. J. Mowbray. An-
tiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. Wiley, March 1998.

[7] T. Copeland. PMD Applied. Centennial Books,
2005.

[8] J. Dietrich, C. McCartin, E. Temero, and S. M. A.
Shah. Barriers to Modularity — An empirical study
to assess the potential for modularisation of Java pro-
grams. In Proceedings QoSA’10, 2010.

[9] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson,
and M. Duchrow. Cluster analysis of Java depen-
dency graphs. In Proceedings SoftVis’08, pages 91–
94, 2008.

[10] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, USA,
1999.

[11] M. Fowler. Patterns of Enterprise Application Archi-
tecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[12] M. Fowler. Inversion of control containers
and the dependency injection pattern, 2004.
http://martinfowler.com/articles/injection.html.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: elements of reusable object-
oriented software. Addison-Wesley, Boston, MA,
USA, 1995.

[14] J. Garcia, D. Popescu, G. Edwards, and N. Medvi-
dovic. Identifying architectural bad smells. In Pro-
ceedings CSMR’09, pages 255–258, Los Alamitos,
CA, USA, 2009. IEEE Computer Society.

[15] M. Girvan and M. E. Newman. Community structure
in social and biological networks. Proc Natl Acad Sci
U S A, 99(12):7821–7826, June 2002.

[16] D. Hovemeyer and W. Pugh. Finding bugs is easy.
In Proceedings OOPSLA ’04, pages 132–136, New
York, NY, USA, 2004. ACM.

[17] C. Humble. IBM, BEA and JBoss adopting OSGi.
http://www.infoq.com/news/2008/02/osgi jee.

[18] M. Lippert and S. Roock. Refactoring in Large Soft-
ware Projects: Performing Complex Restructurings
Successfully. Wiley, 2006.

[19] R. Martin. OO Design Quality Metrics: An Analysis
of Dependencies.
http://www.objectmentor.com/resources/
articles/oodmetrc.pdf, May 1994.

[20] T. Mens, G. Taentzer, and O. Runge. Analysing
refactoring dependencies using graph transforma-
tion. Software and Systems Modeling, 6(3):269–285,
September 2007.

[21] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: Sim-
ple building blocks of complex networks. Science,
298(5594):824–827, October 2002.

[22] M. O’Keeffe and M. O’Cinneide. Search-based soft-
ware maintenance. In CSMR ’06: Proceedings of the
Conference on Software Maintenance and Reengi-
neering, pages 249–260, Washington, DC, USA,
2006. IEEE Computer Society.

[23] J. O’Madadhain, D. Fisher, S. White, and Y.-B.
Boey. The JUNG (Java universal network/graph)
framework. Technical Report UCI-ICS 03-17, Uni-
versity of California, Irvine, 2003.

[24] D. L. Parnas. Designing software for ease of ex-
tension and contraction. In Proceedings ICSE ’78,
pages 264–277, Piscataway, NJ, USA, 1978. IEEE
Press.

[25] Qualitas Research Group. Qualitas corpus version
version 20090202, 2009.

[26] A. J. Riel. Object-Oriented Design Heuristics.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996.

[27] G. Rozenberg, editor. Handbook of graph grammars
and computing by graph transformation: volume I.
foundations. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1997.

[28] M. Sakkinen. Disciplined inheritance. In Proceed-
ings ECOOP’89, pages 39–56, 1989.

[29] O. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class
structure of object-oriented systems. In GECCO
’06: Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 1909–
1916, New York, NY, USA, 2006. ACM.

[30] F. Simon, F. Steinbrueckner, and C. Lewerentz. Met-
rics based refactoring. In Proceedings CSMR’01,
page 30. IEEE Computer Society, 2001.

[31] G. B. Singh. Single versus multiple inheritance
in object oriented programming. SIGPLAN OOPS
Mess., 5(1):34–43, 1994.

[32] W. Stevens, G. Myers, and L. Constantine. Struc-
tured design. pages 205–232, 1979.

[33] T. Taibi, editor. Design Patterns Formalization Tech-
niques. Idea Group Inc., Hershey, USA, 2007.

CRPIT Volume 122 - Computer Science 2012

46

[34] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li,
M. Lumpe, H. Melton, and J. Noble. Qualitas cor-
pus: A curated collection of java code for empirical
studies. In 2010 Asia Pacific Software Engineering
Conference (APSEC2010), Dec. 2010.

[35] J. Tessier. Dependency finder.
http://depfind.sourceforge.net/.

[36] N. Tsantalis and A. Chatzigeorgiou. Identi-
fication of move method refactoring opportuni-
ties. IEEE Transactions on Software Engineering,
99(RapidPosts):347–367, 2009.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

47

CRPIT Volume 122 - Computer Science 2012

48

Declarative Diagnosis of Floundering in Prolog

Lee Naish

Department of Computing and Information Systems

The University of Melbourne, Victoria 3010, Australia

lee@cs.mu.oz.au

Abstract

Many logic programming languages have delay primi-
tives which allow coroutining. This introduces a class
of bug symptoms — computations can flounder when
they are intended to succeed or finitely fail. For con-
current logic programs this is normally called dead-
lock. Similarly, constraint logic programs can fail to
invoke certain constraint solvers because variables are
insufficiently instantiated or constrained. Diagnos-
ing such faults has received relatively little attention
to date. Since delay primitives affect the procedural
but not the declarative view of programs, it may be
expected that debugging would have to consider the
often complex details of interleaved execution. How-
ever, recent work on semantics has suggested an al-
ternative approach. In this paper we show how the
declarative debugging paradigm can be used to diag-
nose unexpected floundering, insulating the user from
the complexities of the execution.
Keywords: logic programming, coroutining, delay, de-
bugging, floundering, deadlock, constraints

1 Introduction

The first Prolog systems used a strict left to right eval-
uation strategy, or computation rule. However, since
the first few years of logic programming there have
been systems which support coroutining between dif-
ferent sub-goals (Clark & McCabe 1979). Although
the default order is normally left to right, individ-
ual calls can delay if certain arguments are insuf-
ficiently instantiated, and later resume, after other
parts of the computation have further instantiated
them. Such facilities are now widely supported in
Prolog systems. They also gave rise to the class
of concurrent logic programming languages, such as
Parlog (Gregory 1987), where the default evaluation
strategy is parallel execution and similar delay mecha-
nisms are used for synchronisation and prevention of
unwanted nondeterminism. Delay mechanisms have
also been influential for the development of constraint
logic programming (Jaffar & Lassez 1987). Delays
are often used when constraints are “too hard” to be
handled by efficient constraint solvers, for example,
non-linear constraints over real numbers.

Of course, more features means more classes of
bugs. In theory, delays don’t affect soundness of Pro-
log1 (see (Lloyd 1984)) — they can be seen as affect-

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at 35th Australasian Computer Science Confer-
ence (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology, Vol. 122. Mark Reynolds and Bruce Thomas, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

1In practice, floundering within negation can cause unsound-
ness.

ing the “control” of the program without affecting the
logic (Kowalski 1979). However, they do introduce a
new class of bug symptoms. A call can delay and
never be resumed (because it is never sufficiently in-
stantiated); the computation is said to flounder. Most
Prolog systems with delays still print variable bind-
ings for floundered derivations in the same way as suc-
cessful derivations (in this paper we refer to these as
“floundered answers”), and may also print some indi-
cation that the computation floundered. Floundered
answers are not necessarily valid, or even satisfiable,
according to the declarative reading of the program,
and generally indicate the presence of a bug. In con-
current logic programs the equivalent of floundering is
normally called deadlock — the computation termi-
nates with no “process” (call) sufficiently instantiated
to proceed. In constraint logic programming systems,
the analogue is a computation which terminates with
some insufficiently instantiated constraints not solved
(or even checked for satisfiability). Alternatively, if
some constraints are insufficiently instantiated they
may end up being solved by less efficient means than
expected, such as exhaustive search over all possible
instances.

There is a clear need for tools and techniques
to help diagnose floundering in Prolog (and analo-
gous bug symptoms in other logic programming lan-
guages), yet there has been very little research in
this area to date. There has been some work on
showing floundering is impossible using syntactic re-
strictions on goals and programs (particularly logic
databases), or static analysis methods (for exam-
ple, (Marriott, Søndergaard & Dart 1990)(Marriott,
Garćıa de la Banda & Hermenegildo 1994)). How-
ever, this is a far cry from general purpose methods
for diagnosing floundering. In this paper we present
such a method. Furthermore, it is a surprisingly at-
tractive method, being based on the declarative de-
bugging paradigm (Shapiro 1983) which is able to
hide many of the procedural details of a computa-
tion. Declarative debugging has been widely used for
diagnosing wrong answers in programming languages
based on (some combination of) the logic, functional
and constraint paradigms (Pope & Naish 2003, Ca-
ballero, Rodŕıguez-Artalejo & del Vado Vı́rseda 2006)
and there has been some work on diagnosing missing
answers (Naish 1992) (which mentions some prob-
lems caused by coroutining) (Caballero, Rodŕıguez-
Artalejo & del Vado Vı́rseda 2007), pattern match
failure (Naish & Barbour 1995) and some other bug
symptoms (Naish 1997). However, floundering is not
among the symptoms previously diagnosed using this
approach.

The paper is structured as follows. We first give
some examples of how various classes of bugs can lead
to floundering. We then present our method of diag-
nosing floundering, give examples, and discuss how
our simple prototype could be improved. Next we

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

49

% perm(As0, As): As = permutation of
% list As0
% As0 or As should be input
perm([], []).
perm([A0|As0], [A|As]) :-

when((nonvar(As1) ; nonvar(As)),
inserted(A0, As1, [A|As])),

when((nonvar(As0) ; nonvar(As1)),
perm(As0, As1)).

% inserted(A, As0, As): As = list As0
% with element A inserted
% As0 or As should be input
inserted(A, As0, [A|As0]).
inserted(A, [A1|As0], [A1|As]) :-

when((nonvar(As0) ; nonvar(As)),
inserted(A, As0, As)).

Figure 1: A reversible permutation program

% Bug 1: wrong variable AS0 in recursive
% call
inserted(A, As0, [A|As0]).
inserted(A, [A1|As0], [A1|As]) :-

when((nonvar(As0) ; nonvar(As)),
inserted(A, AS0, As)). % XXX

% Bug 2: wrong variable A in when/2
inserted(A, As0, [A|As0]).
inserted(A, [A1|As0], [A1|As]) :-

when((nonvar(As0) ; nonvar(A)), % XXX
inserted(A, As0, As)).

% "Bug" 3: assumes As0 is input XXX
% (perm/2 intended modes incompatible)
inserted(A, As0, [A|As0]).
inserted(A, [A1|As0], [A1|As]) :-

when(nonvar(As0), % XXX
inserted(A, As0, As)).

Figure 2: Buggy versions of inserted/3

briefly consider some more theoretical aspects, then
conclude. Basic familiarity of Prolog with delays and
declarative debugging is assumed.

2 Example

Figure 1 gives a permutation program which has sim-
ple logic but is made reversible by use of delaying
primitives and careful ordering of sub-goals in perm/2
(see (Naish 1986) for further discussion). The de-
lay primitive used is the “when meta-call”: a call
when(Cond,A) delays until condition Cond is satis-
fied, then calls A. For example, the recursive call
to perm/2 will delay until at least one of its argu-
ments are non-variables. Generally there are other
features supported, such as delaying until a variable
is ground; we don’t discuss them here, though our
method and prototype support them. A great num-
ber of delay primitives have been proposed (Clark
& McCabe 1979, Naish 1986). Some, like the when
meta-call, are based on calls. Others are based on pro-
cedures (affecting all calls to the procedure), which is
often more convenient and tends to clutter the source
code less. Our general approach to diagnosis is not
affected by the style of delay primitive. The when
meta-call is by far the most portable of the more flex-
ible delay primitives, which is our main reason for
choosing it. We have developed the code in this pa-
per using SWI-Prolog.

We consider three separate possible bugs which

?- perm([1,2,3],A).
Call: perm([1,2,3],_G0)
Call: when(...,inserted(1,_G1,[_G2|_G3]))
Exit: when(...,inserted(1,_G1,[_G2|_G3]))
Call: when(...,perm([2,3],_G1))
Call: perm([2,3],_G1)
Call: inserted(1,[_G4|_G5],[_G2|_G3])
Exit: inserted(1,[_G4|_G5],[1,_G4|_G5])
Call: when(...,inserted(2,_G6,[_G4|_G5]))
Exit: when(...,inserted(2,_G6,[_G4|_G5]))
Call: when(...,perm([3],_G6))
Call: perm([3],_G6)
Call: inserted(2,[_G7|_G8],[_G4|_G5])
Exit: inserted(2,[_G7|_G8],[2,_G7|_G8])
Call: when(...,inserted(3,_G9,[_G7|_G8]))
Exit: when(...,inserted(3,_G9,[_G7|_G8]))
Call: when(...,perm([],_G9))
Call: perm([],_G9)
Call: inserted(3,[],[_G7|_G8])
Exit: inserted(3,[],[3])
Exit: perm([],[])
Exit: when(...,perm([],[]))
Exit: perm([3],[3])
Exit: when(...,perm([3],[3]))
Exit: perm([2,3],[2,3])
Exit: when(...,perm([2,3],[2,3]))
Exit: perm([1,2,3],[1,2,3])

Figure 3: Trace with delayed and resumed calls

could have been introduced, shown in Figure 2. They
exemplify three classes of errors which can lead to
floundering: logical errors, incorrect delay annota-
tions and confusion over the modes of predicates. Bug
1 is a logical error in the recursive call to inserted/3.
Such errors can cause wrong and missing answers
as well as floundering. Due to an incorrect variable
name, other variables remain uninstantiated and this
can ultimately result in floundering. This bug can
be discovered by checking for singelton variables, so
in practice declarative debugging should not be re-
quired, but we use it as a simple illustration of sev-
eral points. Despite the simplicity of the bug and
the program, a complex array of bug symptoms re-
sults, which can be quite confusing to a programmer
attempting to diagnose the problems.

The call perm([1,2,3],A) first succeeds with an-
swer A=[1,2,3], which is correct. Figure 3 shows the
execution trace generated using SWI-Prolog (some
details on each line are removed to save space). The
trace is the same for all versions of the program. The
first call to inserted/3 (wrapped in a when annota-
tion) delays, shown in the first Exit line of the trace.
It is resumed immediately after the recursive call to
perm([2,3],_G1) because matching with the clause
head for perm/2 instantiates _G1. Subsequent calls to
inserted/3 also delay and are resumed after further
recursive calls to perm/2. In this case, all resumed
subcomputations immediately succeed (they match
with the fact for inserted/3). To find other per-
mutations the recursive clause for inserted/3 must
be selected, and the resumed subcomputations delay
again when inserted/3 is called recursively.

On backtracking, for Bug 1, there are four other
successful answers found which are satisfiable but
not valid, for example, A=[1,2,3|_] and A=[3,1|_].
An atomic formula, or atom, is satisfiable is some
instance is true according to the programmer’s in-
tentions and valid if all instances are true. These
answers could be diagnosed by existing wrong an-
swer declarative debugging algorithms, though some
early approaches assumed bug symptoms were un-
satisfiable atoms (Naish 1997). An atom is unsat-

CRPIT Volume 122 - Computer Science 2012

50

?- perm([A,1|B],[2,3]).
Call: perm([_G0,1|_G1],[2,3])
Call: when(...,inserted(_G0,_G2,[2,3]))
Call: inserted(_G0,_G2,[2,3])
Exit: inserted(2,[3],[2,3])
Exit: when(...,inserted(2,[3],[2,3]))
Call: when(...,perm([1|_G1],[3]))
Call: perm([1|_G1],[3])
Call: when(...,inserted(1,_G3,[3]))
Call: inserted(1,_G3,[3])
Call: when(...,inserted(1,_G7,[]))
Call: inserted(1,_G7,[])
Fail: inserted(1,_G7,[])
Fail: when(...,inserted(1,_G7,[]))
Fail: inserted(1,_G3,[3])
Fail: when(...,inserted(1,_G3,[3]))
Fail: perm([1|_G1],[3])
Fail: when(...,perm([1|_G1],[3]))
Redo: inserted(_G0,_G2,[2,3])
Call: when(...,inserted(_G0,_G4,[3]))
Call: inserted(_G0,_G4,[3])
Exit: inserted(3,[],[3])
Exit: when(...,inserted(3,[],[3]))
Exit: inserted(3,[2|_G5],[2,3])
Exit: when(...,inserted(3,[2|_G5],[2,3]))
Call: when(...,perm([1|_G1],[2|_G5]))
Call: perm([1|_G1],[2|_G5])
Call: when(...,inserted(1,_G6,[2|_G5]))
Exit: when(...,inserted(1,_G6,[2|_G5]))
Call: when(...,perm(_G1,_G6))
Exit: when(...,perm(_G1,_G6))
Exit: perm([1|_G1],[2|_G5])
Exit: when(...,perm([1|_G1],[2|_G5]))
Exit: perm([3,1|_G1],[2,3])

Figure 4: Trace for Bug 1

isfiable if no instance is true according to the pro-
grammer’s intentions. These answers are interleaved
with four floundered answers, such as A=[1,3,_|_],
which are also satisfiable but not valid — when
inserted/3 is called recursively, As0 remains unin-
stantiated because the incorrect variable is used, and
after several more calls and some backtracking, floun-
dering results. The call perm(A,[1,2,3]) succeeds
with the answer A=[1,2,3] then has three floun-
dered answers, also including A=[1,3,_|_]. The call
perm([A,1|B],[2,3]) is unsatisfiable and should
finitely fail but returns a single floundered answer
with A=3. Figure 4 gives a trace of this computation.

Diagnosing floundering using execution traces is
also made more challenging by backtracking. In Fig-
ure 4, lines 13–18 are failures, which cause backtrack-
ing over previous events. Another complicating factor
is that when a predicate exits, it may not have com-
pleted execution. There may be subcomputations de-
layed which are subsequently resumed (see Figure 3),
and these resumed subcomputations may also have
delayed parts, etc — there can be coroutining between
multiple parts of the computation. There are typi-
cally Exit lines of the trace which are not valid but
are correct because the subcomputation floundered
rather than succeeded (often this is not immediately
obvious from the trace).

With Bug 2, an incorrect delay annotation on the
recursive call to inserted/3, several bug symptoms
are also exhibited. The call perm([X,Y,Z],A) be-
haves correctly but perm([1,2,3],A) succeeds with
the answers A=[1,2,3] and A=[1,3,2], then loops in-
definitely. We don’t consider diagnosis of loops in this
paper, though they are an important symptom of in-
correct control. The call perm(A,[1,2,3]) succeeds
with the answer A=[1,2,3] then has three further

floundered answers, A=[1,2,_,_|_], A=[1,_,_|_]
and A=[_,_|_], before terminating with failure.

Bug 3 is a more subtle control error. When
inserted/3 was coded we assume the intention was
the second argument should always be input, and the
delay annotation is correct with respect to this inten-
tion. This is a reasonable definition of inserted/3
and we consider it is correct. However, some modes
of perm/2 require inserted/3 to work with just the
third argument input. When coding perm/2 the pro-
grammer was either unaware of this or was confused
about what modes inserted/3 supported. Thus al-
though we have modified the code for inserted/3,
we consider the bug to be in perm/2. This version of
the program behaves identically to Bug 2 for the goal
perm(A,[1,2,3]), but the bug diagnosis will be dif-
ferent because the programmer intentions are differ-
ent. The mistake was made in the coding of perm/2,
and this is reflected in the diagnosis. The simplest
way to fix the bug is change the intentions and code
for inserted/3, but we only deal with diagnosis in
this paper.

Because delays are the basic cause of floundering
and they are inherently procedural, it is natural to as-
sume that diagnosing unexpected floundering requires
a procedural view of the execution. Even with such a
simple program and goals, diagnosis using just traces
of floundered executions can be extremely difficult.
Subcomputations may delay and be resumed multi-
ple times as variables incrementally become further
instantiated, and this can be interleaved with back-
tracking. Reconstructing how a single subcomputa-
tion proceeds can be very difficult. Although some
tools have been developed, such as printing the his-
tory of instantiation states for a variable, diagnosis of
floundering has remained very challenging.

3 Declarative diagnosis of floundering

To diagnose unexpected floundering in pure Pro-
log programs with delays we use an instance of the
three-valued declarative debugging scheme described
in (Naish 2000). We describe the instance precisely in
the following sections, but first introduce the general
scheme and how it is applied the more familiar prob-
lem of diagnosing wrong answers. A computation is
represented as a tree, with each node associated with
a section of source code (a clause in this instance) and
subtrees representing subcomputations. The choice of
tree generally depends in the language and the bug
symptom. For example, diagnosing wrong answers
in Prolog generally uses proof trees (see Section 3.1)
whereas diagnosing pattern match failure in a func-
tional language requires a different kind of tree. The
trees we use here are a generalisation of proof trees.
The debugger searches the tree and eventually finds
a node for which the associated code has a bug.

Each node has a truth value which expresses how
the subcomputation compares with the intentions of
the programmer. Normally the truth values of only
some nodes are needed to find a bug and they are de-
termined by asking the user questions. Three truth
values are used for tree nodes: correct, erroneous, and
inadmissible. To diagnose wrong answers, the user is
asked about the atoms in proof tree nodes, which were
proved in the computation. Correct nodes are those
containing an atom which is valid in the intended in-
terpretation, such as inserted(2,[1],[1,2]). The
corresponding subcomputation returned the correct
result and the subtree is eliminated from the search
space, since it cannot be the cause of a wrong an-
swer at the root of the tree. Erroneous nodes corre-
spond to subcomputations which returned a wrong
answer, such as inserted(2,[1],[1]). If such a

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

51

(f) perm([3,1| G1],[2,3]) e

(s) inserted(3,[2| G5],[2,3]) e

(s) inserted(3,[],[3]) c

(f) perm([1| G1],[2| G5]) i

(f) inserted(1, G6,[2| G5]) i (f) perm(G1, G6) i

Figure 5: A Partial proof tree for Bug 1

node is found, the search space can be restricted
to that subtree, since it must contain a bug. Inad-
missible nodes correspond to subcomputations which
should never have occurred. Inadmissibility was ini-
tially used to express the fact that a call was ill-typed
(Pereira 1986). For example, inserted is expected to
be called with a list in the second and/or third argu-
ment, so inserted(2,a,[2|a]) would be considered
inadmissible. Inadmissible means a pre-condition of
the code has been violated, whereas erroneous means
a post-condition has been violated. For inadmissible
nodes, the subtree can be eliminated from the search
space in the same way as a correct node. Here calls
which flounder because they never become sufficiently
instantiated are considered inadmissible.

Given a tree with truth values for each node, a
node is buggy if it is erroneous but has no erroneous
children. The computation associated with the node
behaved incorrectly but none of its subcomputations
behaved incorrectly, so there must be a bug in the
code associated with that node. Buggy nodes can
be classified into to kinds, depending on whether or
not they have any inadmissible children. If there are
no inadmissible children (all children are correct) the
code has simply produced the wrong result, called
an e-bug in (Naish 2000). If there are inadmissible
children the code has resulted in other code being
used in an unintended way, violating a pre-condition.
This is called an i-bug. Diagnosis consists of search-
ing the tree for a buggy node; such a node must exist
if the root is erroneous and the tree is finite. Many
search strategies are possible and (Naish 2000) pro-
vides very simple code for a top-down search. The
code first checks that the root is erroneous. It then
recursively searches for bugs in children and returns
them if they exist. Otherwise the root is returned as
a buggy node, along with an inadmissible child if any
are found. In the next sections we first define the trees
we use, then discuss how programmer intentions are
formalised, give some simple diagnosis sessions and
finally make some remarks about search strategy.

3.1 Partial proof trees

Standard wrong answer declarative diagnosis uses
Prolog proof trees which correspond to successful
derivations (see (Lloyd 1984)). Each node contains
an atomic goal which was proved in the derivation,
in its final state of instantiation, and the children of
a node are the subgoals of the clause instance used
to prove the goal. Leaves are atomic goals which
were matched with unit clauses. We use partial proof
trees which correspond to successful or floundered
derivations. The only difference is they have an addi-
tional class of leaves: atomic goals which were never
matched with any clause because they were delayed
and never resumed.

Definition 1 ((Callable) annotated atom) An
annotated atom is an atomic formula or a term of
the form when(C ,A), where A is an atomic formula

and C is a condition of a when meta-call. It is
callable if it is an atom or C is true according to the
normal Prolog meaning (for “,”, “;” and nonvar/1).
atom(X) is the atom of annotated atom X .

Definition 2 (Partial proof tree) A partial proof
tree for annotated atom A and program P is either

1. a node containing A, where atom(A) is an in-
stance of a unit clause in P or A is not callable,
or

2. a node containing callable atom A together with
partial proof (sub)trees Si for annotated atom Bi

and P, i = 1 . . . n, where atom(A):-B1, . . .Bn is
an instance of a clause in P.

A partial proof tree is floundered if it contains any
annotated atoms which are not callable, otherwise it
is successful.

Figure 5 gives the partial proof tree correspond-
ing to the floundering of goal perm([A,1|B],[2,3])
with Bug 1 (which corresponds to the trace of Fig-
ure 4). The “when” annotations are not shown. The
single letter prefix for each node indicates whether
the subtree is successful (s) or floundered (f). The
single letter postfix relates to the truth values of the
nodes: correct (c), erroneous (e), or inadmissible (i).
Given these assignments, the only buggy node is that
containing the atom inserted(3,[2|C],[2,3]). In
Section 3.2 we explain how these assignments reflect
the intentions of the programmer.

Representing a computation as a (partial) proof
tree has several advantages over representing it as a
linear trace if the goal is to diagnose incorrect suc-
cessful or floundered derivations. First, backtracking
is eliminated entirely, avoiding an important distrac-
tion. Second, the details of any coroutining are also
eliminated. It has long been known this could be done
for successful computations, but the realisation it can
be done for floundered computations is relatively new
and is the key to our approach. We retain information
on what sub-goals were never called, but the order in
which other subgoals were executed is not retained.
The structure of the tree reflects the static dependen-
cies in the code rather than the dynamic execution
order. Because of this, each node gives us the final
instantiation state of the atom, not just the instantia-
tion state when it exited (at that time some subcom-
putations may have been delayed). Finally, the tree
structure allows us search efficiently for buggy nodes
by checking the truth value of nodes, which can be
determine from the programmer’s intentions.

Declarative debuggers use various methods for
representing trees and building such representations.
The declarative debugger for Mercury (Somogyi &
Henderson 1999) is a relatively mature implementa-
tion. A much simpler method, which is suitable for
prototypes, is a meta interpreter which constructs an
explicit representation of the tree. Figure 6 is a very
concise implementation which we include for com-
pleteness. Floundering is detected using the “short

CRPIT Volume 122 - Computer Science 2012

52

% solve_atom(A, C0, C, AT): A is an
% atomic goal, possibly wrapped in
% when meta-call, which has succeeded
% or floundered; AT is the corresponding
% partial proof tree with floundered
% leaves having a variable as the list
% of children; C0==C iff A succeeded
solve_atom(when(Cond, A), C0, C, AT) :- !,

AT = node(when(Cond, A), C0, C, Ts),
when(Cond, solve_atom(A, C0, C,

node(_,_,_,Ts))).
solve_atom(A, C0, C, node(A,C0,C,AsTs)) :-

clause(A, As),
solve_conj(As, C0, C, AsTs).

% As above for conjunction;
% returns list of trees
solve_conj(true, C, C, []) :- !.
solve_conj((A, As), C0, C, [AT|AsTs]) :- !,

solve_atom(A, C0, C1, AT),
solve_conj(As, C1, C, AsTs).

solve_conj(A, C0, C, [AT]) :-
solve_atom(A, C0, C, AT).

Figure 6: Code to build partial proof trees

circuit” technique — an accumulator pair is associ-
ated with each subgoal and the two arguments are
unified if and when the subgoal succeeds. Tree nodes
contain an annotated atom, this accumulator pair and
a list of subtrees. A subcomputation is floundered if
the accumulator arguments in the root of the subtree
are not identical.

3.2 The programmer’s intentions

The way truth values are assigned to nodes encodes
the user’s intended behaviour of the program. In
the classical approach to declarative debugging of
wrong answers the intended behaviour is specified
by partitioning the set of ground atoms into true
atoms and false atoms. There can still be non-ground
atoms in proof tree nodes, which are considered true
if the atom is valid. A difficulty with this two-
valued scheme is that most programmers make im-
plicit assumptions about the way their code will be
called, such as the “type” of arguments. Although
inserted(2,a,[2|a]) can succeed, it is counter-
intuitive to consider it to be true (since it is “ill-
typed”), and if it is considered false then the defi-
nition of inserted/3 must be regarded as having a
logical error. The solution to this problem is to be
more explicit about how predicates should be called,
allowing pre-conditions (Drabent, Nadjm-Tehrani &
Maluszynski 1988) or saying that certain things are
inadmissible (Pereira 1986) or having a three-way par-
titioning of the set of ground atoms (Naish 2006).

In the case of floundering the intended behaviour
of non-ground atoms must be considered explicitly.
As well as assumptions about types of arguments,
we inevitably make assumptions about how instan-
tiated arguments are. For example, perm/2 is not
designed to generate all solutions to calls where nei-
ther argument is a (nil-terminated) list and even if it
was, such usage would most likely cause an infinite
loop if used as part of a larger computation. It is rea-
sonable to say that calls to perm/2 where neither ar-
gument is ever instantiated to a list should not occur,
and hence should be considered inadmissible. An im-
portant heuristic for generating control information is
that calls which have an infinite number of solutions
should be avoided (Naish 1986). Instead, such a call
is better delayed, in the hope that other parts of the

computation will further instantiate it and make the
number of solutions finite. If the number of solutions
remains infinite the result is floundering, but this is
still preferable to an infinite loop.

We specify the intended behaviour of a program
as follows:

Definition 3 (Interpretation) An interpretation
is a three-way partitioning of the set of all atoms into
those which are inadmissible, valid and erroneous.
The set of admissible (valid or erroneous) atoms is
closed under instantiation (if an atom is admissible
then any instance of it is admissible), as is the set of
valid atoms.

The following interpretation precisely defines our
intentions for perm/2: perm(As0,As) is admissible
if and only if either As0 or As are (nil-terminated)
lists, and valid if and only if As is a permutation of
As0. This expresses the fact that either of the argu-
ments can be input, and only the list skeleton (not the
elements) is required. For example, perm([X],[X])
is valid (as are all its instances), perm([X],[2|Y])
is admissible (as are all its instances) but erroneous
(though an instance is valid) and perm([2|X],[2|Y])
is inadmissible (as are all atoms with this as an
instance). For diagnosing Bugs 1 and 2, we say
inserted(A,As0,As) is admissible if and only if As0
or As are lists. For diagnosing Bug 3, As0 must be
a list, expressing the different intended modes in this
case.

Note we do not have different admissibility criteria
for different sub-goals in the program — the intended
semantics is predicate-based. Delay primitives based
on predicates thus have an advantage of being natural
from this perspective. Note also that atoms in partial
proof tree nodes are in their final state of instantia-
tion in the computation. It may be that in the first
call to inserted/3 from perm/2, no argument is in-
stantiated to a list (it may delay initially), but as long
as it is eventually sufficiently instantiated (due to the
execution of the recursive perm/2 call, for example) it
is considered admissible. However, since admissibility
is closed under instantiation, an atom which is inad-
missible in a partial proof tree could not have been
admissible at any stage of the computation. The de-
bugger only deals with whether a call flounders —
the lower level procedural details of when it is called,
delayed, resumed et cetera are hidden.

Truth values of partial proof tree nodes are defined
in terms of the user’s intentions:

Definition 4 (Truth of nodes) Given an inter-
pretation I , a partial proof tree node is

1. correct, if the atom in the node is valid in I and
the subtree is successful,

2. inadmissible, if the atom in the node is inadmis-
sible in I , and

3. erroneous, otherwise.

Note that floundered subcomputations are never cor-
rect. If the atom is insufficiently instantiated (or “ill-
typed”) it is inadmissible, otherwise it is erroneous.

3.3 Diagnosis examples

In our examples we use a top-down search for a buggy
node, which gives a relatively clear picture of the par-
tial proof tree. They are copied from actual runs of
our prototype2 except that repeated identical ques-
tions are removed and some white-space is changed.

2Available from http://www.cs.mu.oz.au/~lee/papers/ddf/

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

53

?- wrong(perm([A,1|B],[2,3])).
(floundered) perm([3,1|A],[2,3])...? e
(floundered) perm([1|A],[2|B])...? i
(succeeded) inserted(3,[2|A],[2,3])...? e
(succeeded) inserted(3,[],[3])...? v
BUG - incorrect clause instance:
inserted(3,[2|A],[2,3]) :-

when((nonvar(A);nonvar([3])),
inserted(3,[],[3])).

Figure 7: Bug 1 diagnosis for perm([A,1|B],[2,3])

...
(floundered) perm([1,2,3],[1,3,A|B])...? e
(floundered) perm([2,3],[3,A|B])...? e
(floundered) inserted(2,[3],[3,A|B])...? e
(floundered) inserted(2,[A|B],[A|C])...? i
BUG - incorrect modes in clause instance:
inserted(2,[3],[3,A|B]) :-

when((nonvar([]);nonvar([A|B]))
inserted(2,[A|_],[A|B])).

Figure 8: Bug 1 diagnosis for perm([1,2,3],A)

In section 3.4 we discuss strategies which can re-
duce the number of questions; the way diagnoses are
printed could also be improved. The debugger defines
a top-level predicate wrong/1 which takes an atomic
goal, builds a partial proof tree for an instance of the
goal then searches the tree. The truth value of nodes
is determined from the user. The debugger prints
whether the node succeeded or floundered, then the
atom in the node is printed and the user is expected
to say if it is valid (v), inadmissible (i) or erroneous
(e).

Figure 7 shows how Bug 1 is diagnosed for the goal
perm([A,1|B],[2,3]). The root of the tree (shown
in Figure 5) is erroneous, so the debugger proceeds
to recursively search for bugs in the children. In this
case it first considers the right child, which is inad-
missible (so the recursive search fails), then the left
child, which is erroneous (and the search continues in
this subtree). Note that the call to perm/2 in the root
calls itself in an inadmissible way but this, in itself,
does not indicate a bug. The cause of the inadmis-
sible call is the other child, which is erroneous, and
the root is not a buggy node. The recursive search in
the left subtree determines the left-most leaf is correct
and hence the buggy node is found. The diagnosis is
a logical error in the inserted/3 clause: the body of
the clause is valid but the head is not.

Figure 8 shows how Bug 1 is diagnosed for the
goal perm([1,2,3],A). We assume the user decides
to diagnose a floundered answer, backtracking over
the previous answers. The diagnosis is ultimately a
control error: the arguments of the clause head are
sufficiently instantiated but the arguments of the re-
cursive call are not. Both are diagnoses are legitimate.
Even without delays, logical bugs can lead to both
missing and wrong answers, which typically result in
different diagnoses in declarative debuggers.

Figure 9 shows how Bug 2 is diagnosed. The first
question relates to the first answer returned by the
goal. It is valid, so the diagnosis code fails and the
computation backtracks, building a new partial proof
tree for the next answer, which is floundered. The
root of this tree is determined to be erroneous and
after a few more questions a buggy node is found.
It is a floundered leaf node so the appropriate diag-
nosis is an incorrect delay annotation, which causes
inserted(A,B,[]) to delay indefinitely (rather than
fail). Ideally we should also display the instance of the

?- wrong(perm(A,[1,2,3])).
(succeeded) perm([1,2,3],[1,2,3])...? v
(floundered) perm([1,2,A,B|C],[1,2,3])...? e
(floundered) perm([2,A,B|C],[2,3])...? e
(floundered) perm([A,B|C],[3])...? e
(floundered) inserted(A,[3|B],[3]) ...? e
(floundered) inserted(A,B,[])...? e
BUG - incorrect delay annotation:
when((nonvar(A);nonvar(B)),inserted(B,A,[]))

Figure 9: Diagnosis of bug 2

?- wrong(perm(A,[1,2,3])).
(succeeded) perm([1,2,3],[1,2,3])...? v
(floundered) perm([1,2,A,B|C],[1,2,3])...? e
(floundered) perm([2,A,B|C],[2,3])...? e
(floundered) perm([A,B|C],[3])...? e
(floundered) inserted(A,[3|B],[3])...? i
(floundered) perm([A|B],[3|C])...? i
BUG - incorrect modes in clause instance:
perm([A,C|D],[3]) :-

when((nonvar([3|B]);nonvar([])),
inserted(A,[3|B],[3])),

when((nonvar([C|D]);nonvar([3|B])),
perm([C|D],[3|B])).

Figure 10: Diagnosis of bug 3

clause which contained the call (the debugger code in
(Naish 2000) could be modified to return the buggy
node and its parent), and the source code location.

Figure 10 shows how Bug 3 is diagnosed, using
the same goal. It proceeds in a similar way to the
previous example (the partial proof trees are iden-
tical), but due to the different programmer inten-
tions (the mode for inserted/3) the floundering call
inserted(A,[3|B],[3]) is considered inadmissible
rather than erroneous, eventually leading to a differ-
ent diagnosis. Both calls in the buggy clause instance
are inadmissible. The debugger of (Naish 2000) re-
turns both these inadmissible calls as separate diag-
noses. For diagnosing floundering it is preferable to
return a single diagnosis, since the floundering of one
can result in the floundering of another and its not
clear which are the actual culprit(s).

3.4 Search strategy

A top-down left to right search is the simplest search
strategy to implement. In our prototype we have a
slightly more complex strategy, searching floundered
subtrees before successful ones (this is done by ad-
justing the order in which the childern of a node are
returned — see Figure 11). More complex strategies
for diagnosing some forms of abnormal termination

% returns children of a node,
% floundered ones first
child(node(_, _, _, Ts), T) :-

nonvar(Ts), % not a floundered leaf
(member(T, Ts),

T = node(_, C0, C, _),
C0 \== C % T is floundered

;
member(T, Ts),
T = node(_, C0, C, _),
C0 == C % T is not floundered

).

Figure 11: Finding children in partial proof trees

CRPIT Volume 122 - Computer Science 2012

54

are given in (Naish 2000), and these can be adapted
to floundering. From our definition of truth values
for nodes, we know no floundered node is correct. We
also know that floundering is caused by (at least one)
floundered leaf node. Thus we have (at least one)
path of nodes which are not correct between the root
node and a leaf. It makes sense to initially restrict our
search to such a path. Our prototype does a top-down
search of such a path. There must be an erroneous
node on the path with no erroneous children on the
path. Both bottom-up and binary search strategies
are likely to find this node significantly more quickly
than a top-down search. Once this node is found, its
other children must also be checked. If there are no
erroneous children the node is buggy. Otherwise, an
erroneous child can be diagnosed recursively, if it is
floundered, or by established wrong answer diagnosis
algorithms.

4 Theoretical considerations

We first make some remarks about the soundness and
completeness of this method of diagnosis, then dis-
cuss related theoretical work. An admissible atomic
formula which flounders has a finite partial proof tree
with an erroneous root and clearly this must have a
buggy node. Since the search space is finite, com-
pleteness is easily achieved. Soundness criteria come
from the definition of buggy nodes (erroneous nodes
with no erroneous children). The three classes of bugs
mentioned in Section 2 give a complete categorisation
of bugs which cause floundering. Incorrect delay an-
notations cause floundered buggy leaf nodes: they are
admissible but delay. Confusions over modes cause
floundered buggy internal nodes: they are admissible
but have one or more floundered inadmissible chil-
dren. Logical errors can also cause such nodes and can
cause successful buggy nodes. Note that ancestors of
a successful buggy node may also be floundered, as in
Figure 5.

Our current work on diagnosis arose out of more
theoretical work on floundering (Naish 2008). Nearly
all delay primitives have the property that if a cer-
tain call can proceed (rather than delay), any more
instantiated version of the call can also proceed (the
set of callable annotated atoms is closed under instan-
tiation). Our diagnosis method can be effectively ap-
plied to other delay primitives for which this property
holds simply by changing the definition of callable an-
notated atoms. An important result which follows
from this property is similar to the result concerning
success: whether a computation flounders, and the
final instantiation of variables, depends on the delay
annotations but not on the order in which sufficiently
instantiated call are selected. Non-floundering is also
closed under instantiation, so it is natural for admissi-
bility to inherit this restriction and partial proof trees
provide a basis for intuitive diagnoses. Furthermore,
there is a very close correspondence between floun-
dered and successful derivations, and this is what en-
ables our approach to diagnosis. A floundered deriva-
tion D for program P can be transformed into a suc-
cessful derivation D ′ for a program P ′ which is identi-
cal to P except for the delay annotations. We briefly
explain (a simplified version of) the mapping next.

The key idea is that a floundered derivation (or
partial proof tree) using P will correspond to a suc-
cessful derivation (or proof tree) in P ′ where the vari-
ables which caused floundering in P are instantiated
to special terms which could not be constructed by
the rest of the computation — the variables are en-
coded using special terms. This encoding has no ef-
fect on successful subcomputations; any subcomputa-
tion which succeeds with an answer containing vari-

ables will also succeed if any of those variables are
further instantated. Because Prolog uses most gen-
eral unifiers, the only terms constructed in a Prolog
derivation contain function symbols which appear in
the program. Thus “extraneous” function symbols,
which do not occur in P , can be used to encode vari-
ables. For simplicty, we will just use $, and assume
it does not appear in P (in (Naish 2008) multiple en-
codings are used, which makes the mapping between
derivations more precise).

Each annotated atom when(C ,A) in P is trans-
fomed so that the corresponding code in P ′ just calls
A when C is satisfied but can also succeed when C
is not satisfied, encoding the appropriate variables.
Calling A is achieved by having A as a disjunct in the
transformed code. The other disjunct implements the
negation of C , using the encoding. The negation of
nonvar(V) ensures V is an encoded variable, $, and
De Morgan’s laws handle conjunction and disjunction
in delay conditions.

Definition 5 The transformation T applied to when
annotations is:
T (when(C ,A)) = (T (C) ;A)
T ((C1,C2)) = (T (C1) ; T (C2))
T ((C1 ; C2)) = (T (C1),T (C2))
T (nonvar(V)) = (V = $)

For example, the recursive clause for the correct ver-
sion of inserted/3 is transformed to:

inserted(A, [A1|As0], [A1|As]) :-
(As0 = $, As = $; inserted(A, As0, As)).

The goal inserted(1,[2,3|A],[2,3|B]) has a
derivation/partial proof tree in P which is floundered
due to an annotated recursive call to inserted/3
with variables A and B as the second and third ar-
guments, respectively. There is a corresponding suc-
cessful derivation/proof tree in P ′ where A and B are
instantiated to $. This correspondence between floun-
dered and successful computations means we can use
the properties of successful derivations in the diagno-
sis of floundering — in particular, abstracting away
backtracking and the order in which sub-goals are ex-
ecuted.

In section 3.2 we defined interpretations by par-
titioning the set of all atoms, rather than just the
ground atoms. This is what allows us to say an insuf-
ficiently instantiated floundered atom is inadmissible.
The ground encoded versions of such atoms would
normally be considered ill-typed, hence it is reason-
able to consider them inadmissible also. For example,
inserted(1,[2,3|A],[2,3|B]) is inadmissible and
the encoded atom inserted(1,[2,3|$],[2,3|$])
has non-lists in the last two arguments. Thus, by
encoding atoms and using ill-typedness in place of
under-instantiation, it is possible to define interpre-
tations over just ground atoms. The way we described
our intended interpretation in section 3.2 can remain
unchanged. Encoding our example from that section,
perm([$],[$]) is valid, perm([$],[2|$]) is erro-
neous and perm([2|$],[2|$]) is inadmissible. By
only using ground atoms, the three-valued seman-
tics proposed in (Naish 2006) can be used unchanged
(and our approach can indeed be considered “declara-
tive”). Diagnosis of floundering becomes almost iden-
tical to diagnosis of wrong answers in the three-valued
scheme. The only difference is the rare case of a valid
ground atom which flounders rather than succeeds:
when floundering is converted to success it appears
there is no bug. For this case it is necessary to dis-
tinguish success from floundering, for example, with
extra information in each node of the proof tree, as
we have done in our implementation.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

55

5 Conclusion

There has long been a need for tools and techniques
to diagnose unexpected floundering in Prolog with de-
lay primitives, and related classes of bug symptoms
in other logic programming languages. The philos-
ophy behind delay primitives in logic programming
languages is largely based on Kowalski’s equation:
Algorithm = Logic + Control (Kowalski 1979). By
using more complex control, the logic can be sim-
pler. This allows simpler reasoning about correctness
of answers from successful derivations — we can use
a purely declarative view, ignoring the control be-
cause it only affects the procedural semantics. When
there are bugs related to control it is not clear the
trade-off is such a good one. The control and logic
can no longer be separated. Since the normal declar-
ative view cannot be used, the only obvious option
is to use the procedural view. Unfortunately, even
simple programs can exhibit very complex procedu-
ral behaviour, making it very difficult to diagnose and
correct bugs using this view of the program.

In the case of floundering, a much simpler high
level approach turns out to be possible. The com-
bination of the logic and control can be viewed as
just slightly different logic, allowing declarative diag-
nosis techniques to be used. The procedural details
of backtracking, calls delaying and the interleaving
of subcomputations can be ignored. The user can
simply put each atomic formula into one of three cat-
egories. The first is inadmissible: atoms which should
not be called because they are insufficiently instanti-
ated and expected to flounder (or are “ill-typed” or
violate some pre-condition of the procedure). The
second is valid: atoms for which all instances are true
and are expected to succeed. The third is erroneous:
atoms which are legitimate to call but which should
not succeed without being further instantiated (they
are not valid, though an instance may be). A floun-
dered derivation can be viewed as a tree and this
three-valued intended semantics used to locate a bug
in an instance of a single clause or a call with a delay
annotation.

References

Caballero, R., Rodŕıguez-Artalejo, M. & del
Vado Vı́rseda, R. (2006), Declarative diagnosis
of wrong answers in constraint functional-logic
programming, in S. Etalle & M. Truszczynski,
eds, ‘ICLP’, Vol. 4079 of Lecture Notes in Com-
puter Science, Springer, pp. 421–422.

Caballero, R., Rodŕıguez-Artalejo, M. & del
Vado Vı́rseda, R. (2007), Declarative debugging
of missing answers in constraint functional-logic
programming, in V. Dahl & I. Niemelä, eds,
‘ICLP’, Vol. 4670 of Lecture Notes in Computer
Science, Springer, pp. 425–427.

Clark, K. & McCabe, F. (1979), The control facilities
of IC-Prolog, in D. Michie, ed., ‘Expert systems
in the microelectronic age’, Edinburgh Univer-
sity Press, pp. 122–149.

Drabent, W., Nadjm-Tehrani, S. & Maluszynski, J.
(1988), The use of assertions in algorithmic de-
bugging, in ‘Proceedings of the 1988 Interna-
tional Conference on Fifth Generation Computer
Systems’, Tokyo, Japan, pp. 573–581.

Gregory, S. (1987), Design, application and imple-
mentation of a parallel logic programming lan-
guage, Addison-Weseley.

Jaffar, J. & Lassez, J.-L. (1987), From unification to
constraints, in K. Furukawa, H. Tanaka & T. Fu-
jisaki, eds, ‘Proceedings of the Sixth Logic Pro-
gramming Conference’, Tokyo, Japan, pp. 1–18.
published as Lecture Notes in Computer Science
315 by Springer-Verlag.

Kowalski, R. (1979), ‘Algorithm = Logic + Control’,
CACM 22(7), 424–435.

Lloyd, J. W. (1984), Foundations of logic program-
ming, Springer series in symbolic computation,
Springer-Verlag, New York.

Marriott, K., Garćıa de la Banda, M. &
Hermenegildo, M. (1994), Analyzing Logic
Programs with Dynamic Scheduling, in ‘20th.
Annual ACM Conf. on Principles of Program-
ming Languages’, ACM, pp. 240–254.

Marriott, K., Søndergaard, H. & Dart, P. (1990),
A characterization of non-floundering logic pro-
grams, in S. Debray & M. Hermenegildo, eds,
‘Proceedings of the North American Conference
on Logic Programming’, The MIT Press, Austin,
Texas, pp. 661–680.

Naish, L. (1986), Negation and control in Prolog,
number 238 in ‘Lecture Notes in Computer Sci-
ence’, Springer-Verlag, New York.

Naish, L. (1992), ‘Declarative diagnosis of missing an-
swers’, New Generation Computing 10(3), 255–
285.

Naish, L. (1997), ‘A declarative debugging scheme’,
Journal of Functional and Logic Programming
1997(3).

Naish, L. (2000), ‘A three-valued declarative de-
bugging scheme’, Australian Computer Science
Communications 22(1), 166–173.

Naish, L. (2006), ‘A three-valued semantics for logic
programmers’, Theory and Practice of Logic
Programming 6(5), 509–538.

Naish, L. (2008), ‘Transforming floundering into suc-
cess’.
URL: ww2.cs.mu.oz.au/˜lee/papers/flounder

Naish, L. & Barbour, T. (1995), A declarative
debugger for a logical-functional language, in
G. Forsyth & M. Ali, eds, ‘Eighth Interna-
tional Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Ex-
pert Systems — Invited and Additional Papers’,
Vol. 2, DSTO General Document 51, Melbourne,
pp. 91–99.

Pereira, L. M. (1986), Rational debugging in logic
programming, in E. Shapiro, ed., ‘Proceedings
of the Third International Conference on Logic
Programming’, London, England, pp. 203–210.
published as Lecture Notes in Computer Science
225 by Springer-Verlag.

Pope, B. & Naish, L. (2003), Practical aspects of
declarative debugging in Haskell-98, in ‘Fifth
ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming’, pp. 230–
240. ISBN:1-58113-705-2.

Shapiro, E. Y. (1983), Algorithmic program debug-
ging, MIT Press, Cambridge, Massachusetts.

Somogyi, Z. & Henderson, F. J. (1999), The imple-
mentation technology of the Mercury debugger,
in ‘Proceedings of the Tenth Workshop on Logic
Programming Environments’, Las Cruces, New
Mexico, pp. 35–49.

CRPIT Volume 122 - Computer Science 2012

56

Learning Time Series Patterns by Genetic Programming

Feng Xie Andy Song Vic Ciesielski

School of Computer Science and Information Technology
RMIT University

Melbourne,VIC 3001,Australia,
Email: feng.xie@rmit.edu.au

School of Computer Science and Information Technology
RMIT University

Melbourne,VIC 3001,Australia,
Email: andy.song@rmit.edu.au

School of Computer Science and Information Technology
RMIT University

Melbourne,VIC 3001,Australia,
Email: vic.ciesielski@rmit.edu.au

Abstract

Finding patterns such as increasing or decreasing
trends, abrupt changes and periodically repeating se-
quences is a necessary task in many real world situa-
tions. We have shown how genetic programming can
be used to detect increasingly complex patterns in
time series data. Most classification methods require
a hand-crafted feature extraction preprocessing step
to accurately perform such tasks. In contrast, the
evolved programs operate on the raw time series data.
On the more difficult problems the evolved classifiers
outperform the OneR, J48,Naive Bayes, IB1 and Ad-
aboost classifiers by a large margin. Furthermore this
method can handle noisy data. Our results suggest
that the genetic programming approach could be used
for detecting a wide range of patterns in time series
data without extra processing or feature extraction.

Keywords: Genetic Programming, Pattern Recogni-
tion, Time Series

1 Introduction

Time series patterns describe how one variable or a
group of variables change over a certain period of
time. They are a critical factor in many real world
problems where temporal information is essential. For
example, any single point on an electrocardiogram is
meaningless by itself, but a repeating sequence can
reveal whether the rhythm of a heart is normal or ab-
normal. Similarly tasks like understanding patterns
of climate change, recognizing words in audio wave-
forms and detecting target objects in videos all rely on
finding patterns in the time domain. It is clear that
a method which can capture regularities in temporal
data is of great importance.

Handling temporal data is not a new area. Many
methods have been proposed in the past. However
they are significantly different as they were intro-
duced for different tasks. For instance, temporal logic

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 35th Australasian Computer Science Con-
ference (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce
Thomas, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

uses symbols and rules to represent time flow whereas
a temporal database marks records with time stamps.
Temporal databases introduced the concepts of trans-
action time and valid period for preserving the time
information. Learning methods have been proposed
for learning temporal rules or patterns as well. Sut-
ton described the temporal difference(TD) learning
method for prediction and proved its convergence and
performance on a number of problems(1). Unlike
traditional supervised machine learning approaches,
the TD method learns from the differences between
successive predictions to improve the final outcome.
However this algorithm relies on the availability of
an optimal set of features for the learning process.
Boots and Gordon addressed this problem by adding
a feature selection component to retain features which
only contain predictive information(3). Neural net-
works have been used for handling temporal data as
well. Dorffner summarized different types of artifi-
cial neural networks(ANNs) for this purpose(8). Fur-
thermore ANNs has been combined with evolutionary
strategies and a greedy randomised adaptive search
procedure for time series forecasting(9).

These aforementioned existing methods do not
constitute a generalized approach for learning time
series patterns. Instead of operating on raw data,
they often rely on some kind of additional processes
to extract features from the time series data for learn-
ing, such as converting input signals from the time
domain into the frequency domain, calculating varia-
tions at different points or transforming numeric data
into symbolic data. The process for determining rele-
vant features requires experience and domain knowl-
edge from human experts. Manual interventions are
usually essential here. Additionally the parameters
and configurations are hand-crafted to suit only a cer-
tain problem. Therefore it is difficult to generalize a
method for various problems. A generalized method
for handling temporal data and learning underlying
patterns still remain a big challenge.

In this study we propose genetic programming
(GP) as a method for learning time series pat-
terns without any extra processes such as data pre-
processing or feature extraction. The aim of our in-
vestigation is to establish such a generalized method
which can deal with different kind of scenarios such
as detecting abrupt changes and recognizing various
periodical patterns under one framework. Note the
focus of this study is on recognizing patterns, not on
time series prediction.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

57

Figure 1: A Typical GP Program Tree (y + 0.5)− x

The main reason for using genetic programming is
that GP has proved itself as a powerful and creative
problem solving method. Even on some difficult prob-
lems such as image processing and computer vision,
GP can work with unprocessed raw data to learn use-
ful models. Essentially GP is performing two tasks
here, extracting useful features and building a classi-
fication model accordingly. Typically these two tasks
are treated as separate components in the conven-
tional methods, but considered as one by GP-based
method. This characteristic makes GP particularly
suitable for problems of which the optimal features
are unclear. Learning patterns in the time domain
can be considered as such a problem. Because it is
difficult to foresee what kind of features would be the
most suitable if the nature of the underlying temporal
patterns is not clear.

The rest of this paper is organized as such: Section
2 gives a brief background of Genetic Programming
and its applications. Section 3 presents a collection
of problems used in this study. Their difficulties in-
creases gradually. The GP methodology and experi-
ments are discussed in Section 4, while the discussions
of our experiments are in Section 5. Section 6 con-
cludes this study and discusses future investigations.

2 Background

Genetic Programming is a kind of evolutionary com-
putation methods inspired by the survival-of-the-
fittest principal. It was pioneered by Koza(2) who
has successfully applied GP in many areas and even
patented several solutions found by GP. A solution
in GP is typically represented as a program tree on
which the internal nodes are functions (operators)
and the leaf nodes are terminals (operands). Ini-
tially a population of program trees are generated
randomly as the first generation. These programs
are evaluated on the problem to be solved. Based
on the performance, each one of them is assigned
with a fitness value. Solutions with higher fitness are
more likely to be selected as the parents to gener-
ate a new population of solutions, namely the next
generation. Programs in the new generation may be
created by mutation (applying random change on a
parent), crossover (exchanging tree branches between
parents), or elitism (directly copying the best solu-
tions from the previous generation). Figures 1 shows
a simple GP tree.

There are existing studies using GP techniques
to handle problems involving time series information.
Kaboudan applied both neural networks and GP to
the problem of forecasting housing prices based on
both spatial and temporal information and suggested
GP could produce more reliable and logically more ac-

t5 t4 t3 t2 t1 t0 CLASS

1 0 0 0 0 0 Positive
1 1 0 0 0 0 Positive
0 0 0 1 1 1 Positive
0 0 0 0 0 1 Positive
0 0 0 0 0 0 Negative
1 1 1 1 1 1 Negative

Figure 2: Examples of Binary Pattern

ceptable forecasts(4). Song and Pinto(5) evolved pro-
grams to detect motion on live videos. GP was used
to evolve programs to recognize interesting motions
from background and uninteresting motions based on
pixel values over a sequence of video frames.

Some researchers have investigated hybrid meth-
ods. Hetland and Sætrom presented a new algorithm
combining GP and a pattern matching chip to dis-
cover temporal rules(6). The outcome of this experi-
ment was comparable to some existing work. Another
hybrid method is liquid state genetic programming
proposed by Oltean(7). The core idea is dividing the
whole system into two parts, the dynamic memory
component and GP component. The former is kept
by the liquid state machine while GP acts as a prob-
lem solver. These hybrid methods are computation-
ally expensive because they require large memory and
have long run times. It should be noted that the GP
component here does not handle temporal rules di-
rectly.

As the aim of our work is to provide a GP-based
method which does not require any extra components,
we will take raw time series data as input and learn
to recognize different patterns.

3 Time Series Patterns

This section presents a collection of tasks investigated
in this study. They are a group of artificial problems
which are to represent tasks increasing level of diffi-
culties: sequence of binary numbers, integers, float-
ing point numbers, linear functions and periodic func-
tions. Real-world applications will be studied in our
future work.

3.1 Binary Patterns

This is the simplest problem where all the data points
are either 0 or 1. One input sequence consists of six
time-units worth of data, from t0 the current value,
to t5 the value recorded 5 time-units ago. There are
two types of patterns to be separated here. Negative
means no change occurred during a period of six time-
units. Positive means there is a change either from 0
to 1, or from 1 to 0 at any time within that period.

Note, in a positive sample, the point of change is
not important, because detecting a change should not
rely on a particular sampling position. For example,
using one second as the time unit, a change occurring
at 100th second should be captured by a 6-unit sam-
pling window at multiple positions, from the 101st
second to the 105th second. The direction of such
change (either increase or decrease) is also not im-
portant. Multiple changes within one period such as
001100 are not considered here. Some examples are
illustrated in Figure 2.

CRPIT Volume 122 - Computer Science 2012

58

t5 t4 t3 t2 t1 t0 CLASS

5 5 6 6 6 6 Positive
7 100 100 100 100 100 Positive
1000 1000 1000 1000 100 100 Positive
6 6 6 6 6 6 Negative
100 100 100 100 100 100 Negative

Figure 3: Examples of Binary Pattern

t1 t0 CLASS

-12 -11.49 Positive
5.4 8.6 Positive
-5.63 -5.947 Negative
2233.2 2233 Negative

Figure 4: Examples of Floating Point Pattern
(Threshold = 0.5)

3.2 Integer Patterns

The task here is very similar to the binary pattern,
but the data points are integers with no restriction
on the value. The length of a window is again 6 time-
units. Any single change in values is considered as
Positive while Negative means no changes. The total
numbers of possible negatives and positives are enor-
mous. Therefore a generalized rule to differentiate
these two patterns is highly desirable. Examples are
shown in Figures 3.

3.3 Floating-point Numbers with Threshold

The data points here are floating point numbers. Ad-
ditionally a threshold is introduced. In real world
applications, values which are close enough are of-
ten considered identical. Ignoring minor differences
would be an advantage under this kind of circum-
stances. A hyper-sensitive detector would be equally
bad as an insensitive one if not worse. Therefore data
points with variations below a threshold are consid-
ered negatives. Otherwise they are positives.

Two types of tasks are studied. The simple ver-
sion uses a window of length 2. Variations below 0.5
are considered no change. The other version uses a
window of length 6, which is the same as the the one
for binary and integer patterns. The threshold here
is bigger as well, which is 5. Examples are shown in
Figures 4 and 5.

3.4 Sine Waves and Random Numbers

In many real world scenarios no changes does not nec-
essarily mean a constant value. Regular variations
can be considered normal as well, for example the
electric charge of alternating current. Under such cir-
cumstances, simply finding the existence of variation
is not enough. Here a sine wave with an amplitude of
100 is used to generate negative samples, while posi-

t5 t4 t3 t2 t1 t0 CLASS

7 1000 239 1000 43.9372 1000 Positive
4 9.21 4.3 6.23 5.4 7.32 Positive
1 -0.3 0.94 2.953 0.32 2.04 Negative
2232.2 2233 2231 2232 2231.3 2333 Negative

Figure 5: Examples of Floating Point Pattern
(Threshold = 5)

Figure 6: A Sine Wave: y = 100 × sin(x) and A
Random Sequence

Figure 7: A Sine Wave: y = 100× sin(x) and A Step
Function

tive samples are randomly generated numbers in the
range of [−100, 100].

These data points can be visualized in Figure 6.
For sine waves, values are taken at intervals of 15
degrees. To enable the learning process to capture
the characteristics of a sine wave, 3π e.g. one and a
half periods of data are included. This means that
each sample contains 37 consecutive points sampled
along the time line. This is much bigger than that in
the previous tasks.

Note that only one sine wave is shown in Figure 6.
Sine waves could start from different phases. There-
fore negative samples consist of a collection of sine
waves with 15 degree shift. So all the negative sam-
ples are different. A good model should consider them
as the same class, but report random sequences as
anomalies.

3.5 Sine Waves and Other Periodical Func-
tions

The previous task might be not challenging enough as
the random sequence has no regularities at all while
the sine waves do. This could provide hints for a
learning process. So other periodic functions are in-
troduced as positives here. They are shown in Fig-
ures 7 and 8. The first is a step function which has
oscillating values from 100 to -100. The second is a
triangle wave of which the value varies from 100 to
-100 as well. Furthermore all these functions have an
identical frequency. Samples of both negatives and
positives are taken with 15 degree shifts. Hence all
samples for the step function and the triangle func-
tion are different.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

59

Figure 8: A Sine Wave: y = 100 × sin(x) and A
Triangle Function

Figure 9: Target Sine Wave: y = 100 × sin(x) (in
dotted curve) and Other Sine Waves

3.6 Different Sine Waves

To make the task even more challenging, different sine
waves are mixed in this dataset. As shown in Figure
9, one particular sine wave is set as the target while
other Sine waves with different frequencies and am-
plitudes are marked as negatives.

3.7 Patterns with Noise

Often signals in application would contain noise. To
investigate how noisy data are handled by different
learning methods, we add random noise to the pat-
terns described in Section 3.5 and Section 3.6. The
range of noise is in between [−1, 1].

4 Methodology and Experiments

The GP method is briefly described in this section.
Table 1 shows the function set we used. In addition to
basic arithmetic operators, conditional operators are
included to perform value comparison. The terminal
set simply contains the input variables and random
constants.

Table 3 shows the runtime parameters of our ex-
periments. One objective of this study is to obtain so-
lutions which are human comprehensible, so we could
understand the learned models. Therefore a relatively
small tree depth is used. Furthermore the population
size is rather small because we aim to use as few eval-
uation as possible.

For comparison purposes a number of classical
classifiers were used for all the tasks described above.
OneR is the simplest classifier which builds rules
based on one attribute(10). IBk is an instance based

Table 1: GP Function Set
Function Return Type Arguments

+ Double Double,Double
- Double Double,Double
× Double Double,Double
/ Double Double,Double
if Double Boolean,Double,Double
> Boolean Double,Double
< Boolean Double,Double

Table 3: GP Runtime Parameters
Maximum Depth of Program 10
Minimum Depth of Program 2
Number of Generations 100
Population Size 10
Mutation Rate 5%
Crossover Rate 85%
Elitism Rate 10%

algorithm which classifies the target according to its
closest neighbour in feature space(13). The k value
is 1 in all experiments. NaiveBayes is a probability
based classification method(12). J48 generates de-
cision trees based on the information gain of each
attribute(11). Instead of using one classifier, multiple
classifiers could be combined as an ensemble to im-
prove the performance. Therefore AdaBoost was also
used (14). For each task, the best performer, either
OneR, or J48, or NaiveBayes or IB1, is selected as the
base classifier in AdaBoost.

For each task the same set of examples are sup-
plied to GP and to other methods for training and
test. All data sets include both positive and nega-
tive cases. The number of both cases for each task is
listed in Table 2. Two thirds of data were for training
and one third for test. Table 4 lists the test accura-
cies achieved by all these methods on various tasks,
numbered from No.1 to No.11. Each row in the table
represents the results obtained by different methods
for one particular task . GP solutions were evolved
at least ten times. The test accuracies under GP are
results from the best individuals.

As shown in Table 4, GP consistently outper-
formed the classical methods. There were only two
cases that these methods could match GP: AdaBoost
for binary patterns and instance-based learning (IB1)
for differentiating sine wave and sequences of ran-
dom numbers. All these methods performed poorly
on handling floating-point numbers especially when
there are 6 consecutive values (No. 4), while GP still
achieved reasonably high accuracy. These methods
also performed poorly on another rather difficult task,
distinguishing different sine waves (No. 8) while GP
achieved 100% accuracy. Even after adding noise to
patterns, GP was still able to achieve better results
compared to these classical classifiers.

5 Discussion

Most of the GP runs terminated around the 30th
to 50th generations because a perfect solution was
found. This suggests that the representation de-
scribed earlier is appropriate for recognizing these
patterns, so solutions could be found quickly.

To understand the behavior of evolved programs
we examined some of the best individuals. Although
most of these programs are not quite comprehensible,
such analysis does provide some insights. For the sim-
ple version of floating-point numbers (No.3, 2 units,

CRPIT Volume 122 - Computer Science 2012

60

Table 2: Number of Positive and Negative Instances for Each Task
Positive Instances Negative Instances

1. Binary Pattern 10 2
2. Integer Pattern 52 10
3. Floating-Point (2 Units) 37 25
4. Floating-Point (6 Units) 37 25
5. Sine Wave vs. Random Numbers 101 24
6. Sine Wave vs. Step Function 127 24
7. Sine Wave vs. Triangle Wave 144 24
8. Different Sine Waves 134 24
9. Sine Wave vs. Step Function(With Noise) 127 24
10. Sine Wave vs. Triangle Wave(With Noise) 144 24
11. Different Sine Waves(With Noise) 134 24

Table 4: Test Accuracies in Percentages(%)
OneR J48 NBayes IB1 AdaBoost GP

1. Binary Pattern 83.3 83.3 83.3 83.3 100 100
2. Integer Pattern 85.71 85.71 85.71 90.48 90.48 100
3. Floating-Point (2 Units) 76.19 61.9 57.14 66.67 76.19 100
4. Floating-Point (6 Units) 69.23 61.54 60.97 53.85 53.85 92.68
5. Sine Wave vs. Random Numbers 86.05 79.07 81.4 100 95.35 100
6. Sine Wave vs. Step Function 88.68 88.68 50.94 92.45 92.45 100
7. Sine Wave vs. Triangle Wave 86.2 81.03 56.9 89.66 89.66 100
8. Different Sine Waves 11.76 41.18 43.53 78.82 82.35 100
9. Sine Wave vs. Step Function(With Noise) 52.83 88.68 50.94 92.45 92.45 98.11
10. Sine Wave vs. Triangle Wave(With Noise) 79.31 87.93 56.9 89.66 89.66 94.34
11. Different Sine Waves(With Noise) 17.65 40 43.53 78.82 82.35 92.94

threshold 0.5), one program behaves like this:

(t1 − t0 < 1)?Negative : Positive (1)

The decision is simply based on the difference between
the two values. For separating sine waves and random
numbers (No. 5), one best program is effectively

(t4 + t16 == 0)?Negative : Positive (2)

The distance between t4 and t16 is exactly π, half of
the period. Therefore the sum of these two values
on a sine wave should be always zero regardless the
phase of the wave. This suggests that the evolved GP
program did capture a defining characteristic of the
periodic function.

One might argue that given appropriate features
such as calculating difference between consecutive
points, finding the frequency by Fourier transform
and so on, the other methods could perform equally
well. Certainly such processes would be helpful for
learning. However as discussed before, such a process
requires domain knowledge from human experts who
understand the problem itself. Automatically gener-
ating optimal features for the task in hand is often dif-
ficult. Additionally it can not be generalized for other
problems. There is no universal feature set which is
suitable for all kinds of patterns. GP combines the
feature finding and classification process together.

6 Conclusion and Future Work

A Genetic Programming based method is presented
in this study for learning time series patterns. Eleven
groups of patterns with increasing difficulties were
used to evaluate this GP method. In comparison
with five well known machine learning methods: a
rule based classifier, a decision tree classifier, a Naive
Bayes classifier, an instance based classifier and Ada
Boosting, the evolved programs achieved perfect ac-
curacies on most of the tasks and consistently out-
performed the other classifiers. We conclude that the

presented GP method is suitable for learning time se-
ries patterns. This method has clear advantages, as
it is capable of finding characteristics directly on raw
input to differentiate various patterns rather than on
manually defined features. No extra process is re-
quired by this method. Additionally it is capable of
handling noisy data input.

Our future work will go beyond a single variable
because in many scenarios such as climate change and
video analysis, one must be able to handle multiple
variables which may or may not be independent to
each other. Another extension is treating monotonic-
ity as a pattern, so a “normal” variable should always
be stable or change in one direction and never oscil-
late. Mixtures of multiple patterns is another area to
explore, such as a step function on top of a sine wave.
This method will be applied on real world applica-
tions in the near future.

References

[1] Sutton, R.S.: Learning to predict by the meth-
ods of temporal differences, Machine learning,
vol. 3, pp.9–44 (1988)

[2] Koza, J.R.: Genetic programming I:On the pro-
gramming of computers by means of natural se-
lection, vol. 1, MIT press(1996)

[3] Byron B. and Geoffrey J. G.: Predictive State
Temporal Difference Learning, Proceedings of
Advances in Neural Information Processing Sys-
tems 24(2010)

[4] M. A. Kaboudan: Spatiotemporal Forcasting of
Housing Price By Use of Genetic Programming,
the 16th Annual Meeting of the Association of
Global Business,2004

[5] Andy S. and Brian P.: Study of GP represen-
tations for motion detection with unstable back-

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

61

ground, IEEE Congress on Evolutionary Com-
putation (2010)

[6] Magnus L. H. and Pal S.: Temporal Rule Discov-
ery using Genetic Programming and Specialized
Hardware, Proceedings of the 4th International
Conference on Recent Advances in Soft Comput-
ing (2002)

[7] Oltean, Mihai:Liquid State Genetic Program-
ming, Proceedings of the 8th international con-
ference on Adaptive and Natural Computing Al-
gorithms (2007)

[8] Georg D.:Neural Networks for Time Series Pro-
cessing, vol. 6, pp.447-468, Neural Network
World, 1996

[9] Aranildo R. L. J.and Tiago A. E. F.: A hybrid
method for tuning neural network for time series
forecasting, pp.531–532, Proceedings of the 10th
annual conference on Genetic and evolutionary
computation, 2008

[10] R.C. Holte: Very simple classification rules per-
form well on most commonly used datasets,vol.
11, pp.63–91, Machine Learning, 1993

[11] Ross Quinlan: C4.5: Programs for Machine
Learning, Morgan Kaufmann Publishers, 1993

[12] George H. J, Pat L.: Estimating Continuous Dis-
tributions in Bayesian Classifiers, Eleventh Con-
ference on Uncertainty in Artificial Intelligence,
pp.338–345, 1995

[13] D. Aha, D. Kibler: Instance-based learning algo-
rithms, vol. 6, pp.37–66, Machine Learning 1991

[14] Yoav Freund, Robert E. S.: Experiments with a
new boosting algorithm, pp.148–156,Thirteenth
International Conference on Machine Learn-
ing,1996

CRPIT Volume 122 - Computer Science 2012

62

ERA Challenges for Australian University ICT

Paul A. Bailes
School of Information Technology and Electrical Engineering The University of Queensland QLD 4072 Australia

Chair, Computer Systems and Software Engineering Technical Board, Australian Computer Society

paul@itee.uq.edu.au

Abstract

The ERA 2010 rankings reflect badly on Australian

university ICT performance, especially by comparison

with some likely benchmark disciplines, for reasons not

exclusively under the control of ICT researchers, groups

or schools. As a result nevertheless, the future of

Australian academic ICT is under threat of reduced

government funding, from diminished international

reputation and from university reaction. Changes to ERA

for 2012 may ameliorate the position somewhat, but

continued complementary and concerted action by

individuals, institutions and professional organisations

such as ACS, CORE and others remains imperative.

Keywords: ACS, ARC, CORE, ERA, NICTA, RAE,

REF, RQF

1 Introduction

The purpose of this paper is to raise awareness among the

Australian Computer Science academic and research

community about the threats posed to Australia’s higher

education capabilities in ICT research and teaching by the

Excellence in Research for Australia (ERA) scheme and

especially the results of the 2010 exercise. In particular,

we consider how these threats may conceivably originate

in ERA’s and universities’ treatment of ICT, and what

kind of cooperative action could lead to win-win

outcomes for all concerned.

It is not our purpose to rehash or to engage in the

controversies surrounding ERA, but some history is

useful. ERA may be thought to have its origins in the UK

Research Assessment Exercise (RAE) and its proposed

successor Research Excellence Framework (REF) as

currently documented at the REF website

http://www.hefce.ac.uk/Research/ref/. RAE has been

conducted approximately 5-yearly since 1986, and REF

has been envisaged to commence in 2014. Academic

disciplines at UK universities have been ranked on a

number of measures, primarily by the outputs of

continuing academics, and the published rankings impact

variously upon government funding and institutional

reputation. Some of the improvements reflected by REF

can be identified in ERA, including the use of

Copyright © 2012, Australian Computer Society, Inc.

This paper appeared at the 35th Australasian Computer

Science Conference (ACSC 2012), Melbourne, Australia,

January-February 2012. Conferences in Research and

Practice in Information Technology (CRPIT), Vol. 122.

M. Reynolds and B. Thomas, Eds. Reproduction for

academic, not-for profit purposes permitted provided this

text is included.

bibliometric quality indicators.

Australia’s ERA was preceded by the abortive

Research Quality Framework (RQF), and (like REF over

RAE in the UK) ERA promised more accurate measures

of research quality, especially metrics (Department of

Innovation, Industry, Science and Research, 2008).

Implementation of ERA in 2010 was preceded by a trial

in 2009 involving research grouped into two “discipline

clusters”: Physical and Chemical Sciences; and

Humanities and Creative Arts.

2 ERA 2010 Processes

The full ERA was consequently conducted during 2010

according to the following broad parameters, sourced

from ARC’s ERA 2010 Evaluation Guidelines

(Australian Research Council, 2010).

2.1 Terms of assessment

A wide range of objects of assessment (see below) were

assessed across eight discipline clusters (Cluster Five—

Mathematical, Information and Computing Sciences

being most relevant to ICT as we shall see). Within each

cluster, research was classified and assessed in terms of

“disciplines” as per the four-digit and two-digit Fields of

Research (FoRs) as identified in the Australian and New

Zealand Standard Research Classification (ANZSRC)

(Australian Bureau of Statistics, 2008). The “four digit”

disciplines represent specialisations of the “two digit”

disciplines; in particular the latter subsumed the former

and additionally material that did not meet quantity

thresholds for assessment under the former was

nevertheless eligible for assessment under the latter. The

two-digit FoR code 08 Information and Computing

Sciences was most applicable to ICT, though several

others were more or less applicable. The following lists

the most relevant:

 08 Information and Computing Sciences

o 0801 Artificial Intelligence and Image

Processing

o 0802 Computation Theory and Mathematics

o 0803 Computer Software

o 0804 Data Format

o 0805 Distributed Computing

o 0806 Information Systems

o 0807 Library and Information Studies

o 0899 Other Information and Computing

Sciences

 10 Technology

o 1005 Communications Technologies

o 1006 Computer Hardware

Some ICT research may also have been classified under

0906 Electrical and Electronic Engineering.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

63

http://www.hefce.ac.uk/Research/ref/

It must be noted that it was outputs that were classified

not researchers; and some outputs from ICT researchers

would have been classified under other codes, especially

interdisciplinary work where ICT was an enabling

technology. This was because outlets (not publications)

were assigned FoR codes, so that an essentially computer

science publication in an application domain journal or

conference would have been recognised under the FoR

code(s) of the application domain, not 08 etc.

Each university’s submission under the above

framework (at the two- and four-digit levels) constituted a

“Unit of Evaluation” (UoE) against which a university’s

performance was assessed and published. In order

however to be assessed, a unit’s output had to meet a

threshold over the six-year period of evaluation – for all

of the ICT disciplines listed above, (both two-and four-

digit codes) this was 50 articles in journals (not

conferences) recognised under the ranking scheme (see

below) over the period of assessment (see below). Thus,

while some four-digit UoEs might not have been assessed

for not meeting the threshold, the research outputs were

still eligible for consideration under the covering two-

digit unit.

2.2 Objects of assessment

Even though ranked journal publication outputs provided

the exclusive qualification for meeting thresholds, a rich

set of objects were considered when assessing research

performance in a UoE.

 Research Outputs (primarily books/chapters, journal

articles, conference papers in selected disciplines

including 08 Information and Computing Sciences)

for a six-year period: 1 January 2003–31 December

2008

 Research Income (in terms of HERDC categories:

Australian Competitive Grants; other public sector

research income; CRC income) for a three-year

period: 1 January 2006–31 December 2008

 Applied Measures (research commercialisation

income, patents, registered designs, plant breeder’s

rights and NHMRC endorsed guidelines) for a three-

year period: 1 January 2006–31 December 2008

 Esteem Measures (fellowships, board/committee

memberships) for a three-year period: 1 January

2006–31 December 2008.

2.3 Subjects of assessment

Even though assessments of research outputs were not

organised around individual producers of research, a

credible affiliation with a university for the period of

assessment needed to be demonstrated for an individual’s

research (objects as summarised above) to be considered:

 on the census date of 31 March 2009, to have been a

paid employee or in some other relationship,

including as a visiting academic; and

 if not a paid employee, to have that affiliation

substantiated by a publication association.

A researcher’s affiliation on the census date

determined the university to which credit for the objects

of assessment was allocated; but for non-paid employees,

only publications that explicitly cited that university were

included in the assessment.

2.4 Criteria of research output assessment

Research outputs (publications) were included for

assessment only if in recognised outlets. Recognised

outlets were ranked according to criteria as follows:

A* (journals only): one of the best in its field or

subfield; typically covering the entire field/subfield; all or

nearly all papers will be of a very high quality where

most of the work shapes the field; acceptance rates will

typically be low and the editorial board will be dominated

by field leaders, including many from top institutions

(leaving aside the question of circularity raised by the last

point).

A: Tier A journal (or conference) will mostly be of

very high quality and would enhance the author’s

standing, showing they are engaged with the global

research community; journal acceptance rates will be

lowish and editorial boards will include a reasonable

fraction of well known researchers from top institutions;

conference acceptance rates will be low and program

committee and speaker lists will include a reasonable

fraction of well known researchers from top institutions,

with a high level of scrutiny by the program committee to

discern significance of submissions.

B: Tier B journals (or conferences) will have a solid,

though not outstanding, reputation; for journals, only a

few papers of very high quality would be expected; they

are often important outlets for the work of PhD students

and early career researchers; journals are further typified

by regional outlets with high acceptance rates, and

editorial boards that have few leading researchers from

top international institutions; conferences are typically

regional conferences or international conferences with

high acceptance rates.

C: Tier C includes quality, peer reviewed, journals (or

conferences) that do not meet the criteria of the higher

tiers; but are nevertheless worthy of consideration in

ERA. Outputs that do not achieve a C ranking are not

considered at all.

As well as the ranking of the outlet, publications were

assessed by citation count. Verbal testimony to the author

was that citations took priority over journal rankings –

one may speculate that for more recent publications

where citations might as yet be unlikely, outlet rankings

served as a proxy.

While the ranking scheme commands admiration as an

open and accountable basis for assessing the quality of

research outputs, and importantly as a target for

institutional- and self-improvement, it has attracted fair

criticism for the errors and omissions that risk inducing

distorted behaviours by academics and institutions

seeking to maximise their ERA outcomes. In her report of

the demise of rankings for ERA 2012 (see further

discussion below), Rowbotham (2011) gives some typical

examples of these.

2.5 Results of assessment

Results for each UoE were expressed in a six-point rating

scale.

5 : The UoE profile is characterised by evidence of

outstanding performance well above world standard

presented by the suite of indicators used for evaluation.

4 : The UoE profile is characterised by evidence of

CRPIT Volume 122 - Computer Science 2012

64

performance above world standard presented by the suite

of indicators used for evaluation.

3 : The UoE profile is characterised by evidence of

average performance at world standard presented by the

suite of indicators used for evaluation.

2 : The UoE profile is characterised by evidence of

performance below world standard presented by the suite

of indicators used for evaluation.

1 : The UoE profile is characterised by evidence of

performance well below world standard presented by the

suite of indicators used for evaluation.

n/a: Not assessed due to low volume. The number of

research outputs did not meet the volume threshold

standard for evaluation in ERA.

Assessments were undertaken for each four- and two-

digit disciplinary (FoR code) unit for which the output

threshold (50 journals) was achieved.

3 ERA 2010 Outcomes for ICT

Outcomes for Australian university ICT in ERA 2010

were not without successes, but it is arguable that the

overall performance was less than desirable. The source

for all our data is the ERA 2010 outcomes summary

published by The Australian (Hare, 2011).

3.1 ICT research performance

Raw data of ICT research scores in 2010 ERA is

summarised in Table 1. It includes the results that

contributed to Cluster Five - Mathematical, Information

and Computing Sciences, i.e. FoR code 08 (Information

and Computing Sciences) and its sub-disciplines, and the

subdisciplines of FoR code 10 (Technology) most

applicable to ICT.

3.2 Benchmark analysis of ICT research

performance

Because of the evident dominance of FoR code 08

Information and Computing Sciences (ICS) and its

constituent (sub-) disciplines in evaluated (i.e., above-

threshold) ICT research, these data will be the focus of

our comparison between ICT other disciplines. Table 2

compares overall ERA outcomes in ICS (2-digit level 08)

with those of some benchmarks in science and

engineering with which ICT is likely to be compared by

interested parties.

The message sent by table 2 is that as measures of

increasing comparable quality are taken into account, ICT

research performs increasingly badly against its likely

benchmarks:

 Generally somewhat fewer universities managed to

meet ERA performance thresholds in ICT

 The discrepancy becomes ever more-pronounced in

more specialised areas (4-digit FoR codes)

 The discrepancy is likewise more-pronounced as

higher levels of achievement against world

benchmarks are reflected. Thus: while ICT research

is at least of world standard at approximately 66% of

the number of universities at which

science/engineering is, when we progress to a level

of at least above world standard, the relative

percentage for ICT drops to 50%; and when we

progress to a level of well above world standard, the

relative percentage drops to close to 5%.

 This impression of ICT’s relative poor performance

to likely benchmarks is corroborated by the

comparison of ICT scores with university averages:

ICT research scored at or above average results at

approximately only 20% of universities, whereas

science/engineering performed at or above average

results in approximately 45% of universities. It is

clear that in many cases, poor ICT scores contributed

to poorer-than-otherwise university outcomes.

Moreover, in the relatively few cases where ICT

performed at or above average, that was largely in

the context of overall poor performance by the

relevant university. There were only three at-or-

above-average results for ICT where the university as

a whole performed at or above world standard.

3.3 Bases for Poor ERA Outcomes for ICT

A number of factors may have combined to give these

disappointing results.

a) The relative fine granularity of FoR codes pertaining

to the ICS discpline would generally have diminished

the relative performance of ICS compared to other

broad disciplines. For example, the entire field of

Engineering was also covered by a single two-digit

code, whereas substantial sub-disciplines (e.g.

Chemical, Civil, Electrical Engineering) had only

four-digit codes. Further, this fine granularity for ICS

would have militated against the achievement of

thresholds especially at four-digit level, though

failure to register at four-digit level did not

necessarily preclude a good result, e.g. RMIT

achieved a two-digit score of 3 without having met

any four-digit thresholds.

b) ICT is particularly at risk of being submerged into

other disciplines, especially in view of its role as a

fundamental enabling technology for contemporary

scholarship in life sciences and the humanities, and

not just in the engineering and physical sciences.

Because FoR codes were assigned to outlets (journals

or conferences) rather than specific publications,

publishing a computer science breakthrough in its

application context would have led to no recognition

of the publication as a computer science contribution

(08 FoR-coded). For example, a data mining

breakthrough published in a life sciences journal

would have been recorded under FoR codes 03, 05 or

06. Moreover as noted, some ICT fields were

classified under “Engineering” or “Technology”

(communications or hardware).

c) The citation coverage service used by the 2010 ERA

(Scopus) is frequently claimed not to cover ICT well,

nor conferences.

d) The exclusion of conferences from threshold counts

is inconsistent with including conferences in the

overall ICT research outputs.

e) Research performance was measured against

international benchmarks of university quality and

quantity output, and was not pro-rated for small units

(viz. the firm threshold of 50 ranked journal articles).

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

65

 O’all

Avg.*

08 0801 0802 0803 0804 0805 0806 0807 0899 1005 1006

ACU 1.91 - - - - - - - - - - -

ANU 4.38 5 5 3 - - - - - - - -

Batchelor - - - - - - - - - - - -

Bond 1.91 - - - - - - - - - - -

CQU 1.54 - - - - - - - - - - -

CDU 2.33 - - - - - - - - - - -

CSU 1.88 1 - - - - - - - 2 - -

Curtin 2.50 2 - - - - - - - - - -

Deakin 2.41 1 - - - - - - - - - -

ECU 2.06 2 - - - - - - - - - -

Flinders 2.44 - - - - - - - - - - -

Griffith 3.00 3 3 - - - - - - - - -

JCU 2.47 - - - - - - - - - - -

Latrobe 2.62 1 - - - - - - - - - -

MQ 3.24 3 - 3 - - - - - - - -

MCD 3.00 - - - - - - - - - - -

Monash 3.45 3 3 - - - - 3 - - - -

Murdoch 2.65 - - - - - - - - - - -

QUT 3.09 4 - - - - - 5 4 - - -

RMIT 2.61 3 - - - - - - - - - -

SCU 1.85 - - - - - - - - - - -

Swinburne 2.24 3 - - - - - - - - - -

U.Adelaide 3.55 3 4 - - - - - - - - -

U.Ballarat 1.56 - - - - - - - - - - -

U.Canberra 2.14 - - - - - - - - - - -

U.Melb 4.33 4 3 - - - - 4 - - 5 -

UNE 2.31 - - - - - - - - - - -

UNSW 4.04 4 3 - 4 - 4 3 4 - - -

U.N’cle. 2.71 2 - 3 - - - - - - - -

U.ND 1.33 - - - - - - - - - - -

UQ 4.17 3 3 - - - - 4 - - -

UniSA 2.61 2 - - - - - - - - - -

USQ 2.00 - - - - - - - - - - -

U.Sydney 3.83 4 4 - - - - - - - 3 -

UTas 2.81 - - - - - - - - - - -

UTS 2.95 3 2 - - - - 3 - - - -

USC 1.44 - - - - - - - - - - -

UWA 3.64 3 - - - - - - - - - -

UWS 2.48 1 - - - - - - - - - -

U.W’gong 2.71 2 - - - - - - - - - -

VU 1.71 2 - - - - - - - - - -

* “O’all Avg.” refers to the overall institutional average.

Table 1: ERA 2010 results for ICT disciplines

CRPIT Volume 122 - Computer Science 2012

66

 ICS Biology Engineering Maths Physics

scored at all (2-

digit FoR at

least)

24 34 31 25 24

also scored one

or more 4-digit

FoR

13 27 24 21 19

also scored two

or more 4-digit

FoR

8 24 19 17 15

also scored

three or more 4-

digit FoR

2 21 17 11 12

scored at or

above world std

(score 3 or

greater)

14 23 22 18 20

scored above

world std (score

4 or greater)

5 11 9 8 12

scored well

above world std

(score 5)

1 8 3 2 8

scored at or

above uni.

average

8 21 16 16 18

Table 2: ERA 2010 outcomes for ICT disciplines c.f. other science and engineering

f) The significant decline in Australian university ICT

academic staff numbers since 2000 must therefore

have impacted significantly on the evaluation, as

successive rounds of redundancies have seen the

departure of numerous productive research

personnel, recalling that individuals needed to have a

demonstrable association with a university by the 31

March 2009 census date for their research output for

the 2003-2008 period to be attributed to that

university. Some university ICT organisational units

lost of the order of 50% of their academic staff- at

that scale of retrenchment, it is difficult not to lose a

number of research-capable staff, and anecdotal

evidence supports the contention that a significant

number of high-achievers took the opportunity to

take effective early retirement.

g) The significant national investment in university-

derived ICT research represented by NICTA goes

unrecognised because NICTA-funded staff are

employed directly by NICTA rather than by

universities funded from NICTA. This contradicts

the normal pattern of Australian research funding.

While the past downsizing is beyond the control of the

ARC, the above catalogue (items a-e) suggests that the

current ERA system includes pitfalls that need to be taken

into account when attempting to modify organisational

and individual behaviours to optimise future ERA

outcomes.

4 Impact of Poor ERA Outcomes for ICT

These poor outcomes place university ICT at risk in

various ways.

4.1 Funding threats
ERA is part of the wider Sustainable Research

Excellence in Universities (SRE) initiative which aims to

compensate for the gap in funding for the indirect costs of

university research, including hitherto uncosted items

such as proportions of academic staff salaries, and more

realistic costing of technical and administrative research

infrastructure (for broad information see the SRE Website

http://www.innovation.gov.au/Research/ResearchBlockG

rants/Pages/SustainableResearchExcellence.aspx).

Following a trial in 2010 for funding allocation in

2011, SRE funding will in future be contingent upon

ERA performance: approximately 67% of the funding

available under the scheme (“Threshold 2”, worth approx.

$81M across the sector in 2011) is at stake in future

(Department of Innovation, Industry, Science and

Research, 2011). SRE extends the existing RIBG

(Research Infrastructure Block Grants) and it is not

inconceivable that RIBG may be rolled into SRE in

future.

$81M distributed across 41 universities on the basis of

ERA outcomes is barely significant and probably

approaches the overall university- and government-side

costs of administering the exercise. However, now that

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

67

http://www.innovation.gov.au/Research/ResearchBlockGrants/Pages/SustainableResearchExcellence.aspx
http://www.innovation.gov.au/Research/ResearchBlockGrants/Pages/SustainableResearchExcellence.aspx

the principle of “excellence”-based distribution of public

funds has been established, influential forces will be at

work to increase its impact in future. It can be assumed

that whatever revenue is earned by universities as a result

of ERA will largely return to the research-successful

disciplines that “earned” same.

4.2 Reputational threats

While direct ERA-based public funding remains

relatively insignificant, the early impact of ERA on other

sources of funding and other enablers of university

effectiveness could be significant.

 In the absence of a national teaching assessment,

ERA is likely to serve as a proxy for overall rankings

and thus become critical to Australian universities’

profiles as destinations for international fee-paying

students at all levels. For example,

http://www.australian-universities.com/rankings/ lists

a number of rankings of Australian universities, with

ERA-derived rankings prominently displayed (and

by virtue of the level of detail supplied, apparently

most authoritative as well). In view of the

dependence of Australian universities on

international student numbers (some over 50% - see

http://www.students.idp.com/study/australian_univer

sities.aspx), the budget impact of same being

heightened by the excess of international student fees

charged by many universities over government

subsidies for domestic students.

 In view of the emphasis placed on research

achievement in academics’ career development and

prospects, the poor research rating of Australian

university ICT will act a strong disincentive for ICT

academics to consider Australian universities: top

international researchers will be less likely to

consider Australia; and top Australian researchers

will be tempted increasingly to pursue their careers

overseas. The threat to Australian ICT research

capacity is obvious, but the threat also applies to the

quality of ICT education: while the research-teaching

nexus may in some cases be exaggerated, it is

undoubtable that a significant number of advanced-

level Australian ICT courses benefit from being

taught by active researchers in the relevant fields;

and while there may be some truth to the stereotype

of the brilliant but inarticulate researcher, it is often

the case that excellent academics excel in both

dimensions of endeavour – teaching as well as

research. Any threat to the attraction and retention of

excellent ICT researchers in Australian universities is

a real threat to Australian ICT education.

 In similar vein, any detraction from the appeal of

Australian universities to prospective research

students (masters and PhD) will further detract from

the appeal of Australian universities to research

academics and will in itself substantially impact upon

Australian universities’ research capacity. In view

that the global market for PhD students is becoming

one in which top students are awarded fee waivers or

equivalent scholarships, these threats are probably

more significant in the long run than any impact on

fee income from this class of student.

4.3 Internal threats

The financial and reputational pressures upon universities

(see above) to improve their ERA scores could

conceivably have beneficial impact upon ICT, as

universities seek to remedy deficiencies made apparent

by ERA.

On the other hand, one may not unreasonably fear that

universities may be tempted consider other options to

improve their ERA scores, not necessarily to ICT’s

advantage. For example, a reasonable strategy that might

be adopted would be for a university to invest in areas

that have demonstrated their potential to perform by

relatively good ERA results, but which have room for

improvement. Under such a scenario, below-average

performances in the ICS disciplines might very well not

meet universities’ criteria for development investment.

Indeed, the temptation to remove resources from “losers”

in order to maximise the further prospects of “winners”

might see a catastrophic decline in ICT’s position in a

number of universities.

Moreover, for universities at which ICT was unrated

(over 40%!), a choice decision now confronts them. Any

effort to put ICT “on the map” runs a considerable risk in

that it will be difficult for universities to determine with

confidence that the result will actually be creditable. An

unrated performance is the result of not meeting the

publication output threshold, and might be transformable

into a rated one by transforming academics’ behaviours to

pursue ranked outlets in future. That is however no

guarantee that the resulting ERA assessment would be

one that the university desires. At the very least, any

future below-average ERA result for ICT is one that is

likely to attract a university’s disapproval.

Finally, it must be emphasised that it is not just

Australia’s ICT research capacity which is under threat in

this way. As well as the broad risk to the quality of

Australian ICT academic staff, the very existence of ICT

as an academic endeavour at some universities may be

under question.

4.4 A vicious cycle threatens

To summarise, Australian university ICT is threatened by

a vicious cycle of poor ERA evaluations leading to

reduced resourcing and reputation leading to reduced

performance leading to poorer ERA evaluations etc.

5 What to Do?

While it may be the case that Australian ICT suffers from

systemic deficiencies, it is essential in the first place that

the picture revealed by the ERA microscope is an

accurate one.

Even though the 2012 ERA exercise has effectively

already begun (reference period for publications was six

years until 31.12.10; census date for staff is 31.3.11 - see

http://www.arc.gov.au/era/era_2012/important_dates.htm

for ERA 2012 Important Dates), various stakeholders

could still usefully engage in (initiate or maintain)

activities that could lead to improved outcomes if not in

2012 then in likely subsequent ERA exercises.

5.1 Changes to ERA 2012

First, reactions in word or deed need to be cognizant of

CRPIT Volume 122 - Computer Science 2012

68

http://www.australian-universities.com/rankings/
http://www.students.idp.com/study/australian_universities.aspx
http://www.students.idp.com/study/australian_universities.aspx
http://www.arc.gov.au/era/era_2012/important_dates.htm

how the ERA rules are evolving.

5.1.1 ICT-specific changes

At the ICT disciplinary level, representations led by

CORE have resulted in two major developments.

 Conferences will be included in the count of outputs

required to meet the publication threshold for a UoE

to be evaluated.

 The quality of ICT publications will be measured by

peer review rather than citations.

While the removal of the current (2010) debatable

basis for citation analyses has to be welcomed, it needs to

be recognised that peer review is not the only option.

Other analyses such as CiteSeer’s (Lawrence et al., 1999)

or Google Scholar http://scholar.google.com.au/ could

conceivably be demonstrated to the ARC as having an

authority for ICT comparable to Scopus for natural

science.

Potentially more risky is the inclusion of conference

outputs in UoE thresholds: at present, unranked UoEs at

least “fly below the radar” and may well attract less

adverse attention than those which are ranked but badly.

Clearly some institutions have perceived this change to be

advantageous, but it may very well be not universally so.

Judgment will however have to be suspended until ERA

2012 results are released and compared to ERA 2010

outcomes.

5.1.2 Overall changes

Changes across the entire ERA 2012 process are outlined

in the ERA FAQ http://www.arc.gov.au/era/faq.htm,

especially:

 abolition of the controversial publication rankings

(Rowbotham, 2011) in favour of a “refined journal

indicator”;

 conferences are not a priori assigned FoR codes;

 more flexible FoR coding will better reflect

interdisciplinary research achievement;

 output thresholds for peer reviewed disciplines will

be aligned with citation-analysed disciplines

(conveniently for ICT)

Instead of recording UoEs’ publications according to

outlet rank, outlets will be listed in order of frequency of

occurrence of publication in the UoE (absolute and

relative), the idea being that assessment panels will be

able thereby to discern if the UoE’s publication profile

represents quality (or not). While it is understandable that

the ARC has resiled from the hitherto inflexible ranking

scheme, it is not clear that that new system will be

without its drawbacks. For example, for UoEs trying to

improve their performance (which is what ERA is all

about, surely), the ranking system at least provided

guidance.

The ARC will continue to maintain a list of admissible

journals and their default FoR codes, but conferences will

be unclassified (and so the idea of a conferences list

becomes somewhat redundant). For ICT, peer review will

apparently be the means by which the quality of

conferences publications is measured.

The obstacle in ERA 2010 to the reflection of

interdisciplinary research achievement (so important for

ICT in its enabling role) was the inflexibility of FoR-

coding of publications. Publication of significant ICT

research in an application area’s journal lead inevitably to

that research being classified according to one of the

application area FoR codes. Under ERA 2012, following

a trial for mathematical sciences in ERA 2010, individual

journal articles will be able to be reassigned to FoR codes

other than that of the journal in which they appear

provided that at least 66% of the paper’s content lies in

the “new” area. For conferences the lack of a priori FoR-

coding reinforces that degree of flexibility.

There may also be an increase in the amount of

information to be submitted for peer review. For ERA

2010 peer reviews, UoEs were required to nominate 20%

of their outputs for submission to the peer review process,

as specified in the ERA 2010 Discipline Matrices see -

http://www.arc.gov.au/xls/ERA2010_discipline_matrices.

xls. For the ERA 2012 consultation process, a figure of

30% is said to have been proposed but the submission

deadline against the Draft ERA 2012 Submission

Guidelines and Discipline Matrix has passed (1 August),

and “Page not found” is the result of attempting to access

http://arc.gov.au/era/era_2012/era_2012_documents.htm.

5.2 What can ICT researchers and groups do?

For the immediate future (i.e. ERA 2012), there is little

that individual researchers can do. For example, the

survey period for publication data has long ago closed

(31.12.10), as have the various ERA 2012 consultation

cutoff dates.

For subsequent ERA-style exercises in the medium/long

term however, a number of lines of development suggest

themselves for attention; some more useful than others.

5.2.1 Focus

It may be tempting for universities especially with

relatively small numbers of ICT researchers to improve

outcomes, especially at the four-digit FoR level, by

concentrating on a very few, maybe even one, research

areas. As well as potentially improved ERA scores, this is

a means by which the issue of critical mass may be

addressed. However there are means by which small

numbers of effective researchers can manage to establish

effective connections (with PhD students, with

collaborators at other institutions, through NICTA).

Further, lack of recognition at ERA four-digit level does

not appear to exclude a good result at two-digits (e.g. the

“world standard” evaluation achieved by RMIT for two-

digit ICS without any four-digit result). Thus, imposition

of a tighter research focus does not in itself seem to be a

priority (as opposed to any which may emerge as a result

of differentiation – see below).

5.2.2 Select

It would be advantageous for selection of publication

outlets needs in future to be much more attuned to ERA

requirements (i.e. listed journals and conferences), noting

that the journal-only threshold for ICT will be relaxed to

include conferences for 2012. For the future, the abolition

of explicit ranks makes it impossible to offer counsel

about the trade-off between pursuing one outlet vs

another. e.g. in terms of chance of acceptance vs. ERA

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

69

http://scholar.google.com.au/
http://www.arc.gov.au/era/faq.htm
http://www.arc.gov.au/xls/ERA2010_discipline_matrices.xls
http://www.arc.gov.au/xls/ERA2010_discipline_matrices.xls
http://arc.gov.au/era/era_2012/era_2012_documents.htm

kudos. Had the journal ranking scheme been retained, it

might have been possible at least to have given advice to

colleagues based on extremes of quality (e.g. A* vs. C). It

should however be noted that it is not clear how much

weight was attached in 2010 to varying kinds of

performance, i.e. higher vs lower ranked outlets, ranking

vs citations, conferences vs journal (other than meeting

the threshold).

Hopefully the refined journal indicators of different

institutions’ UoEs will be published. As well as giving

guidance to the community about what is regarded as

quality publication patterns, this would offer an important

measure of accountability of assessors’ performance.

Other kinds of quality-reflecting behaviours should not

be neglected, e.g. competitive grants and industry

contracts. Senior staff would do well also to pursue

esteem measures such as prestigious fellowships and

memberships of boards. The celebrated unsociability of

ICT experts will need to be overcome.

5.3 What can universities do?

Universities have options other than to wind-down

apparent poorly-performing ERA organisational units.

For the longer-term, a number of lines of development

suggest themselves for attention in parallel with those that

can be undertaken by individuals and research groups.

5.3.1 Differentiate

In the light of possible significant levels of actual

research capability among staff, it does not seem wise to

maintain an even distribution of teaching load in some

cases at relatively high-levels compared to some of the

other more successful ERA disciplines.

5.3.2 Invest

Differentiated workloads for staff on the basis of research

capability represents a significant HR investment, and

would well be matched by other kinds of investment in

ICT research capability. In particular, the prevalence in

the global market for PhD students of fee waivers and

stipends indicates that any perception of (high-quality)

PhD students as a significant source of revenue will have

diminishing validity. Rather, PhD students should be

thought of as relatively high return on investment

research personnel, in a sense as amplifiers of their

supervisors’ capabilities. Needless to say, the more

capable the supervisor, the more effective the

amplification. Other more expensive HR investments

could be considered (such as hiring research “stars”), but

this author is of the opinion that quality PhD students are

the royal road to research productivity. Fee waivers and

living stipends for top-quality PhD students should be

greatly encouraged as a general rule across all disciplines.

For ICT specifically however, it is well past time for

(some) universities to stop treating ICT as a cash cow to

be sent to the slaughterhouse once it’s stopped giving

cream. During the ICT boom of the 1990s, universities as

a whole did very well from the overheads charged on ICT

student income (government subsidies and mostly

international fees), but during the following decade of

downturn ICT organisational units were drastically

pruned proportionate to the drop in revenue. This makes

for an interesting contrast with the treatment of some

other disciplines the research capability of which was

preserved by internal subsidies from universities until

their enrolments problems corrected themselves.

5.4 What can the ICT community do?

Australian ICT leadership groups (particularly ACDICT,

ACS, CORE, ACPHIS and ALIA - see Glossary) have

collaborated to an encouraging degree to improve ICT’s

position for 2012. In particular, the opportunity was taken

jointly to advocate a consensus position to the ARC on

key problem areas cited above (i.e. of citation analyses,

inclusion of conferences in thresholds and flexible

treatment of interdisciplinary research outputs). CORE

undertook to lead the follow-through with evident

success: in each case ERA 2012 will proceed with the

ICT community’s submissions reflected in the changed

procedures also documented above.

It will be important to build upon this unity, and better

to include other key organisations (such as AIIA, EA’s

ITEE College and NICTA), in pursuing some further

ERA-related reforms, such as the following:

 while peer reviewing may yet prove to be to the

satisfaction of all concerned, the viability of

alternative bibliometrics (such as Google Scholar and

CiteSeer) should be explored thoroughly;

 NICTA’s own research personnel should routinely be

found adjunct or honorary appointments in the

university labs with which they are associated;

 the new refined journal indicators for each UoE that

will replace journal rankings in ERA 2012 should be

published for reasons of (i) openness and

accountability, and (ii) exemplifying desirable

patterns of publication behaviour for future

performance improvement across the sector;

 in similar vein, the relative weightings attached by

ERA assessment panels to the various objects of

evaluation should be explicated.

Not all future community action needs however to be

explicitly focussed on ERA processes. In particular,

universities need to receive loud and clear messages from

the ICT community not to adopt hasty and punitive

responses to the flawed assessment of ICT in ERA 2010.

In this regard, it will be essential that the lead is taken by

organisations other than those which may be thought to

have the strongest vested interests, in other words by

professional and industrial bodies such as ACS, AIIA,

ALIA and EA/ITEE rather than academic groups such as

ACDICT, CORE and ACPHIS. More generally, the

industry/professional groups need to be in a position to

advocate for the continued vitality of the research sector

of the Australian ICT scene, which can only be the case if

continued closer contact with them is maintained by

academe.

6 Conclusions

Some process such as ERA is inevitable at this stage in

the development of Australian higher education policy; it

may well not be the case that ERA will be a long-

standing, let alone a permanent feature of the Australian

higher education policy landscape. Coming as it does

however when Australian university ICT is struggling to

CRPIT Volume 122 - Computer Science 2012

70

recover from a severe period of retrenchment, it is

essential that any misunderstandings of ICT research that

it creates and perpetuates do not go unchallenged.

Our main message however is that opportunities for

proactive response to the challenges posed by ERA 2010

are both rich and rewarding:

 rich, in the sense that there is a wide range of

opportunity for individuals, groups, institutions and

the entire ICT community (industry/professional as

well as academe);

 rewarding, in the sense that concerted action to date

has been evidently fruitful.

In particular, the ICT community needs to organise

and communicate better among its constituent parts in

order to secure better outcomes for the whole. If there are

indeed systemic problems with Australian ICT research,

this would likely feature among the means of addressing

them. It is as if the notorious unsociability of the

stereotypical ICT researcher or professional needs as

much remedying at the community level as well as the

individual. If the ERA 2010 “lemon” becomes the

“lemonade” that helps achieve this, we will jointly have

accomplished much more than having scored a victory

(however important) in the government funding game.

7 Disclaimer

The views expressed in this paper are those of the author

alone, and neither of The University of Queensland nor of

the Australian Computer Society.

8 Acknowledgements

Numerous colleagues in the Australian university and

ICT professional community have offered the benefit of

their insights on ERA in the development of the above,

especially CORE President Prof. Tom Gedeon.

Anonymous referees’ suggestions have improved the

presentation greatly.

9 References

Australian Bureau of Statistics (2008): Australian and

New Zealand Standard Research Classification,

http://www.abs.gov.au/ausstats/abs@.nsf/0/4AE1B46A

E2048A28CA25741800044242?opendocument,

accessed 23 August 2011.

Australian Research Council (2010): ERA 2010 Evalua-

tion Guidelines,

http://www.arc.gov.au/pdf/ERA2010_eval_guide.pdf,

accessed 23 August 2011.

Australian-Universities.com (undated): Rankings of

Australian Universities, http://www.australian-

universities.com/rankings/, accessed 24 August 2011.

Department of Innovation, Industry, Science and

Research (2008): New Era for Research Quality,

http://minister.innovation.gov.au/Carr/MediaReleases/

Pages/NEWERAFORRESEARCHQUALITY.aspx,

accessed 23 August 2011.

Department of Innovation, Industry, Science and

Research (2011): Consultation Paper on Options for the

Inclusion of ERA in SRE Funding Allocation Model,

http://www.innovation.gov.au/Research/ResearchBlock

Grants/Documents/SREConsultationPaperInclusionofE

RA.pdf, accessed 24 August 2011.

Department of Innovation, Industry, Science and

Research (undated): ERA 2010 Discipline Matrices

http://www.arc.gov.au/xls/ERA2010_discipline_matric

es.xls, accessed 26 August 2011

Department of Innovation, Industry, Science and

Research (undated): Sustainable Research Excellence

http://www.innovation.gov.au/Research/ResearchBlock

Grants/Pages/SustainableResearchExcellence.aspx,

accessed 23 August 2011

Department of Innovation, Industry, Science and

Research (undated): ERA 2012 Important Dates

http://www.arc.gov.au/era/era_2012/important_dates.ht

m, accessed 26 August 2011

Department of Innovation, Industry, Science and

Research (undated): Frequently Asked Questions

http://www.arc.gov.au/era/faq.htm, accessed 26 August

2011

Google Corp (undated): Google Scholar

http://scholar.google.com.au/, accessed 26 August 2011

Hare, J. (2011): Elite eight head university research

ratings. The Australian Jan. 31 2011,

http://www.theaustralian.com.au/higher-

education/elite-eight-head-university-research-

ratings/story-e6frgcjx-1225997293930, accessed 23

August 2011.

Higher Education Funding Council for England

(undated): Research Excellence Framework

http://www.hefce.ac.uk/Research/ref/, accessed 23

August 2011.

IDP (undated): Australian universities,

http://www.students.idp.com/study/australian_universit

ies.aspx, accessed 24 August 2011.

Lawrence, S., Giles, C.L. and Bollacker, K. (1999):

Digital libraries and autonomous citation indexing.

IEEE Computer 32(6):67-71.

Rowbotham, J. (2011): Kim Carr bows to rank rebellion

over journal rankings. The Australian June 7 2011,

http://www.theaustralian.com.au/higher-education/kim-

carr-bows-to-rank-rebellion/story-e6frgcjx-

1226066727078, accessed 28 August 2011.

10 Glossary

ACDICT: Australian Council of Dean of ICT

ACPHIS: Australian Council of Professors and Heads of

Information Systems

ACS: Australian Computer Society

AIIA: Australian Information Industry Association

ALIA: Australian Library and Information Association

CORE: Computing Research and Education Association

of Australasia

EA: Engineers Australia

HERDC: Higher Education Research Data Collection

ITEE: Information, Telecommunications, and Electronics

Engineering College (of EA)

NHMRC: National Health and Medical Research Council

NICTA: National ICT Australia

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

71

http://www.abs.gov.au/ausstats/abs@.nsf/0/4AE1B46AE2048A28CA25741800044242?opendocument
http://www.abs.gov.au/ausstats/abs@.nsf/0/4AE1B46AE2048A28CA25741800044242?opendocument
http://www.arc.gov.au/pdf/ERA2010_eval_guide.pdf
http://www.australian-universities.com/rankings/
http://www.australian-universities.com/rankings/
http://minister.innovation.gov.au/Carr/MediaReleases/Pages/NEWERAFORRESEARCHQUALITY.aspx
http://minister.innovation.gov.au/Carr/MediaReleases/Pages/NEWERAFORRESEARCHQUALITY.aspx
http://www.innovation.gov.au/Research/ResearchBlockGrants/Documents/SREConsultationPaperInclusionofERA.pdf
http://www.innovation.gov.au/Research/ResearchBlockGrants/Documents/SREConsultationPaperInclusionofERA.pdf
http://www.innovation.gov.au/Research/ResearchBlockGrants/Documents/SREConsultationPaperInclusionofERA.pdf
http://www.arc.gov.au/xls/ERA2010_discipline_matrices.xls
http://www.arc.gov.au/xls/ERA2010_discipline_matrices.xls
http://www.innovation.gov.au/Research/ResearchBlockGrants/Pages/SustainableResearchExcellence.aspx
http://www.innovation.gov.au/Research/ResearchBlockGrants/Pages/SustainableResearchExcellence.aspx
http://www.arc.gov.au/era/era_2012/important_dates.htm
http://www.arc.gov.au/era/era_2012/important_dates.htm
http://www.arc.gov.au/era/faq.htm
http://scholar.google.com.au/
http://www.theaustralian.com.au/higher-education/elite-eight-head-university-research-ratings/story-e6frgcjx-1225997293930
http://www.theaustralian.com.au/higher-education/elite-eight-head-university-research-ratings/story-e6frgcjx-1225997293930
http://www.theaustralian.com.au/higher-education/elite-eight-head-university-research-ratings/story-e6frgcjx-1225997293930
http://www.hefce.ac.uk/Research/ref/
http://www.students.idp.com/study/australian_universities.aspx
http://www.students.idp.com/study/australian_universities.aspx
http://www.theaustralian.com.au/higher-education/kim-carr-bows-to-rank-rebellion/story-e6frgcjx-1226066727078
http://www.theaustralian.com.au/higher-education/kim-carr-bows-to-rank-rebellion/story-e6frgcjx-1226066727078
http://www.theaustralian.com.au/higher-education/kim-carr-bows-to-rank-rebellion/story-e6frgcjx-1226066727078

CRPIT Volume 122 - Computer Science 2012

72

Evolutionary Design of Optical Waveguide with Multiple Objectives

Qiao Shi1 Andy Song1 Thach Nguyen2 Arnan Mitchell2

1 School of Computer Science & Information Technology
RMIT University,

GPO Box 2476, Melbourne, Victoria 3001,
Email: qiao.shi@student.rmit.edu.au, andy.song@rmit.edu.au

2School of Electrical & Computer Engineering
RMIT University,

GPO Box 2476, Melbourne, Victoria 3001,
Email: {thach.nguyen,arnan.mitchell}@rmit.edu.au

Abstract

In this paper, we investigate a real-world problem,
constructing optical waveguide structures using evo-
lutionary search strategies. Optical waveguide is the
most basic component in optical communication and
integrated optical circuits. The structure of a waveg-
uide is of great importance as it would significantly
impact on the quality of light transmission. The
aim of this paper is to find a set of potential struc-
tures which satisfy multiple waveguide design objec-
tives including minimum group velocity dispersion
and minimum propagation loss. Therefore, evolu-
tionary algorithms which are populate-based search
techniques are more suitable for this type of tasks.
As a part of this investigation, a GP-based paramet-
ric optimization methodology called Parameter Map-
ping Approach (PMA) is introduced. This method
together with traditional GA have been adapted into
this study. The experiment results demonstrate both
PMA and GA can produce multiple waveguide struc-
tures that meet the design criteria. Furthermore these
evolved structures have very low dispersion and loss
compared to those reported in the current literature.

Keywords: Optical Waveguide, Genetic Program-
ming, Genetic Algorithms, Parameter Optimization,
Structural Optimization

1 Introduction

Optical signal transmission is a foundation of our
modern communication networks. Comparing with
traditional electronic signal transmission, optical
methods have more advantages such as more energy
efficient less interference and higher capacity in car-
rying information. In these optical transmission net-
works the user data are aggregated and converted
into optical signal to be transmitted in optical fibers.
At the central office or switches, the optical signal
is converted back to electrical domain so that the
data can be regenerated, buffered or switched. The
data stream are then converted back to optical sig-
nal for next transmission. Although optical fiber can
transmit data at very high rate, processing data in
the current approach in the electrical domain is the
main bottle-neck of the current optical transmission

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 35th Australasian Computer Science Con-
ference (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce
Thomas, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

systems. As the demand for bit-rate continues to
growth, it is desirable to process the optical signal
directly in the optical domain. All optical signal pro-
cessing is possible by ultilising the nonlinear proper-
ties of the optical transmission medium such as opti-
cal fibers or optical waveguides. Optical waveguides
are the preferred medium for all optical signal pro-
cessing since they allow for compact devices and the
possibility of integrating many functions into a sin-
gle device to create an integrated photonic chip. By
using waveguide meterials with strong optical nonlin-
earity such as Chalcolgnise, many optical signal pro-
cessing functions can be realized on a short optical
waveguide (Eggleton et al. 2011). In order to achieve
highly efficient optical signal processing functions in
a waveguide, it is important to minimize the propa-
gation loss and the dispersion of the waveguide mode.
By optimizing the waveguide structure, it is possible
to achieve both low loss and low dispersion waveg-
uides.

Structural optimization is an important area it-
self. In many circumstances, the complexity of the
problem is high because there are a large number of
factors to be optimized such as shape, quality and di-
mension. Moreover often there are many constrains
to be taken into consideration, such as weight, size,
cost and so on. This type of optimization tasks can be
divided into two categories as suggested by (Rasheed
1998), pure structural optimization and parametric
optimization. The former one involves making high
level decision about geometric properties of the struc-
ture while the latter mainly focuses on the numeric
aspects of structures, that is finding more suitable
combinations of parameters for a given shape. Waveg-
uide structure design can be addressed at both levels.
The study presented here only focuses on the latter,
finding better parameters for single-ridge waveguides.

One prominent approach in optimization is evo-
lutionary search methods which are inspired by Dar-
win’s natural selection principle. Among a population
of potential solutions, the better ones are selected to
create a new generation of solutions which presum-
ably will be better than the previous generation. This
iterative process usually stops at a point that a good
solution is found or no improvement can be achieved.
The main methods under this category include Ge-
netic Algorithm (GA) (Holland 1975), Genetic Pro-
gramming (GP) (Koza 1992), Differential Evolution
(DE) and Particle Swarm Optimization (PSO). Be-
cause evolutionary methods are population based,
they are capable of provide not only one solution but
a set of solutions. Finding multiple solutions is one
the aims of our waveguide design task.

GA has been successfully used in a wide range

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

73

of parametric optimization problems (Pujol & Poli
2004a) and remains as a main choice for this kind of
tasks. Therefore GA is selected for this study. In ad-
dition GP is also introduced here although it is not
strong in parameter optimzation but strutrual opti-
mization such as designing circuits and satellite an-
tenna (Lohn et al. 2004). Becuase our long term goal
is to include strucutal optimization for waveguide des-
gin as well. The conventional symmetric single ridge
waveguide is not necessarily the best structure. Ide-
ally one method, presumably a GP-based technique,
can optimize both the structure as well as its param-
eters. Therefore GP is used and compared with GA.
As proposed and studied by Pujol & Poli (2008), GP
could be adapted into parametric optimization and
even outperform others in some cases when applying
to some benchmark functions (Ingber & Rosen 1992).

Another aspect of this study is its multiple objec-
tives. The quality of a waveguide structure is not
measured by just one criterion. Multiple objectives
such as minimum dispersion and minimum propaga-
tion loss are all highly desirable in waveguide appli-
cations. This is another reason of using evolutionary
methods as they can be naturally adapted into multi-
objective optimization (Deb et al. 2002, Zitzler et al.
2001).

The rest of this paper is organized as such: Sec-
tion 2 explains the basics of waveguide structure
and the meanings of dispersion and propagation loss
which we mentioned above. This section also covers
a brief introduction to GP/GA and the related work.
Section 3 presents the methodology used in this study.
Section 4 describes the experiments with the results.
Sections 5 concludes this study and discusses our fu-
ture investigations.

2 Background

The first two parts of this section introduces the ba-
sics of optical waveguide and GP, GA briefly. Addi-
tionally the related work for structural design, para-
metric optimization as well as waveguide structure
optimization are reviewed.

2.1 Optical Waveguide

Optical waveguide is a medium to guide light wave
propagation. In this paper a single-ridge waveguide
structure is considered. Figure 1 shows a modeled
structure of optical ridge waveguide, which is the ba-
sis of this study. The middle core layer is one kind of
chalcogenide glasses As2S3, a highly nonlinear crys-
talline material. The properties of the waveguide
mode are determined by the waveguide cross-section
parameters , including the ridge width, the height of
the core layer and the etch depth.

The measurement of waveguide structure is a key
point in our experiment. In industry, the most ac-
curate way is to produce a real waveguide and test
it through some devices. However, this operation of-
ten time consuming and costly. The alternative is
using simulators. The simulator in this study is from
RMIT’s Microplatform Research Group and has been
used for a series of waveguide projects (Nguyen et al.
2009a,b).

There are a set of properties which are related
to the quality of waveguides, such as single-mode
or multi-mode, dispersion, nonlinearity, loss and etc.
This study concerns two properties: the dispersion
and the loss. The followings are their descriptions.

• Dispersion: Group velocity dispersion, or simply
dispersion in this study, of a waveguide mode is a

Figure 1: A modelled structure of As2S3 waveguide.
(Courtesy to M. R. E. Lamont, etc.)

parameter that measures how the group velocity
of the waveguide mode depends on wavelength
of frequency. Group velocity dispersion is caused
by material dispersion and waveguide dispersion.
The material dispersion comes from material.
Waveguide dispersion is caused by the geometric
(structural) reasons. As indicated in prior liter-
ature, in some certain situations these two kinds
of dispersion can compensate each other and re-
sult in a zero-dispersion waveguide (Lamont et
al. 2007).

• Propagation loss: The propagation loss of a
waveguide mode can be caused by material ab-
sorption, scattering loss and leakage loss. At
telecommunication wavelength of 1.55 µm, the
materials used in the considered Chalcognide
waveguide have negligible absorption loss. The
scattering loss is mainly determined by the fab-
rication process. Leakage loss is caused by the
coupling between the guided mode and radiation
modes of a waveguide. Leakage loss can be effec-
tively reduced to zero by optimizing the waveg-
uide structure (Nguyen et al. 2009c). In this
study, material loss and scattering loss are ig-
nored when consider waveguide propagation loss.

It should be noted that the loss is measured as
dB/cm, decibel per centimeter of the waveguide.
The aim is to find waveguide structures with both
zero-dispersion and low loss. In fact absolute zero-
dispersion is hardly achievable at telecommunication
wavelength of 1.55 µm. Instead the following formula
is used to define zero-dispersion.

Dispersion = |

∂2β

∂ω2
| < 1.0× 10−26(nm2/m)

The partial second derivative part |
∂2β
∂ω2 | is the wave

equation in which β is a function of ω, angular fre-
quency. Note for legibility, zero dispersion can be also
expressed as:

|

∂2β

∂ω2
× 1024| < 0.01(nm2/m).

Additionally, there is another criterion which
is used to determine zero-dispersion: whether the
waveguide is able to achieve absolute zero dispersion
at around 1.55 µm wavelength. It is believed in such
case we can shift the zero-dispersion wavelength to
telecom wavelength (Lamont et al. 2007). In order to
validate this criterion, we should plot all the disper-
sion value from 1.4 µm to 1.7 µmwavelength. Figure 2

CRPIT Volume 122 - Computer Science 2012

74

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1.4 1.45 1.5 1.55 1.6 1.65 1.7

D
is

pe
rs

io
n

(n
m

2 /m
)

Wavelength (µm)

Dispersion

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1.4 1.45 1.5 1.55 1.6 1.65 1.7

D
is

pe
rs

io
n

(n
m

2 /m
)

Wavelength (µm)

Dispersion

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 1.4 1.45 1.5 1.55 1.6 1.65 1.7

D
is

pe
rs

io
n

(n
m

2 /m
)

Wavelength (µm)

Dispersion

(a) (b) (c)

Figure 2: Three different kinds of distribution for dispersion property

shows three possible dispersion distributions. All of
them meet the first requirement which can have dis-
persion value less than 0.01 nm2/m. However, the
case in Figure 2 (b) is not valid as it is not able
to achieve absolute zero-dispersion at 1.55 µm wave-
length.

In terms of propagation loss, recent research re-
ported structures with loss down to 0.2dB/cm (Mad-
den et al. 2007, Cardenas et al. 2009, Ruan et al.
2005) as that is considered good quality in the field.
However we aim to further reduce the loss below
0.1dB/cm. Propagation loss is calculated as following
formula:

Loss = 8.868 · α ·

2π

λ · 100
< 0.1(dB/cm)

The λ value in the formula is the wavelength of
optical transmission. It is set as 1.55µm which is
mentioned before, the commercial telecommunication
wavelength. The α value is a parameter to indicate re-
duction in light density. It can be produced by waveg-
uide simulator. Thus the aim of reducing loss below
0.1dB/cm is equivalent to bringing down the α value
to a low level: α < 2.8× 10−7.

2.2 Genetic Algorithm and Genetic Pro-
gramming

Genetic Algorithm (GA) and Genetic Programming
(GP) are two typical members in the area of Evo-
lutionary Computing. GP could be considered as a
variation of GA as they do share large amount of sim-
ilarities.

Both GA and GP randomly generate a population
of solutions as the initial generation. These solutions,
also called individuals, are then evaluated in terms
of their capability in solving a particular problem.
The better ones have higher probabilities of being se-
lected for creating the new generation. Therefore the
next generation is likely better than the previous one.
Majority of individuals in the new generation are cre-
ated by exchanging genetic materials among parents,
the individuals selected from the previous generation.
This process is known as crossover. Some individu-
als are created by randomly changing one selected
parent. This process is named mutation. Some in-
dividuals are just straight copied from the previous
generation. This is called elitism.

An evolutionary process will continue from gener-
ation to generation until a perfect solution is found or
one of other criteria is met such as no improvement
for a number of generations, or a maximum number
of generations is reached. The driving force of this

evolutionary process is the fitness measure which de-
termines the survivability of individuals. The fitness
tends to improve over the generations. In our case,
the fitness is the quality of a waveguide structure, in
terms of both zero dispersion and low propagation
loss.

The main difference between GA and GP is how to
represent an individual. In GA, an individual is often
a fixed-length binary string (chromosome) which can
naturally be used to express a list of numeric parame-
ters. By crossing over between different individuals or
mutating one individual, various combinations of pa-
rameters can be created. The better ones will survive
and eventually emerge as the final solution. Due to
this linear representation GA is suitable for paramet-
ric optimization of which the number of parameters
are given.

X

3.1

0.5 1.2

+

Figure 3: GP tree representation

In contrast an individual in GP is often repre-
sented as a tree as shown in Figure 3. The internal
nodes on a tree are called functions which are often
some kind of operators and the leaf nodes are called
terminals which often are input values or parameters
for the function nodes connected to them. The tree
shape is usually very flexible as long as the number
of levels on the tree is within a limit and the tree
is syntactically sound, meaning it can be evaluated
without any error. Crossover in GP is done by two
parents swapping tree branches. Mutation in GP is
randomly replacing one branch on an individual with
an external branch. It can be seen that new individ-
uals would be very different to their parents topolog-
ically. Due to this tree representation GP is suitable
for exploring different structures. GP has shown its
ability and effectiveness in designing structures and
solving wide range of real-world problems(Poli et al.
2008).

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

75

2.3 Related Work

In the literature waveguide structures are optimized
by domain experts from the area of photonics. Lam-
ont et al. (Lamont et al. 2007) proposed a disper-
sion engineering method of As2S3 waveguide struc-
ture with dispersion ≈ 0.24nm2/m and loss value
≈ 0.25dB/cm in 2007. Cardenas et al. demonstrated
an optical waveguide structure with propagation loss
of 0.3dB/cm at 1.55µm using Silicon as the medium
material(Cardenas et al. 2009). Madden et al. discov-
ered a structure with loss as low as 0.05dB/cm at tele-
com wavelength(Madden et al. 2007). All these struc-
tures were optimized manually with domain knowl-
edge. Our aim is to generate a set of better waveg-
uides without requiring domain experience and hu-
man intervention during the process.

Structural optimization is an important area in
GA. (Rasheed 1998) attempted to optimize the air-
craft structure using GA. In their work, the struc-
tural optimization is actually treated as optimizing
several parameters. The task is to determine the
dimensions of the aircraft, the length of wings and
so on, while the basic shape of the aircraft does not
change. (Chafekar et al. 2003) continued the previous
work and improved its performance in addressing con-
strained multi-objective optimization problem. In the
aircraft design, the structural optimization problem
is converted into a parametric optimization problem.
This strategy is applied in this study.

GP, as a strong problem solving method, has
demonstrated its capability in designing structures
topologically. NASA uses GP to design satellite an-
tennas. Their investigation produced an antenna with
higher ratio of signal gain to self weight. It is more ef-
fective than the designs from NASA engineers. Also,
it was stated that the GP design schema significantly
reduced the design life cycle (Lohn et al. 2004).

3 Methodology

The waveguide design problem is addressed by two
evolutionary methods: using the relative new PMA
technique and using the traditional GA. Firstly we
explain the PMA methodology and then give a brief
introduction of Non-dominated Sorting for multi-
objective optimization.

3.1 GA and PMA methodology

For a single-ridge symmetric waveguide, there are
three variables, the width, the height and the etch
depth as illustrated in Figure 1. As the basic shape
does not change, the task is actually a parametric
optimization problem. The representation for GA is
straightforward, three double numbers expressed as
one binary string. The first part of the string corre-
sponds to width, the middle part to the height and
the last part for the etch depth.

For GP the representation is a little more involved
as parametric optimization is not native for GP. In
order to achieve this, Parameter Mapping Approach
(PMA) is used (Pujol & Poli 2004b). The basic idea
is not directly finding a good combination of param-
eters, but searching for GP individuals as a mapping
function which can accept a set of raw inputs to pro-
duce another set of adaptive parameters. The optimal
combination of parameters are searched indirectly.

Figure 4 shows the procedure to evaluate an in-
dividual in PMA. A mapping function receives a set
of raw parameters as input and transforms them to
three parameters which are interpreted as the width,

Raw Parameters: P1, P2, P3

Mapping Function:
P1’ = MF(P1)
P2’ = MF(P2)
P3’ = MF(P3)

Waveguide Simulator

Evaluate Structure
Fitness Function

Fitness Value

Figure 4: Fitness evaluation for a GP individual

the height and the etch depth of a waveguide. Note
that, during the evolutionary process, all individuals
share the same raw parameters. That is different to
the original PMA proposed in (Pujol & Poli 2004b),
in which the initial raw parameters are randomly gen-
erated. By introducing a constant initial parameter,
these generated mapping functions could share some
of the components or building blocks. Moreover the
step of generating random numbers for each raw pa-
rameter can be removed.

The evaluation of a combination of parameters
is done by a waveguide simulator developed by Mi-
croplatform Research Group in RMIT. It can sim-
ulate the transmission process in a given waveguide
structure and therefore calculate its properties such as
dispersion and propagation loss. These output from
the simulator are used to assign fitness values of in-
dividuals either in GA or GP.

PMA uses 4-arity operators as the GP functions,
because they can break the symmetry of the addition
and multiplication arithmetic operators (Pujol & Poli
2004b), thus reducing the possibility of the so-called
permutation or competing convention problem (Rad-
cliffe 1991, Hancock 1992).

Table 1: GP Functions used in PMA
Plus x× y + u× v
Minus x× y − u× v
Multiply (x+ y)× (u+ v)
Divide PDV (x+ y, u+ v)

The function set of GP is listed in Table 1: where
PDV (num, den) is the protected division, which re-
turns num if the denominator den is zero. These
four are the only operators used. The terminal set is
simply random numbers and raw input. Tournament
selection strategy is employed in this model. The GA
and GP runtime parameters are described along with
the experiments.

To evaluate the robustness of PMA, a serials of test
functions were introduced. The first step of optimiz-
ing waveguide structures is using only one objective,
dispersion which is the most important measure for
waveguides. Both GA and GP were used for this sin-

CRPIT Volume 122 - Computer Science 2012

76

gle objective task. Followed the single objective ex-
periments, both dispersion and loss were introduced
as the objectives for GA and GP.

3.2 Non-dominated Sorting/NSGA-II

Non-dominated Sorting Genetic Algorithm (NSGA)
was first proposed by (Deb et al. 2002). Since the
time it was developed, this algorithm has been crit-
icized due to its high computational complexity of
nondominated sorting, lack of elitism. Further inves-
tigation on this approach leads to an improved version
of NSGA, namely Non-dominated Sorting Genetic Al-
gorithm II. Instead of only one optimal solution, the
NSGA-II provides a set of optimal solutions. The
multiple solutions are those none of which that can
be considered to be better than any others with re-
spect to all objectives. This set of optimal solutions is
known as a Pareto Optimal Set or a Pareto Frontier.

For a multiple objective optimization problem, a
feasible solution can be represented as a vector X:

X(Objective1, Objective2, ..., ObjectiveN)

This solution is considered to be non-dominated if
and only if,

• For any other vector Y, each objective deter-
mined by vector X is better or at least equal to
that one determined by vector Y.

• For any other vector Y, at least one of the ob-
jectives determined by vector X is strictly better
than the corresponding objective determined by
vector Y.

For a given number of solutions, there is only one
vector that can satisfy both the above criteria. It can-
not be improved without worsening at least another
objective. The Pareto Optimal Set is composed of
such kind of solutions.

In terms of the implementation of NSGA-II algo-
rithm, the basic idea is to divide the population into
a number of sub-populations referred as fronts which
are ranked in terms of levels (Nguyen & Yousefi 2010).
For each front, there is one non-dominated solution
which satisfies the above two criteria. In this way, for
the entire population, there is a set of non-dominated
solutions derived from the individual frontier.

In the second generation starting from the initial
population, these ranked points are then reproduced
through genetic operators. Individual elements with
a higher rank are more likely to be selected for re-
production. The solutions in the first level front are
assigned the highest priority, and then are those in
the second level and so forth. Eventually the Pareto
frontier is formed as the rank can no longer be im-
proved.

4 Experiments

Three groups of experiments mentioned above are
presented in this section. The difficulty gradually in-
creases.

4.1 Optimizing Test Formulae

The task there is to find the minimum of the follow-
ing four formulae of which the number of parameters
differs. The fitness measure is the lower output the
better.

• f1(x, y) = x2 + y2

• f2(x, y) = 100× (x2
− y)2 + (1− x)2

• f3(x, y, z) = (x− 5)2 + (y − 15)2 + (z − 40)2

• f4(a, b, c, d, e) = (a+0.5)2+(b−55)2+(c−0.5)2+
(d− 15)2 + (e− 99)2

Table 2: Test Formulae for PMA
Formula No. of Parameters Success Rate
f1(x, y) 2 99/100
f2(x, y) 2 99/100
f3(x, y, z) 3 100/100
f4(a, b, c, d, e) 5 97/100

The population size here was set to 200 and the
total number of generations is 100. The GP runtime
configuration was that 80% crossover rate, 10% mu-
tation rate and 10% elitism.

Table 2 shows the results: the number of runs (out
of 100 runs) can find a solution of which the output
is lower than 0.001. Absolute zero was not required
here as it was the case in the waveguide design. The
success rate was very high in all the experiments. The
modified PMA method is capable in parametric opti-
mization on simple tasks.

4.2 Optimization with Single Objective: Dis-
persion

The goal of this set of experiments is to search for
structures with zero-dispersion. There is only one
objective. For each of the parameter, there is a rea-
sonable range of values. Parameters outside of this
range are not practical therefore should not be ex-
plored. The ranges are

waveguide width ∈ [0.1µm, 2.0µm] (1)

waveguide height ∈ [0.1µm, 1.5µm] (2)

etch depth ∈ [0.0µm, waveguide height] (3)

As GA represents numerical values of these param-
eters directly, so the range can be easily imposed on
these parameters in GA. However, the PMA method-
ology does not deal with values directly. Thus the
value for an individual parameter can not be guaran-
teed to situate in that range setting. Therefore a pa-
rameter normalization procedure is introduced here.
It can be expressed as:

Parameter = LOW +
UP − LOW

1 + |OUTPUT |

where:
LOW is the lower limit of the parameter;
UP is the upper limit of the parameter;
OUTPUT is the output value from a GP tree.
Note that the third parameter etch depth is can

not be larger than the second parameter waveguide
height. To fulfil this constrain, a swap strategy is in-
troduced which examines all individuals before fitness
evaluation, both for GA and for PMA. If one individ-
ual violates that constrain, then its third parameter
will be swapped with the second parameter. If its
third parameter is beyond the up limit, 1.5µm, then
it will be trimmed to 1.5.

In terms of the fitness measure for GA and PMA,
they are the same. As there is only one objective, the
fitness evaluation can be simply expressed as:

fitness = |Dispersion|

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

77

Table 3: Optimizing Dispersion in TM mode by PMA and GA
Solutions Width(µm) Height(µm) Etch Depth(µm) Dispersion (nm2/m) Approach
1 1.563 1.092 0.442 0 PMA
2 1.059 1.043 0.991 0 PMA
3 1.042 1.065 1.011 0 PMA
4 1.089 1.083 1.066 0 PMA
5 1.386 1.240 1.180 0 PMA
6 0.482 1.172 1.122 0 PMA
7 0.842 0.828 0.742 0 PMA
8 1.253 1.087 0.847 0 PMA
9 0.584 0.717 0.657 0 PMA
10 0.732 0.732 0.632 0 PMA
11 1.576 1.091 0.439 0 GA
12 1.670 1.422 0.699 0 GA
13 1.576 1.077 0.759 0 GA
14 1.338 1.177 0.873 0 GA
15 1.144 1.018 0.393 0 GA
16 1.803 1.132 1.032 0 GA
17 1.555 0.988 0.343 0 GA
18 1.576 1.091 0.439 0 GA
19 1.103 1.091 1.028 0 GA
20 0.937 1.091 0.747 0 GA

Table 4: Optimizing Dispersion in TE mode by PMA and GA
Solutions Width(µm) Height(µm) Etch Depth(µm) Dispersion (nm2/m) Approach
1 0.943 0.943 0.843 0 PMA
2 1.339 0.807 0.798 0 PMA
3 0.946 0.946 0.846 0 PMA
4 0.965 1.247 1.185 0 PMA
5 1.355 1.331 1.260 0 PMA
6 0.778 0.931 0.874 0 PMA
7 0.935 0.935 0.835 0 PMA
8 1.311 1.383 1.329 0 PMA
9 0.500 0.647 0.569 0 PMA
10 1.320 1.320 1.220 0 PMA
11 1.978 1.266 1.010 0 GA
12 1.250 1.341 1.224 0 GA
13 1.250 1.175 1.021 0 GA
14 1.250 1.233 1.224 0 GA
15 1.250 0.998 0.992 0 GA
16 0.620 1.335 1.224 0 GA
17 1.978 1.266 1.010 0 GA
18 1.250 1.175 1.021 0 GA
19 0.620 1.335 1.224 0 GA
20 1.250 1.175 1.021 0 GA

There is another issue related to the optimization
process, that is the multi-modes waveguide disper-
sion measurement. As in this set of experiment, the
single mode condition was not take into considera-
tion, it is possible to work out waveguide structures
with multiple modes. For each mode in waveguide,
it has its corresponding dispersion and loss value.
Regarding to this situation, average value is usually
expected. However, this strategy is not satisfactory
here, because in real-world optical applications, only
the mode with the lowest dispersion value will be
used. Thus, we selected the lowest dispersion value
for the fitness measurement of multi-modes waveg-
uide.

The run time configuration for GA and PMA were
the same: 80% of crossover, 10% of mutation and 10%
of elitism. The population size and maximum number
of generations were also same, which were both 200.
In PMA, the maximum depth of the GP tree is set to
5 to avoid solutions being too complex.

There are two main transverse modes need to be
considered in waveguide design, TE (Transverse Elec-

tric) mode where there is no electric field along the
propagation path, and TM (Transverse Magnetic)
mode where there is no magnetic field along the prop-
agation path. In this study we investigate both TM
mode and TE mode. In optical applications, the
waveguide will be applied either in TM environment
or TE environment.The results for TM mode and TE
mode are shown in Table 3 and Table 4 respectively.

The solutions listed in Tables 3 and 4 are the best
individuals found by these evolutionary search pro-
cesses. It can be seen that most of them are different.
That means both GA and GP are capable of find-
ing multiple solutions. This feature is important in
practice as engineers would have choices in deciding
which one to use under different circumstances, such
as manufacturing cost or size limits for different ap-
plications.

All these solutions found by GA and PMA
have zero dispersion at telecom wavelength, much
lower than the required zero dispersion threshold,
0.01nm2/m. In general, PMA appeared to have the
equal performance as GA as both of them find zero

CRPIT Volume 122 - Computer Science 2012

78

dispersion. In terms of search speed, GA performs
slightly better than PMA because PMA needs to con-
struct GP tree which is a more complex data structure
that just numeric values. However, such difference
has small impact on the overall speed as the majority
of computation is consumed by the waveguide sim-
ulator. A single run for PMA in this set of experi-
ments took approximate 28 hours and it was around
26 hours for GA. Both of them ran under the same
environment: a quad-core 2.3 GHz machine with 12
GB memory.

4.3 Optimization with Multiple Objectives:
Dispersion & Loss

The requirement for dispersion here is exactly the
same as for the previous experiments. Propagation
loss is added as the second objective. We have evalu-
ated the solutions obtained from the previous experi-
ments in term of loss. None of them could meet that
criterion although their dispersion were very low.

The typical multi-objective optimization method,
Non-dominated Sorting, could be used to incorporate
these two criteria. NSGA-II which has native support
for optimizing multiple objectives was introduced into
this set of experiments. The fitness measurement for
PMA is different from NSGA-II, instead we used the
Weighted Sum Approach as the dispersion has higher
preference than loss in waveguide design. The fitness
evaluation is the following:

fitness = |Dispersion| × 100 + |Loss|

The weights of dispersion and loss in this fitness
measurement were determined empirically. Since the
requirement of dispersion is much higher than that of
loss, a high weight is assigned to the dispersion prop-
erty. In this case, it was 100. The choosing of this
weight is not limited to just 100. It could be even
larger or smaller. The purpose of this weight value is
only to specify that dispersion is a much more impor-
tant feature than loss in waveguide design. Empiri-
cally 100 is a more suitable value.

The runtime configuration such as crossover rate,
mutation rate, elitism, population size, number of
generations were identical to those in the previous
set of experiments. The corresponding results for
TM mode are shown in Table 5. Similar experi-
ments were conducted in TE mode, and there was
no results that met both the dispersion and loss cri-
teria. However, such results are not surprising, since
the literature has already stated that it is less likely
to form zero-dispersion at telecom wavelength in TE
mode when considering more properties (Lamont et
al. 2007). Our findings is consistent with the discov-
ery from researchers in optical engineering.

The results presented in Table 5 show that GP is
able to find solutions which satisfy both objectives.
The results are extracted from the last generation of
PMA and NSGA-II. The top 20 results are given here
and sorted by the dispersion value. Eleven of the
results are from PMA while nine of them are from
NSGA-II. It should be noted that the reported loss
values are the approximations. The “0” loss values
are the direct output from the waveguide simulator
which is not able to generate high precision loss value
when the loss is very small. However what is certain is
that the loss values are much smaller than 0.1 dB/cm.

Table 5 shows that the PMA approach and NSGA-
II have very similar performance in terms of min-
imizing dispersion and loss. However, the average
dispersion value from PMA (≈ 0.00086231nm2/m)
is slightly better than that from NSGA-II (≈

0.0010853nm2/m). The best solution was found by
PMA. The dispersion value of it is only 0.000173335
nm2/m. The difference between these approaches
may be due to the multi-objective fitness measure-
ment. In the Non-dominated Sorting in NSGA-II,
all the objectives are treated equally, while in the
weighted sum approach in PMA, dispersion is give
a much higher weight than than loss. Due to the pri-
ority setting, PMA could focus on finding solutions
with smaller dispersion value. In our further study,
we will investigate the effectiveness of weighted sum
approach compared with the standard non-dominated
sorting in handling multiple objectives.

5 Conclusions and Future Work

In this paper we studied designing optimal waveguide
structures with multiple objectives using evolutionary
techniques, namely GA and PMA, a GP-based opti-
mization method. The aim here is not to just find
one solution but a set of different solutions. Based on
the investigation we conclude the followings: evolu-
tionary search methods GA and GP are suitable for
solving this real world problem. They are capable
of finding multiple waveguide structures which meet
multiple design objectives. By the combination of
PMA and weighted sum fitness, and by NSGA-II, we
were able to find waveguide structures with dispersion
as well as propagation loss much lower than what in
the current literature. Additionally little human in-
tervention is required by these methods to generate
these satisfactory optical waveguides.

The GP-based PMA method is a suitable method
for parametric optimization. As stated in (Pujol &
Poli 2008), PMA should be investigated on real-world
problems. To our knowledge this is the first time
PMA was tested on a real-world application. It is
arguably better than or at least equivalent to classical
GA in this problem.

In the near future we will combine parametric op-
timization and geometric design of waveguide into a
single framework by using GP, so the structure may
contain multiple ridges and may not be rectangular
or symmetric. Furthermore we will incorporate more
objectives such as maximizing nonlinearity and main-
taining a single mode in the evolutionary waveguide
design.

References

Cardenas, J., Poitras, C. B., Robinson, J. T., Pre-
ston, K., Chen, L. & Lipson, M. (2009), ‘Low loss
etchless silicon photonic waveguides’, Opt. Express
17(6), 4752–4757.

Chafekar, D., Xuan, J. & Rasheed, K. (2003), Con-
strained multi-objective optimization using steady
state genetic algorithms, in ‘Proceedings of the
2003 international conference on Genetic and evolu-
tionary computation’, Springer-Verlag, Berlin, Hei-
delberg, pp. 813–824.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T.
(2002), A fast and elitist multiobjective genetic al-
gorithm: Nsga-ii, in ‘IEEE Transactions on Evolu-
tionary Computation’, Vol. 6, pp. 182–197.

Eggleton, B. J., Luther-Davies, B. & Richardson,
K. (2011), ‘Chalcogenide photonics’, Nat Photon
5(3), 141–148. 10.1038/nphoton.2011.309.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

79

Table 5: Optimizing Dispersion & Loss in TM mode using PMA and NSGA-II
Solutions Width Height Etch Depth Dispersion Loss Approach

(µm) (µm) (µm) (/W/km) (dB/cm)
1 1.820 1.029 0.621 0.000173335 0.0 PMA
2 1.629 1.073 0.774 0.000196365 0.0 PMA
3 1.401 1.130 0.940 0.000222729 0.0 NSGA-II
4 1.410 1.069 0.625 0.000224547 0.0 NSGA-II
5 1.301 1.138 0.916 0.000263336 0.0 PMA
6 0.848 1.222 1.218 0.000547884 0.0 PMA
7 0.986 1.198 1.090 0.000647582 0.0 PMA
8 1.998 1.029 0.745 0.00079728 0.0 NSGA-II
9 1.876 1.015 0.544 0.000811825 0.0 PMA
10 1.293 1.120 0.831 0.000911523 0.0 PMA
11 1.361 1.067 0.580 0.000951221 0.0 NSGA-II
12 1.167 1.177 1.041 0.00107001 0.0 PMA
13 1.249 1.082 0.626 0.00110486 0.0 NSGA-II
14 1.841 1.073 0.985 0.00114456 0.0 NSGA-II
15 1.020 0.630 0.452 0.0016485 0.0 PMA
16 0.898 1.134 0.929 0.00171092 0.0 PMA
17 1.049 1.116 0.773 0.00171183 0.0 PMA
18 1.650 1.020 0.458 0.0017688 0.0 NSGA-II
19 1.783 0.938 0.303 0.00177244 0.0 NSGA-II
20 0.782 1.135 1.027 0.00179699 0.0 NSGA-II

Hancock, P. (1992), Genetic algorithms and permuta-
tion problems: a comparison of recombination op-
erators for neural structure specification, in ‘Pro-
ceedings of COGANN Workshop’, IEEE Computer
Society Press.

Holland, J. H. (1975), Adaption in natural and artifi-
cial systems: An introductory analysis with applica-
tions to biology, control, and artificial intelligence,
University of Michigan Press.

Ingber, L. & Rosen, B. (1992), Genetic algorithms
and very fast simulated reannealing: a compari-
son, in ‘Mathematical and Computer Modelling’,
Vol. 16, pp. 87–100.

Koza, J. R. (1992), Genetic Programming: On the
programming of computers by means of natural se-
lection, The MIT Press.

Lamont, M. R. E., Sterke, C. M. & Eggleton, B. J.
(2007), ‘Dispersion engineering of highly nonlinear
AS2S3 waveguides for parametric gain and wave-
length conversion’, Optics Express.

Lohn, J. D., Hornby, G. S. & Linden, D. S. (2004),
An evolved antenna for deployment on nasa’s space
technology 5 mission, in ‘Genetic Programming
Theory Practice 2004 Workshop’.

Madden, S. J., Choi, D.-Y., Bulla, D. A., Rode, A. V.,
Luther-Davies, B., Ta’eed, V. G., Pelusi, M. D.
& Eggleton, B. J. (2007), ‘Long, low loss etched
as2s3 chalcogenide waveguides for all-optical signal
regeneration’, Opt. Express 15(22), 14414–14421.

Nguyen, T. G., Tummidi, R. S., Koch, T. L.
& Mitchell, A. (2009a), ‘Lateral leakage in
tm-like whispering gallery mode of thin-ridge
silicon-on-insulator disk resonators’, Optics Letters
34(7), 980–982.

Nguyen, T. G., Tummidi, R. S., Koch, T. L.
& Mitchell, A. (2009b), ‘Rigorous modeling of
lateral leakage loss in soi thin-ridge waveguides
and couplers’, IEEE Photonics Technology Letters
21(7), 486–488.

Nguyen, T. G., Tummidi, R. S., Koch, T. L. &
Mitchell, A. (2009c), ‘Rigorous modeling of lateral
leakage loss in SOI thin-ridge waveguides and cou-
plers’, IEEE Photon. Technol. Lett. 21(7), 486.

Nguyen, T. T. & Yousefi, A. (2010), Multi-objective
approach for optimal locaiton of tcsc using nsga
ii, in ‘International Conference on Power System
Technology’.

Poli, R., Langdon, W. B. & McPhee, N. F. (2008), A
field Guide to Genetic Programming.

Pujol, J. & Poli, R. (2004a), A highly efficient func-
tion optimization with genentic programming, in
‘Late-breaking papers of Genetic and Evolutionary
Computation Conference’, pp. 26–30.

Pujol, J. & Poli, R. (2004b), Optimization via pa-
rameter optimization with genetic programming, in
‘Proceedings of the 8th International Conference on
Parallel Problem Solving from Nature’, pp. 18–22.

Pujol, J. & Poli, R. (2008), ‘Parameter map-
ping: A genetic programming approach to
function optimization’, International Journal of
Knowledge-based and Intelligent Engineering Sys-
tems 12(1), 29–45.

Radcliffe, N. (1991), Genetic set recombination and
its application to neural networks topology opti-
mization, Technical report, Scotland.

Rasheed, K. (1998), GADO: A Genetic Algorithm for
continuous design optimization, PhD thesis, The
State University of New Jersey.

Ruan, Y. L., Luther-Davies, B., Li, W. T., Rode,
A., Kolev, V. & Madden, S. (2005), ‘Large phase
shifts in as2s3 waveguides for all-optical processing
devices’, Opt. Lett. 30(19), 2605–2607.

Zitzler, E., Laumannns, M. & Thiele, L. (2001),
Spea2: Improving the strength pareto evolutionary
algorithm, Technical report, Swiss Federal Institute
of Technology.

CRPIT Volume 122 - Computer Science 2012

80

Real-time Evolutionary Learning of Cooperative Predator-Prey
Strategies

Mark Wittkamp1 Luigi Barone1 Phil Hingston2 Lyndon While1

1 School of Computer Science and Software Engineering
University of Western Australia,

Crawley, Western Australia
Email: {wittkamp,luigi,lyndon}@csse.uwa.edu.au

2 School of Computer and Security Science
Edith Cowan University,

Mount Lawley, Western Australia
Email: p.hingston@ecu.edu.au

Abstract

Despite games often being used as a testbed for
new computational intelligence techniques, the ma-
jority of artificial intelligence in commercial games is
scripted. This means that the computer agents are
non-adaptive and often inherently exploitable because
of it. In this paper, we describe a learning system de-
signed for team strategy development in a real time
multi-agent domain. We test our system in a prey and
predators domain, evolving adaptive team strategies
for the predators in real time against a single prey
opponent.

Our learning system works by continually training
and updating the predator strategies, one at a time
for a designated length of time while the game us be-
ing played. We test the performance of the system for
real-time learning of strategies in the prey and preda-
tors domain against a hand-coded prey opponent. We
show that the resulting real-time team strategies are
able to capture hand-coded prey of varying degrees of
difficulty without any prior learning. The system is
highly adaptive to change, capable of handling many
different situations, and quickly learning to function
in situations that it has never seen before.

Keywords: evolution, learning, multi-agent, predator-
prey

1 Introduction

Games are often used as test-beds to further the de-
velopment of computational intelligence techniques.
They are suitable for this task because they involve
similar problems to those encountered in real life, but
are simpler and more clearly defined, generally with a
well understood goal. Video games present a partic-
ularly interesting problem domain in that they typ-
ically have a far greater number of actions available
for players to make and these actions have tempo-
ral significance. The development of adaptive be-
haviour using opponent modeling with evolutionary
algorithms has been demonstrated before (Wittkamp
2006), (Wittkamp 2006), but the problem becomes

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 35th Australasian Computer Science Con-
ference (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce
Thomas, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

much more difficult when we require the learning to
occur in real-time, as the game itself is being played.

Artificial players that train offline (generally by
playing the game) can have a near limitless amount of
training time available to them. The learning and fine
tuning of artificial players could run continuously for
many days or weeks until desirable behaviours have
been found. Contrast this with real-time learning,
where there is very little time to run simulations and
the processor must also be shared with the game en-
gine itself. Computational intelligence techniques re-
quire many iterations and many more test cases for
the evolution process to yield desirable results. In or-
der for a real-time approach to be feasible, standard
computational intelligence techniques will need to be
sped up.

1.1 The Case For Real-Time Learning

Despite a large amount of research in the field of
video game AI, the majority of AI strategy in com-
mercial games is still in the form of scripted be-
haviour (Berger 2002). Developers turn to scripts for
a number of reasons; they are understandable, pre-
dictable, easy to modify and extend, and are usable by
non-programmers (Tozour 2002). Scripts often have
parameters that may be optimised using computa-
tional intelligence techniques offline, but the learning
aspect is rarely a component in the released prod-
uct (Charles 2007).

While scripts can respond to the actions of human
players, artificial agents (or “bots”) are often inher-
ently exploitable due to their inability to adapt. Once
an agent’s weakness has been discovered it can be ex-
ploited time and time again and soon the game fails
to remain challenging or realistic and human play-
ers may lose interest. No matter how thorough the
training process, in many modern games there are too
many possible scenarios to expect that a hand-coded
player will be able to handle them all equally well.

Scripted bots and their predetermined behaviour
are susceptible to being overly repetitive or unrealis-
tic, especially if the bots find themselves in a situation
that the developers did not foresee. Stochastic sys-
tems can be used to introduce some variety into the
behaviour of artificial players, but they may offer only
slight variation to some predetermined strategy. Too
much variation has the potential for creating seem-
ingly random or irrational behaviour which adversely
affects a human player’s sense of immersion in the
game environment.

Another common limitation of current game AI is

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

81

that teams of agents tend to be overly self-interested.
While many good agents may be useful for a team,
this is very different from team-interested agents who
can understand and prioritise the good of the team
over individual gain. Without team based learning,
artificial players run the risk of being overly “greedy”
to the detriment of the team. No matter how well the
individual parts may be tuned, certain team strate-
gies may never arise — a self-interested individual
would not sacrifice itself to draw fire away from team-
mates or to lead opponents into an ambush, for ex-
ample. Team based learning is useful where the goal
to be accomplished is too complex to be achieved by
individuals without team coordination, RoboCup soc-
cer (Kitano 1997) is a good example.

The real-time learning and continuous adaptation
of a team of artifical agents is desirable for a number
of reasons. An agent capable of real-time learning
would be inherently robust just as strategies learnt
offline are inherently exploitable. Ideally, an adapt-
ing agent could be expected to perform in situations
never considered by the game developers. Quinn et
al demonstrated the use of a real-time evolutionary
learning system for the task of cooperative and co-
ordinated team behaviour for robots (Quinn 2002).
The aim was for the team to move to a new location
while remaining within sensor range of each other all
times. Despite being a relatively simple task, it is an
encouraging result.

Our previous work in the domain of Pac-
man (Wittkamp 2008) was a proof-of-concept study
in “simulated” real-time — that is, the learning was
continuous and took place in parallel with the agents
acting in the environment, but the environmental sim-
ulation was paused to allow the learning system to
explore strategies. This paper takes the next step
and investigates to what extent sufficent learning is
possible in real-time. We explore the use of compu-
tational intelligence techniques for real-time learning
in a simple prey and predators domain. Focusing on
team-work development, we examine how these tech-
niques can be used to evolve strategies for a team of
predators aiming to capture a single prey opponent.

The real-time system we propose makes use of
continuous short-term learning to regularly update
predator strategies. Our approach aims to paral-
lelise offline learning through lookaheads and simu-
lations with actual game play. Constant adaptation
over short time periods means the predators need not
learn complex general strategies, but rather focus all
attention on current the state of the game.

2 The Iterative Real-time Team Learning
System

Our real-time learning system is a novel implementa-
tion of an Evolutionary Algorithm, designed to run in
parallel with the game environment and to iteratively
evolve a team of agents via an analogy of Darwinian
selection. Learning takes place continuously within
discretised time slices; during each time slice, a role
is selected for training.

The system first looks ahead to the predicted state
at the start of the next time-slice (ESt+1). This state
is used to determine which role to train and from
which population (each role maintains its own pop-
ulation). Each time-slice, a single role is trained in
a round-robin fashion. How these roles map to the
agents is up to the implementation, but for this study
we use a direct one-to-one mapping of each role to a
unique predator. It may be advantageous to organise
the mapping of roles to predators in a more meaning-

ful way (such as by distance to the prey) and then
automatically switch the strategies used by predators
as their circumstances change, but we plan to address
these considerations in future work.

The lookahead state (ESt+1) contains the ex-
pected state of the environment and all agents one
time-slice into the future. The learning system has ac-
cess to the predator strategies, and also the prey strat-
egy — that is, simulations run have accurate models
of how the enivironment and all agents contained will
behave. When training a particular role, the role is
replaced in the lookahead state and then a simulation
from this state (ESt+1) is completed. Even though
only a single predator is traiing during any given time
slice, the fitness measure used evaluates the team as a
whole rather than sanctioning the individual directly.
The individuals in the population are each evaluated
by their contribution to the predator team’s predicted
performance at the end of the next time slice. The
evolutionary algorithm uses this performance data to
create the next generation of strategies.

The evolutionary process takes place in real-time,
in parallel with actual events in the game environ-
ment. As many generations as possible are completed
during the time slice, with the fittest individual from
the evolving population being used to replace the role
for play in the next time slice. We use the same fit-
ness function as that of (Yong 2001) as described be-
low where d0 is the sum of all predator’s starting dis-
tances to the prey, and de is the sum of the ending
distances. The system is depicted visually in Figure 1
and written up as pseudo-code in Algorithm 2.1.

f =

{
d0 − de/10 if prey not caught
200− de/10 if prey caught

We use an elitist selection scheme where the top
half of the population reproduces by one-point cross-
over and mutation to replace the bottom half of the
population. Mutation is applied randomly to a sin-
gle weight of the individual, with 0.4 strength. We
cap our simulation time at 600 game ticks (roughly
40 seconds). Though we are interested in completing
a capture far sooner than that, we allow the simula-
tions to run up to 600 game ticks for data collection
purposes.

We allow our learning system to have access to a
perfect simulation model. While playing, the preda-
tors do not explicitly communicate. For the looka-
head and training simulations the predator currently
undergoing a learning cycle has access to every other
predator’s agent model. That is, the learning system
will have a perfect understanding of what each of its
team mates will do in any given scenario and these
are used to train a predator. This is possible due to
predators being completely deterministic given any
scenario.

Given the learning system’s intimate knowledge to
all agents’ strategies and that the game environmemt
is completely deterministic, the prey opponent model
is the only remaining uncertainty in the lookahead
and simulation process. In this paper, in order to
completely remove noise in our simulations, we as-
sume access to a perfect model of the prey opponent.
Having a perfect opponent model is no small assump-
tion, but the aim of this paper is to demonstrate the
effectiveness of our real-time learning system com-
pared to an offline approach. If our predators were
learning offline by training against a particular prey,
then the offline learning system would also have ac-
cess to a perfect prey model. In a real-time scenario
this may be infeasible because the opponent may be

CRPIT Volume 122 - Computer Science 2012

82

Figure 1: Pictorial representation of the real-time learning system

“black box” or simply not available for use in simu-
lations — consider the case when playing against a
human opponent in real-time. Section 6 discusses our
intended future work with respect to inaccurate op-
ponent models and other sources of simulation noise.

3 Experimental Domain

Figure 2: The prey and predators environment

We have developed a system for learning effec-
tive team strategies in real-time as a game is being
played. We allow for no prior offline learning; all
learning takes place while the game is being played.
To test our system, we use the prey and predators
domain studied in (Rawal 2010, Yong 2001). We are
interested in evolving a team of predator strategies to

coordinate their movements to trap and capture the
prey in real-time.

3.1 Prey and Predators Environment

The game environment we use is closely modelled
from that of (Yong 2001). In this predators-prey en-
vironment, we have a single prey and a team of 3
predators. The goal of the predators is to catch (mak-
ing contact with) the prey. The prey’s aim is simple;
avoid being caught by the predators.

We are interested in training the team of predators
in real-time to cooperate with each other towards the
goal of catching the prey. In all but one experiment
the predators and prey move at the same speed, thus
making the task of capturing any competent prey im-
possible without some degree of cooperation — in the
remaining experiment, the prey is given a powerful
advantage by being able to move at 3 times the speed
of the predators.

The environment for all experiments is a 100 ∗ 100
toroidal grid without obstacles where agents (prey
and predators) are represented by circles of radius
6. In this an environment a simple hand-coded prey
could quite easily evade 2 predators indefinitely, thus
the task of capturing the prey will need the coop-
erative actions of all 3 predators working together.
The initial setup places the 3 predators in a corner of
the toroid grid (being a toroid, they are all one and
the same) and the prey is randomly positioned. The
speed of all agents is fixed — each is either moving at
this speed or stationary; there is no in between.

A predator travelling across the toroid diagonally
from corner to corner (the longest straight-line path
across the toroid) takes 150 game ticks, which takes
10 seconds in real-time. This time was chosen as this
seemed a realistic speed for the game if it where made
to be playable by a human. What this means is that in
the time taken for a predator to cover this distance,
there are 150 decision points for every agent. The
number 150 was chosen to match that of (Yong 2001)
for which we aim to compare results.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

83

Algorithm
2.1: Real-Time Evolutionary Team Learning System()

comment: Initialise a population (Pr) of individuals for each identified role (r)

for each r ∈ Environment.Roles
do {Pr ← CreatePopulationOfIndividuals()

for each t ∈ Time− slices

do



comment:Capture the current state of Environment to St

St ← Environment.GetState()

comment: Look ahead from the captured state to the next expected state ESt+1

ESt+1 ← LookAhead(St, OpponentModel)

MarkedRole← ChooseRole(ESt+1)

for g ← 1 to NumGenerations

do



in parallel for each individual i ∈ PMarkedRole

do


StartStates[i]← ESt+1

StartStates[i].ReplaceRole(Environment.Roles[MarkedRole],
PMarkedRole[i])

ESt+2[i]← RunSimulation(StartStates[i])

comment: Evaluate PMarkedRole by inspecting expected end states (ESt+2)

Fittest ← Evaluate(PMarkedRole, ESt+2)

comment: Evolve the next generation of individuals for Pr

Epoch(Pr)

Environment.ReplaceRole(Environment.Roles[MarkedRole], F ittest)

3.2 Hand-coded Prey Controllers

In order to test our domain we have created some
hand-coded opponents capable of evading the preda-
tors to varying degrees. The 3 different prey strate-
gies we have created are Simple, Repelled, and Fast.
These are listed in increasing order of how difficult
they are to capture, as comfirmed by the results in
Section 4.1.

1. Simple: our most basic of preys; its strategy is
to always head directly away from the predator
closest to it. This prey always travels at the same
speed as the predators. The Simple opponent is
based on the description of the prey opponent
used in Yong and Miikkulainen’s work (Yong
2001); we use this prey as a simple starting point
and to allow more meaningful comparisons be-
tween our approaches.

2. Repelled: a more complex prey that aims to
avoid predators proportionate to their proxim-
ity. For all predators, the prey applies a force
of repulsion equal to 1/d2 in the direction of the
predator, where d is the minimum toroidal dis-
tance from the prey to that predator. This prey
moves at the same speed as the predators, head-
ing in a direction determined by the sum of the
repulsive forces. Our aim in creating the Re-
pelled prey was to create a strong training part-
ner for the bulk of our experiments, after initial
experiments seemed to indicate that capturing
the Simple prey did not sufficiently challenge our
system.

3. Fast: a prey that employs the same strategy
as the Repelled prey, but one that travels at 3
times the speed of the predators rather than at
the same speed. This prey provides a very diffi-
cult capture task intended to push our learning
system beyond its limits.

3.3 Predator Controller

A predator takes the form of a randomly initialised
feed-forward neural network with 2 inputs, 5 outputs,
and a hidden layer of size 10. The only inputs to
the predators are their x and y toroidal distances to
the prey. The predator’s x and y coordinates on the
toroidal grid do not factor into its decision making
process. The outputs are North, South, East, West
and Stationary.

The predator will remain still if the Stationary out-
put exceeds that of all other outputs. Otherwise, the
difference between the East and West outputs deter-
mines the x component of the predator’s direction
vector and the dfference between North and South
determines y. The predator travels at a fixed speed,
equal to that of the Simple and Repelled prey types
(and one third the speed of the Fast prey). While
this network representation could be used to define
an agent that is capable of varying its speed, here we
are only using it to describe the predator’s direction,
not magnitude. Like the prey, predators will always
be either motionless or travelling at their predefined
maximum speed.

CRPIT Volume 122 - Computer Science 2012

84

4 Experiments and Results

4.1 Prey Strategy Evaluation

We have designed the Simple, Repelled, and Fast prey
to be used as training partners to our real-time sys-
tem. These strategies are described in Section 3.2.
In this experiment we aim to confirm that the 3
prey strategies have a range of skill levels that make
the problem increasingly difficult. We trial the prey
against our real-time system with a fixed configura-
tion. The experimental setup uses a population of
200, running for as many generations as real-time
will allow — on average, the system made it through
roughly 33 generations per time-slice.

Elapsed time Simple Repelled Fast
n (game ticks) prey prey prey
100 14 1 0
200 88 24 3
300 100 58 6
400 100 76 11
500 100 81 16
600 100 86 22

Table 1: Percentage of runs resulting in capture
against various prey strategies by n game ticks.

Table 1 shows the results of each prey performing
against our real-time adaptive predator team in an
identical experimental setup averaged over 100 runs.
The rates of capture are reported for various points
of elapsed time and are therefore cumulative.

As expected, the Simple prey is the easiest strat-
egy to capture. By 260 game ticks the real-time sys-
tem managed captured the Simple prey in all 100
runs. Even at the time the simulations were capped
at 600 game ticks, 100% was not achievable for this
experiment against either the Repelled or the Fast
prey, indicating that the Simple prey is clearly the
least formidable opponent.

The real-time system took much longer to form an
effective counter strategy to the Repelled prey than
it took against the Simple prey. In the time that the
Simple prey was completely dominated, the Repelled
prey was only being captured 46% of the time, and
reached an ultimate capture rate of 86% after 600
game ticks.

The Fast prey, employing the same strategy as the
Repelled prey but at triple the speed, is clearly the
most difficult prey to capture. This prey has the un-
fair advantage of being able to travel at 3 times the
speed of the predators. The real-time system only
manages to achieve capture in 22% of games after 600
game ticks — far lower than that achieved against
the other hand-coded prey opponents. The aim in
designing this opponent was to purposely create an
extremely difficult task for our system; the results
suggest that we have succeeded; this is indeed a very
difficult prey to capture.

The results show that the real-time system is cer-
tainly very capable of producing effective predator
team strategies in order to catch the prey without
any prior learning. Within the time taken to move
from one corner to the other (150 game ticks), the
real-time controlled predator team manages to cap-
ture the Simple prey 60% of the time; this is a good
result. Recall that 2 predators are not capable of cap-
turing even the Simple prey and, due to the iterative
learning construct of our system, it is not until after 3
time-slices (120 game ticks) that the real-time system

has been given an opportunity to learn a strategy for
each of the 3 predators.

This experiment’s configuration was arbitrarily se-
lected as a means of comparing the hand-coded prey
strategies and to confirm that they are increasingly
difficult prey to capture as intended. To observe
a 100% capture rate being achieved after 260 ticks
against the Simple prey is a most encouraging result.

The real-time evolved predator team manages to
capture the more advanced Repelled prey strategy in
86% of cases and even manages to capture the Fast
prey (a prey moving at 3 times the speed of the preda-
tors) 22% of the time. As previously mentioned, this
experiment was not geared towards testing our hand-
coded prey strategies and establishing a baseline, but
rather towards achieving the most optimal configu-
ration for learning. We expect our system’s perfor-
mance to improve in Section 4.2, when we aim to
determined how the length of our time-slices affects
learning performance.

4.2 Time-slice Experient

In this experiment, we investigate the effect of vary-
ing the length of the time-slice. The time-slice length
affects both the rate at which new strategies are
“plugged in” to the game as well how long the fitness
evaluations are run. As the game progresses, learning
takes place continuously across time slices, with each
slice marking an insertion point for learnt strategies
into the game.

Which length we use for the time slice has the po-
tential to substantially impact the learning system.
The length of the lookahead and the time taken un-
til all predators have been given an opportunity to
train are very significant factors both implied by the
selection of a time-slice length.

Consider the case where we train using a time-slice
of length 20. Random strategies are plugged in for all
3 predators and the training begins at 0 game ticks.
The learning system looks ahead to the expected state
of the game at 20 ticks, from here simulations begin in
parallel for as many generations as time permits until
the game reaches 20. At this point, the first preda-
tor strategy is inserted into the game and learning
continues for the next predator which will be inserted
into play at 40 game ticks, and then the final predator
at 60. If our time-slice length was 40, then our learnt
strategies would be more likely to see past myopic op-
tima and be able to develop more effective long term
strategies. However, we would be forced to wait until
120 game ticks until all predators had been given an
opportunity to learn; an inherent tradeoff is seen.

In Figure 3 we see that all time-slice lengths except
for the extremes of 20 and 200 managed to achieve a
100% capture rate after 600 game ticks against the
Simple prey. When running our real-time system us-
ing a time-slice length of 20, 95% capture is achieved,
and 96% for a time-slice length of 200. The fact that
the system does not reach 100% capture after 600
game ticks under a time-slice length of 200 is not
surprising at all. The 3rd predator strategy is only
plugged in at 600 game ticks, meaning that only 2
of the 3 predators have had an opportunity to learn
at the game’s end. From 400 game ticks onwards
the system is running with 2 learned predators and 1
predator still unchanged from its original random ini-
tialisation. Impressively, the high performance result
shows that 2 trained predator strategies are able to
make use of their randomly intialised team-mate.

The rate of learning for the real-time system ap-
pears to be the same against the Simple prey across
all time-slice lengths. The general pattern we see is a

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

85

Figure 3: Effect of time-slice length on performance
against Simple prey

Figure 4: Effect of time-slice length on performance
against Repelled prey

steep rise at about 3 times the time-slice length (once
all predators have been given an opportunity to learn
a strategy). The longer time-slice length runs suf-
fer inherently because the time between insertions is
longer, and the time until all 3 predators have learnt
a strategy is also longer.

Against the Repelled prey, the most effective cap-
ture strategy at 150 game ticks was trained using a
time-slice of 20, despite it not performing as well as
the others, ultimately. A shorter time-slice length
allows all predators to get through a learning cycle
much sooner, but they will be limited in their under-
standing of the environment due to the short time-
slice length. This almost always manifests itself in all
3 predators being bunched together and chasing the
prey around the toroid over and over again as seen
against the Repelled prey using a time-slice length of
20 in Figure 6. With an identical starting point (all
predators beginning at the same location) but instead
using a time-slice length of 80, after a few time-slices
the predators learn to surround the prey and even-
tually capture as seen in Figure 7. While not as
stark a relationship as we had expected, the tradeoff
between forming effective strategies and the delay of
actually being able to utilise them in the actual game
is apparent.

If the time-slice is too short then the rewards of
certain strategies are too distant to be recognised by
the fitness function and thus will never be used as

Figure 5: Effect of time-slice length on performance
against Fast prey

predator strategies in actual play — i.e. the learning
becomes trapped within local optima. For example,
consider the case where all predators have converged
upon chasing the prey and effectively acting as a sin-
gle predator. If we now wish to evaluate a candidate
predator strategy that breaks away from the other
predators and head in the opposite direction in order
to cut off the prey from the other side of the toroid.
If the time-slice is too short then the fitness would
be evaluated at a time where this predator had bro-
ken away from the others but had not yet caught up
with the prey from the other side. The fitness func-
tion would then find this strategy to be ineffective
because it is unable to see past the temporary hit to
the fitness function required to make an improvement.

We observe that a steep improvement, relative to
time-slice length, occurs earlier when the time-slice
length is longer. One would expect to see a strong per-
formance increase after the third time-slice because
this is when all predators have had a chance to learn.
With longer time-slices, we see that this increase oc-
curs before the final predator strategy is plugged into
the game. This suggests that with a longer time-slice
to train under, the 2 predators are able to formu-
late strategies that are highly effective and able to
make use of the randomly initialised strategy still be-
ing used by the third predator.

The time-slice is so long that at most only 2 preda-
tors have had a chance to learn By the time the final
predator strategy has been trained and is ready to be
plugged into the game at 600, the simulation is over.
The trend seems to be that longer the time-slice, the
better the resulting team-strategy. Also, the more dif-
ficult an opponent is to capture, the more benefit can
be expected from increasing time-slice length. From
Figure 5, against the Fast prey, we see a far more var-
ied performance result at the end of 600 game ticks.

Figure 6: Short-sighted predator strategies fail to cap-
ture the Repelled prey using a time-slice length of 20
game ticks.

CRPIT Volume 122 - Computer Science 2012

86

Figure 7: Predator strategies converge and capture
the Repelled prey using a time-slice length of 80 game
ticks.

For a counter strategy to the Simple prey, Figure 3,
we observe that 20 ticks is not enough to produce
an effective counter strategy. At 40 ticks, the preda-
tors are doing a lot better — reaching 100% capture
rate after 260 game-ticks when training in real-time.
Against the more difficult Repelled prey, 40 ticks was
no longer enough to achieve a high capture percent-
age.

These results are in tune with what we would ex-
pect; with a more competent prey there would be
more benefit to having a longer time-slice length.
This is because a longer time-slice length means that
predators are evaluated based on relatively long-term
performance, encouraging and avoiding short term
strategies that may be trapped within local optima.
Indeed, this is exactly what we observe in the graph
against the Simple opponent — we saw that a time-
slice length of 20 game ticks was insufficiently short,
and that a length of 40 seemed about right. Against
the Repelled prey, we now observe that 20 ticks is far
too short, achieving only a capture rate of 50% by the
end of the game.

4.3 Real-time vs Paused

In this experiment, we compare our real-time sys-
tem to a “paused” version of the same system. Our
real-time system follows Algorithm 2.1, completing
as many generations as it as able to within the time
available.

The paused version works almost exactly the same,
except it is guaranteed to complete a predetermined
number of generations. This is possible because the
game is paused in its execution at the end of each
time-slice and waits for the learning to complete its
desired number of generations. The paused version is
able to tell us is how well we can expect our real-time
version to perform given more powerful hardware that
is capable of running more simulations in a given time.

Elapsed time (ticks) Percentage captured
40 0.44
80 4.11
120 26.67
160 62.44
200 82.33
240 91.22
280 95.89
320 98.44
360 99.22
400 99.78
440 99.89

Table 2: Real-time adaptive prey’s performance in
the benchmark cases from (Yong 2001).

Tables 4.3 and 4.3 show the result of both the
paused and real-time versions of our system playing
against the Repelled and Fast prey strategy, respec-
tively. What we found was that, there was no statis-

tically significant difference between the paused and
real-time systems in performance. The only statisti-
cally significant difference is in Table 4.3 against the
Fast prey and for a population size of 10. In this
instance, the paused version performs better.

These results are extremely encouraging; the real-
time system manages to do just as well as the paused
system against our best prey agents. What we found
with the real-time version was that simulations were
not very computationally expensive at all for this
game, but the operations of creating a new genera-
tion from the previous one is. This explains why the
real-time system manages to get through so many to-
tal simulations when the population size is high.

4.4 Comparison with Yong and Miikkulainen

Here we compare our real-time learning system with
the offline approach of (Yong 2001). We train in real-
time but then freeze our learnt strategies and pit them
against 9 fixed starting states to assess how applica-
ble the team strategies are to general situations. We
model our game environment as close as possible to
that of this study in order to make comparisons as
meaningful as possible.

Yong and Miikkulainen experimented with a dis-
tributed and central control system for the prey. One
conclusion made was that a distributed system was
more effective than a centralised approach. Also,
communication between predators was deemed un-
necessary and that it overburdened the learning sys-
tem. Without communication between the evolving
predators, they learned faster and performed better
with the emergence of more distinctive roles. The best
predator strategies from (Yong 2001) were trained in
the non-communicating, distributed system which we
will refer to as the Yong-Miikkulainen system, from
this point on.

Yong and Miikkulainen trained their predator
teams using 1000 trials per generation, with each trial
being 6 simulations against prey beginning in a ran-
domly determined position. A layered learning ap-
proach was used by Yong and Miikkulainen, which
saw predator strategies being evolved in 6 stages:
from a stationary prey, to incrementally faster prey
until reaching the same speed as the predators. Our
real-time system does not have the time to imple-
ment a layered learning approach such as this, so
our system must tackle the full speed prey immedi-
ately. Once learnt, the strategies were tested in a set
of 9 benchmark cases to determine how effective the
predator team is at capturing the prey. These bench-
mark cases involve the predator teams all beginning in
the corner of the toroid, with the prey beginning at 9
evenly spaced starting positions on the toroid. The 9
positions the centre-positions of each sub-square when
the toroid is split up into a 3 ∗ 3 grid.

Table 4.3 shows the result of our real-time adap-
tive predator team when thrown into the same bench-
marking as used in (Yong 2001). In these benchmark
cases, the Yong-Miikkulainen system took an aver-
age of 87 generations to be able to solve 7 out of 9
benchmark cases, and this was done within 150 game
ticks. At 150 ticks our system averaged 54% capture.
Our real-time system falls slightly behind in this re-
sult, managing to achieve 7 out of 9 a bit later at 190
game ticks.

When compared in this way the real-time system
falls behind. At each time-slice of 40 ticks one preda-
tor is given the opportunity to train so it is not until
120 game ticks that the real-time system is operat-
ing with a full set of learnt predator strategies. The
team trained under the Yong-Miikulainen approach

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

87

Population size Generations Total simulations Average capture time
Paused 10 500 5000 348.63
Real-time 10 48.81 488.61 336.21
Paused 50 100 5000 275.61
Real-time 50 45.64 2281.88 309.09
Paused 100 50 5000 315.72
Real-time 100 42.31 3287.38 311.84
Paused 200 25 5000 293.53
Real-time 200 32.87 8461.38 307.91
Paused 500 10 5000 296.41
Real-time 500 25.23 12612.86 307.88
Paused 1000 5 5000 274.03
Real-time 1000 11.36 11358.83 272.84
Paused 2500 2 5000 271.29
Real-time 2500 5.91 14781.84 281.39
Paused 5000 1 5000 269.76
Real-time 5000 2.24 11204.0 274.86

Table 3: Real-time vs Paused, against Repelled prey

Population size Generations Total simulations Average capture time
Paused 10 500 5000 510.97
Real-time 10 49.94 499.41 557.95
Paused 50 100 5000 536.61
Real-time 50 46.09 2302.43 518.63
Paused 100 50 5000 503.53
Real-time 100 43.13 4312.98 515.86
Paused 200 25 5000 503.23
Real-time 200 36.97 7393.77 521.36
Paused 500 10 5000 525.86
Real-time 500 23.68 11840.86 498.61
Paused 1000 5 5000 467.13
Real-time 1000 14.33 14326.31 500.19
Paused 2500 2 5000 498.14
Real-time 2500 5.62 14043.09 470.78
Paused 5000 1 5000 499.63
Real-time 5000 2.11 10557.44 532.60

Table 4: Real-time vs Paused, against Fast prey

has all 3 predators plugged in from the start because
of the offline learning it has already undertaken. If
we consider the elapsed time of 270 ticks (120 + 150)
so that our real-time system has had the opportunity
to play the same number of game ticks with a full
team of predator strategies, then it achieves a 95.67%
capture rate.

The Yong-Miikulainen predator team had its pop-
ulation of 1000 individuals run through an average
of 87 generations 6 times (each evaluation consists of
play in 6 random games). The total number of simula-
tions to achieve 7 out of 9 capture in the benchmarks
is 522000. The moment when our real-time system
achieves 7 out of 9 in the bench mark cases is at 190
game ticks. At this time, the system has run our pop-
ulation of 2500 individuals through an average of 6.1
generations 4 times (once for each time-slice that has
completed). This is a total of about 61100 total sim-
ulations, fewer than one eighth that required by the
best predator team of (Yong 2001).

Our system uses the same neural network inputs
and outputs as (Yong 2001) and the same training
partner (the Simple prey), and achieves the same per-
formance in less than one eighth of the simulations,
and in real-time. The one weakness of our system is
that the initial learning takes time to slot predator
strategies into the game. While (Yong 2001) finished
their simulation at 150 game ticks, their predators
were all employing their strategies from the onset.

At 150 ticks, our system averaged 54% captures but,
of course, has spent a considerable portion of these
ticks learning strategies for its predators.

4.5 Generalisation

In Section 4.3 we demonstrated that our real-time
system was able to evolve team strategies to play with
no prior learninng.

In this experiment, we allow the predators to
evolve in real time (one after another in their allo-
cated time-slices) and then “freeze” the predators’
learning once the game is over. The “frozen” (no
longer learning) predator strategies are then tested in
a number of different starting configurations. This
experiment is to determine how effective the frozen
predator strategies are for the game in general.

We take the strategies learnt in real-time from Sec-
tion 4.2 and freeze their learning after the game has
come to an end. The predators are placed in 9 new
game environments, with only the starting position
of the prey being varied in each in order to assess the
team’s ability for general play in the prey and preda-
tors domain against an identical prey. The 9 prey
starting positions are such that if the toroid were to
be divided into a 3∗3 grid as described in Section 4.3,
the prey begins in the center of each cell. We run tri-
als against all 3 prey types, each time training against
that particular prey in real-time and then testing for

CRPIT Volume 122 - Computer Science 2012

88

general ability against that same prey in each of the
starting positions.

Averaged over 100 runs of the real-time training,
we recorded the total capture rate at various points
in the game’s play time. The results across all 3
prey types are similar — the strategies learnt in real-
time completely fall apart when frozen and placed in
the 9 new game environments. Not a single capture
was achieved in any experiment, even in those where
real-time learning routinely achieved perfect or near-
perfect capture. While this may at first seem like a
negative result, it is exactly what we expected to see.

When training in real-time, the predators vary
their strategies to restrict the prey, and slowly sur-
round and close in on the prey. At the time of cap-
ture, at least 2 of the prey (and most often, all 3)
converge on the strategy of heading directly towards
the prey. The reason this strategy is effective at the
end is due to the higher level strategies of surrounding
and restricting the prey’s movement that were learnt
earlier and have since been discarded. When these
predators’ highly specialised end-game strategies are
then frozen and placed in new game environments,
what typically results is the same endless traversal of
the toroid that we observed in Section 4.2.

The benefit of our real-time system is that the
strategies formed are not necessarily robust or sound
strategies for the game in general and can thus be
simple to learn. A general strategy must be com-
plex enough to deal with every game situation it
may encounter; learning in real-time through contin-
uous adaptation allows the system to learn highly
situation-specific strategies without being overbur-
dened by being required to learn how to play in all
other situations. The predator strategies that are
evolved in real-time are constantly changing to match
the current state of the game environment. To de-
velop this level of specialisation offline for all possible
game scenarios would require far more learning and
a more complex predator representation. The team
strategies learnt in real-time always perform badly
in the 9 scenarios due to the final strategy that the
predators had at the time they were frozen.

The resultant strategies are bound to the specific
game scenario at the time it is encountered. The team
strategies become so specifically tailored to the task at
hand that any hope for generality is lost. Depending
on the domain, a system that behaves well in general
may be very difficult to create and may not even be
possible. A real-time learning system that can change
itself to new game conditions alleviates the need to
solve such a difficult task, when all that is required is
for the predators to be able to focus on what it needs
to do, when it needs to do it.

5 Conclusion

The results of this study are extremely encouraging.
We have shown that the real-time team strategy is
able to learn, in a reasonable amount of time to cap-
ture hand-coded prey of varying degrees of difficulty.
It is capable of achieving competitive results with the
paused version.

Not surprisingly, the strategies formed to not make
for very robust, general strategies. The strategies
formed by the real-time system are extremely spe-
cialised to whichever situation currently presented to
it. The strength of this system is in its ability to
adapt. This real-time learning system simulates a
higher level strategy capable of handling many dif-
ferent situations, and indeed, situations that it has
never seen before.

6 Future Work

For this paper, we have shown that our system is
capable of discovering real-time cooperative strate-
gies for the task of controlling predators in the Prey
and Predators domain. The results of these exper-
iments depend on the learning system’s access to a
perfect opponent model. This is ultimately an unre-
alistic assumption for the problem that we wish to
extend our approach into — play against a human-
controlled prey opponent. How accurate must our
opponent model be before our learning system is able
to form effective team counter-strategies? How (and
when?) do we try to improve our opponent model in
real-time? In future work, we intend to investigate
the answers to these questions among others.

For ease of implementation, one thing we have
done is to run simulations for the length of a time-
slice. This means that the predator strategies are
trained to play for the length of one time-slice but
because there are 3 predators, these strategies are ac-
tually in play for 3 time-slices. Since a long time-slice
length hinders the initial learning curve so much a
possible solution would be to have initially short slices
which could grow one all predators have had the op-
portunity to learn at least some sort of strategy. Or,
rather than being discretised to these time-slices, it
may be beneficial to have an “any time” approach to
when new strategies could be plugged into the game.

Intuitively, it seems to make sense to train in the
environment that one wishes to play in, however there
are several reasons why this may not be the best or
only solution. For real-time learning we are greatly
restricted in how much training we can get through;
increasing the simulation length will put even more
strain on our system and limit how many simulations
we can get through. When combined with our goal
to account for noise in the opponent model, a longer
simulation length may be far too noisy to provide
any benefit at all. A successful approach may be one
that has a variable time-slice length depending on the
perceived accuracy of the opponent model.

References

M. Wittkamp and L. Barone: Evolving adaptive play
for the game of spoof using genetic programming,
in Proceedings of the 2006 IEEE Symposium on
Computational Intelligence and Games, IEEE Pub-
lications.

M. Wittkamp, L. Barone, and L. While: A com-
parison of genetic programming and look-up table
learning for the game of spoof, in Proceedings of
the 2006 IEEE Symposium on Computational In-
telligence and Games, IEEE Publications.

Wittkamp, M. and Barone, L. and Hingston, P.: Us-
ing NEAT for continuous adaptation and teamwork
formation in Pacman. In: Computational Intelli-
gence and Games, 2008. CIG ’08. IEEE Symposium
On, pp. 234–242, Perth.

Quinn, L. Smith, G. Mayley, and P. Husband: Evolv-
ing teamwork and role allocation with real robots,
In Proceedings of the 8th International Conference
on The Simulation and Synthesis of Living Systems
(Artificial Life VIII), 2002.

ML. Berger: Scripting: overview and code generation,
in AI Game Programming Wisdom. MIT Press,
2002, vol. 1, pp. 505510.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

89

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E.
Osawa: RoboCup: the robot world cup initiative,
in Proceedings of the First InternationalConference
on Autonomous Agents (Agents’97). ACM Press,
58, 1997, pp. 340347.

P. Tozour: The Perils of AI Scripting, Charles River
Media, Inc.

Yong C. and Miikkulainen, R.: Cooperative Coevolu-
tion of Multi-Agent systems, University of Texas,
Technical Report, 2001.

Yong C. and Miikkulainen, R.: Coevolution of role-
based cooperation in Multi-Agent systems, IEEE
Transactions on Autonomous Mental Development,
2010.

Rawal, A. and Rajagopalan, P. and Miikkulainen, R.:
Constructing Competitive and Cooperative Agent
Behavior Using Coevolution, 2010.

Smith, T.F., Waterman, M.S.: Identification of Com-
mon Molecular Subsequences, 1981. J. Mol. Biol.
147, 195–197.

May, P., Ehrlich, H.C., Steinke, T.: ZIB Structure
Prediction Pipeline: Composing a Complex Bio-
logical Workflow through Web Services. In: Nagel,
W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par
2006. LNCS, vol. 4128, pp. 1148–1158. Springer,
Heidelberg.

Foster, I., Kesselman, C.: The Grid: Blueprint for
a New Computing Infrastructure, 1999. Morgan
Kaufmann, San Francisco.

Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman,
C.: Grid Information Services for Distributed Re-
source Sharing. In: 10th IEEE International Sym-
posium on High Performance Distributed Comput-
ing, 2001, pp. 181–184. IEEE Press, New York.

Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The
Physiology of the Grid: an Open Grid Services
Architecture for Distributed Systems Integration,
2002. Technical report, Global Grid Forum.

D. Charles, C. Fyfe, D. Livingstone, and S.
McGlinchey: Biologically Inspired Artificial Intel-
ligence for Computer Games, Medical Information
Science Reference, 2007.

National Center for Biotechnology Information:
http://www.ncbi.nlm.nih.gov

CRPIT Volume 122 - Computer Science 2012

90

Trends in Suffix Sorting: A Survey of Low Memory Algorithms

Jasbir Dhaliwal1 Simon J. Puglisi1 Andrew Turpin2

1 School of Computer Science and Information Technology
RMIT University,

Melbourne, Australia,
Email: {jasbir.dhaliwal,simon.puglisi}@rmit.edu.au

2 Department of Computing and Information Systems
University of Melbourne,

Melbourne, Australia,
Email: aturpin@unimelb.edu.au

Abstract

The suffix array is a sorted array of all the suffixes
in a string. This remarkably simple data structure is
fundamental for string processing and lies at the heart
of efficient algorithms for pattern matching, pattern
mining, and data compression. In many applications
suffix array construction, or equivalently suffix sort-
ing, is a computational bottleneck and so has been
the focus of intense research in the last 20 years.
This paper outlines several suffix array construction
algorithms that have emerged since the survey due to
Puglisi, Smyth and Turpin [ACM Computing Surveys
39, 2007]. These algorithms have tended to strive for
small working space (RAM), often at the cost of run-
time, and make use of compressed data structures or
secondary memory (disk) to achieve this goal. We
provide a high-level description of each algorithm,
avoiding implementation details as much as possible,
and outline directions that could benefit from further
research.

Keywords: suffix array, suffix sorting, Burrows-
Wheeler transform, suffix tree, data compression

1 Introduction

Strings are one of the most basic and useful data rep-
resentations, and algorithms for their efficient pro-
cessing pervade computer science. A fundamental
data structure for string processing is the suffix ar-
ray [Manber and Myers, 1993]. It provides efficient –
often optimal – solutions for pattern matching (count-
ing or finding all the occurrences of a specific pat-
tern), pattern discovery and mining (counting or find-
ing generic, previously unknown, repeated patterns in
data), and related problems, such as data compres-
sion. The suffix array is widely used in bioinformatics
and computational biology [Gusfield, 1997, Abouel-
hoda et al., 2004, Flicek and Birney, 2009], and as a
tool for compression in database systems [Chen et al.,
2008, Ferragina and Manzini, 2010]. More recently it
is beginning to move from a theory to practice as an
index in information retrieval [Culpepper et al., 2010,
Patil et al., 2011].

In all these applications the construction of the
suffix array — a process also known as suffix sort-

Copyright c©2012, Australian Computer Society, Inc. This
paper appeared at the Thirty-Fifth Australasian Computer
Science Conference (ACSC2012), Melbourne, Australia, Jan-
uary 2012. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce
Thomas, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

ing — is one of the main computational bottlenecks.
Suffix array construction algorithms (SACAs) there-
fore have been the focus of intense research effort in
the last 15 years or so. The survey by Puglisi et al.
[2007] counts 19 different SACAs, and in the last five
years even more methods have emerged. The trend in
these more recent algorithms has been to use as lit-
tle memory as possible, either by finding a clever way
to trade runtime, or by using compressed data struc-
tures, or by using disk, or some combination of these
techniques. It is these recent “low memory” SACAs
which are our focus in this paper.

In the next section we set notation and introduce
basic concepts to be used throughout. This overview
can be safely skimmed by readers already familiar
with suffix sorting, but may serve as a useful tuto-
rial for those new to the problem. Section 3 describes
the new algorithms in turn, illustrating each with a
worked example. A snapshot experimental compar-
ison is offered in Section 4. We then outline some
directions future work might take.

2 Background

Throughout we consider a string x of n characters (or
symbols), x = x[1..n] = x[1]x[2]...x[n], drawn from a
fixed, ordered alphabet Σ of size σ. The final charac-
ter, x[n], is a special end-of-string character, $, which
occurs nowhere else in x and is lexicographically (al-
phabetically) smaller than any other character in Σ.
The string x requires n log σ bits of storage without
compression.

For i = 1, ..., n we write x[i..j] to represent the
substring x[i]x[i+ 1]...x[j] of x that starts at position
i and ends at position j. We write x[i..n] to denote
the suffix of x of length n−i, that is x[i..n] = x[i]x[i+
1]...x[n], which we will frequently refer to as ‘suffix i’
for simplicity. Similarly a prefix is a substring of the
form x[1..i].

The suffix array of a string x, which we write as
SA, is an array containing all the suffixes of x sorted
into lexicographical order. Suffixes are represented as
indices into the original string, and thus, the suffix
array requires only space sufficient to store n inte-
gers, or n log n bits. More formally, SA is an array
SA[1..n] that contains the permutation of the inte-
gers 1..n such that x[SA[1]..n] < x[SA[2]..n] < ... <
x[SA[n]..n]. Figure 1 shows an example SA for the
string werribbe$, where x[9..9] = $ is the lexicograph-
ically least suffix, x[6..9]=bbe$ is the second least and
so on.

Some of the algorithms we describe do not produce
the SA directly, but instead produce the Burrows-

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

91

1 2 3 4 5 6 7 8 9

x w e r r i b b e $
SA 9 6 7 8 2 5 4 3 1

BWT e i b b w r r e $

Figure 1: The Suffix Array and Burrows-Wheeler
transform for the string werribbe$.

All Rotations F L i
werribbe$ $ werribb e 1
erribbe$w b be$werr i 2
rribbe$we b e$werri b 3
ribbe$wer e $werrib b 4
ibbe$werr Sorted e rribbe$ w 5
bbe$werri −→ i bbe$wer r 6
be$werrib r ibbe$we r 7
e$werribb r ribbe$w e 8
$werribbe w erribbe $ 9

Figure 2: The left column shows all rotations of the
string werribbe$. When sorted (right column) this
gives the BWT as column L. The F column contains
characters of the input sorted lexicographically.

Wheeler transform (BWT) of the input string [Bur-
rows and Wheeler, 1994]. The BWT is a reversible
transformation of a string that allows the string to
be easily and efficiently compressed [Manzini, 2001].
The BWT was discovered independently of the suffix
array, but it is now known that the two data struc-
tures are equivalent. In the last decade the relation-
ship between the BWT and the SA has been heav-
ily investigated and has led to the very active field
of compressed full-text indexing: the study of data
structures that allow fast pattern matching, but re-
quire space close to that of the compressed text (see
Navarro and Mäkinen [2007] and references therein).
As we shall see, suffix sorting is the computational
bottleneck for performing the BWT.

The Burrows-Wheeler transform (BWT) trans-
forms the string x by sorting it’s n cyclic rotations
as in Figure 2. For the full properties of the BWT
matrix, we refer the reader to Burrows and Wheeler
[1994], Manzini [2001] and Ferragina and Manzini
[2005]. We only discuss properties of the matrix that
will aid in the explanation of the algorithms. The
two main columns of the matrix are: F, the first col-
umn which is obtained by lexicographically sorting
the characters in x; and L, the last column that repre-
sents the BWT. Observe the relationship between the
SA and BWT: in the matrix of sorted rotations, the
prefixes of each rotation up to the $ are precisely the
suffixes of x in the same order in which they appear
in SA. Formally, the BWT of x is an array BWT[1..n]
such that:

BWT[i] =

{
x[SA[i]− 1]⇐⇒ SA[i] 6= 1

$⇐⇒ SA[i] = 1 (1)

The notation used to describe the three main
properties of the BWT is as follows [Ferragina and
Manzini, 2005].

• C[c] where c ∈ Σ denotes the number of charac-
ters that are smaller than c in the BWT.

• Occ(c, q) denotes the number of occurrences of
character c in prefix L[1..q].

Combining C and Occ gives the Last to First map-
ping, LF. This function allows one to locate the char-
acter c = L[i] in F.

LF(i) = C[c] + Occ(c, i) (2)

Observe how the last character in L[i] precedes the
character in F[i] at any given row in the string (as
each row is a cyclic rotation). For example, character
F[6] = ‘i’ comes after L[6] = ‘r’ in x. The LF function
allows one to locate the character L[i] in F[i]. Contin-
uing with our example, we want to find the character
L[6] = ‘r’ in F. So, LF(6) = C[L[6]] + Occ(L[6], 6) =
C[‘r’] + Occ(‘r’, 6) where C[‘r’] = 6, as there are six
characters that are lexicographically smaller than the
character ‘r’, and Occ(‘r’, 6) = 1, as it occurs once in
L[1..6]. Thus, LF(6) = 6 + 1 = 7, indicating that the
character ‘r’ is at position 7 in F, F[LF(6)] = F[7].

3 The Algorithms

3.1 Algorithm K [Kärkkäinen, 2007]

Figure 3 shows a high level description of
Kärkkäinen’s algorithm. The algorithm begins by
computing the difference cover sample [Burkhardt
and Kärkkäinen, 2003], a special set of suffixes, the
order of which allows the relative order of two arbi-
trary suffixes to be determined easily. In particular
the difference cover sample allows us to determine the
relative order of two suffixes, i and j, by first compar-
ing their v character prefixes. If these prefixes are not
equal, the order of the suffixes has been determined.
However, if a tie occurs, the order of the suffixes is
given by the order of suffixes i+v and j+v,which are
guaranteed to be in the difference cover sample. Here,
v is a parameter, and controls a space-time tradeoff.
For more information on difference covers, we refer
the reader to Burkhardt and Kärkkäinen [2003].

Input: x
1: Compute difference covers.
2: Select suffixes to become splitters.
3: while SA not fully computed
4: Collect suffixes based on splitters.
5: Sort suffixes.
6: Write suffixes to disk.
Output: SA.

Figure 3: Pseudocode for Algorithm K, the suffix
sorting algorithm due to Kärkkäinen [2007].

The next step in this algorithm is to select and
sort a set of splitters. For instance, using the ex-
ample string ababaacaa$, we could select splitters at
positions 1, 4, and 8 as indicated by the arrows shown
below. The last suffix, suffix 10, is also taken as it is
the smallest suffix in the string.

1 2 3 4 5 6 7 8 9 10

x a b a b a a c a a $
↑ ↑ ↑ ↑

j S Suffixes
1 10 $
2 8 aa$
3 1 ababaacaa$
m = 4 4 baacaa$

These m splitters, S[1..m] are then sorted and
stored in memory. Notice that adjacent pairs of split-
ters divide the suffix array into blocks. In the next
phase of the algorithm these splitters will be used to
compute the suffix array one block at a time, where
a block of suffixes can fit in RAM.

CRPIT Volume 122 - Computer Science 2012

92

1 2 3 4 5 6 7 8 9 10

SA1 10 9
SA2 8 5 3
SA3 1 6
SA4 4 2 7

Figure 4: SAi represents the portion of the SA con-
structed using a lower bound splitter j = i and and
upper bound splitter j = i + 1. Note the final pass
using splitter m does not have an upper bound.

With the splitters sorted, Algorithm K proceeds by
taking the first two splitters S[1] = 10($) and S[2] = 8
(aa$) and using them them as lower bound and upper
bound values. A left to right scan of the string is then
made. During the scan, any suffix larger than or equal
to the lower bound and smaller than the upper bound
is collected. In our example, this means on the first
scan suffix 1 is ignored as it lexicographically larger
than the upper bound value. However, suffix 9 (a$)
is picked as it is lexicographically larger than suffix
S[1] but lexicographically smaller than suffix S[2]. In
order to determine efficiently whether a suffix falls be-
tween to splitters we make use of the difference cover
sample, so at most v character comparisons are re-
quired. At the end of the pass, there are two suffixes
in the first block: suffix 9 and suffix 10. These suf-
fixes are ordered to depth v using multikey quicksort
[Bentley and Sedgewick, 1997] and if there is a tie, the
difference covers sample is used again to order them.
The suffixes are then written to disk, and the mem-
ory that was used to hold them (during collection) is
reclaimed.

Subsequent passes work similarly. The upper
bound splitter from the last round becomes the lower
bound, and the next splitter in the set becomes the
new upper bound. In our example, S[2] = 8 becomes
the lower bound and S[3] = 1 becomes the upper
bound. Continuing with our example, suffix 1 is com-
pared with suffix 8 and is lexicographically larger than
suffix 8 but it is not lexicographically smaller than it-
self, thus it is ignored. On the other hand, suffix 3
does fall between the splitters and so it is collected.
This process is continues until all the suffixes in the
range [x[8..n], x[1..n]) have been collected. The suf-
fixes are then sorted and written to disk. The process
continues, deriving the SA as shown in Figure 4.

As splitters are randomly chosen (from a lexico-
graphic point of view), there is no guarantee they di-
vide the SA evenly, and so some blocks my be much
larger than others. In particular, a block may exceed
RAM limits. Kärkkäinen provides a clever method for
dealing with this problem. If, while collecting suffixes
for the current block, the amount of available memory
is reached, the scan is halted and the contents of the
current block is sorted. The lexicographically larger
half of the block is then discarded, the median suffix
in the block becomes the new upper bound splitter,
and the scan resumes. This trick does not (asymp-
totically) increase the number of scans.

Algorithm K requires O(n log n + vn) time and
O(n log n/

√
v) bits of space in addition to the text,

where v is the period of the difference cover used. The
algorithm also allows for different space-time trade-
offs, depending on the amount of available memory.
Setting v = log2 n gives a runtime of O(n log2 n) and
requires O(n) bits of working space.

3.2 Algorithm NZC [Nong et al., 2009]

The algorithm of Nong et al. begins by selecting and
sorting a subset of suffixes, and then using the or-
der of those suffixes to induce the sort of the remain-
ing suffixes. The algorithm uses only space to hold
the input string and the resulting suffix array. In
this sense it is “lightweight” [Manzini and Ferragina,
2004], and ranks among the most space efficient al-
gorithms at the time of the 2007 survey, however it
is the most space consuming algorithm we discuss in
the survey. Algorithm NZC also runs in linear time
in the length of the string, settling an open problem
posed by [Puglisi et al., 2007] by showing it possible
to be simultaneously lightweight in space usage and
linear in runtime.

The idea of differentiating the suffixes into sub-
sets is similar to Ko and Aluru [2005]. Suffixes are
split into Larger and Smaller types (L and S respec-
tively) depending on their lexicographic order relative
to their righthand neighbouring suffix. Then a group
of leftmost S suffixes (LMS) can be used to derive the
sort of the L suffixes, which in turn is used to induce
the sorted order of the S suffixes.

Input: x
1: Label each position S or L.
2: Identify LMS substrings and place in SA1.
3: Scan SA1 left to right: move type Ls to get SA2.
4: Scan SA2 right to left: move type Ss to get SA.
Output: SA.

Figure 5: Pseudocode for the copying algorithm due
to Nong et al. [2009].

The algorithm begins by making a pass over the
string, x[1..n] assigning a type of either L or S to the
suffix beginning at each position depending if it is
Larger or Smaller than its righthand neighbour suffix.
Thus a suffix x[i..n] is type S if x[i..n] < x[i + 1..n],
or type L if x[i..n] > x[i + 1..n]. These definitions
are then used to define the Left Most S-type (LMS)
positions, which are the positions i such that suffix i
is of type S and suffix i− 1 is of type L for x > 1.

The end-of-string symbol, x[n] = $, is defined to
be S, and hence is also an LMS suffix (as its left neigh-
bour must be larger than it). For example, types are
assigned when a right to left scan is made over our
example string, ababaacaa$ as follows.

1 2 3 4 5 6 7 8 9 10

x a b a b a a c a a $
type S L S L S S L L L S
LMS ∗ ∗ ∗

Suffix 1 is categorised as type S (ababaacaa$) as it
is lexicographically smaller than suffix 2 (babaacaa$).
Suffix 2 is of type L as it is lexicographically larger
than suffix 3 (abaacaa$). This process is repeated
until the types are assigned to all the suffixes of the
string. While making the scan, we also identify the
LMS types, which are marked with an ∗.

After identifying the types, the indices of the LMS
positions are placed in buckets in the SA, processing
the LMS left to right, to get SA1. Each suffix begin-
ning with an LMS character is placed at the right-
most end of its character’s bucket in SA1, and the
bucket counter decremented. Let C[j] be the cumu-
lative count of all characters in the string that are
lexicographically less than or equal to j. Thus, for
our example string:

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

93

$ a b c
j 0 1 2 3

C[j] 1 7 9 10

The first LMS character encountered is ‘a’, the be-
ginning of suffix 3, which is placed in position 7, as
C[a] = 7, and C[a] is decremented. Next we encounter
‘a’ at the beginning of suffix 5, and so it is inserted
at C[a] = 6. Finally, suffix 10 beginning with $ is in-
serted at C[$] = 1. The end result is shown here, with
the boundaries of each bucket denoted by brackets.

$ (a)(b)(c)
1 (2 3 4 5 6 7)(8 9)(10)

SA1 10 (5 3)()()
SA2 10 (9 8 5 3)(4 2)(7)
SA 10 (9 8 5 3 1 6)(4 2)(7)

For the next pass, we make a left to right (j = 1..n)
scan over SA1 to derive the order of the L suffixes.
Within a bucket, type L suffixes always come before
type S suffixes since the latter is lexicographically
larger than the former. During the scan, if we find
a suffix i (i = SA1[j]), we look for suffix i − 1 and
if that suffix is of type L and has not been placed in
SA1, we place this suffix in the first empty position
of the group. Hence our bucket counters start off as
C = {1, 2, 8, 10}, one more than the number of char-
acters in the string less than the index. In our case,
when j = 1 and i = SA1[1] = 10, we find suffix 10-1 =
9 which is a suffix of type L that is yet to be sorted.
Therefore, we place it at the start of its ‘a’ bucket
(C[a] = 2) and increment the bucket count. Continu-
ing the scan, i = SA1[2] = 9, suffix 9-1=8 is a suffix of
type L. So, it is placed at the next available position
in bucket ‘a’, which is C[a] = 3. This process repeats
itself until all type L suffixes have been placed in the
array to get SA2.

After placing the type L suffixes, we now collect
the type S suffixes. We make a right to left (j =
n..1) scan over SA2 and for each i (i = SA2[j]), we
look for suffix i − 1 and if the suffix of type S and
has yet to be sorted, we place this suffix at the end
of its bucket indicated by its first character. (The
bucket counters have again been reset.) For example,
when j = n, i = 7, we find a suffix 7-1=6 and it is
a type S suffix from the group ‘a’. So, we overwrite
SA2[7] with 6, and decrement the bucket counter for
‘a’. Continuing with our example, when j = 9, i = 2,
we find a suffix 2-1=1 and it is a suffix of type S. So,
we overwrite the suffix 5 in SA2[6] with suffix 1. This
process is repeated until all the type S have derived
(as indicated by SA).

3.3 Algorithm OS [Okanohara and Sadakane,
2009]

The algorithm of Okanohara and Sadakane uses the
same framework as the algorithm by Nong et al.
[2009], described in the previous section, but derives
the BWT string, rather than the SA. Like NZC, OS
runs in linear time, but via a careful implementation
of the required data structures, it is able to reduce
memory overheads to O(nlogσloglogσn) bits.

Like NZC, suffixes are first classified into types L
and S. Then, the LMS substrings are identified. The
difference comes in that OS explicitly stores the LMS
substrings in queue-like data structures.

Figure 6 illustrates the operation of OS on the ex-
ample string ababaacaa$. The LMS substrings are
stored in queues and their actual positions in x are
stored in F. When these LMS substrings are moved
among queues the L suffixes are induced. Their move-
ment is indicated by the arrows and captured in P.

Figure 6: An example of the modified algorithm that
induces the sort of the string ababaacaa$ using LMS
substrings that are moved in queue-like data struc-
tures.

For example, since the LMS substring, $aacaa was
moved from position i = 1 to i = 2, P[2] = 1. Fur-
thermore, inducing suffix 9 of type L and so on.

Lastly, Q[i] shows the location of the LMS sub-
strings in the queues that are further indicated with
‘1’s. Moreover, the order of two adjacent LMS sub-
strings can be determined by tracing this Q data
structure together with P where i = P[i] is computed
repeatedly when Q[i] = 1 until the head of the sub-
string is reached (stored in F). For example, when
i = 4 and Q[i] = 1, i = {P[4] = 7,P[7] = 10,P[10] =
3,P[3] = 2,P[2] = 1}. In fact, the order of two adja-
cent LMS substrings can be determined in time pro-
portional to their lengths.

3.4 Algorithm FGM [Ferragina et al., 2010]

Input: x
1: Compute BWT for the rightmost block.
2: Store BWT on external disk, BWText.
3: while BWT not fully computed
4: Compute BWTint for the next block.
5: Merge BWText and BWTint.
Output: BWT.

Figure 7: Pseudocode for computing the BWT by
Ferragina et al. [2010].

Figure 7 shows the high level description of Fer-
ragina et al.’s algorithm. In a nutshell, the BWT is
computed for the first block of certain size and stored
on disk. For the next subsequent blocks, the BWT
is computed in internal memory which we will call as
BWTint and merged with the external BWT that is
on disk which we will refer as BWText. This process
is repeated until the entire BWT for the text has been
computed.

3.4.1 Compute BWT for the first block

The algorithm begins by dividing the text into blocks
of size m. For example, with m = 3:

1 2 3 4 5 6 7 8 9 10

x (b a a) (a a a) (a a b) $
B 3 2 1

CRPIT Volume 122 - Computer Science 2012

94

The first block, B1 = x[7..9], is brought into memory,
its BWT is derived and stored on disk as, BWText.

1 2 3 4 5 6 7 8 9 10

x (b a a) (a a a) (a a b) $
BWText b a a
SA 7 8 9

B 3 2 1

3.4.2 Compute BWT for subsequent blocks

The BWT computation for the next blocks differs
from the first block. In our example, text for the
blocks B1 = x[7..9] and B2 = x[4..6] are brought
into memory. Suffixes are compared näively, char-
acter by character. For example, when comparing
suffix 4 (aaaaab$) with suffix 5 (aaaab$), the suffix
was ordered when a mismatch occurred at character
5, position 9 in the string. Having ordered the suffixes
(built the SA) for block B2, the BWT is computed
and stored in memory as BWTint.

1 2 3 4 5 6 7 8 9 10

x (b a a) (a a a) (a a b) $
BWTint a a a
BWText b a a
SA 4 5 6 7 8 9

B 3 2 1

The next step is find the number of suffixes of the
already processed string (covered by previous blocks)
that fall between the suffixes of the current block. Let
Bi = x[j..j+m] be the current block, and let SAB be
it’s suffix array. We compute an array G such that
G[i] is the number of suffixes of x[j + m..n] that are
(lexicographically) between SAB [i] and SAB [i + 1].
G can be computed efficiently using the “backward
search algorithm” [Navarro and Mäkinen, 2007] on a
suitably preprocessed BWTint.

In our case, the current block is B2.

k x[k] G
0 1 2 3 4

10 $ 1
9 b 1
8 a 1
7 a 1

Using the G array for the SA of the first block,
BWText and BWTint are merged. For instance, G[0]
means there is one suffix that is smaller than suffix
4 (that’s suffix 10 ‘$’). However, since the BWT for
this suffix was never computed, it can safely be ig-
nored. Since G[0..2]=0, we can copy BWTint[0..2] to
disk. Then, the BWText[0..2] is copied (as indicated
by G[3] and G[4]) which shows that there are three
suffixes that are larger than the suffix 6.

1 2 3 4 5 6 7 8 9 10

x (b a a) (a a a) (a a b) $
BWText b a a a a a
SA 4 5 6 7 8 9

B 3 2 1

Lastly, we compute the BWT for B = 3. Similar
to the previous pass, x[1..6] is brought into memory
and the SA for it is computed näively, via character
comparisons and having a tie, a data structure that
orders the suffixes in O(m) time is used (see Ferragina
et al. [2010] for implementation details).

1 2 3 4 5 6 7 8 9 10

x (b a a) (a a a) (a a b) $
BWTint b a #
BWText b a a a a a
SA 2 3 1 4 5 6 7 8 9

B 3 2 1

k x[k] G
0 1 2 3 4

10 $ 1
9 b 1
8 a 1
7 a 1
6 a 1
5 a 1
4 a 1

G[2] = 6 shows there are six old suffixes that exist be-
tween SA[2] and SA[3]. Therefore, the new BWText
is merged as below.

1 2 3 4 5 6 7 8 9 10

x (b a a) (a a a) (a a b) $
BWTint

BWText b a b a a a a a #
SA 2 3 1 4 5 6 7 8 9

B 3 2 1

4 Experiments

In this section we provide a brief experimental com-
parison of the recent algorithms for which we have
efficient implementations. The experiments were run
on an otherwise idle 3.16GHz Intel Core (TM) 2 Duo
CPU E8500 of 4 GB of RAM and a cache size of 6144
KB. The operating system is Ubuntu 10.04.3. All
the code was compiled with gcc/g++ version of 4.4.3
and the -O3 optimisation flag. The memory usage
was measured using the memusage tool and times re-
ported are the minimum of three runs, measured with
the C time function.

We measured implementations of Algorithms K, S,
NZC and FGM. From personal communication with
Okanohara [2010], we understand that there is no
publicly available code for Algorithm OS. For Algo-
rithm NZC, we downloaded a publicly available im-
plementation by Yuta Mori [SAIS, 2011]. Likewise,
we downloaded a publicly available implementation
for Algorithm S by the author himself. We imple-
mented Algorithm K ourselves. Of these algorithms,
Algorithm NZC is an in-memory algorithm; Algo-
rithm FGM is an external memory algorithm (using
disk as working space) and Algorithm K is a semi-
external algorithm (writing only the BWT to disk).

Table 1 shows our test data: 200MB of ENGLISH,
DNA and SOURCES from the Pizza and Chili [2009]
Corpus. We equated the amount of memory allocated
by Algorithm K and Algorithm FGM (to 481MB).
Algorithm NZC requires both the SA and input string
to be resident in RAM and so consumes 1,000MB of
memory.

Running times are reported in Table 2. Algorithm
NZC is clearly fastest, but uses twice the memory of
the other two algorithms. This result is expected as
NZC uses an induced copying heuristic that is used
in all fast algorithms [Puglisi et al., 2007]. Also, NZC
is an in-memory algorithm, whereas Algorithm K re-
quires only the text to be in memory and for FGM, all
the data including the text resides in external mem-
ory. The size of the available RAM on the test ma-
chine is big enough to hold both the input string and

Files Σ Min LCP Max LCP
ENGLISH 226 9,390 987,770
DNA 17 59 97,979
SOURCES 231 373 307,871

Table 1: LCP is the longest common prefix between
adjacent suffixes in the suffix array. A higher LCP
generally increases the cost of suffix sorting.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

95

Algorithms ENGLISH DNA SOURCES
K 244 246 293
NZC 58 59 41
FGM 405 421 324

Table 2: Total wall clock time taken in seconds by
the algorithms to run on the 200MB dataset. The
minimum time is shown in bold.

Algorithms Peak Memory
K 481

NZC 1000
FGM 481

Table 3: The peak memory usage (MB) by the al-
gorithms for the 200MB dataset. The minimum is
shown in bold.

the SA in memory, and so Algorithm FGM and Algo-
rithm K might get faster if they were tuned for RAM.

5 Concluding Remarks

Algorithms for suffix sorting continue to mature. In
this paper we have surveyed a number of recent tech-
niques, all of which aim to reduce the amount of
main memory required during sorting. Algorithms
also continue to emerge for related problems; for ex-
ample Sirén [2009] describes a method for directly
building the compressed suffix array of a collection
of strings, such as documents or genomes. Bauer
et al. [2011] consider a similar problem, but where
each string in the collection is relatively short (in par-
ticular the length of a sequenced DNA fragment).

A somewhat neglected aspect of many of the new
algorithms is the alphabet size. In particular the ex-
ternal memory algorithm of Ferragina et al. [2010] as-
sumes a small, constant alphabet. The development
of an efficient external memory algorithm free of this
assumption is an important open problem. Some the-
oretical progress has been made [Hon et al., 2003, Na,
2005], but we are aware of no practical approaches.

Another area to explore, at least for obtaining
practical algorithms, is the blending of older suffix
sorting heuristics, surveyed in Puglisi et al. [2007],
with the low memory algorithms examined here.
Some initial attempts to introduce pointer copying
heuristics to Kärkkäinen’s algorithm are described by
Dhaliwal and Puglisi [2011].

Finally, a related problem called suffix selection,
where one seeks the suffix of a given rank, without
resorting to sorting all suffixes, has received some
attention recently [Franceschini and Muthukrishnan,
2007a,b, Franceschini et al., 2009, Franceschini and
Hagerup, 2011]. Efficient suffix selection algorithms
have the potential to aid suffix sorting algorithms –
for example they could be used to choose good split-
ters in Kärkkäinen’s algorithm – however suffix selec-
tion algorithms discovered to date have high constant
factors (both on time and space bounds) and do not
seem practical.

6 Acknowledgements

Our thanks goes to the authors that made their code
available to us. This work was supported by the Aus-
tralian Research Council.

References

M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Re-
placing suffix trees with enhanced suffix arrays.
Journal of Discrete Algorithms (JDA), 2(1):53–86,
2004.

M. J. Bauer, A. J. Cox, and G. Rosone. Lightweight
BWT construction for very large string collections.
In 22nd Annual Combinatorial Pattern Matching
(CPM) symposium, volume 6661 of Lecture Notes
in Computer Science, pages 219–231. Springer,
2011.

J. L. Bentley and R. Sedgewick. Fast algorithms for
sorting and searching strings. In Proc. 8th Annual
Symposium on Discrete Algorithms, pages 360–369.
ACM, 1997.

S. Burkhardt and J. Kärkkäinen. Fast lightweight suf-
fix array construction and checking. In R. Baeza-
Yates, E. Chávez, and M. Crochemore, editors,
Proceedings of the 14th Annual Symposium Com-
binatorial Pattern Matching (CPM), volume 2676
of Lecture Notes in Computer Science, pages 55–69.
Springer, 2003.

M. Burrows and D. J. Wheeler. A block-sorting loss-
less data compression algorithm. Technical Re-
port SRC-RR-124, Digital Equipment Corporation,
1994.

G. Chen, S. J. Puglisi, and W. F. Smyth. Lempel-Ziv
factorization using less time and space. Mathemat-
ics in Computer Science, 1(4):605–623, 2008.

J. S. Culpepper, G. Navarro, S. J. Puglisi, and
A. Turpin. Top-k ranked document search in gen-
eral text databases. In U. Meyer and M. de Berg,
editors, Proc. 18th Annual European Symposium on
Algorithms (ESA), volume 6347 of Lecture Notes in
Computer Science, pages 194–205. Springer, 2010.

J. Dhaliwal and S. J. Puglisi. Fast semi-external suffix
sorting. Technical Report TR-11-1, RMIT Univer-
sity, School of Computer Science and Information
Technology, 2011.

P. Ferragina and G. Manzini. Indexing compressed
text. Journal of ACM (JACM), 52(4):552–581,
2005.

P. Ferragina and G. Manzini. On compressing the
textual web. In WSDM ’10: Proceedings of the
third ACM international conference on Web search
and data mining, pages 391–400, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-889-6. doi:
http://doi.acm.org/10.1145/1718487.1718536.

P. Ferragina, T. Gagie, and G. Manzini. Lightweight
data indexing and compression in external mem-
ory. In A. Lopéz-Ortiz, editor, Proc. of the 9th
Latin American Theoretical Informatics Sympo-
sium (LATIN), volume 6034 of Lecture Notes in
Computer Science, pages 697–710. Springer, 2010.

P. Flicek and E. Birney. Sense from sequence reads:
methods for alignment and assembly. Nature Meth-
ods (Suppl), 6(11):S6–S12, 2009.

G. Franceschini and T. Hagerup. Finding the max-
imum suffix with fewer comparisons. Journal of
Discrete Algorithms(JDA), 9(3):279–286, 2011.

CRPIT Volume 122 - Computer Science 2012

96

G. Franceschini and S. Muthukrishnan. In-place suf-
fix sorting. In L. Arge, C. Cachin, T. Jurdzinski,
and A. Tarlecki, editors, 34th International Collo-
quium on Automata, Languages and Programming
(ICALP), volume 4596 of Lecture Notes in Com-
puter Science, pages 533–545. Springer, 2007a.

G. Franceschini and S. Muthukrishnan. Optimal suf-
fix selection. In D. S. Johnson and U. Feige, editors,
Proc. of the 39th ACM Symposium on Theory of
Computing (STOC), pages 328–337. ACM, 2007b.

G. Franceschini, R. Grossi, and S. Muthukrishnan.
Optimal cache-aware suffix selection. In 26th In-
ternational Symposium on Theoretical Aspects of
Computer Science (STACS), volume 3 of Leibniz
International Proceedings in Informatics (LIPIcs),
pages 457–468. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, 2009.

D. Gusfield. Algorithms on Strings, Trees, and Se-
quences. Cambridge University Press, New York,
1997.

W.-K. Hon, K. Sadakane, and W.-K. Sung. Breaking
a time-and-space barrier in constructing full-text
indices. Foundations of Computer Science, Annual
IEEE Symposium on, 0:251, 2003. ISSN 0272-5428.

J. Kärkkäinen. Fast bwt in small space by blockwise
suffix sorting. Theoretical Computer Science, 387
(3):249–257, 2007.

P. Ko and S. Aluru. Space efficient linear time con-
struction of suffix arrays. Journal of Discrete Al-
gorithms, 3:143–156, 2005.

U. Manber and G. W. Myers. Suffix arrays: a new
method for on-line string searches. SIAM Journal
on Computing, 22(5):935–948, 1993.

G. Manzini. An analysis of the Burrows-Wheeler
transform. Journal of the ACM, 48(3):407–430,
2001.

G. Manzini and P. Ferragina. Engineering a
lightweight suffix array construction algorithm. Al-
gorithmica, 40:33–50, 2004.

J. C. Na. Linear-time construction of compressed suf-
fix arrays using o(n log n)-bit working space for
large alphabets. In A. Apostolico, M. Crochemore,
and K. Park, editors, 16th Annual Combinatorial
Pattern Matching (CPM) Symposium, volume 3537
of Lecture Notes in Computer Science, pages 57–67.
Springer, 2005.

G. Navarro and V. Mäkinen. Compressed full-text
indexes. ACM Computing Surveys, 39(1), 2007.

G. Nong, S. Zhang, and W. H. Chan. Linear suffix ar-
ray construction by almost pure induced-sorting. In
Data Compression Conference (DCC), pages 193–
202, Snowbird, UT, USA, 2009. IEEE Computer
Society.

D. Okanohara. Personal communication, 2010.

D. Okanohara and K. Sadakane. A linear-time
Burrows-Wheeler Transform using induced sorting.
In J. Karlgren, , J. Tarhio, and H. Hyyrö, edi-
tors, Proc. of the 16th International Symposium
on String Processing and Information Retrieval
(SPIRE), volume 5721 of Lecture Notes in Com-
puter Science, pages 90–101. Springer, 2009.

M. Patil, S. V. Thankachan, R. Shah, W.-K. Hon,
J. S. Vitter, and S. Chandrasekaran. Inverted
indexes for phrases and strings. In Proceed-
ings of the 34th international ACM SIGIR con-
ference on Research and development in Informa-
tion, SIGIR ’11, pages 555–564, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0757-4. doi:
http://doi.acm.org/10.1145/2009916.2009992.

Pizza and Chili. Pizza and chili corpus, compressed
indexes and their testbeds. May 2009. URL
http://pizzachili.dcc.uchile.cl/.

S. J. Puglisi, W. F. Smyth, and A. Turpin. A taxon-
omy of suffix array construction algorithms. ACM
Computing Surveys, 39(2), 2007.

SAIS. Sais: An implementation of the in-
duced sorting algorithm. Aug. 2011. URL
http://sites.google.com/site/yuta256/sais.

J. Sirén. Compressed suffix arrays for massive data. In
J. Karlgren, J. Tarhio, and H. Hyyrö, editors, Proc.
of the 16th International Symposium on String Pro-
cessing and Information Retrieval (SPIRE), vol-
ume 5721 of Lecture Notes in Computer Science,
pages 63–74. Springer, 2009.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

97

CRPIT Volume 122 - Computer Science 2012

98

Spectral debugging: How much better can we do?

Lee Naish, Hua Jie Lee and Kotagiri Ramamohanarao

Department of Computing and Information Systems

The University of Melbourne, Victoria 3010, Australia

lee,kotagiri@unimelb.edu.au, huajie.lee@gmail.com

Abstract

This paper investigates software fault localization
methods which are based on program spectra – data
on execution profiles from passed and failed tests. We
examine a standard method of spectral fault local-
ization: for each statement we determine the num-
ber of passed and failed tests in which the statement
was/wasn’t executed and a function, or metric, of
these four values is used to rank statements accord-
ing to how likely they are to be buggy. Many differ-
ent metrics have been used. Here our main focus is
to determine how much improvement in performance
could be achieved by finding better metrics. We de-
fine the cost of fault localization using a given metric
and the unavoidable cost, which is independent of the
choice of metric. We define a class of strictly rational
metrics and argue that is reasonable to restrict atten-
tion to these metrics. We show that every single bug
optimal metric performs as well as any strictly ratio-
nal metric for single bug programs, and the resulting
cost is the unavoidable cost. We also show how any
metric can be adapted so it is single bug optimal, and
give results of empirical experiments using single- and
two-bug programs.

1 Introduction

Bugs are pervasive in software under development and
tracking them down contributes greatly to the cost of
software development. One of many useful sources
of data to help diagnosis is the dynamic behaviour of
software as it is executed over a set of test cases where
it can be determined if each result is correct or not;
each test case is said to pass or fail. Software can be
instrumented automatically to gather data known as
program spectra (Reps, Ball, Das & Larus 1997), such
as the statements that are executed, for each test case.
If a certain statement is executed in many failed tests
but few passed tests we may conclude it is likely to
be buggy. Typically the raw data is aggregated to get
the numbers of passed and failed tests for which each
statement is/isn’t executed. Some function is applied
to this aggregated data to rank the statements, from
those most likely to be buggy to those least likely. We
refer to such functions as metrics. A programmer can
then use the ranking to help find a bug.

We make the following contributions:

• We define a class of metrics we call strictly ratio-
nal metrics and argue why restricting attention
to such metrics is reasonable.

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at 35th Australasian Computer Science Confer-
ence (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology, Vol. 122. Mark Reynolds and Bruce Thomas, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

• We define the unavoidable cost of bug localiza-
tion, and show it is the minimum cost for any
strictly rational metric.

• We show that a class of previously proposed met-
rics lead to the lowest possible cost of any strictly
rational metrics for programs with single bugs.

• We show how any metric can be easily adapted
so it it optimal for single bug programs.

• We evaluate several metrics for benchmark sets
with one and two bugs.

• We perform additional experiments to help fur-
ther understand the best known metric for two-
bug programs.

• We suggest how test selection strategies can be
improved to help performance of bug localiza-
tion.

The rest of this paper is structured as follows. We
first describe spectral fault localization and define the
metrics we evaluate in this paper. Section 3 revisits
metrics and defines (strictly) rational metrics. Sec-
tion 4 describes how the cost of fault localization is
measured in this paper and also introduces the idea of
“unavoidable” cost. Section 5 discusses previous work
on optimal metrics for single bug-programs and sig-
nificantly extends those results. Section 6 shows how
any metric can be adapted so it is optimal for single
bug programs. Section 7 describes empirical experi-
ments and their results and Section 9 concludes.

2 Background — Spectral fault localization

All spectral methods use a set of tests, each classified
as failed or passed; this can be represented as a binary
vector, where 1 indicates failed and 0 indicates passed.
For statement spectra (Jones & Harrold 2005, Abreu,
Zoeteweij & van Gemund 2006, Wong, Qi, Zhao
& Cai 2007, Xie, Chen & Xu 2010, Naish, Lee &
Kotagiri 2011, Lee 2011), which we use here, we
gather data on whether each statement is executed
or not for each test. This can be represented as a
binary matrix with a row for each statement and
a column for each test; 1 means executed and 0
means not executed. For each statement, four num-
bers are ultimately produced. They are the num-
ber of passed/failed test cases in which the statement
was/wasn’t executed. We adapt the notation from
Abreu et al. (Abreu et al. 2006) — 〈anp , anf , aep , aef 〉.
The first part of the subscript indicates whether the
statement was executed (e) or not (n) and the sec-
ond indicates whether the test passed (p) or failed (f).
We use superscripts to indicate the statement number
where appropriate. For example, a1

ep is the number
of passed tests that executed statement 1. We use
F and P to denote the total number of tests which

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

99

Table 1: Statement spectra with tests T1 . . .T5

T1 T2 T3 T4 T5 aef aep
S1 1 0 0 1 0 1 1
S2 1 1 0 1 0 2 1
S3 1 1 1 0 1 2 2

...
Res. 1 1 0 0 0 F = 2 P = 3

fail and pass, respectively. Clearly, anf = F −aef and
anp = P−aep . In most of this paper we avoid explicit
use of anf and anp ; making F and P explicit suits
our purposes better. Table 1 gives an example binary
matrix of execution data and binary vector contain-
ing the test results. This data allows us to compute
F , P and the aij values, i ∈ {n, e} and j ∈ {p, f }.

Metrics, which are numeric functions, can be used
to rank the statements. Most commonly they are
defined in terms of the four aij values. Statements
with the highest metric values are considered the most
likely to be buggy. We would expect buggy state-
ments to generally have relatively high aef values and
relatively low aep . In the example in Table 1, State-
ment 2 (S2) is executed in both failed tests and only
one passed test, which is the minimum for all state-
ments, and thus would typically be ranked highest.
The relative rank of statements 1 and 3 is not so clear
cut, since statement 3 is executed in more failed tests
but also more passed tests. One way of viewing the
ranking is that rows of the matrix are ranked accord-
ing to how “similar” they are to the vector of test
results, or how similar the set of failed tests is to the
set of tests which execute the statement. Measures of
similarity are important in classification and machine
learning, not just fault localization, and many differ-
ent metrics have been proposed; Lee (2011) evaluates
the fault localization performance of 50 metrics.

Programmers searching for a bug are expected to
examine statements, starting from the highest-ranked
statement, until a buggy statement is found. In re-
ality, programmers are likely to modify the ranking
due to their own understanding of whether the code
is likely to be buggy, based on other information such
as static analysis, the history of software changes, et
cetera. Also, checking correctness generally cannot
be done by a single statement at a time, or even one
basic block at a time. Evaluation of different ranking
methods, which we discuss in Section 4, generally ig-
nores such refinement and just depends on where the
bug(s) appear in the ranking.

Table 2 gives definitions of the metrics used here,
all of which have been evaluated for fault localiza-
tion in Naish et al. (2011) and their origins are dis-
cussed more there. Space prevents us from includ-
ing all proposed metrics. Several were originally pro-
posed for spectral fault localization: Tarantula (Jones
& Harrold 2005), which is generally credited as be-
ing the first spectral fault localization system, Zoltar
(Gonzalez 2007), Wong3, the best of several met-
rics proposed in Wong et al. (2007), and O and Op

(Naish et al. 2011). We also use a metric we refer
to as Wong4, which was devised for fault localiza-
tion. It is Heuristic III of Wong, Debroy & Choi
(2010), with α = 0.0001; we do not provide its defi-
nition here due to its complexity. Also, Ample is an
adaptation, from Abreu et al. (2006), of a metric de-
veloped for the AMPLE system (Dallmeier, Lindig
& Zeller 2005) and CBILog is an adaptation, from
Naish et al. (2011), of a metric developed for the CBI
system (Liblit, Naik, Zheng, Aiken & Jordan 2005).

Jaccard (Jaccard 1901), the oldest metric here, orig-
inally used for classification of plants, has been used
in the Pinpoint system (Chen, Kiciman, Fratkin, Fox
& Brewer 2002). Ochiai (Ochiai 1957) and Russell
(Russel & Rao 1940), both developed for other do-
mains, were first evaluated for fault localization in
Abreu et al. (2006) and Kulczynski2 (see Lourenco,
Lobo & Bação (2004)) was first evaluated for fault
localization in Naish et al. (2011). Kulczynski2 is the
best metric we know of for two and three bug pro-
grams (see Naish, Lee & Kotagiri (2009), for exam-
ple). We discuss some of these metrics in more detail
later.

3 Ranking metrics, revisited

The formulas for ranking metrics are only used in
constrained ways. We know that aef , anf , aep and
anp are all natural numbers. We can also assume
there is at least one test case. Furthermore, for any
given program and set of test cases F and P are fixed,
and aef ≤ F and aep ≤ P . Therefore it is possible to
define metrics as follows (in Table 2 we can assume
anf and anp are defined in terms of the other values):

Definition 1 (Metric) A metric is a partial func-
tion from four natural numbers, aef , aep, F and P to
a real number. It is undefined if aef > F or aep > P
or F = P = 0.

Metrics are intended to measure similarity be-
tween the set of failed tests and the set of tests which
execute a statement. The whole idea behind the ap-
proach is that in most cases there is a positive cor-
relation between execution of buggy statements and
failure, and a negative correlation between execution
of correct statements and failure. Some metrics mea-
sure dis-similarity and produce very poor rankings.
Typically the bugs are ranked towards the bottom
rather than the top; we have observed such behaviour
when we have incorrectly translated metrics which are
described using different terminology from different
application areas. Thus we can put additional con-
straints on what functions can sensibly, or rationally,
be used as metrics.

Definition 2 ((strictly)rational metric) A met-
ric M is rational if it is monotonically increas-
ing in aef and monotonically decreasing in aep: if
a ′

ef > aef then M (a ′

ef , aep ,F ,P) ≥ M (aef , aep ,F ,P)

and if a ′

ep > aep then M (aef , a
′

ep ,F ,P) ≤

M (aef , aep ,F ,P), for points where M is defined.
A metric M is strictly rational if a ′

ef > aef implies

M (a ′

ef , aep ,F ,P) > M (aef , aep ,F ,P) and a ′

ep > aep
implies M (aef , a

′

ep ,F ,P) < M (aef , aep ,F ,P), for
points where M is defined.

There are cases where the correlations are the op-
posite of what is expected, and some metric which is
not rational will perform better than rational metrics.
However, there is no way of knowing a priori whether
we have such a case and overall rational metrics per-
form better. Thus we consider it reasonable to restrict
attention to rational metrics in the search for good
metrics and when assessing “ideal” performance. Al-
most all metrics previously used for fault localization
are strictly rational. Ample is the only metric which
is not rational, because “absolute value” is used. In
Naish et al. (2011), a variation of this metric is defined
(called “Ample2”) which does not use absolute value,
and it performs significantly better than Ample.

The Russell metric does not strictly decrease as
aep increases, so it is rational but not strictly ratio-
nal, and similarly for O whenever aef < F . Metrics

CRPIT Volume 122 - Computer Science 2012

100

Table 2: Definitions of ranking metrics used

Name Formula Name Formula Name Formula

Kulczynski2 1

2

(

aef

aef +anf
+

aef

aef +aep

)

Zoltar
aef

aef +anf +aep+
10000anf aep

aef

Jaccard
aef

aef +anf +aep

Ochiai
aef

√

(aef +anf)(aef +aep)
Russell

aef

aef +anf +aep+anp
Ample

∣

∣

∣

aef

aef +anf
−

aep

aep+anp

∣

∣

∣

Tarantula

aef

aef +anf
aef

aef +anf
+

aep

aep+anp

O

{

−1 ifanf > 0
anp otherwise

Op aef −
aep

aep+anp+1

CBILog 2

1
c
+

log (aef +anf)

log aef

, where c =
aef

aef +aep
−

aef +anf

aef +anf +anp+aep

Wong3 aef − h, where h =

{

aep if aep ≤ 2
2 + 0 · 1(aep − 2) if 2 < aep ≤ 10
2 · 8 + 0 · 001(aep − 10) if aep > 10

which are rational but not strictly rational can gener-
ally be tweaked so they are strictly rational with no
loss of performance in typical cases. O was designed
specifically for the case of single bugs, where we know
the bug is executed in all failed tests (aef = F for
the bug; we discuss this further in Section 5). If we
modify O so it gives a small negative weight to aep
when aef < F it becomes strictly rational (it pro-
duced the same rankings as Op). This does not affect
performance at all for single bug programs and gener-
ally improves performance for multiple bug programs.
Similarly, if we give a small negative weight to aep in
the Russell metric it also becomes equivalent to Op ,
which performs better in nearly all cases (see Naish
et al. (2011)). Even if non-strict rational metrics re-
main of some practical benefit, considering only strict
rational metrics leads us to additional theoretical in-
sights.

4 Measuring performance

The most common way of performance measure for
spectral fault localization is the rank of the highest-
ranked bug, as a percentage of the total number
statements; typically, only statements which are ex-
ecuted in at least one test case are counted (Abreu
et al. 2006, Wong et al. 2007, Naish et al. 2011). This
is often called the rank percentage. If a bug is ranked
highest, which is the best case, the rank is 1. Here we
give a slightly different definition, which we call rank
cost to avoid confusion, where the best case is zero.
This is more convenient for our work, and also when
averaging the performance over several programs with
different numbers of statements, which is normally
done. When bugs and non-bugs are tied in the rank-
ing we assume the bugs are ranked in the middle of
all these equally ranked statements. We discuss this
more in Section 7; there is some variation in how ties
are handled in the literature.

Definition 3 (rank cost) Given a ranking of S
statements, the rank cost is

GT + EQ/2

S

where GT is the number of correct statements ranked
strictly higher than all bugs and EQ is the number of
correct statements ranked equal to the highest ranked
bug.

For most programs and sets of tests, we cannot ex-
pect a buggy statement to be ranked strictly higher
than all correct statements, whatever metric is used to
produce the ranking. For example, all statements in

the same basic block as a bug will be be tied with the
bug in the ranking, since they will have the same aef
and aep values as the bug. Furthermore, there may
be other statements with higher aef and lower aep
values, which must be ranked higher than the bug for
all strictly rational metrics. By explicitly considering
such statements, we can determine how much of the
cost of bug localization could potentially be avoided
by choosing a different strictly rational metric, and
how much is unavoidable. We define the unavoidable
cost in a way which makes it easy to compare with
the rank cost. We first introduce some additional no-
tation concerning a partial order of statements based
on their associated spectra.

Definition 4 (=s , ≤s , <s) For two statements, x
and y, with associated spectra:

• x =s y if ax
ef = ay

ef ∧ ax
ep = ay

ep

• x ≤
s y if ax

ef ≤ ay
ef ∧ ax

ep ≥ ay
ep

• x <s y if x ≤
s y ∧ ¬(ax

ef =s ay
ef)

Definition 5 (unavoidable cost) Given a set of S
statements and corresponding spectra, the unavoid-
able cost is the minimum of UCb, for all bugs b, where

• UCb =
GT ′

b+EQ′

b/2
S

• GT ′

b is the number of correct statements c, such
that b <s c,

• EQ ′

b, the number of correct statements c, such
that b =s c.

Proposition 1 If x ≤
s y, any rational metric will

rank x below or equal to y. If x <s y, any strictly
rational metric will rank x below y.

Proof Follows from definitions. 2

Proposition 2 For any set of statements, associated
spectra and strictly rational ranking metric, the rank
cost of the resulting ranking is at least the unavoidable
cost.

Proof If b is the highest ranked bug, the rank cost is
UCb , which is at least the unavoidable cost. 2

Proposition 3 For any set of statements and asso-
ciated spectra there exists a strictly rational ranking
metric such that the rank cost of the resulting ranking
is the unavoidable cost.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

101

Proof Let b be a bug which minimises UCb . There
is no buggy statement b′ s.t. b <s b′, otherwise the
unavoidable cost would be lower. Consider the fol-
lowing definitions:

M (aef , aep ,F ,P) = f (aef − ab
ef) + f (ab

ep − aep)

f (x) =

{

ǫx if x < 0
1 + ǫx otherwise,

ǫ = 1/(F + P + 1)
M is a strictly rational metric. For the bug b (and all
statements c s.t. c =s b) it has value 2. The metric
value of a statement c is greater than 2 if and only if
b <s c, and all such statements are correct. Thus the
rank cost using M is the unavoidable cost. 2

Proposition 4 For any set of statements and asso-
ciated spectra, the unavoidable cost is the minimum
rank cost for any strictly rational metric.

Proof Follows from Propositions 2 and 3. 2

If we do not restrict the class of metrics, there will
always be some metric which ranks the bug highest
and the minimum cost, ignoring ties, will always be
zero. Note that a metric which is rational but not
strictly rational can also have a cost lower than the
unavoidable cost. For example, with one passed and
one failed test, all statements could be executed in
the failed test but the passed test could execute only
the buggy statement(s). The unavoidable cost is the
highest possible cost, which is close to 1, whereas a
rational metric could have all statements tied in the
ranking, with a cost of around 0.5. Although the-
oretically interesting, such examples do not seem to
provide strong practical motivation for using metrics
which are not strictly rational.

We cannot necessarily expect to achieve a cost as
low as the unavoidable cost in practice — it simply
gives a lower bound on what we can reasonably ex-
pect using this approach to bug localization. If we can
achieve the unavoidable cost or very close to it in all
cases, we know there is no point in searching for bet-
ter metrics. If there is a wide gap between the cost we
achieve and the unavoidable cost for some buggy pro-
grams and sets of test cases we might be able to close
the gap with different metrics, but we risk making
the situation worse for other programs. There is no
single metric which achieves the unavoidable cost for
all programs — we cannot swap the order of quanti-
fiers in Proposition 3. Also, the unavoidable cost does
not give a lower bound on what can be achieved by
other fault localization methods. However, the same
methodology could potentially be applied. If, for ex-
ample, a richer form of spectral data was used, we
may be able to find an appropriate unavoidable cost
definition for that method.

5 Optimality for single bug programs

In Naish et al. (2011), optimality of metrics is intro-
duced and “single bug” programs are the focus. In
order to establish any technical results, we must be
clear as to what constitutes a bug, so it is clear if a
program has a single bug. In Naish et al. (2011) a bug
is defined to be “a statement that, when executed, has
unintended behaviour”. A programmer may make a
single mistake which leads to multiple bugs according
to this definition. For example, when coding various
formulas which use logarithms, the programmer may
use the wrong base for all the logarithms. Also a mis-
take in a single #define directive in a C program can
lead to multiple bugs. The #define directive is not
a statement which is executed and no spectral data
is generated for it, but several statements which use
the macro may behave incorrectly.

In order to understand the fault localization prob-
lem better, a very simple model program, with just
two if-then-else statements and a single bug is pro-
posed in Naish et al. (2011), along with a very sim-
ple way of measuring performance of a metric with a
given set of test cases, based on whether the bug is
ranked top, or equal top. A set of test cases corre-
sponds to a multiset of execution paths through the
program. Performance depends on the multiset, but
overall performance for T tests is determined by the
average performance over all possible multisets of T
execution paths. Using a combinatorial argument,
the O metric is shown to be “optimal”: its overall
performance is at least as good as any other metric,
for any number of tests. Although O is not strictly
rational, there are strictly rational metrics such as
Op which are also optimal, so restricting attention
to strictly rational metrics does not reduce poten-
tial performance, at least in this case. There are two
conditions for a metric to be optimal for this simple
model and performance measure (here we show the
definition has much wider utility):

Definition 6 (Single bug optimality) A metric
M is single bug optimal if

1. when aef < F, the value returned is al-
ways less than any value returned when aef =
F, that is, ∀F∀P∀aep∀a

′

ep if aef < F then
M (aef , aep ,F ,P) < M (F , a ′

ep ,F ,P), and

2. when aef = F, M is strictly decreasing in aep,
that is, if a ′

ep > aep then M (F , a ′

ep ,F ,P) <

M (F , aep ,F ,P).

The first condition is motivated by the fact that for
single bug programs, the bug must be executed in all
failed tests. Since aef = F for the bug, statements
for which aef < F are best ranked strictly lower.
The second condition is motivated by the fact that
the bug tends to have a lower aep value than correct
statements, because some executions of the bug lead
to failure, the model program is symmetric with re-
spect to buggy and correct statements, and all possi-
ble multisets of executions paths are used to evaluate
overall performance. In addition to proving optimal-
ity under these very artificial conditions, Naish et al.
(2011) conjectured such metrics were optimal for a
wider class of models. In addition, empirical experi-
ments were conducted with real programs and the op-
timal metrics performed better than other proposed
metrics when measured using rank percentages.

Here we give an optimality result for single bug
programs which does not constrain us to a simplistic
program structure or performance measure or a par-
ticular distribution of sets of test cases. Indeed, we
prove optimal performance for every set of test cases,
not just overall performance. We obtain this much
more widely applicable technical result, which also
has a much simpler proof, by restricting attention to
strictly rational metrics.

Proposition 5 Given any program with a single bug,
any set of test cases and any single bug optimal metric
M used to rank the statements, the rank cost equals
the unavoidable cost.

Proof The rank cost is GT+EQ/2
S

. Since there is a

single bug, b, the unavoidable cost is
GT ′

b+EQ′

b/2
S

and

ab
ef = F . M is single bug optimal so any statement

c ranked strictly higher than the bug must have the
same aef value and a strictly lower aep value (so b <s

c) and any statement ranked equal to the bug must
have the same aef value and the same aep value as the

CRPIT Volume 122 - Computer Science 2012

102

bug (so b =s c). Thus EQ = EQ ′

b and GT = GT ′

b .
2

Proposition 6 Given any program with a single bug,
any set of test cases and any single bug optimal metric
M used to rank the statement, the rank cost using M
is no more than the rank cost using any other strictly
rational metric.

Proof Follows from Propositions 2 and 5. 2

The rank cost is not necessarily the best mea-
sure of performance. However, a consequence of this
proposition is that for any cost measure which is
monotonic in the rank cost, single bug optimal met-
rics have a lower or equal cost than any other rational
metric. For example, optimality applies with respect
to rank percentages and the simple cost measure of
Naish et al. (2011) which only examines the state-
ment(s) ranked (equal) top. Alternatively, a more
complex non-linear cost function could be considered
desirable, since the time spent finding a bug typically
grows more than linearly in the number of different
lines of code examined.

Drawing definitive conclusions from empirical ex-
periments such as those of Naish et al. (2011) is nor-
mally impossible because the results may be depen-
dent on the set of benchmark programs used, or the
sets of test cases, or the details of the performance
evaluation method. However, in this case we can use
Proposition 6 to remove any doubt that the “optimal”
metrics are indeed better than other metrics for sin-
gle bug programs. Interestingly, there was one case
found in Naish et al. (2011) where the optimal met-
rics did not perform the best overall — when sets
of test cases were selected so that the buggy state-
ment in the model program was executed in nearly
every test. The only better metric was Russell, which
benefits from a large number of ties in such cases, as
discussed earlier. It was also noted that Russell per-
formed better than the optimal metrics for some of
the empirical benchmark programs, though its overall
performance was worse. From Proposition 6 we know
such behaviour can only occur for metrics which are
not strictly rational.

6 Optimizing metrics for single bugs

Op was proposed as a metric which was single bug
optimal and also expected to perform rather better
than O for multiple bug programs. While this is true,
experiments have shown that Op does not perform
particularly well for multiple bug programs (Naish
et al. 2009). The two conditions for single bug opti-
mality of a metric place no constraint on the relative
ordering of statements for which aef < F . Any metric
can thus be adapted so it becomes optimal for single
bug by adding a special case for aef = F — we just
need to ensure it is decreasing in aep and larger than
any other value possible with the same F and P .

Definition 7 (Optimal single bug version) The
optimal single bug version of a metric M , denoted
O1(M) is defined as follows.

O1(M)(aef , aep ,F ,P)

=

{

K + 1 + P − aep ifaef = F
M (aef , aep ,F ,P) otherwise,

where K is the maximum of {M (x , y ,F ,P)|x < F ∧

y ≤ P}.

Proposition 7 O1(M) is single bug optimal for all
metrics M .

Table 3: Description of Siemens + Unix benchmarks
Program 1 Bug 2 Bugs LOC Tests

tcas 37 604 173 1608
schedule 8 — 410 2650
schedule2 9 27 307 2710
print tok 6 — 563 4130
print tok2 10 10 508 4115
tot info 23 245 406 1052
replace 29 34 563 5542

Col 28 147 308 156
Cal 18 115 202 162
Uniq 14 14 143 431
Spline 13 20 338 700
Checkeq 18 56 102 332
Tr 11 17 137 870

Proof When aef = F , O1(M) is clearly strictly de-
creasing in aep and the value returned is at leastK+1,
since aep ≤ P , so it is greater than any value returned
when aef < F . 2

In practice, many metrics range between 0 and 1
so we could just choose K = 1 in all cases for these
metrics. A larger fixed value, such as K = 999999 is
sufficient for all metrics proposed to date unless there
are a very large number of test cases.

If aef < F for a large proportion of statements,
O1(M) will produce a similar ranking to M and if M
works very well for multiple bug programs, we would
expect O1(M) to also work well. Of course, O1(M)
will also work as well as any other rational metric for
single bug programs.

7 Experimental results

We performed empirical evaluation using a collection
of small C programs: the Siemens Test Suite (STS),
from the Software Information Repository (Do, El-
baum & Rothermel 2005), plus several small Unix
utilities, from Wong, Horgan, London & Mathur
(1998). These, particularly STS, are widely used for
evaluating spectral ranking methods. Table 3 gives
the names of the programs (the first seven are from
STS), and the numbers of single bug and two-bug
versions, lines of code (LOC) and test cases. A small
number of programs in the repository were not used
because there was more than one bug according to
our definition (for example, a #define was incorrect)
or we could not extract programs spectra. We used
the gcov tool, part of the gcc compiler suite, and it
cannot extract spectra from programs with runtime
errors. We generated the two-bug versions from pairs
of single-bug versions, eliminating resulting programs
if they encountered runtime errors, as in Naish et al.
(2009). This collection of two-bug programs is far
from ideal. However, most collections of buggy pro-
grams have a very strong bias towards single bugs
or have only a relatively small number of program
versions. Obtaining better benchmarks is clearly a
priority.

We conducted experiments to compute the aver-
age unavoidable cost and the rank cost for each met-
ric and the single bug optimal version of the metric,
for both one and two bug benchmark sets. Table 4
gives the results. The unavoidable costs are given in
the second row. The last column of figures uses the
optimal single bug version of the metrics. For the sin-
gle bug benchmark, the optimal single bug version of
each metric gives a rank cost of 16.87, which is the
unavoidable cost, so we omit these from the table.
The original versions of the metrics range in perfor-

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

103

Table 4: Unavoidable and rank costs
Benchmark 1 Bug 2 Bug 2 Bug
Unavoidable 16.87 11.72 O1(. . .)

O 16.87 23.75 23.75
Op 16.87 21.64 21.64
Wong3 17.20 21.34 21.56
Zoltar 17.24 19.32 21.42
Kulczynski2 18.07 18.32 21.24
Ochiai 20.63 18.95 21.18
Wong4 21.23 21.51 21.60
Jaccard 22.65 19.87 21.20
CBILog 25.23 21.04 21.56
Tarantula 26.10 21.91 21.54
Ample 29.17 23.26 21.75
Russell 29.02 30.88 21.82

Table 5: Two bug rank cost wrt aef = F category
aef = F 2 Bugs 1 Bug 1 Bug No Bug

for . . . same inverted
% of Cases 44 35 11 10
% aef = F 67 51 44 37
Unavoidable 17.55 9.53 2.43 3.25

Kul2 18.62 21.91 4.52 17.80
O1(Kul2) 17.55 20.88 17.51 42.43
Op 17.55 20.88 17.51 46.50
O 17.55 20.88 17.51 68.04
Russell 32.96 25.40 21.83 48.40

mance for the single bug benchmark set, with O and
Op being the best, and equal to the unavoidable cost,
as expected.

For the two bug benchmark set, the unavoidable
cost, 11.72, is significantly lower. This is to be ex-
pected since it is essentially the minimum of the un-
avoidable costs of two bugs. However, the rank costs
are higher for most metrics, and the best rank cost,
18.32, for Kulczynski2, is significantly higher than the
unavoidable cost. Although it cannot be guaranteed,
it seems likely better metrics to exist. The optimal
single bug versions of the metrics show much less vari-
ation in rank cost and, unfortunately, perform signif-
icantly worse than the best metrics. We conducted
additional experiments to better understand the per-
formance of Kulczynski2 and the single bug optimal
metrics.

Table 5 summarises the results. It breaks down
the 2-bug benchmark set into four categories: the
programs for which aef = F for both bugs, the pro-
grams for which aef = F for just one bug where Op

and Kulczynski2 rank the bugs in the same order, the
programs for which aef = F for just one bug where
Op and Kulczynski2 rank the bugs in the opposite
(inverted) order, and the programs for which aef = F
for no bug. The first row of figures gives the per-
centages of cases for these four categories. Overall, in
90% of cases at least one bug is executed in all failed
tests, which is generally helpful for the single bug op-
timal metrics. The second row gives the percentages
of correct statements for which aef = F in the four
categories. On average, 57% of correct statements
are used in all failed tests, so the “special case” in O1
actually applies to most statements, and O1 affects
the ranking more than expected for this benchmark
set. This is the main reason why O1 performs more
poorly than anticipated. The second row gives the
average unavoidable cost for each category. It shows
significant variation in unavoidable cost and we dis-
cuss this further below. The following lines of Table
5 give the average rank cost (percentage) for the dif-

Table 6: Two bug rank cost wrt %aef = F
%aef = F <20 20–40 40–60 60–80 ≥80
%of Cases 10.6 8.1 19.0 57.9 4.2

Kul2 7.05 10.99 17.67 21.33 19.65
O1(Kul2) 5.47 16.08 21.51 24.51 21.89
Op 6.24 19.17 21.64 24.58 21.75
O 16.70 23.39 23.57 24.96 22.37
Russell 8.35 22.59 26.11 36.26 43.96

ferent metrics; Kulczynski2 is abbreviated to Kul2.
The three single bug optimal metrics have equal

rank cost for the first three categories since the top-
ranked bug has aef = F and the ranking of all such
statements is the same with these metrics. The differ-
ence between these metrics and Russell indicates the
usefulness of aep —Russell ranks according to aef and
essentially ignores aep . In the first category, our treat-
ment of ties is (arguably) unfair to Russell — 67% of
statements, including both bugs, are tied at the top of
the ranking. Some researchers report the “worst case”
(67%) in such situations and assume the bugs are
ranked at the bottom of this range (Chilimbi, Liblit,
Mehra, Nori & Vaswani 2009); this over-estimation
of cost is discussed in Naish, Lee & Kotagiri (2010).
Some researchers report both the “best case” (0%)
and the “worst case” (Wong et al. 2007). Here we
assume both bugs are ranked in the middle of the
range, but even this leads to some over-estimation. If
both bugs were to appear at a random point amongst
these ties, the top-most bug would have an average
cost of around 22% rather than 33%. Similarly, in
the fourth category, the O metric has both bugs tied
with 63% of the correct statements, at the bottom of
the ranking, and a fairer treatment of ties would give
an average cost of 59% rather than 68%. With the
better metrics there are far fewer ties and thus the
over-estimation of cost is much less and we doubt it
affects any overall conclusions. Our treatment of ties
was motivated by much simpler analysis and could be
refined further.

Kulczynski2 performs slightly worse (around
1.1%) than O1(Kulczynski2) for the first two cat-
egories, which cover the majority (79%) of cases. This
is because around 1.1% of correct statements have
lower aef and significantly lower aep values than the
bugs, and they overtake both bugs in the ranking.
However, in the third category, Kulczynski2 performs
extremely well. Almost half the statements have
aef = F and when a bug with a lower aef and aep
is placed higher in the ranking, it overtakes nearly
all these statements. Although this category account
for only 11% of cases, it more than compensates for
the cases when correct statements overtake the bugs.
Kulczynski2 also performs significantly better than
the other metrics in the last category. Russell and all
the single bug optimal metrics rank the statements
with aef = F highest, so the rank cost must be at
least 37%, whereas Kulczynski2 does even better than
its overall performance.

The unavoidable cost figures also underscore the
importance of the number of statements which are
executed in all failed tests. In the first category,
where both bugs are executed in all failed tests, we
may intuitively expect bug localization to be easiest
and the good metrics should achieve their best per-
formance. However, it actually has the highest un-
avoidable cost, by a large margin. As well as both
bugs being executed in all failed tests, on average,
two thirds of correct statements are also executed in
all failed tests. Table 6 gives an alternative break-
down of the two-bug performance figures, based on

CRPIT Volume 122 - Computer Science 2012

104

the percentage of statements which are executed in
all failed tests. Most cases fall into the 60–80% range
for this benchmark set. Performance for all metrics
drops as the percentage increases, except when the
percentage is very high. When the percentage is less
than 20%, O1(Kulczynski2) performs better than all
other metrics.

The good overall performance of Kulczynski2 com-
pared to O1(Kulczynski2) and other single bug op-
timal metrics is thus strongly linked to the number
of statements with aef = F . For larger programs
we would expect this proportion to be significantly
smaller. We know from Naish et al. (2011) that for
the Space benchmark (around 9000 LOC) the rank
percentages for the better metrics is around one tenth
that of the Siemens Test Suite; this is partly due to a
smaller percentage of statements with aef = F . We
could also improve overall performance by initially
computing this percentage using the spectra for all
statements, then using it to select either Kulczyn-
ski2, if it is relatively large, or O1(Kulczynski2), for
example.

We also note that the tests suites are designed pri-
marily to detect the existence of bugs, not find the lo-
cation of bugs. There is a desire for a large coverage of
statements. For example the STS tests were designed
with the aim of having every statement executed by
at least 30 tests. Tests which execute a large percent-
age of the code are generally better for detecting the
existence of bugs but are worse for locating bugs. We
are hopeful that with better test selection strategies
and larger programs, single bug optimal metrics can
be of significant practical benefit.

8 Other related work

In Section 2 we referred to several papers which in-
troduced new metrics for spectral fault localization,
or evaluated metrics which had previously been intro-
duced for other domains. Here we briefly review other
related work. There are a couple of approaches which
post-process the ranking produced which are equival-
ent to adjusting the metric, similar to our O1 func-
tion. The post-ranking method of Xie et al. (2010)
essentially drops any statement which is not executed
in any failed test to the bottom of the ranking. That
of Debroy, Wong, Xu & Choi (2010) ranks primarily
on the aef value and secondarily on the original rank.
Thus if the original ranking is done with a strictly
rational metric, the resulting ranking is the same as
that produced by Op .

Other variations on the statement spectra ranking
method described in this paper attempt to use addi-
tional and/or different information from the program
executions. Execution frequency counts for state-
ments, rather than binary numbers, are used in Lee,
Naish & Kotagiri (2010) to weight the different aij
values and in Naish et al. (2009) aggregates of the
columns of the matrix are used to adjust the weights
of different failed tests. The RAPID system (Hsu,
Jones & Orso 2008) uses the Tarantula metric but
uses branch spectra rather than statement spectra.

The CBI (Liblit et al. 2005) and SOBER (Liu,
Yan, Fei, Han & Midkiff 2005) systems use predi-
cate spectra: predicates such as conditions of if-then-
else statements are instrumented and data is gath-
ered on whether control flow ever reaches that point
and, if it does, whether the predicate is ever true.
CBI uses sampling to reduce overheads but aggregates
the data so there are four numbers for each predi-
cate, which are ranked in a similar way to how state-
ments are ranked using statement spectra. SOBER
uses frequency counts and a different form of statis-
tical ranking method. The Holmes system (Chilimbi

et al. 2009) uses path spectra: data is collected on
which acyclic paths through single functions are ex-
ecuted or “reached ”, meaning the first statement
is executed but not the whole path, and the paths
are ranked in a similar way to predicate ranking in
CBI. Statement and predicate spectra are compared
in Naish et al. (2010), and it is shown that the aggre-
gate data used in predicate spectra methods is more
expressive than that used for statements spectra and
modest gains in theoretical performance are demon-
strated. The data collected for path spectra contains
even more information and thus could potentially be
used to improve performance further.

9 Conclusion

Spectra-based techniques are a promising approach
to software fault localization. Here we have used one
of the simplest and most popular variants: ranking
statements according to some metric, a function of
the numbers of passed and failed tests in which the
statement is/isn’t executed. We have identified the
class of strictly rational metrics, which are strictly
increasing in the number of failed test executions and
strictly decreasing in the number of passed test ex-
ecutions. We have argued that it is reasonable to
restrict attention to this class of metrics, and there is
no apparent evidence that doing so reduces fault lo-
calization performance. Having made this restriction,
we can put a lower bound on the cost of fault localiza-
tion — the “unavoidable cost”. No strictly rational
metric can achieve a lower cost.

We have shown that single bug optimal metrics
perform at least as well as any other strictly ratio-
nal metric, for various reasonable measures of per-
formance, for all programs with a single bug and all
sets of test cases. This significantly extends a previ-
ous theoretical result and shows that we cannot do
any better with this variant of spectral fault localiza-
tion for single-bug programs. We also showed how
any metric can be adapted so it becomes single bug
optimal.

Performance of spectral fault localization on
multiple-bug programs is much less well understood.
We have performed empirical experiments with a va-
riety of metrics on a benchmark set of small two-
bug programs. All metrics resulted in costs signifi-
cantly greater than the unavoidable cost on average.
Also, the single bug optimal metrics had significantly
greater cost than the best metrics overall. We have
identified one reason for this: typically a large propor-
tion of statements are executed in every failed test.
We know that this proportion is smaller in bench-
marks with larger programs. Also, it may be practical
to reduce it further by careful creation and selection
of test cases. For the subset of our two-bug bench-
mark set where less than 20% of statements were ex-
ecuted in all failed tests, the best performance was
achieved by the single bug optimal version of a met-
ric known to perform well on multiple bug programs.
Overall, there seem reasonable prospects for improv-
ing performance when there is a mixture of single-
and multiple-bug programs, which is what real fault
localization tools are faced with.

References

Abreu, R., Zoeteweij, P. & van Gemund, A. (2006),
‘An evaluation of similarity coefficients for soft-
ware fault localization’, PRDC’06 pp. 39–46.

Chen, M., Kiciman, E., Fratkin, E., Fox, A. & Brewer,
E. (2002), ‘Pinpoint: Problem determination in

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

105

large, dynamic internet services’, Proceedings of
the DSN pp. 595–604.

Chilimbi, T., Liblit, B., Mehra, K., Nori, A. &
Vaswani, K. (2009), HOLMES: Effective sta-
tistical debugging via efficient path profiling,
in ‘Proceedings of the 2009 IEEE 31st Inter-
national Conference on Software Engineering’,
IEEE Computer Society, pp. 34–44.

Dallmeier, V., Lindig, C. & Zeller, A. (2005),
Lightweight bug localization with AMPLE, in
‘Proceedings of the Sixth International Sympo-
sium on Automated Analysis-driven Debugging’,
ACM, pp. 99–104.

Debroy, V., Wong, W., Xu, X. & Choi, B. (2010),
A Grouping-Based Strategy to Improve the Ef-
fectiveness of Fault Localization Techniques, in
‘10th International Conference on Quality Soft-
ware , 2010. QSIC 2010’.

Do, H., Elbaum, S. & Rothermel, G. (2005), ‘Sup-
porting Controlled Experimentation with Test-
ing Techniques: An Infrastructure and its Po-
tential Impact’, Empirical Software Engineering
10(4), 405–435.

Gonzalez, A. (2007), Automatic Error Detection
Techniques based on Dynamic Invariants, Mas-
ter’s thesis, Delft University of Technology, The
Netherlands.

Hsu, H., Jones, J. & Orso, A. (2008), RAPID: Identi-
fying bug signatures to support debugging activ-
ities, in ‘23rd IEEE/ACM International Confer-
ence on Automated Software Enginering, 2008.
ASE 2008’, pp. 439–442.

Jaccard, P. (1901), ‘Étude comparative de la distri-
bution florale dans une portion des Alpes et des
Jura’, Bull. Soc. Vaudoise Sci. Nat 37, 547–579.

Jones, J. & Harrold, M. (2005), ‘Empirical evalua-
tion of the tarantula automatic fault-localization
technique’, Proceedings of the 20th ASE
pp. 273–282.

Lee, H. J. (2011), Software Debugging Using Program
Spectra , PhD thesis, University of Melbourne.

Lee, H. J., Naish, L. & Kotagiri, R. (2010), Effective
Software Bug Localization Using Spectral Fre-
quency Weighting Function, in ‘Proceedings of
the 2010 34th Annual IEEE Computer Software
and Applications Conference’, IEEE Computer
Society, pp. 218–227.

Liblit, B., Naik, M., Zheng, A., Aiken, A. & Jor-
dan, M. (2005), ‘Scalable statistical bug isola-
tion’, Proceedings of the 2005 ACM SIGPLAN
40(6), 15–26.

Liu, C., Yan, X., Fei, L., Han, J. & Midkiff,
S. P. (2005), ‘Sober: statistical model-based
bug localization’, SIGSOFT Softw. Eng. Notes
30(5), 286–295.

Lourenco, F., Lobo, V. & Bação, F. (2004), ‘Binary-
based similarity measures for categorical data
and their application in Self-Organizing Maps’,
JOCLAD .

Naish, L., Lee, H. J. & Kotagiri, R. (2009), Spectral
debugging with weights and incremental rank-
ing, in ‘16th Asia-Pacific Software Engineering
Conference, APSEC 2009’, IEEE, pp. 168–175.

Naish, L., Lee, H. J. & Kotagiri, R. (2010), State-
ments versus predicates in spectral bug local-
ization, in ‘Proceedings of the 2010 Asia Pa-
cific Software Engineering Conference’, IEEE,
pp. 375–384.

Naish, L., Lee, H. J. & Kotagiri, R. (2011), ‘A
model for spectra-based software diagnosis’,
ACM Transactions on software engineering and
methodology (TOSEM) 20(3).

Ochiai, A. (1957), ‘Zoogeographic studies on the
soleoid fishes found in Japan and its neighbour-
ing regions’, Bull. Jpn. Soc. Sci. Fish 22, 526–
530.

Reps, T., Ball, T., Das, M. & Larus, J. (1997), The
use of program profiling for software mainte-
nance with applications to the year 2000 prob-
lem, in ‘Proceedings of the 6th European Confer-
ence held jointly with the 5th ACM SIGSOFT’,
Springer-Verlag New York, Inc. New York, New
York, USA, pp. 432–449.

Russel, P. & Rao, T. (1940), ‘On habitat and asso-
ciation of species of Anopheline larvae in south-
eastern Madras’, J. Malar. Inst. India 3, 153–
178.

Wong, W. E., Debroy, V. & Choi, B. (2010), ‘A fam-
ily of code coverage-based heuristics for effective
fault localization’, Journal of Systems and Soft-
ware 83(2).

Wong, W. E., Qi, Y., Zhao, L. & Cai, K. (2007), ‘Ef-
fective Fault Localization using Code Coverage’,
Proceedings of the 31st Annual IEEE Computer
Software and Applications Conference pp. 449–
456.

Wong, W., Horgan, J., London, S. & Mathur, A.
(1998), ‘Effect of Test Set Minimization on Fault
Detection Effectiveness’, Software-Practice and
Experience 28(4), 347–369.

Xie, X., Chen, T. Y. & Xu, B. (2010), Isolating Suspi-
ciousness from Spectrum-Based Fault Localiza-
tion Techniques, in ‘10th International Confer-
ence on Quality Software , 2010. QSIC 2010’.

CRPIT Volume 122 - Computer Science 2012

106

Importance of Single-Core Performance in the Multicore Era

Toshinori Sato Hideki Mori Rikiya Yano Takanori Hayashida
Department of Electronics Engineering and Computer Science

Fukuoka University
8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan

toshinori.sato@computer.org

Abstract
This paper first investigates what the best multicore
configuration will be in the future, when the number of
usable transistors further increases. Comparing five
multicore models: single-core, many-core, heterogeneous
multicore, scalable homogeneous multicore, and
dynamically configurable multicore, surprisingly unveils
that single-core performance is a key to improve multicore
performance. Based on the findings, this paper secondly
proposes a technique to improve single-core performance.
It is based on Intel’s Turbo Boost technology. From the
detailed simulations, it is found that the technique achieves
single-core performance improvement. .

Keywords: Multicore, Amdahl’s law, Pollack’s rule,
Turbo Boost technology.

1 Introduction
Multicore processors have already been popular to
improve the total performance (Howard, et al. 2010).
Considering the power and temperature constraints, they
might be the sole practical solution. A lot of studies to
determine the best multicore configuration is conducted
(Annavaram, et al. 2005, Balakrishnan, et al. 2005, Ekman
and Stenstrom 2003, Hill and Marty 2008, Kumar, et al.
2005 and Morad, et al. 2006) and it is believed that the
heterogeneous multicore is the best in power and
performance trade-off. However, it is not clear whether
this answer is still correct in the future. As Amdahl’s law
states, performance of parallel computing is limited by that
of its serial computing portion inside. Hence, to utilize the
increasing number of transistors for increasing the number
of cores on a chip might not be the best choice.

This paper has two contributions. The one is that it
investigates which configuration is the best multicore
processor and unveils that single-core processor
performance should be still improved. The other is that it
proposes a technique that improves single-core
performance, which we name Cool Turbo Boost
technique.

The rest of the paper is organized as follows. The next
section summarizes the related works. Section 3
investigates the best multicore configuration. Section 4
proposes Cool Turbo Boost technique. Section 5
concludes.

Copyright © 2012, Australian Computer Society, Inc. This paper
appeared at the 35th Australasian Computer Science Conference
(ACSC 2012), Melbourne, Australia, January-February 2012.
Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 122. M. Reynolds and B. Thomas, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

2 Related Works
There are a lot of studies investigating configurations of
multicore processors (Annavaram, et al. 2005,
Balakrishnan, et al. 2005, Ekman and Stenstrom 2003, Hill
and Marty 2008, Kumar, et al. 2005 and Morad, et al.
2006). Most of them assume the number of usable
transistors is fixed and then search the best processor
configuration. Early studies mostly conclude that
integrating a lot of simple cores is better in the
power-performance trade-off than integrating a single
complex core (Ekman and Stenstrom 2003). Later,
heterogeneity and dynamic configurability are also
considered. They might be keys to overcome Amdahl’s
law (Hill and Marty 2008).

On the top of the above studies, this paper further
investigates what the best multicore configuration is. We
also consider the advance in semiconductor technologies.
We guess the best choice is different when the number of
transistors increases.

3 Searching for Best Multicore
As the number of transistors on a chip increases, the
flexibility to determine a processor configuration also
increases. The current trend is to use them to integrate
multiple cores on a chip and we have almost 50 cores
(Howard, et al. 2010). With such a large flexibility, we are
confused what the best configuration is. How many cores
should be integrated on a chip? Should each core have
simple in-order pipelines or complex out-of-order ones?
Should all cores are the same? These questions have to be
answered.

(a) Single-core (b) Many-core (c) Heterogeneous (d) Scalable

Figure 1: Variations of Multicore Processors

Figure 1 shows some variations of multicore processors.
When chip integration is advanced, there are two choices.
One is to increase the size of a core, and the other is to
increase the number of cores. Figure 1a explains the
former choice. All transistors on a chip are utilized by a

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

107

single core. Figure 1b explains the latter choice. The core
microarchitecture is fixed and multiple copies of the core
are integrated on the chip. Figures 1c and 1d consider
hybrids of the two choices. In Figure 1c, only one core
becomes large and the other cores remain small, and hence
the multicore is heterogeneous. In Figure 1d, all cores
become large and thus the multicore is homogeneous.

The best configuration must be different according to
applications executed on the processor. Hence, we analyse
theoretically and use simple model to compare these
variations in the following subsections.

3.1 Single-core vs. Many-core
First, a single-core (Figure 1a) and a many-core (Figure
1b) processors are compared. As the single-core processor
becomes larger and larger, its area-performance ratio
meets a diminishing return as explained by Pollack’s rule
(Borkar 2007). It says processor performance is
proportional to the square-root of its area. Performance
improvement rate IPollack is expressed as:

NIPollack 

where N explains that the processor is N times larger in
area than the baseline one. On the other hand,
multiprocessor performance is dominated by Amdahl’s
law. It says if a portion p of a program is executed in
parallel by N baseline processors, the speedup IAmdahl is:

)1(

1

p
N
p

I Amdahl




Hence, p is an important factor that determines how
efficient in performance the many-core processor is. Note
that we use N both for area of the single-core processor
and for the number of cores in the many-core processor. It
is not confusing because the area of N cores equals that of
N-times larger core. N is interchangingly used in this paper
as the size of core, the number of cores, and the chip area.

0

2

4

6

8

10

0 20 40 60 80

Pollack 0.9 0.8 0.7

Figure 2: Pollack’s Rule vs. Amdahl’s Law

Figure 2 compares the single-core processors and the

many-core processors. The horizontal axis indicates N and
the vertical one indicates performance improvement rate.
There are four lines. The blue line labelled with Pollack
presents the performance improvement rate of the
singe-core, IPollack. The other three lines present the rate of
the many-core, IAmdahl. The labels indicate the parallelized
portion, p.

When p is as large as 0.9, the many-core processor is
always better in performance until N reaches 81. This

matches with the investigation in (Ekman and Stenstrom
2003): multiple simple cores are better in
power-performance ratio than a big core. Please note that
power consumption is proportional to the total area, N, in
the model of Pollack’s rule. Unfortunately, only large
scale scientific computing enjoys such a large p. The
conventional computing such as desktop and mobile
cannot be easily parallelized. p is small (Wang, et al. 2009).
As p becomes smaller and smaller, many-core
performance is seriously limited. When p equals 0.7, the
8-core processor is poorer in performance than the 8-times
larger single-core processor. We already have commercial
8-core processors such as Intel’s Xeon 7500 series and
AMD’s FX series. Now is the time when single-core
processors would be more beneficial for desktop and
mobile applications than many-core processors, if
single-core processor performance were ideally scalable to
Pollack’s rule.

3.2 Single-core vs. Heterogeneous Multicore
Next, the winner single-core processor (Figure 1a) is
compared with a heterogeneous multicore processor
(Figure 1c) (Kumar, et al. 2005). The heterogeneous or
asymmetric multicore processors are widely studied for
improving energy efficiency (Annavaram et al. 2005,
Balakrishnan et al. 2005 and Morad et al. 2006). They can
be utilized to attack Amdahl’s law (Hill and Marty 2008).
Parallelized portions are executed by multiple small cores
and hard-to-parallelize portions are executed by a big and
strong core.

0

2

4

6

8

10

12

0 4 8 12 16 20 24 28 32

1/2 1/3 1/4 Pollack 0.8

Figure 3: Single-core vs. Heterogeneous Multicore

Figure 3 compares the heterogeneous multicore

processors with the single-core processors when p equals
0.8. Each heterogeneous multicore has only one big core.
The figure has the same layout to Figure 2. The vertical
axis additionally includes performance improvement rate
of the heterogeneous multicore processors, IHetero. The
lines labelled with Pollack and 0.8 are for IPollack and
IAmdahl. The other three lines are for IHetero. The labels 1/2,
1/3, and 1/4 mean the big core occupies half, one third,
and one fourth of the chip area, respectively. Pollack’s rule
models the big core’s performance. The rest of chip area is
used by the baseline cores. Figure 1c presents the case
labelled with 1/4.

Interestingly, the heterogeneous multicore processors
have equivalent performance regardless of the big core’s
size and their performance is much scalable to the chip
area. This confirms that hard-to-parallelize portion

CRPIT Volume 122 - Computer Science 2012

108

dominates the speedup. If that portion can be executed by
the big core, the speedup is significantly improved.

3.3 Heterogeneous vs. Scalable Homogeneous
Next, the winner heterogeneous (Figure 1c) and a scalable
homogeneous multicore (Figure 1d) are compared with
each other. The scalable multicore is different from the
many-core investigated in Section 3.1 in that the former
has the smaller number of large cores. The number of large
cores is determined as follows. Guess when utilizing the
half number of double-size cores become desirable in
terms of performance. That is expressed as:

2
22

1
1

)1(

1

N
pp

N
p

p







p

p
N





1

2

Hence, when p equals 0.8 for example, 3 double-size cores
have better performance than 6 small cores do.

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64

0.9 hetero

0.8 hetero

0.9 homo

0.7 hetero

0.8 homo

0.7 homo

Pollack

Figure 4: Heterogeneous vs. Scalable Homogeneous

Figure 4 compares two kinds of multicore processors:

heterogeneous and scalable homogeneous. The figure has
the same layout to Figures 2 and 3. The vertical axis
additionally includes performance improvement rate of the
scalable homogeneous multicore processors, IHomo. The
grey line labelled with Pollack presents IPollack. The other
six lines consist of three for the heterogeneous and three
for the scalable homogeneous. Each of their labels is the
combination of p and the multicore type. For example,
“0.9 hetero” and “0.7 homo” present IHetero when p
equals 0.9 and IHomo when p equals 0.7, respectively. The
heterogeneous multicore utilizes one fourth of its chip area
as its big core.

As for the heterogeneous multicore, performance is still
improved when p is increased. When p is increased from
0.8 to 0.9, performance is improved by approximately
50%. In addition, different from the case of many-core,
which we have already seen in Figure 2, its scalability is
not diminished regardless of p. In contrast, the scalable
homogeneous one shows poor performance. Even though
p equals 0.9, its performance improvement rate is smaller
than that of the heterogeneous multicore when p equals 0.8.
This means that the heterogeneous multicore exploit
performance even when hard-to-parallelize portions are
large.

3.4 Hetero vs. Dynamically configurable
Up to now, the heterogeneous multicore processor is the
best choice. However, we only investigated the statically
configured multicores. We have not yet considered
dynamically configurable multicores such as Core-fusion
(Ipek, et al. 2007) and CoreSymphony (Wakasugi, et al.
2010). They dynamically configure the number of cores
and the size of each core, as shown in Figure 5. When the
currently executing portion of a program is easy to
parallelize, the dynamically configurable multicore
processor increases the number of cores. In contrast,
otherwise, it combines some cores to a large core. The
adaptability will improve the performance.

Figure 5: Dynamically configurable Multicore

Figure 6 compares the dynamically configurable
multicore processor (Figure 5) with the current winner
heterogeneous one (Figure 1c) when p is 0.8. Since we do
not perform a simulation of an application, the
configuration does not change dynamically but can be
determined statically. The parallelizable part is executed
by all small cores and the not-parallelizable part is
executed by a single core, which is a combination of all
small cores. The figure has the same layout to Figures 2-4.
There are five lines. The green one labelled with “0.8
hetero” presents IHetero. The other four lines presents
performance improvement rate of the configurable
multicore, IDC. We consider four models of the
reconfigurable multicore. The dynamic reconfigurability
suffers a penalty in performance. It is approximately 25%
of performance loss in comparison with a monolithic core
(Ipek, et al. 2007 and Wakasugi, et al. 2010). The models
labelled with “0.8 DC-n” and “0.8 DC-8” considers the
penalty. The other models labelled with “0.8 DC-in” and
“0.8 DC-i8” do not consider it and thus has an ideal
single-core performance. As the number of cores increases,
it becomes difficult to combine all cores due to the
increasing complexity of interconnects. Hence, we
consider a limit in the number of combinable cores. In this
investigation, we assume the number is 8. The models
labelled with “0.8 DC-i8” and “0.8 DC-8” consider the
limit. The other models labelled with “0.8 DC-in” and
“0.8 DC-n” do not consider it and thus are ideally scalable.
The model “0.8 DC-8” is the most practical one.

When there are not any limits in the number of
combinable cores, the performance improvement is very
significant. IDC is almost twice better than IHetero. The
penalty slightly diminishes performance, but the

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

109

improvement rate is still fascinating. Comparing with
IAmdahl, IDC is increased by approximately 400% even if the
penalty is considered. However, if the number of
combinable cores is limited to 8, IDC is seriously degraded.
When N is around 30, the heterogeneous multicore
becomes better in performance than the dynamically
configurable one. As mentioned earlier, the model “0.8
DC-8” is the most practical one. Comparing it with the
heterogeneous multicore unveils that the latter is better
when N is larger than 27. The red dashed line in Figure 6
presents the current technology, where four
6-instruction-issue cores or sixteen 2-instruction-issue
cores can be integrated on a chip. Remember that the
integration is doubled generation by generation. N will be
32 very soon. Considering the above, the heterogeneous
multicore processor is the best choice in the near future.

0

10

20

30

0 16 32 48 64

0.8 DC-in

0.8 DC-n

0.8 hetero

0.8 DC-i8

0.8 DC-8

6‐issue X 4‐core

2‐issue X 16‐core

Figure 6: Hetero vs. Dynamically configurable

In order to enjoy the continuously improving

performance of the heterogeneous multicore, one serious
problem should be solved. It consists of a single big core
and a lot of small cores and its configuration is statically
determined on the design phase. Both size and
performance of the big core have to be increased with the
same pace of N. This means that single-core performance
is still important.

4 Single-Core Performance Improvement
This section presents a preliminary study that aims to
improve single-core performance. Increasing clock
frequency is the easiest way to improve single-core
performance. However, as widely known, it also increases
the power supply voltage, resulting in serious power and
temperature problems. This section proposes a technique
that increases clock frequency without the increase in the
supply voltage.

4.1 Cool Turbo Boost Technique
Intel’s Turbo Boost technology (Intel Corporation

2008) has a unique feature that increases the supply
voltage and thus the clock frequency when the number of
active cores is small. This is possible because TPD
(Thermal Design Power) is determined by considering the
case when all cores are active and thus it has a large
margin in that case. We extend it and further increase the
core clock frequency. Different from the baseline Turbo
Boost technology, our technique will not require the
increase in the supply voltage, and hence we name it Cool
Turbo Boost technology.

Cool Turbo Boost exploits the small critical path delay
of a small core. If the hardware size and complexity
become small, its critical path delay is reduced. Hence,
there is an opportunity to increase its clock frequency.
Intel’s ATOM processor (Thakkar 2008) is a good
example that shows a simple and small core improves
energy efficiency. In Cool Turbo Boost, processors
datapath, where data flow and are processed, dynamically
becomes small to boost clock frequency.

When the datapath becomes small, its computing
performance is degraded. If the performance loss is not
compensated by the clock frequency boost, the total
processor performance is diminished. This is not our goal.
Hence, we consider the following observation. When
instruction level parallelism (ILP) is small, the small
datapath is enough. Otherwise, the datapath should not
become small. Hence, the datapath is dynamically
configured according to ILP in each program phases. In
order to realize the idea, we utilize Multiple
Clustered-Core Processor (MCCP) (Sato and Funaki
2008). It is shown in Figure 7. MCCP configures its
datapath according to ILP and thread level parallelism
(TLP) in the program. We extend MCCP so that its clock
frequency is increased when it configures its datapath
small.

The amount of ILP varies between application
programs and by more than a factor of two even within a
single application program (Bahar and Manne 2001).
Figure 8 shows an example of the issue rate for
SPECint2000 benchmark gcc. The horizontal axis
indicates the execution cycles and the vertical one
represents the average number of instructions issued per
cycles (issue IPC) over a window of 10,000 execution
cycles. The issue IPC varies by more than a factor of two
over a million cycles of execution. These variations can be
exploited to determine when the datapath should become
small. We manage MCCP to utilize wide datapath only
when issue IPC is high and similarly to utilize narrow
datapath only when issue IPC is low. When issue IPC is
low, there are idle execution resources and thus the narrow
datapath provides dependability without serious
performance loss. We assume that past program behaviour
indicates future behaviour. Hence, based on past issue IPC,
future issue IPC could be predicted. We measure the
number of instructions issued over a fixed sampling
window. We predict future issue IPC based on the past
number of issued instructions rather than on past issue IPC.
We use predicted issue IPC to determine when the
datapath should become small. If it is smaller than a
predetermined threshold value, MCCP switches to use the
narrow datapath. Similarly, if predicted issue IPC is larger
than another predefined threshold value, MCCP switches
to use the wide datapath.

0

1

2

3

4

Execution Cycles

IL
P

Sampling window

Figure 8: Issue IPC Variation (gcc)

CRPIT Volume 122 - Computer Science 2012

110

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

Core
gating

(a) Dual large core (b) Hetero core (c) Dual small core (d) Single large core (e) Single small core

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

Core
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

Core
gating

(a) Dual large core (b) Hetero core (c) Dual small core (d) Single large core (e) Single small core

Figure 7: Multiple Clustered-Core Processor

4.2 Evaluation Methodology
SimpleScalar tool set (Austin, et al. 2002) is used for
evaluation. Table 1 summarizes the processor
configuration. The frontend and the L2 cache do not
change. When issue IPC is larger than 2.0, the wide
datapath is used. On contrary, when issue IPC is smaller
than 1.6, the narrow datapath is used. These threshold
values are not optimally determined and thus further study
to determine the optimal values is required. Six programs:
gzip, vpr, gcc, parser, vortex and bzip2 from
SPECint2000 are used. 1 billion instructions are skipped
before actual simulation begins. After that each program is
executed for 2 billion instructions.

 Narrow Wide

Fetch width 16 instructions

L1 I cache 16KB,2-way

Branch predictor 1K-gshare,512-BTB

Dispatch width 4 instructions

Scheduling queue 64 instructions 128 instructions

Issue width 2 instructions 4 instructions

Integer ALUs 2 4

Integer MULs 2 4

Floating ALUs 2 4

Floating MULs 2 4

L1 D cache 16KB,2-way,1-port 16KB,2-way,2-port

L2 cache 512KB,2-way

Table 1: Processor Configurations

Boosting ratio is defined as the clock frequency in the

narrow datapath mode divided by that in the wide mode.
We vary the boosting ratio between 1.0 and 2.0 and
evaluate how processor performance is improved.

4.3 Results

40%

60%

80%

100%

120%

140%

160%

1 1.2 1.4 1.6 1.8 2

gzip vpr gcc parser vortex bzip2

Figure 9: Narrow Datapath Results

Figure 9 presents the normalized performance when the
narrow datapath is always used. The horizontal axis
indicates the boosting ratio and the vertical one indicates
the single-core performance normalized by the baseline
performance. When the vertical value is less the 100%,
processor performance is degraded. When the boosting
rate is 1.0, performance is seriously diminished. It is not
improved until the boosting ratio reaches 1.6. Hence, it is
very difficult to improve single-core performance only by
combining the narrow datapath with high clock frequency.

80%

100%

120%

140%

160%

1 1.2 1.4 1.6 1.8 2

gzip vpr gcc parser vortex bzip2

Figure 10: Cool Turbo Boosting Results

Figure 10 presents how Cool Turbo Boosting technique

improves single-core performance. The figure has the
same layout to Figure 9. When the boosting ratio equals
1.0, performance is degraded in all programs. However,
the average performance loss is only 4.2% and is much
smaller than that seen in Figure 9, which is 36.1% loss.
When the boosting rate reaches 1.4 and 1.6, performance is
improved by 5.0% and 8.7% on average, respectively.
gzip and gcc achieve significant improvements, which are
26.7% and 15.2%, respectively.

Figure 11: Comparison of 2 Techniques (parser)

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

111

Figure 12: Comparison of 2 Techniques (vortex)

Figures 11 and 12 compare 2 techniques. In Figure 11,

parser represents the group of gzip, vpr, parser and
bzip2. When the boosting ratio is large, Cool Turbo
Boosting technique does not work well. In Figure 12,
vortex represents the group of gcc and vortex. Cool
Turbo Boosting achieves better performance regardless of
the boosting ratio. While determining the boosting ratio
requires future studies, the boosting ratio larger than 1.5
will be impractical. Because Cool Turbo boosting achieves
single-core performance improvement in the small
boosting ratio, it has the potential to further improve
performance.

Achieving much single-core performance improvement
requires further investigations.

5 Conclusions
This paper investigates what the best multicore
configuration is in the future. Five models of single-core,
many-core, heterogeneous multicore, scalable
homogeneous multicore, and dynamically configurable
multicore are compared with each other. From the
investigations, it is unveiled that single-core performance
is still important. Without the achievement, the
heterogeneous multicore processor cannot continue to
improve performance in the near future. This is the major
contribution of this paper.

In the latter half of the paper, we present the
preliminary case study that aims to improve single-core
performance. We named it Cool Turbo Boost technique.
When ILP in the program is small, the execution resources
in the processor are dynamically configured to be narrow
and thus its clock frequency is increased. From the detailed
simulations, we found the average performance
improvement of 5.0% is achieved. Unfortunately, this
achievement is not enough to continue multicore
performance improvement and the future studies are
strongly required.

The future studies regarding the heterogeneous
multicore processors include investigating the
heterogeneity to enhance dependability. Hardware defects
also cause heterogeneity. We are studying to utilize the
cores with defects to improve dependability. For example,
high performance is not always required for checking
correctness. Combining the idea with the findings in this
paper will explore a new horizon for dependable multicore
processors.

6 Acknowledgments
This work was supported in part by JSPS Grant-in-Aid for
Scientific Research (B) #20300019, and is supported in
part by JST CREST program and by the fund from Central
Research Institute of Fukuoka University.

7 References
Annavaram, M., Grochowski, E. and Shen, J. (2005):

Mitigating Amdahl's law through EPI throttling. Proc.
International Symposium on Computer Architecture,
Madison, WI, USA:298-309, IEEE Computer Society
Press.

Austin, T., Larson, E. and Ernst, D. (2002): SimpleScalar:
an infrastructure for computer system modeling. IEEE
Computer, 35(2):59-67.

Bahar, R.I. and Manne, S. (2001): Power and energy
reduction via pipeline balancing. Proc. International
Symposium on Computer Architecture, Goteborg,
Sweden:218-229, ACM Press.

Balakrishnan, S., Rajwar, R. Upton, M. and Lai, K. (2005):
The impact of performance asymmetry in emerging
multicore architectures. Proc. International Symposium
on Computer Architecture, Madison, WI, USA:506-517,
IEEE Computer Society Press.

Borkar, S. (2007): Thousand core chips: a technology
perspective. Proc. Design Automation Conference, San
Diego, CA, USA:746-749, ACM press.

Ekman, M. and Stenstrom, P. (2003): Performance and
power impact of issue-width in chip-multiprocessor
cores. Proc. International Conference on Parallel
Processing, Kaohsiung, Taiwan: 359-368, IEEE
Computer Society Press.

Hill, M.D. and Marty, M.R. (2008): Amdahl’s law in the
multicore era. IEEE Computer 41(7): 33-28.

Howard, J., et al. (2010): A 48-core IA-32
message-passing processor with DVFS in 45nm CMOS.
Digest of Technical Papers International Solid-State
Circuit Conference, San Francisco, CA, USA:19-21,
IEEE Press.

Intel Corporation (2008): IntelR Turbo Boost technology in
IntelR CoreTM microarchitecture (Nehalem) based
processors. White Paper.

Ipek, E., Kirman, M., Kirman, N. and Martinez, J.F.
(2007): Core fusion: accommodating software diversity
in chip multiprocessors. Proc. International Conference
on Computer Architecture, San Diego, CA,
USA:186-197, ACM Press.

Kumar, R., Tullsen, D.M., Jouppi, N.P. and Ranganathan,
P. (2005): Heterogeneous chip multiprocessors. IEEE
Computer 38(11): 32-38.

Morad, T.Y., Weiser, U.C., Kolodny, A., Valero, M. and
Ayguade, E. (2006): Performance, power efficiency and
scalability of asymmetric cluster chip multiprocessor.
IEEE Computer Architecture Letters 5(1): 14-17.

Sato, T. and Funaki, T. (2008): Dependability, power, and
performance trade-off on a multicore processor. Proc.
Asia and South Pacific Design Automation Conference,
Seoul, Korea:714-719, IEEE Computer Society Press.

CRPIT Volume 122 - Computer Science 2012

112

Thakkar, T. (2008): Intel Centrino Atom processor
technology-enabling the best internet experience in your
pocket. Proc. Symposium on Low-Power and
High-Speed Chips, Yokohama, Japan:329-337.

Wakasugi, Y., Sakaguchi, Y., Miyoshi, T. and Kise, K.
(2010): An efficient physical register management
scheme for CoreSymphony architecture. IPSJ SIG
Technical Report, 2010-ARC-188(3): 1-10 (in
Japanese).

Wang, Y., An, H., Yan, J., Li, Q., Han, W., Wang, L. and
Liu, G. (2009): Investigation of factor impacting
thread-level parallelism from desktop, multimedia and
HPC applications. Proc. International Conference on
Frontier of Computer Science and Technology,
Shanghai, China:27-32.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

113

CRPIT Volume 122 - Computer Science 2012

114

Explaining alldifferent

Nicholas Downing Thibaut Feydy Peter J. Stuckey

National ICT Australia∗ and the University of Melbourne, Victoria, Australia
Email: {ndowning@students.,tfeydy@,pjs@}csse.unimelb.edu.au

Abstract

Lazy clause generation is a powerful approach to re-
ducing search in constraint programming. For use in a
lazy clause generation solver, global constraints must
be extended to explain themselves. Alternatively they
can be decomposed into simpler constraints which
already have explanation capability. In this paper
we examine different propagation mechanisms for the
alldifferent constraint, and show how they can be ex-
tended to explain themselves. We compare the dif-
ferent explaining implementations of alldifferent on
a variety of problems to determine how explanation
changes the trade-offs for propagaton. The combi-
nation of global alldifferent propagators with expla-
nation leads to a state-of-the-art constraint program-
ming solution to problems involving alldifferent .

1 Introduction

Lazy clause generation (Ohrimenko et al. 2009) is a
hybrid approach to constraint solving that combines
features of finite domain propagation and Boolean
satisfiability. Finite domain propagation is instru-
mented to record the reasons for each propagation
step. This creates an implication graph like that built
by a SAT solver, which may be used to create ef-
ficient nogoods that record the reasons for failure.
These learnt nogoods can be propagated efficiently
using SAT unit propagation technology.

The resulting hybrid system combines some of the
advantages of finite domain constraint programming
(CP): high level model and programmable search;
with some of the advantages of SAT solvers: reduced
search by nogood creation, and effective autonomous
search using variable activities. Lazy clause genera-
tion provides state of the art solutions to a number
of combinatorial optimization problems.

The alldifferent global constraint is one of the
most common global constraints appearing in con-
straint programming models. alldifferent(x1, . . . , xn)
requires that each of the variables x1, . . . , xn takes
a different value. It is logically equivalent to∧

1≤i<j≤n xi 6= xj . It succinctly encodes assignment
subproblems occurring in a model. Such assignment
subproblems occur frequently in real-world scheduling

∗NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.
Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 35th Australasian Computer Science Con-
ference (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce
Thomas, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

and rostering problems, such as the insn sched, tal-
ent sched and social golfer problems discussed
in the experiments section of this paper.

Various implementations for the alldifferent con-
straint are available, some relying on specific propa-
gation algorithms that enforce value, bounds and
domain consistency, and some relying on decomposi-
tion of alldifferent into simpler constraints.

Learning changes the trade-offs for propagation.
It may well be worth spending more time calculating
stronger propagation, if the results can be reused else-
where using learning, thus amortizing the cost over
multiple uses. Conversely, it may be worth spending
less time on propagation, if we can rely on the glob-
ality of learning to learn the stronger consequences of
a constraint that are useful to the search in any case.
Hence it is worthwhile studying what form of propa-
gation of alldifferent is best for a learning solver.

Propagation algorithms for alldifferent have been
quite well-studied, see the survey of van Hoeve (2001)
for details. But until recently, global alldifferent
propagators have not been used in learning solvers.
Katsirelos (2008) describes a method for implement-
ing the domain-consistent algorithm (Régin 1994)
with explanations for use in a learning solver, but
without experiments. We present for the first time
an implementation of the method (with slight en-
hancements), and also we describe and implement
for the first time an explained version of the bounds-
consistent propagator (Lopez-Ortiz et al. 2003).

As well as the new propagators a further impor-
tant contribution is a comprehensive suite of exper-
iments using over 4000 hours of computer time to
compare the learning vs. non-learning and global vs.
decomposition approaches over a large set of struc-
tured problems that use alldifferent , and to find the
best search strategy and solver combination for each
problem, with comparison to previous state-of-the-art
CP approaches to verify our results. We find learn-
ing to be enormously beneficial, so much so that new
harder problems needed to be created to exercise our
propagators, and that using the correct global or de-
composed constraint is important on most models.

2 Lazy clause generation

We give a brief description of propagation-based solv-
ing and lazy clause generation, for more details see
Ohrimenko et al. (2009). We consider constraint sat-
isfaction problems (CSPs), consisting of constraints
over integer variables x1, . . . , xn, each with a given
finite domain Dorig(xi). A feasible solution is a valu-
ation to the variables such that each xi is within its
allowable domain and all constraints are satisfied.

A propagation solver maintains a domain restric-
tion D(xi) ⊆ Dorig(xi) for each variable and consid-

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

115

(a) Pre analysis (b) Post analysis

Figure 1: Conflict analysis on the implication graph of a 5× 5 qg completion problem

ers only solutions that lie within D(x1)×· · ·×D(xn).
Solving interleaves propagation, which repeatedly ap-
plies propagators to remove unsupported values, and
search which splits the domain of some variable and
considers the resulting sub-problems. This continues
until all variables are fixed (success) or failure is de-
tected (backtrack and try another subproblem).

Lazy clause generation is implemented in the
above framework by defining an alternative model for
the domains D(xi), which is maintained simultane-
ously. Specifically, Boolean variables are introduced
for each potential value of a variable, named [xi = j]
and [xi ≥ j]. Negating them gives the opposite,
[xi 6= j] and [xi ≤ j − 1]. Fixing such a literal mod-
ifies domains to make the corresponding fact true in
D(xi) and vice versa. Hence these literals give an al-
ternate Boolean representation of the domain, which
can support SAT reasoning.

In a lazy clause generation solver, the actions
of propagators (and search) to change domains are
recorded in an implication graph over the literals.
Whenever a propagator changes a domain it must
explain how the change occurred in terms of liter-
als, that is, each literal l that is made true must be
explained by a clause L→ l where L is a (set or) con-
junction of literals. When the propagator causes fail-
ure it must explain the failure as a nogood, L→ false,
with L a conjunction of literals which cannot hold si-
multaneously. Conflict analysis reduces L to a form
suitable to use as a clausal propagator to avoid re-
peating the same search (Moskewicz et al. 2001).

Example 2.1 (conflict analysis) Figure 1a shows
a simple 5 × 5 Quasigroup Completion problem. Ini-
tially 11 of the 25 cells are filled in. The learning
solver attempts to fill in the remaining 14 cells in
such a way that the same digit does not appear twice
in any row or column. In the (initially) blank cells
is depicted a domain representation ‘1 2 3 4 5’ which
shows the possible values for the cell.

A value can be removed from a domain (shown
in lightweight italics) when that value is assigned to
another cell in the same row or column. A value can
be assigned to a cell when (i) the domain of the cell
has been reduced to a single possibility, or (ii) it is
the only cell in the same row (or column) that can
take this value. Such reasoning is depicted graphically

by arrows showing, for each assignment/removal, its
preconditions (a set of previous assignments/removals
which must hold simultaneously).

Since the original problem was at fixed-point with
respect to the above reasoning, search had to ‘pencil
in’ the value 1 in the top-left corner, depicted ‘?’ (first
decision level). Resulting implications are shown as
solid arrows. Fixed-point being reached again (under
this assumption), search pencilled in the value 2 in
the next cell, depicted ‘??’ (second decision level).
Resulting implications are shown as dotted arrows, to
show they occurred at the second level.

These assumptions (1 and 2 in the initial cells),
lead to a conflict because no cell in the first column
can now take the value 4. The resulting conflict clause
L→ false is depicted graphically. L simply expresses
a rule of the puzzle and hence is useless as a learnt
clause, so we have to look back in the implication
graph to see the underlying causes of the conflict.

We use 1UIP conflict analysis (Moskewicz et al.
2001) to find the ‘cut’, depicted in the figures, which
(i) contains the conflict, (ii) is as small as possible,
and (iii) traces the conflict back to a single precon-
dition at the current decision level, here [x43 = 2].
Observe that there are 3 implication arrows entering
the cut (of which only one can be dotted). It is easy
to see that only these preconditions need to exist si-
multaneously for failure to be inevitable.

The learnt nogood is simply a list of preconditions
to the cut, here [x11 6= 4] ∧ [x44 6= 0] ∧ [x43 = 2].
After undoing all work at decision level 2, this new
clause must propagate, as [x11 6= 4] ∧ [x44 6= 0] →
[x43 6= 2], which removes the immediate reason for
the conflict. Inevitably this also propagates back as
shown in Figure 1b, to undo the bad decision marked
‘??’. Due to this clause learning mechanism, search
never makes the same mistake again.

3 Hall Sets

The alldifferent constraint requires that each ar-
gument takes a different value. The key to all
propagation algorithms for alldifferent is the detec-
tion of Hall sets (Hall 1935). Given a constraint
alldifferent(x1, . . . , xn), H ⊆ {1, . . . , n} is a Hall set
if |H| ≥ |V | where V = ∪h∈HD(xh). If the inequality

CRPIT Volume 122 - Computer Science 2012

116

(a) Initial domains (b) Singleton interval (c) Merging intervals (d) Finding Hall interval (e) Pruning lower bound

Figure 2: Example of bounds-consistent propagator execution for pruning lower bounds

holds strictly, that is |H| > |V |, then the constraint
is unsatisfiable. If it holds as an equality, |H| = |V |,
then no variable xi, i /∈ H can take a value from V .

Example 3.1 (Hall sets) Given x1 ∈ {1, 2}, x2 ∈
{1, 3} and x3 ∈ {1, 3} are all different, H = {2, 3} is
a Hall set with V = {1, 3}. Since 3 different variable-
values can’t fit in a domain containing only 2 values,
x1 must be outside this domain, that is x1 6= 1.

In the next sections we examine various propagators
for alldifferent and how they can be extended to ex-
plain their propagations. The explanation clauses are
essentially descriptions of the well-known conditions
for pruning. Usually these clauses also suffice to de-
scribe failure (because they wake up implicit clauses
requiring domains to be non-empty) but in some cases
explicit failure nogoods can also be produced.

4 Global value-consistent propagator

The simplest form of alldifferent(x1, . . . , xn) is a de-
composition that enforces xi 6= xj for all 1 ≤ i <
j ≤ n. Let E = ∪ni=1Dorig(xi) be the union of the
domains of all variables appearing in the alldifferent
constraint. An equivalent decomposition based on a
linear constraint is

∑n
i=1 bool2int([xi = v]) ≤ 1 for all

v ∈ E. Since the size of the decomposition is O(n|E|)
we implement this as a single global propagator that
wakes upon variable fixing, i.e. when D(xh) = {v} for
some h, v, it prunes all D(xi), i 6= v with explanation

[xh = v]→ [xi 6= v].

The complexity of this propagator is O(n|E|).
When |E| = n, there are no spare values and

we also enforce the clauses
∨n

i=1[xi = v] for all
v ∈ E, equivalent to changing the upper bound of
1 to equality with 1 in the above linear constraints.
These clauses are standard in the SAT community
(e.g. in the CNF output of Gomes’s lsencode genera-
tor for qg completion problems) but their impor-
tance isn’t widely recognised for CSPs.

5 Global bounds-consistent propagator

Given the constraint alldifferent(x1, . . . , xn) over do-
mains D(x1), . . . , D(xn), bounds consistency en-
sures for each xi, both ai = min(D(xi)) and bi =
max(D(xi)) have a support over Πj 6=iaj ..bj , i.e. a so-
lution to the constraint relaxed to range domains,
which uses the value xi = ai or bi.

The best bounds-consistent alldifferent propaga-
tor is by Lopez-Ortiz et al. (2003). It rests on two key
observations, (i) a solution to the constraint may be

found greedily, if one exists, by allocating each vari-
able its minimum possible value, treating variables in
the order most- to least-constrained; and (ii) a union-
find data structure (Tarjan 1975) can efficiently en-
code the dependencies between interval domains, to
build Hall intervals incrementally and inform us when
a complete Hall interval has been identified.

Example 5.1 (pruning bounds) Suppose x1 ∈
1..2, x2 ∈ 2..3, x3 ∈ 1..3 and x4 ∈ 3..4. These inter-
vals, along with a representation of the overall domain
1..4, are shown in Figure 2a. Initially, all cells of the
domain representation are unoccupied. The variables
are sorted in order of increasing upper bound, which
is the criterion for constrainedness, since for example
it would not make sense to allocate x3 = 1, x2 = 2
and then find all possibilities for x1 occupied.

The first variable to allocate is x1 = 1, shown in
Figure 2b. A new singleton interval is created in the
union-find data structure, shown below the domain-
representation. The endpoints of the interval are indi-
cated by [], whereas the upper bound of the contained
variable extends further, shown shaded and dotted. At
present the new interval is not Hall; when its right-
hand endpoint increases to take in the shaded region
then it will become a Hall interval.

Referring to Figure 2c, we next allocate x3 = 2.
Because we had to jump over the value 1 to allocate
x3, the interval containing 1 is merged in the union-
find data structure with the newly created interval.
This merging preserves the invariant that for each in-
terval in the data structure, a value in the interval can
be freed up if and only if one of the variables in the
interval has its bounds relaxed. The merged interval
is still not a Hall interval since it contains x3 which
has the highest upper bound, 3, shown.

Then, allocating x2 = 3 discovers a Hall inter-
val (Figure 2d). Since the value 2 was passed over,
the corresponding interval is merged with the new in-
terval, including the value 1 which could only affect
the new allocation indirectly. The upper bound of the
newly merged interval has caught up with the upper
bounds of the variables in it, so the interval is marked
‘Hall’. Then when processing x4 (Figure 2e), we no-
tice its lower bound falls into a Hall interval, and
should be pruned before attempting any allocation.

Due to the order of discovering Hall intervals relative
to the processing of variables, the algorithm as de-
scribed above will only prune lower bounds. We use
the original algorithm with minimal change, which
includes a second pass of recomputing all Hall inter-
vals to prune the upper bounds, though there is no
reason in principle why the information discovered on
the first pass should not be reused to save effort.

The algorithm of Lopez-Ortiz et al. (2003) is
O(n log n) to sort the variables, plus O(n log n) to

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

117

scan variables and construct/maintain their (special-
ized) union-find data structures, overall O(n log n).

The only changes we made to the algorithm were
(i) to use insertion sort for the variables at cost
O(n2), in practice this takes only linear time since
the variables are already sorted, and the algorithm
is dominated by the union-find operations hence still
O(n log n); and (ii) to collect the set H, required for
explanations. Given H with V = a..b we can explain
the increased lower bound for a variable xi /∈ H as

[xi ≥ a] ∧
∧
h∈H

([xh ≥ a] ∧ [xh ≤ b])→ [xi ≥ b + 1].

This requires O(n) literals per explanation.

6 Global domain-consistent propagator

For alldifferent(x1, . . . , xn) over domains D(x1), . . . ,
D(xn), domain consistency ensures that for each xi,
each value in D(xi) has a support, i.e. a solution to
the entire constraint, which uses the value.

The best domain-consistent alldifferent propaga-
tor is by Régin (1994) with improvements by Gent
et al. (2008). For alldifferent as bipartite graph
matching problem, we can find a feasible solution
(or prove that none exists) using Ford & Fulker-
son’s (1956) augmenting paths algorithm. The arcs
(variable-value pairs) used in this solution are obvi-
ously supported. Support for another arc depends on
whether there exists an augmenting cycle containing
it, which we can check efficiently using Tarjan’s (1972)
strongly connected components (SCC) algorithm.

Example 6.1 (augmenting paths) Suppose x1 ∈
{1, 2}, x2 ∈ {2, 3}, x3 ∈ {2, 3, 4}. Then a feasible
solution is x1 = 1, x2 = 2, x3 = 4, illustrated in
Figure 3a. The corresponding residual graph, shown
in Figure 3b, has a forward arc where a variable/value
pair could be added to the matching or a backward arc
where a variable/value pair could be removed.

Now suppose x1 6= 1. The alldifferent propagator
wakes up and removes the illegal assignment from the
graph as shown in Figure 3c, where unmatched nodes
are double-circled. To repair the matching, a path is
found in the residual graph (Figure 3d), from the un-
matched variable x1 to an unmatched value 3. Aug-
menting along this path means adding to the matching
when traversing forward arcs or removing for back-
ward arcs (Figures 3e and 3f), so that x1 becomes 2
and x2 moves onto 3 in the proposed solution.

The actions of Régin’s propagator may be explained
by Hall sets. When Régin’s propagator fails or prunes
we can easily identify the failure set or Hall set which
caused it. For infeasibility, the set of nodes searched
for an augmenting path (the cut) consists of H∪V and
is a failure set as necessarily |H| > |V |. For pruning,
the most recently discovered SCC consists of H ∪ V
and is a Hall set. We instrumented the propagator to
use this knowledge to explain its failures and prun-
ings. Note that we use SCC-splitting (Gent et al.
2008), and we generate explanations lazily.

Example 6.2 (failure) Continuing example 6.1,
suppose x1 6= 1 and also x3 6= 4. When the propa-
gator wakes up it can repair x1 as shown previously
(Figure 4a), but there is no augmenting path from
x3 to an unused value, which the algorithm proves by
searching the nodes indicated in Figure 4b before con-
cluding that no further search is possible.

(a) Feasible solution (b) Residual graph

(c) Partial solution if x1 6= 1 (d) Augmenting path

(e) Feasibility restored (f) Flipped along the path

Figure 3: alldifferent as bipartite matching problem

(a) Partial solution if x3 6= 4 (b) Set of nodes searched

Figure 4: Deriving an explanation for failure

CRPIT Volume 122 - Computer Science 2012

118

(a) Feasible solution if x3 6= 4 (b) SCC connectivity (c) After pruning [x1 = 2]

Figure 5: Isolating SCCs in depth-first manner while deriving explanations for the prunings

The resulting cut-set, partitioned into variables
H = {1, 2, 3} and values V = {2, 3}, proves infeasi-
bility since |H| > |V |, and suggests the failure nogood∧

h∈{1,2,3}(xh ∈ {2, 3}). Since we do not have liter-

als to express that xh ∈ {2, 3}, we use an equivalent
clausal representation xh 6= 1 ∧ xh 6= 4. By removing
the literals that are false in the original domains, we
obtain the nogood [x1 6= 1]∧ [x3 6= 4]→ false. This fi-
nal nogood is simply the list of dotted arcs leaving the
cut; this is intuitive since the search stops precisely
because those arcs are dotted.

Example 6.3 (pruning) Alternatively, suppose
x3 6= 4 while x1 = 1 remains possible. The propaga-
tor wakes up and repairs x3, resulting in the feasible
solution of Figure 5a. Using Tarjan’s algorithm it
determines the SCCs of the resulting residual graph,
shown in Figure 5b. The arc x1 = 2 crosses SCCs, so
can’t be augmented (it is not part of any augmenting
cycle in the residual graph), and may be removed.

The target of the arc being pruned is SCC #2
which gives the Hall set H = {2, 3}, V = {2, 3} as
evidence for the pruning, suggesting the explanation∧

h∈{2,3}(xh ∈ {2, 3})→ [x1 6= 1]. Once again we can

express this as the list of dotted arcs leaving the SCC,
giving [x3 6= 4]→ [x1 6= 1].

For the sake of simplicity we glossed over the distinc-
tion between augmenting paths and cycles. An arc
may be augmented if it is part of any augmenting
path, whereas the SCC-algorithm can only eliminate
its appearing in an augmenting cycle. We get around
this difficulty with a slight modification to Tarjan’s
algorithm which makes used values reachable from
unused values, so that freeing up a value by taking
another value is considered to be a cycle.

In the worst case the edges are removed from the
graph one by one, so there are n|E| propagator ex-
ecutions, each computing a single augmenting path
at cost O(n|E|) and re-running the SCC-algorithm at
cost O(n), so the cost is O(n2|E|2) down a branch. In
practice, repairing the matching is very fast (because
it seldom explores the whole graph), and most time
is spent in the SCC-algorithm.

Given H and V the explanation that we use for
pruning values in j ∈ V from xi 6∈ H is∧

h∈H,d∈E\V

[xh 6= d]→ [xi 6= j] (1)

It requires |H|(|E| − |V |), or O(n|E|) literals per ex-
planation in the worst case.

Our explanations are the same as Katsire-
los’s (2008) except that, our explanations based on
the list of dotted arcs leaving an SCC are quite gen-
eral, so we naturally deduce and propagate equalities,
rather than just disequalities as Katsirelos does.

Example 6.4 (deducing equalities) Pruning the
arc from SCC #2 → #3 as described in Example 6.3
gives the residual graph of Figure 5c. Further pruning
is possible: x1 may be fixed to 1, using SCC #3 as
evidence, yielding explanation [x1 6= 2]→ [x1 = 1].

7 alldifferent by decomposition

alldifferent can also be implemented by decompo-
sition into simpler constraints which already have
explanation capability. The obvious decomposition
is the conjunction of disequalities discussed in Sec-
tion 4. A decompositions which prunes the same
as the bounds-consistent global propagator is avail-
able (Bessiere et al. 2009b). There is no polynomially
sized decomposition of alldifferent into clauses which
enforces domain consistency (Bessiere et al. 2009a).

The attraction of decomposition is the ease of
understanding, implementation and experimentation.
We also cannot rule out that decompositions may per-
form better, by channelling the problem into more ap-
propriate variables, or by making intermediate vari-
ables and implications available for conflict analysis
which would otherwise have remained implicit.

A new decomposition of alldifferent , as a special
case of gcc (Global Cardinality Constraint), was in-
troduced by Feydy & Stuckey (2009). It is defined in
MiniZinc (Nethercote et al. 2007) as follows:

predicate alldifferent_feydy_decomp(
array[int] of var int: x) =

let { int: L = lb_array(x),
int: C = ub_array(x) + 1 - L,
int: N = length(x),
array[1..C] of var 0..1: c,
array[0..C] of var 0..N: s } in

s[0] = 0 /\ s[C] = N /\
forall (i in 1..C) (

s[i] = s[i - 1] + c[i] /\
c[i] = sum (j in 1..N) (bool2int(x[j] = i)) /\
s[i] = sum (j in 1..N) (bool2int(x[j] <= i)));

The new decomposition is efficient because it uses the
literals [xi = v] and [xi ≤ v], which are native in a
lazy clause generation solver, as they are part of the
integer variable encoding.

To see how this works consider the simplest case
when there are no spare values. Then the constraints
si = si−1 +ci simplify to ci = 1 and si = i. This gives
the consistency level described in Section 4, plus the
detection of Hall intervals aligned to the start or end
of the domain interval min(E)..max(E) where E is
the union of the domains of the variables.

Example 7.1 Suppose x1 ∈ 1..2, x2 ∈ 1..3, x3 ∈
2..3. No propagation is possible, e.g. considering the

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

119

constraint s1 =
∑3

i=1 bool2int([xi ≤ 1] = 1, we find

min(bool2int([x1 ≤ 1]))

+ max(bool2int([x2 ≤ 1]))

+ max(bool2int([x3 ≤ 1])) = 0 + 1 + 0 ≥ 1

which supports bool2int([x1 ≤ 1]) = 0. But if the
interval for x2 becomes 2..3, then the preceding test
gives 0 + 0 + 0 which is no longer ≥ 1, therefore
bool2int([x1 ≤ 1]) = 0 is unsupported, and is pruned
with explanation [x2 ≥ 2] ∧ [x3 ≥ 2]→ [x1 ≤ 1].

8 Experiments

We implemented the alldifferent constraint in
Chuffed , a state-of-the-art lazy clause generation
solver. Hardware was a cluster of Dell PowerEdge
1950 with 2 × 2.0 GHz Intel Quad Core Xeon E5405,
2×6MB Cache, and 16 GB RAM. Timeouts were
1800s, and each core was limited to 1 GB RAM in
our experiments. Data files are available from http:
//www.csse.unimelb.edu.au/~pjs/alldifferent.

The alldifferent implementations we compare in
Chuffed were value, the global value consistent prop-
agator described in Section 4; bounds, the global
bounds consistent propagator of Section 5; domain,
the global domain consistent propagator of Section 6;
and feydy, the gcc-based decomposition of Section 7.
We also examined value-consistent alldifferent by de-
composition to disequalities or linear constraints, and
the bounds consistent decomposition of Bessiere et al.
(2009b), but found them universally worse than the
corresponding globals of equal propagation strength.

The search strategies were: io, input order, an
appropriate static search depending on the model;
dwd, dom/wdeg search (Boussemart et al. 2004); and
act, activity-based (VSIDS) search (Moskewicz et al.
2001). We use Luby restarts (Luby et al. 1993) for
dynamic search strategies (dwd and act) if learning.
Note that act is inapplicable without learning since
it is the process of conflict analysis which collects ac-
tivity counts, hence was only run with learning.

In the first experiment we take all benchmarks
involving the global alldifferent constraint from the
Third International CSP Solver Competition (CSP
2008) plus the CSP2008 qcp and qwh benchmarks
which were only available in extensional form and
had to be converted to use alldifferent directly. On
these benchmarks the leading CSP2008 solvers were
cpHydra, Mistral and Sugar, and we compare
against the published results of the competition, not-
ing that they use an older Xeon architecture, but as
they run at 3.0 GHz the performance should be com-
parable. We excluded the trivial pigeons instances,
and certain bqwh instances where for some reason
published results were not available. The CSP2008
solvers use their default strategy as in the published
results, shown as io in the table.

Table 1 reports the geometric mean of runtimes
for the first experiment (using the timeout for timed-
out instances), with the number of timeouts appear-
ing as a superscript. For each model we show how
many solved instances were unsatisfiable or satisfiable
and how many were indeterminate as not solved by
any solver. These latter instances aren’t included in
the runtime or timeouts statistics. In each block the
solver with the fewest timeouts is highlighted, with
ties broken by runtimes. Memory-outs were treated
as timeouts (these occur on feydy only). Referring to
Table 1 our solver is clearly far superior to the winners
of the CSP2008 competition (patat is an exception

which arises because MiniZinc produced a particu-
larly poor decomposition for the (x0 6= x1)∨(x2 6= x3)
constraints appearing in this model, a problem we did
not address due to time constraints).

Since our runtimes were so small as to be barely
measurable in most cases, we compiled a new set
of much harder problems, based on the MiniZinc
1.1.6 benchmark suite (Nethercote et al. 2007) and
the suite of Gent et al. (2008), with some additional
models and additional harder instances. We com-
pare on these models versus the state-of-the-art con-
straint programming system Gecode (Gecode Team
2006), running the same MiniZinc models as Chuffed .
Gecode has won every MiniZinc Challenge (G12
Project 2010) run so far! The models are:

golomb ruler (prob006 in CSPLib (Gent &
Walsh 1999)), n = 8..11 is a problem of placing n
marks on a rule so that all the distances between the
marks are distinct.

insn sched, instruction scheduling for single-
issue pipelined CPUs, similar to Lopez-Ortiz et al.
(2003). Instances were obtained by compiling Me-
diaBench benchmarks with gcc 4.5.2, switches -O3
-march=barcelona -fsched-verbose=5, and taking all
sequences with 250..999 instructions. These problems
are interesting as the AMD Barcelona-core CPUs
have instructions with various latencies. These CPUs
are multiple-issue, requiring a gcc constraint, so we
consider a hypothetical single-issue version of the
CPU requiring only alldifferent . We omit redundant
constraints, they can improve performance, but their
number grows quadratically, hurting scalability.

kakuro, a grid-based puzzle similar to a cross-
word but with a numeric grid and arithmetic
clues. We used the grid generator at http://
www.perlmonks.org/?node_id=550884 to generate
10 puzzles of size 25×25 with coverage 50%. We use
the redundant alldifferent-sum constraints of Simonis
(2008), but not Simonis’s interact constraints.

knights tour, finding a cyclic knight’s tour of
length 56, 58, . . . , 64 on an 8×8 chessboard.

langford, Langford’s number problem (prob024
in CSPLib) which is to sequence k sets of numbers 1..n
such that each occurence of a number i is i numbers
apart from the next i in the sequence. The selected
instances are from k = 2..4 × n = 3..24, taken from
the MiniZinc benchmarks.

qg completion, Quasigroup Completion (QCP)
is given an n × n array where some cells are filled
in with numbers from 1 to n, fill in the rest of
the cells so that each row and each column con-
tains the set of numbers 1..n. We used Gomes’s
lsencode generator, http://www.cs.cornell.edu/
gomes/SOFT/lsencode-v1.1.tar.Z, to generate 160
problems of sizes 30×30..45×45. An arbitrary ran-
dom problem generated in this way is also usually
too easy, so we used picoSAT 936 from http://fmv.
jku.at/picosat to test the problems, keeping only
those which were still being solved after 10 seconds
on all of 10 randomized attempts. For example, on
size 30×30 we generated 27855 instances to find 10
which were hard enough.

qg existence, Quasigroup Existence (prob003 in
CSPLib) looks for a quasigroup of size n which satis-
fies various other criteria. We use sizes 8×8..13×13,
variants QG3..7 × {idempotent, nonidempotent},
except that QG6..7 are always idempotent. Redun-
dant constraints are from Colton & Miguel (2001).

social golfer (prob010 in CSPLib) is to
schedule a golf tournament for n × m golfers
over p weeks playing in groups of size m so
that no pair of golfers plays twice in the same
group. We use instances taken from http:

CRPIT Volume 122 - Computer Science 2012

120

model CSP2008, solver= nolearn, alldiff = learn, alldiff=
unsat, sat, ? cpHydra Mistral Mistral′ Sugar value bounds domain feydy value bounds domain feydy

bqwh io 0.09s 0.16s 0.08s 1.29s 0.24s 0.53s 0.00s 0.01s 0.02s 0.04s 0.01s 0.02s
dwd 0.02s 0.04s 0.00s 0.01s 0.01s 0.02s 0.00s 0.01s

0, 20, 0 act 0.02s 0.04s 0.00s 0.02s

costas- io 6.28s1 5.42s2 1.92s1 21.23s2 1.49s1 3.12s1 8.16s2 12.23s2 5.34s2 9.94s3 11.38s3 24.97s4

Array dwd 0.77s1 1.60s1 2.18s1 38.16s4 1.78s1 1.25s2 2.31s1 17.51s3

0, 10, 1 act 5.24s2 11.34s2 15.68s2 19.19s3

latin- io 6.27s5 4.49s5 4.35s5 2.09s1 0.99s5 1.42s5 1.62s5 1.75s5 0.16s 0.49s1 0.55s1 2.18s3

Square dwd 0.74s4 1.09s4 1.32s4 1.78s5 0.11s1 0.27s1 0.49s 0.97s2

7, 3, 0 act 0.00s 0.01s 0.01s 0.03s

magic- io 53.35s9 11.22s6 36.46s9 65.72s9 165.73s14 170.30s14 172.82s14 179.22s14 170.85s14 190.90s14 172.51s14 194.31s14

Square dwd 103.31s13 121.10s13 120.84s13 130.61s13 15.97s9 27.82s9 107.06s12 48.64s11

0, 17, 1 act 2.81s1 5.86s4 5.08s 36.64s9

ortho- io 6.18s2 2.72s1 3.91s2 25.77s1 0.28s1 0.82s1 2.07s1 0.88s1 0.58s1 0.94s1 0.88s1 1.07s1

latin dwd 0.34s 1.02s2 1.16s2 1.26s2 0.15s 0.24s 0.06s 0.54s1

1, 3, 5 act 0.22s 0.20s1 0.33s1 0.98s1

patat io 272.80s2 351.82s15 59.18s1 375.50s18 1800.00s42 1800.00s42 1800.00s42 1800.00s42 771.11s35 845.78s35 921.16s35 1228.48s38

dwd 1272.96s40 1377.46s41 1406.26s41 1216.18s39 170.75s12 230.99s13 429.64s20 831.64s33

0, 42, 4 act 518.98s31 632.88s29 532.62s32 1348.48s36

qcp io 10.48s5 9.44s18 11.50s21 6.08s 0.05s2 0.06s3 0.05s 0.22s5 0.02s 0.03s 0.03s 0.14s
dwd 0.01s 0.02s 0.02s 0.06s 0.01s 0.01s 0.01s 0.06s

20, 40, 0 act 0.01s 0.01s 0.01s 0.05s

quasi- io 0.86s2 0.87s3 0.53s2 2.91s1 0.06s 0.06s 0.05s 0.07s 0.08s1 0.08s1 0.07s1 0.09s1

group dwd 0.03s 0.03s 0.03s 0.03s 0.03s1 0.03s1 0.03s1 0.05s1

18, 12, 5 act 0.06s2 0.06s2 0.05s2 0.08s2

qwh io 3.68s 2.10s5 2.68s10 2.85s 0.03s 0.04s 0.03s 0.14s 0.02s 0.02s 0.02s 0.10s
dwd 0.01s 0.01s 0.01s 0.04s 0.01s 0.01s 0.01s 0.04s

0, 40, 0 act 0.01s 0.01s 0.01s 0.05s

other io 2.28s 9.75s1 0.64s 17.28s 6.34s1 7.40s1 13.17s1 54.72s2 0.38s1 5.00s1 10.38s1 62.23s2

dwd 12.22s1 15.18s1 21.63s1 70.45s2 0.02s 0.22s 0.18s 81.70s2

0, 3, 0 act 0.03s 0.42s 1.22s 92.14s2

Table 1: Models from the CSP2008 solver competition, against published results

//www.cs.brown.edu/~sello/solutions.html and
http://www.cril.univ-artois.fr/~lecoutre/
benchmarks.html. The model has 2 alldifferent
constraints, referred to as alldiff0 between players in
a group, and alldiff1 between pairs of players overall.
Symmetries are broken lexicographically. We use
integer variables, whereas most CSP approaches use
set variables, e.g. Gange et al. (2010), and we don’t
claim state-of-the-art results, only that the model
exercises our propagators.

talent sched (prob039 in CSPLib) schedules the
scenes in a film to minimize the cost of the schedule
in terms of actors’ fees, where an actor is paid for
the time from the first scene they are in until the
last scene they are in. We use the three instances
from CSPLib (a rehearsal problem plus film1 and
film2 based on real data), plus the randomly gen-
erated film1?? instances of Smith (2005). The input-
order (static) search is based on Smith’s but due to
time constraints we haven’t yet implemented the re-
dundant constraints described by Smith.

Since Gecode supports the search strategies io and
dwd we also give the geometric means for conflict
counts for each benchmark under the times in Ta-
bles 2 and 3 where we comparing against Gecode.

Since the higher-consistency propagators can be
slow to execute, our default approach is to include a
value propagator at the same time, at a high priority
(including, when there are no spare values, the clauses
described in Section 4, noting that clauses have higher
priority than propagators). So the strong propaga-
tor only executes after obvious propagation has been
done, and is avoided entirely if failure is obvious.

To see whether these default redundant propaga-
tors were really an improvement, we took the best
solver for each model and tried removing each type
of redundant constraint (novalue and noclause),
at least where it made sense to do so, which resulted
in the matrix of Table 4. Note that the ‘sat, unsat,
?’ summary numbers do not exactly match Table 2
since the set of solveable instances is recomputed for

each table based on the solvers attempted.

9 Discussion

In the first experiment Chuffed comprehensively beats
the CSP2008 solver competition winners. The im-
provement is partly just from adding learning, but
Sugar also has learning, and the improvement here is
from lazy clause generation, because Sugar is based
on SAT decompositions which are large on global con-
straints such as element , and also because Sugar has
only bounds literals rather than the more advanced
dual model discussed in Section 2. The new explained
global propagators for alldifferent also played an im-
portant role in defeating the CSP2008 solvers.

In the second experiment Chuffed without learn-
ing is equivalent to, or slightly better than, the
state-of-the-art publically available solver, Gecode.
With learning it is comprehensively better. All
problems except golomb ruler, langford and
qg existence benefit from learning in our experi-
ments. When learning, all problems except kakuro
and qg completion benefit from higher consistency
levels (bounds, domain or feydy). Thus, on 4 of the
9 problems selected, we demonstrate the usefulness of
explained higher-consistency propagators.

Learning changes the tradeoffs for propagation.
dwd allows the best comparison. For the models
qg completion (Table 2), and social golfer (in
particular the constraint alldiff1 ; Table 3), a strong
propagator (domain) was best without learning but
a simpler decomposition (value) was best with learn-
ing, suggesting that learning can recover some of the
global knowledge lost through decomposition.

Indeed for constraint alldiff1 of social golfer
the conflict count was worse with the stronger prop-
agator, which we do not normally expect. The issue
seems to be nogood reuse: The strong domain prop-
agator produces a weaker nogood than value, since
the nogood involves many variables and describes a
situation that might not recur often enough to pay

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

121

m
o
d
e
l

G
e c

o
d
e

n
o
l
e
a
r
n

l
e
a
r
n

u
n
sa

t,
sa

t,
?

a
l l

d
iff

=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

a
l l

d
iff

=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

a
l l

d
iff

=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

g
o
l
o
m
b
r
u
l
e
r

io
3
0
.9

0
s

1
4
.4

0
s

2
2
.2

8
s

1
4
7
.1

0
s1

6
6
.7

3
s

2
9
.3

6
s

4
6
.8

9
s

1
1
1
.9

9
s

2
7
4
.4

8
s1

1
0
3
.9

5
s
1

1
7
5
.9

8
s1

1
4
6
.0

8
s1

0
,

3
,

1
7
4
6
0
7
8

2
1
9
0
9
2

2
1
9
0
9
2

1
9
5
9
5
2

7
9
4
3
5
8

2
4
3
7
6
9

2
4
3
7
6
9

2
4
3
8
4
0

4
1
2
4
7
1

1
7
0
5
9
0

1
5
9
3
5
9

1
3
4
7
9
1

d
w
d

5
9
.9

1
s

2
2
.5

8
s

4
2
.8

8
s

3
0
3
.1

0
s1

1
5
2
.0

3
s

4
9
.6

6
s

9
8
.8

5
s

2
0
6
.3

9
s1

5
1
4
.7

6
s2

1
8
3
.7

6
s1

4
1
3
.4

6
s2

2
4
5
.1

9
s1

1
5
5
1
7
9
4

4
0
4
7
3
3

4
6
9
2
8
5

4
0
2
8
0
4

1
9
1
7
9
4
8

4
7
1
8
9
9

5
6
1
9
9
2

5
2
7
3
3
3

5
2
1
5
3
6

2
8
2
7
8
6

2
9
9
6
3
9

2
0
8
2
7
2

a
c
t

1
0
2
2
.2

8
s2

5
6
0
.3

2
s2

9
7
6
.1

8
s2

6
3
7
.8

3
s2

1
2
9
9
3
2
6

7
4
0
2
1
6

7
1
2
1
7
3

6
0
9
0
4
5

in
sn

sc
h
e
d

io
8
3
9
.7

2
s3

6
1
5
9
.7

2
s
2
9

2
7
9
.1

5
s2

9
6
7
8
.1

1
s3

2
8
4
1
.9

0
s3

6
1
9
5
.6

7
s
2
9

2
8
5
.4

4
s2

9
2
8
4
.5

7
s2

9
2
0
.0

5
s1

4
5
.6

2
s7

1
1
.3

1
s9

3
0
.6

5
s1

2

0
,

3
9
,

0
2
3
0
2
2
8
3
3

1
0
1
9
9
6
0

9
5
1
3
0
3

1
4
0

2
5
2
7
1
4
7
6

4
9
2
1
9
4

5
5
4
8
6
9

2
2
9
4
3

6
2
2
7

6
0
1

7
4
1

2
3
9

d
w
d

1
0
1
1
.3

8
s3

7
2
1
9
.1

5
s3

0
3
6
8
.1

5
s3

0
8
1
7
.1

2
s3

3
1
0
2
7
.0

0
s3

7
2
8
7
.0

6
s3

0
4
1
7
.9

3
s3

0
4
9
0
.8

1
s3

0
4
2
.4

8
s1

5
4
.1

1
s

3
0
.6

7
s9

3
7
.6

6
s8

6
1
7
6
3
1
4

6
1
7
2
8
0

1
3
8
3
6
7

9
2
0

1
4
4
8
3
8
0
5

7
0
6
9
1
4

1
9
0
6
3
7

4
4
5
4
3

1
9
8
6
7

5
7
4

2
2
6
3

4
6
3

a
c
t

1
8
.6

5
s1

2
5
.0

6
s

7
.0

1
s1

1
2
.5

5
s4

2
0
9
3
9

1
0
8
3

1
6
7
3

3
0
4

k
a
k
u
r
o

io
1
8
0
0
.0

0
s
1
0

1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
4
7
3
.3

2
s7

5
0
8
.8

5
s7

5
1
4
.2

8
s7

7
4
5
.4

0
s7

0
,

1
0
,

0
2
7
1
1
1
4
8
0

2
2
1
5
0
9
4
5

2
1
1
6
6
8
0
3

7
7
0
8
7
2

8
2
2
9
7
5
0
6

6
2
9
5
0
0
1
7

4
8
4
8
5
2
8
3

9
2
7
6
6
9
4

5
8
0
5
4
7

5
8
4
2
3
3

6
1
4
9
9
8

3
6
6
7
6
1

d
w
d

1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
5
7
1
.1

8
s9

1
8
0
0
.0

0
s1

0
1
8
0
0
.0

0
s1

0
1
0
6
1
.9

9
s
9

1
.9

0
s

3
.6

4
s

3
.3

4
s1

8
.2

9
s1

2
9
8
1
7
0
8
2

2
3
8
1
9
5
1
2

2
3
3
4
3
8
2
8

1
3
2
5
4
3
8

5
7
4
1
7
7
9
4

5
2
3
8
7
8
3
0

3
7
9
5
5
3
9
4

4
9
7
4
8
0
4

2
1
1
0
1

3
2
4
4
1

2
8
9
9
2

1
7
9
4
3

a
c
t

2
4
.1

3
s

2
7
.1

4
s

2
7
.1

2
s

2
3
4
.3

8
s2

2
0
0
7
6
6

1
7
8
2
3
2

1
5
3
5
7
4

4
1
2
2
4
3

k
n
ig
h
t
s
t
o
u
r

io
2
5
6
.5

9
s
2

2
7
1
.0

1
s2

2
6
4
.7

8
s2

5
1
1
.8

5
s3

2
0
5
.7

3
s2

2
1
8
.4

1
s2

2
1
6
.6

0
s2

3
2
8
.5

1
s2

2
4
4
.6

6
s3

2
6
3
.6

2
s3

2
7
0
.1

5
s3

3
1
6
.4

8
s3

0
,

5
,

0
2
6
7
6
1
2
7

2
5
2
8
8
7
8

2
5
3
0
9
6
5

1
2
6
8
0
2
4

3
1
8
2
1
9
4

3
0
9
3
5
2
1

3
0
7
7
3
3
4

2
5
2
5
0
1
5

1
1
6
0
4
5

1
1
3
6
3
8

1
1
2
7
8
9

1
2
2
2
0
5

d
w
d

5
5
4
.6

3
s4

5
6
1
.5

9
s4

6
5
5
.8

4
s4

1
0
2
4
.3

1
s4

1
0
2
.2

3
s
2

1
1
7
.1

2
s2

1
0
8
.5

7
s2

1
6
4
.2

5
s2

5
5
.7

4
s2

8
4
.0

0
s2

1
0
.5

7
s2

2
8
.2

6
s1

9
6
2
8
1
4
3

7
9
3
0
3
8
2

8
3
8
6
7
7
4

2
6
0
3
5
9
0

1
6
1
6
8
6
8

1
5
1
7
1
4
1

1
5
6
0
9
3
0

1
2
7
4
2
4
3

9
0
9
5
1

1
1
8
8
4
1

2
6
1
5
4

4
2
7
0
0

a
c
t

4
5
.6

4
s1

2
0
.5

6
s1

4
2
.6

1
s1

3
1
.7

9
s

1
7
0
2
8
3

6
0
2
8
5

1
3
3
3
8
4

8
3
0
6
8

l
a
n
g
f
o
r
d

io
0
.4

7
s3

0
.3

1
s2

0
.3

2
s2

0
.7

0
s3

0
.3

3
s2

0
.2

5
s1

0
.2

6
s1

0
.4

1
s2

1
.0

8
s4

0
.6

2
s3

0
.7

4
s4

0
.8

8
s4

5
,

1
6
,

4
6
0
5
7

2
6
0
1

2
5
9
6

2
2
5
7

6
7
5
2

2
6
7
9

2
6
7
8

2
5
5
8

2
4
3
3

1
3
4
0

1
3
4
1

1
3
0
0

d
w
d

0
.0

5
s

0
.0

6
s

0
.0

6
s

0
.0

5
s1

0
.0

3
s

0
.0

4
s

0
.0

4
s

0
.0

7
s

0
.0

5
s1

0
.0

5
s1

0
.0

6
s1

0
.0

9
s1

3
7
9

3
5
9

3
5
5

7
2

2
9
7

2
8
8

2
8
8

2
8
8

1
9
4

1
8
2

1
8
9

1
9
3

a
c
t

0
.0

4
s1

0
.0

4
s
1

0
.0

5
s1

0
.0

6
s1

2
4
1

1
8
7

2
1
4

2
0
5

q
g

c
o
m
p
l
e
t
io
n

io
3
8
8
.5

7
s7

6
3
8
5
.3

8
s7

6
3
0
9
.9

0
s7

4
4
5
5
.8

5
s7

5
3
6
4
.2

6
s7

4
3
6
6
.3

6
s7

4
3
9
0
.8

5
s7

4
6
4
5
.9

9
s7

5
3
5
8
.6

4
s7

3
3
5
7
.8

3
s7

3
3
8
9
.9

5
s7

3
6
5
9
.2

5
s7

4

2
1
,

6
4
,

7
5

3
6
0
4
2
8
5

1
5
4
5
9
7
6

9
9
6
2
4
5

5
7
2
8
5

2
8
7
1
1
2
5

1
9
0
7
1
7
5

1
3
5
0
3
0
3

1
6
7
9
0
8

1
3
8
6
3
0

1
3
4
5
7
4

1
1
9
2
2
4

5
6
0
6
8

d
w
d

3
4
5
.1

3
s7

5
3
4
2
.1

6
s7

5
2
2
0
.4

3
s
5
5

4
5
1
.2

0
s7

4
2
7
3
.6

1
s5

4
2
8
5
.3

1
s5

7
2
7
0
.9

6
s
4
6

6
3
3
.4

4
s7

2
2
2
5
.2

5
s3

8
1
9
0
.2

4
s4

3
1
8
8
.4

2
s3

6
4
7
8
.3

7
s6

1

2
7
7
8
5
5
5

1
1
2
1
6
7
5

6
0
8
2
3
1

5
1
3
7
6

1
5
7
6
1
3
7

1
0
0
3
8
5
1

7
1
3
5
0
5

1
2
8
8
7
2

8
5
7
9
0

7
3
4
8
6

5
9
6
1
5

4
0
3
4
6

a
c
t

8
9
.0

1
s
1
1

9
0
.4

9
s1

5
8
4
.0

6
s1

3
3
5
7
.2

5
s3

8

4
3
0
1
4

4
1
4
0
2

3
0
8
1
2

2
9
4
1
0

q
g

e
x
is
t
e
n
c
e

io
1
2
7
.0

1
s1

9
9
3
.5

7
s1

7
8
1
.8

7
s1

6
1
1
0
.0

9
s1

7
7
3
.4

9
s1

7
7
2
.0

9
s1

7
6
8
.0

4
s1

6
8
2
.4

1
s1

7
2
8
.0

8
s1

3
2
4
.7

5
s1

3
2
4
.0

0
s1

3
2
8
.1

7
s1

3

1
2
,

2
3
,

1
3

3
7
0
8
4
2

1
8
1
6
4
6

1
3
3
8
0
5

1
2
5
4
0
6

2
2
8
0
3
1

1
8
8
6
5
7

1
6
5
3
3
5

1
6
9
9
4
0

1
6
9
7
0

1
4
2
0
4

1
2
7
1
1

1
4
2
8
1

d
w
d

9
.2

5
s1

0
1
0
.2

7
s9

9
.0

8
s
8

1
6
.4

9
s1

0
3
.2

1
s5

3
.4

3
s5

3
.4

3
s5

4
.0

4
s
4

6
.1

6
s7

5
.0

8
s7

5
.7

2
s7

4
.8

3
s
6

2
0
2
8
5

1
8
1
7
5

1
3
8
0
2

1
4
7
3
1

7
1
3
2

6
9
1
6

6
1
8
2

6
1
6
6

4
6
2
1

3
9
3
3

3
9
7
5

3
0
8
2

a
c
t

7
.1

5
s8

1
0
.0

5
s1

1
8
.7

6
s1

0
1
3
.1

9
s1

1

5
0
8
6

6
3
0
1

5
0
4
6

7
6
9
8

t
a
l
e
n
t
sc

h
e
d

io
7
0
9
.0

6
s7

7
0
8
.3

5
s7

6
6
5
.8

9
s
7

7
1
5
.4

0
s7

6
1
4
.2

8
s
7

6
3
1
.6

9
s7

6
2
5
.5

0
s7

6
4
9
.7

0
s7

5
2
1
.2

4
s7

5
3
8
.3

8
s7

5
4
9
.0

9
s7

5
3
2
.2

0
s7

0
,

9
,

1
1
3
9
0
0
5
6
6

1
1
7
4
5
4
2
3

1
1
2
0
3
9
1
3

8
1
3
4
7
0
2

2
1
0
9
5
6
0
5

1
9
3
0
7
5
1
2

2
0
2
1
6
0
4
0

1
7
9
7
5
6
7
6

8
2
3
5
0
4

7
1
3
1
5
9

7
1
4
0
7
7

7
3
3
5
7
7

d
w
d

7
1
6
.4

6
s7

6
7
8
.8

8
s7

6
8
5
.6

4
s7

7
7
5
.0

7
s7

6
2
3
.2

5
s7

6
3
1
.9

3
s7

6
2
3
.3

2
s7

6
5
6
.4

8
s7

5
6
8
.2

2
s7

5
8
2
.3

1
s7

5
8
5
.7

4
s7

5
4
6
.2

5
s7

1
3
4
7
9
8
7
6

1
0
2
3
0
6
9
2

1
0
7
7
9
8
6
2

7
3
4
4
7
0
6

1
5
4
7
2
9
0
3

1
5
1
8
7
8
2
5

1
4
8
4
4
2
7
4

1
4
2
5
3
3
3
2

6
0
5
6
6
7

6
6
0
1
0
9

6
1
2
3
7
2

6
9
5
9
4
1

a
c
t

3
4
1
.4

5
s3

1
0
7
.0

7
s

5
2
.5

1
s

1
1
4
.0

5
s

5
7
6
2
7
0

1
8
5
4
0
5

1
0
4
5
6
2

1
9
0
9
2
5

T
ab

le
2:

M
o
d

el
s

co
n
ta

in
in

g
on

e
a
ll

d
iff

er
en

t
co

n
st

ra
in

t,
p

er
p
ro

p
ag

at
or

an
d

se
ar

ch
st

ra
te

gy

CRPIT Volume 122 - Computer Science 2012

122

0
,

3
9
,

7
G

ec
o
d
e

n
o
l
e
a
r
n

l
e
a
r
n

u
n
sa

t,
sa

t,
?

a
ll

d
iff

0
=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

a
ll

d
iff

0
=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

a
ll

d
iff

0
=
v
a
l
u
e

b
o
u
n
d
s

d
o
m
a
in

f
e
y
d
y

io
a
ll

d
iff

1
=
v
a
l
u
e

8
.6

1
s1

4
1
.2

6
s9

0
.9

7
s
9

1
.6

2
s1

0
3
.7

8
s1

3
0
.9

3
s9

0
.8

8
s
9

1
.0

9
s9

0
.9

1
s7

0
.6

0
s8

0
.4

9
s
7

0
.7

0
s7

1
3
6
8
6

1
0
6
6

6
6
0

7
2
2

1
0
0
8
7

1
0
1
0

8
4
8

9
7
8

7
2
5

2
3
3

1
9
3

2
3
1

b
o
u
n
d
s

9
.2

0
s1

4
1
.3

9
s9

1
.0

4
s9

1
.7

1
s9

4
.2

9
s1

3
1
.0

8
s9

0
.9

3
s9

1
.2

0
s9

1
.0

5
s7

0
.6

5
s8

0
.5

5
s7

0
.7

7
s7

1
3
0
6
0

1
0
4
5

6
3
9

7
1
5

9
2
0
2

9
8
3

7
9
3

9
5
2

7
3
8

2
3
5

1
9
3

2
3
9

d
o
m
a
in

1
0
.5

7
s1

5
1
.8

2
s1

0
1
.4

0
s1

0
2
.0

5
s1

0
5
.5

8
s1

3
1
.3

5
s9

1
.2

1
s9

1
.5

5
s9

1
.3

7
s8

0
.8

8
s8

0
.7

5
s7

1
.0

2
s8

7
5
1
2

9
1
8

5
7
2

6
5
2

7
0
9
9

8
6
7

7
2
6

8
5
6

7
0
7

2
2
8

1
8
6

2
3
6

f
e
y
d
y

3
9
.9

5
s1

9
1
2
.3

5
s1

4
9
.4

6
s1

3
1
1
.9

3
s1

4
1
0
.1

8
s1

6
4
.0

1
s1

3
3
.5

1
s1

3
4
.1

0
s1

3
4
.6

7
s1

1
3
.4

9
s1

2
2
.8

3
s1

1
3
.8

0
s1

2

4
9
4

1
1
9

7
7

9
3

4
9
0

9
8

8
0

9
7

8
1

3
8

3
0

3
8

d
w
d

a
l l

d
iff

1
=
v
a
l
u
e

9
3
.4

7
s2

6
1
.4

8
s7

1
.1

8
s7

2
.1

8
s8

1
0
.9

1
s1

4
1
0
.7

6
s1

5
9
.3

5
s1

0
9
.7

1
s1

2
0
.3

8
s3

0
.3

3
s
1

0
.3

0
s2

0
.3

7
s2

1
4
9
0
1
1

1
7
4
7

1
3
2
7

1
6
1
0

2
4
2
8
1

2
2
7
9
5

1
8
6
8
6

1
6
7
7
3

2
8
3

2
0
6

1
7
7

1
9
2

b
o
u
n
d
s

1
0
9
.2

6
s2

6
1
.5

8
s7

1
.3

6
s7

2
.1

3
s7

1
2
.1

4
s1

4
1
1
.4

1
s1

5
1
0
.4

5
s1

0
1
0
.1

2
s1

2
0
.4

2
s3

0
.3

4
s1

0
.3

3
s2

0
.4

0
s1

1
5
4
5
8
2

1
6
2
2

1
3
7
5

1
4
8
6

2
3
5
6
4

2
1
3
1
9

1
7
9
0
3

1
5
5
7
3

2
8
2

1
9
1

1
7
1

1
8
5

d
o
m
a
in

1
0
0
.6

1
s2

6
2
.0

3
s6

1
.1

4
s
5

1
.9

2
s5

4
.8

5
s8

4
.2

9
s9

3
.4

0
s
6

5
.0

2
s7

0
.7

1
s3

0
.5

8
s1

0
.5

7
s1

0
.5

7
s1

9
6
6
3
0

1
4
6
2

8
1
9

1
0
2
6

7
3
4
2

6
5
9
0

4
9
1
6

6
8
9
5

2
9
6

2
0
0

1
8
3

1
8
3

f
e
y
d
y

1
7
7
.3

5
s2

7
2
0
.8

8
s1

3
1
4
.6

4
s1

2
2
2
.9

0
s1

3
2
9
.7

4
s1

7
4
7
.3

4
s2

0
4
6
.1

3
s1

9
4
7
.1

1
s2

0
3
.1

5
s9

2
.7

6
s9

2
.7

1
s9

2
.5

5
s8

2
1
7
3

2
4
0

1
5
4

2
2
2

2
4
8
9

2
8
4
1

2
8
2
4

2
1
8
6

5
0

4
3

3
9

3
8

a
c
t

a
l l

d
iff

1
=
v
a
l
u
e

0
.3

8
s2

0
.3

1
s2

0
.2

7
s
1

0
.3

6
s2

3
8
2

2
1
3

1
8
2

2
0
2

b
o
u
n
d
s

0
.3

9
s1

0
.3

6
s2

0
.3

3
s2

0
.3

7
s1

3
5
0

2
0
2

2
0
2

2
0
1

d
o
m
a
in

0
.6

8
s2

0
.4

1
s2

0
.5

4
s2

0
.5

2
s2

3
9
6

1
6
2

2
1
9

2
0
0

f
e
y
d
y

4
.2

4
s9

3
.9

3
s9

3
.7

2
s9

3
.3

2
s8

1
0
8

9
5

8
3

9
5

Table 3: Model social golfer, propagator matrix
for the two alldifferent constraints, by search strategy

model
solver
unsat, sat, ? novalue value

golomb ruler noclauses 32.94s 243769 29.67s 243769
nolearn, bounds, io
0, 3, 1 clauses

insn sched noclauses 3.46s 417 4.41s 573
learn, bounds, dwd
0, 39, 0 clauses

kakuro noclauses 1.19s 147871

learn, value, dwd
0, 10, 0 clauses 1.90s 21101

knights tour noclauses 34.46s 77418 32.87s 77418
learn, feydy, act
0, 5, 0 clauses 34.00s 83068 31.79s 83068

langford noclauses 0.06s 416
nolearn, value, dwd
5, 16, 4 clauses 0.03s 297

qg completion noclauses 341.63s 15215562

learn, value, act
21, 53, 86 clauses 56.93s 28702

qg existence noclauses 2.13s 3318 2.20s 33781

nolearn, feydy, dwd
12, 19, 17 clauses 1.68s 28921 1.84s 2989

talent sched noclauses 79.24s 175839 66.76s 1641281

learn, domain, act
0, 9, 1 clauses 38.73s 105665 52.51s 104562

social golfer noclauses 0.18s 170 0.23s 1831

learn, domain/value, act
0, 38, 8 clauses 0.15s 1461 0.21s 151

Table 4: Removing default redundant propagators

the nogood’s propagation cost. The cases where do-
main is beneficial, such as the constraint alldiff0 of
social golfer, tend to be those where the domain
size is very small, so the nogoods are always highly
reuseable and also cheap to produce.

For insn sched where the bounds propagator is
best, we see the opposite effect than for domain,
the nogoods produced by bounds are stronger than
value because the domains are large and sparse, so
collisions between values (pruned by the value prop-
agator) are unlikely, whereas many different pruning
opportunities are compactly described by a bounds
nogood. These nogoods are also symmetric between
variables, since they describe a Hall interval rather
than any specific pruning resulting from the existence
of the Hall interval, which further promotes reuse.

For most models act is the best. In our experi-
ence the models for which act is the wrong approach,
tend to be those with a good static search order (here
insn sched), where gaps in the sequence of variable
assignments are difficult to resolve later on. In such
cases dwd is a useful compromise between activity-
based search (weighted degree is similar to activity)
and sequential search (domain size causes a domino
effect which makes the search ripple outwards from
previously fixed variables). But where act works it
is almost always significantly better, and allowing the
use of activity based search with strong propagators
is an important contribution of our work.

Our knights tour model relies on linear con-
straints propagated to bounds consistency which cre-
ates a 5×5 bounding box for each knight move. This
causes the most propagation at the edges of the board,
so it is intuitive that feydy, which efficiently detects
Hall intervals aligned to the edges of the board, should
perform best on this model. We don’t claim state-
of-the-art results since specialized techniques based
on lookahead can solve the problem greedily (von
Warnsdorff 1823), but the model is still very useful
in demonstrating that the feydy decomposition may
be best despite its (relative) simplicity.

Referring to Table 4, for most models it is im-
portant, indeed essential, to add the redundant
value propagator and the extra clauses if possible.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

123

The exceptions are: insn sched, where value does
not prune very well as discussed above; and so-
cial golfer (in particular the alldiff0 constraint)
and talent sched, where domains are small and the
domain propagator is cheap as discussed above.

10 Conclusions and further work

We have shown how to extend propagators for alld-
ifferent to explain their propagation, in order to use
them in a lazy clause generation solver. We see that
for problems involving alldifferent , learning is usually
hugely beneficial. Each of the different propagation
methods is best for some problems, so having a range
of different propagators (or decompositions) that can
explain their propagation is valuable. Overall com-
bining learning and alldifferent leads to a highly com-
petitive approach to these problems. The combina-
tion of global alldifferent constraints with explanation
leads to a state-of-the-art constraint programming so-
lution to problems involving alldifferent .

In further work we would like to investigate why
learning isn’t effective on some of the models. We
conjecture it may be because the instances become
too hard too quickly, and that indeed learning may be
better on harder instances but this is academic when
the instances are out of reach for any solver. Further
work could also examine hybrid methods to see if our
work can be incorporated into the specialized solvers
for talent sched (Garcia de la Banda et al. 2010)
or social golfer (Gange et al. 2010).

References

Bessiere, C., Katsirelos, G., Narodytska, N., Quim-
per, C.-G. & Walsh, T. (2009a), Circuit Complex-
ity and Decompositions of Global Constraints, in
‘Procs. of IJCAI-2009’, pp. 412–418.

Bessiere, C., Katsirelos, G., Narodytska, N., Quim-
per, C.-G. & Walsh, T. (2009b), Decompositions of
All Different, Global Cardinality and Related Con-
straints, in ‘Procs. of IJCAI-2009’, pp. 419–424.

Boussemart, F., Hemery, F., Lecoutre, C. & Sais, L.
(2004), Boosting Systematic Search by Weighting
Constraints, in ‘Procs. of ECAI04’, pp. 146–150.

Colton, S. & Miguel, I. (2001), Constraint Genera-
tion via Automated Theory Formation, in ‘Procs.
of CP01’, pp. 575–579.

CSP (2008), ‘Third international csp solver com-
petition’. http://www.cril.univ-atrois.fr/
CPAI08.

Feydy, T. & Stuckey, P. (2009), Lazy Clause Genera-
tion Reengineered, in ‘Procs. of CP2009’, pp. 352–
366.

Ford, L. & Fulkerson, D. (1956), ‘Maximal flow
through a network’, Canad. J. Math. 8, 399–404.

G12 Project (2010), ‘MiniZinc Challenge’.
http://www.g12.cs.mu.oz.au/minizinc/
challenge2010/challenge.html.

Gange, G., Stuckey, P. & Lagoon, V. (2010), ‘Fast
set bounds propagation using a BDD-SAT hybrid’,
JAIR 38, 307–338.

Garcia de la Banda, M., Stuckey, P. J. & Chu,
G. (2010), ‘Solving Talent Scheduling with Dy-
namic Programming’, INFORMS J. on Computing
(preprint) .

Gecode Team (2006), ‘Gecode: Generic constraint
development environment’. http://www.gecode.
org.

Gent, I., Miguel, I. & Nightingale, P. (2008), ‘Gen-
eralised arc consistency for the AllDifferent con-
straint: An empirical survey’, AI 172(18), 1973 –
2000.

Gent, I. P. & Walsh, T. (1999), CSPLIB: A Bench-
mark Library for Constraints, in ‘Princ. and Prac.
of CP’, pp. 480–481. http://www.csplib.org.

Hall, P. (1935), ‘On Representatives of Subsets’, J.
London Math. Soc. s1-10(1), 26–30.

Katsirelos, G. (2008), Nogood processing in CSPs,
PhD thesis, University of Toronto, Canada.

Lopez-Ortiz, A., Quimper, C.-G., Tromp, J. &
Van Beek, P. (2003), A fast and simple algorithm
for bounds consistency of the all different con-
straint, in ‘Procs. of IJCAI-2003’, pp. 245–250.

Luby, M., Sinclair, A. & Zuckerman, D. (1993), ‘Op-
timal speedup of Las Vegas algorithms’, Inf. Proc.
Let. 47(4), 173 – 180.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L.
& Malik, S. (2001), Chaff: engineering an efficient
SAT solver, in ‘Procs. of DAC01’, pp. 530–535.

Nethercote, N., Stuckey, P., Becket, R., Brand, S.,
Duck, G. & Tack, G. (2007), MiniZinc: Towards
a Standard CP Modelling Language, in ‘Procs.
of CP2007’, Vol. 4741 of LNCS, Springer-Verlag,
pp. 529–543.

Ohrimenko, O., Stuckey, P. & Codish, M. (2009),
‘Propagation via lazy clause generation’, Con-
straints 14, 357–391.

Régin, J.-C. (1994), A filtering algorithm for con-
straints of difference in CSPs, in ‘Procs. of AAAI-
1994’, pp. 362–367.

Simonis, H. (2008), Kakuro as a Constraint Problem,
in P. Flener & H. Simonis, eds, ‘Procs. of MOD-
REF08’, Uppsala University, Computing Science.

Smith, B. (2005), Caching Search States in Permu-
tation Problems, in P. van Beek, ed., ‘Procs. of
CP2005’, Vol. 3709 of LNCS, Springer Berlin / Hei-
delberg, pp. 637–651.

Tarjan, R. E. (1972), ‘Depth-First Search and Linear
Graph Algorithms’, SIAM J. Computing 1(2), 146–
160.

Tarjan, R. E. (1975), ‘Efficiency of a Good But Not
Linear Set Union Algorithm’, J. ACM 22, 215–225.

van Hoeve, W. J. (2001), The alldifferent Con-
straint: A Survey, in ‘Procs. of the 6th ERCIM
Working Group on Constraints Workshop’, Vol.
cs.PL/0105015.

von Warnsdorff, H. C. (1823), Des Rösselsprungs ein-
fachste und allgemeinste Lösung, Th. G. Fr. Varn-
hagenschen Buchhandlung, Schmalkalden.

CRPIT Volume 122 - Computer Science 2012

124

Author Index

Alexander, Bradley, 11

Bailes, Paul, 63
Barone, Luigi, 81
Browne, Will N., 27

Cao, Jinli, 3
Ciesielski, Vic, 57

Dhaliwal, Jasbir, 91
Dietrich, Jens, 37
Donnellan, Sean, 11
Downing, Nicholas, 115

Estivill-Castro, Vlad, 21

Feydy, Thibaut, 115

Hayashida, Takanori, 107
Hingston, Phil, 81

Jeffrey, Andrew, 11

Lee, Hua Jie, 99
Liu, Denghui, 3

McCartin, Catherine, 37
Mitchell, Arnan, 73
Mori, Hideki, 107

Naish, Lee, 49, 99

Nguyen, Thach, 73

Olds, Travis, 11

Parsa, Mahdi, 21
Puglisi, Simon J., 91

Ramamohanarao, Kotagiri, 99
Reynolds, Mark, iii

Sato, Toshinori, 107
Shah, Syed Ali, 37
Shi, Qiao, 73
Sizer, Nicholas, 11
Song, Andy, 57, 73
Stuckey, Peter, 115

Tempero, Ewan, 37
Thomas, Bruce, iii
Turpin, Andrew, 91

While, Lyndon, 81
Wittkamp, Mark, 81

Xie, Feng, 57
Xue, Bing, 27

Yano, Rikiya, 107

Zhang, Mengjie, 27

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

125

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 113 - Computer Science 2011
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia. January 2011. 978-1-920682-93-4.

Contains the proceedings of the Thirty-Fourth Australasian Computer Science
Conference (ACSC 2011), Perth, Australia, 1720 January 2011.

Volume 114 - Computing Education 2011
Edited by John Hamer, University of Auckland, New Zealand
and Michael de Raadt, University of Southern Queensland,
Australia. January 2011. 978-1-920682-94-1.

Contains the proceedings of the Thirteenth Australasian Computing Education
Conference (ACE 2011), Perth, Australia, 17-20 January 2011.

Volume 115 - Database Technologies 2011
Edited by Heng Tao Shen, The University of Queensland,
Australia and Yanchun Zhang, Victoria University, Australia.
January 2011. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Second Australasian Database Conference
(ADC 2011), Perth, Australia, 17-20 January 2011.

Volume 116 - Information Security 2011
Edited by Colin Boyd, Queensland University of Technology,
Australia and Josef Pieprzyk, Macquarie University, Aus-
tralia. January 2011. 978-1-920682-96-5.

Contains the proceedings of the Ninth Australasian Information Security
Conference (AISC 2011), Perth, Australia, 17-20 January 2011.

Volume 117 - User Interfaces 2011
Edited by Christof Lutteroth, University of Auckland, New
Zealand and Haifeng Shen, Flinders University, Australia.
January 2011. 978-1-920682-97-2.

Contains the proceedings of the Twelfth Australasian User Interface Conference
(AUIC2011), Perth, Australia, 17-20 January 2011.

Volume 118 - Parallel and Distributed Computing 2011
Edited by Jinjun Chen, Swinburne University of Technology,
Australia and Rajiv Ranjan, University of New South Wales,
Australia. January 2011. 978-1-920682-98-9.

Contains the proceedings of the Ninth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2011), Perth, Australia, 17-20 January 2011.

Volume 119 - Theory of Computing 2011
Edited by Alex Potanin, Victoria University of Wellington,
New Zealand and Taso Viglas, University of Sydney, Aus-
tralia. January 2011. 978-1-920682-99-6.

Contains the proceedings of the Seventeenth Computing: The Australasian Theory
Symposium (CATS 2011), Perth, Australia, 17-20 January 2011.

Volume 120 - Health Informatics and Knowledge Management 2011
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Tony Sahama, Qeensland University of Technol-
ogy, Australia. January 2011. 978-1-921770-00-5.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2011), Perth, Australia, 17-20 January 2011.

Volume 121 - Data Mining and Analytics 2011
Edited by Peter Vamplew, University of Ballarat, Australia,
Andrew Stranieri, University of Ballarat, Australia, Kok–
Leong Ong, Deakin University, Australia, Peter Christen,
Australian National University, , Australia and Paul J.
Kennedy, University of Technology, Sydney, Australia. De-
cember 2011. 978-1-921770-02-9.

Contains the proceedings of the Ninth Australasian Data Mining Conference
(AusDM’11), Ballarat, Australia, 1–2 December 2011.

Volume 122 - Computer Science 2012
Edited by Mark Reynolds, The University of Western Aus-
tralia, Australia and Bruce Thomas, University of South Aus-
tralia. January 2012. 978-1-921770-03-6.

Contains the proceedings of the Thirty-Fifth Australasian Computer Science
Conference (ACSC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 123 - Computing Education 2012
Edited by Michael de Raadt, Moodle Pty Ltd and Angela
Carbone, Monash University, Australia. January 2012. 978-
1-921770-04-3.

Contains the proceedings of the Fourteenth Australasian Computing Education
Conference (ACE 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 124 - Database Technologies 2012
Edited by Rui Zhang, The University of Melbourne, Australia
and Yanchun Zhang, Victoria University, Australia. January
2012. 978-1-920682-95-8.

Contains the proceedings of the Twenty-Third Australasian Database Conference
(ADC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 125 - Information Security 2012
Edited by Josef Pieprzyk, Macquarie University, Australia
and Clark Thomborson, The University of Auckland, New
Zealand. January 2012. 978-1-921770-06-7.

Contains the proceedings of the Tenth Australasian Information Security
Conference (AISC 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 126 - User Interfaces 2012
Edited by Haifeng Shen, Flinders University, Australia and
Ross T. Smith, University of South Australia, Australia.
January 2012. 978-1-921770-07-4.

Contains the proceedings of the Thirteenth Australasian User Interface Conference
(AUIC2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 127 - Parallel and Distributed Computing 2012
Edited by Jinjun Chen, University of Technology, Sydney,
Australia and Rajiv Ranjan, CSIRO ICT Centre, Australia.
January 2012. 978-1-921770-08-1.

Contains the proceedings of the Tenth Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 128 - Theory of Computing 2012
Edited by Julián Mestre, University of Sydney, Australia.
January 2012. 978-1-921770-09-8.

Contains the proceedings of the Eighteenth Computing: The Australasian Theory
Symposium (CATS 2012), Melbourne, Australia, 30 January – 3 February 2012.

Volume 129 - Health Informatics and Knowledge Management 2012
Edited by Kerryn Butler-Henderson, Curtin University, Aus-
tralia and Kathleen Gray, University of Melbourne, Aus-
tralia. January 2012. 978-1-921770-10-4.

Contains the proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management (HIKM 2012), Melbourne, Australia, 30 January – 3
February 2012.

Volume 130 - Conceptual Modelling 2012
Edited by Aditya Ghose, University of Wollongong, Australia
and Flavio Ferrarotti, Victoria University of Wellington, New
Zealand. January 2012. 978-1-921770-11-1.

Contains the proceedings of the Eighth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2012), Melbourne, Australia, 31 January – 3 February 2012.

Volume 131 - Advances in Ontologies 2010
Edited by Thomas Meyer, UKZN/CSIR Meraka Centre
for Artificial Intelligence Research, South Africa, Mehmet
Orgun, Macquarie University, Australia and Kerry Taylor,
CSIRO ICT Centre, Australia. December 2010. 978-1-921770-
00-5.

Contains the proceedings of the Sixth Australasian Ontology Workshop 2010 (AOW
2010), Adelaide, Australia, 7th December 2010.

